

Lecture Notes in Computer Science 6480
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marina L. Gavrilova C.J. Kenneth Tan
Edward David Moreno (Eds.)

Transactions on
Computational Science XI

Special Issue on Security in Computing, Part II

13

Editors-in-Chief

Marina L. Gavrilova
University of Calgary, Department of Computer Science
2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
E-mail: mgavrilo@ucalgary.ca

C.J. Kenneth Tan
Exascala Ltd.
Unit 9, 97 Rickman Drive, Birmingham B15 2AL, UK
E-mail: cjtan@exascala.com

Guest Editor

Edward David Moreno
DCOMP/UFS - Federal University of Sergipe
Aracaju/SE, Brazil
E-mail: edwdavid@gmail.com

Library of Congress Control Number: 2010939851

CR Subject Classification (1998): C.2, K.6.5, D.4.6, E.3, K.4.4, G.2

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1866-4733 (Transaction on Computational Science)
ISBN-10 3-642-17696-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17696-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive research
to biochemistry, electronics, geosciences, mathematics, and physics. Computer
systems research and the exploitation of applied research naturally complement each
other. The increased complexity of many challenges in computational science
demands the use of supercomputing, parallel processing, sophisticated algorithms,
and advanced system software and architecture. It is therefore invaluable to have
input by systems research experts in applied computational science research.

Transactions on Computational Science focuses on original high-quality research
in the realm of computational science in parallel and distributed environments, also
encompassing the underlying theoretical foundations and the applications of large-
scale computation. The journal offers practitioners and researchers the opportunity to
share computational techniques and solutions in this area, to identify new issues, and
to shape future directions for research, and it enables industrial users to apply leading-
edge, large-scale, high-performance computational methods.

In addition to addressing various research and application issues, the journal aims
to present material that is validated – crucial to the application and advancement of
the research conducted in academic and industrial settings. In this spirit, the journal
focuses on publications that present results and computational techniques that are
verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computational
methods and applications:

• Aeronautics and Aerospace
• Astrophysics
• Bioinformatics
• Climate and Weather Modeling
• Communication and Data Networks
• Compilers and Operating Systems
• Computer Graphics
• Computational Biology
• Computational Chemistry
• Computational Finance and Econometrics
• Computational Fluid Dynamics

VI LNCS Transactions on Computational Science

• Computational Geometry
• Computational Number Theory
• Computational Physics
• Data Storage and Information Retrieval
• Data Mining and Data Warehousing
• Grid Computing
• Hardware/Software Co-design
• High-Energy Physics
• High-Performance Computing
• Numerical and Scientific Computing
• Parallel and Distributed Computing
• Reconfigurable Hardware
• Scientific Visualization
• Supercomputing
• System-on-Chip Design and Engineering

Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to the gamut of computational
science issues, from theoretical aspects to application-dependent studies and the vali-
dation of emerging technologies.

The journal focuses on original high-quality research in the realm of computational
science in parallel and distributed environments, encompassing the facilitating theo-
retical foundations and the applications of large-scale computations and massive data
processing. Practitioners and researchers share computational techniques and solu-
tions in the area, identify new issues, and shape future directions for research, as well
as enable industrial users to apply the techniques presented.

The current volume is devoted to Security in Computing (Part 2), and is edited
by Edward David Moreno. It is comprised of 14 selected papers that represent the
diverse applications and designs being addressed today by the security and crypto-
graphic research community. This special issue is devoted to state-of-the-art research
on security in computing and includes a broad spectrum of applications such as new
architectures, novel hardware implementations, cryptographic algorithms, and secu-
rity protocols.

We would like to extend our sincere appreciation to Special Issue Guest Editor
Edward David Moreno for his dedication and insights in preparing this high-quality
special issue. We also would like to thank all authors for submitting their papers to
the special issue, and to all associate editors and referees for their valuable work. We
would like to express our gratitude to the LNCS editorial staff of Springer, in particu-
lar Alfred Hofmann, Ursula Barth, and Anna Kramer, who supported us at every stage
of the project.

It is our hope that the fine collection of papers presented in this special issue will
be a valuable resource for Transactions on Computational Science readers and will
stimulate further research into the vibrant area of computational science applications.

October 2010 Marina L. Gavrilova
C.J. Kenneth Tan

Security in Computing:
Research and Perspectives, Part II

Special Issue Guest Editor’s Preface

In an increasingly connected world, security has become an essential component of
modern information systems. Our ever-increasing dependence on information implies
that the importance of information security is growing. Several examples of security
applications are present in everyday life such as mobile phone communication, inter-
net banking, secure e-mail, data encryption, etc.

The thrust of embedded computing has both diversified and intensified in recent
years as the focus on mobile computing, ubiquitous computing, and traditional em-
bedded applications has begun to converge. A side effect of this intensity is the desire
to support sophisticated applications such as speech recognition, visual feature recog-
nition, and secure wireless networking in a mobile, battery-powered platform. Unfor-
tunately these applications are currently intractable for the embedded space.

Another consideration is related to mobile computing, and, especially, security in
these environments. The first step in developing new architectures and systems that
can adequately support these applications is to obtain a precise understanding of the
techniques and methods that come close to meeting the needs of security, perform-
ance, and energy requirements; with an emphasis on security aspects.

This special issue brings together high-quality and state-of-the-art contributions on
security in computing. The papers included in this issue deal with some hot topics in
the security research sphere: new architectures, novel hardware implementations,
cryptographic algorithms and security protocols, and new tools and applications.
Concretely, the special issue contains 14 selected papers that represent the diverse
applications and designs being addressed today by the security and cryptographic
research community.

As a whole, this special issue provides a vision on research and new perspectives
in security research. With authors from around the world, these articles bring us an
international sample of significant work.

The title of the first paper is “SEAODV: A Security Enhanced AODV Routing
Protocol for Wireless Mesh Networks”, by Celia Li, Zhuang Wang, and Cungang
Yang. In this paper, the authors propose SEAODV, which is a security enhanced
version of AODV (the Ad hoc On Demand Distance Vector). The AODV routing
algorithm is a routing protocol designed for ad hoc mobile networks. The authors use
Blom’s key pre-distribution scheme to establish keys to ensure that every two nodes
in the network uniquely share the pairwise keys. So, SEAODV adds secure AODV
extensions to the original AODV routing messages, and it is lightweight and computa-
tionally efficient, since only symmetric cryptographic operations are involved. Fi-
nally, the authors carry out several tests and conclude that SEAODV offers superior
performance in terms of computation cost and route acquisition latency as compares
with two other secure routing protocols, ARAN and SAODV.

X Guest Editor’s Preface

In the second contribution, which is entitled “Auto-Generation of Least Privileges
Access Control Policies for Applications Supported by User Input Recognition”, Sven
Lachmund and Gregor Hengst present means to auto-generate least privileges access
control policies for applications. The authors introduce and discuss two approaches:
extending a static analysis approach by user input recognition, and introducing a new
runtime approach on user input recognition that is based on information tracking and
aspect-oriented programming. They show a third solution, combining the other two
contributions with some of the existing work. A prototype in Java is implemented,
and it is shown that the total number of aspects is kept within a manageable range,
proving feasibility and scalability.

In the third contribution, which is entitled “Impossibility Results for RFID Privacy
Notions”, Frederik Armknecht, Ahmad-Reza Sadeghi, Alessandra Scafuro, Ivan Vis-
conti, and Christian Wachsmann focus on the security and privacy model proposed by
Paise and Vaudenay (PV-model) and investigate some subtle issues such as tag cor-
ruption aspects. The PV-model is one of the most comprehensive RFID security and
privacy models up to date since it captures many aspects of real world RFID systems
and aims at abstracting most previous works in a single concise framework. The au-
thors point out subtle weaknesses and deficiencies in the PV-model.

In the fourth contribution, which is entitled “Implementation of Multivariate Quad-
ratic Quasigroups for Wireless Sensor Networks”, authored by Ricardo José Menezes
Maia, Paulo Sérgio Licciardi Messeder Barreto, and Bruno Trevizan de Oliveira, a
new approach to solving the problem of providing PKCs (public key cryptosystems)
in WSNs (wireless sensor networks) is proposed. The authors use nesC and focus on
modules for the encryption and decryption of a 160-bit MQQ (Multivariate Quadratic
Quasigroup) algorithm that have been implemented on platforms TelosB and MICAz
sensors.

In the fifth contribution, which is entitled “Hardware Architectures for Elliptic
Curve Cryptoprocessors Using Polynomial and Gaussian Normal Basis Over
GF(2^233)”, by Vladimir Tujillo-Olaya and Jaime Velasco-Medina, the authors pre-
sent two elliptic curve cryptoprocessors suitable for the computation of point multi-
plication over GF(2m) using Gaussian Normal Basis (GNB) and polynomial basis
(PB). In this case, efficient hardware architectures are designed for finite field multi-
plication, in order to select the best implementation for the cryptoprocessor design.
These multiplier architectures incorporate bit-serial and digit-serial algorithms. The
authors designed cryptoprocessors using the same tools, FPGA, finite field m size and
hardware description language, and show that the GNB cryptoprocessor presents a
higher performance than the PB cryptoprocessor (but the scalability is an advantage
of polynomial basis). So, they conclude that the designed cryptoprocessors present a
high performance, use a small area, and provide a good time-area trade-off.

In the sixth paper “GPU Accelerated Cryptography as an OS Service”, by Owen
Harrison and John Waldron, the authors provide a standard method of access to the
latest GPU crypto acceleration work to all components within an operating system,
with minimal loss of performance. For this process, the authors have seen that the
GPU can be effectively integrated into the OCF with careful design of a driver con-
sisting of a kernelspace OCF driver and a userspace daemon. The results obtained
show that there is an average overhead of 3.4% when using the OCF for AES over a
standalone implementation. In the context of RSA-1024 we see that there is a very
low 0.3% average overhead when compared with a standalone version.

 Guest Editor’s Preface XI

In the seventh paper, which is entitled “From a Generic Framework for Expressing
Integrity Properties to a Dynamic MAC Enforcement for Operating Systems”, Patrice
Clemente, Jonathan Rouzaud-Cornabas, and Christian Toinard propose a novel
framework for expressing integrity requirements associated with direct or indirect
activities, mostly in terms of information flows. The paper presents formalization for
the major integrity security properties of the literature. The framework enables the
user to formalize the major integrity security properties. The authors use a MAC en-
forcement mechanism implementing that algorithm to effectively and efficiently con-
trol those system calls.

In the eighth paper, which is entitled “Performance Issues on Integration of Secu-
rity Services”, Fábio Dacêncio Pereira and Edward David Moreno project and de-
velop a SSIL (Security Services Integrated Layer) for allowing the integration of
security services. They investigate the efficiency and impact of behavioral models
used in SSIL specialized for detecting anomalies and conclude that there are advan-
tages in having a set of security services in a single integrated system, since the possi-
ble fragility of a service can be compensated by others.

In the ninth paper “Statistical Model Applied to NetFlow for Network Intrusion
Detection”, André Proto, Leandro A. Alexandre, Maira L. Batista, Isabela L. Oliveira
and Adriano M. Cansian present a proposal for event detection in computer networks
using statistical methods and the analysis of NetFlow data flows. The aim is to use
this proposal to monitor a computer network perimeter, detecting attacks in the short-
est time possible through anomalies identification in traffic and alerting the adminis-
trator when necessary. The authors carry out a test for monitoring the system to four
services widely used by users on the Internet: FTP, SSH, SMTP, and HTTP. Finally,
the authors conclude that this methodology can be used for events detection in large-
scale networks.

The paper “J-PAKE: Authenticated Key Exchange Without PKI”, authored by
Feng Hao and Peter Ryan, proposes a protocol called J-PAKE, which authenticates a
password with zero-knowledge and then subsequently creates a strong session key if
the password is correct. The authors show that the protocol fulfills some properties,
and show how to effectively integrate the ZKP (Zero-Knowledge Proof) into the pro-
tocol design and achieve good efficiency. The authors have compared their approach
with de facto internet standard SSL/TLS, and demonstrate that J-PAKE has compara-
ble computational efficiency to the EKE and SPEKE schemes with clear advantages
on security. For this reason it is more lightweight in password authentication.

The paper “Distance Based Transmission Power Control scheme for Indoor Wire-
less Sensor Networks”, by P.T.V. Bhuvaneswari, V. Vaidehi, and M. Agnes Saranya,
proposes a new scheme that is an energy efficient RSS (Received Signal Strength)
based distributed localization algorithm and Distance Based Transmission Power
Control (DBTPC). The proposed localization algorithm consists of two stages,
namely, distance estimation and coordinates estimation, and with this it improves the
accuracy in relative coordinate estimation and minimizes the energy cost incurred for
transmitting information between nodes.

The paper “A Novel Feature Vectors Construction Approach for Face Recogni-
tion”, by Paul Nicholl, Afandi Ahmad, and Abbes Amira, discusses a novel feature
vectors construction approach for face recognition using DWT (Discrete Wavelet
Transform). The authors evaluate the method using different classes of tests. The first

XII Guest Editor’s Preface

set of experiments performed focused on the choice of DWT features. It is revealed
that, where direct coefficient values were used for recognition, the LL quadrant pro-
vided the best results. The second set of tests were designed to identify which wavelet
filters were the most effective at extracting features for face recognition with the
specified database. Finally, the authors investigated two approaches, PMA and ORA,
for the feature threshold, and their results show that the PMA is an ineffective ap-
proach, with recognition accuracy decreasing by an average of 0.025% from the re-
sults obtained without DWT coefficient selection.

The paper “An Extended Proof-Carrying Code Framework for Security Enforce-
ment”, authored by Heidar Pirzadeh, Danny Dubé, and Abdelwahab Hamou-Lhadj,
proposes a novel approach to solving the proof size problem while avoiding a signifi-
cant increase of the TCB. The authors present an extension to a traditional proof-
carrying code framework in which proofs tend to be too large to transmit. For this,
their approach is based on the innovative idea of sending a program that generates the
proof instead of the proof itself. Finally, they developed a virtual machine called
the VEP (Virtual Machine for Extended PCC - Proof-Carrying Code) that runs on the
consumer’s side and that is responsible for running the proof generator program.

The last paper in this special issue, “NPT Based Video Watermarking with Non-
overlapping Block Matching” by S.S. Bedi, Shekhar Verma, and Geetam S. Tomar,
presents a NTP (Naturalness Preserving Transform) that is based on collusion and
compression resistant watermarking techniques for video. Their experimental results
confirm several theoretical findings and demonstrate the resistance of the technique to
temporal frame averaging, additive noise, and JPEG based compression.

Finally, we sincerely hope that this special issue stimulates your interest in the
many subjects surrounding the area of security. The topics covered in the papers are
timely and important, and the authors have done an excellent job of presenting their
different approaches. Regarding the reviewing process, our referees (integrated by
recognized researchers from the international community) made a great effort to
evaluate the papers. We would like to acknowledge their effort in providing us the
excellent feedback at the right time. So, we wish to thank all the authors and review-
ers. To conclude, we would also like to express our gratitude to the Editor-in-Chief of
TCS, Dr. Marina L. Gavrilova, for her advice, vision, and support.

September 2010 Edward David Moreno

LNCS Transactions on
Computational Science –

Editorial Board

Marina L. Gavrilova, Editor-in-chief University of Calgary, Canada
Chih Jeng Kenneth Tan, Editor-in-chief OptimaNumerics, UK
Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, Korea
Danny Crookes Queen's University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
Osvaldo Gervasi Università degli Studi di Perugia, Italy
Christopher Gold University of Glamorgan, UK
Rodolfo Haber Council for Scientific Research, Spain
Andres Iglesias University of Cantabria, Spain
Deok-Soo Kim Hanyang University, Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Vipin Kumar Army High Performance Computing Research Center, USA
Antonio Lagana Università degli Studi di Perugia, Italy
D.T. Lee Institute of Information Science, Academia Sinica, Taiwan
Laurence Liew Platform Computing, Singapore
Nikolai Medvedev Novosibirsk Russian Academy of Sciences, Russia
Graham M Megson University of Reading, UK
Edward D. Moreno UEA – University of Amazonas state, Brazil
Youngsong Mun Soongsil University, Korea
Dimitri Plemenos Université de Limoges, France
Viktor K. Prasanna University of Southern California, USA
Muhammad Sarfraz KFUPM, Saudi Arabia
Dale Shires Army Research Lab, USA
Masha Sosonkina Ames Laboratory, USA
Alexei Sourin Nanyang Technological University, Singapore
David Taniar Monash University, Australia
Athanasios Vasilakos University of Western Macedonia, Greece
Chee Yap New York University, USA
Igor Zacharov SGI Europe, Switzerland
Zahari Zlatev National Environmental Research Institute, Denmark

Table of Contents – Part II

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless
Mesh Networks . 1

Celia Li, Zhuang Wang, and Cungang Yang

Auto-generation of Least Privileges Access Control Policies for
Applications Supported by User Input Recognition 17

Sven Lachmund and Gregor Hengst

Impossibility Results for RFID Privacy Notions . 39
Frederik Armknecht, Ahmad-Reza Sadeghi, Alessandra Scafuro,
Ivan Visconti, and Christian Wachsmann

Implementation of Multivariate Quadratic Quasigroup for Wireless
Sensor Network . 64

Ricardo José Menezes Maia,
Paulo Sérgio Licciardi Messeder Barreto, and
Bruno Trevizan de Oliveira

Hardware Architectures for Elliptic Curve Cryptoprocessors Using
Polynomial and Gaussian Normal Basis over GF(2233) 79

Vladimir Tujillo-Olaya and Jaime Velasco-Medina

GPU Accelerated Cryptography as an OS Service . 104
Owen Harrison and John Waldron

From a Generic Framework for Expressing Integrity Properties to a
Dynamic mac Enforcement for Operating Systems 131

Patrice Clemente, Jonathan Rouzaud-Cornabas, and
Christian Toinard

Performance Issues on Integration of Security Services 162
Fábio Dacêncio Pereira and Edward David Moreno

Statistical Model Applied to NetFlow for Network Intrusion
Detection . 179

André Proto, Leandro A. Alexandre, Maira L. Batista,
Isabela L. Oliveira, and Adriano M. Cansian

J-PAKE: Authenticated Key Exchange without PKI 192
Feng Hao and Peter Ryan

Distance Based Transmission Power Control Scheme for Indoor
Wireless Sensor Network . 207

P.T.V. Bhuvaneswari, V. Vaidehi, and M. Agnes Saranya

XVI Table of Contents – Part II

A Novel Feature Vectors Construction Approach for Face
Recognition . 223

Paul Nicholl, Afandi Ahmad, and Abbes Amira

An Extended Proof-Carrying Code Framework for Security
Enforcement . 249

Heidar Pirzadeh, Danny Dubé, and Abdelwahab Hamou-Lhadj

NPT Based Video Watermarking with Non-overlapping Block
Matching . 270

S.S. Bedi, Shekhar Verma, and Geetam S. Tomar

Author Index . 293

Table of Contents – Part I

A Dynamic Security Framework for Ambient Intelligent Systems:
A Smart-Home Based eHealth Application . 1

Luca Compagna, Paul El Khoury, Fabio Massacci, and Ayda Saidane

NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up
to Alternative Algebra . 25

Ehsan Malekian and Ali Zakerolhosseini

Identity-Based Key Exchange Protocols without Pairings 42
Dario Fiore and Rosario Gennaro

Building a Side Channel Based Disassembler . 78
Thomas Eisenbarth, Christof Paar, and Björn Weghenkel

A Versatile Framework for Implementation Attacks on Cryptographic
RFIDs and Embedded Devices . 100

Timo Kasper, David Oswald, and Christof Paar

An Adaptive Robust Watermarking Algorithm for Audio Signals Using
SVD . 131

Malay Kishore Dutta, Vinay K. Pathak, and Phalguni Gupta

Trust-Based Security Level Evaluation Using Bayesian Belief
Networks . 154

Siv Hilde Houmb, Indrakshi Ray, Indrajit Ray, and
Sudip Chakraborty

Implementation of QoSS (Quality-of-Security Service) for NoC-Based
SoC Protection . 187

Johanna Sepúlveda, Ricardo Pires, Marius Strum, and
Wang Jiang Chau

Signcryption with Non-interactive Non-repudiation without Random
Oracles . 202

Jia Fan, Yuliang Zheng, and Xiaohu Tang

Block-Level Added Redundancy Explicit Authentication for
Parallelized Encryption and Integrity Checking of Processor-Memory
Transactions . 231

Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin,
Michel Bardouillet, and Albert Martinez

A Weakest Precondition Approach to Robustness . 261
Musard Balliu and Isabella Mastroeni

XVIII Table of Contents – Part I

PET SNAKE: A Special Purpose Architecture to Implement an
Algebraic Attack in Hardware . 298

Willi Geiselmann, Kenneth Matheis, and Rainer Steinwandt

Green Secure Processors: Towards Power-Efficient Secure Processor
Design . 329

Siddhartha Chhabra and Yan Solihin

A New Peer-to-Peer Micropayment Protocol Based on Transferable
Debt Token . 352

Sung-Ming Yen, Kuo-Zhe Chiou, Je Zhang, and Po-Han Lee

Author Index . 365

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 1–16, 2010.
© Springer-Verlag Berlin Heidelberg 2010

SEAODV: A Security Enhanced AODV Routing Protocol
for Wireless Mesh Networks

Celia Li1, Zhuang Wang2, and Cungang Yang2

1 Department of Computer Science and
Engineering, York University

2 Department of Electrical and Computer
Engineering, Ryerson University

Abstract. In this paper, we propose a Security Enhanced AODV routing proto-
col (SEAODV) for wireless mesh networks (WMN). SEAODV employs
Blom’s key pre-distribution scheme to compute the pairwise transient key
(PTK) through the flooding of enhanced HELLO message and subsequently
uses the established PTK to distribute the group transient key (GTK). PTK and
GTK authenticate unicast and broadcast routing messages respectively. In
WMN, a unique PTK is shared by each pair of nodes, while GTK is shared se-
cretly between the node and all its one-hop neighbours. A message authentica-
tion code (MAC) is attached as the extension to the original AODV routing
message to guarantee the message’s authenticity and integrity in a hop-by-hop
fashion. Security analysis and performance evaluation show that SEAODV is
more effective in preventing identified routing attacks and outperforms ARAN
and SAODV in terms of computation cost and route acquisition latency.

Keywords: AODV, Wireless Mesh Networks, MAC, Routing, Hop-by-Hop
Authentication.

1 Introduction

Wireless Mesh Network (WMN) [1][2][3] is composed of an infrastructure compo-
nent (infrastructure mesh) as well as many ad hoc (client mesh) networks. The routing
and security requirements of these separate components may differ substantially due
to different characteristics of the separate mesh components. Routing protocols in ad
hoc networks generally fall into two categories: proactive and on-command protocols.
Proactive protocols are table-driven. Nodes store routing information about neigh-
bours and periodically broadcast routing information to keep the routing tables up-to-
date. On-demand protocols involve a sender node establishing a route on-demand
only when data is needed to be sent. Although a profusion of routing protocols have
been proposed for ad hoc networks, the difference in characteristics between infra-
structure and ad hoc nodes is evidence that routing protocols designed for ad hoc
networks cannot be directly applied for wireless mesh networks. Hybrid routing
[4][5][6] (e.g., HWMP) seems to be one of the promising answers to the question
of what is the trend in WMNs’ routing. In hybrid routing, proactive routing is

2 C. Li, Z. Wang, and C. Yang

specifically used for traffics flow to the mesh portal and on-demand routing is se-
lected for intra-mesh traffic. Most existing routing protocols including HWMP have
been designed with performance as a priority and have neglected to incorporate a sig-
nificant amount of security issues of routing protocols in WMN. The aim of this paper
is therefore to design a secure version of the on-demand part of HWMP and used it to
securely discover a route between any pair of mesh routers in the network.

We propose SEAODV, a security enhanced version of AODV. Choosing AODV
as our protocol’s footstone is due to its simplicity, maturity, popularity and availabili-
ty in the research over the past few years. As our main contributions, we utilize PTK
and GTK to protect the unicast and broadcast routing message respectively to ensure
that the route discovery process between any two nodes in WMNs is secure. We apply
BLOM’s key pre-distribution scheme in conjunction with the enhanced HELLO mes-
sage to establish the PTK and use the established PTK to distribute GTK to the node’s
one-hop neighbours throughout the entire network. We also identify various attacking
scenarios specifically in AODV and present security analysis to prove that our pro-
posed SEAODV is able to effectively defend against most of those identified attacks.
Moreover, our scheme is lightweight and computationally efficient since only symme-
tric cryptographic operations (e.g., MAC) are involved.

The rest of the paper is organized as follows. Section 2 discusses related work. De-
tails of our SEAODV protocol is presented in section 3. Section 4 identifies various
potential attack scenarios in SEAODV and presents the security analysis. The perfor-
mance evaluation is explained in section 5. Finally, section 6 concludes the paper.

2 Related Work

Research work of secure routing protocols has been explored on ad hoc networks.
However, most of them are not efficient or still vulnerable to various types of attacks.
Furthermore, they are designed for ad hoc networks and do not provide specific
security features (e.g., hop-by-hop authentication) for mesh networks.

SAODV [4] is a secure variant of AODV [5]. SAODV defends against impersona-
tion attacks and modification of hop count and sequence number attacks. However, it
does not support hop-by-hop authentication. The intermediate nodes on the path
cannot verify the authenticity of the messages from their predecessors.

ARAN (Authenticate Routing for Ad hoc Networks) [6] adopts digital signature to
ensure hop-by-hop authentication and routing message integrity; However, it expe-
riences significant computation overheads and route acquisition latency. Each node
needs to verify signatures every time it receives the signed messages, removes the
certificate and signature of its predecessor, use its own private key to sign the mes-
sage originally broadcast by the source and appends its own certificate before
rebroadcasting it to its one-hop neighbours. Further, both SAODV and ARAN cannot
defend against the DoS attack. When a node receives a routing message, it has to
verify signatures. Adversaries can utilize this flaw to inject a large number of faked
signed messages and to intentionally make the designated node repeatedly verify the
signatures.

Ariande is a secure on-demand source routing protocol [7] in which TESLA[8],
digital signatures and MAC are employed to ensure source authentication. The

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 3

drawback of this scheme is that the route request message is not authenticated until it
reaches the destination which makes it possible for adversary to initiate route request
flooding attack. In endairA [9], a variant of Ariande, instead of signing the route re-
quest message, intermediate nodes sign the route reply. This scheme experiences less
cryptographic computation, but is still vulnerable to malicious route request flooding
attack.

Hybrid Wireless Mesh Protocol (HWMP) [10][11][12] allows two MPs (Mesh
Point) to communicate using peer-to-peer paths. This approach is primarily used by
nodes that experience a changing environment and when there is no root MP confi-
gured. While the proactive tree building mode can be an efficient choice for nodes in
a fixed network topology, HWMP does not address the security issues and suffers
from different type of attacking scenarios that will be described in section 4.

LHAP [13] is a lightweight transparent authentication protocol for ad hoc net-
works. LHAP uses TESLA to maintain the trust relationship among nodes, which is
not a realistic approach due to the delayed key disclosure period in TESLA. Further-
more, in LHAP, simply attaching the traffic key right after the raw message is not
secure since the traffic key has no relationship with the message being transmitted.

3 Security Enhanced AODV Routing

SEAODV requires each node in the network to maintain two key hierarchies: a
broadcast key hierarchy and a unicast key hierarchy. The broadcast key hierarchy of a
node stores the broadcast keys shared with its one hop neighbours while the unicast
key hierarchy stores all their secret pairwise keys. Besides, SEAODV employs the
Blom’s key pre-distribution scheme and an enhanced HELLO message to compute a
pairwise transient key (PTK), which is subsequently used to distribute the group tran-
sient key (GTK). PTK and GTK are employed to secure the unicast and broadcast
routing messages respectively. In addition, PTK and GTK provide SEAODV with a
hop-by-hop authentication routing solution in which routing messages are protected at
every hop during the route setup process.

3.1 Enhanced HELLO Message

The variables and notations given in the table 1 illustrate the notations of the proposed
secure routing protocol and relevant cryptography operations.

3.1.1 HELLO RREQ
HELLO message in AODV is broadcasted to its one-hop neighbours to maintain the
updated local connections. In SEAODV, each node embeds Blom’s column of the
public G matrix [9] into its HELLO RREQ message [14]. Since each column of the
public known matrix G can be regenerated by applying a seed from each node, every
node only needs to store the seed in order to exchange their public information of the
matrix G.

Assume node A is the originator of the HELLO RREQ message, the enhanced
HELLO RREQ is shown in the following format. ܧ ுܰோோாொ: ሾܯ௧௬௣௘, ,ூ஽ܯ ܲܫ ,כ ܵ݁݁݀ீ, ܫ ஺ܲ, ܱܵ ஺ܰሿ

4 C. Li, Z. Wang, and C. Yang

Node A needs to broadcast the enhanced HELLO RREQ to its one-hop neighbours
periodically whenever the node A needs

1. To announce to its one-hop neighbours that A is in active mode
2. To let its one-hop neighbours know A's seed of the column of public Matrix G
3. To trigger its one-hop neighbours to send their encrypted GTK back to A

Table 1. Variables and Notations

EN_HRREQ Enhanced hello
RREQ message

OSN_A Originator sequence
number of node A

EN_HRREP Enhanced hello
RREP message

DSN_B Destination sequence
number of node B

GTK_A Group Transient Key
of Node A

IP_A IP address of node A

PTK_A Pairwise Transient
Key of Node A

IP* Broadcast IP address

{d}GTK_A Encryption of data d
with key GTK_A

NC_A Nonce issued by node
A

{d}PTK_A Encryption of data d
with key PTK_A

Seed_G_A Seed of column of
Public Matrix G, Node
A

MAC(K,M) Computation of MAC
over message M with
key K

P_Row_A_A[] Row of Private Matrix
A, Node A

T Timestamp M_type Message type

M All the elements
before the MAC field
in SEAODV routing
message

M_ID Message ID

3.1.2 HELLO RREP
In the enhanced HELLO RREP, the hop count field is replaced with zero and the life-
time field is equal to the value of ALLOWED_HELLO_LOSS ×
HELLO_INTERVAL.

Assume node B, a one-hop neighbour of node A, has received the HELLO RREQ.
To respond A, B unicasts an enhanced HELLO RREP message which is shown as
follows ܧ ுܰோோா௉: ሾܯ௧௬௣௘, ,஻ܥܰ ܫ ஻ܲ , ܵܦ ஻ܰ, ܫ ஺ܲ, ,݁݉݅ݐ݂݁݅ܮ ሼܭܶܩ஻, ܫ ஻ܲ, ஻ሿܭ஻ሽܲܶܥܰ
B needs to send the enhanced HELLO RREP message to node A under the following
situations

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 5

1. Acknowledges node A that B has already received the public key of A.
2. Derives the secret pairwise key it shares with A and use this shared key to

encrypt its own group key and unicasts it back to A.

Upon receiving the HELLO RREP from B, A can confirm that there is a bi-directional
wireless link between A and B. A can also know the GTK of B by using A's PTK to
decrypt the received HELLO RREP.

3.2 Exchange Public Seed_G and GTK Using Enhanced HELLO Message

During the key pre-distribution phase, every legitimate node in the wireless mesh
network stores its public known Seed_G (seed of the column of public G matrix) and
the corresponding private row of the generated A matrix. The Seed_G and GTK key
of each node is exchanged among nodes in the WMN using the enhanced HELLO
RREQ and HELLO RREP message and the exchange process are depicted in the fol-
lowing three steps.

Step 1: Exchange of Seed_G of the public G matrix

Suppose B is a one-hop neighbour of A in Figure 1 where EN_HRREQ represents the
enhanced hello RREQ message and EN_HRREP denotes the enhanced hello RREP
message, when A and B exchange their Seed_G, they picks them up from their key
pool, and broadcasts the enhanced HELLO RREQ to their one-hop neighbours.

Fig. 1. Public Seed and GTK Key Exchange Process

Step 2: Derivation of PTK (Pairwise Transient Key)

On receiving the public Seed_G of its one-hop neighbours, the node uses both
Seed_G it received from its one-hop neighbour and its corresponding private row of
matrix A to compute the unique PTK that it shares with every one-hop neighbour with
Blom’s scheme.

6 C. Li, Z. Wang, and C. Yang

Initially node A has A(i) and seed for G(i), and node B has A(j) and seed for G(j).
After exchanging the seeds, node A regenerates G(j) and node B regenerates G(i). The
pairwise secret key of nodes A and B, Kij and Kji, can be computed by both nodes
independently with the following equation. ܭ௜௝ ൌ ௝௜ܭ ൌ ௜ܣ ൈ ௝ܩ ൌ ௝ܣ ൈ ௜ܩ
Upon finishing step 2, each node has stored the Seed_G of its one-hop neighbours and
derived unique PTK pairwise key shares with its one-hop neighbours. Every node
now can encrypt its GTK key with its PTK key and unicast it back to the originator of
the HELLO RREQ message with the HELLO RREP message.

Step 3: Exchange of GTK (Group Transient Key) through HELLO RREP

The unicast HELLO RREP message from node A and B can be expressed as follows ܣ ՜ ܧ : ுܰோோா௉: ሾܯ௧௬௣௘, ,஺ܥܰ ܫ ஺ܲ, ܵܦ ஺ܰ, ܫ ஻ܲ, ,݁݉݅ݐ݂݁݅ܮ ሼܭܶܩ஺, ܫ ஺ܲ, ܤ ஺ሿܭ஺ሽܲܶܥܰ ՜ ܧ : ுܰோோா௉: ሾܯ௧௬௣௘, ,஻ܥܰ ܫ ஻ܲ, ܵܦ ஻ܰ, ܫ ஺ܲ, ,݁݉݅ݐ݂݁݅ܮ ሼܭܶܩ஻, ܫ ஻ܲ, ஻ሿܭ஻ሽܲܶܥܰ
After receiving HELLO RREQ from A, B unicasts a HELLO RREP message to A.
The encrypted GTK_B is also attached within the unicast HELLO RREP message.
Once A receives HELLO RREP, it decrypts the GTK_B with its private PTK_A and
stores it in its database. Every node now stores the Seed_G, a group of PTK and GTK
pairwise keys from its one-hop neighbours.

3.3 Securing Route Discovery

To implement a hop-by-hop authentication, each node must verify the incoming mes-
sage from its one-hop neighbours before re-broadcast or unicast it. The trust relation-
ship between each pair of nodes relies on their shared GTK and PTK keys, which
have been obtained during the key exchange process.

In SEAODV, the route discovery process is similar to that of standard AODV, but
a MAC extension is appended to the end of the AODV routing message. The format
of the modified RREQ is given in Figure 2.

Fig. 2. The Modified RREQ

where the first shadowed box is a mutable field representing the hop count. The
second shadowed box is the MAC field that has been appended at the end of the
RREQ routing message. The MAC is computed over message M using the key GTK
of the node who broadcasts a RREQ to its one-hop neighbours. Message M refers to

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 7

all the elements before the MAC field in the RREQ message. As an example, if a
node A wants to broadcast a modified RREQ, it sends the following message ܣ ՜כ ܳܧܴܴ : ׷ ሾܯ, ሻሿܯ ,ܭܶܩሺܥܣܯ
Whenever a node needs to discover a route to a designated destination, it broadcasts
the modified RREQ message to its neighbours. Upon receiving the broadcast RREQ,
each neighbour checks whether it possesses the GTK key of the sender by checking
its GTK group. If there is a match, the receiving node computes the corresponding
MAC with the received message and the GTK. If the MAC value is verified, the re-
ceived RREQ is considered authentic and unaltered. The receiving node will then
update the hop-count in RREQ, its routing table, and subsequently sets up the reverse
path back to the source by recording the neighbour from which it received the RREQ.
If the node is the destination, it will respond a RREP with a new MAC(PTK, M) af-
fixed to the end of the RREP and unicast the RREP back to its next hop of its reverse
path towards the source. The appended MAC(PTK, M) is computed on the RREP
message with the PTK key the node shares with its next hop, to which the RREP is
going to be forwarded. In the case the node is an intermediate node, the node applies
its own GTK key on the updated RREQ to compute the new MAC(GTK, M) and at-
taches it to the end of the RREQ before it re-broadcasts the new RREQ to its one-hop
neighbours. The receiving node will simply discard RREQ if the node does not have
the GTK key of the sender or if their MAC value does not match.

3.4 Securing Route Setup

Eventually, the RREQ message reaches the destination or an intermediate node that
already has a fresh route to the destination. A destination or an intermediate node can
generate a modified RREP and unicast it back to the next hop from which it received
the RREQ towards the originator of the RREQ. Since RREP routing message is au-
thenticated at each hop, adversaries have no opportunity to re-direct the traffic.

Fig. 3. The Modified RREP

The format of a modified RREP is shown in Figure 3. One more field, MAC(PTK,
M), is attached to the end of the AODV RREP. This MAC is computed with the PTK
key that the node secretly shares with the one to which the RREP is going to be
forwarded.

Before unicasting the modified RREP back to its originator, the node needs to
check its routing table to identify the next hop from which it received the broadcast
RREQ; the node then applies the PTK key it shares with the identified next hop to
compute the MAC(PTK, M) and affixes this MAC to the end of RREP. For instance,

8 C. Li, Z. Wang, and C. Yang

suppose a node B who needs to unicast a modified RREP back to Node A, it sends the
following message.

B՜כ ܲܧܴܴ : ׷ ሾܯ, ,஻஺ܭሺܲܶܥܣܯ ሻሿܯ
where ܲܶܭ஺஻ ൌ .஻஺ܭܶܲ

Upon receiving RREP from node B, A checks whether PTKBA is in its PTK group.
If there is a match, A verifies MAC’(PTK_AB, M). Node A will then update the hop-
count field in the RREP and its own routing table, sets up the forwarding path towards
the destination. Besides, A also searches the appropriate PTK key it shares with its
next hop to which the new RREP is going to be forwarded towards the source. A then
uses the PTK key to construct a new MAC and attaches it at the end of the new
RREP. The received RREP is deemed to be unauthentic and will be discarded if the
two MACs are not equal.

3.5 Securing Route Maintenance

In AODV, a node generates a RERR message under the following three situations:

1. If a node receives data packet destined to another node for which it does not
have an active route in its routing table.

2. Whenever there is a broken link for the next hop of an active route has been de-
tected by a node, the node will initiate a RERR message to all its precursors that
may use the broken next hop towards to their destinations.

3. On receiving a RERR from a neighbour for one or more active routes.
The following figure shows the format of a modified RERR message

Fig. 4. The Modified RERR

where a MAC(GTK, M) is appended to the end of the RERR. The modified RERR is
broadcast to all its one-hop neighbours in order to deliver the notification of the un-
reachable destinations. Suppose A is a one-hop neighbour of B and B broadcasts the
following modified RERR message

B՜כ ܴܴܧܴ : ׷ ሾܯ, ,஻ܭܶܩሺܥܣܯ ሻሿܯ
where GTK_B is the GTK key that node B secretly shares with all its one-hop
neighbours and the MAC field is generated with node B’s GTK_B. Upon receiving
the broadcast message from B, node A checks whether it has GTK_B and further
computes the MAC’(GTK_B, M’). The MAC’(GTK_B, M’) is to be compared
against the received MAC(GTK_B, M). If they match, A searches its routing table
and tries to identify the affected routes which use node B as their next-hop. If no

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 9

routes are affected, A simply drops the RERR and listens to the channel again. A may
also discards the RERR if the GTK_B is not found or the MAC’(GTK_B, M’) is not
consistent with the one from RERR. If A identifies that at least one route is to be af-
fected and these routes satisfy (1) the route must be active; (2) the route uses B as its
next-hop; (3) the destinations of the affected route in A’s routing table are members
of the unreachable destinations list specified in the received RERR message from B.
A takes the following actions:

1. Marks the affected routes as invalid in its routing table.
2. Updates the RERR message. For example, the number of affected destinations in

Node A’s routing table might not be the same as that of the received one from
node B and it has to be smaller or identical to that of in RERR obtained from
node B.

3. Computes the new MAC(GTK_A, M) by using its own GTK_A and the updated
RERR obtained from step 2 and attaches it to the end of the updated RERR.

4. Broadcasts the new RERR to all its one-hop neighbours and starts listening to
the channel.

4 Security Analysis

We analyze the security of SEAODV and compare it with ARAN, SAODV and
LHAP.

RREQ Flooding
ARAN suffers from the expensive digital signature verification operations, while
SAODV also incurs massive overhead in signature verification process. Contrarily,
LHAP offers better immunity due to its light-weight nature by using one-way hash
chain and only authenticates RREQ from its one-hop neighbours. The number of hash
operations required to verify the authenticity of a message is from single hash opera-
tion up to maximum number of tolerance in terms of packet loss. SEAODV only
authenticates RREQ from nodes that are in the list of its active one-hop neighbours.
Hash operations are required in SEAODV and re-creation of MAC is simple, fast and
one time only.

RREP Routing Loop
In ARAN, the signed routing message makes impersonation and modification of se-
quence numbers impossible. SAODV does not support hop-by-hop authentication.
Also, being a source-destination authentication protocol, any intermediate nodes in
SAODV could be impersonated during the fly of RREP. LHAP uses one-way hash
chain to protect the message by simply appending traffic key right after the raw mes-
sage. Malicious node can simply block the wireless transmission between two neigh-
bouring nodes, modifies the messages, put the corresponding intercepted traffic keys
right after the messages and send them back to the wireless channel. SEAODV sup-
ports hop-by-hop authentication. GTK and PTK keys are used to secure the broadcast
and unicast routing messages respectively. The entire routing message is MACed, and
thus the possibilities of impersonation and modification are eliminated.

10 C. Li, Z. Wang, and C. Yang

Route Re-direction
Both ARAN and SEAODV defend against this type of attack. ARAN employs digital
signature to sign every routing message in a hop-by-hop fashion, while in SEAODV,
GTK and PTK keys are used to compute the MAC, which secures all the fields in the
entire routing message. SAODV cannot effectively prevent the hop count from being
increased by malicious nodes. This increases the chances of the route being de-
selected from the potential candidate routes, which is another form of route re-
direction attack. In LHAP, again malicious nodes can use the exact technique
described in RREP Routing Loop to create this type of attack.

Formation of Routing Loops
Two conditions need to be satisfied in order to launch this attack. The malicious node has
to impersonate a legitimate node in the network and is able to modify the metric such as
hop count to be a better value in terms of less hop count in this case. SAODV is able to
prevent the hop-count from decreasing, and thus avoid this attack. ARAN and SEAODV
can also defeat this attack due to its hop-by-hop authentication. However, in LHAP, as
long as the malicious node gets a chance to intercept the effective traffic keys and re-use
them in a timely manner, there is a possibility to launch this type of attack.

RERR Fabrication
In ARAN, messages can only be fabricated by nodes with valid certificates and ARAN
offers non-repudiation. Nodes keep sending fabricated routing messages might get
excluded from the future route computation. While in SAODV, malicious node may
simply impersonate nodes other than the one initiates the original RERR and forward
the signed RERR to other nodes in the network. By doing do, malicious nodes can not
only deplete the energy of the nodes, but also successfully defeat the routing protocol.
LHAP also suffers from this type of attack; malicious node could use the captured traf-
fic key to be attached after the modified RERR as long as the captured traffic keys are
still “fresh” to be authenticated by the receivers. SEAODV experiences least negative
impact against this attack since a receiving node only authenticates the RERR that
comes from its active one-hop neighbours. This forces malicious node can only for-
ward the replayed RERRs come from the receiving nodes’ one-hop neighbours in order
to launch this type of attack.

Tunnelling
ARAN uses the total time consumed as the metric to seek a route which does not
guarantee the shortest path in terms of hop count but does offer the quickest path.
However, it still cannot defeat the tunnelling attack because malicious nodes can
simply adopt high-power gain transceiver to tunnel the routing messages such as
RREP in order to make the source believe that the “tunnelled path” is the quickest
one. As a consequence, malicious nodes would have been included on the final route
towards destination and gained all the subsequent data packets passed through them.
Similar methodology would be taken by malicious nodes to launch this attack on
SAODV and SEAODV with the difference that now the actual routing metric is mi-
srepresented in terms of hop counts. LHAP only authenticates messages from its one-
hop neighbours, it makes tunnelling attack become more tougher to be launched since
malicious nodes now have to intercept the “fresh enough” traffic keys at both ends of
the tunnel. Summaries for each routing protocol in terms of defending against those
identified attacks are presented in table 2.

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 11

Table 2. Vulnerabilities of Various Routing Protocols

Attack AODV ARAN SAODV LHAP SEAODV

RREQ Flooding Yes Yes Yes Yes Yes

RREP Routing
Loop Yes No Yes Yes No

Route
Re-direction

Yes No Yes Yes No

Formation of
Routing Loops Yes No No Yes No
RERR Fabrication Yes Yes Yes Yes Yes

Tunnelling Yes Yes Yes Yes Yes

5 Performance Evaluation

Performance evaluation is presented to prove that SEAODV is superior against
ARAN and SAODV in terms of computation cost and route acquisition latency.

5.1 Computation Cost

Since each node in WMN is considered as both a sender and a receiver, the total com-
putation cost incurred at each node should be the cost of the node as a sender and a
receiver. This methodology is applied to the evaluation of the computation cost for
ARAN, SAODV and SEAODV.

Variables and notations used for the computing and communication costs is shown
in table 3.

Table 3. Variables and Notations ܵ݅݃݊ܽீ݁ݎݑݐ௘௡ Signature generation cost ܵ݅݃݊ܽ݁ݎݑݐ௏௘௥ Signature verification cost
H Hash operation cost
MAC Cost for computing a MAC ݔܽܯு௢௣಴೚ೠ೙೟ Maximum hop count ݌݋ܪ஼௢௨௡௧ Number of hop count
N Total number of nodes on the

established route ݐݏܽܿ݀ܽ݋ݎܤ Broadcast routing message ܷ݊݅ܿܽݐݏ Unicast routing message

12 C. Li, Z. Wang, and C. Yang

ARAN
In ARAN, if the receiver is one hop away from the originator, two signature verifications
are required. The first verifies the certificate of the originator of RREQ or RREP and
obtains the public key of the originator. The second verifies the signature of the origina-
tor by using the public key of the originator. Moreover, the node needs to perform four
signature verifications should the routing message come from the node other than the
originator of RREQ or RREP. If a node is multi-hops away from the originator, it expe-
riences four signature verifications when receives a RREQ or RREP from its one-hop
neighbour.

The total computation cost for a final established route with N nodes between
source S and destination D is described as follows 2 ൈ ሺܰ െ 4ሻ ൈ ሺܵ݅݃݊ܽீ݁ݎݑݐ௘௡ ൅ 4 ൈ ௏௘௥ ሻ݁ݎݑݐܽ݊݃݅ܵ ൅ 2 ൈ ሾሺܵ݅݃݊ܽீ݁ݎݑݐ௘௡ ൅ 2 ൈ ௏௘௥ሻ݁ݎݑݐܽ݊݃݅ܵ ൅ ሺܵ݅݃݊ܽீ݁ݎݑݐ௘௡ ൅ 4 ൈ ௏௘௥ ሻ ሿ݁ݎݑݐܽ݊݃݅ܵ ൅ 2 ൈ ሺܵ݅݃݊ܽீ݁ݎݑݐ௘௡ ൅ 4 ൈ ௏௘௥ሻ݁ݎݑݐܽ݊݃݅ܵ

The computation cost of N nodes indicates that as the number of nodes on the established
final route increases, the number of intermediate nodes who are at least two hops away
from the originator of RREQ or RREP also rises, and hence the total computational cost
of all the nodes on the final route are going to boost up.

SAODV
SAODV offers two types of signature extensions: single signature and double signa-
ture extensions. To evaluate its computation cost, we consider the single signature
extension in which intermediate nodes cannot reply to a RREQ message due to its
unable to properly sign its RREP message. The only node that can reply to a RREQ
is the destination itself. Before rebroadcasting a RREQ or forwarding a RREP, a node
needs to apply the hash function to the hash value of the signature extension so as to
account for the new hop. If the node is the originator of RREQ or RREP, the genera-
tion of digital signature is requires but the hash operation is not needed. Upon receiv-
ing the RREQ or RREP, the receiver apply the hash function h(ு௢௣಴೚ೠ೙೟ݔܽܯ ஼௢௨௡௧) times to the value in the hash field in order to secure the hop count. Apart݌݋ܪ –
from that, the receiving node also needs to verify the signature generated by the
originator of the RREQ or RREP.

The computation cost of a node being as a sender or a receiver in SAODV is given
below.

Sender (originator of RREQ): ܵ݅݃݊ܽீ݁ݎݑݐ௘௡
Sender (intermediate node): H
Receiver: H × (ݔܽܯு௢௣಴೚ೠ೙೟ – ݌݋ܪ஼௢௨௡௧) + 2 × ܵ݅݃݊ܽ݁ݎݑݐ௏௘௥

Therefore, the computation cost of N nodes is as follows
 2 ൈ ൣ∑ ܪ ൅ ܪ ൈ ൫ݔܽܯு௢௣಴೚ೠ೙೟ െ ݅൯ ൅ 2 ൈ ௏௘௥ேିଷ௜ୀ଴݁ݎݑݐܽ݊݃݅ܵ ൧ ൅ 2 ൈ ൛ܵ݅݃݊ܽீ݁ݎݑݐ௘௡ ൅ ܪ ൈ ு௢௣಴೚ೠ೙೟ݔܽܯ ൅ ܪ ൈ ு௢௣಴೚ೠ೙೟ݔܽܯൣ െ ሺܰ െ 2ሻ൧ ൅ 2 ൈ ܵ݅݃݊ܽ݁ݎݑݐ௏௘௥ൟ

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 13

The calculation of computation cost of N nodes in SAODV shows that as the number
of nodes on the finalized route increase, more hash operations and signature
verifications are required during the route set up process.

SEAODV
The computation cost of SEAODV is simple and straightforward in contrast to that of
ARAN and SAODV. In SEAODV, the computation cost of each node on the route is
exactly the same whenever the node acts to be a sender or a receiver. The total com-
putation cost for a finalized route of N nodes can be deduced as 2 ൈ ሺܰ െ 2ሻ ൈ 2 ൈܥܣܯ ൅ 2 ൈ 2 ൈ where MAC stands for the cost of computing a MAC using a ܥܣܯ
GTK or PTK key. Figure 5 shows the computation cost of ARAN, SAODV and
SEAODV which is calculated in millisecond and the result demonstrates that the
computation cost of SEAODV is much less in contrast to SAODV and ARAN.

Fig. 5. Computation Cost of ARAN, SAODV and SEAODV

5.2 Communication Cost

ARAN, SAODV and SEAODV are similar in the way of discovering routes. RREQ is
broadcast by the originator of the on-demand node towards the destination. Upon re-
ceiving the RREQ, the destination unicasts the RREP back to the source from which
the RREQ is generated by using the reverse path which has been set up during the
flooding of the RREQ. All of these routing protocols apply the same methodology in
their routing mechanisms. Therefore, the communication cost involved in ARAN,
SAODV and SEAODV are the same for N nodes which is ሺܰ െ 1ሻ ൈ ݐݏܽܿ݀ܽ݋ݎܤ ൅݌݋ܪ஼௢௨௡௧ ൈ However, ARAN, SAODV and SEAODV experience various .ݐݏܷܽܿ݅݊
number of control bytes within every routing message (e.g., RREQ and RREP). The
more control bytes incurred in a single routing message, the larger the entire
routing message. Therefore, routing message with bigger size tends to have a lower
probability of successful reception at the destination and suffer longer delay.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 30 50 70 100

Co
m

pu
ta

ti
on

 C
os

t
(m

s)

of Nodes

SEAODV

SAODV

ARAN

14 C. Li, Z. Wang, and C. Yang

Before computing the latency produced by the communication overhead for each
of the routing protocols mentioned above, the following assumptions are made:

1. Network throughput is 400kbps for a single flow (in this case, a single pair of
source and destination) ;

2. 1024 bit RSA algorithm is used for ARAN and SAODV;
3. HMAC is the MAC algorithm for SEAODV;
4. In ARAN, the size of RREQ or RREP generated by the source or destination is

smaller than those forwarded by intermediate nodes, which include two signa-
tures and two certificates. While the RREQ or RREP originates by either the
source or destination is only comprised of one signature and one certificate. Pre-
sume that the route discovery packet (RDP) in ARAN is the same size as that of
used in AODV, which is 24 bytes. Therefore, for RREQ and RREP with single
signature and certificate, the total size is 312 bytes. For RREQ or RREP with
double signatures and double certificates, the total size is extended to 568 bytes;

5. In SAODV, 312 bytes in total for both RREQ and RREP, which include original
AODV message (24 bytes), signature (128 bytes), top hash (16 bytes), hash (16
bytes) and certificate (128 bytes);

6. In SEAODV, there are totally 40 bytes for either RREQ or RREP. The AODV
message costs 24 bytes and the HMAC is 16 bytes.

There are only two routing messages in ARAN with single signature, others are double
signatures. The total number of bytes required to be transmitted in order to ensure a se-
cure route set up is 568 ൈ ሺܰ െ 2ሻ ൈ 2 ൅ 312 ൈ 2 bytes. In SAODV, all routing mes-
sages are the same size, hence the total number of bytes required to be transmitted is 312 ൈ ሺܰ െ 2ሻ ൈ 2 ൅ 312 ൈ 2 bytes. Similarly, the total number of bytes of SEAODV
incurred during the route set up process is 40 ൈ ሺܰ െ 2ሻ ൈ 2 ൅ 40 ൈ 2 bytes.

The communication cost for transmitting the required bits can be calculated below ݐݏ݋ܿ ݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ ൌ .݋ܰ ݈ܽݐ݋ܶ ݐݑ݌݄݃ݑ݋ݎ݄ݐ ݇ݎ݋ݓݐሻܰ݁ݏݐሺܾ݅ ݀݁ݐݐ݅݉ݏ݊ܽݎݐ ܾ݁ ݋ݐ ݀݁݁݊ ݏݐܾ݅ ݂݋

Fig. 6. Average Route Acquisition Latency for ARAN, SAODV and SEAODV(ms)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 30 50 70 100

A
ve

ra
ge

 o
ut

e
e

A
cq

ui
si

ti
on

La

te
nc

y
(m

s)

of Nodes

SEAODV
SAODV
ARAN

SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks 15

The average route acquisition latency (the total of computation and communication
cost) is defined as the average delay between the sending of a RREQ packet by a
source for discovering a route to a destination and the receipt of the first correspond-
ing RREP. Figure 6 shows that the average route acquisition latency (in millisecond)
of our SEAODV is much less in contrast to SAODV and ARAN due to the use of
MAC and the smaller size of routing messages.

6 Conclusion

In this paper, we present a security enhanced AODV routing protocol (SEAODV). In
SEAODV, Blom’s key pre-distribution scheme is used to establish keys to ensure that
every two nodes in the network uniquely share the pairwise keys. Our scheme adds
secure AODV extensions to the original AODV routing messages. Each node in the
network possesses two types of keys: PTK and GTK, where PTK is computed using
Blom’s scheme, node makes use of PTK to accomplish the distribution of GTK. PTK
protects the unicast routing message and every pair of nodes secretly shares their own
PTK while GTK secures the broadcast routing message and shares privately between
the node and its one-hop neighbours. Depending on the type of the routing message,
MAC is computed using either PTK or GTK. Evaluation results shows that SEAODV
does offer superior performance in terms of computation cost and route acquisition
latency as compares to other two secure routing protocols, ARAN and SAODV.

References

1. Sichitiu, M.L.: Wireless mesh networks: opportunities and challenges. In: Proceedings of
the Wireless World Congress (2005)

2. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: A survey. Computer
Networks (2005)

3. Bruno, R., Conti, M., Gregori, E.: Mesh networks: Commodity multihop ad hoc networks.
IEEE Communications Magazine 43, 63–71 (2005)

4. Zapata, M., Asokan, N.: Securing ad-hoc routing protocols. In: Proceedings of ACM
Workshop on Wireless Security (WiSe) (2002)

5. Perkins, C.E., Belding Royer, E., Das, S.R.: Ad hoc on-demand distance vector routing. In:
IETF RFC 3561 (2003)

6. Sangiri, K., Dahil, B.: A Secure Routing Protocol for Ad Hoc Networks. In: Proceedings
of 10th IEEE International Conference on Network Protocols (2002)

7. Hu, Y.-C., Perrig, A., Johnson, D.B.: Ariadne, A Secure On-Demand Routing Protocol for
Ad Hoc Networks. In: Proceedings of MobiCom, Atlanta, GA (2002)

8. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing of multi-
cast streams over lossy channels. In: Proceedings of IEEE Symposium on Security and
Privacy, pp. 56–73 (2000)

9. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution Scheme for
Wireless Sensor Networks. ACM, New York (2003)

16 C. Li, Z. Wang, and C. Yang

10. IEEE 802.11s Task Group. Draft Amendment to Standard for Information Technology
Telecommunications and Information Exchange Between Systems – LAN/MAN Specific
Requirements – Part 4: Wireless Medium Access Control (MAC) and physical layer
(PHY) specifications: Amendment: ESS Mesh Networking. IEEE 802.11s/D1.06 (2007)

11. Bahr, M.: Proposed Routing for IEEE 802.11s WLAN Mesh Networks. In: 2nd Annual In-
ternational Wireless Internet Conference (WICON), Boston, MA, USA (2006)

12. Bahr, M.: Update on the Hybrid Wireless Mesh protocol of 802.11s. In: Proceedings of
IEEE International Conference on Mobile Adhoc and Sensor Systems, MASS, pp. 1–6
(2007)

13. Zhu, S., Xu, S., Setia, S., Jajodia, S.: LHAP: A Lightweight Hop-by-Hop Authentication
Protocol for Ad-Hoc Networks. In: ICDCS International Workshop on Mobile and Wire-
less Network, Providence, Rodhe Island (2003)

14. Jing, X., Lee, M.J.: Energy-Aware Algorithms for AODV in Ad Hoc Networks. In:
Proceedings of Mobile Computing and Ubiquitous Networking, Yokosuka, Japan (2004)

Auto-generation of Least Privileges Access
Control Policies for Applications Supported by

User Input Recognition

Sven Lachmund and Gregor Hengst

DOCOMO Euro-Labs, Munich, Germany

Abstract. Applications are typically executed in the security context of

the user. Nonetheless, they do not need all the access rights granted. Ex-

ecuting applications with minimal rights (least privileges) is desirable. In

case of an attack, only a fraction of resources can be accessed. The state-

of-the-art on application-based access control policy generation has limi-

tations: existing work does not generate least privileges policies, policies

are not always complete and the process requires complex manual inter-

action. This paper presents an almost fully automated approach which

counters these limitations. It achieves this by (1) extending a static anal-

ysis approach by user input recognition, by (2) introducing a new run-

time approach on user input recognition which is based on information

tracking and Aspect-Oriented Programming and by (3) combining the

other two contributions with some of the existing work. The combined

approaches are integrated into the software development life cycle and

thus, policy generation becomes practicable. A prototype of the runtime

approach is implemented which proves feasibility and scalability.

1 Introduction

In today’s mainstream operating systems applications are typically executed
with the security context of the user. Since applications are used for a spe-
cific purpose, they do not need all the access rights of the user. Applications
should rather be executed with only those access rights they actually need (least
privileges [1]).

If the application has a vulnerability which can be exploited by an attacker,
allowing the attacker to control the application, the attacker is able to access
the resources which the application is permitted to access. If the application
has restricted access, potential damage of the attack can be confined. Due to
complexity and extensibility of today’s software, applications typically have
vulnerabilities [2,3].

To execute applications with least privileges, applications have to be assigned
access rights individually, as the purpose of applications and the resources they
need to access vary significantly. Generic policies and protection domains are
not specific enough. If applications have their individual access rights, limited
to the minimum, they can execute normally, i.e. they have all the access rights

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 17–38, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

18 S. Lachmund and G. Hengst

they need to carry out their operations, but not more. Applications access two
categories of resources. The first category – the system resources – comprises
those resources which the application accesses to carry out its operations inde-
pendently of any user interaction. The second category – the user resources –
comprises resources chosen by the user while interacting with the application.
For example, a library that is loaded by an application to invoke a function
represents a system resource and a text document accessed by a user in a text
editor represents a user resource. It is not known prior to execution which user
resources a user will access at runtime. In contrast, access to system resources
can be derived from the application’s code.

There is existing work, both on research level [4,5,6,7] and product level [8] (see
Section 2), that automates generation of policies individually per application.
While this existing work generates least privileges policies for system resources,
it fails doing so for user resources. It fails due to permitting access to all user
resources which might be accessed by the user during execution by adding generic
permissions to the policy. An example for these generic permissions is to permit
access to the entire home directory of a user. This overapproximation of access
rights violates the principle of least privileges.

The objective is to reduce the set of access rights by discarding access rights
to user resources in order to generate a least privileges policy. Treating system
resources differently from user resources is the key. In this paper, access rights
for system resources are collected and policies are generated using the existing
work. However, for treating access to user resources, user input is identified and
its propagation through the control flow of the application is analysed. If data
that is input by the user is used as resource identifier at a permission check, the
access is considered as access to a user resource. User-initiated resource access
is determined that way. Permissions for accessing user resources are not added
to the policy. The generated policy – the application policy – only consists of
all the necessary access rights to system resources. The entire process is auto-
mated in order to minimise the involvement of the developer. Policy generation
is performed at development time as a kind of side-task during implementation
and testing. Technically, user input recognition is based on static analysis and
runtime observations of the application’s code.

The contributions of this paper are:

– Improving a static analysis-based approach by integrating user input
recognition,

– introducing a new scheme for user input recognition based on user input
tracking with aspect-oriented programming and

– Combining existing work on static analysis and runtime observation with
the two other contributions.

Combining all these contributions eliminates major drawbacks of the existing
work on policy auto-generation: overapproximation is eliminated, completeness
of the policies is given and manual user interactions are eliminated. A proto-
type has been implemented which proves feasibility and scalability of the taint
tracking approach.

Auto-generation of Least Privileges Access Control Policies 19

Executing the application with this application policy being enforced at
runtime would prevent the user from accessing any user resource in the appli-
cation. Therefore the application policy is adapted on the target system where
the application is executed. This can be done dynamically at runtime upon user
interactions. Whenever a user chooses a resource in the application, the corre-
sponding access right is added to the policy. Consequently, the application can
only access user resources chosen by the user. This satisfies the principle of least
privileges. The user perception is the same as in systems based on the object-
capability security model (see Section 2.4). An alternative is to adapt the policy
statically at deployment time or at load time, by specifying which user resources
are accessible. We already elaborated various approaches for this adaptation.
Some of them are similar to the user input recognition at development time (see
Section 3). However, other approaches are beyond the focus of this paper.

Since the policy is generated by the developer and augmented on the target
system, responsibilities are split: the developer defines the access rights the ap-
plication needs and the target system only has to define which resources the
user should be able to access. This results in policy generation being practicable
for all the involved stakeholders. In contrast, existing work involves the user in
complex manual tasks, as all the policy is generated on the target system. It
is difficult for the user to determine which access rights to system resources an
application needs. Consequently, existing work is not widely used in practice.

The paper is organised as follows. Section 2 discusses related work. Section 3
contributes distinction of access to system resources and user resources. It also
presents the automated application policy generation process. The prototype
implementation of the runtime observation approach is addressed by Section 4.
Section 5 illustrates the contribution applied on an application. An evaluation of
the contribution and the prototype is provided by Section 6. Section 7 addresses
issues to be considered, such as embedding the presented work in the software
development life cycle (SDLC) and future work. Section 8 concludes the paper.

This work has been carried out based on the object-oriented programming
(OOP) paradigm [9,10]. It is assumed that the programming language and its
execution environment are entirely object-oriented. Terms, such as class, ob-
ject, method, field, member, type and modifier are used in their OOP context
throughout the paper.

2 Related Work

This section is organised in line with the contributions. Section 2.1 describes the
static analysis-based approach which is improved in this paper. Therefore it is
discussed in depth. Section 2.2 covers relevant runtime observation approaches
for generating application policies. Further approaches which are interesting but
not used in this paper are briefly discussed in Section 2.3 Other related work is
addressed thereafter.

20 S. Lachmund and G. Hengst

2.1 Static Analysis by Call Graph

Policy generation by Koved, Centonze, Pistoia, et al. [4,5,6] is based on static
analysis. It creates a call graph of applications written in Java which represents
methods as nodes and method calls as edges. The call graph is used to determine
which method calls result in permission checks. For each of these permission
checks, the allocation site of the involved Permission class (representing access
rights in Java [11]) is determined. Each Permission class contains an identifier
which represents the accessed resource. The values of all of these identifiers are
collected. They are put in the policy, as these resources will be accessed by the
applications during execution. Libraries and applications are analysed differently.

For libraries a summary is created for all possible paths in the call graph of
the library which start at any permission check node and end at any protected
or public method. Data flow analysis [4,5] is applied to determine the paths.
Each of the end point methods causes a permission check in the library when
being invoked by the application. For the applications, these methods are entry
points into the library. The summary contains all the required permissions for
these calls.

Application analysis is limited to the paths in the call graph of the application
that go from a start node to a node that is an entry point of a library for which
a summary has been created. A set containing all the entry point nodes of all
the libraries used by the application is created. It is partitioned in three subsets
depending on properties of the resource identifiers. Paths are treated differently
in the analysis, depending on the partition to which the entry point node where
the path ends is assigned.

The first subset contains all those methods that use a string constant defined
in the library to define the resource identifier. These methods are processed by
a data flow analysis, like in the library analysis.

The second subset contains all those entry point methods that receive one
or more String argument(s) when being invoked by the application. These argu-
ments are allocated by the application and used as resource identifiers for the
permission check in the library. These methods are processed with a more com-
plex algorithm. The complete algorithm is presented in [6]. It starts with the
string analysis described below to determine all possible resource identifiers in
the application code that are used as arguments of entry point methods. Slices
[12] are created for each of these String arguments to determine their propaga-
tion through the application. The slices identify the propagation paths in the
call graph that belong to the String argument, without introducing paths that
do not exist in the application’s control flow.

The string analysis is a processing step of the application analysis where String
objects of the application are analysed. The string analysis is capable of tracking
all instantiations and modifications (e.g. concatenation) of strings representing
resource identifiers. Transforms [6] of String modifying operations are created
to determine the output String when an input String is provided. The string
analysis creates a context-free language representing possible values for input

Auto-generation of Least Privileges Access Control Policies 21

Strings and output Strings, derived from all modifications that are applied to
the given string in the application. String objects are labelled to document their
allocation site and all subsequent modifications. The labels map nodes in the
call graph of the application to literals in the context-free language. After the
string analysis, each character carries its own history of modifications from allo-
cation to the site where they are used as arguments for allocation of a Permission
object. Fig. 1 illustrates this on an example. Each character of the string is as-
signed a list of labels, where each label describes the operation or allocation site.
String analysis increases precision over data flow analysis, as resource identifiers
can be determined in cases where the work in [4] and [5] only generate generic
permissions.

The third subset contains all those entry point methods that have non-string
arguments containing String objects. These String objects are used as resource
identifiers. For each of these non-string objects rules are predefined that de-
scribe how to obtain the resource identifier from the contained String object(s).
If no rule is predefined for a specific non-string object, a generic permission that
matches the Permission type used for the corresponding permission check is used,
which permits access to any resource of that type. Once the resource identifiers
have been extracted, the analysis continues with the one for the second subset.

Once the analyses are done for an entry point, the permissions needed when
calling the corresponding method are determined. They are added to the cor-
responding node in the call graph. After all entry points are analysed, all the
collected permissions are propagated backwards through the call graph to the
start nodes. In nodes which are join-points of paths, permissions are combined
with set unions. After the backward propagation, the start nodes contain all the
permissions the application needs. The policy is created from these permissions.

a n y S t r i n g

String s

…
String s = System.console().readLine();

a n y S t r i n g

allocation allocation …g y () ();
…
s.toLowerCase();
…
Permission p = new

allocation

operation

allocation

operation …

List of labelsList of labelsp
FilePermission(s, ”read“);

List of labels
per character

List of labels
per character

Fig. 1. Example of labelling characters of a string in the string analysis

The drawback of call graph-based analysis (as introduced in [4,5]) is that
the call graph overapproximates [13]: it contains paths which do not correspond
to program flow of the code. This overapproximation – we call it call graph-based

22 S. Lachmund and G. Hengst

overapproximation – results in access rights in the policy which the applica-
tion actually does not need. Therefore the analyses which are sketched here are
introduced in [6] in order to eliminate call graph-based overapproximation.

A different sort of overapproximation – we call it indecisiveness
overapproximation – remains in [6], however. With all the analyses, many ac-
cess rights which the application needs can be obtained statically. The rest of
the access rights can only be determined on execution, as the involved resource
identifiers are only defined at runtime. Thus they are unknown at the time of
static analysis. In [5], static analysis is combined with dynamic analysis, but
this is to overcome call graph-based overapproximation. For permissions that
can only be determined at runtime, generic permissions are added to the pol-
icy in [6] (as well as in [5]). These generic permissions are added for all user
resources and for those system resources which are not specified in the source
code of the application (e.g. the file separator character in Java). Some resource
identifiers are defined by operations at runtime. These operations receive various
arguments which also may partially be available at runtime only. In such a case,
overapproximation is countered in [6]: the string analysis provides transforms for
operations which modify input that is used as resource identifier. These trans-
forms are used to determine permissions statically. Generic permissions are only
added if for certain operations no transforms are defined.

The improvement of the algorithm presented in Section 3.3 further reduces in-
decisiveness overapproximation of this approach by avoiding generic permissions
for user resources in the generated policy.

2.2 Runtime Observation

Cowan’s AppArmor [14,8] and Provos’ Systrace [7] are runtime observation ap-
proaches. System calls are recognised and recorded, based on the Linux Security
Modules (LSM). An application is executed several times in learning mode. All
the performed system calls are written to a policy. Finally, the policy is exam-
ined manually and applied. Any future execution of the application is controlled
within the bounds of this policy.

The drawback of the approach is the manual policy examination. It is left to
the user. In addition, a general drawback of runtime approaches is that complete-
ness of execution coverage cannot be determined. Only if all the functionality of
the application is executed, a complete policy is generated. As a consequence,
generated policies are likely to be incomplete. This is closely related to the need
of generic permissions for user resources. They are needed as it cannot be deter-
mined whether during execution all possible user resources have been accessed.
Due to these generic permissions, runtime observations overapproximate.

However, the approach is an important work on auto-generation of policies.
It has been chosen for creating the observation records in Section 3.4. In order
to benefit from this approach, it is combined with the other contributions of this
paper. This eliminates the involvement of the user for manual policy examination
and it avoids generic permissions for user resources by filtering permission checks
which are performed by the user.

Auto-generation of Least Privileges Access Control Policies 23

2.3 Further Analysis Approaches

Wagner and Dean [15] present a combination of static analysis and runtime
monitoring. Using static analysis, a model of the application is created which is
represented by an automaton. This automaton models the order in which system
calls are made by the application. Each system call of the application initiates a
state transition of the automaton. Any system call which the application makes
when executing normally transfers the automaton from a valid state to another.
Any system call that is normally not made by the application leads to an error
state. Using this automaton at runtime allows recognising illegal state transitions
of the application, which is used to terminate the application. The advantage is
that this approach takes the history of system calls into consideration. However,
while this approach keeps track of the application’s control flow, it does not
provide fine grained access control for resources. Once a system call is permitted,
the resources on which the system call operates are not further restricted. Thus,
this approach should always be combined with other access control models.

Polymer [16] also follows a two step approach. The bytecode of Java appli-
cations and libraries is instrumented with jumps into the Policy object, which
performs policy enforcement. The policy is a compiled Java object. At runtime,
the instrumented code and the Policy object act as runtime monitors to perform
access control on the level of method calls. Polymer does not support generating
the policies. This is a purely manual task. It also provides limited dynamic policy
adaptation at runtime.

2.4 Other Related Work

Systems based on the object-capability security model [17] provide the applica-
tion with a reference after the user has chosen a resource. The application itself
does not have access rights for the resource, but via the reference, the applica-
tion can access the resource. Thus, the user transparently provides the necessary
access rights which the application needs. These object-capability-based systems
and the contribution of this paper have the same user perception in common. It
is the user’s responsibility to carefully choose resources the application should
operate on.

Taint tracking [18,19,20,21] is used to filter potentially dangerous user input
before it is used for sensitive operations. There are different approaches, but they
all have in common that user input is tracked when propagating through an ap-
plication. Some work recognises intrusions when user input is used as arguments
for certain sensitive operations, as these operations are normally only executed
with arguments that are not specified by the user. If user input reaches such
sensitive operations, the application will be terminated. In other work, control
characters are filtered from user input. For an SQL statement, for example, char-
acters, such as semicolon and quote characters, would be filtered. This prevents
the user from rewriting the SQL statement. In this paper, taint tracking is used
for tracking user defined resource identifiers.

24 S. Lachmund and G. Hengst

3 Policy Generation with User Interaction Recognition

When analysing an application in order to generate an access control policy for
it, all the control flow that leads to resource access is of interest. Each access to a
resource initiates a permission check. The permission check determines whether
access is permitted or prohibited. Control flow analysis starts at the function
that starts the application and it ends at methods which perform a permission
check. If all these control flows of an application are captured along with the
corresponding access rights, a complete description of the application’s access
behaviour is available which can be used to generate an access control policy.
Existing work does that by static code analysis [4,5,6], as described in Section 2.1
and by runtime observations [5,8,7] (see Section 2.2). Static analysis models
stack inspection-based access control [22] statically and runtime observations
collect all the access attempts of an executed application when they occur. This
paper uses a combination of static analysis and runtime observations in order to
eliminate either one’s limitations. Since static analysis covers the entire code of
the application, the generated policy is complete, i.e. it contains at least all the
access rights the application needs. Runtime observations are incomplete, but
they can determine permissions which cannot be determined statically prior to
execution.

As explained in Section 2 and as further elaborated upon in Section 6.2, exist-
ing work suffers from different types of overapproximation. In order to eliminate
overapproximation, the different types of overapproximation are to be treated
differently. This requires distinguishing them. This distinction can be achieved
by recognising user input. Indecisiveness overapproximation can be eliminated
for user resources if all user-initiated access is discarded from the generated
policy. Therefore this section integrates user input recognition into the policy
auto-generation process. How to eliminate indecisiveness overapproximation for
system resources is addressed by Section 6.2.

Integrating user input recognition into the policy generation process allows
determining if an access is initiated by the user. Two promising approaches of
user input tracking were found by the authors: (1) using information tracking
along with Aspect-Oriented Programming (AOP) [23] to track user input dur-
ing execution (known as taint tracking ; see Section 2) and (2) extending the
call graph-based static analysis. This paper uses both these approaches in com-
bination. The contribution of this section extends the static analysis approach
explained in depth in Section 2.1 and it uses ideas from the runtime observation
approach by Cowan [14,8] (see Section 2.2).

Extending policy generation by user input recognition leads to the process
depicted in Fig. 2. All the steps of the process are integrated in the development
phase of the application. Policy generation itself takes place in step 5, where the
policy is generated from all the input which is collected in the steps 1, 3 and
4. These four steps (marked by slightly darker background colour in Fig. 2) are
discussed in this section.

Auto-generation of Least Privileges Access Control Policies 25

Find user input that affects resource
identification for permission checksP d f 1 identification for permission checks

and collect resource accesses
Prepared aspects from step 1

1 2 3 4

Implementation
Developer writes

Identification of
classes obtaining

Aspect Integration
and static analysis

Dynamic analysis
• Track and mark userDeveloper writes

source code as usual
classes obtaining
user input and
aspect creation
• Outside SDLC
• Specific for each HLL

and static analysis
• Create call graph,
perform analyses,
find permissions

• Weave aspects

• Track and mark user
input

• Record accesses for
remaining permissions

Repeated testingp Repeated testing

Code changes

5 6

Policy Generation SupplyPolicy Generation
• Remove aspects
• Remove redundancy
• Generalise policy

Supply
Application and
generated policy HLL = High Level programming Language

SDLC = Software Development Life Cycle

Fig. 2. The process of auto-generating the application policy including recognition of

user interactions

1 2 3 4

Identification of Static analysis Dynamic analysisIdentification of
classes obtaining
user input

Aspect Creation

Static analysis

User input
recognition
extends and improves
static analysis

Dynamic analysis

User input
recognition
by information
tracking

5 6

static analysis tracking

5 6

= Major contribution
= Contribution
= Existing workPolicy Generation g

Fig. 3. Combination of existing work and contributions

Fig. 3 illustrates in which way existing work and contributions are combined
in the steps of Fig. 2.

26 S. Lachmund and G. Hengst

3.1 Classes Obtaining User Input

Tracking propagation of user input starts at those classes which obtain user
input. These classes are collected in Step 1 of Fig. 2.

All the classes that come with a programming language and its execution en-
vironment – the so called system library – are well-known and finite in number
and size. Thus, all the classes of the system library that obtain user input com-
prise a subset of the system library which is also finite. A list of all classes that
obtain user input is compiled statically individually per programming language.
The list is used as starting point for tracking user input through the application.
If all entry points, such as console input, Graphical User Interface (GUI) input,
network input, file input, database input and others, are taken into account, a
complete list can be compiled. Some external libraries (e.g. windowing toolkits)
are to be added separately if they are not part of the system library. As the
object-oriented programming paradigm follows the idea of composing compo-
nents, applications typically reuse components from the libraries to implement
their functionality. Applications do rather not create own classes covering com-
monly used low level functionality, such as obtaining user input. Consequently,
the list is not to be changed by the developer when implementing an application.
It is only to be extended if an external library is used that does not provide its
own list.

For some classes of the list, all instances obtain user input (e.g. a text box of a
windowing toolkit). With other classes, only certain instances obtain user input
(e.g. the input stream in Java that connects keyboard input to standard-in, but
not necessarily any other input stream).

3.2 Aspects

In order to track propagation of user input through the application in the run-
time observation approach, classes are augmented by aspects. This subsection
discusses which classes are augmented and what the aspects do (Steps 1 and 3
in Fig. 2).

The aspects augment classes by a new field that stores taint information.
When data is assigned to instance objects of these classes, the new field is set
tainted if the data is obtained from user input. In any other case, the field is
set not tainted. The aspects observe all operations that change the state of ob-
jects containing taint information. They update taint information accordingly.
If data is propagated to other objects, taint information is also propagated by
the aspects. Consequently, all the classes that are involved in user input prop-
agation are augmented. The objects that perform permission checks, finally,
receive the usual data they need for permission check, i.e. the resource identifier
and the requested access right. They also receive taint information that is stored
in the object containing the resource identifier. This allows aspects in the objects
that perform permission checks to distinguish user-initiated access requests from
application-initiated requests.

Auto-generation of Least Privileges Access Control Policies 27

When classes deal with user input, apart from obtaining it, they can store,
modify or transform this user input. Methods of the class perform this func-
tionality. They are augmented by aspects to set taint information accordingly.
A class that stores user input also needs to store taint information. A class that
modifies user input also needs to modify taint information. A class that trans-
forms user input into another type also needs to provide the target class with
taint information. The target class needs to receive and store this taint informa-
tion. Methods that perform other functionality that does not affect user input
need no augmentation.

User input is data that is stored in a class either by calling a method of the
class or by assigning the data directly to a field. In whatever way the state
of the field is changed, taint information is to be set accordingly. If a method
changes the state of the field, the method is augmented by the necessary aspect.
If the field is accessed directly, the member class which represents the field is
augmented.

Aspects are prepared statically outside the process of policy auto-generation
(Step 1 in Fig. 2). The prepared aspects are specific for each programming lan-
guage. An example aspect for Java is listed in Section 4.2. The aspects are
weaved into the application’s code during development (Step 3 in Fig. 2). Many
classes (mainly high level classes) are augmented with generic aspects, i.e. as-
pects with pointcut definitions which apply to a wide range of classes. Such a
generic aspect applies, for instance, to all methods of all classes that return a
value of type String. Some classes (mainly low level classes) are augmented with
individual aspects to cover all their specific data propagation possibilities.

3.3 Call Graph and String Analysis

In order to distinguish user independent actions of the application from user
interactions, values and allocation sites of resource identifiers are determined in
the static analysis (Step 3 in Fig. 2). As soon as a resource identifier is allo-
cated by a class from the list (see Section 3.1), the resource identifier is known
to be defined by the user. The string analysis (see Section 2.1) is extended by
integrating this distinction. The labels are analysed to find all the characters of
which the resource identifier is composed and their allocation sites. Each of the
allocation sites is looked up in the list of user input obtaining classes. If the allo-
cation site is listed, the allocation label is tagged as originating from user input.
All the other labels are analysed for their string operations. If the operations
keep the original content obtained from the allocation site, their corresponding
labels are also tagged. If the content is changed, e.g. by using a substring, the
user input tag is discarded. This is to prevent the application from composing a
resource identifier from parts of user input to gain access to arbitrary resources
at runtime. The transforms (see Section 2.1) are extended by describing whether
user input tags shall be dropped when the corresponding methods are applied.

If all the labels of a character get the user input tag, the character itself is
tagged as user input. The string representing the resource identifier can either
consist of (1) only characters that are tagged as user input, (2) characters that

28 S. Lachmund and G. Hengst

are tagged as user input and characters that are not tagged as user input and
(3) no character that is tagged as user input. Treatment of those strings that
only consist of tagged or untagged characters is easy: the strings are tagged
according to their character tags. In the mixed case, the string is tagged as user
input. In all potentially dangerous cases, the transforms of string operations
removed the user input tag before. Thus, it is safe to treat the mixed case as
user input. If the string is tagged, the permission object which uses the string
as resource identifier is also tagged. The tagged permission object indicates that
the permission it represents is defined by user input.

Fig. 4 depicts the extended analysis on an example: the allocated string origi-
nates from user input and the endsWith operation does not remove this property;
thus, the characters used in the permission check originate from user input.

Tag denoting user input

String s

Console
…

List of classes
obtaining user
input

Tag denoting user input

a n y S t r i n g

…
String s = System.console().readLine();
…
If (s.endsWith(“g”)) {…}

allocation

operation

allocation

operation

…
…

…
Permission p = new

FilePermission(s, ”read“);
List of labels
per character

List of labels
per character

Fig. 4. Example of library-client application analysis extended by tagging labels of

those characters of a string that originate from user input

The application analysis of Section 2.1 is extended by adding this user input
analysis. Since subset 1 of the partitioned set of entry points is independent of
user input, no extensions are applied. Both subset 2 and subset 3 entry points
require extensions. After all the labelled strings are available, they are used for
user input analysis. The extended algorithm collects permissions as before, but it
tags those permissions that contain resource identifiers obtained from user input.
This makes them distinguishable from the others which have resource identifiers
not obtained from user input.

There is no need to extend the library analysis, as the application analysis
considers all input that comes from outside the library when the library is used
by an application.

The approach presented here further reduces overapproximation of the call
graph-based approach discussed in Section 2.1. All the resource identifiers that
are defined by user input, which cannot be determined prior to runtime, are

Auto-generation of Least Privileges Access Control Policies 29

not added to the application policy at all. Thus, there is no need for generic
permissions as a result of the static analysis. Cases in which generic permissions
are still required are limited to system values of the runtime (e.g. the file sep-
arator character in Java) and to resource identifiers that are read from other
sources (e.g. database or file). Therefore overapproximation is reduced, but not
eliminated. These cases of remaining overapproximation can be treated by defin-
ing sets of possible values to further reduce overapproximation, as discussed in
Section 6.2.

3.4 Dynamic Analysis

During dynamic analysis (Step 4 in Fig. 2), the augmented classes are capable
of tracking user input through the application. The application is executed re-
peatedly for software testing. During these executions, all access requests are
recorded and stored during permission checks to generate the application policy
from these records [5,8] (see Section 2). The records are stored together with
the corresponding taint information for each resource identifier. If a resource
identifier originates from user input, the corresponding record is discarded. For
processing tainted data, content and semantics of the data is irrelevant. Only
the propagation of data together with its taint information is relevant.

3.5 Policy Generation

The policy is generated in Step 5 of Fig. 2. After static analysis collected permis-
sions and after execution has been finished, the access control policy is generated
from all the acquired permissions.

For policy generation, redundant permissions are removed, as they are useless.
Permissions with specific access rights that are implied by more generic permis-
sions are removed as well. Finally, the policy is generated from the remaining
records.

Since aspects are only needed for policy generation, they are removed in the
policy generation step. The deployed application does not differ from an appli-
cation for which no policy was generated.

4 Prototype Implementation

The prototype of the runtime observation approach with taint tracking [24] has
been implemented in Java [25] and AspectJ [26]. Java’s modular design allows
replacing components easily. The access control model of Java [11] is flexible and
advanced. Fine-grained access control is possible. We extend Java’s access con-
trol facilities by replacing the default Policy Enforcement Point (PEP), i.e. the
SecurityManager class. Access control is performed on the level of the Java Vir-
tual Machine (JVM), based on the various subclasses of the Permission class.

30 S. Lachmund and G. Hengst

The list of user input obtaining classes contains core classes like, for ex-
ample, java.io.Console and java.io.InputStream. Direct user input is obtained
from standard-in using these classes. To obtain user input from arguments
given when starting the application, any class containing a main method is
added to the list. Among the windowing toolkits only Swing is exemplified
here. Text input fields (e.g. javax.swing.TextComponent) and dialogue boxes
(e.g. javax.swing.JFileChooser) are added to the list. The classes Byte, Charac-
ter, Integer and String are also added, as the InputStream uses the first three
to store the input it gets from its data source. These classes are also involved
in other String operations, processing user input until it is stored in a String
representation.1 In order to analyse tracked taint information, the SecurityMan-
ager.checkPermission method is added as well.

Since Java does not only know objects, but also support primitive types when
adding aspects to classes, there are two categories of classes to distinguish. Cat-
egory 1 represents all the low level classes that correspond to primitive types:
they store data in their fields in primitive types. Category 1 classes access their
fields directly. These classes are the end of the hierarchy of member classes. Cat-
egory 2 comprises all the classes that store their data in fields that are classes
by themselves. Category 2 classes need to call methods of their member classes
whenever they store or read data therein. There can be an arbitrary hierar-
chy of member classes of category 2. All classes which are not category 1 are
category 2.

Category 1 classes need to be augmented in any case. Each time, data is
stored in these classes, taint information is to be set according to the origin of
that data. If, for instance, data is obtained from the console (i.e. from System.in),
it is known that this instance of InputStream always produces user input. The
array of int in which the system library class InputStream stores the user input,
needs to set its data tainted.

Category 2 classes do not necessarily need to be augmented. Their mem-
ber classes refer to other objects which already may contain taint information.
However, if a category 2 class is capable of transforming its content to another
type, the corresponding methods need to set taint information of the target
type according to the source type. Therefore such a category 2 class needs to be
augmented.

Native methods are augmented using around advice. Taint is tracked on return
values. When the method is called, its arguments are analysed and when it
returns, its return value can be set tainted. This requires understanding the
semantics of the method to some extent.

4.1 Implementation Details

We implemented a plug-in for the integrated development environment eclipse
[27]. This plug-in accompanies the software development and testing process by
augmenting classes with aspects and by auto-generating the policy. The plug-in

1 Java actually uses primitive types in InputStream and other low level classes.

Auto-generation of Least Privileges Access Control Policies 31

contains the aspects. The developer does not need to write their own aspects,
unless the developer writes code that is capable of obtaining user input directly
without using existing Java classes.

The application is always executed using the replacement SecurityManager
– called ObservingSecurityManager – and a replacement policy provider – called
PolicyObserver. The PolicyObserver always returns false for each permission check
without consulting any policy. This causes the AccessControlContext, which is
involved in policy enforcement, to throw a security exception [11]. This exception
is caught by the ObservingSecurityManager and forwarded to a monitor class,
which analyses and stores its contents. That way, the subject, the subclass of
the Permission class, the resource identifier, the action, the entire call stack and
the code base are obtained by the monitor class. Due to the aspect by which
the ObservingSecurityManager is augmented, the monitor class also obtains taint
information and stores it in the records.

The ObservingSecurityManager suppresses the caught exception and returns
silently. Consequently, the application gets all access attempts permitted. This
allows testing any application feature without being hindered by security con-
straints. As this takes place in the development phase, there is no threat for the
system where the application is deployed.

The policy is generated from all the records. Filtering of user-initiated access
and removal of redundancy is done as described in Section 3.

In order to keep the ObservingSecurityManager small and independent of
analysing the exception, the ObservingSecurityManager sends the exception it
caught on a permission check to a server process using RMI. This server process
generates the policy.

4.2 Aspects

As described in Section 3.2, there are generic and specific aspects. For the proto-
type, it is advisable to classify them in three groups: group 1 consists of aspects
that are needed to store, read and transfer taint information in classes. They
provide methods to set and get taint information and they add a taint bit that
stores taint information. All classes that obtain or process user input need to
be augmented by these aspects. Classes are augmented by inter-type declaration,
i.e. classes inherit from both the aspect and the Object class (or a sub-class). Aug-
mented classes can then store and change their own taint information. Pointcuts
of Group 1 aspects define which classes are to be augmented by that function-
ality. Aspects in group 2 are generic aspects that specify in which cases group 1
aspects’ functionality is to be called in order to update the taint bit. This is the
case when data in Group 1 classes is set or modified. These aspects are generic,
as they apply to multiple classes satisfying some common properties. Group 3
aspects are all the specific aspects that deal with peculiarities of certain library
classes. They have the same purpose as Group 2 aspects, but they are specifically
written to track the taint bit in a particular class. Listing 1 shows one of the
Group 2 aspects.

32 S. Lachmund and G. Hengst

Listing 1. Advice augmenting main method

1 before (S t r ing [] args) : execution (public stat ic void ∗ . main (S t r ing []

2 | | St r ing . . .) && args (arg) {
3 for (S t r ing s t r i n g : arg) ((Taint) s t r i n g) . se tTainted (true) ;

4 }

5 Example

In the following, the prototype is used to generate the policy for the UMU
XACML-Editor (Version 1.3) exemplarily. The results are compared to the state-
of-the-art and evaluated. The UMU XACML-Editor [28] is a GUI-based XACML
file editor written using Swing. At first, all the resource access has been collected
using the ObservingSecurityManager. Table 1 lists all the access attempts which
occur when the application is executed. Access attempts with numbers 3, 4 and 9
in the table are initiated by the user. When applying existing work, the same ac-
cess attempts are collected, as the ObservingSecurityManager performs the same
analysis. However, creating a policy from the collected access attempts is of little
avail. It permits the application to access all the system resources it needs to ex-
ecute normally, but it only permits the application to access those user resources
(i.e. XACML files in the example) the user has chosen when the access attempts
were recorded. Therefore existing work involves the user to manually inspect the
policy. Thereby, the user ought to add a generic permission for file access which
permits the application to access all the XACML files which may be opened
in the XACML-Editor in the future. In order to prevent adding this generic
permission, our prototype identifies user interactions. In the case of the UMU
XACML-Editor, all user interactions are initiated via file dialogues. They are all
identified and marked in the records. They are discarded for policy generation.
Consequently, the generated policy does not contain access rights with numbers
3, 4 and 9 from Table 1, but all the other access rights. In contrast to existing
work, the resulting policy does not overapproximate. Therefore it is the least
privileges policy for the application. A modified file dialogue can then augment
the policy at runtime upon user interaction (as described in Section 7.2).

6 Evaluation

6.1 Prototype

The AOP aspects of the prototype instrument the system library. They iden-
tify user-initiated resource access correctly. As depicted by Table 2, the overall
number of necessary aspects is kept in a manageable range. This is due to the
generic aspects which affect a large number of classes. For production, exter-
nal libraries need to be augmented as well. From the feedback of the prototype
implementation, this is a scaling task with respect to the size of the external
libraries.

Auto-generation of Least Privileges Access Control Policies 33

Table 1. All access attempts of the UMU XACML-Editor. Duplicates are omitted.

Access attempts with numbers 3, 4 and 9 (bold font) are initiated by the user.

No. Permission Resource Action

1 java.awt.AWTPermission accessEventQueue

2 java.awt.AWTPermission showWindowWithoutWarningBanner

3 java.io.FilePermission /user/policy read

4 java.io.FilePermission /user/policy.xml write

5 java.io.FilePermission /UMU-XACML-Editor/bin/icons/cara.gif read

6 java.io.FilePermission /UMU-XACML-Editor/bin/icons/nube.gif read

7 java.io.FilePermission /UMU-XACML-Editor/bin/icons/target.gif read

8 java.io.FilePermission /UMU-XACML-Editor/bin/icons/verde.gif read

9 java.io.FilePermission /user write

10 java.lang.RuntimePermission exitVM

11 java.lang.RuntimePermission modifyThreadGroup

12 java.util.PropertyPermission elementAttributeLimit read

13 java.util.PropertyPermission entityExpansionLimit read

14 java.util.PropertyPermission maxOccurLimit read

15 java.util.PropertyPermission os.name read

16 java.util.PropertyPermission os.version read

17 java.util.PropertyPermission user.dir read

Table 2. Number of aspects in the prototype implementation. The figures are limited

to the packages java.lang, java.io, java.net and javax.swing. Aspects needed for compen-

sating primitive types are not considered. For inter-type declarations, the number of

affected classes is limited to directly affected classes. Through inheritance more classes

become affected.

Group Advice Named Pointcuts Affected Classes

Inter-type declarations 1 1 0 11

Generic aspects 2 8 8 41

Specific aspects 3 28 36 26

6.2 Elimination of Overapproximation

Existing work on policy generation suffers from limitations, as discussed earlier.
Runtime observations are incomplete (see Section 2.2) and static analysis suffers
from indecisiveness overapproximation (see Section 2.1).

Combining observations and static analysis (as done by Centonze et al. [5], see
Section 2.1) counters the drawback of incompleteness of runtime observations.
The combination can further reduce overapproximation of static analysis, as
generic permissions can be more precise and minimised to a set of valid values
in some cases, but they still remain.

The contributions of this paper further reduce overapproximation. By dis-
carding user-initiated resource access, all access to user resources is omitted
from the policy. There is no generic permission in the policy and the content of

34 S. Lachmund and G. Hengst

the policy does also not depend on the user resources which the tester has chosen
during runtime observations. Access to user resources is the major cause for over-
approximation in existing work. Thus, the primary source of overapproximation
is eliminated.

There are still special cases where overapproximation remains: in cases where
no transform is defined for an operation which is analysed by the string analysis,
as well as in cases where no set of possible values for a resource identifier which
is set by the execution environment is defined. Both these cases can be countered
by ensuring that all the transforms and sets are defined. The policy generation
process can be implemented in a way that it identifies missing transforms and
sets. The sets can then be defined directly in the policy generation process, for
instance by adding annotations to the code. Consequently, overapproximation is
eliminated which results in policies that are complete and that also represent the
least privileges of the corresponding application. This is a major benefit over the
state-of-the-art. Table 3 summarises the differences and the gains by comparing
the state-of-the-art, the individual contributions and the combined contributions
of this paper.

Table 3. Comparison of state-of-the-art and contributions

Static analysis [6] Dynamic analysis Static analysis Dynamic analysis Combination of allStatic analysis [6]
(see Section 2.1)

Dynamic analysis
[7] (see Section
2.2)

Static analysis
extended by
contributions from
Section 3.3

Dynamic analysis
extensions by
contributions from
Sections 3.2 and
3.4

Combination of all
contributions of
Section 3

Over-
approximation

Overapproximates
on permissions
only known on
execution
(indecisiveness

Overapproximates
on user resources

Reduced
indecisiveness
overapproximation
to system
resources only

Does not
overapproximate
as no user
resources are
captured

Does not
overapproximate

(indecisiveness
overapprox.)

resources only captured

Completeness Complete Incomplete Complete Incomplete Complete

Scalability Scales due to Scales due to the Scales due to Scales as the Scales as theScalability Scales due to
separated library
analysis

Scales due to the
ability of
combining
permissions in
include files

Scales due to
separated library
analysis

Scales as the
number of aspects
to be created is in
a manageable
range

Scales as the
individual solutions
combined here
scale and as the
combination does
not add non-linearnot add non linear
complexity

Automation Automated to large
extent

Manual inspection
of generated
policies required

Automated with a
few exceptions

Aspects are
created manually
per programming
l

Aspects are
created manually
per programming
llanguage;

Policy generation is
fully automatic

language;
Policy generation is
fully automatic

Requirements Source code or
object code

Complete test
coverage

Source code Complete test
coverage

Source code
object code coverage coverage

7 Discussion

7.1 Threat Model

The policy generation process contributed in this paper is meant for protect-
ing systems against applications that misbehave due to programming errors
and due to being exploitable by attackers. Since the policy is generated by the

Auto-generation of Least Privileges Access Control Policies 35

developer, a developer of a malicious application can generate a policy that
permits all the malicious access. The contribution does not protect against
malicious applications.

7.2 The Big Picture

If no further measures are taken in the deployment phase and/or in the execution
phase, the generated policy is of little avail. If the application is deployed together
with its application policy, manifold measures are advisable, as discussed next.

For deployment, the application policy can be checked against the policy of
the system on which the application is to be deployed, to see if they do not
contradict. This can be done manually by examining the policy or automatically.
The European research project Security of Software and Services for Mobile
Systems (S3MS) [29,30,31] provides means to prove that the application policy
matches the application and that the application policy does not contradict the
system policy.

As mentioned in Section 1, it is not sufficient to only apply the application
policy at runtime. The policy needs to be adapted.

7.3 Future Work

The work presented here is limited to volatile user input. This is input that is
only relevant for the currently executed instance of an application. It is used, for
example, to open a file the user intends to edit in the application. We will also
address persistent user input in our future work, which persists over multiple
executions of the application. This is the case, for instance, if the user specifies
the path and name of a configuration file which is read each time the application
is started. Once specified by the user, the application should have access rights
for future executions.

Means are needed to handle new classes that are capable of obtaining user
input by themselves without relying on classes from the system library. In such a
rare case, aspects are to be auto-generated from aspect templates. This way, the
developer is not required to write aspects in order to apply user input tracking
to these new classes.

The approach presented here relies on the availability of source code of the
application. Applicability on intermediate language code (Java bytecode or .NET
CIL) is to be elaborated.

In some cases, additional information is required for generating the policy.
In these cases the developer needs to specify meta information. Investigations
on integrating this meta information specification into the development process
with little developer involvement are required.

8 Conclusion

This paper presents means to auto-generate least privileges access control policies
for applications. While existing work is used for the process of retrieving the

36 S. Lachmund and G. Hengst

contents for the policy by static and dynamic analyses, this paper introduces a
way to distinguish resource access performed by the application from resource
access initiated by the user. This distinction allows generating the application
policy that satisfies the principle of least privileges. The application policy does
not contain any access right to user resources, whereas existing work permits
generic access to user resources. Access rights users need to access resources in
the application are later added on the target system.

Two approaches are presented here. The static analysis approach uses a call
graph of the application and performs various analyses to determine and tag
resource identifiers that are defined by the user. The policy is generated without
adding permissions that are based on tagged resource identifiers. The runtime
observation approach tracks user input through the application using taint track-
ing and aspect-oriented programming. If user input propagates to a permission
check where the resource identifier is specified by the user, the corresponding
access is treated as user-initiated. A prototype is implemented in Java. Its im-
plementation shows that the total number of aspects is kept in a manageable
range. It suffices to augment those classes by aspects which play a key role in
processing user input. As a result, the approach is feasible, it scales with respect
to the size of instrumented libraries and it reduces overapproximation of existing
approaches significantly. However it requires a fully object-oriented programming
language, as AOP cannot be applied on primitive data types.

If both approaches are combined, a complete and sound policy is generated
and overapproximation is eliminated. As the policy is auto-generated, the effort
for the developer is low. The resulting application policy can be used on the
target system to execute the application in its bounds. The target system only
needs to specify access rights for user resources. Thus, the effort is also low
there. As a consequence, policy generation becomes practical. An outlook of
three obvious possibilities to apply the contributions in practice concludes the
paper:

The mobile phone is an appealing target, as the mobile industry controls most
of the phases of the SDLC. Development environments can be extended by the
analyses, the generated policy can be included in the supply chain of applications
and the execution environments on the mobile phones can be adapted to per-
form policy adaptation. Controlling access on a mobile phone to user resources,
such as the phone book or the agenda, means controlling access to personal
data which not all the applications need. Effective tailored access control on a
per-application basis is possible and practical that way.

Execution environments, such as the Java Virtual Machine and the .NET
CLR, provide a fine-grained and flexible security architecture that allows en-
forcing tailored access control policies. The problem in practice, however, is that
it is complex to write proper policies. Integrating the policy auto-generation
process into the SDLC reduces this effort to a minimum.

The two execution environments .NET CLR and Android allow for defining
the access rights an application needs in a configuration file which is supplied
together with the application. This is used at install time in order to assign

Auto-generation of Least Privileges Access Control Policies 37

the right access rights. However, there is no support in collecting all the needed
access rights. The policy auto-generation process can be used to close this gap
by filling the section of required permissions in the configuration file.

References

1. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-

tems. Proceedings of the IEEE 63(9), 1278–1308 (1975)

2. McGraw, G.: Software Security - Building Security. Addison-Wesley, USA (2006)

3. National Institute of Standards and Technology: National vulnerability database

statistics, http://nvd.nist.gov/statistics.cfm (last checked: August 2010)

4. Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for java. In: OOP-

SLA 2002: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pp. 359–372. ACM, New

York (2002)

5. Centonze, P., Flynn, R., Pistoia, M.: Combining Static and Dynamic Analysis

for Automatic Identification of Precise Access-Control Policies. In: Proceedings

of the 23rd Annual Computer Security Applications Conference, ACSAC 2007,

pp. 292–303 (December 2007)

6. Geay, E., Pistoia, M., Tateishi, T., Ryder, B.G., Dolby, J.: Modular String-Sensitive

Permission Analysis with Demand-Driven Precision. In: Proceedings of the 31st In-

ternational Conference on Software Engineering, pp. 177–187. IEEE, Los Alamitos

(May 2009)

7. Provos, N.: Improving host security with system call policies. In: SSYM 2003:

Proceedings of the 12th conference on USENIX Security Symposium, Berkeley,

CA, USA, pp. 18–18. USENIX Association (2003)

8. Novell, Inc.: AppArmor, http://en.opensuse.org/AppArmor/ (last checked: Au-

gust 2010)

9. Goldberg, A., Kay, A.: Smalltalk-72 Instruction Manual. Technical Report SSL

76-6, Learning Research Group, Xerox Palo Alto Research Center, California, USA

(1976)

10. Eckel, B.: Thinking in Java, 3rd edn. Prentice Hall, Nwe Jersey (2003)

11. Gong, L., Ellison, G., Dagenforde, M.: Inside Java 2 Platform Security, 2nd edn.

Addison-Wesley, Reading (2003)

12. Horwitz, S., Reps, T., Binkley, D.: Interprocedural Slicing Using Dependence

Graphs. In: PLDI 1988: Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, pp. 35–46. ACM, New York

(1988)

13. Shivers, O.: Control flow analysis in scheme. In: Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 164–174

(1988)

14. Cowan, C., Wright, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux security

modules: General security support for the linux kernel. In: Proceedings of the 11th

USENIX Security Symposium, San Francisco, CA, USA (August 2002)

15. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of

the 22nd IEEE Symposium on Security and Privacy, pp. 156–169 (May 2001)

16. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In:

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 2005), Chicago, IL, USA, pp. 305–314 (2005)

http://nvd.nist.gov/statistics.cfm
http://en.opensuse.org/AppArmor/

38 S. Lachmund and G. Hengst

17. Miller, M.S.: Robust Composition - Towards a Unified Approach to Access Control

and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, MD,

USA (May 2006)

18. Xu, W., Bhatkar, E., Sekar, R.: Taint-enhanced policy enforcement: A practical

approach to defeat a wide range of attacks. In: 15th USENIX Security Symposium,

pp. 121–136 (2006)

19. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically

hardening web applications using precise tainting. In: 20th IFIP International In-

formation Security Conference (SEC), pp. 372–382 (2005)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-

nal on Selected Areas in Communications 21 (2003)

21. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.

Communications of the ACM 20(7), 504–513 (1977)

22. Wallach, D.S., Felten, E.W.: Understanding java stack inspection. In: Proceedings

of the 1998 IEEE Symposium on Security and Privacy, pp. 52–63 (1998)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Liu, Y., Auletta, V. (eds.) ECOOP

1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

24. Hengst, G.: Auto-generation of access-control policies - elaboration of an informa-

tion tracking approach and its prototype implementation. Bachelor’s thesis, Munich

University of Applied Sciences (September 2009)

25. Sun Microsystems Inc.: Java Technology, http://java.sun.com/ (last checked:

August 2010)

26. Eclipse Foundation: Aspectj, http://www.eclipse.org/aspectj/ (last checked:

August 2010)

27. Eclipse Foundation: eclipse, http://www.eclipse.org (last checked: August 2010)

28. Dólera Tormo, G., Martinez Perez, G.: UMU XACML-Editor,

http://sourceforge.net/projects/umu-xacmleditor/ (last checked: August

2010)

29. S3MS project consortium: Security of Software and Services for Mobile Systems

(S3MS), European research project, http://www.s3ms.org/ (last checked: August

2010)

30. Dragoni, N., Martinelli, F., Massacci, F., Mori, P., Schaefer, C., Walter, T., Vetil-

lard, E.: Security-by-Contract (SxC) for Software and Services of Mobile Systems.

In: Nitto, E.D., Sassen, A.M., Traverso, P., Zwegers, A. (eds.) At Your Service-

Oriented Computing From an EU Perspective, pp. 429–455. MIT Press, Cambridge

(2009)

31. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. In:

First International Workshop on Run Time Enforcement for Mobile and Dis-

tributed Systems (REM 2007), Dresden, Germany (September 27, 2007)

http://java.sun.com/
http://www.eclipse.org/aspectj/
http://www.eclipse.org
http://sourceforge.net/projects/umu-xacmleditor/
 http://www.s3ms.org/

Impossibility Results for RFID Privacy Notions

Frederik Armknecht1, Ahmad-Reza Sadeghi2, Alessandra Scafuro3,
Ivan Visconti3, and Christian Wachsmann2

1 University of Mannheim, Germany
armknecht@informatik.uni-mannheim.de

2 Horst Görtz Institute for IT-Security (HGI), Ruhr-University Bochum, Germany
{ahmad.sadeghi,christian.wachsmann}@trust.rub.de

3 Dipartimento di Informatica ed Applicazioni, University of Salerno, Italy
{scafuro,visconti}@dia.unisa.it

Abstract. RFID systems have become increasingly popular and are al-
ready used in many real-life applications. Although very useful, RFIDs
introduce privacy risks since they carry identifying information that can
be traced. Hence, several RFID privacy models have been proposed. How-
ever, they are often incomparable and in part do not reflect the capabil-
ities of real-world adversaries. Recently, Paise and Vaudenay presented
a general RFID security and privacy model that abstracts and unifies
most previous approaches. This model defines mutual authentication (be-
tween RFID tags and readers) and several privacy notions that capture
adversaries with different tag corruption behavior and capabilities.

In this paper, we revisit the model proposed by Paise and Vaude-
nay and investigate some subtle issues such as tag corruption aspects.
We show that in their formal definitions tag corruption discloses the
temporary memory of tags and leads to the impossibility of achieving
both mutual authentication and any reasonable notion of RFID privacy
in their model. Moreover, we show that the strongest privacy notion
(narrow-strong privacy) cannot be achieved simultaneously with reader
authentication even under the strong assumption that tag corruption
does not disclose temporary tag states. Further, we show other impos-
sibility results that hold if the adversary can manipulate an RFID tag
such that it resets its state or when tags are stateless.

Although our results are shown on the privacy definition by Paise and
Vaudenay, they give insight to the difficulties of setting up a mature
security and privacy model for RFID systems that aims at fulfilling the
sophisticated requirements of real-life applications.

Keywords: RFID, Privacy, Authentication, Security, Resettability.

1 Introduction

Radio Frequency Identification (RFID) enables RFID readers to perform fully
automatic wireless identification of objects that are labeled with RFID tags, and
is widely deployed to many applications (e.g., access control [2,29], electronic
tickets [31,29], and e-passports [19]). As pointed out in previous publications

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 39–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

40 F. Armknecht et al.

(see, e.g., [38,20,34]), this prevalence of RFID technology introduces various
risks, in particular concerning the privacy of its users and holders. The most
deterrent privacy risk concerns the tracking of users, which allows the creation
and misuse of detailed user profiles. Thus, it is desired that an RFID system
provides anonymity (confidentiality of the tag identity) as well as untraceability
(unlinkability of the communication of a tag), even in case the state (e.g., the
secret) of a tag has been disclosed.

The design of a secure privacy-preserving RFID scheme requires a careful
analysis in an appropriate formal model. There is a large body of literature on
security and privacy models for RFID (see, e.g., [3,21,8,37,30,12]). Existing so-
lutions often do not consider important aspects like adversaries with access to
auxiliary information, e.g., on whether the identification of a tag was successful,
or the privacy of corrupted tags whose state has been disclosed. In particular,
tag corruption is usually considered to happen only before and/or after but not
during a protocol-run. However, in practice there are a variety of side-channel
attacks (see., e.g., [24,18,22]) that extract the state of a tag based on the obser-
vation of, e.g., the power consumption of the tag while it is executing a protocol
with the reader. Since RFID tags are usually cost-effective devices without ex-
pensive tamper-proof mechanisms [2,29], tag corruption is an important aspect
to be covered by the underlying (formal) security model. Though in literature,
tag corruption during protocol execution is rarely considered. To the best of our
knowledge, the security and privacy model in [8] is the only one that considers
corruption of tags during protocol executions and proposes a protocol in this
model. However, this model does not consider issues like the privacy of tags
after they have been corrupted and privacy against adversaries with access to
auxiliary information. Moreover, [8] only provides an informal security analy-
sis of the proposed protocol. Recently, tag corruption during protocol-runs has
been informally discussed in [12]. However, the formal RFID security and privacy
model proposed in [12] assumes that such attacks cannot occur. Moreover, [12]
indicates informally without giving formal proofs that tag corruption during pro-
tocol execution may have an impact on the formal definitions of [37,30], which
are basis for many subsequent works (see, e.g., [26,25,7,33,32,11,10,36,35]). The
first papers addressing tag corruption during protocol-runs in the model of [37]
are [11,10], where it is shown that privacy can be achieved under the assumption
that tag corruption during protocol execution can be detected by the tag.

In this paper, we focus on the security and privacy model by Paise and Vau-
denay [30] (that is based on [37]), which we call the PV-Model (Paise-Vaudenay
Model) in the following. The PV-Model is one of the most comprehensive RFID
security and privacy models up to date since it captures many aspects of real
world RFID systems and aims at abstracting most previous works in a single
concise framework. It defines mutual authentication between RFID tags and
readers and several privacy notions that correspond to adversaries with differ-
ent tag corruption abilities. However, as we show in this paper, the PV-Model
suffers from subtle deficiencies and weaknesses that are mainly caused by tag
corruption aspects: in the PV-Model, each tag maintains a state that can be

Impossibility Results for RFID Privacy Notions 41

divided into a persistent and a temporary part.1 The persistent state subsumes
all information that must be available to the tag in more than one interac-
tion with the reader (e.g., the authentication secret of the tag) and can be
updated during the interaction with the reader. The temporary state consists
of all ephemeral information that is discarded by the tag after each interaction
with the reader (e.g., the randomness used by the tag). As discussed in [30], in
the PV-Model it is impossible to achieve any notion of privacy that allows tag
corruption if the adversary can obtain both the persistent and the temporary tag
state by tag corruption. This issue is addressed by the PV-Model by the assump-
tion that each tag erases its temporary state each time it gets out of the reading
range of the adversary. However, this assumption leaves open the possibility to
corrupt a tag while it is in the reading range of the adversary, i.e., before its
temporary state is erased. In particular, the PV-Model allows the adversary to
corrupt a tag while it is executing the authentication protocol with the reader.

Moreover, an adversary in practice could physically tamper with a tag such
that the tag resets its state and randomness to a previous value. This form of
physical attack is not considered in the PV-Model and thus, the study of privacy
notions done in [30] does not address these attacks.

Contribution. In this paper, we point out subtle weaknesses and deficiencies in
the PV-Model. First, we show that the assumption of erasing temporary tag
states whenever a tag gets out of the reading range of the adversary made by
the PV-Model is not strong enough. We prove that, even under this assumption,
it is impossible to achieve reader authentication and simultaneously any notion
of privacy that allows tag corruption. This implies that the PV-Model cannot
provide privacy along with mutual authentication without relying on tamper-
proof hardware, which is unrealistic for low-cost RFID tags. Consequently, two
of the three schemes presented in [30] do not satisfy their claimed properties.

Our second contribution is to show that even under the strong assumption
that the temporary tag state is not subject to tag corruption attacks, some
privacy notions still remain impossible in the PV-Model. This implies that the
third protocol of [30] has another conceptually different weakness.

Finally, we show that by extending the model of [30] to capture reset attacks
on tag states and randomness, no privacy can be achieved, and, more interest-
ingly, when tags are stateless (i.e., when tags cannot update their persistent
state), then destructive privacy is impossible. Although our results are shown on
the privacy model by Paise and Vaudenay, we believe that our work is helpful for
developing a mature security and privacy model for RFID systems that fulfills
the sophisticated requirements of real-life applications.

Outline. We first informally discuss the general RFID scenario on a high level in
Section 2. Then we focus on the formalization of the relevant aspects by revisiting
the RFID security and privacy model by Paise and Vaudenay (PV-Model) [30]

1 During a protocol execution tags could store some temporary information that allows
them to verify the response of the reader.

42 F. Armknecht et al.

in Section 3. In Section 4 we present our first result while our second result is
shown in Section 5. In Section 6 we show our third impossibility result based on
resettable and stateless tags. Finally, we conclude in Section 7.

2 RFID System and Requirement Analysis

System model. An RFID system consists of at least an operator I, a reader R
and a tag T . I is the entity that enrolls and maintains the RFID system. Hence,
I initializes T and R before they are deployed in the system. T and R are called
legitimate if they have been initialized by I. In many applications T is a hardware
token with constrained computing and memory capabilities that is equipped with
a radio interface [2,29]. All information, e.g., secrets and data that is stored on
T is denoted as the state of T . Usually T is attached to some object or carried
by a user of the RFID system [14,28]. R is a stationary or mobile computing
device that interacts with T when T gets into the reading range of R. The main
purpose of this interaction usually is the authentication of T to R. Depending on
the use case, R may also authenticate to T and/or obtain additional information
like the identity of T . R can have a sporadic or permanent online connection
to some backend system D, which typically is a database maintaining detailed
information on all tags in the system. D is initialized and maintained by I and
can be read and updated by R.

Trust and adversary model. The operator I maintains the RFID system and
is considered to behave correctly. However, I may be curious and collect user
information. Since T and R communicate over a radio link, any entity can eaves-
drop and manipulate this communication, even from outside the nominal reading
range of R and T [23]. Thus, the adversary A can be every (potentially unknown)
entity. Besides the communication between T and R, A can also obtain useful
auxiliary information (e.g., by visual observation) on whether R accepted T as a
legitimate tag [21,37]. Most commercial RFID tags are cost-efficient devices with-
out expensive protection mechanisms against physical tampering [2,29]. Hence,
A can physically attack (corrupt) T and obtain its state, e.g., its secrets. In
practice, RFID readers are embedded devices that can be integrated into mobile
devices (e.g., mobile phones or PDAs) or computers. The resulting complexity
exposes readers to sophisticated hard- and software attacks, e.g., viruses and
Trojans. This problem aggravates for mobile readers that can easily be lost or
stolen. Hence, A can get full control over R [4,16,27].

Security and privacy objectives. The most deterrent privacy risk concerns the
tracking of tag users, which allows the creation and misuse of detailed user pro-
files in an RFID system [20]. For instance, detailed movement profiles can leak
sensitive information on the personal habits and interests of the tag user. The
major security threats are to create illegitimate (forge) tags that are accepted by
honest readers, to simulate (impersonate) or to copy (clone) legitimate tags, and
to permanently prevent users from using the RFID system (denial-of-service) [8].

Impossibility Results for RFID Privacy Notions 43

Thus, an RFID system should provide anonymity as well as untraceability of a
tag T even when the state of T has been disclosed. Anonymity means the confi-
dentiality of the identity of T whereas untraceability refers to the unlinkability
of the communication of T . The main security objective is to ensure that only
legitimate tags are accepted by honest readers (tag authentication). Most use
cases (like access control systems) additionally require R to determine the au-
thentic tag identity (tag identification). Moreover, there are several applications
(e.g., electronic tickets) where reader authentication is a fundamental security
property. However, there are also use cases (e.g., electronic product labels) that
do not require reader authentication.

3 The PV-Model

In this section, we recall the RFID security and privacy model by Paise and
Vaudenay (PV-Model) [30] that refines the model in [37]. We give a more formal
specification of this model, which is one of the most comprehensive RFID privacy
and security models up to date. We start by specifying our notation.

General notation. For a finite set S, |S| denotes the size of S whereas for an
integer (or a bit-string) n the term |n| means the bit-length of n. The term
s ∈R S means the assignment of a uniformly chosen element of S to variable
s. Let A be a probabilistic algorithm. Then y ← A(x) means that on input
x, algorithm A assigns its output to variable y. The term [A(x)] denotes the
set of all possible outputs of A on input x. AK(x) means that the output of A
depends on x and some additional parameter K (e.g., a secret key). The term
Prot[A :xA; B :xB; ∗ :xpub] → [A :yA; B :yB] denotes an interactive protocol Prot
between two probabilistic algorithms A and B. Hereby, A (resp. B) gets a private
input xA (resp. xB) and a public input xpub . While A (resp. B) is operating, it can
interact with B (resp. A). After the protocol terminates, A (resp. B) returns yA

(resp. yB). Let E be some event (e.g., the result of a security experiment), then
Pr[E] denotes the probability that E occurs. Probability ε(l) is called negligible
if for all polynomials f it holds that ε(l) ≤ 1/f(l) for all sufficiently large l.
Probability 1 − ε(l) is called overwhelming if ε(l) is negligible.

3.1 System Model

The PV-Model considers RFID systems that consist of a single operator I, a sin-
gle reader R and a polynomial number of tags T . Note that the PV-Model does
not explicitly define an entity that corresponds to the operator I but implies the
existence of such an entity. R is assumed to be capable of performing public-key
cryptography and of handling multiple instances of the mutual authentication
protocol with different tags in parallel. Each tag T is a passive device, i.e.,
it does not have its own power supply but is powered by the electromagnetic
field of R. Hence, T cannot initiate communication, has a narrow communi-
cation range (i.e., a few centimeters to meters) and erases its temporary state

44 F. Armknecht et al.

(i.e., all session-specific information and randomness) after it gets out of the
reading range of R. Each T is assumed to be capable of computing basic cryp-
tographic functions like hashing, random number generation and symmetric-key
encryption. The authors of [37,30] also use public-key encryption, although it
exceeds the capabilities of most currently available RFID tags [2,29].

Security and privacy objectives. The main security objective of the PV-Model is
mutual authentication. More precisely, R should only accept legitimate tags and
must be able to identify them, while each legitimate tag T should only accept R.
Availability and protection against cloning are not captured by the PV-Model.
The privacy objectives are anonymity and unlinkability.

Definitions. The operator I sets up R and all tags T . Hence, there are two
setup algorithms where R and T are initialized and their system parameters
(e.g., keys) are generated and defined. A protocol between T and R covers
mutual authentication.
Definition 1 (RFID System [30]). An RFID system is a tuple of probabilistic
polynomial time (p.p.t.) algorithms (R, T , SetupReader, SetupTag, Ident) that are
defined as follows:
SetupReader(1l) → (skR, pkR, DB) On input of a security parameter l, this al-

gorithm creates the public parameters pkR that are known to all entities.
Moreover, it creates the secret parameters skR and a database DB that can
only be accessed by R.

SetupTagpkR
(ID) → (K, S) uses pkR to generate a tag secret K and tag state

S, initializes TID with S, and stores (ID, K) in DB.
Ident[TID :S; R :skR, DB; ∗ :pkR] → [TID :outTID ; R :outR] is an interactive pro-

tocol between TID and R. TID takes as input its current state S while R has
input skR and DB. The common input to all parties is pkR. After the protocol
terminates, R returns either the identity ID of TID or ⊥ to indicate that TID
is not a legitimate tag. TID returns either ok to indicate that R is legitimate
or ⊥ otherwise.

Definition 2 (Correctness [30]). An RFID system (Definition 1) is correct
if ∀ l, ∀ (skR, pkR, DB) ∈ [SetupReader(1l)], and ∀ (K, S) ∈ [SetupTagpkR

(ID)]
Ident[TID : S; R : skR, DB; ∗ : pkR] → [TID : ok; R : ID] holds with overwhelming
probability.

3.2 Trust and Adversary Model

In the PV-Model, the issuer I, the backend database D and the readers are
assumed to be trusted whereas a tag T can be compromised. All readers and
D are subsumed to one single reader entity R that cannot be corrupted. This
implies that all readers are assumed to be tamper-resistant devices that have a
permanent online connection to D.2 The PV-Model defines privacy and security
2 Depending on the use case, this assumption can be problematic in practice, e.g., for

mobile readers that usually have only a sporadic or no online connection and that
are subject to a variety of soft- and hardware attacks.

Impossibility Results for RFID Privacy Notions 45

as security experiments, where a p.p.t. adversary A can interact with a set of
oracles that model the capabilities of A. These oracles are:

CreateTagb(ID) Allows A to set up a tag TID with identifier ID by internally
calling SetupTagpkR

(ID) to create (K, S) for TID. If input b = 1, then (ID, K)
is added to DB. If b = 0, then (ID, K) is not added to DB.

Draw(δ) → (vtag1, b1, . . . , vtagn, bn) Initially, A cannot interact with any tag but
must query Draw to get access to a set of tags chosen according to a probabil-
ity distribution δ. A knows the tags it can interact with by some temporary
tag identifiers vtag1, . . . , vtagn. Draw manages a secret look-up table Γ that
keeps track of the real tag identifier IDi associated with each temporary tag
identifier vtagi, i.e., Γ [vtagi] = IDi. Moreover, Draw also provides A with
information on whether the tags are legitimate (bi = 1) or not (bi = 0).

Free(vtag) Makes tag vtag inaccessible to A such that A cannot interact with
vtag until it is made accessible again under a new temporary identifier vtag ′

by another Draw query.
Launch() → π Makes R to start a new instance π of the Ident protocol.
SendReader(m, π) → m′ Sends a message m to instance π of the Ident protocol

that is running on R. R interprets m as a protocol message of instance π of
the Ident protocol and responds with a message m′.

SendTag(m, vtag) → m′ Sends a message m to the tag vtag , which interprets m
as a protocol message of the Ident protocol and responds with a message m′.

Result(π) Returns 1 if instance π of the Ident protocol has been completed and
the tag TID that participated in instance π has been accepted by R. Otherwise
Result returns 0.

Corrupt(vtag) → S Returns the current state S (i.e., all information stored in
the memory) of the tag vtag to A.

The PV-Model distinguishes eight adversary classes, which differ in (i) their
ability to corrupt tags and (ii) the availability of auxiliary information, i.e., the
ability to access the Corrupt and Result oracle, respectively.

Definition 3 (Adversary Classes [30]). An adversary is a p.p.t. algorithm
that has arbitrary access to all oracles described in Section 3.2. Weak adversaries
cannot access the Corrupt oracle. Forward adversaries cannot query any other or-
acle than Corrupt after they made the first Corrupt query. Destructive adversaries
cannot query any oracle for vtag again after they made a Corrupt(vtag) query.
Strong adversaries have no restrictions on the use of the Corrupt oracle. Narrow
adversaries cannot access the Result oracle.

Tag corruption aspects. Depending on the concrete scenario, the temporary tag
state is disclosed under tag corruption. In general, any concrete scenario will
range between the following two extremes: (i) corruption discloses the full tem-
porary tag state, or (ii) corruption does not disclose any information on the
temporary tag state. In Section 4 and 5, we will prove that in both cases some
privacy notions are impossible to achieve in the PV-Model. Thus, independently
of any possible interpretation of tag corruption, impossibility results exist that
contradict the claims of [30].

46 F. Armknecht et al.

3.3 Security Definition

The security definition of the PV-Model focuses on attacks where the adversary
aims to impersonate or forge a legitimate tag T or the reader R. It does not
capture availability and security against cloning.

Tag authentication. The definition of tag authentication is based on a security
experiment ExpT -aut

Asec
where a strong adversary Asec (Definition 3) must make

R to identify some tag TID in some instance π of the Ident protocol. To exclude
trivial attacks (e.g., relay attacks), Asec is not allowed to simply forward all the
messages from TID to R in instance π nor to corrupt TID. This means that at
least some of the protocol messages that made R to return ID must have been
computed by Asec without knowing the secrets of TID. With ExpT -aut

Asec
= 1 we

denote the case where Asec wins the security experiment.

Definition 4 (Tag Authentication [30]). An RFID system (Definition 1)
achieves tag authentication if for every strong adversary Asec (Definition 3)
Pr[ExpT -aut

Asec
= 1] is negligible.

Reader Authentication. The definition of reader authentication is based on a
security experiment ExpR-aut

Asec
where a strong adversary Asec (Definition 3) must

successfully impersonate R to a legitimate tag TID. Also here, to exclude trivial
attacks, Asec must achieve this without simply forwarding the protocol messages
from R to TID. This means that Asec must have computed at least some of the
protocol messages that made TID to return ok. With ExpR-aut

Asec
= 1 we denote

the case where Asec wins the security experiment.

Definition 5 (Reader Authentication [30]). An RFID system (Defini-
tion 1) achieves reader authentication if for every strong adversary Asec (Defi-
nition 3) Pr[ExpR-aut

Asec
= 1] is negligible.

Note that both tag and reader authentication are critical properties that must
be preserved even against strong adversaries.

3.4 Privacy Definition

The privacy definition of the PV-Model is very flexible and, dependent on the
adversary class (see Definition 3), it covers different notions of privacy. It cap-
tures anonymity and unlinkability and focuses on the privacy leakage of the
communication of tags with the reader. It is based on the existence of a sim-
ulator B, called blinder, that can simulate R and any tag T without knowing
their secrets such that an adversary Aprv cannot distinguish whether it is inter-
acting with the real or the simulated RFID system. The rationale behind this
simulation-based definition is that the communication of T and R does not leak
any information about T . Hence, everything Aprv observes from the interaction
with T and R appears to be independent of T and consequently, Aprv cannot
distinguish different tags based on their communication.

Impossibility Results for RFID Privacy Notions 47

This privacy definition can be formalized by the following privacy experiment
Expprv-b

Aprv
= b′: let Aprv be an adversary according to Definition 3, l be a given

security parameter and b ∈R {0, 1}. In the first phase of the experiment, R is
initialized with (skR, pkR, DB) ← SetupReader(1l). The public key pkR is given
to Aprv and B. Now, Aprv is allowed to arbitrarily interact with all oracles defined
in Section 3.2. Hereby, Aprv is subject to the restrictions of its corresponding
adversary class (see Definition 3). If b = 1, all queries to the Launch, SendReader,
SendTag and Result oracles are redirected to and answered by B. Hereby, B can
observe all queries Aprv makes to all other oracles that are not simulated by B
and the corresponding responses (“B sees what Aprv sees”). After a polynomial
number of oracle queries, the second phase of the experiment starts. In this
second stage, Aprv cannot interact with the oracles but is given the secret table
Γ of the Draw oracle. Finally, Aprv returns a bit b′.

Definition 6 (Privacy [37]). Let C be one of the adversary classes accord-
ing to Definition 3. An RFID system (Definition 1) is C-private if for every
adversary Aprv of C there exists a p.p.t. algorithm B (blinder) such that the
advantage Advprv

Aprv
=

∣
∣ Pr

[

Expprv-0
Aprv

= 1
]

− Pr
[

Expprv-1
Aprv

= 1
]∣
∣ of Aprv is neg-

ligible. B simulates the Launch, SendReader, SendTag and Result oracles to Aprv
without having access to skR and DB. Hereby, all oracle queries Aprv makes and
their corresponding responses are also sent to B.

All privacy notions defined in the PV-Model are summarized in Figure 1, which
also shows their relations. It has been shown that strong privacy is impossible [37]
while the technical feasibility of destructive privacy currently is an open problem.

Strong ⇒ Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓ ⇓

Narrow-Strong ⇒ Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak

Fig. 1. Privacy notions defined in the PV-Model and their relations

4 Corruption with Temporary State Disclosure

We now point out a subtle weakness of the PV-Model. We show that in the
PV-Model it is impossible to achieve any notion of privacy simultaneously with
reader authentication (under temporary state disclosure) except for the weak
and narrow-weak privacy notions. As a consequence, two of the protocols given
in [30] do not achieve their claimed privacy properties.

We stress that this impossibility result is due to the fact that, according to
the formal definitions of the PV-Model, the adversary can obtain the full state
including the temporary memory of a tag by corrupting the tag while it is exe-
cuting a protocol with the reader. Such attacks are a serious threat in practice,
in particular to low-cost RFID tags, and hence must be formally considered.

48 F. Armknecht et al.

Although [30] informally discusses an issue related to tag corruption during pro-
tocol execution, we show that such attacks are not adequately captured by the
formal definitions of the PV-Model. Hence, the only achievable privacy notions
are those where the adversary is not allowed to corrupt tags at all. Since in prac-
tice tag corruption is realistic, this implies that using the PV-Model is not helpful
when reader authentication and a reasonable notion of privacy are needed.

Impossibility of narrow-forward privacy. To prove our first impossibility result,
we need the following lemma, which we will prove in detail further below:

Lemma 1. If there is a blinder B for every narrow-forward adversary Aprv
such that Advprv

Aprv
is negligible (Definition 6), then B can be used to construct

an adversary AB
sec such that Pr[ExpR-aut

AB
sec

= 1] is non-negligible (Definition 5).

Based on this lemma, we set up the following theorem, which we need later to
prove our main impossibility result:

Theorem 1. There is no RFID system (Definition 1) that achieves both reader
authentication (Definition 5) and narrow-forward privacy (Definition 6) under
temporary tag state disclosure.

Proof (Theorem 1). Let Aprv be a narrow-forward adversary (Definition 3).
Definition 6 requires the existence of a blinder B such that Aprv cannot dis-
tinguish B from the real oracles. From Lemma 1 it follows that such a B can be
used to impersonate R to any legitimate tag TID with non-negligible probability.
Hence, the existence of B contradicts reader authentication (Definition 5). 	

Proof (Lemma 1). First, we show how to construct AB
sec from B. Second, we

prove that AB
sec violates reader authentication (Definition 5) if B is such that

Advprv
Aprv

is negligible for every narrow-forward Aprv (Definition 3).
Let qR ∈ N with qR > 0 be the (expected) number of SendReader queries as

specified by the Ident protocol and let SR
i be the state of R after processing the i-

th SendReader query. The initial reader state SR
0 includes the public key pkR and

the secret key skR of R as well as a pointer to the credentials database DB. Note
that during the processing of a SendReader query, R can update DB. R can be
considered as a tuple of algorithms (R(1)

π , . . . , R(qR)
π), where R(i)

π represents the
computation done by R when processing the i-th SendReader query in instance π

of the Ident protocol. More formally: (SR
1 , m1) ← R(0)

π (SR
0) and (SR

i+1, m2i+1) ←
R(i)

π (SR
i , m2i) for 1 ≤ i < qR. Since tags are passive devices that cannot initiate

communication R must send the first protocol message. Thus, R generates all
protocol messages with odd indices whereas the tag T generates all messages
with even indices. In case the Ident protocol specifies that T sends the last
protocol message, then m2qR−1 is the empty string.

Let qT ∈ N with qT > 0 be the (expected) number of SendTag queries as spec-
ified by the Ident protocol and let ST

i be the state of T after processing the i-th
SendTag query. T can be represented as a tuple of algorithms (T (1), . . . , T (qT))
where T (i) means the computation done by T when processing the i-th SendTag

Impossibility Results for RFID Privacy Notions 49

Alg. 1. Adversary AB
sec violating reader authentication

1: CreateTag(ID)

2: vtag ← Draw(Pr[ID] = 1)

3: π ← Launch() � simulated by B
4: m1 ← SendReader(−, π) � simulated by B
5: i ← 1

6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag) � simulated by B
8: end if
9: m2i+1 ← SendReader(m2i, π) � simulated by B

10: i ← i + 1

11: end while
12: outTID ← SendTag(m2qR−1, vtag) � computed by TID

query in an instance of the Ident protocol that involves T . More formally:
(ST

i+1, m2i) ← T (i)(ST
i , m2i−1) for 1 ≤ i ≤ qT . Note that m2qT is the empty

string if Ident specifies that R must send the last protocol message.
The idea of AB

sec is to internally use B as a black-box to simulate the final
protocol message of R that makes each legitimate tag TID to accept AB

sec as R.
The construction of AB

sec is shown in Algorithm 1. First, AB
sec creates a legitimate

tag TID (step 1) and makes it accessible (step 2). Both steps are also shown to B,
which expects to observe all oracle queries. Then, AB

sec makes B to start a new
instance π of the Ident protocol with TID (step 3) and obtains the first protocol
message m1 generated by B (step 4). Now, AB

sec internally runs B that simulates
both TID and R until B returns the final reader message m2qR−1 (steps 5–11).
Finally, AB

sec sends m2qR−1 to the real tag TID (step 12). AB
sec succeeds if TID

accepts B as R. More formally, this means that:

Pr
[

ExpR-aut
AB

sec
= 1

]

= Pr
[

Ident
[

TID :STID
0 ; AB

sec :−; ∗ :pkR
]

→
[

TID :ok; AB
sec : ·

]]

(1)

We stress that this indeed is a valid attack w.r.t. Definition 5 since Asec does
not just forward the protocol messages between R and TID.

Next, we show that narrow-forward privacy (Definition 6) ensures that AB
sec

succeeds with non-negligible probability, i.e., that Eq. 1 is non-negligible. Note
that in case Eq. 1 is negligible, this implies that with non-negligible probability
p⊥ message m2qR−1 generated by B makes TID to return outTID = ⊥. In the
following, we show that if p⊥ is non-negligible, then there is a narrow-forward
adversary Aprv that has non-negligible advantage Advprv

Aprv
to distinguish B form

the real oracles, which contradicts narrow-forward privacy (Definition 6). The
construction of Aprv is shown in Algorithm 2. First, Aprv creates a legitimate
tag TID (step 1) and makes it accessible (step 2). Then, Aprv makes R to start
a new instance π of the Ident protocol with TID (step 3) and obtains the first
protocol message m1 from R (step 4). Now, Aprv eavesdrops on the execution of
the Ident protocol up to to the point after R has sent its last protocol message
m2qR−1 (steps 5–11) and corrupts TID just before TID received m2qR−1 (step 12).
Next, Aprv performs the computation TID would have done on receipt of m2qR−1

50 F. Armknecht et al.

Alg. 2. Narrow-forward adversary Aprv

1: CreateTag(ID)

2: vtag ← Draw(Pr[ID] = 1)

3: π ← Launch()

4: m1 ← SendReader(−, π)

5: i ← 1

6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)

8: end if
9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1

11: end while
12: STID

qR ← Corrupt(vtag)

13: outTID ← TID(qR)(STID
qR , m2qR−1)

14: if outTID = ok then return 0

15: else return 1

16: end if

(step 13). If this computation results in outTID = ok, Aprv returns 0 to indicate
that it interacted with the real oracles (step 14). Otherwise, Aprv indicates the
presence of B by returning 1 (step 15). Note that Aprv indeed is a narrow-forward
adversary (Definition 3) since Aprv never queries Result and none of the oracles
defined in Section 3.2 after corrupting TID.

Next, we show that Aprv has non-negligible advantage Advprv
Aprv

if p⊥ is non-
negligible. Therefore, we first consider the case where Aprv interacts with the
real oracles. Since TID is legitimate, it follows from correctness (Definition 2)
that outTID = ok with overwhelming probability pok. Hence, Pr

[

Expprv-0
Aprv

= 1
]

=
1 − pok is negligible. Now, consider the case where Aprv interacts with B. Note
that by the contradicting hypothesis, B generates a protocol message m2qR−1
that makes TID to return outTID = ⊥ with non-negligible probability p⊥. Thus, we
have Pr

[

Expprv-1
Aprv

= 1
]

= p⊥. Hence, it follows that Advprv
Aprv

=
∣
∣1 − pok − p⊥

∣
∣.

Note that due to correctness both pok is overwhelming and by assumption p⊥
is non-negligible. Hence, Advprv

Aprv
is non-negligible, which contradicts narrow-

forward privacy (Definition 6). In turn, this means that narrow-forward privacy
ensures that Eq. 1 is non-negligible, which finishes the proof. 	

Since the impossibility of narrow-forward privacy (Theorem 1), implies the im-
possibility of all other stronger privacy notions (see Figure 1), we have the
following corollary, which corresponds to the first main claim of this paper:

Corollary 1. In the PV-Model there is no RFID system (Definition 1) that
achieves both reader authentication (Definition 5) and any privacy notion that
is different from weak and narrow-weak privacy (Definition 6) under temporary
state disclosure.

Impossibility Results for RFID Privacy Notions 51

5 Corruption without Temporary State Disclosure

Our first impossibility result shows that the PV-Model requires further assump-
tions to evaluate the privacy properties of RFID systems where tag corruption
is of concern. A natural question therefore is, whether one can achieve mutual
authentication along with some form of privacy, if the temporary tag state is
not disclosed. Hence, in this section we consider the case where corruption only
reveals the persistent tag state but no information on the temporary tag state.

The attack and the impossibility result shown in Section 4 critically use the
fact that in the PV-Model an adversary Aprv can learn the temporary state of
a tag during the Ident protocol. This allows Aprv to verify the response of R
(that may have been simulated by B) and hence, due to reader authentication
(Definition 5), Aprv can distinguish with non-negligible advantage between the
real oracles and B. However, if Aprv cannot obtain temporary tag states, it
cannot perform this verification. Hence, the impossibility result we proved in
Section 4 does not necessarily hold if the temporary state is safe to corruption.

Impossibility of narrow-strong privacy. We now show our second impossibility
result: in the PV-Model, it is impossible to achieve narrow-strong privacy along
with reader authentication. This means that even in case the adversary can-
not obtain the temporary tag state, the most challenging privacy notion defined
in [30] (narrow-strong privacy) still remains unachievable. This implies a concep-
tually different weakness of the claimed narrow-strong private protocol in [30].

Theorem 2. In the PV-Model there is no RFID system (Definition 1) that ful-
fills both reader authentication (Definition 5) and narrow-strong privacy (Defi-
nition 6).

Proof (Theorem 2). Narrow-strong privacy (Definition 6) requires the existence
of a blinder B that simulates the Launch, SendReader and SendTag oracles such
that every narrow-strong adversary Aprv has negligible advantage Advprv

Aprv
to

distinguish B from the real oracles. We now show that B can be used to construct
an algorithm AB

sec that violates reader authentication (Definition 5).
The construction of AB

sec is as shown in Algorithm 3. First, AB
sec creates a

legitimate tag TID (step 1), makes it accessible (step 2), and corrupts it (step 3).
These three steps are also shown to B, which expects to observe all oracle queries.
Then, AB

sec makes B to start a new instance π of the Ident protocol with TID
(step 4) and obtains the first protocol message m1 generated by B (step 5).
Now, AB

sec internally runs B that simulates vtag and R until B returns the final
reader message m2qR−1 (steps 6–12). Finally, AB

sec sends m2qR−1 to the real tag
TID (step 13). AB

sec succeeds if TID accepts m2qR−1 and returns outTID = ok, which
means that TID accepts B as R. More formally, this means that:

Pr
[

ExpR-aut
AB

sec
= 1

]

= Pr
[

Ident
[

TID :STID
0 ; AB

sec :−; ∗ :pkR
]

→
[

TID :ok; AB
sec : ·

]]

(2)

We stress that this indeed is a valid attack w.r.t. Definition 5 since Asec does
not just forward the protocol messages between R and TID.

52 F. Armknecht et al.

Alg. 3. Adversary AB
sec violating reader authentication

1: CreateTag(ID)

2: vtag ← Draw(Pr[ID] = 1)

3: STID
0 ← Corrupt(vtag)

4: π ← Launch() � simulated by B
5: m1 ← SendReader(−, π) � simulated by B
6: i ← 1

7: while i < qR do
8: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)

9: end if
10: m2i+1 ← SendReader(m2i, π) � simulated by B
11: i ← i + 1

12: end while
13: outTID ← SendTag(m2qR−1, vtag) � computed by TID

From reader authentication (Definition 5) it follows that Eq. 2 must be negli-
gible. However, this implies that with overwhelming probability B generates at
least one protocol message that makes TID to finally return outTID = ⊥. Let pt be
the probability that this is the case for message m2t−1 for some t ∈ {1, . . . , qT }.
We now show a narrow-strong adversary Aprv that succeeds with non-negligible
advantage Advprv

Aprv
if pt is non-negligible, which contradicts narrow-strong pri-

vacy (Definition 6). The construction of Aprv is shown in Algorithm 4. First,
Aprv creates a legitimate tag TID (step 1), makes it accessible (step 2), and cor-
rupts it (step 3). Note that by a Corrupt query, Aprv only learns the persistent
tag state STID

0 of TID. Then, Aprv makes R to start an instance π of the Ident
protocol with TID (step 4) and obtains the first protocol message m1 from R
(step 5). Now, Aprv guesses t (step 6) and simulates TID (using STID

0) in the Ident
protocol up to the point where SendReader returns message m2t−1 (steps 7–13).
Next, Aprv performs the computation TID would have done on receipt of message
m2t−1 (step 14). Finally, Aprv returns either 0 to indicate that it interacted with
the real oracles (step 15) or 1 to indicate the presence of B (step 16).

Next, we show that Aprv has non-negligible Advprv
Aprv

if p⊥ is non-negligible.
Therefore, we first consider the case where Aprv interacts with the real oracles.
Since TID is legitimate, it follows form correctness (Definition 2) that outTID = ok
holds with overwhelming probability pok. This means that Pr

[

Expprv-0
Aprv

= 1
]

=
1−pok is negligible. Now, consider the case where Aprv interacts with B. Note that
by the contradicting hypothesis, with non-negligible probability pt B generates
a message m2t−1 that makes TID to return outTID = ⊥. Moreover, Aprv guesses t

with probability of at least 1/qT . Thus, we have Pr
[

Expprv-1
Aprv

= 1
]

≥ pt

qT
. Hence,

it follows that Advprv
Aprv

≥ |1 − pok − pt

qT
|. Note that due to correctness pok is

overwhelming while pt is non-negligible by assumption and qT is polynomially
bounded. Hence, Advprv

Aprv
is non-negligible, which contradicts narrow-strong

privacy (Definition 6). 	

Impossibility Results for RFID Privacy Notions 53

Alg. 4. Narrow-strong adversary Aprv

1: CreateTag(ID)

2: vtag ← Draw(Pr[ID] = 1)

3: STID
0 ← Corrupt(vtag)

4: π ← Launch()

5: m1 ← SendReader(−, π)

6: t ∈ {1, . . . , qT }
7: i ← 1

8: while i < t do
9: (STID

i+1, m2i) ← TID(i)(STID
i , m2i−1)

10: if i < qR then m2i+1 ← SendReader(m2i, π)

11: end if
12: i ← i + 1

13: end while
14: outTID ← TID(t)(STID

t , m2t−1)

15: if outTID = ok then return 0

16: else return 1

17: end if

6 Impossibility Results for Resettable and Stateless Tags

It is well known (see [9] for details and in particular [5] for identification schemes)
that standard security notions do not work anymore when the adversary can ma-
nipulate the device that is running an honest party protocol, in particular when
the adversary can reset the internal state of the device. To face this security
issue, Canetti et al. [9] considered the concept of resettability for obtaining a
security notion that is resilient to “reset attacks”, e.g., attacks where the adver-
sary can force a device to reuse the same randomness. The crucial importance
of this notion is proved by several results (see, e.g., [5,9,13,6,17]) with the focus
on obtaining feasibility results and efficient constructions for proof systems and
identification schemes in such hostile settings. Reset attacks have been moti-
vated in particular by the use of smart cards since some specific smart cards,
when disconnected from power, go back to their initial state and perform their
computations using the same randomness they already used before. However,
the concept of a reset attacks can have a wider applicability. In particular reset
attacks are always possible when the adversary controls the environment and
can therefore force a stateless device to use the same randomness in different
executions of a protocol.

As discussed in Section 2, most RFID tags in practice are low-cost devices that
are usually not protected against physical tampering. Moreover, the randomness
generator of a real-life RFID tag has already been successfully attacked [15].
Therefore, it is interesting to investigate the impact of reset attacks on the
security and privacy of RFID systems.

In this section, we focus on the effect of reset attacks on privacy as defined
in both the PV-Model [30] and the model it is based on [37]. Therefore, we first
extend the formal adversary model in [37,30] to capture reset attacks. Then,

54 F. Armknecht et al.

we show that any privacy notion as defined in Definition 6 is spoiled when an
adversary is able to launch reset attacks. We finally show that, when restricting
the power of the adversary to the capability of resetting only the persistent state
of a tag, i.e., the randomness of the tag is out of the control of the adversary, it
is impossible to achieve destructive privacy.

6.1 Impossibility of Narrow-Weak Privacy under Reset Attacks

In order to extend the model in [37,30] to capture reset attacks, we add an
additional oracle Reset(vtag) to the adversary model shown in Section 3.2. This
oracle allows the adversary to reset the randomness and the state of a tag vtag
to their initial values. We stress out that resetting a tag is a mere adversarial
action and is never performed by honest parties. Thus we do not require that
such an action must be carried out efficiently, instead according to the result
showed in [5,9] we assume that it can be carried out in polynomial time. Note
that, as for the Corrupt oracle, the Reset oracle is not simulated by the blinder
B (see Definition 6) but is observed by it.

Now we are ready to formalize the impossibility of achieving any privacy
notion in the extended model of [37,30] when the adversary can perform reset
attacks against tags.

Theorem 3. In the model of [37,30], no privacy notion (Definition 6) is
achievable if the adversary is allowed to query the Reset oracle.

Proof (Theorem 3). We show a narrow-weak adversary Aprv that can distinguish
with non-negligible advantage Advprv

Aprv
whether it is interacting with the real

oracles or a blinder B. The construction of Aprv is shown in Algorithm 5. First,
Aprv creates two legitimate tags TID0, TID1 (steps 1–2) and makes one of them
accessible (step 3). Then Aprv eavesdrops a complete execution protocol of the
Ident protocol between vtag and R (steps 4-11). We define τ as the complete
transcript of the protocol execution. Note that τ contains the messages sent
by both R and vtag . Now, Aprv resets the state of vtag by querying the Reset
oracle (step 12) and makes vtag inaccessible again by querying the Free oracle
(step 13). Next, Aprv makes a randomly chosen tag vtag ′ accessible (step 14)
and then executes a complete run of the Ident protocol with vtag ′ simulating R
(steps 15–18). To simulate R, Aprv uses the messages that have been sent by
R in the previous execution according to the transcript τ . Finally, Aprv obtains
a new protocol transcript τ ′. If the same tag has played both times, then Aprv
expects that the transcripts τ and τ ′ are the same due to the Reset oracle. The
idea is that B has no information about which tag has been drawn in step 14 (the
resetted one or the other one). Thus, B can at most guess which tag has been
chosen when answering the SendTag query in the second protocol execution.

In the following we show that Aprv has non-negligible advantage Advprv
Aprv

of
distinguishing between B and real oracles, which violates narrow-weak privacy.
First, we consider the case where Aprv interacts with the real oracles. It is easy
to see that in this case the attack is always successful. Indeed, if Aprv interacts
with the same tag in both executions of the Ident protocol, then, due to the

Impossibility Results for RFID Privacy Notions 55

Alg. 5. Experiment with a narrow-weak adversary Aprv

1: CreateTag(ID0)

2: CreateTag(ID1)

3: vtag ← Draw(Pr[ID0] = 1
2
, Pr[ID1] = 1

2
)

4: m1 ← SendReader(−, π)

5: i ← 1

6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)

8: end if
9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1

11: end while
12: Reset(vtag)

13: Free(vtag)

14: vtag ′ ← Draw(Pr[ID0] = 1
2
, Pr[ID1] = 1

2
)

15: i ← 1

16: while i ≤ qT do m2i ← SendTag(m2i−1, vtag ′)

17: i ← i + 1

18: end while
19: if τ = τ ′ then outA ← 1

20: else outA ← 0

21: end if
22: return

(

Γ [vtag] = Γ [vtag′] ∧ outA
)

∨
(

Γ [vtag] �= Γ [vtag′] ∧ outA
)

Reset query, challenging vtag ′ with the same messages must generate the same
protocol transcript. Thus, after Aprv is given the hidden table Γ , one of the
two conditions must hold: either Aprv has (i) interacted with the same tag twice
and the transcripts match (which is always true in case Γ [vtag] = Γ [vtag ′]), or
(ii) the tag involved in the second execution of Ident is not the resetted tag and
the protocol transcripts are different (which holds with overwhelming probability
in case Γ [vtag] �= Γ [vtag ′] due to tag authentication, since otherwise Aprv can
create a faked tag state that can be used to generate the messages of a legiti-
mate tag with non-negligible probability). Hence, Aprv succeeds in Expprv-0

Aprv
with

probability 1 − ε(l) where ε is a negligible function in the security parameter l.
Formally, Pr

[

Expprv-0
Aprv

= 1
]

= Pr
[(

Γ [vtag] = Γ [vtag′]
)

∧outA
]

+Pr
[(

Γ [vtag] �=
Γ [vtag′]

)

∧ outA
]

= 1
2 · 1 + 1

2 · (1 − ε(l)) = 1 − ε(l)/2. Next we consider the case
where the SendTag oracle is simulated by B. In this case any B can at most
guess which tag has been selected by Draw. Hence, the probability that Aprv

wins the experiment Expprv-1
Aprv

is at most Pr
[

Expprv-1
Aprv

= 1
]

= Pr
[(

Γ [vtag] =
Γ [vtag′]

)

∧ outA
]

+ Pr
[(

Γ [vtag] �= Γ [vtag′]
)

∧ outA
]

≤ 1
2 · 1

2 + 1
2 · 1

2 = 1
2 .

According to Definition 6, from the above probability it follows that Aprv has
non-negligible advantage Advprv

Aprv
≥ 1−ε(l)/2− 1

2 to distinguish between B and
the real oracles. 	

56 F. Armknecht et al.

Alg. 6. Narrow-forward adversary Aprv

1: CreateTag(ID)

2: vtag ← Draw(Pr[ID] = 1)

3: Free(vtag)

4: vtag ← Draw(Pr[ID] = 1)

5: t ∈ {1, . . . , qT }
6: m1 ← SendReader(−, π)

7: i ← 1

8: while i ≤ t do
9: m2i ← SendTag(m2i−1, vtag)

10: m2i+1 ← SendReader(m2i, π)

11: i ← i + 1

12: end while
13: S ← Corrupt(vtag)

14: return 1 if and only if the temporary state in S is empty

6.2 Impossibility of Destructive Privacy with Stateless Tags

In this section we show that destructive privacy is impossible to achieve in the
model of [37,30] when tags are stateless, i.e., when their persistent state cannot be
updated. This implies that destructive privacy is impossible when an adversary
can reset the persistent state of a tag to its original value: by resetting a tag,
the adversary can interact with a tag that uses the same state several times,
which corresponds to an experiment with a stateless tag. We stress that in a
stateless RFID scheme the Free oracle erases any temporary information stored
on the tag. Otherwise there would be an updatable information that survives
even when a tag is not powered, and thus the tag would be stateful.

We recall that in our previous notation we associate ST
i to the full state

(including both the persistent and temporary state) of a tag when playing the
i-th message from the moment it has been drawn, i.e., powered on. We start by
giving a useful preliminary lemma.

Lemma 2. In any stateless narrow-forward RFID scheme the temporary tag
state is always empty.

Proof (Lemma 2). To prove the lemma we show in Algorithm 6 that if there
exists a non-empty temporary tag state, then there exists a narrow-forward
adversary Aprv that distinguishes between the real oracles and B. We stress
that for a stateless tag, due to the Free query, the output S returned by a
Corrupt(vtag) query played immediately after a Draw query corresponds to the
persistent state generated by the CreateTag oracle. Clearly, when interacting
with the real oracles the output of Aprv is different than 1 with non-negligible
probability. Indeed, since stateless tags are allowed to have some non-empty
temporary state, there exists at least one round, which can be guessed with
non-negligible probability by the selection of t, that, when followed by the
Corrupt query, reveals to Aprv that the temporary state of the tag is not empty.

Impossibility Results for RFID Privacy Notions 57

During interaction with the blinder B the tag does not play any round, as all
SendTag queries are simulated by B. Therefore, the output of the above exper-
iment is always equal to 1, which shows that Aprv is successful and the claim
holds. 	

Due to Lemma 2 we can assume that (STID , ·) ← TID(i)(STID , ·), i.e., the new state
after each round is always identical to the previous one. Recall that an RFID
scheme is stateless if the persistent tag state is not allowed to change over time.
In this section we show that when the tag state does not change, then achieving
destructive privacy is impossible.

Theorem 4. There is no stateless RFID system (Definition 1) that achieves
destructive privacy (Definition 6).

Proof (Theorem 4). Recall that destructive privacy implies forward privacy (see
Figure 1). We prove that a stateless RFID system cannot achieve destructive and
narrow-forward privacy at the same time. The proof is by contradiction. Note
that a destructive private stateless RFID system implies the existence of a blinder
B such that Aprv fails in distinguishing the real oracles from their simulation by
B with overwhelming probability. Thus, we first show a destructive adversary
Aprv for which there must exist a successful blinder, that we denote by BD.
Then, we construct a narrow-forward adversary ABD

prv that internally uses BD to
violate forward privacy. Hence, we obtain a contradiction.

Since we are considering stateless tags, we assume that at each step of the tag
algorithm the persistent state remains unchanged. Formally, this means that T
can be represented as a tuple of algorithms (T (1), . . . , T (qT)) where T (i) means
the computation done by T when processing the i-th SendTag query in an in-
stance of the Ident protocol that involves T . We have m2i ← T (i)(ST , m2i−1)
for 1 ≤ i ≤ qT where qT is an upper bound on the number of messages sent by
T during the protocol.

Let Aprv be the destructive adversary defined in Algorithm 7. Informally, the
attack is the following: Aprv faithfully forwards the messages generated by R and
T , up to a certain (randomly chosen) round t of the Ident protocol execution.
Then Aprv corrupts T and gets its state. Since Aprv is destructive, it is not
allowed to query any other oracle for T after corrupting T but Aprv can still
compute the remaining protocol messages of T by running the tag algorithm
with the state obtained by corruption. Then Aprv picks a state S with the same
distribution used by CreateTag (i.e., SetupTag) with the purpose of distinguishing
if it is interacting with the real oracles or BD. Then Aprv randomly selects one
of the two states and continues the protocol execution running the tag algorithm
with the chosen state until the end of the protocol. The main idea is that when
Aprv runs the tag algorithm with the state obtained through the Corrupt query,
then, due to correctness (Definition 2), R will accept, i.e., the Result query
outputs 1 with overwhelming probability, while R will reject otherwise.

Formally, Aprv behaves as follows: First, Aprv creates two legitimate tags TID
(step 1 and step 2) and makes one of them accessible (step 3). Then, Aprv asks

58 F. Armknecht et al.

Alg. 7. Destructive adversary Aprv

1: CreateTag(ID)

2: CreateTag(ID′)

3: vtag ← Draw(Pr[ID] = 1
2
, Pr[ID′] = 1

2
)

4: π ← Launch()

5: m1 ← SendReader(−, π)

6: jR ∈R {1, . . . , qR}
7: i ← 1

8: while i < jR do m2i ← SendTag(m2i−1, vtag)

9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1

11: end while
12: STID ← Corrupt(vtag)

13: b ∈R {0, 1}
14: if b = 1 then
15: m2jR ← TID(jR)(STID , m2jR−1)

16: else
17: pick a state S with the same distribution used by CreateTag (i.e., SetupTag)
18: STID ← S
19: m2jR ← TID(jR)(STID , m2jR−1)

20: end if
21: m2jR+1 ← SendReader(m2jR , π)

22: i ← jR + 1

23: while i < qR do
24: if i ≤ qT then m2i ← TID(i)(STID , m2i−1)

25: end if
26: m2i+1 ← SendReader(m2i, π)

27: i ← i + 1

28: end while
29: return

(

Result(π) ∧ b
)

∨
(

Result(π) ∧ b̄
)

R to start a new instance π of the Ident protocol with TID (step 4) and obtains
the first protocol message m1 from R (step 5). Then Aprv randomly chooses a
protocol round jR (step 6) and starts eavesdropping on the execution of the Ident
protocol up to the point after R has sent protocol message m2jR−1 (steps 7–11).
Then Aprv gets the tag state STID by querying the Corrupt oracle, just before
TID receives m2jR−1 (step 12). Now Aprv chooses a random bit b (step 13) to
decide how to complete the protocol execution. In case b = 1, Aprv continues by
simulating vtag using the state STID obtained by the Corrupt query (steps 14–15).
In case b = 0, Aprv sets STID to a new state generated on the fly (steps 16–19).
Hereafter, Aprv simulates the tag by running the algorithm T (i) with the state
set according to the bit b until the protocol terminates (steps 21–28). Finally,
Aprv outputs 1 if one of the following conditions hold: either b = 1 and R accepts
TID, whose transcript has partially been computed by Aprv with the real state
(i.e., the output of Result is 1), or b = 0, and R rejected TID since a part of the
transcript has been generated using a faked state (i.e., the output of Result is 0).

Impossibility Results for RFID Privacy Notions 59

Recall that Definition 6 requires the existence of a blinder BD such that:
Advprv

Aprv
=

∣
∣ Pr

[

Expprv-0
Aprv

= 1
]

− Pr
[

Expprv-1
Aprv

= 1
]∣
∣ = ε(l) for a negligible

function ε. If such BD exists, then BD must be able to do the following: first,
BD simulates both R and TID, then after BD gets the state STID of TID from the
Corrupt query, playing only at the reader side (TID is simulated by Aprv running
the tag algorithm using either the real or a faked tag state), BD can answer
the Result query as R would do. Thus, BD is able to recognize whether the
messages received from Aprv (simulating TID) are computed with the real state
of TID or not. One can think of BD as a two-phase algorithm. In the first phase
BD simulates the protocol execution between R and a tag vtag . Then, in the
second phase, upon receiving the state STID of vtag, playing as the reader, BD

can distinguish if the tag messages received are computed according to the state
of the tag simulated in first phase or not.

Now we show that if BD exists, then BD can be used to construct a narrow-
forward adversary that distinguishes between any blinder B and the real oracles
with non-negligible probability. Hence, the existence of BD contradicts narrow-
forward privacy and thus in turn destructive privacy. The idea of a narrow-
forward adversary ABD

prv is to run BD as subroutine showing to BD a view that
is identical to the ones that it gets when playing with Aprv in Algorithm 7. The
goal of ABD

prv is to exploit the capabilities of BD to distinguish whether the output
of the SendTag oracle is generated by the real oracle using the real tag state or
by a blinder B for narrow-forward privacy having no information on the real
tag state. Formally, ABD

prv is defined in Algorithm 8 and works as follows: first,
ABD

prv creates two legitimate tags TID, TID′ (steps 1–2) and makes one of them
accessible as vtag (step 3). These three steps are also internally shown to BD.
Then, ABD

prv internally asks BD to start a new instance π of the Ident protocol
with vtag (step 4) and obtains the first protocol message m1 generated by BD

(step 5). Then ABD
prv randomly chooses a protocol round jR (step 6) and makes

BD to simulate the first jR rounds of the protocol, up to the point after BD has
sent the reader message m2jR−1 (steps 7–11). Then, ABD

prv queries the SendTag

oracle with the message m2jR−1 obtained by BD (step 12). Next, ABD
prv makes

vtag inaccessible by querying the Free oracle (step 13) and makes accessible a
randomly chosen tag vtag ′ by querying the Draw oracle (step 14). Note that
this step corresponds to the random selection of bit b in Algorithm 7. We stress
that steps 12–15 are not shown to BD. Now ABD

prv queries the Corrupt oracle and
obtains the state STID of vtag ′ (step 15). This query and STID are also shown to BD

(step 16). Then ABD
prv sends to BD the message obtained by the SendTag oracle in

step 12, which has either been computed by the real SendTag oracle or the blinder
B (step 17). Hereby, BD expects to receive a message that has been computed
according to the state STID obtained by Corrupt. Now the second phase starts,
where ABD

prv simulates the messages of vtag ′ using STID and the messages sent by
BD, which is playing as a reader (steps 18–24), until the protocol terminates,
as expected by BD. Now, for the hypothesis, BD can distinguish whether the
messages it receives are (i) computed according to the state of the tag simulated
in the first phase (thus Γ [vtag] = Γ [vtag′]) and in this case Result will output

60 F. Armknecht et al.

Alg. 8. Narrow-forward adversary ABD
prv

1: CreateTag(ID) � shown to BD

2: CreateTag(ID′) � shown to BD

3: vtag ← Draw(Pr[ID] = 1
2
, Pr[ID′] = 1

2
) � shown to BD

4: π ← Launch() � simulated by BD

5: m1 ← SendReader(−, π) � simulated by BD

6: jR ∈R {1, . . . , qR}
7: i ← 1

8: while i < jR do m2i ← SendTag(m2i−1, vtag) � simulated by BD

9: m2i+1 ← SendReader(m2i, π) � simulated by BD

10: i ← i + 1

11: end while
12: m2jR ← SendTag(m2jR−1, vtag) � computed by vtag
13: Free (vtag)
14: vtag ′ ← Draw(Pr[ID] = 1

2
, Pr[ID′] = 1

2
)

15: STID ← Corrupt(vtag ′)

16: Show STID ← Corrupt(vtag) to BD

17: m2jR+1 ← SendReader(m2jR , π) � simulated by BD

18: i ← jR + 1

19: while i < qR do
20: if i ≤ qT then m2i ← TID(i)(STID , m2i−1) � computed by ABD

prv

21: end if
22: m2i+1 ← SendReader(m2i, π) � simulated by BD

23: i ← i + 1

24: end while
25: b ← Result(π) � simulated by BD

26: return
(

Γ [vtag] = Γ [vtag′] ∧ b) ∨
(

Γ [vtag] �= Γ [vtag′] ∧ b̄
)

1, or (ii) with a different state (thus Γ [vtag] �= Γ [vtag ′]) and in this case Result
will output 0. Now we show that Advprv

ABD
prv

is non-negligible if BD exists.

First, consider the case where ABD
prv interacts with real oracles. If Γ [vtag] =

Γ [vtag ′], then due to the existence of BD we have that Result returns 1 with
overwhelming probability, which makes ABD

prv to return 1 with the same prob-
ability. Note that even though BD learns the state STID of vtag only after ob-
taining message m2jR that has been computed from this state, by the stateless
property of the scheme and thus by Lemma 2, there is no noticeable difference
between the state of vtag before and after the computation of m2jR . In case
Γ [vtag] �= Γ [vtag ′], we have that the first message m2jR−1 received by BD has
been computed according to the state of vtag and all subsequent messages are
computed according to the state of vtag ′. This deviates from what BD expects
and thus BD could erroneously answer the Result query with 1. Let us denote with
p the probability that BD with input STID answers the Result query with 0 upon
receiving a message computed with a random state followed by messages com-
puted with STID . Then we have Pr

[

Expprv-0
ABD

prv
= 1

]

= 1
2 · (1− ε(l))+ 1

2 · p ≤ (1+p)
2 .

Impossibility Results for RFID Privacy Notions 61

Now, consider the case where Aprv interacts with B. Here we have that in both
cases (Γ [vtag] = Γ [vtag ′] and Γ [vtag] �= Γ [vtag ′]) the output of the SendTag
oracle computed by B for the forward adversary is computed with a random
state that with overwhelming probability is different from the state of vtag and
vtag ′. Thus, in both cases BD with input the state STID receives the first message
m2jR−1 computed according to a state that is different from STID . Hence we
have Pr

[

Expprv-0
ABD

prv
= 1

]

= 1
2 · (1 − p) + 1

2 · p = (1−p)
2 + p

2 = 1
2 . and it follows

that Advprv
ABD

prv
≤

∣
∣ (1+p)

2 − 1
2

∣
∣ = p

2 . Note that if p is non-negligible, so is the

advantage of ABD
prv and the proof is finished. If instead p is negligible, then BD

has non-negligible probability of answering 1 to a Result query when no message
originates from a valid state. (In the above experiment, this case happens when
jR corresponds to the last round of the protocol.) Obviously a reader that always
expects messages being computed according to a legitimate state would output
0 to a Result query in such an experiment, and this would contradict the fact
that (even a variation of) BD is successful against this variation of Aprv.

The last issue to address is the more general case where a reader admits
wrong messages from a tag, still responding with 1 to a Result query when some
messages are computed using a legitimate state. However, since the procedure of
the reader is public, the above proof can be generalized to any reader strategy.
Indeed, Aprv must replace some correctly computed messages with messages
computed with a random state such that the replacement of the valid messages
exposes the failure of BD. This is achieved by asking Aprv to compute each tag-
side message either using a legitimate or an illegitimate tag state with probability
q that comes from the description of the reader procedure for the Result query,
so that the output of this query is noticeably perturbed by the replacement of a
correctly computed message by a wrongly computed one. 	

7 Conclusion

In this paper, we revisited the security and privacy model for RFID systems
proposed by Paise and Vaudenay (PV-Model) [30]. This model is very interesting
since it covers many aspects of previous works and proposes a unified RFID
security and privacy framework. We showed several impossibility results that
show that the formalization given in the PV-Model is too restrictive and fails
in modelling real-life scenarios, where interesting privacy notions and reader
authentication are intuitively achievable. A partial and shorter version of this
work appeared in [1].

Acknowledgments. We thank Paolo D’Arco for several useful discussions about
RFID privacy notions. This work has been supported in part by the European
Commission through the FP7 programme under contract 216676 ECRYPT II,
238811 UNIQUE, and 215270 FRONTS, in part by the Ateneo Italo-Tedesco
under Program Vigoni and by the MIUR Project PRIN 2008 “PEPPER: Privacy
E Protezione di dati PERsonali” (prot. 2008SY2PH4).

62 F. Armknecht et al.

References

1. Armknecht, F., Sadeghi, A.R., Visconti, I., Wachsmann, C.: On RFID privacy with
mutual authentication and tag corruption. In: Zhou, J. (ed.) ACNS 2010. LNCS,
vol. 6123, pp. 493–510. Springer, Heidelberg (2010)

2. Atmel Corporation: Innovative IDIC solutions (2007),
http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf

3. Avoine, G.: Adversarial model for radio frequency identification. ePrint, Report
2005/049 (2005)

4. Avoine, G., Lauradoux, C., Martin, T.: When compromised readers meet RFID.
In: The 5th Workshop on RFID Security (RFIDSec) (2009)

5. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

6. Blundo, C., Persiano, G., Sadeghi, A.R., Visconti, I.: Improved security notions
and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)

7. Bringer, J., Chabanne, H., Icart, T.: Efficient zero-knowledge identification schemes
which respect privacy. In: Proceedings of ASIACCS 2009, pp. 195–205. ACM Press,
New York (2009)

8. Burmester, M., van Le, T., de Medeiros, B.: Universally composable and
forward-secure RFID authentication and authenticated key exchange. In: Proc. of
ASIACCS, pp. 242–252. ACM Press, New York (2007)

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

10. D’Arco, P., Scafuro, A., Visconti, I.: Revisiting DoS Attacks and Privacy in
RFID-Enabled Networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS,
vol. 5804, pp. 76–87. Springer, Heidelberg (2009)

11. D’Arco, P., Scafuro, A., Visconti, I.: Semi-destructive privacy in DoS-enabled RFID
systems. In: The 5th Workshop on RFID Security (RFIDSec) (2009)

12. Deng, R.H., Li, Y., Yao, A.C., Yung, M., Zhao, Y.: A new framework for RFID
privacy. ePrint, Report 2010/059 (2010)

13. Deng, Y., Lin, D.: Instance-dependent verifiable random functions and their appli-
cation to simultaneous resettability. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 148–168. Springer, Heidelberg (2007)

14. EPCglobal Inc.: (April 2008), http://www.epcglobalinc.org/
15. Garcia, F., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R., Wichers

Schreur, R., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

16. Garcia, F.D., van Rossum, P.: Modeling privacy for off-line RFID systems. In: The
5th Workshop on RFID Security (RFIDSec) (2009)

17. Goyal, V., Sahai, A.: Resettably secure computation. In: EUROCRYPT, pp. 54–71
(2009)

18. Hutter, M., Schmidt, J.M., Plos, T.: RFID and its vulnerability to faults. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer,
Heidelberg (2008)

19. I.C.A. Organization: Machine Readable Travel Documents, Doc 9303, Part 1 Ma-
chine Readable Passports, 5th edn (2003)

20. Juels, A.: RFID security and privacy: A research survey. Journal of Selected Areas
in Communication 24(2), 381–395 (2006)

http://www.atmel.com/dyn/resources/prod_documents/doc4602.pdf
http://www.epcglobalinc.org/

Impossibility Results for RFID Privacy Notions 63

21. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ePrint, Report 2006/137
(2006)

22. Kasper, T., Oswald, D., Paar, C.: New methods for cost-effective side-channel at-
tacks on cryptographic RFIDs. In: The 5th Workshop on RFID Security (RFIDSec)
(2009)

23. Kirschenbaum, I., Wool, A.: How to build a low-cost, extended-range RFID skim-
mer. ePrint, Report 2006/054 (2006)

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

25. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: New privacy results on synchronized
RFID authentication protocols against tag tracing. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 321–336. Springer, Heidelberg (2009)

26. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–256.
Springer, Heidelberg (2008)

27. Nithyanand, R., Tsudik, G., Uzun, E.: Readers behaving badly: Reader revocation
in PKI-based RFID systems. ePrint, Report 2009/465 (2009)

28. NXP Semiconductors: MIFARE (May 2007), http://mifare.net/
29. NXP Semiconductors: MIFARE smartcard ICs (April 2010),

http://www.mifare.net/products/smartcardics/
30. Paise, R.I., Vaudenay, S.: Mutual authentication in RFID: Security and privacy.

In: Proc. of ASIACCS, pp. 292–299. ACM Press, New York (2008)
31. Sadeghi, A.R., Visconti, I., Wachsmann, C.: User privacy in transport systems

based on RFID e-tickets. In: International Workshop on Privacy in Location-Based
Applications (PiLBA) (2008)

32. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Anonymizer-enabled security and pri-
vacy for RFID. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 134–153. Springer, Heidelberg (2009)

33. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Efficient RFID security and privacy
with anonymizers. In: The 5th Workshop on RFID Security (RFIDSec) (2009)

34. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Location privacy in RFID applications.
In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) Privacy in Location-
Based Applications. LNCS, vol. 5599, pp. 127–150. Springer, Heidelberg (2009)

35. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing RFID Security and Privacy
by Physically Unclonable Functions. Springer, Heidelberg (2010)

36. Sadeghi, A.R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and
privacy. In: Workshop on Secure Component and System Identification (SECSI)
(2010)

37. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

38. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802,
pp. 50–59. Springer, Heidelberg (2004)

http://mifare.net/
http://www.mifare.net/products/smartcardics/

Implementation of Multivariate Quadratic
Quasigroup for Wireless Sensor Network

Ricardo José Menezes Maia, Paulo Sérgio Licciardi Messeder Barreto, and
Bruno Trevizan de Oliveira

Escola Politécnica da Universidade de São Paulo,

Depatarmento de Engenharia Elétrica - Sistemas Digitais,

São Paulo, Brasil

ricardo.jmm@usp.br,

pbarreto@larc.usp.br,

btrevizan@larc.usp.br

Abstract. Wireless sensor networks (WSN) consists of sensor nodes

with limited energy, processing, communication and memory. Security

in WSN is becoming critical with the emergence of applications that re-

quire mechanisms for authenticity, integrity and confidentiality. Due to

resource constraints in WSN, matching public key cryptosystems (PKC)

for these networks is an open research problem. Recently a new PKC ba-

sed on quasigroups multivariate quadratic. Experiments performed show

that MQQ performed in less time than existing major PKC, so that

some articles claim that has MQQ speed of a typical symmetric block

cipher. Considering features promising to take a new path in the difficult

task of providing wireless sensor networks in public key cryptosystems.

This paper implements in nesC a new class of public key algorithm cal-

led Multivariate Quadratic Quasigroup. This implementation focuses on

modules for encryption and decryption of 160-bit MQQ, the modules

have been implemented on platforms TelosB and MICAz. We measured

execution time and space occupied in the ROM and RAM of the sensors.

Keywords: Multivariate Quadratic Quasigroup, Implementation of

Modules Encryption and Decryption, Wireless Sensor Network.

1 Introduction

Advances in miniaturization and wireless communications provide the develop-
ment of a new paradigm, where we highlight wireless sensor networks (WSN).
WSN’s are composed of small devices equipped with the processing unit, sensing
and communication, called sensor nodes [15].

The sensors extract and transmit environmental data to one or more exit
points of the network, called nodes sinks. Later, the data sent by the sensors
will be stored and then processed. The installation of such sensors can be at pre-
defined or not in the target area. These resources are extremely limited supply
of energy, processing power, memory, storage and communication systems with
low bandwidth [15,20].

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 64–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Implementation of Multivariate Quadratic Quasigroup for WSN 65

WSN’s can be used in various applications such as traffic control, monitoring of
environmental variables, to detect the presence of hazardous materials, detection
of enemy movements (military applications), identification and registration of
persons in large environments (airports) , monitoring of human health, monitor
the moisture levels in agricultural areas to carry out irrigation selectively detect
intruders in border areas among others [3,16].

Certain applications require WSN’s security requirements such as confidentia-
lity, integrity and authenticity. Among these applications we can mention moni-
toring vital signs of patients. In an application for monitoring of environmental
variables researchers can require the integrity of the data monitored. Applica-
tions for home automation authenticity is paramount, to enable the sensors are
monitored only by the owners. In industrial applications the requirement of the
three conditions can be crucial to prevent espionage or that other companies can
gain competitive advantage [3,16].

WSN’s using wireless communication, being more vulnerable to attacks, since
this mode of communication, the mode of transmission is broadcast. By using
broadcast, the network becomes more susceptible to the action of intruders,
which can easily listen to, intercept and alter data traveling on the network [16].

Given the resource constraints in a WSN, there is a profound impact on the
adoption of protocols and algorithms for communication and security. Therefore,
a key issue is to satisfy the application requirements for a secure, considering
the existing constraints on these networks [21,16].

The current solution to the problem of establishing security in WSN premises
is around symmetric cryptosystems, even considering the increased security af-
forded by public key cryptosystems [18,21].

Consider symmetric schemes have drawbacks to security, such as one single
key to encrypt and decrypt can jeopardize the entire system, if the key is exposed.
In this case it is good to note that applications in WSN the sensors are usually
exposed in the study environment, with a possible intruder violates any sensor
to obtain the private key is also used by other sensors [18,16].

Although PKC’s principle to permit greater security than symmetric schemes,
restrictions imposed by WSN makes the deployment of PKC on WSN an open
problem [21,18].

The difficulty of using PKC in WSN due to its speed a thousand times smal-
ler than PKC with respect to symmetric algorithms. This occurs because the
security of PKC be based on difficult mathematical problems as two discrete
logarithm problem and factorization of integers [9].

Recently a new scheme of public keys, called Multivariate Quadratic Quasi-
group (MQQ) based on multivariate polynomials and quadratic transformations
of strings quasigroups. Experiments conducted show MQQ several orders of ma-
gnitude faster than the most popular public key algorithms like RSA, DH or
ECC [9,7,1].

Experiments show that displays MQQ same level of security as RSA, where
the MQQ with keys of 160 bits get the same level of security with RSA keys of

66 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

1024 bits. MQQ was very quick both to encrypt and to decrypt such speed makes
authors of articles quoting MQQ speed of a typical block cipher symmetric [9,7].

Considering the growing need for increased security for WSN, the limited
resources of this type of network and finally characteristics of promising MQQ
for platforms with limited resources may consider the MQQ a new way to provide
PKC for WSN . Despite the promising results of MQQ on other platforms, there
is no previous work related MQQ the WSN.

The results in [9] and validated [7] are promising, after all these documents
show that MQQ is faster than the more traditional public key cryptosystems
such as RSA and ECC.

This MQQ performance with respect to traditional PKC (RSA and ECC) calls
attention at all until the moment the performance of ECC was superior to other
traditional PKC, such as RSA [18,21,19]. MQQ gets the same level of security
than traditional PKCs, consuming much less computational resources [19,8,2].

Moreover MQQ displays the same level of security that other PKC requiring
minor keys. The two characteristics mentioned draw attention, but the fact of
MQQ need the basic operations XOR and AND between bits in the encryption
and decryption processes are essential given the limited hardware of a WSN.

So MQQ becomes a promise not only for WSN, but for limited processing
platforms as a whole. Since MQQ offers the security of conventional PKC’s
consuming much less computational resources [9,7].

Considering the fact WSN provide PKC to be an open research problem and
the emergence of a new public key scheme called Multivariate Quadratic Quasi-
group, which was proposed by Gligoroski, et al., [9]. Importantly, the fact that
the author of MQQ has the speed of a typical symmetric cipher [9,7] opens
new perspectives in way WSN provide PKC. Another fact that calls attention
to MQQ use in sensors is that this approach has operations in need of basic
instructions such as AND and XOR bit. This article describes the results of the
implementation and execution of the modules for encryption and decryption of
MQQ platforms TelosB [6] and MICAz [5].

The objective of this work is to analyze the performance of the encryption
and decryption modules MQQ a platform for WSN. Was not made a comparison
of MQQ with other PKC and was not made changes to make the MQQ safer.

Organization of the paper is the following: In Section 2 is a brief explanation of
concepts necessary for understanding the MQQ. Details on the platform used in
the experiments are found in section 3. Details of the algorithms for encryption
and decryption and considerations made to facilitate its implementation can be
found in sections 4 and 5. The results and analysis are shown in section 6. The
final considerations are in the section 7.

2 Concepts

In this section will be made brief remarks about concepts relevant to MQQ.
Further details about these concepts can be found in [7,10].

Implementation of Multivariate Quadratic Quasigroup for WSN 67

Definition 1. A quasigroup is a groupoid that satisfies the following law.

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v, y ∗ u = v). (1)

Based on 1 we conclude that for every a, b ∈ Q there is a single x ∈ Q such that
a ∗ x = b. Then x = a\∗b where \∗ is a binary operation on Q and the groupoid
(Q, \∗) is also a quasigroup. The algebra (Q, ∗, \∗) satisfies the equation 2.

x\∗(x ∗ y) = y, x ∗ (x\∗y) = y (2)

Assuming an alphabet (a finite set) Q and Q+ the set of all nonempty words
(finite set of strings) formed by elements of Q. In this study both the notations
Q+ : a1a2...an and (a1, a2, ..., an) can be used, where ai ∈ Q. Consider ∗ the
quasigroup operation on the set Q. For each l ∈ Q were defined two functions
el,∗, dl,∗ : Q+ → Q+.

Definition 2. Consider ai ∈ Q, M = a1a2...an. Then
el,∗(M) = b1b2...bn ⇐⇒
b1 = l ∗ a1, b2 = b1 ∗ a2, ..., bn = bn−1 ∗ an,
dl,∗(M) = c1c2...cn ⇐⇒
c1 = l ∗ a1, c2 = a1 ∗ a2, ..., cn = an−1 ∗ an,
i.e., bi+1 = bi ∗ ai+1 and ci+1 = ai ∗ ai+1 for each i = 0, 1, ..., n − 1,
such that b0 = a0 = l.

The functions el,∗ and dl,∗ transformations are called e and d of Q+ based on
operation ∗ with the head l respectively.

Theorem 1. If Q, ∗ is a finite quasigroup, then el,∗ e dl, ∗ are mutually inverse
permutations of Q+, i.e.,

dl,\∗(el,∗(M)) = M = el,∗(dl,\∗(M))

for each l ∈ Q and for each string M ∈ Q+.

Definition 3. A quasigroup Q, ∗ of order 2d is called Multivariate Quadratic
QuasiGroup of type Quadd−kLink if exactly d − k polynomials fi are of degree
2 (quadratic) and k of them are of degree 1 (linear), where 0 ≤ k < d.

Multivariate Quadratic Quasigroup (MQQ) is a special class of quasigroups
[7,10].

3 Implementation Multivariate Quadratic Quasigroup

In this work the focus will be given in the algorithms to encrypt and decrypt,
where details about the algorithms and MQQ key generation, encryption and
decryption are found in [7,10].

The purpose of this work is to implement the encryption and decryption of
MQQ on a node of wireless sensor networks, platforms using the crossbow’s
TelosB, 16-bit RISC processor with 10 KBytes of RAM and 48 KBytes of ROM
for program MICAz and 4 KBytes of RAM and 128 KBytes of ROM for program.

68 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

The encryption and decryption modules were built into the operating system
TinyOS 2.0.2 [13], having been written in C (ANSI) and then being called into
nesC code have not been made aiming at optimizations perform in a specific
sensor platform. In the implementations we used the nesC component Timer to
check the execution time of each module, having been used for precision TMilli
and getNow command to get current time [4]. The time was determined from the
difference of the result of two calls, before and after calls of methods to encrypt
and decrypt.

The development environment used was the linux distribution XubunTOS,
being used as simulators to TOSSIM [14,12] and Avrora testing and validating
the implementation. Later, the sources of the encryption and decryption were
implemented in TelosB platforms and MICAz.

In the experiments we chose the platform of WSN’s crossbow TelosB [6],
which is an open platform designed to allow experiments and laboratory studies
in the scientific community. It has features such as programming via USB, radio
antenna integrated IEEE 802.15.4, data transmission rate of 250 kbps. It has the
TI MSP430 microcontroller manufactured with Texas Instruments 8 MHz, 16-bit
RISC architecture, 10 KBytes of RAM and 48 KBytes of ROM for program. In
addition, optional features such as integrated sensors of temperature, humidity,
light. Besides supporting the operating system TinyOS. Another WSN platform
used was the crossbow MICAz [5], which has baud rate of 250 kbps and the rate
of transmission of radio module can vary from 2.4 to 2.48 GHz has 4 KBytes of
RAM and 128 KBytes of ROM for program, and supports TinyOS.

The implementation was done using MQQ with keys of 160 bits, 160 bits with
second MQQ [7] has the same level of security as RSA 1024 bits.

Will be collected memory space occupied by MQQ in RAM and ROM on the
platforms TelosB and MICAz. Analyze the space on memory is vital to assess
whether MQQ can be a viable proposition for WSN, after all space is needed in
the sensor memory to run useful applications. Importantly, the programmable
flash memory in the two existing platforms will be called a ROM.

To facilitate the experiments, the data structures that represent the eight
quasigroups and not natural and inverse matrices are represented by multidi-
mensional vectors. The values of the eight quasigroups and the natural and
inverse matrices are fixed in ROM of the sensors.

4 Encryption

The algorithm for encryption is the multiplication of a set of n multivariate
polynomials P={Pi(x1, ..., xn)|i = 1, ..., n} on a vector x = (x1, x2, ..., xn), i.e.,
y = P (x) [9,7].

In this implementation each polynomial Pi is interpreted with its coefficients
ci ∈ {0, 1},

Example: Consider Pi = c0 + c1 × x1 + c2 × x2 + c3 × (x1 × x2), Pi = 0110 ≡
Pi = x1 + x2

To implement the encryption MQQ P has been represented as a matrix and
x as a vector, where y = P (x) was represented with the result of multiplying P

Implementation of Multivariate Quadratic Quasigroup for WSN 69

for x, where operations are represented by the sum an XOR operation between
bits and the multiplication of two variables is represented by an AND operation
among bits.

Example: Consider x = {x1 = 1, x2 = 0, x3 = 1} and the polynomial P1
P1(x) = (x1 × x2 + x1 × x3)
P1(x) = (x1 AND x2 XOR x1 AND x3)
P1(x) = 1 AND 0 XOR 1 AND 1 = 0 XOR 1
P1(x) = 1

We can represent y = P (x) as follows below [7,10]:
Pi(x1, ..., xn) = ai,0,0 +

∑n
j=1 ai,j,0xj +

∑n−1
j=1

∑n
k=j+1 ai,j,kx(k − j)xk,

Then ai,0,0 ∈ {0, 1}.
Then y = P (x) ≡ y = A × X.
In this case A is the public key of MQQ and represents the coefficients in

each polynomial, i.e., term will not exist in polynomial coefficient 0. By owning
coefficients for n polynomials and the permutation the n terms x1, ..., xn of a
polynomial, then the matrix A has the dimension of A

n×(1+n+ n×(n−1)
2). The

matrix A consists of a vector of n positions, where for each position matrix A is
a vector with 160 positions locations, where each element of the array can get a
bit. Since the defined position vector of polynomials (bit 1) means that a term
belongs to the determined polynomials.

This means that for an implementation of MQQ with keys of 160 bit public
key and the matrix A with size would be A160×12881 which would give a size of
160 × 12881 = 2060960 bits, turning in kilobytes (2060960 ÷ 8) ÷1024 = 251.58
KBytes.

X is a vector of size 12 881 X12881×1, being obtained by permutation of
x = (x1, ..., xn). Once the encryption process can be described as:

y(y1, ..., yn) = A160×12881 × X12881×1

Fig. 1. Representation of multiplication of the public key with the vector X

According to [7] y=A × X represents the encryption process, according to the
figure 1.

But it is important to make some considerations about the size of the keys and
instructions used in encryption. The first consideration relates to the instructions
used in the encryption that are summarized AND and XOR bit instructions
simple to be implemented in a sensor node.

70 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

Considering the size of the public key of 251.58 KBytes prevents the allocation
of these keys in memory of a sensor, either RAM or even ROM.

This paper presents a proposal to shrink the public key based on the fact that
a term may be redundant in several polynomials [9]. Once you use a vector of
length 12 881 bits, if one of the bits of A is 0 means that the term does not
exists in the polynomials.

A bit of A is a term that means there are some polynomials, having been crea-
ted an auxiliary 160-bit vector what is the 160 reports in which the polynomial
term is present. Assist in the vector when the bit is 1 means that the term is a
given polynomial, as depicted in figure 2.

Fig. 2. Proposed new representation for public key used MQQ

In this solution the 12881 bits represented by the permutation of the terms
(x1, ..., xn) are fixed in ROM of the sensor, however the 160-bit vector auxiliary
are dynamically allocated case in which to inform the polynomial term is present.

The idea is to have a vector with all permutations of terms. Example x1, x2,
..., x1x3, ... x1x160. So the technique used to reduce the size of the public key A
is to advise that particular term belongs simultaneously to several polynomials.

In figure 2 in the term 1 is the polynomials P1, P2, P3, P50, P90 and P160.
The term x3 is the polynomials P1 and P2. While the term x160x1 is found
in polynomials P55, P80 and P81. In polynomials the item x3 belongs to the
polynomials P1 and P2.

Example:
P1 = 1 + x3 + x1x160
P2 = 1 + x3
P3 = 1
P50 = 1
P55 = x160x1
P80 = x160x1
P81 = x160x1
P90 = 1
P160 = 1

Implementation of Multivariate Quadratic Quasigroup for WSN 71

In the new approach the matrix A is represented in a vector of length
A[12881/16] getting A[806] a 16-bit vector, and the auxiliary structure has
size Auxiliar[160/16] which is equivalent to a vector Auxiliar[10] of 16 bits.
The advantage this approach is to reduce the size required to store the public
key, and in some cases the optimal public key to decrease to 251.58 KBytes
(12881 ÷ 8) ÷ 1024 = 1.57 KBytes. So in that scenario is to implement MQQ of
encryption in wireless sensor networks is the greatest difficulty in finding mecha-
nisms to reduce the size public key and may use other forms of representation
as sparse matrices.

5 Decryption

The definition of the decryption algorithm MQQ is described in the table 1 [9].

Table 1. Algorithm to decrypt and sign

Algorithm to decrypt / sign with private key T, S, ∗1, ..., ∗8

Input: Vector y = y1, ..., yn.

Output: Vector x = (x1, ..., xn) such that P (x) = y

1. y′ = T −1(y).

2. W = y′
1, y

′
2, y

′
3, y

′
4, y

′
5, y

′
6, y

′
11, y

′
16, y

′
21, y

′
26, y

′
31, y

′
36, y

′
41.

3. Z = Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13 = Dob−1(W).

4. y′
1 ←− Z1, y

′
2 ←− Z2, y

′
3 ←− Z3, y

′
4 ←− Z4, y

′
5 ←− Z5, y

′
6 ←− Z6,

y′
11 ←− Z7, y

′
16 ←− Z8, y

′
21 ←− Z9, y

′
26 ←− Z10, y

′
31 ←− Z12, y

′
41 ←− Z13.

5. y′ = Y1...Yk where Yi are vectors of dimension 5.

6. Being ∗i , i = 1, ..., 8, obtaining x′ = X1...Xk , so that,

X1 = Y1, X2 = X1\1Y2, X3 = X2\2Y3 and Xi = Xi−1\3+((i+2) mod 6)Yi

7. x = S−1(x′)

The algorithm used to decrypt a private key comprised two nonsingular ma-
trices T and S and eight quasigroups ∗1, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7, ∗8. The matrices
Tn×n and Sn×n, in the case of this implementation dimensions are T160×160 and
S160×160. So to store the matrices T and S will be used a structure that stores
2 × (160 × 160) = 51200 bits, leaving (51200 ÷ 8) ÷ 1024 = 6.25 KBytes.

Each of the eight quasigroups ∗1, ..., ∗8 is a matrix of size 32 x 32 = 1024,
where one of 1024 positions of a virtual group has 5 bits.

Once the size of one of the eight quasigroups is 32 × 32 × 5 = 5120 = 5120
bits, so to store the eight quasigroup will need a space for 8× (322 × 5) = 40
960 bits which would (40960 ÷ 8) ÷ 1024 = 5 KBytes.

In all the private key needs to be stored 11.25 KBytes and be made feasible the
implementation of the encryption a private key has been placed in ROM of the
sensor. But it is important to consider that within each quasigroup is polynomial
terms of opening up space for redundant implementation that optimizes the
space occupied by quasigroups.

72 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

The entrance to the decryption algorithm consists of a vector y of 160 bits
representing the encrypted message. While the output of the algorithm is repre-
sented by a vector x of 160 bits representing the message decrypted. Since y and
x represented in a vector of 16 bits with 10 positions.

Step 1 of table 1 is the inverse of matrix multiplication T−1
160×160 with the

vector entry y160×1. In this implementation the inverse matrix T−1 is fixed in
ROM of the sensor, being represented as an array of 16 bits with size T−1

160×16.
The operations of multiplication and sum consisting of ANDs and XOR between
the bits of T−1 and y, the result being assigned to the vector y′.

Step 7 of table 1 is the same procedure of step 1, so that instead of y′ = T−1(y)
would be x = S−1(x′).

To implement the sensor arrays in MQQ T−1 and S−1 will be fixed in ROM
of the sensor.

The second step aims to achieve 13 bits of the vector y′ = T−1(y),
which are arranged in 13-bit vector W . The vector W receives each bit
y′
1, y

′
2, y

′
3, y

′
4, y

′
5, y

′
6, y

′
11, y′

16, y
′
21, y

′
26, y

′
31, y

′
36, y

′
41 vector y′.

The third step is to research the inverse matrix of Dob−1, taking as input
parameter the vector of W 13 bits.O result of this research in the matrix Dob−1

is assigned to the vector Z 13 bits. The size Dob−1 is 13 × 213 = 106496, totaling
13 KBytes.

The fourth step is to assign each of the bit vector Z again to the vector y′.
In the fifth step the bits of y′ 5 will be organized and arranged in 5 bits in

the vector Y = Y1, ..., Y160/5 = Y1, ..., Y32, and Y be a vector of dimension 32x5.
The sixth step results in the vector x′ = X1, ..., X32 of dimension 32 x 5, where

each Xi has 5 bits resulting from research groups in the quasigroups ∗1, ..., ∗8.
For an element of quasigroup is given a month 10-bit value representing the
address of an element of quasigroup.

In decrypting the data stored in the ROM of the sensor were T−1, S−1,
Dob−1 and quasigroups ∗1, ..., ∗8 giving a total of static structures to be stored
(2 × 1602) + (13 × 213) + (8 × 322 × 5) = 198656 bits, i.e., 24.25 KBytes.

Whereas in the quasigroups may be redundant terms were not made in this
implementation optimizations to reduce the space occupied by quasigroups.

6 Results

The results were obtained from the implementation of the modules for encryp-
tion and decryption on the platforms TelosB and MICAz, the parameters were
measured execution time and memory used. We obtained 10 samples of encryp-
tion and decryption modules on platforms TelosB and MICAz.

The space occupied by the modules for encryption and decryption are shown
in table 2.

According to Table 2 the space occupied by the RAM and ROM in the process
of encrypting and decrypting in MICAz are larger than other values, for two
reasons. The first is due to the fact that the amount of static arrays to be stored
in the memory of the sensor in decryption to be greater and should be considered

Implementation of Multivariate Quadratic Quasigroup for WSN 73

Table 2. Space occupied by the modules to decrypt and decrypt

Platform TelosB MICAz

Algorithm Encryption Decryption Encryption Decryption

RAM (bytes) 26 28 1658 31024

ROM (bytes) 3436 34582 2778 33748

RAM (KBytes) 0.025 0.027 1.61 30.29

ROM (KBytes) 3.35 33.77 2.71 32.95

that no optimization was done in order to reduce the size of quasigroups that
have redundant terms. The second fact is due to implementation, because the
declaration of the policy matrix was placed const and when this policy TelosB
find it automatically allocates these structures in the ROM which does not occur
with the MICAz.

In table 3 is the percentage occupied by MQQ on TelosB and MICAz where
we can determine the percentage of occupancy in the memory (RAM and ROM)
the procedures for encryption and decryption of MQQ platforms TelosB and
MICAz.

Table 3. Percentage of memory space occupied by the procedure encrypt and decrypt

Platform TelosB MICAz

MQQ Encryption Decryption Encryption Decryption

RAM % 0,25 0,27 40,25 757,25

ROM % 6,97 70,35 2,11 25,74

Figures 3 and figure 4 is the relationship between the space occupied in me-
mory by MQQ and size of memory available on the platforms TelosB and MICAz.

Fig. 3. Memory Used by the MQQ on TelosB

74 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

Fig. 4. Memory Used by the MQQ on MICAz

We can see that the platform TelosB consumption of RAM is minimal. The
consumption of the ROM decryption TelosB is greatest in connection with en-
cryption, where the largest concentration in the ROM is due to the use of policy
const, thereby placing data in ROM. The decryption requires more memory space
due to the need of data structures represented by the quasigroups, the inverse
matrices T, S and reverse Dobbertin. Whereas the objective of this work is a fair
comparison of MQQ platforms tested, so no specific optimization was performed
for MICAz in order to put the static structures in the ROM. Importantly, this
study does not address the optimization algorithm proposed by [9], but consi-
dering that the quasigroups may have repeated elements can reduce the space
required to store these quasigroups.

On the platform TelosB MQQ is promising after the higher consumption of
memory is in ROM, in addition there are prospects of reducing the size occupied
by data structures used in the encryption and decryption MQQ. The platform
also MICAz is promising, after putting the data structures in the ROM space is
not critical in MICAz platform.

In the experiment with the decryption MICAz with the space occupied by
decrypting extrapolated the available memory, so could not execute and thus
obtain the execution time MQQ. But as has been reviewed with the problem
MICAz can be circumvented by placing the data structures in ROM and impro-
ved by optimizing the space occupied by data structures MQQ.

It is important to emphasize that it is possible to reduce the size of the
data structures needed by MQQ, because the polynomials usually have repeated
terms. Soon there is room for further research in order to reduce the size of the
data structures used by MQQ.

Reduce the space occupied by MQQ is essential for real applications requiring
security in WSN, after all the little available memory on the sensor should coexist
both the actual application of WSN as the cryptographic algorithms.

Samples with the execution times of the modules for encryption and
decryption are shown in table 4.

Implementation of Multivariate Quadratic Quasigroup for WSN 75

Table 4. Runtime modules and decrypt decrypt

Platform TelosB MICAz

Algorithm Encryption Decryption Encryption

sample 1 (milliseconds) 825 117 445

sample 2 (milliseconds) 822 116 445

sample 3 (milliseconds) 826 117 445

sample 4 (milliseconds) 826 116 445

sample 5 (milliseconds) 823 117 445

sample 6 (milliseconds) 827 117 445

sample 7 (milliseconds) 827 116 445

sample 8 (milliseconds) 825 117 445

sample 9 (milliseconds) 825 116 445

sample 10 (milliseconds) 825 117 445

Average (milliseconds) 825.1 116.6 445

As can be seen in table 5 decryption module not implemented in MICAz,
missing modify the decryption to allocate the necessary static structures in the
ROM. The structures were declared as const static and when TelosB find these
policies allocates the data in the ROM the same is not true of MICAz.

Despite not having been registered in the decryption of the MICAz MQQ,
since the size of the decryption MICAz exceeded the available space in RAM.
In figure 5 can have a relationship of runtime on both platforms tested. As can
be seen from time to encrypt TelosB is approximately seven times greater than
the time to decrypt further finds that the time to encrypt the platform MICAz
is almost double what the platform TelosB.

Considering the relationship of performance on TelosB, we can estimate the
time to decrypt the MICAz would be approximately 63.00 milliseconds, it is
important to note that in the decryption MICAz is only an estimate based on
implementation of the TelosB MQQ.

Fig. 5. Runtime MQQ

76 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

7 Conclusions

This paper proposes a new approach to solve the problem of providing PKC
in WSN to enable the implementation of 160-bit MQQ platforms TelosB and
MICAz. Is important to consider this innovative work in the proposal to bring
this new PKC for WSN based multivariate quadratic quasigroups.

The main contribution of this paper is to propose a new approach to provi-
ding wireless sensor networks with public key cryptosystems, using the algorithm
based on quasigroups multivariate quadratic. Also proposed is a way to accom-
modate the data structures necessary for the process of encryption MQQ in
the original works to encrypt data structures require more space than the me-
mory available on the platforms used TelosB and MICAz. In this approach it is
considered that in terms of the polynomials involved MQQ may be repeated.

The platform TelosB had a larger footprint in ROM because every time a
structure declared with const is found, the data are stored in ROM.

In any case it is necessary to perform optimizations to reduce the space occu-
pied by the eight quasigroups in the decryption module and the public key. The
reduction of the space occupied by these structures is possible because there is
redundant elements in quasigroups and the public key.

The times obtained in the experiments with the sensors show that it is fea-
sible to use MQQ in wireless sensor networks, but is important to report that
in [17] the MQQ with up to 160 variables was broken. In [11] perceives that
if a suitable replacement for the Dobbertin transformation is found, MQQ can
possibly be made strong enough to resist pure Gröbner attack for correct choices
of quasigroups size and number of variables. Therefore the Dobbertin transfor-
mation is weakness in the MQQ [11]. Although MQQ have been broken keys
of 160 bits, the principle of cryptographic on MQQ was not broken. Despite
MQQ be promising is essential to find a suitable replacement for the Dobbertin
transformation [11].

The MQQ exhibited favorable performance in platforms TelosB and MICAz,
but there are aspects of MQQ that still need to be analyzed in WSN, such
as key generation algorithm of MQQ, energy consumption of MQQ algorithms,
performance comparison between ECC and MQQ.

References

1. Ahlawat, R., Gupta, K., Pal, S.K.: From mq to mqq cryptography: Weaknesses

new solutions. In: Western European Workshop on Research in Cryptology (2009)

2. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key

engines: Mq-cryptosystems as replacement for elliptic curves? Cryptology ePrint

Archive, Report 2008/349 (2008), http://eprint.iacr.org/

3. CERTICOM. Securing sensor networks - getting it right from the start, with

public-key (2006),

http://certicomcenterofexcellence.com/

pdf/white paper sensor networks login.pdf

http://eprint.iacr.org/
http://certicomcenterofexcellence.com/pdf/white_paper_sensor_networks_login.pdf
http://certicomcenterofexcellence.com/pdf/white_paper_sensor_networks_login.pdf

Implementation of Multivariate Quadratic Quasigroup for WSN 77

4. Gay, D., Sharp, C., Turon, M.: Timers (2007),

http://www.tinyos.net/tinyos-2.x/doc/html/tep102.html.

5. Inc CrossBow Technology. Micaz wireless measurement system (2008),

http://www.xbow.com/Products/Product pdf files/

Wireless pdf/MICAz Datasheet.pdf

6. Inc CrossBow Technology. Telosb mote platform (2008),

http://www.xbow.com/Products/Product pdf files/

Wireless pdf/TelosB Datasheet.pdf

7. El-Hadedy, M., Gligoroski, D., Knapskog, S.J.: High performance implementation

of a public key block cipher - mqq, for fpga platforms. In: RECONFIG 2008:

Proceedings of the 2008 International Conference on Reconfigurable Computing

and FPGAs, Washington, DC, USA, pp. 427–432. IEEE Computer Society, Los

Alamitos (2008)

8. Gaubatz, G., Kaps, J.P., Öztürk, E., Sunar, B.: State of the art in ultra-low power

public key cryptography for wireless sensor networks. In: 2nd IEEE International

Workshop on Pervasive Computing and Communication Security (PerSec 2005),

Kauai Island, pp. 146–150 (2005)

9. Gligoroski, D., Markovski, S., Knapskog, S.J.: Public key block cipher based on

multivariate quadratic quasigroups. Cryptology ePrint Archive, Report 2008/320

(2008), http://eprint.iacr.org/

10. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor

functions based on multivariate quadratic quasigroups. In: MATH 2008: Procee-

dings of the American Conference on Applied Mathematics, Stevens Point, Wis-

consin, USA, pp. 44–49. World Scientific and Engineering Academy and Society

(WSEAS) (2008)

11. Perret, L., Gligoroski, D., Faugère, J.-C., Odegard, R.: Analysis of the mqq pu-

blic key cryptosystem. In: The Ninth International Conference on Cryptology

And Network Security (CANS 2010), Kuala Lumpur (Malaysia). LNCS, Springer,

Heidelberg (2010)

12. Levis, P.: Tossim: Accurate and scalable simulation of entire tinyos applications.

In: Proceedings of the First ACM Conference on Embedded Networked Sensor

Systems (SenSys) (2003),

http://webs.cs.berkeley.edu/papers/tossim-sensys03.pdf

13. Levis, P.: Tinyos programming. TinyOS Programming (2006),

http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf

14. Levis, P., Lee, N.: Tossim: A simulator for tinyos networks. TOSSIM: A Simulator

for TinyOS Networks (2003),

http://www.eecs.berkeley.edu/~pal/pubs/nido.pdf

15. Liu, D., Ning, P.: Security for Wireless Sensor Networks. Springer, Heidelberg

(2007)

16. Lopez, J., Roman, R., Alcaraz, C.: Analysis of security threats, requirements, tech-

nologies and standards in wireless sensor networks, pp. 289–338 (2009)

17. Mohamed, M.S., Ding, J., Buchmann, J., Werner, F.: Algebraic attack on the mqq

public key cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.

LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

18. Oliveira, L.B., Scott, M., López, J., Dahab, R.: TinyPBC: Pairings for authentica-

ted identity-based non-interactive key distribution in sensor networks. In: 5th Inter-

national Conference on Networked Sensing Systems (INSS 2008), Kanazawa/Japan

(2008) (to appear)

http://www.tinyos.net/tinyos-2.x/doc/html/tep102.html
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://eprint.iacr.org/
http://webs.cs.berkeley.edu/papers/tossim-sensys03.pdf
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf
http://www.eecs.berkeley.edu/~pal/pubs/nido.pdf

78 R.J.M. Maia, P.S.L.M. Barreto, and B.T. de Oliveira

19. Pal, S.K., Sumitra.: Development of efficient algorithms for quasigroup generation

encryption. In: Proc. IEEE International Advance Computing Conference IACC

2009, March 6–7, pp. 940–945 (2009)

20. Palafox, L.E., Garcia-Macias, J.A.: XXXIV - Security in Wireless Sensor Networks.

In: Handbook of Research on Wireless Security (2008)

21. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:

Testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,

R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 79–103, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Hardware Architectures for Elliptic Curve
Cryptoprocessors Using Polynomial and Gaussian

Normal Basis over GF(2233)

Vladimir Tujillo-Olaya and Jaime Velasco-Medina

Universidad del Valle, Bionanoelectronics Group
Cali, Colombia

{vlatruo,jvelasco}@univalle.edu.co

Abstract. This work presents efficient hardware architectures for elliptic curves
cryptoprocessors using polynomial and gaussian normal basis. The scalar point
multiplication is implemented using random curves over GF(2233) and the Lo-
pez-Dahab algorithm. In this case, the GF(2m) multiplication is implemented in
hardware using three algorithms for polynomial basis (PB) and three for gaus-
sian normal basis (GNB). The cryptoprocessors based on PB with D=32 and
GNB with D=30 use 76 μs and 60 μs for scalar multiplication and 26697 and
18567 ALUTs, respectively. The compilation and synthesis results show that
the GNB cryptoprocessor presents a better performance than PB cryptoproces-
sor. However, the last one is less complex and more scalable from the design
point of view.

Keywords: Polynomial basis, normal basis, elliptic curves.

1 Introduction

In order to protect or exchange confidential information, cryptography plays an im-
portant role in the security of the information. Therefore, it is necessary to implement
efficient cryptosystems, which can support applications economically feasible. In this
context, public key cryptography based on elliptic curves is widely used in applica-
tions like: private key exchange and digital signatures [1]. Additionally, the Elliptic
Curve Cryptography (ECC) can be used in applications where the computational
resources are limited such as smart cards, cellular telephones and wireless systems
which are gradually replacing many traditional communication systems [2]. The ECC
systems are included in the NIST and ANSI standards, and the principal advantage
over other systems of public key like RSA is the size of the parameters, which are
very small, however the ECC systems provide the same level of computational
security.

New techniques like parallelized algorithms and efficient cryptographic algorithms
are used for communications security. However, the performance of cryptographic
methods is crucial for real world applications. Due to hardware technologies can pre-
sent a physically communication security, they can be used for implementing crypto-
graphic algorithms with high performance and low cost. The public-key cryptography

80 V. Tujillo-Olaya and J. Velasco-Medina

plays an important role in protecting the information. In this context, elliptic curve
cryptography (ECC) is emerging as a very good alternative to RSA, the conventional
public-key system used on the Internet today. The main advantage of ECC over other
public-key systems is that ECC presents higher security per key bit compared with
RSA. That means ECC offers equivalent security with smaller key sizes and uses
fewer computational resources. It is generally accepted that a 233-bit ECC key pro-
vides comparable levels of computational security as a 2048-bit RSA key [3]. Due to
its computational advantages, ECC is particularly well suited for mobile and wireless
applications where the computational platforms are constrained in the amount of
available computational resources and battery power.

The ECC is included in several international standards such as ANSI X9.62 [4],
IEEE P1363 [5] and NIST [6]. Recently, the National Agency of Security (NSA)
recommended the use of ECC to protect sensitive US Government information.

The hardware implementation of ECC can be divided into three levels: finite field
arithmetic, elliptic group operation and scalar (or point) multiplication. Therefore, in
order to achieve efficient hardware implementations it is important to reach the best
algorithm optimization for each level. However, it is important to mention that the
most expensive operation applied in ECC systems is the “scalar multiplication” of a
large natural number with a point on an elliptic curve [7]. In this case, the perform-
ance of an elliptic curve cryptoprocessor depends on the multiplication over
GF(2m). So, the finite field multiplier is the most important functional block of the
cryptoprocessor.

2 Related Work

Several algorithms for finite field operations and point multiplication have been
proposed and efficiently implemented in hardware [8-14].

B. Ansari and M. Anwar in [8] presented a high-performance architecture of ellip-
tic curve scalar multiplication based on the Montgomery ladder method over finite
field GF(2m), and using a pseudopipelined word-serial finite field multiplier that
works in parallel with other finite field blocks.

C.H. Kim, S. Kwon and C.P. Hong in [9] proposed an architecture based on the
López–Dahab elliptic curve point multiplication and used gaussian normal basis
for GF(2163). In that work, three 55-bit word level multipliers were employed to
parallelize Lopez-Dahab algorithm.

K. Järvinen and J. Skyttä in [10] presented an implementation of point multiplica-
tion on Koblitz curves with parallel finite field multipliers. In that work, polynomial
and gaussian normal basis are used to represent finite field elements.

W. Chelton and M. Benaissa in [11] proposed the design of a high-speed pipelined
application-specific instruction set processor (ASIP) for ECC over GF(2163). In that
work, different levels of pipelining were applied to the data path to find an optimal
pipeline depth and the Mastrovito bit parallel multiplier was chosen because it was
suitable for pipelining.

M. Juliato, G. Araujo, J. López and R. Dahab in [12] implemented finite field
operations on NIOS II processor. That work evaluated finite field operations using
gaussian normal basis over GF(2163).

 Hardware Architectures for Elliptic Curve Cryptoprocessors 81

S. Antao, R. Chaves, and L. Sousa in [13] presented a very compact and flexible
processor. In that case, the processor supported ECC systems using polynomial basis
representation over GF(2163).

B. Muthukumar, Dr. S. Jeevanantharr in [14] presented an elliptic curve cryptogra-
phy coprocessor. In that work, an FPGA-based modular multiplier architecture over
GF(2233) is proposed using both shifted canonical basis and type II optimal normal
basis.

3 Mathematical Background

3.1 Elliptic Curves Arithmetic over GF(2m)

The non-supersingular curves are usually chosen to elliptic curve cryptosystems, and
an elliptic curve E over the binary field GF(2m), is defined by Equation (1),

y2 + xy=x3 + ax + b . (1)

where a and b ∈ GF(2m), b ≠ 0. It is well known that the set of points P = (x, y),
where x, y ∈ GF(2m), that satisfy the equation, together with the point ∞, called the
point at infinity, form an additive abelian group Ea,b with ∞ serving as its identity.
Next, the group laws for non-supersingular curve are described:

1. Identity. P + ∞ = ∞ + P for all P ∈ Ea,b
2. Negative. If P = (x, y) ∈ Ea,b then (x, y) + (x, x + y) = ∞. The point (x, x + y)

is denoted by −P and called the negative of P. Also, −∞ = ∞.
3. Point addition. Let P = (x1, y1) ∈ Ea,b and Q = (x2, y2) ∈ Ea,b, where P ≠ ±Q.

Then the addition P + Q = (x3, y3), where

x3 = λ2 + λ + x1 + x2 + a . (2)

y3 = λ(x1+x3)
 + x3 + y1 . (3)

with
21

21

xx

yy

+
+

=λ . (4)

4. Point doubling. Let P = (x1, y1) ∈ Ea,b where P ≠ -P. Then the point doubling
2P = (x3, y3), where

x3 = λ2 + λ + a . (5)

y3 = x1
2 + λx3

 + x3 . (6)

with
1

1
1 x

y
x +=λ . (7)

82 V. Tujillo-Olaya and J. Velasco-Medina

3.2 Representation of Elements of Binary Fields

The binary field GF(2m) or characteristic two finite field contains 2m elements and can
be view as a vector space over GF(2) with dimension m. All field elements can be
represented uniquely as binary vectors of dimension m. There is a variety of ways to
represent elements in a binary finite field, depending on the choice of a basis for rep-
resentation. Polynomial basis and normal basis are commonly used and supported by
NIST and other standards.

Polynomial Basis. Finite fields of order 2m are called binary fields. One way to
construct GF(2m) is to use a polynomial basis representation: The elements of GF(2m)
are the binary polynomials of degree at most m - 1:

{ }{ }10,1,0:1)2(1
2

2
1

1 −≤≤∈++++= −
− miaxaxaxaGF i

m
m

m " . (8)

Let 1)(1
2

2
1

1 +++++= −
− xpxpxpxxP m

m
m " (where pi ∈ GF(2)) be an irreducible

polynomial of degree m over GF(2). Irreducibility of p(x) means that p(x) cannot be

factored as a product of binary polynomials with degree less than m.
The field element is usually denoted by the bit string (am-1am-2…a1a0) of length m,

thus the elements of GF(2m) can be represented by the set of all binary strings of
length m. The multiplicative identity element ‘1’ is represented by the bit
string (00…01) while the additive identity element is represented by the bit string of
all 0’s.

Field operations: the following arithmetic operations are defined on the elements
of GF(2m) when using a polynomial basis representation with reduction polynomial
p(x):

• Addition: If we define the elements a, b ∈ GF(2m) to be the polynomials

∑
−

=

=
1

0

m

i

i
i xa)x(A , ∑

−

=

=
1

0

m

i

i
ixb)x(B respectively, then their sum is written

∑
−

=

+=+=
1

0

m

i

i
iii x)ba()x(B)x(A)x(C . (9)

Where, a=(am-1am-2…a1a0) and b= (bm-1bm-2…b1b0) are elements of GF(2m),
then a + b = c = (cm-1cm-2…c1c0) where the bit additions in Equation (9)
(ai + bi) are performed modulo 2.

• Multiplication: the finite field multiplication of two field elements, where

∑
−

=

=
1

0

m

i

i
i xa)x(A , ∑

−

=

=
1

0

m

i

i
i xb)x(B and ∑

−

=

=
1

0

m

i

i
i xc)x(C , can be carried out by

 Hardware Architectures for Elliptic Curve Cryptoprocessors 83

multiplying A(x) and B(x) and performing reduction modulo p(x) or alternatively
by interleaving multiplication and reduction, then the multiplication is shown as
follows:

)x(pmod)a)x(bxa)x(bxa)x(b...xa)x(b(m
m 01

2
2

1
1 ++++−

− . (10)

∑
−

=

=
1

0

m

i

i
i)x(pmodxa)x(b)x(C . (11)

Inversion: if a is a non zero element in GF(2m), the multiplicative inverse a- 1(x) of
element a(x) in the finite field GF(2m) is defined as the element that satisfies the mul-
tiplication a(x).a-1(x) = 1 mod f(x). Where f(x) is an irreducible polynomial. Com-
monly, methods for finite field inversion over GF(2m) are mainly based on Fermat’s
theorem and on Euclid’s algorithm.

Normal Basis. ANSI X9.62 describes detailed specifications of ECC protocols and
allows Gaussian Normal Basis be used to represent finite field elements [15]. An
element in the GF(2m) has the computational advantage that squaring can be done
very efficiently. However, multiplying distinct elements can be cumbersome. In this
case, there are multiplication algorithms that make both simpler and more efficient
this operation.

A normal basis for GF(2m) is as follows:

{
1m2 222 β,,β,ββ,

−
… }, where β ∈ GF(2m)

Where, any element α ∈ GF(2m) can be written as follows:

i
m

i
iaa 2

1

0

β∑
−

=

= , where { }1,0∈ia . (12)

The type T of a GNB is a positive integer, and allows measuring the complexity of the
multiplication operation with respect to that basis. Generally, the type T of smaller
value allows for a more efficient multiplication. For a given m and T, the field GF(2m)
can have at most one GNB of type T.

A GNB exists whenever m is not divisible by 8. Let m be a positive integer and let
T be a positive integer. Then the type T of a GNB for GF(2m) exists if and only if

1+= Tmp is prime.

If {
1m2 222 β,,β,ββ,

−
… } is a GNB in GF(2m), then the element i

m

i
iaa 2

1

0

β∑
−

=
= is

represented by the binary string ()1210 −ma.....aaa , where { }1,0∈ia .

In this case, the multiplicative identity element is represented by the bit string of all 1s.
The additive identity element is represented by the bit string of all 0s. An important result
for the GNB arithmetic is the Fermat’s Theorem. For all β ∈ GF(2m) so that:

ββ =
m2

 . (13)

84 V. Tujillo-Olaya and J. Velasco-Medina

This theorem is important to carry out the squaring of an element in GF(2m).
Field operations: the following arithmetic operations are defined on the elements

of GF(2m), when using a normal basis representation. The following arithmetic
operations are defined on the elements of GF(2m), when using a GNB of type T:

• Addition: If ()1210 −= ma.....aaaa and ()1210 −= mb...bbbb are elements of

GF(2m), then)...(1210 −==+ mcccccba where ci = (ai + bi) mod 2.

• Squaring: Let ()1210 −= ma.....aaaa ∈ GF(2m), then
2

2
1

0

2 ⎟
⎠
⎞

⎜
⎝
⎛= ∑

−

=

i
m

i
iaa β

=
12

1

0

+

∑
−

=

i
m

i
ia β

i
m

i
ia 2

1

0
1β∑

−

=
−= due to Fermat’s Theorem; ββ =

m2 , then

()22101
2

−−= mm a.....aaaaa , in this case, squaring is a simple rotation of the

vector representation.

• Multiplication: in order to perform multiplication, first, it is necessary to
construct a function F(U,V) on inputs U = (U0 U1 ... Um-1) and V = (V0 V1
… Vm-1) as follows:

∑
−

=
−+=

2

0
)()1(),(

p

k

kpjkj VUVUF . (14)

From Equation (14) the sub indexes j(k+1) and j(p-k) can be computed as
shown in algorithm 1.

4 Hardware Architectures for Finite Field Arithmetic

Finite field arithmetic has increased the attention of the researchers due to crypto-
graphic applications and error correction codes. It is well known that GF(2m) is easier
to implement in hardware than other finite fields (GF(p)). This section presents the
developed hardware architectures for finite field arithmetic in this work.

4.1 Algorithms for Polynomial Basis Multiplication over GF(2m)

Finite field multiplier always plays an important role determining the performance of
the cryptoprocessors due to the elliptic curve point multiplication involves intensive
finite field multiplications.

Bit-serial Multiplication Algorithms. Two algorithms, right-to-left and left-to-right,
are generally used to derive the least significant or most significant bit for bit-serial
multipliers (LSB or MSB) [16-20].

LSB and MSB first multipliers are polynomial basis multipliers and compute the
GF(2m) multiplication in m cycles. The product is obtained by the addition of

 Hardware Architectures for Elliptic Curve Cryptoprocessors 85

partial-products, and the reduction is interleaved with the addition steps and per-
formed by additions of the irreducible polynomial. Fig. 1 shows the MSB first poly-
nomial basis multiplication algorithm [19].

Linear feedback shift registers are used to perform reductions B=x.B(x) mod p(x)
or C=Cx+a.B(x) mod p(x). However, the register of the operand B can be saved in the
MSB first algorithm compared with the LSB first in which both the contents of B and
C need to be updated on each iteration.

Fig. 1. LSB first polynomial basis multiplication algorithm

The hardware implementation of the MSB first multiplication algorithm proposed
in [19] is shown in Fig. 2, and uses m cells and calculates the multiplication in
m cycles.

Fig. 2. Block diagram for MSB first based multiplier in GF(24)

Digit-Serial Multiplication Algorithm. The digit-serial multiplier is a parallel
version of the bit-serial multiplier [18-20]. Digit-serial multiplier can compute several
bits of the product in each clock cycle. Let D denote the digit size, then it takes m/D
clock cycles to complete one multiplication in GF(2m). The digital-serial left to
right multiplication algorithm is shown in Fig. 3.

Algorithm 1: MSB first polynomial basis multiplication algorithm

 Input: A, B ∈ GF(2m) Output: C=AB mod p(x)

0. C(x)=0
1. For k = m-1 to 0 do
2. C=C.x + Am-1B mod p(x)
3. A=A<<1
4. End for

86 V. Tujillo-Olaya and J. Velasco-Medina

Fig. 3. Digital serial multiplication algorithm

The advantage of the digit-serial multiplier over serial multipliers is that it can
increase the speed of multiplication, but the digit-serial multiplier requires to use a reduc-
tion module. The hardware implementation of the digit-serial multiplication algorithm
presented in [18] is similar to the MSB first multiplier and is shown in Fig. 4. It contains
LFSRs for computing c(x)=xDc(x)+s(x) and XOR-AND arrays for computing s(x).

C232 C231 C230 C229 C81 C80 C79 C78 C77 C76 C75 C74 C4 C3 C2 C1 C0

x3b(x)mod p(x)

x2b(x)mod p(x)

xb(x)mod p(x) Q D

A(x)

233

233

233

233

Ck

Cj-4

Sj

S

Cj

233

B(x)

P(x)

shifted by 4

Fig. 4. Block diagram for Digit-serial multiplier in GF(2233)

Hardware Architecture for Serial Multiplier using PCA cell. In [16], H. Li and C.
N Zhang presented a low complexity Programmable Cellular Automata (PCA) based
versatile modular multiplier in GF(2m) and this is shown in Fig. 5. In this case, the
PCA rules are shown in Table 1. Where, Cm is configured as the coefficients of B(x),

Algorithm 2: Digit-serial multiplication algorithm

Input: A,B ∈ GF(2m) Output: C=AB mod p(x)

0. C(x)=0, a’ =A
1. For k = m/D-1 to 0 do
2. dD-1=a’n-1.x

D-1 B mod p(x)
3. dD-2=a’n-2.x

D-2 B mod p(x)
4. … (computations of dj can be done in parallel)
5. d1=a’n-D+1.xB mod p(x)
6. d0=a’n-D.xB mod p(x)
7. C=(xD.C mod p(x))+ ∑D-1dj
8. d = a’<<D
9. End for

 Hardware Architectures for Elliptic Curve Cryptoprocessors 87

Cr is configured as the coefficients of P(x), Xs is configured as coefficients of A(x), and
Xl and Xr are partial results of neighborhood PCA. The architecture of PCA cell is shown
in Fig. 6.

Table 1. PCA rules

Cm Cr Xso
0 0 Xl
0 1 Xl+Xr
1 0 Xl+Xs
1 1 Xl+Xr+Xs

Algorithm 3: PCA based modular multiplication algorithm

 Input: A(x),B(x), p(x) Output: C=AB mod p(x)

1. Reset PCA
2. Configure coefficients of B(x) as Cm, and coefficients

of P(x) as Cr
3. Run PCA m clock cycles

Fig. 5. Multiplication algorithm based on PCA

Mux
4:1

Xl
Xs

Xr

Cm
Cr

S

Fig. 6. PCA cell

An array of PCA cells is used to implement the finite field multiplier over GF(24)
which is shown in Fig. 7. The PCA array is suitable for both parallel and serial
multiplier implementations.

B2 P2B1 P1B0 P0

Xl Xs Xr
Cm
Cr

Xs

D Q

clk

D Q

clk

D Q

clk

D Q

clk

Xl Xs Xr
Cm
Cr

Xs

Xl Xs Xr
Cm
Cr

Xs

Xl Xs Xr
Cm
Cr

Xs

0
A

CLK

C0 C1 C2 C3

B3 P3

Fig. 7. Block diagram of serial multiplier using PCA cell over GF(24)

Xso

88 V. Tujillo-Olaya and J. Velasco-Medina

4.2 Algorithms for Gaussian Normal Basis Multiplication over GF(2m)

Conventional Multiplication Algorithm. In [15], NIST presents a conventional
algorithm for the GNB multiplication over GF(2m), which is shown in Fig. 8.a. In this
case, an algorithm is used to generate the J(k) subindexes for the F(U,V) array, which
is shown in Fig. 8.b, and some other parameters must be taken into account, for
example, the parameters recommended by NIST for GF(2233) are:

m = 233, number of bits
T = 2, number recommended by NIST for GF(2233)
p = 467, prime number p = Tm + 1
U = 466, number that satisfies the relation U2 mod p = 1

a) b)

Algorithm 5: j(k) generation for
 f(u, v)
 Input: m, T, U, p
Output: J(1), J(2), …, .J(p-1)

1. w ← 1
2. For j=0 to T-1 do
3. n ← w
4. For i=0 to m-1 do
5. j(n) ← i
6. n ← 2n mod p
7. End
8. w ← UW mod p
9. End

Algorithm 4: conventional
 algorithm
 Input: a, b ∈ GF(2m)
Output: c = a.b ∈ GF(2m)

1. U ← a = (a0, a1, ...am-1)
2. V ← b = (b0, b1, ...bm-1)
3. For k = 0 to m-1 do
4. c(k) = F(U,V)
5. U = left rotation of U
6. V = left rotation of V
7. End
8. c ← = (c0, c1,... cm-1) = a.b

where:

() ()kJ

p

k
kJ VUVUF ∑

−

=

+=
2

1
1),(

Fig. 8. a) Conventional algorithm for the GNB multiplication over GF(2m) b) J(k) generation
for F(U, V)

In order to achieve a higher performance for hardware multipliers based on the
conventional algorithm, several F(U,V) arrays can be used, which allow to speed up
the multiplication. The hardware architecture for the conventional GNB multiplier
using 4 F(U,V) arrays is shown in Fig. 9.

Modified Conventional Multiplication Algorithm. In [21][22] Lopez presented a
modified conventional algorithm for GNB multiplication over GF(2m), which is
shown in Fig. 10.

 Hardware Architectures for Elliptic Curve Cryptoprocessors 89

Barrel Shifter Barrel Shifter

F(U,V)
Array

F(U,V)
Array

F(U,V)
Array

F(U,V)
Array

serial In , Parallel Out
Shifter

A B

C=A*B

233 233

1 1 1 1

233

Fig. 9. Hardware architecture for GF(2233) multiplier based on conventional algorithm using 4
F(U, V)

Algorithm 6: modified algorithm: GNB multiplication over GF(2m)

Input: A, B in GF(2233)
Output: C = A.B

1. T = B2 (Rot_right(B,1)) C = 0
2. For i = m-1 to 0 do
 2.1 C = C2 (C = Rot_right(C,1))
 2.2 if ai = 1 then C = C xor mbeta(T)
 2.3 T = T2 (T = Rot_right (T,1))
 End
3. Return C = A. B

T(p1) = [0, Tp1(1), Tp1(2), Tp1(3), ... ,Tp1(162)]
T(p2) = [0, Tp2(1), Tp2(2), Tp2(3), ... ,Tp2(162)]
T(p3) = [T1, Tp3(1), Tp3(2), Tp3(3), ... ,Tp3(162)]
T(p4) = [0, Tp4(1), Tp4(2), Tp4(3), ... ,Tp4(162)]
Then

Fig. 10. Modified conventional algorithm for the GNB multiplication over GF(2m)

The hardware architecture for the GNB multiplier based on modified conventional
algorithm is shown in Fig. 11.

90 V. Tujillo-Olaya and J. Velasco-Medina

CLR

LD

A B

RST

CLK

233 233

LD LD

CLR CLR

CLK CLK

1 233

233 233 233

SHIFTER
BARREL
SHIFTER

REGISTER

CONTROL
UNIT (FSM)

a3 T
mbeta

BARREL
SHIFTER 3

BARREL
SHIFTER 2

BARREL
SHIFTER 1

MUX

C=AB

a2 T
mbeta

a1 T
mbeta

a0 T
mbeta

233

Fig. 11. Hardware architecture for GF(2233) multiplier based on modified conventional
algorithm

4.3 Squarer Using Polynomial Basis over GF(2m)

Let p(x) be the irreducible polynomial over GF(2m) [17]. Let:

∑
−

=
=

1

0

m

i

i
i xaA . (15)

Be a polynomial representation of an arbitrary element of GF(2m). The squaring
operation of A is represented by Equation (16)

)(mod'...'...''')(mod 22
1

1

0

2
2

2

4
1

2
10

2 xpxaxaxaxaaxpAxcC m
m

m

i

m

m
i

i
−

−

−

=

⎥⎥
⎤

⎢⎢
⎡

⎥⎥
⎤

⎢⎢
⎡ ++++++===∑ . (16)

In order to reduce the element A2, the Equations (17-21) are presented. In this case,

If 1)(++= km xxxp , with 1<k<m/2, and k is even and m is odd then:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+=
−++=+

−+=+
−=

−=+

=

+−+

+−

+

+−

1,...,22,2 '

,2,...,3,1 ,''

,22,...,2, ,''

,1,...,3,1 ,'

,2,...,2,0 ''

22

,12

mkkia

mkkiaa

kkkiaa

kia

kiaa

c

i

ikmim

ikmi

im

kmi

i
 .

(17)
(18)
(19)
(20)
(21)

The equations for the bit-parallel implementation of the squaring operation over
GF(27) are : c0=a0; c1=a4 xor a6; c2=a1; c3=a5; c4= a2 xor a4 xor a6; c5=a6; c6=a3 xor a5.

When the irreducible polynomial is p(x)=x7 + x3+1.

 Hardware Architectures for Elliptic Curve Cryptoprocessors 91

Then, considering both m and k are odd, the squaring operation can be solved using
the Equations (22 - 26).

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−+=+
−+=

−++=++
−=+

−=

=

+−

+

+−+−

+−+

1,...,22,2 ''

,2,...,2, ,'

,22,...,3,1 ,'''

,2,...,3,1 ,''

,1,...,2,0 '

22

2

mkkiaa

mkkia

kkkiaaa

kiaa

kia

c

ikmi

im

ikmikmi

ikmim

i

i

 .

(22)
(23)
(24)
(25)
(26)

4.4 Squarer Using Gaussian Normal Basis over GF(2m)

Let ()1210 −= ma.....aaaa ∈ GF(2m), then
2

2
1

0

2
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

−

=

i
m

i
iaa β = 12

1

0

+

∑
−

=

i
m

i
ia β i

m

i
ia 2

1

0
1β∑

−

=
−=

taking into account the Fermat’s Theorem; ββ =
m2 , then

()22101
2

−−= mm a.....aaaaa . In this case, the squaring operation requires a simple

cyclic shift by one bit of the vector representation and is free in terms of both timing
and area.

4.5 Polynomial Basis Inversion over GF(2m)

In [22] is presented an alternative approach to exploit Fermat’s little theorem by
computing the multiplicative inverse using several multiplications. However, the
Extended Euclidean Algorithm (EEA) is an alternative for computing inverses in
polynomial representations. The EEA is shown in Fig. 12.

Algorithm 7: polynomial basis inversion algorithm using EEA

Input: a in GF(2m)
Output: a-1 mod P(x)

1. u=a, v= P(x), g1=1, g2=0
2. While u ≠ 1 do
3. j = deg(u)-deg(v)
4. if j < 0 then
5. u ↔ v, g1 ↔ g2, j=-j
6. end if
7. u = u + xi v, g1 = g1 + xj g2

8. End While
9. Return(g1)

Fig. 12. Polynomial Basis Inversion Algorithm using EEA

The hardware implementation of polynomial inversion using EEA is shown in
Fig. 13. In this case, A is the input element and P(x) is the irreducible polynomial. If

92 V. Tujillo-Olaya and J. Velasco-Medina

the MSB of the registers Shifter-U and n-bits-shifter-V are both ‘1’, the value stored
on register Shifter-U is replaced by Shifter-U ⊕ n-bits-shifter-V and the value stored
on register Shifter-G1 is replaced by Shifter-G1 ⊕ n-bits-shifter-G2; otherwise the
appropriate pair is shifted to the left until the MSB of the register Shifter-U or the n-
bits-shifter-V is ‘1’. Also, Encoder-blocks are used to find the degree of U and V, and
the Subs-block is used to calculate the j value.

Mux Mux

Shifter U n bits Shifter
V

Mux Mux

Reg 1 Reg 2

Subs

Add

Encoder

Encoder

Mux Mux

Shifter G1
n bits Shifter

G2

Mux Mux

Reg 3 Reg 4

Add

A P(x) '1' '0'

A-1

Fig. 13. Hardware implementation for Polynomial Basis Inversion over GF(2m)

4.6 Normal Basis Inversion over GF(2m)

In [23], Itoh and Tsujii proposed a method for computing inversion over GF(2m),
which minimizes the number of field multiplications. Fig. 14. shows the inversion
algorithm proposed by Itoh and Tsujii. In this case, the recursive formula for a-1 is:

()⎪
⎩

⎪
⎨

⎧

⋅

⋅=
−

+−

−

−−−

−

. m evenaa

.m oddaa
a

m

mmm

m

 ,

 ,)(
2

12

12212
2

2

2

1

2

1

2

1

1

 . (27)

This algorithm can be applied to achieve the inversion operation in polynomial
or normal basis representation. In this case, squaring operation can be easily
computed.

 Hardware Architectures for Elliptic Curve Cryptoprocessors 93

Algorithm 8: Inversión Algorithm in GF(2m)
 by Itoh-Tsujii.

Input: β ≠ 0, β ∈ GF(2m).
Output: β-1

1. let m - 1 = br,..., b1b0 = 1br-1,..., b1b0
2. n = β , k = 1
3. For i = r-1 downto 0 do:
4. μ = n
5. For j = 0 to k do:
6. μ = μ2

7. n = μ.n , k = 2.k
8. if bi = 1 then
9. n = n2.β , k = k + 1
10. Output n2

Fig. 14. Inversion Algorithm proposed by Itoh-Tsujii

Table 2 shows the sequence of multiplications and squarings for inversion over
GF(2233), in this case, m-1=232=111010002 and n=β is the input element.

Table 2. Sequence of multiplications and squarings for inversion over GF(2233)

i bi operations

6 1
β

β
2

2

nn

nn

=

=

5 1
β2

23

nn

nnn

=

=

4 0 nnn
72=

3 1
β2

214

nn

nnn

=

=

2 0 nnn
292=

1 0 nnn
582=

0 0
12

2116

−==

=

βnn

nnn

As it can be seen from Table 2 an inversion operation requires 10 GF(2m) multipli-
cations and several squaring, independent of the finite field representation. Inversion
based on multiplication operation does not increase significantly the complexity of the
hardware design, but can severely impact the performance. Then, most hardware
designers try to avoid the inversions during intermediate computations. Fig. 15 shows
the hardware implementation for multiplication and inversion operations over GF(2m).

94 V. Tujillo-Olaya and J. Velasco-Medina

Input Reg Input Reg

MuxMux Mux

GF(2m)
Multiplier

Squarer
Block

Reg

A B

MultiplicationInversion

Fig. 15. Hardware implementation for GNB Multiplication-Inversion over GF(2m)

5 Hardware Architectures for Elliptic Curve Cryptoprocessors

This work uses the López and Dahab point multiplication algorithm presented in [24],
which does not has any extra storage requirements and the same operations (doubling
and addition points) are performed in each iteration of the main loop, then it
potentially increases the resistance to timing attacks. In terms of finite field multipli-
cation, the approximate cost of computing kP using López and Dahab algorithm is
6m + 20, which is an efficient implementation of Montgomery's ladder method for
computing kP on non-supersingular elliptic curves over GF(2m).

5.1 Hardware Architectures for Elliptic Curves Cryptoprocessors Using
Polynomial Basis

The cryptoprocessor architecture using polynomial basis has two register files, two
FSMs, two digit-serial multipliers, two squaring blocks, two addition blocks and one
inversion block, which allow for the calculation of addition, squaring, multiplication
and inversion arithmetic over GF(2233). In this case, the first FSM controls the I/O
registers, generates the control sequences for the scalar multiplication, processes the
key and initializes the cryptoprocessor. The second FSM carries out the point multi-
plication kP. The cryptoprocessor allows parallel processing by considering the
duplication of functional blocks and its architecture is shown in Fig. 16.

 Hardware Architectures for Elliptic Curve Cryptoprocessors 95

REG
FILE

A

REG
FILE

B

GF(2m)
Mult 1

GF(2m)
Mult 2

GF(2m)
Inversion

GF(2m)
Squarer 1

GF(2m)
Squarer 2

GF(2m)
Addition 1

GF(2m)
Addition 2

KEY

Mux Mux Mux

Input Reg

Ouput Reg

Doub
Add
FSM

Main
CTRL

Fig. 16. Elliptic curve cryptoprocessor using polynomial basis

In this design a high flexibility is achieved due to the finite field arithmetic is im-
plemented using “generic” parameters for the functional blocks design. That is, the
blocks are parameterized using VHDL description, which allows achieving the modu-
larity of the architecture and a very good trade-off between performance and area.

5.2 Hardware Architectures for the Elliptic Curves Cryptoprocessor Using
Gaussian Normal Basis

The cryptoprocessor architecture using gaussian normal basis uses two register files,
two FSMs, one GNB multiplier, one inversor-multiplier block, two addition blocks
and several hardwired squaring blocks, which allow to calculate the addition, multi-
plication and inversion arithmetic over GF(2233). In this case, the first FSM controls
the I/O registers, generates the control sequences for the scalar multiplication,
processes the key and initializes the cryptoprocessor. The second FSM carries out the
point multiplication kP. The cryptoprocessor is shown in Fig. 17.

REG
FILE

A

REG
FILE

B

GF(2m)
Mult 1

GF(2m)
Inversion Mult 2

a a2 a4 a a2

GF(2m)
Addition 1

GF(2m)
Addition 2

KEY

Mux Mux Mux

Input Reg

Ouput Reg

Doub
Add
FSM

Main
CTRL

Mux

a a2 a4

a a2

Fig. 17. Elliptic curve cryptoprocessor using Gaussian normal basis

As it can be observed from Fig. 16 and Fig. 17 there are hardware differences
between the cryptoprocessor based on polynomial and gaussian normal basis. These
differences are due to the basis representation in order to obtain the best performance
for each processor. For example, two squaring blocks are implemented in PB crypto-
processor while the squaring blocks from the GNB cryptoprocessor are hardwired.

96 V. Tujillo-Olaya and J. Velasco-Medina

6 Experimental Results

The cryptoprocessors were designed using structural VHDL description and
synthesized by Quartus II v.9.0. on the FPGA EP3SE50F780C2. Some of the devel-
oped VHDL models are parameterized in order to synthesize different architectures
and the functionality of the cryptoprocessors is verified using the NIST parameters.

6.1 Experimental Results for GF(2233) Polynomial Basis Multipliers

Tables 3 and 4 show the synthesis results for serial and digit-serial multipliers, respec-
tively. It can be observed from Table 3 and 4, the multipliers based on MSB first,
PCA and digit-serial algorithms present a good performance using small area, which
is very suitable for elliptic curve cryptoprocessor design. However, the serial multi-
pliers need 233 clock cycles for the multiplication operation while digit-serial
multipliers need 233/D clock cycles.

Table 3. Synthesis results for GF(2233) serial multipliers

Serial algorithm ALUTs Total registers FMAX(MHz) Tend (μs)

MSB 246 233 251.21 0.92
PCA 252 233 251.21 0.92

Table 4. Synthesis results for GF(2233) digit-serial multipliers

Digit-serial algorithm ALUTs Total registers FMAX(MHz) Tend (μs)
D=2 465 233 235.5 0.493
D=4 657 233 221.7 0.262
D=8 1735 233 206.3 0.140

D=16 3268 233 193.2 0.075
D=32 6789 233 180.8 0.041

Fig. 18. shows the simulation results for the MSB multiplier, considering a clock of
100MHz (10ns). In this case, C(x)=A(x)B(x) mod (x233+ x74 + 1), where:

A(x)= 1B34FD6E213A880DB4CCD1B83009BA66A1F25FE4AFA4C3B618BCE7BFD95
B(x)= 1DCB2A1003EF56D83CB9E0CA501F90E288927F964B43752A43FFF88F675

Then, after 233 clock cycles the multiplication result is:
C(x)= 149D2ABF4C87453BDBAA7067C8DC9A223DE6742F15AE77FA827DB472E3

Fig. 18. Simulation results for the polynomial multiplication based MSB first multiplier

 Hardware Architectures for Elliptic Curve Cryptoprocessors 97

6.2 Experimental Results for GF(2233) Gaussian Normal Basis Multipliers

Tables 5 and 6 show the synthesis results for hardware implementations for the
conventional and modified algorithm, respectively.

Table 5. Synthesis results for the GF(2233) multiplier based on conventional algorithm

F(U,V)
m=233

ALUTs
Total

registers
FMAX(MHz) Tend (μs)

2 595 708 202.2 0.576
4 1180 1295 181.8 0.323
8 2331 2587 166.6 0.179

16 4585 4054 142.8 0.106
32 8335 5689 133.3 0.058

Table 6. Synthesis results for the GF(2233) multiplier based on modified algorithm

mbeta(T)
m=233

ALUTs
Total

registers
FMAX(MHz) Tend (μs)

3 713 707 223.6 0.523
5 1322 1260 190.4 0.309
9 2026 2467 172.9 0.171

30 5498 4056 149.7 0.057

From Tables 5 and 6, it is possible to observe that multipliers based on the modi-
fied conventional algorithm present a good performance using smaller area than the
multipliers based on conventional algorithm. This is because of mapping the logic
F(U,V) from conventional algorithm requires several levels of XOR gates while map-
ping the logic of mbeta(T) from modified algorithm uses only 1 level of XOR gate.
Therefore, performance of multiplier based on modified algorithm is better than
multiplier based on conventional algorithm.

Fig. 19 shows an example for the simulation results with the GNB multiplication
by using the modified conventional algorithm using 5 mBeta blocks. In this case,
C=AB, where:

A=18B863524B3CDFEFB94F2784E0B116FAAC54404BC9162A363BAB84A14C5
B=04925DF77BD8B8FF1A5FF519417822BFEDF2BBD752644292C98C7AF6E02
C=06E783B4C5CE979C6AB1709DB668BF3889E9A1C189787C2868D7321F516

Fig. 19. Simulation results for the GNB multiplication based on modified conventional
algorithm

98 V. Tujillo-Olaya and J. Velasco-Medina

6.3 Experimental Results for GF(2233) Squaring

The synthesis results for GF(2233) squaring using polynomial basis and GNB are
shown in Tables 7.

Table 7. Synthesis results for GF(2233) squaring

Basis ALUTs Tend (ns)
Polynomial 153 11.085
GNB 0 2.8

Polynomial basis uses more ALUTs and time than gaussian normal basis to per-
form the squaring operation. However, the polynomial basis squaring can be per-
formed at the same time that multiplication operation.

6.4 Experimental Results for GF(2233) Inversion

The synthesis results for the GF(2233) inversion based on the Extended Euclidean
Algorithm for polynomial basis are shown in Table 8. In this case, the hardware
architecture uses 1435 ALUTs and 955 registers.

Table 8. Synthesis results for the GF(2233) inversion based on polynomial basis

Inversion ALUTs Total registers Fmax(MHz) Tend (us)
EEA 1435 955 109.31 4.68

Fig. 20 shows the simulation results for the polynomial basis inversion and consid-
ering a clock of 100Mhz. In this case, the input data is:
A(x) = 00000000000000000018000000000000000000000000000000000000003
A-1(x)= 1FF

Fig. 20. Simulation results for the polynomial basis inversion based on EEA

From Fig. 20, it is possible to observe that if the Extended Euclidean algorithm is
used, an inversion takes 2m clock cycles. In this case, the computation time for EEA
is 4.68us.

The synthesis results for the GNB inversion based on Itoh-Tsujii algorithm are
shown in Table 9. In this case, the hardware architecture was implemented by using
the modified conventional multiplier considering different mbeta values.

 Hardware Architectures for Elliptic Curve Cryptoprocessors 99

Table 9. Synthesis results for the Gaussian normal basis inversion based on ITA

Inversion ALUTs Total registers Fmax(MHz) Tend (us)
mBeta=3 986 1225 218.7 6.25
mBeta=5 2150 2480 185.5 3.26
mBeta=9 3688 3564 168.5 1.95

mBeta=30 7005 5956 138.6 0.587

Fig. 21 shows the simulation results for the GNB inversion. In this case, the input
data is:
A(x) = 924BBEEF7B171FE34BFEA3282F457FDBE577AEA4C885259318F5EDC04
A-1(x)= 11A36620F8481692B2B5D66641A847D986968281183CD331BCF59743EF

Fig. 21. Simulation results for the Gaussian normal basis inversion based on ITA

From Fig. 21, it can be observed that the processing time for inversion operation is
almost 10 times the multiplication time. In this case, the computation time of the
GNB inversion is 6.25us by using 3 mBeta modified conventional multiplier.

6.5 Experimental Results for Elliptic Curve Cryptoprocessors over GF(2233)

In order to perform the synthesis and simulation of the cryptoprocessors, the follow-
ing parameters for a pseudo-random elliptic curve are used:

The form of the pseudo-random curve is: E: y 2 + x y = x 3 + x 2 + b,
The type and irreducible polynomial for GF(2233) are: T = 2 , p(x) = x 233 + x 74 + 1
The base point order given in decimal form is:

r=6901746346790563787434755862277025555839812737345013555379383634485463
The parameter b and the base point for polynomial basis are:

 b = 066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad
G x = 0fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b
G y = 1006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052

The parameter b and the base point for gaussian normal basis are:
 b = 1a003e0962d4f9a8e407c904a9538163adb825212600c7752ad52233279
G x = 18b863524b3cdfefb94f2784e0b116faac54404bc9162a363bab84a14c5
G y = 04925df77bd8b8ff1a5ff519417822bfedf2bbd752644292c98c7af6e02

The synthesis results for elliptic curve cryptoprocessor using polynomial basis are
shown in Table 10.

100 V. Tujillo-Olaya and J. Velasco-Medina

Table 10. Synthesis results for GF(2233) elliptic curve cryptoprocessor using polynomial basis

Multiplication
Algorithm

ALUTs Total registers FMAX(MHz) Tend(ms)

MSB first 8486 5241 104.42 1.61
Digit serial-D=2 9634 5475 89.31 0.94
Digit serial-D=4 11934 5849 86.03 0.51
Digit serial-D=8 19869 6321 81.03 0.27

Digit serial-D=16 22459 6856 76.68 0.153
Digit serial-D=32 26697 7012 71.32 0.076

The simulation results for GF(2233) cryptoprocessor using polynomial basis and the
MSB first multiplier are shown in Fig. 22. In this case, the private key is:
k=18B863524B3CDFEFB94F2784E0B116FAAC54404BC9162A363BAB84A14C5

Fig. 22. Simulation results for GF(2233) cryptoprocessor using polynomial basis

The synthesis results for the cryptoprocessor using GNB are shown in Table 11.

Table 11. Synthesis results for GF(2233) cryptoprocessor using GNB

Multiplication
Algorithm

ALUTs Total registers FMAX(MHz) Tend(ms)

3 mBeta 7835 4335 123.76 0.689
5 mBeta 8079 5426 118.57 0.496
9 mBeta 8587 6512 110.98 0.204

30 mBeta 18567 8469 97.51 0.060

Fig. 23 shows the simulation results for GF(2233) cryptoprocessor using GNB and the
modified conventional multiplier with 5 mBeta blocks. In this case, the private key is:
k=18B863524B3CDFEFB94F2784E0B116FAAC54404BC9162A363BAB84A14C5

Fig. 23. Result for the elliptic curve point multiplication using GNB

 Hardware Architectures for Elliptic Curve Cryptoprocessors 101

6.6 Comparison Results

Although, it is not correct to compare hardware architectures implemented on differ-
ent platforms and tools, the obtained results in this work are compared with recent
works presented in Table 12.

Table 12. Performance comparison results

Design m D
Clk

(MHz)
kP
us

FPGA Hardware Resource

[21] 163 PB 41 100 41 XC2V2000 LUT 6095, FF 2398
[22] 163 GNB 3*55 143 10 XC4VLX80 24,363 SLICES

[23] k-233 PB 30 205.72 10.34 EP2S180F1020C3
ALUTS 31567,

FF 11369
[24] 163 PB 163 153.9 19.55 XC4VLX200 16209 SLICES
[25] 163 GNB 1 120 1586 EP1S10F780C6ES Les 3246
[26] 163 PB - 150 1345 XC4VSX35 1095 SLICES
[27] 233 ONB 117 80 2280 XC3S1000 -

This work 233 PB 32 71.32 76 EP3SE50F780C2
ALUTS 26697,

 FF 7012

This work 233 GNB 30 97.51 60 EP3SE50F780C2
ALUTS 18567,

FF 8469

Additionally, the comparison is very difficult due to there are other technical
considerations such as different FPGA devices, point multiplication algorithms, finite
field representations, size of the field, etc. Then, the performance of the designed
cryptoprocessors in this work cannot be compared with the presented ones in the
literature.

However, a brief comparison is described. In [21], only one 41-bit finite field
multiplier with pipeline to reduce the critical path is used. A polynomial basis repre-
sentation over GF(2163) and a fixed irreducible polynomial are assumed. In turn, this
work uses two polynomial basis multipliers over GF(2233) for any irreducible poly-
nomial. In [22], a parallel architecture using three 55-bit GNB multipliers is pre-
sented. In turn, this work uses two 30-bit GNB multipliers. In [23], an FPGA-based
implementation of point multiplication on Koblitz curve (K-233) using four polyno-
mial basis multipliers is presented. Also, that work implemented normal basis on k-
163 and k-283. In turn, this work implements point scalar multiplication on generic
curves over GF(2233). In [24], a bit-parallel multiplier pipelined into 7 stages is im-
plemented over GF(2163). In [25], a hardware/software implementation of finite field
arithmetic using GNB is presented. In that case, a 32-bit NIOS II is used. In [26] an
elliptic curve cryptoprocessor is implemented using a Karatsuba-Offman finite field
multiplier which uses few area. In [27], an elliptic curve cryptography coprocessor is
presented. In that work a multiplication requires 117 clock cycles in GF(2233). In turn,
this work presents two cryptoprocessors using GNB and PB representations with
higher performance than those ones presented in [25][26][27].

102 V. Tujillo-Olaya and J. Velasco-Medina

7 Conclusions

This work presents two elliptic curve cryptoprocessors suitable for the computation of
point multiplication over GF(2m) using GNB and polynomial basis. In this case, effi-
cient hardware architectures are designed for finite field multiplication, in order to
select the best implementation for the cryptoprocessor design. These multiplier archi-
tectures incorporate bit-serial and digit-serial algorithms.

Also, some optimization design considerations were carried out. First, the
algorithms were implemented using finite state machine instead of a stored-program
machine due to the simplicity of the group operations when using Lopez-Dahab
algorithm. Second, parallel processing was used by using two multipliers in the
GF(2m) arithmetic unit. Finally, the digit size (D) for the GF(2m) multiplication based
on GNB or polynomial basis determinates the performance of these.

Taking into account the experimental results, it is possible to conclude that serial
polynomial basis GF(2m) multipliers present better performance than GNB, but the
performance of the EAA algorithm for the polynomial basis GF(2m) inversion is not
as good as the ITA for GNB inversion. Also, squaring operation based on GNB pre-
sent better performance than squaring operation based on polynomial basis, due to
squaring based on GNB is a simple rotation and it does not need hardware to be im-
plemented.

Due to the cryptoprocessors were designed using the same tools, FPGA, finite field
m size and hardware description language, the GNB cryptoprocessor presents a higher
performance than the polynomial basis cryptoprocessor. However, the scalability is an
advantage of polynomial basis.

Finally, the designed cryptoprocessors present a high performance, use small area
and provide a good time-area trade-off. Therefore, these can be used for embedded
applications such as smart cards, cellular telephones and IP cores for SoC.

References

1. Koblitz, N., Vastone, S., Menezes, A.: The State of Elliptic Curve Cryptography. Designs,
Codes and Cryptography 19(2/3), 173–193 (2000)

2. Sklavos, N., Zhang, X.: Wireless Security & Cryptography: Specifications and Implemen-
tations. CRC-Press, A Taylor and Francis Group (2007) ISBN: 084938771X

3. Certicom research, The Elliptic Curve Cryptosystem, Certicom (April 1997)
4. ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm. Technical report,

ANSI (1999)
5. IEEE. P1363: Editorial Contribution to Standard for Public Key Cryptography,

http://grouper.ieee.org/groups/1363/
6. FIPS 186-2, Digital Signature Standard (DSS),

http://csrc.nist.gov/publications/ps/ps186-2/
ps186-2-change1.pdf

7. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge University
Press, Cambridge (1999)

8. Ansari, B., Anwar, M.: High-Performance Architecture of Elliptic Curve Scalar
Multiplication. IEEE Trans. on Computers 57(11), 1443–1452 (2008)

 Hardware Architectures for Elliptic Curve Cryptoprocessors 103

9. Kim, C.H., Kwon, S., Hong, C.P.: FPGA implementation of high performance elliptic
curve cryptographic processor over GF(2163). Journal of Systems Architecture 54(10),
893–900 (2008)

10. Järvinen, K., Skyttä, J.: Fast point multiplication on Koblitz curves: Parallelization method
and implementations. Journal of Microprocessors and Microsys- tems (2009)

11. Chelton, W., Benaissa, M.: Fast elliptic curve cryptography on FPGA. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 16(2) (February 2008)

12. Juliato, M., Araujo, G., López, J., Dahab, R.: A Custom Instruction Approach for Hard-
ware and Software Implementations of Finite Field Arithmetic over F2163 using Gaussian
Normal Bases. The Journal of VLSI Signal Processing Systems (2005)

13. Antao, S., Chaves, R., Sousa, L.: Compact and Flexible Microcoded Elliptic Curve Proces-
sor for Reconfigurable Devices. In: 17th IEEE Symposium on Field Programmable
Custom Computing Machines (2009)

14. Muthukumar, B., Jeevanantharr, D.S.: Design of an Efficient Elliptic Curve Cryptography.
In: First International Conference on Advanced Computing, pp. 34–37 (December 2009)

15. National Institute of Standards and Technology, Digital Signature Standard, FIPS Publica-
tion 186-2 (February 2000), http://csrc.nist.gov/fips

16. Li, H., Zhang, C.N.: Efficient cellular automata versatile multiplier for GF(2m). Journal of
information science and engineering 18, 479–488,
http://www.iis.sinica.edu.tw/JISE/2002/200207_01.pdf

17. Wu, H.: bit-parallel finite field multiplier and squarer using polynomial basis. IEEE trans-
actions on computers 51(7),
http://www.ieeexplore.ieee.org/iel5/12/21897/01017695.pdf?ar
number=1017695

18. Hütter1, M., Großschädl2, J., Kamendje, G.-A.: A Versatile and Scalable Digit-
Serial/Parallel Multiplier Architecture for Finite Fields GF(2m). In: Proceedings of the 4th
International Conference on Information Technology: Coding and Computing (ITCC
2003), pp. 670–692 (2003)

19. Song, L., Parhi, K.K.: Efficient Finite Field Serial/Parallel Multiplication. In: Proceedings
of International Conference on Application Specific Systems, Architectures and Processors
- ASAP 1996, pp. 72–82 (1996)

20. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Sov. Phys.-
Dokl (Engl. transl.) 7(7), 595–596 (1963)

21. Dahab, R., Hankerson, D., Long, M., Lopez, J., Menezes, A.: Software multiplication us-
ing Gaussian normal basis. IEEE Transactions on Computers Archive 55(8), 974–984
(2006)

22. Fong, K., Hankerson, D., Lopez, J., Menezes, A.: Field Inversion and Point Halving Revis-
ited. IEEE Transactions on Computers 53, 1047–1059 (2004)

23. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using
normal bases. Information and Computing 78(3), 171–177 (1988),
http://www.eprint.iacr.org/2006/035.pdf

24. Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2n) without precompu-
tation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer,
Heidelberg (1999)

GPU Accelerated Cryptography as an OS
Service

Owen Harrison and John Waldron

Computer Architecture Group, Department of Computer Science, Trinity College

Dublin, Dublin 2, Ireland

Abstract. Graphics processing units (GPUs) have become popular de-

vices for accelerating general purpose computing. In recent years there

has been a surge in research involving the use of GPUs as cryptographic

accelerators. Research has shown that contemporary GPU architectures

can achieve higher throughput in the context of both symmetric and

asymmetric key cryptography than a traditional CPU. Despite the ex-

istence of these new approaches, there remains no way for OS kernel

services or userspace applications to make use of these implementations

in a practical manner. To overcome this shortcoming, this paper investi-

gates the integration of GPU accelerated cryptographic algorithms with

an established service virtualisation layer within the Linux kernel, the

OCF-Linux framework. This paper demonstrates that it is feasible to use

a centralised kernel service to provide a standardised abstraction to GPU

accelerated cryptographic functions for both kernelspace and userspace

components.

1 Introduction

Symmetric-key algorithms such as AES, DES, ARIA; symmetric-key modes of
operations; and asymmetric-key algorithms such as RSA, DSA and those based
on ECC have recently been explored in the context of GPU acceleration [1–10].
It has been demonstrated that the GPU can act as an effective accelerator of
symmetric-key algorithms using sufficiently large buffers and of asymmetric-key
algorithms using a sufficient number of concurrent primitives. Despite the ex-
istence of these new approaches, there remains no way for OS kernel services
or userspace applications to make use of these implementations in a practical
manner. The use of these implementations require interaction with GPU spe-
cific interfaces such as the CUDA API, which is inconvenient for application
developers and unavailable to kernel services. With the increasing number of
GPU accelerated cryptographic algorithms, there is a need to provide an effi-
cient and standardised operating system wide interface to these implementations.
To overcome this shortcoming, this paper investigates the integration of GPU
accelerated cryptographic algorithms with an established service virtualisation
layer within the Linux kernel. The OpenBSD Cryptographic Framework (OCF)
provides the basis for such a virtualisation layer.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 104–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GPU Accelerated Cryptography as an OS Service 105

The original OCF was developed for OpenBSD and has since been ported to
FreeBSD [11], NetBSD and Linux [12]. It was created to provide uniform access
to cryptographic accelerator functionality by hiding hardware specific details
behind a standardised API. It provides access to this functionality for kernelspace
services as well as normal userspace applications and APIs. For our investigation
we use the Linux port of the OCF and the 2.6.26 Linux kernel. Although we do
not directly use the native linux-crypto (Crypto API) project [13], which has
in-built support for some crypto-cards, we note that the OCF acts as a wrapper
for this library. We did not use linux-crypto for this work due to its current lack
of support for asymmetric algorithms and the fledgling status of its userspace
interface, however the main contributions in this paper are also relevant to this
project.

The main contributions of this paper are: the effective integration of the GPU
within the OCF model; the observation that the GPU interface is userspace only
and the mechanisms introduced to allow it to be part of a kernel service; the
introduction of a new memory management system within the OCF to allow
efficient handling of memory transfers between multiple address spaces; and
also an implementation of a general purpose multi-request batching scheme for
asymmetric-key requests with regard to the GPU. Note that the source code
of the core implementation functions presented within this paper are available
online [14].

The motivation for this work is to provide a standard method of access to
the latest GPU crypto acceleration work to all components within an operating
system, with minimal loss of performance. This will allow application, kernel and
driver developers to transparently include the GPU as part of their cryptographic
solutions. We also observe that the GPU has a requirement of high work loads
to achieve its peak performance. By using a centralised framework, which is
used for all system-wide cryptographic needs, we increase the likelihood of high
occupancy on the GPU and thus its potential to act as an effective crypto-
accelerator.

2 Background and Related Work

2.1 OCF Background

Figure 1 shows a high level view of the OCF framework. The core component of
the framework, the main “Crypto” layer, provides two APIs - the producer API
for use by crypto-card device drivers and the consumer API for use by other
kernel subsystems. An ioctl interface, which uses the /dev/crypto device file,
provides a mechanism through which normal userspace applications can issue
cryptographic requests. This interface is provided by the “Cryptodev” layer and
uses the consumer API to pass on userspace requests to the Crypto layer. Device
drivers can register their support for various cryptographic algorithms with the
Crypto layer. Cryptographic requests received directly by the Crypto layer or
sent via the Cryptodev layer are matched with capable devices and issued to the
corresponding device driver. The device driver ID is recorded within the request,

106 O. Harrison and J. Waldron

which is returned to the requesting application or kernel component along with
the results of the processed request. Further requests can be issued to the same
device within the OCF by maintaining the driver ID within the request or if left
unset the OCF will again select a suitable device dynamically.

Fig. 1. Original OCF Architecture

2.2 GPU Background

The GPU used in our implementations is the Nvidia GeForce 8800GTX, which
was the first DirectX 10 [15] compliant GPU released by Nvidia. It is Nvidia’s
first processor that supports the CUDA API [16]. The 8800GTX consists of 16
SIMD processors, called Streaming Multiprocessors (SM), each of which contain
8 ALUs. A single instruction is issued to an SM every 4 clock cycles, which is
executed by all 8 ALUs. This creates an effective SIMD width of 32 operands
for an SM. The code that runs on the GPU is referred to as a kernel. Via the
CUDA API, the programmer can specify the number of threads that are required
for execution on the GPU during a kernel call. These threads are grouped into
programmer defined numbers of CUDA blocks, where each block of threads
is guaranteed to run on a single SM. The number of threads per block is also
programmer defined. Programmers should allocate threads in groups of 32, called
a CUDA warp, to match the effective SIMD width mentioned above. A point of
note relevant for this paper regards thread divergence. If any thread execution
path diverges from the execution path of other threads within a CUDA warp,
all the divergent code paths must be executed serially on the SM. An important
note regarding GPU performance is its level of occupancy. This refers to the
number of threads available for execution at any one time, and is important for
hiding memory latency. It is desirable to have as high a level of occupancy as
possible.

2.3 Related Work

The only previous attempt to provide a form of uniform access to GPU cryp-
tographic acceleration involved AES via an OpenSSL engine by Rosenberg [17].
This implementation was applicable to userspace applications only and reported

GPU Accelerated Cryptography as an OS Service 107

a 0 to 3% improvement over the CPU. There has been much recent research into
using the GPU to accelerate various cryptographic algorithms as mentioned in
Section 1. A sampling of the results achieved include 2,414 280-bit elliptic-curve
point multiplications per second for a general 280-bit modulus on an Nvidia
GeForce 8800GTS [1]; 1024-bit RSA decryption running on an Nvidia GeForce
8800GTX with a peak throughput of 0.18 ms/op [5]; and processing of AES
in CTR mode on a GeForce 8800GTX at peak rates of 15,423Mbps without
including data transfer to the GPU and 6,914Mbps when data transfers are in-
cluded [4]. Harrison [18] presents a detailed account of related work in the field
of GPU cryptographic acceleration for the interested reader.

3 Integration of GPU and OCF

3.1 Overview

The OCF provides a standardised method for the integration of any crypto-
graphic accelerator device driver using its producer API. This API allows a de-
vice driver to register itself and its supported algorithms with the OCF, making
it a target for processing cryptographic requests. The device driver is responsible
for registering four callback functions with the OCF, which are used for the set
up and tear down of symmetric algorithm sessions and also for the processing
of symmetric and asymmetric requests. We have created a GPU cryptographic
driver that fulfils the producer API requirements. The driver currently supports
AES and modular exponentiation with CRT, suitable for RSA-1024. Supporting
these two algorithms allows an analysis of the main issues arising from GPU
integration with the OCF for both symmetric and asymmetric functions.

The algorithms supported by the GPU driver are implemented using Nvidia’s
CUDA API. The CUDA interface is provided via a userspace runtime library and
as such requires its usage to be from userspace processes. Unfortunately Nvidia
do not provide a driver that allows the direct control of their cards from within
the kernel. This restriction forces all interactions with their cards to originate
from userspace processes, making the provision of CUDA services from within
the kernel a challenge. To overcome this restriction, we have split our GPU
driver into two parts, a kernelspace driver and a userspace daemon. Regarding
the possibility of Nvidia releasing direct access interface to their drivers, it is
unlikely given that Nvidia have a history of only releasing binary versions of their
drivers. This has continued unchanged even though it has hampered the GPGPU
movement since its inception. Also, CUDA userspace libraries perform a number
of runtime code translations for converting CUDA assembly into optimised GPU
ready code, it is likely that this task is more suitable to staying within userspace.

Figure 2 shows a high level overview of the GPU driver integration into the
OCF. It illustrates the separation of the GPU driver into the kernelspace part,
Gpucrypt ; and the userspace part, Gpucryptd. Gpucryptd follows the normal dae-
mon convention, and as such runs as a high privilege background OS process.
Gpucryptd is responsible for receiving cryptographic requests from Gpucrypt

108 O. Harrison and J. Waldron

Fig. 2. OCF and GPU: High Level View - Different Address Space Problem

and processing them using Nvidia’s userspace runtime API. A major disadvan-
tage of this separation is the use of extra address spaces within the processing
pipeline making data transfer more complex. Extra address spaces can result in
a critical bottleneck in performance when processing requests unless memory is
carefully managed. We explore this issue in full later. Another disadvantage of
the driver separation is the introduction of two extra OS mode switch points
within the processing pipeline. This becomes more of an overhead when the
number of cryptographic requests increase, particularly for small request buffer
sizes. Unfortunately there is no way to avoid these mode switches, however since
the GPU only suits cryptographic acceleration with large workloads and high
arithmetic intensity we will see that this overhead has limited effect.

3.2 Kernelspace Motivation

Considering the added complexing of separating the communication with the
GPU between user and kernelspace, one could posit that it isn’t worth the effort
of creating a kernelspace GPU driver and that all communication with the GPU
should be directly via the CUDA userspace library. Also, one could posit that a
similar abstraction layer could be provided by including the CUDA related code
within the standard cryptographic libraries, such as OpenSSL. However, there
are a number of advantages to using a kernelspace GPU driver, these include:

– Kernelspace processes cannot use userspace libraries directly. Thus if we wish
that kernelspace processes, which currently can use cryptographic hardware
via the OCF, be able to use the GPU for cryptographic acceleration, then
we must provide a bridging mechanism from kernelspace to userspace.

– As will be shown, concurrency is important when achieving effective through-
put rates using a GPU for cryptographic performance. Thus, it is important
to ensure that cryptographic requests generated by disparate applications
can be pooled to increase the occupancy on the GPU. If applications pro-
cess their cryptographic requests via a userspace cryptographic library that
in turn uses the userspace CUDA library, there is no potential for pooling
the requests. The requests will exist within separate address spaces. When
a kernelspace GPU driver is used, the driver can pool the requests from
multiple processes, thus increasing GPU occupancy and the overall system

GPU Accelerated Cryptography as an OS Service 109

cryptographic throughput. This is particularly pertinent in the context of
asymmetric-key requests.

– The startup costs of requesting work to be done on the GPU is high. The
CUDA libraries must create a context and perform code translation and opti-
misation. This cost can be amortised if a single process sends a lot of requests
to the GPU, reusing the context and avoiding repeated code translation over-
heads. However, the startup cost can make up a significant proportion of the
total GPU process time, if the requesting process is short lived, or doesn’t
require repeated processing of cryptographic requests. Using a central GPU
driver, this problem can be eliminated as the startup costs can be incurred
a single time at OCF startup. The userspace component of the GPU driver
can create a CUDA context and cryptographic requests to have the CUDA
library perform the necessary code translations. The userspace component
would be expected to have a lifetime similar to the OS lifetime.

– The provision of a kernelspace driver allows the integration of GPU crypto-
graphic processing within frameworks such as the OCF and also the native
linux-crypto (Crypto API) layer mentioned previously. Userspace crypto-
graphic libraries use these OS provided layers to avoid dealing directly with
the complexities of the underlying hardware. Thus, including the GPU driver
at the OS layer, allows cryptographic libraries to include GPU support with-
out change if they already support such OS frameworks, as OpenSSL cur-
rently does.

3.3 Memory Management

When using devices that handle high volumes of data transfer it is common
practice to ask the driver to allocate the memory used in these transfers. This
has the advantage that the driver knows what type of memory (contiguous/non-
contiguous, zone location) suits the corresponding device for DMA transfers. It
is also common practice that allocated memory is shared between the driver
and the calling process, either by driver allocation (mmap() kernel function) or
by mapping userspace pages (get user pages() kernel function). If memory is
not shared then userspace processes must undergo a copy of memory between
user address space and kernel address space using the copy from user() and
copy to user() kernel functions. Using an abstraction framework like the OCF,
or the linux-crypto project, removes the direct line of communication required
for standard requests for driver memory allocation, either by userspace processes
or kernelspace subsystems.

Integration of the GPU with such a framework emphasises this deficiency
due to two factors. First, the GPU requires large volumes of data for symmet-
ric algorithms to reach its performance potential [4]. The larger the volumes of
data, the worse the memory copy overhead. The OCF Cryptodev layer imple-
ments a copy from and to userspace policy for data transfer. Figure 3 shows
the Cryptodev layer’s performance with and without these copies as the buffer
sizes increase. To explain the drop in performance of the Cryptodev layer, we
note that it uses the copy from user() and copy to user() kernel functions to

110 O. Harrison and J. Waldron

Fig. 3. Illustration of the Cryptodev Layer Memory Management Overhead

transfer memory between userspace and kernelspace. We test the performance
of copy from user(), shown in Figure 4, and can see that the memory copy
loses efficiency as the buffer sizes increase. Second, one cannot give memory to
the Nvidia driver and request it to be used for DMA acceleration, the memory
must be requested from the driver. Thus, even using a direct I/O approach (as
in the new linux-crypto userspace API), where userspace pages are mapped in
by the kernel on request, we must still perform a memory copy into and out of
GPU DMA memory. Thus for any device that has DMA memory restrictions, it
can be beneficial to have a mechanism for allowing the framework’s drivers to
manage their own memory.

We have added a new memory management system to the OCF that allows
a consumer component (userspace application or kernelspace component) to di-
rectly use memory that is managed by the OCF drivers. This system allows the
GPU driver to reduce the number of memory copies required during request
processing to zero. Each memory allocation is recorded centrally by the OCF
as a new memory mapping, which stores the driver’s address (map ptr) and the
consumer component’s address (app ptr) of the allocated memory. map ptr is
the address the driver uses to refer to the allocated memory, which would nor-
mally be a kernelspace address, however in the case of the GPU it will belong to
the Gpucryptd daemon address space. The app ptr is the address the consumer
component uses to refer to the memory and will belong to a userspace processes’
address space if the OCF was called via the Cryptodev interface, or otherwise
belong to the kernel address space.

GPU Accelerated Cryptography as an OS Service 111

Fig. 4. Performance of the copy from user() Function

Figure 5 illustrates our implementation of the memory mappings for all con-
sumer components. We create a separate mapping space, indexed by the current
thread’s thread group ID, to store all mappings for each consumer component
(the ID is zero in the case of kernel consumer components). This ensures allo-
cated memory can only be accessed by the process that requested the allocation.
Within each space the mappings are grouped according to the device that al-
located the memory. If memory allocation fails due lack of device support for
the new memory management system, where possible we still wish to avoid the
memory copies performed by the Cryptodev layer. An allocation request can be
tied specifically by the consumer to a particular underlying device. In this case,
if the device fails to allocate memory, then this failure is reported to the con-
sumer. Otherwise, when a memory allocation fails, the Cryptodev layer allocates
its own memory for sharing with the userspace consumer.

Fig. 5. Crypto and Cryptodev Layers:Memory Mappings Internal Structure

112 O. Harrison and J. Waldron

The Cryptodev layer maintains its own memory mappings for such allocations.
This can be seen on the left hand side of Figure 5. Each userspace client process
is represented by its own mapping space in the Cryptodev component. Each of
these mapping spaces have a list of mappings for memory that is allocated by
the Cryptodev layer directly. Also, each of these mapping spaces has a reference
to a mapping space within the Crypto layer, representing all the mappings of
memory allocations performed by the OCF device drivers on behalf of userspace
client processes. This is shown on the right hand side of the figure. The “KSpace”
area on the right hand side of the figure represents the mappings of the memory
allocations performed by the OCF device drivers on behalf of kernelspace client
processes.

The memory consumption overhead of this memory management approach is
small and scales well. Compared to normal use of the OCF, the new memory
management system allows the reduction in the total amount of system memory
in use for a given request by sharing memory between kernel and userspace.
Compared to a native approach, bypassing the OCF, there is the added memory
consumption of the OCF and the extra pointers required to keep track of the
memory translations for each request buffer associated with the new memory
management system. These overheads are relatively low assuming the request
buffer is of a reasonable size (e.g. ≥ 1KB). If the buffers are small enough that
memory overheads become a substantial overhead, the performance overhead
of redirecting such small requests to hardware accelerators would become the
primary system bottleneck. The following is a detailed account of how mappings
are created, removed and used within the new memory management system. The
new memory management API is listed in A.1.

3.3.1 Memory Map Creation

Userspace, allocation request: A userspace process makes a request for mem-
ory via a new ioctl added to the Cryptodev layer. This allocation request can
suggest a specific device to carry out the allocation or allow the OCF to choose
a device and report the used device back to the consumer. The standard mmap()
system call is not used as it cannot support device specification in this way.
The OCF relays the allocation request to the device driver, which performs the
allocation and returns the underlying memory pages and map ptr to the OCF.
The OCF takes these pages and manually calls the internal kernel version of
mmap(), which generates a new virtual memory area (VMA) for the userspace
process. We use the returned pages from the device driver to map to this VMA,
and return the VMA start address to the userspace process. In the case where no
device can be found to fulfil the allocation request, the Cryptodev layer allocates
its own kernel memory, and maps this to the calling process’ VMA. The VMA
start address is the pointer used by the userspace process and is the aforemen-
tioned app ptr. The OCF uses the app ptr and map ptr to add a memory map
to the appropriate “USpace” as shown in Figure 5.

GPU Accelerated Cryptography as an OS Service 113

Fig. 6. New OCF Memory Allocation: Cryptodev to GPU

We illustrate an example of a userspace process allocation request to the
GPU in Figure 6. We can see six cases of mode switch between user and kernel
mode; four of them involve the added trip out of and back into the kernel due
to userspace CUDA calls. Here we have highlighted mode switch 1 and 2. The
above explains the mapping of kernel memory to userspace memory to eliminate
a potential memory copy at mode switch 1. We discuss the GPU driver part of
the new memory management system, which eliminates the copy at mode switch
2 in Section 3.4. The remaining mode switch is handled internally by the CUDA
runtime.

Userspace, fork: On fork, a child process will have shared access to OCF allo-
cated memory. Allocated memory returned by the OCF is set as always shared.
Supporting private memory by implementing a copy-on-write procedure or exe-
cuting a new allocation for each fork were deemed unnecessary considering that a
child process can allocate its own memory. We share the memory between parent
and child by overriding the VMA’s vm open() kernel function, which is called by
the kernel when a new memory reference is created, such as on fork(). When
this function is called, we create a new Cryptodev or Crypto memory mapping,
within a new mapping space representing the process’ new address space. Note
that light-weight processes automatically share allocated memory as the VMAs
of the processes are shared.

Kernelspace, allocation request: A process in kernel mode, or a kernel
component, requests memory directly from the Crypto layer using the new
crypto alloc() function. This processes the request as above, selecting an ap-
propriate device. However, instead of dealing with a userspace process’ VMA,
the OCF returns a kernelspace pointer, which references the new memory. The
memory returned is not necessarily within the kernel address space, in the case of
the GPU it belongs to the Gpucryptd address space. Thus, the OCF selectively
performs a vmap() to map the memory into the kernel virtual address space if
necessary. The kernelspace pointer returned is the app ptr in this context, and
is used to create a new memory map in the Crypto layer within the kernelspace
mappings, see “KSpace” in Figure 5.

114 O. Harrison and J. Waldron

3.3.2 Memory Map Removal

Userspace: A userspace process can free OCF allocated memory by executing
the munmap() Unix command or by terminating. On such an event the kernel
calls the vm close() kernel function for the allocated memory’s VMA, which
we have overwritten. If this process is the last to hold an open reference to the
shared memory we issue a free command to the Crypto layer for device allocated
memory or to the Cryptodev layer for Cryptodev allocated memory. After the
memory is freed, the memory map is removed from the appropriate Crypto or
Cryptodev memory map USpace.

Kernelspace: Kernelspace components issue a free directly to the Crypto layer
via the new crypto free() function. Unlike the Cryptodev free process above,
the OCF must ensure that there exists a valid mapping for the kernelspace
pointer for the specified device. If found, a free command is issued to the device
driver and on return the memory mapping is removed from the kernel mapping
space, KSpace.

3.3.3 Memory Map Translation

Userspace: All buffer pointers within cryptographic requests received via the
Cryptodev layer interface are processed for potential address translation. First,
the Crytpo layer is called to find a mapping that matches the userspace pointer
(app ptr) and the device specified within the request. This is done by finding the
mapping space corresponding to the calling process using its thread group ID.
Once the space is found we scan for a matching map within the corresponding
device list of memory mappings. If a match is found, the device address (map ptr)
recovered replaces the userspace pointer within the cryptographic request and
can be used directly by the device without any copies taking place. If no match
is found, we repeat a similar process for any Cryptodev allocated memory. If still
no match is found we default to the original OCF behaviour of using kmalloc()
and the copy from/to user() kernel functions to copy the userspace buffers
into the new kernelspace buffers.

Figure 7 gives a brief illustration of the interactions between the Crypto and
Cryptodev layer during this translation. The left hand side of the figure shows the
memory map process followed when a userspace process makes a cryptographic
request. The Cryptodev component first searches the Crypto user spaces for a
memory map that represents device allocated memory. Failing to find a map, the
component then searches for mappings that represent memory allocated by the
Cryptodev component. If a mapping is still not found, then the OCF defaults to
its original functionality and allocates kernel memory to hold the contents of the
request buffer. The original OCF behaviour should possibly be upgraded to use
the get user pages() call, as in the linux-crypto project, to default to using di-
rect I/O when no mapping is found thereby eliminating the use of the expensive
copy from/to user() kernel functions. The right hand side of Figure 7 shows
that requests made by kernel processes are handled by the Crypto layer, and

GPU Accelerated Cryptography as an OS Service 115

Fig. 7. Crypto and Cryptodev Layers: Memory Mapping Translation Process

only the “KSpace” mappings are searched, representing memory allocated by
device drivers. All cryptographic requests are tagged internally to ensure that
device drivers can detect if a request pointer is a native device address or a
normal kernelspace address.

Kernelspace: Cryptographic requests received via the Crypto kernel interface
undergo a similar procedure as above, except only the kernel mapping space is
searched and only the Crypto memory mappings are searched. Considering that,
as kernel mode processes are trusted, we provide the ability for these processes
to translate the allocated memory before the request is sent to the Crypto layer.
This allows the kernel processes to use native device driver pointers in their
requests with tagging thus avoiding translation overhead.

Existing consumers: Care has been taken to ensure legacy consumers can con-
tinue to use the OCF with minimal impact to performance. Regarding
cryptographic requests made via the Cryptodev interface, the new memory man-
agement system will only impose a small translation overhead for userspace ap-
plications not using OCF allocated memory. This overhead consists of the failure
to retrieve a USpace for requests, which is very fast. For processes in kernel mode
using the Crypto layer directly, the overhead depends on how many mappings
are being used by other kernel components, as this determines the size of the
translation search space.

3.4 GPU Driver and Daemon

Here we discuss in detail the GPU driver component within the OCF and in
particular its separation into a kernel driver and a userspace daemon. As previ-
ously mentioned this separation is necessary due to the requirement of using a
userspace API to communicate with Nvidia’s GPUs. If Nvidia provided kernel

116 O. Harrison and J. Waldron

Fig. 8. GPU Driver Gpucrypt and GPU Daemon Gpucryptd

level access to its device drivers this separation could be avoided, as would the
extra kernel to user mode switches. Figure 8 illustrates both the Gpucrypt driver
and Gpucryptd daemon components and an overview of how they cooperate to
fulfil the requests delivered by the Crypto layer. This is further discussed below.

/dev/gpucrypt: for the purpose of providing a communications channel be-
tween the two components we have created a new OS character device file called
/dev/gpucrypt. On OCF startup, the Gpucrypt driver module is initialised and
connects itself with the /dev/gpucrypt device file. The Gpucryptd component
can subsequently open this device file and communicate with Gpucrypt via ioctls.
These ioctls are used for initial handshake of Gpucryptd with Gpucrypt when
the daemon sets up shared buffers for use in request processing. It also uses the
interface to send a “ready for work” and “shutdown” signals. When the Gpu-
crypt driver receives these signals it correspondingly registers and unregisters
with the OCF Crypto layer. The /dev/gpucrypt device is most intensively used
to co-ordinate the processing of cryptographic and memory requests. When no
work is available on the request queues, the Gpucryptd daemon calls the driver
to passively wait for more work by putting itself to sleep. Thus, whenever work
is received from the Crypto layer the driver calls wake on the daemon process’
wait queue. Whenever work is finished and requires returning to the driver, the
daemon uses an ioctl to signal that the work is finished, to remove the work from
the queue and to call the Crypto layer for request return. The ioctls are listed
and detailed in A.2.

Processing Requests: the Gpucrypt driver implements four shared request
queues, one for each type of OCF request supported: symmetric, asymmet-
ric, alloc and free requests. The advantage of using separate queues for each
request type is that it simplifies queue management. It allows a straightfor-
ward grouping of cryptographic requests for batching purposes rather than deal-
ing with a single queue of mixed requests. These queues are allocated by the

GPU Accelerated Cryptography as an OS Service 117

Gpucryptd daemon at start-up and memory mapped into the Gpucrypt driver,
thus allowing efficient transmission of request data. When the Gpucrypt driver
receives a requests from the OCF, it copies all the necessary instructions into
the relevant queue. All pointers used in the requests at this stage have under-
gone address translation, and the addresses used within the queue are from the
Gpucryptd daemon address space. Thus, the Gpucryptd daemon does not have
to worry about address mapping, it can treat all pointers as native in a normal
manner.

Cryptographic Requests: the Gpucrypt driver supports multi-threaded and
asynchronous cryptographic requests, helping to increase the concurrency of re-
quests on the process queues. Calls from the Crypto layer to process a symmetric
or asymmetric request are returned immediately after the Gpucrypt driver has
queued the request and signalled for the Gpucryptd process to awaken if neces-
sary and process the request. All manipulations of the queues are thread safe.
The only time a cryptographic request blocks is when the corresponding queue
is full. The results of the processed requests are returned asynchronously when
the Gpucryptd daemon issues an ioctl to instruct the driver that it is finished.
This in turn calls the Crypto layer to inform it that the request is finished.

Memory Requests: as with standard memory allocation and free operations,
we have implemented these as blocking requests. Apart from blocking the con-
sumer thread, memory requests do not block any other request from being pro-
cessed within the OCF. Figure 6, which served as an example of an OCF alloc
request, can now be discussed in the context of Gpucrypt and Gpucryptd. To
service an allocation request, the Gpucrypt driver first puts the allocation de-
tails on the shared alloc request queue. The Gpucryptd daemon processes this
by executing the cudaMallocHost() function call, which allocates pinned DMA
accelerated memory. The returned address is placed back on the shared request
queue, which is then used by the Gpucrypt driver to access the underlying pages.
On initialisation of the Gpucryptd daemon, it registers with the Gpucrypt driver
its internal task kernel pointer. This is used to retrieve access to the daemon’s
underlying virtual memory areas and pages. A note should be made that the
virtual memory area used to reference the CUDA allocated pages is flagged with
VM IO. Device driver programmers commonly use this flag to prevent memory
from being included in core dumps, however it also has the effect of treating
the memory area as backed by non system RAM. For I/O mapped memory it is
necessary to restrict access to the underlying pages as they don’t exist in RAM,
however in our experience, CUDA only returns RAM backed memory. We must
temporarily disable this flag in order to retrieve the underlying pages, though we
take the precaution of acquiring the Gpucryptd’s memory map semaphore dur-
ing this period. Our experience is that this technique has successfully returned
the underlying pages to the Crypto layer in all of our tests.

Request Order: maintaining separate shared queues has advantages as stated
above, however it has a disadvantage of not automatically preserving the original
request ordering between the differing types of requests. This can cause faults

118 O. Harrison and J. Waldron

when memory requests are run out of order with respect to cryptographic re-
quests. If we solve this problem using a single request queue, then batching is
less effective as the queue requires processing in order. This can lead to memory
requests unnecessarily splitting groups of cryptographic requests. The solution
adopted for this problem was the use of read-write semaphores within the OCF.
We have used a read-write semaphore for each mapping space (i.e. one per con-
sumer process) within the OCF and found the solution to give minimal overhead.
Each cryptographic request is responsible for acquiring a read-write semaphore
for reading if a memory translation has occurred and releasing the semaphore on
request completion. Each memory request must acquire a read-write semaphore
for writing, which ensures the memory request is the only request for the con-
sumer process within the OCF pipeline. This ensures that any translations that
were valid at the start of the processing of request, remain so until the end. The
use of read-write semaphores as opposed to normal semaphores allows the most
common type of request, i.e. cryptographic requests, that share a mapping space
to exist concurrently within the OCF pipeline. Also if no memory translation
is used, e.g. legacy consumer processes, then no semaphores are used as in the
original OCF.

Driver Removal: a driver can be removed at any time, and thus we must
deal with the case of allocated memory when such an event occurs. Requests
can be migrated to another device by the OCF and thus memory allocated for
one device can be sent to another device. The Cryptodev layer sees this event
as a failed translation and defaults to copying the memory from the userspace
process, thus the requests will continue to proceed, however at a slower pace.
To avoid this slow down the consumer process must monitor the requests for a
change in device used and if a change occurs the OCF allocated memory should
be freed and allocated again by the new device. If no OCF allocated memory
is used then no action is required. Note that even though the device may have
freed the memory, its pages are kept alive due to the consumer process’ reference.
Requests sent directly to the Crypto layer will also fail the translation stage and
the memory will be treated as a standard kernelspace memory pointer. Again
the kernel consumer thread must monitor requests for changes in the device used
and reallocate memory when this occurs.

3.5 Security

We look at each of the changes made to the OCF in terms of their security
implications. The new memory allocation functionality requires that all mem-
ory returned is automatically zeroed to protect from leaking information. The
use of memory translation for userspace requests bypasses the need for the
copy to/from user() kernel functions. These kernel functions perform impor-
tant validation, ensuring that the addresses are part of the calling process’ ad-
dress space. We ensure that this validation is maintained by only searching for
translations within a mapping space which is indexed by the thread group ID.
This combined with the fact that the mappings within the space only contain

GPU Accelerated Cryptography as an OS Service 119

userspace pointers, which are generated by the kernel on behalf of the process,
ensure that any match found during translation are valid userspace addresses
for that process. During translation we also check the size of the buffers speci-
fied within the cryptographic requests, to ensure no buffer overflow will occur.
Regarding the Gpucrypt driver, it must be ensured that the /dev/gpucrypt file
is accessible by the root user only. If this is not the case, then any userspace
program may connect to the Gpucrypt driver and receive OCF cryptographic
requests. Also, it should be noted that no official statement from Nvidia is avail-
able on the purpose of the VM IO flag and if its temporary disabling can cause
security problems, see Section 3.4. Even though extensive testing has shown
the correct function of mapping pages as required, and the Gpucryptd’s mmap
semaphore is acquired during the flag’s disabled period, the GPU drivers are
proprietary and the source code is not available. This results in a difficultly in
verifying the temporary disabling of the flag does not present a possible security
problem. In general, the approach presented in this paper has undergone a basic
security evaluation, however, it is not recommended that the implementation be
used in a security sensitive context where it is possible that an intruder may
have access to the hosting server. Before such a step can be made, a dedicated
security study should be performed.

4 Concurrent Request Processing

4.1 Asymmetric Request Batching

The batching of requests allows for an increase in system wide throughput by
permitting the combination of separate requests to be sent to and processed by
the GPU. The types of requests that comprise a batch and the preprocessing that
can be done to this batch can have significant effects on performance. General
purpose symmetric-key batching on the GPU has been discussed in detail else-
where [4], so we will not go into this further in this paper. However, to date there
has been no treatment of general purpose batching of distinct asymmetric-key
requests on the GPU. Considering the OCF presents the opportunity to batch
requests for delivery to the GPU we investigate the possibility of asymmetric
request batching here.

Single Request: Currently the OCF does not support a method of execut-
ing more than one asymmetric cryptographic operation within a single request.
The framework does provides the ability to chain multiple requests with a link
list. This gives the ability to send in a single call multiple requests to the Crypto
or Cryptodev layer. We have made a small change to the OCF API to allow
the request’s input buffers to contain multiple instances of its input vectors.
For example, in relation to modular exponentiation, this permits a request to
contain multiple bases for each exponent/modulus pair (analogous to multiple
messages per key). Although only giving a slight performance improvement, it
simplifies the process for clients to send multiple requests with a single key. We
are reluctant to make any modifications to existing API structures for reasons of

120 O. Harrison and J. Waldron

compatibility with existing applications, thus this change is suggestive and can
be safely omitted if compatibility is required.

General Purpose Request Batching: We have based our asymmetric-key
implementation on the serial radix algorithm for CRT modular exponentiation
suitable for RSA-1024 on a pre-existing implementation [5]. This involves spawn-
ing a new CUDA thread to handle the exponentiation of each base. As there can
be multiple bases per request, and one thread per base, we require a mechanism
that allows each thread to dynamically discover its request data. We must also
take into consideration that the base, modulus and exponent for each operation
is split into two, due to the CRT technique [19]. This involves using the prime
factors P and Q of the modulus N to generate smaller pairs of bases, mod P
and Q, and smaller pairs of exponents, mod P −1 and Q−1. We can then sepa-
rately calculate the resultant smaller modular exponentiation within the residue
number system {P, Q} and recombine at the end to produce the final result.

Fig. 9. Mechanism for Processing Multiple Distinct Asymmetric Key Requests

Figure 9 illustrates the mechanism used to direct the threads to their corre-
sponding data. As described separately [5], we direct all even numbered CUDA
blocks to P related data and all odd CUDA blocks to Q related data. The base
data is configured in a manner so that each CUDA thread can simply scale
their global thread ID to find the offset of their base data. During the prepro-
cessing stage (discussed next), we generate a message to request index, labelled
Msg2ReqIndex. This index is used to translate the message number, i.e. the
base number within the full batch of requests, to the OCF request number. The
request number is used to generate an offset into the modulus, exponent and re-
lated per request data. In the figure we can see that the modulus, exponent and
related data is split into two groups. This allows a simple conditional addition
of a single offset to the request offset to direct a thread to the P or Q related
data depending on whether the CUDA block is odd or even.

GPU Accelerated Cryptography as an OS Service 121

Request Preprocessing: The Gpucryptd daemon can have access to multi-
ple asymmetric requests at any one time. The GPU’s processing performance of
these requests can depend greatly on the order in which they appear within the
GPU buffers. Concerning an efficient modular exponentiation implementation,
the code path taken is largely dependent on the exponent. When the GPU exe-
cutes modular exponentiations with different exponents within the same CUDA
warp, we experience thread divergence and a cost is incurred. This is due to
having to execute the separate code paths serially rather than concurrently, see
Section 2.2. The more varied the exponents within a warp, the higher the warp
cost, and thus the higher the CUDA block cost, up to a limit. More concretely,
we use the well known Sliding Window [20] technique for exponentiation. This
technique involves traversing the exponent as a binary string from left to right.
Based on the value of a binary digit at a particular position within the exponent,
the algorithm determines whether a square, a series of squares or a multiply is
performed. If two threads within the same SM are executing an exponentiation
using different exponents, then depending on the binary make-up of the expo-
nent the thread code paths can diverge at different stages of the exponentiation
process. Divergence of threads results in a loss of performance due to the in-
ability of an SM to concurrently execute different instructions. In effect, the SM
executes all code paths for all threads in a warp, disregarding the results of
some operations appropriately. To measure the performance cost of the possible
thread divergence we ran a series of tests with randomly generated exponents.
From these tests we have measured the different warp costs for a GPU execution
of a modular exponentiation in various divergent scenarios and the cost ranges
between 1 and 2.5, where 1 is equal to the minimum run time of a non-divergent
modular exponentiation. Ideally we would be able to efficiently take any array
of varying sized and keyed requests and reorder them to derive the minimum
total cost, or runtime.

We can draw a loose analogy between this problem and the perfect packing
version of the 2-dimensional strip packing problem [21]. If we let the cost of
each CUDA block become the height of an object, the width of the object is 1
and the width of the container is the number of available SMs, then we wish
to minimise the height of the container holding all the objects. The analogy is
not exact as we also have the added complexity that the height of each object,
i.e. the CUDA block cost, can vary depending on how requests are ordered. To
find the optimal solution to this is computationally impractical. However, we
can use heuristics to arrive at a reasonable solution. If we first consider that the
block cost increases whenever an exponent changes within the array of requests,
we should sort all requests according to their exponent, thus creating a list of
non-divergent groups of requests. We perform this sort by an approximation,
using only the first integer of the exponent, giving a good accuracy/efficiency
trade off. We label this approach as “1 pass”.

We do not have control over the order in which the Nvidia driver chooses its
CUDA blocks for execution when an SM becomes free, however it is reasonable
to assume it follows a first fit approach, i.e. whenever an SM is free it takes

122 O. Harrison and J. Waldron

the next lowest block by ID and assigns it to the SM. A reasonable close to
optimal approach to solving the strip packing problem is to use the first fit
descending heuristic. We follow this heuristic by sorting the non-divergent groups
in increasing order of the number of operations within each group. This ensures
that the most costly CUDA blocks occur in the lower block IDs. We call this
approach “2 pass” as it involves the 1 pass sort above and an extra sort.

Both the 1 and 2 pass techniques are contrasted with no sorting (0 pass) in
various scenarios in Figure 10. The scenarios are run outside of the OCF as
they concern modular exponentiation batching on the GPU in general and not
just in the context of the framework. The tests consisted of sending multiple
requests to the GPU for concurrent execution. The size of each request within
each test was randomly chosen in a guided manner. The “Large” tests restricted
the sizes of the requests (the number of bases per request) to be high, typically
100-300; the “Small” tests contained only small requests, typically 1-10; and
the “Mixed” tests contained a random mixture of large and small request sizes.
Each test was run with a varying probability for each request to be followed by a
request with the same exponent and modulus, i.e. the same key. This is labelled
“Collision Probability”, with 1 meaning all requests are using the same key and
1/512 meaning a 1 in 512 chance of two requests chosen at random from the
test having the same key. This collision probability simulates a multithreaded
environment sending requests to the OCF with differing numbers of system wide
keys.

Figure 10 analyses the relative performance of the 0, 1 and 2 pass techniques
within each scenario. It can be seen that the 0 pass approach underperforms
in all scenarios. The 1 and 2 pass techniques mostly perform the same with a
general slight overhead noticeable for the 2 pass approach. The 2 pass approach
substantially outperforms the 1 pass approach when the collision probability
is low and there is a mix of request sizes. The performance improvement of 2
pass at a collision probability of 1/512 is 24%. Small requests are more costly
than large requests as the rate of change of the exponent is higher. These small
messages when mixed randomly between lower cost large requests, form a layer
of thinly distributed costly warps. It is beneficial to move these costly small
requests into a small number of high cost blocks as the block costs converge on a
relatively small overhead. This increases the number of low cost blocks that can
run concurrently and finish while the high costs blocks complete. We recommend
the use of this 2 pass approach due to its better performance in this scenario
and relatively small overhead in the general case.

4.2 Request Pipelining

In the scenario where we have multiple cryptographic requests outstanding on
the Gpucryptd daemon queue, we have the opportunity to split the processing
and return of requests into two concurrent operations. The CUDA API allows
for the execution of a kernel on the GPU asynchronously. The Gpucryptd dae-
mon permits both asymmetric and symmetric CUDA modules (see Figure 8)
to retrieve more requests from the queue without returning. The daemon also

GPU Accelerated Cryptography as an OS Service 123

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

M
es

sa
ge

s
P

ro
ce

ss
ed

 P
er

 S
ec

on
d

Collision Probability

0 Pass Large
1 Pass Large
2 Pass Large
0 Pass Mixed
1 Pass Mixed
2 Pass Mixed
0 Pass Small
1 Pass Small
2 Pass Small

Fig. 10. Comparison of Pre-processing techniques for RSA-1024 Request Batching

supports callbacks to return completed requests. This allows the Gpycryptd dae-
mon to delegate the flow control of request retrieval and request return to the
cryptographic modules. Thus, when implementing a cryptographic algorithm
for the GPU, it is straight forward to overlap the return of previously com-
pleted requests with the execution of the next requests. We present the effects
of pipelining in Section 5.1.

5 Performance

5.1 Symmetric-Key Performance

To analyse the overhead of using the OCF for symmetric-key performance, we
use an AES implementation based on an existing implementation [4]. Figure 11
shows the performance of AES when operating on different sized buffers with and
without going through the OCF. The non-OCF version of the implementation,
labelled as “Standalone”, performs comparably [4]. We compare this standalone
version to four other tests. Two tests were performed using normal userspace pro-
cesses to initiate the requests and thus go via the Cryptodev layer of the OCF,
labelled as “Cryptodev with/without MM”. The remaining two tests were per-
formed using a kernel thread which initiated the requests directly via the Crypto
layer of the OCF, labelled “Crypto with/without MM”. The “with MM” and

124 O. Harrison and J. Waldron

Fig. 11. Performance of GPU accelerated AES using the OCF

“without MM” tags, refer to variants of the tests whereby we either include our
new memory management system or use the original OCF memory management
respectively.

We can see that the two tests which use the OCF and the new memory
management system, perform with a small overhead compared to the standalone
version. Based on the Cryptodev interface, the average percentage overhead of
using the OCF is 3.4%, with a range of 9.3% for the smallest request buffers
through to 0.2% for the largest buffers. The spread in overhead percentage is due
to the smaller request buffers requiring more calls through the OCF to perform
the same amount of processing compared with larger request buffers. Although
it cannot be seen here, there is a slight advantage to executing the cryptographic
requests from the kernel as the Cryptodev layer overhead is removed.

The two tests, which are performed without the new memory management
system, experience a substantial reduction in performance as the buffer sizes
increase. This is due to having to perform extra memory copies for each transi-
tion between address spaces. The shape of the graphs can be understood when
compared to Figure 4. The reason for “Crypto without MM” outperforming
“Cryptodev without MM”, is that the direct calls to the Crypto layer from
kernelspace eliminates one of the address space transitions, thus reducing the
number of memory copies performed. The reason for ”Crypto without MM” not
covering the full range of buffer sizes is that it hits the default maximum vmap()
limit in the kernel. ”Cryptodev without MM” is also limited in the buffer sizes
used due to the original limit imposed by the OCF. These limits can be removed,
though the results show little difference.

Figure 12 is used to investigate both multithread scalability and pipelining, as
discussed in Section 4.2, for symmetric-key processing on the GPU. The “Single

GPU Accelerated Cryptography as an OS Service 125

Fig. 12. Multithreaded performance of GPU accelerated AES using the OCF

Thread” test is the same as “Standalone” in Figure 11, involving multiple iter-
ations of symmetric-key requests with varying buffer sizes. The multithreaded
tests consist of executing the same amount of operations as the Single Thread
test, using the same sized requests, however the requests are split across 20
threads. One of the multithreaded test runs using the previously mentioned re-
quest pipelining, and the other without. Note that the multiple threads referred
to are the consumer threads making requests to the OCF, the Gpucryptd daemon
itself remains a single thread. It can be seen at small buffer sizes that the multi-
threaded scenario using the pipeline slightly out performs the scenario without
pipeline use. It achieves this improvement from asynchronously returning request
results, thus hiding (or partially hiding) the return cost to the consumer. Both
of the multithreaded tests taper prematurely in performance as the buffer size
increases. This is presumed to be due to the multithread version of these tests
requiring 20 times more active memory at any one time than the single thread
version. Thus the performance degrades due to increased pressure on system
memory.

5.2 Asymmetric-Key Performance

For our tests of asymmetric-key performance we used an implementation based
on the modular exponentiation approach for RSA-1024 presented by Harrison
and Waldron [5]. Figure 13 shows a comparison of running a standalone version
of this implementation and using the implementation via the OCF Cryptodev
layer from a userspace process. We can see here that there is no discernible
difference in performance, in fact it is difficult to see there are two plotted graphs
in the figure. This is due to the high arithmetic intensity inherent in the modular

126 O. Harrison and J. Waldron

Fig. 13. Performance of GPU accelerated RSA-1024 using the OCF

exponentiation algorithm and thus the OCF overhead is relatively quite small.
The average percentage overhead of using the OCF via the Cryptodev interface
compared to the standalone version is 0.4%, with a range of 0.1% for the smallest
number of messages per request to 0.6% for the largest. A related point is that
we have performed these tests with and without the new memory management
system and also with and without pipelining as in the symmetric-key tests above.
The results were indistinguishable from the standalone version due to the small
overhead associated with data transfer through the OCF compared to the work
done on the GPU.

Figure 14 illustrates the behaviour of the OCF when processing multiple
asymmetric-key requests with the same key concurrently. We achieve concur-
rency by using multiple threads via the Cryptodev interface. As it is a block-
ing interface there is no other way a userspace thread can achieve concurrency.
We also test concurrency via direct kernel calls to the Crypto layer, which per-
mits asynchronous request execution. This permits multiple outstanding requests
within the Gpucrypt request queue at one time using a single kernel thread. The
“Concurrency Level” label in the figure refers to either the number of threads
(Cryptodev test) or the number of concurrent requests sent asynchronously
(Crypto test). All tests, both multithreaded and single threaded, perform the
same total number of asymmetric operations. Thus, as the concurrency increases
the number of messages per request decreases, shown in brackets on the x-axis.
We have highlighted the performance improvement when processing requests
consisting of 112 primitives concurrently versus serially. This improvement is
due to the use of batching as described in Section 4.1. From Figure 14 we can
also see that the multithreaded tests lose performance as the concurrency level
increases. The main reason for this performance degradation is the inability to

GPU Accelerated Cryptography as an OS Service 127

Fig. 14. Concurrency and GPU accelerated RSA-1024 using a single key within the

OCF

maintain an occupied GPU. In the tests, as the concurrency increases the request
sizes decrease, the OS has a harder time to deliver sufficient numbers of requests
to the queue for batching due to process switching overheads. This relates to the
reason the Crypto test outperforms the Cryptodev test. The OS does not have
to reschedule processes as frequently to deliver the same amount of data to the
GPU.

6 Conclusions

We have seen that the GPU can be effectively integrated into the OCF with
careful design of a driver consisting of a kernelspace OCF driver and a userspace
daemon. The paper shows that there is an average overhead of 3.4% when using
the OCF for AES over a standalone implementation. In the context of RSA-
1024 we see that there is a very low 0.3% average overhead when compared
to a standalone version. A new memory management system within the OCF
was shown to be critical in maintaining this performance for symmetric-key
operations. Without its use we see a drop in performance of over 50% when
using the OCF’s kernelspace Crypto interface, and over a 70% drop via the
OCF’s userspace Cryptodev interface.

We presented a new general purpose mechanism for processing multiple
asymmetric-key requests on the GPU and found that the preprocessing of mixed
key requests is crucial to maintaining performance. We have also shown the ef-
fectiveness of integrating this mechanism as part of the OCF and its use within
multithreaded and asynchronous scenarios. The most important factor regard-
ing performance in these scenarios is the ability of the OS to schedule multiple

128 O. Harrison and J. Waldron

threads efficiently so as to provide enough work for the GPU to reach peak per-
formance. We have seen that GPU accelerated cryptographic functions can be
made available in a uniform manner to all OS components, both in-kernel and
userspace, via the OCF without excessive overhead.

References

1. Bernstein, D., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on Graph-

ics Cards. In: International Conference on Advances in Cryptology - Eurocrypt,

pp. 483–501 (April 2009)

2. Fleissner, S.: GPU-Accelerated Montgomery Exponentiation. In: International

Conference on Computational Science ICCS, pp. 213–220 (May 2007)

3. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-

modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES

2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

4. Harrison, O., Waldron, J.: Practical Symmetric Key Cryptography on Modern

Graphics Hardware. In: USENIX Security Symposium, pp. 195–209 (July 2008)

5. Harrison, O., Waldron, J.: Efficient Acceleration of Asymmetric Cryptography on

Graphics Hardware. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,

pp. 350–367. Springer, Heidelberg (2009)

6. Manavski, S.A.: CUDA Compatible GPU as an Efficient Hardware Accelerator for

AES Cryptography. In: IEEE International Conference on Signal Processing and

Communications, pp. 65–68 (November 2007)

7. Moss, A., Page, D., Smart, N.P.: Toward Acceleration of RSA Using 3D Graph-

ics Hardware. In: IMA International Conference on Cryptography and Coding,

pp. 364–383 (December 2007)

8. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric

Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,

pp. 79–99. Springer, Heidelberg (2008)

9. Yang, J., Goodman, J.: Symmetric Key Cryptography on Modern Graphics Hard-

ware. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 249–264.

Springer, Heidelberg (2007)

10. Yeom, Y., Cho, Y., Yung, M.: High-Speed Implementations of Block Cipher ARIA

Using Graphics Processing Units. In: International Conference on Multimedia and

Ubiquitous Engineering, pp. 271–275 (April 2008)

11. Leffler, S.J.: Cryptographic device support for FreeBSD. In: Usenix, BSD

Conference, pp. 69–78 (September 2003)

12. OCF-Linux Project, http://ocf-linux.sourceforge.net/

13. linux-crypto (Crypto API), http://mail.nl.linux.org/linux-crypto/

14. Harrison, O.: Source code, http://www.scss.tcd.ie/~harrisoo/code.html

15. Blythe, D.: The Direct 3D 10 System. ACM Transactions on Graphics 25(3),

724–734 (2006)

16. Nvidia Corporation, CUDA, http://developer.nvidia.com/object/cuda.html

17. Rosenberg, U.: Using Graphic Processing Unit in Block Cipher Calculations. Mas-

ter’s Thesis, University of Tartu (2007)

18. Harrison, O.: Acceleration of Cryptographic Functions using Graphics Hardware

(2010),

https://www.scss.tcd.ie/publications/tech-reports/tr-index.10.php

http://ocf-linux.sourceforge.net/
http://mail.nl.linux.org/linux-crypto/
http://www.scss.tcd.ie/~harrisoo/code.html
http://developer.nvidia.com/object/cuda.html
https://www.scss.tcd.ie/publications/tech-reports/tr-index.10.php

GPU Accelerated Cryptography as an OS Service 129

19. Quisquater, J.-J., Couvreur, C.: Fast Decipherment Algorithm for RSA Public-Key

Cryptosystem. Electronics Letters 18(21), 905–907 (2008)

20. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1996)

21. Riffa, M.C., Bonnairea, X., Neveub, B.: A revision of recent approaches for two-

dimensional strip-packing problems. Engineering Applications of Artificial Intelli-

gence 22(4-5), 823–827 (2009)

A OCF Extensions

A.1 New Memory Management Interface

The following lists the interface extension for the Crypto and Cryptodev layers
within the OCF to support the new memory management system.

A.1.1 Crypto Layer Interface

crypto alloc(): pass in the size and optionally the device ID for memory alloca-
tion. Returns a kernelspace pointer and the device that performed the allocation.
If the allocation fails null is returned.

crypto free(): pass in a pointer returned by crypto alloc().

crypto translate(): pass in a pointer returned by crypto alloc(). Returns a
device space pointer if a mapping is found.

A.1.2 Cryptodev Layer ioctl Interface

CIOCALLOC: this takes in an allocation request structure as a parameter, which
specifies the requested buffer size and suggested device ID. The same structure
is used to return the userspace pointer and actual device used for the allocation.

A.2 Gpucrypt ioctl Interface

The following ioctls are used to communicate with the Gpucrypt device via
/dev/gpucrypt. These are used by the Gpucryptd userspace daemon to co-
operate with the OCF to complete cryptographic requests.

GPU REGISTER * REQ BUF: this is a series of ioctls which Gpucryptd driver exe-
cutes on startup to register shared request queues for each type of OCF request
supported by the GPU driver. * refers to ALLOC, FREE, KPROCESS (asymmetric
request processing) and PROCESS (symmetric request processing).

GPU READY: after the request buffers are created, shared and initialised and all
state is ready for operation, the Gpucryptd daemon registers itself as ready for

130 O. Harrison and J. Waldron

work with the Gpucrypt driver. The driver, on receipt of this ioctl, issues a reg-
ister command to the OCF to inform it that it is ready to start receiving requests.

GPU WAIT FOR WORK: the Gpucryptd daemon process cycles through the request
queues, continually processing any available work. When there are no more re-
quests to process, rather than continually scanning it calls the Gpucrypt driver
to wait for work using this ioctl. On receipt of this request the Gpucrypt sleeps
the calling process on a kernel wait queue. When work is subsequently received
from the OCF, the Gpucryptd is woken by calling wake on this wait queue, thus
releasing Gpucryptd to finish the rest of the ioctl and return to userspace to
process the new work.

GPU RETURN * REQ: on finishing of a request, the Gpucryptd daemon uses this
series of ioctls to deliver the work back to the OCF. This ioctl calls the OCF
crypto done() function, which can either process the registered callback function
for the request immediately or allow the OCF return queue kernel thread to do
so later. An application that has a long callback function may configure the
cryptographic request to not execute an immediate callback as the callback is
normally run in interrupt context. However, when the GPU is used, crypto done
is called from within process context, specifically the Gpucryptd context, and
thus long callback functions are less problematic and thus the use of the separate
return queue kernel thread can be avoided. * refers to ALLOC, FREE, KPROCESS
(asymmetric request processing) and PROCESS (symmetric request processing).

GPU SHUTDOWN: this ioctl is called on shutdown, which in turn unregisters the
Gpucrypt driver from the OCF.

From a Generic Framework for Expressing Integrity
Properties to a Dynamic MAC Enforcement for

Operating Systems

Patrice Clemente, Jonathan Rouzaud-Cornabas, and Christian Toinard

Ensi de Bourges – LIFO
Université d’Orléans

88 bd Lahitolle, 18020 Bourges Cédex, France
{patrice.clemente,jonathan.rouzaud-cornabas,

christian.toinard}@ensi-bourges.fr

Abstract. Protection deals with the enforcement of integrity and confidentiality.
Integrity violations often lead to confidentiality vulnerabilities. This paper pro-
poses a novel approach of Mandatory Access Control enforcement for guarantee-
ing a large range of integrity properties. In the literature, many integrity models
are proposed such as the Biba model, data integrity, subject integrity, domain in-
tegrity and Trusted Path Execution. There can be numerous integrity models. In
practice, an administrator needs to combine various integrity models. The major
limitations of existing solutions deal first with the support of indirect activities
aiming at violating integrity and second with the impossibility to extend existing
models or even define new ones.

This paper proposes a novel framework for expressing integrity requirements
associated with direct or indirect activities, mostly in terms of information flows.
It presents a formalization for the major integrity properties of the literature. The
formalization of the required security is efficient and a straightforward enforce-
ment is proposed. In contrast with our previous work, an information flow graph
provides a dynamic analysis of the requested properties.

The paper also provides a MAC implementation that enforces every integrity
property supported by our formalization. Thus, a system call fails if it could vio-
late the required security properties.

A large scale experiment on high interaction honeypots shows the relevance,
robustness and efficiency of our approach. This experimentation sets up two kinds
of hosts. Hosts with our solution in IDS mode detect the violation of the requested
properties. That IDS allows us to verify the completeness of our MAC protection.
Hosts with our MAC protection guarantee all the required properties.

Keywords: Integrity models, security properties, MAC enforcement, information
flows.

1 Introduction

Protection of computer systems is often seen in terms of availability, integrity and confi-
dentiality. Those fields have already been widely investigated by researchers. However,
everyday systems lack facilities of configuration. Moreover, they lack expressiveness

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 131–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

in the way the security policies are defined. Finally, existing security enforcements are
still vulnerable to complex attacks, such as sequences of authorized system calls. This
paper focuses on the field of integrity properties. General integrity aims at protecting
entities on a system against any kind of modification. We survey the most classical in-
tegrity models of the literature. We provide a theoretical model of operating systems,
and activities occurring on it, in terms of information flows, transition sequences1 and
direct or indirect executions. We propose a generic framework to express any existing
or new integrity property, under our model of the system. We go a step further into
the analysis of the classical integrity properties and provide more accurate definitions,
especially considering indirect violations of those security properties. The various se-
curity properties considered here are mainly related to data integrity, subject integrity
and binary integrity. We also consider more specific and complex so-called integrity
properties such as Trusted Path Execution and domain integrity (or Virtual Chroot).

After defining our model of the operating system entities and activities, we present
how it can cover any integrity property that one (e.g. an administrator) may want to
express. We then explain how our MAC mechanism can enforce any of the properties
our framework can allow us to model.

In order to evaluate the usefulness of our approach, we provide experiment results
with the protection against a complex attack case synthesizing numerous attacks in-
stances gathered on our honeypots. This long term experiment (six months) provides
strong assessment of the relevance, robustness, completeness and efficiency of our
approach.

The paper is organized as follows. Section 2 surveys research work done in the field
of integrity properties. It also positions and motivates the paper regarding that work.
Section 3 presents our model of the system entities and operations. It focuses on the
combination of those operations into information flows, as such flows enable to de-
fine and enforce multiple integrity properties. It also presents other complex activities
such as sequences of transitions and indirect executions. Using that formalism, Sect.
4 presents the modeling of major integrity properties of the literature. It also provides
more accurate and complete definitions of those security properties. It introduces new
and more specific security properties, to which we come back later to show the rele-
vance of our approach for real systems. Section 5 presents the algorithm used to en-
force the proposed security properties. It also provides a description of our enforcement
architecture, with our PIGA-KERNEL module and our PIGA-DYN decision engine.
Section 6 presents results obtained on our honeypot hosts. We compare classical DAC

linux protection against our MAC solution. This section also considers correctness and
efficiency issues. Section 7 sums up the paper and gives further ways to investigate.

2 Related Work and Motivations

Integrity models have been widely studied. Our approach is based on the analysis of
information flows, which have been also deeply studied in the past.

As explained below, classical integrity models often lack, in their implementation
and sometimes also in the principle itself, the notion of indirect integrity violations.

1 i.e. role transitions, that we call here context transitions.

Enforcing Generic Integrity Properties on Operating Systems 133

Indeed, the integrity of a resource can be directly altered by a process, or indirectly by a
user running a process that transits to another process that finally modifies the resource.

Data integrity has been informally defined in [1]. That general definition means that
data cannot be modified without authorization. In practice, such a general definition
is not sufficient to protect all the resources according to the user needs. That is why
various types of integrity properties and models were proposed.

2.1 Theoretical Approaches

Biba Integrity Model introduced in [2] proposed three policies. The Strict Integrity Pol-
icy is the mathematical dual of the Bell-La Padula Model [3] (BLP). As BLP, the system
consists of a set of subjects, a set of objects and a set of integrity levels (respectively
security levels in BLP). Biba Model enforces No-Read-Down/No-Write-Up policy. The
model guarantees both direct and indirect integrity. [4] proposed to use Biba Model
to build a kind of MLS model for commercial systems. However, the Biba model can-
not be extended to support other protection models such as non interference or domain
integrity.

In [5], the authors provide a model aiming at preventing integrity violation of sub-
jects through interferences, called subject integrity. In [6], the authors consider the
actions that can violate the integrity. Those actions include interferences but also any
type of direct and indirect violations of the integrity. However, the theoretical model-
ing language provided is not adapted to the enforcement of an Operating System, and
implementation perspectives are very partial. In [7], the author presents a Trusted Path
Execution property making it possible to execute only safe binaries, such as guarantee-
ing another form of integrity of the subjects involved.

In [8], the authors provide a model in which integrity and confidentiality are both
related to the notion privileges separation. The proposed model is based on the formal
verification of the code of the application, which is not always possible.

In [9], Fred B. Schneider introduces an automata based approach to enforce security
properties. In contrast with common approaches, the author proposed a protection ori-
ented method. However, the author states that not all security properties can be enforced
because the future interactions cannot be predicted. Only the safety properties can be
enforced. Moreover, the author states that information flows cannot be protected. The
author uses Communicating Sequential Processes language [10]. The method works by
verifying security properties on a set of execution traces. The automata is potentially
unbound. Advanced enforceable security properties, i.e. availability properties, were
later introduced in [11,12], but as far as we know, no implementation was provided.

In [13], the authors proposed a security policy model based on state transition to
guarantee both integrity and confidentiality. In contrast with [3], they consider an entity
as an information repository. The data contained in the entities are dubbed attributes. A
state transition takes place between a requestor and a destination entity known as the
observer. However, the integrity deals with the fact that the confidentiality controls are
correctly enforced. So, the paper deals rather with confidentiality than integrity.

In [14], the authors describe the Domain Integrity property allowing to confine some
subject in a virtual chroot.

134 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

2.2 Operating System Approaches

Several studies address how to support indirect information flows within an Operating
System. The HiStar Operating System [15] associates each object or subject with an in-
formation flow level. The problem of HiStar is that it is very close to the Biba integrity
model and suffers from the same limitations. The Flume Operating System [16] is very
close to HiStar. However, Flume does not control efficiently the information flows.
Asbestos [17] and HiStar both consider four different levels of information. The pro-
tection rules can only express pairwise relationship patterns. Again, information flows
involving multiple interactions and processes cannot be controlled easily.

In [18], a tool, called ‘Apol’ (analyse policy) has been provided as part of a complete
software suite for the administration of SELinux. Apol can search for transitive infor-
mation flows within the static SELinux Type Enforcement (TE) policy. But they cannot
prevent such transitive flows, nor even dynamically detect them during execution. Apol
thus comes as an assistant for analyzing and writing policies. Moreover, all transitive
flows detected in the policy cannot be removed by modifying the policy. It is due to the
TE’s principle itself: each interaction is treated individually from others. Transitivity is
not covered by the TE under Selinux.

In [19], a method to enforce all the security properties related to integrity and con-
fidentiality was introduced. It is based on a Security Properties Language (SPL) used
to describe the security properties. The approach reuses existing MAC policies, such
as SELinux, enforcing direct security properties. In contrast to SELinux, the proposed
approach adds protections against indirect interactions. The method is able to compute
in advance all the forbidden indirect interactions i.e. the sequences of interactions that
could break the required security properties. However, the solution requires existing
SELinux MAC policies for classical TE.

Since a few years ago, a hybrid approach between DAC and MAC systems has
emerged: augmented DAC approach. DAC is the most commonly implemented and eas-
ier to use access control model. The main drawback of a DAC system is the impossibility
to guarantee any security property [20]. The main drawback of classical MAC systems
(SELinux [21], GRSecurity, RSBAC) is the difficulty in writing a safe security policy
and the impossibility to guarantee system-wide integrity. Thus, [22,23,24] proposed to
use hybrid DAC and MAC models for mandatory integrity. However, [22], like the oth-
ers, reuses the DAC protection policy to control the flows between the users, so they
do not solve the impossibility problem to guarantee a security property starting from a
DAC policy.

2.3 Other Approaches

Language-Based Information-Flow Security [25] is one of the main research fields
related to information flow security. It is built on static analysis of source or binary
code and language semantics. But Language-based Information-Flow security requires
that any program on the system has been deeply studied in terms of information flow.
More than that, each new program must be analyzed, even without its source code. In

Enforcing Generic Integrity Properties on Operating Systems 135

addition, information flows between processes and programs are sometimes impos-
sible to prevent. Moreover, programs corrupted after their analysis can lead to new
information flows.

Nowadays, with the increasing number of virtualization technologies, another kind
of integrity checking is returning to the forefront: fingerprints. Classically, a database
of fingerprints of objects [26,27] e.g. critical files, kernel structures and objects, man-
ages the modifications. The objects are checked against their fingerprints. The integrity
of the fingerprints themselves is critical and unless TPM (Trusted Platform Module) is
used [28], it is possible to tamper with them. Integrity Enforcement through virtualiza-
tion is a new field. Fingerprints [29] are resistant because they are outside the operating
system scope and used vTPM [30]. But such fingerprints require virtualizing the op-
erating system and causes overhead. However, fingerprints do not allow the control of
any kind of object, mainly files.

In [31], the authors use virtual machine introspection to isolate the policy decision
point from the kernel, which cannot be attacked any more by a malicious user gaining
root privileges. This work focuses on protecting the kernel integrity itself specifically
against well-known rootkits. The authors argue that their system is highly flexible and
handles the evolution of the system over time (e.g. objects attributes and the context
of the system). While the authors give an interesting usage of their model to define a
generic Chinese Wall policy, they do not consider any real-world usage of it, nor any real
enforcement perspectives. The work presented still lacks expressiveness: e.g. dynamic
separation of duty is not covered by the proposed solution. Moreover, the authors do
not provide any performance evaluation of any of their work, questioning the usability
of the solution. Given those weaknesses that we address in this paper, the authors do
not propose a solution to replace existing access control enforcement systems but rather
a complementary solution to keep those enforcement mechanisms secure.

2.4 Motivations

Our purpose is to propose a general framework for defining complex and mixed se-
curity properties. In this paper, we focus on integrity properties. Thus, one needs a
formal language that is powerful enough. A straightforward support of that framework
is required within an Operating System. We aim at providing a powerful but easy and
comprehensive way to define ad-hoc required security properties and allow their au-
tomatic enforcement using our PIGA-DYNdynamic protection module. Our approach
tracks the information flows onto the target system. Any elementary operation (i.e. sys-
tem call) on the target operating system is thus monitored. The major advantage of
our approach is that it can monitor both direct and indirect flows while providing an
immediate implementation that controls the formalized properties. Thus, a security ad-
ministrator can reuse different integrity canvases. He can also propose new integrity
canvases using our language. The new canvases are processed straightforward enough
by our MAC module. In contrast with low-level MAC mechanisms, the required in-
tegrity policies can be defined easily. Finally, our solution does not require any existing
MAC policies. Our solution computes dynamically the relevant system activities in a
very efficient and relevant manner. That efficiency must be evaluated. This is done with
large scale experimentations using real and unknown attacks.

136 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

In a preliminary work [32], we have presented an information flow approach in order
to prevent Race Condition (RC) based attacks. In contrast, this new paper details and
extends the model, and addresses integrity. In addition, it provides a strong real world
example of attacks gathered on our honeypots, on which our protection system blocked
every instance.

3 System Modeling

In order to formalize the integrity properties in terms of activities on the Operating
System, let us first define the model of the target system. The first requirement is to
be able to associate a unique security label (also called security context) to each system
resource. A security context can be a file name or the binary name executed by a process.
Our system fits well for DAC OS (GNU Linux, Microsoft Windows) or MAC ones such
as SELinux whereas security contexts are special entities controlled by the kernel.

3.1 System Time, Entities and Operations

In essence, an operating system is defined by a set of entities performing operations on
other entities. Those entities are referred here as ‘security contexts’. Active contexts are
called subject contexts while passive ones are called object contexts. Such contexts can
carry information.

Formally, an operating system consists of the following elements:

– A set of system timestamps T , representing any possible time given by the system
clock, from 0 to ∞.
Any t ∈ T is a timestamp representing a given system time.

– A set of subject security contexts SSC.
Each ssc ∈ SSC characterizes an active entity, i.e. processes, that can perform
actions, i.e. system calls.

– A set of object security contexts OSC.
Each osc ∈ OSC characterizes a passive entity (file, socket, . . .) on which system
calls can be performed.

– A set of all security contexts SC = SSC ∪ OSC, with SSC ∩ OSC = ∅.
For example, let us consider the apache webserver reading an HTML file. The
apache process is identified as a subject (/usr/bin/apache ∈ SSC in a classi-
cal Linux system or apache_t ∈ SSC in a SELinux environment) and the file
is considered as an object (/var/www ∈ OSC in a classical Linux system or
var_www_t ∈ OSC in a SELinux environment).

– A set of elementary operations EO.
EO denotes all the elementary operations, i.e. system calls, that can occur on the
system (i.e. read_like and write_like operations).

– A set of interactions: IT : SSC × EO × SC × T × T .
Each element of IT is thus a 5-uple that formally represents an interaction on the
system. We will use the following notation for such an interaction: ssc

eo−→ tsc,
where ssc ∈ SSC, tsc ∈ SC, eo ∈ EO, ssc �= tsc. In essence, an interaction
it ∈ IT represents a subject ssc ∈ SSC invoking an operation eo ∈ EO on a
given context tsc ∈ SC, starting at a system time ts and ending at a system time te.

Enforcing Generic Integrity Properties on Operating Systems 137

– Three functions: src : IT → SSC, tgt : IT → SC and op : IT → EO,
that return respectively the source context, the target context and the operation
involved in an interaction.

– A system trace S.
The execution of an operating system can be seen as a set of invoked interactions.
The executed interactions modify the OS state [33]. When we consider prevention,
we work with invocation trace. The invocation trace thus contains all tried interac-
tions, even those which are finally not allowed to be performed. Thus, each time an
interaction iti occurs on a given system (before being allowed, in case of a preven-
tion system), the corresponding system trace becomes Si ← Si−1 ∪ iti.

3.2 Information Flows

As the purpose of this paper is to present security properties defined using information
flows, we first define precisely what those information flows are. We consider informa-
tion flows at the operating system level: when an interaction occurs (i.e. an elementary
operation is performed between two entities on the system), there is one potential con-
sequence: that interaction can produce an information flow from one security context
to another. For example, when a process reads in a file, the memory of the process re-
ceives information from the file read. On the other hand, when a process writes some
information in a file (or in memory, or in a socket, etc.), it transfers some information
to this resource. The resource thus receives new information.

With our modeling of the system, flows can be described as the following. An infor-
mation flow transfers some information from a security context sc1 to a security context
sc2 using a write_like operation or to sc1 from sc2 using a read_like operation2.

The formal modeling of the system is then extended with the following sets:

– A subset of EO of read_like operations REO.
– A subset of EO of write_like operations WEO.

Let us specify various cases of information flows in order to define relevant security
properties.

3.3 Direct Information Flows

Let us first give various definitions of direct flows between two security contexts.

Definition 1 (Single Direct Information Flow). Given a system trace S, a single di-
rect information flow from a subject context ssc performing a single write_like oper-
ation to a target context tsc, starting at a system time ts and ending at a system time

2 To be able to decide if an interaction produces an information flow between two security
contexts, we use a mapping table, derived from the one coming with ‘Apol’, from Tresys [18].
That mapping table says for each eo ∈ EO if it can flow information – and in what direction
(possibly both) – between the two security contexts, or not. It also says to which criticality
level the interaction is set.

138 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

i t (write_like)
 1

i t (write_like)
 2

single direct
 flow 1

single direct
 flow 2

it ends 2

it starts 2

it ends 1

it starts 1

sc
1

sc
2

sc
1

sc
2

sc
3

sc
3

t i m e

secur i ty contexts

(a). Interactions (IT) (b). Single direct
flows (eq. to IT in (a)).

it (read_like)

it (read_like)

it (write_like)

 3

 4

 5

i t ends 4

it starts 4

it ends 3

it starts 3

it ends 5

it starts 5

single direct
 flow 4

single direct
 flow 5

single direct
 flow 3

flow ends 2

f low starts 2

f low ends 1

f low starts 1

f low ends 4

f low starts 4

f low ends 3

f low starts 3

f low ends 5

f low starts 5
mult iple

 direct
 f low 2

sc
1

sc
2

sc
3

mult iple
 direct
 f low 1

(c). Multiple direct
flows (eq. to (b)).

+

+

mult ip le
direct
flow
starts

 1

mult ip le
direct
flow
starts

 2

mult ip le
direct
flow
ends

 1

mult ip le
direct
flow
ends

 2

t 1

t 7

t 8

t 9

t 4

t 6

t 5

t 2
t 3

Fig. 1. r/w_like interactions and corresponding single or multiple direct information flows

te (formally an interaction: (ssc, weo, tsc, ts, te), where ssc ∈ SSC, tsc ∈ SC, weo ∈
WEO, {ts, te} ∈ T , having ts ≤ te), is denoted by:

ssc
S
�[ts,te] tsc.

Symmetrically, a single direct information flow from a subject context ssc performing
a read_like operation to a target context tsc starting at ts, ending at te is denoted by:

tsc
S
�[ts,te] ssc.

Figure 1.(a). shows five write_like or read_like operations performed by the security
contexts sc1 and sc3 on sc2. The resulting five direct single flows of those interactions
are given in Fig. 1.(b). In some specific situations, we may use the following notation

S
�iti (e.g., in § 4.2) in order to be able to refer to the (unique) interaction related to

the single direct flow.

Definition 2 (Multiple Direct Information Flow). Given a system trace S, a multi-
ple direct information flow from a subject context ssc performing several write_like
operations to a target context tsc, with the first flow starting at ts1 , ending at te1 ,
and the last flow starting at tsk

, ending at tek
, where ssc ∈ SSC, tsc ∈ SC, weo ∈

WEO, {ts1 , tsk
, te1 , tek

∈ T }, having ts1 ≤ tek
), denoted by ssc

S

�+
[ts1 ,tek

] tsc, is
defined by:

ssc
S

�+
[ts1 ,tek

] tsc
def≡

(

∃k, k > 1, ∀i ∈ [1..k],
∧(

ssc
S
�[tsi

,tei
] tsc

)

)

Enforcing Generic Integrity Properties on Operating Systems 139

secur i ty contexts

single
direct

f low s

sc
1

sc
2

sc
3

mult iple
 direct
 f low m

(a). Single and
mult iple direct f lows.

+

single direct
flow starts s

single direct
flow ends s

general
 direct
 f low 1

general
direct

f low 2

sc
1

sc
2

sc
3

indirect
 f low a

(b). General direct
 f lows (eq. to (a)) and

equiv. indirect f low

general
 information
 f low g

sc
1

sc
2

sc
3

(c). General
Information f low

(eq. to (b))

general direct
f low starts

 1

general direct
f low starts

 2

general direct
f low ends

 1

general direct
flow ends

 2

general
flow
starts

general
flow
ends

t i m e

mult iple direct
flow ends m

mult iple direct
flow starts m

t 1

t 2
t 3

t 4

Fig. 2. Single or multiple direct information flows and related indirect information flows

Symmetrically, a multiple direct information flow from a subject context ssc perform-
ing several read_like operations to a target context tsc starting at ts1 and ending at

tek
is denoted by: tsc

S

�+
[ts1 ,tek

] ssc. That second definition introduces the direct in-
formation flows possibly occurring several times between the same contexts. It aims at
abstracting multiple flows between two contexts in one global flow between those con-
texts. For example, in Fig. 1.(b)., there are three flows from sc1 to sc2: flow1, flow2
and flow4. In terms of information transfers, one can consider that given those three
information flows, information has started to go from sc1 to sc2 with the beginning of
the first flow (flow1), in t1, and has stopped at the end of the third one (flow4 in the
figure), in t7. The resulting multiple direct flows of those three flows is the multiple

direct flow 1, sc1

S

�+
[t1,t7] sc2, shown in Fig. 1.(c).

Definition 3 (General Direct Information Flow). Given a system trace S, a general
direct information flow from a security context ssc to a security context tsc occurring
when either a single direct flow or a multiple flow occurs from ssc to tsc, starting at
tsi , ending at tej , where ssc ∈ SSC, tsc ∈ SC, weo ∈ WEO, {tsi , tej ∈ T }, having

and tsi ≤ tej , denoted by ssc
S
�[tsi

,tej
] tsc, is defined by:

ssc
S
�[tsi

,tej
] tsc

def≡
(∃i, j ∈ N, i ≤ j,

(

(ssc
S
�[tsi

,tei
] tsc) ∨ (ssc

S

�+
[tsi

,tej
] tsc

)

)

140 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

3.4 Indirect Information Flows

As said previously, an information flow can occur directly between two security con-
texts. But it can also occur in many indirect ways. For example, there may be a first

flow ssc
S
�[tsi

,tei
] osc and then a second flow osc

S
�[tsj

,tej
] tsc, having tsi ≤ tej .

We consider this as an indirect information flow from ssc to tsc. Transitively, there may
theoretically be an infinite number of intermediary contexts between ssc and tsc.

Definition 4 (Indirect Information Flow). Given a system trace S, an indirect infor-
mation flow from one context sc1 to another context sck, starting at a system time ts1

and ending at a system time tek
, denoted by sc1

S
��[ts1 ,tek

] sck, is defined by:

sc1
S
��[ts1 ,tek

] sck
def≡

⎛

⎝

∃k ∈ [3.. + ∞],∀i ∈ [1..k − 2], sci ∈ SC
(sci

S
�[tsi

,tei
] sci+1) ∧ (sci+1

S
�[tsi+1 ,tei+1] sci+2)

∧ (tsi ≤ tei+1)

⎞

⎠ ,

where k represents the total number of contexts involved in the indirect flow.

Figure 2.(b). shows an example of such an indirect information flow where k = 3.
There are thus k − 1 = 2 general direct flows involved, as visible in Fig. 2.(b). The
first general direct flow (flow1) is equivalent to the multiple direct flow (flowm) of
Fig. 2.(a). The second general direct flow (flow2) is equivalent to the single direct flow

(flows) of Fig. 2.(a). Given those two general direct flows sc1
S
�[t1,t2] sc2 (flow1)

and sc2
S
�[t3,t4] sc3 (flow2), there is an indirect information flow sc1

S
��[t1,t4] sc3

(flowa in Fig. 2.(b).).

Definition 5 (General Information Flow). Given a system trace S, an information
flow from one context sc1 to another context sck, starting at the system time ts1 and

ending at the system time tek
, denoted by sc1

S
���[ts1 ,tek

] sck , is formally defined by:

sc1
S

���[ts1 ,tek
] sck

def≡
(

sc1
S
�[ts1 ,tek

] sck) ∨ (sc1
S
��[ts1 ,tek

] sck

)

Figure 2.(c). gives an example of a general information flow: sc1
S

���[t1,t4] sc3 (flowg).
It is equivalent to the indirect information flow (flowa) in Fig. 2.(b).

3.5 Other Kinds of Interactions and Flows

Transitions and executions. In some particular security properties we present at the
end of the next section, such as Trusted Path Execution ([7]), we need to exploit specific
kinds of interactions, such as transition_like system calls and exec_like ones. The
formal modeling of the system is then extended with the two following sets:

– A set T EO of transition_like operations, which is a subset of WEO.
Indeed, a transition is performed when a subject security context transits to another
subject security context, in order to gain its privileges. For example, user_t can

Enforcing Generic Integrity Properties on Operating Systems 141

transit to root_t in order to access root privileges. Following that sense, any transi-
tion is assumed to be a write_like operation, as the source context comes with its
own information to another context.

– A set XEO of exec_like operations, which is a subset of REO.
An exec_like operation is performed when a subject security context runs an object
binary context. To do that, it loads the binary data into its own memory. That is why
an exec_like operation is seen as a read_like operation.

Transition Sequences and Indirect Executions. In terms of information flows, before
the current section, the two previous kinds of interactions were implicitly included in the
read_like and write_like ones. We only need their use for the TPE security property.
In other security properties, we stay at the above level of detail: only read_like and
write_like operations, that provide all the information needed for their definitions and
application. For the sake of conciseness, we only briefly introduce three new operators:

1. a first operator for the transitive sequence of subjects transitions;
2. a second operator for ‘direct executions’;
3. a third operator for ‘general executions’, including both notions of direct and indi-

rect executions. So-called indirect execution are transition sequences followed by
direct executions.

Definition 6 (General Transition Sequence). Given a system trace S, a general tran-
sition sequence from one subject context ssc1 to another subject context ssck, starting
at the system time ts1 and ending at the system time tek

, is denoted by:

ssc1
S

���
tr [ts1 ,tek

]
ssck.

Definition 7 (Direct Execution). Given a system trace S, a direct execution performed
by a subject context ssc1 on an object context ssc2, starting at the system time ts1 and

ending at the system time te1 , is denoted by: ssc1
S
�
x [ts1 ,te1]

ssc2.

The definition of the two previous operators follows the same construction pattern as
for the ’Direct Single Information Flow’ operator.

Definition 8 (Indirect Execution). Given a system trace S, an indirect execution per-
formed by a subject context ssc1 on an object context osc, starting at the system time

ts1 and ending at the system time tek
, is denoted by ssc1

S
��
x [ts1 ,tek

]
osc. In essence, it

is a transitive sequence of transitions from ssc1 to another subject context sck, followed
by the execution of osc invoked by sck. It is formally defined by:

ssc1
S
��
x [ts1 ,tek

]
osc

def≡

⎛

⎝

∃j, k ∈ N, 1 ≤ j ≤ k,

(ssc1
S

���
tr [ts1 ,tej

]
sck) ∧ (sck

S
�
x [tsk

,tek
]

osc)

⎞

⎠ .

Definition 9 (General Execution). Given a system trace S, a general execution per-
formed by a subject context ssc1 on an object context osc, starting at the system time

142 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

ts1 and ending at the system time tek
, is either a direct or an indirect execution of osc

by ssc1, denoted by ssc1
S

���
x [ts1 ,tek

]
osc. It is formally defined by:

ssc1
S

���
x [ts1 ,tek

]
osc

def≡

⎛

⎝

∃k ∈ N, k ≥ 1,

(ssc1
S
�
x [ts1 ,tek

]
osc) ∨ (ssc1

S
��
x [ts1 ,tek

]
osc)

⎞

⎠ .

3.6 Sequential Flows

The general notion of flows includes interleaving of interactions. Sometimes one needs
to manage a sequential flow that is a case of the general flow. A sequential flow is a
transitive closure where each flow ends before the next one starts. For example, a tran-

sitive closure of (sc1
S

���[ts1 ,tei
] sc2) ending before (sc2

S
���
tr [tsj

,tek
]

sc3) ending be-

fore (sc3
S

���
x [tsl

,tem]
sc4) corresponds to a sequential flow denoted without timestamp

information as follows: sc1
S

��� sc2
S

���
tr

sc3
S

���
x

sc4.

4 Integrity Properties Modeling

In this section, we present the modeling of the major integrity properties found in litera-
ture, which uses information flows. In addition to giving a canonical expression frame-
work for any existing or non-existing integrity property, the main motivation of this part,
based on the formal model given previously is to allow the direct compilation of any
modeled security property into a protection algorithm. In the first subsection, we present
the data integrity followed by non interference. We end this subsection by introducing a
general integrity property. In the second subsection, we present other properties such as
Domain Integrity (or Virtual Chroot (VChroot)) and Trusted Path Execution which is a
particular property requiring other kinds of flows such as transition flows and exec_like
interactions.

4.1 Data Integrity

The purpose of the Data Integrity Property (informally defined in [1] as ‘data integrity’)
is to guarantee that no modification of a given object will be done on the system. It can
be defined as follows:

Given X , an entity and I , an information or a resource, the Data Integrity
Property for X on I is respected if X is not able to modify I .

For example, one should want to define such a property between a user and the
/etc/shadow file. Thus the user with the subject context user_t is not allowed to mod-
ify a file with the object context shadow_t.

Under our system modeling, given a trace S, the Data Integrity property definition
below expresses that a subject context cannot modify (the data contained in) an object
context:

Enforcing Generic Integrity Properties on Operating Systems 143

Property 1 (Direct Data Integrity). Given a system trace S, a subject security context
ssc and an object security context osc, the Direct Data Integrity (DDI) property for ssc
and osc is respected iff ssc is not able to directly transfer information to osc:

DDI(T, ssc, osc)
def≡ ¬(ssc

S
� osc)

The previous definition conforms with the common acceptance of the definition of ‘non-
interference’ given by Ko and Redmond [5]:

A group of users X , using a certain set of commands, is non-interfering
with a set of data D if what the group does with those commands has no effect
on the value of D.

Under our model, this definition leads to exactly the same security property as DDI ,
where any member of X is abstracted into a subject context, and any data of D into
an object context. However, the previous definition explicitly does not consider indi-
rect flows. The next definition we propose hereafter tackles that limitation by taking
into account situations where a subject transits to another subject which may have the
authorization to directly or transitively modify osc:

Property 2 (General Data Integrity). Given a system trace S, a subject security con-
text ssc and an object security context osc, the General Data Integrity (GDI) property
for ssc and osc is respected iff ssc is not able to directly or indirectly transfer infor-
mation to osc:

GDI(T, ssc, osc)
def≡

(

DDI(T, ssc, osc) ∧ ¬(ssc
S
�� osc)

)

⇔ ¬(ssc
S

��� osc)

which says that to enforce the GDI property between ssc and osc, no flow must occur
from ssc to osc.

Subjects Integrity. We present here security properties aiming at preventing subject
contexts against modifications. The main ones are often referred to as ‘non-interference’
in the literature. They were proposed by Goguen and Meseguer [6].

Goguen and Meseguer. Goguen and Meseguer defined the following non-interference
security property:

Given X , a set of subjects, Y a second set of users and D a set of data.
The ‘non-interference’ security property between X and Y is respected if no
member of X is able to modify D or if no member of Y is able to read data
from D.

Under our formalism, the common acceptance of that definition can be modeled as the
following:

144 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

Property 3 (GM-Integrity). Given a system trace S, two sets of subject security con-
texts SSC1 and SSC2, the Goguen and Meseguer (GMI) integrity property for SSC1
against SSC2 is respected iff no member of SSC1 is able to directly transfer informa-
tion to a shared object osc and no member of SSC2 is able to later receive information
from that shared object osc:

GMI(T, SSC1, SSC2)
def≡

⎛

⎝

∀ssc1 ∈ SSC1,∀ssc2 ∈ SSC2, osc ∈ OSC,
∀tsi , tei , tsj , tej ∈ T , (tsi ≤ tej),

¬
(

(ssc1

S
�[tsi

,tei
] osc) ∧ (osc

S
�[tsj

,tej
] ssc2)

)

⎞

⎠ .

That common acceptation does not allow to take indirect information flows into ac-
count. To go a step further, we propose the more accurate definition that follows:

Property 4 (General Integrity of Subjects). Given a system trace S, two sets of se-
curity subjects SSC1 and SSC2, the General Integrity of Subjects (GSI) property for
SSC1 against SSC2 is respected iff no member of SSC1 is able to transfer information
to any member of SSC2:

GSI(T, SSC1, SSC2)
def≡

(

∀ssc1 ∈ SSC1, ∀ssc2 ∈ SSC2,

¬(ssc1
S

��� ssc2)

)

.

4.2 Domain Integrity

Domain Integrity. The Domain Integrity Property allows the confinement of a set
of subjects into a subset of entities. We also call it a virtual chroot, or V CHROOT .
It is generally seen [14] as a strict confinement of a set of contexts: no interaction
from contexts of this set can actively be initiated from those contexts to other contexts
outside of this set. In terms of information flows, this security property can be defined
as follows:

Property 5. Given a system trace S and a set SC of security contexts, the Domain
Integrity for SC is enforced iff each member of SC is only able to share information
with other members of SC.

V CHROOT (T, SC)
def≡

⎛

⎜
⎜
⎝

∀sc ∈ SC,
(

(sc
S

��� sck) ∨ (sck

S
��� sc)

)

⇒
(sck ∈ SC)

⎞

⎟
⎟
⎠

.

In order to allow information flows generated by contexts outside of the V CHROOT ,
we propose a more precise and practically accurate definition of the V CHROOT
property:

Property 6. Given a system trace S and a set SC of security contexts, the General
Domain Integrity for SC is enforced iff each member of SC is only able to actively

Enforcing Generic Integrity Properties on Operating Systems 145

share information with other members of its domain SC, or not be able to actively
exchange information with entities outside of SC.

GV CHROOT (T, SC)
def≡

⎛

⎜
⎜
⎝

∀sc ∈ SC,
(

(sc
S
�iti sck) ∨ (sck

S
�iti sc)

)

⇒
(

(sck ∈ SC) ∨ (src(iti) �= sc)
)

⎞

⎟
⎟
⎠

.

The property above is optimal: it does not use any indirect flow. It is thus useless to
track indirect flows, single direct flows are sufficient. Thus, if any information exchange
occurs between a context of SC and another, the property is respected if the other
context is in SC or if sc is not the actor of the exchange.

Trusted Path Execution (TPE). The purpose of the Trusted Path Execution is to guar-
antee that a set of subjects is only able to make system calls using data that comes from
a set of objects known and trusted [7]. For example, the subject user_t is only able to
execute binaries that are coming from the object bin_t. Generally, the classically used
so-called TPE security property only deals with direct executions. It thus could be
defined as follows:

Property 7 (Direct TPE). Given a system trace S, a subject security context ssc and a
set of object contexts OSC, the Direct Trusted Path Execution (DTPE) Security Prop-
erty for ssc and OSC is respected iff ssc is only able to directly execute (binary)
objects of OSC:

DTPE(T, ssc, OSC)
def≡

(∀osc ∈ SC, ssc ∈ SSC,

(ssc
S
�
x

osc) ⇒ (osc ∈ OSC)

)

.

That definition is sometimes related to integrity because of its potential effects on the
subject performing the execution. Indeed, executing a malicious binary can lead to the
violation of the integrity for this subject. Unfortunately, this ‘direct’ definition does
not cover indirect executions, such as user_t transiting to root_t in order to execute
privileged programs. We thus introduce a more general definition of TPE.

Property 8 (General TPE). Given a system trace S, a subject security context ssc and
a set of object contexts OSC, the General Trusted Path Execution (GTPE) for ssc and
OSC is respected iff ssc is only able to directly or indirectly execute (binary) objects
of OSC:

GTPE(T, ssc, OSC)
def≡

(∀osc ∈ SC, ssc ∈ SSC,

(ssc
S

���
x

osc) ⇒ (osc ∈ OSC)

)

.

The logical contraposition of the previous implication is strictly equivalent to the
following formula:

¬(osc ∈ OSC) ⇒ ¬(ssc
S

���
x

osc)

which is another way of expressing (and allowing the enforcement of) the same prop-
erty: if osc is not in the OSC set (i.e. in the list of the trusted paths), ssc cannot
execute it.

146 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

5 Implementation

5.1 Architecture

As depicted in Fig. 3, our implementation for enforcing security properties on
GNU/Linux system is divided into two main parts: kernel-space and user-land. When a
user-land application requests a system call (edge #1), the system call is hooked by the
DAC protection (edge #2). For simplicity for our first prototype, as we need labels for

Application

Syscall

DAC LSM

SELinux TE PIGA-Kernel

PIGA-DYN Security Prop
1

2

3 4

5

6 9

7

8

10

11

12

13

14

KernelSpace

UserSpace

Reference Moni tor

Fig. 3. Architecture of PIGA-DYN Control Model

all entities on the operating system, we used SELinux Type Enforcement that provides
such labels. SELinux uses LSM3 hooks. Thus, LSM is also called when a system call
occurs (edge #3). However, LSM is not a security mechanism by itself, it is just a way
to hook the system call to implement a security monitor. Accordingly, LSM calls the
security monitor, in our case, the SELinux Type Enforcement (edge #4). To plug our
solution within the protection mechanisms, we modify the SELinux Type Enforcement
to make it call (edge #5) our kernel module: PIGA-kernel. PIGA-kernel is an interface
making it possible to plug our MAC monitor PIGA-DYN. PIGA-DYN runs in user-land
and listens (edge #6) for new system calls to be approved (or denied). It retrieves the re-
quired security properties (edge #7) and computes each system call against them (edge
#8). The permission decision is forwarded back to kernel space (edge #9). Then, it is
returned to the SELinux Type Enforcement (edge #10) that returns it to LSM (edge #11).
LSM sends the decision back to DAC (edge #12)that does a logical “AND” between its
decision and the one made by PIGA-DYN. Based on this computation, it allows or de-
nies the system call (edge #13). Finally, the system call is executed (or not) and the
corresponding response is sent back to the application that requested it in the user-land
(edge #14).

3 Linux Security Modules (LSM) is a Linux kernel framework allowing the support of numerous
security models while avoiding favoritism toward any single security implementation.

Enforcing Generic Integrity Properties on Operating Systems 147

5.2 Kernel-Space

System Call Hooks. As described in Sect. 3, our model requires two timestamps per
system call to manage parallel information flows. However, LSM cannot hook the end
of a system call to allow (or deny) the return of the result to the application in user-land.
As a consequence, in our testbed prototype, we used the only timestamp provided by
LSM: the starting time of the syscalls. Thus, for the moment, the start and end time are
assumed to be equal. This will be fixed in the future with a complete implementation.
In practice, as ending and starting times of direct information flows are stored in the
IFG all flows involving more than one syscall are already properly covered.

PIGA-kernel. The PIGA-kernel module is an interface between the access control in
kernel-space and our decision engine PIGA-DYN in user-land. Its sole purpose is to
generate a trace representing the corresponding interaction including the entity that
makes the system call and its destination but also the type of the system call itself and its
timestamp. Once the trace is generated, PIGA-kernel waits for the PIGA-DYN’s decision
and forwards it back to LSM. The communication between PIGA-DYN and PIGA-kernel
is done using a seq_file, which is a special procfs interface. It is often used to transfer
data between kernel and user land, while avoiding many issues like maximum size of
the buffer.

That implementation is consistent with the LSM and SELinux approaches. Indeed,
our implementation uses LSM. Thus, each system call generates a single trap within the
kernel. During that trap execution, DAC permissions are processed first, then SELinux
permissions and finally PIGA permissions are processed. Since that current implemen-
tation aims at promoting portability and security of the PIGA protections, the decision
engine of PIGA runs in user space as a Java application. It is a safe approach since the
decision engine is a complex piece of code that cannot be easily integrated within the
Linux kernel as a C piece of code. PIGA’s decision within the kernel would be very
unsafe since it could not take advantage, first, of the safety of the Java language and,
secondly, of the SELinux protections for the Java application. The presented perfor-
mance in Sect. 6.3 show an acceptable overload due to the Java application.

5.3 User-Land

Expressing Security Properties. Each security property described in Sect. 4 is imple-
mented as a function. Each function requires one or more parameters. These parameters
are security contexts. Accordingly, the set of required security properties is simply a set
of functions with specific parameters. For example, to enforce the data integrity be-
tween a user with the user_t context and a file with shadow_t context, the required
function is GDI(T, user_t, shadow_t).

As a list of security properties can be enforced on the operating system and they must
all be respected at any time, a logical “AND” is done between each item (i.e. security
property) on that list. The result of this logical combination is the decision taken by
PIGA-DYN for the system call.

For example, the three following security properties, GTPE(T, user_t,
{usr_bin_t}), GV CHROOT (T, {user_t, usr_bin_t, user_home_t}) and

148 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

GDI(T, user_t, {usr_bin_t}), are required. If one of them is broken by a system
call, the system call is denied. Using our formal framework, we can create a security
property that combines those three security properties into a more general one, e.g.
Restricted_User({user_t, usr_bin_t, user_home_t}). Restricted_User property
is simply a combination of the three security properties with a logical “AND”.

Our framework can also be used to create new custom security properties. Accord-
ingly, an administrator can implement a very large array of security properties just by
using our language. For example, an administrator may want to guarantee that the
user_t subject cannot directly or indirectly modify the shadow_t object at any time
except if the modification is done directly through the passwd_t subject context. Using
our formal language, it could be defined as follows:

GDIcustom (T, user_t, passwd_t, shadow_t)
def≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(user_t
S

���[tsi
,tej

] shadow_t) ⇒
⎛

⎜
⎜
⎝

(user_t
S

���[tsi
,tex] passwd_t) ∧

(passwd_t
S
�[tsy ,tej

] shadow_t) ∧
(tsi ≤ tej)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

PIGA-DYN dynamically computes those different operators using the following Infor-
mation Flow Graph.

Information Flow Graph. PIGA-DYN uses an Information Flow Graph (IFG) to keep
the knowledge of previously allowed information flows. Within the IFG, each node rep-
resents a single security context and each edge represents a direct (single or multiple)
information flow. The temporal relationships between information flows are managed
on the IFG through a parameter on each edge. This parameter contains the couple of
timestamp that represents the first and the last occurrence of the general direct informa-
tion flow. Thus, the IFG is able to store the different information flows we have defined
in Sect. 3.

Direct Single Information Flow. A direct single information flow, � (see defini-
tion 1), is stored as an edge between the two nodes that represent the related security
contexts. The two timestamps contained on the edge are equal and set by the direct
single information flow occurrence time.

Direct Multiple Information Flow. As explained in definition 2, the direct multiple

information flow, �+ , is composed of several direct single information flows. Thus,

as � , �+ is stored as an edge between two nodes. But, the two timestamps con-
tained on the edge are not equal. The first one contains the starting time of the first
occurrence of the first flow. The second one contains the ending time of the last flow.

General Direct Information Flow. As described in definition 3, a general direct

information flow , � , can be either � or �+ . Thus, the IFG stores � as an
edge between two nodes where the couple of timestamp is defined through the same

approach as for � or �+ .
Indirect Information Flow. �� are not explicitly stored in the IFG. As intro-

duced in definition 4, it is composed of several general direct information flows. Thus,

Enforcing Generic Integrity Properties on Operating Systems 149

�� is a combination of several edges representing a path on the IFG. Path compu-
tations enable the enumeration of all the indirect flows in the trace providing thus a
dynamic computation of the indirect information flows.

General Information Flow. As ��� is either a � or a �� (see definition 5), the
IFG implements it as an edge (direct flow) or a path (indirect flow) between the two
related nodes (security contexts).

Extending IFG to store transitions. As the TPE security property requires to man-
age the transitions, the transition flows are stored as special edges. The computation of
indirect transition flows is close to information flows. Moreover, the transition interac-
tions are also added to the IFG as write_like interactions and thus can be computed as
any other type of information flows. Thus, our graph enables us to manage efficiently
covert channels associated with the transitions.

Complexity. Obviously, using multiple direct single flows instead of single gen-
eral direct flows clearly provides an over-approximation of the flows. But this has the
great advantage of highly reducing the IFG’s size. The number of nodes is theoretically
bounded by n = O(|SC|), whereas the number of edges is theoretically bounded by
v = O((|SC|×|SSC|−1)+(|SSC|×|SSC|−1)). This complexity corresponds to the
worst case, where each subject exchanges information with any other entity on the sys-
tem (|SC|×|SSC|−1) and each subject transits to any other subject (|SSC|×|SSC|−1).
However impossible in practice, v is really bounded as presented. The graph thus fits
easily in memory. For example, with a Gentoo Linux OS, n < 800 and v < 60, 000,
occupying less than 128Mo of memory. Thus, the graph can be efficiently processed
permitting a real time enforcement of the required properties.

PIGA-DYN. PIGA-DYN is divided into three main steps: construction of the graph,
enforcing of the security properties and updating the IFG.

Construction. The purpose is to maintain the IFG that represents all the information
flows that previously occurred. It is built by analyzing each trace received from PIGA-
kernel. A trace is translated to a direct single information flow (�). Then it modifies
the IFG in two different ways:

1. If it is the first occurrence of the information flow, the edge storing � is added to
the graph.

2. If it is not the first occurrence, the last occurrence time of the information flow is
updated with the time of the trace. Within our model, a flow such as �[tsd

,ted
]

leads to having �[tsg ,teg] modified into �[tsg ,ted
] . The previous ending times-

tamp is backed up into a temporary variable.

For example, the set of traces in the listing 1.1 is used to build the IFG shown in Fig. 4.a.
where:

– timestamp t210: a user’s process starts reading a file in the user’s home directory;
– t212: the user’s process ends reading a file in the user’s home;
– t214: the user’s process transits to the root context;
– t219: root writes into the /etc/shadow file.

150 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

Listing 1.1. "A set of traces representing system interactions"

210 : user_ t − f i l e : read−> user_home_t
212: user_ t − f i l e : read−> user_home_t
214: user_ t −process : t r a n s i t i o n −> r oo t
219: r oo t − f i l e : wr i te −> shadow_t

Enforcement. Each security property is abstracted to flows associated to the edges of
the IFG. PIGA-DYN is able to enforce a security property by searching for direct and/or
indirect paths within the IFG. Accordingly, searching for the occurrence of a flow is
similar to searching for a path between two nodes. For example, in Fig. 4.(a), the data
integrity between user_t and shadow_t can be abstracted to an indirect information

flow between user_t and shadow_t. As a path user_t �+ root_t �+ shadow_t
(i.e. an indirect information flow user_t �� shadow_t) exists in Fig. 4.(a), the prop-
erty could be broken and PIGA-DYN will refuse the corresponding call (i.e. 219: root
−file : write−> shadow_t) as described in the following section.

user_t

user_home_t

 root_t shadow_t

210 - 212

214 - 214

219 - 219

user_t

user_home_t

root_t shadow_t

210 - 212

214 - 214
Direct Single
Information Flow

Direct Multiple
Information Flow

Indirect
Information Flow

(a). IFG related to the traces
 in the listing 1.1

(b). IFG related to the traces in the listing 1.1
 when the third interaction is denied

214 - 214 214 - 214

t r
t r

t r Direct
Transition

Fig. 4. IFG related to the traces in listing 1.1

Updating the IFG. If a flow breaks a security property, the corresponding system
call is denied. Accordingly, the system call does not occur on the system. Thus, the IFG

needs to be restored to its previous state. This leads to two update cases. If the edge
corresponding to the flow:

1. has the same first and last occurrence timestamps: the flow occurred once. The edge
can then be simply deleted from the IFG.

2. has different first and last occurrence timestamps, the flow occurred multiple times.
The last occurrence timestamp is then restored to its previous value from a tempo-
rary backup variable.

For example, the IFG shown in Fig. 4.(a) is modified into the one in Fig. 4.(b). once
the data integrity violation is detected and the corresponding system call is denied (i.e.
the interaction with the timestamp 219 is deleted in the IFG). As a consequence, on the
target OS, the corresponding syscall is denied.

6 Experiments

For three years, we have been running multiple high-interaction honeypots. One of the
purposes of our honeypots is to test different system configurations and see how the

Enforcing Generic Integrity Properties on Operating Systems 151

attackers react and modify their attacks scenario to fit these different test cases. The
following section describes one of these tests.

6.1 Protecting against Information Harvesting through a Small Binary Path

We designed a test situation on our honeypots to see how an attacker reacts when he has
only a small set of commands available. To reach this goal, we limited the executable
binaries for the attackers to only the ones that are stored in /usr/bin. Basically, these
binaries allow the attackers to run classic shell commands like cd but the execution
of binaries allowing device interactions like ifconfig or system update like emerge4

is denied. Moreover, within this test case, the set of executable binaries by the root
account is larger as he can execute any binary stored in the /usr/bin, /usr/sbin, /sbin
and /bin directories. We advertised this constraint in the SSH server’s banner to direct
the attackers and we also advertised a privilege escalation vulnerability in the chsh
binary5 stored in /usr/bin.

Objectives of the Experiment. We aimed at preventing the previously explained at-
tack: a malicious user succeeding in collecting information that only privileged users
should have access to, by using illegitimately privileged commands (through root role).
In order to evaluate our protection for a real system use, we wanted to allow at the same
time (i.e., on the same machines as the ones used for the protection against the attack)
the legitimate root to use those commands. Our test scenario thus consisted of two sce-
narios: a legitimate scenario allowing root to administrate the system using privileged
commands, and another one called the ‘malicious’ one where an attacker tries to use
root commands. The first scenario L (legitimate) is fairly basic:

Step L.1. An administrator (with the root login) connects to the system through the
TTY device.

Step L.2. He executes a python script by using the python interpreter stored in the /usr
/bin directory.

Step L.3. He updates the system by launching the emerge command stored in the /sbin
directory.

The second scenario M (malicious) contains the attack:

Step M.1. An attacker connects to the system through the SSH server and gets an
interactive shell.

Step M.2. He harvests information about the system by launching a python script
through the python interpreter stored in the /usr/bin directory.

Step M.3. He tries to harvest information about the system network configuration by
launching the /sbin/ ifconfig command.
Generally, when this fails, the attacker tries the next two steps.

4 The emerge command is similar under Gentoo to the apt−get command under Debian.
5 The chsh command changes the user login shell. It has the setuid flag on and it is owned by

root. Thus, the privilege escalation allows the attacker to gain root privileges.

152 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

Step M.4. He uses the local privilege escalation contained in /usr/bin /chsh binary to
gain root access.

Step M.5. He tries to harvest information about the system network configuration by
launching the /sbin/ ifconfig command.

We describe now what happens when those scenarios are run under a classic Linux
coming only with DAC protection and then what happens under a Linux coming with
our solution PIGA-DYN.

Protection on a Classic GNU/Linux. For an operating system without our solution,
the running of the two scenarios above is described in the listing 1.2 for the legitimate
scenario L and in the listing 1.3 for the attack scenario M. The binaries are protected
against illegal execution through the DAC.

Listing 1.2. "Running of the legitimate steps of the scenario without our solution"

1 [r oo t] / usr / b in / python checkUpdate . py
2 Updates are a v a i l a b l e f o r the system . [1 0] L i b r a r i e s ,

[2 1] A p p l i ca t i o n s .
3 [r oo t] / sb in / emerge −−update −−deep −−newuse wor ld
4 [100%] System i s up−to−date .

Legitimate Scenario (cf. listing 1.2):

Step L.1. The first step is allowed as nothing denied the administrator connection to the
TTY device and, after entering his login and password, access to an interactive
shell.

Step L.2. The second step is allowed too (line #1-2) as root has the right to execute
commands in the /usr/bin directory.

Step L.3. The last step is allowed too (line #3-4) as root has the right to execute com-
mands in the /sbin directory.

So, this legitimate scenario works as it is intended to on a classic GNU/Linux system.

Listing 1.3. "Running of the malicious steps of the scenario without our solution"

1 [user] / usr / b in / python h a rve s t I n fo . py
2 I n f o rma t i o n harvested has been saved i n t o harv . t x t
3 [user] / sb in / i f c o n f i g
4 / sb in / i f c o n f i g : Permission denied .
5 [user] / usr / sb in / chsh " user%24%80;%42/ b in / bash "
6 ∗∗∗∗∗∗∗∗∗ LOCALE LiNUX EXPLOIT ∗∗∗∗∗∗∗∗∗ (u id =0(r oo t) g id =0(

r oo t)) : You are know ro o t !
7 [r oo t] / sb in / i f c o n f i g
8 eth0 Link encap : Ethernet HWaddr 00:1 a : 0 c : d6 : c4 : d9
9 i n e t addr : 1 7 2 . 2 9 . 1 . 3 5 Bcast : 1 7 2 . 2 9 . 1 . 2 5 5 Mask

: 2 5 5 . 2 5 5 . 2 5 5 . 0

Enforcing Generic Integrity Properties on Operating Systems 153

Malicious Scenario (cf. listing 1.3):

Step M.1. The first step is allowed as nothing denied a user connection to the SSH

server and access to an interactive shell.
Step M.2. The second step is allowed too (lines #1-2) as a user has the right to execute

commands in the /usr/bin directory.
Step M.3. The third step (lines #3-4) is denied as a user does not have the right to

execute commands that are stored in a directory other than /usr/bin.
Step M.4. Thus, to try to get network configuration, the attacker launches a local priv-

ilege escalation exploit (lines #5-6) on the /usr/bin /chsh command. As the
invoked command is stored in the /usr/bin directory, the attacker is allowed
to execute it. Thus, the fourth step is allowed and the privilege escalation
succeeds. Accordingly, the attacker has now the root privileges.

Step M.5. The last step (lines #7-8) is allowed as root has the right to execute a com-
mand in the /sbin directory. Accordingly, the attack succeeds as the attacker
has harvested the network configuration.

Protection with PIGA-DYN.

TPE Security properties. In order to prevent against such attacks, but keeping in mind
that legitimate administrators should have the right to execute privileged commands, we
set up specific security properties above classical DAC protection protecting binaries
against illegal executions. Those were two Trusted Path Execution properties.

The first one is defined to allow the admin scenario whereas the second one aims at
preventing the malicious one:

1. For the Legitimate Scenario: GTPE(T, root, {usr_bin_t, usr_sbin_t, bin_t,
sbin_t}): staff’s GTPE allowing the execution of binaries that come from the /
usr/bin but also from /usr/sbin, /sbin and /bin. In terms of flows, the security
property expresses that exec_like interactions coming from root_t or from an in-
termediary context (e.g. ssc) that is the end of a transition flow between root_t
and ssc, only end with {usr_bin_t, usr_sbin_t, bin_t, sbin_t} (i.e. root_t �

x

{usr_bin_t, usr_sbin_t, bin_t, sbin_t}, or root_t
S

���
tr

ssc �
x
{usr_bin_t,

usr_sbin_t, bin_t, sbin_t}).
2. For the Malicious Scenario: GTPE(T, user_t, {usr_bin_t}): user’s GTPE that

allows the attackers to run binaries that only come from the /usr/bin / directory. In
terms of flows, the security property expresses that (indirect) executions coming
from user_t only end with {usr_bin_t} i.e.

user_t �
x
{usr_bin_t} or user_t

S
���
tr

ssc �
x
{usr_bin_t}.

Enforcement. For an operating system with PIGA-DYN, the running of the scenario is
described in the listing 1.4 for the legitimate scenario L and in the listing 1.5 for the
attack scenario M. The corresponding information flow graph is displayed in Fig. 5.

154 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

sshd_t

user_t root_t

usr_bin_t sbin_t

ssh_socket_t

TPE

t ty_t

L1.a

L3
L2

M 1 . a
M 1 . b

M1 .c
M 2

M 3

M 4 . a

M 5

M 4 . b

T
Allowed Flow

Denied

Allowed TransitionT

L1.b

M 1 . d
T

T

Fig. 5. Information Flow Graph related to the Generic TPE Attack Scenario

Legitimate Scenario (cf. listing 1.4):

Listing 1.4. "Running of the legitimate steps of the scenario with our solution"

1 [r oo t] / usr / b in / python checkUpdate . py
2 Updates are a v a i l a b l e f o r the system . [1 0] L i b r a r i e s ,

[2 1] A p p l i ca t i o n s .
3 [r oo t] / sb in / emerge −−update −−deep −−newuse wor ld
4 [100%] System i s up−to−date .

Step L.1. The first step is allowed as nothing denied the administrator connection to

the TTY device (edges #L1.a and #L1.b) i.e. tty_t �+ root_t and
tty_t �

tr
root_t, after having entered login and password, access to an in-

teractive shell (edge #L2) i.e. root_t �
x

usr_bin_t.

Step L.2. The second step is allowed too (lines #1-2 and edge #B) i.e. root_t �
x

usr_bin_t as root has the right to execute commands in the /usr/bin direc-
tory. Indeed, the second GTPE property allows this step as usr_bin_t is part
of the set of objects that the subject root_t is allowed to execute. Moreover,
there is no transition flow between user_t and root_t at this moment.

Step L.3. The last step is allowed too (lines #3-4 and edge #L3) i.e. root_t �
x

sbin_t

as root has the right to execute commands in the /sbin directory. Indeed, the
second GTPE property allows this step as the context is part of the set of
executable contexts allowed for the root_t subject. Moreover, there is still no
transition flow between user_t and root_t.

Thus, this legitimate scenario works as it is intended to with our solution.
Malicious Scenario (cf. listing 1.5):

Enforcing Generic Integrity Properties on Operating Systems 155

Listing 1.5. "Running of the malicious steps of the scenario with our solution"

1 [user] / usr / b in / python h a rve s t I n fo . py
2 I n f o rma t i o n harvested has been saved i n t o harv . t x t
3 [user] / sb in / i f c o n f i g
4 / sb in / i f c o n f i g : Permission denied .
5 [user] / usr / sb in / chsh " user%24%80;%42/ b in / bash "
6 ∗∗∗∗∗∗∗∗∗ LOCALE LiNUX EXPLOIT ∗∗∗∗∗∗∗∗∗ (u id =0(r oo t) g id =0(

r oo t)) : You are know ro o t !
7 [r oo t] / sb in / i f c o n f i g
8 / sb in / i f c o n f i g : Permission denied .

Step M.1. The first step is allowed as nothing denied an attacker connection to the SSH

server sshd_t (edge #M1.a) i.e. ssh_socket_t �+ sshd_t and to get an
interactive shell user_t (edges #M1.b, #M1.c and #M1.d),
i.e. sshd_t �

x
usr_bin_t, sshd_t �+ user_t and sshd_t �

tr
user_t.

Step M.2. The second step is allowed too (lines #1-2 and edge #M2) i.e. user_t �
x

usr_bin_t. as a user has the right to execute commands in the /usr/bin di-
rectory at the DAC level. Moreover, our solution defines a GTPE for the
user_t context that must be applied. The property expresses that user_t has
the right to execute binaries with the usr_bin_t context. Thus, the second
step is allowed by our solution too.

Step M.3. The third step (lines #3-4 and edge #M3) i.e. user_t �
x

sbin_t is denied as

a user does not have the right to execute commands that are stored in a di-
rectory other than /usr/bin at the DAC level. Moreover, our solution defines
a GTPE for user_t. The property expresses that user_t does not have the
right to execute binaries that do not have the usr_bin_t context. Thus, the
third step is denied by our solution too.

Step M.4. To try to get network configuration, the attacker launches a local privilege
escalation exploit on the /usr/bin /chsh command (lines #5-6 and edges #M2,
#M4.a and #M4.b) i.e.
user_t �

x
usr_bin_t, user_t �+ root_t and user_t �

tr
root_t. As the

invoked command is stored in /usr/bin directory, the attacker is allowed to
execute it at a DAC level. On the other hand, the GTPE enforced for users
allows user_t to execute an object with the usr_bin_t context. Thus, the
fourth step is allowed and the privilege escalation succeeds. Accordingly,
the attacker has now the root privileges.

Step M.5. The last step (lines #7-8 and edge #M5) is allowed at the DAC level as a
user with root privileges has the right to execute a command in the /sbin
directory. But, the GTPE property related to user_t denied such execu-
tion. Indeed, the GTPE for root_t allows it but a transition flow exists be-
tween user_t and root_t by combining the edge #M4.b and the edge #M5.
Thus, the GTPE property for the user also applies as the attacker has passed
root through the user_t context6. Accordingly, the last step is denied as the

6 Also, a user gaining root privileges via “su” or “sudo” would face the same denial.

156 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

sbin_t context is not part of the user’s GTPE and the attack scenario failed
as the attacker is not able to harvest network configurations.

We show that our solution blocks the last step of the attack scenario and thus the final
objective of the attacker. That cannot be denied by a classic GNU/Linux system. Ac-
cordingly, we also show that classic security components like DAC permissions are eas-
ily bypassed and are not sufficient to enforce system wide security. Finally, it is worth
noting that for the last step, our solution detects a path between the user_t context and
root_t context thus showing that we effectively detect indirect attacks.

Our solution does not block the exploit but the effect of it on the system i.e. a privilege
escalation that allows a user to execute binaries outside of its GTPE. Whatever the
privilege escalation used, even a legitimate one like entering the valid root password,
the GTPE property denies the execution of a binary inside the root’s TPE by a subject
that has passed through the user_t context. Thus, by considering the effect and not the
exploit itself, our solution can block previously unknown attacks like 0-Day exploits.

6.2 Completeness

To evaluate the correctness of our approach, we configured our honeypot hosts with
PIGA-DYN in both detection and prevention mode. That way, we could verify if every
detected attack was prevented or not. As a result, during the six months of experiment,
we detected 224 real attacks. Under detection mode, each one generated several security
property alarms as shown in Table 1. All attacks were blocked by our protection mech-
anism. As shown in Table 1, there are more alarms than attacks. Indeed, in detection

Table 1. Number of attacks occurrences per security property

Security Property Nb of occurrences

GTPE(T, user_t, ...) 1684 (direct: 1427 and indirect: 257)
GV CHROOT (T, user_t,...) 2735
GDI(T, user_t,...) 346
GTPE(T, root_t,...) 12

mode, each attack can generate several alarms since it may break several security prop-
erties (even several times for each property). Some of them even generated thousands
of alarms for a single attack. There was a large number of GTPE(user, ...) alarms as
almost all the attackers download and execute binaries in their home (or in the tempo-
rary directory). As we explain in Sect. 6.1, the execution and/or the download of the
file is canceled by our solution in protection mode. There is also a large number of
GV CHROOT (user, ...) alarms as the attackers tried to harvest information about the
system but also tried to interact with local services that was both outside the user_t
domain. As the GTPE and GV CHROOT properties blocked most of the early steps
of the attacks, most of the attackers stopped their attack here. Less than 10% of the

Enforcing Generic Integrity Properties on Operating Systems 157

attackers tried to modify some binaries, generating thus data integrity alarms. Moreover,
in detection mode, only 4 attackers (generating 12 TPE(root) alarms) tried to gain root
privileges and used them to execute a binary they downloaded. They were all detected
and stopped by our solution in protection mode.

6.3 Performance

In order to evaluate the efficiency of our solution, we used numerous benchmarks
to compare three different configurations: 1) a classical Linux system with DAC and
SELinux TE; 2) a Linux system with DAC and SELinux TE with our solution PIGA-DYN

in detection (IDS) mode for detecting the violation of the required security properties;
3) a Linux system with DAC and SELinux TE with our solution PIGA-DYN in protection
(IPS) mode for enforcing the required security properties. Other things (CPU, memory,
etc.) were equal: Pentium-4 3Ghz with 1Gb. The tests were performed during the exper-
iments described in Sect. 6.1 in order to obtain relevant results. We use the lmbench [34]
suite on the three machines to measure bandwidth and latency. Lmbench attempts to
measure performance bottlenecks in a wide range of system applications. These bot-
tlenecks were identified, isolated and reproduced in a set of micro-benchmarks which
measure system latency and bandwidth of data movement.

Memory Accesses. First, we focused on the memory subsystem and measured band-
width with various memory operations. The results are listed in Table 2.

Table 2. Overhead of PIGA-DYN IDS/IPS for memory operations

Operation Description IDS IPS

libc bcopy Measuring how fast data blocks are copied when data <1% <1%
unaligned segments are not aligned with pages using bcopy().
libc bcopy Measuring how fast data blocks are copied when data <1% <1%
aligned segments are aligned with pages using bcopy().
memory bzero Measuring how fast memory blocks can be reset <1% <1%

using bzero().
unroled bcopy Measuring how fast data blocks are copied when data <1% <1%
unaligned segments are not aligned with pages without using bcopy().
memory read (> 512Kb) Measuring time to read x byte word from memory. <1% <2%
mem. read (< 512Kb) Measuring time to read x byte word from memory. <2% <3%
mem. write (> 512Kb) Measuring time to write x byte word to memory. <1% <2%
mem. write (< 512Kb) Measuring time to write x byte word to memory. 2% 3%
mem. r/w (> 512Kb) Measuring time to read an write x byte word to memory. 2% 3%
mem. r/w (< 512Kb) Measuring time to read an write x byte word to memory. 4% 5%

The differences between the three different configurations were very small. With
data blocks larger than 512Kb, the three configurations have almost the same per-
formance. With data blocks smaller than 512Kb, in most of the cases, the overhead

158 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

due to our security component is unnoticeable. In the worst case, like memory read-
/write, the maximum overhead is about 5%. Consequently, we can state that our security
component has little to no influence on data copy to and from the memory.

System Latency. Secondly, we used lmbench to measure latency in five different
aspects of the operating system:

1. System call: it measures the time to write one byte to /dev/null.
2. Process: it creates four different forms of process and evaluates the time it takes to

a) invoke a procedure, b) fork a process and invoke execve system call and c) fork
a process and invoke an interactive shell.

3. Network: it measures the time taken to make a HTTP request (GET/) on a LAN

and a WAN HTTP server.
4. Context switching: it measures context switching time for a small number of pro-

cesses of a given size (in Kb). The processes are all connected through a ring of
Unix Pipes where each process reads in one, does some work on the read data and
writes it in the next process’s pipe.

5. Filesystem: it measures the time to create and delete files with sizes varying from
0Kb to 10Kb.

6. We also add an ad-hoc bench for evaluating the reading and writing in files.

Here are the summarized results for those multiple benches that ran lmbench. The

Table 3. Latency average overheads for PIGA-DYN in IDS/IPS modes

Operation Details IDS IPS

1. System call Writing 1b into /dev/null 0% 2%
2. Process creation and deletion cases a, b and c (see above) 20% 25%
3. Network WAN/LAN 0.5% 1.5%
4. Context switching With 2,4,8 processes 1% 1%

With 16 processes 4% 6%
5. Filesystem: creation/deletion per second With 0Kb, 1Kb, 10% 11%

4Kb and 10Kb files
6. File read/write N/A 18% 19%

results show that our approach can sometimes have no impact on performance. But for
process forking, we observed some noticeable overheads. However, process creation
and deletion is not the most frequently occurring syscall on a system, while context
switching, which is one of the main occupations of OS, is weakly impacted by our so-
lution. File reading/writing results are more preoccupying as they are massively used
on modern OS. That should be addressed in further work, first by optimizing the IFG.

Globally, in prevention mode (i.e. blocking attacks) we had an overhead between
1% and 25%. We think that it is a very reasonable cost compared to the great security
improvements it provides. We have to work now on specific situations related to some
particularly complex security properties to handle, such as non-interference or general
integrity, in order to reduce the impact of our solution.

Enforcing Generic Integrity Properties on Operating Systems 159

7 Conclusion

This paper shows that a general canvas is really missing for modeling a wide range of
integrity properties. It provides a generic framework that makes it possible to define
advanced integrity properties to control direct and indirect flows.

Our framework enables the formalization of the major integrity properties. But,
newer security properties can also be easily defined for covering specific protection
needs. Those security properties are enforced using an algorithm that dynamically com-
putes an information flow graph related to every system call. The complexity of the
graph remains low, thus permitting a real time protection to guarantee the requested
properties. Our MAC protection denies a system call if it could break the requested
properties.

A large scale experiment manages two concurrent systems. The first one protects
against the violations of the requested security properties. The second one uses our
approach in Intrusion Detection Mode for evaluating the efficiency of the protection
system. During several months of experimentation, our protection system has always
prevented all attempts to violate our integrity properties. Further work will then deal
with the enforcement of confidentiality. Several novel protection models will be pro-
posed and evaluated in order to provide a large set of predefined canvases that will ease
the life of security administrators and the security of end-users.

References

1. Committee on National Security Systems. National Information Assurance Glossary, CNSS
Instruction No. 4009, 23 (April 2010)

2. Biba, K.J.: Integrity considerations for secure computer systems, tech. rep., MITRE Corp.,
04 (1977)

3. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations, tech. rep.,
Technical Report MTR-2547 (1973)

4. Lee, T.: Using mandatory integrity to enforce ‘commercial’ security. In: Proceedings of
IEEE Symposium on Security and Privacy, pp. 140–146 (April 1988)

5. Ko, C., Redmond, T.: Noninterference and intrusion detection. In: Proceedings of IEEE
Symposium on Security and Privacy, pp. 177–187 (2002)

6. Goguen, J., Meseguer, J.: Security policies and security models. In: Proc. 1982 IEEE Symp.
Security and Privacy, Oakland, CA, pp. 11–20. IEEE, Los Alamitos (1982)

7. Rahimi, N.A.: Trusted path execution for the linux 2.6 kernel as a linux security module. In:
ATEC 2004: Proceedings of the Annual Conference on USENIX Annual Technical Confer-
ence, Berkeley, CA, USA, pp. 34–34. USENIX Association (2004)

8. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer Secu-
rity Policies. In: IEEE Symposium on Security and Privacy, pp. 184–194. IEEE Computer
Society Press, Los Alamitos (1987)

9. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

10. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency. Prentice
Hall PTR, Upper Saddle River (1997)

11. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: IEEE 21st Computer Security Foun-
dations Symposium, CSF 2008, pp. 51–65 (June 2008)

160 P. Clemente, J. Rouzaud-Cornabas, and C. Toinard

12. Bauer, L., Ligatti, J., Walker, D.: More Enforceable Security Policies. Foundations of Com-
puter Security, 95 (2002)

13. Terry, P., Wiseman, S.: A ‘new’ security policy model. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 215–228 (May 1989)

14. Briffaut, J., Lalande, J.-F., Toinard, C.: Formalization of security properties: enforcement
for mac operating systems and verification of dynamic mac policies. International Journal
on Advances in Security 2, 325–343 (2009)

15. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information flow ex-
plicit in histar. In: OSDI 2006: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, Berkeley, CA, USA, pp. 19–19. USENIX Association
(2006)

16. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris, R.: Infor-
mation flow control for standard os abstractions. SIGOPS Oper. Syst. Rev. 41(6), 321–334
(2007)

17. Efstathopoulos, P., Kohler, E.: Manageable fine-grained information flow. SIGOPS Oper.
Syst. Rev. 42(4), 301–313 (2008)

18. TRESYS., Setools–policy analysis tools for selinux (2010)
19. Briffaut, J., Rouzaud-Cornabas, J., Toinard, C., Zemali, Y.: A new approach to enforce

the security properties of a clustered high-interaction honeypot. In: Guha, R.K., Spalazzi,
L. (eds.) Workshop on Security and High Performance Computing Systems, Leipzig,
Germany, June 2009, pp. 184–192. IEEE Computer Society, Los Alamitos (2009)

20. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Commun.
ACM 19(8), 461–471 (1976)

21. Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., Lepreau, J.: The flask
security architecture: system support for diverse security policies. In: SSYM 1999: Pro-
ceedings of the 8th Conference on USENIX Security Symposium, Berkeley, CA, USA,
pp. 11–11. USENIX Association (1999)

22. Mao, Z., Li, N., Chen, H., Jiang, X.: Trojan horse resistant discretionary access control. In:
SACMAT 2009: Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies, New York, NY, USA, pp. 237–246. ACM, New York (2009)

23. Liang, H., Sun, Y.: Enforcing mandatory integrity protection in operating system. In: IC-
CNMC 2001: Proceedings of the 2001 International Conference on Computer Networks
and Mobile Computing (ICCNMC 2001), Washington, DC, USA, p. 435. IEEE Computer
Society, Los Alamitos (2001)

24. Li, N., Mao, Z., Chen, H.: Usable mandatory integrity protection for operating systems. In:
IEEE Symposium on Security and Privacy, SP 2007, pp. 164–178 (May 2007)

25. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications 21, 5–19 (2003)

26. Mohay, G., Zellers, J.: Kernel and shell based applications integrity assurance. In: Proceed-
ings of 13th Annual Computer Security Applications Conference, pp. 34–43 (December
1997)

27. Iglio, P.: Trustedbox: a kernel-level integrity checker. In: 15th Annual Proceedings of Com-
puter Security Applications Conference (ACSAC 1999), pp. 189–198 (1999)

28. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a tcg-based
integrity measurement architecture. In: SSYM 2004: Proceedings of the 13th Conference
on USENIX Security Symposium, Berkeley, CA, USA, pp. 16–16. USENIX Association
(2004)

29. Quynh, N.A., Takefuji, Y.: A real-time integrity monitor for xen virtual machine. In: ICNS
2006: Proceedings of the International Conference on Networking and Services, Washing-
ton, DC, USA, p. 90. IEEE Computer Society, Los Alamitos (2006)

Enforcing Generic Integrity Properties on Operating Systems 161

30. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: virtualizing
the trusted platform module. In: USENIX-SS 2006: Proceedings of the 15th Conference on
USENIX Security Symposium, Berkeley, CA, USA, USENIX Association (2006)

31. Xu, M., Jiang, X., Sandhu, R., Zhang, X.: Towards a VMM-based usage control framework
for OS kernel integrity protection. In: Proceedings of the 12th ACM Symposium on Access
Control Models and Technologies, p. 80. ACM, New York (2007)

32. Rouzaud Cornabas, J., Clemente, P., Toinard, C.: An Information Flow Approach for Pre-
venting Race Conditions: Dynamic Protection of the Linux OS (best paper award). In:
Fourth International Conference on Emerging Security Information, Systems and Technolo-
gies SECURWARE 2010, Venise Italy (July 2010)

33. Uppuluri, P., Joshi, U., Ray, A.: Preventing race condition attacks on file-systems. In: SAC
2005: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 346–353.
ACM, New York (2005)

34. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In: ATEC 1996:
Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference,
Berkeley, CA, USA, pp. 23–23. USENIX Association (1996)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 162–178, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Performance Issues on Integration of Security Services

Fábio Dacêncio Pereira1 and Edward David Moreno1,2

1 University of São Paulo (USP), Polytechnic School, Sao Paulo - SP, Brazil
2 Federal University of Sergipe (UFS), DCOMP, Aracaju - SE, Brazil
prof.fabiopereira@gmail.com, edwdavid@gmail.com

Abstract. The integration of security services is an important solution to com-
bat anomalies and attacks on computer systems, assuming that possible difficul-
ties of a security service may be compensated by others. The current works that
aim to integrate two or more security services are usually focused on a particu-
lar implementation strategy, because the systematic approach to integrated
security systems requires the analysis of relations between security data. In our
work was proposed and developed a Security Services Integrated Layer (SSIL),
consisting of an organization pattern of information security, as well as behav-
ioral models to analyze the occurrence of abnormality identified. The Hidden
Markov Model and the proposed solutions as subHMM and Sequential Model
allowed the integration of security services based on behavior. In this article we
highlight the rates of detection of anomalies and a critical analysis of results.

Keywords: Hidden Markov Model, anomalies detection, behavior models.

1 Introduction

The anonymity, the weakness and other factors often encourage individuals to create
malicious tools and attacks techniques on information and computer systems. This
can generate from minor inconveniences up to moral and financial damage. Intrusion
detection combined with other security tools can protect and prevent malicious attacks
and anomalies in computer systems. However, considering the complexity and ro-
bustness of such systems, the security services are often not able to examine and audit
all information flow, causing defective points of security that can be discovered and
exploited [1].

It is inevitable that malicious individuals organize themselves to create attacks
more efficient and intelligent. Likewise, should be created integrated security sys-
tems, especially knowing the importance of integration of security services to
improve the prevention, detection and performance in anomalous situations [4]. Gen-
erally, research on security systems have typically focused on creating new services
or improving the performance and reliability of a single technique, algorithm or
mechanism.

The approaches to integrate two or more security services usually focused on a
particular implementation strategy, assuming that the systematic approach to
integrated security systems requires the analysis of relations between data.

 Performance Issues on Integration of Security Services 163

The current models for integration of security services determine what the
relationship between a specific set of security services, so these can integrate informa-
tion to prevent or treat deficiencies of the system. However, current models propose
solutions on limited set of services, ignoring or disregarding the existence of other [5]
[7] [4].

Despite the difficulty in defining a strategy for creating a security services inte-
grated model, there are some works that have satisfactory solutions. The works high-
lighted in section 2 using techniques for analyzing the behavior of computing systems
to distinguish those situations considered anomalous and normal, using data models to
format and organize this information.

The work described in this paper shows how solution a Security Services Inte-
grated Layer (SSIL), which may include security services proprietary, open source,
applications that want to provide security as necessary or differential.

The SSIL has a common structure capable of containing the security services be-
longing to a particular computer system. The information stored in the SSIL can be
analyzed using behavioral models (section 3) and generate graphs that represent the
behavior of different anomalies. These behavioral models can be used effectively to
detect attacks early, reduce false positives, classifying the attack power to define the
techniques used for defense, among other advantages when has possession of such
information.

The objectives of this work are project and develop the SSIL for allowing the inte-
gration of security services and for investigating the efficiency and impact of behav-
ioral models used in SSIL specialized for detecting anomalies. Finally, we propose
and develop improvements using the special techniques as subHMM and Sequential
Model. The paper is organized into 6 sections. In the section 2 are presented the be-
havioral models used. The characteristics of the SSIL are in section 3. In the section 4
the test environment and validation, while the results are in section 5. Finally, section
6 presents the conclusions.

2 Related Works

The work was developed based on models proposed by RASHEED and CHOW [4],
which was adopted IDMEF standard for formatting the anomalous activities reports,
and model YASAMI et al. [6] as a behavioral analyzer using Hidden Markov Model
(HMM).

2.1 Model RASHEED

The information model for integration of security services proposed by Rasheed and
Chow [4] explores three security services: access control, intrusion detection and
response to intrusion. In the model, the authors characterized the tasks and responsi-
bilities for each security tool addressed. They concluded that often security tools may
be different or mutually exclusive, but it is possible to create integration and coopera-
tion at different levels of integration. Two models of classification and organization of
data were highlighted by the authors:

164 F.D. Pereira and E.D. Moreno

• XACML (eXtensible Access Control Markup Language) is an OASIS standard,
and was published in version 2.0 in February 2005. XACML specifies a language
for defining policies for access control, as well as requests and responses to
access, in XML [13].

• IDMEF (Intrusion Detection Message Exchange Format): The Internet Engineer-
ing Task Force's Intrusion Detection Work Group has an experimental RFC to
formatting of intrusion detection messages, the IDMEF. The messages containing
the specification of alert classes that are sent to a decision-making system, creat-
ing an event that combines the response criteria to specific intrusion. These are
sent asynchronously and a single message can be more than one anomalous
event [8].

The IDMEF model was used in our work as a mechanism for reporting anomalies
detected by the security services present on a computer system, assuming that the
diversity of applications and security services requires a uniform standard for
recording such information, as presented and discussed in the thesis of Pereira [9].

2.2 Model Yasami

Yasami et al. [6] presents an algorithm for anomaly detection based on analysis of
ARP requests, using the Hidden Markov Model (HMM). This model can analyze
ARP traffic on a computers network to create graphs representing the normal behav-
ior of a computer system. For this, require a training period. According to the authors,
the longer the training period, more specific and representative will be the graph of
the model.

In this case, there wasn’t integration of any security service and the detection sys-
tem works on low level of the OSI model, between the physical layer and data link.
However, the work clearly presents a real application using the HMM model.

The HMM is being used in other research and work, such as [2] and [11] to
model the behavior of computing systems, classified operation mode as normal or
abnormal. In this paper, the HMM is used to assist in intrusion detection, helping in
the classification of attacks levels, among other features.

According Yasami et al [6], the training period is a decisive stage for the creation
of the behavioral model. It’s generated as a representation of events of a computer
system. The normal model built during the training period includes states and
transitions that are defined follows:

• States: States are to identify the node corresponding to destination IP address of
ARP request.

• Transitions: Any ARP request produces a transition from one state, and the
transition can occur for the same state.

According to the author, these graphs become more complex and robust as the
training environment and transitional rules.

In the training period, parameters are calculated for each state as: probability of be
in state S; Steady State Duration Average in the state S; Steady State Duration Vari-
ance in State S. These parameters, as well as, the graph of transitions comprising the
behavioral model of the computer system will be analyzed.

 Performance Issues on Integration of Security Services 165

After the training period, this behavioral model is compared with the model
generated in real time in order to detect and distinguish the different actions accumu-
lated during the training period. Based on a factor that indicates the percentage of
deviant behavior, the system indicates an abnormality or not.

In our work, the HMM was adopted to analyze the behavior of the anomalies reported
by security services present on computer system. The equations for comparison and
behavior analysis are highlighted in section 3.1.

3 The Security Service Integrated Layer (SSIL)

The main structure of the SSIL has (i) a model for formatting anomalies reported by
security services (IDMEF) and (ii) a behavioral model to detect anomalies (HMM).
The SSIL is based on the fact that a determined attack on a computer system passes
through various stages and tests before this succeed. This attack trajectory can be
mapped, i.e., failures can be transformed into models, and eventually can be pre-
vented. The failure in this case refers to the attacks attempts detected by security
services and notified to SSIL.

The services of the SSIL are organizing information from security services present
on computer system, creating a behavioral model or import custom models of behav-
ioral abnormalities. In a second step, using algorithms to detect anomalies described
in this section, examines the behavior of the system, classify and detect abnormalities.

After reviewing the initial results achieved by HMM was proposed and developed
a simplified behavioral model, called the Sequential Model, as objective of improving
the results obtained by HMM, when it has difficulty in detecting an anomalous
sequence. The description of the behavioral models in SSIL is following.

3.1 Hidden Markov Model (HMM)

The HMM can be represented by a graph composed of states (vertices) and transitions
(edges). The states of HMM are characterized under the SSIL as unique elements that
have three attributes: (i) IP source of the anomaly, (ii) security service and (iii)
classification of the security attribute.

The classification of security attributes is predefined as: access control, confidenti-
ality, nonrepudiation, authentication, integrity and availability. Other classifications
can be created and customized in the SSIL, as explained in more detail in [9].

The creation of HMM occurs as the detection of anomalies identified by security
services in the system. Figure 1 shows the stages of the lifecycle of HMM applied to
SSIL.

Note that in Figure 1a is only the start of construction of the behavioral model as
the detection three occurrences. Over time, events will be happening and the annota-
tions in the HMM are cumulative (Fig. 1b and 1c). At the end of a training period, the
graph of occurrences will be robust enough to identify attacks characterized.

166 F.D. Pereira and E.D. Moreno

Fig. 1. Example of Creation of the Behavioral Model

The construction of the behavioral model occurs early in system configuration,
called the training period. Thus, the behavior graph is created during a training period
where the SSIL is stimulated by arrival of attacks that can be artificial or real to
creation of the behavioral model.

The SSIL allows continuous training, therefore, the real-time system can feed the
HMM with new states and transitions. Thus, the model can adapt at runtime to new
attacks or new applications installed in computer system.

According Yasami et al [6], the approach of continuous training in the first in-
stance, seems to be interesting since the system would learn in real time after the
training period. However, there are some problems that discouraged this practice, and
the most obvious is the distortion of the model based on behavioral models and the
inclusion of abnormal or normal in error. The direct effect is the degradation capacity
of characterization and detection of anomalous situations.

In this context, the behavioral model does not express the functional characteristics
of normality or abnormality, this means that the period of training was insufficient or
all possible anomalous events have not occurred during this period. However, the
SSIL advantage anomalous events not occurs in the training period to create the
subHMM, idealized in this work for treat attacks not known during training period
(see section 3.2).

3.1.1 Basic Measures
The basic measures are crucial to characterize the HMM built. Hence, any change in
the behavioral model has an impact on all the basic measures, which are in the
training period for each state.

 Performance Issues on Integration of Security Services 167

The formula 1 determines the probability of being in a particular state E (PE),
composed of three terms: IP source, security service and security attribute which
recorded the occurrence of an anomaly, after a security event. The calculation of PE is
the number of occurrences in the state, divided by the sum of all occurrences of states
present in the graph [6].

E = represents a state (vertex) in the HMM graph behavior.

(1)

Where, NE = number of occurrences E; Ni = number of occurrences of state i ; K =
total number of states in graph behavior

The formula 2 determines the average permanence in specific state E. This for-
mula, although simple, has an important factor: the time. Through this we can deter-
mine the behavior of events on Elapsed time. Within the scope of implementation is
required counting time between last occurrence and the current instance. In attacks by
malicious software, this factor is critical to identify the behavior of attack in the
elapsed time.

(2)

The formula 3 determines the population variance after the elapsed time in a specific
state E. The variance is significant because it represents the statistical dispersion
of an occurrence set, indicating the distances between values typically and expected
values.

(3)

Where: N = number of terms of population; μ = Population average; yi = Terms of
population.

Finally, it is necessary to calculate the conditional probabilities of transition from a
state i to state j. An array of transitions assists in the calculation, and is represented in
the formula 4.

The occurrence of a new event has direct impact on the calculation of probability
PE, average εE, variance and conditional probability of all nodes in graph. Thus, the
calculations these four basic measures should be performed for every occurrence and
nodes in graph.

168 F.D. Pereira and E.D. Moreno

(4)

In Formula 4 has the transition matrix that represents the behavior of HMM graph.
From matrix can calculate the conditional probabilities of transitions from state i to
state j [9].

The basic measures presented are calculated on training period and used at runtime
normal. In the next section shows the Anomaly Detection Algorithm (ADA) that uses
these basic measures to identify an anomalous situation.

3.1.2 Anomaly Detection Algorithm (ADA)
The anomaly detection algorithms are used to interpret the behavior graph and pro-
duce an index that determines the level of anomaly detected. For this the basic meas-
ures calculated during the training period are compared with the parameters generated
in runtime.

Basically, the algorithm compares the behavioral model generated in the training
period with the model created in runtime normal. Therefore, scores are created, and
when their values are included in the same interval, characterize a particular abnor-
mality. Initially the equations are presented for calculating the scores of training pe-
riod (ST) (formula 5) and the scores of the runtime normal period (SE) (formula 6).

(5)

(6)

In the formula 6, the variable SE accumulates the PSE (Partial SE) that are partial
results of ADA. Likewise, are calculated PST (Partial ST), which are explained later.
In these equations has j as state current of behavioral model generated in the period of
training after k anomalous events. N is the number of security events reported in SSIL
during the process of anomaly detection.

PSTj/PEj and PSEj
k/PEj are calculated for the first anomalous event for both the SE

and TS. If the first event of anomalous PSEj
k = PSEj

1. In the formula 5 e 6 has Pij, this
variable describes the conditional probability of a transaction of state i to state j,
described by transition matrix.

Finally, there is the PST (Partial ST) and PSE (Partial SE), which are calculated for
each anomalous event recorded in SSIL using the formula 7 and 8 respectively.

 Performance Issues on Integration of Security Services 169

 (7)

(8)

The PSE and PST use the same basic measures of training period. Where tjk found in
formula 8 is the time interval between k e (k+1) abnormality occurrence.

After calculating ST and SE, you can compare them, and how much more near the
values, greater the indication of anomaly (formula 9). However, must establish a
threshold to distinguish the abnormality or normality in system. This parameter is the
Threshold (Th). The higher Th, more sensitive is the ADA, and may increase the
number of false positives [6].

For initial testing and following the suggestion of [9], was set a value of 15% for
this parameter. This means that all events that have 85% of compatibility as the model
built in training period, will notify the identification of an anomaly.

SE(1-Th) ≤ ST ≤ SE(1+Th) (9)

Thus, a decision-making system will identify with a percentage of accuracy the occur-
rence of an anomaly. Setting a value for the threshold can be done by simulation or
real testing, calculating the number of false positives generated. In this case, the
threshold of 15% was set based on the development and testing in [9].

Fig. 2. ADA - Anomaly Detection Algorithm of SSIL

Figure 2 shows the ADA using the equations cited in this section. The basic
metrics used in the process of detecting anomalies. At the end of the process are

170 F.D. Pereira and E.D. Moreno

generated alerts in IDMEF format that are treated in SSIL using the subHMM
technique, described in next section.

3.2 subHMM Technique

A situation that may occur during the process of anomaly detection is the occurrence
of the State X. This problem occurs during normal runtime, when a state or transition
unscheduled occurs. In other words, an event is not provided during the training
period, and occurs in normal runtime, making this not represented on the initial
behavioral model.

In practice, the occurrence of a new event is possible, but it should not be frequent,
because this situation means that the behavioral model is not robust enough and, con-
sequently, the period of training is insufficient.

Some solutions can be found: how to assign low levels of probability for the State
X, for example, replicating the lowest probability of states in the model behavior.
This solution was proposed by YASAMI [6]. However, this does not solve the
problem; only mask a weakness of the method.

Another way is to simply ignore in analysis, if an event occurs to state X, which is
again a mask for the problem. Figure 3 illustrates the occurrence of State X, where
there is a transition from state S2 known, to a state not defined in the behavioral
model built during the training period.

Fig. 3. State X Problem

The SSIL uses strategically the occurrence of the state X. This means that the
model can be modified or not in normal runtime, if rules for occurrences of the state
X have been created and contemplated in normal runtime. This technique was called
of subHMM [9].

In SSIL, when a new sequence is found, alerts are amortized using the method of
assigning the state X the lowest probability found in behavioral model. But it is also
made the registration and classification of these unexpected events into subHMM.

 Performance Issues on Integration of Security Services 171

If a particular occurrence relapse, a new weight is assigned, reclassifying the new
sequence detected. Rules can be created to incorporate the new anomalous sequence
(subHMM) into model created in training period, for example, after three relapses, the
new sequence is inserted into original behavioral HMM model. So the weights
assigned to basic measures and the ADA when occurs the State X are:

If Pij, j does not exist (arrival at the State X)

Pij = MIN{Pij}
PEj = MIN{ PEj }

If Pij, i do not exist (starting state X)

Pij = MIN{Pij}
PEj = PEj (maintains)

Other effect is possible, where the states i and j exist, but the transition between them
does not exist.

 Pij = MIN{Pij}
 PEj = PEj (maintains)

For all cases of State X or no transition, the calculation of the PST and PSE is defined
by:

 MIN{tj
k} and MAX {Ϭ2}

3.3 Sequential Model

The use HMM in the SSIL was an effective step to integrate important safety
information in order to detect, prevent and act in anomalous situations. This model
allows warning on possible anomalous situations, reducing the occurrence of false
positives [9].

However, despite the good results generated using the HMM, presented in the next
section, the behavior model HMM based has strong dependence on time factor.
Therefore, the sequence of security events in a time classifies an anomaly. Hence, the
same sequence of events, but distributed differently during the time in the HMM is
treated as a separate anomaly, making the training period be exhaustive or endless to
predict the possible variations of anomalies.

The proposal to improve this situation was the creation of the Sequential Model.
This model neglects the time factor and considers only the anomalous sequence
events. Its structure is simple and allows you to generate an additional parameter to
better categorize the anomalies alert.

The Sequential Model can be structured through of a graph, where states are the
occurrence characteristics and the transitions are the anomalous events detected. The
model has two stages of implementation, as well as the HMM. The training period of
the sequential model should be combined with the HMM training period.

 The entire anomalous sequence events are recorded in graph ASG (Anomalous
Sequences Graph). During the training period many ASGs are generated and can be

172 F.D. Pereira and E.D. Moreno

incorporated into new format signature sequences of attacks. Figure 4 illustrates an
example of ASG, where the proprietary application notified 10(ten) attempts to access
invalid (S1) then the IDS (S2) was able to identify abnormalities and finally Firewall
(S3) has been acting. The integers associated with the transitions are number of
detected attacks.

Fig. 4. ASG: Anomalous Sequence Graphs

Signatures are ASGs that cover common attacks and specify the security tools, se-
curity attributes and the source IP of occurrences. After the training period, has not
only the behavioral model HMM, but also the anomalous sequences graphs.

3.3.1 ADA for Sequential Model
During the normal runtime, all anomalous occurrence recorded is set as new state and
transition, creating the so-called Total Sequence Graph (TSG).

Fig. 5. TSG: Identification of a subgraph in a graph

 Performance Issues on Integration of Security Services 173

The ADA aims is finds an ASG in a TSG. If this occurs, the fault is notified. This
can be identified search of subgraph in a graph. The complexity of search depth is
proportional to number of vertices added, the number of edges of graphs, making it
impracticable to search subgraphs with number n of vertices very large.

The creation of the best algorithm is not the focus this work. Thus, we used a depth
search to find the subgraphs. In practice, the subgraphs of attacks are not great and
with an acceptable computational effort, it is possible identify a subgraph.

The figure 5 shows the identification of a subgraph G (X) (dashed) in a graph G
(Y). The anomaly was identified the sample stored in the ASG (portscan) shown in
Figure 4.

4 Testing and Validation Environment

This section presents as was designed the anomalies vectors for test and validation in
SSIL. Initially we present the types of tests and subsequent construction methods of
test vectors.

4.1 Simulator

To assess the efficiency of the SSIL in detecting anomalies created a simulator that
includes the routine storage of anomalous occurrences in the IDMEF standard, incor-
porates behavioral models as HMM, Sequential Model and subHMM, besides
generating artificial attacks for the training period and enforcement normal runtime.

4.2 Test Methodology

Both HMM and Model Sequential generate graphs of abnormal behavior of safety
occurrences recorded in the SSIL. After the training period, many anomalous routines
were recorded, building a representative model of the abnormalities common to
computational system in focus.

The routine tests to validate the robustness and efficiency of the generated models
are based on variations of anomalous routines implemented in the training period.
These variations are classified into four types:

• Full: In this case, the same routine tests performed on the training period
were performed in normal runtime.

• Sequence partial: In this case variations among 10% to 50% of the original se-
quences were generated for validating the detection of anomalies partially
known.

• Time partial: The time factor affects the variation among 10% to 50%. The
time factor is important to HMM. In the results presented in this paper can be
observed that the greatest difficulty lies in detecting routines modified.

• Time and Sequence partial: in this case are routines modified by time and
sequence, with a rate of 10% to 50%. In this work, these routines are not
assumed as unknown by the behavioral models. In section 5, the rates of
identification are smaller than those noted with other types of variations.

174 F.D. Pereira and E.D. Moreno

The parameter described as threshold, has direct impact on the sensitivity of
detection. The higher the threshold, the algorithm is less sensitive for detecting
abnormalities (ADA), generating higher rates of identification. However, it may be
more vulnerable to misidentifications.

The determination of the threshold was based on the tests, especially with the im-
plementation of routines of type, full, time partial and sequence partial. In this case,
we adopted a threshold of 15%, following the recommendations found in [9].

4.3 Methods for Construction of Test Vectors

Each routine attacks created during the training period consists in two or more anoma-
lous occurrences (events). The anomalous occurrence of a routine are organized in
fixed order and separated by time interval between occurrences. In Figure 6, we have
the representation this concept.

Fig. 6. Example of organization of routine attack

To generate the tests described above, we should keep the same routines for testing
complete; vary time for the routines partly modified by time, vary the sequence for
the modified routines partially sequence; vary time and sequence, to create a new
routine.

5 Results Analysis

During the training period ten security applications were simulated, 170 anomaly
occurrences and 320 variations of routine occurrences. In table 1 have the data of the
models built.

Table 1. Results after the Period of training

Number of Sequence Attacks 320
Number of States (HMM) 541

Number of Transaction (HMM) 758
Number of Sequences (Sequential Model) 290

The Figure 7 shows the evolution of the HMM model as the performance of rou-
tine occurrences. For the data considered, it was observed that the number of states

 Performance Issues on Integration of Security Services 175

and transitions stabilized after 280 events performed. This means that the model can
generate good results in detecting anomalies, because the reported events after this
period already are contained in the behavioral model.

But not necessarily all possibilities are contained in the behavioral model created,
so the occurrence of unexpected events should be treated case by case as presented in
section 3.2.

Fig. 7. Evolution of the creation of states and transitions

5.1 Anomaly Detection

The occurrences routines used in the training period and its variations as described in
section 4.2 were performed in normal runtime, in order to evaluate the efficiency of
SSIL.

Initially, we have the discussion of results for full events (i.e, the same used in
training period). For all tests were selected 100 routine occurrences. In this case, the
HMM is able to identify an anomalous sequence of more than 95% certainty in 96%
of cases.

The time factor is difference between the computation performed during the train-
ing and in normal runtime. As the HMM algorithm is strongly coupled to the time
factor, this may contribute to the error of 4% found in the detection of full routine
occurrences.

However, such occurrences are not identified were marked by the ADA-HMM. By
observing the sequential model, it was found that 98% of anomalous routines were
detected with 97% average rate of certainty. Thus, two routines have not been identi-
fied, but are not the same behavioral model of HMM. In this context, when the HMM
did not demonstrate the anomaly, the sequential model was able to identify it.

In Table 2, presents the results after the sequences of events partially and fully
modified.

Routines differentiated by time and sequence were created to assess the behavior of
the SSIL for attacks not known. However, were kept the same security services and
not dealt with the state X.

176 F.D. Pereira and E.D. Moreno

It is important to stress that this percentage is directly linked to the factor of sensi-
tivity (threshold) of the SSIL, which is set to 15%. The rate of identification varied,
depending on the routines of facts not known. And the average was made of 56%
detection using HMM and 36% for the sequential model.

Table 2. Results after routine occurrences partially modified

Type of Attacks Number of
attacks

HMM Sequential Model

Sequence partial

100 PIA=96%
CAR=89,8%

PIA=80%
CAR=90,1%

Time partial

100 PIA=84%
CAR=85,5%

PIA=92%
CAR=95,7%

Time and
Sequence partial

100 PIA=56%
CAR=87,2%

PIA=36%
CAR=88,8%

* PIA, percentage of identified attacks.
* CAR, certainty average rating.

5.2 Anomalies Detection with subHMM

In this test in normal runtime, the subHMM module was activated and the results
achieved were satisfactory. After ten repetitions of the unknown routine attacks the
rate of identifying attacks was from 56% to 91% in average. Table 3 shows this
evolution. The rules for incorporated a subHMM in an original HMM were:

• Threshold = 40% higher

• Number of repetition: largest equal 7.

These rules will inhibit the incorporation of anomalous sequences without relation-
ship to model created in training period to avoid a distortion of the original behavioral
model.

Table 3. subHMM Results

Attempts Number of
attacks

HMM

1º a 6º 100 PIA=56%
CAR= 87,2%

7º 100 PIA=62%
CAR=89,1%

8º 100 PIA=74%
CAR=89,5%

9º 100 PIA=86%
CAR =91,2%

10º 100 PIA=91%
CAR= 93,7%

 Performance Issues on Integration of Security Services 177

6 Conclusions

This works concludes that there are advantages in become a set of security services in
a single integrated system, since the possible fragility of a service can be compensated
by others. Despite this necessity, most of the approaches found in literature aim the
integration of two or more security tools, but they emphasize generally in a single
strategy, because the inherent complexity of integration make to necessary there are a
relationship between the data of different security services analyzed.

Thus, this study developed a Security Services Integrated Layer, called SSIL. The
SSIL can be defined as an application responsible for storing, organizing and relating
anomalous events, reported by security services present on computer system.

For this reason, these events should be reported in the IDMEF format and analyzed
by behavioral models as HMM and Sequential Model, in order to detect anomalies as
efficient, early and preventive.

Through a simulator of artificial anomalies the behavioral model HMM can be
tested and evaluated and the results show satisfactory rates of recognition of anoma-
lous sequences known (98%), partially known (84%) and unknown (56%).

The design of new solutions combined, cited in this work as subHMM and Sequen-
tial Model improved the detection of anomalies, as shown in the results achieved, in
which attacks partially modified by time the HMM achieved a rate of 84%, but with
use of the Sequential Model the rate up to 92%.

When the attack is unknown the HMM hit rates up to 56%, including the solution
subHMM, the behavioral model can be incremented during the performance, incorpo-
rating new anomalous situation to original model. The unknown attacks were detected
at rates of up to 91%

In this paper, it can be seen that the relationship between the security services was
built through the behavioral model. Thus, it is possible to relate the different security
services even if they have not shared scopes. Finally it is important to note that the
IDMEF standard should be promoted, as this will facilitate the desired integration of
security services.

References

1. Androulidakis, G., Papavassiliou, S.: Improving network anomaly detection via selective
flow-based sampling. Institution of Engineering and Technology (IET) 2(3), 399–409
(2008)

2. Joshi, S.S., Phoha, V.V.: Investigating hidden Markov models capabilities in anomaly de-
tection. In: ACM Southeast Regional Conference Proceedings of the 43rd Annual
Southeast Regional Conference (2005)

3. Rabiner, L.R.: A tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proc. IEEE 77(2) (1989)

4. Rasheed, H., Chow, Y.C.R.: An Information Model for Security Integration. In: 11th IEEE
International Workshop on Future Trends of Distributed Computing Systems (FTDCS
2007), pp. 41–47 (2007)

5. Zilys, M., Valinevicius, A., Eidukas, D.: Optimizing strategic control of integrated security
systems. In: 26th International Conference on Information Technology Interfaces (2004)

178 F.D. Pereira and E.D. Moreno

6. Yasami, Y., Farahmand, M., Zargari, V.: An ARP-based Anomaly Detection Algorithm
Using Hidden Markov Model in Enterprise Networks. In: IEEE Second International Con-
ference on Systems and Networks Communications (ICSNC 2007) (2007)

7. Jonsson, E.: Towards an integrated conceptual model of security and dependability,
Availability, Reliability and Security, ARES (2006)

8. Debar, H., Curry, D., Feinstein, B.: The intrusion detection message exchange format
(2007), http://www.rfc-editor.org/rfc/rfc4765.txt

9. Pereira, F.D.: Approach and Design of SSIL – Security Services Integration Level in SoC
and Software (in Portuguese), PhD Thesis, University of Sao Paulo (USP) (2009)

10. Pereira, F.D., Ordonez, E.D.M.: A Hardware Architecture for Integrated-Security Services.
In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computational Sci-
ence IV. LNCS, vol. 5430, pp. 100–114. Springer, Heidelberg (2009)

11. Yang, C., Deng, F., Haidong, Y.: An Unsupervised Anomaly Detection Approach using
Subtractive Clustering and Hidden Markov Model. In: IEEE International Conference on
Communications and Networking in China, CHINACOM (2007)

12. Nissanke, N.: An integrated security model for component-based systems. In: IEEE Con-
ference on Emerging Technologies and Factory Automation, ETFA 2007, pp. 638–645
(2007)

13. Moses, T.: eXtensible Access Control Markup Language(XACML) Version 2.0. OASIS
(February 2005)

14. Cappé, O., Moulines, E.: Inference in Hidden Markov Models, Ed. Springer, Heidelberg
(2005)

15. Bunke, H., Caelli, T.: Hidden Markov Models: Applications in Computer Vision. World
Scientific Publishing, Singapore (2001)

16. Olzoni, D.: Revisiting Anomaly-based Network Intrusion Detection Systems. PhD thesis, Uni-
versity of Twente. CTIT Ph.D.-thesis series No. 09-147 (2009) ISBN 978-90-365-2853-5

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 179–191, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Statistical Model Applied to NetFlow for Network
Intrusion Detection

André Proto, Leandro A. Alexandre, Maira L. Batista,
Isabela L. Oliveira, and Adriano M. Cansian

UNESP – Universidade Estadual Paulista “Júlio de Mesquita Filho” Cristóvão Colombo Street,
2265, Jd. Nazareth, S. J. do Rio Preto, S. Paulo, Brazil. Departamento de Ciências de

Computação e Estatística, ACME! Computer Security Research Lab.
{andreproto,leandro,maira,isabela,adriano}@acmesecurity.org

Abstract. The computers and network services became presence guaranteed in
several places. These characteristics resulted in the growth of illicit events and
therefore the computers and networks security has become an essential point in
any computing environment. Many methodologies were created to identify
these events; however, with increasing of users and services on the Internet,
many difficulties are found in trying to monitor a large network environment.
This paper proposes a methodology for events detection in large-scale
networks. The proposal approaches the anomaly detection using the NetFlow
protocol, statistical methods and monitoring the environment in a best time for
the application.

Keywords: Security, network, statistical, NetFlow, intrusion detection,
anomaly.

1 Introduction

1.1 Motivation and Objectives

It is possible found many communication software for different purposes on the
Internet: instant messengers, voice and video applications, distributed applications
among others. These applications and the growing Internet users number contribute to
the amount traffic increased in computer networks and the security incidents number
in such environments.

The biggest challenge for network administrators is how to monitor the perimeter
of a large network in a scalable way. Some methodologies and tools were created to
protect a computer connected in a network, such as antivirus, personal firewalls,
antispyware and Intrusion Detection System (IDS) based on signatures. These tools
protect the users of certain attacks types, such as worm propagation, vulnerabilities
exploitation, among others. However, another attacks types, such as Distributed
Denial of Service (DDoS) and brute force attacks on user passwords [1], may involve
not only a computer but also several of them (groups of computers on the Internet can
attack others computers or network infra-structures). These attacks are not detectable

180 A. Proto et al.

by these kinds of tools. Moreover, they use the payload packet analysis to detect
events. This approach for a large-scale network perimeter requires large
computational resources and may disturb the network traffic.

This paper proposes a new methodology for detection attacks on large-scale
networks using detection by traffic anomaly, the NetFlow protocol (IPFIX standard)
[2][3] and statistical techniques. The aim is to detect anomalies in certain traffic of
network services (such as web, FTP, SSH, telnet, among others), using few
computational resources and without disturb the network traffic.

1.2 Related Works

There are some methodologies for perimeter defense in computer networks. The Snort
[4], a tool with large acceptance in community, uses the signature detection technique
to identify network events. This kind of detection uses as a basic concept the exact
description of an attack behavior (it is called attack signature). This tool can be
installed in devices such as firewalls and gateways, identifying events in network
environments with some dozens of connected devices. However, in larger
environments, this tool may have performance problems, because its methodology
analyzes each data packet passed by such devices. The large number of devices in
these environments results in a large amount of data packets.

The work of [5] discusses a new methodology for event detection in computer
networks using the NetFlow protocol and storage information on a relational
database. SQL queries are applied to the storage data to identify some events in
networks including attacks. The work only proposes a new architecture for storage
information, leaving to further works to research for more robust intrusion detection
methods combined with this architecture. The storage architecture is used in this
paper to support the process of event detection network.

The work of [6] proposes an IDS that uses NetFlow protocol to detect attacks such
as DDoS and worm propagation. The paper compares the flows content searching for
similarities between the flows that represents the environment at specific moment and
flows classified as attacks. It also proposes countermeasure techniques to these
attacks (access control rules in routes or firewalls for example), but the methodology
used in [6] has problems with false positives in its detection.

The authors of [7] propose an anomaly detection methodology to identify worm
traffics in computer networks. The methodology consists to characterize the normal
and worm traffic. It analyzes the behavior of network, summarizing the number of
connections in its subnets and calculating the standard deviation of traffic behavior.
The work uses NetFlow data storage in a relational database and shows that the
anomaly detection using NetFlow information is promised and has good results.
However, the work is limited to detect worm behavior and has problems with
performance and the time of attack detection.

Finally, the work in [8] proposes a robust monitoring system based on NetFlow
data analysis. It storages NetFlow information on a relational database (Oracle) and
uses statistical methods to detect anomalous events. Two algorithms are applied: one
of them is based on variance similarity and the other is based on Euclidian distance.
The system has a web interface to support the events monitoring. The results are

 Statistical Model Applied to NetFlow for Network Intrusion Detection 181

promising, but the algorithms applied are complexes. Developers require advanced
knowledge to implement it.

2 General Concepts

2.1 Attacks and Anomaly Detection

According to [9], an attack is any action in order to subvert at least one of the pillars
of information security: confidentiality, authenticity, integrity or availability of a
computer system. Several techniques to subvert systems are currently widespread on
the Internet and they are accessible by anyone.

Statistically, any network perimeter has a determinate traffic pattern based on user
behavior belonging in the network. Some kinds of attacks result in a considerable
traffic quantity in a network, showing an anomaly when compared to a normal pattern
behavior. This difference in traffic can be detected with intrusion detection
methodologies by anomaly. Their fundamental concepts are based in a normal traffic
pattern and identification of variances on network traffic, showing an anomaly.

Some related anomaly events used in this paper are cited follow:

• Scan: This is usually the first phase of an attack. The scan or network mapping is
used to recognize available services in one or more networks, identifying
vulnerable services and hosts;

• DDoS (Distributed Denial of Service): When a computer group attempt to make
a host or network resource unavailable to its users;

• Worms propagation: Worm is a malicious program able to spread automatically
through networks, sending copies of itself to another hosts [1]. Usually the worm
explore vulnerabilities in programs used by user;

• Dictionary attack: This attach uses the technique of “attempt and error” to guess
user passwords in services like SSH (Secure Shell Client) or Web. Usually this
attack has success, because many users use weak and easy deduction passwords;

• Spamming: Spams are unwanted e-mails sending by peoples whose intention is
spread malicious code, products advertisement or inadequate content [1].

The attacks cited previously have as common features the communication with
several computers or servers in a short time, resulting in large network traffic. The
approach in this paper uses this specific feature to detect the kinds of attacks cited
previously.

2.2 Network Flows

The Cisco Systems defines a network flow as a unidirectional sequence of packets
between source and destination hosts. The NetFlow provides a summarization of
information about the router or switch traffic. Network flows are highly granulated;
they are identified by source and destination IP address, as well as by ports number of
transport layer. To identify uniquely a flow, the NetFlow also uses the fields
“Protocol type” and “Type of Service” (ToS) from IP header and the input logical
interface of router or switch. The flows kept in the router/switch cache are exported to

182 A. Proto et al.

a collector in the following situations: remains idle more than 15 seconds; its duration
exceeds 30 minutes; a TCP connection is finished with the flag FIN or RST; the flows
table is full or the administrator resets the flow configurations. It is important note the
maximum time that one flow is kept in the cache device before be exported is 30
minutes.

The Fig. 1 shows the NetFlow v5 protocol fields, as well as your header. The fields
that really important to this paper are described in “Flow Record Format”. They are
responsible to represent the information summarized in a connection/session between
two hosts, describing source and destination address, source and destination port,
input and output interface in the router or switch, number of packets and octets
involved in connection, flow creation timestamp and last update timestamp (fields
first and last), TCP flags, and others.

Fig. 1. NetFlow datagram format

2.3 Statistical Concepts

For this paper some descriptive statistics concepts [10] are used to identify an
anomaly in the computers network traffic. The descriptive statistic is used to describe
and summarize one data set. The main elements used in this paper are:

• Median: The element that separates the higher half of an ordered sample from the
lower half is called median. In some cases where the sample has even numbers
(don’t have a unique central element), two central elements are added and divided
by 2, resulting in the median.

• Quartile: It is one of three values that divide the ordered sample in four equal
parts. Each one represents exactly one quarter of data sample. The second quartile,
for example, represents the median. This paper uses the first and third quartile.

• Outliers: They are elements of sample that are distant from the rest of sample. The
outliers represent anomalies in a network data sample.

These concepts are fundamental to understand the proposal of this paper. The next
section describes the methodology in this project and its main features.

 Statistical Model Applied to NetFlow for Network Intrusion Detection 183

3 Methodology

As described previously, the aim in this project is identify security events in a
computers network using the NetFlow protocol and detection methodologies by
anomaly based on statistical techniques. Thus, the following items should be defined:

• Collection and storage of data provided by NetFlow;
• Model to define the network traffic pattern;
• Outliers detection model.

3.1 Data Architecture Storage

The collection and storage of NetFlow data are very important to provide information
about the network that will be defended. We used the storage architecture proposed in
[5], enabling robustness and versatility in data storage and SQL queries on data
provided by NetFlow. The architecture enables the flows storage in a relational
database. A special table stores a window with the last thirty minutes of flows
generated by environment. This table is essential to monitoring of the network traffic
in the shortest time possible. More details about the architecture are described in [5].

3.2 Defining the Pattern Traffic in a Network

All detection by anomaly needs the traffic pattern definition of a computers network.
This definition should be based on the behavior of each environment at a specific
time. For example, the network traffic at daytime has not the same behavior than the
same network at night. So, the network traffic behavior is different in certain times of
the day. The Fig. 2 shows the network traffic behavior in one day.

Fig. 2. Example of network traffic behavior

184 A. Proto et al.

Especially in this project it is necessary to define all network traffic as well as each
services used in it. For perform this task, data traffic were collected for three months.
For each day in this interval, we selected a time windows of five minutes of flows.
This means for each time window were computed the flows average per second
related for each service in the network environment. For this, we used a query in
SQL language [11] executed in database. The query is described below:

SELECT date_sub(subtime(first,second(first)), interval
mod(minute(first),5) minute) as Time, dstport as
Service, input, count(*) as Flows, sum(dPkts) as Pkts,
sum(dOctets) as Bytes FROM TableDay WHERE dstport <
1024 GROUP BY month(first), day(first), hour(first),
(minute(first) div 5), dstport, input ORDER BY Time,
dstport, input;

The query result can be seen in Fig. 3. It shows flows averages of services running on
TCP/UDP ports less than 1024. This ports interval was selected because includes the
most network services used in a computational environment. This data were stored in
a new table, in order to be used again in the second step.

Fig. 3. SQL query result

With the data collected is possible to define the network traffic pattern. This
pattern will represent, for each set of five minutes traffic, a sample containing the
flow average involved in a determined service. So, a data sample series is formed, and
each sample represents a traffic service in determined time (considering the five
minutes set). The Fig. 4 shows an example of data sample collected concerning a
network service.

 Statistical Model Applied to NetFlow for Network Intrusion Detection 185

Fig. 4. Example of data sample of a network service

A question that should be considered is how to remove possible anomalous traffics
in the three months of data collected to pattern creation. This is resolved using the
same outlier identification formula discussed in the next subsection.

3.3 Outlier Identification Model

According to [10], a data sample can be divided in five summarization points: the
minimum, the maximum, the median sample and the 25th and the 75th data empirical
percentage. The 25th empirical percentage is called 1st quartile (Q1); the 75th empirical
percentage is called 3rd quartile (Q3). The distance between Q3 and Q1 is called
interquartile range (IQE) and can be viewed in (1). The author in [10] define the
minimum point in a sample is 1.5*IQR faraway of Q1(2) and the maximum point is
1.5*IQR faraway of Q3 (3). Any element in the sample that is outside of the
minimums and maximums limits is considered an outlier [10].

IQR = Q3-Q1

Min = Q1- 1.5 IQR

Max = Q3+ 1.5 IQR

(1)

(2)

(3)

For this paper only the maximum point of a sample is used. Considering the data
samples described in the previously subsection, the elements of a determinate sample
whose the flows quantity exceed the maximum value are considered anomalous.

The methodology cited in the previously paragraph is used as base to: identify
anomalies in the traffic and; remove the outliers in the collected sample during three
months of flows. Thus, the following algorithm to remove outliers was used:

186 A. Proto et al.

Do {
 exist_outlier = 0;
 Calculate Q1 and Q3 of the sample X;
 Do MAX = Q3 + 1.5*(Q3-Q1);
 Scroll all element of the sample X {
 If element > MAX
 Remove element;
 Do exist_outlier = 1;
 }
} While exist_outlier = 1;

The algorithm cited calculates the maximum point and remove the outliers until this
points no longer exists. The algorithm is executed for each sample collected of each
network service. For each outlier removed should be calculate Q1 and Q3 again,
because the sample will have a smaller quantity of points in relation of previously
iteration and, therefore, a new MAX value should be calculate. When the iteration
doesn’t find any outliers, the algorithm is finished.

Finished the algorithm, the MAX value will be used as threshold to define the
anomaly of a traffic. So, a system monitors the flow average of last five minutes of
the current date and each collected values is compared with the MAX value
corresponding to its service. For example, assuming the SSH service data was
collected in the interval between 10h00min and 10h05min. The flow average per
second in this interval will be compares with the sample MAX value corresponding in
the same interval. If higher than MAX value, it will be possible conclude that there is
an anomaly in the SSH traffic in this time interval.

4 Results

This section describes tests and results obtained with the new anomalies detection
model proposed in this paper. The subsection 4.1 describes the environment used for
the tests. The subsection 4.2 describes which services were monitored, their threshold
obtained after the calculation of pattern traffic and the outliers removal. The
subsection 4.3 describes the obtained results. Finally, the subsection 4.4 describes the
system performance analyze.

4.1 Environment of Tests

The tests environment is located at a university with more than thousand network
devices, including computers, routers, and mobile devices. The environment has a
CISCO 7200 VXR router that exports NetFlow flows version 5. The collector
computer is a PC x86 Pentium D 3.4 GHz, 2 GB of RAM and 200GB SATA HD,
dedicated to collect, store and analyze the flows in database. To define the traffic
pattern on environment, flow samples were collected in a period of three months
(March to May of 2009). The tests environment is represented in Fig. 5.

 Statistical Model Applied to NetFlow for Network Intrusion Detection 187

Fig. 5. Institute's network structure which the proposed system was executed

4.2 Monitored Services

For this paper, four services in particular were monitored by the proposed system:

• FTP (File Transfer Protocol): protocol to transfer files;
• SSH (Secure Shell): protocol for remote access;
• SMTP (Simple Mail Transfer Protocol): protocol for mail service;
• HTTP (Hypertext Transfer Protocol): protocol for web services;

The maximum points calculated on the traffic pattern definition phase are showed in
Fig. 6 (FTP and HTTP) and Fig. 7 (SMTP and SSH). These graphics already show the
services traffic threshold representation, excluding the outliers of the sample.

Fig. 6. Top limits of HTTP and FTP services by time

In Fig. 6 and Fig. 7 we note on the HTTP and SMTP service a large traffic amount
during the day (7:00AM to 6:00PM), different from that presented during the night
(6:00PM to 7:00AM). This difference is explained by the user’s number in activity on
the network during the cited periods. However, what draws more attention is the FTP
traffic representation, which has points in time whose its values are too high if
compared to other values. This occurs because, based on the sample collected, the
attacks number to the FTP service on these points has been so frequent that they were

188 A. Proto et al.

Fig. 7. Top limits of SSH and SMTP services by time

not considered outliers and therefore they were not removed. Finally, the SSH service
has just one threshold value excessive if compared to the others by the same reasons
presented before in FTP.

4.3 Detection Results

The detection system monitored the proposed environment for a period of six days,
which is equivalent to analyze 1728 periods of five minutes each one. The table 1
shows the number of detected events in the proposed services and the number of false
positives for them. The calculation of false positives was based in log system analysis
on the servers under attack or using the techniques described in [5] for the proof or
not of each detected event.

Table 1. Number of anomalous events detected

Service Events detected False-positives Percentage

FTP 10 0 100%

SSH 615 2 99,67%

SMTP 153 4 97,38%

HTTP 33 14 57,57%

For the FTP service, ten events were detected and no false positive was found. All
these attacks are characterized as a service scan, whereupon the attacker wants to
know if in the network there is an FTP server running.

The events detected in SSH service are quite numerous and only two false-positive
were found. These attacks, in general, are characterized by "dictionary attacks" or
scans on the service. The large number of events can be explained by the large
number of attackers using this intrusion technique, beyond the fact that "dictionary

 Statistical Model Applied to NetFlow for Network Intrusion Detection 189

attack" is a kind of attack that usually are performed for several hours, even days.
Curiously, one of this false-positive found is explained because researchers from the
institute used the service several times in an unconventional time (between 1:00AM
and 3:00AM) for servers maintenance.

About the SMTP service, 153 events were detected, with only four false-positives.
The attack mode in this service can be divided between scans and spamming. To
identify spams, we were used techniques to verify if the computer that sent a lot of
mails is mentioned by DNS domain [12] to which it belongs and whether it has a
SMTP service running all the time (characteristics of a legitimate mail provider).
Among the 149 events detected and verified, 5 are scans, 139 are spams and 5 are
both.

Finally, the events detection in the HTTP service showed the highest number of
false-positives. Of the 33 events detected, 14 were false-positive, a total of almost
57% of correct detections. The scan was the only kind of attack detected in this
service. Two factors explain this result: the HTTP behavior service varies with high
frequency between days or in a year; the use of HTTP version 1.0 [13] implies the
generation of one connection for each object requested, resulting in a large flows
number (because each connection is represented by a flow). In fact, the traffic amount
on the HTTP service measured few months ago is very different from the current
month, because the popularity of such service and the growing number of users who
have been using this service.

4.4 System Performance

In order to obtain the system performance, the training period (sampling to define the
traffic pattern) and the environment monitoring (events detection) were computed.
The time for sample collection and traffic pattern calculation is about 74 minutes
(considering the 92 days of data). It means, on average, about 48 seconds to calculate
a day. It is important say this collection occurs only once and the results are stored in
the database. The query responsible for monitoring the flows amount is performed in
about 2.57 seconds to analyze almost 1024 services (transport layer ports). With the
sum of time required to do a query with the processing time to identify anomalies, the
average is approximately 3.72 seconds. At certain moments which there was a large
number of requests in database (others applications that are using the database at same
time), the processing average time for anomalies identification was approximately
25.13 seconds.

5 Conclusion and Future Works

This paper presented a proposal for event detection in computer networks using
statistical methods and analysis of NetFlow data flows. The aim is to use this proposal
to monitor a computer network perimeter, detecting attacks in the shortest time
possible through anomalies identification in traffic and alerting the administrator
when necessary. The project proposes to model the traffic pattern of one or more
network services through traffic samples based on time intervals. An algorithm
removes the outliers of a sample. Using the same algorithm, the maximum values to

190 A. Proto et al.

separate normal and anomalous traffic are defined. The interval used in the tests to
summarize data flows was five minutes, but it can be implemented with shorter
intervals.

Tests were performed with the monitoring system to four services widely used by
users on the Internet: FTP, SSH, SMTP and HTTP. Among them, the FTP, SSH and
SMTP had positive results related to events detection and the false-positives number.
However, the HTTP service had the highest false-positives number, explained by the
service characteristics and scalability on environment. Despite the presented tests are
related with only four services types, this model can be applied to any other service
that the administrator wants.

System performance was satisfactory, especially because it run in a feasible time to
monitory the environment. This measure reflects the low computational cost for the
traffic analysis of a large-scale network. It may also be noted that most execution time
are performed with queries in the database, involving in and out operations data on
hard disk. Therefore, a possible solution to further increase system performance is to
migrate this database to another database manager, considered more effective.

The counting of false-negatives number was the most difficult task on this study.
This happens because to measure this quantization is necessary to perform other
methods or using tools in the environment and compare the results, but the
administrative restrictions on environment does not allow this tests.

Finally as future work, the traffic sampling should be improved, so it can be update
over time, solving problems cited such as HTTP service. Other works may compare
new outliers detection techniques in order to improve the detection performance.

Acknowledgements. The authors acknowledge Jorge Luiz Corrêa by important
discussions about the theme in this paper and the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and Technology – Critical
Embedded Systems – Brazil), processes 573963/2008-8 and 08/57870-9.

References

1. Cole, E., Krutz, R., Conley, J.R.: Network Security Bible, 2nd edn. Wiley Publishing Inc.,
Indianapolis (2009)

2. Quittek, J., Zseby, T., Claise, B., Zender, S.: RFC 3917: Requirements for IP Flow
Information Export: IPFIX, Hawthorn Victoria (2004),

 http://www.ietf.org/rfc/rfc3917.txt
3. Claise, B.: RFC 3954: Cisco Systems NetFlow Services Export Version 9 (2004),

 http://www.ietf.org/rfc/rfc3954.txt
4. Sourcefire, Snort.org, http://www.snort.org
5. Corrêa, J. L., Proto, A., Cansian, A. M.: Modelo de armazenamento de fluxos de rede para

análises de tráfego e de segurança. In: VIII Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais (SBSeg), Gramado (2008)

6. Zhenqi, W., Xinyu, W.: NetFlow Based Intrusion Detection System. In: International
Conference on Multimedia and Information Technology, Phuket (2008)

7. Roche, V.P., Arronategui, U.: Behavioural Characterization for Network Anomaly
Detection. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on
Computational Science IV. LNCS, vol. 5430, pp. 23–40. Springer, Heidelberg (2009)

 Statistical Model Applied to NetFlow for Network Intrusion Detection 191

8. Bin, L., Chuang, L., Jian, Q., Jianping, H., Ungsunan, P.: A NetFlow based flow analysis
and monitoring system in enterprise networks. Computer Networks 5, 1074–1092 (2008)

9. Gollmann, D.: Computer Security, 1st edn. John Wiley & Sons, New York (1999)
10. Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., Meester, L.E.: A modern introduction to

probability and statistics, 1st edn., pp. 234–244. Springer, Heidelberg (2005)
11. Elmasri, R.E., Navathe, S.: Fundamentals of Database Systems, 4th edn. Addison-Wesley,

Reading (2005)
12. Mockapetris, P.: RFC 1034: Domain Names – Concepts and Facilities (1987),

http://www.ietf.org/rfc/rfc1034.txt
13. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach, 5th edn., pp.

65–80. Addison-Wesley, Reading (2003)

J-PAKE: Authenticated Key Exchange
without PKI

Feng Hao1 and Peter Ryan2

1 Thales E-Security, Cambridge, UK
2 Faculty Of Science, University of Luxembourg

Abstract. Password Authenticated Key Exchange (PAKE) is one of the

important topics in cryptography. It aims to address a practical security

problem: how to establish secure communication between two parties

solely based on a shared password without requiring a Public Key In-

frastructure (PKI). After more than a decade of extensive research in this

field, there have been several PAKE protocols available. The EKE and

SPEKE schemes are perhaps the two most notable examples. Both tech-

niques are however patented. In this paper, we review these techniques

in detail and summarize various theoretical and practical weaknesses. In

addition, we present a new PAKE solution called J-PAKE. Our strategy

is to depend on well-established primitives such as the Zero-Knowledge

Proof (ZKP). So far, almost all of the past solutions have avoided using

ZKP for the concern on efficiency. We demonstrate how to effectively

integrate the ZKP into the protocol design and meanwhile achieve good

efficiency. Our protocol has comparable computational efficiency to the

EKE and SPEKE schemes with clear advantages on security.

Keywords: Password-Authenticated Key Exchange, EKE, SPEKE, key

agreement.

1 Introduction

Nowadays, the use of passwords is ubiquitous. From on-line banking to accessing
personal emails, the username/password paradigm is by far the most commonly
used authentication mechanism. Alternative authentication factors, including
tokens and biometrics, require additional hardware, which is often considered
too expensive for an application.

However, the security of a password is limited by its low-entropy. Typically,
even a carefully chosen password only has about 20-30 bits entropy [3]. This
makes passwords subject to dictionary attacks or simple exhaustive search. Some
systems willfully force users to remember cryptographically strong passwords,
but that often creates more problems than it solves [3].

Since passwords are weak secrets, they must be protected during transmission.
Currently, the widely deployed method is to send passwords through SSL/TLS
[29]. But, this requires a Public Key Infrastructure (PKI) in place; maintaining
a PKI is expensive. In addition, using SSL/TLS is subject to man-in-the-middle

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 192–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

J-PAKE: Authenticated Key Exchange without PKI 193

attacks [3]. If a user authenticates himself to a phishing website by disclosing his
password, the password will be stolen even though the session is fully encrypted.

The PAKE research explores an alternative approach to protect passwords
without relying on a Public Key Infrastructure (PKI) at all [10, 16]. It aims to
achieve two goals. First, it allows zero-knowledge proof of the password. One
can prove the knowledge of the password without revealing it to the other party.
Second, it performs authenticated key exchange. If the password is correct, both
parties will be able to establish a common session key that no one else can
compute.

The first milestone in PAKE research came in 1992 when Bellovin and Merrit
introduced the Encrypted Key Exchange (EKE) protocol [10]. Despite some
reported weaknesses [16, 20, 23, 25], the EKE protocol first demonstrated that
the PAKE problem was at least solvable. Since then, a number of protocols have
been proposed. Many of them are simply variants of EKE, instantiating the
“symmetric cipher” in various ways [7].

The few techniques that claim to resist known attacks have almost all been
patented. Most notably, EKE was patented by Lucent Technologies [12], SPEKE
by Phoenix Technologies [18] and SRP by Stanford University [28]. The patent
issue is arguably one of the biggest brakes in deploying a PAKE solution in
practice [13].

2 Past Work

2.1 Security Requirements

Before reviewing past solutions in detail, we summarize the security requirements
that a PAKE protocol shall fulfill (also see [10, 11, 16,28]).

1. Off-line dictionary attack resistance – It does not leak any information
that allows a passive/active attacker to perform off-line exhaustive search of
the password.

2. Forward secrecy – It produces session keys that remain secure even when
the password is later disclosed.

3. Known-session security – It prevents a disclosed session from affecting the
security of other established session keys.

4. On-line dictionary attack resistance – It limits an active attacker to test
only one password per protocol execution.

First, a PAKE protocol must resist off-line dictionary attacks. An attacker may
be passive (only eavesdropping) or active (directly engaging in the key exchange).
In either case, the communication must not reveal any data – say a hash of
the password – that allows an attacker to learn the password through off-line
exhaustive search.

Second, the protocol must be forward-secure. The key exchange is authen-
ticated based on a shared password. However, there is no guarantee on the
long-term secrecy of the password. A well-designed PAKE scheme should pro-
tect past session keys even when the password is later disclosed. This property

194 F. Hao and P. Ryan

also implies that if an attacker knows the password but only passively observes
the key exchange, he cannot learn the session key.

Third, the protocol must provide known session security. If an attacker is
able to compromise a session, we assume he can learn all session-specific secrets.
However, the impact should be minimized such that a compromised session must
not affect the security of other established sessions.

Finally, the protocol must resist on-line dictionary attacks. If the attacker is
directly engaging in the key exchange, there is no way to prevent such an attacker
trying a random guess of the password. However, a secure PAKE scheme should
mitigate the effect of the on-line attack to the minimum – in the best case,
the attacker can only guess exactly one password per impersonation attempt.
Consecutively failed attempts can be easily detected and thwarted accordingly.

Some papers add an extra “server compromise resistance” requirement: an
attacker should not be able to impersonate users to a server after he has stolen
the password verification files stored on that server, but has not performed dic-
tionary attacks to recover the passwords [7,17,28]. Protocols designed with this
additional requirement are known as the augmented PAKE, as opposed to the
balanced PAKE that does not have this requirement.

However, the so-called “server compromise resistance” is disputable [24]. First,
one may ask whether the threat of impersonating users to a compromised server is
significantly realistic. After all, the server had been compromised and the stored
password files had been stolen. Second, none of the augmented schemes can
provide any real assurance once the server is indeed compromised. If the password
verification files are stolen, off-line exhaustive search attacks are inevitable. All
passwords will need to be revoked and updated anyway.

Another argument in favor of the augmented PAKE is that the server does not
store a plaintext password so it is more secure than the balanced PAKE [28]. This
is a misunderstanding. The EKE and SPEKE protocols are two examples of the
balanced PAKE. Though the original EKE and SPEKE papers only mention the
use the plaintext password as the shared secret between the client and server [10,
16], it is trivial to use a hash of the password (possibly with some salt) as the
shared secret if needed. So, the augmented PAKE has no advantage in this
aspect.

Overall, the claimed advantages of an augmented PAKE over a balanced one
are doubtful. On the other hand, the disadvantages are notable. With the added
“server compromise resistance” requirement that none of the augmented PAKE
schemes truly satisfy [7, 17, 28], an augmented PAKE protocol is significantly
more complex and more computationally expensive. The extra complexity opens
more opportunities to the attacker, as many of the attacks are applicable on the
augmented PAKE [7].

2.2 Review on EKE and SPEKE

In this section, we review the two perhaps most well-known balanced PAKE
protocols: EKE [10] and SPEKE [16]. Both techniques are patented and have
been deployed in commercial applications.

J-PAKE: Authenticated Key Exchange without PKI 195

There are many other PAKE protocols in the past literature [7]. Due to the
space constraint, we can only briefly highlight some of them. Goldreich and Lin-
dell first provided a formal analysis of PAKE, and they also presented a PAKE
protocol that satisfies the formal definitions [33]. However, the Goldreich-Lindell
protocol is based on generic multi-party secure computation; it is commonly seen
as too inefficient for practical use [34, 35]. Later, there are Abdalla-Pointcheval
[1], Katz-Ostrovsky-Yung [34], Jiang-Gong [35] and Gennaro-Lindell [39] proto-
cols, which are proven secure in a common reference model (Abdalla-Pointcheval
additionally assumes a random oracle model [1]). All these protocols require a
“trusted third party” to define the public parameters: more specifically, the secu-
rity of the protocol relies on the “independence” of two group generators selected
honestly by a trusted third party [1, 34, 35]1. Thus, as with any “trusted third
party”, the party becomes the one who can break the protocol security [3]. (Re-
call that the very goal of PAKE is to establish key exchange between two parties
without depending on any external trusted party.) Another well-known provably
secure PAKE is a variant of the EKE protocol with formal security proofs due to
Bellare, Pointcheval and Rogaway [5] (though the proofs are disputed in [7, 32],
as we will explain later). In general, all the above protocols [33, 34, 35, 1, 39, 5]
are significantly more complex and less efficient than the EKE and SPEKE pro-
tocols. In this paper, we will focus on comparing our technique to the EKE and
SPEKE protocols.

First, let us look at the EKE. Bellovin and Merrit introduced two EKE con-
structs: based on RSA (which was later shown insecure [23]) and Diffie-Hellman
(DH). Here, we only describe the latter, which modifies a basic DH protocol by
symmetrically encrypting the exchanged items. Let α be a primitive root modulo
p. In the protocol, Alice sends to Bob [αxa]s, where xa is taken randomly from
[1, p − 1] and [. . .]s denotes a symmetric cipher using the password s as the key.
Similarly, Bob sends to Alice [αxb]s, where xb ∈R [1, p − 1]. Finally, Alice and
Bob compute a common key K = αxa·xb . More details can be found in [10].

It has been shown that a straightforward implementation of the above protocol
is insecure [20]. Since the password is too weak to be used as a normal encryption
key, the content within the symmetric cipher must be strictly random. But, for
a 1024-bit number modulo p, not every bit is random. Hence, a passive attacker
can rule out candidate passwords by applying them to decipher [αxa]s, and then
checking whether the results fall within [p, 21024 − 1].

There are suggested countermeasures. In [10], Bellovin and Merrit recom-
mended to transmit [αxa + r · p]s instead of [αxa]s in the actual implementation,
where r ·p is added using a non-modular operation. The details on defining r can

1 The Jiang-Gong paper proposes to use a trusted third party or a threshold scheme

to define the public parameters [35], while the KOY paper suggests to use a trusted

third party or a source of randomness [34]. However, neither paper provides concrete

descriptions of the “threshold scheme” and “source of randomness”. The Gennaro-

Lindell paper suggests to choose a large organization as the trusted party for all its

employees [39]. However, such a setup also severely limits the general deployment of

PAKE among the public.

196 F. Hao and P. Ryan

be found in [10]. However, this solution was explained in an ad-hoc way, and it
involves changing the existing protocol specification. Due to lack of a complete
description of the final protocol, it is difficult to assess its security. Alternatively,
Jaspan suggests addressing this issue by choosing p as close to a power of 2 as
possible [20]. This might alleviate the issue, but does not resolve it.

The above reported weakness in EKE suggests that formal security proofs
are unlikely without introducing new assumptions. Bellare, Pointcheval and Ro-
gaway introduced a formal model based on an “ideal cipher” [5]. They applied
this model to formally prove that EKE is “provably secure”. However, this result
is disputed in [7,32]. The so-called “ideal cipher” was not concretely defined in [5];
it was only later clarified by Boyd et al. in [7]: the assumed cipher works like a
random function in encryption, but must map fixed-size strings to elements of
G in decryption (also see [32]). Clearly, no such ciphers are readily available yet.
Several proposed instantiations of such an “ideal cipher” were easily broken [32].

Another limitation with the EKE protocol is that it does not securely ac-
commodate short exponents. The protocol definition requires αxa and αxb be
uniformly distributed over the whole group Z

∗
p [10]. Therefore, the secret keys

xa and xb must be randomly chosen from [1, p − 1], and consequently, an EKE
must use 1024-bit exponents if the modulus p is chosen 1024-bit. An EKE cannot
operate in groups with distinct features, such as a subgroup with prime order
– a passive attacker would then be able to trivially uncover the password by
checking the order of the decrypted item.

Jablon proposed a different protocol, called Simple Password Exponential
Key Exchange (SPEKE), by replacing a fixed generator in the basic Diffie-
Hellman protocol with a password-derived variable [16]. In the description of
a fully constrained SPEKE, the protocol defines a safe prime p = 2q + 1, where
q is also a prime. Alice sends to Bob (s2)xa where s is the shared password and
xa ∈R [1, q − 1]; similarly, Bob sends to Alice (s2)xb where xb ∈R [1, q − 1].
Finally, Alice and Bob compute K = s2·xa·xb . The squaring operation on s is to
make the protocol work within a subgroup of prime order q.

There are however risks of using a password-derived variable as the base, as
pointed out by Zhang [31]. Since some passwords are exponentially equivalent,
an active attacker may exploit that equivalence to test multiple passwords in one
go. This problem is particularly serious if a password is a Personal Identification
Numbers (PIN). One countermeasure might be to hash the password before
squaring, but that does not resolve the problem. Hashed passwords are still
confined to a pre-defined small range. There is no guarantee that an attacker is
unable to formulate exponential relationships among hashed passwords; existing
hash functions were not designed for that purpose. Hence, at least in theory,
this reported weakness disapproves the original claim in [16] that a SPEKE only
permits one guess of password in one attempt.

Similar to the case with an EKE, a fully constrained SPEKE uses long ex-
ponents. For a 1024-bit modulus p, the key space is within [1, q − 1], where q is
1023-bit. In [16], Jablon suggested to use 160-bit short exponents in a SPEKE,
by choosing xa and xb within a dramatically smaller range [1, 2160 −1]. But, this

J-PAKE: Authenticated Key Exchange without PKI 197

would give a passive attacker side information that the 1023 − 160 = 863 most
significant bits in a full-length key are all ‘0’s. The security is not reassuring, as
the author later acknowledged in [19].

To sum up, an EKE has the drawback of leaking partial information about
the password to a passive attacker. As for a SPEKE, it has the problem that an
active attacker may test multiple passwords in one protocol execution. Further-
more, neither protocol accommodates short exponents securely. Finally, neither
protocol has security proofs; to prove the security would require introducing new
security assumptions [5] or relaxing security requirements [26].

3 J-PAKE Protocol

In this section, we present a new balanced PAKE protocol called Password Au-
thenticated Key Exchange by Juggling (J-PAKE). The key exchange is carried
out over an unsecured network. In such a network, there is no secrecy in commu-
nication, so transmitting a message is essentially no different from broadcasting
it to all. Worse, the broadcast is unauthenticated. An attacker can intercept a
message, change it at will, and then relay the modified message to the intended
recipient.

It is perhaps surprising that we are still able to establish a private and authen-
ticated channel in such a hostile environment solely based on a shared password
– in other words, bootstrapping a high-entropy cryptographic key from a low-
entropy secret. The protocol works as follows.

Let G denote a subgroup of Z
∗
p with prime order q in which the Decision

Diffie-Hellman problem (DDH) is intractable [6]. Let g be a generator in G. The
two communicating parties, Alice and Bob, both agree on (G, g). Let s be their
shared password2, and s �= 0 for any non-empty password. We assume the value
of s falls within [1, q − 1].

Alice selects two secret values x1 and x2 at random: x1 ∈R [0, q − 1] and
x2 ∈R [1, q − 1]. Similarly, Bob selects x3 ∈R [0, q − 1] and x4 ∈R [1, q − 1]. Note
that x2, x4 �= 0; the reason will be evident in security analysis.

Round 1. Alice sends out gx1 , gx2 and knowledge proofs for x1 and x2. Simi-
larly, Bob sends out gx3 , gx4 and knowledge proofs for x3 and x4.

The above communication can be completed in one round as neither party de-
pends on the other. When this round finishes, Alice and Bob verify the received
knowledge proofs, and also check gx2, gx4 �= 1.

Round 2. Alice sends out A = g(x1+x3+x4)·x2·s and a knowledge proof for x2 ·s.
Similarly, Bob sends out B = g(x1+x2+x3)·x4·s and a knowledge proof for x4 · s.

When this round finishes, Alice computes K = (B/gx2·x4·s)x2 = g(x1+x3)·x2·x4·s,
and Bob computes K = (A/gx2·x4·s)x4 = g(x1+x3)·x2·x4·s. With the same keying
material K, a session key can be derived κ = H(K), where H is a hash function.
2 Depending on the application, s could also be a hash of the shared password together

with some salt.

198 F. Hao and P. Ryan

The two-round J-PAKE protocol can serve as a drop-in replacement for face-
to-face key exchange. It is like Alice and Bob meet in person and secretly agree
a common key. So far, the authentication is implicit: Alice believes only Bob can
derive the same key and vice versa. In some applications, Alice and Bob may
want to perform an explicit key confirmation just to make sure the other party
actually holds the same key.

There are several ways to achieve explicit key confirmation. In general, it is
desirable to use a different key from the session key for key confirmation3, say use
κ′ = H(K, 1). We summarize a few methods, which are generically applicable
to all key exchange schemes. A simple method is to use a hash function similar
to the proposal in SPEKE: Alice sends H(H(κ′)) to Bob and Bob replies with
H(κ′). Another straightforward way is to use κ′ to encrypt a known value (or
random challenge) as presented in EKE. Other approaches make use of MAC
functions as suggested in [36]. Given that the underlying functions are secure,
these methods do not differ significantly in security.

In the protocol, senders need to produce valid knowledge proofs. The necessity
of the knowledge proofs is motivated by Anderson-Needham’s sixth principle in
designing secure protocols [2]: “Do not assume that a message you receive has a
particular form (such as gr for known r) unless you can check this.” Fortunately,
Zero-Knowledge Proof (ZKP) is a well-established primitive in cryptography; it
allows one to prove his knowledge of a discrete logarithm without revealing
it [29].

As one example, we could use Schnorr’s signature [30], which is non-interactive,
and reveals nothing except the one bit information: “whether the signer knows the
discrete logarithm”. Let H be a secure hash function4. To prove the knowledge
of the exponent for X = gx, one sends {SignerID, V = gv, r = v − xh} where
SignerID is the unique user identifier, v ∈R Zq and h = H(g, V, X, SignerID).
The receiver verifies that X lies in the prime-order subgroup G and that gv equals
grXh. Adding the unique SignerID into the hash function is to prevent Alice re-
playing Bob’s signature back to Bob and vice versa. Note that for Schnorr’s sig-
nature, it takes one exponentiation to generate it and two to verify it (computing
gr · Xh requires roughly one exponentiation using the simultaneous computation
technique [37]).

4 Security Analysis

In this section, we show the protocol fulfills all the security requirements listed
in Section 2.1.

3 Using a different key has a (subtle) theoretical advantage that the session key will

remain indistinguishable from random even after the key confirmation. However, this

does not make much difference in practical security and is not adopted in [10,16].
4 Schnorr’s signature is provably secure in the random oracle model, which requires a

secure hash function.

J-PAKE: Authenticated Key Exchange without PKI 199

4.1 Off-Line Dictionary Attack Resistance

First, we discuss the protocol’s resistance against the off-line dictionary attack.
Without loss of generality, assume Alice is honest. Her ciphertext A contains
the term (x1 + x3 + x4) on the exponent. Let xa = x1 + x3 + x4. The following
lemma shows the security property of xa.

Lemma 1. The xa is a secret of random value over Zq to Bob.

Proof. The value x1 is uniformly distributed over Zq and unknown to Bob. The
knowledge proofs required in the protocol show that Bob knows x3 and x4. By
definition xa is computed from x3 and x4 (known to Bob) plus a random number
x1. Therefore xa must be randomly distributed over Zq.

In the second round of the protocol, Alice sends A = gx2·s
a to Bob, where ga =

gx1+x3+x4 . Here, ga serves as a generator. As the group G has prime order, any
non-identity element is a generator [29]. So Alice can explicitly check ga �= 1 to
ensure it is a generator. In fact, Lemma 1 shows that x1 +x3 +x4 is random over
Zq even in the face of active attacks. Hence, ga �= 1 is implicitly guaranteed by the
probability. The chance of ga = 1 is extremely minuscule – on the order of 2−160

for 160-bit q. Symmetrically, the same argument applies to the Bob’s case. For
the same reason, it is implicitly guaranteed by probability that x1+x3 �= 0, hence
K = g(x1+x3)·x2·x4·s �= 1 holds with an exceedingly overwhelming probability.

Theorem 2 (Off-line dictionary attack resistance against active at-
tacks). Under the Decision Diffie-Hellman (DDH) assumption, provided that
gx1+x3+x4 is a generator, Bob cannot distinguish Alice’s ciphertext A =
g(x1+x3+x4)·x2·s from a random non-identity element in the group G.

Proof. Suppose Alice is communicating to an attacker (Bob) who does not
know the password. The data available to the attacker include gx1 , gx2 , A =
g
(x1+x3+x4)·x2·s
a and Zero Knowledge Proofs (ZKP) for the respective exponents.

The ZKP only reveals one bit: whether the sender knows the discrete logarithm5.
Given that gx1+x3+x4 is a generator, we have x1 + x3 + x4 �= 0. From Lemma 1,
x1 + x3 + x4 is a random value over Zq. So, x1 + x3 + x4 ∈R [1, q − 1], un-
known to Bob. By protocol definition, x2 ∈R [1, q − 1] and s ∈ [1, q − 1], hence
x2 · s ∈R [1, q − 1], unknown to Bob. Based on the Decision Diffie-Hellman as-
sumption [29], Bob cannot distinguish A from a random non-identity element in
the group. 	

The above theorem indicates that if Alice is talking directly to an attacker, she
does not reveal any useful information about the password. Based on the protocol
symmetry, the above results can be easily adapted from Alice’s perspective –
Alice cannot compute (x1 + x2 + x3), nor distinguish B from a random element

5 It should be noted that if we choose Schnorr’s signature to realize ZKPs, we implicitly

assume a random oracle (i.e., a secure hash function), since Schnorr’s signature is

provably secure under the random oracle model [30].

200 F. Hao and P. Ryan

in the group. However, the off-line dictionary attack resistance against an active
attacker does not necessarily imply resistance against a passive attacker (in the
former case, the two passwords are different, while in the latter, they are the
same). Therefore, we need the following theorem to show if Alice is talking to
authentic Bob, there is no information leakage on the password too.

Theorem 3 (Off-line dictionary attack resistance against passive at-
tacks). Under the DDH assumption, given that gx1+x3+x4 and gx1+x2+x3 are
generators, the ciphertexts A = g(x1+x3+x4)·x2·s and B = g(x1+x2+x3)·x4·s do not
leak any information for password verification.

Proof. Suppose Alice is talking to authentic Bob who knows the password. We
need to show a passive attacker cannot learn any password information by corre-
lating the two users’ ciphertexts. Theorem 2 states that Bob cannot distinguish
A from a random value in G. This implies that even Bob cannot computationally
correlate A to B (which he can compute). Of course, a passive attacker cannot
correlate A to B. Therefore, to a passive attacker, A and B are two random and
independent values in G; they do not leak any useful information for password
verification. 	

4.2 Forward Secrecy

Next, we discuss the forward secrecy. In the following theorem, we consider
a passive attacker who knows the password secret s. As we explained earlier,
the ZKPs in the protocol require Alice and Bob know the values of x1 and
x3 respectively, hence x1 + x3 �= 0 (thus K �= 1) holds with an exceedingly
overwhelming probability even in the face of active attacks.

Theorem 4 (Forward secrecy). Under the Square Computational Diffie-
Hellman (SCDH) assumption6, given that K �= 1, the past session keys derived
from the protocol remain incomputable even when the secret s is later disclosed.

Proof. After knowing s, the passive attacker wants to compute κ = H(K) given
inputs: {gx1, gx2 , gx3, gx4 , g(x1+x3+x4)·x2 , g(x1+x2+x3)·x4}.

Assume the attacker is able to compute K = g(x1+x3)·x2·x4 from those in-
puts. For simplicity, let x5 = x1 + x3 mod q. Since K �= 1, we have x5 �= 0.
The attacker behaves like an oracle – given the ordered inputs {gx2, gx4 , gx5 ,
g(x5+x4)·x2 , g(x5+x2)·x4}, it returns gx5·x2·x4 . This oracle can be used to solve the
SCDH problem as follows. For gx where x ∈R [1, q − 1], we query the oracle
by supplying {g−x+a, g−x+b, gx, gb·(−x+a), ga·(−x+b)}, where a, b are arbitrary
values chosen from Zq, and obtain f(gx) = g(−x+a)·(−x+b)·x = gx3−(a+b)·x2+ab·x.
In this way, we can also obtain:

f(gx+1) = g(x+1)3−(a+b)·(x+1)2+ab·(x+1)

= gx3+(3−a−b)·x2+(3−2a−2b+ab)·x+1−a−b+ab

6 The SCDH assumption is provably equivalent to the Computational Diffie-Hellman

(CDH) assumption – solving SCDH implies solving CDH, and vice versa [4].

J-PAKE: Authenticated Key Exchange without PKI 201

Now we are able to compute gx2
=

(

f(gx+1) · f(gx)−1 · g(−3+2a+2b)·x−1+a+b−ab
)1/3

.
This, however, contradicts the SCDH assumption [4], which states that one can-
not compute gx2

from g, gx where x ∈R [1, q − 1]. 	

4.3 Known Session Security

We now consider the impact of a compromised session. If an attacker is powerful
enough to compromise a session, we assume he can learn all session-specific
secrets, including the raw session key K and ephemeral private keys. In this
case, the password will inevitably be disclosed (say by exhaustive search). This
is an inherent threat and applies to all the existing PAKE protocols [1, 33, 34,
35, 5, 10, 16, 7, 17,28].

Still, we shall minimize the impact of a compromised session: in particular, a
corrupted session must not harm the security of other established sessions. In the
J-PAKE protocol, the raw session key K = g(x1+x3)·x2·x4·s is determined by the
ephemeral random inputs x1, x2, x3, x4 from both parties in the session. As we
mentioned earlier, the probability has implicitly guaranteed that K �= 1 even in
the face of active attacks. The following theorem shows that the obtained session
key K is random too – in other words, the session keys are all independent.
Therefore, compromising a session (hence learning all session-specific secrets)
has no effect on other established session keys.

Theorem 5 (Random session key). Under the Decision Diffie-Hellman
(DDH) assumption, given that K �= 1, the past session key derived from the
protocol is indistinguishable from a random non-identity element in G.

Proof. By protocol definition, x2, x4 ∈R [1, q − 1], and s ∈ [1, q − 1]. Since
K = g(x1+x3)·x2·x4·s �= 1, we have x1 +x3 �= 0. Let a = x1 +x3 and b = x2 ·x4 · s.
Obviously, a ∈R [1, q−1] and b ∈R [1, q−1]. Based on the Decision Diffie-Hellman
assumption [29], the value ga·b is indistinguishable from a random non-identity
element in the group. 	

4.4 On-Line Dictionary Attack Resistance

Finally, we study an active attacker, who directly engages in the protocol exe-
cution. Without loss of generality, we assume Alice is honest, and Bob is com-
promised (i.e., an attacker).

In the protocol, Bob demonstrates that he knows x4 and the exponent of gb,
where gb = gx1+x2+x3 . Therefore, the format of the ciphertext sent by Bob can
be described as B′ = gb

x4·s′
, where s′ is a value that Bob (the attacker) can

choose freely.

Theorem 6 (On-line dictionary attack resistance). Under the SCDH as-
sumption, an active attacker cannot compute the session key if he chose a value
s′ �= s.

202 F. Hao and P. Ryan

Table 1. Summary of J-PAKE security properties

Modules Security property Attacker type Assumptions

Schnorr leak 1-bit: whether sender passive/active DL and

signature knows discrete logarithm random oracle

Password indistinguishable passive/active DDH

encryption from random

Session incomputable passive CDH

key incomputable passive (know s) CDH

incomputable passive (know other session keys) CDH

incomputable active (if s′ �= s) CDH

Key leak nothing passive –

confirmation leak 1-bit: whether s′ = s active CDH

Proof. After receiving B′, Alice computes

K ′ = (B′/gx2·x4·s)x2 (1)

= gx1·x2·x4·s′ · gx2·x3·x4·s′ · gx2
2·x4·(s′−s) (2)

To obtain a contradiction, we reveal x1 and s, and assume that the attacker is
now able to compute K ′. The attacker behaves as an oracle: given inputs {gx2, x1,
x3, x4, s, s′}, it returns K ′. Note that the oracle does not need to know x2, and it
is still able to compute A = g(x1+x3+x4)·x2·s and B′ = g(x1+x2+x3)·x4·s′

internally.
Thus, the oracle can be used to solve the Square Computational Diffie-Hellman
problem by computing gx2

2
= (K ′/(gx1·x2·x4·s′ · gx2·x3·x4·s′

))x4
−1(s′−s)−1

. Here7,
x4 �= 0 and s′ − s �= 0. This, however, contradicts the SCDH assumption [4],
which states that one cannot compute gx2

2
from g, gx2 where x2 ∈R [1, q − 1].

So, even with x1 and s revealed, the attacker is still unable to compute K ′ (and
hence cannot perform key confirmation later). 	

The above theorem shows that what an on-line attacker can learn from the
protocol is only minimal. Because of the knowledge proofs, the attacker is left
with the only freedom to choose an arbitrary s′. If s′ �= s, he is unable to
derive the same session key as Alice. During the later key confirmation process,
the attacker will learn one-bit information: whether s′ and s are equal. This
is the best that any PAKE protocol can possibly achieve, because by nature
we cannot stop an imposter from trying a random guess of password. However,
consecutively failed guesses can be easily detected, and thwarted accordingly.
The security properties of our protocol are summarized in Table 1.

5 Comparison

In this section, we compare our protocol with two other balanced PAKE schemes:
EKE and SPEKE. These two techniques have several variants, which follow very
7 This explains why in the protocol definition we need x4 �= 0, and symmetrically,

x2 �= 0.

J-PAKE: Authenticated Key Exchange without PKI 203

Table 2. Computational cost for Alice in J-PAKE

Item Description No of Exp

1 Compute {gx1 , gx2} and KPs for {x1, x2} 4

2 Verify KPs for {x3, x4} 4

3 Compute A and KP for {x2 · s} 2

4 Verify KP for {x4 · s} 2

5 Compute κ 2

Total 14

similar constructs [7]. However, it is beyond the scope of this paper to evaluate
them all. Also, we will not compare with augmented schemes (e.g., A-EKE,
B-SPEKE, SRP, AMP and OPAKE [27]) due to different design goals.

The EKE and SPEKE are among the simplest and most efficient PAKE
schemes. Both protocols can be executed in one round, while J-PAKE requires
two rounds. On the computational aspect, both protocol require each user to per-
form only two exponentiations, compared with 14 exponentiations in J-PAKE
(see Table 2).

At first glance, the J-PAKE scheme looks too computationally expensive.
However, note that both the EKE and SPEKE protocols must use long ex-
ponents (see Section 2.2). Since the cost of exponentiation is linear with the
bit-length of the exponent [29], for a typical 1024-bit p and 160-bit q setting,
one exponentiation in an EKE or SPEKE is equivalent in cost to 6-7 exponen-
tiations in a J-PAKE. Hence, the overall computational costs for EKE, SPEKE
and J-PAKE are actually about the same.

There are several ways to improve the J-PAKE performance. First, the proto-
col enumerates 14 exponentiations for each user, but actually many of the opera-
tions are merely repetitions. To explain this, let the bit length of the exponent be
L = log2 q. Computing gx1 alone requires roughly 1.5L multiplications which in-
clude L square operations and 0.5L multiplications of the square terms. However,
the same square operations need not be repeated for other items with the same
base g (i.e., gx2 etc). This provides plenty room for efficiency optimization in a
practical implementation. In contrast, the same optimization is not applicable to
the EKE and SPEKE. Second, it would be more efficient, particularly on mobile
devices, to implement J-PAKE using Elliptic Curve Cryptography (ECC). Using
ECC essentially replaces the multiplicative cyclic group with an additive cyclic
group defined over some elliptic curve. The basic protocol construction remains
unchanged.

6 Design Considerations

One notable feature of the J-PAKE design is the use of the Zero Knowledge
Proof (ZKP), specifically: Schnorr Signature [30]. The ZKP is a well-established
cryptographic primitive [9]. For over twenty years, this primitive has been playing
a pivotal role in general two/multi-party secure computations [38].

204 F. Hao and P. Ryan

Authenticated key exchange is essentially a two-party secure computation
problem. However, the use of ZKP in this area is rare. The main concern is on
efficiency: the ZKP is perceived as computationally expensive. So far, almost all
of the past PAKE protocols have avoided using ZKP for exactly the reason.

However, the use of ZKP does not necessarily mean the protocol must be in-
efficient. This largely depends on how to effectively integrate this primitive into
the overall design. In our construction, we introduced a novel juggling technique:
arranging the random public keys in such a structured way that the random-
ization factors vanish when both sides supplied the same password. (A similar
use of this juggling technique can be traced back to [15] and [8]). As we have
shown, this leads to computational efficiency that is comparable to the EKE and
SPEKE protocols. To our best knowledge, this design is significantly different
from all past PAKE protocols. In the area of PAKE research – which has been
troubled by many patent arguments surrounding existing schemes [13] – a new
construct may be helpful.

With the same juggling idea, the current construction of the J-PAKE proto-
col seems close to the optimum. Note in the protocol, we used four x terms –
x1, x2, x3, x4. As if one cannot juggle with only two balls, we find it difficult to
juggle with two x terms. This is not an issue in the multi-party setting where
there are at least three participants (each participant generates one “ball”) [15].
For the two-party case, our solution was to let each user create two ephemeral
public keys, and thus preserve the protocol symmetry. It seems unlikely that one
could improve the protocol efficiency by using a total of only 3 (or even 2) x
terms. However, we do not have a proof of minimality on this, so we leave the
question open.

7 Conclusion

In this paper, we proposed a protocol, called J-PAKE, which authenticates a
password with zero-knowledge and then subsequently creates a strong session
key if the password is correct. We showed that the protocol fulfills the following
properties: it prevents off-line dictionary attacks; provides forward secrecy; in-
sulates a compromised session from affecting other sessions; and strictly limits
an active attacker to guess only one password per protocol execution. As com-
pared to the de facto internet standard SSL/TLS, J-PAKE is more lightweight
in password authentication with two notable advantages: 1). It requires no PKI
deployments; 2). It protects users from leaking passwords (say to a fake bank
website).

Acknowledgments

We thank Ross Anderson and Piotr Zieliński for very helpful comments and
discussions.

J-PAKE: Authenticated Key Exchange without PKI 205

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-

tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,

Heidelberg (2005)

2. Anderson, R.J., Needham, R.: Robustness principles for public key protocols. In:

Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 236–247. Springer,

Heidelberg (1995)

3. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley, New York (2001)

4. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,

Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,

Heidelberg (2003)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure

against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,

vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.

LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

7. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment.

Springer, Heidelberg (2003)

8. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient

untraceability. Journal of Cryptology 1(1), 65–67 (1988)

9. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete log-

arithms, Technical report TR 260, Department of Computer Science, ETH Zürich

(March 1997)

10. Bellovin, S., Merritt, M.: Encrypted Key Exchange: password-based protocols se-

cure against dictionary attacks. In: Proceedings of the IEEE Symposium on Re-

search in Security and Privacy (May 1992)

11. Bellovin, S., Merritt, M.: Augmented Encrypted Key Exchange: a password-based

protocol secure against dictionary attacks and password file compromise. In: Pro-

ceedings of the 1st ACM Conference on Computer and Communications Security,

pp. 244–250 (November 1993)

12. Bellovin, S., Merritt, M.: Cryptographic protocol for secure communications, U.S.

Patent 5,241,599

13. Ehulund, E.: Secure on-line configuration for SIP UAs, Master thesis, The Royal

Institute of Technology (August 2006)

14. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-

word. In: Proceedings of the 9th International Workshops on Enabling Technolo-

gies, pp. 176–180. IEEE Press, Los Alamitos (2000)

15. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Proceedings of the

14th International Workshop on Security Protocols, SPW 2006, Cambridge, UK

(May 2006)

16. Jablon, D.: Strong password-only authenticated key exchange. ACM Computer

Communications Review 26(5), 5–26 (1996)

17. Jablon, D.: Extended password protocols immune to dictionary attack. In: Proceed-

ings of the WETICE 1997 Enterprise Security Workshop, pp. 248–255 (June 1997)

18. Jablon, D.: Cryptographic methods for remote authentication, U.S. Patent

6,226,383 (March 1997)

19. Jablon, D.: Password authentication using multiple servers. In: Naccache, D. (ed.)

CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg (2001)

206 F. Hao and P. Ryan

20. Jaspan, B.: Dual-workfactor Encrypted Key Exchange: efficiently preventing pass-

word chaining and dictionary attacks. In: Proceedings of the Sixth Annual USENIX

Security Conference, pp. 43–50 (July 1996)
21. Kobara, K., Imai, H.: Pretty-simple password-authenticated key-exchange under

standard assumptions. IEICE Transactions E85-A(10), 2229–2237 (2002)
22. Van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short

exponents. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–

343. Springer, Heidelberg (1996)
23. Patel, S.: Number theoretic attacks on secure password schemes. In: Proceedings

of the IEEE Symposium on Security and Privacy (May 1997)

24. Perlman,R.,Kaufman,C.: Secure password-based protocol for downloading aprivate

key. In:Proceedings of the Network andDistributed SystemSecurity (February 1999)
25. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange,

Technical Report 2002-46, DIMACS (2002)
26. MacKenzie, P.: On the Security of the SPEKE Password-Authenticated Key Ex-

change Protocol. Cryptology ePrint Archive: Report 057 (2001)

27. IEEE P1363 Working Group, P1363.2: Standard Specifications for Password-Based

Public-Key Cryptographic Techniques. Draft available at,

http://grouper.ieee.org/groups/1363/
28. Wu, T.: The Secure Remote Password protocol. In: Proceedings of the Internet

Society Network and Distributed System Security Symposium, pp. 97–111 (March

1998)

29. Stinson, D.: Cryptography: theory and practice, 3rd edn. Chapman & Hall/CRC

(2006)
30. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-

ogy 4(3), 161–174 (1991)
31. Zhang, M.: Analysis of the SPEKE password-authenticated key exchange protocol.

IEEE Communications Letters 8(1), 63–65 (2004)

32. Zhao, Z., Dong, Z., Wang, Y.: Security analysis of a password-based authentication

protocol proposed to IEEE 1363. Theoretical Computer Science 352(1), 280–287

(2006)

33. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:

Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg

(2001)

34. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange

using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.

LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

35. Jiang, S.Q., Gong, G.: Password based key exchange with mutual authentication.

In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.

Springer, Heidelberg (2004)

36. Krawczyk, H.: HMQV: a high-performance secure Diffe-Hellman protocol. In:

Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-

delberg (2005)

37. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-

raphy. CRC Press, Boca Raton (1996)
38. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In: Proceedings of the Nine-

teenth Annual ACM Conference on Theory of Computing, pp. 218–229 (1987)
39. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-

change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.

Springer, Heidelberg (2003)

http://grouper.ieee.org/groups/1363/

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 207–222, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Distance Based Transmission Power Control Scheme for
Indoor Wireless Sensor Network

P.T.V. Bhuvaneswari, V. Vaidehi, and M. Agnes Saranya

Department of Electronics, Madras Institute of Technology, Anna University,
Chennai-44, Tamilnadu, India

ptvbmit@annauniv.edu, vaidehi@annauniv.edu,
saran_1131@yahoo.co.in

Abstract. This paper proposes a Distance Based Transmission Power Control
(DBTPC) scheme for selecting Optimal Transmission Power for Indoor
Wireless Sensor Network. The proposed work consists of two phases namely
Localization phase and data transfer phase. In Localization phase, the relative
coordinate of the unknown sensor node with respect to anchor sensor node is
estimated by the proposed Received Signal Strength (RSS) based localization
algorithm. By performing neighbor discovery process, each node obtains the
distance information of its neighboring nodes. Based on this information, in
data transfer phase it dynamically controls its transmission power level to reach
their neighboring node with acceptable RSS value. This is achieved by the pro-
posed distributed Distance Based Transmission Power Control (DBTPC)
scheme. The Optimal Transmission Power (OTP) can be adaptively selected by
the proposed DBTPC scheme. This ensures energy efficiency in sensor node
and thereby increases the lifetime of the network.

Keywords: Received Signal Strength based localization algorithm, Distance
Based Transmission Power Control scheme and Optimal Transmission Power.

1 Introduction

In Wireless Sensor Network, location awareness is the key factor for many potential
real time applications such as monitoring, target tracking, person tracking, and con-
text-aware application [1]. The sensor nodes in the network are usually powered by
limited batteries which in turn influences the network lifetime. In order to increase the
lifetime of the network, localization has to be made power efficient and accurate. The
ability of sensors to locate themselves using limited energy and computational re-
sources pose new challenges that require novel solution.

The traditional Global Positioning System (GPS) method of localization is not
suitable for Indoor Wireless Sensor Network (IWSN), as it is not accurate and cost-
effective [2]. Hence an alternate method like Time of Arrival (ToA), Time Difference
of Arrival (TDoA) and Received Signal Strength (RSS) may be used [2]. From the
literatures [2], it is found that RSS-based localization method is cost-effective, but not
very accurate. However, using appropriated error minimization techniques, this prob-
lem can be resolved.

208 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

In this paper, an energy efficient RSS based distributed localization algorithm and
Distance Based Transmission Power Control (DBTPC) scheme are proposed. The
principal objective of the proposed algorithm is to improve the accuracy in relative
coordinate estimation and minimize the energy cost incurred for transmitting informa-
tion between nodes. The proposed localization algorithm consists of two stages
namely, distance estimation and coordinates estimation. Estimation of accurate dis-
tance is done by one-dimensional Kalman filter estimator. The number of iterations of
the Kalman filter estimator is limited by Cramer Rao Bound (CRB). Min-max bound-
ing box algorithm estimates the coordinates of the unknown nodes more accurately as
it considers the overlapping issues prevailing in tri-lateration techniques. The pro-
posed DBTPC scheme, aims to minimize the energy consumption in the network by
selecting the Optimal Transmission Power (OTP) for each node to reach their
neighboring nodes.

The rest of the paper is organized as follows. Section 2 discusses the related work
in preceding power aware localization methods for Wireless Sensor Network. The
proposed RSS –based localization algorithm and DBTPC scheme is presented in
section 3. Results and discussion of the proposed work are presented in section 4 and
Section V concludes the paper with future work.

2 Related Work

The goal of localization algorithms in Wireless Sensor Network (WSN) is to deter-
mine the node’s position. Number of approaches [3, 4, 5, 6, 7, and 8] has been
proposed that formulate the localization problem as joint estimation problem. The
estimators determine the unknown node’s locations with reference to the anchor
node’s positions. [9] proposes RSS based localization algorithm with weighted cen-
troid method for indoor Wireless Sensor Network which offers low communication
overhead and low computational complexity. But the reduction in RSS measurement
errors is achieved by antenna diversity technique. This requires two antennas thus
results in increase of hardware complexity.

[5] Proposes a hop-distance algorithm for self-localization in WSN which is based
on RSS and uses maximum likelihood estimator to achieve accuracy. [10] Proposed a
localization scheme based on RSS and distributed weighted multidimensional scaling
algorithm which allows sensors to calculate their own location by means of iterative
optimization thus decreases the cost and improves the global coordinate estimate.
This method is robust to large errors.

As sensor networks are mainly operated by batteries, transmission of data between
nodes needs to consume less power. Dynamic transmission power control mecha-
nisms are required. In [11], a collaborative energy efficient target-tracking algorithm
is developed, where transmission power is adjusted based on the amount of mutual
information a node wants to share with their neighbors. In this method, the power
adjustment scheme depends on the network querying technique and it performs well
only if the most informative node is queried. A decomposition algorithm which opti-
mizes the sensor power levels to achieve higher utility factor for scheduling transmis-
sions in Wireless Sensor Networks is proposed in [12]. In [13], an optimal common
transmit power for Wireless Sensor Networks is investigated. The optimal transmit

 Distance Based Transmission Power Control Scheme 209

power derived in this paper can be applied only to some specific scenarios and also it
does not consider the multipath effects. In [14], an optimum selective forwarding pol-
icy for data transmission is introduced that selects the messages with higher priority
and discards that of low-priority. This method considers only the energy requirements
and not the neighbor node’s information.

In this paper, an efficient RSS based Localization Algorithm and Distance Based
Transmission Power Control (DBTPC) scheme are proposed. The proposed RSS
based localization algorithm, aims to estimate an accurate relative coordinate of a
sensor node. The proposed DBTPC scheme concentrates on energy optimization in
the node, by adaptively selecting the Optimal Transmission Power of a node to reach
its neighboring nodes based on their distance.

3 Proposed RSS-Based Localization Algorithm and DBTPC
Scheme

Consider a sensor network randomly deployed in an indoor environment with (M+N)
nodes, where M denotes the number of anchor nodes and N denotes the number of
unknown nodes. All the nodes are assumed to be static and possess the capability of
transmitting and receiving information by means of uni-cast communication.

The objective of the proposed RSS-based Localization Algorithm is to determine
the relative co-ordinates of N unknown nodes using the distance and location informa-
tion of M anchor nodes. The accuracy of the proposed algorithm is enhanced by
one-dimensional Kalman filter estimator in distance estimation stage and min-max
bounding box algorithm in relative coordinates estimation stage. The block diagram
of the proposed RSS based localization algorithm is presented in Figure 1.

RSS
Measurement

Reference

Statistical
Modeling

Unknown
node

Coordinates
Anchor
Coordinate

Co-ordinate
Estimation

(Trilateration &
Min-max

Distance
Error

CRB

Decision
Making

Kalman
Filter

Distance
Calibration (Log

Normal shadowing
& ITU Model)

Fig. 1. Block diagram of proposed RSS based localization algorithm

210 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

Once every unknown nodes compute their relative co-ordinates through the pro-
posed RSS based localization algorithm, they are termed as anchor nodes. Now, each
node in the network performs neighbor discovery process to obtain the distance in-
formation of its neighboring nodes. With this information, the transmission power
level at which each node need to be operated to reach their neighboring nodes with
acceptable RSS is adaptively controlled by the proposed Distance Based Transmis-
sion Power Control (DBTPC) scheme. The block diagram of the proposed DBTPC
scheme is presented in Figure 2.

Fig. 2. Block diagram of proposed DBTPC scheme

3.1 RSS Based Localization Algorithm

The anchor node equipped with GPS receiver transmits signal with a particular trans-
mission power to the unknown node, whose location is to be determined. The Re-
ceived Signal Strength (RSS) value of the transmitted signal is measured in the
unknown node. As the RSS values are fluctuating, more samples of RSS values are
measured for different time instances. The above said procedure is repeated for differ-
ent channels. The link qualities of all the channels are analyzed through statistical
modeling. The channel possessing less Standard Deviation (SD) is concluded as the
best channel. However, when the anchor node is operated at different transmission
power level, then best channel selection depends on two other parameters like Packet
Reception Rate (PRR) and Transmission Power (Pt).

Thus the Best Channel of Transmission (BCT) is expressed as,

(, ,)tBCT fn PRR P SD= (1)
Where PRR - Packet Reception Rate.

Pt -Transmission Power

 SD - Standard Deviation

The distance of the unknown node with respect to anchor node is computed from the
ensemble mean RSS value of the best channel using two models namely path loss log
normal shadowing and ITU indoor attenuation models.

Let dmn be the distance between anchor node m and unknown node n where
m =1,2,….M and n =1,2,…..N.

Fetch
neighbor
location

Distance
comp.

Data trans-
mission with

OTP

Compare
distance
with the
look up

OTP
selec-
tion

RF RF

 Distance Based Transmission Power Control Scheme 211

The distance dmn’ computed from log-normal shadowing model [15] is given
below,

ref mn p[(Pt(dBm) PL(d) X Pr(d ')[dBm]) / (10 n)]

mn refd ' d (10)σ− − −= (2)

where ref
PL(d) is the ensemble path loss at a short reference distance refd , Xσ is

the zero mean Gaussian random variable with standard deviation σ and pn is path-

loss exponent, typically lies between 2 and 4.
The distance dmn” computed from ITU indoor attenuation model [16] is given

below,

[(Pt(dBm) 20log f Llogd P (f) 28 X Pr(d ')[dBm])/(10n)]ref f rmn mn p
d " d (10)mn ref

σ− − − + − −
= (3)

Where L is the distance power loss coefficient, f is the frequency, fmax is the number of
floors between the node m and node n, Pf (fmn) is floor loss penetration factor.

The distance errors of the calculated distance by the two models are minimized by
one-dimensional Kalman estimator [17].The convergence rate of Kalman filter esti-
mator is decided based on the CRB (Cramer Rao Bound) [18].

Thus through one-dimensional Kalman filter estimator, the estimated distance

mnd
∧

is computed as given in equations below:

mnd
∧

 =
2 2

1 2 1 2

' " 1 1
() ()mn mnd d

σ σ σ σ
+ + (4)

(Or)

mnd
∧

= 2 2 2 2
mn 2 mn 1 1 2(d ' d ") ()σ σ σ σ+ + (5)

where σ 1 = standard deviation for 'mnd about the mean

 σ 2 = standard deviation for "mnd about the mean

The above estimated distance can also be rewritten as

' (" ')mn mn mn mnd d K d d
∧

= + − (6)

where K =
2

1
2 2

1 2()
σ

σ σ+
 is defined as the Kalman gain.

The CRB value is given below,
2

bound
d

CRB
n

σ
= (7)

212 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

where
1 2()

2

σ σσ +=

dn =number of samples

Lateration is one of the most popular techniques for node positioning in Wireless
Sensor Network. The lateration technique focused in this paper is tri-lateration. As-
sume that there are three anchor nodes with known positions (xa, ya) where a=1, 2, 3,

a node at unknown position (xu ,yu) and estimated distance value mnd
∧

 .
Using the model of multi-lateration [2], the 2-D coordinates of the unknown node

can be determined as below:

u

u

x

y

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

1

1

1

1

2
m m m

m m m

y y y y

x x x x

−

−

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ − −⎝ ⎠

K

M O M

L

2 2 2 2 2 2
1 11

2 2 2 2 2 2
1 11

() () ()

.

.

() () ()

m mn mn

m m m mmn mn

d d x x y y

d d x x y y− −−

⎡ ⎤− − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −− − −⎢ ⎥⎣ ⎦

 (8)

where (xu,yu) be the coordinates of the unknown node, (xa,ya), a=1,2,….m be the co-
ordinates of the known nodes, din, i=1,2,…m be the distance between the node i and
node n. Then from the point of intersection of all three anchors node’s connectivity
circles, the relative coordinates of unknown node is computed. But in real time sce-
nario, overlapping circles may exist due to wireless medium constraints, this result in
inaccurate relative coordinate estimation of unknown node. To resolve this problem
an efficient min-max bounding box concept is used in the proposed algorithm. The
connectivity circles of anchor nodes are modeled as square positioning Cells (PC).
Then the Final Bounding Box (FBB) which is the overlapping box of all the square
boxes is determined as below:

FBB is given by

 nFBB PC= I (9)

3.2 Distance Based Transmission Power Control (DBTPC) Scheme

Let D represent the maximum coverage of (S=M+N) sensor nodes that are randomly
deployed in indoor Wireless Sensor Network. After the Localization phase, each node
is aware of its relative coordinates. Now each node broadcast a request message to
obtain its neighbor’s topological information. After receiving the network topological
information, the proposed Distance Based Transmission Power Control (DBTPC)
scheme placed in the transceiver module of the sensor node is switched ON. This
DBTPC scheme, selects the Optimal Transmission Power (OTP) required to reach its
neighboring node. This scheme minimizes the energy utilization in the node, thereby
enhanced the lifetime of the network. The model used in the proposed DBTPC
scheme is presented in the following section.

The DBTPC scheme present in the transceiver module of each sensor node controls
its transmission power based on two factors namely distance information of its
neighbors (di) where i=1, 2,..., (S-1) and its own residual energy (Ek) at Kth instant.

 Distance Based Transmission Power Control Scheme 213

Thus the Optimal Transmission Power (OTP) can be expressed as,

(,) ;

0
k i k tfn E d E e

OTP
otherwise

⎧ >⎪⎪=⎨⎪⎪⎩ (10)

Where te the total amount of energy is consumed per packet transmission and is given

by [11],

()t t
b

L
e P J o u l e s

R
= ×

 (11)

where Pt - Transmission power, L - Packet size, Rb- the bit rate.
The proposed DBTPC scheme is validated by two models namely (i) Connectivity

model and (ii) Energy model.

Connectivity model
Let dk represent the connectivity information of a sensor node at instant. If neighbor-
ing nodes are within the connectivity of a sensor node, then dk =1 else dk =0. Let xk be
a variable that indicates the communication status of a sensor node such that,

1,

0, k

transmission occurs
x

no transmission

⎧⎪⎪=⎨⎪⎪⎩ (12)

The necessary condition at which the proposed DBTPC scheme can be enabled in the
sensor node is when both dk

 = xk = 1.

Energy model
The energy consumption in nodes can be the sum of energy spent in the sensing mod-
ule, processing module and transceiver module. It is found from the literature [14]
that energy consumption in sensing and processing is negligible compared to that of
transceiver module. In transceiver module, the energy consumption can be controlled
by adaptively selecting the transmission power to reach the neighboring nodes based
on their distance. The proposed DBTPC scheme is designed to perform this task.

Let Ek be the residual energy in a node at kth instant that can be expressed as,

1 1() (1)k k k k k iE E x E d x e−= − + − (13)

Where Ek-1 is the residual energy in the node at (k-1)th instant, ei is the energy spent by
the nodes when they are in idle state, E1(dk) is the energy consumed when the node
decides to transmit.

1()k tE d pe=
 (14)

Where p - number of transmitted packets.
The lifetime of the node can be defined as the time taken to drain out of initial bat-

tery energy and is given by [3],

(sec)batt batt b

t t t t

E E R

e LP
τ

λ λ
= =

 (15)

where λt - average transmission rate, Ebatt - initial battery energy.

214 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

The expected power profile obtained by the proposed DBTPC scheme is given in
Figure 3. Transmitting with a lower power reduces the communication range of the
node. Hence the profile justifies that the communication between nodes that are closer
to each other can be achieved with lower transmission power level of operation.

Consider each sensor node consists of an ordered set of transmission power levels,

1 2{ , ,.............,)t lP P P P=

where l represents the number of power levels such

that 1 2 lP P P< < < . Let ijd be the distance between any two nodes that

are within the maximum coverage D, Then the Optimal Transmission Power (OTP) is
given in equation (16).

If each node has the maximum coverage D, it has the privilege to communicate
with the maximum power, Pl. However, the proposed DBTPC scheme adaptively con-
trols the transmission power Pl in accordance with its distance information. The En-
ergy reduction is further ensured by enabling the DBTPC scheme in the transceiver
module which in turn wakeup the RF module from idle to active state. Thus the pro-
posed DBTPC scheme provides the energy saving mode of operation.

1

2

(1)
, 0

(1) (2)
,

. .

. .

. .

((1))
,

ij

ij

l ij

l
P d D D

l
l l

P D D d D D
l l

OTP

l l
P D D d D

l

⎧ −⎪⎪ ≤ < −⎪⎪⎪⎪⎪ − −⎪ − ≤ < −⎪⎪⎪⎪⎪= ⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪ − −⎪⎪ − ≤ ≤⎪⎪⎩ (16)

Fig. 3. Power Profile of the Proposed DBTPC scheme

 Distance Based Transmission Power Control Scheme 215

4 Results and Discussions

The proposed RSS based Localization algorithm is analyzed using Matlab version 7.0.
The results of analysis are given below.

4.1 RSS Analysis

The experimentation is done in the indoor environment using Zigbee series 1 RF
module and the associated X-CTU software of MAXSTREAM. The experiment has
been repeated for five different channels (B, C, D, E and F) with five different
frequencies. The experimental observations recorded in indoor environment are pre-
sented in Table 1. The table shows 20 samples of RSS (Received Signal Strength)
values measured at 20 different time instances for a specific distance. Figure 4 illus-
trate the relationship between distance and RSS measurement for channels B with
frequency values shown in Table 1. It is seen that the Received Signal Strength of the
unknown node decreases as distance between the anchor and unknown node in-
creases. Similar relationship between Distance and RSS measurement is also found
for remaining four channels (C, D, E, and F).

Distance vs RSS for channel B

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

0 1 2 3 4 5 6 7 8 9 10 11 12

Distance(m)

R
SS

(-
dB

m
)

Fig. 4. Distance vs RSS for channel B

The statistical modeling is done to find the best channel. The results are presented
in Table 2. It is found that the channel E is selected as the best channel for distances
2m, 4m and 10m as it possesses low standard deviation. For distances 6m and 8m,
channel D is selected as the best channel of transmission. The average RSS value of
channels D and E are computed.

From log normal shadowing path loss model and ITU attenuation model, the
distance between the anchor node and unknown node is calculated as illustrated in
Figure 5. It is seen that the calculated distance is closer to the actual distance in case
of log normal shadowing path loss model than ITU attenuation model.

216 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

Table 1. Experimental results in indoor environment

RSS Measurements (dBm) Dist.
(m) Channel B

(2.404-
2.406) GHz

Channel C
(2.409-2.411)
GHz

Channel D
(2.414- 2.416)
GHz

Channel E
(2.419-
2.421) GHz

Channel F
(2.424-
2.426) GHz

22

-50,-48, 47,
-45,-45,-51,
-53,-54,-52,
-49,-49,-51,
-52,-50,-52,
-51,-50,-49,
 -50,-48

-50,-50,-47,
-49,-51,-52,
-45,-55,-50,
-50,-49,-48,
-49,-47,-49,
-50,-51,-51,
-52,-50

-50,-50,-49,
-48,-47,-50,
-51,-53,-54,
-55,-47,-55,
-49,-48,-47,
-51,-52,-47,
-48,-50

-49,-51,-49,
-50, -50,-49,
-49,-51, -49,
-48,-51,-50,
-51,-50,-51,
-50,-49,-49,
-49,-50

-49,-51,-50,
-52, -53,-50,
-48,-50, -49,
-50,-50,-51,
-52,-54,-52,
-49,-47,-49,
-50,-51

4

-59,-60,-62,
-60,-58,-61,
-62,-63,-64,
-58,-56,-60,
-61,-62,-61,
-60,-61,-62,
-59,-60

-59,-60,-61,
-62,-60,-60,
-61,-60,-56,
-61,-59,-60,
-60,-58,-56,
-61,-62,-61,
-60,-59

-60,-59,-61,
-58,-59,-60,
-60,-61,-60,
-59,-59,-58,
-61,-62,-61,
-63,-61,-64,
-61,-61

-59,-60,-61,
-60,-59,-61,
-60,-61,-59,
-60,-61,-62,
-60,-59,-60,
-61,-62,-63,
-60,-61

-60,-61,-63,
-60,-59,-58,
-61,-60,-58,
-60,-61,-59,
-61,-62,-59,
-63,-60,-61,
-60,-59

6

-67,-69,-70,
-71,-69,-70,
-69,-67,-66,
-66,-65,-64,
-67,-69,-70,
-71,-72,-69,
-67,-68

-66,-67,-70,
-69,-71,-71,
-72,-70,-69,
-70,-71,-70,
-72,-71,-70,
-71,-72,-73,
-69,-70

-66,-68,-69,
-68,-66,-66,
-68,-66,-69,
-66,-68,-69,
-66,-66,-68,
-66,-68,-69,
-66,-65

-66,-68,-66,
-66,-66,-69,
-68,-66,-66,
-70,-66,-65,
-66,-66,-66,
-68,-66,-69,
-66,-65

-67,-69,-70,
-71,-66,-67,
-69,-70,-66,
-72,-71,-72,
-70,-66,-66,
-69,-70,-67,
-67,-68

8

-70,-71,-72,
-70,-73,-75,
-76,-69,-72,
-73,-72,-71,
-70,-69,-71,
-72,-73,-74,
-75,-74

-70,-73,-74,
-73,-75,-72,
-73,-74,-73,
-72,-71,-72,
-73,-73,-74,
-75,-73,-73,
-74,-74

-72,-73,-71,
-73,-73,-74,
-75,-73,-73,
-72,-74,-73,
-72,-74,-75,
-73,-72,-74,
-74,-72

-72,-73,-72,
-73,-71,-74,
-74,-73,-73,
-75,-72,-70,
-71,-70,-73,
-72,-73,-74,
-72,-72

-72,-73,-71,
-73,-70,-74,
-70,-73,-75,
-76,-71,-73,
-77,-70,-71,
-72,-73,-74,
-73,-73

10

-76,-75,-77,
-77,-75,-76,
-77,-77,-77,
-76,-77,-77,
-79,-77,-76,
-75,-74,-77,
-76,-78

-76,-77,-77,
-76,-77,-77,
-77,-79,-76,
-77,-77,-79,
-80,-79,-77,
-77,-73,-77,
-77,-78

-77,-76,-77,
-79,-79,-77,
-77,-77,-76,
-77,-77,-79,
-77,-77,-77,
-79,-77,-77,
-77,-78

-77,-76,-77,
-77,-77,-77,
-77,-77,-77,
-77,-77,-77,
-77,-79,-77,
-77,-77,-79,
-77,-76

-76,-77,-77,
-77,-75,-79,
-77,-77,-77,
-76,-75,-76,
-77,-77,-77,
-79,-79,-75,
 -77,-78

4.2 Kalman Analysis

Figure 6 shows the relationship between actual distance and estimated distance esti-
mation obtained with and without one-dimensional Kalman filter. It is seen that with
kalman, the estimated distance is very close to the actual distance. The percentage of
accuracy improved by kalman and the number of iteration taken to achieve them is

 Distance Based Transmission Power Control Scheme 217

Table 2. Standard Deviation for five channels

DIST.
(m)

B
(2.404-

2.406) GHz

C
(2.409-
2.411)
GHz

D
(2.414-
2.416)
GHz

E
(2.419-
2.421)
GHz

F
(2.424-
2.426)
GHz

2 2.39 2.13 2.62 0.92 1.69

4 1.87 1.65 1.53 1.23 1.38

6 2.13 1.67 1.26 1.37 2.05

8 1.98 1.29 1.04 1.31 1.92

10 1.11 1.44 0.96 0.61 1.18

Fig. 5. Distance Calculation

presented in Table 3. It is inferred that percentage of accuracy improvement is gradu-
ally increased as the distance of separation between nodes is increased with the cost
of number of iteration.

4.3 Trilateration Analysis

The relative coordinate of the unknown node is determined by trilateration and the
accuracy is improved using min-max algorithm. Figure 7 shows the results of trilat-
eration with min-max algorithm.

218 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

Fig. 6. Distance Estimation

Table 3. Kalman Filter Analysis

Act.
Dist(m)

Error
(with-
out
Kal-
man)

% of
error
With out
Kalman

% of
acc.
With out
Kalman

Error
(with
Kal-
man)

% of
error
With
Kalman

%of
acc.
With

Kalman

% of
Impro-

ved acc.

No. of
itera-
tion

2 0.10 5.06 94.93 0.08 4.47 95.52 0.59 1
4 0.19 4.84 95.15 0.13 3.30 96.69 1.55 2

6 0.27 4.61 95.38 0.19 3.21 96.78 1.40 2

8 0.37 4.62 95.37 0.14 1.77 98.22 2.85 3

10 0.52 5.28 94.72 0.16 1.68 98.32 3.6 3

Table 4 shows the result obtained with and without min-max bounding box

algorithm. It is found that accuracy is improved through min-max bounding box
algorithm.

4.4 Real-Time Experimentation Transmission Power Analysis

In real time, RSS values are measured between pairs of nodes for five different
transmission power levels and the distance estimation is done using the proposed RSS

 Distance Based Transmission Power Control Scheme 219

Fig. 7. Coordinates of unknown node estimated using min-max algorithm

Table 4. Co-ordinates Estimation

Anchor
coordinates

(x,y)

Distance be-
tween anchor
node and un-

known node(m)

Coordinates of
the unknown
node without

min-max algo-
rithm (x,y)

Coordinates of the
unknown node with
min-max algorithm

(x,y)

Actual
Coordinate

1 (2,1) 2.089

2 (5,4) 4.132

3 (8,2) 6.192

(2.12,1.75)

(2.94,1.47)

(3.3, 1.7)

localization algorithm. To analyze the energy consumption per packet transmission, a
simple experimental setup is developed using zigbee series 1 RF module as illustrated
in Figure 8. The various transmission power levels supported by zigbee series 1 RF
module are lowest (0.16mW), low (0.25mW), medium (0.39mW), high (0.63mW)
and highest (1mW). One experimental scenario is shown in Figure 8, in which two
nodes A and B are kept at 8m distances apart.

The maximum distance (D) that can be covered by node A when operated at the
highest transmission power in indoor environment is found to be 15m. Node A can
communicate with node B as it is within its coverage, but it will definitely leads in
reduction of its lifetime if it is continuously operated at the highest transmission

220 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

Fig. 8. Experimental setup to analyze the energy consumption

Fig. 9. Energy consumption vs Transmission Power level

power. By applying the proposed DBTPC scheme, node A dynamically adjusts its
power level to medium power level to reach node B. Using equation 11, the energy
consumed per packet transmission is computed for all the five power levels and

A

B

8m

Pt=1mW,

Pt=0.63mW,

Pt=0.39mW,

Pt=0.25mW,
Pt=0.16mW,

 Distance Based Transmission Power Control Scheme 221

plotted as shown in Figure 9. From the experimental result, it is found that by
applying the proposed scheme, energy consumed per packet transmission is reduced
to around 145%, when node A is operated in medium power level than in highest
power level.

5 Conclusion and Future Work

In this paper, an efficient RSS based distributed localization algorithm and DBTPC
scheme are proposed. The inaccuracies incurred in the RSS based localization algo-
rithm are refined using Kalman filter estimator and trilateration with min-max algo-
rithm. The energy consumption in the node for data transmission among neighboring
nodes are reduced by the proposed DBTPC scheme which selects the Optimal Trans-
mission Power based the distance information of the neighboring nodes. Hardware
design and embedding the proposed DBTPC scheme in the transceiver module of the
sensor node are under progress.

Acknowledgement

The authors would like to thank Tata Consultancy Services (TCS) for funding this
project.

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless Sensor Network survey. ELSEVIER Journal
on Computer Networks 52, 2292–2330 (2008)

2. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley
Publications, Chichester (2005)

3. Yedavalli, K., Krishnamachari, B., Ravula, S., Srinivasan, B.: Ecolocation: A Sequence
Based Technique for RF Localization in Wireless Sensor Networks. IEEE Transactions on
Mobile Computing 7(1), 81–94 (2005)

4. Zanca, G., Zorzi, F., Zanella, A., Zorzi, M.: Experimental comparison of RSSI-based lo-
calization algorithms for indoor Wireless Sensor Networks. In: REALWSN 2008, pp. 1–5
(2008)

5. Zhao, D., Men, Y., Zhao, L.: A hop-distance algorithm for self-localization of Wireless
Sensor Networks. In: International Conference on Software Engineering, Artificial Intelli-
gence and Parallel/Distributed Computing, vol. 2, pp. 108–112. IEEE computer society,
Los Alamitos (2007)

6. Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locat-
ing the nodes. IEEE Signal Processing Magazine, 54–69 (2005)

7. Sugano, M., Kawazoe, T., Ohta, Y., Murata, M.: Indoor localization system using RSSI
measurement of Wireless Sensor Network based on ZIGBEE standard. In: International
Conference on Wireless Sensor Networks, pp. 6–12 (2006)

8. Srbinovska, M., Gavrovski, C., Dimcev, V.: Localization Estimation System Using Meas-
urement of RSSI Based on ZIGBEE Standard. In: Electronics 2008, pp. 45–51 (2008)

222 P.T.V. Bhuvaneswari, V. Vaidehi, and M.A. Saranya

9. Reichenbach, F., Timmermann, D.: Indoor localization with low complexity in Wireless
Sensor Networks. In: IEEE International Conference on Industrial Informatics,
pp. 1018–1023 (2006)

10. Patwari, N., Hero, A.O.: Demonstrating Distributed Signal Strength Location Estimation.
In: SenSys 2006, pp.353–354 (2006)

11. Onel, T., Ersoy, C., Delic, H.: Information Content-Based Sensor Selection and Transmis-
sion Power Adjustment for Collaborative Target Tracking. IEEE Transactions on Mobile
Computing 8(8), 1103–1116 (2009)

12. Paschalidis, I.C., Lai, W., Starobinski, D.: Asymptotically Optimal Transmission Policies
for Large-Scale Low-Power Wireless Sensor Networks. IEEE Transactions on Mobile
Computing 15(1), 105–118 (2007)

13. Panichpapiboon, S., Ferrari, G., Tonguz, O.K.: Optimal Transmit Power in Wireless
Sensor Networks. IEEE Transactions on Mobile Computing 5(10), 1432–1447 (2006)

14. Arroyo-Valles, R., Marques, A.G., Cid-Suerio, J.: Optimal Selective Transmission under
Energy Constraints in Sensor Networks. IEEE Transactions on Mobile Computing 8(11),
1524–1538 (2009)

15. Log-distance path loss model, http://www.wikipedia.com
16. ITU Model for Indoor Attenuation, http://www.wikipedia.com
17. Rojas, R.: The Kalman Filter. Technical report, Freie University of Berlin (2003)
18. Larsson, E.G.: Cramer-Rao bound analysis of distributed positioning in sensor networks.

IEEE Signal Processing Letters 11(3), 334–337 (2004)
19. Kay-I.: Cramer-Rao Bound and Minimum Variance Unbiased Estimator, ch. 3

A Novel Feature Vectors Construction Approach
for Face Recognition

Paul Nicholl1, Afandi Ahmad2,3, and Abbes Amira4

1 School of Electronics, Electrical Engineering and Computer Science

The Queens University, Belfast, Northern Ireland

P.Nicholl@qub@ac.uk
2 Department of Electronic and Computer Engineering,

School of Engineering and Design, Brunel University, Uxbridge, United Kingdom
3 Department of Computer Engineering,

Faculty of Electrical and Electronic Engineering,

Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

afandia@uthm.edu.my
4 Nanotechnology and Integrated Bio-Engineering Centre (NIBEC),

Faculty of Computing and Engineering, University of Ulster,

Jordanstown Campus, Co Antrim, Northern Ireland

A.Amira@ulster.ac.uk

Abstract. This paper discusses a novel feature vectors construction

approach for face recognition using discrete wavelet transform (DWT).

Four experiments have been carried out focusing on: DWT feature

selection, DWT filter choice, features optimization by coefficients

selection as well as feature threshold. In order to explore the most

suitable method of feature extraction, different wavelet quadrant and

scales have been studied. It then followed with an evaluation of different

wavelet filter choices and their impact on recognition accuracy. An

approach for face recognition based on coefficient selection for DWT

is the presented and analyzed. Moreover, a study has been deployed

to investigate ways of selecting the DWT coefficient threshold. The

results obtained using the AT&T database have shown a significant

achievement over existing DWT/PCA coefficient selection techniques

and the approach presented increases recognition accuracy from 94%

to 97% when the Coiflet 3 wavelet is used.

Keywords: Face recognition, discrete wavelet transform, coefficient

selection, feature selection, feature optimization.

1 Introduction

In recent years, the demand for sophisticated security systems has risen
significantly. Both commercial and governmental organisations require methods
of protecting people and property. These often involve identifying people; to
control access to resources or to detect individuals on a watch list. Solutions
employing biometric techniques are being used widely to facilitate these needs [1].

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 223–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

224 P. Nicholl, A. Ahmad, and A. Amira

A variety of biometric approaches have been investigated or adopted. For
example, fingerprint recognition [2] has been used in crime solving for many
years and is being increasingly installed in consumer devices, such as laptop
computers. It is generally accurate and can be deployed with minimal cost. It
does, however, suffers from the requirement of many biometric methods that an
individual being identified must be compliant in the process – two fingerprints (or
sets of fingerprints) must be supplied in order to create a match. Some biometrics
are less intrusive – voice scans [3] can be taken without user compliance, although
accuracy is currently low.

Face recognition has received a large amount of attention from researchers
in recent years [4]. It has the potential to provide a robust biometric which,
although unlikely to exceed the accuracy of techniques like iris or fingerprint
scanning, could fulfill the needs of many scenarios. Much of the interest in
face recognition has been prompted by humans’ own remarkable ability to
recognize faces [5]. This ability encompasses recognition of faces from thousands
of known individuals, even in cases where there is partial occlusion of the face,
poor illumination, or there has been a change in appearance. Automatic face
recognition also requires less compliance by the individual being identified. A face
image for matching can be taken without the individual posing or even knowing
that the image is being captured.

A multitude of techniques have been applied to face recognition and they
can be separated into two categories: geometric feature matching and template
matching. Geometric feature matching involves segmenting the distinctive
features of the face, for examples eyes, nose, mouth, etc., and extracting
descriptive information about them such as their widths and heights. Ratios
between these measures can then be stored for each person and compared with
those from known individuals [6].

On the other hand, template matching is a holistic approach to face
recognition. Each face is treated as a two-dimensional (2-D) array of intensity
values, which is compared with other facial arrays. Techniques of this type
include principal component analysis (PCA) [7], where the variance among a set
of face images is represented by a number of eigenfaces. The face images, encoded
as weight vectors of the eigenfaces, can be compared using a suitable distance
measure [8]. In independent component analysis (ICA), faces are assumed to
be linear mixtures of some unknown latent variables. The latent variables
are assumed non-gaussian and mutually independent, and they are called the
independent components of the observed data [9]. In neural network models
(NNM), the system is supplied with a set of training images along with correct
classification, thus allowing the neural network to ascertain a weighting system
to determine which areas of an image are deemed most important [10].

Hybrid multiresolution approaches have received much attention in recent
years. The discrete wavelet transform (DWT) [11] has been used along with
a number of techniques, including PCA [12], ICA [13] and support vector
machines (SVM) [14]. DWT is able to extract features that are localized in both
space and frequency by convolving a bank of filters with an image at various

A Novel Feature Vectors Construction Approach for Face Recognition 225

locations. However, to date, no systematic examination has been performed
which determines how to best employ DWT for face recognition. The effect
of employing different filters and scales has not been examined.

This research study attempts to investigate these issues. Initially,
experimentation is performed using the Haar [15] and biorthogonal 4.4 [16]
wavelets, in order to determine the most appropriate wavelet quadrants and
scales. The study is then widened to cover a range of wavelets, with filters
examined from the Daubechies [17], symlet [17], Coiflet [17] and biorthogonal [18]
families. Results are analysed in order to ascertain whether scales and wavelet
filters can be intelligently chosen for face recognition applications. In addition, an
approach for face recognition based on DWT coefficient selection is presented and
analysed. This operates by attempting to optimize the feature vectors produces
by DWT, thereby improving results. An added benefit of the process is that
it can automatically segment the face image, eliminating the need to manually
crop images and possibly removing useful information.

The remainder of this paper is organized as follows. Section 2 investigates
which DWT features should be utilized for face recognition. Section 3 analyses
which wavelet filters perform best in this domain. Section 4 addresses the
optimization of feature vectors using coefficient selection. Section 5 investigates
how to choose a threshold for coefficient selection. Section 6 provides concluding
remarks.

2 DWT Feature Selection

2.1 Concepts

In order to assess whether DWT can enhance face recognition system
performance, a study is performed which attempts to determine how to employ
it for this purpose. A number of variables are assessed, including: quadrant –
which DWT quadrant(s) should be used for feature extraction?; scale – which
scale(s) should be used for feature extraction?; and filter – which wavelet filters
produce the best results?. This section attempts to address the first two points
and experiments are conducted on the AT&T database. Each experiment is
performed on coefficients taken from a specific wavelet scale and quadrant.
A high-level overview of the recognition approach adopted is given in Figure 1.

2.2 Experiments

The experiments start with system training. For this stage, each training image
undergoes wavelet transformation to the xth scale. DWT coefficients from the
specified quadrant at the xth scale undergo PCA, producing a set of principal
components. The training images are then projected onto the set of principal
components, producing a weight vector for each image, which represents the
features for the image. Probe images are processed in a similar manner, with each
image decomposed to the same scale and coefficients from the same quadrant

226 P. Nicholl, A. Ahmad, and A. Amira

Fig. 1. Overview of recognition approach

extracted. This image is projected onto the same principal components and
a weight vector is produced. This vector can be compared with those of training
images. For the experiments described here, the Euclidean distance measure is
employed.

For this study, five randomly-selected training images are used for each
individual, with the remaining five being used as probe images. Other than minor
re-scaling, the images undergo no preprocessing. As assessing wavelet filters is
not the object of the experiments in this section, only two filters are adopted:
Haar and biorthogonal 4.4. PCA is then employed, reducing the feature set
further. The images used for system training also from the gallery set. As there
are 200 training images, up to 200 principal components can be used to encode
each face. However, when there are fewer than 200 features (pixels or wavelet
coefficients) per training image (as is the case for higher wavelet scales), using
more than 200 principal components is redundant. Encoded gallery images are
compared with probe images using the Euclidean distance measure.

2.3 Results

This section presents recognition results for the Haar and biorthogonal 4.4
wavelets. The Haar wavelet has been chosen for its simplicity. The biorthogonal
4.4 wavelet has been chosen to represent a more sophisticated filter. Results

A Novel Feature Vectors Construction Approach for Face Recognition 227

are presented for the first five scales. It is worth mentioning that recognition
accuracies for the sixth scale are significantly lower, due to the reduced number
of coefficients at this scale.

The results for the Haar wavelet are shown in Figures 2 to 6. As can be seen
from the graphs, the choice of scale does have a significant effect on recognition
rate. For example, in Figure 2, the first and second scales perform better initially,
however, the recognition rates fall sharply as more eigenvectors are used. This
would suggest that, for HH quadrants, most of the useful information in these
scales is encoded within the first 20 eigenvectors. The results for the third
scale are more consistent, although they do not match the second scale peak
recognition rate of 66.5%. The results for the fourth scale and fifth scale are lower,
with the recognition rates leveling off at 64 and 16 eigenvectors respectively, due
to the number of coefficients per quadrant at these scales being 16 and 64,
respectively.

Fig. 2. Recognition results for Haar wavelet and HH quadrant

Figures 3 and 4 show results for LH and HL quadrants. In both cases,
the fourth scale produces the best results, followed by the third. In addition,
recognition rates for the first two scales significantly deteriorate as eigenvectors
increase, whereas this does not occur for the third, fourth and fifth scales.
Peak recognition rates are higher than for HH, with 74% of faces recognized
correctly using the LH quadrant and 78% with the HL quadrant. Figure 5
provides results for the LL quadrant. By a significant margin, the best results
with the Haar wavelet are achieved using this quadrant. The best scale for LL
is the third, producing recognition rates up to 95%. Scales 2, 1 and 4 produce
similar performance, with maximum recognition rates of 94%, 93% and 93%,

228 P. Nicholl, A. Ahmad, and A. Amira

Fig. 3. Recognition results for Haar wavelet and LH quadrant

Fig. 4. Recognition results for Haar wavelet and HL quadrant

respectively. Scale 5 matches up to 87.5% of faces correctly. Figure 6 illustrates
the extent to which the LL quadrant outperforms other quadrants.

Figures 7 and 8 show performance for the biorthogonal 4.4 wavelet. For
coefficients from the LL quadrant, recognition rates are similar to those for
Haar: scales 2 and 3 correctly recognize up to 94.5% of faces, with scales 1 and
4 recognizing 94% and 93%, respectively. From Figure 8, it can be seen that

A Novel Feature Vectors Construction Approach for Face Recognition 229

Fig. 5. Recognition results for Haar wavelet and LL quadrant

Fig. 6. Best recognition results for each quadrant using the Haar wavelet

the LL quadrant significantly outperforms the other quadrants. When compared
with the Haar results, the most significant difference is that the best-performing
scales for the LH and HL quadrants are the second and fifth respectively, as
opposed to the fourth. However, the significance of this is minimal, due to the
wide margin between these quadrants’ results and those for LL.

230 P. Nicholl, A. Ahmad, and A. Amira

Fig. 7. Recognition results for biorthogonal 4.4 wavelet and LL quadrant

Fig. 8. Best recognition results for each quadrant using the biorthogonal 4.4 wavelet

The results achieved for these experiments help to guide decisions regarding
the experiments that are still to be performed. When DWT coefficients are
used for training a PCA-based recognition system, those from the LL quadrant
appears to be much more discriminative in the process of face classification. As
other quadrants isolate high-frequency features such as edges, small errors in
alignment or facial expression between the images will significantly detract from

A Novel Feature Vectors Construction Approach for Face Recognition 231

accuracy. Conversely, the LL quadrant benefits from the removal (or reduction
in impact) of high-frequency features. The consequence from these conclusions
is that quadrants other than LL need not be investigated further. Remaining
experiments will focus on observations from the LL quadrant. The effect of scale
in the LL quadrant is less clear. Although the third scale produced best results for
both wavelet filters tested, there was less variation between results for different
scales than there was for different quadrants. It would therefore be appropriate
to investigate the effect of scale further in remaining experiments.

3 DWT Filter Choice

3.1 Concepts

In this section, a study is performed to determine whether the choice of
wavelet filter has a significant effect on recognition accuracy. Various wavelet
families exist, each providing a different compromise between compactness and
smoothness. Within a family, individual wavelets vary in the number of vanishing
moments they contain. A vanishing moment limits a wavelet’s ability to represent
polynomial behavior or information in a signal. For example, a wavelet with
one moment easily encodes polynomials of one coefficient, or constant signal
components. A two moment wavelet encodes polynomials with two coefficients,
i.e. constant and linear signal components; and three moment wavelets encode
3-polynomials, i.e. constant, linear and quadratic signal components.

Most wavelets can be described as orthonormal, meaning that they have a unit
magnitude and are orthogonal. The consequence of having a unit magnitude is
that convolution of a signal with a wavelet does not change the total energy
of the signal. Orthogonality indicates that the inner product of the wavelet
basis functions at different scales is zero. A signal can therefore be completely
represented using a finite number of wavelet basis functions. The same wavelet
filters are generally used for decomposition and reconstruction.

3.2 Experiments

Four wavelets are tested from each of the following wavelet families shown
in Table 1. Matlab is used for experimentation and the filters are provided
by the Matlab wavelet toolbox. As before, the AT&T database is used for
experimentation, with five training images and five testing images used for each
individual. Only the LL quadrant is used for feature extraction, at scales 1 to 5.

3.3 Results

This section presents recognition results for the examined wavelet filters.
Figures 9 to 12 provide the results. Choice of wavelet family seems to have little
effect on the maximum possible recognition rate – filters from the Daubechies and
biorthogonal wavelet families matched up to 96.5% of faces correctly, whereas

232 P. Nicholl, A. Ahmad, and A. Amira

Table 1. Wavelets filters descriptions

Wavelets Descriptions

Daubechies Designed to have the maximum possible number of vanishing moments

for a given support size. Daubechies wavelets are widely used for

solving a broad range of problems, such as identifying self-similarity

properties of a signal, signal discontinuities, etc.

Symlet Designed to be more symmetrical than Daubechies wavelets, yet compactly

supported. Their increased symmetry makes them more adept at analysis

of a signal than Daubechies wavelets.

Coiflet Designed to have the maximum number of vanishing moments for both the

wavelet and scaling filters, they are efficient at extracting the low

frequency information in a signal.

Biorthogonal Use separate filters for decomposing (or analyzing) and reconstructing

signals. This allows each filter to be optimized for its specific purpose.

Although the decomposition filters are not orthogonal with respect to the

reconstruction filters, the two sets of filters are orthogonal with respect

to themselves. Biorthogonal wavelets have been found to be effective in

image processing applications such as fingerprint image compression [19].

filters from the symlet and coiflet families recognized 97%. The choice of filter
within a wavelet family seems to be more significant. For example, although the
biorthogonal 5.5 wavelet matches up to 96.5% of faces correctly, the biorthogonal
3.3 wavelet only reaches 93%. The exact nature of the relationship between
wavelet and recognition performance however is unclear.

The number of non-zero coefficients in a wavelet filter (known as support size)
has a number of effects on the performance of the wavelet. Filters with a larger
support size are more adept at analyzing and representing complex features
contained within the signal/image, however, they are more likely to be affected
by artifacts at the edge of the image. Computational complexity of the wavelet
transform is also increased when filters with larger support sizes are used.

Figure 13 illustrates the relationship between the support size of the low-pass
filter for each wavelet with the maximum recognition rate for the filter. As all
coefficients are taken from LL quadrants, only the low-pass filter is employed to
calculate them. The graph shows all the maximum recognition rates achieved,
for all wavelets and scales tested. The graph reveals little correlation between the
two parameters. Although accuracy is highest for wavelets with a support size of
30 (Daubechies and symlet 15) and 40 (Daubechies and symlet 20), it drops again
for wavelets with a support size of 50 (Daubechies and symlet 25). However, as
larger filters are known to be more affected by boundary conditions, and the
images used for experimentation are relatively small, this is not unexpected.
Figure 14 presents the maximum recognition rates for each scale. Accuracy for

A Novel Feature Vectors Construction Approach for Face Recognition 233

Fig. 9. Maximum recognition rates for selected Daubechies wavelets

Fig. 10. Maximum recognition rates for selected biorthogonal wavelets

scales 2, 3 and 4 are similar to each other, with scale 1 providing slightly lower
accuracy and scale 5 significantly lower than the best three. Scale 2 appears to
provide somewhat more consistent accuracy than scales 3 or 4.

Figure 15 compares one of the best-performing wavelet filters (biorthogonal
5.5, 4th scale) against recognition in the spatial domain. As can be seen form the
graph, recognition accuracy is increased significantly, with maximum recognition

234 P. Nicholl, A. Ahmad, and A. Amira

Fig. 11. Maximum recognition rates for selected coiflet wavelets

Fig. 12. Maximum recognition rates for selected symlet wavelets

rates increasing from 93% to 96.5%. This corresponds to 50% decrease in the
number of incorrectly classified images.

Sample execution times are provided in Table 2. Training and classification
times are given for images in the spatial and wavelet domains (biorthogonal 5.5
wavelet). Training time decreases from 0.122 seconds per image in the spatial
domain to between 0.0480 and 0.0610 seconds in the wavelet domain. Although

A Novel Feature Vectors Construction Approach for Face Recognition 235

Fig. 13. Maximum recognition rate and support size of low-pass filter for all tested

wavelets and scales

Fig. 14. Maximum recognition rate and scale for all tested wavelets and scales

there is a time penalty involved in performing DWT, this is offset by the resulting
reduction in coefficients during PCA training. Classification time per spatial
domain image is 0.0375 seconds and ranges from 0.0293 to 0.0479 seconds for
images in the wavelet domain. The execution times were obtained using a single
processor 2.4 GHz Pentium 4, with 512 MB of RAM. (Although the hardware

236 P. Nicholl, A. Ahmad, and A. Amira

Fig. 15. Comparison of recognition results for biorhogonal 5.5 wavelet, 4th scale with

results for recognition in the spatial domain

Table 2. Comparison of training and classification times for AT&T database images

in the spatial and wavelet domains (biorthogonal 5.5 wavelet)

Scales Training time per image (s) Classification time per image (s)

Spatial 0.163 0.0375

DWT, 1st scale 0.0610 0.0293

DWT, 2nd scale 0.0509 0.0373

DWT, 3rd scale 0.0482 0.0402

DWT, 4th scale 0.0480 0.0420

DWT, 5th scale 0.0517 0.0479

used is not of a high specification, the execution times would differ only in
magnitude if more powerful equipment had been used.)

To summarize, it is clear that DWT has the potential to significantly enhance
recognition rates for PCA-based face recognition. For the AT&T database,
maximum recognition rates increase from 93% for recognition in the spatial
domain to 97% in the wavelet domain. There is not a substantial difference
between recognition rates for the wavelet families tested, although coiflet filters
produced slightly more consistent results. Across all the tested wavelet filters,
there was no strong correlation between the support size of the low-pass filter
and the results. Scale did appear to have an effect on results, with the 2nd scale
slightly outperforming the 3rd and 4th scales. The 1st scale produced slightly
lower results, with the 5th scale performing significantly worse.

A Novel Feature Vectors Construction Approach for Face Recognition 237

4 Optimizing Features by Coefficient Selection

4.1 Concepts

In this section, an approach for face recognition based on coefficient selection
for DWT is presented and analyzed. One problem with many face recognition
techniques is that the areas of the face images to be used for recognition have
to be chosen. Images are often cropped by creating an arbitrary bounding box
around the face and discarding the information outside the box [20]. There is
often a trade-off between ensuring that the most relevant parts of a face image
are selected for recognition and removing information that is not useful or may
detract from the process.

Similarly, with PCA, eigenvectors are ordered by their corresponding
eigenvalues, with the vectors with the highest eigenvalues being used to encode
the face images [7]. A number of variations of this approach include excluding
the initial eigenvector, or choosing eigenvectors based on their energy values.
However, the number of eigenvectors chosen and the number discarded are often
arbitrary choices.

The recognition approach is based on standard DWT/PCA face recognition.
Figure 16 provides a general overview of the system. As can be seen from the
diagram, face images firstly undergo DWT coefficient selection, followed by PCA
coefficient selection. The output from this stage is a coefficient vector, which is
compared with those of the gallery face images. Recognition results are returned
as the identities of the most likely matches in the database.

The purpose of DWT coefficient selection is to select the most discriminative
DWT coefficients. Each training image undergoes wavelet decomposition to

Fig. 16. System overview

238 P. Nicholl, A. Ahmad, and A. Amira

a specified scale, with the low-pass coefficients being selected to form the image’s
observation vector. The distribution of these coefficient values is then examined
to determine each coefficient’s discriminative power. The inter-class and intra-
class standard deviations for each coefficient are calculated and the ratio of these
two values is determined. This ratio indicates how tightly the coefficient’s values
are clustered within each class, compared to the spread within the complete
training dataset. The selection of DWT coefficients is therefore based on the
maximisation of the following criterion:

J =
σinter (Am)
σintra (Am)

(1)

where σinter (Am) and σintra (Am) represent inter-subject and intra-subject
standard deviation spanned by DWT coefficients in the feature space Am

respectively. The DWT coefficients with the highest ratios are the most
discriminative and chosen for recognition.

Figure 17 shows the steps involved in DWT coefficient selection. Figure 18
provides an illustration of the ratios calculated for a set of faces. Brighter areas
in the image represent DWT coefficients with higher inter-class to intra-class
ratios. As can be seen, brighter areas include the eyes, nose, mouth and the
outline of the face. As would be expected, the image background and to a lesser
extent, areas such as the forehead have lower values and have therefore been
deemed to be less discriminative.

The second component of the approach is PCA coefficient selection. This
initialises by performing PCA on the selected DWT coefficients, creating a set
of eigenvectors and associated eigenvalues. Each training face’s DWT coefficients
are then projected onto the eigenvectors, producing a projection vector for
each image. Eigenvectors are generally ordered by descending corresponding
eigenvalues and selected using one of a number of approaches:

Fig. 17. DWT coefficient selection

A Novel Feature Vectors Construction Approach for Face Recognition 239

Fig. 18. Inter to intra-class ratios of DWT coefficients

– All eigenvectors corresponding to non-zero eigenvalues are used to create the
eigenspace;

– The first x eigenvectors are chosen, where x often corresponds to 60% of the
total eigenvector set [8];

– All eigenvectors are used apart from the first, which usually represents mostly
variation in illumination [8];

– Eigenvectors are chosen based on energy values, with the first y being selected
so that their cumulative energy exceeds a predetermined percentage of the
total energy of all eigenvectors [21];

– Eigenvectors can be chosen based on their stretch values, where the stretch of
an eigenvector is the ratio of its eigenvalue over the maximum eigenvalue [21];
and

– Eigenvectors can be chosen based on the ratios of inter-class to intra-
class variance values, where those with the highest values are deemed most
discriminative and selected [22].

The approach adopted for this study is based on the inter-class to intra-class
standard deviation ratios. As with DWT coefficient selection, the ratios of inter-
class to intra-class standard deviations are calculated. Projection coefficients
with the highest ratios indicate that the associated eigenvector is highly
discriminative and may contribute to better recognition accuracy. This method
eliminates the need to guess which eigenvectors represent mostly variation in
image illumination. Once training is complete and the most discriminative
eigenvectors have been selected, classification can be performed using a simple
distance measure, such as Euclidean. The adoption of this approach brings
together similar coefficient selection strategies for both stages of the feature
vector selection – DWT coefficient selection and PCA eigenvector selection.

4.2 Experiments

Experiments are performed which determine the benefits of DWT coefficient
selection and PCA eigenvector selection separately, as well as in a combined

240 P. Nicholl, A. Ahmad, and A. Amira

Table 3. Comparison of DWT coefficient selection recognition rates with those of

standard DWT/PCA approach, along with percentages of DWT coefficients required

to achieve maximum rate

Recognition Rate (%)

Wavelet Scale
Standard
Approach

Coefficient
Selection

Increase
(%)

Coefficients
Required

(%)

1 93 95 2 66

Haar 2 94 95 1 50

3 95 96 1 58

4 93 95.5 2.5 68

1 94 96 2 69

Biorthogonal 4.4 2 94.5 96 1.5 78

3 94.5 96.5 2 83

4 93 94 1 95

1 94 97 3 73

Coiflet 3 2 95 97 2 85

3 95 97 2 98

4 96 96 0 95

1 94 95.5 1.5 66

Daubechies 10 2 96.5 97.5 1 99

3 94 96.5 2.5 75

4 95.5 97 1.5 98

1 95.5 96.5 1 99

Symlet 10 2 96.5 96.5 0 90

3 95 95 0 90

4 95.5 95.5 0 92

Average Increase (%): 1.37

framework. As the technique is more suited to face data sets with little variation
in pose/location, the AT&T database of faces is used for experimentation. The
images contain variation in lighting, expression and facial details (for example,
glasses/no glasses). For the experiments described in this study, five images for
each individual are used for system training, with the other five used for testing.

4.3 Results

A number of wavelet filters are investigated, and decomposition is performed to
between one and four levels. Selection percentages from 1% to 100% are tested
and PCA is used for classification. Where the selection percentage is 100%, this is
equivalent to no coefficient selection being applied. Results are shown in Table 3.

A Novel Feature Vectors Construction Approach for Face Recognition 241

Fig. 19. Recognition rates for various DWT coefficient selection percentages, using

Coiflet 3 wavelet, 1st scale

Fig. 20. Recognition rates for various DWT coefficient selection percentages, using

Haar wavelet, 2nd scale

The results show that DWT coefficient selection has increased maximum
recognition rate in 16 out of the 20 cases tested. The percentages of coefficients
required to achieve the new maximum are also shown. In one case: Coiflet 3, 1st

242 P. Nicholl, A. Ahmad, and A. Amira

Fig. 21. Haar 2nd scale, all coefficients vs. top 50% coefficients

scale, the recognition rate has risen from 94% to 97%, which corresponds to 43%
reduction in incorrectly-classified faces. The graph in Figure 19 provides more
detail for this case. As the percentage of DWT coefficients increases, recognition
accuracy also increases until 73% of coefficients are used. The trend then changes,
with the recognition rate generally decreasing as the remaining coefficients are
added. Another example: Haar, 2nd scale as can be seen in Figure 20, where
the maximum recognition rate of 95% is reached with 50% of coefficients. This
case is shown in more detail in Figure 21, which compares recognition accuracies
for each of the two cases (50% vs. 100% of coefficients) for varying numbers
of eigenvectors. The graph illustrates the full benefit of the approach, as the
recognition rate for 50% of coefficients is consistently better than that for 100%.

Table 4. Comparative results on AT&T database

Method Accuracy (%) References

DCT/HMM 84 [23]

ICA 85 [24]

Weighted PCA 88 [25]

Gabor filters & rank correlation 91.5 [26]

2D-PHMM 94.5 [27]

NMF 96 [28]

TNPDP 96.5 [29]

LFA 97 [30]

DWT/PCA with coefficient selection 97.5 Proposed

A Novel Feature Vectors Construction Approach for Face Recognition 243

The average increase in accuracy for this case is 2.7%. Similar improvements
were seen across other wavelets and scales.

As Table 4 shows, the approach described compares well with other
techniques from the literature that have used this training set. It should be
noted that although the AT&T database is relatively small, the technique
could be extended to other face databases. However, the coefficient selection
approach is particularly suited to data sets with little variation in pose and
alignment, therefore, images would have to undergo a normalization step prior to
recognition. If this was performed, it is expected that results for other databases
would be similar to those for the AT&T database.

5 Feature Threshold

In this section, a study is performed to investigate ways of choosing the DWT
coefficient selection threshold. Although the recognition increases offered by
DWT coefficient selection are significant, they are only achievable through
a judicious choice of threshold. The maximum possible increases in accuracy
offered by DWT coefficient selection can be seen in Table 3. Increases in
recognition accuracy range from 0% to 3%, with the average increase being
1.37%. However, the results presented are the best for each wavelet and scale,
found after tests employing varying numbers of DWT coefficients. For coefficient
selection to be viable, the number of DWT coefficients to use as features must
be chosen automatically. Two approaches are investigated for choosing this
threshold.

5.1 Percentage Midpoint Average (PMA)

The first approach is referred to as percentage midpoint average (PMA). PMA
assumes that a number of tests runs have been carried out with appropriate
wavelets and scales, and full accuracy data obtained. For each test set, the
minimum percentage of DWT coefficients required to produce the maximum
recognition accuracy is recorded. The highest percentage of DWT coefficients
producing the same maximum accuracy is also noted. The average of these two
figures is then calculated, as the percentage midpoint for the current test set.
The average of the percentage midpoints for all the test runs is calculated, with
this percentage being chosen as the selection threshold.

Tests are performed on the AT&T database to determine the effectiveness of
this approach. The PMA value is calculated from recognition results obtained
previously, and determined to be 81.36%. DWT coefficient selection results,
using 81.36% of coefficients, are shown in Table 5. The results indicate that this
approach is not effective, with recognition accuracy decreasing by an average
of 0.025% from the results obtained without DWT coefficient selection. This is
not unexpected, as the approach is not sophisticated. It assumes that the same
percentage of coefficients should be chosen in each case, regardless of the choice
of wavelet filter and scale or the individual characteristics of the data set, such
as the amount of background (non-face) in the image.

244 P. Nicholl, A. Ahmad, and A. Amira

Table 5. Maximum recognition rates using DWT coefficient selection with PMA

threshold

Recognition Rate (%)

Wavelet Scale
All

coefficients
PMA Increase (%)

1 93 94 1

Haar 2 94 94 0

3 95 94.5 -0.5

4 93 94.5 1.5

1 94 95 1

Biorthogonal 4.4 2 94.5 95 0.5

3 94.5 96.5 2

4 93 92 -1

1 94 94.5 0.5

Coiflet 3 2 95 97 2

3 95 94 -1

4 96 94 -2

1 94 94.5 0.5

Daubechies 10 2 96.5 96 -0.5

3 94 96.5 2.5

4 95.5 93 -2.5

1 95.5 95.5 0

Symlet 10 2 96.5 95 -1.5

3 95 93.5 -1.5

4 95.5 94 -1.5

Average Increase (%): -0.025

5.2 Optimal Ratio Average (ORA)

The second approach is referred to as optimal ratio average (ORA). As with
PMA, ORA assumes that a number of tests runs have been carried out with
appropriate wavelets and scales, and full accuracy data obtained. As explained
in previously, DWT coefficient selection operates by calculating the ratios of
inter-class to intra-class standard deviations for each coefficient: this value is
used to select the most discriminative coefficients. In ORA, the cut-off ratio
that produces the highest recognition rate for each test run is recorded. The
average of the cut-off ratios for all test runs is chosen as the selection threshold.

Tests are performed on the AT&T database to determine the effectiveness of
this approach. The ratio threshold value is calculated from the DWT coefficient
selection results obtained previously. Unlike with PMA, a different percentage of
DWT coefficients may be chosen for each wavelet and scale, depending on how
discriminative its coefficients are. Results are provided in Table 6 and indicate

A Novel Feature Vectors Construction Approach for Face Recognition 245

Table 6. Maximum recognition rates using DWT coefficient selection with ORA

threshold

Recognition Rate (%)

Wavelet Scale
All

coefficients
ORA Increase (%)

1 93 94.5 1.5

Haar 2 94 94.5 0.5

3 95 94.5 -0.5

4 93 94 1

1 94 95.5 1.5

Biorthogonal 4.4 2 94.5 95 0.5

3 94.5 95.5 1

4 93 93.5 0.5

1 94 95.5 1.5

Coiflet 3 2 95 96.5 1.5

3 95 96 1

4 96 96 0

1 94 96 2

Daubechies 10 2 96.5 96 -0.5

3 94 96.5 2.5

4 95.5 96 0.5

1 95.5 94.5 -1

Symlet 10 2 96.5 95 -1.5

3 95 95 0

4 95.5 95.5 0

Average Increase (%): 0.6

that the approach is effective, increasing recognition accuracy by an average
of 0.6% over recognition without DWT coefficient selection. However, this is
less than 50% of the maximum possible increase of 1.37% that DWT coefficient
selection could provide. Although ORA is more flexible than PMA in handling
varying datasets, it is likely that an optimized system would utilize one specific
wavelet and scale for both system training and identification. This would allow
a more relevant threshold ratio to be chosen, which would increase recognition
accuracy.

6 Conclusions

In this paper, a novel feature vectors construction approach for face recognition
using DWT has been discussed. The first set of experiments performed focused
on the choice of DWT features. It is reveals that, where direct coefficient values

246 P. Nicholl, A. Ahmad, and A. Amira

were used for recognition, the LL quadrant provided the best results. For the
wavelet filters tested, the highest recognition rate achieved for this quadrant was
95%. The highest accuracies for the HL, LH and HH quadrants were 78%, 74%
and 66%, respectively. However, these tests did not provide enough information
to indicate whether particular scales perform consistently better than others.

The second set of tests has been designed to identify which wavelet filters were
the most effective at extracting features for face recognition with the specified
database. The maximum recognition rates were compared for five wavelet filters
each from the Daubechies, symlet, Coiflet and biorthogonal wavelet families.
LL coefficients were used as features, with the first five scales investigated. The
results indicated that there was no strong link between choice of wavelet family
and recognition rate, although Coiflet wavelets produced the most consistent
performance, across various filters and scales. When the results from all wavelet
families and filters were examined together, there was no obvious correlation
between the support size of the scaling filter and the maximum recognition rates.

The choice of scale did appear to have some effect, with the second, third and
fourth scales outperforming the first scale by a small margin and the fifth scale by
a significant margin. In case of feature optimisation by coefficient selections, the
results show that DWT coefficient selection has increased maximum recognition
rate in 16 out of the 20 cases tested. For instance, recognition accuracy increased
from 94% to 97% for the Coiflet 3 wavelet, 1st scale.

Finally, for the feature threshold, two approaches have been investigated
which are PMA and ORA. Results obtained shown that the PMA is ineffective
approach, with recognition accuracy decreasing by an average of 0.025% from
the results obtained without DWT coefficient selection. Unlikely, results for ORA
approaches indicate better recognition accuracy by an average of 0.6%.

References

1. Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in Networked

Society. Kluwer Academic Publishers, Dordrecht (1999)

2. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint

Recognition. Springer, New York (2003)

3. Campbell, W., Sturim, D., Reynolds, D.: Support Vector Machines Using GMM

Supervectors for Speaker Verification. IEEE Signal Processing Letters 13(5), 308

(2006)

4. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A

Literature Survey. ACM Comput. Surv. 35(4), 399–458 (2003)

5. Kanwisher, N., Moscovitch, M.: The Cognitive Neuroscience of Face Processing:

an Introduction. Cognitive Neuropsychology 17(1), 1–11 (2000)

6. Amira, A., Farrell, P.: An Automatic Face Recognition System Based on Wavelet

Transforms. In: IEEE International Symposium on Circuits and Systems, ISCAS

2005, vol. 6, pp. 6252–6255 (May 2005)

7. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive

Neuroscience 3, 71–86 (1991)

A Novel Feature Vectors Construction Approach for Face Recognition 247

8. Moon, H., Phillips, P.: Computational and Performance Aspects of PCA-based

Face Recognition Algorithms. Perception 30, 303–321 (2001)

9. Yuen, P.C., Lai, J.H.: Face Representation Using Independent Component

Analysis. Pattern Recognition 35(6), 1247–1257 (2002)

10. Kussul, E., Baidyk, T., Kussul, M.: Neural Network System For Face Recognition.

In: ISCAS, vol. (5), pp. 768–771 (2004)

11. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way.

Academic Press, London (2008)

12. Feng, G., Yuen, P., Dai, D.: Human Face Recognition Using PCA on Wavelet

Subband. Journal of Electronic Imaging 9, 226–233 (2000)

13. Harandi, M.T., Ahmadabadi, M.N., Araabi, B.N.: Face Recognition Using

Reinforcement Learning. In: ICIP, pp. 2709–2712 (2004)

14. Kemal Ekenel, H., Sankur, B.: Multiresolution face recognition. Image and Vision

Computing 23(5), 469–477 (2005)

15. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische

Annalen 69(3), 331–371 (1910)

16. Daubechies, I., et al.: Orthonormal Bases Of Compactly Supported Wavelets.

Comm. Pure Appl. Math. 41(7), 909–996 (1988)

17. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial Mathematics

(1992)

18. Dahmen, W., Aachen, R., Micchelli, C.: Biorthogonal Wavelet Expansions. IGPM

Preprint (114) (May 1995)

19. Hopper, T., Brislawn, C., Bradley, J.: WSQ Gray-Scale Fingerprint Image

Compression Specification. Federal Bureau of Investigation Tech. Rep.

IAFIS-IC-0110-V2 (Criminal Justice Information Services, Washington, DC)

(1993)

20. Bartlett, M., Movellan, J., Sejnowski, T.: Face recognition by Independent

Component Analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464

(2002)

21. Kirby, M.: Geometric Data Analysis: An Empirical Approach to Dimensionality

Reduction and the Study of Patterns. John Wiley & Sons, Inc., New York (2000)

22. Wang, J., Plataniotis, K., Venetsanopoulos, A.: Selecting Discriminant Eigenfaces

For Face Recognition. Pattern Recognition Letters 26(10), 1470–1482 (2005)

23. Nefian, A., Hayes, M.: Hidden Markov Models For Face Recognition. In:

ICASSP 1998, pp. 2721–2724 (1998)

24. Kim, J., Choi, J., Yi, J., Turk, M.: Effective Representation Using ICA for

Face Recognition Robust to Local Distortion and Partial Occlusion. IEEE Trans.

Pattern Anal. Mach. Intell. 27(12), 1977–1981 (2005)

25. Wang, H.Y., Wu, X.J.: Weighted PCA Space And Its Application In Face

Recognition. In: Proceedings of 2005 International Conference on Machine Learning

and Cybernetics, Washington, DC, USA, pp. 4522–4527. IEEE Computer Society,

Los Alamitos (2005)

26. Ayinde, O., Yang, Y.H.: Face Recognition Approach Based On Rank Correlation

Of Gabor-Filtered Images. Pattern Recognition 35(6), 1275–1289 (2002)

27. Samaria, F.: Face Recognition using Hidden Markov Models. PhD thesis,

Cambridge University Engineering Department (1994)

28. Xue, Y., Tong, C.S., Chen, W.S., Zhang, W.: A Modified Non-negative Matrix

Factorization Algorithm for Face Recognition. In: ICPR 2006: Proceedings of the

18th International Conference on Pattern Recognition, Washington, DC, USA, pp.

495–498. IEEE Computer Society, Los Alamitos (2006)

248 P. Nicholl, A. Ahmad, and A. Amira

29. Lu, J., Tan, Y.P.: Enhanced Face Recognition Using Tensor Neighborhood

Preserving Discriminant Projections. In: 15th IEEE International Conference on,

Image Processing, ICIP 2008. pp. 1916–1919 (October 2008)

30. Ersi, E.F., Zelek, J.S.: Local Feature Matching For Face Recognition. In: CRV 2006:

Proceedings of the The 3rd Canadian Conference on Computer and Robot Vision

(CRV 2006), Washington, DC, USA, p. 4. IEEE Computer Society, Los Alamitos

(2006)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 249–269, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Extended Proof-Carrying Code Framework for
Security Enforcement

Heidar Pirzadeh1, Danny Dubé2, and Abdelwahab Hamou-Lhadj1

1 Department of Electrical and Computer Engineering
Concordia University
Montreal, QC, Canada

{s_pirzad, abdelw}@ece.concordia.ca
2 Department of Computer Science

Laval University
Quebec City, QC, Canada

danny.dube@ift.ulaval.ca

Abstract. The rapid growth of the Internet has resulted in increased attention to
security to protect users from being victims of security threats. In this paper, we
focus on security mechanisms that are based on Proof-Carrying Code (PCC)
techniques. In a PCC system, a code producer sends a code along with its safety
proof to the consumer. The consumer executes the code only if the proof is
valid. Although PCC has been shown to be a useful security framework, it suf-
fers from the sheer size of typical proofs -proofs of even small programs can be
considerably large. In this paper, we propose an extended PCC framework
(EPCC) in which, instead of the proof, a proof generator for the program in
question is transmitted. This framework enables the execution of the proof gen-
erator and the recovery of the proof on the consumer’s side in a secure manner
using a newly created virtual machine called the VEP (Virtual Machine for
Extended PCC).

Keywords: Software Security, Proof-Carrying Code, Virtual Machine.

1 Introduction

Modern computer systems have become so complex that traditional security mecha-
nisms built around anti-viruses and intrusion detection mechanisms can no longer
sustain the severity of today’s ever-increasing security threats. One can claim that,
except perhaps for security experts and professionals, it is too big a burden, or even
unrealistic, for users to bear sole responsibility for adequate security and protection of
their computing systems. Proof-Carrying Code (PCC) techniques have been intro-
duced to reduce the impact of this problem by allowing a consumer of a computer
program to verify a proof of its general safety properties, sent by the code producer,
before executing it [8].

In a PCC system, there are typically two main parties, (1) a code producer, who
builds machine code along with its safety proof (expressed typically in a formal

250 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

logic), and (2) a code consumer, who wishes to run the compiled code as long as it
satisfies predetermined safety policies.

A typical interaction between the producer and consumer encompasses several
steps. In the first step, the producer sends the consumer a program, which consists of
the code and additional annotations such as loop invariants and function pre- and
post-conditions. The consumer provides the received code to the Verification Condi-
tion Generator (VCGen), which generates a verification condition based on a set of
safety policies that need to be satisfied. A verification condition is a logical formula
that, if satisfied, implies that the code satisfies the safety policies.

The consumer, then, sends the generated verification condition to the producer.
The producer runs a theorem prover (in many cases along with necessary human in-
tervention) to obtain a proof that corresponds to the received verification condition.
Next, the producer submits the proof to the consumer. The consumer uses a proof
checker to verify that the received proof is indeed a proof of the verification condition
that was initially generated. If the check succeeds the code is considered trustworthy
and can be executed.

It should be noted that it is very common to have a copy of the VCGen on the pro-
ducer’s side to simplify the interaction between the code producer and the code con-
sumer. In this way, the code consumer receives the annotated code as well as the
safety proof during the first step of the interaction. Fig. 1 shows by the components
according to the order by which they are executed in the PCC process. The steps in-
volved in a typical interaction between producer and consumer as discussed above.
The ovals are the artifacts that are generated/sent, the arrows represent the flow of the
artifacts, and the rectangles show the components that perform computations. The
starting point of the interaction is represented by a closed circle (•). At the end of the). At the end of the
interaction, a switch (symbolically shown as a triangular tri-state buffer) checks the
result of the proof checking; if the proof checking succeeds the code is considered
trustworthy and can be executed (on the CPU shown as a rhomboid) if not the switch
remains off and the code will not be executed.

One of the key properties of a PCC framework is that the Trusted Computing Base
(TCB) (specified by the orange curved rectangle in Fig. 1) contains relatively small
and simple components such as VCGen and a proof checker while the theorem prover
is on the producer’s side and therefore out of the consumer’s TCB. The reason for that
is twofold: performance and security. That is, in general, proving the verification
condition is a resource consuming task which can result in low performance. Fur-
thermore, considering that the theorem prover is a large and complex program, it
could not be placed on the consumer’s side as it could hardly be trusted. Another
important property of the PCC framework is that PCC programs are tamper-proof. An
intruder cannot modify the code or the proof in a way that results in execution of a
malicious code on the consumer’s side. Any attempt to tamper with either the code or
the proof results in a validation error during the proof checking process.

Despite the fact that PCC can be a powerful security mechanism, it is still not
widely accepted in practice due to two keys issues. First, it is usually difficult to write
proofs for large programs. Although with the recent advances in Certifying compila-
tion [3, 28] some safety properties of programs can automatically be proved as certifi-
cates, this is limited to basic safety properties and only possible for a restricted class
of programs. For example, it may not be possible to prove automatically safety prop-
erties if the software system is complex or the policies are sophisticated [29]. The

 An Extended Proof-Carrying Code Framework for Security Enforcement 251

Fig. 1. Conventional PCC framework: typical steps and involved components

second limitation, which is the topic of this paper, is concerned with the difficulty in
communicating and storing the proofs which are inherently large [11]. It is common
to have proofs that are 1000 times larger than the associated code, which renders
the use of PCC impractical for all but the tiniest examples [11]. This is further com-
plicated when dealing with systems with limited storage and processing resources
such as mobile and handheld devices, and networks with low survivability and scarce
resources.

Clearly, there is a need for efficient techniques to reduce the size of proofs. The
approaches proposed to alleviate this issue which include the use of data compression
techniques [8, 10, 11, 25] suffer from drawbacks of their own, among which the most
important one is the enlargement of the TCB, A large TCB increases the chance of
defects which may cause an unsafe program to be accepted.

In this paper, we propose a novel approach to solving the proof size problem while
avoiding to increase significantly the TCB. Our approach is based on the innovative
idea of sending a program that generates the proof instead of the proof itself. This is
inspired by the concept of Kolmogorov complexity [16], where the complexity of a
string x is the shortest computer program that produces x on a so-called universal
computer, i.e., a machine that computes the string, prints it, and then halts. One im-
portant observation is that the ideal compressed form for a given proof is the shortest
program that outputs that proof.

To allow the proof generator program to execute on the consumer’s side, we have
developed a virtual machine that we call VEP (the Virtual Machine for Extended
PCC). VEP is written in C and has less than 300 lines of code, which is an acceptable
addition to the consumer’s TCB. The design of VEP is relatively simple to be able to
easily verify that is safe. It has also been developed with security in mind so as the
running programs do not access unauthorized resources. Using the VEP, we believe
that proofs, which are represented as programs, can be executed safely on the con-
sumer’s side while keeping the consumer’s TCB reasonably small.

VC
Generator

Verification
Condition

Theorem
Prover

Safety
Policies

CPU

Consumer

1

2

3

4Proof

Code

Code

Verification
Condition

VC
Generator

Proof
Checker

Producer

TCB

252 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

Organization of the paper: In the next section, we provide background information
about PCC, and discuss studies related to our work. In Section 3, we present the ex-
tended PCC framework, followed by the VEP and its components. We show the ef-
fectiveness of our approach by applying it to several benchmark proofs in Section 4.
We conclude the paper and discuss future directions in Section 5.

2 Background and Related Work

It is desirable that proofs be represented in a compact format. One way to reach this
goal is through proof optimization in which the proofs are rewritten in a more com-
pact form which preserves the meaning of the original form of the proof [13, 2]. This
could be done by replacing all the occurrences of a given term t with a smaller
equivalent term s in the proof (e.g., in the arithmetic system, there could be a rule x *
1 → x which always reduces the size of a term). Necula et al. experimented with
proof optimization in an approach called lemma extraction and were able to obtain a
minor reduction gain of 15% in the size of the proofs [2].

Another way of compacting the proofs is through data compression. Data compres-
sion techniques compress data by searching for more efficient encodings that take
advantage of repetition in the data. These techniques are not well exploited in PCC
framework due to the following reasons. The consumer of compressed data must first
decompress it, which requires a safe decompressor on the consumer’s side. Generat-
ing the proof of safety for a normal decompressor (a relatively large program with
about 7000 lines of code) can be a difficult task not worth performing because one
would only obtain a specific decompressor that cannot work with a proof compressed
by an appropriate but different compressor. In other words, each time a new decom-
pressor is used, a proof of its safety is required. The objective of the VEP is to tackle
this problem by tailoring it to the needs of executing proof generators that could be, as
shown in our case study, a compressed file along with a decompression tool.

Necula et al. proposed a new strategy called Oracle-based Proof-Carrying Code
(OPCC) [11]. In OPCC, the handling of the proofs on the consumer’s side is changed.
As shown in Fig. 2, this change in strategy, led to a change in the framework, namely,
they assumed that the consumer uses a non-deterministic proof checker.

The untrusted theorem prover on the producer’s side records a sequence of bits that
shows which sub-goals failed and needed backtracking. Then, the producer sends to
the consumer this bit-stream that serves as a proof witness. On the consumer’s side,
the received bit stream works as an “oracle” which can guide the trusted non-
deterministic proof checker to avoid back-tracking. Every time the checker must
make a choice between the possible ways to proceed, it consults some bits from the
oracle. In this approach, the trusted non-deterministic proof checker is, in fact, a non-
deterministic theorem prover having the task of proving the verification condition.
The oracle is used to drive the theorem prover to a final proof without search.

Experimental evidence shows that oracle strings, as suggested by Necula et al., can
be about 1/8 of the code size and about 30 times smaller than proofs in traditional
PCC [11]. However, Wu et al. [14] suggested that the code size relation might be
deceptive as the size Java class files, that are necessary to be sent along with the proof
witness in a SpecialJ proof-carrying Java system, is not included in calculation.

 An Extended Proof-Carrying Code Framework for Security Enforcement 253

Fig. 2. OPCC framework: typical steps and involved components

Fig. 3. FPCC framework: typical steps and involved components

One of the most important downsides of the OPCC is that it involves complex
trusted components, such as a non-deterministic proof checker plus the usual PCC
components. The TCB in OPCC is about 26000 lines of C code which is larger than
the TCB size in traditional PCC (15000-20000 LOC). Any flaw in the implementation
of these components can compromise safety of the system. As a matter of fact, the
Special-J system [3], used in Necula et al.’s approach, showed a critical leak in its
type axioms found by League [5].

Although the above approach has resulted in proofs which were smaller than the
original proofs, they had to significantly enlarge the TCB. In fact, Appel points out
that the VCGen (and consequently the TCB size) even in traditional PCC is too large
[27] and it needs to be verified. As shown on Fig. 3, Foundational Proof-Carrying
(FPCC) [27] Code aims to further reduce the TCB size by removing the VCGen from
the consumer’s side.

VC
Generator

Verification
Condition

Theorem
Prover

Safety
Policies

CPU

Consumer

1

2

3

4Proof
witness

Code

Code

Verification
Condition

VC
Generator

Non-
deterministic

Proof Checker

Producer

Theorem
Prover

CPU

Consumer

1 2Proof

CodeCode

Producer

Proof
Checker

TCB

TCB

254 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

FPCC uses a foundational mathematical logic for defining the semantics of the ma-
chine instructions and the proof rules. In this way, Appel et al. avoid using the
VCGen by defining the operational semantics of machine instructions and the safety
policies in a higher-order logic. This is done by modeling the machine instruction
with a transition from one machine state (set of memory and registers) to another
machine state and defining the safety policy accordingly. Similar to the PCC, a theo-
rem prover should produce a proof of safety to be accompanied by the code. The
proof checker verifies the safety proof before the program is executed. FPCC is con-
cerned with minimizing the TCB of the system, by not including the VCGen as shown
in Fig. 3.

While the original FPCC uses deductive reasoning to encode proof rules, some
variants of FPCC use computational reflection to replace deduction by computation
[31]. FPCC is likely to be more secure than traditional PCC because it has a smaller
TCB. However, the proofs in FPCC, in comparison with traditional PCC, are more
complex to produce and, as stated by Appel et al., can explode exponentially [27].
According to Necula, the proof size in FPCC is 20% bigger than the proof size in
traditional PCC [11]. Therefore, even though in FPCC, it is only necessary to send a
proof generator, the complexity of producing the proofs, in the first place, renders
FPCC hard to use in practice.

Wu et al. [14] proposed submitting annotated programs that can be checked for
safety by a verified logic program. The program logic clauses are derived as lemmas
from the (trusted) axioms about safe execution of the machine. This way, it is not
necessary to build and check a large proof at the code consumer’s side. However,
according to [32], there exist issues about scalability of the results, as reported by Wu
et al. [14], and effective engineering of their verifiers.

While we are not in favor of possible compromises to the security of the system
due to a large TCB expansion (as we have in OPCC), we also like to overcome the
difficulty in communicating and storing the proofs which are inherently large (as we
have in traditional PCC and more severely in conventional FPCC) in a practical way.

3 The Extended Proof-Carrying Code Framework (EPCC)

3.1 Overview

Fig. 4 describes the steps involved in the proposed Extended Proof-Carrying Code
(EPCC) framework [17]. In an EPCC system, there are two main parties, a code
producer, on the left-hand side, who sends a code along with its safety proof generator
program1, and a consumer, on the right-hand side, who wishes to run the code
provided that it is proven safe by the system.

The interaction between these two parties consists of the following steps. In the
first step, the producer runs a theorem prover to obtain a safety proof of the code he
intends to send. Similar to what is done in FPCC [27], the producer is not constrained
to generate the safety proof in the logic that the consumer imposes. The producer can

1 A proof generator is a program whose sole function is to output the proof. This program aims

to be a more compact representation of its resulting proof and does not necessarily rediscover
the proof.

 An Extended Proof-Carrying Code Framework for Security Enforcement 255

Fig. 4. EPCC framework: typical steps and involved components

use this opportunity to build the proof in a logic (e.g., a higher-order logic) that results
in a smaller proof. In other words, the producer has the possibility of reducing the size
of the safety proof by using a custom logic which can be later converted (translated)
to the logic set by the consumer. In the second step, the producer writes a proof gen-
erator program, which outputs the safety proof in the format which is acceptable by
the consumer.

Next, the producer submits the code accompanied by its safety proof generator pro-
gram to the consumer. At this point, the proof generator program is yet another pro-
gram that the producer sends to the consumer. It is as untrustworthy as the payload
code itself. So it seems we are in a kind of chicken-and-egg situation: before running
the untrustworthy payload code, the consumer needs to verify its attached proof,
which requires execution of the proof generator program, which is also untrustworthy.
One possible way to overcome this issue is to simply verify the safety of the proof
generator program using traditional PCC. This solution has the obvious drawback of
necessitating a proof for each proof generator program, which could hinder the practi-
cal aspect of our approach due to the complexity of writing proofs. We propose, in-
stead, to run the proof generator in a tightly sandboxed environment: our carefully
designed virtual machine, the VEP (the Virtual machine for Extended Proof-carrying
code). The design of the VEP is discussed in more details in Section 4.

Upon receiving the code and the corresponding proof generator program, the con-
sumer runs the proof generator (only for a single time) on the VEP and obtains the
safety proof. The next steps are similar to the traditional PCC: The consumer runs the
proof checker; after the proof check succeeds the consumer can safely execute the
code. As one can easily observe, the EPCC framework is tamper proof, just like PCC.

The EPCC framework not only makes PCC more scalable and practical by reduc-
ing the proof size but also provides the code consumer with the possibility to use a
safe environment in which a large class of proof generators that can be executed in a
secure manner, regardless of the original logic in which the proofs were represented.
In this way, EPCC leaves the easiest tasks to the consumer and gives adequate means
to the producer to do the hard tasks. This major flexibility for the consumer and
producer is gained through the VEP, a minor TCB extension, which can be verified

Theorem
Proving
System

CPU

Consumer

1
Proof

generator

CodeCode

Producer

Proof
Checking
Syetem

Proof
generator
Builder

VEP

ProofProof

2 3 4

TCB

256 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

easily. Technically, except for the VEP, the security of EPCC is as strong as the tradi-
tional PCC. Currently, a verified VEP is being developed (using conventional PCC).
A verified VEP would potentially make EPCC exactly as secure as PCC.

4 Virtual Machine for Extended Proof-Carrying Code (The VEP)

The VEP [12] is intended to be a sandbox interpreter for the proof generator pro-
grams. Any defect in the VEP might give an opportunity to an attacker to write a
malicious proof generator such that its execution on the VEP turns the VEP into an
attacker against the consumer. Therefore, the safe execution of the proof generator
depends greatly on the safety of the VEP and the way it imposes the security require-
ments. In this section, we present the design of the VEP starting from the general
requirements that the VEP needs to satisfy to be deemed secure.

4.1 Requirements

The virtual machine design process starts by capturing the requirements. In the case
of the VEP, we dealt with the following requirements.

1. The VEP should run as a virtual machine, deployed on different platforms to
allow portability of proofs. This is similar in principle to the concept of univer-
sal computing proposed by Kolmogorov when describing the characteristics of
the ideal decompressor [16].

2. It should enable the execution of the proof generator at the consumer’s side in
a secure manner. It should provide a tightly controlled set of resources for
proof generation. Network access, the ability to inspect the host system, or
read from input devices and write into file streams should be disallowed.
Moreover, the VEP should be able to perform some sort of execution monitor-
ing to verify that these constraints are maintained.

3. As indicated in EPCC framework, the VEP is a part of the TCB of the con-
sumer. Knowing that any bug in TCB can compromise the security of the
whole system, we need the VEP to be small and simple such that it is relatively
easy to check for its safety. This would give the VEP the potential to be proved
safe by the PCC itself.

4. The proof generators are sent in the VEP language. Consequently, this lan-
guage should be flexible enough so that it allows compact proof generators to
be written.

5. The VEP should be designed with performance in mind since it adds an over-
head to the processing of proofs on the consumer’s side.

6. The design of the VEP should be based on proven practices and common tech-
nologies to facilitate its adoption.

It should be noted that the above requirements are not equally important. The three
first requirements are the most important ones in case trade-offs need to be made. For
example, the low complexity and small code size both depend on the number of in-
structions in the VEP instruction set. On one hand, having a small set of instructions
results in a virtual machine with low complexity, on the other hand, a large list of
instructions makes the code smaller. Although these two factors are contradictory,

 An Extended Proof-Carrying Code Framework for Security Enforcement 257

there can be a good balance between them. Therefore, finding good trade-off has been
one of the guiding principles in designing the VEP.

4.2 Machine Type

Conventionally, a virtual machine (VM) can either be stack-based or register-based.
Implementing a universal computer can be achieved with a stack machine which
has more than one stack or has one stack with random access. Nevertheless, register
machines can be universal computers; therefore, both approaches can satisfy
Requirement 1.

The most popular virtual machines, however, such as the Java Virtual Machine [6]
and the Common Language Runtime [7], use a stack machine type rather than the
register-oriented architectures due to the simplicity of their implementation. Hence, a
stack-based machine helps us to better fulfill Requirement 3 (simplicity of the de-
sign). The simple stack operations can be used to implement the evaluation of any
arithmetic or logical expression and any program written in any programming lan-
guage (for execution on register machines) can be translated into an equivalent stack
machine program. Moreover, the stack machines are easier to compile to, which could
potentially help the adoption of the VEP (Requirement 6).

Finally, we chose the stack machine type over the register one because a compiled
code for a stack machine has more density than the one for the register machine. In an
experiment, Davis et al. [4] showed that the corresponding register format code after
eliminating unnecessary instructions was around 45% larger than the stack code
needed to perform the same computation. This can especially affect the size of the
proof generator written for the VEP as mentioned earlier.

4.3 Instruction Set Architecture

The Instruction Set Architecture (ISA) of a virtual machine is the VM interface to the
programmer. In the case of the VEP, available data types and the set of memory
spaces are defined by ISA. The ISA definition also includes the specification of the
set of opcodes (machine language) and the VEP’s instruction set. Next, we discuss
each of these parts and their design choices.

Data Types
On the VEP, we have two distinct types of values: numbers and pairs. Considering
that the VEP is implemented using 32-bits machine words, the least significant bit of
the word shows the data type of the stored value. This bit is not visible to the pro-
grammer while the remaining 31 bits are visible. If we have a word that references a
pair, the content of the word represents the address of a pair in memory. For a word
with its type number, the content of the word is a signed integer.

Memory
The VEP uses three blocks of memory: a code space (an array whose elements are
bytes), a heap (an array whose elements are pairs, see below), and a stack (an array
whose elements are bytes).

258 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

A pair is an ordered sequence of two values; the representation includes two
words, for both values, and a third word which stores the reference counter for the
simple garbage collection system of the VEP.

The stack grows towards the high addresses (the first item pushed on the stack is
stored at address zero) and the stack pointer points at the topmost element. The heap
provides the programmers with additional flexibility by supplying the VEP with
memory for objects of arbitrary lifespan.

Fig. 5 shows the schemata of the stack and the heap in the VEP. For each of these
two schemata, sample binary contents are shown on the right-hand side and the hu-
man readable format of the same content on the left-hand side. The second stack ele-
ment from the top has the type pair (the type bit is one) and rest of the bits show the
address of the pair in the heap which is 1 (1p in human-readable format). The pair 1p
in the heap is a pair of the two values 34 and 0p which are respectively the car and the
cdr2 of 1p, where car returns the first item of the pair and cdr returns the second one.
It should be mentioned that the values in the pairs follow the same typing convention
as we have in the stack.

- - - - - -

- - - - - -

- - - - - -

- - - - - -

1

1

1

0

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

0 0 0 0 0

- - - - - -

- - - - - -

- - - - - -

- - - - - -

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

-1

1p

1p

1234

2

34

0p

0

Stack

Heap

One word

Car (1p)

Cdr (1p)

ref (2p)

- - - - - - 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 Cdr (0p)

ref (1p)

Fig. 5. Schemata of the stack and the heap

Memory Management
The VEP provides automatic memory management of the heap, thus there can be no
dangling reference or memory leak due to manual memory management errors and
the programmer can put more time on productivity instead of managing low-level
memory operations.

The VEP relies on the reference counting [23] to automatically detect unused ob-
jects and collect them from memory. A major drawback of reference counting is its
failure in reclaiming cyclic garbage data structures. We took the care of designing the
VEP so that it does not have the ability to perform destructive updates on the pairs.
Every value in the VEP is built up out of existing values; hence, it is impossible to
create a cycle of references, resulting in a reference graph (a graph which has edges
from objects to the objects they reference) that is a directed acyclic graph. This way,

2 Analogous to the LISP operations on binary tree structures, where cdr returns a list consisting

of all but the first element of its argument and car returns the first element.

 An Extended Proof-Carrying Code Framework for Security Enforcement 259

the weakness of the reference counting garbage collector is avoided due to the lack of
circular structures in the VEP heap.

Instruction Set
The design of the instruction set is one of the most interesting and important aspects
of the VEP design. The code space, being made of bytes, naturally leads to an instruc-
tion set of 256 instructions. The VEP has a RISC-like instruction set which provides
random access to stack, many arithmetic, logical, comparison, data transfer, and con-
trol instructions and restricted access to the pair-based heap.

This gives application developers a good flexibility in implementing their ideas
and innovations when developing VEP-enabled proof generators. It also guarantees an
acceptable execution performance (that is in line with Requirement 5). We provide
the VEP with a rich set of data transfer instructions which might help to execute the
proof generators on the VEP more efficiently. The distribution of the instructions is
based on an interpretation of the work of Hennessy et al [18] where they found the 10
simple instructions that account for 96% of the instructions executed for a collection
of integer programs running on the popular Intel 80x86. We used Table 1 as a reason-
able guide for determining an appropriate distribution of instructions (in line with
requirement 6).

Table 1. Distribution of instructions interpreted from [18]

Rank 80x86 instructions % Execution
1 Data transfer instructions 38.00%
2 Control instructions 22.00%
3 Comparison instructions 16.00%
4 Arithmetical instructions 13.00%
5 Logical instructions 6.00%
 Total 96.00%

The VEP instructions can be classified into the following categories.

 Data transfer instructions (POP, PEEK, POKE, LOAD1, LOAD2, LOAD3,
LOAD4, PEEKI n, POKEI n, LOADI n, PUSH-PC, READC): These in-
structions move data from one location in memory to another. These instruc-
tions come in a variety of ranges and density of operations, for instance,
PEEKI n, POKEI n have shorter range (i.e., they can perform their opera-
tions only on the top eight elements of the stack), while PEEK and POKE have
broader range (they can perform their operations only on all elements of the
stack) and less density of operations (e.g. a LOAD1 -1 followed by a PEEK,
is equivalent to PEEKI -1).

 Control instructions (HALT, NOP, JUMP, JMPR, JMPRF, JMPRT): Machines
and processors, by default, process instructions sequentially. Redirection from
this sequence is possible through control instructions. The most basic and
common kinds of program control are the unconditional jump and the condi-
tional jumps (branches). Control instructions also include instructions which
directly affect the entire machine such as HALT or no operation (NOP).

260 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

 Comparison instructions (EQU, LEQ, LTH, NEQ): These instructions compare
values by using a specific comparison operation. Typical comparison instruc-
tions include “equal” and “not equal”.

 Arithmetic instructions (ADD, SUB, MUL, DIV, MOD): The basic four integer
arithmetic operations are addition, subtraction, multiplication, and division.

 Logical instructions (BSHIFT, BAND, BNOT, BOR): These instructions usually
work on a bit by bit basis. Typical logical operations include “logical nega-
tion” or “logical complement”, “logical and”, “logical or”.

 Heap related instructions (CONS, CAR, CDR, ISPAIR): These instructions
whether perform their action on a pair (CAR and CDR, respectively return the
first and the second item of a pair), constructs a pair (CONS), or verify if a
value is a pair (ISPAIR).

 Input/Output instructions (OUTPUT): The VEP provides a tightly-controlled
set of resources for proof generators to run in. In order to be able to output the
resulting proof, a proof generator is allowed to print characters onto the stan-
dard output. This is the sole way provided by the VEP for a proof generator to
communicate with the outside world. Other than that, network access, the abil-
ity to inspect the host system, or reading from input devices and writing into
file streams are disallowed.

Almost all of the instructions take their arguments from the stack and have no (imme-
diate) operands. In particular, PEEK, POKE, and jump instructions are intended to be
used along with “LOAD* val;” instruction3. This keeps almost all of the instructions
to a single variant (no need to handle various addressing modes). Prevalence of
LOAD* explains the existence of the 1-byte instruction LOADI for constants close to
zero. These choices achieve simplicity of the VEP and compactness of the byte-code.
The only instructions with immediate operands (other than LOAD*) are POKEI and
PEEKI, which are extremely frequent as they are the typical means to implement the
write/read of the local variables on the stack.

A note-worthy point about the VEP instructions set is the absence of instructions
which operate on network or gives the ability to inspect the host system. Furthermore,
there are no instructions which can read from input devices and write into file
streams. These are to enable the execution of the proof generator at the consumer side
in a secure manner. That is, we tried to enforce security policies such as no access to
files or no access to the network on instruction set design level. Thus, the selected
instructions provide the VEP with a tightly-controlled environment for proof genera-
tor to run in.

4.4 Security Enforcement by the VEP

We designed the VEP such that it guarantees a certain number of fundamental
safety properties in order to execute the untrusted code in a secure manner. Memory
safety is one of these properties which prevents reading and writing to illegal
memory locations. The code space is read-only and the legal code space locations are

3 LOAD* val pushes the numeric value encoded by the next * byte(s) in the code space onto

the stack.

 An Extended Proof-Carrying Code Framework for Security Enforcement 261

Fig. 6. The flowchart of Security Enforcement of the VEP

0, . . . , Nc − 1, where Nc is the code size. Even the instruction loading must be per-
formed as legal reads from the code space.

In the case of the stack, reads and writes are permitted. Any read or write to the
stack is preceded by a memory check which ensures that the read and write are going
to be performed on valid stack locations as their destination. What is a valid destina-
tion varies from instruction to instruction. Generally, the valid read and write destina-
tions are stack locations ranging from the bottom to the top of the stack.

In the case of the heap, reads and writes are very restricted. Since the construction
of the pairs is governed by the VEP, the programmer has no means to modify the type
bit to forge a new pair and he has no means to read and write in the heap other than to
use CONS, CAR, CDR. Furthermore, memory safety in the VEP asserts that each
operation has a sufficient amount of required memory (stack and/or heap) to perform
the instruction (e.g., the VEP raises an error if an attempt is made to pop when the
stack is empty or to push an item onto a full stack). Control-flow safety prevents

 Check limits on resources
requested by the code

Check execution length
and program counter

Load next instruction and
check its safety

Execute the
instruction

Exception handler

Safe?

Safe?

Safe?

Safe?

Code refused

Normal termination

In
st

ru
ct

io
n-

w
is

e

se
cu

ri
ty

 e
nf

or
ce

m
en

t
G

lo
ba

l s
ec

ur
ity

en

fo
rc

em
en

t
In

it
ia

l s
ec

ur
it

y

en
fo

rc
em

en
t

262 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

jumps outside of the code space, and resource bound check enforces limitations on
the size of the code space, the size of the stack, the size of the heap, and the number
of instructions the VEP may execute. There are other security requirements such as
type safety and numeric safety which will be explained in following subsections.

The security enforcement by the VEP is simple and straightforward. The VEP
enforces these security requirements at different levels. Categorizing the security
checks according to their enforcement level shows better how easy the VEP security
enforcement is to perform and understand. Fig. 6 shows a complete schema of the
security enforcement mechanism and its different levels.

Initial Security Enforcement
A proof generator makes requests for resources. These requests are made using a
declaration in the header of the proof generator. Each time, the VEP verifies whether
the requested amount of resources is no greater than the maximum value settled in an
agreement between the producer and the consumer. The requested code size and stack
size are, respectively, denoted by Nc and Ns. The amount of needed heap size of the
proof generator is represented in number of pairs Nh.

 Code size: If the VEP refuses or fails to allocate the requested block of mem-
ory, the VEP refuses the proof generator. Otherwise, the VEP allocates a block
of Nc bytes of memory as the code space and inserts the code into the code
space.

 Stack size: If the VEP refuses or fails to allocate the requested block of mem-
ory above agreed-upon limit, the VEP refuses the proof generator. Otherwise,
the VEP allocates a block of Ns words of memory as the stack memory.

 Heap size: If the VEP refuses or fails to allocate the requested block of mem-
ory, the VEP refuses the proof generator. Otherwise, the VEP allocates a block
of 3*Nh words of memory as the heap memory.

 Length of Execution: The proof generator should finish its task within a defi-
nite number of operations No. In the case where the No is more than the limit
the VEP refuses the proof generator.

When the proof generator is not refused during the initial security enforcement, it is
ready to be executed by the VEP.

Global Security Enforcement
Throughout the execution, the VEP enforces two security checks globally, which are
independent of the next instruction that is about to be executed. The global security
enforcement consists of checking the following aspects:

 Length of execution: Before fetching the next instruction, the VEP makes sure
that the elapsed time of the execution of the proof generator (measured as the
number of executed operations) has not exceeded the number of operations
(i.e., No). If the number of executed operations is less than the approved num-
ber, then the check is passed, otherwise the code is refused for having run for
too long.

 Program counter: The VEP should check if the program counter points inside
the code space (i.e., non-negative and less than the code size).

 An Extended Proof-Carrying Code Framework for Security Enforcement 263

Instruction-Wise Security Enforcement
The third level of security enforcement by the VEP is the fine-grained level and is
done per instruction. This level of security prevents the proof generator from perform-
ing any unsafe operation.

Generally, after fetching each instruction and before the execution of the instruc-
tion, the VEP performs a combination of the following checks.

 Number of operands: The number of operands of an instruction can vary from
zero to two implicit operands on the stack, depending on the instruction. For an
instruction that requires one or more operands on the stack, the existence of a
sufficient number of operands must be checked before execution of the instruc-
tion. If insufficient operands lie on the stack, the execution is discontinued and
the proof generator is not considered safe.

 Type of operands: The VEP checks if the type of the operands conforms to the
operation. As mentioned earlier, the values in the VEP can be numbers or
pairs. The VEP can distinguish the type of an operand according to its type bit.
Depending on the instruction and the operand, the latter may have to be a
number, it may have to be a pair, or it may be free to be of either types. Check-
ing the type of operands ensures that a code is free of type-mismatches accord-
ing to the VEP’s type system.

 Legal range of operands: The arithmetic instructions should have legal
arguments. The VEP checks the operand legality to prevent potential errors of
using partial operators with arguments outside their defined domain (e.g., divi-
sion by zero).

 Legal code destination: Before changing the program counter to the jump desti-
nation, the VEP checks if the destination is within the code space. It should be
mentioned that the VEP does not enforce the concept of instruction boundaries.

 Legal stack destination: For any instruction which results in a read or a write
to the stack, the VEP ensures that the reads and writes have legal stack loca-
tions as their destination.

 Stack overflow: The VEP verifies whether there is enough stack space to per-
form an instruction which works with stack memory.

 Heap overflow: The VEP verifies whether there is enough free space on the
heap to perform an instruction which works with the heap memory.

 L
O
A
D
1

L
O
A
D
2

L
O
A
D
3

L
O
A
D
4

P
E
E
K

P
O
K
E

L
O
A
D
I

n

P
E
E
K
I

n

P
O
K
E
I

n

P
O
P

P
U
S
H
-
P
C

R
E
A
D
C

H
A
L
T

J
U
M
P

J
M
P
R

J
M
P
R
F

J
M
P
R
T

N
O
P

E
Q
U

L
E
Q

L
T
H

N
E
Q

A
D
D

S
U
B

M
U
L

D
I
V

M
O
D

B
A
N
D

B
O
R

B
N
O
T

B
S
H
I
F
T

C
O
N
S

C
A
R

C
D
R

I
S
P
A
I
R

O
U
T
P
U
T

U
T
R
C
S
O
H

Fig. 7. Instruction-wise security enforcement

264 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

As shown in Fig. 7, the complete set of instructions4 with their safety checks can
be simply put into a table. In this way it would be an easy task to verify the safety of
the VEP.

4.5 The VEP versus Other VMs

There are many systems that execute untrusted codes in virtual machines to limit their
access to system resources. Therefore, a question one could ask is “why not use
another existing virtual machine instead of the VEP?” Here, we highlight the main
reasons of choosing the VEP over two popular virtual machines, which are the Java
virtual machine (JVM) [6] and the .NET platform (CLR) [7].

Any virtual machine that we choose would be a part of the TCB in EPCC frame-
work. Knowing that any bug in the TCB can compromise the security of the whole
system, we should choose a virtual machine which increases the size of the TCB the
least. Using either JVM or .NET results in a large TCB (these large TCBs were the
motivations for introducing the PCC approach in the first place). Appel et al. [1]
measured the TCBs of various Java virtual machines at between 50,000 and 200,000
lines of code. The TCB size in these VMs is even larger than the TCB size of
the traditional PCC. Therefore, using these virtual machines to extend the PCC
framework would result in an undesirably large TCB and hence an ineffective PCC
framework.

For EPCC, we need a virtual machine so simple that, it is feasible for a human to
inspect and verify it. None of the mentioned virtual machines or any other ones that
we are aware of has been developed with this goal in mind. JVM, .NET, and other
well-known virtual machines focus essentially on performance, portability, etc. Simi-
lar to other components of the TCB in traditional PCC and OPCC, the VEP is imple-
mented in C language. However, unlike the OPCC that extends the TCB for about
9000 lines of C code, the implementation of the VEP is less than 300 lines of code
which makes it possible to be easily verifiable by humans and gives it the potential of
being proven safe in the future. Therefore, we have shown that the VEP is orders of
magnitude smaller and it is simpler than popular virtual machines.

5 Application of EPCC

The proofs in PCC are commonly represented in the Twelf format [26] (an implemen-
tation of the Edinburgh Logical Framework (LF) [36]). We applied our approach to
six proofs (see Table 2) produced by a solver made available by Aaron Stump5. The
solver accepts quantified Boolean formulas benchmarks in the standard QDIMACS
format, and emits proof terms showing whether the formula evaluates to true or to
false. These proofs are the same as the ones considered in Stump’s work [15], where
easy benchmark formulas from [21] different domains (formal verification, planning,
etc)6 were solved to generate the proof terms. All proofs use a form of implicit LF [9]

4 All 256 available opcodes are assigned to these 36 instructions; few instructions with imme-

diate argument cover more than one opcode as the argument is encoded in the opcode itself.
5 http://www.cs.uiowa.edu/~astump/software.html
6 Interested readers can see [30] for a complete description of the domains and families of the

proved formulae.

 An Extended Proof-Carrying Code Framework for Security Enforcement 265

and can be as large as 7.4 megabytes. Although these proofs were not specifically
designed for PCC, we believe that they can be fair representatives of large proofs, and
be used in the absence of large PCC proofs due to the complexity of building them.

5.1 Building a Proof Generator

We created a proof generator for each of Stump’s proofs. Our proof generator consists
of a package that comprises a compressed version of the proof and a VEP machine
executable decompressor. That is, we built a self-decompressing executable program
which will generate the original proof as a result of being executed on the VEP. For
this purpose, we reused an existing off the shelf compression tool, Gzip [22], which
we modified to make it VEP-enabled. We could have also created our own program
that generates the proof by looking at patterns in the proofs and creating programs
that would explore these patterns forming a compact representation of a proof as a
running program. We deliberately chose not to proceed this way to show that our
framework can be equally used with existing programs, relieving the users of our
framework from creating proof generators from scratch. However, we recognize that
one of the main drawbacks of our approach lies in the need to adapt any program
used to represent a proof to the VEP, a task that may turn to be difficult and time
consuming. There is definitely a need to further investigate this issue as a key future
direction.

Fig. 8 shows the steps involved in EPCC. The first and second steps are similar to
traditional FCC. Given a proof, in the 3rd step a component called “proof generator
builder” indicated by as a box with upward diagonal pattern in is responsible for
building a proof generator. As shown in Fig. 8, the proofs are compressed using Gzip.
To decompress the proofs on the consumer’s side, we needed to send the decompres-
sion tool that can run on the VEP along the compressed proofs. For this purpose, we
modified Gzip component that performs the decompression task (called gunzip). This
involved using static allocation, removing all preprocessor commands and function
prototypes, in-lining functions, etc. In order to in-line the functions without causing
an increase in the code size, we used the computed goto construct [24], which is a
goto statement for which the address of the target is computed by an expression of
type void*.

The modified decompressor fetches its input (compressed data) from a literal string
(array of compressed data) and outputs the decompressed data on the standard output.
For the decompressor to fetch its input from a literal string, and to print a character,
respectively, readcmp and putchar were developed as two special functions.

The modified gunzip C code (which now contains about 2000 LOC) is re-compiled
to generate the assembly code of the gunzip (see Fig. 8). For this, we developed our
own C compiler that supports a subset of C constructs that map to the VEP instruction
set. The C compiler is based on the C89 open source complier [20]. Since the com-
puted goto is not supported by the ANSI C89 grammar, we added it to the C89
grammar.

The assembly code generated by the compiler is then given to the assembler as
input which results in having the VEP-executable gunzip machine code as its output
(see Fig. 8). Our assembler implemented in C, permits assembly-time arithmetic
operations to take place in order to compute constants to include in the assembled

266 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

program. Thus, the expressions are evaluated during the assembly and the results
become permanent parts of the code.

Gunzip machine code and the compressed proof are packaged to form a proof gen-
erator sent to the consumer. This packaging is performed manually by allocating the
compressed stream statically in the code space. This saves us a lot on stack space in
comparison with the case we dynamically allocation the compressed data in a global
variable. The compressed stream is then read by the decompressor using the auxiliary
function readcmp. This is the only function that we add to the existing decompres-
sor code so that it can read the compressed data from within the decompression code.

Before sending the proof generator, the producer needs to add the request in code
size, heap size, stack size, and execution time to the proof generator program header.
For this, he has the option of running the proof generator on a copy of the VEP in-
stalled on his side. The VEP contains a feature that can add automatically the actual
amount of the consumed resources to the proof generator program header.

Fig. 8. Detailed diagram of our sample implementation of EPCC

5.2 Results of Applying the Approach

Table 2 shows the results of applying our approach to the proofs selected for this
study. For each proof, the original proof size (N) and the size of the proof generator
(NPG) are represented.

The size of the proof generator excluding a compressed proof is about 15KB
(which is the size of gunzip machine code and is constant for all of our proof genera-
tors). The proof generators average 2.9% the original proofs which is about 34 times
smaller than before, which constitutes a significant gain in size reduction. The proof
generator reduction in size relative to the original size of the proof is represented as
the percentage of space savings (SS):

 Consumer

1

Producer

3
VC

Generator

Verification
Condition

2
Theorem
Prover G

zi
p

co
m

pr
es

so
r

Proof

C
 c

om
pi

le
r

gu
nz

ip

as
m

 c
od

e

gu
nz

ip

C
 c

od
e

gu
nz

ip

as
m

 c
od

e

C
om

pr
es

se
d

pr
oo

f

Bundling
proof generator

CPU

Proof
generator

Pr
oo

f
ge

ne
ra

to
r

 VEP

Code Code

5
VC

Generator

Verification
Condition

6
Proof

Checker

A
ss

em
bl

er

 VEP

Pr
oo

f

4

 An Extended Proof-Carrying Code Framework for Security Enforcement 267

Space Savings = 1 - (NPG / N)

The space saving ratio of proof generators to the size of the original proofs ranges
from 87.19% up to 96.77%. The table also shows the elapsed times of the execution
of proof generators on the VEP. All times are reported in seconds on an Intel Core
Duo CPU 2.00GHz, 2MB cache, 1GB main memory, running Windows XP. We can
see that the VEP performed in less than a second for processing the proof generators.

Table 2. The size effect of representing proofs as programs

Experiment N NPG SS % Elapsed time Domain
cnt01e 164 KB 21 KB 87.19 < 1s Formal verification
tree-exa2-10 337 KB 25 KB 92.58 < 1s Pattern matching
toilet 02 01.2 917 KB 45 KB 95.09 < 1s Planning
1qbf-160cl.0 1407 KB 59 KB 95.80 < 1s Formal verification
tree-exa2-15 3847 KB 115 KB 97.01 < 1s Pattern matching
toilet 02 01.3 7377 KB 238 KB 96.77 < 1s Planning

6 Conclusion and Future Work

In this paper, we presented an extension to a traditional proof-carrying code frame-
work in which proofs tend to be considerably large to transmit. Our extended frame-
work is based on the idea of representing proofs and programs that are sent to the
consumer. As such, the consumer runs the program and generates the original proof.
The proof generator program should be the shortest possible to maximize the size
reduction gain.

We developed a virtual machine called the VEP that runs on the consumer’s side
and which is responsible of running the proof generator program. The implementation
of the VEP contains less than 300 lines of code which is a minor extension to the
consumer’s TCB.

The VEP enables the proposed extended PCC framework to make the PCC idea
more scalable and practical by providing the code consumer with the possibility of
using a safe environment in which a large class of proof generators can be executed in
a secure manner, regardless of the original logic in which the proofs were represented.

In the future, a first practical step will be to obtain a VEP that has been proven safe
using the conventional PCC framework. In this way, the VEP would not increase the
size of the TCB at all. Writing an oracle-based proof generator could be another pos-
sible direction to explore. This proof generator could be one which uses the proof
witness in order to rebuild the original proof. Therefore, there would be no need to
use any non-deterministic proof checker on the consumer side and the verification
could be done with the original PCC proof checker. In this way, we would not force
the consumer to change the PCC structure to gain the benefit of small proofs in OPCC
and there will be no need for compromises in the size of the TCB. When both the
proof generator and the proof checker can work incrementally, the whole proof need
not be rebuilt at any one time on the consumer side. Instead, the output of the proof

268 H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj

generator can be piped into the input of the proof checker, which consumes (and veri-
fies) parts of the proof as soon as they are output.

In addition, we intend to continue experimenting with the proposed approach using
larger proofs. This can be hard to achieve due to the unavailability of proofs for large
systems.

Finally, we intend to compare the results of our approach with existing approaches
such as the oracle PCC [11], although the size reduction gain should not be the only
criterion that needs to be used in the comparison since, again, any approach that in-
creases considerably the TCB poses risks to security no matter the size compression
ratio achieved.

References

1. Appel, W., Wang, D. C.: JVM TCB: Measurements of the trusted computing base of Java
virtual machines, Tech. Rep. CS-TR-647-02, Princeton University (2002)

2. Cheney, J. R.: First-order term compression: techniques and applications, Master’s thesis,
Carnegie Mellon University (August 1998)

3. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying compiler for
Java. SIGPLAN Not. 35(5), 95–107 (2000)

4. Davis, B., Beatty, A., Casey, K., Gregg, D., Waldron, J.: The case for virtual register ma-
chines. In: Proceedings of the 2003 Workshop on interpreters, Virtual Machines and Emu-
lators, IVME 2003. San Diego, California, June 12 - 12, pp. 41–49. ACM, New York
(2003)

5. League, C., Shao, Z., Trifonov, V.: Precision in practice: a type-preserving java compiler.
In: Hedin, G. (ed.) Proceedings of the 12th International Conference on Compiler Con-
struction, Warsaw, Poland, April 07-11. Lecture Notes In Computer Science, pp. 106–120.
Springer, Heidelberg (2003)

6. Lindholm, T., Yellin, F.: Java Virtual Machine Specification, 2nd edn. Addison-Wesley
Longman Publishing Co., Inc. (1999)

7. Meijer, E., Gough, J.: Technical Overview of the Common Language Runtime (2000)
8. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 1997. Paris, France, January
15-17, pp. 106–119. ACM, New York (1997)

9. Necula, G.C.: A Scalable Architecture for Proof-Carrying Code. In: Kuchen, H., Ueda, K.
(eds.) FLOPS 2001. LNCS, vol. 2024, pp. 21–39. Springer, Heidelberg (2001)

10. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. SIGOPS Oper.
Syst. Rev. 30, 229–243 (1996)

11. Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: Proceedings of
the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2001. London, United Kingdom, pp. 142–154. ACM, New York (2001)

12. Pirzadeh, H., Dubé, D.: VEP: a virtual machine for extended proof-carrying code. In: Pro-
ceedings of the 1st ACM Workshop on Virtual Machine Security, VMSec 2008. Alexan-
dria, Virginia, USA, October 27-27, pp. 9–18. ACM, New York (2008)

13. Rahul, S.P., Necula, G.C.: Proof Optimization Using Lemma Extraction. Technical Report.
UMI Order Number: CSD-01-1143., University of California at Berkeley (2001)

14. Wu, D., Appel, A.W., Stump, A.: Foundational proof checkers with small witnesses. In:
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and
Practice of Declaritive Programming, PPDP 2003. Uppsala, Sweden, August 27-29, pp.
264–274. ACM, New York (2003)

 An Extended Proof-Carrying Code Framework for Security Enforcement 269

15. Stump, A.: Proof Checking Technology for Satisfiability Modulo Theories. Electron.
Notes Theor. Comput. Sci. 228, 121–133 (2009)

16. Li, M., Vitnyi, P.: An Introduction to Kolmogorov Complexity and its Applications, vol. 3.
Springer Publishing Company, Heidelberg (2008) (incorporated)

17. Pirzadeh, H., Dubé, D.: Encoding the Program Correctness Proofs as Programs in PCC
Technology. In: Proceedings of the 2008 Sixth Annual Conference on Privacy, Security
and Trust, October 01-03, pp. 121–132. PST. IEEE Computer Society, Washington (2008)

18. Hennessy, J.L., Patterson, D.A.: Computer Architecture: a Quantitative Approach, vol. 3.
Morgan Kaufmann Publishers Inc., San Francisco (2003)

19. Jansen, W., Karygiannis, T.: NIST special publication 800-19 – mobile agent security.
Technical report, National Institute of Standards and Technology, Computer Security Divi-
sion, Gaithersburg, MD 20899. U.S. (2000)

20. American National Standards Institute, “Programming Language C,” Document ANSI
X3.159-1989

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified boolean formulas satisfiability
library (qbflib) (2001), http://www.qbflib.org

22. Deutsch, P.: GZIP File Format Specification Version 4.3. RFC. RFC Editor (1996)
23. Christopher, T.W.: Reference count garbage collection. Software – Practice and Experi-

ence 14(6), 503–507 (1984)
24. Griffith, A.: GCC: the complete reference. McGraw-Hill/Osborne (2002)
25. Ireland, A.: On the Scalability of Proof Carrying Code for Software Certification. In: Proc.

Workshop on Software Certificate Management, November 8, pp. 31–34 (2005)
26. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for

Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp.
202–206. Springer, Heidelberg (1999)

27. Appel, A.W.: Foundational proof-carrying code. In: 16th Annual IEEE Symposium on
Logic in Computer Science (LICS 2001), pp. 247–258 (2001)

28. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. SIGPLAN
Not. 33(5), 333–344 (1998)

29. Mobius, Public, Deliverable D4. 1: Scenarios for Proof-Carrying Code, FP6-015905, In-
formation Society Technologies (2006)

30. Narizzano, M., Pulina, L., Tacchella, A.: Report of the third QBF solvers evaluation, Jour-
nal of Satisfiability. Boolean Modeling and Computation 2, 145–164 (2006)

31. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS Proof Carry-
ing Code Infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg (2008)

32. Chlipala, A.J.: Implementing Certified Programming Language Tools in Dependent Type
Theory. Doctoral Thesis. UMI Order Number: AAI3311660, University of California at
Berkeley (2007)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 270–292, 2010.
© Springer-Verlag Berlin Heidelberg 2010

NPT Based Video Watermarking with Non-overlapping
Block Matching

S.S. Bedi1, Shekhar Verma2, and Geetam S. Tomar3,*

1 MJP, Rohilkhand (U.P.), India
erbedi@yahoo.com

2 Indian Institute of Information Technology-Allahabad
Deoghat, Jhalwa, Allahabad – 211012, India

sverma@iiita.ac.in
3 M.I.R. Labs, 223 New Jiwaji Nagar, Gwalior 474011 India

Ph. No.: +91-9450965336; +91-9425129523
gstomar@ieee.org

Abstract. The paper presents a naturalness preserving transform (NPT) based
collusion and compression resistant watermarking technique for video. An im-
age that is statistically similar to a video frame is chosen as the watermark and
this image is embedded independently in consecutive frames of the video. To
enhance the resistance to inter frame collusion based attacks, a non-overlapping
block matching is used to determine the region for placing the watermark in
consecutive frames. Only a trace of the watermark image is embedded which
enhances the robustness of the watermark to different attacks. When a frame
and the image become substantially different, another image is chosen as the
watermark. The size of the watermark determines the quality of the water-
marked video frames. Watermark extraction is blind and requires only the re-
gion where the watermark was originally placed. The reconstruction process is
iterative and bestows immunity the watermark against noise and lossy compres-
sion. Analysis indicates that the watermark is sufficiently immune to second
order inter-frame statistical attacks and is quite robust to image level compres-
sion. Experimental results confirm these theoretical findings and demonstrate
the resistance of the technique to temporal frame averaging, additive noise and
JPEG based compression. However, the technique is limited by the fact that the
original video sequence (frames) is required for reconstruction based recovery
of the watermark from the watermarked video sequence.

Keywords: Watermarking, Video, naturalness preserving transform, attacks.

1 Introduction

Video Watermarking can be used for copyright protection or for tracking its distribu-
tion. In addition, it can be used for protection against duplication and to monitor
broadcast [1]. A watermark can be embedded in video by considering it as a sequence
of image frames or by recognizing the temporal dependency in addition to the inhe-
rent spatial redundancy [2]. Watermarking can also be done in the raw video or in

* Corresponding author.

 NPT Based Video Watermarking with Non-overlapping Block Matching 271

different stages of compression process [3]. This can be done the pre-quantized
transform stage [4], in the post-quantization stage [5], prior to or posterior to rounding
[6] or in the VLC/CABAC codes [7]. The temporal dimension can be exploited in
both the uncompressed and compressed by embedding fixed or varying watermarks,
content dependent [8] or independent watermarks in static or dynamic regions of the
frames [9]. Any process that alters or makes watermark extraction difficult is an at-
tack [10]. Watermarked video can be subject to attacks similar to watermarked image.
Filtering, lossy frame compression, noise addition and geometrical manipulations,
video editing constitutes such attacks [10]. The twin requirements to be fulfilled are
imperceptibility and robustness. Different watermarking schemes proposed address
the requirements of invisibility and robustness in the image domain. These schemes
can be divided into two broad categories: spatial domain and transform domain wa-
termarking. The transform domain schemes [11] are more robust to noise, geometrical
manipulations, cropping and lossy compression. Different types of transform domain
watermarking are more robust to different types of manipulations. DCT based water-
marking is more robust to lossy compression [12], DWT based watermarking to noise
[13], DFT based watermarking to geometrical changes [14]. Video watermarking
introduces a number of new issues that are not present in image watermarking due to
the addition of the temporal dimension. The large amount of data and intraframe re-
dundancy makes video susceptible to temporal attacks like frame averaging, frame
dropping, and statistical attacks like collusion I and II [15] for the detection or re-
moval of the watermark. In addition, motion estimation and compensation in video
compression process is highly detrimental to watermarking in the predictive frames.
These specific attacks render image or any frame-by-frame watermarking schemes
vulnerable to video specific attacks. Non-hostile video processing like photometric
manipulations like gamma correction, spatial filtering, trans coding that modify the
pixel values in all the frames; spatial and temporal de-synchronization like changes in
aspect ratio, spatial resolution; and video editing constitute non malicious attacks
unique to video domain [16]. Desynchronization can also be as a malicious process to
defeat watermarking [17]. It is the process of identifying the association between
spatial and temporal coordinates of the watermarked signal and that of an embedded
watermark. A spatial desynchronization attack [18] may perturb the synchronization
between the signal and the embedded watermark by geometrical variations like rescal-
ing, reorientation etc. so that detector is not able to locate the position of the water-
mark. Temporal synchronization attack [19] exploits the high degree of temporal
similarity allowing frame dropping, insertion of arbitrary or averaged frames etc. This
makes watermark extraction extremely difficult. Real time watermarking [20] can be
additional need that puts a limit to the complexity of the watermarking algorithm and
requires watermarking in the compressed domain itself.

The remaining paper is organized as follows. Section 2 discusses approaches specif-
ic to robust video watermarking techniques. Section 3 enumerates a set of design
guidelines for embedding an imperceptible watermark immune to collusion attacks. In
section 4, a watermarking technique based on non-overlapping block matching and
NPT has been proposed for embedding watermarks in video. In section 5, a theoretical
analysis has been presented along with implementation results to evaluate and establish
the efficacy of the proposed technique. The conclusions are given in section 6.

272 S.S. Bedi, S. Verma, and G.S. Tomar

2 Video Watermarking Approaches

Video watermarking endeavors to hide a watermark in a manner such that the
watermark survive discovery through statistical estimation or obliteration by de-
synchronization in addition to immunity to noise and compression. Various methods
have been proposed that range from methods that are just an extension of image wa-
termarking to video specific techniques where both the watermark sequence and the
embedding process are determined by the characteristics of host video sequences.
Some of the representative approaches are as follows. In [21], a PN sequence is
spread over the video frames in the spatial domain and repeated over the entire video
in a sequential manner such that the watermark frame correlation was 0 or 1. This
rendered the watermark collusion resistant to some extent. In Just Another Water-
marking System (JAWS), higher dimensional PN sequences were utilized to mark the
video frames such that inter frame watermark correlation was close to unity, Bit plane
decomposition of the video frames was performed in [22] for watermark insertion.
The video sequence is watermarked by replacing one of the least significant planes of
each frame by a PN binary sequence. These result in low pair wise correlation in
watermarked signal for independent host frames and high pair wise correlation for
identical host frames. In transform domain approaches, noise like sequences is added
to the transform coefficients with a key support for collusion resistance. All these
spatial or transform domain approaches are vulnerable to desynchronization and re-
quire generation and storage of keys. Temporal partitioning for multiresolution scene
dependent watermarking is proposed in [23]. The watermark is embedded such that
the correlation of watermarks is high for static and low for dynamic scenes to attain
collusion resistance. Average luminance in sub-regions is modified for watermarking
[24]. The average luminance regions are categorized on the basis of partitioning using
a secret key. Local correlations render the watermark collusion resistant. In [25], sets
of video hash functions have been utilized to generate video content dependent noises
like watermark sequences for achieving statistical invisibility and collusion resistance.
A method to improve imperceptibility by reduction of flickering effect is proposed in
[26]. The work also proposes methods for determination of video scene characteristics
for robust watermarking. It is shown in [27] that frame-by-frame watermarking em-
bedding, which is oblivious to content characteristics is highly susceptible to collu-
sion attacks. A content dependent watermark with time dependent embedding strength
has been proposed as an effective deterrent to collusion based attacks. In-depth anal-
ysis and design guidelines for collusion-immune watermarking are presented in [28].
The work indicates that statistical invisibility can be achieved through content depen-
dent watermarking. Such watermarks exhibit high correlation for similar frames and
negligible correlation for independent frames. A spatially localized water marking
technique with random footprints has been proposed along these guidelines [29].
Apart from these, watermark embedding has been proposed in the motion vectors
[30], post quantized transform coefficients [31]. Watermark embedding in motion
vectors makes the watermark fragile [32] while compressed domain is mostly tied to
the compression standard. Both achieve the requirements of real time watermarking
but are intolerable to transcoding, scaling etc. Intermediate transform domains like
NPT have been used for image watermarking [33]. NPT based image watermarking is
resistant to noise addition and tolerates high degree of compression. The process

 NPT Based Video Watermarking with Non-overlapping Block Matching 273

embeds only traces of the watermark in the host, not the complete watermark and the
perturbed part of the original signal that becomes the part of the final signal is tightly
coupled to the original host. This makes a potential candidate for collusion resistant
video watermarking. In this study, NPT based watermarking of image has been
explored and extended for efficient watermarking of video signals.

3 Design Guidelines

A transparent and robust watermark should be such that the watermark is present and
detectable in every frame of the video sequence. Moreover, the watermarked video
frames should also have high fidelity so that the watermark is not discernable to the
human eye. These requirements need to be satisfied along with the collusion resistance,
compression tolerance, noise and synchronization immunity. These requirements and
constraints can be met through the design guideline that is intuitively developed as
follows. First, to tolerate compression, the transform coefficients of the watermarked
signal should be large enough to survive the quantization. In block-based compression,
quantization is applied on each coefficient of the block to a different degree. These
coefficients are almost decorrelated. If the watermark is applied in the spatial domain
and is an independent broadband signal, then, it shall lie in the mid to high range AC
coefficients where the high quantization level can obliterate these low amplitude wa-
termarks. Moreover, a watermark that is statistically similar to the block it is embedded
in and also exhibits high pair wise correlation with the target block in the reference
frame resists both intra and inter-frame compression [36]. Thus, a compression robust
watermark requires that the watermark signal be a narrow band signal with coefficients
that are large enough to withstand quantization but low enough not induce visible dis-
tortions. The embedding process or the watermark should be such that the watermark
coefficients are correlated to one another and to the host signal so that they map to-
wards the DC coefficients in the DCT domain. Transforms that have poor energy com-
paction like Hartley transform can be employed for data hiding [34]. To be immune to
noise, it is required that different watermark coefficients are correlated and the water-
mark is able to withstand a variance reducing integrate and dump filter type operations
[35]. Multi-frame collusion attacks manifests in two forms [36]. Type I collusion arises
when a number of uncorrelated frames of a video sequence are marked with highly
correlated watermarks. This case arises when a fixed watermark is used to watermark
all the frames and that watermark is independent of the video sequence. Type II collu-
sion arises when large number of statistically similar frames of a video sequence is
marked with linear combination of uncorrelated independent watermarks [15]. This
happens when a noise like pattern in embedded in the video. Type I Collusion can be
evaded if the watermark sequence is independent in each frame because the linear
frame combining will not enhance the watermark. The requirements for Type II collu-
sion are opposite to that of Collusion Type I. If the same watermark is embedded,
collusion will fail and any averaging would fail to produce a marked free copy. Resis-
tance to collusion amounts to statistical invisibility. A video sequence that is water-
marked exhibits statistical invisibility if and only if the correlation coefficient between
the host frames is equal to that of the corresponding watermarked frames and the host

274 S.S. Bedi, S. Verma, and G.S. Tomar

video is highly correlated to the watermark. The aforesaid observation leads to the
following design criteria. The first guideline concerns with the original and water-
marked video sequences while the second design guideline ensures correlation between
the host and the watermark signals.

The first design guideline states that there should be statistical invisibility of the
watermark. Statistical invisibility is the consequence of the lack of observable differ-
ence between the host and the watermarked sequence [14]. This can be ensured if
embedding process is such that the perturbation to the host signal results in a signal
that differs from the original signal only by a scaling factor i.e the probability density
functions (pdfs) of the signals are similar. Similarity of the pdfs is possible when the
variance and other higher moments of the two signals are close to one another. The
second design principle enshrined in [36] states that that visually similar regions or
frames of the video are marked by consistent watermarks. Finally, the video should be
divided into scenes that have the same genre the watermark should be placed in the
part of a frame that has low difference between adjacent frames.

4 Proposed Technique

4.1 Basic Idea

As in image watermarking via NPT [37], a watermark is embedded in every frame of
the video. The region is chosen on the basis of interframe similarity. The watermark
effectively resists collusion based watermark estimation attacks and is impervious to
noise and lossy compression to a large extent. This immunity is intrinsic to the
process of generation and retrieval of the watermark by NPT and the underlying trans-
form employed by NPT. To enhance the resistance to collusion based attacks, a non-
overlapping block matching is used to find the region for placing the watermark. The
iterative process of watermark reconstruction bestows relative immunity to noise and
quantization error in the compression process.

4.2 Watermark Embedding with NPT and Non-overlapping Block Matching

The watermark is embedded and extracted via Naturalness Preserving Transform
(NPT), an intermediate spatial-frequency domain representation of a signal. NPT,
which is the intermediate transform, is utilized for embedding and extraction of the
watermark and representation of the video frames. NPT is a linear combination of two
or more transforms in which the individual transforms contribute such that the inverse
exists. The NPT of an image P of size 2n×2n given as [38]: ܣ ൌ ߰ሺߙሻܲ ߰ሺߙሻ

Where 0) ߙ ൑ ௜ߙ ൑; ∑ ௜ߙ ൌ 1) is a vector of k components. ߰ሺߙሻ is the hybrid
transform operator and is defined as stochastic weights of the set of orthogonal
matrices: ሼܯଵ, ,ଷܯଶܯ … … . . , ܣ .௞ሽܯ ൌ ሼܫߙ ൅ ሺ1 െ ܫߙሽ ܲሼܯሻߙ ൅ ሺ1 െ ܣ ሽܯሻߙ ൌ ଶܲߙ ൅ ሺ1 െ ܯܲܯሻଶߙ ൅ ሺ1ߙ െ ܯሻ ሼܲߙ ൅ ሽܲܯ

 NPT Based Video Watermarking with Non-overlapping Block Matching 275

The three different terms in the right side of the above equation are explained as
follows. The first term ߙଶܲ shows the weighted original image and is the cause of
visual characteristics of the original image. The second term ሺ1 െ is the ܯܲܯሻଶߙ
weighted version of orthogonal transform. The third term ߙሺ1 െ ܯሻ ሼܲߙ ൅ ሽ is aܲܯ
function of original image and orthogonal transform matrix. This term introduces
redundancy and can be employed for reconstruction of the missing portion of an
image. In an image watermarked via NPT, the first term preserves the visual imper-
ceptibility of the image while the third term enhances robustness by aiding in the
recovery of the watermark in an attacked watermarked image. Each video frame is
watermarked separately via the NPTation. Except the first frame, the regions of the
subsequent frames to be watermarked are a function of correlation between the
frames. Initially, a watermark image that is very small as compared to the frame
dimension is inserted after deletion of that portion. The NPT transformed frame is
formed by the addition of a large portion of the modified frame and a very small
portion from its Discrete Hartley transform (DHT). The transformed image contains
both the original spatial characteristics as well as the Hartley domain components of
the image and NPT merely redistributes the watermark image into the original video
frame. For large values of ߙ, NPT is able to invisibly code an image into the host
frame while preserving the original visual appearance of the host. Once the first
frame is watermarked as shown in fig. 1, the portion of the subsequent frames where
the watermarked is to be insertion prior to NPT is decided on the strength of Inter-
frame correlation. In similar frames, the watermark should be placed in regions that
are visually closest. Identical frames should be worked identically. This is achieved
by non-overlap block matching to identify the closest regions in the current frame
corresponding to the regions in the previous frame where the watermark had been
placed. The aim of non-overlap block matching is to allow the placement of the
watermark into positions of different frame with similar genre. The procedure is
same as conventional block matching with the change that the block is the previous
frame that is matches to the block in the current frame does not participate in the
block matching process nay further. The current and previous frames divided into
8x8 blocks and the block matched in a limited search region. The watermark broken
into 8x8 blocks are placed in the corresponding blocks of the current frame. For
example, to determine the portion of the second frame to be replaced by the water-
mark image, a non-overlapping exhaustive search block matching is performed. The
first frame is taken as the reference frame and the second frame as the target frame.
Once a block in the reference frame matches with the block in the target frame, the
block in the reference frame is excluded from the matching process (non overlapping
search). MSE is used as the search criterion to maximize correlation between the
blocks. This allows the identification of static scenes in the video that are also highly
correlated. After the identification of the portion, watermark is embedded at the intra
frame level. This is repeated for subsequent frames till Interframe correlation falls
below a certain threshold indicating a new group of frames.

276 S.S. Bedi, S. Verma, and G.S. Tomar

 (a) (b)

Fig. 1. (a) Video Frame (first) to be watermarked; (b) watermark image

The process of embedding the watermark in a video sequence proceeds through the
following steps.

1. To embed a watermark image W into a video, the first frame P of the host
video V is considered. The size of the watermark W is very small (32×32 in
the present case) as compared to the frame size (256×256 in the present
case). The watermark image W is substituted at the place where the correla-
tion of W and the part of P is high. The new image Pappend is transformed via
the NPT and generates an image called Qappend. The final marked frame is the
transformed frame Qappend after replacing the watermark image portion by the
equivalent parts from the original host frame. To smooth the sharp edges that
result because of this substitution, the replacement is made by the NPT of the
original frame with very low value of α (0.98 & 0.99).

2. To embed the watermark into the second and subsequent frames, the original
first frame and the second frame are divided into 8×8 sub macro blocks and
non-overlapping block matching is performed between them using the mean
square criterion. In non-overlapping block match, block in the reference
frame that has been matched with a block in the second frame does not par-
ticipate in further matching process. The new Pappend frame for the second
frame is formed after placing the relevant portions of W at the matched plac-
es. Step 1 is then repeated to obtain the watermarked second frame. The
same procedure is repeated for subsequent frames.

4.3 Watermark Extraction

The Hartley transform component ensures that every point of the final image is a
function of the entire image field and contains information about the entire signal. For
a range of α below unity, the image displays a high degree of fidelity but there is an
imperceptible Hartley component. These two properties allow for a unique approach
to reconstruction of an image from an image embedded in noise. If a section is
excised, then the total image I can be recovered by positing the contents of the

 NPT Based Video Watermarking with Non-overlapping Block Matching 277

excised area by replacing in the missing region with a suitable candidate region. The
reconstruction works by minimization of texture noise. The algorithm adjusts the
noisy, or posits the missing pixels so that the variance of the texture measures of the
pixel values in the known texture region is minimized by the inverse transform
process. The extraction of the watermark requires the original video sequence to
supply the candidate region. Once, the region for the placement has been identified by
non-overlap block matching, the watermark is embedded independently in each
frame.

The reconstruction of the watermark is performed independently for each frame.
The iterative process is identical to the procedure illustrated in [37] and proceeds as
follows. In the watermarked frame, the portion where the watermark was embedded is
set to zero. The corresponding portion of the original frame is also excised. The itera-
tive process starts with the inverse NPT of the watermarked frame. The coefficients
generated in deleted portion of the frame as substituted in the original frame and for-
ward NPT is done. The coefficients generated in the excised portion are then used to
replace the excised portion of the watermarked image. The process of forward and
inverse NPT is repeated till the watermark is regenerated in the deleted portion of the
frame. The naturalness-preserving transform is a convex function and the restoration
method essentially trades a priori information for incomplete information. A solution,
defined as a vector left invariant under a suitable operation, is sought by successive
iterations of the suitable operation. The convex nature of the range space ensures
convergence.

5 Results and Analysis

To verify the efficacy of the proposed technique, test video sequence of Miss_America
video was watermarked via the NPT with non-overlap watermarking. The embedding
was performed as follows.

1. The first frame F of Miss_America sequence is considered. A watermark im-
age, IIITM logo, W whose dimensions are small as compared to the frame
size is chosen (W=32×32 for F= 256×256 in the present case) and shown in
fig. 1. W should be placed in the region of maximum correlation but has been
placed arbitrarily for testing in F to form F1 as shown fig. 2.

2. The NPT FI of F1 is obtained by taking forward NPT with as

shown in fig. 3.

3. The portion of the watermark W is excised from F1 and coefficients of that
image portion are forced to zero as shown in fig. 4.

The equivalent portion from the original frame replaces the excised image portion.
This generates sharp edges. To eschew this, NPT F is taken with close to unity
(= 0.98 in over case) to generate F’. The excised image portion is then replaced by
corresponding portion of F’ to form the final watermarked frame R as illustrated in
fig.4. The extraction of the watermark from the watermarked signal is performed at the
frame level.

39.0=α

α
α

278 S.S. Bedi, S. Verma, and G.S. Tomar

Fig. 2. Watermark Image S superimposed over original image after Forward NPT

Fig. 3. Image with watermark portion excised

Fig. 4. Final watermarked Image

 NPT Based Vide

 (

 (

 (

Fig. 5. Optimal Place
(Size 256×25
(h)Frame-2; (

Different stages of the
fig. 5. Various stages of ext
is observed that the waterm
Table1 shows the PSNR va
of Miss_America) and the L
different variance, differen
average of frames for wate
of the watermark, replacem

eo Watermarking with Non-overlapping Block Matching

(g) (h)

(i) (j)

(k) (l)

ement of Watermark (size 32×32 pixels) in video frames
6 pixel) of video clip of Miss_ America (g) Frame-1;

(i) Frame-3; (j) Frame-4; (k) Frame-5; (l) Frame-6;

watermark embedding in various video frames shown
traction process from a video frame are shown in Fig. 6

mark is restored after a large number (30-40) of iteratio
alues for original and watermarked video frame (first fra
Lena image. The watermarked image is subject to noise

nt degree of cropping, collusion I and II attacks by tak
ermark obliteration and difference of frames for extract

ment of a frame by replacing it by its average and per fra

279

n in
6. It
ons.
ame
e of
king
tion
ame

280 S.S. Bedi, S. Verma,

lossy compression with JPE
reverse of the watermarking
was assessed as described in

 (

 (

 (

Fig. 6. Recovery of Watermar
(a) 10; (b) 20; (c) 30; (d) 40; (e

Table 1. PSNR Value

Original Images

Original Image &
Watermarked Image

Original Watermark
& Extracted Watermark

and G.S. Tomar

EG. The watermark was then recovered by employing
g process. The effect of different attacks on the waterma
n the following sections.

(a) (b)

(c) (d)

e) (f)

rk from Watermarked Video Frame-1with number of iteration
e) 50; (f) 60

es of the original and watermarked image without attacks

Lena Miss America

α=0.93
α=0.
90

α=0.93
α=0.9
0

41.83 39.75 37.911 36.96

33.93 36.85 32.38 33.37

the
arks

ns as

9

6

7

 NPT Based Video Watermarking with Non-overlapping Block Matching 281

5.1 Collision Attacks and Frame Dropping

In this section, an approximate analysis is done that indicates robustness of the NPT
based watermarking against estimation attacks like Collusion I & II and to incidental
attacks like lossy compression and noise. The analysis assumes that the system under
intentional or unintentional attacks can be characterized by second order statistics.
The watermark estimation attacks are point estimates that require the first two
moments of the process. It is further assumed that the system affected by noise or
quantization can be modeled or linear system with additive zero mean Gaussian noise.

The watermarking process essentially perturbs the original signal by adding another
signal that is function of the host signal. Let the original video sequence be denoted by ܸሺ݇ሻ, where ݇ is the frame number. The final watermarked signal ܺሺ݇ሻ that has been
watermarked via NPT can be represented as ܺሺ݇ሻ ൌ ሺ݇ሻܸ ߙ ൅ ሺ1 െ ሻܹሺ݇ሻߙ

where, ܹሺ݇ሻ is the perturbation as generated by NPT and post processing. It is known
that ܹሺ݇ሻcan be characterized by a generalized Gaussian Distribution [33] for ߙ ൐ 0.7. The value of ߙ in the watermarking process ranges from 0.9 to 0.95 to en-
sure sufficient frame quality and avoid unnecessary degradation of output video se-
quence.

Given a watermarked video sequence ܺሺ݇ሻ, ݇ ൌ 1,2, … , ݅, … . . , ݊ the linear sum-
mation of the different frames is

෍ ܺሺ݇ሻ ൌ௡
௞ୀଵ ߙ ෍ ሺ݇ሻݒ ൅ ሺ1 െ ሻ௡ߙ

௞ୀଵ ෍ ߱ሺ݇ሻ௡
௞ୀଵ

We assume that the perturbation signal has Gaussian distribution with zero mean and
a variance of ߪଶ. For this sequence of these random variables, the variance of the
sum, S is

ሺܵሻ ݎܸܽ ൌ ෍ ௜ሻݔሺݎܽݒଶߙ ൅௡
௜ୀଵ ෍ ෍ ൫ݒ݋ܿ ௝ߙ ௜ߙ ௜ܺ ௝ܺ ൯௡

௝ୀଵ ݅ ് ݆௡
௝ୀଵ

ሺܵሻ ݎܸܽ ൌ ∑ ௜ሻ௡௜ୀଵݔሺݎܽݒଶߙ & that of the average is

൭෍ ݎܸܽ ௜݊ܺ௡
௜ୀଵ ൱ ൌ ଶ݊ߙ ൅ ݊ െ 1݊ ଶߙߩ

When ߩ ൌ ൭෍ ݎܸܽ 0 ௜݊ܺ௡
௜ୀଵ ൱ ൌ ଶ݊ߙ

Depending on the interdependence between ܺሺ݇ሻ, ܸሺ݇ሻand ܺሺ݇ሻ, following cases
may arise.

i. ܸሺ. ሻ are correlated to one another while ܹሺ. ሻare independent of one another
and of the ܸሺ. ሻ. This case arises when each frame of visually similar

282 S.S. Bedi, S. Verma, and G.S. Tomar

sequence is watermarked by a separate watermark that is independent of the
frame. (Collusion Type I). The correlation ߩ is
൫ߩ ௜ܹ, ௜ܹା௝൯ ՜ 0; ൫ߩ ௜ܸ, ௜ܸା௝൯ ՜ 1; ൫ߩ ௜ܹ, ௝ܸ൯ ՜ 0

ii. ܸሺ. ሻ are correlated to one another while W(.) are independent of V(.) but
correlated to one another. This case arises when each frame of visually simi-
lar sequence is watermarked by a sequence of similar watermarks or a fixed
watermark that is independent of the frame. ߩ൫ ௜ܹ, ௜ܹା௝൯ ՜ 1; ൫ߩ ௜ܸ, ௜ܸା௝൯ ՜ 1; ൫ߩ ௜ܹ, ௝ܸ൯ ՜ 0

iii. ܸሺ. ሻ and ܹሺ. ሻ are neither correlated to one another or among themselves.
This happens when a sequence of independent frames are watermark by in-
dependent watermarks. ߩ൫ ௜ܹ, ௜ܹା௝൯ ՜ 0; ൫ߩ ௜ܸ, ௜ܸା௝൯ ՜ 0; ൫ߩ ௜ܹ, ௝ܸ൯ ՜ 0

iv. ܸሺ. ሻ are independent but the ܹሺ. ሻ are correlated. This happens when a
group of independent pictures is watermarked by a visually similar
watermark sequence. (Collusion Type II) ߩ൫ ௜ܸ, ௜ܸା௝൯ ՜ 0; ൫ߩ ௜ܹ, ௜ܹା௝൯ ՜ 1; ൫ߩ ௜ܹ, ௝ܸ൯ ՜ 0

v. ܸሺ. ሻ and ܹሺ. ሻ are correlated to one another and each V(i) and W(i) also ex-
hibit pair wise correlation. This is the case of content dependent watermarks. ߩ൫ ௜ܸ, ௜ܸା௝൯ ~ ߩ൫ ௜ܹ, ௝ܸ൯; ൫ߩ ௜ܸ, ௝ܹ൯ ՜ 1

In Case (i) frame averaging, frame replacement by average of two similar (contiguous)
frames may average out the watermark. Since, the watermark signals are uncorrelated,
the variance of the sum reduces by factor n (number of frames). Thus, collusion I at-
tack behaves as, integrates and dump filter and obliterates the watermark defeating the
watermarking process. When uncorrelated frames are watermark by a fixed water-
mark, case (ii), an attack based on difference between the frames is employed to esti-
mate the watermark. The estimated watermark can be used to delete the watermark
from the video sequence. When a sequence of independent images are watermarked
independently, collusion based attacks are not relevant (case iii). It is a case of water-
marking images rather than video. Case (iv) constitutes a Collusion II attack; a differ-
ence operation would be similar to a watermark estimation attack, in which the attack
shall reveal the watermark to the attacker. The watermark can then be erased from the
video sequence. If the watermark is statistically similar to the host signal then attacks
based on second order statistics would not estimate or erase the order.

In the proposed watermarking technique, the watermark information is embedded
in all the coefficients of the underlying frame through the Hartley transform. Thus, the
perturbation in the watermarked signal becomes a function of the host signal. In
words, NPT renders the watermark dependent on the contents of the host image apart
from the image used for creation of the perturbation. Though the NPT coefficients are
characterized approximately by Generalized Gaussian distributions, they tend to other

 NPT Based Video Watermarking with Non-overlapping Block Matching 283

distributions like Gamma distribution. This implies that the first two moments, mean
and variance, may not be sufficient to guarantee statistical invisibility to focused sta-
tistical estimation attacks. For robustness to attacks, the probability density functions
of the host and the watermark must be similar. To embed an effective watermark via
NPT, the shape of the transformed signal histogram should be modeled accurately to
determine the value of α for which the signal histograms exhibit similarity. The test
data generated by the watermarking of images like Lena, Baboon and Vegetable were
considered in lieu of Miss_America sequence. It was found that as α varies, the shape
of the transformed signal histogram varies. For large values of α, α > 0.92, the histo-
gram of the watermarked frame exhibits the characteristics of the original image his-
togram as shown in fig. 7. It can be seen from the fig.7 a & b that as the value of α
decreases below 0.90, the histogram exhibits more Hartley histogram characteristics
and becomes more peaked and narrow. The results indicate that the content depen-
dence and statistical similarity of the watermarked signal to the original signal results
in a watermark that is tightly coupled with the host signal. This makes it robust to
estimation or erasure by collusion.

Fig. 7a. Pixel Distribution for Miss_ America - Original and Watermarked images α=0.95,
0.90, 0.85

284 S.S. Bedi, S. Verma, and G.S. Tomar

Fig. 7b. Pixel Distribution for Lena - Original and Watermarked images α=0.95, 0.90, 0.85

In the Miss_America test sequence, the following operations were performed to va-
lidate the robustness of the technique. First, watermarking was performed on a se-
quence of 10 frames with an α=0.93. The second, fourth, sixth and ninth frames were
dropped and regenerated as an average of the preceding and the succeeding frames. It
was observed that the watermark is retained even in the averaged frames. The water-
marks extracted from such frames were highly distorted with an average PSNR of
around 25. However, the extracted watermarks were distinguishable to the human
eye.

5.2 Noise, Compression and Cropping

A video sequence is stored or transmitted in the compressed domain. The process of
compression usually involves energy concentration by block based DCT followed by
quantization of the DCT coefficients. The Quantization operation incurs a loss and can
be characterized as zero mean gaussian noise with a variance σq

2. In addition, when a
compressed video is transmitted over a channel, it is further corrupted by a zero mean

 NPT Based Video Watermarking with Non-overlapping Block Matching 285

gaussian noise with variance σn
2. The Hartley transform is like integration over the

entire image. The transform localizes many essential global features of the image in the
spectrum. Some of these are the background image intensity, repeating patterns, slow
variation in intensity, diffused edges etc. On the contrary, features that are localized in
the spatial domain are spread over the spectrum. These are sharp edges, lines and other
rapidly varying texture or sharpness of lines and edges are scattered. Any technique
that works on the synthesis of the image by working via texture synthesis or restoration
shall remove the effect of noise in the process. The inverse NPT transformation
process based on Projection on Convex Surfaces is able to achieve this in a precise and
extendible fashion. Moreover, the location of the errors is not important in NPT. All
the samples are equally protected because all samples are represented in each element
of the transformed matrix. The inverse Hartley transform, which is identical to the
forward transformation, is integration over the complete frame. It involves pair wise
product and addition of the noisy coefficients. The gaussian noise is thus squared and
averaged during inverse transformation.

The effect of both noise and compression can be modeled a linear communication
system with a square law detector corrupted by zero mean additive white gaussian
noise, ܰሺ0, -hypothesis testing can be formu ,ݕ ଶ்ሻ. Given an observed noisy signalߪ
lated for the detection of the signal E as a ‘0’ (null hypothesis ܪ଴) or a ‘1’ (alternate
hypothesis ܪଵ). Under ܪ଴, it is assumed that the signal is zero and the contribution is
only from noise. Thus, y is the sum of 2ܯ independent Gaussian random
riables ܰሺ0, ଶ ଶࣲெଶߪܭ ~ ݕ ଶሻ andߪܭ

 where ଶࣲெଶ
 is a (central) chi-squared distribu-

tion with 2M degrees of freedom [38].
The probability density ଴ܹሺݕሻ of ݕ under ܪ଴ is

଴ܹሺݕሻ ൌ ଶߪܭ1 ଶࣲெଶ ቀݕ ଶൗߪܭ ቁ ൌ ൬ ଶ൰ெߪܭ12 ܯெିଵݕ െ 1 ݁ି ௬ ଶ௄ఙమൗ

Under the alternative hypothesis ܪଵ, the contribution is from the signal plus noise.
This generates non-zero mean Gaussian variables. ݕ is the sum of squares of 2ܯ
independent Gaussian random variables with means ܥ௥௩Ԣݏ and ܥ௜௩Ԣݏ and therefore is
distributed as ߪܭ ~ ݕଶ ଶࣲெ;|ாభ|మଶ is a noncentral chi-squared distribution with 2ܯ

degrees of freedom and the noncentrality parameter |ܧଵ|ଶ ൌ ∑ ሺܿ௥௩ଶ ൅ ܿ௜௩ଶ ሻ௩మ௩ୀ௩భ [38].
Thus, the probability density of y under ܪଵ is given by

ଵܹሺݕሻ ൌ ଶߪܭ1 ෍ ଵ|ଶܧ| 2⁄ ሺ|ܧଵ|ଶ 2⁄ ሻ௝݆! ஶ
௝ୀ଴ ଶࣲெାଶ௝ଶ ቀݕ ଶൗߪܭ ቁ

-independent random variables (each of them is a squared Gaus ܯis the sum of 2 ݕ
sian), and therefore, according to the central limit theorem, for large ܯ ሺ൐ 15ሻ, the
distribution of ݕ is asymptotically Gaussian. The variance of these gaussian variables
are ߪ଴ଶሺݕሻ and ߪଵଶሺݕሻ, indicate that the inverse transformation reduces in the variance
by ܯ଴.ହ. This makes NPT more impervious to noise & lossy compression as com-
pared to other existing watermarking systems. This is reaffirmed under the test condi-
tions where the watermark could be extracted under mild to severe noise. Gaussian

286 S.S. Bedi, S. Verma,

 (a)

 (c)

Fig. 8. Extraction of watermar
mean(m) and standard deviat
s=100

noise of different variance
shown in fig.8. The waterm
was observed that the water
er, the distortion in the ex
watermarked image. For la
obliterated from the frames
the watermark rendered th
watermark was thus found
is depicted in Fig. 8 for the
tracted watermarks decrease
increases. However, there i
watermark is found to be
useless for consumption.

and G.S. Tomar

 (b)

 (d)

rk with addition of Noise in Watermarked Image having value
tion (s): (a) m=0, s=1; (b) m=0, s=10; (c) m=0, s=50; (d) m

(1-100) was added to the watermarked Lena test image
mark was, then, extracted from the noisy video frames
rmark gets impaired with the increase in the noise. How

xtracted watermark is proportional to the distortion in
arge noise, the watermark could not be extracted and w
s. However, the amount of noise required for obliterat
he video useless for consumption because of noise. T
to be robust to additive noise. The progressive impairm
e image under test. The PSNR values in table 2 of the
e sharply as the amount of noise in the watermarked im
s a corresponding rapid decrease in the Image quality. T

e visually discernable even when the image is rende

e for
m=0,

e as
s. It

wev-
the

was
ting
The

ment
ex-

mage
The
ered

 NPT Based Video Watermarking with Non-overlapping Block Matching 287

Table 2. PSNR Values for Addition of Gaussian Noise with various standard deviations (SD)

Standard Deviations SD-1 SD-10 SD-50 SD-100
Original Watermark &
Extracted Watermark

(α=0.93)
26.39 22.32 15.06 11.86

Original Watermark &
Extracted Watermark

(α=0.90)
28.31 23.16 16.31 12.01

Similar trends were observed for lossy compression. To test the robustness of the
watermark, the watermarked image of Lena was compressed using JPEG compression
with different quality (90-50). It was observed that, similar to noise addition, the
quality of the extracted watermark declined with the decrease in the quality of JPEG
compression as given in table 3. At very low quality of compression as shown in
fig.9, the PSNR of the extracted watermark was very low (PSNR 9.22 for 50% quality
factor as 50 and ߙ ൌ 0.93 and the watermark could not be taken as extracted. Howev-
er, the decreased quality of compression impaired the image beyond reasonable usage
establishing the robustness of the technique against frame level compression. Further,
it was found that the watermark is also resistant to cropping. Different degree of crop-
ping from different parts of the watermarked frames was performed. It was observed

Table 3. PSNR Values for various lossy JPEG Compression quality factor index

% Compression 90 80 70 60 50
Original Watermark

&
Extracted

Watermark (α=0.93)

23.09 20.91 15.23 12.90 10.22

Original Watermark
&

Extracted
Watermark (α=0.90)

27.04 25.13 19.34 15.69 11.97

Table 4. PSNR Values for Cropping Attack with various cropped area percentage

Cropped Dimensions
(a) Coincide with

watermark; (b) No coincide
with watermark

(a)
1.25%

 (b)
1.25%

(b)
6.25%

(b)

12.25%

Original Watermark &
Extracted Watermark

(α=0.93)
26.57 26.28 23.30 16.93

Original Watermark &
Extracted Watermark

(α=0.90)
26.49 25.51 24.85 17.28

288 S.S. Bedi, S. Verma,

Fig. 9. Lossy JPEG Compress

the watermark could be ret
strated in fig.10. The PSNR
various cropping percentage

and G.S. Tomar

(a)

(b)

(c)

sion Operation with quality factor index are (a) 90; (b) 70; (c)

trieved till about 12% of the frame is cropped out as i
R values of extracted watermark from first video frame
e is given in table 4.

60

illu-
 for

 NPT Based Vide

Fig. 10. Cropping Attack (a)
the location of watermark; (b)
ing with watermark image;
watermarked image

6 Conclusion

The key to design of robus
with the host signal. Water

eo Watermarking with Non-overlapping Block Matching

(a)

(b)

(c)

Cropped area is 1.25% at the watermarked image coincide w
) Cropped area is 1.25% on watermarked image without coin
(c) Cropped area is 6.25% at the bottom-left corner of

st watermarking system is to embed watermarks consist
rmarking via NPT creates perturbations coherent with

289

with
ncid-

the

tent
the

290 S.S. Bedi, S. Verma, and G.S. Tomar

underlying host. The embedded watermark is derived from the host signal and is sta-
tistically similar to the host as well as to the watermarked signal. This renders the
watermark quite immune to second order statistics based collusion attacks. The vulne-
rability to compression is a function of strength of the perturbation i.e. α. The value of
α governs the recovery of the watermark from watermarked signal distorted by com-
pression, noise etc and also the fidelity of the watermarked signal. Higher values of α
ensure recovery at the cost of fidelity and vice versa. The final value is a tradeoff
between resistance and fidelity. The texture reduction process of watermark recovery
imparts a higher degree of noise immunity as compared to other watermarking
process and the watermark is able to sustain substantial amount of noise, lossy com-
pression and distortions like cropping etc. However, since the underlying Hartley
transform does not fully decorrelate the signal, intraframe collusion can be devised to
estimate or obliterate the watermark. The transform also concentrates the energy of
the signal at the corner points distorting the frame at the corners. The watermarking
recovery requires the original frame that limits the applicability of the watermarking
process. Finally, the robustness of the watermarking technique has not been tested
against specialized attacks. The immunity of the watermark to video editing etc. also
needs to be investigated.

References

1. Koz, A., Cigla, C., Alatan, A.A.: Watermarking of Free-view Video. IEEE Transactions on
Image Processing 19(7), 1785–1797 (2010)

2. Doerr, G., Dugelay, J.L.: Security pitfalls of frame-by-frame approaches to video water-
marking. IEEE Transactions on Signal Processing, part 2 52(10), 2955–2964 (2004)

3. Barni, M., Bartolini, F., Caldelli, R., De Rosa, A., Piva, A.: A robust watermarking ap-
proach for raw video. In: Proceedings of the 10th International Packet Video Workshop
(2000)

4. Hartung, F., Girod, B.: Watermarking of Uncompressed and Compressed Video. Signal
Processing 66(3), 283–301 (1998)

5. Langelaar, G., Lagendijk, R.: Optimal differential energy watermarking of DCT encoded
images and video. IEEE Transactions on Image Processing 10(1), 148–158 (2001)

6. Lu, C.-S., Chen, J.-R., Liao, H.-Y.M., Fan, K.-C.: Realtime MPEG-2 video watermarking
in the VLC domain. In: Proceedings 16th International Conference on Pattern Recognition,
vol. 2, pp. 552–555 (2002)

7. Langelaar Gerrit, C., Lagendijk Reginald, L.: Real-time Labeling of MPEG-2 Compressed
Video. J. Visual Communications and Image Representation 9(4), 256–270 (1998)

8. Kalker, T., Depovere, G., Haitsma, J., Maes, M.: A video watermarking system for broad-
cast monitoring. In: Proceeding of SPIE- Security Watermarking Multimedia Contents,
vol. 3657, pp. 103–112 (1999)

9. Fridich, J., Goljan, M.: Robust hash functions for digital watermarking. In: Proceeding
Conference Information Technology: Coding and Computing, pp. 178–183 (2000)

10. Petitcolas, F., Anderson, R.: Evaluation of Copyright Marking Systems. In: Proceedings
IEEE multimedia Systems (ICMCS 1999), Florence, Italy, June 7-11 (1999)

11. Solachidis, V., Pitas, I.: Circularly symmetric watermark embedding in 2-D DFT domain.
IEEE Transaction Image Processing 10, 1741–1753 (2001)

 NPT Based Video Watermarking with Non-overlapping Block Matching 291

12. Duan, F., King, I., Xu, L., Chan, L.: Intra-block algorithm for digital watermarking. In:
Proceedings IEEE 14th International Conference on Pattern Recognition (ICPR 1998),
vol. 2, pp. 1589–1591 (1998)

13. Reyes, R., Cruz, C., Nakano-Miyatake, M., Pérez-Meana, H.: Digital Video Watermarking
in DWT Domain Using Chaotic Mixtures. IEEE Latin America Transactions 8, 304–310
(2010)

14. Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE
Transactions on Image Processing 9(6), 1123–1129 (2000)

15. Swanson, M., Zhu, B., Tewfik, A.: Multiresolution Video Watermarking using Perceptual
Models and Scene Segmentation. In: Proceedings International Conference on Image
Processing (ICIP 1997), Washington, DC, vol. 2, pp. 551–568 (1997)

16. Chan, P.W., Lyu, M.: A DWT-based Digital Video Watermarking Scheme with Error Cor-
recting Code. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836,
pp. 202–213. Springer, Heidelberg (2003)

17. Voloshynovskiy, S., Periera, S., Pun, T., Eggers, J., Su, J.: Attacks on digital watermarks:
Classification, estimation-based attacks, and benchmarking. IEEE Communication Maga-
zine 39, 118–126 (2001)

18. Pireira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE
Transaction on Image Processing 9, 1123–1129 (2000)

19. Holliman, M., Macy, W., Yeung, M.: Robust frame-dependent video watermarking. In:
Proceedings of the SPIE Security and Watermarking of Multimedia Contents, San Jose,
January 24-26, vol. 3971, pp. 186–197 (2000)

20. Verma, S., Chandra, R., Tomar, G.S., Kim, J.: Video watermark embedding in the com-
pressed domain. In: IET International Conference on Visual Information Engineering, VIE
2006, pp. 53–57 (2006)

21. Kalker, T., Depovere, G., Haitsma, J., Maes, M.: A video watermarking system for broad-
cast monitoring. In: Proceeding of SPIE, vol. 3657, pp. 103–112 (1999)

22. Mobasseri, B.G.: Exploring CDMA for watermarking of digital video. In: Proceeding of
SPIE, vol. 3657, pp. 96–102 (1999)

23. Swanson, M.D., Zhu, B., Tewfik, A.H.: Multiresolution Scene-Based Video Watermarking
Using Perceptual Models. IEEE Journal on Selected Areas in Communications 16(4), 540–
550 (1998)

24. Darmstaedtev, V., Delaigle, J.F., Nicholson, D., Macq, B.: A block based watermarking
technique for MPEG-2 Signals: Optimization and validation on real TV distribution links.
In: Proceeding of European Guf Multimedia Applications, Services and Techniques EC
MAST, Berlm, Germany (1998)

25. Fridrich, J.: Robust bit extraction from images. In: Proceeding of IEEE International Con-
ference on Multimedia Computing and Systems, vol. 2, pp. 536–540 (1999)

26. Fridrich, J.: Visual hash for oblivious watermarking. In: Proceeding of SPIE, Security and
Watermarking of Multimedia Contents III, vol. 4314, pp. 286–294 (2000)

27. Kundur, D., Hatzinakos, D.: Attack characterization for effective watermarking. In: Pro-
ceeding IEEE International Conference on Image Processing, vol. 4, pp. 240–244 (1999)

28. Fei, C., Kundur, D., Kwong, R.: Analysis and Design of Secure Watermark-based Authen-
tication Systems. IEEE Transactions on Information Forensics and Security 1(1), 43–55
(2006)

29. Su, K., Kundur, D., Hatzinakos, D.: Spatially Localized Image-Dependent Watermarking
for Statistical Invisibility and Collusion Resistance. IEEE Transaction on Multimedia 7(1),
52–66 (2005)

292 S.S. Bedi, S. Verma, and G.S. Tomar

30. Zhang, J., Li, J., Zhang, L.: Video watermark technique in Motion Vector. In: Proceeding
of IEEE 14th Brazilian Symposium on Computer Graphics and Image Processing, Brazil,
pp. 535–540 (2001)

31. Biswas, S., Das, S.R., Petriu, E.M.: An adaptive compressed. MPEG-2 video watermark-
ing scheme. IEEE Transactions on. Instrumentation and Measurement 54(5), 1853–1861
(2005)

32. Mobasseri, B.G., Berger, R.J.: A foundation for watermarking in compressed domain.
IEEE Signal Processing Letters 12(5), 399–402 (2005)

33. Ahmed, A.M., Day, D.D.: Applications of the naturalness preserving transform to image
watermarking and data hiding. Digital Signal Processing 14, 531–549 (2004)

34. Kundur Fei, D., Kwong, R.: Analysis and Design of Watermarking Algorithms for
Improved Resistance to Compression. IEEE Transactions on Image Processing 13(2),
126–144 (2004)

35. Smith, J.R., Camiskey, B.O.: Modulation and information hiding in images. In: Anderson,
R. (ed.) IH 1996. LNCS, vol. 1174, pp. 207–226. Springer, Heidelberg (1996)

36. Su, K., Kundur, D., Hatzinakos, D.: Statistical invisibility for collusion-resistant digital
video watermarking. IEEE Transaction on Multimedia 7(1), 52–60 (2005)

37. Ji-Hua, G., Shang, Y., Bei-jing, H.: An NPT Watermarking Algorithm Using Wavelet Im-
age Combination. In: Third International Symposium on Intelligent Information Technolo-
gy and Security Informatics (IITSI), pp. 378–438 (2010)

38. Biyari, K.H., Lindsey, W.C.: Statistical distribution of hermitian quadratic forms in com-
plex Gaussian variables. IEEE Trans. Inform. Theory 39(3), 1076–1082 (1993)

Author Index

Ahmad, Afandi II-223

Alexandre, Leandro A. II-179

Amira, Abbes II-223

Armknecht, Frederik II-39

Balliu, Musard I-261

Bardouillet, Michel I-231

Barreto, Paulo Sérgio Licciardi Messeder

II-64

Batista, Maira L. II-179

Bedi, S.S. II-270

Bhuvaneswari, P.T.V. II-207

Cansian, Adriano M. II-179

Chakraborty, Sudip I-154

Chau, Wang Jiang I-187

Chhabra, Siddhartha I-329

Chiou, Kuo-Zhe I-352

Clemente, Patrice II-131

Compagna, Luca I-1

de Oliveira, Bruno Trevizan II-64

Dubé, Danny II-249

Dutta, Malay Kishore I-131

Eisenbarth, Thomas I-78

El Khoury, Paul I-1

Elbaz, Reouven I-231

Fan, Jia I-202

Fiore, Dario I-42

Geiselmann, Willi I-298

Gennaro, Rosario I-42

Guillemin, Pierre I-231

Gupta, Phalguni I-131

Hamou-Lhadj, Abdelwahab II-249

Hao, Feng II-192

Harrison, Owen II-104

Hengst, Gregor II-17

Houmb, Siv Hilde I-154

Kasper, Timo I-100

Lachmund, Sven II-17

Lee, Po-Han I-352

Li, Celia II-1

Maia, Ricardo José Menezes II-64

Malekian, Ehsan I-25

Martinez, Albert I-231

Massacci, Fabio I-1

Mastroeni, Isabella I-261

Matheis, Kenneth I-298

Moreno, Edward David II-162

Nicholl, Paul II-223

Oliveira, Isabela L. II-179

Oswald, David I-100

Paar, Christof I-78, I-100

Pathak, Vinay K. I-131

Pereira, Fábio Dacêncio II-162

Pires, Ricardo I-187

Pirzadeh, Heidar II-249

Proto, André II-179

Ray, Indrajit I-154

Ray, Indrakshi I-154

Rouzaud-Cornabas, Jonathan II-131

Ryan, Peter II-192

Sadeghi, Ahmad-Reza II-39

Saidane, Ayda I-1

Saranya, M. Agnes II-207

Sassatelli, Gilles I-231

Scafuro, Alessandra II-39

Sepúlveda, Johanna I-187

Solihin, Yan I-329

Steinwandt, Rainer I-298

Strum, Marius I-187

Tang, Xiaohu I-202

Toinard, Christian II-131

Tomar, Geetam S. II-270

Torres, Lionel I-231

Tujillo-Olaya, Vladimir II-79

294 Author Index

Vaidehi, V. II-207

Velasco-Medina, Jaime II-79

Verma, Shekhar II-270

Visconti, Ivan II-39

Wachsmann, Christian II-39

Waldron, John II-104

Wang, Zhuang II-1

Weghenkel, Björn I-78

Yang, Cungang II-1

Yen, Sung-Ming I-352

Zakerolhosseini, Ali I-25

Zhang, Je I-352

Zheng, Yuliang I-202

	Title
	Preface
	Table of Contents – Part II
	SEAODV: A Security Enhanced AODV Routing Protocol for Wireless Mesh Networks
	Introduction
	Related Work
	Security Enhanced AODV Routing
	Enhanced HELLO Message
	Exchange Public Seed_G and GTK Using Enhanced HELLO Message
	Securing Route Discovery
	Securing Route Setup
	Securing Route Maintenance

	Security Analysis
	Performance Evaluation
	Computation Cost
	Communication Cost

	Conclusion
	References

	Auto-generation of Least Privileges Access Control Policies for Applications Supported by User Input Recognition
	Introduction
	Related Work
	Static Analysis by Call Graph
	Runtime Observation
	Further Analysis Approaches
	Other Related Work

	Policy Generation with User Interaction Recognition
	Classes Obtaining User Input
	Aspects
	Call Graph and String Analysis
	Dynamic Analysis
	Policy Generation

	Prototype Implementation
	Implementation Details
	Aspects

	Example
	Evaluation
	Prototype
	Elimination of Overapproximation

	Discussion
	Threat Model
	The Big Picture
	Future Work

	Conclusion
	References

	Impossibility Results for RFID Privacy Notions
	Introduction
	RFID System and Requirement Analysis
	The PV-Model
	System Model
	Trust and Adversary Model
	Security Definition
	Privacy Definition

	Corruption with Temporary State Disclosure
	Corruption without Temporary State Disclosure
	Impossibility Results for Resettable and Stateless Tags
	Impossibility of Narrow-Weak Privacy under Reset Attacks
	Impossibility of Destructive Privacy with Stateless Tags

	Conclusion
	References

	Implementation of Multivariate Quadratic Quasigroup for Wireless Sensor Network
	Introduction
	Concepts
	Implementation Multivariate Quadratic Quasigroup
	Encryption
	Decryption
	Results
	Conclusions
	References

	Hardware Architectures for Elliptic Curve Cryptoprocessors Using Polynomial and Gaussian Normal Basis over GF(2^233)
	Introduction
	Related Work
	Mathematical Background
	Elliptic Curves Arithmetic over GF(2^m)
	Representation of Elements of Binary Fields

	Hardware Architectures for Finite Field Arithmetic
	Algorithms for Polynomial Basis Multiplication over GF(2^m)
	Algorithms for Gaussian Normal Basis Multiplication over GF(2^m)
	Squarer Using Polynomial Basis over GF(2^m)
	Squarer Using Gaussian Normal Basis over GF(2^m)
	Polynomial Basis Inversion over GF(2^m)
	Normal Basis Inversion over GF(2^m)

	Hardware Architectures for Elliptic Curve Cryptoprocessors
	Hardware Architectures for Elliptic Curves Cryptoprocessors Using Polynomial Basis
	Hardware Architectures for the Elliptic Curves Cryptoprocessor Using Gaussian Normal Basis

	Experimental Results
	Experimental Results for GF(2^233) Polynomial Basis Multipliers
	Experimental Results for GF(2^233) Gaussian Normal Basis Multipliers
	Experimental Results for GF(2^233) Squaring
	Experimental Results for GF(2^233) Inversion
	Experimental Results for Elliptic Curve Cryptoprocessors over GF(2^233)
	Comparison Results

	Conclusions
	References

	GPU Accelerated Cryptography as an OS Service
	Introduction
	Background and Related Work
	OCF Background
	GPU Background
	Related Work

	Integration of GPU and OCF
	Overview
	Kernelspace Motivation
	Memory Management
	GPU Driver and Daemon
	Security

	Concurrent Request Processing
	Asymmetric Request Batching
	Request Pipelining

	Performance
	Symmetric-Key Performance
	Asymmetric-Key Performance

	Conclusions
	References
	OCF Extensions
	New Memory Management Interface
	Gpucrypt ioctl Interface

	From a Generic Framework for Expressing Integrity Properties to a Dynamic MAC Enforcement for Operating Systems
	Introduction
	Related Work and Motivations
	Theoretical Approaches
	Operating System Approaches
	Other Approaches
	Motivations

	System Modeling
	System Time, Entities and Operations
	Information Flows
	Direct Information Flows
	Indirect Information Flows
	Other Kinds of Interactions and Flows
	Sequential Flows

	Integrity Properties Modeling
	Data Integrity
	Domain Integrity

	Implementation
	Architecture
	Kernel-Space
	User-Land

	Experiments
	Protecting against Information Harvesting through a Small Binary Path
	Completeness
	Performance

	Conclusion
	References

	Performance Issues on Integration of Security Services
	Introduction
	Related Works
	Model RASHEED
	Model Yasami

	The Security Service Integrated Layer (SSIL)
	Hidden Markov Model (HMM)
	subHMM Technique
	Sequential Model

	Testing and Validation Environment
	Simulator
	Test Methodology
	Methods for Construction of Test Vectors

	Results Analysis
	Anomaly Detection
	Anomalies Detection with subHMM

	Conclusions
	References

	Statistical Model Applied to NetFlow for Network Intrusion Detection
	Introduction
	Motivation and Objectives
	Related Works

	General Concepts
	Attacks and Anomaly Detection
	Network Flows
	Statistical Concepts

	Methodology
	Data Architecture Storage
	Defining the Pattern Traffic in a Network
	Outlier Identification Model

	Results
	Environment of Tests
	Monitored Services
	Detection Results
	System Performance

	Conclusion and Future Works
	References

	J-PAKE: Authenticated Key Exchange without PKI
	Introduction
	Past Work
	Security Requirements
	Review on EKE and SPEKE

	J-PAKE Protocol
	Security Analysis
	Off-Line Dictionary Attack Resistance
	Forward Secrecy
	Known Session Security
	On-Line Dictionary Attack Resistance

	Comparison
	Design Considerations
	Conclusion
	References

	Distance Based Transmission Power Control Scheme for Indoor Wireless Sensor Network
	Introduction
	Related Work
	Proposed RSS-Based Localization Algorithm and DBTPC Scheme
	RSS Based Localization Algorithm
	Distance Based Transmission Power Control (DBTPC) Scheme

	Results and Discussions
	RSS Analysis
	Kalman Analysis
	Trilateration Analysis
	Real-Time Experimentation Transmission Power Analysis

	Conclusion and Future Work
	References

	A Novel Feature Vectors Construction Approach for Face Recognition
	Introduction
	DWT Feature Selection
	Concepts
	Experiments
	Results

	DWT Filter Choice
	Concepts
	Experiments
	Results

	Optimizing Features by Coefficient Selection
	Concepts
	Experiments
	Results

	Feature Threshold
	Percentage Midpoint Average (PMA)
	Optimal Ratio Average (ORA)

	Conclusions
	References

	An Extended Proof-Carrying Code Framework for Security Enforcement
	Introduction
	Background and Related Work
	The Extended Proof-Carrying Code Framework (EPCC)
	Overview

	Virtual Machine for Extended Proof-Carrying Code (The VEP)
	Requirements
	Machine Type
	Instruction Set Architecture
	Security Enforcement by the VEP
	The VEP versus Other VMs

	Application of EPCC
	Building a Proof Generator
	Results of Applying the Approach

	Conclusion and Future Work
	References

	NPT Based Video Watermarking with Non-overlapping Block Matching
	Introduction
	Video Watermarking Approaches
	Design Guidelines
	Proposed Technique
	Basic Idea
	Watermark Embedding with NPT and Non-overlapping Block Matching
	Watermark Extraction

	Results and Analysis
	Collision Attacks and Frame Dropping
	Noise, Compression and Cropping

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

