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Preface

This volume collects the papers accepted for presentation at the 12th Inter-
national Conference on “Advanced Concepts for Intelligent Vision Systems”
(ACIVS 2010). Following the first meeting in Baden-Baden (Germany) in 1999,
which was part of a large multiconference, the ACIVS conference then developed
into an independent scientific event and has ever since maintained the tradition
of being a single track conference. ACIVS 2010 attracted computer scientists
from 29 different countries, mostly from Europe, Australia, and the USA, but
also from Asia.

Although ACIVS is a conference on all areas of image and video processing,
submissions tend to gather within certain major fields of interest. This year 3D
and depth processing and computer vision and surveillance were popular topics.
Noteworthy are the growing number of papers related to theoretical develop-
ments. We would like to thank the invited speakers Mubarak Shah (University
of Central Florida), Richard Kleihorst (VITO, Belgium), Richard Hartley (Aus-
tralian National University), and David Suter (Adelaide University) for their
valuable contributions.

A conference like ACIVS would not be feasible without the concerted effort
of many people and support of various institutions. The paper submission and
review procedure was carried out electronically and a minimum of two review-
ers were assigned to each paper. From 144 submissions, 39 were selected for
oral presentation and 39 as posters. A large and energetic Program Committee,
helped by additional referees (111 people in total) – listed on the following pages
– completed the long and demanding review process. We would like to thank all
of them for their timely and high-quality reviews. Also, we would like to thank
our sponsors, CSIRO, Ghent University, CiSRA, NICTA, Antwerp University,
Philips Research, Barco, and DSP-Valley for their valuable support.

Last but not least, we would like to thank all the participants who trusted in
our ability to organize this conference for the 12th time. We hope they attended
a stimulating scientific event and enjoyed the atmosphere of the ACIVS social
events in the city of Sydney.

September 2010
J. Blanc-Talon

D. Bone
D. Popescu
W. Philips

P. Scheunders
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Marc Van Droogenbroeck University of Liège, Belgium
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Abstract. Videos recorded by the audience in a concert provide natural

and lively views from different angles. However, such recordings are gen-

erally incomplete and suffer from low signal quality due to poor lighting

conditions and use of hand-held cameras. It is our objective to create an

enriched video stream by combining high-quality segments from multi-

ple recordings, called mashup. In this paper, we describe techniques for

quality measurements of video, such as blockiness, blurriness, shakiness

and brightness. These measured values are merged into an overall qual-

ity metric that is applied to select high-quality segments in generating

mashups. We compare our mashups, generated using the quality met-

ric for segment selection, with manually and randomly created mashups.

The results of a subjective evaluation show that the perceived qualities

of our mashups and the manual mashups are comparable, while they are

both significantly higher than the random mashups.

Keywords: no-reference video quality, multiple camera, synchroniza-

tion, blockiness, blurriness, shakiness, brightness.

1 Introduction

It has become a common practice that audiences at musical concerts record
videos using camcorders, mobile phones, digital-still cameras, etc. Consequently,
several recordings are made simultaneously of the same event. An obvious exam-
ple is found in YouTube, where the search phrase “nothing else matters london
metallica 2009” returns 18 recordings from different users (search date 08-08-
2009). We call a set of such recordings captured in an event around the same
time a multiple-camera recording.

In professional video productions, a multiple-camera recording is used to com-
pose an enriched video by synchronizing the recordings in a common time-line
and then selecting the most desirable segments from them. It is our objective
� The work was carried out at Philips Research Europe, Eindhoven, with partial fund-

ing of the Dutch BSIK research program MultimediaN.
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to automatically generate such a combined video, called mashup, with a high-
quality content. A multiple-camera recording of a concert provides different view-
ing angles from the eyes of the audience, creating a lively experience. However,
the qualities of these videos are inconsistent and often low as they are recorded
usually by non-professionals using hand-held cameras.

We start with a system based on our earlier work that automatically synchro-
nizes a multiple-camera recording, described in [1]. The synchronization is nec-
essary for seamless continuity between the consecutive audio-visual segments. We
use the audio features:fingerprints and onsets to find synchronizationoffsets among
the recordings. The idea is that during a concert, multiple cameras record the same
audio at least for a short duration even though they might be pointing at different
objects. The method requires a minimum of 3 seconds of common audio between
the recordings. It is robust against signal degradations and computes synchroniza-
tion offsets with a high precision of 11.6 ms. We ensure, also manually, that all the
recordings used in mashups generation are accurately synchronized.

In this paper, we describe a method for evaluating video signal quality, then
selecting high-quality segments in order to facilitate automated generation of
mashups. To this end, we identify different factors describing video quality, such
as blockiness and shakiness. We measure these factors applying different con-
tent analysis techniques and compute the final quality by combining the mea-
sured factor values. The quality measurement is performed and tested in the
mashups generated from non-professional multiple-camera concert recordings
from YouTube.

2 Video Quality Analysis

The quality metrics known from video compression like mean square error or
peak signal to noise ratio are not applicable to our problem statement. This is
because there is no information available about the actual scene or the camera
settings that can be used as a reference for estimating the signal quality. There-
fore, we employ a no-reference, also called blind quality assessment method,
which estimates the image quality based on objective measures of different fea-
tures that influence the perception of quality.

Prior works on no-reference image quality estimation are done in different con-
texts such as removing artifacts in home videos [2], developing perceptual quality
models [3,4], summarizing home videos [5] and estimating network performance
in a real-time video transmission [6]. In [2] the lighting and shaking artifacts
in home videos are first detected, measured and then removed. The quality of
a JPEG compressed image is estimated in [4] according to the blockiness and
blurriness measured in the image, while in [3] according to the edge sharpness,
random noise level, ringing artifacts and blockiness. In [5], quality of a home
video is measured according to spatial features: infidelity, brightness, blurriness,
orientation and temporal features: jerkiness, instability. The features are mea-
sured not in every frame but in a temporal video segment. In [6], video quality
is measured based on the spatial distortions and temporal activities along the
frames.
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Since there are multiple set of features that can be applicable in the blind
quality analysis of concert video recordings, we conduct a pilot test to evaluate
some popular quality features, such as noise, motion, brightness. The evaluation
is done by two video professionals, who have been working in the research and
development of image and video quality tools for more than 5 years. We show
them 4 concert videos obtained from YouTube and 12 representative frames and
ask for the factors and their level of influence on the perception of quality. As
a result, we select the following quality factors: blockiness, blurriness, bright-
ness and shakiness. These metrics address the shortcomings of mobile-handheld
non-professional cameras, which typically have small lenses, low-cost sensors and
embedded compression with limited quality. The influence of noise on the test
frames is perceived as minimal because all the test recordings were captured dig-
itally. Similarly, we develop methods for measuring the individual quality factors
that comply with the results of the pilot test. The following sections describe the
methods for measuring the specified factors and computing an overall quality for
each frame.

2.1 Blockiness

Blockiness artifacts are a major source of distortion in videos. It is caused by
the codecs, such as such as MPEG, JPEG, and H.264 that involve segment-
ing a frame into non-overlapping blocks, typically containing 8×8 pixels, and
quantizing these blocks separately.

Existing methods for blockiness measurement are based on the degree of dis-
continuity or strength of the edges at the block boundaries (typically, every 8th

horizontal and vertical pixel of an image). In [4] blockiness is measured based
on the difference in luminance and signal activity across the block boundaries. If
the difference is high in luminance and low in signal activity, then the boundary
pixel is considered as blocky. In [7] the discontinuity is measured by the lumi-
nance variation in block boundaries of the DC component of an image. Then two
thresholds, Thigh and Tlow are used to measure the strength of the discontinuity,
such that if the discontinuity above Thigh, the boundary pixel is considered a
real edge, called hard edge, of the image and if the discontinuity is below Thigh
but above Tlow the boundary pixel is considered a soft edge, which is the effect
of blockiness

The method proposed in [7] requires computing the DCT for every video
frame. Considering the high computational cost of DCT, we decide not to apply
the method for our multiple-camera recordings. We tested the method proposed
in [4] on the concert video frames obtained from YouTube. The results did not
correspond to the perceived level of blockiness in our pilot test. The failure to
measure the blockiness in the test frames is maybe due to the low visual quality
of the test images such that the signal activity measure does not provide any
reliable information or perhaps many hard edges are miscalculated as being the
effect of blockiness.

We apply an algorithm for blockiness measurement based on the strength of
an edge pixel at the block boundary, inspired by [4] and [7]. We operate on
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the luminance component, derived from the YCbCr color-space, of the frame
as it contains most of the blockiness information. For both the horizontal and
the vertical directions, we use the Sobel operator to obtain the gradient image.
Then we apply two thresholds, Th and Tl, to the boundary pixels such that if
the gradient value is above Th, the pixel is considered as a real or hard edge,
while if the value is between Th and Tl the pixel is considered as a soft edge,
which causes the blockiness effect. The values of Tl and Th are chosen as 50
and 150, respectively based on their performance on the test data-set. A block
boundary βij is considered blocky if more than 75% (6 out of 8) boundary pixels
correspond to soft edges. Blockiness measurement in the horizontal direction Bh

is specified by:

Bh =
1

(�W/8� − 1)(�H/8� − 1)

�H/8�−1∑
i=1

�W/8�−1∑
j=1

βij , (1)

where βij = 1 if a block boundary is a soft edge and zero otherwise, W and
H represent the number of rows and columns of the frame, respectively. The
vertical blockiness Bv is computed in a similar way. The blockiness of a frame
B is computed as the average of both horizontal and vertical blockiness as B =
(Bh + Bv)/2. Fig. 1 shows three frames with different amounts of blockiness.

(a) B = 0.01 (b) B = 0.09 (c) B = 0.17

Fig. 1. Examples of test frames with (a) low, (b) medium and (c) high blockiness. The

measured blockiness is given by B.

2.2 Blurriness

Blurriness is characterized by the reduction of sharpness of edges. Blur can be
caused by lens out of focus or shakiness during capturing, coarse quantization
during compression and filtering for blockiness or noise removal during decoding.

We test methods for blurriness measurements based on features: signal ac-
tivity [4] and average spread of edges [8]. We select the latter method since the
blurriness measurement matches better according to our pilot test results. In this
method, first the edges are detected using the Sobel operator and the number of
pixels contained within the non-zero part of the gradient waveform are counted.
This number is specified as the spread of an edge. More specifically, if there are
m pixels representing an edge and s pixels representing the total edge spread,
then the blurriness score (Z) is calculated as:
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Z =
{

s/m : if m �= 0
0 : otherwise. (2)

Fig. 2 shows three frames with different amount of blurriness.

(a) Z = 3 (b) Z = 3.9 (c) Z = 12

Fig. 2. Example of test frames with (a) low, (b) medium and (c) high blur. The

measured blurriness is given by Z.

2.3 Brightness

In video terms, brightness is related to the visual perception of the amount of
light coming from the display. Therefore, this parameter depends on the lumi-
nance of the scene setting, the contrast of the involved in video processing and
the setting of the display. In a typical indoor concert, the bright areas in a scene
are mainly focused towards the stage and the rest of the scene is poorly lit. In
our observation of concert recordings, another influencing factor is the amount
of burned pixels. Burned pixels represent the pixel values clipped by the maxi-
mum and minimum luminance values 255 and 0, respectively, caused by a very
bright light source against a camera or very dark scenes. Frames containing a
higher amount of burned pictures are generally undesirable as they provide little
color or texture information and produce a very disturbing effect. Frames with a
higher luminance (within the range) and sufficient contrast values are associated
with good visibility, pleasant to watch, and colorful images. Therefore, we define
brightness here not in the usual video terms but as a function of the three factors
mentioned above.

If Y is the luminance component of a frame represented in YCbCr colorspace,
the average luminance Il, contrast Ic and amount of burned pixels Ip of a frame
are given by:

Il =
1

W × H

W∑
i=1

H∑
j=1

Y (i, j), (3)

Ic =

√√√√ 1
W × H

W∑
i=1

H∑
j=1

(Y (i, j) − Il)2, (4)

Ip = max

⎛⎝0.1,
1

W × H

W∑
i=1

H∑
j=1

p(i, j)

⎞⎠ , (5)
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where, p(i, j) =
{

0 : if 1 ≤ Y (i, j) ≤ 254
1 : if Y (i, j) = 0 or 255.

(6)

Ip is set to minimal value of 0.1 to allow a limited amount of burned pixels that
may occur in any image without resulting in disturbing effects. We compute our
definition of the brightness I as: I = (Il + Ic)/Ip. Fig. 3 shows the luminance,
contrast, and amount of burned pixels in three example frames.

(a) I = 2.89, Il = 0.16,

Ic=0.55, Ip = 0.24.

(b) I = 1406, Il = 84.17,

Ic = 56.48, Ip = 0.10.

(c) I = 2627, Il = 235.8,

Ic = 26.89, Ip = 0.10.

Fig. 3. Example test frames with (a) low, (b) medium and (c) high brightness. The

measured values are: brightness (I), luminance (Il), contrast (Ic) and amount of burned

pixels (Ip).

2.4 Shakiness

Shakiness in a video is caused by the instability of a camera, such as when a
camera man walks or applies fast zooming or panning operations. Such actions
induce motion in unwanted directions, which adversely affects the video quality.
In order to measure shakiness in a video, we used the method described in [9].

The camera speed in the horizontal, i.e. pan, and vertical direction, i.e. tilt, is
measured using a luminance projection method [10]. In this method, the lumi-
nance values of every row are summed up in a vertical projection and of every
column in a horizontal projection. If the camera is moved vertically or hori-
zontally, the corresponding projections will also shift in the same direction. For
example, if there is a panning in the right direction, the values of the horizontal
projection will shift towards right. The camera motion, pan and tilt, is calcu-
lated by correlating the projections along the frames. The speed of the camera
is measured in screens per minute, where one screen is equivalent to the hori-
zontal dimension of the frame in case of pan and to the vertical dimension of
the frame in case of tilt. The high-frequency components of the camera speed
are the result of shakiness, while the low-frequency components are the results
of intended camera motion. The amount of shakiness is given by the difference
in the pan and tilt speeds before and after applying a low-pass FIR filter (25
tabs). If pan, tilt values before and after filtering is represented by p, t and pf ,
tf , respectively, then for each frame the shakiness measure J is given by:

J =
√

(p − pf )2 + (t − tf )2 . (7)
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Fig. 4 shows a pan speed before and after the low-pass filtering represented by
a thin line and a bold line, respectively.
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Fig. 4. Camera panning speed in a video before filtering (p), represented by a thin line

and after filtering (pf ), represented by a bold line

2.5 Overall Image Quality

The measured values of the quality factors: blockiness, blurriness, brightness,
and shakiness determine the quality of a video frame. Since the values corre-
sponding to the different factors have different ranges, we normalize them with
respect to their corresponding maximum values obtained from test recordings.
After normalization, the values of the factors are in the range [0,1]. The values
obtained from the method are optimized for the test-set. In ideal case, the values
is chosen based on the experimental results with thousands of concert video in
different conditions, such as indoor, outdoor, various camera types. However,
due to practical limitations we focused on the videos obtained from YouTube.

There are different possible methods to combine the factors to estimate the
image quality, such as linear addition [3], linear multiplication [4] and non-linear
fusion [5]. No consensus is found in the prior works [3]-[5] over the weights of
different quality factors on the overall quality measurement of an image. Based
on our observation of the concert recordings and the pilot test, we consider
that all the quality factors are equally important. We test the linear addition
and multiplication methods on overall quality score. Since the quality score us-
ing multiplication method has a wider range than addition method, it is more
suitable for comparing the scores of different recordings in a multiple-camera
recording. Therefore to compute the overall quality score of a frame, we use the
product of the different quality scores. Since shakiness, blurriness and blocki-
ness attribute a negative quality, the factor values are subtracted from one. The
image quality score q of a video frame is given by:

q = I ′ (1 − B′) (1 − Z ′) (1 − J ′), (8)

where I ′, B′, Z ′ and J ′ represent the normalized values of the brightness, block-
iness, blur and shakiness, respectively.
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3 Results

Fig. 5 shows the variation of quality scores of three synchronized camera record-
ings. Visualization of frames at different points in time, indicated in Fig. 5, and
their corresponding quality scores are presented in Fig. 6. The frames shown in
Fig. 6(a), (b) and (c) are captured simultaneously. However, the views and the
quality scores are very different due to different camera positions. Fig. 6(d), (e)
and (f) show views from the same cameras as frames in Fig. 6(a), (b) and (c),
respectively, but captured later in time and thus with different views.

We apply the described video quality analysis on automatic mashup genera-
tion. The mashups are generated from synchronized multiple-camera recordings
by selecting 3 to 7 seconds long segments. The segment boundaries are deter-
mined based on the change in audio-visual content. The consecutive segments
in a mashup are selected from different recordings such that they add diversity
and high quality in the mashup content. The quality of a segment is computed
as the mean of the quality scores of the frames in the segment. The quality of a
mashup depends on the performance of our video quality analysis method, such
that a poor analysis of video quality would lead to a poor quality mashup. The
mashup quality could be objectively validated if the best and the worst-quality
mashups would be made available. However, there are no such existing methods
that ensure the definition and subsequent creation of such mashups or allow
an objective measure of a mashup quality. Therefore, we measure the perceived
quality of our mashup, by a subjective test against two other mashups: one
generated by a random selection of segments, i.e. random mashups, without con-
sidering the quality and another mashup generated manually by a professional
video-editor, i.e. manual mashups.

As a test set we use three multi-cam recordings, which are captured during
concerts by non-professionals and shared in YouTube. Each of the multi-cam
recordings contained 4 to 5 recordings with both audio and video streams (in
color). The duration of the recordings is between 2.4 and 5.6 minutes and their
frame rate is of 25 frames per second. The video resolution is 320×240 pixels. The
multiple-camera recordings and the mashups used in the test are made available
in website1, where the filenames C#, Naive, First-fit represent concert number,
random mashup and mashup generated by our method.

The random and our quality based mashups contain at least one segment from
all the given synchronized recordings and each segment is 3 to 7 seconds long.
The manual mashups are created by a professional editor. He was asked to create
mashups which are high in signal quality and nice to watch without any special
effects and temporal manipulations. It took approximately 16 hours to create 3
mashups from the given test set, using commercially available multi-cam editing
software. The considerable time and effort required for creating manual mashups
forced us to limit the size of the test set.

The subjective test involves 40 individuals, age between 20 and 30. The 9
mashups, generated using 3 methods and 3 concerts, are shown to the subjects

1 http://www.youtube.com/AutomaticMashup#p/u
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Fig. 5. Quality score of recordings from a three-camera recording, given by different

colors, in a common time-line represented by the frame numbers. Frames indicated by

‘∗’ are shown in Fig. 6.

followed by a questionnaire. We ask the participants to indicate the level of the
perceived image quality and camera stability in a 7 point Likert scale, used ex-
tensively in perception tests. The scale is comparable to the mean opinion score
employed in subjective analysis of the television pictures [11]. The measures
image quality and camera stability are chosen from a pilot user-study, as indi-
vidual quality factors like blurriness and blockiness are difficult to differentiate
and evaluate for a general user.

The mean scores of the mashups generated by random, manual and our
quality-based methods in terms of perceived camera stability and image quality
in Fig. 7(a) and (b), respectively. The confidence intervals are presented graph-
ically as an error bar on the mean score, such that if the test is repeated with
other participants from the same target group, there is 95% probability that the
mean score will remain within the interval. The scores are further analyzed to
verify whether the differences between the mean scores are statistically signifi-
cant. We apply a two-way analysis of variance (ANOVA) with repeated measures.
The method (random, quality-based, manual) and concert (C1-C3) are treated
as within-subject independent variables and the response of the participants are
treated as a dependent variable. The results are presented in terms of F-statistic
and p-value such that if p < 0.05 there is 95% confidence that the means are
significantly different. Since ANOVA indicates if the means are significantly dif-
ferent, but it does not distinguish which means are different, an additional Tukey
post-hoc test is performed on both independent variables. The results provide
pairwise comparisons of the means and their confidence intervals.

As shown in Fig. 7(a), camera stability score of the manual mashups appear
to be higher than the mashups generated by other methods in all three concerts.
According to the ANOVA analysis, a significant main effect is found for methods
(F = 4.593, p = 0.010) and for concerts (F = 31.853, p < 0.001). A Tukey test
on method shows that score of the random mashup is significantly lower than the
mashups generated by other methods. Similarly, a Tukey test on concert shows
that C1 is significantly different from C2 and C3.
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(a) q = 0.05,

I ′ = 0.07, Z′ = 0.18,

B′ = 0.13, J ′ = 0.04.

(b) q = 0.28,

I ′ = 0.59, Z′ = 0.26,

B′ = 0.28, J ′ = 0.11.

(c) q = 0.31,

I ′ = 0.53, Z′ = 0.22,

B′ = 0.24, J ′ = 0.00.

(d) q = 0.50,

I ′ = 0.75, Z′ = 0.17,

B′ = 0.16, J ′ = 0.02.

(e) q = 0.42,

I ′ = 0.72, Z′ = 0.26,

B′ = 0.20, J ′ = 0.00.

(f) q = 0.11,

I ′ = 0.29, Z′ = 0.47,

B′ = 0.24, J ′ = 0.01.

Fig. 6. The quality score and normalized values of brightness (I ′), blurriness (Z′),
blockiness (B′) and shakiness (J ′) of the frames given by ‘∗’ in Fig. 5

As shown in Fig. 7(b), image quality score of the random mashups seems to
be lower than the mashups generated by other methods in all three concerts.
The mean across all the three concerts shows that random scores lower than the
other two methods, which score about the same. From the ANOVA analysis, a
significant main effect was found for method (F = 7.833, p < 0.001) and for
concert (F = 16.051, p < 0.001). A Tukey test on method shows that the qual-
ity of random mashups is significantly lower than mashups generated by other
two methods. Similarly, a Tukey test on concert shows that C3 is significantly
different than other concerts.

It is expected, as seen case of C1 and C2, the random mashups are perceived
as more shaky and low in image-quality because camera stability and image
quality are not taken into account during mashup generation. However, in C3
the quality-based mashup is perceived as shaky and low quality as the random
mashups. This could be due to the low visual quality of the camera recordings
of concert C3, containing objects in fast motion (dancing) and dynamic lights,
which cause errors in the shakiness detection and brightness measurement.

The analysis of the subjective test shows that the image quality and shakiness
scores are dependent on the concerts and the methods. The scores of the random
mashups, on average across different concerts, are significantly lower than the
other two mashups, while the quality-based mashups and the manual mashups
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Fig. 7. Mean scores for (a)camera stability and (b) image quality. The methods are

represented as: random (�), manual (♦), and quality-based (∗). The horizontal axis

represents the mashups corresponding to the three concerts C1–C3. “All” represents

the mean across all the concerts. Error bars show confidence intervals of 95% of the

mean value.

are comparable. However, if the concert recordings contain low image quality
the mashup quality cannot be improved.

4 Conclusion

This paper describes a method for evaluating signal quality of concert video
recordings captured by the audience. We measure the blockiness, blurriness,
brightness and shakiness of the video frames and then combine them into an
overall multiplicative measure for the quality of a video segment. The method is
applied to automatically select high-quality segments in a mashup from multiple-
camera recordings. We compare the quality of these mashups against the mashups
created by a random selection of segments and by a professional video-editor.
The subjective evaluation shows that the perceived quality of our mashups is
comparable to the mashups created by the professional video-editor and signif-
icantly higher than the mashups generated randomly. Further analysis shows
that the mashup quality depends not only on the methods used on generating
them but also on the recording quality of the concert videos.
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Abstract. Structure from motion based 3D reconstruction takes a lot

of time for large scenes which consist of thousands of input images. We

propose a method that speeds up the reconstruction of large scenes by

partitioning it into smaller scenes, and then recombining those. The

main benefit here is that each subscene can be optimized in parallel.

We present a widely usable subdivision method, and show that the dif-

ference between the result after partitioning and recombination, and the

state of the art structure from motion reconstruction on the entire scene,

is negligible.

Keywords: Structure from motion, 3D reconstruction, speedup, large

scenes.

1 Introduction

More and more applications require accurate three dimensional (3D) models
of the world, e.g. planning urban environments and infrastructures, automated
object detection, or augmented reality and CGI in movies. To create these 3D
models various options exist, including mobile mapping, laser scanning, or man-
ual surveying. These ground based acquisition methods all have in common that
they are time consuming, especially for larger areas. The most practical approach
to quickly cover a lot of terrain is that of aerial imaging, where 2D pictures are
captured and then processed to create a 3D model [4]. Just like in [13], the 3D
model is derived from multiple pictures of the same area, taken under different
angles.

To find the initial position of the pictures usually GPS information is used.
A major problem however is that we can not always rely on GPS information
being available. In land based mapping anything that interferes with the line of
sight to the GPS satellite has a negative effect on the reception, e.g. trees or
large buildings. But even low altitude aerial surveillance can not always count
on a GPS link, as certain regions have active jamming devices (e.g. conflict
zones). A good solution to handle these problems is to employ structure from
motion. Instead of relying on the GPS information, the position of the camera
is determined from image correspondences. Consecutive aerial pictures have a

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 13–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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high percentage of overlap, making this possible. However the computation time
required by structure from motion is approximately quadratic in the amount of
points in the scene [15], and so does not scale well to very large scenes.

If we could limit the structure from motion optimization to small scenes,
and then later combine all small scenes into one global scene, the downsides
of the quadratic behaviour would be largely avoided. Additionally, every small
scene can be optimized in parallel, further increasing the reconstruction speed.
In this paper we work out the details involved in splitting and recombining
a large scene, and evaluate how the final result changes with respect to the
original, slow reconstruction. We do not compare with any ground truth, as the
absolute accuracy of the 3D model obtained by various reconstruction methods
has already been evaluated in [11].

Previous work on speeding up structure from motion for large scenes includes
sub-sampling and hierarchical decomposition [10]. While effective, the downside
here is that for very large scenes, the required time is still quadratic. The methods
presented in [14] and [9] also use partial reconstructions to speed up the final
result. However these techniques uses the Hessian of the reprojection error and
its eigenvector to split up the global scene, which implies that the scene must be
already approximately reconstructed. Again, this requires a lot of time for large
scenes consisting of many pictures.

The rest of this paper is arranged as follows. First we briefly explain structure
from motion and bundle adjustment. Next we present the theory behind our
method to speed up the computations, followed by experiments to evaluate the
accuracy on practical data. We end with a conclusion.

2 Structure from Motion

2.1 3D Reconstruction with Bundle Adjustment

We first discuss the problem of the 3D reconstruction of a scene, based on mul-
tiple 2D views from different locations. Given n 3D points which are observed
by m cameras, we can write as xij the projection of point i in camera j, with
i = 1..n and j = 1..m. The projection from a 3D point X to a 2D point x can
be written compactly in homogeneous coordinates as

λx = MX (1)

with λ a scale factor and M the 3 x 4 homogeneous camera matrix, with 11
independent parameters [6]. This projective camera model can be simplified to
Euclidean cameras, for which M can be decomposed into

M = K[R|t] (2)

where t is augmented to R. Here K is the 3 x 3 intrinsic calibration matrix
containing the camera’s optical properties, such as focal length, principal point
and aspect ratio. The camera’s extrinsic parameters are given by R, a 3 x 3
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rotation matrix, and t, a 3 x 1 translation vector. From this we calculate the
camera’s position as −RT t. Furthermore we can incorporate the optical image
distortion caused by imperfect lenses into (1) by writing λr(x)= MX, with r()
the distortion function. This function maps a correct (undistorted) image to
its distorted version. e.g. r(x) = 1 + k1 ‖x‖2 + k2 ‖x‖4. Many more distortion
functions exist [2], as well as camera calibration techniques to determine the
parameters of the distortion function in advance [5,3].

The 3D reconstruction from multiple views now comes down to finding val-
ues for all cameras M and all 3D points X so that the difference between the
computed position of x from (1) and the measured position of x is minimized,

min
Mj ,Xi

n∑
i=1

m∑
j=1

d (MjXi,xij)
2 (3)

with d(x,y) the Euclidean distance. The summation of all distances is called
the reprojection error, and (3) is typically minimized using bundle adjustment
[15]. Due to the sparse nature of the equations (the parameters of individual 3D
points X and cameras M do not interact) several optimizations for speed can
be applied. Work on this by Lourakis et al. resulted in the open source software
package sba [7], using a modified version of the Levenberg-Marquardt algorithm
for the iterative optimization. Still, the required time for optimization is at least
quadratic in the number of 3D points, although exact timings depend on the
scene under consideration [7]. When all matrices M are known, a dense recon-
struction of the scene can be created, using for example the methods described
in [4].

2.2 Finding Corresponding Points

The bundle adjustment requires knowledge of points xij . In other words, we must
identify points in all images that correspond to the same physical location or 3D
point. Several algorithms exists that do this, most notably SIFT [8] and SURF
[1]. These methods extract feature points that are likely to be recognized in an-
other image, and then match those feature points based on Euclidean distances
between their associated feature descriptors. The amount of point matches that
are generated, as well as their reliability, depend on the input images and on
several parameters in the algorithms. In general, regions without distinctive fea-
tures will contain less feature points. While this makes the found features more
robust, on a large scene it can also give rise to regions without any feature points.
This is not desirable, so we tweak the parameters of the feature point detection
algorithm to give roughly the same amount of feature points for all input images
(e.g. 500 points). If too much features are found, the parameters are tightened,
and vice versa.

2.3 Avoiding Local Optima

Due to its nonlinearity, the reprojection error defined by (3) contains many
local optima. This problem gets worse when some of the pointmatches found
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in 2.2 are not correct. When solving the minimization, one should of course
avoid these local optima. The method developed in [12] solves this problem by
always starting from an approximate reconstruction of the scene from a previous
bundle adjustment iteration, and then adding just a couple of new views to it.
Additionally, these new views are first roughly positioned using RANSAC based
on the point matches. This incremental approach ensures that an intermediate
solution is always close to the global optimum, thus helping the gradient based
Levenberg-Marquardt algorithm. The downside is that a lot of computation time
is spent on re-optimizing parts of the scene that were already reconstructed, as
(3) always considers all points and cameras.

3 Proposed Method

3.1 Splitting the Global Scene

While considering the whole scene in (3) gives the most reliable result, it is
clearly not optimal w.r.t. time. We propose a divide and conquer approach,
splitting the scene into several overlapping subsets of size S with overlap O.
Then each subset is optimized seperately, after which the results are combined.
Figure 1 shows an example. Ideally a subset consists of cameras positioned close
to eachother. The problem is that we generally do not know the positions of the
cameras in advance. However, in practice it is often the case that pictures taken
close together in time, are also close in space. Thus we subdivide the scene based
on the order in which the images were acquired. To keep things manageable, we
use a constant S and O. One could think of a dynamic splitting scheme where
S and O change based on the quality of feature matches, or closeness of initial
image transformations. However due to the large number of possibilities we leave
this as future work.

The values of S and O determine the balance between speed and accuracy,
where accuracy is defined as the difference between the combined subsets and
the result we get without splitting. Smaller subsets require less time to optimize,
but are prone to wind up in local minima. Smaller overlaps decrease computation
time as well, but also decrease the accuracy of the combined result. The reason
for this is that the bundle adjustment can only position cameras in relation to

Fig. 1. Splitting a global scene into subscenes, with S = 8 and O = 2. The black dots

are the (unknown) camera positions.
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(a) (b)

(c) (d)

Fig. 2. Combining overlapping scenes with S = 20 and O = 10, where the input was a

set of 10 megapixel aerial images taken from a plane at an altitude of 150m. (a) Scene

reconstructed from images 1 to 20. (b) Scene reconstructed from images 11 to 30.

(c) Combination without coordinate transformation. (d) Combination after coordinate

transformation. The red squares are the reconstructed positions of the cameras (i.e.

the plane’s position at each time), and the other dots are reconstructed points of the

landscape.

eachother, also known as the gauge problem [15], and so does not create a global
coordinate system. To combine two or more sets of 3D points in different coordi-
nate systems, we have to know points that are present in both scenes, and based
on this correspondence find the coordinate transformation. The more points we
know, i.e. the larger the overlap, the closer this computed transformation will
be to the actual transformation.

3.2 Combining Two Overlapping Scenes

Combining two overlapping scenes consists of three steps.

1. Locate the points that are visible in both scenes. Obviously the 3D location of
the points is not useable for this purpose, as that depends on the coordinate
system of the scene. Instead we find matches based on the indices of the
feature points. Every view of a 3D point in a certain camera is associated
with a feature point xij (see section 2). All feature points in a certain camera
are indexed. A point p of scene 1, visible in cameras cp, matches a point q
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of scene 2, visible in cameras cq, if there exists a pair of cameras (cp, cq) for
which the indices of the feature points are the same. Furthermore, the camera
pair must be related by the known overlap O, so we can write cp = cq + O.
This search can be executed very fast using a hashtable on the point indices.

2. Find the transformation between these sets of points. Given two sets of
matching points (xi, yi, zi) and (x′

i, y′
i, z′i), we can write⎡⎣x′

i

y′
i

z′i

⎤⎦ =

⎡⎣T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34

⎤⎦
⎡⎢⎢⎣

xi

yi

zi

1

⎤⎥⎥⎦ (4)

with Tij the values of the affine coordinate transformation T = [A|B], with
A the affine component and B the translation. Rewriting (4) gives⎡⎢⎢⎢⎣

x′
1

y′
1

z′1
...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x1 y1 z1 1 0 0 0 0 0 0 0 0
0 0 0 0 x1 y1 z1 1 0 0 0 0
0 0 0 0 0 0 0 0 x1 y1 z1 1

...

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

T11
T12
...

T34

⎤⎥⎥⎥⎦ (5)

which in general is an overdetermined system that can be solved using sin-
gular value decomposition. The pseudo-inversion can become slow when the
number of matches is large, so we will only use a subset (e.g. 100) of the
available matches to determine T.

3. Apply T to transform the points and the camera positions, and average
cameras and points that occur twice due to the overlap. Transforming a
point is easy, simply X′ = AX + B. However from (2) the position of a
camera c is defined by its rotation R and translation t, c = −RT t, so to
put the camera in the new coordinate system we must find new values for
R′ and t′ so that c′ = Ac + B = −R′T t′. Expanding this gives

c′ = Ac + B = A
(−RT t

)
+ B

=
(−ARTNN−1) t + B

=
(−ARTN

) (
N−1t

)
+
(−ARTN

) (−ARTN
)−1

B (6)

=
(−ARTN

) (
N−1t +

(−ARTN
)−1

B
)

= −R′T t′

where N is a 3 x 3 normalization matrix added to ensure that −ARTN
is a true rotation matrix, i.e. the columns of −ARTN must have norm 1.
This means that N will only have non-zero elements on its diagonal, with
Nii, i = 1..3 equal to the inverse of the norm of column i of −ART . To
summarize, for every camera cj , j = 1..m we can find the transformed
camera c′j by calculating

R′
j =

(
ART

j Nj

)T
(7)

t′j = N−1
j t +

(−ART
j Nj

)−1
B (8)
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Finally we also detect and remove some impossible points. A likely scenario
is a point that is visible from a camera in scene 1 with a certain feature point
index, and visible from the same camera in scene 2 (offset by the overlap
O) but with a different feature point index. This indicates that some views
of this point are incorrect. Another possibility is a triangular match, where
a point in scene 1 matches a point in scene 2 from one camera view, and
another point in scene 2 from another camera view. When this happens we
remove all involved points from the combined scene, as we can not be sure
which points and matches are correct.

4 Evaluation

4.1 Effective Range

Our proposed method is only effective starting from a certain size of the global
scene. Due to overhead incurred at the start of a bundle adjustment the method
of subdividing can be slower than running the bundle adjustment on the complete
scene when this scene is small. Furthermore, for small scenes the incremental
addition of images to the reconstructed scene is approximately linear in time, so
it makes no sense to split it. Figure 3 illustrates this, showing the time required
to reconstruct a scene of 629 images on an Intel Core 2 Duo T9300 CPU. The
final scene counts 479,212 points and took over 18 hours to compute. When less
than 200 images are included in the incremental optimization, the time required
to add more images is relatively small. However when the scene includes more
than 400 images, adding additional views and points takes a lot of time. The
reason is that the speed of the bundle adjustment is quadratic in the number
of 3D points in the scene, which is linked to the number of views. Starting the
Levenberg-Marquardt algorithm close to the optimum reduces the amount of
iterations, but does not reduce the time required for one iteration. As long as
the scene is small, the overhead from starting each bundle adjustment run will
be larger than the actual time spent optimizing, resulting in a linear behaviour.
By partitioning to sizes that fall inside this linear zone, our method has an
approximate complexity of O(N) instead of O(N2).

4.2 Influence of Subscene Size S

As our method focuses on improving computation time, and does not deal with
the accuracy of the result, we want to minimize the difference between point
clouds generated by state of the art methods and our proposed method. The
logical choice of method to compare to is the output generated by the method
from [12]. Table 1 presents an evaluation of the influence of the partitioning
size S for a static overlap size O = 10. The columns presented are as follows.
First the time subset, in seconds, is the time required to optimize the slowest
(i.e. most difficult) subscene. This is the total running time if the reconstruction
would run completely parallel. Next is the time total, which is the optimization
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Fig. 3. The time required to optimize a large scene by incrementally adding images,

showing the approximately quadratic relation between scene size and calculation speed

Table 1. Evaluation of the influence of the partitioning size S, for O = 10. The total

time to optimize the scene using the methods from literature [12] was 2829 seconds.

All timing results were achieved on an Intel Core 2 Duo T9300 CPU. The total scene

size is about 25 x 20 x 10 units. See the text for details.

S time subset (s) time total (s) μ σ μopt σopt

20 70 667 0.02315 0.01302 0.01248 0.00921

30 147 685 0.01937 0.01008 0.00863 0.00750

40 221 745 0.03692 0.02054 0.01032 0.00978

50 314 836 0.01655 0.01027 0.01520 0.01112

60 408 1001 0.00841 0.00527 0.00232 0.00241

70 492 1341 0.00742 0.00825 0.00320 0.00419

time required when the method runs sequential, in case only 1 CPU core would
be available. Note that for all values of S the total running time is lower than
when we would not split the scene. This confirms our observations from figure 3.
The next four columns give accuracy results. The first μ and σ are the mean and
standard deviation of all the differences between the 3D positions of all points
in the reconstructed scene using our method and the method from literature.
The second μopt and σopt are the results after running a bundle adjustment on
the recombined scenes. This fixes deviations introduced by the splitting, but of
course at the cost of some computation time. The presented numbers only make
sense in relation to the total scene size, which is about 25 x 20 x 10 units. The
reported errors are thus a factor 104 smaller than the scene size, meaning that
the scene reconstructed with our method will be visually identical to the scene
reconstructed using state of the art methods.
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5 Conclusion

In this paper we have presented a fast and accurate approach to creating 3D
models of large scenes using structure from motion. We have shown that our
method of partitioning and recombining the global scene performs much faster
than the existing state of the art approach, while giving a result that is visually
identical. Future work can focus on a dynamic estimation of the partitioning and
overlap sizes, based on statistics taken from the point matches.
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Abstract. In mobile to mobile video communications, both transmitter and 
receptor should keep low complexity constrains during video compression and 
decompression processes. Traditional video codecs have highly complex encoders 
and less complex decoders whereas the Wyner-Ziv video coding paradigm 
inverses the complexity by using more complex decoders and less complex 
encoders. For this reason, transcoding from Wyner-Ziv to H.264 provides a 
suitable framework where both devices have low complexity constraints. This 
paper proposes a flexible Wyner-Ziv to H.264 transcoder which allows us to map 
from a Wyner-Ziv GOP pattern to a I11P H.264 GOP. Furthermore, the 
transcoding process is improved when reusing the motion vectors that have been 
calculated during the Wyner-Ziv decoding process to reduce the H.264 motion 
estimation complexity. Accordingly a time reduction up to 72% is obtained 
without significant rate-distortion loss.  

Keywords: DVC, Wyner-Ziv, H.264, Transcoding. 

1   Introduction 

The newest generations of mobile communication systems (such as 4G) offer 
attractive services such as video telephony and video conference to mobile users. 
These systems provide more advanced types of interactive and distribution services in 
which video is one of the most prominent applications for these multimedia 
communications. In this kind of services, both the transmitter and receiver devices 
may not have sufficient computing power, resources or complexity constraints to 
perform complex video algorithms (both coding and decoding). By using traditional 
video codecs such as H.264 [1] these low complexity requirements have not been 
satisfied because H.264 has high complexity at the encoder side. Therefore, these 
mobile video communications that employ traditional video codecs lead to an 
inefficient configuration because the encoders sacrifice Rate – Distortion (RD) 
performance by using only the lower complexity encoding tools. Distributed Video 
Coding (DVC) [2] is a more recent video coding paradigm that offers a video coding 
scheme where the majority of the complexity is moved to the decoder which deals 
with simpler encoders. Since one year ago, DVC to H.26X transcoders [3][4] have 
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appeared in the multimedia community as a solution for this mobile to mobile video 
communication, as it is shown in figure 1. In this framework the majority of the 
computation is moved to the network where the transcoder is allocated and the 
simpler algorithms (DVC encoding and H.26X decoding) are implemented in the end 
user devices. At the moment transcoding architecture offers the most suitable solution 
for mobile-to-mobile video communications due to the low complexity in both 
extremes. In the literature the Group of Pictures (GOP) pattern in the DVC 
architectures is formed by two kinds of frames: Wyner-Ziv (WZ) and Key (K). 
Normally with GOP sizes ranging from 2, 4 and 8 (WZ frames between two K 
frames) although other GOP sizes are also allowed. On the other hand, in H.264 the 
most suitable GOP pattern for mobile communications is labeled as I11P [5] which is 
formed by one I-frame followed by 11 P-frames and with GOP size of twelve. These 
GOP sizes / patterns mismatches between DVC and H.264 entail a problem that must 
be solved in the proposed scenario.  

 
Fig. 1. System using a DVC / H.26X transcoder 

At this point, this paper is a straight forward step in the framework of DVC to 
H.264 video transcoders and offers a GOP mapping solution between kinds of GOP 
sizes / patterns as well as some refinement in the motion estimation algorithm 
developed at H.264 encoding algorithm as part of the whole video transcoder to make 
a faster process. Accelerating the transcoding process is a very important task in order 
to try to reach a real time communication. 

This paper is organized as follows: Section 2 identifies the state-of-the-art in DVC 
based transcoders. Section 3 shows the proposed mapping algorithm for the DVC to 
H.264 video transcoder which is evaluated in Section 4 with some simulation results. 
Finally, in Section 5, conclusions are presented. 
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2   Related Work 

The main task of a transcoder is to convert from a source format to another one; this 
task must be executed as efficiently as possible though. Consequently, transcoding 
techniques focus on improving the second stage by using information gathered during 
the first one. The key issues to manage are the time reduction and the quality – bitrate 
penalty. Transcoding algorithms between traditional video coding standards are more 
suitable to be used because both formats keep many features whereas DVC is more 
different.  

Firstly, in 2005 [6] WZ coding was proposed as a candidate in a transcoding scene, 
however it only introduced the idea and the benefits of this new transcoding paradigm to 
support low cost video communications but it did not offer a practical implementation. 
The first WZ transcoder architecture was presented in 2008 by Peixoto et al. in [3]. In 
this approach the authors designed a WZ to H.263 transcoder to support mobile 
communications. This transcoder makes a mapping between WZ and H.263 GOPs, 
including some Motion Estimation (ME) refinement for P and B slices.  

In our previous work, we proposed the first transcoding architecture between WZ 
and H.264 [4] available in the literature. This work improves the H.264 ME using the 
Motion Vectors (MV) calculated in the Side Information (SI) to reduce the H.264 
searching area with negligible RD impact. Nevertheless, in the previous approach we 
employed a WZ GOP size of 2 to be transcoded to a H.264 GOP size of 2 which 
means transcoding from K – WZ – K DVC pattern to I – P – I H.264 pattern. This 
solution is not very useful in a real implementation due to the high bitrate generated 
because one of every two frames is an I-frame. Moreover the refinement technique is 
improved for P frames and generalized for longer H.264 patterns. Other 
improvements of this approach with respect to the previous one is related to the DVC 
implementation, as, in present work, it is based on VISNET-II project [7] which is 
more realistic than the architecture used in [4] because it implements lossy key frame 
coding, on-line correlation noisy modeling and do not use the ideal procedure call at 
decoder for the stopping criterion. In other words, this work extends the approach 
presented in [4] to a more realistic GOP size and format implementation. Moreover, 
this work is a generalization to support whatever GOP size or format incoming from 
DVC stage to be transcoded to I11P GOP pattern using a low complexity algorithm. 

3   Proposed Video Transcoder 

In a real scenario, video transcoding should be able to convert efficiently different 
patterns. For this reason, the main aim of the proposal is to provide an architecture 
which supports practical GOP patterns making efficiently the transcoding process 
through exploiting the information that the WZ decoding algorithm provide in order 
to reduce the H.264 encoding time on the ME process. 

Mobile-to-mobile communications need to execute low complexity algorithms at 
both ends. In the proposed architecture the source employs the DVC encoders and the 
destination employs the H.264 decoder, so terminal devices support the lower 
complexity parts in both paradigms (as Figure 1 shows). On the other hand, the 
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Fig. 2. Proposed WZ to H.264 Video Transcoder 

transcoder is allocated in the network where more resources are allowed. The 
architecture of the proposed transcoder is depicted in Figure 2 and works as follows: 
the WZ encoder is based on VISNET-II architecture [7] which is an evolution of 
DISCOVER architecture [8]. In this work we have used Transform Domain (TD). At 
the encoder, K frames are coded using H.264 Intra and WZ frames are coded 
following the basis of WZ paradigm [2]. In our experiments we are working with WZ 
GOP sizes 2, 4 and 8, but the transcoder could accept every GOP length as will be 
explained in section 3.1. In the second half of the transcoder, there is a H.264 encoder 
which converts the WZ output into a H.264 bitstream using a GOP I11P because it is 
the most suitable pattern for mobile-to-mobile video communications. To develop this 
conversion, every K frame which matches with an I-frame is passed without any 
transcoding process. On the other hand, every K or WZ frame which matches with a P 
frame is encoding using the method proposed to reduce the ME time which is 
explained in section 3.2.  

3.1   Mapping GOP Patterns  

Side information generation is a crucial task for any WZ codec due to the fact that 
WZ frames are decoded and reconstructed departing from the SI. There are many 
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studies about this topic but there are mainly two major approaches: hash-based 
motion estimation and Motion Compensated Temporal Interpolation (MCTI). In 
particular, VISNET-II codec employs the latter one. In Figure 3 the first step of SI 
generation is shown, which consists in matching each forward frame MarcoBlock 
(MB) with a backward frame MB inside the search area. This matching takes all the 
possibilities into account and chooses the lowest residual MB. Notice that DVC works 
with 16x16 partitions to generate the SI (subpartitions are not used) and the search 
area is defined by a window 32 pixel length. Through this process a MV is obtained 
for each MB which quantifies the displacement between both MBs, and the middle of 
this MV represents the displacement for the MB interpolated. The complete SI 
estimation procedure is detailed in [9]. 

 

Fig. 3. First step of SI generation process 

The present approach proposes to reuse these MVs calculated by WZ algorithm to 
improve the transcoding process for every WZ GOP to H.264 GOP I11P. Figure 4 
represents the transcoding from a WZ GOP 2 to a H.264 GOP I11P. The first K frame 
is passed to an I-frame without any conversion, as was shown in Figure 2.  On the 
other hand, for every WZ frame a SI is estimated and one MV for each MB. This is 
shown in the top row where V0-2 represents the MVs calculated between K0 and K2 to 
estimate SI1 for WZ1 and so on. In other words, V0-2 in Figure 4 corresponds with MV 
in Figure 3. Each MV is divided into two halves and it is applied in H.264 encoding 
process to accelerate it in the way described in section 3.2. This part is shown in the 
second row.  

 

Fig. 4. Mapping from DVC GOP 2 to H.264 GOP I11P 
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This idea can be extended for longer WZ GOPs but some considerations must be 
taken into account. Figure 5 shows the transcoding process for a WZ GOP 4. As it is 
shown in the two top rows, WZ decoding algorithm divides the decoding process into 
two steps. In the first step, WZ2 is decoded by calculating the SI between K0 and K4. 
These MVs (V0-4) are ignored as they have low accuracy. In the second step, there is a 
reconstruction of WZ2 (labeled WZ’2) and now this case is similar to the previous one 
showed in Figure 4. Then, V0-2 and V2-4 are divided to improve H.264 encoding 
procedure. This procedure can be applied for any WZ GOP, including odd GOPs. 

 

 

Fig. 5. Mapping from DVC GOP 4 to H.264 GOP I11P 

3.2   Motion Estimation Reduction 

DVC to H.264 transcoding process joins the largest complexity algorithms of each 
paradigm, so a lot of effort must be invested in order to improve this task. As it is well 
known, a big part of this complexity depends largely on the search range used in the 
H.264 ME process is as a consequence of the quantity of checking done. However, 
this process may be accelerated because of the search range can be reduced avoiding 
unnecessary checking without significant impact on quality and bit rate.  

To achieve this aim, we propose to reuse the MVs calculated in DVC to define a 
smaller search range for each MB of H.264 including every sub MB partition. So in 
this way the checking area is limited by the area S defined in the expression (1). 

 

 
(1) 

 

where (x,y) are the coordinates to check, A is the search range used by H.264 and C is 
a circumference which restricts the search with centre on the upper left corner of the 
MB. C is defined by the equation (2).  

 

 
(2) 
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(3) 

 
(4) 

 

Where rx and ry are calculated from equations (3) and (4) depending of the MVs 
halves (MVx/2 and MVy/2) provided by DVC or a minimum value of 2 to avoid 
applying too small search ranges. Notice that each H.264 subpartition related to a 
particular H.264 MB takes advance of the same area reduction. 

4   Performance Evaluation 

The source WZ video 8 was generated by VISNET II codec using a fixed matrix QP = 
7 and GOPs 2, 4 and 8. While sequences (in QCIF format) are decoded, the MVs are 
passed to the H.264 encoder without any increase of complexity. Afterwards, the 
transcoder converts this WZ video input into a H.264 video stream using QP = 28, 32, 
36, 40 as specified in Bjøntegaard and Sullivan´s common test rule [10][9]. Every 
WZ GOP pattern was mapped into a H.264 GOP I11P. The simulations were run by 
using the version JM 14.1 of H.264 and the baseline profile with the default 
configuration file. The baseline profile was selected because it is the most used profile 
in real-time applications due to its low complexity. For the same reason, 
RDOptimization was turned off. For ME, search area was defined by a window with 
32 pixel length. In order to check our proposal we have chosen four representative 
sequences with different motion levels at 15 fps and 30 fps coding 150 frames and 
300 respectively, the same sequences that were selected in the DISCOVER codec’s 
evaluation [8]. On the other hand, the percentage of Time Reduction (%TR) reported 
 

Table 1. Performance of the proposed transcoder for 15fps sequences 

RD performance of the WZ/H.264 video transcoder – 15fps 

Sequence GOP ΔPSNR (dB) ΔBitrate (%) TR (%) 
 2 -0.076 2.00 72.75 
Foreman 4 -0.076 2.04 72.80 
 8 -0.073 2.04 73.49 
 2 -0.009 0.23 67.03 
Hall 4 -0.007 0.16 66.92 
 8 -0.006 0.16 66.63 
 2 -0.057 1.51 77.97 

CoastGuard 4 -0.050 1.35 77.84 
 8 -0.055 1.49 78.07 
 2 -0.145 4.11 68.53 
Soccer 4 -0.150 4.45 69.94 
 8 -0.148 4.66 70.11 
mean  -0.071 2.02 71.84 
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displays the average of the times reduction of the four H.264 QP points under study 
compared to the reference transcoder which is composed by the full WZ decoding and 
H.264 encoding algorithms. 

Table 1 shows the TR of the proposed transcoder for 15fps. TR is over 71% with 
negligible rate-distortion loss compared to the full complex reference transcoder. 

On the other hand, Table 2 includes the results for 30fps sequences. It shows a 
similar TR (over 72%) improving the RD performance with respect to 15fps sequences. 

Although longer DVC GOP patterns may seem to offer a lower performance, it does 
not happen so and the performance is almost the same. The approach presented here is 
independent of the DVC GOP size employed. This is because of the way of our 
algorithm (depicted in section 3) uses the incoming MVs. For longer DVC GOP sizes, 
the previous MV generated between two K frames are ignored and the algorithm always 
uses the MV generated in the last step in the WZ decoding process. The side 
information in this last step is always formed by two frames with distance two between 
them. These frames can be K frames or frames that have been reconstructed through the 
entire WZ decoding algorithm which have been reconstructed and improved using the 
parity bit information sent by the encoder. Therefore, the quality of these frames is 
better than the original ones which were discarded in the first step of the algorithm. 

Table 2. Performance of the proposed transcoder for 15fps sequences 

RD performance of the WZ/H.264 video transcoder – 30fps 

Sequence GOP ΔPSNR (dB) ΔBitrate (%) TR (%) 
 2 -0.043 1.18 74.29 
Foreman 4 -0.038 0.97 74.42 
 8 -0.044 1.23 74.69 
 2 -0.004 0.11 65.84 
Hall 4 -0.005 0.09 65.81 
 8 -0.004 0.08 65.90 
 2 -0.018 0.47 77.35 

CoastGuard 4 -0.019 0.49 77.12 
 8 -0.022 0.59 76.82 
 2 -0.073 2.21 70.77 
Soccer 4 -0.082 2.22 71.73 
 8 -0.074 2.08 72.05 
mean  -0.035 0.98 72.23 

 
 

In addition, quality values were measured in SSIM terms. SSIM is an improvement 
of PSNR [11] which is calculated considering luminance similarity, contrast similarity 
and structural similarity. As it is shown in Figures 6 and 7, using QP = 28, 32, 36 and 
40 there are no significant differences of quality and the bit rate obtained by the 
H.264 reference and our proposed. Similar RD results are obtained comparing with 
PSNR, as it is shown for 15 fps in Figure 8. As expected, different GOPs do not have 
an important influence on the quality and the bit rate obtained by both versions. 
Furthermore, for 30 fps better results are obtained due to the higher frequency. 
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Fig. 6. SSIM/bitrate results using QP=28, 32, 36 and 40 for 15fps sequences with  GOP = 2,4,8. 
Reference symbols: ■Foreman, ♦Hall, ▲CoastGuard and ●Soccer. 
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Fig. 7. SSIM/bitrate results using QP=28, 32, 36 and 40 for 30ps sequences with  GOP = 2,4,8. 
Reference symbols: ■Foreman, ♦Hall, ▲CoastGuard and ●Soccer. 
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Fig. 8. PSNR/bitrate results using QP=28, 32, 36 and 40 for 15fps sequences with GOP = 2,4,8. 
Reference symbols: ■Foreman, ♦Hall, ▲CoastGuard and ●Soccer. 
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5   Conclusions 

This work presents a DVC to H.264 transcoder which has been improved to allow 
every WZ GOP as input and mapping them into a H.264 GOP I11P. Moreover, the 
transcoding process was improved by reusing the MVs generated at the WZ decoding 
algorithm to reduce the time spent on the H.264 ME over 72%. As a consequence, the 
overall time is considerably reduced without any significant loss of RD. As future 
work, it is planned to extend H.264 pattern introducing B frames. Furthermore, we 
will invest effort in order to accelerate Wyner-Ziv decoding stage. 
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Abstract. A cross-layer optimization scheme is proposed for scalable

video transmission over wireless Multiple Input Multiple Output Or-

thogonal Frequency Division Multiplexing (MIMO-OFDM) systems. The

scalable video coding (SVC) extension of H.264/AVC is used for video

source coding. The proposed cross-layer optimization scheme jointly op-

timizes application layer parameters and physical layer parameters. The

objective is to minimize the expected video distortion at the receiver.

Two methods have been developed for the estimation of video distor-

tion at the receiver, which is essential for the cross-layer optimization.

In addition, two different priority mappings of the SVC scalable layers

are considered. Experimental results are provided and conclusions are

drawn.

1 Introduction

Recent advances in computer technology, data compression, high-bandwidth
storage devices, high-speed networks, and the third and the fourth generation
(3G and 4G) wireless technology have made it feasible to provide the delivery
of video over multicarrier wireless channels at high data rates [1]. Transmis-
sion over Multiple Input Multiple Output (MIMO) channels using Orthogonal
Frequency Division Multiplexing (OFDM) provides such high data rates for mul-
timedia delivery and therefore is of great interest in the area of wireless video
applications.

Diversity techniques, such as space-time coding (STC) for multiple antenna
systems (i.e., MIMO systems) have been proven to help overcome the degrada-
tions due to the wireless channels by providing the receiver with multiple replicas
of the transmitted signal over different channels. MIMO systems employ orthog-
onal space-time block codes (O-STBC) [2], [3], which exploit the orthogonality
property of the code matrix to achieve the full diversity gain and have the ad-
vantage of low complexity maximum-likelihood (ML) decoding.
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On the other hand, OFDM mitigates the undesirable effects of a frequency-
selective channel by converting it into a parallel collection of frequency-flat sub-
channels. OFDM is basically a block modulation scheme where a block of N
information symbols is transmitted in parallel on N subcarriers. The subcarriers
have the minimum frequency separation required to maintain orthogonality of
their corresponding time domain waveforms, yet the signal spectra corresponding
to the different subcarriers overlap in frequency. Hence, the available bandwidth
is used very efficiently. An OFDM modulator can be implemented as an in-
verse discrete Fourier transform (IDFT) on a block of N information symbols.
To mitigate the effects of intersymbol interference (ISI) caused by channel time
spread, each block of N IDFT coefficients is typically preceded by a cyclic prefix
(CP) or a guard interval consisting of G samples, such that the length of the
CP is at least equal to the channel length. As a result, the effects of the ISI
are easily and completely eliminated. Recent developments in MIMO techniques
promise a significant boost in performance for OFDM systems. A parallel trans-
mission framework for multimedia data over spectrally shaped channels using
multicarrier modulation was studied in [4]. A space-time coded OFDM system
to transmit layered video signals over wireless channels was presented in [5].
Video transmission with OFDM and the integration of STC with OFDM have
been studied recently [6,7,8]. In [9] an optimal resource allocation method was
proposed for multilayer wireless video transmission by using the large-system
performance analysis results for various multiuser receivers in multipath fad-
ing channels. However, the above approaches have not exploited wireless video
transmission over MIMO-OFDM systems with bandwidth optimization.

In this paper, we consider the bandwidth constrained transmission of temporal
and quality scalable layers of coded video over MIMO-OFDM wireless networks,
with optimization of source coding, channel coding and physical layer parameters
on a per group of pictures (per-GOP) basis. The bandwidth allocation problem
is addressed by minimizing the expected end-to-end distortion (for one GOP
at a time) and optimally selecting the quantization parameter (QP), channel
coding rate and the constellation for the STBC symbols used in this MIMO-
OFDM system. At the source coding side, we use the scalable video coding
(SVC) extension of the H.264/AVC standard which has an error-resilient network
abstraction layer (NAL) structure and provides superior compression efficiency
[10]. The combined scalability provided by the codec is exploited to improve the
video transmission over error-prone wireless networks by protecting the different
layers with unequal error protection (UEP). In [11,12], we proposed bandwidth
optimization algorithms for SVC video transmission over MIMO (non-OFDM)
channels using O-STBC.

A good knowledge of the total end-to-end decoder distortion at the encoder
is necessary for such optimal allocation. Accordingly, we use the low-delay, low-
complexity method for accurate distortion estimation for SVC video as discussed
in [11] and also propose a new modified version of this distortion estimation
method. The two distortion estimation methods differ in the priority order in
which different types of scalability inherent in the SVC codec, namely temporal
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and Signal to Noise Ratio (SNR), are considered for estimation purposes. We also
propose two different priority mappings of the scalable layers produced by SVC.
Comparison results for the two priority mappings are presented for bandwidth
constrained and distortion optimized video transmission over a MIMO-OFDM
system. The results exemplify the advantages of the use of each priority mapping
for different video sequences.

The rest of the paper is organized as follows. In section 2, the proposed system
is introduced. In section 3, the scalable extension of H.264 is described. In section
4, the cross-layer optimization problem is formulated and solved. In section 5, the
two video distortion estimation methods are discussed. In section 6, the priority
mapping of the temporal and FGS layers of SVC is discussed. In section 7,
experimental results are presented. Finally, in section 8, conclusions are drawn.

2 System Description

In our packet-based video transmission system, we utilize channel coding fol-
lowed by orthogonal space-time block coding for MIMO-OFDM systems. After
video encoding, the scalable layers of each frame are divided into packets of con-
stant size γ, which are then channel encoded using a 16-bit cyclic redundancy
check (CRC) for error detection and rate-compatible punctured convolutional
(RCPC) codes for UEP. These channel-encoded packets are modulated with a
particular constellation size and further encoded using O-STBC for each sub-
carrier for transmission over the MIMO wireless system. A 6-ray typical urban
(TU) channel model with AWGN is considered (details shown in Table 1) and
ML decoding is used to detect the transmitted symbols at each subcarrier, which
are then demodulated and channel decoded for error correction and detection.
All the error-free packets for each frame are buffered and then fed to the source
decoder with error concealment for video reconstruction. For the MIMO-OFDM

Table 1. Six-ray typical urban (TU) channel model

Delay (μs) 0.0 0.2 0.5 1.6 2.3 5.0

Power (mean) 0.189 0.379 0.239 0.095 0.061 0.037

system used here, we consider Mt = 2 transmit and Mr = 2 receive antennas.
We used the O-STBC design for MIMO-OFDM systems in which two codewords
(corresponding to two time instances) are transmitted. The channel is assumed
to be quasi-static for these two codeword time periods. The codeword structure
is as follows:

COFDM1 =

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2
x3 x4
| |
| |
| |

x2N−1 x2N

⎤⎥⎥⎥⎥⎥⎥⎦ , (1)
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and

COFDM2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−x∗

2 x∗
1

−x∗
4 x∗

3
| |
| |
| |

−x∗
2N x∗

2N−1

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

where N is the number of subcarriers and (.)∗ denotes the complex conjugate.
The two codewords take two time instances and each row represents transmission
over one subcarrier. Hence, the two codewords together form a 2 × 2 O-STBC
for each subcarrier. In such a design, we gain spatial diversity but no frequency
diversity.

The signal model at the j-th receive antenna for the n-th subcarrier at time
t (t = 1, 2) is given as

yj
t (n) =

√
ρ

Mt

Mt∑
i=1

ci
t (n)hij (n) + ηj

t (n) , (3)

where ρ is the channel SNR, ci
t(n) is the energy-normalized transmitted symbol

from the i-th transmit antenna at the n-th tone, and ηj
t (n) are independent

Gaussian random variables with zero mean and variance 1. hij(n) is the channel
frequency response from the i-th transmit antenna to the j-th receive antenna
at the n-th tone. t takes values 1 and 2 since there are two codewords that
take two time instances, as mentioned earlier. The fading channel is assumed
to be quasi-static. We assume that perfect channel state information is known
at the receiver, and the ML decoding is used to detect the transmitted symbols
independently.

3 Scalable H.264 Codec

In this work, the scalable extension of H.264/AVC is used for video coding.
We will use the acronym “SVC” to specifically refer to the scalable extension
of H.264/AVC and not to scalable video coding in general. SVC is based on a
hierarchical prediction structure in which a GOP consists of a key picture and
all other pictures temporally located between the key picture and the previously
encoded key picture. These key pictures are considered as the lowest temporal
resolution of the video sequence and are called temporal level zero (TL0) and
the other pictures encoded in each GOP define different temporal levels (TL1,
TL2, and so on). Each of these pictures is represented by a non-scalable base
layer (FGS0) and zero or more quality scalable enhancement fine granularity
scalability (FGS) layers. The hierarchical coding structure of SVC is shown in
Figure 1.

4 Optimal Bandwidth Allocation

The bandwidth allocation problem is defined as the minimization of the expected
end-to-end distortion by optimally selecting the application layer parameter, QP
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Fig. 1. Hierarchical prediction structure for SVC for a GOP size of 8

value for video encoding, and the physical layer parameters, RCPC coding rate
and the symbol constellation choice for the STBC block code. The optimization
is considered on a GOP-by-GOP basis and is constrained by the total available
bandwidth (symbol rate) Bbudget. We assume that the SVC codec produces L
layers μ1, μ2, . . . , μL via a combination of temporal and FGS scalability. Then,
the bandwidth allocation problem can be described as:

{QP∗, R∗
c , M∗} = arg min

{QP, Rc, M}
E {Ds+c} s.t. Bs+c ≤ Bbudget (4)

where Bs+c is the transmitted symbol rate, Bbudget is the total available symbol
rate and E {Ds+c} is the total expected end-to-end distortion due to source
and channel coding, which needs to be estimated as discussed in Section 5.
QP, Rc and M are the admissible set of values for QP, RCPC coding rates
and symbol constellations, respectively. For all the layers of each GOP, QP∗ =
{QPμ1 , . . . , QPμL}, R∗

c = {Rc,μ1 , . . . , Rc,μL} and M∗ = {Mμ1 , . . . , MμL} define
the QP values, the RCPC coding rates and the symbol constellations for each
scalable layer, respectively, obtained after optimization. The transmitted symbol
rate Bs+c can be obtained as

Bs+c =
L∑

l=1

Rs,μl

Rc,μl
× log2(Mμl

)
(5)

where Rs,μl
is the source coding rate for layer μl in bits/s and depends on the

quantization parameter value used for that layer; Rc,μl
is the channel coding

rate for layer μl and is dimensionless; Mμl
is the constellation used by layer μl

and log2(Mμl
) is the number of bits per symbol.

The problem of Eq. (4) is a constrained optimization problem and is solved
using the Lagrangian method.

5 Decoder Distortion Estimation

In order to perform the optimization of Eq. (4), it is necessary to estimate the
expected video distortion at the receiver E {Ds+c}. In this paper, we use the
distortion estimation technique of [11] and we also propose a new technique.
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As mentioned previously, SVC produces video frames which are partitioned
into FGS layers. We assume that each layer of each frame is packetized into
constant size packets of size γ for transmission. At the receiver, any unrecover-
able errors in each packet would result in dropping the packet and hence would
mean loss of the layer to which the packet belongs. We assume that the channel
coding rate and constellation used for the transmission of the base layers of all
key pictures is such that they are received error-free. Using the fact that SVC
encoding and decoding is done on a GOP basis, it is possible to use the frames
within a GOP for error concealment purposes. In the event of losing a frame,
temporal error concealment at the decoder is applied such that the lost frame
is replaced by the nearest available frame in the decreasing as well as increasing
sequential order but from only lower or same temporal levels. We start towards
the frames that have a temporal level closer to the temporal level of the lost
frame. For the frame in the center of the GOP, the key picture at the start of
the GOP is used for concealment.

As discussed in [11], the priority of the base layer (FGS0) of each temporal
level decreases from the lowest to the highest temporal level, and each FGS layer
for all the frames is considered as a single layer of even lesser priority. We will
refer to this method as Temporal-SNR scalable decoder distortion estimation
(SDDE) method. Alternatively, we can consider both the base and the FGS layers
of the reference frames to be used for the encoding and the reconstruction of the
frames of higher temporal levels (non-key pictures). In such a case, both the base
and the FGS layers of the reference frames (from the lower temporal levels) are
considered of the same importance, and of higher importance than the frame(s)
(from a higher temporal level) to be motion-compensated and reconstructed.
We will refer to this case as the SNR-Temporal SDDE method. Next we will
present the derivations of the two above-mentioned SDDE methods.

5.1 Temporal-SNR SDDE

In the following derivation of the Temporal-SNR SDDE method, we consider a
base layer and one FGS layer. We assume that the frames are converted into
vectors via lexicographic ordering and the distortion of each macroblock (and
hence, each frame) is the summation of the distortion estimated for all the pixels
in the macroblock of that frame. Let f i

n denote the original value of pixel i in
frame n and f̂ i

n denote its encoder reconstruction. The reconstructed pixel value
at the decoder is denoted byf̃ i

n. The mean square error for this pixel is defined
as [13]:

di
n = E

{(
f i

n − f̃ i
n

)2
}

=
(
f i

n

)2 − 2f i
nE

{
f̃ i

n

}
+ E

{(
f̃ i

n

)2
}

(6)

where di
n is the distortion per pixel. The base layers of all the key pictures are

assumed to be received error-free. The sth moment of the ith pixel of the key
pictures n is calculated as

E
{(

f̃ i
n

)s}
= PnE1

(
f̂ i

nB

)s

+ (1 − PnE1)
(
f̂ i

n(B,E1)

)s

(7)
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where f̂ i
nB, f̂ i

n(B,E1) are the reconstructed pixel values at the encoder using only
the base layer, and the base along with the FGS layer of frame n, respectively.
PnE1 is the probability of losing the FGS layer of frame n.

For all the frames except the key pictures of a GOP, let us denote f̂ i
nB unvn

as the ith pixel value of the base layer of frame n reconstructed at the encoder.
Frames un(< n) and vn(> n) are the reference pictures used in the hierarchical
prediction structure for the reconstruction of frame n. We will refer to these
frames (un and vn) as the “true” reference pictures for frame n. In the decoding
process of SVC, the frames of each GOP are decoded in the order starting from
the lowest to the highest temporal level. At the decoder, if either or both of the
true reference frames are not received correctly, the non-key picture(s) will be
considered erased and will be concealed.

For the Temporal-SNR SDDE method, the sth moment of the ith pixel of
frame n when at least the base layer is received correctly is defined as

E
{(

f̃ i
n (un, vn)

)s}
= (1 − Pun) (1 − Pvn)PnE1

(
f̂ i

nB unvn

)s

+ (1 − Pun) (1 − Pvn) (1 − PnE1)
(
f̂ i

n(B,E1) unvn

)s (8)

where, Pun and Pvn are the probabilities of losing the base layer of the reference
frames un and vn, respectively. Now to get the distortion per-pixel after error
concealment, we define a set Q = {fn, fq1, fq2, fq3, ..., fGOPend}, where fn is the
frame to be concealed, fq1 is the first frame, fq2 is the second frame to be used
for concealment of fn, and so on till one of the GOP ends is reached. The sth

moment of the ith pixel using the set Q is defined as

E
{(

f̃ i
n

)s}
= (1 − Pn)E

{(
f̃ i

n (un, vn)
)s}

+
(
1 − P̄n

)
(1 − Pq1)E

{(
f̃ i

q1 (uq1, vq1)
)s}

+
(
1 − P̄nP̄q1

)
(1 − Pq2)E

{(
f̃ i

q2 (uq2, vq2)
)s}

+... +

(
1 − P̄n

|Q|−2∏
z=1

P̄qz

)
E
{(

f̃ i
GOPend

)s}
(9)

where P̄n = (1 − Pn)(1 − Pun)(1 − Pvn) is the probability of correctly receiving
the base layers of frame n and the base layers of its reference pictures.

5.2 SNR-Temporal SDDE

Similar to the Temporal-SNR SDDE case, in this method the base layer of all
the key pictures are assumed to be received error-free and the sth moment of
the ith pixel of the key pictures n is again calculated using Eq. (7). For all the
frames except the key pictures of a GOP, let us denote f̂ i

nB u(B,E1)nv(B,E1)n
as

the ith pixel value of the base layer of frame n reconstructed at the encoder.
Frames u(B,E1)n(< n) and v(B,E1)n(> n) are the reference pictures (including
both base and FGS layers) used in the hierarchical prediction structure for the
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reconstruction of frame n. In case of losing the FGS layers of the reference
pictures, only the base layers of the frames un and vn are used as the reference
for frame n. As discussed above, in SVC the decoding of all the frames in a GOP
is done from the lowest to the highest temporal level. Similar to the Temporal-
SNR method, we will use the “true” reference frames for distortion estimation
and hence, the loss of base layer of either or both the reference frames will result
in the concealment of the frame n. The sth moment of the ith pixel of frame n
when at least the base layer is received correctly is calculated as:

E
{(

f̃ i
n (un, vn)

)s}
= PuvBPnE1

(
f̂ i

nB uBnvBn

)s

+PuvB (1 − PnE1)
(
f̂ i

n(B,E1) uBnvBn

)s

+PuvB,E1PnE1

(
f̂ i

nB u(B,E1)nv(B,E1)n

)s

+PuvB,E1 (1 − PnE1)
(
f̂ i

n(B,E1) u(B,E1)nv(B,E1)n

)s

(10)

where, PuvB = (1 − PunB)(1 − PvnB)PunE1PvnE1 is the probability of correctly
receiving the base layers and not receiving the FGS layers of the frames un

and vn. Similarly, PuvB,E1 = (1 − PunB)(1 − PvnB)(1 − PunE1)(1 − PunE1) is
the probability of correctly receiving the base layers and the FGS layers of the
frames un and vn. In case the base layer of frame n is lost, the complete frame
has to be concealed. To get the distortion per-pixel after error concealment, we
use Eq. (9).

The performance of the two SDDE methods is evaluated by comparing it with
the actual decoder distortion estimation averaged over 200 channel realizations.
Different video sequences encoded at 30 fps, GOP size of eight frames and six lay-
ers are used in packet-based video transmission simulations. Each of these layers is
considered to be affected with different loss rates P = {PTL0, PTL1, PTL2, PTL3,
PE1}, where PTLx is the probability of losing the base layer of a frame that be-
longs to TLx and PE1 is the probability of losing FGS1 of a frame. For perfor-
mance evaluation, packet loss rates considered are P1 = {0%, 0%, 5%, 5%, 10%}
and P2 = {0%, 10%, 20%, 30%, 50%}. In Table 1, the average Peak Signal to Noise
Ratio (PSNR) performance is presented for the “Foreman”, “Akiyo” and “Car-
phone” sequences. As can be observed, both the Temporal-SNR and the SNR-
Temporal methods result in good average PSNR estimates and hence they are
used to solve the optimization problem of section 4.

Table 2. Average PSNR comparison for the proposed distortion estimation algorithms

Foreman Akiyo Carphone

363 kbps 268 kbps 612 kbps

Actual P1 (dB) 36.40 45.91 40.85

Temporal-SNR SDDE (dB) 35.48 45.84 40.12

SNR-Temporal SDDE (dB) 36.00 45.43 40.35

Actual P2 (dB) 30.82 41.46 35.32

Temporal-SNR SDDE (dB) 29.80 41.20 35.10

SNR-Temporal SDDE (dB) 30.22 40.86 35.28
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6 Priority Mapping of Scalable Layers

We considered two different mappings of the temporal and FGS layers of SVC
into the scalable layers μi. Let us assume that the number of temporal layers
is T . For a GOP size of 8, as used here, we have T = 4. For the first mapping,
which we call the Temporal-SNR mapping, the first L − 1 layers (μ1, . . . , μL−1)
are the base layers (FGS0) of the frames associated with the lowest to the highest
temporal level in decreasing order of importance for video reconstruction. So,
L−1 = T and the number of scalable layers is L = T +1. The FGS layer of all the
frames in a GOP are defined as a single layer μL of even lesser importance. The
Temporal-SNR distortion estimation method uses exactly the same priorities as
the Temporal-SNR mapping, so we used it for our experimental results for this
mapping. The second mapping is the SNR-temporal mapping. For this mapping,
there are two layers, base and enhancement for each of the T temporal layers. In
this case, the FGS layer of the lower temporal layer has more importance than
the base layer of the higher temporal levels. Thus, there are a total of L = 2T
scalable layers. For the SNR-Temporal mapping, we used the SNR-Temporal
distortion estimation method, as it uses exactly the same priorities.
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SNR-Temporal mappings of scalable layers (“Foreman” sequence)

7 Experimental Results

For experimental results, the “Foreman” and ‘Akiyo” video sequences are en-
coded at 30 fps, GOP=8 and constant Intra-update (I) at every 32 frames. We
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consider the video encoding QP values in the range of 16 to 50 and RCPC coding
rates of Rc = 8/K : K ∈ {32, 28, 24, 20, 16, 12}, which are obtained by punctur-
ing a mother code of rate 8/32 with constraint length of 3 and a code generator
[23;35;27;33]o. Quadrature amplitude modulation (QAM) is used with the pos-
sible constellations size M={4, 8, 16}. The total number of subcarriers N for
the OFDM system is fixed at 64. This includes a cyclic prefix (CP) of 1/8 and
guard interval (GI) of 1/8 of the total number of subcarriers. The packet size is
chosen as γ = 100 bytes. Both the Temporal-SNR and SNR-Temporal priority
mappings are considered.

Average PSNR results obtained for transmission of the “Foreman” sequence
over the MIMO-OFDM system after the optimal selection of the application
layer and physical layer parameters (on a GOP-by-GOP basis) for a channel
SNR of 8dB, 10dB, 12 dB and 18dB are shown in Figure 2. Overall, we can see
that the SNR-Temporal mapping performs better (in the PSNR sense) than the
Temporal-SNR mapping.

Similarly, in Figure 3, we show the average PSNR value comparison of the SNR-
Temporal and Temporal-SNR mappings for the “Akiyo” sequence. The PSNR re-
sults are obtained after the optimal parameter selection for a channel SNR of 8dB,
10db, 12dB and 16dB. However, we can clearly see that the behavior (in the PSNR
sense) for a low motion sequence is opposite compared to the previous case, i.e.,
the Temporal-SNR mapping performs better than the SNR-Temporal mapping.
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8 Conclusions

We have proposed a novel cross-layer optimization scheme for wireless video
transmission over MIMO-OFDM channels. The scalable extension of H.264 is
used for source coding and the compressed video is divided into scalable layers.
For each of these scalable layers, the cross-layer optimization scheme determines
the quantization parameter, channel coding rate, and symbol constellation. In
order to carry out the optimization, an accurate estimation of the expected video
distortion at the receiver is required. We have developed two expected distortion
estimation methods, the Temporal-SNR SDDE method and the SNR-Temporal
SDDE method. These methods differ in the priority order in which temporal and
SNR scalability are considered. We have also proposed two different priority map-
pings of the scalable layers, the Temporal-SNR mapping and the SNR-Temporal
mapping. We have presented experimental results that show the outcome of the
cross-layer optimization using both distortion estimation methods. The SNR-
Temporal mapping performs better for high-motion video sequences, while the
Temporal-SNR mapping performs better for low-motion video sequences.
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A GPU-Accelerated Real-Time NLMeans
Algorithm for Denoising Color Video Sequences
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Abstract. The NLMeans filter, originally proposed by Buades et al.,
is a very popular filter for the removal of white Gaussian noise, due to
its simplicity and excellent performance. The strength of this filter lies
in exploiting the repetitive character of structures in images. However,
to fully take advantage of the repetitivity a computationally extensive
search for similar candidate blocks is indispensable. In previous work,
we presented a number of algorithmic acceleration techniques for the
NLMeans filter for still grayscale images. In this paper, we go one step
further and incorporate both temporal information and color information
into the NLMeans algorithm, in order to restore video sequences. Start-
ing from our algorithmic acceleration techniques, we investigate how the
NLMeans algorithm can be easily mapped onto recent parallel comput-
ing architectures. In particular, we consider the graphical processing unit
(GPU), which is available on most recent computers. Our developments
lead to a high-quality denoising filter that can process DVD-resolution
video sequences in real-time on a mid-range GPU.

1 Introduction

Noise in digital video sequences generally originates from the analogue circuitry
(e.g. camera sensors and amplifiers) in video cameras. The noise is mostly visible
in bad lighting conditions and using short camera sensor exposure times. Also,
video sequences transmitted over analogue channels or stored on magnetic tapes,
are often subject to a substantial amount of noise. In the light of the large scale
digitization of analogue video material, noise suppression becomes desirable,
both to enhance video quality and compression performance.

In the past decades, several denoising methods have been proposed for noise
removal, for still images (e.g. [1, 2, 11, 3, 4, 5, 6, 11]) or particularly for video
sequences (see [7,8,9,10,11,12,13,14]). Roughly speaking, these video denoising
methods can be categorized into:

1. Spatially and temporally local methods (e.g. [8, 11]): these methods only ex-
ploit image correlations in local spatial and temporal windows of fixed size

� B. Goossens and A. Pižurica are postdoctoral researchers of the Fund for Scientific
Research in Flanders (FWO), Belgium.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 46–57, 2010.
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(based on sparsity in a multiresolution representation). The temporal filter-
ing can either be causal or non-causal. In the former case, only past frames
are used for filtering. In the latter case, future frames are needed, which can
be achieved by introducing a temporal delay.1

2. Spatially local methods with recursive temporal filtering [9, 10, 14, 15]: these
methods rely on recursive filtering that takes advantage of the temporal
correlations between subsequent frames. Because usually, first order (causal)
infinite impulse response filters are used and no temporal delay is required.

3. Spatially and temporally non-local methods [12, 13]: these methods take ad-
vantage of repetitive structures that occur both spatially and temporally.
Because of computation time and memory restrictions, in practice these
methods make use of a search window (this is a spatio-temporal window
in which similar patches are being searched for). By the practical restric-
tions, the methods actually fall under the first class, however we expect that
by more effcient parallel computing architectures and larger RAM memory
the non-locality of these methods will further be extended in the future.

One popular filter that makes use of the repetitive character of structures in
video sequences and hence belongs to the third class, is the NLMeans filter [16].
Suppose that an unknown video signal X(p) is corrupted by an additive noise
process V (p), resulting in the observed video signal:

Y (p) = X(p) + V (p) (1)

Here, p = [px, py, pt] is the spatio-temporal position within the video sequence.
X(p), Y (p) and V (p) are functions that map values from Z

3 onto the RGB
color space R3. The NLMeans video filter estimates the denoised value of X(p)
as the weighted average of all pixel intensities in the video sequence:

X̂(p) =

∑
q∈δ w(p, p + q)Y (p + q)∑

q∈δ w(p, p + q)
, (2)

where q = [qx, qy, qt] and where the weights w(p, p+q) depend on the similarity
of patches centered at positions p and p + q. δ is a three dimensional search
window in which similar patches are searched for. For simplicity of the notation,
we assume that Y (p + q) is everywhere defined in (2). In practice, we make use
of boundary extension techniques (e.g. mirroring) near the image boundaries.
Because of the high computational complexity of the NLMeans algorithm (the
complexity is quadratic in the number of pixels in the video sequence and linear
in the patch size) and because of the fact that the original NLMeans method
performed somewhat inferior compared to other (local) state-of-the-art denoising
method, many improvements have been proposed by different researchers. Some
of these improvements are better similarity measures [17,18,19], adaptive patch
sizes [20], and algorithmic acceleration techniques [4, 19, 21, 22].

1 A temporal delay is not desirable for certain applications, such as video communi-
cation.
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In our previous work [4], we proposed a number of improvements to the
NLMeans filter, for denoising grayscale still images. Some of these improvements
which are relevant for this paper are:

– An extension of the NLMeans to correlated noise: even though the origi-
nal NLMeans filter relies on a white Gaussian noise assumption, the power
spectral densities of noise in real images and video sequences is rarely flat
(see [23]).

– Acceleration techniques that exploit the symmetry in the weight computa-
tion and that compute the Euclidean distance between patches by a recursive
moving average filter. By these accelerations, the computation time can be
reduced by a factor 121 (for 11×11 patches), without sacrifying image quality
at all!

In spite of efforts by many researchers and also our recent improvements, the
NLMeans algorithm is not well suited for real-time denoising of video sequences
on a CPU. Using our improvements, denoising one 512 × 512 color image takes
about 30 sec. for a modestly optimized C++ implementation on a recent 2GHz
CPU (single-threaded implementation). Consequently this technique is not ap-
plicable to e.g. real-time video communication.

Nowadays, there is a trend toward the use of parallel processing architectures
in order to accelerate the processing. One example of such architecture is the
graphical processing unit (GPU). Although the GPU is primarily designed for
the rendering of 3D scenes, advances of the GPU in the late 90’s enabled many
researchers and engineers to use the GPU for more general computations. This
led to the so-called GPGPU (General-Purpose computations on GPUs) [24] and
many approaches (e.g. based on OpenGL, DirectX, CUDA, OpenCL, ...) exist
to achieve GPGPU with existing GPU hardware. Also because the processing
power of modern GPUs has tremendously increased in the last decade (even for
inexpensive GPUs a speed-up of a factor 20× to 100× can be expected) and is
even more improving, it becomes worthwhile to investigate which video denoising
methods can efficiently be implemented on a GPU.

Recently, a number of authors have implemented the NLMeans algorithm
on a GPU: in [25] a locally constant weight assumption is used in the GPU
implementation to speed up the basic algorithm. In [26], a GPU extension of the
NLMeans algorithm is proposed to denoise ultrasound images. In this approach,
the maximum patch size is limited by the amount of shared memory of the GPU.

In this paper, we focus on algorithmic acceleration techniques for the GPU
without sacrificing denoising quality, i.e., the GPU implementation computes
the exact NLMeans formula, and without patch size restrictions imposed by
the hardware. To do so, we first review how NLMeans-based algorithms can be
mapped onto parallel processing architectures. We will find that the core ideas
of our NLMeans algoritmic acceleration techniques are directly applicable, but
the algorithms themselves need to be modified. By these modifications, we will
see that the resulting implementation can process DVD video in real-time on a
mid-range GPU. Next, as a second contribution of this paper, we explain how
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the filter can be used to remove correlated noise (both spatially as across color
channels) from video sequences.

The outline of this paper is as follows: on Section 2, we first review some
basic GPGPU programming concepts. Next, we develop an efficient NLMeans
algorithm for a GPU and its extension to deal with noise which is correlated
across color channels. In Section 3 we give experimental results our method.
Finally, Section 4 concludes this paper.

2 An Efficient NLMeans Algorithm for a GPU

In this Section, we will explain the algorithmic improvements that we made to
the NLMeans filter in order to efficiently run the algorithm on a GPU. As already
mentioned, many approaches and/or programming language extensions exist for
GPGPU programming. Because the GPU technology is quickly evolving, we will
present a description of the algorithm that is quite general and that does not
rely on specific GPU technology choices. This way, the algorithms we present can
still be useful in the future, when newer GPU architectures become available.

2.1 General GPGPU Concepts

One core element in GPGPU techniques is the so-called kernel function. A kernel
function is a function that evaluates the output pixel intensities for a specific
position in the output image (or even multiple output images) and that takes
as input both the position (p) in the video sequence, and a number of input
images (which we will denote as U

(i)
1 , ..., U

(i)
K ). A GPGPU program can then be

considered to be a cascade of kernel functions f (I) ◦ f (I−1) ◦ · · · ◦ f (1) applied to
a set of input images. Mathematically, the evaluation of one such kernel function
(which we will call a pass) can be expressed as:[

U (i+1)
1

, ..., U (i+1)
K

]
(p) = f

(i)

U
(i)
1 ,...,U

(i)
K

(p) (3)

where the kernel function takes as input the output images of the previous
pass, U

(i)
1 , ..., U

(i)
K and subsequently computes the inputs for the next pass,

U (i+1)
1

, ..., U (i+1)
K

. More specifically, the kernel function f (i) maps a spatio-
temporal coordinate (p) onto a three-dimensional RGB color vector.

Now, porting an algorithm to the GPU comes down to converting the algo-
rithm into a finite, preferably low number of passes as defined in (3) and with
fairly simple functions f (i):[

U
(2)
1 , ..., U

(2)
K

]
(p) = f

(1)

U
(1)
1 ,...,U

(1)
K

(p) ,[
U

(3)
1 , ..., U

(3)
K

]
(p) = f

(2)

U
(2)
1 ,...,U

(2)
K

(p) ,

...
...[

U
(I+1)
1 , ..., U

(I+1)
K

]
(p) = f

(I)

U
(I)
1 ,...,U

(I)
K

(p) . (4)
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We remark that not all passes need to process all input images, i.e. it is com-
pletely legal that U

(i+1)
1 = U

(i)
1 . In this case, we express this formally by saying

that the function f
(i)

U
(i)
1 ,...,U

(i)
K

(p) is constant in U
(i)
1 .

2.2 Straightforward GPU Implementation of the NLMeans Filter

First, we will show that a straightforward (naive) implementation of the tradi-
tional NLMeans filter from [13,16] leads to a very high number of passes, hence
an algorithm that is inefficient even on the GPU. Next, we will explain how our
own algorithmic accelerations can be converted into a program for the GPU as
in equation (4). We will do this for a broad range of weighting functions that
are a function of the Euclidean distance measure between two patches:

w(p, p + q) = g

⎛⎝ ∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,q

∥∥∥2

⎞⎠ (5)

with r
(Δx,Δy)
p,q = Y (px +qx +Δx, py +qy +Δy, pt +qt)−Y (px +Δx, py +Δy, pt),

with (2B + 1) × (2B + 1) the patch size and where the function g(r) has the
property that g(0) = 1 (such that the weight w = 1 if the Euclidean distance
between two patches is zero, i.e., for similar patches) and limr→∞ g(r) = 0 (the
weight w = 0 for dissimilar patches). In particular, we consider the Bisquare
robust weighting function, for which g(r) is defined as follows:

g(r) =

⎧⎨⎩
(
1 − (r/h)2

)2
r ≤ h

0 r > h
,

with h a constant parameter that is fixed in advance (for more details, see [4]).
Substituting (5) into (2) gives:

X̂(p) =

∑
q∈δ g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,q

∥∥∥2
)

Y (p + q)

∑
q∈δ g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,q

∥∥∥2
) . (6)

Comparing (6) to (3) immediately leads to the kernel function:

f
(1)

U
(1)
1

(p) =

∑
q∈δ g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,q

∥∥∥2
)

U
(1)
1 (p + q)

∑
q∈δ g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,q

∥∥∥2
) , (7)

with U
(1)
1 (p) = Y (p). We see that the number of operations performed by the

kernel function is linear in |δ| (2B + 1)2, with |δ| the cardinality of δ. Although
this approach seems feasible, some GPU hardware (especially less recent GPU
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hardware) puts limits on the number of operations (more specifically, processor
instructions) performed by a kernel function. To work around this restriction,
we make use of a weight accumulation buffer (see [19]) and convert every term
of the summations in (7) into a separate pass, in which in each pass, one term
of the summation

∑
q∈δ is added to the accumulation buffer. This is done for

both the numerator and denominator of (7). For i = 1, ..., |δ|, with constants qi

defined for each pass (e.g. using raster scanning), we obtain the kernel function:

f
(i)

U
(i)
1 ,...,U

(i)
3

(p) =⎛⎜⎜⎜⎜⎝
U

(i)
1 (p)

U
(i)
2 + g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,qi

∥∥∥2
)

U
(i)
1 (p + qi)

U
(i)
3 + g

(∑
(Δx,Δy)∈[−B,...,B]2

∥∥∥r(Δx,Δy)
p,qi

∥∥∥2
)

⎞⎟⎟⎟⎟⎠ (8)

where U
(i)
2 is an accumulation buffer for the denoised image, and where U

(i)
3 is

a weight accumulation buffer (initially, U
(1)
2 (p) = U

(1)
3 (p) = 0). Next, one last

pass is required, to compute the final output image:

f
(I)

U
(I)
1 ,...,U

(I)
3

(p) =

(
U

(I)
2 (p)

U
(I)
3 (p)

0 0

)T

, (9)

with I = |δ| + 1. The number of operations per pass is now multiplied by a
factor 1/ |δ|, but is still very high. To further reduce this number of opera-
tions, we could apply a similar split-up technique and convert the summation∑

(Δx,Δy)∈[−B,...,B]2 into several passes. We note that, even though this way
we would obtain a working algorithm for most available GPUs, the number
of passes I = |δ| ((2B + 1)2 + 1

)
+ 1 becomes very high. For example, for a

31 × 31 × 4-search window and B = 4, we obtain I = 311365 passes. If for each
video frame, a single pass of the algorithm would take 0.1 msec. on a GPU, the
complete algorithm would still require approx. 31 sec. for processing one sin-
gle frame of a video sequence, which is similar to the computation time of our
CPU version mentioned in Section 1. Hence, further algorithmic accelerations
are required.

2.3 Actual Implementation Using Algorithmic Accelerations

In [4], we pointed out that the term
∑

(Δx,Δy)∈[−B,...,B]2

∥∥∥r
(Δx,Δy)
p,q

∥∥∥2
can be

interpreted as a convolution operator with a filter kernel with square support.
Consequently the Euclidean distance between two patches can efficiently be com-
puted using a moving average filter, and the algorithmic complexity is reduced
with roughly a factor (2B + 1)2/2. Unfortunately, converting a moving average
filter directly into a GPU program as in (4) is not feasible in a small number of
passes. Instead, we exploit the separability of the filter kernel and we implement
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the convolution operator as a cascade of a horizontal and vertical filter. Then by
setting U

(1)
1 (p) = Y (p), U

(1)
2 (p) = U

(1)
3 (p) = U

(1)
4 (p) = 0, the first pass of our

algorithm is as follows:

f
(4i−3)

U
(4i−3)
1 ,...,U

(4i−3)
4

(p) =

⎛⎜⎜⎜⎜⎝
U

(4i−3)
1 (p)

U
(4i−3)
2 (p)

U
(4i−3)
3 (p)∥∥∥r(0,0)

p,qi

∥∥∥2

⎞⎟⎟⎟⎟⎠ . (10)

Note that the values U
(4i−3)
1 (p), U

(4i−3)
2 (p), U

(4i−3)
3 (p) are simply passed to the

next step of the algorithm. We only compute the Euclidean distance between
two pixel intensities (in RGB color space). The next passes are given by:

f
(4i−2)

U
(4i−2)
1 ,...,U

(4i−2)
4

(p) =

⎛⎜⎜⎜⎝
U

(4i−2)
1 (p)

U
(4i−2)
2 (p)

U
(4i−2)
3 (p)∑

Δx∈[−B,...,B] U
(4i−2)
4 (px + Δx, py , pt)

⎞⎟⎟⎟⎠ ,

f
(4i−1)

U
(4i−1)
1 ,...,U

(4i−1)
4

(p) =

⎛⎜⎜⎜⎜⎝
U

(4i−1)
1 (p)

U
(4i−1)
2 (p)

U
(4i−1)
3 (p)

g
(∑

Δy∈[−B,...,B] U
(4i−1)
4 (px, py + Δy, pt)

)
⎞⎟⎟⎟⎟⎠ .(11)

The separable filtering reduces the computation complexity by a factor (2B +
1)/2. Fortunately, the steps (11) are computationally simple and only require
a small number regular memory accesses, which can benefit from the internal
memory caches of the GPU. Note that in the last step of (11), we already
computed the similarity weights, by evaluating the function g(·).

A second acceleration technique we presented in [19], is to exploit the sym-
metry property of the weights, i.e. w(p, p + qi) = w(p + qi, p). To do so, when
adding w(p, p + qi)Y (p + qi) to the image accumulation buffer at position p,
we proposed to additionally add w(p, p + qi)Y (p) to the image accumulation
buffer at position p+qi. Consequently, the weight w(p, p+qi) only needs to be
computed once, effectively halving the size of the search window δ. However, this
acceleration technique requires “non-regular” writes to the accumulation buffer,
i.e., at position p + qi instead of p as required by the structure of our GPU
program (4). Fortunately, our specific notation here brings a solution here: by
noting that qi is constant in each pass, we could simply translate the input co-
ordinates and perform a “regular” write to the accumulation buffer. This way,
we need to add w(p − qi, p)Y (p− qi) to the accumulation buffer at position p.
We will call this the translation technique. This gives us the next step of our
GPU algorithm:
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f
(4i)

U
(4i)
1 ,...,U

(4i)
4

(p) =⎛⎜⎜⎜⎝
U

(4i)
1 (p)

U
(4i)
2 + U

(4i)
4 (p)U (4i)

1 (p + qi) + U
(4i)
4 (p − qi)U

(4i)
1 (p − qi) [1 − δ(qi)]

U
(4i)
3 + U

(4i)
4 (p) + U

(4i)
4 (p − qi) [1 − δ(qi)]

U
(4i)
4 (p)

⎞⎟⎟⎟⎠
(12)

with δ(·) the Dirac delta function. The Dirac delta function is needed here, to
prevent the weights w(p, p) to be counted twice. In the last pass, again the image
accumulation buffer intensities are divided by the accumulated weights, which
gives:

f
(I)

U
(I)
1 ,...,U

(I)
4

(p) =

(
U

(I)
2 (p)

U
(I)
3 (p)

0 0 0

)T

, (13)

with I = 4 (|δ| + 1) /2 + 1 = 2 |δ| + 3. The output of the NLMeans algorithm is
then X̂(p) = U

(I)
2 (p)/U

(I)
3 (p). Consequently, the complete NLMeans algorithm

comprises the passes i = 1, ..., I defined by steps (10)-(13).

2.4 Extension to Noise Correlated across Color Channels

In this Section, we briefly explain how our GPU-NLMeans algorithm can be
extended to deal with Gaussian noise that is correlated across color channels.
Our main goal here is to show that our video algorithm is not restricted to white
Gaussian noise. Because of space limitations, visual and quantitative results for
color images and color video will be reported in later publications. As we pointed
out in [4, p. 6], the algorithm can be extended to spatially correlated noise by
using a Mahalanobis distance based on the noise covariance matrix instead of the
Euclidean distance similarity metric. When dealing with noise which is correlated
across color channels, we need to replace (5) by:

w(p, p + q) = g

⎛⎝ ∑
(Δx,Δy)∈[−B,...,B]2

(
r(Δx,Δy)

p,q

)T

C−1
(
r(Δx,Δy)

p,q

)⎞⎠
with C the noise covariance function. In practice, the matrix C can be estimated
from flat regions in the video sequence, or based on an EM-algorithm as in
[27]. Now, by introducing the decorrelating color transform G = C−1/2, and by
defining:

r
′(Δx,Δy)
p,q = GY (px +qx +Δx, py +qy +Δy, py +qy)−GY (px +Δx, py +Δy, pt),

the weighting function can again be expressed in terms of the Euclidean distance∥∥∥r′(Δx,Δy)
p,q

∥∥∥2
. Hence, removing correlated noise from video sequences solely re-

quires a color transform G applied as pre-processing to the video sequence.
Furthermore, this technique can be combined with our previous approach from
[4, p. 6] in order to remove Gaussian noise which is both spatially correlated and
correlated across color channels.
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2.5 Discussion

To optimize the computational performance of a GPU program, minimizing the
number of passes I and performing more operations in each kernel function is more
beneficial than optimizing the individual kernel functions themselves, especially
when the kernel functions are relatively simple (as in our algorithm in Section 2.3).
This is due to GPU memory caching behavior and also because every pass typi-
cally requires interaction with the CPU (for example, the computation time of an
individual pass can be affected by the process CPU scheduling granularity). To as-
sess the computational performance improvement, a possible solution would be to
use theoretical models to predict the performance. Unfortunately, these theoret-
ical models are very dependent on the underlying GPU architecture: the compu-
tational performance can not simply be expressed as a function of the total num-
ber of floating point operations, because of the parallel processing. To obtain a
rough idea of the computational performance we use the actual number of passes
required by our algorithm. For example, when comparing our algorithmic accel-
erations from Section 2.3 to the naive NLMeans-algorithm from Section 2.2, we
see that the number of passes is reduced with a factor:

|δ| ((2B + 1)2 + 1
)

+ 1
4 (|δ| + 1) /2 + 1

≈ (2B + 1)2

2
.

For patches of size 9 × 9, the accelerated NLMeans GPU algorithm requires
approximately 40 times less processing passes.

Another point of interest is the streaming behavior of the algorithm: for real-
time applications, it is required the algorithm processes video frames as soon as
they become available. In our algorithm, this can be completely controlled by
adjusting the size of the search window. Suppose we choose:

δ = [−A, ..., A] × [−A, ..., A] × [−Dpast, ..., Dfuture]

with A, Dpast, Dfuture ≥ 0 positive constants. A determines the size of the spatial
search window; Dpast and Dfuture are respectively the number of past and future
frames that the filter uses for denoising the current frame. For causal implemen-
tation of the filter, a delay of Dfuture frames is required. Of course, Dfuture can
even be zero, if desired. However, the main disadvantage of a zero delay is that
the translation technique from Section 2.3 cannot be used in the temporal di-
rection, because the translation technique in fact requires the updating of future
frames in the accumulation buffer. Nevertheless, using a small positive Dfuture,
a trade-off can be made between the filter delay and the algoritmic acceleration
achieved by exploiting the weight symmetry. The number of video frames in
GPU memory is at most 4 (Dpast + Dfuture + 1).

3 Experimental Results

To demonstrate the processing time improvement of our GPU algorithm with
the proposed accelerations, we apply our technique to a color video sequence of
resolution 720×480 (a resolution which is common for DVD-video). The video se-
quence is corrupted with artificially added stationary white Gaussian noise with
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standard deviation 25/255 (input PSNR 20.17dB). We compare the processing
time of our proposed GPU implementation to the modestly optimized (single-
threaded) C++ CPU implementation from our previous work [4] (including all
acceleration techniques proposed in [4]), for different values of the parameters
A and Dpast. For these results, we use Dfuture = 0 (resulting in a zero-delay
denoising filter, as explained in Section 2.5), B = 4 (corresponding to 9 × 9
patches) and we manually select h to optimize the PSNR ratio. In particular, we
use h = 0.13 for A ≤ 3 and h = 0.16 for A > 3 (note that the pixel intensities
are within the range 0 − 1).

Both the CPU and GPU version were run on the same computer, which
is equipped with a 2.4GHz Intel Core(2) processor with 2048 MB RAM and a
NVidia GeForce 9600GT GPU. This card has 64 parallel stream processing units
and is considered to be a mid-range GPU.The GPU algorithm is implemented
as a HLSL pixel shader in DirectX 9.1 (Windows XP) and makes use of 16-
bit floating point values. The main program containing the GPU host code, is
written in C# 3.0.

Processing time and output PSNR results (obtained after denoising) are re-
ported in Table 1. We only report PSNR results for the GPU denoising technique,
since both CPU and GPU algorithms essentially compute the same formula (i.e.
equation (2)). It can be seen that the PSNR values increase when using a larger
search window or a larger number of past frames. This is simply because more
similar candidate blocks become available for searching, and consequently bet-

Table 1. Experimental results for denoising a color video sequence, consisting of 99

frames of dimensions 720×480 and corrupted with additive stationary white Gaussian
noise with standard deviation 25/255 (PSNR=20.17dB)

Parameters GPU CPU GPU vs. CPU

A Search window Dpast FPS msec/frame PSNR [dB] msec/frame acceleration

2 5x5 0 100.00 10.00 33.09 4021 402.10×
2 5x5 1 69.57 14.37 34.42 N/A

2 5x5 2 50.79 19.69 34.88 N/A

2 5x5 3 40.34 24.79 35.04 N/A

3 7x7 0 52.46 19.06 35.40 7505 393.70×
3 7x7 1 30.38 32.92 36.19 N/A

3 7x7 2 21.43 46.67 36.26 N/A

3 7x7 3 16.58 60.31 36.33 N/A

5 11x11 0 18.46 54.17 36.34 18230 336.55×
5 11x11 1 10.22 97.81 37.11 N/A

5 11x11 2 7.07 141.35 37.26 N/A

5 11x11 3 5.42 184.48 37.23 N/A

10 21x21 0 4.32 231.56 36.79 50857 219.63×
10 21x21 1 2.36 424.27 37.20 N/A

10 21x21 2 1.62 615.73 37.24 N/A

10 21x21 3 1.24 805.83 37.17 N/A
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ter estimates can be found for the denoised pixel intensities. Remarkable is also
the huge acceleration of the GPU compared to the CPU of a factor 200 to 400.
The main reason lies in the massive amount of parallellism in the NLMeans
algorithm, which can be fully exploited by the GPU but hardly by the CPU.
Especially this huge acceleration leads to a real-time denoising filter. We can de-
termine the optimal parameters for the algorithm by selecting a minimum frame
rate and by maximizing the output PSNR of the filter for this minimum frame
rate. For our results in Table 1, an optimal combination is a 7×7-search window
and Dpast = 1, in order to attain a frame rate of 25 frames per second (fps).

4 Conclusion

In this paper, we have shown how the traditional NLMeans algorithm can be
efficiently mapped onto a parrallel processing architecture such as the GPU. We
saw that a naive straightforward implementation inevitably leads to an inefficient
algorithm with a huge number of parallel processing passes. We then analyzed
our NLMeans algorithmic acceleration techniques from previous work, and we
noted that these techniques can not be applied “as is”. Therefore, we adapted the
core ideas of these acceleration techniques (i.e. the moving averaging filter for
the fast computation of Euclidean distances and the exploitation of the weight
symmetry) to GPGPU programming methodology and we arrived at a GPU-
NLMeans algorithm that is two to three orders of magnitudes faster (depending
on the parameter choices) than the equivalent CPU algorithm. This technique
can process video sequences in real-time on a mid-range GPU.
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Abstract. Scalable video coding (SVC) is an extension of H.264/AVC

that is used to provide a video standard for scalability. Scalability refers

to the capability of recovering physically meaningful image or video infor-

mation by decoding only partial compressed bitstreams. Scalable coding

is typically accomplished by providing multiple layers of a video, in terms

of quality resolution, spatial resolution, temporal resolution, or combi-

nations of these options. To increase the coding efficiency, SVC adapts

the inter layer prediction which uses the information of base layer to

encode the enhancement layers. Due to the inter layer prediction, the

computational complexity of SVC is much more complicated than that

of H.264/AVC, such as mode decision based on rate-distortion optimiza-

tion (RDO) and hierarchical bi-directional motion estimation. In this pa-

per, we propose a fast mode decision algorithm for combined scalability

to reduce the complexity. Experimental results show that the proposed

algorithm achieves up to a 48% decrease in the encoding time with a

negligible loss of visual quality and increment of bit rates.

Keywords: Scalable video coding, Fast mode decision, Combined scal-

ability, H.264/AVC SE.

1 Introduction

The communication channels comprising a modern network span a broad band-
width range. Therefore, the compressed bitstreams created for particular
resource may not be satisfactory, efficient, or useful for servicing users with
different resource capacities. To support these flexible requirements, SVC has
been adopted as an amendment to H.264/AVC [1] and finalized as an exten-
sion to H.264/AVC video standard [2]. SVC simultaneously generates singe base
layer and several enhancement layers during the encoding procedure. The basic
coding information is encoded as a base layer with reduced resolution, frame
rate, and quality, which can be used for mobile devices. The enhancement layers
supported by base layer provide a high quality service.

To increase the coding efficiency, H.264/AVC adapts several advanced cod-
ing techniques, such as mode decision for macroblock (MB) coding, 4×4 inte-
ger discrete cosine transform (DCT), content adaptive binary arithmetic coding

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 58–68, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(CABAC), etc [1]. Especially, mode decision including spatial prediction for in-
tra mode and variable block size motion estimation/compensation (ME/MC)
with multiple reference frames for inter mode is much more complicated for
SVC because the inter layer prediction is used between layers. Therefore, it is
necessary to design a method to reduce this complexity with a minimal loss of
image quality.

Many kinds of fast mode decision schemes have been proposed for H.264/AVC:
Fast variable block size motion estimation (ME) [3], fast inter coding mode se-
lection [4][5][6], fast intra prediction [7], etc. Recently, some fast mode decision
algorithms for SVC have been reported. However, almost every fast algorithm
for SVC has been specialized in a single scalability. A fast mode decision al-
gorithm for spatial scalability has been suggested by Li et al. [8] in which the
mode distribution relationship between the base layer and enhancement layers
is used. Lim et al. [9] proposed a fast encoding mode decision method using
an early skip mode detection technique based on the relationship between the
temporal levels in a group of pictures (GOP). Some literatures try to combine
scalability [10][11]. A fast mode decision algorithm by Li et al. [10] can support
partially combined scalability: spatial scalability, a coarse grain signal-to-noise
ratio (CGS), and temporal scalability. They use the correlation of mode distri-
bution between the base layer and enhancement layers. A layer adaptive mode
decision algorithm and a motion search scheme by Lin et al. [11] have been
proposed for CGS and temporal scalability in which modes with limited con-
tributions to the coding efficiency are skipped based on a statistical analysis in
order to reduce the computational complexity of the mode search.

In this paper, we propose a fast mode determination scheme for inter frame
coding supporting temporal, spatial, and quality scalability based on correlative
information between the base layer and enhancement layers. In the proposed
algorithm, we define a cost function for the motion area based on ordered mode
information and two mode search classes: large block type (16×16, 16×8, 8×16)
and sub block type (8×8, 8×4, 4×8, 4×4). Based on the designed cost function
for the motion area, either large block type or sub block type is assigned to the
mode search process. Next, we determine the direction of mode search (forward,
backward, bidirectional) using the direction of first mode type for the determined
block type. Using this direction, mode search for the remaining modes in the
block type is performed to find the best mode type for the current macroblock
(MB).

2 Inter Frame Coding for Combined SVC

SVC supports three special types of scalability that allow complete images to be
decoded from only part of the bitstream. The three types are spatial, temporal,
and quality. In addition, each scalability can be combined to support general
condition. Because SVC is an extension of H.264/AVC, most advanced coding
techniques for H.264/AVC are used for inter frame coding. In this section, we
briefly introduce the type of scalability and the mode decision process.
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Fig. 2. Bi-directional prediction for hierarchical B pictures

2.1 Type of Scalability

Spatial Scalability. As shown in Fig. 1, it generally starts with a base layer
at a lower resolution and adds an enhancement layer at higher resolution. The
input video source for base layer is preprocessed to create the lower resolution
image and is independently coded with H.264/AVC. In the enhancement layer
the difference between an interpolated version of the base layer and the source
image are coded. However, both base layer and enhancement layer have the same
frame rate and quality.

Quality Scalability. Quality scalability maintains the same luminance resolu-
tion and frame rate in the lower layer and a single enhancement layer. However,
different quantization scales support the different qualities.

Temporal Scalability. Temporal scalability, provided by the hierarchical B
picture structure, uses a technique to encode different temporal resolutions with
the same spatial resolution as shown in Fig. 2. The hierarchical B picture struc-
ture can be made using bi-directional motion prediction in the GOP. The bi-
directional motion search uses both forward reference pictures (list 0) and back-
ward reference pictures (list 1). As depicted in Fig. 2, the picture at the lowest



An Efficient Mode Decision Algorithm for Combined SVC 61

i/p

b1

b0

b1

i/p

B1

I/P
B0

B1

I/P

b2 b2 b2 b2

0 1 2 3 4 5 6 7 8

EL

Inter layer 
prediction

BL

list 0 list 1

High resolution
temporality
quality

Low resolution
temporality
quality

Fig. 3. The structure of combined scalability

level is called the key picture and is an encoded as an intra (I-picture) or a
predictive frame (P-picture).

Combined Scalability. These types of scalability can be combined. The struc-
ture of combined scalability has features of both spatio-temporal and quality
scalability. For example, Fig. 3 shows the encoding structure for the combined
scalability with two layers. The base layer is encoded at a lower resolution, coarse
quality, and a slow temporal rate. The enhancement layer is encoded at a higher
resolution, fine quality, and a faster temporal rate.

The enhancement layer is also divided into an inter layer prediction picture
(i/p, b0, and b1) and a non-inter layer prediction picture (b2). To increase the
coding efficiency, the inter layer prediction picture can use the encoded infor-
mation of the base layer, such as intra texture, motion vector, and residual
coefficients. The non-inter layer picture is only encoded by using bi-directionally
adjacent frames in the same layer.

2.2 Mode Decision in SVC

H.264/AVC uses the RD optimization (RDO) technique to determine the best
MB coding mode in terms of minimizing bit rates and maximizing image quality.

Inter Mode Prediction. Unlike the inter MB mode of previous video coding
standards, MB for H.264/AVC can be motion estimated and compensated from
already transmitted multi reference frames with varying block sizes from 16×16
down to 4×4 as shown in Fig. 4. One of these various types is determined as the
best inter mode. To determine the best inter MB mode in terms of minimizing
bit rate and maximizing image quality, the RDO technique is used. The best
inter MB mode is determined as one having the smallest RD cost in Eq. (1).

Jinter = SSD{s, r(MV )} + λmotion · R(MV D, REF ), (1)
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where s and r(MV ) mean the current block and the predicted block with the
estimated MV , respectively. SSD{s, r(MV )} is the sum of squared differences
between the current block s and its corresponding block r. λmotionis the Lagrange
multiplier and R(MV D, REF ) means the bit rates for encoding the motion
vector difference MV D and the number of reference frame REF .

Intra Mode Prediction. In addition to the inter MB coding types, various
intra prediction modes are specified in H.264/AVC as shown in Fig. 5. Unlike
the previous coding standards, intra prediction in H.264/AVC is performed in
the pixel domain by referring to neighboring samples. First, prediction blocks
are formed by directional interpolation using the intra prediction modes. Next,
we calculate the RD cost of the difference between the current MB and its
corresponding prediction block. The best intra mode is determined as one having
the smallest RD cost. The RD cost function is

Jintra = SSD{s, r} + λmode · R(s, r, M), (2)

where λmodeis the Lagrange multiplier and R(s, r, M) means the bit rates for
encoding the residual data according to the predicted mode M .

The Best Coding Mode Selection. To obtain the best MB coding mode for
the P-frame, H.264/AVC encoder exhaustively tests all possible encoding modes
including inter modes and intra modes. As a result, the mode having the smallest
RD cost is determined the best coding MB mode among all possible modes in
the P-frame.

The Problem of Mode Decision for Combined SVC. A simple structure
for combined SVC with inter layer prediction is shown in Fig. 3. When the inter
layer prediction is off, the multi-layer signals are equal to multiple independent
sequences transmission. In order to improve the encoding efficiency, the inter
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layer prediction is normally set to adaptive mode. With this condition, the inter
layer prediction signal is either formed by motion compensated prediction inside
the same layer or by up-sampled reconstructed lower layer signal. Adaptive inter
layer prediction chooses the best mode using the RDO function with tremendous
coding complexity. Therefore, we need a fast mode decision algorithm to reduce
the complexity with a negligible loss of visual quality and increment of bit rates.

3 Proposed Mode Decision Algorithm for Combined SVC

We concentrate on motion area to develop the fast mode decision algorithm. We
first define a cost for the motion area and then the directional mode search is
applied using this cost.

3.1 Cost for Motion Area

Fig. 6 shows the structure of combined scalability which is composed of two layers
that have different frame rates, spatial resolutions, and quantization scales. The
base layer is encoded at a lower frame rate, lower resolution, and quality while
the enhancement layer uses a higher frame rate, larger resolution, and better
quality.

The cost for the motion area (MAcost) is defined first. MAcost, the predicted
complexity for the current MB, is described as a degree of correlation between
the base and enhancement layers. The cost is expressed as

MAcost = Temporalcor + Qualitycor · Spatialcor, (3)

where cor is the degree of correlation. Temporalcor indicates a relationship be-
tween the lower and higher temporal levels. Qualitycor and Spatialcor are defined
by a relationship between the base layer and the enhancement layer.
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Temporalcor for the current MB can be calculated from the mode complexity
and the motion vector of the previous temporal level at the corresponding MB
position. The estimated Temporalcor is calculated by Eq. (4).

Temporalcor = Temporallcomplexity

= Model−1
complexity × MV l−1

val

search size
, (4)

where l is the temporal level as shown in Fig. 6. Modecomplexity indicates the
proposed mode number in Table 1. The value of search size represents the maxi-
mum length of search range. MVval is defined by MV values in the corresponding
MB of the previous temporal level, which is expressed as

MVval = �avg(|MVx| + |MVy|)n�, (5)

where n is the number of MV in the corresponding MB. The number of MV can
be various because partitioned ME is permitted in H.264/AVC. It is a integer
value by round up.

Qualitycor·Spatialcoris defined as BLcomplexity, which represents the complex-
ity of texture in the base layer. For spatial scalability, the image in the base layer
and the image in the enhancement layer are very similar. However, the visual
quality between the base layer and the enhancement layer is extremely different,
which is affected by the different quantization scales. Therefore, BLcomplexity is
calculated by

Qualitycor · Spatialcor = BLcomplexity

= scale factor × BL Modecomplexity

scale factor =
1

log2(diff QP )
, (6)

diff QP = |QPBL − QPEL|, 2 ≤ diff QP < 51,
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Table 1. Ordered mode information

Type of mode Mode number of JSVM Proposed mode number

SKIP 0 0

16 × 16 1 1

16 × 8 2 2

8 × 16 3 2

8 × 8 4 4

I4MB 6 6

I16MB 12 6
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Fig. 7. Distribution of the conditional probabilities for a search direction between

the representative mode and other modes(The average of Foreman, Bus and Mobile

sequences)

where BL Modecomplexity represents the proposed mode number of the base
layer in Table 1. QPBL and QPEL represent the quantization scales in the base
layer and enhancement layer, respectively.

3.2 Directional Motion Search

The hierarchical-B picture is constructed using the bi-directional motion search
with both forward reference and backward reference pictures as shown in Fig. 6.
This technique achieves a high encoding efficiency but it increases the compu-
tational complexity of the encoder. Therefore, we propose a directional motion
search to reduce the complexity.

We performed an analysis of the characteristics of the bi-directional motion
search. Fig. 7 shows the mode correlation between the representative mode
(16×16 or 8×8) and other modes. Fig. 7(a) shows the mode correlation between
the 16×16 and other mode within MB partition modes (16×16, 16×8, 8×16).
It means that the search direction for MB partition modes is highly correlated
between the current MB and the corresponding MB for previous temporal level.
However, the 16×16 search direction has a lower correlation value with the 8×8
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search direction. In sub MB partition modes, we can get the similar results as
shown in Fig. 7(b). The search direction for the sub MB partition modes (8×8,
8×4, 4×8, 4×4) is also highly correlated.

Based on this observation, we can determine the search direction for the cur-
rent MB that minimize the RD cost between two modes, 16×16 for MB partition
modes or 8×8 for sub MB modes. Using this direction, a further mode search is
performed to find the best mode type for the current MB.

Next, we use a feedback loop to prevent a large quality loss. If the best RD cost
in the selected class is larger than the defined adaptive threshold (ModeATh),
then we go to the other class and perform an additional mode search. The
adaptive threshold value ModeATh is computed as follows using the RD costs of
neighboring MBs.

ModeATh = avg(RDA, RDB, RDC or B) (7)

The position A, B, and C is the same as that of the prediction MV in H.264/AVC.

4 Experimental Results

To verify the performance of the proposed fast mode determination for combined
scalability in SVC, simulations were performed on various test sequences using
JSVM 9.17 reference software. Table 2 shows the simulation conditions. The
spatial resolution and the frame rate in the enhancement layer were twice those
of the base layer. The spatial resolution in the enhancement layer had a common
intermediate format (CIF) size (FOREMAN, MOBILE, CITY, BUS, SOCCER,
and FOOTBALL) and a standard-definition size (ICE and HARBORU)

The measures for evaluating the performance of the proposed algorithm were
BDPSNR(dB), BDBR(%) [12], and 
T ime(%). 
T ime represents a compar-
ison factor indicating the average for the amount of saved encoding time at each
QP.

Table 2. Simulation conditions

layer parameter Conditions

QP
Base 40

Enhancement 24, 28, 32, 36

Resolution
Base QCIF(7) CIF(2)

Enhancement CIF(7) SD(2)

Frame Rate
Base 15Hz(7) 30Hz(2)

Enhancement 30Hz(7) 60Hz(2)

MV search: 32

MV resolution: 1 \ 4 pel

Coding Option Reference frame: 1, GOP: 8

Total encoding frame: 97

CAVLC, Loop Filter off
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Table 3. Simulation results for combined scalability

Sequence
BDPSNR (dB) BDBR (%) ΔTime(sec)
Li’s Ours Li’s Ours Li’s Ours

FOREMAN -0.67 -0.07 14.79 1.60 39.25 48.38

MOBILE -0.31 -0.05 6.90 1.33 38.94 43.82

CITY -0.71 -0.04 13.51 0.89 38.32 47.68

BUS -0.52 -0.10 9.53 1.80 39.13 46.49

SOCCER -0.61 -0.08 11.07 1.50 38.85 47.94

FOOTBALL -0.56 -0.23 9.48 3.90 36.91 44.11

ICE -0.70 -0.05 17.20 1.50 37.89 46.98

HARBOUR -0.27 -0.03 7.60 1.00 40.52 43.10

Average -0.54 -0.08 11.26 1.69 38.72 46.06


T ime =
T ime[reference]− T ime[Proposed]

T ime[reference]
× 100 (8)

We used Li’s method [10], a well known fast mode decision technique in the SVC
encoding system, for an objective comparison of the encoding performance of our
algorithm to provide spatial and temporal scalability. Results for Li’s method
are shown separately [10]. For a comparison with our algorithm, we implemented
Li’s method to support combined scalability because our proposed algorithm is
designed to support combined scalability.

Table 3 shows the simulation results for combined scalability with various
QP values. The average loss in BDPSNR was measured as -0.23∼ 0.03dB and
BDBR increased 0.89∼ 3.9%, compared with the full mode search. The proposed
algorithm increases the speed of the SVC encoding system up to 48.38% at
FOREMAN, compared to the full mode search. Compared to Li’s method, the
proposed algorithm achieved a speed-up gain of up to 9% with a smaller bit
increment. Li’s method resulted in a large quality loss (0.54 (dB)) and a large
bit increment (11.26%) for combined scalability. The proposed algorithm resulted
in a speed-up gain of approximately 8% more than Li’s method while suffering
less quality loss and a smaller bit rate increment.

5 Conclusions

A fast mode decision algorithm is proposed for inter-frame encoding with com-
bined scalability. This algorithm is based on correlative information between the
base layer and enhancement layers and correlation of temporal levels. In the
proposed algorithm, we define a cost for the motion area using ordered mode in-
formation. Our scheme also uses two classes for the mode search and a feedback
structure to guarantee image quality. For combined scalability, experimental re-
sults show that the proposed algorithm significantly reduces the computational
complexity of the SVC encoder up to 48% with only a small PSNR loss and bit
rate increment.
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Abstract. In this paper, we present a new rate-control algorithm based on frame 
complexity and importance (CI) for H.264/AVC video coding. The proposed 
method aims at selecting accurate quantization parameters for inter-coded 
frames according to the target bit rates, by accurately predicting frame CI using 
the statistics of previously encoded frames. Bit budget is allocated to each 
frame adaptively updated according to its CI, combined with the buffer status. 
We compare the proposed method with JVT-G012 used by H.264/AVC with 
the software JM10.1. The PSNR performance of video coding is improved by 
the proposed method from 0.142 to 0.953 dB, and the BDPSNR performance is 
improved from 0.248 to 0.541dB. The proposed method can also provide more 
consistent visual quality and alleviated sharp drops for frames caused by high 
motions or scene changes with the PSNR standard deviation decreases from 
0.134 to 1.514dB.  

1   Introduction 

The remarkable evolution of video coding technology has underlined the development 
of a multitude of novel signal compression techniques that aimed to optimise the 
compression efficiency and quality of service of standard video coders under certain 
bandwidth [1]. Rate control plays a critical role in the video encoder, although it does 
not belong to the normative part in video coding standards. It regulates the coded bit 
stream to satisfy certain given conditions, on the one hand, and enhances the quality 
of coded video, on the other hand. Some efficient rate control schemes have been 
proposed and used, such as TM5 for MPEG-2 [2], TMN8 for H.263 [3], VM8 for 
MPEG-4 [4] and JVT-G012 for H.264/AVC [5].  

JVT-G012 uses a fluid flow traffic model to compute the target bit for the current 
encoding frame and a linear model to predict mean absolute difference (MAD) to 
solve the chicken and egg dilemma. Lee et al. presented an complexity-based intra-
frame rate control algorithm [6], by predicting a relative complexity of a current  
macroblock (MB) from complexities of its spatially/temporally neighboring MBs. 
Jing et al. presented an effect of I frame RC by using gradient-based image complex-
ity and exponential R-Qstep model [7]. Zhu et al. used temporal average MAD to 
replace traditional MAD linear prediction model, increasing the average luminance 
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PSNR of reconstructed video by up to 0.58 dB [8]. Tu et al. modeled a more accurate 
rate and distortion functions[9]. The newest scalable video coding specification 
H.264/SVC, its reference software Joint Scalable Video Model (JSVM) also adopts a 
JVT-G012-like rate control scheme for its base layer [10]. Yin et al. proposed an 
optimum bit allocation scheme to improve the rate control accuracy [11], though its 
complexity factor, simply determined by the encoding frame and its previous one 
frame, failed to represent the frame complexities over a GOP. It also little consider 
the different importance of each P frame in a GOP. Many MBs in the subsequent 
frame after scene change may need to be encoded in intra-mode and need more bits or 
else it may cause a serious degradation in picture quality.  

In this paper, we first define a reasonable factor to describe frame complexity and 
importance (CI). Then, according to the CI of each frame, an adaptive allocation tar-
get bits and buffer strategy among different frames is presented to improve the quality 
of frames especially for high motions or scene changes.  The organization of the paper 
is as follows. Section 2 briefly introduces preliminary knowledge for later section. In 
Section 3, a CI-based rate-control method is proposed. For demonstrating the effec-
tiveness of the proposed scheme, and the experimental results are provided in Section 
4. Section 5 concludes the paper.  

2   Analysis of Frame Layer Rate Control in JVT-G012 

In JVT-G012, QPs of I frame and the first P frame in a group-of-pictures (GOP) are 
calculated based on available channel bandwidth and GOP length. All the remaining 
forward predicted pictures (P frames) are calculated based on a target bit for each 
frame and RDO process for the current frame. All bi-directional predicted pictures  
(B frames) are obtained through a linear interpolation method according to QP of P 
frames. It is quite important to accurately estimate target bits for the current P frame. 
In this section, we will review the method used for estimating the target bits in  
JVT-G012 and analyse the limitation of the existing method. 

A fluid traffic model based on the linear tracking theory is employed to estimate 
target bits for the current P frame [5]. For simplicity, assume a GOP is encoded with 
IPPP prediction structure. Let N denote total number of frames in a GOP, nj is the jth 
frame in a GOP, u(nj) denote available channel bandwidth, Tr(nj) be the number of 
remaining bits before encoding the current frame, Bc(nj) denote the occupancy of 
virtual buffer after coding current frame and A(nj) be the actual of bits generated after 
encoding a frame. To estimate target bits for the current P frame the fluid traffic mod-
el is used to update Tr frame by frame as follows  

        

1
1 1

( ) ( )
( ) ( ) ( ) ( )j j

r j r j j

r

u n u n
T n T n N j A n

F
−

− −

−
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where 1( )r jT n −  be the number of remaining bits after encoding last frame. Mean-

while, the target buffer level Tbl for each frame is updated frame by frame as follows 
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1
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, ( ) ( )

1
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j j
p r
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Deltp = Tbl n = Tbl n - Deltp -

N - F− . (2) 

Then linear tracking theory is employed to determine the target bits allocated for the 
jth frame as follows 
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( ) ( ( ) ( ))j
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where γ is a constant and its typical value is 0.75 [5]. Meanwhile, the remaining bits 
are computed by 

( )
( )

( 1)
r j

ref j
PN

T n
T n =

R j -
,                                                      (4) 

where ( 1)PNR j -  is the number of P frames remaining for encoding. The final target 

bit  R for the jth frame is calculated by 

( ) * ( ) (1- )* ( )j ref j buf jR n = T n + T nβ β ,                                   (5) 

where β  is a weighting factor and set typically as 0.5 [5]. 
In Eq.(2), all frames have an equal number of target buffer level. In Eq.(4), the  

remaining bits Tr is also allocated to all non-coded frames equally. Thus, a buffer nearly 
full will allocate less target bits to a new frame while a nearly empty buffer will allocate 
more bits, which will lead to a much smaller quantization parameter regardless of the 
complexity of frame content. Inaccurately estimate target bits for the current P frame 
results in fluctuations in picture quality and decrease in coding efficiency. 

In the proposed scheme, we focused on Tr and Tbl, that is, the remaining bits and 
buffer level should be un-equally distributed to all non-coded frames according to 
frame complexities and importance in the target bit estimation step. In other words, 
different complex and important frame will get different buffer and bandwidth  
resource. Details of the improvements will be discussed in Section 3. 

3   The Proposed Rate-Control Method Using Frame CI 

The basic idea in this paper is to allocate more bits for scene change frames or high 
complexity frames or for important frames, and less bits for low complexity frames or 
unimportance frames to achieve constant quality. It is well known that MAD can be a 
good indication of encoding complexity of the residual component. In the quadratic 
rate-quantization (R-Q) model, the encoding complexity is usually substituted by 
MAD [5]. Lee et al. measure 4x4 Intra-block complexity by using MAD with 5x5 
statistical window [12]. Based on their contribution, we defined a new factor to  
describe P frame parameter complexity and importance, denoted as CI, and proposed 
a rate-control method using frame CI. 

3.1   Complexity and Importance Measure of P Frame 

Average actual MAD (AMAD) of all previously encoded P frames in GOP is defined 
to represent the complexity of encoded P frames. AMAD is calculated as follows 

1

1

1
( ) ( )

j -

k=

AMAD j = MAD k
j
∑ ,                                             (6) 

Then, a linear prediction model, like in [5], is employed to calculate the predicted 
MAD (PMAD) of the current frame by 1 2( ) ( 1)PMAD j = a AMAD j - + a× . A method 
similar as updating parameters of R-D model, like in MPEG-4[4], is given to update 
a1 and a2 as 
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where j is the number of the encoded frames. Relative complexity of encoding frame 
(RMAD) can be represented as the ratio of the predicted MAD of PMAD and AMAD, 
and computed by 

( )
( )

( )

PMAD j
RMAD j =

AMAD j
.                                                  (8) 

RMAD is a simple and accurate measure of frame complexity, and provides a mecha-
nism to control the target bits estimation. We quantize RMAD with a non-linear  
strategy, C(j), as follows 
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Meanwhile, the importance of frame should be considered. Just as in JVT-G012 [5], it 
deemed that P frame is more important than B frame. It should allocate more bits to P 
frame. Similarly, a latter P frame is predicted from the former P frames and frames in 
a GOP may have similar content. Hence, the higher quality the referenced frames are, 
the smaller different between the referenced frames and the predicted frame will 
probably be. Thus a video can get a higher quality at same cost of bandwidth. It can 
be deemed that the distance of each P frame from the initial I frame in a GOP should 
be considered when allocating bit. Parameter I(j) that denotes the importance of frame 
is given as 

( 1)
( ) PN

p

R j -
I j =

N
                                                        

(10) 

where RPN(j-1) is the number of P frames remaining for encoding, Np is total P frame 
in a GOP. From these analyses, a new parameter CI(j) is defined as frame’s complex-
ity and importance (CI), and calculated by 

( ) ( ) ( )CI j = C j + I jζ                                                       (11) 

where ζ  is a constant, ranging from 1/9 to 1. The parameter CI(j) provides a new 

measure for global encoding complexity. The equally distributed of the remaining bits 
and buffer level to all non-coded frames lead to fluctuations in picture quality and 
decrease in coding efficiency. 
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Fig. 1(a) shows CI with the junction of scene changes. It is easy to find that the 
inverses of CI are consistent with the PSNR curve. 

 

(a) CI and 1/CI of  ‘Mother and Daughter’ 
sequence 

(b) PSNR results for ‘Mother and Daughter’ 
sequence 

Fig. 1. CI, 1/ CI and PSNR for ‘Mother and Daughter’ sequence (ζ =1/6) 

3.2   Improved Buffer Allocation Scheme 

CI is a simple and accurate measure of frame complexity and importance. Therefore, 
it can provide a mechanism to control estimation of the target bit. If the frames’ CIs 
are large, it should allocate more remaining bits and buffer resource to them. From 
Eq.(4), it can be concluded that Tref(nj) is directly with CI. Meanwhile, a frame with 
large CI should take more buffer resource. From Eq.(3), if we want to allocate more 
buffer resource to a frame, should enlarge Tbl(nj). From Eq.(2b), if we want to large 
Tbl(nj), we should reduce Ddeltp. For computational simplicity, the improved buffer 
allocation scheme is presented to adjust the allocation of remaining bits and buffer 
resource by 
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( )
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r i, j

ref j
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T n
T n = CI

R j -                                                     

(12) 
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1
2 s
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p
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D
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σ= ×
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where σ  is a constant range from 0.4 to 0.6. It is noted that the parameters used in the 
above function all come from empirical experiments with different resolution and-
frame rate. The objective of this improvement is to save bits from those frames with 
relatively less complexity or less importance and allocate more bits to frames with 
higher complexity or more importance. The final target bits R for the new P-frame can 
be calculated using equation (5), where β  increases to 0.55 from 0.5 so that Tref  has 
more weight than Tbuf. 

4   Experimental Results and Analyses 

To evaluate performances of the proposed method, rate control experiments are  
implemented on QCIF video sequences with different activity and motion features. 
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Table 1. Performance comparison between JVT-G012 and the proposed method 

Actual. (Kbps) Rateerr.（%） PSNR Seq. Tar.  
(Kbps) G012 Pro. G012 Pro. G012 Pro. Imp. 
66.836 67.121 69.011 0.426 3.254 37.969 38.510 0.541 
43.131 43.492 45.211 0.837 4.823 35.133 35.995 0.862 
27.972 28.481 29.305 1.820 4.765 32.441 33.217 0.776 

moniter 

18.275 18.832 19.318 3.048 5.707 29.863 30.359 0.496 
76.443 76.971 80.059 0.691 4.730 36.520 36.882 0.362 
44.808 45.425 47.556 1.377 6.133 33.143 33.581 0.438 
26.380 26.862 28.044 1.827 6.308 30.518 31.095 0.577 

salesman 

14.851 15.497 15.929 4.335 7.259 28.341 28.627 0.286 
56.198 56.814 59.139 1.096 5.233 37.963 38.301 0.338 
31.777 32.206 33.371 1.350 5.016 34.423 35.376 0.953 
18.300 18.928 19.268 3.432 5.290 32.164 32.688 0.524 

mum-
daughter 

10.848 11.520 11.553 6.195 6.499 30.168 30.310 0.142 
38.598 39.300 40.694 1.819 5.430 38.823 39.378 0.555 
24.244 24.940 25.420 2.871 4.851 35.760 36.417 0.657 
15.827 16.451 16.699 3.943 5.510 33.074 33.385 0.311 

akiyo 

11.020 11.513 11.867 4.474 7.686 30.937 31.200 0.263 
 

Table 2. PSNR standard deviation, PSNRσ, comparison between the proposed method and 
JVT-G012 

PSNRσ Sequence Tar. (Kbps) 
JVT-G012 Proposed Diff 

66.836 2.567 1.143 1.424 
43.131 3.415 1.901 1.514 
27.972 3.155 2.162 0.993 

 

moniter 

18.275 2.399 2.040 0.359 
76.443 2.154 1.89 0.264 
44.808 2.763 2.503 0.260 
26.380 2.622 2.138 0.484 

 

salesman 

14.851 1.647 1.535 0.112 
56.198 2.838 2.314 0.524 
31.777 3.853 2.528 1.325 
18.300 3.138 2.618 0.520 

mum 

daughter 

10.848 2.448 2.310 0.138 
38.598 2.353 1.715 0.638 
24.244 2.742 1.967 0.775 
15.827 2.438 2.172 0.266 

 

akiyo 

11.020 1.725 1.591 0.134 
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Each test sequence is encoded by IPPP prediction structure with the GOP length of 
30. RDO is enabled both in mode decision and motion estimation. All test sequences 
used are in 4:2:0 format, 150 Frames, ζ  in Eq.(11) is set 0.5, σ in Eq.(13) is set 0.5. 

The test platform is JM10.1 [13]. Like JVT-G012, the bit rates, which are generated 
by encoding the test sequences with the fixed QPs of 28, 32, 36, and 40, are the target 
bit rates for an encoder with the proposed rate control scheme. Table 1 illustrates 
performance comparison between JVT-G012 and the proposed method. Experiments 
have been carried out on PC with the Intel Core 3.0GHz CPU and 3.25GB RAM. 
 

 
(a) RD performance for moniter 

BDPSNR=0.541 dB 
(b) RD performance for saleman 

BDPSNR=0.248 dB 

 
(c) RD performance for akiyo 

BDPSNR= 0.361 dB 
       (d) RD performance for mumdaughter 
              BDPSNR=0.490 dB 

Fig. 2. R-D curve comparison between the proposed method and JVT-G012 

In the table 1, Rate error=(Actual Rate-Target Rate)/ Target Rate. It is clear that 
JVT-G012 has a rate error range from 0.426% to 6.195%, while the proposed method 
ranges from 3.254% to 7.686%, the proposed method outperforms JVT-G012. They 
have similar rate error while the PSNR of the proposed method is improved up to 
0.953 dB compared with JVT-G012, and the minimum improvement is 0.142dB. In 
Table 1, it is seen that the proposed method achieves higher PSNR with negligible 
and increments in bit rate. In order to compare coding efficiency, rate-distortion 
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(a) PSNR fluctuation of moniter (b) PSNR fluctuation of salesman 

  
(c) PSNR fluctuation of akiyo (d) PSNR fluctuation of mumdaughter 

Fig. 3. PSNR fluctuation comparison between the proposed method and JVT-G012 

curve is given in Fig. 2, with Bjontegaard delta PSNR (BDPSNR) [14] comparing the 
difference between two RD curves. 

From Fig.2, it is clear that the proposed method has a better coding efficiency,  
especially in middle bandwidth. The BDPSNR of the proposed method is improved by 
up to 0.541 dB for moniter, the minimum improvement is 0.248dB for sales- 
man, a sequence with normal motion and less scene change sequence. Additional  
comparisons are given in Table 2, where PSNR standard deviation, 

PSNRσ= 2

1

1
( )

1

n

i
i

PSNR PSNR
n =

−
− ∑ , is used to describe PSNR fluctuation. Standard 

deviation is a parameter to measure numerical value spread out degree in mathematics. 
In Table 2, it is clear that the PSNR standard deviation, PSNRσ, of the proposed 
method decreases from 0.134dB to 1.514dB compared to JVT-G012, it implies that 
the rate-control accuracy of the proposed method is better that of JVT-G012. Clearer 
results are listed in figure show the PSNR fluctuation under the condition as target bit 
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rates for an encoder are generated by coding the test sequences with the fixed QP of 
32. Other condition is the same as the front experiments. 

Fig. 3. illustrates that the proposed method can avoid drastic visual quality 
variation caused by scenes. Smaller PSNR fluctuation implies more stable visual 
quality which is highly desired in video coding. 

5   Conclusion 

In this paper we have presented a new rate control technique to improve the rate con-
trol in H.264/AVC video coding. The proposed method considers scene’s characteris-
tics and its bit allocation is more reasonable so that it can maintain a video stream 
with a smoother PSNR variation which is highly desirable in real-time video coding 
and transmission. Meanwhile, experimental results show that the coding efficiency 
has been improved in the proposed method.  

In future work, the proposed improvements will be extended to rate control in ste-
reo video communication. Bitrate budget is first allocated to each stereo image frame 
adaptively updated according to bandwidth and buffer status, combined with com-
plexity and importance of stereo image frame.  Then it should also allocate bits inter 
views according to a parameter of frame complexity and importance to keep the qual-
ity of each view totally equal. And it may be helpful to get a more consistent visual 
quality when scene switching occurs in stereo video. 
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Abstract. In this paper, we propose a novel formulation involving fusion of  
noise and quantization residue features for detecting tampering or forgery in video 
sequences. We reiterate the importance of feature selection techniques in 
conjunction with fusion to enhance the tamper detection accuracy. We examine 
three different feature selection techniques, the independent component analysis 
(ICA), fisher linear discriminant analysis (FLD) and canonical correlation analysis 
(CCA) for achieving a more discriminate subspace for extracting tamper 
signatures from quantization and noise residue features. The evaluation of 
proposed residue features, the feature selection techniques and their subsequent 
fusion for copy-move tampering emulated on low bandwidth Internet video 
sequences, show a significant improvement in tamper detection accuracy with 
fusion formulation. 

Keywords: image tampering, digital forensics, feature selection, image fusion. 

1   Introduction  

Digital Image tampering or forgery has become major problem lately, due to ease of 
artificially synthesizing photographic fakes- for promoting a story by media channels 
and social networking websites. This is due to significant advances in computer 
graphics and animation technologies, and availability of low cost off-the-shelf digital 
image manipulation and cloning tools. With lack of proper regulatory frameworks and 
infrastructure for prosecution of such evolving cyber-crimes, there is an increasing 
dissatisfaction about increasing use of such tools for law enforcement, and a feeling 
of cynicism and mistrust among the civilian operating environments.  

Another problem this has lead to, is a slow diffusion of otherwise extremely 
efficient image based surveillance and identity authentication technologies in real-
world civilian operating scenarios. In this paper we propose a novel algorithmic 
framework for detecting image tampering and forgery based on extracting noise and 
quantization residue features, their transformation in cross-modal subspace and their 
multimodal fusion for intra-frame and inter-frame image pixel sub blocks in video 
sequences. The proposed algorithmic models allow detecting the tamper or forgery in 
low-bandwidth video (Internet streaming videos), using blind and passive tamper 
detection techniques and attempt to model the source signatures embedded in camera 
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pre-processing chain. By sliding segmentation of image frames, we extract intra-
frame and inter-frame pixel sub-block residue features, transform them into optimal 
cross-modal subspace, and perform multimodal fusion to detect evolving image 
tampering attacks, such as JPEG double compression, re-sampling and retouching.  
The promising results presented here can result in the development of digital image 
forensic tools, which can help investigate and solve evolving cyber crimes.  

2   Background  

Digital image tamper detection can use either active tamper detection techniques or 
passive tamper detection techniques. A significant body of work, however, is 
available on active tamper detection techniques, which involves embedding a digital 
watermark into the images when the images are captured. The problem with active 
tamper detection techniques is that, not all camera manufacturers embed the 
watermarks, and in general, most of the customers have a dislike towards cameras 
which embed watermarks due to compromise in the image quality.  So there is a need 
for passive and blind tamper detection techniques with no watermark available in the 
images.  

Passive and blind image tamper detection is a relatively new area and recently 
some methods have been proposed in this area. Mainly these are of two categories  
[1, 2, 3, 4]. Fridrich [4] proposed a method based on hardware aspects, using the 
feature extracted from photos. This feature called sensor pattern noise is due to the 
hardware defects in cameras, and the tamper detection technique using this method 
resulted in an accuracy of 83% accuracy. Chang [5] proposed a method based on 
camera response function (CRF), resulting in detection accuracy of 87%, at a false 
acceptance rate (FAR) of 15.58%. Chen et al. [6] proposed an approach for image 
tamper detection based on a natural image model, effective in detecting the change of 
correlation between image pixels, achieving an accuracy of 82%. Gou et al [7] 
introduced a new set of higher order statistical features to determine if a digital image 
has been tampered, and reported an accuracy of 71.48%.  Ng and Chang [8] proposed 
bi-coherence features for detecting image splicing. This method works by detecting 
the presence of abrupt discontinuities of the features and obtains an accuracy of 80%. 
Popescu and Farid [3] proposed different CFA (colour filter array) interpolation 
algorithms within an image, reporting an accuracy of 95.71% when using a 5x5 
interpolation kernel for two different cameras. A more complex type of passive 
tamper detection technique, known as “copy-move tampering” was  investigated by 
Bayram, Sencar, Dink and Memon [1,2] by using low cost digital media editing tools 
such as Cloning in Photoshop. This technique usually involves covering an unwanted 
scene in the image, by copying another scene from the same image, and pasting it 
onto the unwanted region. Further, the tamperer can use retouching tools, add noise, 
or compress the resulting image to make it look genuine and authentic. Finally, 
detecting tampers based on example-based texture synthesis scheme was proposed by 
Criminisi  et al[9] that is based on filling  in a region from sample textures. It is one of 
the state-of-the-art image impainting or tampering schemes. Gopi et al in [10] 
proposed a pattern recognition formulation and used auto regression coefficients and 
neural network classifier for tamper detection. 
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One of the objectives of the work reported here is development of robust and 
automatic tamper detection framework for low bandwidth Internet streamed videos 
where most of the fingerprints left by tamperer can be perturbed by heavy 
compression. However, by fusing multiple image tampering detectors, it could be 
possible to uncover the tampering in spite of the heavy compression, as different 
detectors use cues and artifacts at different stages of the image formation process. So 
if an image lacks certain cues, a complementary detector would be used for making a 
decision For example, a copy move forgery might have been created with two source 
images of similar quantization settings but very different cameras. In this case, the 
copy move forgery can be successfully detected by a different detector. We thus 
benefit from having several tamper detection modules at hand rather than only using 
the one type of detector. Another advantage of fusing several detector outputs to make 
a final decision is that, if one of the detector outputs noisy and erroneous scores, the 
other detectors could complement and enhance the reliability of the tamper decision. 
Therefore, the advantage of fusion is twofold: to handle images which were subjected 
to multiple, diverse types of tampering, and to boost the detection robustness and 
accuracy by making different modules work with each other. The challenge, however, 
lies in the synergistic fusion of diverse detectors as different detectors are based on 
different  physical principles and segmentation structures.  

We formulate the fusion problem in a Bayesian pattern recognition framework and 
use well known Gaussian Mixture Models for the task. The approach is based on 
detecting the tamper from the multiple image frames, by extracting noise and 
quantization residue features in intra-frame and inter-frame pixel sub blocks (we refer 
to pixel sub blocks hence forth in this paper as macro blocks), transforming them into 
optimal feature subspace (ICA, CCA or FLD) to extract the maximal correlation 
properties, and use GMM classifier to establish possible tampering of video. To 
enhance the confidence level of one of the tamper detector, we either perform a fusion 
of detector scores (late fusion) or fuse the features first and perform the classification 
later (feature fusion). The approach extends the noise residue features reported by Hsu 
et al in [11] and expands the pattern recognition formulation proposed by Gopi et al in 
[10]. The approach is blind and passive, based on the hypothesis, that typical 
tampering attacks such as double compression, re-sampling and retouching can 
inevitably disturb the correlation properties of the macro blocks within a frame (intra-
frame) as well as between the frames (inter-frame) and can distinguish the 
fingerprints or signatures of genuine video from tampered video frames. The rest of 
the paper is organized as follows. Next Section describes the formulation of fusion 
problem. The details of the experimental results for the proposed fusion scheme is 
described in Section 4. The paper concludes in Section 5 with some conclusions and 
plan for further work. 

3   Formulating the Fusion Problem  

The processing pipeline once the images or video is captured consists of several 
stages. First, the camera sensor (CCD) captures the natural light passing through the 
optical system. Generally, in consumer digital cameras, every pixel is detected by a 
CCD detector, and then passed through different colour filters called Color Filter 
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Array (CFA). Then, the missing pixels in each color planes are filled in by a CFA 
interpolation. Finally, operations such as demosaicing, enhancement and gamma 
correction are applied by the camera, and converted to a user-defined format, such as 
RAW, TIFF, and JPEG, and stored in the memory. 

Since the knowledge about the source and exact processing (details of the camera) 
used is not available for application scenarios considered in this work (low-bandwidth 
Internet video sequences), and which may not be authentic and already tampered, we 
extract a set of residual features for macro blocks within the frame and between adjacent 
frames from the video sequences. These residual features try to model and extract the 
fingerprints for source level post processing within any camera, such as denoising, 
quantization, interlacing, de-interlacing, compression, contrast enhancement, white 
balancing, image sharpening etc. In this work, we use only two types of residual 
features: noise residue features and quantization residue features.  

The  noise and quantization residue features were first extracted from 32 x 32 pixel 
intra-frame and inter-frame macro blocks of the video sequences. The details of noise 
and quantization residue features are described in [3], [4] and [11]. A feature selection 
algorithm was used to select those features that exhibit maximal significance. We 
used feature selection techniques based on three different techniques: Fisher linear 
discriminant analysis (FLD), canonical correlation Analysis (CCA), and Independent 
component analysis (ICA). The details of the three feature selection techniques is 
described in [12], [13].  

4   Experimental Results 

The video sequence data base from Internet movie sequences was collected and 
partitioned into separate subsets based on different actions and genres. The data 
collection protocol used was similar to the one described in [14]. Figure 1 shows 
screenshots corresponding to different actions, along with emulation of copy move 
tampered scenes and the detection of tampered regions with the proposed approach. 

Different sets of experiments were conducted to evaluate the performance of the 
proposed feature selection approaches, namely, the ICA, the FLD and the CCA and 
their fusion (late fusion or feature fusion) in terms of tamper detection accuracy. The 
experiments involved a training phase and a test phase. In the training phase, a 
Gaussian Mixture Model for each video sequence from data base was constructed 
[15]. In the test phase, copy-move tamper attack was emulated by artificially 
tampering the training data. The tamper processing involved copy cut pastes of small 
regions in the images and hard to view affine artefacts. Two different types of tampers 
were examined. An intra-frame tamper, where the tampering occurs in some of the 
macro blocks within the same frame, and inter-frame tamper, where macro blocks 
from adjacent frames were used. However, in this paper, we present and discuss 
results for the intra-frame tamper scenario only.  

As can be seen from Table 1, which show the tamper detection results in terms of 
% accuracy, the performance of noise residue and quantization residue features 
without feature selection, the improvement achieved by using feature selection 
techniques, and the robustness achieved by fusing the sub space features (feature level 
fusion) or the scores. We compared the performance of proposed feature selection and 
fusion techniques with feature selection based on autoregressive coefficients and 
neural network classification proposed by Gopi et al in [10]. 
 



 Digital Image Tamper Detection Based on Multimodal Fusion of Residue Features 83 

 

Fig. 1. Row 1: Screenshots from Internet streamed video sequences; Row 2: Copy-move 
tamper emulation for the scene; Row 3: Detection of tampered regions in the scene 

As can be seen in Table 1, the single mode noise residue features perform better 
than quantization residue features. For both noise residue and quantization residue 
features, the CCA, ICA and FLD features perform better than ARC features. CCA 
features result in better accuracy for noise residue features as compared to others, as 
they are based on canonical correlation analysis that can extract maximal correlation 
properties better than features based on Fisher linear discriminant analysis. However, 
for quantization residue features, the ICA features perform better than CCA features 
showing that quantization information perturbed by tampering may not be necessarily 
correlated, but could contain certain independent components. By fusing intra-frame 
and inter-frame macro block features, we can see a better performance is achieved.  
This shows that better correlation information can be extracted when multiple frames 
are used for detecting tampers. Further, by fusing the two detectors, the detectors 
based on noise residue features and quantization residue features, we can see that a 
better performance is achieved as the two detectors complement each other, resulting 
in a consistent and stable performance. This can be expected as quantization artefacts 
for low-bandwidth video can significant damage tamper related correlation properties. 
However, by using a hybrid fusion of quantization and noise residue features from 
macro blocks, and using different feature selection techniques, we can see that a better 
performance is achieved.  

As we are using a pattern recognition formulation, the classifier used for making 
decision on tampering is also equally important (in addition to an appropriate feature 
selection technique). Hence the next experiment involved examining the performance 
of GMM classifier with the neural network (NN) classifier based on back propagation 
network proposed in [10], and the support vector machine (SVM) classifier based on 
RBF kernel proposed in [17]. The results from this experiment are shown in Table 2 
and Table 3. Since the experiments reported in Table 1 resulted in CCA and ICA 
features as the best performing features, we used CCA and ICA features for 
experimental results shown in Table 2 and Table 3.   
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Table 1. Evaluation of noise and quantization residue features for emulated copy-move  tamper 

attack (% Accuracy); InterIntraf −
~

 ( noise residue features); InterIntraf − (quantization residue 

features) 

Internet movie data subset % Accuracy  

Different Residue features and their fusion CCA ICA FLD ARC[10]  

Intraf  (Intra-frame noise residue features) 83.2 83.4 83.6 80.2 

Interf  (Inter-frame noise residue features) 83.8 83.1 83.4 83.1 

Intraf
~

(Intra-frame quant. residue features) 77.28 80.26 76.23 74.33 

Interf
~

 (Inter-frame quant. residue features) 72.65 78.27 71.44 69.45 

InterIntraf (feature fusion- noise residue) 86.6 86.1 85.27 83.78 

InterIntraf
~

 feature fusion- quant residue) 80.55 82.34 79.66 77.22 

InterIntraf + InterIntraf
~

 (hybrid fusion) 89.56 88.85 86.22 84.33 

 

Table 2. (% Accuracy) Performance for noise and quantization residue features and their fusion 
for GMM vs. NN classifier  

% Accuracy  GMM  

Classifier

SVM

Classifier

NN

Classifier [10[ 

Different Residue features and their fusion CCA features  CCA features CCA features 

Intraf  (Intra-frame noise residue features) 83.2 83.4 81.4 

Interf  (Inter-frame noise residue features) 83.8 83.5 80.6 

Intraf
~

(Intra-frame quant. residue features) 77.28 78.18 75.77 

Interf
~

 (Inter-frame quant. residue features) 72.65 74.43 70.53 

InterIntraf (feature fusion- noise residue) 86.6 84.96 83.22 

InterIntraf
~

 feature fusion- quant residue) 80.55 82.43 77.23 

InterIntraf + InterIntraf
~

 (hybrid fusion) 89.56 90.56 83.45 
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Table 3. (% Accuracy) Performance for noise and quantization residue features and their fusion 
for GMM vs. NN classifier  

.
% Accuracy  GMM  

Classifier

SVM

Classifier

NN

Classifier [10[ 

Different Residue features and their fusion ICA features  ICA features ICA features 

Intraf  (Intra-frame noise residue features) 83.2 83.5 81.4 

Interf  (Inter-frame noise residue features) 83.8 83.7 80.6 

Intraf
~

(Intra-frame quant. residue features) 77.28 78.28 75.77 

Interf
~

 (Inter-frame quant. residue features) 72.65 73.65 70.53 

InterIntraf (feature fusion- noise residue) 86.6 85.9 83.22 

InterIntraf
~

 feature fusion- quant residue) 80.55 81.34 77.23 

InterIntraf + InterIntraf
~

 (hybrid fusion) 89.56 91.59 83.45 

 

As can be observed in Table 2 and Table 3, the three classifiers perform differently 
for different feature selection techniques. For all three feature selection techniques 
GMM and SVM perform much better than the NN classifier. However, for 
quantization residue features, the ICA features results in better performance as 
compared to CCA features, whereas for noise residue features, CCA gives better 
performance. Further, the SVM classifier performs better than the GMM classifier, 
for quantization features with ICA feature selection technique. When we perform a 
fusion two detectors complement each other and resulting in synergistic fusion with 
combination of ICA and SVM processed quantization features and CCA and GMM 
processed noise residue features resulting in best performance. The experimental 
analysis indicates that for detection of image tampering in low bandwidth video 
sequences, we need to use pattern recognition and fusion based formulation, This 
formulation allows both linear and nonlinear correlation properties of the tamper 
scenarios. In this study we have shown for only two simple types of camera image 
post-processing features. However, other features corresponding to interlacing and  
de-interlacing artefacts, demosaicing, resampling, touching and blurring need to 
examined for characterising the tampering process. This will be the objectives of the 
future work. 

5   Conclusions 

In this paper, we investigated a novel approach for video tamper detection in low-
bandwidth Internet video sequences using a pattern recognition and information 
fusion formulation. The approach uses different types of residue features from  
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intra-frame and inters frame macro blocks, and transforms them into more 
discriminatory subspace based on different feature selection techniques. We examined 
ICA, CCA and FLD techniques as three different feature selection techniques for two 
different image residue features, the noise residue features and quantization residue 
features.  

Further, we propose a fusion of subspace features and examine the performance of 
fusion formulation with three different types of classifier structures: NN classifier, 
GMM classifier and SVM classifier. The experimental results show that detection of 
tampers in low bandwidth internet video sequences is a challenging task, as traces of 
tampering (which leaves traces of periodicity and correlation in macro blocks) can be 
damaged by heavy compression used for reducing the bandwidth.  However, by using 
a pattern recognition and fusion formulation, it is possible to characterise the tamper 
and use alternate complementary detector. Further work will focus on examining the 
properties of the image at optical level and detecting the perturbations caused by 
tampering and extension of propose fusion formulation for development of robust 
tamper detection tools. 
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Abstract. Automatic video-based fire detection can greatly reduce fire

alert delay in large industrial and commercial sites, at a minimal cost, by

using the existing CCTV camera network. Most traditional computer vi-

sion methods for fire detection model the temporal dynamics of the flames,

in conjunction with simple color filtering. An important drawback of these

methods is that their performance degrades at lower framerates, and they

cannot be applied to still images, limiting their applicability. Also, real-

time operation often requires significant computational resources, which

may be unfeasible for large camera networks. This paper presents a novel

method for fire detection in static images, based on a Markov Random

Field but with a novel potential function. The method detects 99.6% of

fires in a large collection of test images, while generating less false posi-

tives then a state-of-the-art reference method. Additionally, parameters

are easily trained on a 12-image training set with minimal user input.

1 Introduction

Fire detection is an important component of industrial and commercial site
surveillance systems with regard to personnel and material safety. Nearly all
of the currently employed systems rely on dedicated sensors and manually acti-
vated fire alarms. To detect fire as early as possible, a combination of different
sensor types is often made, linked by sensor fusion methods to improve reliabil-
ity. Examples of such techniques include Bao et al. [1], who use temperature and
photo-electric smoke sensors, and Li et al. [2], whose techniques rely on multi-
spectral cameras. These systems however, are impractical or too expensive for
covering large sites, especially outdoors, due to the required sensor density. A
cheap and effective alternative is the use of computer vision-based techniques
in conjunction with digital cameras or CCTV networks. The main advantages
are the large coverage area offered by a single camera, and the possibility of
integration with existing surveillance camera systems.

The state-of-the art fire detection methods in computer vision typically consist
of two main parts, modelling the most characteristic aspects of fire in video.
The first aspect is spectral information. All methods employ a color filter of
some sort, usually based on a fixed set of rules. The second aspect concerns
the temporal dynamics of flames, often combined with spatial characteristics.
The spatio-temporal modelling of fire in video was first described by Healey

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 88–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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et al. [3] in 1993, with more recent contributions by Liu et al. [4] and Töreyin
et al. [5]. Other examples of temporal properties of fire used in fire detection
include standard background subtraction [6], flame growth and propagation [7,8],
intensity and boundary flicker [9], area, roundness and circumference deviation
[10], edge dynamics [11] and temporal contour analysis [12].

An important limitation of all these methods is that their performance de-
grades at lower framerates, as accurate modelling of flame dynamics requires a
high temporal resolution, and they cannot be applied to still images. Addition-
ally, the high video data rates combined with the requirement of real-time op-
eration mean that significant computational resources are necessary to monitor
a single video stream. This is an important concern for large camera networks.
These two drawbacks also inhibit the use of the methods for low-power, wireless
camera systems, where frame rates are low to save transmission time and thus
save battery power, or where processing is integrated in the camera itself. Some
efforts have been made to produce fire detection systems for still images, notably
by Noda et al. [13], who employed color histogram models for tunnel security
monitoring. For use in a more general setting, the static color filters used in the
dynamic methods can be used and improved upon, but they still yield a high
false alarm rate [14]. Also, as the filters rely on a predefined set of rules, they
require time-consuming parameter tuning.

In this paper, a novel method is presented for fire detection on static images.
Rather than using a set of rules in color space, the image data is treated as
a Markov Random Field (MRF). MRF theory is a powerful tool for modeling
contextual dependencies, and has succesfully been applied to a variety of texture
classification problems [15,16]. The MRF we propose employs a custom potential
function shaped by training data. A classifier evaluates the energy function of the
MRF per image block to detect blocks on the border of flames. The method is
shown to yield near perfect detection rates on a variety of fires, while generating
less false alarms than a state-of-the-art fixed-threshold color filter.

2 The MRF Model

Markov Random Fields theory is a branch of probability theory developed for
modeling contextual dependencies in physical phenomena. In computer vision, it
is primarily used for labeling problems, to establish probabilistic distributions of
interacting labels. A thorough description of the application of MRFs to vision
problems can be found in the book “MRF Modeling in Computer Vision” by S.
Z. Li [17]. The basic principles, terminology and notation are described below.

Let S = {i|i = 1...m} be an index set corresponding to a set of sites in a
Euclidian space (e.g. a regular two-dimensional lattice), in which each site is
uniquely defined by its index i, and let L be a discrete or continuous set of
labels. Let F = {F1, ..., Fm} be a family of random variables defined on S, in
which each random variable Fi takes a value from a label set L. The label of
the random variable Fi will be denoted fi. Assuming a discrete label set, the
probability that Fi takes on a certain label fi is given by P (fi). The family F
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is called a random field on S. The joint probability of the random field taking a
particular combination of values is denoted P (f).

A Markov Random Field is defined as a random field in which the proba-
bility P (fi) is only dependent on fi and some of its neighbors. Therefore, a
neighborhood system N is defined as

N = {Ni|i ∈ S} (1)

where Ni is the index set of sites neighboring i. The neighboring relationship
has the following properties:

1. a site is not a neighbor of itself: i �∈ Ni,
2. the neighboring relationship is mutual: i ∈ Ni′ ⇐⇒ i′ ∈ Ni.

For a regular lattice S, the neighboring set of i is usually defined as the set of
sites within a radius of i. Note that sites at or near the boundary of the lattice
have fewer neighbors. The Markovianity constraint is then expressed by

P (fi|f − {fi}) = P (fi|fNi) (2)

where f − {fi} denotes all values of the random field except for fi itself, and
fNi = {fi′ |i′ ∈ Ni} stands for the labels at the sites neighbouring i.

Let us construct a graph on S in which the edges represent the neighboring
relationships. Now consider the cliques in this graph. A clique is a subset of
vertices so that every two vertices are connected by an edge. In other words,
the cliques represent sites which are all neighbors to each other. Thus, a clique
consists of either a single site, or a pair of neighboring sites, or a triple, and so
on. The collection of single-site and pair-site cliques will be denoted by C1 and
C2 respectively, where

C1 = {{i}|i ∈ S} (3)

C2 = {{i, i′}|i′ ∈ Ni, i ∈ S}. (4)

The energy function U(f) is a measure of the likeliness of the occurrence of f for
a given model. For single-site and pair-site cliques, it is defined as

U(f) =
∑
i∈S

V1(fi) +
∑
i∈S

∑
i′∈Ni

V2(fi, f
′
i) (5)

where V1 and V2 denote potential functions for single-site and pair-site cliques.
Lower energy of the joint distribution represents a better fit of the model to the
data.

When applied to digital images, the sites correspond to pixel locations, and
the neighborhood system is usually either 4-connectedness or 8-connectedness.
For a 4-connected system, the four types of pair-site clique that any non-edge
pixel belongs to are shown in figure 1.

A type of MRF of particular interest to labeling problems in computer vision
is the Multi-Level Logistic (MLL) model. In an MLL, the potential functions are
defined as

V1(fi) = αfi (6)
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where αfi is the potential associated with the label fi, and

V2(fi, fi′) =

{
β |fi = fi′

−β |fi �= fi′
(7)

where β is the potential for pair-site cliques. For the 4-connected neighborhood
system, each non-edge pixel belongs to four different pair-site cliques, as shown
in figure 1. The reason why this model is often used in computer vision, is that
for β < 0, the MLL model acts as a smoothness prior. The potential function
then favors smooth distributions with blob-like regions of uniform labels, which
is a desirable property in labeling algorithms.

Fig. 1. The four types of pair-site cliques any non-edge pixel belongs to in a 4-connected

neighborhood. Black is the pixel concerned, gray is the additional pixel that makes up

the clique, outlined in gray is the neighborhood.

For our fire detection application, we want to use the MRF to model the
typical red to yellow color texture found in flames. The label set L therefore
consists of discrete color labels, obtained by binning the hue channel in HSV color
space. The hue is divided into n evenly spaced bins, with n ≥ 6, as separation of
yellow and red are essential. typically, n = 8. Now we must choose the potential
functions V1 and V2 so that the joint energy U(f) is low for fire areas and high
for background. There are two properties of fire we would like to model in the
MRF. The first property is the typical color range of the fire pixels. This can
be expressed in the potential function for single-site cliques, V1, by choosing
the values of αfi low for typical fire colors and high for the others. The second
property we want to model is spatial hue variation, reflecting the color gradients
typically present in flames. This property will help set apart actual fires from
uniformly fire-colored objects, e.g. fire trucks, billboards or fire-colored clothing
items. This unsmoothness prior can be implemented in the potential function
for pairwise cliques, V2, by specifying a positive value for the constant β.

A straightforward way to construct a classifier from this model is to evaluate
the joint energy U(f) per 4× 4 pixel block of the image, and setting a threshold
on this energy below which the block is classified as belonging to fire. Our experi-
ments have shown that this technique works and can produce adequate detection
rates. However, the false positive rates do not display a significant improvement
over state-of-the-art color-based methods [14]. This can be attributed to the
simple color space binning. Since V2 favors any kind of label variation, pair-site
cliques consisting of different non-fire colors will also generate low energy. This
limits the usefulness of the potential function V2 and shifts the importance to-
wards V1, thereby diminishing the advantage the MLL should theoretically offer.
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In practice, this means after optimizing the parameters, β becomes insignificant
compared to the values αfi . A solution to this problem is given in the next
section.

3 A Custom Potential Function

One way to resolve the issue described above, would be to adapt the color seg-
mentation to obtain a more intelligent labeling. However, this means dealing with
an issue we are trying to avoid as much as possible: setting hard thresholds in
color space. As an alternative way to improve the false positive rate, we propose
a novel potential function. Rather than specifying a constant value for β, it will
now depend on the relative occurrence of the particular clique in a foreground
(fire) and background model. Note that this means a departure from the MLL
theory. For every possible pair of color labels, a potential value is now calculated
beforehand, based on training data. Let Cf (fi, fj) denote the number of times
a pairwise clique consisting of the labels fi and fj occurred over all fire areas in
the training data, and likewise Cb(fi, fj) the number of times it occurred over
all background areas. We will then estimate the occurrence probabilities of the
clique in foreground and background as

Pf (fi, fj) =
1 + Cf (fi, fj)∑∑

fi,fj∈L Cf (fi, fj) + |L|2 (8)

Pb(fi, fj) =
1 + Cb(fi, fj)∑∑

fi,fj∈L Cb(fi, fj) + |L|2 . (9)

Note that we added 1 to the occurrence counts of each clique to avoid probabili-
ties of zero, as is common practice (e.g. for training a Bayes classifier). This gives
rise to the term |L|2 in the denominator. The potential function V2 we propose
is then given by

V2(fi, fi′) =

⎧⎨⎩
Pb(fi,fj)

Pb(fi,fj)+Pf (fi,fj)
|fi = fj

− Pf (fi,fj)
Pb(fi,fj)+Pf (fi,fj) |fi �= fj

(10)

The value in the first case is the probability that, if this particular clique occurs,
it is caused by the background model. Likewise the value in the second case is
the probability that it is caused by the fire model. While this potential function
is obviously heuristic, it implements the functionality we require:

– cliques of uniform color are penalized, but more so for unlikely fire colors,
– cliques of different color are encouraged, but more so for typical fire combi-

nations.

Experiments show that with the new potential function V2, the areas near the
edges of flames generate very low energy, while the entire background results in
much higher energy values. The interior part of the flame falls in between, on av-
erage generating more energy than the flame edge but less than the background.
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Fig. 2. Source frame, detected blocks with high energy threshold, and corresponding

component with lower energy threshold

This is exploited in a two-stage classifier. The energy function is calculated on
4x4 pixel blocks and first thresholded on an energy level T1 allowing the entire
fire areas to pass the criterion, as well as some spurious detections in the non-
fire areas. In the second stage, the calculated energy is thresholded on a level
T2 < T1, allowing only series of blocks near the edges of the flames. Only the
first-stage connected components which contain blocks from the second stage
are retained, resulting in much fewer false detections. An example can be seen
in figure 2.

4 Performance

The color occurrence probability distributions Pf and Pb were trained on a set
of 6 ground truth images of fire, and 6 additional background images featuring
a variety of settings. The fire images are video frames depicting four different
fires, captured by different types of cameras and from different viewing angles.
The images also exhibit a wide variety of camera settings, from underexposure
to oversaturation and varying degrees of focal sharpness. The additional back-
ground images were included for training balance, as the video frames were
all captured in an industrial environment and therefore featured similar back-
grounds. This training is intended to be universal, so no retraining is required
for use in different circumstances. However, results may improve further for very
specific scenarios when the method is trained on the according scenario-specific
imagery.

The performance of the fire detection system was evaluated on over 49,000
video frames and compared to the fire detection method proposed by Celik
et al. [14], which defines a set of rules in Cr-Cb color space based on three

Table 1. Performance statistics of Celik et al. compared to the proposed method

Method Detection rate False alarm rate

Celik 2008 99.95% 50.93%

Proposed (first stage only) 99.98% 42.82%

Proposed (first and second stage) 99.57% 21.80%
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polynomial curves. The method was implemented as described in the paper,
taking care to use the same 8-bit range for the chroma planes. The results were
also aggregated into 4x4 blocks using a majority voting rule, to make comparison
with our method as fair as possible. We consider this method to be the state-
of-the-art single-pixel fire color filter against which to judge the benefits of our
contextual modeling.

The first part of the test set consists of 30,000 frames depicting fire, to obtain
the detection rate. These video frames show a number of controlled fires in an
outdoor firemen training complex built to resemble an industrial site. The fires
include a burning petroleum tank, a ruptured gas pipe, a round tank engulfed
in flames and a fire in a maintenance trench. The fires were monitored by six
cameras of different types, placed on different elevation levels and angles. The
fire is considered detected as soon as at least one of its pixel blocks is detected as
a fire block. In the interest of fairness, we should note that the training images
for our method were captured on the same site, albeit at a different time with
different sunlight levels.

The second part of the test set contains over 18,000 video frames captured
from a moving vehicle in an urban environment. This set is representative of the
occurrence of fire-colored objects to be expected in the busiest environments,
e.g. red and yellow clothing, vehicles or advertising. An image is counted as a
false positive when one or more blocks in the image are classified as fire.

The results obtained on this data set are shown in Table 1. The reference method
by Celik et al. scored a detection rate of 99.95% on the fire frames, while generat-
ing over 50% false positives. This illustrates the high occurence of fire-colored ob-
jects in the second dataset: over half of the frames contain at least one fire-colored
4x4 block. In comparison, the detection rate of our proposed method after just
the first stage was 99.98%, with a false detection rate of 42.82%. This shows that
even after just the least discriminative of the two stages, there is an improvement
over the reference method. After both stages of the method, the detection rate
drops only slightly to 99.57%, while false positives are much reduced to 21.80%.
These statistics prove the adequacy of the system as standalone fire detector. The
cases in which the fire was not detected are mostly transition phases, either just
after the fire was started or when it was nearly extinguished. One can reasonably
assume that any spreading fire will be detected. The false negatives can thus be
considered rare and temporary manifestations of fire in which the spectral texture
is coincidentally and atypically low.

5 Conclusion

We have designed an MRF-based visual fire detection system which is easy to
train, and requires optimization of just one critical parameter (the lower classi-
fier energy threshold) rather than setting multiple fixed color rules. Furthermore,
after training on basic, generic ground-truth data the method is proven to yield
very good detection rates in a variety of circumstances, while at the same time
significantly reducing false positives over standard color-based methods. More-
over, it does not rely on any temporal information, and can therefore be applied
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Fig. 3. Examples frames and their detector output
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to still images and low framerate cameras without performance degradation. On
the other hand, if normal video frame rates and sufficient computing power are
available, the method could be improved further by implementing temporal hys-
teresis, whereby multiple subsequent alerts are required before the alarm is set
off. The model uses insignificant amounts of memory (typically 256 bytes) and
the block-based processing suits parallel implementation, making the method
ideal for implementation on dedicated hardware (e.g. FPGAs) to speed up
computation.
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A Virtual Curtain for the Detection of Humans
and Access Control
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Abstract. Biometrics has become a popular field for the development
of techniques that aim at recognizing humans based upon one or more
intrinsic physical or behavioral traits. In particular, many solutions ded-
icated to access control integrate biometric features like fingerprinting or
face recognition.

This paper describes a new method designed to interpret what happens
when crossing an invisible vertical plane, called virtual curtain hereafter,
at the footstep of a door frame. It relies on the use of two laser scanners
located in the upper corners of the frame, and on the classification of the
time series of the information provided by the scanners after registration.
The technique is trained and tested on a set of sequences representative for
multiple scenarios of normal crossings by a single person and for tentatives
to fool the system.

We present the details of the technique and discuss classification re-
sults. It appears that the technique is capable to recognize many scenarios
which may lead to the development of new commercial applications.

1 Introduction

Detecting a person, locating him, and recognizing its identity are three corner-
stones of applications turned on security. Over the past years, many technologies
based on biometrical signatures have emerged to achieve these goals. The hand-
book by Jain et al. [1] illustrates the many techniques available today. They
ranges from fingerprinting, voice recognition, face detection, dental identifica-
tion techniques to iris, gesture or gait recognition, just to name a few.

In this paper, we propose a new platform (comprising hardware and soft-
ware) for critical applications such as secure access control, where biometrics
has became a viable technology, that can be integrated in identity management
systems. Commonly, access to restricted areas is monitored by a door with an
electrical lock or a revolving door activated by the swipe of an access control
card. In this context, we aim for a system able to send an alarm when the ex-
pected scenario of a single person crossing the door frame is not confirmed; this
could occur when someone enters a restricted area by passing through the door
at the same time as another person (this is called piggybacking when the other
person is authorized and tailgating when the other person is unauthorized).

The purpose of our method is to identify the scenario of one or more persons
when they cross a door frame. While camera driven solutions exist for it, we

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 98–109, 2010.
© Springer-Verlag Berlin Heidelberg 2010



A Virtual Curtain for the Detection of Humans and Access Control 99

deliberately chose to rely of laser scanners instead because they can be directly
embedded in a door frame and do not require a controlled environment. In
addition, the complete solution is required to operate in real time with a limited
amount of processing power, and it appeared that the choice of laser scanners
proved adequate, retrospectively.

The article by Sequeira et al. [2] is representative for the problems faced with
laser scanners. Some of them are:

– occlusions and shadows. Objects located beyond other objects are not de-
tected (occlusion) and, likewise, it is impossible to interpret the scene beyond
the first object reached by the rays of a laser (shadowing).

– angle of acquisition. Laser scanners have a narrow aperture angle in one
or two dimensions. Also, as the technology is based on a sender/receiver
mechanism, physical properties and the angle of incidence are important.

– scan overlap. To interpret fast movements, data has to be captured either
at a high speed, or with a fair overlap between successive scans. A practical
solution consists in the use of linear scanners with a high acquisition rate.

– scan resolution. Radial scanners output distances of closest objects for a
fixed set of angles. The radial sampling might be uniform, this does not
mean that the precision on the distance both in the direction of the light
ray or in the direction perpendicular to it is uniform as well. In fact, objects
should be closer to increase the measurement accuracy, but the price to pay
is an increased shadowing effect.

The paper is organized as follows. As we propose an original placement of laser
scanners and a new method to build a virtual curtain (which is an invisible and
immaterial membrane), we first describe our set-up in Section 2. From this ar-
rangement of scanners, we derive the notion of a virtual curtain, described in
Section 2.2. This concept is the key of a classification process detailed in Sec-
tion 3. First, surfacic features are extracted from the intersection of the curtain
and an object or a person that crosses it. Then we concatenate these features
over time to derive a windowed temporal signature. This signature is then used
to identify the scene by a classification process; the purpose is to raise an alarm
when the normal situation of a single person crossing the curtain is not met, for
example when several persons want to pass the door simultaneously. Results of
this classification method obtained over a database of more than 800 sequences
are provided in Section 4. Section 5 concludes the paper.

2 Original Set-Up

A real security application requires that the system is insensitive to lighting
conditions. Consequently, we cannot afford using a background subtracted video
stream to recover the binary silhouettes of the walkers. Instead, we use laser
devices described in the next section. Then we develop the concept of virtual
curtain.
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2.1 Sensors

Laser range sensors are widely used nowadays. Simple devices measure distances
for a few 3D directions, but more sophisticated sensors exist. For example, there
are devices that are used in conjunction with rotating mirrors to scan a 360°
field of view. For our platform, we use the rotating laser sensors manufactured
by B.E.A. (see Figure 1).

Fig. 1. The laser sensor used in our experiments (the LZR P-200 manufactured by
B.E.A. S.A., http://www.bea.be)

These laser range sensors are completely independent of the lighting condi-
tions, as they rely on their own light sources. They are able to measure the
distance between the scanner and surrounding objects by sending and receiving
laser pulses in a plane. The measurement process is discrete; it samples the an-
gles with an angular precision of 0.35° and covers an angular aperture of 96°. The
plane is scanned 60 times per second. In practical terms, these sensors deliver a
signal dt(θ) where (1) d is the distance between the sensor and the object hit by
the laser ray, (2) θ denotes the angle in the scanning plane (0 ≤ θ ≤ 96°), and
(3) t (= k

60s for k = 0, 1, 2, . . .) is the time index.
The information that these sensors provide has a physical meaning (the dis-

tance is given in millimeters) and relates only to the geometrical configuration;
the color and texture of objects have no impact on the measurements. Note
also that these sensors have been designed to be integrated in difficult industrial
environments, like revolving doors, where a camera might not fit as well.

2.2 Towards the Concept of Virtual Curtain

Theoretically, a single scanner suffices to build a 2D shape. However, we have
decided to use two scanners to reduce the shadowing effects resulting from a
single scanner. The sensing system is made of two laser scanners located in
the two upper corners of the frame of a door (see Figure 2). Consequently,
distances are measured in a plane that comprises the vertical of the gravity and
the straight line joining the two sensors. This is our concept of virtual curtain.
To some extend, it can be seen as a wide traversable waterfall, except that you
don’t get wet if you cross it!

http://www.bea.be
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Fig. 2. Arrangement of the sensors. The two rotating laser range sensors are located
in the upper corners of a vertical plane. They send rays that hit the lateral door frame,
the ground or a person crossing the plane.

It must be noted that signals collected from the two sensors are not synchro-
nized. This impacts on the system. A detailed analysis of the physical uncertainty
resulting from desynchronization shows that, in the worst case, a shift of 10 cm
at the height of the knee is possible. As a matter of fact, the physical precision
on the location of a point increases with its height in the reconstructed plane.
In other words, the horizontal imprecision, due to desynchronization, decreases
with the height of a point.

Furthermore, as measures correspond to the distance between the sensor and
the first point hit by the laser along its course, they account for a linear infor-
mation related to the central projection of the silhouette of the moving objects
passing through the door; it implies that points located beyond the first point
are invisible and that widths are impossible to measure with a single scanner.
With two scanners, there are less ambiguities but some of them remain, for ex-
ample in the bottom part of the silhouette. Furthermore, a hole in the silhouette
cannot be detected. In practice, the subsequent classification algorithm has to
be robust enough to be able to deal with these ambiguities.

2.3 Computing a Virtual Curtain

We now describe how to build a series of silhouettes of a walking human crossing
the virtual curtain.

Polar transformation and registration of the two signals. Since the in-
formation given by the laser scanners is polar, the first step towards the re-
construction of an image related to the shape of the scanned objects is a polar
transformation of the raw signals:

xt(θ) = dt(θ) cos(θ), (1)
yt(θ) = dt(θ) sin(θ). (2)
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Every 1
60s, we get two signals dt(θ) covering the quarter area of a plane, one

per sensor, and apply a polar transformation to them. Then we connect succes-
sive points with straight line segments and register the two signals according to
the width of the frame of the door. This process is illustrated in Figure 3.

Fig. 3. Construction of a curve per sensor that corresponds to the closest visible points.
The signal captured by the left (right) sensor is displayed in green (red).

Thanks to the calibration of the sensors and the real physical distances they
deliver, the registration process is simple as it relies exclusively on the physical
dimensions of the door. Note however that since the signals provided by the
two sensors are not synchronized, the registration of the sensor signals will be
affected by a time jitter that impacts on the overall signal to noise ratio.

Flood fill and intersection. For each laser scanner, we now have a continuous
line that outlines one side of the silhouette of the object seen in the curtain. We
still need to reconstruct one complete silhouette. The reconstruction of a half
silhouette is achieved by closing the contour and applying a flood fill algorithm to
the continuous line that outlines it. Then the two half silhouettes are intersected
to get the silhouette. The reconstruction process is illustrated in Figure 4.

We can see that the upper parts of the silhouette (in principle, the shoulders
and the head) are better represented than the lower parts of the silhouette
because the lasers are closer to the upper part and thus do sample this part of
the shape with a higher precision. As a matter of fact, the legs are almost absent
from the reconstructed silhouettes. Furthermore, we showed in Section 2.2 that
the lack of synchronization of the sensors causes an horizontal imprecision that
decreases with the height of a point.

The reconstruction of a silhouette happens 60 times per second. Figure 5
shows a 3D volume obtained by piling up the successive silhouettes of one (left-
hand side picture) or two (right-hand side picture) persons while they cross the
curtain. This 3D shape is not very intuitive. Therefore we need to elaborate on
the appropriate features to describe it.
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Fig. 4. Illustration of the silhouette reconstruction process

3 Features Extraction and Classification

The closest field to our application in the literature is that of human gait recog-
nition where relevant features are extracted from the time series of the binary
silhouettes of a moving object. Classification is then performed on the basis of
these features (often referred to as signature) to recover the identity of the walk-
ing human in front of the camera. In our application, we can use these features
extraction and classification techniques to identify the time series of silhouettes
that correspond to a single walking human from the others.

A good introductory reading about gait recognition can be found in [3,4,5].
An extensive review of the existing techniques is presented in [6].
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(a) (b)

Fig. 5. Volume whose slices are consecutive silhouettes of one person (a) or two persons
(b) crossing the curtain over time

Model-based approaches process sequences of images to estimate the param-
eters of an explicit gait model. These estimated values are then used to recover
the identity of the walking human. It should be noted that, in our case, these
silhouettes need to be reconstructed from the contour-related information given
by the two radial sensors.

These methods often need high definition images in order to work properly
which is a major drawback for our application since the laser sensors only provide
274 points per scan for an angular aperture of 96°. Furthermore, they exhibit
a significantly higher computational cost than silhouette-based techniques. This
is also a serious issue since real-time processing is required in our application.

Silhouette-based approaches do not rely on any explicit model for the walking
human(s). These techniques extract signatures directly from series of silhouettes.
A simple approach is described in [7] where the areas of raw (re-sized) silhouettes
are used as a gait signature. In [8], the gait template of a walking human is
computed by averaging the corresponding binary silhouettes. The classification
is then achieved using a nearest neighbor technique.

The contours of silhouettes have been used in [9] and by Soriano et al. in [10]
where signatures are derived from series of Freeman encoding of the re-sized
silhouette shape. An angular transform of the silhouette is proposed in [11] and
is said to be more robust than the raw contour descriptions.

The gait signature of [12] is based on horizontal and vertical projections of the
silhouettes. The authors of [13] consider time series of horizontal and vertical pro-
jections of silhouettes as frieze patterns. Using the framework of frieze patterns,
they estimate the viewing direction of the walking humans and align walking se-
quences from similar viewpoints both spatially and over time. Cross-correlation
and nearest neighbor classification is then used to perform the identification of
the walkers. To get an increased robustness to differences between the training
and test sets, [14] proposes a technique that relies on frieze patterns of frame
differences between a key silhouette and a series of successive silhouettes.
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In our application, we apply an approach similar to silhouette-based gait
recognition. First we extract surfacic features from a single silhouette. Then
we aggregate features over time to obtain a temporal signature that is used to
identify the ongoing crossing scenario.

3.1 Feature Extracted from the Intersection between an Object and
the Virtual Curtain

To characterize reconstructed silhouettes, we use the notion of cover by rectan-
gles. The cover by rectangles is a morphological descriptor defined as the union
of all the largest rectangles that can fit inside of a silhouette. The whole idea is
described in [15].

From the cover of a silhouette, many features can be extracted to build a sil-
houette signature. Features that could be considered to characterize the dataset
are:

– The set of the enclosed rectangles (that is, the cover itself).
– The maximum width (or height) of the rectangles included in the cover.
– Histogram of the widths (or heights) of the rectangles included in the cover.
– 2D histogram of the widths and heights of the rectangles included in the

cover.
– The horizontal or vertical profile of the silhouette.

Due to the unusual shape of the silhouette, there is no prior art about the best
suited characteristics. Therefore, we fall back to proved intra-frame signatures
that were considered in [16] for gait recognition. They are:

– The 2D histogram of the widths and heights of the rectangles included in
the cover (denoted as GW×H(i, j)), and

– The concatenation of the histogram of the widths and the histogram of the
heights of the rectangles included in the cover (denoted as GW+H(i, j)).

Note that in order to build histograms, we partition the widths and heights of
the rectangles respectively into M bins and N bins. The best values for M, N
are discussed later.

Temporal features. The full signature is constructed as a combination of
intra-frame silhouette signatures. Its purpose is to capture the time dynamics
of the moving object crossing the door. In our application, the time dynamics
may be very important. One of the proposed solution to handle the temporal
evolution of a shape is to normalize the gait cycle, like in [17].

Like for gait recognition, this poses a problem in that the classifier will delay
its answer until the end of the sequence. An alternative solution is to normalize
the sequence by parts. Another approach to consider is to learn several speeds
during the database set-up, and use the global normalization as a fallback or
confirmation step.

Our approach is much simpler and provides results similar to results obtained
with other approaches. Our inter-frame spatio-temporal signature (denoted as
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GW+H(i, j, t) or GW×H(i, j, t)) is the concatenation of a given number L of
consecutive intra-frame signatures.

3.2 Classification

Classification consists in the learning of a function from labeled input data. The
learned function, sometimes referred to as model, is later used to predict the label
of unlabeled data. The purpose of the classifier is to generalize the knowledge
present in the labeled examples to new samples.

When a person crosses the virtual curtain, we reconstruct the time series of
his binary silhouettes and assign a class to it with our classification algorithm.
In this particular application, only two classes can be assigned to a series of
silhouettes:

– “0”, which denotes that a single person has crossed the virtual curtain,
– and “1”, which denotes that more than one person have crossed the virtual

curtain.

Learning and cross-validation. To build a classifier, it is necessary to label
(manually) a large amount of data samples. Part of these labeled samples are
used to train the classifier. They constitute the “learning set”. Remaining labeled
samples are used to evaluate the performances of the classifier; they are part of
the “test set”.

A rule of thumb is to divide the available labeled data in two equal parts: one
to train the model, and the other to test it. With only a few available labeled
data, it may be disadvantageous to ignore half of the labeled data to train
the model. A common solution is then to use cross-validation briefly described
hereafter.

If there are N labeled samples, cross-validation consists in dividing them into
K subsets of equal size. (K − 1) subsets are used to train the model while the
remaining one is used to test it. This procedure is repeated K times, for each
test set on turn. The final score of the classifier is the average of the K computed
scores. When K = N , this method is called leave-one-out.

Classification tool. There are many classification techniques available. Among
the most popular are nearest neighbors classifiers (KNN), artificial neural net-
works (ANN), (ensemble of) decision trees, and support vector machines (SVM).

In our case, the sets of features extracted from the time series of reconstructed
silhouettes are classified with a support vector machine classifier [18]. An SVM is
a binary classifier that maps its input features into a high-dimensional non-linear
subspace where a linear decision surface is constructed. We used the implemen-
tation provided by libsvm [19] with a radial basis function (RBF) kernel.

4 Results
To evaluate the performances of our algorithm, the B.E.A. company has pro-
vided us 349 labeled sequences of a single person (class “0”) and 517 sequences
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that contain two walkers (class “1”). We use these sequences to build databases
of labeled signatures for different sets of parameters (M , N , and L are the pa-
rameters, that is the number of bins for the rectangle widths, the number of
bins for the rectangle heights, and the number of intra-frame features aggre-
gated in a signature respectively). For each set of parameters, we employ 5-fold
cross-validation on the corresponding database to assess the precision of the
classification according to the error rate (E) defined by

E = FP + FN
TP + TN + FP + FN , (3)

where TP is the number of true positives, TN the number of true negatives, FP
the number of false positives, and FN the number of false negatives.

We tested both GW+H(i, j, t) and GW×H(i, j, t). The two corresponding se-
ries of results are given in Table 1 and Table 2.

Table 1. Error rates obtained for GW+H(i, j, t)

E [%] M = N = 2 M = N = 4 M = N = 6 M = N = 8 M = N = 10
L = 40 15.99 14.43 14.37 14.68 14.76
L = 60 9.77 8.34 8.23 8.86 8.55
L = 70 7.89 7.04 6.70 6.86 7.17
L = 80 6.98 6.05 5.68 6.19 5.91
L = 90 7.51 7.65 7.44 7.09 7.51
L = 100 9.84 11.58 10.04 10.86 10.97
L = 120 18.15 18.15 18.16 16.34 17.50

Table 2. Error rates obtained for GW×H(i, j, t)

E [%] M = N = 2 M = N = 4 M = N = 6 M = N = 8 M = N = 10
L = 40 16.06 14.05 14.07 14.04 14.76
L = 60 9.83 8.96 9.79 10.25 10.79
L = 70 8.01 7.82 8.35 8.35 8.57
L = 80 7.12 7.45 7.5 7.26 7.64
L = 90 8.14 8.62 8.62 8.76 8.62
L = 100 10.45 9.43 9.84 9.73 11.79
L = 120 19.81 17.33 16.01 16.01 18.32

They show that an error rate as low as 5.68% is reached for the GW+H(i, j, t)
signature withM = N = 6, and L = 80. We also observe that, for this particular
problem, L is the parameter with the largest variability in the result. From our
tests, the best results are obtained for a signature length L of 80 frames, a num-
ber that matches the average time to cross the curtain. ForM and N , the choice
of a value is less critical but, from our tests, it appears thatM = N = 4 is an ap-
propriate choice. We also noticed that for this particular problem, GW+H(i, j, t)
has slightly better results than GW×H(i, j, t) while having a reduced computa-
tional cost. One explanation to this is that the shadowing effect in the lower part
of the silhouette adds more noise on GW×H(i, j, t) than on GW+H(i, j, t).
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Finally, it must be noted that during our tests, we observed that for low global
error rates, the number of FN is considerably lower than the number of FP. In
other words, the system is naturally more inclined to reject a single person than
to allow to a group of two persons to pass the door. For an access control system,
it is a welcomed property.

5 Conclusions

This paper introduces the concept of virtual curtain that is obtained by the
registration of two linear laser scanners that measure distances in a same plane.
Despite intrinsic shortcomings, originated by effects like occlusion or shadowing,
features derived from an object crossing a virtual curtain permit to interpret the
scene. In particular, it is shown how it is possible to differentiate between several
scenarios for the context of access control. Features are first extracted for every
intersection between an object and the curtain, then they are concatenated to
provide a temporal signature. This signature is handled by a classification process
that identifies the ongoing scenario. Results show that a high recognition rate
is achievable for a pre-defined set of training and testing scenarios. In practice,
we will have to wait for international standardization bodies or organizations to
elaborate some criteria to benchmark the performances for a use under variable
operational conditions. But our results proof that our system is tractable and
usable for the interpretation of a scene.
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Abstract. In this paper, we present an overview of a hybrid approach

for event detection from video surveillance sequences that has been de-

veloped within the REGIMVid project. This system can be used to in-

dex and search the video sequence by the visual content. The platform

provides moving object segmentation and tracking, High-level feature

extraction and video event detection.We describe the architecture of the

system as well as providing an overview of the descriptors supported to

date. We then demonstrate the usefulness of the toolbox in the context

of feature extraction, events learning and detection in large collection of

video surveillance dataset.

1 Introduction

Image and video indexing and retrieval continue to be an extremely active area
within the broader multimedia research community [3,17]. Interest is motivated
by the very real requirement for efficient techniques for indexing large archives
of audiovisual content in ways that facilitate subsequent usercentric accessing.
Such a requirement is a by-product of the decreasing cost of storage and the now
ubiquitous nature of capture devices. The result of which is that content repos-
itories, either in the commercial domain (e.g. broadcasters or content providers
repositories) or the personal archives are growing in number and size at virtu-
ally exponential rates. It is generally acknowledged that providing truly efficient
usercentric access to large content archives requires indexing of the content in
terms of the real world semantics of what it represents.

Furthermore, it is acknowledged that real progress in addressing this challeng-
ing task requires key advances in many complementary research areas such as;
scalable coding of both audiovisual content and its metadata, database technol-
ogy and user interface design. The REGIMVid project integrates many of these
issues (fig.1). A key effort within the project is to link audio-visual analysis
with concept reasoning in order to extract semantic information. In this con-
text, high-level pre-processing is necessary in order to extract descriptors that
can be subsequently linked to the concept and used in the reasoning process.
In addition to concept-based reasoning, the project has other research activities
that require high-level feature extraction (e.g. semantic summary of metadata

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 110–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. REGIMVid platform Architecture

[5], Text-based video retrieval [10,6], event detection [16] and Semantic Access
to Multimedia Data [12]) it was decided to develop a common platform for de-
scriptor extraction that could be used throughout the project. In this paper,
we describe our subsystem for video surveillance indexing and retrieval. The re-
mainder of the paper is organised as follows: a general overview of the toolbox
is provided in Section 2, include a description of the architecture. In section 3
we present our approach to detect and extract of moving objects from video
surveillance dataset. It includes a presentation of different concepts taken care
by our system.We present the combining single SVM classifier for learning video
events in section 4. The descriptors of the visual feature extraction will be pre-
sented in section 5. Finally, we present our experimental results for both event
and concept detection future plans for both the extension of the toolbox and its
use in different scenarios.

2 Our System Overview

In this section, we present an overview of the structure of the toolbox. The system
currently supports extraction of 10 low-level (see section 5) visual descriptors.
The design is based on the architecture of the MPEG-7 eXperimentation Model
(XM), the official reference software of the ISO/IEC MPEG-7 standard.

The main objectif of our system is to provide automatic content analysis using
concept/event-based and low-level features. The system (figure 2) first detect and
segment the moving object from video surveillance dataset. In the second step,
it extracts three class of features from the each frame, from a static background
and the segmented objects(the first class from Ωin , the second from Ωout and
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Fig. 2. Overview of our system for video input

the last class is from each key-frame in RGB color space,see subsection 3.2), and
labels them based on corresponding features. For example, if three features are
used (color, texture and shape), each frame has at least three labels from Ωout,
three labels from Ωin and three labels from key-frame.

This reduces the video as a sequence of labels containing the common features
between consecutive frames. The sequence of labels aim to preserve the semantic
content, while reducing the video into a simple form. It is apparent that the
amount of data needed to encode the labels is an order of magnitude lower
than the amount needed to encode the video itself. This simple form allows
the machine learning techniques such as Support Vector Machines to extract
high-level features.

Our method offer a way to combine low-level features wish enhances the sys-
tem performance. The high-level features extraction system according to our
toolkit provides an open framework that allows easy integration of new features.
In addition, the Toolbox can be integrated with traditional methods of video
analysis. Our system offers many functionalities at different granularity that can
be applied to applications with different requirements. The Toolbox also pro-
vides a flexible system for navigation and display using the low-level features
or their combinations. Finally, the feature extraction according to the Toolbox
can be performed in the compressed domain and preferably real-time system
performance such as the videosurveillance systems.

3 Moving Object Detection and Extraction

To detect and extract a moving object from a video dataset we use a region-
based active contours model where the designed objective function is composed
of a region-based term and optimize the curve position with respect to motion
and intensity properties. The main novelty of our approach is that we deal with
the motion estimation by optical flow computation and the tracking problem
simultaneously. Besides, the active contours model is implemented using a level
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set, inspired from Chan and Vese approach [2], where topological changes are
naturally handled.

3.1 Motion Estimation by Optical Flow

Recently, many motion estimation techniques were developed. Although, Block
matching technique is the most used techniques and it have promising results
motion estimation especially with improvement techniques [8], we have used the
optical flow which had given us good results.

In our system, we use gradient-based optical flow algorithm proposed by Horn
and Schunck [1]. similar to T. Macan and S. Loncaric [11],we have integrated the
algorithm in multi-grid technique where the image is decomposed into Gaussian
pyramid-set of the reduced images. The calculation starts at a coarser scale of
the image decomposition, and the results are propagated to finer scales.

Let us suppose that the intensity of the image at a time t and position (x,
y) is given by I (x, y, t). The assumption on brightness constancy is made that
the total derivative of brightness function is zero which results the following
equation:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 or Ix,iui + Iy,ivi + It,i = 0 (1)

This equation is named ’Brightness Change Constraint Equation’. Where u and v
are components of optical flow in horizontal and vertical directions, respectively,
and Ix, Iy and It are partial derivatives of I with respect to x, y and t respectively.
Horn and Schunck added additional smoothness constraint because the equation
(1) is insufficient to compute both components of optical flow. They minimized
weighted sum of smoothness term and brightness constraint term:∫

Ω

(Ixu + Iyv + It)2 + λ(‖∇u‖2 + ‖∇v‖2)dx (2)

Minimization and discretization of equation (2) results in two equations for each
image point where vector values ui and vi are optical flow variables to be de-
termined. To solve this system of differential equations, we use the iterative
Gauss-Seidel relaxation method.

3.2 Our Moving Object Segmentation Model

In our case, taking into consideration the motion information obtained by calcu-
lating the optical flow, we propose the following descriptors for the segmentation
of mobile objects in a video surveillance dataset:

kin(x, Ωin) = λ |SVg(x) − c1(Ωin)|2
kout(x, Ωout) = λ |SVg(x) − c2(Ωout)|2
kb(x) = μ

(3)

With c1 is the average of the region Ωin, c2 is the average of the region Ωout,μ
and λ constants positive. SVg(x) is the image obtained after a threshold of the
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optical flow velocity and applicate of a gaussian filter (Figure 3). The values of c1
and c2 are re-estimated during the spread of the curve. The method of levels sets
is used directly representing the curve Γ (x) as the curve of zero to a continuous
function U(x). Regions and contour are expressed as follows:

Γ = ∂Ωin = {x ∈ ΩI/U(x) = 0}
Ωin = {x ∈ ΩI/U(x) < 0}
Ωout = {x ∈ ΩI/U(x) > 0}

(4)

The unknown sought minimizing the criterion becomes the function U. We in-
troduce also the Heaviside function H and the measure of Dirac δ0 defined by:

H(z) =
1 if z ≤ 0
0 if z > 0 et ∂0(z) = d

dz H(z)

(a) (b) (c)

Fig. 3. SVg Image example

The criterion is then expressed through the functions U, H and δ in the following
manner:

J(U, c1, c2) =
∫

ΩI
λ |SVg(x) − c1|2 H(U(x))dx+∫

ΩI
λ |SVg(x) − c2|2 (1 − H(U(x)))dx+∫

ΩI
μδ(U(x)) |∇U(x)| dx

(5)

with:

c1 =
∫

Ω
SVg(x)H(U(x))dx∫

Ω
H(U(x))dx

c2 =
∫

Ω
SVg(x)(1−H(U(x)))dx∫

Ω
(1−H(U(x)))dx

(6)

To calculate the Euler-Lagrange equation for unknown function U, we consider
a regularized versions for the functions H and δ noted Hε and δε. The evolution
equation is found then expressed directly with U, the function of the level set:

∂U
∂τ = δε(U)[μdiv( ∇U

|∇U| ) + λ |SVg(x) − c1|2
−λ |SVg(x) − c2|2](inΩI)

δε(U)
|∇U|

∂U
∂N = 0(on∂ΩI)

(7)

with div( ∇U
|∇U| ) the curvature of the level curve of U via x and ∂U

∂N the derivative
of U compared to normal inside the curve N.
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3.3 Supported Video Surveillance Events

Until now, our system supports the following 5 events:
– C1: Approaching vehicule to the camera (figure 4.a)
– C2: One or more moving vehicule (figure 4.b)
– C3: Approaching pedestrian (figure 4.c)
– C4: One or more moving pedestrian (figure 4.d)
– C5: Combinated Concept (figure 4.e)

(a) (b) (c)

(d) (e)

Fig. 4. Examples of images extracted from our video surveillance dataset

4 Combining Single SVM Classifier for Learning Video
Event

Support Vector Machines (SVMs) have been applied successfully to solve many
problemsof classificationand regression.However, SVMs suffer fromaphenomenon
called ’catastrophic forgetting’, which involves loss of information learned in the
presence of new training data. Learn++ [14] has recently been introduced as an in-
cremental learning algorithm. The strength of Learn++ is its ability to learn new
data without forgetting prior knowledge and without requiring access to any data
already seen, even if new data introduce new classes. To benefit from the speed of
SVMs and the ability of incremental learning ofLearn++,we propose touse a set of
trained classifiers with SVMs based on Learn++ inspired from [13]. Experimental
results of detection of events suggest that the proposed combination is promising.
According to the data, the performance of SVMs is similar or even superior to that
of a neural network or a Gaussian mixture model.

4.1 SVM Classifier

Support Vector Machines (SVMs) are a set of supervised learning techniques to
solve problems of discrimination and regression. The SVM is a generalization of
linear classifiers.The SVMs have been applied to many fields (bio-informatics,
information retrieval, computer vision, finance ...).
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According to the data, the performance of SVMs is similar or even superior to
that of a neural network or a Gaussian mixture model. They directly implement
the principle of structural risk minimization [15] and work by mapping the train-
ing points into a high dimensional feature space, where a separating hyperplane
(w, b) is found by maximizing the distance from the closest data points (boundary-
optimization). Given a set of training samples S = {(xi, yi)|i = 1, .., m}, where
xi ∈ Rn are input patterns, yi ∈ +1,−1 are class labels for a 2-class problem,
SVMs attempt to find a classifier h(x), which minimizes the expected misclassi-
fication rate. A linear classifier h(x) is a hyperplane, and can be represented as
h(x) = sign(wT x + b). The optimal SVM classifier can then be found by solving
a convex quadratic optimization problem:

max︸︷︷︸
w,b

1
2 ‖w‖2 + C

∑m
i=1 ξi subject to

yi (〈w, xi〉 + b) ≥ 1 − ξi and ξi ≥ 0
(8)

Where b is the bias, w is weight vector, and C is the regularization parame-
ter, used to balance the classifier’s complexity and classification accuracy on the
training set S. Simply replacing the involved vector inner-product with a non-
linear kernel function converts linear SVM into a more flexible non-linear clas-
sifier, which is the essence of the famous kernel trick. In this case, the quadratic
problem is generally solved through its dual formulation:

L (w, b, α) =
∑m

i=1 αi − 1
2 (
∑m

i=1 yiyjαiαjK (xi, xj))

subject to C ≥ αi ≥ 0 and
∑m

i=1 yiαiyi = 0
(9)

where ai are the coefficients that are maximized by Lagrangian. For training
samples xi, for which the functional margin is one (and hence lie closest to the
hyperplane), αi � 0. Only these instances are involved in the weight vector,
and hence are called the support vectors [12]. The non-linear SVM classification
function (optimum separating hyperplane) is then formulated in terms of these
kernels as:

h (x) = sign

(
m∑

i=1

αiyiK (xi, xj) − b

)
(10)

4.2 M-SVM Classifiers

M-SVM is based on Learn++ algorithm. This latter, generates a number of
weak classifiers from a data set with known label. Depending on the errors of
the classifier generated low, the algorithm modifies the distribution of elements
in the subset according to strengthen the presence of the most difficult to classify.
This procedure is then repeated with a different set of data from the same dataset
and new classifiers are generated. By combining their outputs according to the
scheme of majority voting Littlestone we obtain the final classification rule.

The weak classifiers are classifiers that provide a rough estimate - about 50%
or more correct classification - a rule of decision because they must be very
quick to generate. A strong classifier from the majority of his time training to
refine his decision criteria. Finding a weak classifier is not a trivial problem
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and the complexity of the task increases with the number of different classes,
however, the use of NN algorithms can correctly resolved effectively circumvent
the problem. The error is calculated by the equation:

errort =
∑

i:hi(xi) �=yi

St (i) [|ht (xi) �= yi|] (11)

with ht : X → Y an hypothesis and where TRt is the subset of training subset
and the TEt is the test subset. The synaptic coefficients are updated using the
following equation:

wt+1 (i) = wt (i) ∗
{

βt if Ht (xi) = yi

1 else

}
(12)

Where t is the iteration number, Bt composite error and standard composite
hypothesis Ht.

Fig. 5. M-SVM classifier

In our approach we replace each weak classifier by SVM. After Tk classifiers are
generated for each Dk, the final ensemble of SVMs is obtained by the weighted
majority of all composite SVMs:

Hfinal (x) = arg max︸︷︷︸
y∈Y

K∑
k=1

∑
t:ht(x)=y

log
1
βt

(13)

5 Visual Feature Extraction

We use a set of different visual descriptors at various granularities for each frame,
rid of the static background, of the video shots. The relative performance of the
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specific features within a given feature modality is shown to be consistent across
all concepts/events. However, the relative importance of one feature modality
vs. another may change from one concept/event to the other. The following de-
scriptors had the top overall performance for both search and concept modeling
experiments:

– Color Histogram: global color represented as 128-dimensional histogram in
HSV color space.

– Color Moments: localized color extracted from 3x3 grid and represented by
the first 3 moments for each grid region in Lab color space as normalized
255-dimensional vector.

– Co-occurence Texture: global texture represented as a normalized
96-dimentional vector of entropy, energy, contrast and homogeneity extracted
from the image gray-scale co-occurence matrix at 24 orientation.

– Gabor Texture: Gabor functions are Gaussians modulated by complex sin-
isoids.TheGabor filtermasks canbe considredasorientationand scale-tunable
and line detectors. The statistics of these micro-features in a given region can
be used to characterize the underlying texture information. We take 4 scales
and 6 orientations of Gabor textures and further use their mean and standard
deviation to represent the whole frame and result in 48 textures.

– Fourier: Features based on the Fourier transform of the binarized edge image.
The 2- dimensional amplitude spectrum is smoothed and down-sampled to
form a feature vector of 512 parameters.

– Sift:The SIFT descriptor [7] is consistently among the best performing inter-
est region descriptors. SIFT describes the local shape of the interest region
using edge histograms. To make the descriptor invariant, while retaining
some positional information, the interest region is divided into a 4x4 grid
and every sector has its own edge direction histogram (8 bins). The grid is
aligned with the dominant direction of the edges in the interest region to
make the descriptor rotation invariant.

– Combined Sift and Gabor.
– Wavelet Transform for texture descriptor: Wavelets are hybrids that are

waves within a region of the image, but otherwise particles. Another impor-
tant distinction is between particles that have place tokens and those that do
not. Although all particles have places in the image, it does not follow these
places will be represented by tokens in feature space. It is entirely feasible
to describe some images as a set of particles, of unknown position. Some-
thing like this happens in many description of texture. We performe 3 levels
of a Daubechies wavelet [4] decomposition for each frame and calculate the
energy level for each scale, which resulted in 10 bins features data.

– Hough Transform: As descriptor of shape we employ a histogram based on
the calculation of Hough transform [9]. This histogram gives information
better than those given by the edge histogram. We obtain a combination of
behavior of the pixels in the image along the straight lines.

– Motion Activity: We use the information calculated by the optical flow,
through concentrating on movements of the various objects (people or
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vehicle) detected by the method described in the previous section. The de-
scriptors that we use are correspond to the energie calculated on every sub-
band, by a decomposition in wavelet of the optical flow estimated between
every image of the sequence. We obtain a vector of 10 bins, they represent
for every image a measure of activity sensitive to the amplitude, the scale
and the orientation of the movements in the shot.

6 Experimental Results

Experiments are conducted on the many sequence from TRECVid2009 database
of video surveillance and many other sequences from road traffics. About 20 hours
are used to train the feature extraction system, that are segmented in the shots.
These shots were annotated with items in a list of 5 events.We use about 20
hours for the evaluation purpose. To evaluate the performance of our system we
use the common measure from the information retrival community: the Average
Precision. Figure 6 shows the evaluation of returned shots. The best results are
obtained for all events.

Fig. 6. Our run score versus Classical System (Single SVM) by Event

7 Conclusion

In this paper, we have presented preliminary results and experiments for high-level
feature extraction for video surveillance indexing and retrieval. The results ob-
tained so far are interesting and promoters.The advantage of this approach is that
allows human operators to use context-based queries and the response to these
queries is much faster. The meta-data layer allows the extraction of the motion
and objects descriptors to XML files that then can be used by external applica-
tions. Finally, the system functionalities will be enhanced by a complementary
tools to improve the basic concepts and events taken care of by our system.
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Abstract. This paper deals with the general evaluation of human de-

tection algorithms. We first present the algorithms implemented within

the CAPTHOM project dedicated to the development of a vision-based

system for human detection and tracking in an indoor environment us-

ing a static camera. We then show how a global evaluation metric we

developped for the evaluation of understanding algorithms taking into

account both localization and recognition precision of each single inter-

pretation result, can be a useful tool for industrials to guide them in the

elaboration of suitable and optimized algorithms.

Keywords: Human detection, Background subtraction, Tracking, Clas-

sification, Evaluation metric, Object localization, Object recognition.

1 Introduction

Face to the huge development of image interpretation algorithm dedicated to
various applications [1,2,3], such as target detection and recognition or video
surveillance to name a few, the need of adapted evaluation metrics, which could
help in a development of well thought-out algorithm or in the quantification
of the relative performances of different algorithms, has become crucial. Wide
annotated databases and metrics have been defined within several research com-
petitions such as the Pascal VOC Challenge [4] or the French Robin Project [5]
in order to evaluate object detection and recognition algorithms. Whatever these
metrics either focus on the localization aspect or the recognition one, but not
both together. Moreover, concerning the recognition objective, most of the com-
petitions use Precision/Recall and ROC curves [4,6,7], evaluating the algorithms
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on the whole database. An interpretation evaluation metric, taking into account
both aspects and working on a single interpretation result, is then needed.

This article presents our works concerning the development of vision-based sys-
tems for human detection and tracking in a known environment using a static cam-
era and the definition of an adaptable performance measure able to simultaneously
evaluate the localization, the recognition and the detection of interpreted objects
in a real scene using a manually made ground truth. If in a general way, the local-
ization and the recognition have to be as precise as possible, the relative impor-
tance of these two aspects can change depending of the foreseen application. We
describe in section 2 the successive algorithms implemented for the CAPTHOM
project which more particularly focused on indoor environments. The proposed
evaluation metric of a general image interpretation result is presented in section
3. Its potential interest is illustrated in section 4 on the CAPTHOM project.
Section 5 presents conclusions and perspectives of this study.

2 Visual-Based System Developments for Human
Detection in Image Sequences

Within the CAPTHOM project, we attempt to develop a human detection
system to limit power consumption of buildings and to monitor low mobility
persons. This project belongs to the numerous applications of human detection
systems for home automation, video surveillance, etc. The foreseen system must
be easily tunable and embeddable, providing an optimal compromise between
false detection rate and algorithmic complexity.

The development of a reliable human detection system in videos deals with
general object detection difficulties (background complexity, illumination con-
ditions etc.) and with other specific constraints involved with human detection
(high variability in skin color, weight and clothes, presence of partial occlusions,
highly articulated body resulting in various appearances etc.). Despite of these
difficulties, some very promising systems have already been proposed in the lit-
erature. It is especially the case of the method proposed by Viola and Jones [8]
which attempts to detect humans in still images using a well-suited representa-
tion of human shapes and a classification method. We first of all implemented
this method in a sliding window framework analyzing every image and using
several classifiers. This method is based on Haar-like filters and adaboost. In an
indoor environment, partial occlusions are actually frequent. The upper part of
the body (head and shoulders) is often the only visible part. As it is clearly insuf-
ficient to seek in the image only forms similar to the human body in its whole,
we implemented four classifiers: the whole body, the upper-body (front/back
view), the upper-body (left view) and the upper-body (right view). In a practi-
cal way, the classifier analyzes the image with a constant shift in the horizontal
and vertical direction. As the size of the person potentially present is not known
a priori and the classifier has a fixed size, the image is analyzed several times
by modifying the scale. The size of the image is divided by a scale factor (sf)
between two scales. This method is called V iola [8] in the following paragraphs.
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Fig. 1. Illustration of tracking result with a partial occlusion. First row: input images

with interest points associated with each object, second row: tracking result.

In order to reduce the search space of classifiers localizing regions of interest in
the image, we added a change detection step based on background subtraction.
We chose to model each pixel in the background by a single Gaussian distribu-
tion. The detection process is then achieved through a simple probability density
function thresholding. This simple model presents a good compromise between
detection quality, computation time and memory requirements [9,10]. The back-
ground model is updated at three different levels: the pixel level updating each
pixel with a temporal filter allowing to consider long time variations of the back-
ground, the image level to deal with global and sudden variations and the object
level to deal with the entrance or the removal of static objects. This method is
called V iola [8]+BS afterwards.

We finally developped a method using additionally temporal information. We
propose a method using advantages of tools classically dedicated to object de-
tection in still images in a video analysis framework. We use video analysis to
interpret the content of a scene without any assumption while objects nature
is determined by statistical tools derived from object detection in images. We
first use background subtraction to detect objects of interest. As each connected
component detected potentially corresponds to one person, each blob is indepen-
dently tracked. Each tracked object is characterized by a set of points of interest.
These points are tracked, frame by frame. The position of these points, regarding
connected components, enables to match tracked objects with detected blobs.
The tracking of points of interest is carried out with the pyramidal implementa-
tion of the Lucas and Kanade tracker [11,12]. The nature of these tracked objects
is then determined using the previously described object recognition method in
the video analysis framework. Figure 1 presents an example of tracking result
with partial occlusion. This method is called CAPTHOM in the following.

For more information about the three considered methods, the interested
reader can refer to [13].
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3 Evaluation Metric

The developed evaluation metric [14] is based on four steps corresponding to:
(i) Objects matching, (ii) Local evaluation of each matched object in terms of
localization and recognition, (iii) Over- and under-detection compensation and
(iv) Global evaluation score computation of the considered interpretation result.

Figure 2 illustrates the different stages on an original image extracted from
the 2007 Pascal VOC challenge. For this image, the ground truth is composed of
4 objects which all belong to the human class. The interpretation result contains
as for it two detected persons. We can note that the first person of the ground
truth is well localized and recognized. The last three persons are well recognized
but poorly localized. Indeed, only one object has been detected instead of three.

The first step, consisting in matching the objects of the ground truth and of
the interpretation result, is done using the PAS metric [4]:

PAS(Igt, Ii, u, v) =
Card(Ir(u)

gt ∩ I
r(v)
i )

Card(Ir(u)
gt ∪ I

r(v)
i )

(1)

with card(Ir(u)
gt ) the number of pixels from the object u in the ground truth,

and card(Ir(v)
i ) the number of pixels from the detected object v in the inter-

pretation result. The number of rows of the resulting matching score matrix
corresponds to the number of objects in the ground truth, and the number of
columns corresponds to the number of objects in the interpretation result. This
matrix is computed, as in [15]. The values range from 0 to 1, 1 corresponding
to a perfect localization. From the matching score matrix, we can match objects
by two methods: the first one consists in using an Hungarian algorithm, which
implies one-to-one matching as in [4]; the second one consists in simply applying
a threshold, which enables multiple detections as in [16]. We use the threshold
method, with a threshold set to 0.2 by default, as it allows that each object of the
interpretation result can be assigned to several objects from the ground truth or
vice-versa. The first person of the ground truth (object 1) is well localized in the
interpretation result (object 2). Their recovery score exceeding the threshold,
they are matched resulting in value 1 in the corresponding cell of the assignment
matrix. Concerning the persons group, only two objects of the ground truth
(objects 3 and 4) are matched with the one object of the interpretation result
(object 1).

The second step consists in the local interpretation evaluation of each matched
object. The localization is first evaluated using the Martin metric [17] adapted
to one object:

Sloc(Igt, Ii, u, v) = min
(card(Ir(u)

gt\i )

card(Ir(u)
gt )

,
card(Ir(v)

i\gt )

card(Ir(v)
i )

)
(2)

with card(Ir(u)
gt ) the number of pixels of object u present in the ground truth and

card(Ir(u)
gt\i ) the number of pixels of object u present in the ground truth but not
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Fig. 2. Illustration of the global evaluation of an interpretation result
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present in the interpretation result. This metric has been chosen according to
the comparative study conducted in [18] on the performances of 33 localization
metrics face to different alterations like translation, scale change, rotation... The
obtained localization score ranges from 0 to 1, 0 corresponding to a perfect
recovery between the two objects and consequently to a perfect localization.
We can note that all the matched objects are quite well localized obtaining
low scores, the poorest score 0.065 corresponding to the second object of the
interpretation result, namely the lonely person. The evaluation of the recognition
part consists in comparing the class of the object in the ground truth and in the
interpretation result. This comparison can be done in different ways. A distance
matrix between each class present in the database can be for example provided,
which would enable to precisely evaluate recognition mistakes. On an other way,
numerous real systems track one specific class of objects and do not tolerate
some approximation in the recognition step. They work in an all or nothing
scheme. Srec(Igt, Ii, u, v) = 0 if classes are the same and 1 otherwise. It is the
case in the developped human detection system where all detections correspond
de facto to the right class, namely a human. The recognition evaluation matrix
containing only ones, the misclassification is then indirectly highly penalized
through the over and under-detection compensation. As we have to maintain an
important weight for the penalization of bad localization, we choose a high value
of the α parameter (α = 0.8). We finally compute the local interpretation score
S(u, v) between two matched objects as a combination of the localization and
the recognition scores:

S(u, v) = α ∗ Sloc(Igt, Ii, u, v) + (1 − α) ∗ Srec(Igt, Ii, u, v) (3)

The third step is the compensation one. Working on the assignment matrix,
empty rows or columns are tracked and completed. In our example, there is no
empty column meaning that all objects of the interpretation result have been
matched with at least one object of the ground truth. There is consequently no
over-detection. On the other hand, one row (2) is empty; one object of the ground
truth has not been detected. This under-detection is compensated adding one
column with score 1 at the corresponding line.

Finally, the global interpretation score is computed, taking into account the
compensation stage and averaging the local interpretation scores.

4 Evaluation of Human Detection Algorithms

In order to evaluate the detection methods presented in section 2, we realized
a set of reference scenarios corresponding to the specific needs expressed by
the industrial partners involved in the CAPTHOM project. An extract of a
scenario example is presented in figure 3. At each location, a set of characteristics
(temperature, speed, posture, activity...) is associated with the formalism defined
within the CAPTHOM project [19].

The three classes of scenarios from which we have built the evaluation dataset
are:
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Fig. 3. Extract of a scenario example defined by the industrial partners involved in the

CAPTHOM project

– Set 1: scenarios involving a normal use of a room. In these scenarios, we need
to detect humans that are static or moving, sitting or standing in offices,
meeting rooms, corridors and dining rooms.

– Set 2: scenarios of unusual activities (slow or fast falls, abnormal agitation).
– Set 3: scenarios gathering all false detections stimuli (illumination variation,

moving objects etc).

In the following, Set 4 is defined as the union of these 3 sets. In total, we used
29 images sequences in 10 different places. Images have a resolution of 320 x 240
and have an ”average” quality. Each images sequence lasts from 2 to 10 minutes.

Figures 4 and 5 present results obtained with the CAPTHOM algorithm on
videos extracted from our test dataset.

Fig. 4. Example of results obtained with the CAPTHOM method on a video present-

ing partial occlusion

The choice of the evaluation metric parameters, done for this study, corre-
sponds to an expected interpretation compromise which can be encountered in
many real applications. We use a parameter α, set at 0.8, to balance the local-
ization and the recognition scores. This high value has been chosen to maintain
an important weight for the penalization of bad localization. It results from a
wide subjective evaluation of interpretation results we conducted, involving re-
searchers of the French community, to better understand when a bad localization
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Fig. 5. Example of results obtained with the CAPTHOM method on a video present-

ing illumination changes

is more penalizing than a misclassification [20]. One objective of this study was
to be able to guide the users in the metric parameters choice and more specif-
ically in the α ponderation parameter choice. In order to reach this objective,
we asked many individuals to compare several image understanding results. We
then compare the obtained subjective comparison with the objective one given
by the proposed metric. With α = 0.8, the obtained similarity rate of correct
comparison was 83.33%, which shows that our metric is able to order image
understanding results correctly in most of cases. Preserving good performances
concerning the localization aspect will allow our system to achieve higher level
information such as path or activity estimation.

Table 1 presents the mean evaluation results obtained for the three methods
on the various sets of the test database using the designed interpretation eval-
uation metric. sf corresponds to the scale factor used from the sliding window
framework analysis. We can note that the introduction of background subtrac-
tion results in algorithms that are less sensitive to the choice of this parameter.
Combining properly defined test databases and an tunable evaluation metric
allow the industrials to obtain a deep insight into their research developments.
They can indeed quantify the performances gap between different algorithms and
motivate their further technological choices. The proposed evaluation metric is
also suitable for the choice of the algorithms parameters.
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Table 1. Performances evaluation of the different interpretation algorithms developped

within the CAPTHOM project

Set 1 Set 2 Set 3 Set 4

Viola [8], sf=1.1 0.614 0.672 0.565 0.597

Viola [8], sf=1.4 0.719 0.707 0.105 0.436

Viola [8], sf=1.5 0.758 0.739 0.092 0.451

Viola [8]+BS, sf=1.1 0.429 0.642 0.050 0.276

Viola [8]+BS, sf=1.4 0.618 0.747 0.071 0.380

Viola [8]+BS, sf=1.5 0.663 0.745 0.082 0.405

CAPTHOM 0.338 0.089 0.043 0.176

5 Conclusion and Perspectives

We presented in this paper the potential interest of a global evaluation met-
ric for the development of industrial understanding algorithms. The originality
of the proposed measure lies in its ability to simultaneously take into account
localization and recognition aspects together with the presence of over- or under-
detection. Concerning the foreseen application, industrial partners involved in
the project also have in mind to extend the system for car park video surveillance.
In that case, the detection and distinction between different classes could be in-
teresting and give even more sense to the misclassifcation error introduced in the
evaluation metric. We are actually working on the use of taxonomy information
for ponderating the misclassification error. The introduction of a distance matrix
between classes taking into account their more or less important similarity could
improve the adaptability of the proposed metric. For some applications, some
misclassifications could have less repercussions than others. As an example, it
could be suitable to less penalize an interpretation result where a bus is recog-
nized as a truck, as these two objects are very similar, than an interpretation
result where a bus is recognized as a building.
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Abstract. We propose a system to recognize objects with a camera net-

work in a smart home. Recognizing objects in a home environment from

images is challenging, due to the variation in object appearances such

as chairs, as well as the clutters in the scene. Therefore, we propose to

recognize objects through user interactions. A hierarchical activity anal-

ysis is first performed in the system to recognize fine-grained activities

including eating, typing, cutting etc. The object-activity relationship is

encoded in the knowledge base of a Markov logic network (MLN). MLN

has the advantage of encoding relationships in an intuitive way with first-

order logic syntax. It can also deal with both soft and hard constraints by

associating weights to the formulas in the knowledge base. With activity

observations, the defined MLN is grounded and turned into a dynamic

Bayesian network (DBN) to infer object type probabilities. We expedite

inference by decomposing the MLN into smaller separate domains that

relates to the active activity. Experimental results are presented with our

testbed smart home environment.

1 Introduction

In this paper we propose a system to recognize objects and room layout through
a camera network in a smart home. Recognizing objects such as table, chair, sofa
etc. in a home environment is challenging. First, many objects such as chairs and
desks have varied appearances and shapes. Second, they are usually viewed from
the cameras from different viewpoints. Third, Cameras installed in rooms often
have a wide field of view. Images are usually cluttered with many objects while
some objects of interest may have small image size. However, many objects are
defined by their functions to users and not necessarily by their appearance. Such
objects can be recognized indirectly from human activities during interaction
with the objects.

In our work objects in the kitchen, dining room, living room and study room
are recognized based on the activity analyzed from the camera network. The
object types and activity classes in each semantic location are listed in Table 1.
We adopt a hierarchical approach for activity recognition, including coarse- and
fine-level activity recognition with different image features. In addition to the
simpler pose-related activities such as standing, sitting and lying, we are also
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Table 1. Activity classes used in this work and the objects recognized in each semantic

location context

location activity objects

kitchen walking, standing, cutting, scrambling worktop, microwave, floor

dining room walking, standing, sitting, eating dining table, floor

living room walking, standing, sitting, lying, watching floor, chair, sofa, TV

study room walking, standing, sitting, typing computer, chair, floor

able to recognize activities involving subtle motions, such as cutting, scrambling,
eating, typing etc. The fine-level analysis of activities enables discrimination of
more types of objects in the environment.

To infer objects the relationship between objects and activities needs to be
modeled. Probabilistic graphical models are good candidates for modeling the
relations between objects, user activities and other events. However, such re-
lationships can be quite complex in real applications, and building a graphical
model manually can become intractable as its scale increases. Moreover, a single
inclusion or removal of a variable or a modification of a relation may result in
many changes in the graphical model. It is therefore crucial to employ a frame-
work which can (a) handle such complex relations in an intuitive and scalable
fashion, and (b) model the vision output and high-level deductions in a sta-
tistical way. In this paper we use Markov logic network (MLN) [1] to interface
vision processing outputs and high-level reasoning. MLN can be regarded as
a template to construct Markov networks. The advantage of MLN is that it
intuitively models various relations between objects and user activities in first-
order logic, which serves as the knowledge base for inference. Each formula in
the knowledge base has a weight, representing the confidence associated with it.
With observations, MLN is grounded into a Markov random field (MRF). There-
fore, the probability of variables can be inferred through the MRF. MLN has
been used in event recognition in visual surveillance [2] where its advantage in
accommodating commonsense knowledge into event inference is demonstrated.

The contributions of this work are as follows. (1) We propose to recognize
objects through human activities when the object category has changing ap-
pearance and when the object can be identified through human interaction. This
approach is especially helpful for recognizing objects in a smart home environ-
ment. (2) We demonstrate that fine-level activities in the home environment can
be analyzed and they are effective to differentiate many types of objects. (3) We
propose to use Markov logic network to interface vision and semantic reasoning,
and to encode the relational structure between objects and user activities in our
prior knowledge. The model is capable of handling complex relationships in a
scalable way. Another advantage of MLN over Markov networks is that it can
handle both soft and hard constraints (relationships), which we exploit in our
approach.

The rest of the paper is organized as follows. Sec. 2 summarizes related work
on object recognition and activity classification. The overview structure of our
system is presented in Sec. 3. The hierarchical activity recognition with multiple
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cameras is briefly explained in Sec. 4. Sec. 5 presents the MLN knowledge base
used for our problem and the inference flow and considerations. The testbed and
experimental results are described in Sec. 6.

2 Related Work

Image-based object detection approaches are based on local appearance mod-
els, grouping geometric primitives and learning from image patterns [3]. Recent
work based on using image contextual information indicates promising results
on object detection [4,5].

Using human activity as context to detect objects relies upon modeling the
relationship between activities and objects, as well as on vision-based analysis
to infer the activities. In [6] Peursum et al. label image segments with objects
such as floor, chair, keyboard, printer and paper in an office, based on features
of human pose. Gupta et al. [7] detect manipulable objects (cup, spray bottle,
phone, flashlight) from manipulation motion, reach motion, object reaction and
object evidence from an appearance-based object detector. Both approaches de-
fine a Bayesian model which employs image features and action or pose features
to infer the object type. Such an approach may be sensitive to the environment
and placement of cameras since vision processing is dependent on such factors.
But semantic reasoning of object labels is less dependent on camera views and
more a function of the deduced user activities. Therefore, separating vision pro-
cessing from semantic reasoning allows to transfer the latter module to other
environments. Similar observation is made in [8], where layered hidden Markov
models are used.

Vision-based human activity analysis has seen significant progress in recent
years [9], including advances in analyzing realistic activities from videos of the
public domain [10]. However, there are only a few works that focus on activity
recognition in the home environment. In [11], situation models are extracted
from video sequences of a smart environment, which are essentially semantic-
level activities including both individual activities and two-person interactions.
Both [12] and [13] use video data and RFID for activity recognition. Wu et al.
in [12] use RFID readings and object detection from video to jointly estimate
activity and object use. The learning process is bootstrapped with commonsense
knowledge mined from the internet, and the object model from the video is
automatically acquired without labeling by leveraging RFID readings. Their
work infers activity indirectly from object use. Park et al. compare activity
recognition with RFID and vision [13]. They conclude that for kitchen activities
which involve more object usage and for which visual features (e.g., silhouettes)
are not very distinguishable, RFID-based recognition has higher performance
while vision-based recognition accuracy is higher for living room activities.

3 System Overview

Fig. 1(a) shows the two main steps for object recognition in our system. The
first step is activity analysis in the camera network. A detailed illustration of
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Fig. 1. Overview of system modules. (a) Layered structure for object recognition

through human activities in the smart home. (b) Hierarchical activity analysis through

different types of image features. The activities detected in the smart home are shown

in ellipses.

the hierarchical activity analysis can be found in Fig. 1(b). This step yields the
location and activity of the person. Note that not all activities shown in Fig. 1(b)
are used in object recognition (Table 1) because some activities are not directly
related to the environment objects.

In the second step, the room is divided into grids of size 30cm × 30cm and
object type of each grid is inferred with the activity observed in that grid. Object-
activity relationship is defined in the knowledge base of MLN. Activity obser-
vations are converted into evidence predicates to input to the MLN model. The
related MLN variables and formulas are activated and converted into MRF to
infer object type probability related to the activity. Finally, each grid in the room
will have a probability distribution over all object types, so that the objects are
identified as grids with high probability of its type.
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4 Activity Analysis in the Camera Network

The major challenges for activity recognition in the home environment include:
1. The person is often occluded by furniture; 2. Since the person freely moves and
turns around while the cameras are static, the cameras may not always have a
good viewpoint to observe the activity; 3. Activities in the home can have quite
disparate characteristics. While activities such as lying can be distinguished from
the pose, the kitchen activities usually have simple poses with subtle hand mo-
tions; 4. A fusion mechanism is needed either at the feature or the decision level.

As the whole activity recognition system, we use a hierarchical approach to
classify user activities with visual analysis in a two-level process. Different types
of activities are often represented by different image features, hence attempting
to classify all activities with a single approach would be ineffective. In Fig. 1(b),
activities are represented by coarse and fine levels. The coarse activity level
includes the classes of standing, sitting and lying, which relate to the pose of the
user. Adding global motion information and face detection, more attributes are
added to standing and sitting to discriminate walking and watching in the second
level. The fine activity level also consists of activities involving movement such
as cutting, eating, reading, etc. We apply such a hierarchical approach because
the first-level activities are discriminated based on pose, while the second-level
activities are classified based on motion features.

In the first level, activity is coarsely classified into standing, sitting and ly-
ing with temporal conditional random field (CRF), through employing a set of
features consisting of the height of the user (through 3D tracking) and the as-
pect ratio of the user’s bounding box. Details of the process and performance
evaluation can be found in [14].

Based on the result of the coarse level, the activity is further classified at the
fine-level based on several image features. The local motion related activities
are recognized based on spatio-temporal features [15]. A codebook of size N is
constructed with K-means clustering on a random subset of all the extracted
spatio-temporal features of the training dataset. Each feature is assigned to the
closest cluster in Euclidean distance. The video sequences are segmented into
episodes with duration of t seconds. Bag-of-features (BoF) are collected for every
episode, therefore each episode has the histogram of spatio-temporal features as
its feature vector. We use discriminative learning with SVM. Note that we also
have others as an activity category in the experiments. This is because our
sequences are not specifically designed for the defined activity types. There are
many observations where the activities are in transition phase or the person
is simply doing some activities at random which are not within our defined
categories. This is also a challenge for our activity recognition algorithm, since
due to the fact that others includes many different motions, the feature space
for others is complex. However, the applications built on top of activity analysis
discussed in this paper are less sensitive to false positives on others, because the
system is usually designed to perform no operation when the user’s activity is
not specific. Details of the experiments and performance can be found in [16].
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In the second level, some other image features are used as well. Standing
is classified as walking when global motion is detected. Face detection is used
when the person is sitting, to identify watching action. Motion templates (from
OpenCV) is used to detect the action of open-close the door of microwave from
the side view. The assumption is that when the person has an open-close action,
there will be horizontal motion templates in one direction followed by those in
the opposite direction. The probability of the open-close action is express as
follows:

p(t) = exp(− (N1 − N)2

σ2 ) exp(− (N2 − N)2

σ2 ) (1)

where N is the window of N frames, N1 represents the number of frames with
horizontal motion segments in one direction in the previous N frames, while N2
represents the number of frames with motion segments in the opposite direction
in the next N frames of t. σ indicates the magnitude of such regular motion
patterns we expect. In our experiments, N = 10 and σ = 6.

5 Object Recognition from Object-Activity Relationship

The knowledge base of MLN for object recognition can be found in Knowledge
Base 1. Markov logic network consists of a set of pairs (Fi, wi), e.g., formu-
las and their weights. The formulas defined relations between the variables as
“rules”, but such rules are soft ones. Likelihood of the formulas are indicated
by the probability at the beginning of the lines. Lines 2 and 3 define variables
(object and activity) and their values. Lines 6-8 define the predicates used in
the domain. Hasact(act,t) represents the activity at the grid at a time t, while
Hastype(object,t) represents the grid object type at t. After(t2,t1) indicates t2
is after t1. Lines 11-14 specify mutual exclusiveness of variables act and object.
The formulas are defined in first-order logic syntax. For example, line 17 means
if the previous object type of the grid is Other and the current observation is
Walking, the likelihood of Floor is p1. The formula is a hard constraint when
p = 1. For example in line 22, it means with Sitting observation, Sofa remains
its identity and likelihood.

MLN defined in Knowledge Base 1 can be applied for all grids. One option is to
ground the whole MLN with activity observations from a selected time interval.
In this case the resulting model will have many random variables since each
grounded predicate will be considered as a random variable. Inference on such a
graphical model is time consuming. However, in our case each activity does not
have relationships with each other (except for the mutual exclusiveness), and
each relates to a small number of object types compared to all object types.
Therefore, for each activity ai, a minimal domain Di is constructed to infer its
related object types. Fig. 2 shows the flow of processing. At each frame, if there
is an activity detected, the associated grid position is computed. For all activities
except for Watching, the person’s location is regarded as the grid of the activity.
For Watching, all grids that are 1) in the gaze direction and 2) have a distance
of at least d away from the person are regarded as the range of Watching. Then
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Knowledge Base 1. MLN for object-activity relationship
1: // define variables and constants
2: object = {Floor, Chair, Sofa, Worktop, Microwave, Dtable, TV, Computer, Other

}
3: act = { Walking, Standing, Sitting, Lying, Cutting, Scrambling, Eating, Typing,

Watching, OpenClose }
4:

5: // predicate declaration
6: After(time,time)

7: Hasact(act,time)

8: Hastype(object,time)

9:

10: // formulas
11: 1 (ac!=ac’)∧Hasact(ac,t)⇒¬Hasact(ac’,t)

12: 1 ∀t ∃ac Hasact(ac,t)

13: 1 (ob!=ob’)∧Hastype(ob,t)⇒¬Hastype(ob’,t)

14: 1 ∀t ∃ob Hastype(ob,t)

15:

16: // floor
17: p1 Hastype(Other,t1)∧Hasact(Walking,t2)∧After(t2,t1)⇒Hastype(Floor,t2)

18: // sitting and lying activities
19: p2 Hastype(Other,t1)∧Hasact(Sitting,t2)∧After(t2,t1)⇒Hastype(Chair,t2)

20: p3 Hastype(Other,t1)∧Hasact(Lying,t2)∧After(t2,t1)⇒Hastype(Sofa,t2)

21: p4 Hastype(Chair,t1)∧Hasact(Lying,t2)∧After(t2,t1)⇒Hastype(Sofa,t2)

22: 1 Hastype(Sofa,t1)∧Hasact(Sitting,t2)∧After(t2,t1)⇒Hastype(Sofa,t2)

23: 1 Hastype(Dtable,t1)∧Hasact(Sitting,t2)∧After(t2,t1)⇒Hastype(Dtable,t2)

24:

25: // kitchen
26: p5 Hastype(Other,t1)∧Hasact(Cutting,t2)∧After(t2,t1)⇒Hastype(Worktop,t2)

27: p6 Hastype(Other,t1)∧Hasact(Scrambling,t2)∧After(t2,t1)

28: ⇒Hastype(Worktop,t2)

29: p7 Hastype(Other,t1)∧Hasact(OpenClose,t2)∧After(t2,t1)

30: ⇒Hastype(Microwave,t2)

31:

32: // dining table
33: p8 Hastype(Other,t1)∧Hasact(Eating,t2)∧After(t2,t1)⇒Hastype(Dtable,t2)

34: // living room
35: p9 Hastype(Other,t1)∧Hasact(Watching,t2)∧After(t2,t1)⇒Hastype(TV,t2)

36: // study room
37: p10 Hastype(Other,t1)∧Hasact(Typing,t2)∧After(t2,t1)⇒Hastype(Computer,t2)
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Algorithm 2. Algorithm to separate domains
Input: Original domain D0

Output: A set of separate domains D = {D1,D2, . . . , DM}
for each activity ai do

Find the set of universal formulas Fu = {fu
1 , fu

2 , . . .}.
Find the set of non-universal formulas related to ai: Fnu = {fnu

1 , fnu
2 , . . .}.

Get the object set in Fnu: Oi.

Convert Fnu in conditional pdf form F ′
nu.

Form domain Di = {ai, Oi, Fu, F ′
nu}.

end for

for each grid associated with activity ai, the sub-domain Di is activated. Since
Di only changes probability of objects in its domain, probability of objects not
in the domain is scaled to ensure all object probabilities sum up to 1.

Algorithm 2 shows the algorithm to convert the main domain D0 of Knowl-
edge Base 1 into a set of separate domains D = {D1,D2, . . . ,DM}. Universal
formulas refer to those that apply to all activities or object types. In Algorithm 2
Fnu are converted to conditional pdf form of formulas, because we would like to
ground the MLN into a Dynamic Bayesian network (DBN) which is a directed
graph, so that Prob(object,t) depends on activity observations before t.

6 Experiments

We conducted the experiments in a test-bed smart home environment, called the
AIR (Ambient Intelligent Research) Lab. It is a smart studio located at Stanford
University (Fig. 3). It consists of a living room, kitchen, dining area, and study
area. The testbed is equipped with a network of cameras, a large-screen TV, a
digital window (projected wall), handheld PDA devices, appliances, and wireless
controllers for lights and ambient colors. Fig. 4 shows snapshots of several users
engaged in different activities. Our video data involve four users. There are six
scenarios in total, each captured by 5 synchronized cameras. In the scenario, one
user does different activities at his/her own choice of sequence, for around 10
minutes. The activity models are trained on a different dataset described in [16].

To evaluate recognition rate, the object types are labeled on the grids and
compared with inference results (Table 2). In Table 2, results are processed at
the end of each scenario, and the precision shown is calculated by putting results
from all scenarios together. Recall is obtained by calculating how many of the
labeled grids for an object are covered correctly after inference. For each grid, the
object type with the highest probability is chosen as the object type for that grid.
Fig. 5 shows the room schematic overlayed on grids, with different color showing
different objects. From Table 2 we can see that recall is generally lower, because
we may not have enough observations that cover all possible object locations,
e.g., there is a large floor area the person has not walked into. However, part
of the objects are covered after recognition. Besides, there is usually a shift
between the recognized object position and the real object position. This is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Example images of some activities. (a) cutting; (b) scrambling; (c) eating; (d)

using microwave; (e) reading; (f) typing on computer; (g) sitting and watching TV; (h)

lying on sofa.

Fig. 5. The room layout and estimated grid object types shown in color: floor (gray),

chair (blue), sofa (green), worktop (cyan), microwave (magenta), TV (red), Dtable

(yellow), computer (orange)

Table 2. Precision and recall for AIR lab object recognition, in terms of the number

of recognized grids. Note that recall∗ is not the recall of the algorithm, since the user’s

activity does not cover all possible locations of the objects. But the recall number is

nevertheless calculated by dividing the number of recognized grids with the total num-

ber of grids occupied by the object. So recall∗ is expectedly lower than the algorithm’s

recall.

floor chair sofa worktop microwave Dtable TV computer

precision 0.88 0.64 0.8 1 1 0.78 0.27 0.5

recall∗ 0.47 0.82 0.5 0.67 0.5 0.67 0.75 0.17
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because without further clues, we identify the person’s location as the object
location he/she is interacting with. However, in practice the object is usually a
short distance away from the person. But still the results are helpful to indicate
the objects and their location in the environment. Note that in front of the sofa,
there is a region misclassified as TV. This is because the algorithm generously
considers all grids along the gaze direction are possible TV locations. While some
grids are identified as other objects if other activities happened there, some (like
this region) have not been attended by the person. Therefore they retained the
hypothesis of being TV. This also explains the low precision of TV. Further
observations on this region would help resolve its identity.

7 Conclusion

In this paper we described a system to recognize objects in the smart home
environment with camera network. The objects are recognized through object-
activity interactions. A hierarchical activity recognition process is described,
which provides fine-grained activities. The object-activity relationship is en-
coded in the knowledge base of MLN. We described the details of the knowledge
base and inference process. Experiments are shown in the AIR lab smart home
environment. Future work includes combining the position-based object type
inference with image segmentation for better localization of objects.
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Abstract. In order to perform automatic analysis of sport videos ac-

quired from a multi-sensing environment, it is fundamental to face the

problem of automatic football team discrimination. A correct assignment

of each player to the relative team is a preliminary task that together

with player detection and tracking algorithms can strongly affect any

high level semantic analysis. Supervised approaches for object classifi-

cation, require the construction of ad hoc models before the processing

and also a manual selection of different player patches belonging to the

team classes. The idea of this paper is to collect the players patches com-

ing from six different cameras, and after a pre-processing step based on

CBTF (Cumulative Brightness Transfer Function) studying and compar-

ing different unsupervised method for classification. The pre-processing

step based on CBTF has been implemented in order to mitigate differ-

ence in appearance between images acquired by different cameras. We

tested three different unsupervised classification algorithms (MBSAS - a

sequential clustering algorithm; BCLS - a competitive one; and k-means

- a hard-clustering algorithm) on the transformed patches. Results ob-

tained by comparing different set of features with different classifiers are

proposed. Experimental results have been carried out on different real

matches of the Italian Serie A.

1 Introduction

In last years sport applications of computer vision are increasing in many contexts:
in particular, many works focus on football applications, since it is one among the
most popular team sports around the world, and it has a large audience in all the
television programs. The research activities in sports video have focused mainly
on semantic annotation [1], event detection [14] and summarization [3]. The high
level applications above mentioned are based on structural low level procedures:
the player segmentation [4], tracking [10] and their classification [6].

In this work we focus our attention mostly on the last aspect of image analysis:
the automatic classification of players according to their team membership in a
multi-camera context. Automatic team discrimination is very important because
it allows to both reduce the interaction of human people and make the whole

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 143–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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system less dependent from particular match conditions (for example the a-priori
knowledge about the team uniforms). Supervised approaches based on spectral
contents are proposed in [12] (based on the analysis of colors in HSI space),
[10], [13]. In [11] the position of each player in the field is integrated to make
the classification more reliable. A recent interesting work working on broadcast
moving images has been proposed in [2]. Moreover in a multi-view context a
Cumulative Brightness Transfer Function (CBTF) is proposed [7] for mapping
color between cameras located at different physical sites, which makes use of
the available color information from a very sparse training set. A bi-directional
mapping approach is used to obtain an accurate similarity measure between
pairs of candidate objects.

All the above works try to solve the problem of player team discrimination
in a supervised way and on a single camera view, by means of human-machine
interactions for the creation of the reference classes. In this work we investigate
on the usability of unsupervised algorithms for the automatic generation of the
class models from patches coming from different cameras (players and referee).
The proposed work analyzes two main aspects of unsupervised classification: the
selection of the best set of features, and the selection of the best classifier for the
examined application context. Moreover, the problem of different appearance of
players in different views, or in differently lighted regions in the same view, is
analyzed; an approach based on the evaluation of the Cumulative Brightness
Transfer Function (CBTF) [5] with the goal of referring each player appearance
to the same color model is proposed. Several factors, such as varying lighting
conditions during the match, the overall shape similarity among players, time
constraints for real time processing, make a football match a challenging arena
for pattern recognition based on color descriptors. Therefore, this work try to
be a starting point for all researchers that approach the problem of automatic
analysis of football videos.

We started from the players segmentation algorithm proposed in [8]. For
each detected player, different feature set have been tested: in particular, we
have compared performance obtained with RGB histograms, rg normalized his-
tograms and the transformed RGB (standard RGB histogram modified in order
to obtain histogram with zero means and standard deviation equal to one).
Then, three different unsupervised classification algorithms have been imple-
mented and tested. We have chosen a sequential algorithm (MBSAS - Modified
Basic Sequential Algorithm Scheme), a competitive one (BCLS - Basic Compet-
itive Learning Scheme), and a hard-clustering scheme (Isodata, also known as
k-means). All experiments have been performed both in absence and presence
of the preprocessing based on the CBTF, finalized to mitigate different color
appearance between different sources.

In the rest of the paper, firstly the system overview is summarized (section 2);
then features extraction procedures (section 3) and the Cumulative Brightness
Function are presented (section 4). After, the classification algorithms are briefly
illustrated (section 5). The experimental results obtained on real image sequences
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acquired during football matches of the Italian Serie A are described in section
6. Finally, conclusions and future works are reported in section 7.

2 System Overview

The multi-camera environment consists of a real system installed in the ”Friuli”
stadium situated in Udine (Italy). This prototype permits to detect automat-
ically ”offside” during the football match [15]. The system is composed by six
high resolution (Full HD) cameras (labeled as FGi, where i indicates the i-th
cameras) placed on the two sides of the pitch. This location assures double cov-
erage of almost all the areas by either adjacent or opposite cameras. In figure
1 the location of the cameras is shown. The acquired images are transferred to
six processing nodes by fiber optic cables. The acquisition process is guided by
a central trigger generator that guarantees synchronized acquisition between all
the cameras. Each node, using two hyper-threading processor, records all the
images of the match on its internal storage unit, displays the acquired images
and, simultaneously, processes them with parallel threads, in an asynchronous
way with respect to the other nodes. The six processing nodes, are connected to a
central node, which has having the supervisor function. It synchronizes the data
coming from nodes and performing high level processing. The figure 2 shows the
six images acquired from the six nodes linked to the cameras located around the
pitch (see figure 1). Each nodes uses a motion segmentation algorithm [8] based
on statistical background subtraction. Information relative to moving objects
are the used to perform human blob detection. The player blobs represent the
starting point of the classification step. We have evaluated the performance of
different combination of unsupervised classifier and color feature applied in a
multi-camera environment.

3 Feature Selection

In order to separate players in different classes, they should be represented by
a features vector able to emphasize both intra-class analogies, and inter-class
differences. Moreover, the selected features should be as well scale invariant (im-
ages of players could have different size according to the geometry of acquisition
sensors and their position in the field), rotation invariant (usually players are
standing, but sometimes they can appear slanted on the field), and also quickly
extractable (real time processing is often a fundamental requisite for sport analy-
sis applications). Starting from these requirements, we have tested three different
feature sets that satisfy the above mentioned conditions:

RGB histograms: the RGB histogram is a combination of three 1-dimensional
histograms based on the R,G and B channels of RGB color space.

rg histograms: in the normalized histograms the chromaticity components r
and g describe the color information in the image; it is robust to light vari-
ations in luminannce;
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Fig. 1. Cameras’ location around the pitch

Fig. 2. Snapshot of the six camera views after processing step

Transformed RGB histograms: each channel is normalized independently,
obtaining for each channel a distribution where μ = 0 and σ = 1.

Note that the last two sets introduce partial independence from light conditions.
However, this is not sufficient to overcome problems related to the use of different
sources: in presence of images coming from different cameras, usually the color
appearance of the same actor changes radically from one image to another one.
This happens also in presence of differently lighted regions in the same images
(players of the same team positioned in shadowed/sunny regions). For this reason
in the next section 4 we propose an approach to uniform color appearance in
different images coming from uncalibrated cameras.
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4 Cumulative Brightness Transfer Function

The main aim of this procedure is to relate all color distributions to a refer one,
previously selected. So, after this step, players of the same class should have the
same appearance, independently from the acquisition camera settings, and from
the color content of the image. We evaluated the histograms in the RGB channels
for all the segmented images of each of the N cameras. The histograms were gen-
erated by using 64 bins for each channel. We wanted to estimate BTFs between
the reference camera and the others N − 1. We propose the generic algorithm
relative to two different cameras and FOVs and we use it between each cameras
and the reference one. For each couple of images from different FOVs(i1, j2) we
want to estimate a BTF f1,2 such that, for each couple of images (i1, j2), given
the brightness values Bi1(k) and Bj2(k) we have Bj2(k) = f1,2(Bi1(k)) where
k = 0, .., 63 represents the number of bins, i1 = 1, .., M represents the number of
images in the camera, j2 = 1, .., N the number of images in the reference cam-
era. For each possible couple of histograms (i1, j2) we evaluated the brightness
transfer function

fi1j2(B
i1(k)) = Bj2(k) (1)

using the inverted cumulative histogram, that is

fi1j2(B
i1 (k)) = H−1

j2
(Hi1(B

i1 (k))) (2)

Using this concept we evaluate the cumulative BTF (CBTF) proposed in [7].
The generation of the CBTF involves an amalgamation of the training set before
computing any BTFs. An accumulation of the brightness values is computed on
all the training images of the generic camera obtaining a cumulative histogram
Ĥ1. The same is done for all the corresponding training images of the reference
camera obtaining Ĥ2. The CBTF f̂1,2 is

f̂1,2(B1(k)) = Ĥ2
−1

(Ĥ1(B1(k))) (3)

also in this case evaluated by using the inverted cumulative histogram. Notice
that the same algorithm could be implemented starting from different part of
the same FOV in order to smooth different color appearance due to different
illuminations (play field with shadow and non uniform brightness).

5 Classification Algorithms

In our experiments we have implemented and tested three methodologies, belong-
ing to different categories, to perform an unsupervised classification of players in
five different classes (two teams, two goalkeepers, and officials): MBSAS (sequen-
tial algorithm), BCLS (competitive algorithm) and K-means (hard-clustering al-
gorithm). We remain the reader to [9] for a detailed explanation of them. The
algorithms need the definition of a proximity measure d(x, C), a threshold of
similarity th and the maximum number of clusters q. Euclidean distance has
been used for similarity evaluations, while the maximum number of cluster has
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Fig. 3. Example of 4 different cameras FOV with variable illumination conditions

been fixed to five according to our domain constraint, as previously remarked.
The values assumed for the thresholds and the other specific parameters will be
explicitly mentioned in the experiments section.

MBSAS: it is a sequential algorithm; vectors are presented twice, the first time
for the representatives creation, and the second one for the assignment of all
vectors to classes; it is dependant from the presentation order; each cluster
is represented by a vector called prototype that can be updated at each
presentation in the test phase.

BCLS: it is a competitive algorithm; representatives are randomly initialized;
vectors are presented twice, the first time for the representatives updat-
ing (only the winner representative is updating at each presentation), and
the second one for the assignment of all vectors to classes; it is dependant
from the presentation order, and from the initial position of representatives.
Again, each prototype can be updated at each presentation in the test phase.

Isodata (or k-means): it is a hard-clustering algorithm; representatives are ran-
domly initialized; vectors are presented continuously until the representa-
tives remain unchanged; at each presentation representatives are updated in
function of the difference with the presented vector; it is dependant from
the initial position of representatives. Representatives can be continuously
updated in the test phase.

In the following section 6, we present results obtained by crossing the different
feature sets with the above mentioned unsupervised algorithms.

6 Experimental Results

We have tested the proposed algorithms with different sequences acquired during
real football matches of the Italian serie A championship, acquired in different
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(a) Goal-

keeper

(b) Referee

Fig. 4. Example of hard-distinguish players
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Fig. 5. PCA decomposition of Training Data

light conditions. The training set has been created by collecting a great number
of player feature vectors, randomly selected (many times repeated) from real
football images, with the care of including players positioned in different parts
of the play field (to ensure the inclusion of goalkeepers and lineman referees).
This feature set has been used during the training phase of the classifiers; each
cluster has been represented by means of a feature vector (’representative’ of the
cluster). Then, at runtime each segmented player is provided to the classifier for
the test phase. However, in this kind of applications, each game is a different
case, and overall results could be misleading. For example, in a match we can
have well-contrasted uniforms, with well separated classes, while in another one
the classes could overlap in the feature space. For this reason in the following we
present results obtained both on several matches (for testing the training phase)
and on a single, random selected, match (for the test phase evaluation). Before



150 P.L. Mazzeo et al.

−20

0

20

−15−10−505101520
−15

−10

−5

0

5

10

Team 2 
Team 1

Referee

GK 2

GK 1

Fig. 6. PCA decomposition of Training Data after CBTF

Table 1. Reliability of the training procedure

RGB rg T-RGB

No MBSAS 71.24% 86.22% 93.12%

BCLS 77.77% 87.33% 94.78%

CBTF K-Means 81.43% 88.04% 95.31%

Overall 78.99% 87.31% 94.96%

CBTF MBSAS 74.12% 87.56% 94.31%

BCLS 79.38% 89.45% 95.11%

K-Means 85.83% 91.33% 97.17%

Overall 82.13% 89.96% 96.18%

analyzing the results, here we report the processing parameters values for each
algorithm (64-bin histograms have been used).

- MBSAS:th=0.5
- BCLS: μ = 0.2, epochs=10000, exit th=0.01
- K-means: k=5, exit th=0.01

In the first experiment we have compared the capability of the training proce-
dure to correctly detect the output clusters according to the different feature
sets. For this purpose we carried out 10 experiments on 10 different matches;
for each of them, about 1800 actors (players, goalkeepers and referees) images
have been randomly collected in the training set, and provided to the algorithms.
Note that these images have been acquired by different cameras, so there could
be some differences in light conditions, as well as in color appearance. An exam-
ple image, with four FOVs in which the illumination is variable, could be seen in
fig. 3. Before to start with color feature extraction as explained in section 3
we have evaluated the different classes configuration (Team one, Team two,
Goalkeeper one, Goalkeeper two and referee) in the original data and in the
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Fig. 7. Classes Temporal Evolution over a whole match

Table 2. Overall performance of the classifiers with Transformed RGB histograms

MBSAS BCLS K-Means

NO CBTF 72.21% 81.33% 84.65%

CBTF 76.19% 84.24% 87.38%

transformed one (by means of CBTF). Figure 5 shows the original training data
configuration by PCA decomposition. In figure 6 the transformed data are plot-
ted using PCA decomposition technique. As the reader can see the CBTF (trans-
formed data in figure 6) permits to separate the classes without overlapping and
the relative cluster are better spaced.

Overall results of training both in presence/absence of preprocessing based
on CBTF are presented in table 1. As it can be noted, the best overall results
have been reported by using the Transformed RGB features in presence of CBTF
preprocessing. It is probably due to the spectral invariancy introduced by them,
while more sensible features, like simple RGB histograms, perform worse. How-
ever, the perfect separation of clusters has not been obtained for all sequences:
by accurately observing images, in some football matches we noted that some
clusters are really difficult to distinguish even for humans. For example, some-
times one of the goalkeepers was dressed in a very similar way with the referee,
while in another match a goalkeeper was dressed like players of opposite team.
In this case a correct classification based only on spectral information (without
considering the player position in the play field) is really difficult also for human.
In fig. 4 an example of two ambiguous classes is illustrated. Unfortunately, from
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Table 3. Temporal analysis of performance of the classifiers

MBSAS BCLS K-Means

0’ - 15’ 76.77% 85.34% 89.21%

16’ - 30’ 77.73% 84.14% 87.19%

31’ - 45’ 76.11% 84.72% 86.96%

46’ - 60’ 73.96% 81.62% 86.41%

61’ - 75’ 74.85% 80.81% 84.55%

76’ - 90’ 72.17% 79.92% 83.18%

the experience collected in our experiments in the last years, after viewing sev-
eral games, we can assert that this situation (referees and goalkeepers dressed in
similar way) is almost common in football games, and it drives our efforts into
the direction of introducing a check of the player relative positions to make the
classification more robust.

Starting from the results of these experiments, that demonstrates the better
performance carried out by using the Transformed RGB histograms, we concen-
trate our efforts in order to detect the best unsupervised classifier (using trans-
formed RGB as features set). In the second experiment we compared the three
unsupervised classifiers during the test phase, i.e. we evaluated their capability
to properly classify each actor according to the previously detected classes. In
table 2 the overall performance obtained in the test phase are presented. Again,
experiments have been performed both in absence/presence of CBTF prepro-
cessing. We can note that K-means based approach seems to outperform the
other ones, with a classification rate over then 87%.

In table 3 the results of overall classification as a function of the time are
shown. These results coming from a new experiment: for a single match a ground
truth was created by considering patches of players at a fixed time instants. In
particular we considered 1800 patches (from six cameras after CBTF transform)
extracted every 15 minutes, for a total of 1800*6=10800 patches. As evident all
the classification performances are more reliable in the first minutes and then
they decrease (not strongly) along the time. The temporal variation of clus-
ter configuration has to be expected during the football match, in particular
in outdoor contexts. The great duration of the event (90 minutes plus interval)
is accomplished by variation in light conditions. An observation about our ex-
periments needs to be remarked: we trained the classifier before the kick off,
during the pre-match operations. This training remain unchanged for all the
match. Probably the effects of class configuration changes could be mitigated if
the training was carried out again at the beginning of second half. However, it
is not the best practical solution, it could be unpracticable in real time applica-
tions; moreover the variation could be sudden (switch on/off of artificial lights),
in an arbitrary instant, so it cannot be forecasted. In figure 7 is plotted the
class configuration at the begin of the match, immediately after the half time
interval, and at the end of the match. As evident, some classes greatly changed,
while others changed in a less evident way. However at the end of the match the
clusters are closer and this confirms the results obtained in table 3.
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7 Conclusion and Future Work

In this paper, different color descriptors, an innovative technique for smoothing
color difference between different FOVs and unsupervised classifiers are studied
in the football multi-views environment. We evaluated three different color de-
scriptors (RGB, normalized RGB and Transformed RGB histograms) we trans-
formed them by a CBTF in order to mitigate the FOVs difference, and three
unsupervised classifiers (MBSAS, BCLS and k-means). Other descriptors, as
Color Sift and Moments, have not been considered since they are not reliable in
presence of highly deformable objects, such as moving players. After the experi-
ments on real videos, we can conclude that the better performance were carried
out using the Transformed RGB histograms combined with k-means classifier af-
ter the application of CBTF on the original data. As a future work, the analysis
of unsupervised team discrimination here proposed could be further improved by
considering different feature sets, and different classifiers. One weak point of our
experiments was that similar uniforms can be seldom found and all the methods
suffer in separating different classes. This results was expected since the consid-
ered color descriptors are based on histogram evaluations that lose the spatial
information on the color distribution. The next step will be to investigate on
color features that can be applied to highly dynamic moving objects, not sub-
ject to rigid motion constraints, such as connected graphs of color histograms or
weighted histograms on segmented body parts.
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Abstract. The paper deals with Surveillance Network Augmented by

Retrieval (SUNAR) system – an information retrieval based wide area

(video) surveillance system being developed as a free software at FIT,

Brno University of Technology. It contains both standard and experi-

mental techniques evaluated by NIST at the AVSS 2009 Multi-Camera

Tracking Challenge and SUNAR performed comparably well.

In brief, SUNAR is composed of three basic modules – video process-

ing, retrieval and the monitoring interface. Computer Vision Modules are

based on the OpenCV Library for object tracking extended by feature

extraction and network communication capability similar to MPEG-7.

Information about objects and the area under surveillance is cleaned,

integrated, indexed and stored in Video Retrieval Modules. They are

based on the PostgreSQL database extended to be capable of similarity

and spatio-temporal information retrieval, which is necessary for both

non-overlapping surveillance camera system as well as information anal-

ysis and mining in a global context.

Keywords: SUNAR, wide area, surveillance, video analytics, retrieval,

similarity, tracking, trajectory, integration.

1 Introduction

Nowadays, there is a lot of data produced by wide area surveillance networks.
This data is a potential source of useful information both for on-line monitoring
and crime scene investigation. Machine vision techniques have dramatically in-
creased in quantity and quality over the past decade. However, the state of the
art still doesn’t provide the satisfactory knowledge, except some simple problems
such as people counting and left luggage or litter detection.

Justin Davenport in Evening Standard [6] showed statistics of crime-fighting
CCTV cameras in Great Britain. The country’s more than 4.2 million CCTV
cameras caught (in 2007) each British resident as many as 300 times each day.
BBC News [1] informed that half a million pounds a year was spent on talking
cameras helping to pick up litter. Yet 80% of crime is unsolved. Well, we agree
that high quality crime investigation is the best prevention.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 155–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.fit.vutbr.cz


156 P. Chmelar, A. Lanik, and J. Mlich

(a) (b)

Fig. 1. An example of a successful camera pair handover

The idea was to create an automated system for object visual detection, track-
ing and indexing that can reduce the burden of continuous concentration on mon-
itoring and increase the effectiveness of information reuse by a security, police,
emergency and firemen (or military) and to be useful in the accident investi-
gation. The task is to perform the analysis of the video produced by a camera
system with non-overlapping field of views. The analysis, based on cleaned, inte-
grated, indexed and stored metadata, is of two types – on-line used for identity
preservation in a wide area; and off-line to query the metadata of the camera
records when an accident, crime, a natural or human disaster (war) occurs.

In 2006, we have started to develop an IR-based multi-camera tracking sys-
tem to be at the top of the state of the art. We have taken part in several
projects (CARETAKER [4]) and evaluations (TRECVid [19]) concerning similar
problems. However, the AVSS 2009 Multi-Camera Tracking Challenge [20] was
the first evaluation campaign that used the annotated Multiple-camera Track-
ing (MCT) Dataset from the Imagery Library for Intelligent Detection Systems
(i-LIDS) provided by Home Office Scientific Development Branch (HOSDB) of
the UK [16]. We have used the MCT video data and annotations to train and
evaluate the SUNAR performance and it performed comparably well.

The paper is organized as follows. The introduction presents our motivation
and ideas. An overview and design of the SUNAR system is described in the
following section. Computer vision methods are described in section 3. Object
identification, search and analysis techniques are described in section 4. The
NIST performance evaluation of the SUNAR system is in section 5. State of
the art is situated at the beginning of each section. The paper is concluded in
section 6.

2 System Design

Although there are many multi-camera surveillance systems [10,7,12,13], we be-
lieve our approach outperforms the others, because those described in literature
were not evaluated successfully [10,12], while those in praxis make many simpli-
fying presumptions (e.g. traffic monitoring). Moreover, in there is no need for
a central or primary module [7] or some special hardware such as camera sen-
sors [13]. Moreover, it is able to derive various useful information concerning the
entire area under surveillance.
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Fig. 2. Illustration of the multiple camera tracking process including the manual an-

notations

From the schematic perspective, SUNAR consists of the following modules,
as illustrated in figure 2:

0. Source of video (any provider)
1. Computer Vision Modules (CVM)
2. Video Retrieval Modules (VRM)
3. Human Monitoring Interfaces (HMI)

The video source might be e.g. a camera or a video server and it is not a generic
part of the system. Each module except the Human Monitoring Interface is
responsible for capturing, analysis and retrieval in an appropriate part of the
wide area under surveillance. Modules communicate basically only with their
neighborhoods using the IP protocol. In this way, we can build a considerably
large system, because no special central unit is necessary.

The input of the Computer Vision Module (CVM) is a video stream. We use
OpenCV [8] for tracking and 3D calibration especially (if feasible). We have
extended the OpenCV Blobtrack to be capable of feature extraction, object
(and event) recognition and IP based video stream capability. The output of
the CVM module is metadata of objects and the environment. It includes local
identification of objects, its spatio-temporal location and changes (speed) and a
description of objects – dimensions, shape, color, texture or other special features
(e.g. license plate and face descriptor) similarly to MPEG-7 [9]. The description
is complemented with a recognition of basic object classes (e.g. cars, trolleys,
people and groups) and events (e.g. opposing flow and left luggage).

The main contribution of the proposed wide area system is in the Video
Retrieval Module (VRM). The input of the module is metadata produced by
CVMs. This metadata is cleaned and normalized in time and space (light-
ing, color bias and 3D parameters) and stored in the PostgreSQL database
(www.postgresql.org). The primary function of the VRM is to identify objects
– to integrate identifiers (ID) of objects in the wide area, based on the previous
occurrence of an object and its appearance. This is accomplished by the use of
information retrieval and video search methods based on metadata produced by
CVMs as further described in section 4.
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The Human Monitoring Interface is then capable not only of a simple mon-
itoring the area, but also querying monitored objects based on their previous
occurrences, visual properties and behavior. The behavior is derived from an ob-
ject’s trajectory, its interactions with the environment and mutual interactions
based on statistical and data mining methods. This is illustrated in figure 1b.

3 Computer Vision Techniques

There are two major spheres we would like to evaluate – computer vision and
surveillance information retrieval. The computer vision part is further divided
in the object tracking, feature extraction and 3D calibration as illustrated in
figure 2.

The computer vision is a broad but still underdeveloped area summarized by
Sonka, Hlavac and Boyle in [14]. We concern on visual surveillance methods,
especially on distributed surveillance systems, reviewed by Valera and Velastin
[15] and CARETEKER deliverables [4].

The 3D camera calibration [14] is an optional technique in the IR based ap-
proach, when an exact 3D calibration is required, we use CARETAKER’s Kali-
broU – a camera calibration program, based on Tsai’s method [4]. Thus we
concentrate more on tracking, feature extraction and object recognition.

3.1 Object Tracking

Object tracking [14] is a complex problem and it is hard to make it working well, in
real (crowded) scenes as illustrated in figure 3. Discussed approach is based mainly
on proved methods of object tracking implemented in the Open Computer Vision
Library [8]. The tracking process is illustrated in figure 2. Background is modeled
using Gaussian Mixture Models [8] as an average value of color in each pixel of
video and the foreground is a value different to the background. We have been
inspired by the approach developed by Carmona et al. [3].

Foreground is derived from background, which is modeled using Gaussian
Mixture Models [8] as an average value of color in each pixel of video and the
foreground is a value different to the background based on segmentation of the
color in RGB color space into background, foreground and noise (reflection,
shadow, ghost and fluctuation) using a color difference Angle-Mod cone with
vertex located in the beginning of the RGB coordinate system. In this way, the
illumination can be separated from the color more easily.

The other two modules – blob entrance and tracking are standard OpenCV
Blobtrack functions [8]. The blob entrance detection tracks connected compo-
nents of the foreground mask. The Blob tracking algorithm is based again on
connected components tracking and Particle filtering based on Means-shift re-
solver for collisions. There is also a trajectory refinement using Kalman filter as
described in section 4.

The trajectory generation module has been completely rewritten to add the
feature extraction and TCP/IP network communication capability. The protocol
is based on XML similarly to MPEG-7 [9]. The objects’ ID and trajectory is in
this way delivered to a defined IP address and service (port 903).
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3.2 Feature Extraction and Object Recognition

There are more possibilities how to make a multi- camera surveillance system
[7,12,13]. Because of our goal – to acquaint as much information about objects
as possible, we use visual surveillance information retrieval instead of (multi-
)camera homography or handover regions as in [7]. Moreover, the area might be
large and objects will occlude in those regions.

Although there are many types of features to be extracted [14], primarily we
use descriptors based on the visual part of MPEG-7 [9]. We try to avoid color
descriptors only, as in [13], because most of airport passengers (at least on British
Isles) wear black coats and there is a lot of dark metallic cars there.

However, we have adopted color layout concept, where each object is resam-
pled into 8x8 pixels in Y’CbCr color model. Then, the descriptor coefficients are
extracted zig- zag from its Discrete cosine transform similarly to JPEG. Other
(texture) descriptor is based on extraction of energy from (Fourier) frequency
domain bands defined by a bank of Gabor filters [9].

For the object classification we use also local features (such as SIFT and
SURF) and a simple region (blob) shape descriptor. The shape together with
previously described object metadata then acts as an input of a classification
algorithm in the recognition procedure of the CVM. The object recognition
process is based on 2 popular machine learning methods – AdaBoost and Support
vector machines (SVM), the OpenCV [8] implementation. The system has a
simple training GUI to mark an object by a simple click while holding a key to
associate a blob to its appropriate class or to change the class of a misclassified
sample.

To avoid this, CVM may use AdaBoost object detection based on Haar fea-
tures, similarly to the OpenCV face detection. Unfortunately, there are just a few
faces to be detected in the standard TV resolution video and camera setup sim-
ilar to the MCT dataset. The detector is followed by MPEG-7 Face recognition
descriptor [9]. Other face recognition approaches will be compared in the future
to allow a more precise and consistent object tracking and recognition in low-
resolution images and video. Thus, we concentrate more on retrieval methods at
the moment.

4 Surveillance Information Retrieval

Although there were published basics of wide area surveillance systems with non-
overlapping fields of view [10], these systems suffer from multiple deficiencies
caused by the curse of dimensionality – e.g. they allow only simple handover
regions [7] or they are unable to act in a crime investigation process [12,13],
because the real recordings are too massive and of low quality to be analyzed
efficiently (as in CSI NY series).

The metadata coming from CVMs – local IDs, trajectories and object descrip-
tion must be cleaned, integrated, indexed and stored to be able of querying and
analyzing it, as illustrated in figure 2.
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4.1 Metadata Cleaning

The preprocessed data is supposed to be incomplete or duplicate, biased and
noisy. Thus, moving objects are modeled as dynamic systems in which the
Kalman filter optimally minimizes the mean of error [5] and it can fill in the
missing information (position and velocity) for a few seconds in case the object
has been occluded, for instance1.

At the cleaning step, SUNAR stores metadata representing moving objects
and information about the environment under surveillance.

4.2 Indexing and Storing

The database model consists of three database schemes in the SUNAR database –
Process, Training and Evaluation according to their purpose. All schemes contain
three main tables that correspond to the fundamental concepts – Object, Track
and State (as in our former work [5]). Object is an abstract representation of a
real object (having a globally unique ID), it is represented by its states. A state
consists of two types of features – visual properties (as described in section 3) and
spatio-temporal features. The latter are represented by location and velocity of
an object at a moment. A track is a sequence of such states in a spatio-temporal
subspace of the area under surveillance followed by one camera.

The training scheme contains also tables containing statistics and classifica-
tion models according to the method used. For instance, a simplified Bayesian
model table contains columns for source and destination camera IDs, in which
objects are passing through. Next columns represent the number of training
samples, a prior probability, averages and variances of handover time, trajectory
states and visual features. Trajectories are summarized as a weighted average of
cleaned states, where the weight is highest at the end of the trajectory. If cameras
are overlapping, the handover time may be negative. The average and variance of
different feature descriptors acts as the visual bias removal (illlumination, color,
viewpoint and blob size calibration) for the integration step.

4.3 Multiple Camera Integration

The training schema described before is rather simplified. In fact, we use Gaus-
sian Mixture Model and Support Vector Machine [14,8] models of the (inverted)
Kalman filter state as described in our previous work [5]. The inverted state is
computed using Kalman filter in the opposite direction the object moved through
one camera subspace followed by one camera. The goal of this trick is the clas-
sification of the previous subspace (camera) in which it was seen last time most
probably.

The object identification then maximizes the (prior) probability of a previ-
ous location (camera) multiplied by the normalized similarity (feature distance
without bias) to previously identified objects according to average time con-
straints and visual features in the database [5,10]. More formally an optimal
1 Available at www.fit.vutbr.cz/research/view_product.php.en?id=53

www.fit.vutbr.cz/research/view_product.php.en?id=53
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Fig. 3. i LIDS multiple camera tracking scenario definition provided by HOSDB

identifier (k∗) of the object in the wide area is based on its previous occurrence
(spatio-temporal, o) and its state (appearance, s):

k ∗ (o, s) = argmaxkP (k|o, s) ≈ P (o|k)P (s|k) (1)

Because of this, we must (approximately) know the camera topology. The figure
3 is suitable enough for the learning step. We have used annotations provided
by the HOSDB on i-LIDs MCT dataset. There are 5 cameras and several areas
from where a new object can enter.

The object appearance and bias is automatically learned (or summarized)
using Gaussian mixture models [8] or optionally SVM. The probability P (s|k)
is then determined by a similarity search (the distance is normalized using the
sigmoid) with respect to the expected bias, which is simply subtracted.

4.4 Querying

The SUNAR queries are of two types – on-line used for instantaneous condition
change and especially for identity preservation as described above; and off-line
queries, able to retrieve all the metadata from processed camera records in the
wide area after an accident, crime or a disaster happens.

We can distinguish two types of operations: environmental and trajectory op-
erations. Environmental operations are relationships of an object’s trajectory
and a specified spatial or spatio-temporal environment, such as enter, leave,
cross, stay and bypass [2,5]. Trajectory operations look for relationships of two
or more trajectories restricted by given spatio-temporal constraints, such as to-
gether, merge, split and visit.

We have also implemented2 similarity queries based on MPEG-7 features in
the PostgreSQL database as a vector (array) distance functions – Eukleidean
(Mahalanobis), Chebyshev and Cosine distance.

2 Avaiable at www.fit.vutbr.cz/research/view_product.php.en?id=73

www.fit.vutbr.cz/research/view_product.php.en?id=73
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Fig. 4. Illustration of the multiple camera tracking process of the SUNAR system

including manual ground truth annotations provided by HOSDB and NIST

4.5 Analysis

We perform several types of video analysis, mainly classification and clustering as
illustrated in figure 1b. The first type is the modeling based on visual appearance
of an object (color layout, blob) using Gaussian Mixture Models (GMM, [8]).

Second, we perform trajectory classification based on Gaussian Mixture Mod-
els as needed for the multiple camera identification as in section 4 and Hidden
Markov Models (HMM). In the article [11] we selected few scenes, where some
easily recognizable human behavior occurs. For example, one concept represents
if people go through turn pikes or not. The HMM are trained on such classes. The
trajectory which doesn’t fit any HMM model (with respect to some threshold)
is considered to be abnormal. In addition, SUNAR uses velocity and accelera-
tion as training features, which describe and discover some abnormalities better
(jump over).

Moreover, using the spatio-temporal queries, we can discover splitting and
merging objects, opposing flow (together with GMM and aggregate functions)
or an object put (operations enter, split, leave and stay).

5 Evaluation

The previous evaluations such as Performance Evaluation of Tracking and Surveil-
lance (PETS [17]) dealt with other aspects of computer vision than multiple cam-
era surveillance with non-overlapping camera fields of view. They either dealt with
classical single camera tracking or they have concerned more on the event detec-
tion as Classification of Events, Activities, and Relations. For instance, events
so-called left baggage, split, hug, pointing, elevator no entry are detected in the
TRECVid Surveillance Event Detection evaluation [19].

The AVSS 2009 Multi-Camera Tracking Challenge [20] was the first evaluation
campaign that used the annotated Multiple-camera Tracking (MCT) Dataset
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(a) (b)

Fig. 5. The NIST’s single camera (a) and multiple camera (b) single person tracking

MOTA evaluation medians

from the Imagery Library for Intelligent Detection Systems (i-LIDS) provided by
Home Office Scientific Development Branch (HOSDB) in the UK [16]. We have
used the MCT video data and annotations to train and evaluate the SUNAR
performance. The data set consists of about 44 hours of video recorded by five
cameras at the London Gatwick Airport.

The task is defined as: Given 5 in situ video frames with bounding box data
specifying a person to be tracked, track the person in 5, 2 or 1 camera views by
outputting bounding boxes [20].

We have participated in the compulsory Multi-Camera Single Person Tracking
(MCSPT) and Camera Pair Single Person Tracking (CPSPT). The illustration
of the data and the area under surveillance is in figures 2, 3 and 1. For more
details see [20].

According to Johnatan Fiscus’s and Martial Michels’s presentation at the
2009 AVSS conference, [20] and received evaluated submissions, they used espe-
cially the Multiple Object Tracking Accuracy (MOTA, [18]) metric. The correct
detection here is when it states:

MOTA = 1 −
∑Nframes

t=1 (cm(m(t)) + cf (fp(t)))∑Nframes

t=1 N
(t)
G

(2)

The G
(t)
i is the ground truth bounding box of an object i at (frame or) time t,

the D
(t)
i is a (SUNAR) system detection accordingly. Else the detection is false

positive fp(t), or missed m(t) if there is no system detection at time t. Then the
MOTA is defined as 2. Where cm and cf are weights (=1 this time) and NG is
the number of ground-truth objects at time t. The perfect MOTA is 1, but it
may go down to −∞ because of false alarms [20]. The (median) MOTA results
for single camera and multiple cameras are illustrated in the figure 5. There
the camera pair run (BrnoUT 5.cpspt) was better than our multiple camera run
(BrnoUT 5.mcspt) because of the state space to be searched. Thus the single
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Table 1. Multiple camera tracking results - MOTA

MOTA Brno KuDir

Test Set Average -1.183 -1.400

Track Averaged Mean -2.052 -2.072

Track Averaged Median -1.770 -1.517

Table 2. The primary to Secondary Camera subject Re-Acquisition (SCRA) metric

table

Sec. RA - GT Sec. RA – Brno Sec. RA – KD

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

P
ri
m

a
ry

c
a
m 1 9 1 0

2 8 2 0

3 7 0 0

4 1 0 0

5 9 0 0

camera (scspt) runs are incomparable to multiple camera runs. In table 1, only
MCSPT results are depicted.

The table 2 also shows that using standard precision/recall metrics, our results
are slightly better than other results [20]. Moreover, using the multiple camera
(summarized binar) metric – the (primary to) Secondary Camera subject Re-
Acquisition (SCRA, [20]) shows that SUNAR slightly outperformed the other
systems in absolute numbers, which may be seen in table 2. The CPSPT task
results were similar to the table above, but we have been the only participants
there. The illustration of the task is in figure 1. In both figures 1 and 4 (an
illustration of a MCSPT tracking trial), the bounding boxes and trajectories are
of five colors. Blue means non- occluding reference (ground truth), yellow an
occluding reference. The Green box and trajectory shows a correct detection,
red represents a missed detection and the orange color is for false alarms.

6 Conclusions

This paper presents a state of the art SUNAR surveillance system based on
visual information retrieval in theory and praxis (using free software). In contrast
to other approaches, we try to collect and index as much information as we
can acquaint and manage it efficiently to avoid a continuous human CCTV
monitoring and analysis of massive and low quality recordings in case of an
accident.

The FIT, Brno University of Technology has taken part in many projects and
evaluations concerning the public safety and visual surveillance, however the
AVSS 2009 Multi-Camera Tracking Challenge [20] was the first public evaluation
campaign concerning object tracking in a wide area under surveillance containing
both camera setups – overlapping and non-overlapping field of views.

Although we are convinced the system works really good under certain cir-
cumstances and it outperformed the others especially in the Secondary Camera
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subject Re-Acquisition (SCRA) metric at the AVSS conference, there are some
issues.

Especially those concerning computer vision techniques – object detection,
tracking and recognition performance in low quality video. First, the quality
of the embedded OpenCV methods should be extended by (many) parameters
tuning. Second, the problem is to find more reliable visual features necessary
for the object re-identification, because almost everybody wears black at the
airport and objects are represented by a few pixels. We suppose moving to the
high-definition video will results in more precise event recognition, occlusion
handling and feature extraction for the automated wide area surveillance.
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Abstract. Developing a practical multi-camera tracking solution for au-

tonomous camera networks is a very challenging task, due to numerous

constraints such as limited memory and processing power, heterogeneous

visual characteristics of objects between camera views, and limited setup

time and installation knowledge for camera calibration. In this paper, we

propose a unified multi-camera tracking framework, which can run online

in real-time and can handle both independent field of view and common

field of view cases. No camera calibration, knowledge of the relative po-

sitions of cameras, or entry and exit locations of objects is required. The

memory footprint of the framework is minimised by the introduction

of reusing kernels. The heterogeneous visual characteristics of objects

are addressed by a novel location-based kernel matching method. The

proposed framework has been evaluated using real videos captured in

multiple indoor settings. The framework achieves efficient memory usage

without compromising tracking accuracy.

Keywords: distributed tracking, surveillance, real-time systems.

1 Introduction and Related Work

The large sizes of modern surveillance camera networks mean that it may not
always be possible for a human being to monitor every video stream in real-time.
This presents the need for autonomous camera networks that can extract video
content for either human users or higher-level autonomous processing. It is de-
sirable in industry applications for these networks to operate in a decentralised
manner in order to minimise setup time, for improved robustness and scalability,
and so that in the case of active camera networks each camera may act as an
autonomous agent. The objective of multiple camera tracking, or, multi-camera
tracking, is to determine correspondences between observations of real-world ob-
jects seen by multiple cameras after object detection and single-camera tracking
have been performed. We consider the case where cameras are uncalibrated and
there is no knowledge of the network topology. Multi-camera tracking methods
� The author is currently with the University of Western Australia.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 167–178, 2010.
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are typically divided into two broad categories based on the field of view (FOV)
of each camera: common FOV methods [1][2] where cameras’ FOVs largely over-
lap, and disjoint FOV methods [4][5][6] where a camera “hands-off” the tracking
of an object from the FOV of one camera to another camera. Traditional track-
ing methods such as Kalman filters are not appropriate when the topology of
the camera network is unknown and cameras are uncalibrated [4].

One of the classic problems in multi-camera tracking over either overlapping
or disjoint FOVs is the entry/exit problem, i.e., given that an object has left a
FOV at a particular location, which camera is most likely to see the object next,
where within that camera’s FOV, and when? One solution to this problem was
presented by Javed et al. in [7]. Visual characteristics of objects were first used
to determine corresponding objects in different FOVs. Entry and exit points
in each camera’s FOV were then determined using kernel density estimation.
Finally, optimal correspondences entry and exit points were determined using
a maximum a posteriori (MAP) approach based on a bipartite graph. Javed’s
method works well with independent FOV scenarios without any inter-camera
calibration. However, it is restricted by the following:

1. a training phase must be available where correspondences between tracks
are known;

2. the entire set of observations must be available so hence, the method cannot
be deployed for real-time applications; and

3. the changes in visual characteristics of objects between camera views are
assumed to happen in the same, generally predictable way.

In this paper, we present a unified framework to solve the multi-camera tracking
problem in both independent FOV and common FOV cases. We assume that
objects have been independently tracked in each camera in a multi-camera net-
work, as in [7], and then aim to determine correspondences between these tracks
in a decentralised way, that is, without a centralised server. As in [7], our ap-
proach requires no camera calibration, or knowledge of the relative positions of
cameras and entry and exit locations of objects.

In contrast to [7], we remove each of the constraints listed earlier. We use a
kernel-based tracking algorithm, which creates kernels over the entire FOV of
each camera rather than only at entry and exit points. Our system effectively
performs unsupervised, online learning of a correspondence model by continuous
collection and updating of tracking statistics. This allows the proposed algorithm
to be performed in real-time with no need for a dedicated and supervised training
phase, thereby lifting constraints 1 and 2. To enable this collection of tracking
statistics we introduce the concept of reusing kernels, and show that by using
this technique the memory usage of the system is bounded. We then introduce
a location-based kernel matching method to address abrupt changes in visual
characteristics of objects (often due to changes in object pose or camera angle)
based on the historical data available through reusing kernels, thereby lifting con-
straint 3. This enables us to develop a lightweight, decentralised, multi-camera
tracking solution with limited communication between cameras ensuring that an
on-camera implementation is possible without requiring a coordinating server.
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The main contributions of this paper are the methods of reusing kernels and
location-based kernel matching.

This paper is organised as follows. In section 2, we propose the Signature-
based Tracking Across Cameras (STAC) multi-camera tracking algorithm. In
section 3, we describe the experimental setup and evaluation methods used. In
section 4, we present results. Finally, in section 5 we make conclusions.

2 The STAC Algorithm

The proposed STAC algorithm runs on each camera in a multi-camera network
as part of a parallel tracking framework. Each camera considers itself to be the
local camera and other cameras as foreign cameras. We assume that each camera
captures video at the same frame rate and that frames have been synchronised1.
Time is measured in units of frames. We assume that object detection and single-
camera tracking have already been performed and the results of the single-camera
tracking are the input of the STAC algorithm. This setup is shown in Fig. 1.
Specifically, we assume that for each tracked object in the local camera we know:
the object’s centre (x, y) in pixels; the height and width of the object’s bounding
box in pixels; the object’s signature in the most recent frame; and a unique
identifier (track ID) for the track of the object in the local camera. A distance
metric on the signature must be defined. For details of the signature type and
metric used in our implementation see section 3.2.

The process of the STAC algorithm comprises three main steps:

1. finding visual similarities between pairs of objects;
2. finding spatial and temporal similarities between current pairs of objects and

historical pairs of objects; and
3. determining correspondences between pairs of tracks.

Step 1 includes the novel concept of reusing kernels and the method of location-
based kernel matching. Sections 2.1, 2.2 and 2.3 describe the details of steps 1,
2 and 3 above, respectively.

2.1 Finding Visual Similarities between Pairs of Objects

The STAC algorithm first attempts to find relationships between tracked objects’
locations in the local camera’s field of view and locations in foreign cameras’
fields of view, based on the information received from the single-camera tracker.
Let kernels represent locations of objects in a field of view, and a linked pair of
kernels represent the visual and temporal relationship between two kernels. For
simplicity, details of this process are described in the following subsections from
the point of view of one camera and for one tracked object.

1 In our experiments, we lift the assumption by employing a framerate compensation

algorithm that examines timestamps of captured frames.
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Fig. 1. A block diagram of the STAC algorithm running on a camera in a parallel

multi-camera tracking framework

Constructing the local kernel and local track snapshot. We use a 2D
Gaussian distribution to represent the kernel of a tracked object. This Gaussian
form will be used for finding spatial and temporal similarities between linked
pairs of kernels in section 2.2. The centre of the Gaussian distribution is located
at the centre of the object, and the standard deviation in the x and y directions
are equal to half the object’s height and width, respectively. Each local cam-
era keeps a history of locally observed kernels of any tracked object previously
observed in this camera.

For each frame in which the tracked object is visible, the local track snapshot of
the tracked object is constructed. The local track snapshot contains: the kernel of
the tracked object in the current frame of the local camera; the object’s signature
in the current frame of the local camera; the local track ID, as determined by
the single-camera tracker; and the current frame, f . This local track snapshot
is sent to every camera in the network. Consequently, the local camera receives
track snapshots from each foreign camera each frame, which we will call foreign
track snapshots. The local camera stores the foreign track snapshots over time
for use in linking kernels in the local camera to kernels in foreign cameras.

Reusing kernels. Creating a new kernel for each tracked object in every frame
causes the number of kernels to grow rapidly, resulting in large demands on
computing and memory resources. To overcome this, and to allow for historical
tracking statistics to be collected, an existing kernel is reused if a tracked object
has a similar position and size to a previously observed object. A similarity
score, s, is calculated between the potential new kernel and each existing kernel,
as detailed below.

The Euclidean distance, d, between the centres (x1, y1) and (x2, y2) of the
potential new kernel and existing kernels, as well as the angle θ between the two
centres, are determined by,

d =
√

(x2 − x1)2 + (y2 − y1)2 , θ = tan−1
(

y2 − y1

x2 − x1

)
. (1)

Then, the standard deviations σ1 and σ2 of the potential new kernel and existing
kernel in the direction θ are calculated, which are given by (these equations are
derived from the polar equation of an ellipse),
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σ2
1 =

σ2
x1

σ2
y1

σ2
y1

cos2 θ + σ2
x1

sin2 θ
, σ2

2 =
σ2

x2
σ2

y2

σ2
y2

cos2 θ + σ2
x2

sin2 θ
. (2)

where σx1 and σy1 , are the standard deviations of the potential new kernel in
the x and y directions respectively, and σx2 and σy2 are the standard deviations
similarly of the existing kernel. Finally, these values are used to compute a
similarity score s, given by,

s = max(0, 1 − d2

1.5 min(σ2
1 , σ2

2)
) . (3)

When determining the similarity score, we wish to consider not only the separa-
tion of the centres of the kernels, but also their respective spreads. The sizes and
shapes of the distributions affect the similarity score, as well as the locations
of their centres. The existing kernel with the largest similarity score is used as
the kernel of the tracked object in the local camera if the squared distance, d2,
is less than an empirically determined threshold, e.g. min(σ2

1 ,σ2
2)

6 . Otherwise, the
new kernel is constructed and used.

Linking kernels using the signature-based kernel matching method.
After constructing and disseminating the local track snapshot and receiving for-
eign track snapshots to and from other cameras respectively, links between the
local kernel and kernels in foreign cameras are determined using a signature-
based kernel matching method. This is performed as follows.

For each stored foreign track snapshot, the visual distance is found between
the signature in the local track snapshot and the signature in the foreign track
snapshot. In order to calculate this, first the signature in the local track snapshot
is rescaled using a lighting compensation method. The histogram bin boundaries
of the signature are linearly scaled by the ratio of the average luminance of the
foreign signature to the average luminance of the local signature. Following this,
using the distance metric defined on the signature, the visual distance between
the brightness rescaled signature in the local track snapshot and the signature in
the foreign track snapshot, ds, is calculated. If the visual distance is greater than
the maximum signature distance, ds

max, then no further processing is performed
for that foreign track snapshot. Otherwise, the signature weight ws is calculated:

ws = ds
max − ds if ds ≤ ds

max . (4)

The signature weight is then used to initialise or strengthen a linked pair of
kernels between the local kernel and the kernel in the foreign track snapshot. If
a link between these two kernels does not exist yet, one is created with a kernel
link weight, wk, equal to the signature weight, i.e.,

wk
init = ws . (5)

Otherwise, if a linked pair of kernels already exists between these two kernels,
its kernel link weight is incremented as follows,

wk
new = wk

old + ws . (6)
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In addition, the transit time, t, given by,

t = flocal − fforeign (7)

is computed, where flocal and fforeign are the frames in the local and foreign track
snapshots respectively. This provides a measure of the time it took an object to
move from the real-world location in the foreign camera to the real-world location
in the local camera.

Each linked pair of kernels is associated with the most recent signature weight,
ws, the kernel link weight, wk, and a history of transit times. The kernel link
weight is used later in location-based kernel matching and when correspondences
between tracks are found in section 2.3. The historical set of transit times are
used later in computing temporal similarities in section 2.2. In addition, each
linked pair of kernels is associated with a history of the local and foreign track
snapshots each time the link was strengthened.

Linking kernels using the location-based kernel matching method.
Chan-ges in camera angle often affect the apparent pose of an object as viewed by
the camera. As a result, different parts of the object may have different colours
visible to different cameras. This leads to large signature distances when using
the signature-based kernel matching method just described, which prevents ker-
nels of tracks corresponding to the same real-world object from being correctly
linked. The location-based kernel matching method described in this section
addresses this problem. A history of linked pairs of kernels must have already
been established before location-based kernel matching can be performed. This
can be done by running the STAC algorithm using only signature-based kernel
matching for some time before enabling location-based kernel matching.

The proposed location-based kernel matching is performed after receiving for-
eign track snapshots from other cameras, in parallel to the signature-based kernel
matching method. For each received foreign track snapshot, of the set of histor-
ical linked pairs of kernels containing the kernel in the foreign track snapshot
and a kernel in the local camera, the pair with the greatest kernel link weight
is identified. A historical linked pair of kernels is any linked pair of kernels ini-
tialised in a previous frame. If the local track passed through the local kernel in
this pair in a previous frame, then the current signature of the locally tracked
object is replaced with its signature from this previous frame. Following this, the
signature distance between the new local signature and the signature in the for-
eign track snapshot is calculated, and if it is below the threshold ds

max, then the
signature weight, kernel link weight and transit time are initialised or updated
as per equations 4-7.

Selecting the best linked pairs of kernels. The kernel matching process
described until this point will result in a set of linked pairs of kernels between
local kernels that the locally tracked object passed through and kernels in for-
eign cameras. For a given locally tracked object, if there exists more than one
linked pair of kernels between the local camera and a foreign camera, only the
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linked pair of kernels with the greatest kernel link weight is selected for further
processing. This is to try and prevent a track in the local camera from being
linked to multiple tracks in a foreign camera. This results in a set of best linked
pairs of kernels, up to one per foreign camera, for each locally tracked object.
At this point, all initialisations or updates that were made to kernel link weights
and transit time histories of linked pairs that were not selected, are discarded.

2.2 Finding Spatial and Temporal Similarities between Current
Pairs of Objects and Historical Pairs of Objects

We now examine the similarity of the locations and transit times of each of the
best linked pairs of kernels to the locations and transit times of historical linked
pairs of kernels between the same two cameras. This gathers evidence that these
locations, and hence the tracks of the objects appearing in them, have reliably
shown over time to correspond to the same real world object. For each best linked
pair of kernels, this process finds the spatial similarity and temporal similarity
between the best linked pair of kernels and each historical linked pair of kernels
between the same two cameras as the best linked pair of kernels. For simplicity,
we describe the process for one best linked pair of kernels, which we will call the
current linked pair of kernels. Fig. 2 illustrates an example of the current linked
pair of kernels and two relevant historical linked pairs of kernels.

Fig. 2. A diagram showing how the spatial similarity is calculated between kernels in

the current and each historical linked pair of kernels. In this diagram, ellipses represent

the distributions of the kernels at one standard deviation from the mean.

For each historical linked pair of kernels, two spatial similarities are calculated,
as shown in Fig. 2. The spatial similarity, ss

local,i of the local kernel in the current
linked pair of kernels and the local kernel in the ith historical linked pair of
kernels is given by,

ss
local,i = exp

(
−
(

Δxlocal,i
2

σ2
xlocal,i

+
Δylocal,i

2

σ2
ylocal,i

)
/2

)
(8)
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where Δxlocal,i and Δylocal,i are the difference in the x- and y-coordinates of the
two local kernel centres respectively, and σxlocal,i and σylocal,i are the standard
deviations of the local kernel in the ith historical linked pair of kernels. A second
spatial similarity, ss

foreign,i, is similarly computed for the two foreign kernels.
A temporal similarity, st

i, between the current and ith historical linked pairs
of kernels is computed and is given by,

st
i =

{
exp

(
− (t−t̄)2

σ2
t

)
, σt �= 0

1, σt = 0
. (9)

where t is the most recent transit time associated with the current linked pair
of kernels, and t̄ and σt are the mean and standard deviation respectively of the
set of transit times associated with the historical linked pair of kernels.

2.3 Determining Correspondences between Pairs of Tracks

Based on the spatial and temporal similarities computed so far for the cur-
rent linked pair of kernels, a track link weight is calculated. This represents the
likelihood that the local and foreign tracks in the most recent track snapshots
associated with the current linked pair of kernels represent the same real-world
object. This link is represented by the track IDs of the respective tracks. If a
track link weight has not yet been initialised between these two tracks, then it
is initialised as follows,

wtr
init = ws

∑
i

ss
local,i · ss

foreign,i · st
i · wk

i , (10)

and if a track link weight already exists between the two tracks, then it is incre-
mented as follows,

wtr
init = wtr

old + ws
∑

i

ss
local,i · ss

foreign,i · st
i · wk

i , (11)

where wk
i is the kernel link weight of the ith historical linked pair of kernels. By

summing the spatial and temporal similarities, we effectively assemble a weighted
kernel density estimator, where each weight is given by a kernel link weight. In
addition, a track link counter, m, of the number of times the track link weight
has been increased, is kept. The track link counter provides a measure of the
consistency of the evidence used to determine the track link weight.

As visual, spatial and temporal evidence is accumulated that these two tracks
represent the same real world object, their track link weight and track link
counter increases. Once both are sufficiently large, we can be confident there is a
correspondence between the tracks. Specifically, a correspondence between two
tracks is declared if in any frame their track link weight crosses a first threshold,
wtr

min, and if their track link count crosses a second threshold, mmin, i.e.,

C =
{

True, if wtr > wtr
min and m > mmin

False, otherwise (12)
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where C is a Boolean variable representing if there exists a correspondence be-
tween the tracks whose track link weight is wtr and track link count is m. If
insufficient evidence has been collected then the track link weight and track link
count may not satisfy these conditions and the correspondence will not be found.
This will be the case when the camera network is first initialised and may also
happen for very short tracks.

Additionally, correspondences between tracks are declared following feedback
from foreign cameras. When a camera declares a correspondence between a pair
of tracks using equation 12, this correspondence is broadcast to all other cam-
eras. If this information implies that a track in the local camera and a track
in a foreign camera are the same real-world object, then a correspondence is
declared between these two tracks. This prevents asymmetry in the correspon-
dences across cameras, which would otherwise result from the fact that each
camera maintains its own set of tracking statistics.

Once a correspondence is found between two tracks, for objects from these
tracks that appear in future frames, the condition ds ≤ ds

max in equation 4 need
not hold for a linked pair of kernels to be initialised or strengthened between
their kernels. This ensures that statistics relating to the kernels in these two
tracks continue to be collected, for use in further multi-camera tracking.

3 Evaluation

3.1 Evaluation Datasets

Seven multi-camera video sequences were used as test sets for evaluation. The
evaluation test sets contained two or four cameras and comprised common FOV
scenarios, disjoint FOV scenarios, and hybrid scenarios containing some over-
lapping and some disjoint camera views. Test sets were recorded in an indoor
office environment with uncontrolled lighting. Videos ranged in length from 2
minutes 50 seconds to 10 minutes 30 seconds, at approximately 10 frames per
second (fps) and at a resolution of 768×576 pixels or of 640×480 pixels.

3.2 Experimental Setup

Kalman Filter based single camera object tracking results were sanitised manu-
ally and used as input to the multi-camera system. Short tracks were automati-
cally removed as noise, even if they were not, for consistency.

The signature used in our evaluations divides the bounding box of an object
into a 4×4 grid and calculates luminance and hue histograms for the pixels in
each cell in this grid. Each histogram contains 8 bins, giving a total of 256 bins.
Euclidean distance was used to calculate the signature distance in section 2.1. We
selected this signature type as it is used by our single-camera tracking algorithm
in our overall object detection and tracking framework. However, it should be
noted that the multi-camera tracking algorithm presented in this paper could
be used with any signature type and distance metric.
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The values used for each parameter of the STAC algorithm during evaluation
were: ds

max = 2.0; wtr
min = 1.0; mmin = 20. These values were selected empiri-

cally, and based on experience with our particular signature type. Additionally,
a maximum of 100 foreign track snapshots were stored by a camera at any time.

3.3 Evaluation Metrics

We considered two metrics for our evaluation. The F1 score measures the ro-
bustness of results. The correspondence delay (CD) measures how long it takes
to link tracks. A higher F1 score and a lower CD are desirable.

The F1 score is the harmonic mean of recall and precision, balancing the
trade-off between false positives and false negatives. Recall and precision have
been used previously in evaluating tracking-based events [8]. Here, we treat a
correct correspondence as a true positive, an incorrect correspondence as a false
positive and the lack of a correspondence where one should have been found as
a false negative. The F1 score is given by,

F1 = 2
precision · recall
precision + recall

. (13)

For a given correspondence, the correspondence delay (CD) is the time between
the second track becoming visible and a correspondence being found between
the two tracks. The CD for a test set is the mean of the CDs for the true
positive correspondences for that test set. To our knowledge, the timeliness of
correspondences has not been considered in the literature before.

4 Results and Discussion

Table 1 shows a summary of the results of evaluating the STAC algorithm across
all test sets for the two cases of:

– the STAC algorithm described in section 2 but without using the location-
based kernel matching method described in section 2.1; and

– the STAC algorithm with the use of location-based kernel matching.

Table 1. Overall results of evaluating the STAC algorithm with and without location-

based kernel matching (LKM) across all seven test sets

Metric Without LKM With LKM

Recall 0.54 0.66

Precision 0.63 0.68

F1 score 0.58 0.67

CD (frames) 31.2 21.7
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Table 1 shows that the addition of location-based kernel matching improves
the overall accuracy and speed of the multi-camera tracking system, with a par-
ticularly marked increase in recall and decrease in CD. Generally, location-based
kernel matching selects a local signature better matching the foreign track sig-
nature only if the tracks are a true correspondence, i.e., only if they represent
the same real-world object. This is expected to increase true positives without
increasing false positives. Importantly, location-based kernel matching is not de-
signed to select a signature that is a worse match if the tracks are not a true
correspondence, which would result in fewer false positives. These expectations
are reflected in the relatively stronger increase in recall than precision, and no de-
crease in either. Additionally, since signature distances for true correspondences
are reduced when using location-based kernel matching, it is expected that the
condition in equation 4 will be satisfied more often and the signature weights
will be greater, thus the conditions in equation 12 will be satisfied after fewer
frames. This is reflected in the reduced CD.
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Fig. 3. The number of kernels stored for a test case when new kernels are created for

every observed object, and when an existing kernel is reused that is an approximation

for the size, shape and location the observed object using the method described in

section 2.1. Reusing kernels reduces memory usage and achieves better convergence.

Fig. 3 demonstrates a comparison between the number of kernels stored by
the STAC algorithm for each camera over time when kernels are created for ev-
ery observed object in each camera, and for when kernels are reused using the
method described in section 2.1. In Fig. 3, for the case of not reusing kernels, we
observe a roughly linear increase in the number of kernels stored, as expected.
In contrast, Fig. 3 shows that the number of kernels stored is bounded when
kernels are reused. These results imply a similar result for the number of his-
torical linked pairs of kernels stored. This suggests that when reusing kernels,
a guarantee can be made on the memory usage of the system. Alternatively,
a memory limit can be placed on the system without compromising tracking
accuracy. This result is particularly important for embedded applications with
restricted memory resources. Although for brevity results are shown only for one
test set, these trends are reflected in other test sets.
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5 Conclusions

The Signature-based Tracking Across Cameras (STAC) algorithm as part of a
distributed tracking framework enables real-time multi-camera tracking without
a training phase. The kernel-based tracking algorithm covers the entire field of
view of each camera rather than only entry and exit points, and continuously
collects and updates tracking statistics. Reusing kernels enables the collection
of tracking statistics. Also, reusing kernels places a bound on memory usage,
allowing implementation in an embedded application. The novel location-based
kernel matching method uses tracking statistics to accommodate abrupt and
unpredictable changes in the visual characteristics of objects within and across
camera views. We showed that STAC’s tracking accuracy and speed were im-
proved over seven test sets by the addition of location-based kernel matching.
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Abstract. Lane detection is an important element of most driver as-

sistance applications. A new lane detection technique that is able to

withstand some of the common issues like illumination changes, surface

irregularities, scattered shadows, and presence of neighboring vehicles is

presented in this paper. At first, inverse perspective mapping and color

space conversion is performed on the input image. Then, the images are

cross-correlated with a collection of predefined templates to find can-

didate lane regions. These regions then undergo connected components

analysis, morphological operations, and elliptical projections to approx-

imate positions of the lane markers. The implementation of the Kalman

filter enables tracking lane markers on curved roads while RANSAC helps

improve estimates by eliminating outliers. Finally, a new method for cal-

culating errors between the detected lane markers and ground truth is

presented. The developed system showed good performance when tested

with real-world driving videos containing variations in illumination, road

surface, and traffic conditions.

Keywords: Lane Detection and Lane Keeping, Template Matching,

Driver Assistance Systems, Advanced Vehicle Safety Systems.

1 Introduction

Driver safety has always been an area of interest to automotive research. With
the advancement of semiconductor design, powerful electronic devices with small
footprints are starting to appear in many vehicles. These devices are capable of
performing various tasks to assist the driver of an automobile paving the way
for Driver Assistance (DA) systems.

One of the many task performed by such a DA system is Lane Departure
Warning (LDW). In LDW, the positions of lane markers around the host vehicle
are continuously monitored to determine if a lane change is imminent with the
help of exogenous inputs like steering angle, commuting speed, and rate of lane
marker movement. Consequently, a vital component of LDW is lane detection
which is described as a problem of locating painted white or yellow markings on
the road surface. In vision based lane detectors, a camera mounted under the
rear-view mirror is used to acquire data for lane detection.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 179–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper is organized as follows: subsequent to the introduction, a brief
literature review is conducted citing some of the current lane detection imple-
mentations. Then, the different components used in the detection and track-
ing of lane markers are explained. Finally, the method for calculating errors is
described. The performance of the proposed system is assessed on real world
videos recorded at various times of the day. Finally, the conclusion and planned
improvements are discussed.

2 Prior Research

Lane detection is still an active area of automotive research. Conventional ap-
proaches suggest the application of thresholds after studying patterns in his-
tograms in hopes of segmenting lane marker pixels from background or road
pixels [1,2]. Unfortunately, histogram approaches are vulnerable to outlier inten-
sity spikes. The use of edge images to find lines or curves using a variety of kernel
operators has been suggested by [1,3,4,5,6] but face difficulty when markers show
signs of age and wear. A piece-wise Hough transform to fit a line on a curve has
been used to handle conditions involving scattered shadows [7,8]. Additionally,
the incorporation of edge directions has been used to remove some false signalling
[2,6]. Unfortunately, invariance to scale and rotation tends to be major problem
for these methods. Classifying small image blocks as lane markers using learning
methods has been suggested by [9]. But a good quality linear classifier is diffi-
cult to derive without an infinitely large catalog of negative training examples.
Lane detection using adaptive thresholds and one dimensional iterated matched
filters has been suggested by [10,11]. Unfortunately, one dimensional template
matching did not perform so well during the day.

Lane detection is a crucial component of many DA systems; thus, it needs
to be extremely reliable and robust. Current research appears to boast high
performance only in the presence of favorable illumination and road surface
conditions. Unfortunately, these conditions are unlikely to exist on the road
network in most big cities. Based on the literature survey, it can be seen the
feature extraction stages in existing implementations are unable to satisfactorily
discriminate between lane markers and surface artifacts. Consequently, there is
a need to develop improved techniques to detect lane markers that is able to
cope with the variety of road conditions that exist around the world.

3 System Overview

The overview of the proposed lane detector is shown in Fig. 1. First, the images
undergo preprocessing the form of Inverse Perspective Mapping (IPM) and color
conversion. Then, template matching in addition to morphology and ellipse pro-
jection finds areas containing lane markers. Finally, the Kalman filter is used to
track lane marker estimates while RANSAC helps eliminate outliers.
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Pre-
processing

Template
Matching Morphology Ellipse

Modelling Tracking RANSAC Lane
Locations

Fig. 1. System overview

4 Lane Marker Detection

4.1 Preprocessing

Inverse Perspective Mapping (IPM) is used to convert a camera perspective
image to a bird’s-eye view of the scene. The transformation given by

X(r) = h ·
⎛⎝1 +

[
1 − 2

(
r−1
M−1

)]
tanαv tan θo

tan θo −
[
1 − 2

(
r−1
M−1

)]
tan αv

⎞⎠ (1)

Y (r, c) = h ·
⎛⎝

[
1 − 2

(
c−1
N−1

)]
tan αu

sin θo −
[
1 − 2

(
r−1
M−1

)]
tan αv cos θo

⎞⎠ (2)

uses camera calibration parameters such as height from the ground (h), vertical
field of view (αv), horizontal field of view (αu), tilt angle below the horizon
(θo), and mage dimensions (M × N) to map pixels from the image plane to the
world [11]. The transformed image is converted from RGB to YCbCr to aid color
segmentation [12].

4.2 Template Matching

Specific dimensions for different lane markings have been defined by the Federal
Highway Administration (FHA). Normal and wide lane markers are approx. 6
inches and 10 inches wide respectively. Double lane markers consist of two normal
lane markers with a gap in between. [13]. Templates shown in Fig. 2 are created
with equivalent dimensions in the IPM image and used for matching.
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Fig. 2. Lane marker templates and their dimensions

Template matching is performed using Normalized Cross Correlation (NCC).
At first, a binary image is obtained by application of a high threshold τHigh on
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Fig. 4. Steps involved in the Residual Label Growing

the coefficients map. The resultant binary image undergoes connected compo-
nents labeling as a way to ignore small regions while keeping large connected
regions. These remaining labels will serve as a binary mask. Another application
of connected components labeling is used to create a separate labeled region
called “lblLow” from the coefficients map thresholded by τLow. Finally, Residual
Label Growing (RLG) is used to find residual labeled regions which will be sent
for morphological processing.

The Residual Label Growing process can be explained by referring to
Fig. 4. A labeled region containing lane markers and a stray object are shown
in Fig. 4a. Each color in Fig. 4a represents a different label with black being the
background. A bitwise AND operation is performed between the labeled region
and the binary to mask in Fig. 4b to produce residual labels as shown in Fig.
4c. Consequently, the entire regions corresponding to the residual labels are ex-
tracted and serve as the desired output as shown in Fig. 4d. The RLG process
uses a hysteresis approach to segment lane markers by utilizing a high and low
threshold on the coefficients map. It is evident by comparing Fig. 4a and 4d that
the stray object shown in cyan has been eliminated while the lane markers are
untouched. With a mask created using an appropriate τHigh threshold, similar
stray objects can be ignored. This is a key feature of the RLG.

The template matching procedure for the Y channel with a normal lane marker
template is illustrated in Fig. 3. To detect the other markers on the road that
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vary in shape and color, the template matching procedure is repeated using the
remaining combination of templates and color channels.

4.3 Morphology

The residual labeled regions acquired after template matching are fed as inputs
to the Lane Region Finder (LRF) as shown in Fig. 5a. The labeled regions of the
Y, Cb, and Cr channels are prefixed with “lbl” e.g. lblY, lblCb, and lblCr. The
default mask passes all labels untouched (all-pass). After each LRF iteration, the
mask is updated to ignore areas that have already been detected. This updated
mask is then fed to the next LRF module. Finally, the results of all three LRFs
are combined using a bitwise OR operation to produce Ensemble Lane Regions
(ELR).
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lblCr

Lane Region Finder

Default
Mask

lblY
lblCb
lblCr

lblY
lblCb
lblCr

Updated
Mask

Updated
Mask
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Ensemble Lane Regions

(a) Flowchart illustrating the creation

of ensemble lane regions.
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Updated Mask

Inputs

Outputs

(b) Flowchart illustrating the inner work-

ings of the Lane Region Finder (LRF).

Fig. 5. Steps involved in the Morphology

The ordering of input labels plays an important role in the success of the lane
detector as the mask used in LRF is updated after each operation. When an
off-line test involving the computation of NCC coefficients between equal sized
test samples and their corresponding templates was conducted, on average the
double lane templates produced the highest cross correlation score in the center
of the coefficients map. This was followed by the scores of narrow and then wide
lane templates. The double lane templates were able to produce a higher cor-
relation score as multiple intensity oscillations in the vertical direction account
for strong discriminating features in comparison to the other templates. As a
result, the LRF sequencing in Fig. 5a starts by detecting double lane markers.
The updated mask is used in the LRF operation in collaboration with residuals
labels corresponding to normal lane markers, and then with wide lane markers.
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The inner workings of the Lane Region Finder is shown in Fig. 5b. First,
two Residual Label Growing (RLG) operations are performed using a binary
mask; one on lblCb and the other on lblCr. The two residual labeled regions are
converted to binary images by assigning each non-background label to a binary
one. The two binary images are combined using a bitwise OR operation and
assigned as yellow lane region. This region is then dilated and inverted to serve
as mask. The purpose of the mask is to avoid re-detection in areas that have
already been considered as yellow lane regions. The structuring element used in
dilation is row vector with a height equivalent to 12ft in the IPM image (6ft
on either side of the detected yellow regions). RLG is performed again but this
time on lblY using the dilated and inverted mask. The white and yellow marker
regions are merged to depict detected lane regions corresponding to a particular
template. The merged region is also inverted and dilated to serve as a mask for
the next LRF block in Fig. 5a.

Yellow color content is prevalent in the Cb and Cr channels of the YCbCr
space. Depending on the intensity of yellow, the Y channel may occasionally
contribute some information. As a result, yellow lane marker detection is per-
formed using Cb and Cr components. However, white color is intensity dependent
and contributed to only by the Y channel. Hence, white lane marker detection
is performed using only the Y components.

4.4 Ellipse Modeling

Connected components labeling is performed on the Ensemble Lane Regions
(ELR) in Fig. 5a to find a collection of distinct objects. The horizontal lengths
of each object is measured for classification. Based on the FHA specifications, if
the measured length of an object exceeds the equivalent of 10ft in the IPM image,
then it is categorized as a full or solid line. Otherwise, the object is categorized as
a broken line. In Fig. 6, the solid line is shown in red and broken lines are shown
in Cyan. Each broken line is modeled as an ellipse whose major axis shown in
brown is projected towards the front of the vehicle on the left. For solid lines, the
leading 10ft of pixels shown in yellow are used in modeling the ellipse. The major
axis of the ellipse allows to estimate the traversing direction of the markers from
one frame to the next. The Hough transform was initially used to approximate

30ft0ft

Ideal left lane location

Ideal right lane location

Lane markers
on a curve

d

Y

X

Fig. 6. Ellipse modeling and major axis projection
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this direction; however, the path containing maximum pixels was often chosen
but incorrect.

Given the FHA specifications of lanes being 12ft wide [13] and assuming
that the vehicle is traveling in the middle of a straight road, the expected ideal
locations of left and right lane marker centers are shown in pink. The major
axis projection of an object is expected to be within the trapezoid at 0ft and
30ft to be considered as either a left or right lane marker candidate. The axis of
symmetry of the trapezoid is aligned with ideal lane marker locations with the
short base set to a length of 8ft, i.e. 4ft on either side of the ideal lane location
in the IPM image. The length of the long base is set to entirely accommodate
a circular arc within the 0-30ft range. This arc is assumed to represent lane
markers on a curve and is shown in purple in Fig. 6. The radius of curvature of
the arc is set to 65ft which is the American Association of State Highway and
Transportation Official’s (AASHTO) recommendations for minimum radius of
curvature for a horizontal road curve with e=4.0% superelevation when traveling
at speed of 20mph [14]. An isosceles trapezoid is chosen as the shape of the green
window as opposed to a rectangle or triangle to allow detection of lane markers
on a curve that may be offset from the ideal lane locations while at the same
time reduce detection of artifacts or other markers far away from the vehicle. In
the case that a solid or broken line exists inside the trapezoid as shown by the
orange object, the pixel locations of the object are sampled at one foot intervals
shown by the vertical black lines in Fig. 6 within the 0-30ft range. The black
dots in each interval will serve as the measurements for the Kalman filter (see
next section).

5 Tracking

The Kalman filter is used to estimate the lane marker movements from one frame
to next. Measurements are acquired by sampling the object at one foot intervals
inside the trapezoid as described earlier; consequently, separate Kalman filters
are evaluated at every interval for both left and right lane markers. The state
vector and corresponding equations are set as

x(n) =
[
x(n) ẋ(n)

]T (3)

x(n + 1) =
[
1 1
0 1

]
x(n) +

[
N(0, σw1)
N(0, σw2)

]
(4)

y(n) =
[
1 0

]
x(n) + N(0, σv) (5)

where x(n) is the position or y-value and ẋ(n) is the velocity of the lane marker
in each interval. The noise in the state and measurement equations is assumed to
be white and each process is assumed to be uncorrelated with the others. After
initialization, if no measurement is made at a particular interval, the Kalman
filter relies on its prediction to produce the estimate. However, after 50 sequen-
tial predictions, it is deactivated at that particular interval to avoid producing
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estimates as lane markers may not actually exist. Separate Kalman filters are
evaluated at every interval rather than collectively in one matrix to avoid the
unsolvable condition where the prediction counter exceeds 50 and the Kalman
filters have been deactivated at certain intervals .

6 Outlier Elimination

The estimates produced by the Kalman filter undergo Random Sample Consen-
sus (RANSAC) to eliminate outliers as shown in Fig. 7a. Normally, k-RANSAC
or quadratic RANSAC would be used in outlier elimination for fitting a curve
[15]; however, they are computationally intensive and slow. Luckily, since the
minimum radius of curvature recommended by AASHTO [14] is large, inlier
estimation using a straight line model in RANSAC with an appropriate error
threshold is sufficient. This threshold is calculated using simple properties of a
circle.

(a) Fitting a line through the inliers.

r = 65ft

30ft0ft

(b) Estimating a curve with straight line

and threshold.

Fig. 7. RANSAC for inlier estimation

If lane markers lie on a curve with radius 65ft [14], this curve can be viewed as
an arc of a circle with the same radius as represented by the dotted blue line in
Fig. 7b. A circular segment can be created by joining the end points of this arc.
1
2 of the height of the circular segment is the minimum error threshold allowing
the ideal line model in RANSAC to contain all the points along the curve. The
ideal line is shown in cyan and the threshold (δ) is given by

δ =
r −

√
r2 − (r−√

r2−d2)2+d2

4

2
(6)

Finally, Ordinary Least Squares (OLS) estimation is used to fit a quadratic curve
on the remaining inliers. Each dot in the dotted blue line in Fig. 7b is an estimate
produced by the Kalman filter at one foot intervals within the 0-30ft range.

7 Error Estimation

First, the ground truth is generated using the Time-Slice approach which al-
lows to quickly and accurately annotate videos [16]. The error in each frame
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is then computed by determining the maximum distance between the detected
lane marker locations and that of the ground truth. The ground truth data is
also transformed to the IPM domain using Eq. (1) and (2) to allow the accurate
computation of these distances. In the bird’s-eye view, the inter-pixel distances
have linear correspondences in the world; as a result, the distances computed in
any portion of the image can be easily mapped to a physical distance.

The distances are computed at one foot intervals up to 30ft ahead of the
vehicle. The error is determined by calculating

λ(i,f) = max(|Gt(i,f) − X(i,f)| − W

2
, 0) s.t. i ∈ [0, 30] (7)

E(f) = ‖λ‖∞ = max
i

λ(i,f) (8)

where Gt(i,f) is the ground truth location of the lane marker and X(i,f) is the
detected lane location in frame f at a distance of i feet ahead of the car. W
is an interval around the ground truth locations and is set to the equivalent of
8 inches in the IPM image. This value is chosen as the mean of the widths of
normal and wide lane markers based on the specifications of the Federal Highway
Administration (FHA) [13]. Consequently, lane marker estimates that fall within
the interval specified by W are categorized as having no error. As a result, the
error in each frame, E(f) is computed as the L-Infinity Norm of the λ values.
This idea is illustrated in Fig. 8 where the green line marks the ground truth,
the blue line is the lane marker estimation using the proposed lane detector, and
λ(i,f) is the offset measured at specific distances ahead of the vehicle.

0ft 30ft

} W
(30,f)(0,f) (4,f) (8,f)

Fig. 8. Calculating errors using λ distances

8 Results and Analysis

The following rules were used to quantify the results into the different categories:

1. A correct detection occurs when less than N
2 λ distances are greater than 0.

2. A missed detection occurs when more than N
2 λ distances are greater than 0.
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(a) Clip 1 (b) Clip 2 (c) Clip 3

(d) Clip 4 (e) Clip 5 (f) Clip 7

Fig. 9. Scenes from video clips used in testing with correct lane detections

(a) Clip 1 (b) Clip 6 (c) Clip 8

Fig. 10. Few examples of missed detections

N is the number of computed distances for error calculation (i.e. N = 30). Eight
ten minute long video clips were used to evaluate the lane detector. Each video
clip was annotated ahead of time using the Time-Slice approach [16]. The errors
represented by E(f) were calculated only when an estimate was considered cor-
rect. Table 1 presents a quantitative evaluation of the proposed system. Methods
of template matching, morphology, and ellipse modeling allows the lane detector
to successfully deal with most issues associated with scattered shadows, illumi-
nation changes, surface irregularities, and presence of vehicles in neighboring
lanes. In addition, the Kalman filter and RANSAC enables detection and track-
ing of markers on curved and winding roads which was initially problematic. A
few scenes from the test clips with correct lane detections are shown in Fig. 9.

A few instances of missed detections are also shown in Fig. 10. Missed detec-
tions were most commonly caused by lens flares from overhead streetlights and
pavements running parallel to the road. The reason behind is this is that both
of these objects produced shapes in the IPM image that closely resembled the
lane marker templates often leading to their detections.



A Template Matching and Ellipse Modeling Approach 189

Table 1. Accuracy of the proposed lane detection system

Left Lane Right Lane

Correct Avg. E(f) ft. Correct Avg. E(f) ft.

Clip 1 96.31 % 0.018 97.21 % 0.035

Clip 2 95.92 % 0.033 96.94 % 0.024

Clip 3 94.26 % 0.012 95.50 % 0.020

Clip 4 82.08 % 0.012 94.02 % 0.019

Clip 5 100 % 0 99.48 % 0.012

Clip 6 95.78 % 0.014 99.53 % 0.020

Clip 7 100 % 0 100 % 0

Clip 8 73.28 % 0.019 96.50 % 0.032

9 Conclusion

A new lane detection system is presented in this paper. At first, the input image
undergoes a geometric transformation followed by a color space conversion. Then
the procedures for detecting lane markers using template matching, morphology,
and elliptical modeling are explained. Kalman filtering and RANSAC used in
tracking and outlier elimination greatly helps in handling lane marker extraction
on curves. Finally, a new technique to calculate lane detection errors is also
introduced. Despite the presence of scattered shadows, illumination changes,
surface irregularities, and vehicles in neighboring lanes, our proposed system
showed very good performance which is portrayed by the quantitative results in
Table 1.

10 Future Work

The application of constraints on the width between the detected lane markers is
being explored. This should help prevent the sporadic oscillations of lane marker
estimates.
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Abstract. The paper presents a framework for classification of rigid objects in 
digital images. It consists of a generator of the geometrically deformed 
prototypes and an ensemble of classifiers. The role of the former is to provide a 
sufficient training set for subsequent classification of deformed objects in real 
conditions. This is especially important in cases of a limited number of 
available prototype exemplars. Classification is based on the Higher-Order 
Singular Value Decomposition of tensors composed from the sets of deformed 
prototypes. Construction of such deformable tensors is flexible and can be done 
independently for each object. They can be obtained either from a single 
prototype, which is then affinely deformed, or from many real exemplars, if 
available. The method was tested in the task of recognition of the prohibition 
road signs. Experiments with real traffic scenes show that the method is 
characteristic of high speed and accuracy for objects seen under different 
viewpoints. Implementation issues of tensor decompositions are also discussed. 

1   Introduction 

Recognition of objects in digital images is a key task of Computer Vision. However, the 
problem is complicated due to a great diversity of objects of interest, on the one hand, 
and limited information provided in digital images, on the other. Nevertheless, due to 
development of new classification methods and computational techniques, it is possible 
to construct some frameworks for fast and reliable recognition of at least some groups 
of well defined objects. In this paper we present one of such software frameworks. It 
can classify rigid objects detected in images which views are subject to a subgroup of 
projective transformations and noise. These unavoidable distortions are due to the 
geometrical and physical properties of the observed objects and conditions of image 
acquisition. The presented system relies mostly on the set of classifiers which perform a 
multilinear analysis of tensors which are composed of the prototype exemplars of 
objects. However, frequently the latter are not available in a sufficient number to allow 
recognition of geometrically transformed views of objects. Therefore to remedy this 
constraint the second important module of our framework is a generator of affinely 
deformed and noise conditioned artificial prototypes. Thus, the system can still reliably 
recognize an object even if only its single prototype is provided. Obviously, the more 
input prototypes, the better results can be obtained. The method is able to cope with 
different number of these for each object it is trained to recognize. 
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Application of tensors opened new possibilities for more precise analysis of complex 
data which depend on many different factors. Each such factor is represented by a new 
dimension of the tensor space (a mode of a tensor). In image processing different factors 
correspond to different viewpoints, illumination conditions, or geometric deformations 
of represented objects. This constitutes a qualitative difference compared to the matrix 
approach in which images characteristic of different  viewing conditions had to be 
vectorized prior to the analysis, such as PCA [18]. Such tensor based methods have 
been already used for CV tasks as handwritten character classification [19] or face 
recognition [20], etc. 

Specifically, in this paper we address the problem of reliable classification of the 
road signs (RS) based on their monochrome pictograms. In the aforementioned 
multilinear recognition framework, the task of RS classification is done with help of 
the Higher-Order Singular Value Decomposition (HOSVD, called also the Tucker 
decomposition) of the tensors built from the deformable versions of the prototype 
patterns of each of the pictograms. To the best of our knowledge, this is the first 
application of the HOSVD to the RS classification task. Nevertheless, as alluded to 
previously, the presented framework can be also used for recognition of another group 
of rigid objects, such as moving cars or fruits on a production line.  

The work builds into our framework of RS recognition in which different detection 
and classification modules were reported in [6-9]. In the group of developed classifiers 
the presented in this paper tensor based method allows the best accuracy at very high 
speed of response and manageable occupation of memory. More information pertinent 
to the RS recognition task can be found in the works of de Escalera et al. [12], Paclik et 
al. [17], Chen et al. [4], or Bascón et al. [3], etc., as well as in the mentioned references 
[6-9]. 

The rest of the paper is organized as follows. We start with a discussion of the 
architecture of the system. Then details of the tensor representation of patterns and 
classification with the HOSVD are discussed. Further we discuss the implementation 
issues related to the object-oriented computer representation of tensors as well as to 
their so called proxy objects which allow efficient index manipulations of tensors 
without data copying. Finally, we present the experimental results and conclusions. 

2   Architecture of the Road Signs Recognition System 

Architecture of our object recognition framework applied the task of RS recognition 
is depicted in Fig. 1. It was designed to fit into our software framework developed 
during the recent years [6-9]. However, in this paper we focus mostly on the HOSVD 
based classification applied to the prohibition signs. 

The preprocessing starts with the detection module which accepts an input color 
image and returns rectangular outlines of the compact red objects, as described in [9]. 
Such rectangles are then cropped and then their color signal is converted into a 
monochrome version by taking only the blue channel. Such a strategy showed to 
provide the best contrast of the pictograms of the prohibition signs. Then, the detected 
rectangle is registered to the size expected by the classification module, described in 
the next section, as described in [9]. 
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Fig. 1. Architecture of the road signs recognition system 

However, to build the tensor space which is then HOSVD decomposed we use a 
set of prototypes extracted from real traffic scenes but the method works fine also for 
a set of the formal RS definitions (i.e. a law regulation). The patterns from the chosen 
set are then affinely transformed by the prototype exemplar generator. It was noticed 
that because the images are already registered to some common size by the detector, it 
is sufficient to constrain the affine transformations to pure rotations. Finally, the 
experiments showed that this method easily works with some small variations in 
horizontal/vertical positioning, i.e. by few pixels. Then, after HOSVD decomposition 
of such deformable patterns, only a number of dominating components is used to 
classify an incoming test pattern. The procedure is described in the next section.  

3   Tensor Based Object Recognition 

Tensors are mathematical objects used in many branches of science, such as 
mathematics and physics, due to their well defined transformation properties in 
respect to the change of a coordinate system [1]. However, in some applications, such 
as data mining, they are considered as multidimensional generalizations about 
matrices, i.e. the multidimensional arrays of data [5][16]. In this work we follow the 
second interpretation. Below, a short introduction to tensor decomposition is 
presented. More details can be found in references, e.g. [5][16][2]. 

Analogously to the matrix SVD decomposition [18], for a P dimensional tensor T 

there exists a P-th order decomposition HOSVD. It allows each tensor 
1 2 m n PN N N N N× × × ×∈ ℜ … … …T  to be decomposed as follows 

1 1 2 2 P P
= × × ×S S S…T Z , (1) 
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where Sk is a unitary mode matrix of dimensions Nk×Nk, spanning the column space 
of the matrix T(k) obtained from the mode-n flattening of T; 

1 2 m n PN N N N N× × × ×∈ ℜ … … …Z  is a core tensor of the same dimensions as T, which satisfies 

the following conditions [16]: 

1. Two subtensors 
kn a=Z  and 

kn b=Z , obtained by fixing the nk index to a, or b, 

are orthogonal, i.e. 

0
k kn a n b= =⋅ =Z Z , (2)

for all possible values of k for which a≠b. 
2. All subtensors can be ordered according to their Frobenius norms 

1 2
0

k k k Pn n n N= = =≥ ≥ ≥ ≥…Z Z Z , (3)

for all k.  
The following Frobenius norm 

k

k
n a a

σ= =Z  (4)

is called the a-mode singular value of T. Each i-th vector of the matrix Sk is the i-th k-

mode singular vector.  
Assuming decomposition (1) of a tensor T, singular values (4) provide a notion of an 

energy of this tensor in the terms of the Frobenius norm, as follows 

( ) ( )1 2 22 21

1 1

PR R
P

a a
a a

σ σ
= =

= = = =∑ ∑…T Z , (5)

where Rk denotes a k-mode rank of T.  

The SVD decomposition allows representation of a matrix as a sum of rank one 
matrices. The summation spans number of elements, however no more than a rank of 
the decomposed matrix. Similarly to the SVD decomposition of matrices, based on 
the decomposition (1), a tensor can be represented as the following sum 

1

PN
h

h P P
h=

= ×∑ sT T , (6)

where 

1 1 2 2 1 1h P P− −= × × ×S S S…T Z , (7)

denotes the basis tensors and sh
P are columns of the unitary matrix SP. Since Th is of 

dimension P-1 then ×P in (6) is an outer product, i.e. a product of two tensors of 
dimensions P-1 and 1. The result is a tensor of dimension P, i.e. the same as of T.  

Fig. 2 depicts a visualization of this decomposition for a 3D tensor. In this case Th 
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becomes two-dimensional, i.e. it is a matrix. Moreover, it is worth noting that due to 
orthogonality of the core tensor Z in (7), Th are also orthogonal. Hence, Th in 

decomposition (6) constitute a basis. This is a very important result which allows 
construction of classifiers based on the HOSVD decomposition. Such a scheme is 
used in the proposed system for RS classification, although other tensor constructions 
with simultaneous data compression are also possible [19]. Nevertheless, in our case 
each set of prototypes for a single sign (i.e. a single class) is independently encoded as 
a separate tensor Ts. This allows different numbers of prototypes in each of the 

classes. As alluded to previously, in each case the series (6) is usually truncated to the 
first N≤NP most prominent components. In other words, a smaller but dominating N 
dimensional subspace is used to approximate T.  

T
T T T

 

Fig. 2. Visualization of the tensor decomposition given by (6) 

The series of k-mode products (7) can be equivalently represented in a matrix 
notation after tensor flattening 

( ) ( ) 1 2 1 2 1

T

k k k P kk k + + −
⎡ ⎤= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗⎣ ⎦T S Z S S S S S S… … , (8)

where ⊗ denotes the Kronecker product. This provides us with a convenient link to 
the matrix representation of tensor equations which is discussed in the next section of 
this paper. By the same token, and taking into an account that Sk are orthogonal, 
computation of the core tensor Z can be expressed as  

( ) ( ) 1 2 1 2 1
T
k k k P kk k + + −

⎡ ⎤= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗⎣ ⎦Z S T S S S S S S… … . (9)

The HOSVD successively applies the matrix SVD decomposition to each of the 
flattened T(k) versions of the input tensor T. In result the Sk matrices are 

computed [16]. In the 3D case and considering (9), the HOSVD can be written as  

( ) ( ) ( )1 2 31 1

T= ⊗Z S T S S . (10)

As mentioned, in our framework the original tensor Ti of a class i is obtained from the 
available exemplars of the prototype patterns for that class i. These, in turn, are 
obtained from the patterns cropped from the real traffic images which are additionally 
rotated in a given range (in our examples this was ±12° with a step of 2°) with 
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additionally added normal noise (a procedure for this is described in [10]). Since for 
different signs a different number of exemplars is available, such a strategy allows 
each pattern to be trained with different number of prototypes. Finally, the training 
stage ends in computation of Th

i for each Ti, in accordance with (7).  

Recognition is done by testing approximation of a given pattern Px in each of the 
spaces spanned by the set of bases Th given in (6). This is done by solving the 

following minimization problem  

=

−∑
2

1

min
i
h

N
i i

x h h
c i

P c T , (11) 

where ci
h are the coordinates of Px in the manifold spanned by Th

i. Due to the 

orthogonality of the tensors Th
i, the above reduces to the maximization of the 

following parameter [19] 

ρ
=

= ∑
2

1

ˆ ˆ,
N

i
i h x

i

PT , (12) 

where the 〈.,.〉 operator denotes the scalar product of the tensors. The returned by a 
classifier pattern is a class i for which the corresponding ρi from (12) is the largest. In 
our system we set a threshold (τ=0.85); Below this threshold the system answers 
“don’t know”. Such a situation arises if wrong pattern is provided by the detector or a 
sign which system was not trained for. The number N in (12) of components was set 
from 3 to 9. The higher N, the better fit, though at an expense of computation time.  

4   Computer Representation of the Flat Tensors 

Many platforms have been developed for efficient tensor representations. However, 
sometimes they lack sufficient elasticity of using different data types or they do not fit 
into the programming platforms [2][5]. In this paper we address the problem of 
efficient tensor representation and manipulation in software implementations. Our 
main assumptions can be summarized as follows. 

1. Flexibility in accessing tensors as multidimensional arrays and flat data 
representations at the same time without additional copies. 

2. Efficient software and/or hardware processing. 
3. Flexible element type selection and specializations for tensors. 

A proposed class hierarchy for storage and manipulation of tensors is shown in Fig. 3. 
The base template class TImageFor<> comes from the HIL library [14]. The 

library is optimized for image processing and computer vision tasks, as well as for 
fast matrix operations [10]. TFlatTensorFor<> is the base class for tensor 
representation. Thus, in our framework a tensor is represented as a specialized version 
of a matrix class. This does not follow the usual way in which a matrix is seen as a 
special two-dimensional tensor. This follows from the fact that tensors in our system 
are always stored in the flattened representation for a given mode. This also follows a 
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linear organization of the computer memory. In these terms a tensor is just a data 
structure with a tensor mode governed by the more specialized objects in the 
hierarchy. At the same time, flexible and efficient methods developed for 
manipulation of the matrix data objects [14] are retained. In other words, the “is a” 
relationship showed up to be a more practical solution than the previously tried “has 
a”, in which a tensor object contained a matrix that stored its data in one mode. In 
effect the TFlatTensorFor<> has two sets of the principal methods for accessing its 
elements. The first pair Get/SetElement takes as an argument a TensorIndex which is 
a vector of indices. Its length equals dimension of the tensor. The second pair of 
functions Get/SetPixel is inherited from the base TImageFor<>. The latter allow 
access to the matrix data providing simply its row and column (r,c) indices.  

TImageFor

# fData : pixel type = val

+ GetPixel( matrix_index ) : PixelType

N1..*

TFlatTensorFor

# fTensorMode : int

Element 
Type

TFlatTensorProxyFor

- fMotherTensor : TFlatTensorFor &

+ SetPixel( matrix_index ) : PixelType

HIL Library

+ GetElement( TensorIndex ) : ElType
+ SetElement( TensorIndex, ElType )

# Offset_ForwardCyclic
( TensorIndex, MatrixIndex, Mode )

# Offset_BackwardCyclic
( TensorIndex, MatrixIndex, Mode )

# fIndexVector: vector
+ GetElement( TensorIndex ) : ElType
+ SetElement( TensorIndex, ElType )

+ GetPixel( matrix_index ) : PixelType

+ SetPixel( matrix_index ) : PixelType

# Offset_BackwardCyclic
( MatrixIndex, TensorIndex, Mode )

# Offset_ForwardCyclic
( MatrixIndex, TensorIndex, Mode )

 
 

Fig. 3. A tensor class hierarchy 

The TFlatTensorProxyFor<> class is a simplified proxy pattern to the 
TFlatTensorFor<> [10]. These are useful in all cases in which tensor representations 
in different flat n-modes are necessary. Proxies allow this without creating a copy of 
the input tensor which could easily consume large parts of memory and time. An 
example is the already discussed HOSVD decomposition. In each step of this 
algorithm the n-mode flat tensor needs to be created from the initial tensor T, for all 
n’s [16]. In our realization these two-way index transformations are possible with the 
Offset_ForwardCyclic/Offset_BackwardCyclic metods which recompute tensor-
matrix indices in two ways and in two cyclic modes (backward and forward), and also 
for different n-modes. More specifically, an index of an element in a tensor T of 
dimension k is given by a tuple (i1, i2, …, ik) of k indices. This maps into an offset q of 
a linear memory 

( )( )( )1 2 2 3 k kq i n i n n i= + + +… ,  (13) 

where the tuple (n1, n2, …, nk) gives dimensions of T. On the other hand, matrix 

representation always involves selection of two dimensions ( )
1,

, ,
k

m z
z z m

r c n n
= ≠

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∏ , 

m equals a mode of the T. In consequence, an element at index q has to fit into such a 
matrix. In the tensor proxy pattern the problem is inversed - given a matrix offset q a 
corresponding tensor index tuple has to be determined due to different modes of the 
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tensors. This is obtained by successive division of the q in (13) by np for starting from 
p=k up to p=1, since for all k it holds that ik<nk. A series of indices ip is obtained in a 
form of residua of such successive divisions. Summarizing, the advantages of the 
proposed tensor classes are as follows: 

1. A uniform treatment of the tensor as well as its matrix n-modes. A tensor is 
stored only in a single chosen mode while other modes are obtained exclusively 
by index manipulations. 

2. Tensor proxy objects allow simultaneous manipulation of a tensor in its all 
possible n-mode flat representations without data copying.  

3. Template implementation allows different types of tensor elements (such as float, 
boolean or fixed-point formats). 

4. Object oriented C++ implementation can be easily ported to other OO languages 
such as C#, Java, Python, etc. 
The described tensor software framework can be accessed from the Internet [11]. 

5   Experimental Results 

The presented object classification framework was implemented in C++. Experiments 
were run on a computer with 2GB RAM and Pentium Core 2 T7600 @ 2.33GHz.  

  

Fig. 4. Exemplary real traffic scenes used in the experiments. The method is able to correctly 
recognize signs of different size and orientation. 

Fig. 4 and Fig. 5 depict two real traffic scenes with signs correctly detected and 
then classified by the presented HOSVD based system. Despite inherent rotation, as 
well as variations of tint and different lighting, the signs were recognized correctly. 

Fig. 6 Fig. 7 depict the first five tensors 
h

T  and the corresponding five core 

tensors 
n

Z  which were computed for the for the “40 km/h speed limit” and “No pass” 

signs, respectively. An inherent rotation added during training is well visible.  
An average accuracy of recognition was measured in terms of the error rate 

which plot depicts Fig. 8b. However, during the tests it was observed that some 
signs cause more errors (such as e.g. the STOP sign), whereas the other can be 
recognized very reliably. This is caused mostly by specific pictogram distribution of 
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different signs. Some signs are also very similar, especially if geometrically 
changed, e.g. 30 km/h compared to the 80 km/h, etc. 

As alluded to previously, the method tolerates well imperfections in detection 
(such as not well aligned window, etc.), as well as variations in color tint and/or 
lighting obtained in real road conditions (we used the Marlin® and Sony® cameras). 
The method is also resistant to the slight projective deformations (i.e. allowed for the 
 

 

 

  

Fig. 5. Examples of correct classification of the signs despite the imprecise detection and under 
different color and/or lighting conditions. In all cases the color images were converted to the 
monochrome versions by taking exclusively the blue channel. Then intensity values were 
conditioned by histogram equalization method. 

     

     

Fig. 6. First five tensors 
h

T  for the 40 km/h speed limit sign (upper row), and the 

corresponding five core tensors 
n

Z  (lower row) 

road signs in respect to the drivers’ direction of view), as well as to some occlusions if 
these do not affect the main part of the pictogram. Correct operations under different 
operating conditions are presented in Fig. 4 and Fig. 5, for instance. 

Training of the data base in Fig. 8a takes around 8-9s in our platform, while run 
time classification is in order of 0.04-0.07s per single image of resolution 640×480, 
depending on a size of the test pattern (the difference in computation time depends on 
time necessary for the geometrical registration to the test pattern). 
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Fig. 7. First five tensors 
h

T  for the “No pass” sign (upper row), and the corresponding five 

core tensors 
n

Z  (lower row) 

 

 

a b 

Fig. 8. The data-base of prototype exemplars from which the rotated and noisy patterns were 
constructed from which the tensors are composed (a). Accuracy rate of the pictogram 
classification system in respect to the number of N base tensors in (12) (b). 

6   Conclusions 

In this paper a software framework for rigid object classification is presented which 
was applied to the task of road signs recognition. The classification method relies on 
the Higher-Order Singular Value Decomposition of the deformable prototype tensors. 
These, in turn, are built for each pictogram from deformable versions of its real 
prototypes. The group of deformations contains only rotations since small shifts are 
well compensated without explicit training. Additionally, this way prepared 
prototypes were endowed with the Gaussian noise to enhance robustness. The method 
was tested with images containing real traffic scenes. Compared to other solutions it 
can be characterized as showing the highest accuracy and recognition speed. The 
method is also resistant to the small projective deformations of the observed signs, as 
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well as to the slight variations in color, lighting conditions and occlusions which do 
not obscure the pictogram. The most troublesome are situations in which an object 
provided by the detector does not belong to any of the patterns used during training. 
To cope with such outliers a match threshold was set based on experiments. The 
obtained accuracy on the group of prohibition signs reached 95% at speed of 15-25 
frames/s of resolution 640×480. Additionally, we provide software for efficient 
representation and manipulations of tensors, as well as for their decomposition. 
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Abstract. A homography is a projective transformation which can re-
late two images of the same planar surface taken from two different points
of view. Hence, it can be used for registering images of scenes that can
be assimilated to planes. For this purpose a homography is usually es-
timated by solving a system of equations involving several couples of
points detected at different coordinates in two different images, but lo-
cated at the same position in the real world. A usual and efficient way
of obtaining a set of good point correspondences is to start from a pu-
tative set obtained somehow and to sort out the good correspondences
(inliers) from the wrong ones (outliers) by using the so-called RANSAC
algorithm. This algorithm relies on a statistical approach which neces-
sitates estimating iteratively many homographies from randomly chosen
sets of four-correspondences. Unfortunately, homographies obtained in
this way do not necessarily reflect a rigid transformation. Depending on
the number of outliers, evaluating such degenerated cases in RANSAC
drastically slows down the process and can even lead to wrong solutions.
In this paper we present the expression of a lightweight rigidity con-
straint and show that it speeds up the RANSAC process and prevents
degenerated homographies.

1 Introduction

In the field of computer vision, homographies are widely used to relate images
of scenes assimilable to planar surfaces. All typical homography applications
from the computation of camera motion to image mosaicing, video stabilization,
augmented reality, image rectification or sub-pixel resolution extrapolation rely
in a way on image registration. Homographies are consequently expected to
reflect a mapping from one image plane to another which corresponds to a rigid-
body transformation. It is therefore assumed that a rigid body keeps its shape
during the acquisition of images to be related and that only its projection on
the image plane changes when the camera view changes.

The homogeneous coordinates representation used in projective geometry,
which is briefly described hereafter, allows a very synthetic and convenient ma-
trix representation of a homography. Unlike in Euclidean geometry, a combina-
tion of 3D rotation and translation necessitates only one matrix multiplication.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 203–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Thanks to this mathematical representation, it is very easy, from a mathematical
point of view, to estimate the homography parameters from a set of point cor-
respondences taken from two different images representing the same real-world
location at different image coordinates. Unfortunately, even the best feature
space based methods have performance limitations and in practical cases it is
not always trivial to detect and perfectly associate points from two images that
correspond to the same real-world location. It is therefore common practice to
use the RANSAC algorithm [1] to sort out putative point correspondences ob-
tained by the mean of some feature space methods. This algorithm delivers both
an estimation of the homography and a set of point correspondences which are
consistent with this estimate. Even if RANSAC is known to be very robust, it
can possibly fail and lead to results which do not reflect a rigid-body transforma-
tion. This was the motivation for the investigation reported in this paper, which
led us to clarify the fact that a homography cannot be reduced to a rigid-body
transformation and that RANSAC is not always able to reject non-rigid-body
transformations. Finally, we present a lightweight rigidity constraint that not
only allows RANSAC to avoid some degenerated homographies, but also speeds
up the whole process in unexpected proportions.

2 Backgrounds of Homography Estimation

2.1 Homography Estimation and Image Registration

A homography is a projective transformation also called projectivity or collineation
defined by an invertible mapping h from the projective plane P2 to itself that
maps lines to lines [2,3]. Points in P2 are described by column 3-vectors of
the form p = (x1, x2, x3)


 defining their so-called homogeneous coordinates.
In homogeneous coordinates, given a non-zero constant k, the set of vectors
(k · x1, k · x2, k · x3)


 describes the same point of P
2. A representation of an ar-

bitrary point (x1, x2, x3)

 from P2 in the Euclidean plane defined in R2 can be

obtained by the usual normalization (x1/x3, x2/x3, 1)
 of the homogeneous co-
ordinates which leads to the Euclidean coordinates (x, y)
 = (x1/x3, x2/x3)


.
In the same way, a point from the Euclidean plane defined by a column 2-vector
(x, y)
 in R2 can be represented in P2 by the 3-vector (x, y, 1)
. It is important
to remember that (x, y, 1)
 is not the unique representation of (x, y)
 in P2

as it is by definition equivalent to the set of 3-vectors (k · x, k · y, k)
. Hence,
given a 3 × 3 homography matrix H and two points p and p′, the projective
transformation which maps p to p′ is written:

p′ = H · p. (1)

Using the homogeneous coordinates of p and p′ this projective transformation
can be expressed in the matrix form as:⎛⎝x′

1
x′

2
x′

3

⎞⎠ =

⎛⎝h1 h2 h3
h4 h5 h6
h7 h8 h9

⎞⎠ ·
⎛⎝x1

x2
x3

⎞⎠ , (2)
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or alternatively in the form of an equivalent system of equations:⎧⎪⎨⎪⎩
x′

1 = h1 · x1 + h2 · x2 + h3 · x3

x′
2 = h4 · x1 + h5 · x2 + h6 · x3.

x′
3 = h7 · x1 + h8 · x2 + h9 · x3

(3)

Scaling H with a non-zero scalar k yields p′ = (k · H) · p or p′ = H · (k · p) ac-
cording to the commutativity property, which is by definition equivalent to (1)
since k · p = p in homogeneous coordinates. Matrix H is thus said to be homo-
geneous, since, similarly to the homogeneous representation of a point, only the
ratios of its elements are significant. Given that with nine parameters there are
eight possible ratios of parameters, a homography has eight degrees of freedom.
Without loss of generality, when estimating the parameters of a homography, it
is then convenient for the uniqueness of the representation to use a normalized
representation of H such that h9 = 1.

In image registration tasks, p and p′ represent pixels in two different images
and are therefore more naturally described by their respective Euclidean coordi-
nates (x, y)
 and (x′, y′)
. Using the corresponding homogeneous representation
(x, y, 1)
 and (x′, y′, 1)
 of these Euclidean coordinates, the projective transfor-
mation expressed in (2) becomes:⎛⎝x′

y′

1

⎞⎠ =

⎛⎝h1 h2 h3
h4 h5 h6
h7 h8 1

⎞⎠ ·
⎛⎝x

y
1

⎞⎠ , (4)

where H is in a normalized form. Given that in homogeneous coordinates
p = (x, y, 1)
 = (x1/x3, x2/x3, 1)
 and p′ = (x′, y′, 1)
 = (x′

1/x′
3, x

′
2/x′

3, 1)
,
we have x = x1/x3, y = x2/x3, x′ = x′

1/x′
3 and y′ = x′

2/x′
3, which using values

defined in (3), leads to:

x′ =
h1 · x + h2 · y + h3

h7 · x + h8 · y + 1
(5)

and

y′ =
h4 · x + h5 · y + h6

h7 · x + h8 · y + 1
. (6)

Hence one couple of points leads to two equations. With eight degrees of freedom,
at least four couples of points leading to eight equations are then necessary
to estimate all homography parameters. Methods of detecting and associating
points from two different images are beyond the scope of this paper, but it is
well-known that point correspondences are rarely perfectly reliable until they
are sorted out by means of the RANSAC algorithm. RANSAC is particularly
useful when the number of bad point correspondences, called outliers, is large
with regard to the number of good point correspondences, called inliers.
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Algorithm 1. RANSAC algorithm for homography estimation
number_of_iterations := 0;
inliers := {};
H := {};

repeat
random_sample := four randomly-selected correspondences;

if (is_not_degenerated(random_sample))
begin

current_H := homography_processed_from(random_sample);
current_inliers := putative correspondences matching H;
if (number_of(current_inliers) > number_of(inliers))
begin
inliers := current_inliers;
H := current_H;

end
end
number_of_iterations := number_of_iterations + 1;

until (number_of_iterations > max_number_of_iterations)

return (inliers,H);

2.2 RANSAC in Homography Estimation

The Random Sample Consensus algorithm, or RANSAC, is an iterative method
of estimating the parameters of a mathematical model from sample data con-
taining both inliers and outliers, with the ability to simultaneously sort out the
inliers from the outliers according to the estimated model [1]. This algorithm,
described in Algorithm 1, is commonly used for homography estimation in im-
age registration tasks. For this purpose, it starts with a putative set of point
correspondences from two different images. Samples of four point correspon-
dences are then iteratively evaluated by first processing a homography using
the four correspondences and then by checking the consistency of all the pu-
tative correspondences with respect to this homography. The consistency of a
correspondence with a given homography can be evaluated using different error
measurement methods [3] such as, for example, the symmetric transfer function:

ε = d
(
p, H−1 · p′)2 + d (p′, H · p)2 . (7)

The process ends after a number of iterations which is interactively re-evaluated
with respect to the largest current number of inliers [3]. The literature recom-
mends that degenerated samples containing three collinear points should not
be evaluated, as it leads to under-determined systems of equations [2,3]. An-
other current advice is to prefer samples with a good spatial distribution over
the images. If the first advice definitely makes sense, the second one is more
difficult to follow in the case of images with very little overlapping where the
inliers are concentrated in regions much smaller than the size of images. Even
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a) Two sets of correspondences
sorted out using RANSAC

(plain lines: best random sample,

dashed lines: other correspondences)

b) Correct registration
obtained from the orange

set of correspondences

c) Wrong registration
obtained from the yellow
set of correspondences

Fig. 1. Two different results of RANSAC in a difficult image registration task

when RANSAC — yet known to be very robust — is used, dealing with images
with little overlapping leads to difficulties in some image registration tasks. The
kind of issues encountered is illustrated in figure 1 where the image registration
was done following an approach similar to the one in [4,5]. In this example, the
overlap is of about thirty per cent, which is usually enough for a fairly good
registration. In this case, however, the situation is more difficult, as many point
correspondences are detected in the sea area which is different in both images.
This introduces a lot of outliers and reduces the number of possible inliers in
the overlapping region, so that the total amount of inliers is finally estimated at
eight only. In the best case, it is possible to get the result of figure 1‌b‌). How-
ever, depending on the random sample selection, the result of figure 1‌c‌) was
also obtained. This less glorious result suggests that some kinds of degenerated
samples led to an absurd homography for which eight bad point correspondences
were unfortunately consistent. Anyway, in this case the wrong solutions compete
with the good one and the result is somewhat uncertain, which justifies a further
investigation.

3 A Rigidity Constraint for Improving RANSAC

3.1 Analysis of the Invalid Homographies Obtained with RANSAC

When analyzing the cases where RANSAC fails to give a good result, it appears
that most often, the resulting homographies do not reflect a rigid-body trans-
formation. Figure 2 illustrates quite well the kind of homographies which can
occur in difficult situations where the number of outliers is high with respect to
the number of inliers. The homographies of figure 2 were obtained by artificially
imposing a geometrical rectification on the original image of figure 2‌a‌) in a way
which has nothing in common with a rigid-body transformation. In these exam-
ples, the top-left, top-right, bottom-left and bottom-right corners were shifted
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a) original image (1600 × 1200 pixels) b) projective transformation using

H =

⎛⎝−1.048 0.000 523.8
−0.857 0.571 257.1
−0.001 0.000 1

⎞⎠

c) projective transformation using

H =

⎛⎝−0.794 0.000 397.0
0.000 −0.476 142.9
−0.001 −0.001 1

⎞⎠
d) projective transformation using

H =

⎛⎝ 2.072 −0.414 −911.9
−0.933 −1.306 1604

0.001 −0.002 1

⎞⎠
Fig. 2. A set of homographies which does not reflect a rigid-body transformation

toward the center of the image in different ways. The linear displacements are
represented by yellow lines in figure 2. Considering the initial rectangular shape
formed by the corners of the original image and those resulting from the shifted
corners, it is clear that the geometrical transformations imposed here cannot be
obtained by any rigid-body transformation. In figure 2‌b‌) the order of the corners
is changed by inverting the top-right and bottom-right corners, thus leading to
a kind of bow-tie shape. In figure 2‌c‌) and 2‌d‌), the convexity of the initial shape
is modified and in figure 2‌d‌) the order of the top-left and bottom-left corners
is also inverted. However, even if it does not reflect a rigid-body transforma-
tion, a homography exists for any set of four correspondences. The beginnings
of an explanation for this matter lie in the fact that the projective plane P2 is
not the Euclidean plane of images and has a very different topology [3]. Even
if we start to work with Euclidean coordinates, the projective transformations
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Fig. 3. All possible rotation-invariant oriented closed paths passing through four points

are evaluated using homogeneous coordinates in the projective plane P2 and the
solution is then projected back into the Euclidean plane of an image. But as the
projective plane P2 is two-sheeted and not simply connected, the result can be
very surprising once projected into the simply-connected Euclidean plane.

Given that a homography exists for any four-correspondences set, it is im-
possible for RANSAC to reject degenerated homographies when the number of
correspondences consistent with them equals or is greater than the number of
inliers. A solution could come out from the ability to decide, from each sample
of correspondences to be evaluated by RANSAC, whether a particular sample
can possibly lead to a rigid-body transformation or not.

3.2 Toward a Rigidity Constraint for Improving RANSAC

In the previous analysis of some invalid homographies, it was shown that when
considering the shapes formed by the four point correspondences, before and
after the projective transformation, modifying the relative order of the corners
of a shape or changing its convexity leads to a non-rigid-body transformation.
In other words, for a homography to correspond to a rigid-body transformation,
regardless of any rotation or relative distance variation between the corners, a
fully convex shape has to be related to a fully convex shape and a shape with one
concavity has to be related to another shape with one concavity. Additionally,
in the case of shapes with one concavity, the point correspondences have to be
correctly ordered for the concavities to be related by the same correspondence.
In a first approach, the basic idea of checking for a rigid-body transformation
from a randomly chosen set of four-correspondences, could be to order the point
correspondences and link them together to form either a fully concave shape or
a shape with one concavity, given that with four points, it can only be one or
the other. Then, it has to be verified whether the shape correspondence pre-
serves the convexity, and in the case of a concavity in the shapes, whether the
concavity is related by the same correspondence. But this approach would be by
far too complex. A better solution consists of keeping the initial random order
of the point correspondences and of finding a criterion which makes it possi-
ble to confirm whether the shape transformation is consistent with a rigid-body
transformation or not. In order to do so, it is possible to consider, for both the
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a) cross product when “turning left” a) cross product when “turning right”

Fig. 4. Sign of the cross product as a function of the kind of “turn” in an oriented path

fully convex shapes and the shapes with one concavity, any possible closed path
linking their four points and oriented in such a way as to reflect the order of
the points. There are exactly fourteen possibilities represented in figure 3. Let
us now consider the different direction turns necessary to follow the paths and
code each path in a sequence of “1” and “−1” corresponding to “turn left” and
“turn right”, respectively. It is obvious, from the four-digit chain codes reported
in figure 3, that the codes formed in this way are unique and that each of them
represents a different path. In the context of image registration, it means that
if the chain code formed from the four points of a first image is the same as
the one obtained from the corresponding points in a second image, the shapes
they constitute are the same in both images and the point correspondences are
ordered in the same way. Hence, this condition is sufficient and necessary for the
homography estimation based on these four point correspondences to produce a
rigid-body transformation.

3.3 Mathematical Expression of the Rigidity Constraint

The expression of the chain code introduced in the previous section does not
necessitate processing the value of the angle formed by the three consecutive
points of an oriented path. Indeed, as it is only important to identify the direction
of the turns, let us simply consider the cross product Vn × Vn+1 of the vectors
Vn and Vn+1 which are respectively defined from point n to point n+1 and from
point n+1 to point n+2. Figure 4 highlights that the direction turns are simply
given by the direction, i.e. the sign, of the cross product Vn ×Vn+1. The rigidity
constraint can then be expressed as:

sign (Vn × Vn+1) = sign
(
V ′

n × V ′
n+1

) ∀n = 1..4, with V5 = V1 and V ′
5 = V ′

1 ,
(8)

where vectors Vn and Vn+1 are formed from points of a first image, while V ′
n and

V ′
n+1 are formed from their correspondents in a second image. Given (xn, yn, 0)
,

the Euclidean coordinates of a pixel pn, a vector Vn can be written:

Vn = (Vxn , Vyn , 0)
 = (xn+1 − xn, yn+1 − yn, 0)
 . (9)
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Then the definition of the cross product Vn × Vn+1 can also be expressed as the
determinant of the following matrix, where

−→
i ,

−→
j ,

−→
k are the unit vectors of the

standard basis:

Vn × Vn+1 = det

⎛⎝ −→
i

−→
j

−→
k

Vxn Vyn 0
Vxn+1 Vyn+1 0

⎞⎠ , (10)

which gives:
Vn × Vn+1 =

(
Vxn · Vyn+1 − Vyn · Vxn+1

) · −→k . (11)

Based on this formulation, the final expression of the rigidity constraint (8) can
be written as:

sign
(
Vxn · Vyn+1 − Vyn · Vxn+1

)
= sign

(
V ′

xn
· V ′

yn+1
− V ′

yn
· V ′

xn+1

)
∀n = 1..4,

with V5 = V1 and V ′
5 = V ′

1 .
(12)

This rigidity constraint has to be added to the is_not_degenerated() test
function of Algorithm 1. It must be noticed that the collinearity test commonly
suggested can also be performed by evaluating the cross product Vn × Vn+1 . If
it equals zero, the three consecutive points are collinear and if it is very small,
they are quasi-collinear. Thus, the rigidity constraint we are proposing does not
requier any additional processing cost.

Even if the rigidity constraint proposed here has been investigated following
our own approach for the purpose of homography estimation, it can be related
to an extension of the geometrical constraint proposed in [6] for affine homo-
graphies. Those simplified homographies have only six degrees of freedom and
are obtained from only three point correspondences [3]. Our approach should
hopefully strengthen the assumption made in [6] concerning an extension of the
geometrical constraint for affine homographies to the case of projective transfor-
mations.

Additionally, when the chain codes identified in the first row are compared
to those immediately below them in the second row of figure 3, it clearly ap-
pears that they represent a mirrored version of the same oriented path and that
they only differ by their signs. This makes it quite trivial to loosen the rigidity
constraint in order to allow the registration of images even if a number of them
are mirrored images. This can be useful in cases where it is necessary to register
images from film negatives or slides, the correct side of which is unknown. The
rigidity constraint has then to be adapted; it simply consists of changing the
sign of the elements of one of the chain codes to be compared, if and only if, the
first elements tested in the two chain codes differ.

4 Evaluation Tests

In the context of image registration, it is clear that if point correspondences are
perfectly chosen and therefore are all inliers, the resulting homography will be
a rigid-body transformation. Besides, if all the point correspondences are inliers
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Fig. 5. Proportion of four-correspondence sets evaluated by RANSAC leading to either
a rigid-body or a non-rigid-body transformation with respect to the proportion of
outliers

leading to a rigid-body transformation, so is any subset of four correspondences.
Hence, non rigid-body transformations only occur in homography estimation
from four correspondences, when outliers are introduced. In order to evaluate
the proportion of rigid-body and non-rigid-body transformations obtained when
estimating a homography from randomly chosen four-correspondences sets, a set
of 256 inliers regularly distributed over an image was defined. Then the propor-
tion of inliers and outliers was progressively modified by successively exchanging
the corresponding points of two inliers, which increases the number of outliers
by two and decreases the number of inliers by two, respectively. At each step,
107 randomly chosen four-correspondences sets were evaluated for rigidity and
the results are illustrated in figure 5. It shows that with only 22% of outliers,
half the homographies obtained from four correspondences are non-rigid-body
transformations. It means that when RANSAC has to deal with 22% outliers
or more, it spends more than half its processing time considering solutions that
have no chance of success.

The computing cost for processing the rigidity constraint is nearly negligible
compared to the one needed for estimating a homography and checking all the
putative correspondences for consistency with this homography. Thus, when us-
ing the rigidity constraint, the overall RANSAC processing time is only devoted
to rigid-body transformations. It is then possible to express the speed-up factor s
obtained thanks to the rigidity constraint in the following way:

t·(total number of iterations)·1
s

= t·(number of rigid-body transformations) ,

(13)
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Fig. 6. RANSAC speed-up factor expected from the rigidity constraint

where t is the processing time needed for one iteration throughout the full ho-
mography evaluation process from four correspondences. This finally leads to:

s =
(total number of iterations)

(number of rigid-body transformations)
. (14)

Based on the previous experimental results, this speed-up factor is represented in
figure 6 with respect to the proportion of outliers. It shows that when the rigidity
constraint is used, RANSAC is already twice as fast with only 22% of outliers.
At 50% of outliers it is almost five times faster, and it still rises, becoming more
than ten times faster with 80% of outliers. This shows that in any situation, the
rigidity constraint not only prevents non rigid homographies, but also improves
the overall performances of RANSAC.

5 Conclusion

In order to improve the results of the RANSAC algorithm in cases where the
proportion of outliers is very large, an analysis of the invalid homographies ob-
tained in such situations was performed in this paper. It led us to clarify the fact
that a homography cannot be reduced to a rigid-body transformation and that
the RANSAC algorithm is not always able to reject non rigid-body transforma-
tions. From these observations, a lightweight rigidity constraint has then been
proposed, which makes it possible to prevent non-rigid-body transformations at
a nearly negligible computing cost compared to the one needed for estimating a
homography and checking all the putative correspondences for consistency with
it. The evaluation tests have shown that a speed-up factor of more than ten
can be expected in the presence of a large proportion of outliers. While the
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discussion seems to be quite open concerning many evolutions of the original
RANSAC algorithm [7], the impact of the presented rigidity constraint is objec-
tively undeniable and profitable for any mapping algorithm and any RANSAC
derivative.

Given that our first motivation was initially to prevent non rigid-body trans-
formations when estimating homographies, the substantial speed-up factor
achieved thanks to the proposed rigidity constraint is an unexpected, but very
positive result.
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Abstract. Detection of objects through scanning windows is widely

used and accepted method. The detectors traditionally do not make use

of information that is shared between neighboring image positions al-

though this fact means that the traditional solutions are not optimal.

Addressing this, we propose an efficient and computationally inexpen-

sive approach how to exploit the shared information and thus increase

speed of detection. The main idea is to predict responses of the classi-

fier in neighbor windows close to the ones already evaluated and skip

such positions where the prediction is confident enough. In order to pre-

dict the responses, the proposed algorithm builds a new classifier which

reuses the set of image features already exploited. The results show that

the proposed approach can reduce scanning time up to four times with

only minor increase of error rate. On the presented examples it is shown

that, it is possible to reach less than one feature computed on average

per single image position. The paper presents the algorithm itself and

also results of experiments on several data sets with different types of

image features.

1 Introduction

Scanning window technique is commonly used in object detection in images. In
combination with highly selective and fast classifiers, it provides state-of-the-
art success rates under real-time constraints for various classes of target objects
[14,6,3]. Although, in reality, much information is shared between neighboring
(overlapping) image positions, they are normally classified independently. Mak-
ing use of this shared information has a potential to reduce amount of compu-
tations during scanning.

In this paper, we propose an effective and at the same time simple and compu-
tationally inexpensive method which uses the dependency between neighboring
image position to suppress computing the original detection classifier at nearby
locations. The proposed method learns a new classifiers which predict the re-
sponses of the original detection classifier at neighboring positions. When the
prediction is confident enough, computing the original classifier is suppressed.

We propose to use WaldBoost algorithm [11] to learn the suppressing classi-
fiers in such way that they reuse computations of the original detection classifier.
These reused computations can be image features in case of Viola & Jones’ [14]
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like detectors or possibly also other temporal computation results. This reusing
of computations is crucial and, in fact, is the only reason why faster detection
can be achieved.

The task of learning the suppression classifiers is similar to emulating existing
detectors by WaldBoost [12,13]. Formulating the neighborhood suppression task
as detector emulation allows usage of unlabeled data for training and it does
not require any modifications in learning of the detection classifier. Moreover,
previously created detectors can used without any modifications.

Although the classifiers proposed for scanning window detection vary highly,
they also share many similarities which result from common requirements and
similar properties of the target objects. The main requirements are high selectiv-
ity (low false alarm rate) and, in case of real-time processing, very low average
classification time per position.

The classifiers generally rely on efficient image features to extract relevant
information from the image. In literature, Haar-like features [14], Multi-block
Local Binary Patterns [15], Local Rank Patterns [5], Histograms of Oriented
Gradient (HOG) [3,4] and others have been shown to perform well in detection
tasks.

Another common attribute of the detection classifiers is some form of focus-
of-attention structure. The exact form of the attentional structure ranges from
simple ad-hoc solutions [7] through more sophisticated [14,1] to theoretically
sound approaches which minimize decision time for given target error rate on
training data [11,2]. These attentional structures greatly reduce average classi-
fication time by rejecting most of the non-object positions early in the decision
process. In attentional structures, the classifier is generally formed from several
stages. After each of the stages a decision is made if it is already known with
high enough confidence that the position does not contain the target object or
further information has to be still extracted.

The previous approaches, which exploit the information shared by neighboring
image positions in context of scanning window object detection, focus solely on
sharing image features between classifiers computed at nearby locations. Schnei-
derman [10] advocates feature-centric computation of features as opposed to
the commonly used window-centric evaluation. He proposes to compute sim-
ple discrete-valued features on a dense grid covering the whole image. These
dense features are then used as input to efficiently implemented linear classifier.
However, the feature-centric approach is suitable only early in the attentional
classifiers. Schneiderman uses attentional cascade [14] where only the first stage
is feature-centric and the rest is window-centric. The benefit of this approach
vanishes when very fast classifiers are available (some detectors may need less
than 2 features per position on average as shown in Section 3).

Dalal and Triggs [3] also use feature-centric computation of features. They use
dense Histograms of Oriented Gradients image representation and a linear classi-
fier trained by Support Vector Machine. This approach provides good detection
rates for pedestrian detection; however, it is too computationally expensive to
be used in real-time applications.
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Except for the feature-centric evaluation, other ways to exploit the shared in-
formation are possible. Image features could be selected in such way that they are
reused as much as possible when scanning the image. This approach, however,
requires more complex learning methods. Alternatively, response of classifier at
one position could be used as starting point (or as a feature) at neighboring
location. Such access to previous results should provide good initial guess as
the responses of classifiers at neighboring positions are highly correlated. How-
ever, this approach would also increase complexity of the learning system and
would most likely require iterative retraining of the classifier which would signif-
icantly prolong the learning. On the the hand, the proposed approach of learning
suppression classifiers can be used with existing detectors and the suppression
classifiers are learned much faster than the original detector.

The suppression of some positions could be especially beneficial for some types
of detectors and on certain computational platforms. If features that need nor-
malization are used (e.g. Haar-like features and other linear features), suppress-
ing some positions removes the need of possibly expensive computation of the
local normalization coefficient. Also, on some platforms, the suppression could
lead to faster execution as possibly deep computational pipeline does not have
to be started for some positions.

The proposed neighborhood suppression method is presented in detail in Sec-
tion 2 together with an algorithm able to learn the suppression classifiers. Re-
sults achieved by this approach are shown and discussed in Section 3. Finally,
the paper is summarized and conclusions are drawn in Section 4.

2 Learning Neighborhood Suppression

As discussed before, we propose to learn classifiers suppressing evaluation of de-
tection classifiers in the neighborhood of the currently examined image window.
Such approach can improve detection speed only if the suppressing classifiers re-
quire very low overhead. This can be achieved by reusing computations already
performed by the detection classifier itself. Most naturally, these reused com-
putations can be responses of image features which are part of most real-time
detectors [14,10,11,1,2,4,6,15,13]. In our work, the focus is only on these real-
time detectors as they are the hardest to further speed up and speed of slower
detectors can be improved by already known techniques [12,13].

The amount of information carried by the reused features, which is relevant
to the decision task at neighboring location, will surely vary with different types
of features and objects. It will also decrease with the distance of the two areas
as the mutual overlap decreases.

In the further text, it is assumed that the detector for which the neighborhood
suppressing classifier needs to be learned is a soft cascade [1]. This does not limit
the proposed approach as extending it to detectors with different attentional
structures is straightforward and trivial.

The soft cascade is a sequential decision strategy based on a majority vote of
simple functions ht : χ → R which are called weak hypotheses in the context of
boosting methods [8]:
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HT (x) =
T∑

t=1

(ht(x)) . (1)

The weak hypotheses often internally operate with discrete values corresponding
to partitions of the object space χ. Such weak hypotheses are called by Schapire
and Singer [9] space partitioning weak hypotheses. Moreover, the weak hypothe-
ses usually make their decision based only on a single image feature which is
either discrete (e.g. LBP) or is quantized (e.g. Haar-like features and a thresh-
old function). In the further text, such functions f : χ → N are reffered to in
general simply as features and the weak hypotheses are combinations of such
features and a look-up table functions l : N → R

ht(x) = lt(ft(x)). (2)

In the further text, c
(j)
t specifies the real value assigned by lt to output j of ft.

The decision strategy S of a soft cascade is a sequence of decision functions
S = S1, S2, . . . , ST , where St : R → �,−1. The decision functions St are evaluated
sequentially and the strategy is terminated with negative result when any of
the decision functions outputs −1. If none of the decision functions rejects the
classified sample, the result of the strategy is positive.

Each of the decision functions St bases its decision on the tentative sum of
the weak hypotheses Ht, t < T which is compared to a threshold θt:

St(x) =
{

�, if Ht(x) > θt

−1, if Ht(x) ≤ θt
. (3)

In this context, the task of learning a suppression classifier can be formalized
as learning a new soft cascade with a decision strategy S′ and hypotheses h′

t =
l′t(ft(x)), where the features ft of the original classifier are reused and only the
look-up table functions l′t are learned.

2.1 Learning Suppression with WaldBoost

Soft cascades can be learned by several different algorithms [1,2]. We chose the
WaldBoost algorithm [11,13] by Šochman and Matas which is relatively simple
to implement, it guarantees that the created classifiers are optimal on the train-
ing data, and the produced classifiers are very fast in practice. The WaldBoost
algorithm described in the following text is a slightly simplified version of the
original algorithm. The presented version is specific for learning of soft cascades.

Given a weak learner algorithm, training data {(x1, y1) . . . , (xm, ym)}, x ∈
χ, y ∈ {−1, +1} and a target miss rate α, the WaldBoost algorithm solves a
problem of finding such decision strategy that its miss rate αS is lower than α
and the average evaluation time T̄S = E(arg mini(Si �= �)) is minimal:

S∗ = arg min
S

T̄S , s.t. αS < α.
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To create such optimal strategy, WaldBoost combines AdaBoost [9] and Wald’s
sequential probability ratio test. AdaBoost iteratively selects the most informa-
tive weak hypotheses ht. The threshold θt is then selected in each iteration such
that as many negative training samples are rejected as possible while asserting
that the likelihood ratio estimated on training data

R̂t =
p(Ht(x)|y = −1)
p(Ht(x)|y = +1)

(4)

satisfies R̂t ≥ 1
α .

To learn the suppression classifiers we follow the classifier emulation approach
from [13] which considers an existing detector a black box producing labels
for new WaldBoost learning problem. However, when learning the suppression
classifiers, the algorithm differs in three distinct aspects.

The first change is that when learning new weak hypothesis h′
t, only the look-

up table function l′t is learned, while the feature ft is reused from the original
detector. The selection of optimal weak hypothesis is generally the most time
consuming step in WaldBoost and restricting the set of features thus makes
learning the suppression classifier very fast.

The second difference is that the new data labels are obtained by evaluating
the original detector on different image position than where the newly created
classifier gets information from (the position containing the original features lt).
This corresponds to the fact that we want to predict response of the detector in
neighborhood of the evaluated position.

The final difference is that the set of training samples is pruned twice in each
iteration of the learning algorithm. As expected, samples rejected by the new
suppression classifier must be removed from the training set. In addition, samples
rejected by the original classifier must be removed as well. This corresponds to
the behavior during scanning when only those features which are needed by the
detector to make decision are computed. Consequently, the suppression classifiers
can also use only these computed features to make their own decision. The whole
algorithm for learning suppression classifier is summarized in Algorithm 1.

The neighborhood position is suppressed only when the suppression soft cas-
cade ends with −1 decision. This way, the largest possible miss rate introduced
by the suppression mechanism equals to α. The previous statement also holds
when the detector is accompanied with multiple suppression classifiers which
allows even higher sped-up still with controlled error.

Also, multiple neighboring position can be suppressed by a single classifier.
Such behavior requires only slight change in Algorithm 1, where the training
labels now become positive when the original detector gives positive result at
any of the positions which should be suppressed.

2.2 Suppression in Real-Time Scanning Windows

The suppression with classifiers which reuse discrete-valued features is especially
well suited for wide processor and memory architectures. On those architectures,
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Algorithm 1. WaldBoost for learning suppression classifiers
Input: original soft cascade HT (x) =

∑T
t=1 ht(x), its early termination thresholds

θ′(t) and its features ft; desired miss rate α; training set {(x1, y1) . . . , (xm, ym)}, x ∈
χ, y ∈ {−1, +1}, where the labels yi are obtained by evaluating the original detector

HT at an image position with particular displacement with respect to the position of

corresponding xi

Output: look-up table functions l′t and early termination thresholds θ′(t) of the new

suppression classifier

Initialize sample weight distribution D1(i) = 1
m

for t = 1, . . . , T

1. estimate new l′t such that its

c
(j)
t = −1

2
ln

(
Pri∼D(ft(xi) = j|yi = +1)

Pri∼D(ft(xi) = j|yi = −1)

)
2. add l′t to the suppression classifier

H ′
t(x) =

t∑
r=1

l′r(fr(x))

3. find optimal threshold θ′(t)

4. remove from the training set samples for which Ht(x) ≤ θ(t)

5. remove from the training set samples for which H ′
t(x) ≤ θ′(t)

6. update the sample weight distribution

Dt+1(i) ∝ exp(−yiH
′
t(xi))

multiple look-up tables lt for a single feature ft can be combined into single wide-
word table such that single word contains c

(j)
t values for all the classifiers. In such

case, the required c
(j)
t values can be loaded with single memory access, added

to an accumulator register using single instruction and also efficiently compared
with the rejection thresholds.

Obviously, such scheme is very well suitable for SIMD architectures, such as
MMX/SSE instruction set extensions found in the contemporary PC processors.
In such architectures, the wide registers can hold 4 32-bit numbers or 8 16-bit
integer numbers. Consequently, the implementation of such scheme can be seen
as nearly free of charge from the computational point of view.

The scheme is also applicable for programmable hardware or other hardware
architectures. In such case, the scheme is beneficial in that addition of the extra
prediction classifiers consumes only very little resources due to nearly unchanged
structure and control subsystems.

On systems with wide enough data words but no SIMD support, the imple-
mentation can be similar to SIMD, except is must be assured that the multi-
accumulator is not overflown (as piecewise addition is not possible in this case).
While this assumption seems to be severe and binding, the reality is such that
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Fig. 1. Scanning an image in ordinary line-by-line fashion while using neighborhood

suppression

Table 1. The benefit of neighborhood suppression for different features and datasets.

ROCA is the percentage difference between area under ROC without and with area

suppression. Time represents average number of features computed per position rel-

ative to the original detector without neighborhood suppression. ”single” stands for

suppressing single position. ”12” stands for suppressing 12 positions with 12 suppres-

sion classifiers. Target error of the suppression classifiers was 5 %.

Haar LBP LRD LRP

dataset value single 12 single 12 single 12 single 12

BioID
ROCA (%) -0.02 0.07 -0.48 -3.44 -0.16 -1.08 -0.24 -2.04

Time 0.96 0.68 0.78 0.33 0.92 0.54 0.82 0.37

PAL
ROCA (%) -0.00 -0.39 -0.08 -0.21 -0.09 -0.85 -0.05 -0.44

Time 0.96 0.71 0.77 0.31 0.91 0.51 0.82 0.36

CMU
ROCA (%) -0.03 -0.36 -0.27 -1.92 -0.02 -0.49 -0.08 0.01

Time 0.93 0.62 0.74 0.31 0.93 0.62 0.87 0.47

MS
ROCA (%) -0.04 -0.54 -0.21 -1.02 -0.02 -0.27 -0.06 -0.65

Time 0.93 0.60 0.73 0.29 0.93 0.60 0.87 0.45

it is easy to fulfill as the maximum possible value of each portion of the register
can be calculated and predicted.

The suppression itself can be handled by binary mask covering positions to
be scanned. The positions marked as suppressed are then excluded from further
processing. The scanning order can remain the same as in ordinary scanning
window approach, even though it restricts the positions which can be suppressed
to those which are to the left and bottom of the currently classified position (see
Figure 1). Possibly, more efficient scanning strategies can be developed, but such
strategies are beyond the scope of this paper.

3 Experiments and Results

We tested the neighborhood suppression approach presented in the previous text
on frontal face detection and eye detection. In both task, two separate test sets
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Fig. 2. The ROC curves on MIT+CMU dataset without suppression (full line) and

with 12 suppression classifiers (dashed line). Target miss rate α of the suppression
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pression classifiers is 5 %.

were used - one with less constrained poses and lower quality images and one
with easier poses and good quality images. For face detection, the harder dataset
was standard MIT+CMU frontal face detection set (CMU) and the easier was
a collection of 89 images of groups of people downloaded from the Internet. The
easy set is denoted as MS and contains 1618 faces and 142M scanned positions.
The eye detection classifiers were trained on XM2VTS1 database and tested
on BioID2 database (104M positions, 3078 eyes) and on a easier dataset PAL3

(111M positions, 2130 eyes) which is similar to XM2VTS. When scanning, shift
of the window was two pixels at the base detector resolution and scale factor
was 1.2. The suppression classifiers were trained on a large set of unannotated
images containing faces.

1 http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
2 http://www.bioid.com/downloads/facedb/index.php
3 https://pal.utdallas.edu/facedb/
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The tests were performed with four types of image features which have been
shown to perform well in real-time object detection. The features used were
Haar-like features [14] (Haar), Multi-Block Local Binary Patterns [15] (LBP),
Local Rank Differences [5] and Local Rank Patterns [5] (LRP). The real-valued
responses of Haar-like features were normalized by standard deviation of local
intensity and then quantized into 10 bins. The detection classifiers were learned
by WaldBoost [11] algorithm and each contained 1000 weak hypotheses. The
base resolution of the classifiers was 24 pixels wide.

In the first experiment, we focused on what is the the achievable speed-up
using the neighborhood suppression of single and also twelve positions for mod-
erately fast detection classifiers (4.5 - 6 features per position) and moderate
target miss rate (α = 0.05) and also on what is the influence of neighborhood
suppression on precision of the detection. These results are shown in Table 1
and Figure 2. The results indicate large differences between individual image
features. While the average number of weak hypotheses computed per position
was reduced with twelve suppressed positions down to 30 % for LBP and 40 %
for LRP , only 55 % was achieved for LRD and 65 % for Haar-like features. This
can be explained by generally higher descriptive power of LBP and LRP. In gen-
eral, the detection rate degraded only slightly with neighborhood suppression -
by less than 1 % except for all twelve positions and LBP on datasets CMU and
BioID and also LRP on BioID.

We have also evaluated the suppression ability with respect to distance form
the classified position. Figure 3 shows that suppression ability decreases rela-
tively slowly with distance and large neighborhood of radius at least 10 pixels
can be used for the tested LBP and LRP classifiers.

As mentioned before, single suppression classifier can suppress larger area than
just single position. Relation between speed-up and the size area of suppressed
by a single classifier is shown in Figure 4. The results show that by suppressing
larger area it is possible to reach higher speeds. However, the benefit is lower for
frontal face detection and multiple suppression classifiers would always achieve
higher speed-up.
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eye detection PAL dataset and right are results on frontal face detection MS dataset.
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For the neighborhood suppression to be useful, it must provide higher speed
than simple detector for the same precision of detection. To validate this, we have
trained number of detectors with different speeds (in terms of average number
of features computed per position) for each feature type. Then, we learned three
suppression classifiers with α set to 0.01, 0.05 and 0.2 for each of the detec-
tors. The corresponding speeds and detection rates are shown in Figure 5. Even
thought, only a single suppression classifier is used in this case for each of the de-
tectors, the results clearly show that by using neighborhood suppression, higher
speed can be reached for the same detection rate.

4 Conclusions

This paper presents a novel approach to acceleration of object detection through
scanning windows by prediction of the neighbor positions results using new clas-
sifiers that reuse the image features of the detector. The approach has been
demonstrated on frontal face and eye detection using WaldBoost classifiers. The
results clearly show that the proposed approach is feasible and that it can sig-
nificantly speed up the detection process without loss of detection performance.

Further work includes evaluation of the approach on further data sets, other
features, and possibly also different classification mechanisms, such as SVM.
Further work will also focus on real-time implementation of the proposed method
on CPU, GPU, and programmable hardware (FPGA). Also of interest will be
possible improved image scanning patterns that can benefit even more from the
neighborhood suppression.
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Abstract. The present paper focuses on smoothing techniques for Sea

Surface Temperature (SST) satellite images. Due to the non-uniformity

of the noise in the image as well as their relatively low spatial resolution,

automatic analysis on SST images usually gives poor results. This paper

presents a new framework to smooth and enhance the information con-

tained in the images. The gray levels in the image are filtered using a

mesh smoothing technique called SOWA while a new technique for res-

olution enhancement, named grid smoothing, is introduced and applied

to the SST images. Both techniques (SOWA and grid smoothing) repre-

sent an image using an oriented graph. In this framework, a quadratic

criterion is defined according to the gray levels (SOWA) and the spatial

coordinates of each pixel (grid smoothing) and minimised using non-

linear programming. The two-steps enhancement method is tested on

real SST images originated from Meteosat first generation satellite.

Keywords: Grid smoothing, Graph-Based approach, Non-linear opti-

misation, SST, Remote sensing.

1 Introduction

The temperature of the ocean surface reflects important underlying oceano-
graphic processes related to marine organisms and ecosystem dynamics. Areas
of special interest due to their strong biological activity, thermal fronts are nar-
row regions of separation between two large areas of homogeneous temperature
on the ocean surface. The water circulation associated with thermal fronts is
responsible for the transportation system of the ocean. Oceanographers study
these physical structures and create indices that interface the physical processes
to the biological processes from which they can study the marine ecosystem and
the marine fish population [1]. The behaviour of ocean mesoscale structures are
usually modelled by a two layers ocean model, which ensures the continuity of
the spatial derivatives of the temperature in at least one spatial direction [2].
The properties of the structures are not always depicted in the SST images due
to the noise and the low spatial resolution of the image. Sea surface temperature
(SST) images retrieved from satellites contain noise introduced by different at-
mospheric sources that complicates automatic detection. Clouds absorb infrared
emission and limit the information that is available on each SST image [3]. The
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strength of the wind is also affecting the measurement of the SST by the satellite
sensor. These reasons lead to a non-uniform repartition of the noise properties in
the image. The spatial resolution of the SST images are typically 4km by 4km.
Knowing that the difference in temperature may peak up in certain region of
the world to 2 degrees per km, the shape of the structures are not conserved
in the image. Various methods have been used to filter the SST images includ-
ing low-pass filter [4], contextual filter [1], adaptive filtering [5] and others [6].
Some of the methods try to address the non-uniformity of the noise while the
other are focusing on the shape of the structures. This paper presents a common
framework to tackle both issues at the same time using a common formulation
of the problem and mathematical tools to solve it. Previous work on the grid
smoothing or interpolation can be found in [7] where the image is modelled as
a non-resistive of resistive power grid, in [8] where strong constraints on the
shape of the object are assumed, and in [9], where hierarchical grid construction
is introduced. Previous interesting work on interpolation of large dataset using
optimisation techniques may be found in [10] and [11] where a weighting factor
between the model and the data terms is introduced. The framework presented
in the present paper is twofold. In the first step, the SOWA algorithm introduced
in [12] is applied to the image to remove the noise. The SOWA algorithm uses
the mesh representation of an image and a quadratic cost function is defined
with the gray levels present in the image. The minimisation of the cost function
leads to a new set of gray levels preserving the shape of the objects in the image
while reducing the level of noise. The second step, called grid smoothing, tackles
the issue of the low resolution of the SST images. Using the mesh representation
of the image and non-linear programming, the initial uniform grid on which the
image is sampled is modified to fit the content. The result of the grid smooth-
ing is a non-uniform grid exposing more points in the region of large variance.
Section 2 introduces the mesh representation of the image used in the present
paper. Section 3 reviews the optimisation-based approach to mesh smoothing
(SOWA) while Section 4 introduces the grid smoothing framework. The results
are presented and discussed in Section 5. Section 6 summarizes the contribution
of the present paper and discusses recommendations and the future works.

2 Graph-Based Image Representation

2.1 First Order Node-Edge Matrix

Our input data is a graph G = (V, E), embedded in the 3D Euclidian space.
Each edge e in E is an ordered pair (s, r) of vertices, where s (resp. r) is the
sending (resp. receiving) end vertex of e. To each vertex v is associated a triplet
of real coordinates xv, yv, zv [12]. Let C be the node-edge incidence matrix of
the graph G, defined as:

C =

⎧⎨⎩1 if v is the sending end of edge
−1 if v is the receiving end of edge e
0 otherwise

(1)
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If A = CtC, as Ct is not full ranked (sum of rows is equal to zero), the
determinant of A is zero. Furthermore, let z = Cy, then have ytCtCy = ztz >= 0
and hence A is positive semi-definite. The matrix A matrix is usually sparse for
large problems, with the diagonal elements aij = number of edges incidents to
vertex i; and the off-diagonal elements:

aij =
{−1 if an edge exists between vertices i and j

0 otherwise (2)

In the literature, this matrix is referred to as the Laplacian matrix (also called
topological or graph Laplacian), it plays a central role in various applications.

If Ã = |A.Ψ |, where . is the elementwise matrix multiplication operator (or
Hadamard-Schur product) and

Ψ =

⎛⎜⎜⎝
0 1 1
1 0 1

1 0 1

1
. . . . . . . . .

⎞⎟⎟⎠ (3)

Ã is commonly known as the adjacency matrix of the graph.

2.2 N th Order Node-Edge Matrix

C as defined below represents the first order connectivity of the image. In many
cases, it might also be useful to define an extended node-edge matrix taking into
account ”weak” connection between nodes. For example, we might be interested
to define a ”weak” connection between second order neighbouring nodes. C can
be then defined by:

C1..N =

⎡⎢⎣ C1
...

CN

⎤⎥⎦ (4)

where C1 represents the connection (between first order neighbours) and CN

represents the connection (between N th order neighbours).

A = Ct
1..NC1..N =

⎡⎢⎣ C1
...

CN

⎤⎥⎦
t

.

⎡⎢⎣ C1
...

CN

⎤⎥⎦ =
[
Ct

1C1 + · · · + Ct
NCN

]
(5)

Like in the definition of the node-edge matrix, the coefficients of Ck are either
equals to 0, ck or −ck.The ck coefficients are strictly positive and have to verify
the following properties: {

1 ≥ ck

ck ≥ ck+1
(6)
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For example, the ck coefficients can be defined by the following recurrence
relation: {

c1 = 1
ck+1 = 1

2ck
(7)

If we consider an image which size is NxN pixels, the number of non-null el-
ements in C1 is equal to 2N(N − 1) is we assume a four pixels connectivity.
The number of non-null elements in C2 is proportional to N2. It is obvious that
for computational reason, we will not consider connection of higher degree than
two.

2.3 Notation

Considering an image with M pixels, in the following section, Z, Y and Z will
respectively represent [x1, ..., xM ]t, [y1, ..., yM ]t and [z1, ..., zM ]t. X and Y are
uniformly distributed (coordinates of the pixels in the plane), while Z represents
the value of the pixels. Each pixel in the image is numbered according to its
column and then its rows. For a square image, M = N2, N being the number
of pixel in a row (or column). When C is used, it implicitly represents the first
order node-edge matrix. The notation C1..N will be used for higher order node
edge matrix.

3 Optimisation-Based Approach to Mesh Smoothing

The present section presents an overview of the method. The idea is to generalize
and reformulate Laplacian smoothing. A detailed approached can be found in
[12].

3.1 General Framework

Hamam and Couprie showed in [12] that mesh smoothing may be reformulated
as a minimisation of the cost function J as defined below:

J =
1
2

[(
Z − Ẑ

)t

Q
(
Z − Ẑ

)
+ θ0Z

tZ + θ1Z
tĀZ + θ2Z

tĀ2Z

]
(8)

where

– Q is a symmetric positive definite weighing matrix,
– θ0,θ1 and θ2 are weighing scalars,
– Ā = CtΩC, and Ω is a diagonal matrix of weight associated to each edge,
– C is the node-edge matrix of the image,
– Z and Ẑ are respectively the value of the pixels and their initial value.

The inclusion of initial values in the cost function prevents the smoothing from
shrinking the object. For large size problem, a gradient descent algorithm may
be used to minimise J and the convergence is guaranteed.
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3.2 Second Order Algorithm with Attach (SOWA)

In the SOWA algorithm, the cost function J can be expressed as follows:

J =
1
2

[(
Z − Ẑ

)t

Q
(
Z − Ẑ

)
+ θZtĀ2Z

]
(9)

For small size problem, the solution can be found by matrix inversion,

Zopt =
(
I + θĀ2)−1

Ẑ (10)

and the solution is unique. For large size problems, the gradient descent method
may be applied. One iteration of the gradient descent method is as follows:

Zn+1 = Zn − αn∇xJ = Zn − αn
(
(Zn − Z) + θĀ2Zn

)
(11)

where n is the iteration number and αn is a positive scalar corresponding to the
step in the opposite direction of the gradient. The SOWA method is chosen when
the smoothing needs to conserve the curves of the image. The SOWA algorithm
is applied to Meteosat first generation satellite and the results are depicted in
the results section of the paper. It may be noted that the SOWA algorithm is
only used to filter the gray levels of the image to reduce the level of noise in the
images. It may be shown that this method is more efficient that most of usual
adaptive filtering techniques on our dataset.

4 Optimisation-Based Approach to Grid Smoothing

The goal of the grid smoothing applied to large scale SST images is to enhance
the resolution. The initial uniform grid on which the image is sampled is modified
to fit the content of the image. After modification of the grid using the grid
smoothing approach, the regions with large variance values expose a greater
number of points of the grid while the opposite phenomenon may be seen in
the region with small variance. It may be noted that the total number of points
remains unchanged.

4.1 General Framework

A cost function is introduced to adapt the grid to the information contained in
the image. A cost function J is defined as follows:

J = JX + JY (12)

where

JX =
1
2

[(
Z̄.Z̄

)t (
X̄.X̄

)
+ θ

(
X − X̂

)t

Q
(
X − X̂

)]
(13)

and

JY =
1
2

[(
Z̄.Z̄

)t (
Ȳ .Ȳ

)
+ θ

(
Y − Ŷ

)t

Q
(
Y − Ŷ

)]
(14)
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where . represents the element-wise matrix multiplication and X̄ = CX , Ȳ = CY
and Z̄ = CZ.

θ is a real number and can be seen as a normalisation factor. A convenient
choice for θ can be:

θ =‖ CZ ‖2 (15)

where ‖ . ‖2 represents the L2 norm of the vector CZ.
JX and JY are the sum of two terms. The first one will minimise the sum of

the surfaces of the triangles formed by two connected points and the projection
of one of the point on the Z-axis. As a result, the density of the points in
the area where the variations in Z are large will increase. The second terms

(θ
(
X − X̂

)t

Q
(
X − X̂

)
or θ

(
Y − Ŷ

)t

Q
(
Y − Ŷ

)
) is a weighting in respect

of the initial coordinates of the points to avoid large movement in the grid.

4.2 Convergence

Consider the optimisation problem of the function JX (the convergence of JY

can be proven in a similar fashion). The element-wise product of X̄ by X̄ can
be written as follows:

X̄.X̄ =
(∑

GiX̄
(
gi
)t
)

X̄ (16)

where Gi is a square matrix which elements are null except the ith element of
the diagonal which is equal to 1 and gi is a vector which elements are null except
the ith which is equal to 1.

If
(
ui
)t =

(
Z̄.Z̄

)t
Gi, JX can be expressed as

JX =
1
2

(∑(
ui
)t

X̄
(
gi
)t

X̄ + θ
(
X − X̂

)t (
X − X̂

))
(17)

The gradient is then equal to

∇xJX =
∑

ui
(
gi
)t

CX + X − X̂ (18)

At the optimum, ∇xJX = 0∑
ui
(
gi
)t

CXopt + Xopt − X̂ = 0 (19)(∑
ui
(
gi
)t

C + I
)

Xopt = X̂ (20)

The inverse of of
(∑

ui
(
gi
)t

C + I
)
) exists and for small size problems the

above equation may be solved to give

Xopt =
(∑

ui
(
gi
)t

C + I
)−1

X̂ (21)

For large size problem, the inversion of the matrix is computationally too expen-
sive. The gradient descent method can then be applied. The gradient descent
algorithm can be written as
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Xn+1 = Xn − αn∇xJX = Xn − αn
(∑

ui
(
gi
)t

CX + X − X̂
)

(22)

where n is the iteration number and αn is a positive scalar corresponding to the
step in the opposite direction of the gradient.

4.3 Grid Smoothing with Linear Equality Constraints

The adaptation of the grid presented in the previous section does not ensure
that the initial size of the image remains the same. It broader terms it can be
useful in various cases to fix the coordinates of some points of the image.

The linear constraints can be expressed as

(X − X̂)tB = 0 (23)

where B is a vector which size is the total number of points in the image and
the values of B verify the following properties

B =
{

1 if the points belongs to Φ
0 otherwise (24)

where, Φ is the set of points which coordinates will remained unchanged.
Using the properties of the vector B, the grid smoothing with fixed points

can be formalize as an nonlinear optimisation problem with linear constraints
as follows: {

minimise J(X, Y )(
X − X̂

)t

B = 0
(25)

The optimisation problem can be solved using the Lagrangian parameters. Fixing
certain point in the image can be convenient if, for example, the size of the image
needs to be unchanged. In this case, B would be equal to the concatenated rows
of the following matrix Φ:

Φ =

⎛⎜⎜⎜⎜⎝
1 1 · · · 1 1
1 0 · · · 0 1
...

...
...

...
1 0 · · · 0 1
1 1 · · · 1 1

⎞⎟⎟⎟⎟⎠ (26)

4.4 Grid Smoothing with Inequality Constraints

As described in the sections above, the points of the grid can move according to
the change in temperature. However, the connection between the points remains
the same. A constraint about the region of the plane where the points can move
have to be introduced to make sure that the optimisation will not end up with
a graph containing intersecting connections. The constraint can be expressed as
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{
CX ≤ 0
CY ≤ 0 (27)

Another type of constraint could be to limit the movement of the points. In this
case, the constraint could be express as⎧⎨⎩X − X̂ ≤ ε

Y − Ŷ ≤ ε
0 ≤ ε ≤ 0.5 ∗ step

(28)

with step being the step of the initial grid.

5 Simulation Results

The image dataset used in the experiments is originated from by Meteosat satel-
lite. The SST images result from an average of the sea surface temperature
collected over a month. The first set of experiments aims at investigating the
effect of the neighbouring order and the constraints in the grid smoothing while
the second set exposes the results of the complete image processing chain (SOWA
followed by grid smoothing). The non-linear optimization method used in both
SOWA and grid smoothing is the conjugate gradient. The typical convergence
time is around 1 second for a 100pixels× 100pixels image.

Figure 1 focuses on a detail of an SST image (50km × 50km) including
a thermal front. As explained previously, a front characterizes the transition
between two regions of homogeneous temperature and may be interpreted as
an edge. The two homogeneous regions depict small variance, while the front
itself is characterized by a large variance. It may be observed in the results that
the grid smoothing has no or little effect on the homogeneous region (the grid
stays quasi-uniform) while the front itself depicts a larger number of points. In
the grid smoothing process, the edges act like attractors for the points in the
grid. When the optimisation process is unconstrained, the dimensions of the
new grid do not match the initial boundaries of the image, which may lead to
geometrical issues while reconstructing the image. However, it may be observed
that constraining the grid is leading to a loss of accuracy in the boundary regions.
Comparing the two orders of grid smoothing, it may be observed that a greater
shrinkage of the image is seen in the second order compared to the first order
smoothing. The grid is also denser in the second order in the regions where the
temperature is changing. As the second order smoothing uses a second order
neighbourhood between the points, the presence of an edge not only attracts its
direct neighbours but also further points in the grid. The computational cost of
the second order compared to the first order is, however, a major drawback. A
trade-off between the accuracy and the computing time is to be found according
to the application.
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Fig. 1. First and second order grid smoothing
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(b) Filtered image using SOWA

Fig. 2. Result of the mesh smoothing
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Fig. 3. Result of the grid smoothing

Figure 3 and 2 displays respectively the initial SST image, the smoothed
image using the SOWA algorithm and the results of the grid smoothing for two
values of θ. It is obvious that the level of noise in the initial image is relatively
high. The sources of the noise are the ones mentioned before (wind at the surface
of the sea and cloud coverage) plus in our database the effect of the averaging
process. The evolution of the phenomena observed at the surface of the ocean
(fronts, eddies...) is relatively fast. Associated with the cloud coverage, the num-
ber of available observations of each pixel in the image is not the same and may
be small. On the other hand,as the meso-scale structures are moving, an average
on a month only allows the researcher to observe the large scale slow moving
evolution of the structures. A spatial smoothing is also performed on the shape
of the sea structures. The present SST image represents a region in the southern
Indian Ocean, approximately 500km south of the city of Durban, South Africa.
The dimensions of the region depicted is about 300km * 400km.

The SOWA algorithm is applied on the SST image and it may be seen that
the level of noise in the image decreases. However, from a qualitative point of
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view, the content in the image looks preserved. The efficiency of this type of
mesh smoothing has been proven on our dataset and its performance may be
compared favourably to the other filtering techniques for satellite images.

The grid smoothing process is applied on the smoothed image and the results
are depicted in Figure 2a and Figure 2b. It may be seen that the concentration
of points in the region presenting an edge (thermal front) is greater than in the
other regions. As θ increases, the deformation of the grid increases, the weight of
the initial coordinates being decreased in the cost function. With a large value
of θ, the repartition of the points is smoother along the edges while the details in
the shape are lost. On the other hand, a small value of θ leads to greater details
in the shape recovered, at the expense of a sparser repartition of the points. In
any case, continuous region with a large number of points may be observed and
may be interpreted as the boundaries of meso-scale sea structures.

6 Conclusion

A common framework for data smoothing and grid smoothing was presented in
the paper. A cost function was introduced for each case and that the solution of
the minimisation is unique. Using the conjugate gradient method, the comput-
ing time is reasonable and large image may be processed. An extensive study
of the convergence and computing time of the method may be found in [13].
Multiple applications of the framework are possible and will be investigated in
future research. Improved edge detection, image enhancement and compression
are among them. The reconstruction of the image will also be investigated and
compared to other interpolation schemes like in [10] and [11]. Finally, the en-
hanced images will be fed into a variational data assimilation scheme (4D-Var
for example) to test their ability to forecast the evolution of the sea surface
temperature.
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Abstract. We describe a model driven approach for extracting simple

3D polyhedral building models from aerial images. The novelty of the

approach lies in the use of featureless and direct optimization based on

image rawbrightness. The 3D polyhedral model is estimated by opti-

mizing a criterion that combines a global dissimilarity measure and a

gradient score over several aerial images. The proposed approach gives

more accurate 3D reconstruction than feature-based approaches since it

does not involve intermediate noisy data (e.g., the 3D points of a noisy

Digital Elevation Model). We provide experiments and evaluations of

performance. Experimental results show the feasibility and robustness of

the proposed approach.

1 Introduction and Motivation

The extraction of 3D models of buildings from aerial images is currently a very
active research area since it is a key issue in urban planning, virtual reality, and
updating databases for geo-information systems, to name a few [1]. The proposed
methods for building reconstruction differ by the assumption made as well as by
the type of input data. However, one can easily classify these approaches into
two main categories: bottom-up and top-down approaches. In theory, bottom-
up approaches can handle the case where there is no prior knowledge about the
sought building model. However, in the presence of noisy or low resolution data
there is no guarantee that the estimated models will be correct. On the other
hand, top-down approaches rely on some prior knowledge (e.g., using parametric
models). The top-down approaches use the principle of hypothesis-verification
in order to find the best model fit. Both categories have been used with features
that are extracted and matched in at least two images. For roofs, the most used
image features are 2D segments and junctions lines that are converted into 3D
features. The final polyhedral model is then estimated from these 3D features.
Model-based reconstruction techniques were first applied in digital photogram-
metry for the (semi-)automatic reconstruction of buildings in aerial images with
the help of generic building models [2–4]. In this paper, we propose a featureless
approach that extracts simple polyhedral building models from the rawbright-
ness of calibrated aerial images where the footprint of the building in one image
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is obtained either manually or automatically [5]. We were inspired by the feature-
less image registration techniques where the goal is to compute the global motion
of the brightness pattern between them (e.g., affine or homography transforms)
without using matched features [6].

Unlike existing approaches for building reconstruction, our approach derives
the polyhedral building model by minimizing a global dissimilarity measure
based on the image rawbrightness. It is carried out using a genetic algorithm. To
the best of our knowledge the use of featureless and direct approaches has not
been used for extracting polyhedral models of buildings. In any feature-based
approach, the inaccuracies associated with the extracted features, in either 2D
or 3D, will inevitably affect the accuracy of the final 3D model. Most of the
feature-based approaches use sparse extracted features such as interest points
and line segments. Thus, the sparseness of data coupled with noise will definitely
affect the accuracy of the final building reconstruction.

Recently, many researchers proposed methods for extracting polyhedral mod-
els from Digital Elevation Models (DEMs) (e.g., [3, 7, 8])). Compared to these ap-
proaches, our method has the obvious advantage that the coplanarity constraints
are implicitly enforced in the model parametrization. On the other hand, the ap-
proaches based on DEMs impose the coplanarity constraint on the 3D points of
the obtained surface in the process of plane fitting. DEMs are usually computed
using local correlation scores together with a smoothing term that penalizes large
local height variation. Thus, correlation-based DEMs can be noisy. Moreover,
height discontinuities may not be located accurately. In brief, our proposed ap-
proach can give more accurate 3D reconstruction than feature-based approaches
since the process is more direct and does not involve intermediate noisy data
(e.g., the 3D points of a noisy DEM).

Although the proposed method can be used without any DEM it can be useful
for rectifying the polyhedral models that are inferred from DEMs. In this case,
our proposed method can be useful in at least two cases. The first case is when the
provided model is erroneous, e.g., a facet is not modelled. Figure 1 illustrates two
corresponding examples of erroneous estimated polyhedral models. The second
case is when the estimated shape is correct but its geometric parameters are not
accurate enough, e.g., the coordinates of some vertices are not very precise. In the
latter case our proposed approach can be used for improving the accuracy of the
model parameters. The remainder of the paper is organized as follows. Section 2
states the problem we are focusing on and describes the parametrization of the
adopted polyhedral model. Section 3 presents the proposed approach. Section 4
gives some experimental results.

2 Problem Statement

Since aerial images are used only roof models can be estimated. In this work,
we restrict our study to simple polyhedral models that are illustrated in Fig-
ure 2. The model illustrated in Figure 2.(a) can describe a building roof having
two, three, or four facets. This is made possible since the 3D coordinates of the
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Fig. 1. Two examples of erroneous estimated 3D polyhedral models that were inferred

from Digital Elevation Models (DEMs). Left: the estimated model has four facets while

the real roof is composed of three facets. Right: the estimated model has two facets

while the real roof is composed of three facets.

inner vertices are considered as unknown. These models can describe all typical
situations: non symmetric shape, sloping ground or roofs (i.e., every vertex can
have a different height). Because a complex building can be described as an
aggregation of simple building models, our approach can also deal with complex
buildings once a partitioning of the building into simple building-parts is done.
However, dealing with complex buildings is beyond the scope of the paper.

(a) (b)

Fig. 2. The adopted simple polyhedral models. (a) The multi-facet model. (b) The

one facet model.

The problem we are focusing on can be stated as follows. Given the footprint
of a building in one aerial image we try to find the polyhedral model (an instance
of the models depicted in Figure 2) using the rawbrightness of the aerial images
that views this building. The flowchart of the proposed approach is depicted
in Figure 3. Since the images are calibrated (the camera intrinsic parameters
are known) and since the 2D locations of the outer vertices are known in one
image, our simple polyhedral (Figure 2.a) model can be fully parameterized by



242 F. Dornaika and K. Hammoudi

Fig. 3. Extracting 3D polyhedral models from image rawbrightness

eight parameters: four parameters for the 2D location of the inner vertices M
and N and four parameters for the height of the vertices A, M , N , and C. The
remaining vertices are determined by intersecting the corresponding line of sight
with the estimated support planes. The eight parameters are encapsulated into
one single vector w:

w = (UM , VM , UN , VN , ZA, ZM , ZN , ZC)T (1)

where (UM , VM ) and (UN , VN ) are the image coordinates of the vertices M
and N , respectively. Recall that the 3D coordinates are expressed in a local
coordinate system whose Z axis coincides with the ground normal since the
aerial images are geo-referenced. In practice, although the 2D location of the
inner vertices is not known, the 2D line (the projection of a ridge segment)
going through them can be easily extracted from the master image by using a
simple edge detector followed by a Hough transform. Once the equation of this
2D line is known, the parametrization of the building model can be simplified
to:

w = (λM , λN , ZA, ZM , ZN , ZC)T (2)

where λM and λN parameterize the 2D location of the inner vertices along the
2D segment obtained by intersecting the 2D line with the building footprint.
Thus, finding the model boils down to finding the vector w.
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3 Proposed Approach

The goal is to compute the parameters of the polyhedral model given N aerial
images. One of these images contains the external boundary of the building. We
call this image the master image since it will be used as a reference image. The
building boundary in the master image is provided either manually or automat-
ically. The basic idea relies on the following fact: if the shape and the geometric
parameters of the building (encoded by the vector w) correspond to the real
building shape and geometry, then the pixel-to-pixel mapping between the mas-
ter image Im and any other aerial image (in which the building is visible) will be
correct for the entire building footprint. In other words, the dissimilarity asso-
ciated with the two sets of pixels should correspond to a minimum. Recall that
w is defining all support planes of all the building’s facets and thus the corre-
sponding pixel p′ of any pixel p is estimated by a simple image transfer through
homographies (3×3 matrices) based on these planes. Therefore, the associated
global dissimilarity measure reaches a minimum. The global dissimilarity is given
by the following score:

e =
N−1∑
j=1

∑
p∈S

ρ(|Im(p) − Ij(p′)|) (3)

where N is the number of aerial images in which the whole building roof is
visible (in practice, N is between 2 and 5), S is the footprint of the building in
the master image Im, p′ is the pixel in the image Ij �= Im that corresponds to
the pixel p ∈ Im, and ρ(x) is a robust error function.

The choice of the error function ρ(x) will determine the nature of the global
error (3) which can be the Sum of Squared Differences (SSD) (ρ(x) = 1

2 x2),
the Sum of Absolute Differences (SAD) (ρ(x) = x), or the saturated Sum of
Absolute Differences. In general, the function ρ(x) could be any M-estimator [9].
In our experiments, we used the SAD score since it is somewhat robust and its
computation is fast.

We seek the polyhedral model w� = (λ�
M , λ�

N , Z�
A, Z�

M , Z�
N , Z�

C)T that mini-
mizes the above dissimilarity measure over the building footprint:

w� = arg min
w

e (4)

We can also measure the fitness of the 3D model by measuring the gradient
norms along the projected 3D segments of the generated 3D models. In general,
at facets discontinuities the image gradient is high. Thus, for a good fit, the
projection of the 3D segments will coincide with pixels having a high gradient
norm in all images. Therefore, we want to maximize the sum of gradient norms
along these segments over all images. Recall that we have at most nine segments
for our simple 3D polyhedral model. Thus, the gradient score is given by:

g =
1
N

N∑
j

gj (5)
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where gj is the gradient score for image Ij . It is given by the average of the
gradient norm over all pixels coinciding with the projected 3D model segments.

Since we want the dissimilarity measure (3) and the gradient score (5) to help
us determine the best 3D polyhedral model, we must combine them in some way.
One obvious way is to minimize the ratio:

w� = arg min
w

e

g
(6)

It is worth noting that during the optimization of (6) there is no feature extrac-
tion nor matching among the images. The use of the image gradient norms in
(6) is not equivalent to a feature-based method. In order to minimize (6) over
w, we use the Differential Evolution algorithm [10]. This is carried out using
generations of solutions—populations. The population of the first generation is
randomly chosen around a rough solution. The rough solution will thus define a
given distribution for the model parameters. The rough solution is simply given
by a zero-order approximation model (flat roof model) which is also obtained by
minimizing the dissimilarity score over one unknown (the average height of the
roof). We use the Differential Evolution optimizer since it has three interesting
properties: (i) it does not need an accurate initialization, (ii) it does not need
the computation of partial derivatives of the cost function, and (iii) theoretically
it can provide the global optimum.

In brief, the proposed approach proceeds as follows. First, the algorithm de-
cides if the building contains one or more facets, that is, it selects either the
model of Figure 2.(a) or the model of Figure 2.(b). This decision is carried out
by analyzing the 3D normals associated with four virtual triangles forming a
partition of the whole building footprint. Second, once the model is selected,
its parameters are then estimated by minimizing the corresponding dissimilarity
score. Note that in the case of one facet building we only need to estimate the
plane equation using the criterion (4).

4 Experimental Results

4.1 Semi-synthetic Data

We have used a real triangular roof facet in two different aerial images. The
3D shape of this facet is computed using a high resolution Digital Elevation
Model. The rawbrightness of this facet is reconstructed in the second image
by warping its texture in the first image using the relative geometry and the
estimated 3D shape of the facet. The two textures are then perturbed by an
additive uniform noise. For every noise level we run our proposed approach 10
times. For every run, we compute the error as being the difference between
the estimated parameters and their ground truth values. Figure 4.(a) and 4.(b)
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Fig. 4. 3D errors (a) and orientation errors (b) as a function of the noise amplitude

show the 3D errors (discrepancy between reconstructed and ground-truth 3D
vertices) and the facet orientation error, respectively as a function of the noise
amplitude.

4.2 Real Data

The proposed approach has been tested with a set of calibrated aerial images
depicting a part of the city of Marseille. These data are provided by the French
National Geographical Institute (IGN). The resolution of these aerial images
is 4158 × 4160 pixels. The ratio between the baseline to the camera height is
about 0.18. One pixel corresponds to a 10 cm square at ground level. Figure 5
illustrates the best model obtained at different iterations of the Differential Evo-
lution algorithm. The projection of the model onto the first and second images is
shown in the first and second columns, respectively. The third column illustrates
the associated 3D model. Figure 6 illustrates the estimated model in cases where
buildings are affected by shadows. Despite the presence of significant shadows
the estimated polyhedral models are correct.

4.3 Method Comparison

To get quantitative evaluation we compared our method with a 3D reconstruc-
tion obtained from Digital Elevation Models (DEMs)1. Table 1 depicts the 3D
reconstruction results associated with one polyhedral model (only the heights
of three vertices are shown). The first column corresponds to the reconstruction
obtained with a DEM (robust plane fitting), the second column to our approach
adopting the SSD function, and the third column to our approach adopting the
SAD function. The last row shows the average deviation between the estimated
model and the model obtained with the DEM.

1 Although the DEMs are not ground-truth 3D data, we compared our results with

them for validation purposes.
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Fig. 5. The best solution at several iterations of the Differential Evolution algorithm
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Fig. 6. Estimated 3D polyhedral models from aerial images. Despite the presence of

significant shadows the approach has provided the correct models.

Table 1. Method comparison associated with one facet having three vertices. The first

column depicts the estimated height of the model vertices obtained with a DEM. The

second (third) column displays the estimated heights using our approach with SSD

function (SAD function).

DEM SSD SAD

Vertex1 height 41.96m 42.75m 42.22m

Vertex2 height 41.36m 40.87m 40.98m

Vertex3 height 39.78m 40.10m 40.22m

Average deviation 0.0m 0.53m 0.36m
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5 Conclusion

We presented a direct model driven approach for extracting 3D polyhedral build-
ing models from calibrated aerial images. Unlike existing approaches, our pro-
posal does not require feature extraction and matching in the images. Moreover,
it does not rely on Digital Elevation Models. Experimental results show the fea-
sibility and robustness of the proposed approach. Future work may investigate
the extension of the approach to generic building models.
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Abstract. The boundary based image segmentation and representation system 
takes a thinned edge image and produces a unique hierarchical representation 
using a graph/tree data structure. The feature extraction algorithms have been 
developed to obtain geometric features by directly processing the graph/tree  
hierarchical data structure for diverse image processing and interpretation ap-
plications. This paper describes a content-based image retrieval system for the 
retrieval of aurora images utilizing the graph/tree hierarchical representation 
and the associated geometric feature extraction algorithms which extract fea-
tures for the purpose of classification.  The experimental results which prove 
that the hierarchical representation supports the fast and reliable computation of 
several geometric features which are useful for content based image retrieval 
are presented. 

1   Introduction 

The content based retrieval of aurora images is a subject of great interest to space 
scientists. Aurora is a significant phenomenon in the polar region of the Earth [1, 2].  
It is a result of interaction between the solar wind and the Earth’s magnetic field.  
Auroral events are monitored on the global scale at the Far Ultraviolet (FUV) spec-
trum by the Ultraviolet Imager (UVI) on board the POLAR satellite.  Detecting an 
oval boundary of aurora is not a trivial problem because the distinction between auro-
ra and background is not clear in most cases.  In addition, the existence of dayglow 
emission significantly limits the automatic determination of the location and the size 
of auroral ovals.  Auroral morphological parameters include the location and shape of 
the boundaries, the size of auroral ovals, and the evolution of intensified aurora arc 
regions during substorm events.  The shape of aurora is dynamic and changes depend-
ing on the factors such as the date, time, the satellite position, etc. 

Three specific types of aurora images that are of great interest to scientists have 
been identified. The first type, Type1, is defined as the aurora that has the very high 
magnetic latitude activity, called transpolar arc, close to the pole [1]. An example of 
the Type1 aurora is shown in Fig. 1 (a). The second type, Type2, is defined as the 
aurora that is thick. In this aurora, a strong magnetic storm, often referred to as a sub-
storm, might be present.  A substorm starts as a bright spot on the auroral oval. The 
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spot moves in time along the oval and the intensity of the oval increases significantly 
around this region.  Typically, a substorm is characterized by a bulge or a very thick 
and bright section of the oval.  Space scientists are interested in studying the mor-
phology of the substorm from birth to death.  A Type2 aurora image is shown in Fig. 1 
(b).  Finally, there are aurora images in which the night side is visible completely and 
most or all of the day side is not visible.  These images are referred to as Type3 aurora 
images. A Type3 aurora is shown in Fig. 1 (c). Fig. 1 (d) shows an aurora image free 
of the transpolar arc and substorm, and both day and night sides are visible.  Such an 
image is called a standard aurora image. 

                
                (a)                                   (b)                                   (c)                                   (d)    

Fig. 1. Various types of aurora:  (a) Type1 aurora, (b) Type2 aurora, (c) Type3 aurora, and (d) 
Standard aurora 

The process of obtaining the hierarchical representation for aurora images is de-
scribed in Section 2. The geometric feature extraction algorithms that utilize the 
graph/tree hierarchical structure are introduced in Section 3.  The process of extract-
ing various features of aurora for the purpose of classification is discussed in Sec-
tion 4.  These features can be used as metadata.  Section 4 also presents a method to 
identify the different types of aurora using the features obtained.  Section 5 discusses 
the simulation results.  Finally, the conclusion is given in Section 6. 

2   Hierarchical Representation of Aurora Images 

The input aurora image is thresholded to create a binary image.  Although several 
thresholding techniques are available, for illustration purposes, the global threshold-
ing method was used.  The resulting binary image is processed using a 3x3 median 
filter to remove stray pixels and then an edge image is produced.  This process is 
illustrated in Fig. 2. 

The edge image obtained from the filtered binary image is processed using the 
boundary based image segmentation and representation system developed by Nabors 
[3] to create the graph/tree hierarchical representation.  The image segmentation and 
representation system consists of four curve segment extraction networks, the line 
detector based on two state machines, and post processing algorithms. The curve 
segment extraction networks and the line detector are described in Section 2.1 and 
2.2, respectively.  The system receives thinned edge image as an input and produces a 
polyline for an open curve and a polygon for a closed curve.  This information is 
stored in a hierarchical representation which uses both graph and tree data structures 
as described in Section 2.3. 
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                (a)                                   (b)                                   (c)                                   (d)    

Fig. 2. Process of obtaining the edge image of an aurora: (a) Input aurora image, (b) Image after 
thresholding, (c) Image after median filtering, and (d) Edge image 

2.1   Curve Segment Extraction Networks 

The segmentation and representation system uses four curve extraction networks [3] 
denoted by N1, N2, N3, and N4 to detect all instances of various curve segments in a 
binary edge image.  N1 is capable of extracting the curve segments for which the slope 
along the curve is in the range of [-∞, -1].  Similarly, N2, N3, and N4 detect the curve 
segments for which the slopes are in the range of  [-1, 0], [0, 1], and [1, ∞], respec-
tively.  The network outputs a data packet for each curve segment detected.  The 
packet consists of the starting point of the curve segment, the number of pixels along 
the curve, and a binary string which encodes the curve segment using 1-bit chain code 
(which encodes diagonal direction using 1 and non-diagonal direction using 0). 

2.2   Line Detector 

The line detector [3] using two state machines M1 and M2 partitions a curve segment 
produced by the curve extraction network into line segments.  The straight line char-
acteristics are used to partition each curve segment into line segments.  The first state 
machine M1 receives a binary string for a curve segment from a curve extraction net-
work.  It breaks the input binary string into several disjoint parts such that each part 
consists of strings of zeros separated by single ones or strings of ones separated by 
single zeros depending on the slope of the curve.  And, it counts the number of zeros 
separated by single ones or the number of ones separated by single zeros.  The result-
ing string of counts is called the characteristic sequence of the curve segment.  The 
second state machine M2 processes the characteristic sequence produced by M1 to 
partition the curve segment into straight line segments. 

2.3   Hierarchical Graph/Tree Representation 

The output of the segmentation system is represented by a hierarchical graph/tree data 
structure [3].  Each curve is represented by a node in the graph in which an edge indi-
cates that the two corresponding curves are connected.  Each node of the graph is the 
root node of the tree data structure that represents the corresponding curve.  Each 
curve segment of the curve extracted by a curve extraction network is represented by 
a node on the first level (Level-1 node) of the tree and nodes on the second level 
(Level-2 nodes) of the tree identify the line segments into which a curve segment is 
divided by the state machines. 
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3   Feature Extraction 

We have developed computationally efficient algorithms [4] to extract general shape 
features of a curve, and the convex hull and the minimum bounding rectangle of a 
closed curve. These geometric features are obtained directly from the graph/tree hier-
archical data structure that contains the boundary information produced by the seg-
mentation system.  As the hierarchical representation permits fast computation of 
several features of open and closed curves, the approach is referred to as the trans-
form-and-conquer approach. 

Section 3.1 illustrates the terminology used in the feature extraction algorithms.  
Section 3.2 discusses the general shape features of a curve such as concave-up, con-
cave-down, local minimum, local maximum, inflection points, and concavities.  Sec-
tion 3.3 and Section 3.4 briefly introduce the methods for finding the convex hull and 
the minimum bounding rectangle, respectively.  The details can be found in [4]. 

3.1   Terminology 

The network sequence of a curve is defined as the ordered sequence of the curve ex-
traction network numbers which extract the curve segments of the curve.  The magni-
tude of the ith element of the network difference sequence is obtained as the absolute 
difference of the (i+1)th and ith elements of the network sequence.  The sign of the ith 
element of network difference sequence is determined based on the orientation of the 
(i+1)th curve segment relative to the ith curve segment.  If the (i+1)th curve segment 
lies to the right of the ith curve segment, then the sign is negative.  Otherwise, it is 
positive.  The slope differential sequence is obtained by adding contiguous blocks of 
elements of the same sign in the network difference sequence. 

3.2   General Shape Features 

The general shape attributes of a curve such as concave-up, concave-down, local 
minimum, local maximum, inflection points, and concavities can be identified by 
simply using the network sequence, the network difference sequence, and the slope 
differential sequence of the curve. 

Concave-Up and Concave-Down. An open curve is concave-up over an interval if 
the first derivative is increasing over the interval. Therefore, a network sequence of 
increasing numbers identifies concave-up portion of the curve.  Similarly, a network 
sequence of decreasing numbers identifies concave-down portion of the curve.  Also, 
the positive and negative numbers in the slope differential sequence identify concave-
up and concave-down segments of the curve, respectively.  The network sequence and 
the slope differential sequence for the curve in Fig. 3 are [4 3 2 1 2 3 4 3 2 1] and  
[-3 +3 -3], respectively.  Note that the arrow indicates the starting point of the curve 
and the curve is traversed from left to right.  From these sequences, one can easily 
determine the general shape of the curve which consists of two concave-down 
segments and one concave-up segment. 

Local Minimum and Local Maximum. The location of each local minimum of a 
curve is identified by a transition from the curve extraction network N1 or N2 to the 



 Content-Based Retrieval of Aurora Images Based on the Hierarchical Representation 253 

curve extraction network N3 or N4.  This is because the curve segment extracted by N1 
or N2 has a negative slope and the curve segment extracted by N3 or N4 has a positive 
slope.  A transition from a curve with a negative slope to a curve with a positive slope 
defines a local minimum.  Similarly, a local maximum is identified by a transition 
from the curve extraction network N3 or N4 to the curve extraction network N1 or N2.  
This is because the curve segment extracted by N3 or N4 has a positive slope and the 
curve segment extracted by N1 or N2 has a negative slope.  A transition from a curve 
with a positive slope to a curve with a negative slope defines a local maximum.  
Therefore, it is obvious that the curve in Fig. 3 has two local maxima and one local 
minimum, and their locations are also known. 

Inflection Point and Concavity.  An inflection point is defined as a point where the 
curve changes from concave-up to concave-down or vice versa.  Each sign change in 
the slope differential sequence identifies an inflection point.  In general, the number 
of inflection points is equal to the length of the slope differential sequence for a 
closed curve and (length of the slope differential sequence – 1) for an open curve.  
Therefore, the curve in Fig. 3 has two inflection points as identified by two sign 
changes in its slope differential sequence [-3 +3 -3].  The first inflection point is on 
the curve segment extracted by N1 (fourth curve segment) and the second inflection 
point is on the curve segment extracted by N4 (seventh curve segment).  For a closed 
curve, the number of inflection points is even.  The inflection points are useful in 
identifying the number and location of concavities.  The convex hull algorithm pre-
sented in the next section makes use of inflection points to identify concavities. 

 

Fig. 3. An open curve that consists of ten curve segments 

3.3   Method for Finding the Convex Hull 

The new convex hull algorithm utilizes the hierarchical representation of the concave 
object and produces the modified hierarchical representation for the resulting convex 
polygon. The algorithm uses a two-step approach. While Step 1 identifies the  
concavities at the curve segment level, Step 2 identifies the concavities missed in Step 
1 using line segments. Step 1 is based on the observation that a positive number in the 
network difference sequence indicates the presence of a concavity and also provides 
rough information of its location. The algorithm uses a simple decision function [5] to 
determine if a given point lies to the left or right side of a given line.  Let P0 (x0, y0), 
P1 (x1, y1), and P2 (x2, y2) be the three points.  Using two vectors P1 − P0 and P2 − P0, 
the value of the decision function D is obtained by the following  
equation: 

D = [(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)]. (1) 

It has been shown that D is positive if P2 is to the left of P0P1, and D is negative if P2 

is to the right of P0P1.  If all three points are collinear, then D is zero. 
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Fig. 4 (a) shows a concave object.  For this object, Step 1 takes 27 iterations and 
Fig. 4 (b) through Fig. 4 (e) show the intermediate results after four selected iterations 
(iteration 3, 9, 15, and 21). Fig. 4 (f) is the result of Step 1 after 27 iterations and 
Fig. 4 (g) is the result of Step 2 after 3 iterations.  The resulting convex hull of the 
object is shown in Fig. 4 (h). 

                
                   (a)                                  (b)                                 (c)                                  (d) 

                
                   (e)                                  (f)                                 (g)                                  (h) 

Fig. 4. Illustration of Step 1 and Step 2 of the convex hull algorithm 

3.4   Method for Finding the Minimum Bounding Rectangle 

The new algorithm for finding the minimum bounding rectangle is based on two theo-
rems proven by Freeman and Shapira [6].  The four steps of our algorithm are given 
below. 

Theorem 1. The rectangle of minimum area enclosing a convex polygon has a side 
collinear with one of the edges of the polygon. 

Theorem 2. The minimum-area rectangle encasing the convex hull of a simple, 
closed, chain-coded curve is one and the same as the minimum-area rec-
tangle encasing the curve. 

Step 1.  For a convex object, this step is skipped.  For a concave object, the convex 
hull of the given object and its hierarchical representation are obtained using the algo-
rithm described in Section 3.3.  The straight line segments of the convex hull speci-
fied by the Level-2 nodes represent the object as a convex polygon.  A concave object 
and its convex polygon are shown in Fig. 5 (a) and Fig. 5 (b). 

Step 2. From Theorem 1 and Theorem 2 described above, the minimum bounding 
rectangle must have an edge collinear with one of the edges of the polygon. The con-
struction of the bounding rectangle that is collinear with a hull edge is illustrated by 
constructing the bounding rectangle that is collinear with hull edge AB in Fig. 5 (c).  
Let m be the slope of the line AB. Let p be the starting point of a curve segment that is 
farthest from the line AB. Let p1 be the point that is farthest from AB which is ob-
tained by trial-and-error starting from p. 
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Step 3.  Two points p2 and p3 are found such that the distance between the lines with 
slope (-1/m) passing through p2 and p3 is maximum.  These points can be easily de-
termined by the method used to find p1. After finding p1, p2, and p3, the bounding 
rectangle is determined by calculating the four corner points q1, q2, q3, and q4. 

Step 4. Step 2 and Step 3 are repeated for each edge (line segment) of the convex 
polygon, and the bounding rectangle that has the minimum area is selected. For the 
object in Fig. 5 (a), the bounding rectangle corresponding to the hull edge AB happens 
to be the minimum bounding rectangle which is shown in Fig. 5 (d). 

 
                    (a)                              (b)                                 (c)                                      (d) 

Fig. 5. Illustration of the minimum bounding rectangle algorithm:  (a) A concave object and its 
convex hull with four hull edges AB, CD, EF, and GH, (b) The convex polygon of the object in 
(a) constructed using four hull edges, (c) The bounding rectangle formed using the hull edge 
AB, and (d) The resulting minimum bounding rectangle 

4   Method for Identifying the Types of Aurora 

In order to build a content-based image retrieval system for aurora images, one must 
identify the list of features which can be extracted from the hierarchical representation 
and are able to classify images into the desired categories.  The extent of the aurora 
oval along the two coordinate axes, the orientation of the oval, the presence or ab-
sence of the transpolar arc, the orientation of the transpolar arc, the circularity meas-
ure, the percent of the oval that is visible, the maximum thickness of the oval, and the 
location of the aurora itself have been selected.  These features appear to be adequate 
for identifying Type1, Type2, and Type3 aurora images.  Section 4.1, 4.2, and 4.3 
discuss the determination processes of Type1 aurora, Type2 aurora, and Type3 aurora, 
respectively.  It is shown that all the above features can be computed from the hierar-
chical representation. 

4.1   Determination of Type1 Aurora 

A Type1 aurora is characterized by the transpolar arc as shown in Fig. 6 (a).  The edge 
image which is used to create the hierarchical representation is also shown in Fig. 6 
(a).  The hierarchical representation consists of two graph nodes that are not con-
nected to each other.  If a transpolar arc is present, then the inner closed curve will 
have at least one deep concavity.  The location and depth of concavities, if present, 
can be determined from the hierarchical representation using the method described in 
Section 3. 
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                                  (a)                                                                              (b) 

                
                                  (c)                                                                              (d) 

Fig. 6. Four Type1 aurora images with transpolar arcs and their edge images 

Aurora images with transpolar arcs come in many forms.  Three additional aurora 
images with transpolar arcs and their edge images which have different hierarchical 
representations are shown in Fig. 6 (b), Fig. 6 (c), and Fig. 6 (d). For the image in Fig. 
6 (b), the edge image has three closed curves (3 graph nodes, no graph edges) with 
two closed curves completely inside the larger outer curve.  Similarly, the edge image 
in Fig. 6 (c) consists of four closed curves (4 graph nodes, no graph edges) with three 
curves located completely within the outer closed curve. In fact, the images in Fig. 6 
(b) and Fig. 6 (c) are almost identical.  The difference in their edge images is due to 
poor segmentation which is not very uncommon and should be expected.  Therefore, 
two or more curves nested inside an outer curve are also considered as an indication 
of the presence of a transpolar arc. Finally, the image may map to one complex closed 
curve as shown in Fig. 6 (d).  In this case, the presence of a transpolar arc is also de-
tected simply by finding deep concavities. The average of all the slopes of the line 
segments forming the concavity can be used as an approximation to the orientation of 
the transpolar arc. 

4.2   Determination of Type2 Aurora 

Aurora images with thick aurora are of Type2.  They could contain substorms.  The 
thickness of the aurora oval is useful in recognizing substorms.  The method used for 
the determination of the thickness of the oval is given below. 

Step 1. The approximate location of the centroid C of the aurora oval is computed by 
averaging the coordinates of the starting points of all the line segments. 
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Step 2. In order to determine the thickness associated with the starting point P of a 
line segment on the outer boundary of the aurora, the point Q at which line PC 
intersects the inner boundary is found.  The distance between P and Q is taken as the 
thickness of the aurora oval at P. 

Step 3. The values of the thickness associated with the starting points of all line 
segments on the outer boundary are determined by repeating Step 2.  If the maximum 
thickness is greater than a predetermined threshold, then the image is taken as a Type2 
aurora image. 

The outer boundary of the edge image of the aurora in Fig. 7 (a) consists of 50 line 
segments. The centroid of the oval and all 50 radial lines are shown in Fig.7 (b).  The 
plot in Fig. 7 (c) shows the thickness of the aurora oval along the boundary. 

A Type2 aurora is an aurora in which a magnetic substorm is possibly present.  The 
maximum thickness of the oval begins to increase as the substorm begins and intensi-
fies.  The maximum thickness of the oval decreases as the substorm subsides. There-
fore, a sequence of Type2 aurora images could be identified as a substorm by tracking 
the maximum thickness of the oval from frame to frame.  From the locations at which 
the thickness peaks in the oval thickness plots, the location and the movement of the 
storm are traced. 

                     
                                               (a)                                                  (b) 

 
(c) 

Fig. 7. Illustration of the computation of the aurora oval thickness for Type2 aurora 
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4.3   Determination of Type3 Aurora 

In a Type3 aurora image, the night side of the aurora is visible and most of the day 
side of the aurora is not visible.  The edge image of a typical Type3 aurora usually 
consists of one closed curve with a large and wide concavity as shown in Fig. 8 (b).  
The method used to identify a Type3 aurora is given below. 

    
               (a)                                  (b)                                     (c)                                    (d)    

Fig. 8. Illustration of the determination of Type3 aurora:  (a) Aurora image, (b) Edge image, (c) 
Convex hull of the edge image, and (d) Minimum bounding rectangle 

Step 1. The length of the convex hull edge that bridges the widest concavity is 
determined.  The hull edge for the edge image in Fig. 8 (b) is given in Fig.8 (c). 

Step 2. The extent of the aurora oval in a direction of the hull edge determined in 
Step 1 is found.  The algorithm that finds the minimum bounding rectangle given in 
Section 3.4 is used for this purpose.  This is illustrated in Fig.8 (d). 

Step 3.  If the ratio of the length of the hull edge in Step 1 to the extent determined in 
Step 2 is greater than a predetermined threshold, then the image is taken as a Type3 
aurora image. 

5   Simulation Results 

Precision and recall [7] are used in a content-based retrieval system to measure the 
performance of the retrieval.  Precision is the ratio of the number of the relevant im-
ages retrieved (Nr) to the total number of images retrieved (Nt).  Recall is the ratio of 
the number of the relevant images retrieved (Nr) to the total number of relevant im-
ages in the database (Nd). 

Forty sample aurora images, ten for each type of aurora including the standard au-
rora, are analyzed to obtain the parameters for the decision of types.  For Type1 auro-
ra, the ratio of the depth of the concavity to the length of the side of the minimum 
bounding rectangle of the inner boundary that is roughly oriented in the direction of 
the concavity is found to be greater than 0.35.  For Type2 aurora, the value of the 
thickness measured in pixels is found to be greater than 45.  For Type3 aurora, the 
ratio of the length of the hull edge that bridges the widest concavity to the extent of 
the minimum bounding rectangle in the direction of the hull edge is found to be great-
er than 0.65. 
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A database of 129 images, which does not include the 40 sample images used to 
derive the threshold values of the parameters for the classification purpose, was cre-
ated.  There are 45 Type1, 27 Type2, and 37 Type3 aurora images.  Some of the aurora 
images belong to two types.  These images are from the time period 1997 to 1999, 
which are used in the experiment by Cao et al. [8] The database is searched for the 
automatic retrieval of each type of aurora using the approach described previously.  
Table 1 shows precision and recall of Type1, Type2, and Type3 aurora retrieval. 

Table 1. Precision and recall of three types of aurora 

Precision Recall 
 

Nr Nt Nr/Nt Nr Nd Nr/Nd 

Type1 42 42 100% 42 45 93.3% 

Type2 23 26 88.5% 23 27 85.2% 

Type3 37 37 100% 37 37 100% 

A study of the misclassified images reveals that the misclassification was mainly 
due to poor preprocessing. It is possible to achieve better accuracy by improving the 
segmentation and preprocessing steps. In conclusion, the feasibility of building a 
content-based image retrieval system based on the hierarchical representation is  
demonstrated. 

6   Conclusion 

In this paper, we have presented the content-based retrieval system for aurora images.  
The system utilizes the graph/tree hierarchical representation obtained from the boun-
dary based image segmentation and representation system and extracts various geo-
metric features for the purpose of classification.  Those features include general shape 
attributes of a curve, the convex hull, and the minimum bounding rectangle of an 
object. The experimental results have proven that the hierarchical representation sup-
ports the fast and reliable computation of several geometric features and those geo-
metric features extracted directly from the hierarchical representation are useful for 
content based image retrieval and also for a wide range of image interpretation appli-
cations. Other applications such as shape matching under rotation and scale changes 
and recognition of the license plate can be found in [4]. 
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Abstract. An improved method for the lossy compression of the AVIRIS

hyperspectral images is proposed. It is automatic and presumes blind

estimation of the noise standard deviation in component images, their

scaling (normalization) and grouping. A 3D DCT based coder is then

applied to each group to carry out both the spectral and the spatial

decorrelation of the data. To minimize distortions and provide a suffi-

cient compression ratio, the quantization step is to be set at about 4.5.

This allows removing the noise present in the original images practically

without deterioration of the useful information. It is shown that for real

life images the attained compression ratios can be of the order 8 . . . 35.

Keywords: remote sensing, hyperspectral images, noise estimation, noise

cancellation, image compression, decorrelation.

1 Introduction

Hyperspectral imaging has gained wide popularity in recent two decades [1] [2].
Remote sensing (RS) hyperspectral images (HSI) as those ones formed by the
AVIRIS, HYPERION, CHRIS-PROBA and other sensors are characterized by
large amount of data [1]-[3]. Thus, their compression for transferring, storage,
and offering to users is desirable.

Even the best lossless coders provide a compression ratio (CR) not larger
than 4 for such data [3], [4], and this is often not appropriate. Therefore, the
application of the lossy compression becomes necessary [3], [5]-[8]. There are
many methods of HSI lossy compression already developed. To be efficient, these
methods have to exploit both the sufficient spectral (inter-channel) and spatial
correlation of the data inherent for HSI [2]. This is usually done by carrying
out the spectral decorrelation first which is followed by reducing the spatial
redundancy.
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The known methods employ various mathematical tools including the vector
quantization [9], the principal component analysis [10], the orthogonal trans-
forms [11] and combined approaches where similar transforms (like 3-D wavelets
or 3-D JPEG) are used for the spectral and the spatial decorrelation of the data
[12]. Whilst the independent and the principal component analysis (ICA and
PCA) methods have been basically recommended for the spectral decorrelation
of bands, other orthogonal (different wavelet and discrete cosine) transforms
have been mainly exploited for decreasing the spatial redundancy in HSI. This
is explained by the fact that the ICA and the PCA techniques are more common
in classification based on spectral features, whilst DCT and wavelets are put into
basis of the modern standards JPEG and JPEG2000 used for 2-D data (image)
lossy compression [13], [14].

An important item in the lossy compression of HSI is to take into account
the fact that the original images are noisy and the signal-to-noise ratio (SNR)
is considerably different in different sub-band images [15]. Then, if losses mainly
relate to the noise removal (image filtering), such lossy compression can be useful
in two senses. First, the data size reduction is provided. Second, images are
filtered [16] and this leads to a better classification of the decompressed HSI.
Note that similar approaches have been considered in astronomy [17] and it has
been demonstrated that the lossy compression under certain conditions does not
lead to the degradation of object parameters measurements for the compressed
images.

In general, there are two options in compressing AVIRIS and other hyperspec-
tral data. One option is to compress the radiance data and the other variant is
to apply coding to the reflectance data. Below we considered the latter approach
since it has been shown in [18] that it leads to smaller degradations.

Two basic requirements are to be satisfied in the lossy compression. The
statistical and spatial correlation characteristics of the noise are to be carefully
taken into consideration to introduce minimal losses in the image content [19],
[20]. Besides, it is desirable to carry out the compression in an automatic manner,
i.e., in a non-interactive mode. Note that a provided CR depends on both the
noise level (the type and the statistical characteristics) and the image content
[19], [21]. The requirement to increase the CR as possible remains important as
well.

Fortunately, there exist methods for the blind evaluation of the noise statistics
[22], [23]. Methods that operate in the spectral domain are able to evaluate
the variance of additive i.i.d. noise quite accurately even if the image is rather
textural [22], [25], [27]. However, these methods produce biased estimates in cases
of the spatially correlated noise. The estimates might be considerably smaller
than true values of the noise variance. Note that the noise in AVIRIS images is
not i.i.d. [23].

The aforementioned properties of the estimates of the noise statistics are taken
into consideration in design of the modified method for the automatic lossy
compression of the AVIRIS images. In fact, below we show how it is possible to
improve the performance of the method earlier proposed in [16]. The positive
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(a) (b)

Fig. 1. Noisy (a) and compressed (b) Frisco images

effect is provided due to the specific normalization of the sub-band images before
their compression and due to the larger size of the groups composed. Besides,
we consider in more detail how the coder parameters are set.

2 Lossy Compression of One-Channel Image

The lossy compression of one-channel noisy images has certain peculiarities.
One of them is the noise filtering effect [24]. This effect is positive in the sense
of improving the image quality and enhancing its classification [25] but only
under the condition that the compression ratio (coder parameters) is adjusted
to the noise type and statistics. Consider a simple example. The mixed additive
and signal dependent i.i.d. Gaussian noise has been added to the gray-scale test
image Frisco (Fig. 1 a)) where the additive noise with the variance σ2 = 64 was
predominant (the variance of the signal dependent noise σ2 = kItr

ij , k = 0.1, Itr
ij

denotes a true value of ij-th pixel).
The noisy image has been subject to the lossy compression by the DCT based

coder AGU [26] controlled by the quantization step (QS). QS was set equal to
βσ with β from 0.5 to 6. Two curves have been obtained (Fig. 2), PSNRor(QS)
and PSNRnf(QS) where the former is determined for the decompressed and the
original (noise added) images and the latter one for the decompressed and the
noise-free images. The curve PSNRor(QS) is monotonous. PSNRor decreases
with the larger QS. The curve PSNRnf(QS) exhibits a maximum that is ob-
served for QS = 4.5σ = 36. Two equal values of PSNRnf (e.g., equal to 32dB)
take place for QS1 = 3.5σ = 28 and QS2 = 6σ = 48. In the first case, a less effi-
cient noise suppression but a better edge-detail preservation are observed (Fig.
1 b)) and vice versa. Thus, setting QS2 ≈ 4.5σ can be a good choice.

In practice, the standard deviation σ can be unknown in advance. Then its
value σ̂ should be estimated for an image to be compressed and the quanti-
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Fig. 2. PSNRor(QS) and PSNRnf (QS) for the one-channel Frisco test image

zation step is to be set as QS = 4.5σ̂. Since the estimate σ̂ is not absolutely
accurate, some oversmoothing or undersmoothing of the noise due to the lossy
compression might take place. The undersmoothing that is observed for σ̂ < σ
is less dangerous, but then the attained compression ratio is smaller than can
be reached for QS = 4.5σ.

The existence of the image-dependent noise in AVIRIS-images and the noise-
dependent lossy compression is demonstrated in Fig. 3. In Fig. 3, a) there is a
sample of a noisy channel from the image Cuprite, band 2. Then the band is
compressed/decompressed with the quantization step QS(n) = 4.5σ̂n where n is
the index for a sub-band. The reconstructed band is in Fig. 3, b). The denoising
is now well observed. In Fig. 3, c) there is the band 30 from the Cuprite image
having high SNR. In turn, Fig. 3, d) demonstrates the decompressed image. As
seen, no distortions (losses) are observed visually. Thus, we can state that for the
sub-bands with rather low SNR the proposed approach to the lossy compression
provides efficient denoising whilst the useful information contained in the sub-
band images characterized by a high SNR is preserved well.

AVIRIS images have different contents depending on the area under imaging.
In Fig. 4 two bands from the Moffett Field image are shown. On left, there are
the original images and on right, there are the compressed/reconstructed images.
On top row, the band 128 is shown, on bottom row, the band 223 is shown. Com-
pared to the Cuprite image in Fig. 3, there are more tiny details in the Moffett
Field image. From the compression point of view, the more complex structures
mean a lower compression ratio. From the denoising point of view, the proposed
approach is operating similarly to a less detailed image: the quantization step is
still determined from the noise characteristics only.
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(a) (b)

(c) (d)

Fig. 3. The noisy sub-band image (Cuprite, channel 2): original (a) one and the image

after compression/decompression (b). The sub-band image with high SNR (Cuprite,

channel 30), original (c) one and the image after compression/decompression (d).

3 Improved Method for Compressing AVIRIS Data

In the earlier study [16], two methods of the HSI automatic lossy compression
have been proposed. For both of them, the first stage is the blind evaluation
of the additive noise variance σ̂2

n, n = 1, . . . , 224 (the AVIRIS imager has 224
sub-bands). The method called M1 in [16], presumes a component-wise lossy
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compression of the data with setting the quantization step individually for each
sub-band image as QS(n) = 4.5σ̂n. This method is simple but it in no way
exploits the inter-band correlation inherent for hyperspectral data [2]-[6]. Note
that the accounting for the spectral redundancy of HSI results in a considerable
increase of CR. Taking this into account, a method called M2 has been also
proposed in [16]. For this method, the grouping of sub-band images is to be
carried out using two main rules. The first rule is that each the k-th group
should contain 4, 8, or 16 sub-bands. The second rule is that the grouping is
started from the first sub-bands and is performed depending upon the variation
of the noise variance. The main condition checked is

σ̂2
n,k max

σ̂2
n,k min

≤ 2 (1)

where n ∈ Gk, σ̂2
n,k max, σ̂2

n,k min are the maximal and the minimal noise vari-
ances, respectively, in a group Gk. For each k-th group, the quantization step
QSk = 4.5σ̂n,k min for compressing a given group of sub-band images. The com-
pression is carried out by the 3D AGU coder [16] based on the discrete cosine
transform that performs both the spectral and the spatial decorrelation of the
data. The smallest σ̂n,k min in a group is used for calculating QSk to avoid the
oversmoothing of the compressed images (see Section 2). Note that the method
M2 produces about twice larger CR than the method M1 with smaller intro-
duced distortions. Fig. 5 presents an example of the estimated noise standard
deviations σ̂n, n = 1, . . . , 224 and the set quantization steps for the methods M1
and M2. As it is seen, the group sizes for the method M2 are different and they
are small (4 sub-bands) for subsequent sub-bands with a high variation of σ̂n.

The method M2 described in [16] has a certain shortcoming. If a group size is
small (e.g., 4 sub-bands), this does not allow exploiting the spectral redundancy
in full extent (note that the spectral decorrelation in many modern coders in
HSI is carried out for all sub-bands [5] although such approach might lead to
undesirable effects [28]). The reason why for some groups their size is small is the
use of the condition given in Eq. 1. However, there is a quite simple opportunity
to overcome the limitations on the group size as well as the problems of the
variation of the noise variance and the sub-band image undersmoothing.

The idea is to make all σ̂2
n, n ∈ Gk equal to each other before the compression.

This can be easily done by the following normalization:

Inorm
ij,n =

Iij,n

σ̂n
, n = 1, . . . , 224 (2)

where Iij,n is an original image value at ij-th pixel of n-th sub-band. Such
normalization allows providing the additive noise variance in all images close to
the unity (with taking into account the accuracy of the blind estimation).

After the normalization given in Eq. 2, the lossy compression is applied to
the sub-band images collected into groups with the size Q > 4. For all these
groups, QS is the same and, since the standard deviation of the additive noise
in all images after the normalization becomes about 1.0, we recommend using



Improved Grouping and Noise Cancellation 267

(a) (b)

(c) (d)

Fig. 4. The noisy sub-band image (Moffett Field, channel 128): the original (a) one

and the image after compression/decompression (b). The sub-band image with lower

SNR (Moffett Field, channel 223): the original (c) one and the image after compres-

sion/decompression (d).

QS = 4.5. The values σ̂2
n, n = 1, . . . , 224 or, better, σ̂n, n = 1, . . . , 224 are coded

in a lossless manner and passed as side information to be used at the final stage
of the decompression.

The decompression has to be performed in the inverse order. After the first
stage, the normalized decompressed images are obtained. Then, they are scaled
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Fig. 5. Estimates of σ̂n for the Jasper Ridge images and QS(n) for compression meth-

ods M1 and M2

Table 1. The compression ratio (CR) for the method M2 [16] and the proposed method

(M3)

Hyperspectral Image CR for M2 CR for M3

16 sub-bands 32 sub-bands

Cuprite 20.68 31.30 34.17

Jasper Ridge 9.94 10.95 9.08

Lunar Lake 24.39 33.50 34.87

Moffett Field 8.95 9.58 8.01

by multiplying each sub-band image values by σ̂n taken from the side information
for the decompression.

Since the 3D AGU coder is based on the DCT, it is worth using the group size
proportional to the power of 2 to provide fast coding. These can be, e.g., group
sizes Q equal to 8, 16, or 32 (in the latest case, 224 sub-bands of the AVIRIS
data are divided into 7 groups).

The proposed method (M3) has been tested for four hyperspectral AVIRIS
images (QS = 4.5 for all groups, σ2 ≈ 1). We analyzed two cases: 16 and 32
sub-band images in each group. The obtained compression ratios are presented
in Table 1 above. It is seen that for 16 sub-bands in the group the compression
ratio increased for all four test images. The largest increase is observed for less
complex images, Cuprite and Lunar Lake (CR has increased by almost 50 %).
For images with more complex structure (Jasper Ridge and Moffett Field), CR
has increased by about 6 . . . 10%. If the number of sub-bands in the group is 32,
CR has increased (in comparison to the method M2) for images with a simpler
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structure but reduced for the images Jasper Ridge and Moffett Field. Thus, our
recommendation is to use 16 sub-bands in the group.

4 Conclusions

The modification of the DCT-based method for the lossy compression of the
hyperspectral AVIRIS data is proposed. Due to the proposed blind estimation
of the additive noise standard deviation and the image normalization with sub-
band grouping, the compression ratio (CR) has increased by 6 . . . 50% with
respect to the method designed earlier. The grouping of the bands remains image-
dependent: images with simple structures allow a higher number of bands in a
group. If there are more complex structures then the compression ratio may
reduce. Thus, the recommendation is to use a quasi-optimal number, namely 16,
of the bands in a group to remain in the safe side with respect to the compression.
The filtering effect is observed for sub-bands with low SNR whilst no visual
distortions take place for sub-bands with large SNR.
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Abstract. The paper introduces a novel methodology to find changes in

remote sensing image series. Some remotely sensed areas are scanned fre-

quently to spot relevant changes, and several repositories contain multi-

temporal image samples for the same area. The proposed method finds

changes in images scanned by a long time-interval difference in very dif-

ferent lighting and surface conditions. The presented method is basically

an exploitation of Harris saliency function and its derivatives for find-

ing featuring points among image samples. To fit together the definition

of keypoints and their active contour around them, we have introduced

the Harris corner detection as an outline detector instead of the simple

edge functions. We also demonstrate a new local descriptor by gener-

ating local active contours. Saliency points support the boundary hull

definition of objects, constructing by graph based connectivity detection

and neighborhood description. This graph based shape descriptor works

on the saliency points of the difference and in-layer features. We prove

the method in finding structural changes on remote sensing images.

Keywords: remote sensing, Harris function, change detection.

1 Introduction

Automatic evaluation of aerial photograph repositories is an important field of
research since manual administration is time consuming and cumbersome. Long
time-span surveillance or reconnaissance about the same area can be crucial for
quick and up-to-date content retrieval. The extraction of changes may facilitate
applications like urban development analysis, disaster protection, agricultural
monitoring, and detection of illegal garbage heaps, or wood cuttings. The ob-
tained change map should provide useful information about size, shape, or quan-
tity of the changed areas, which could be applied directly by higher level object
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analyzer modules [1], [2]. While numerous state-of-the art approaches in remote
sensing deal with multispectral [3], [4], [5], [6] or synthetic aperture radar (SAR)
[7], [8] imagery, the significance of handling optical photographs is also increas-
ing [9]. Here, the processing methods should consider that several optical image
collections include partially archive data, where the photographs are grayscale
or contain only poor color information. This paper focuses on finding contours
of newly appearing/fading out objects in optical aerial images which were taken
with several years time differences partially in different seasons and in different
lighting conditions. In this case, simple techniques like thresholding the differ-
ence image [10] or background modeling [11] cannot be adopted efficiently since
details are not comparable.

These optical image sensors provide limited information and we can only
assume to have image repositories which contain geometrically corrected and
registered [12] grayscale orthophotographs.

In the literature one main group of approaches is the postclassification com-
parison, which segments the input images with different land-cover classes, like
arboreous lands, barren lands, and artificial structures [13], obtaining the changes
indirectly as regions with different classes in the two image layers [9]. We follow
another methodology, like direct methods [3], [5], [5], [7], where a similarity-
feature map from the input photographs (e.g., a DI) is derived, then the feature
map is separated into changed and unchanged areas.

Our direct method does not use any land-cover class models, and attempts
to detect changes which can be discriminated by low-level features. However,
our approach is not a pixel-neighborhood MAP system as in [14], but a connec-
tion system of nearby saliency points. These saliency points define a connection
system by using local graphs for outlining the local hull of the objects. Consid-
ering this curve as a starting spline, we search for objects’ boundaries by active
contour iterations.

The above features are local saliency points and saliency functions. The main
saliency detector is calculated as a discrimative function among the functions
of the different layers. We show that Harris detector is the appropriate function
for finding the dissimilarities among different layers, when comparison is not
possible because of the different lighting, color and contrast conditions.

Local structure around keypoints is investigated by generating scale and po-
sition invariant descriptors, like SIFT. These descriptors describe the local mi-
crostructure, however, in several cases more succinct set of parameters is needed.
For this reason we have developed a local active-contour based descriptor around
keypoints, but this contour is generated by edginess in the cost function, while
we characterize keypoints of junctions. To fit together the definition of keypoints
and their active contour around them, we have introduced the Harris corner de-
tection as an outline detector instead of the simple edge functions. This change
resulted in a much better characterization of local structure.

In the following, we introduce a new change detection procedure by using
Harris function and its derivatives for finding saliency points among image sam-
ples; then a new local descriptor will be demonstated by generating local active
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contours; A graph based shape descriptor will be shown based on the saliency
points of the difference and in-layer features; finally, we prove the methods ca-
pabilities for finding structural changes on remote sensing images.

2 Change Detection with Harris Keypoints

2.1 Harris Corner Detector

The detector was introduced by Chris Harris and Mike Stephens in 1988 [15]. The
algorithm based on the principle that at corner points intensity values change
largely in multiple directions. By considering a local window in the image and
determining the average changes of image intensity result from shifting the win-
dow by a small amount in various directions, all the shifts will result in large
change in case of a corner point. Thus corner can be detected by finding when
the minimum change produced by any of shifts is large.

The method first computes the Harris matrix (M) for each pixel in the image.
Then, instead of computing the eigenvalues of M , an R corner response is defined:

R = Det(M) − k ∗ Tr2(M) (1)

This R charasteristic function is used to detect corners. R is large and positive
in corner regions, and negative in edge regions. By searching for local maximas
of a normalized R, the Harris keypoints can be found. Normalizing makes R
smoother and only major corner points are detected. R could also be used for
edge detection: |R| function is large and positive in corner and also positive but
smaller in edge regions, and nearly zero in flat regions. We used this function
in our later work. Figure 1 shows the result of Harris keypoint detection. On
Figure 1(b) light regions shows the larger R values, so keypoints will be detected
in these areas (Figure 1(c)).

2.2 Change Detection

The advantage of Harris detector is its strong invariance to rotation and the
R characteristic function’s invariance to illumination variation and image noise.
Therefore it could be used efficiently for change detection in airborne images. In

(a) Original (b) R function (c) Keypoints

Fig. 1. Operation of Harris detector: Corner points are chosen as the local maximas of

the R characteristic function
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(a) Older image (b) Newer image

Fig. 2. Original image pairs

these kind of images, changes can mean the appearance of new man-made ob-
jects, (like buildings or streets), or natural, environmental variatons. As image
pairs may be taken with large intervals of time, the area may change largely. In
our case the pieces of the image pairs was taken in 2000 and 2005 ( Figure 2). The
registration was performed manually by Hungarian Institute of Geodesy, Car-
tography and Remote Sensing, therefore we worked on image pairs representing
exactly the same area.

In our work we mainly focus on newly built objects (buildings, pools, etc. ).
There are many difficulties when detecting such objects in airborne images. The
illumination and weather circumstances may vary, resulting different colour, con-
trast and shadow conditions. The urban area might be imaged from different point
of view. Buildings can be hidden by other structures, like trees, shadows or other
buildings. These objects are quite various, which also makes the detection tough.

To overcome a part of the aformentioned difficulties, our idea was to use the
difference of the image pairs. As we are searching for newly built objects, we
need to find buildups, that only exist on the newer image, therefore having large
effect both in the difference image and the newer image.

First, we examined the usability of intensity based (Figure 3(a)) and edge
based difference map (Figure 3(b)).

Intensity based and edge based difference maps are calculated as follows:

Imod
diff = |Imod

old − Imod
new | (2)

where Iold and Inew means the older and newer pieces of the image pairs respec-
tively. The upper index mod refers to the basis of the modification: for example
in case of the edginess Imod

new = Iedge
new = edge(Inew).

When searching for keypoint candidates, we call for Harris detector. As writ-
ten before, the new objects have high effects both on the new and difference,
therefore we search for such keypoints that accomplish the next two criterias
simultaneously:

1. R(Imod
diff ) > ε1

2. R(Imod
new ) > ε2
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(a) Intensity based difference map (b) Edge based difference map

Fig. 3. Difference maps

(a) R-based difference map (b) Keypoint detection

Fig. 4. Logarithmized difference map and result of detection based on the R-function

R(...) indicates the Harris characteristic function (Eq. 1), ε1 and ε2 are thresh-
olds. It is advised to take smaller ε2, than ε1. With this choice the difference
map is preferred and has larger weight. Only important corners in the difference
map will be marked.

After performing keypoint candidate detection on intensity based and edge
based differency maps, we determined that both of them are too sensitive to illu-
mination change, so altering contrast and color conditions result the appearance
of false edges and corner points and the vanishing of real ones in the difference
map.

Therefore, we decided to use another metric instead of intensity and edginess
and redefine the difference map according to the new metric. The chosen met-
ric was the Harris R characteristic function. Therefore the difference map was
calculated as:

IR
diff = |Rold − Rnew| (3)

Modification of Inew looks as IR
new = Rnew.

The logarithm of difference map is in Figure 4(a). As R-function has lower
values, the image can be better seen, if the natural logarithm is illustrated instead
of the original map.
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The keypoint candidate detection method was the same as written before.
Results are in Figure 4(b). Keypoint candidates cover all buildings, and only a
few points are in false areas. The false candidates have to be filtered out with
further techniques, described in the next section.

3 Object Contour Detection with Saliency Functions and
Graph Theory

3.1 Detection of Local Structures

According to [16], local contours around keypoints are efficient, low dimensional
tool for matching and distinguishing, therefore this algorithm was now imple-
mented for Harris keypoint candidates to filter out the falsely detected points.
The main steps for estimating local structure characteristics:

1. Generating Harris keypoints for difference map (Section 2.2)
2. Generating the Local Contour around keypoints in the original image [17]
3. Calculating Modified Fourier Descriptor for the estimated closed curve [18]
4. Describe the contour by a limited set of Fourier coefficients [19]

As the specification shows, after detecting the Harris keypoint candidates (the
method is briefly summarized in Section 2.2), GVF Snake [17] was used for local
contour (LC) analysis. LC was computed in the original image, in a 20× 20 size
area, where the keypoint was in the middle. The generated LC assigns an individ-
ual shape to every keypoint, but the dimension is quite high. Therefore modified
Fourier descriptors were applied, which represents the LC at low dimension. We
have determined the cut-off frequency by maximizing the recognition accuracies
and minimizing the noise of irregularities of the shape boundaries and chose the
first twenty coefficients (excluding the DC component to remove the positional
sensitivity).

3.2 Matching with Local Contours

Our assumption was that after having the FDs for the keypoints, differences
between keypoint surroundings can be searched through this descriptor set. We
extended the MFD method to get symmetric distance computation as it is writ-
ten in [16]. By comparing a keypoint (pi) on the first frame and on the second
frame, Di represents the similarity value. If the following criteria exists:

Di > ε3 (4)

where ε3 = 3 is a tolerance value, than the keypoint is supposed to be a changed
area.

Results of the detection is provided in Figure 5(a).
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(a) LC matching with intensity map (b) LC matching with |R|-based map

Fig. 5. Result of Local Contour matching with different edge maps

3.3 New Edge Map

As it was also written in Section 2.2 intensity based edge maps are sensitive to
illumination changes. This problem also occurred when comparing local features:
changeless places were declared as newly built objects. Therefore we used the
Harris based feature map, denoted by Rold and Rnew in Section 2.2:

f|R|(x, y) = Gσ(x, y) ∗ |R(x, y)| (5)

Detected contours are smoother and more robust in case of the |R| function. We
benefit from this smoothness, as contours can be distinguished easier. However, as
there might be no real contour in the neighbourhood of the keypoints, AC-method
is only used for exploiting the local information to get low-dimensional descriptor,
therefore significance of accuracy is overshadowedby efficiency of comparison. The
detected points based on the |R|-function can be seen in Figure 5(b).

3.4 Enhancing the Number of Saliency Points

After selecting the saliency points (or keypoints) indicating change, we now have
to enhance the number of keypoints. Therefore we are looking for saliency points
that are not presented in the older image, but exists on the newer one. We call for
the Harris corner detection method again. By calculating Harris corner points
for older and newer image as well, an arbitrary qi = (xi, yi) point is selected if
it satisfies all of the following conditions:
(1.) qi ∈ Hnew
(2.) qi /∈ Hold
(3.) d(qi, pj) < ε4
Hnew and Hold are the sets of Harris keypoints generated in the newer and older
image, d(qi, pj) is the Euclidean distance of qi and pj , where pj denotes the point
with smallest Euclidean-distance to qi selected from Hold.

New points are searched iteratively, with ε4 = 10 condition. Here, ε4 depends
on the resolution of the image and on the size of buildings. If resolution is smaller,
than ε4 has to be chosen as a smaller value.

Figure 6 shows the enhanced number of keypoints.
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Fig. 6. Enhanced number of Harris keypoints

Fig. 7. Grayscale images generated two different ways: (a) is the R component of the

RGB colorspace, (b) is the u∗ component of the L∗u∗v∗ colorspace

3.5 Reconciling Edge Detection and Corner Detection

Now an enhanced set of saliency points is given, denoting possible area of
changes, which serves as the basis for building detection. We redefine the problem
in terms of graph theory [20].

A graph G is represented as G = (V, E), where V is the vertex set, E is the
edge network. In our case, V is already defined by the enhanced set of Harris
points. Therefore, E needs to be formed.

Information about how to link the vertices can be gained from edge maps.
These maps can help us to only match vertices belonging to the same building.

If objects have sharp edges, we need such image modulations, which emphasize
these edges as strong as it is possible. By referring to Figure 7(a) and 7(b), we
can see that R component of RGB and u∗ component of L∗u∗v∗ colorspace can
intensify building contours. Both of them operates suitably in different cases,
therefore we apply both.

By generating the R and u∗ components (further on denoted as Inew,r and
Inew,u) of the original, newer image, Canny edge detection [21] with large thresh-
old (Thr = 0.4) is executed on them. Cnew,r and Cnew,u marks the result of
Canny detection. (Figure 8(a) and 8(b))

The process of matching is as follows. Given two vertices: vi = (xi, yi) and
vj = (xj , yj). We match them if they satisfy the following conditions:
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(a) Edge detection on R component (b) Edge detection on u∗ component

Fig. 8. Result of Canny edge detection on different colour components

Fig. 9. Subgraphs given after matching procedure

(1.) d(vi, vj) =
√

(xj − xi)2 + (yj − yi)2 < ε5,
(2.) Cnew,...(xi, yi) = true,
(3.) Cnew,...(xj , yj) = true,
(4.) ∃ a finite path between vi and vj .
Cnew,... indicates either Cnew,r or Cnew,u. ε5 is a tolerance value, which depends
on the resolution and average size of the objects. We apply ε5 = 30.

These conditions guarantee that only vertices connected just in the newer edge
map are matched. Like in the lower right part of Figure 9 two closely located
buildings are separated correctly.

We obtain a graph composed of many separate subgraphs, which can be seen in
Figure 9. Each of these connected subgraph is supposed to represent a building.
However, there might be some unmatched keypoints, indicating noise. To discard
them, we select subgraphs having at least two vertices.

To determine the contour of the subgraph-represented buildings, we used the
aformentioned GVF snake method. The convex hull of the vertices in the sub-
graphs is applied as the initial contour.
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4 Experiments and Conclusion

Some results of the contour detection can be seen in Figure 10.
The algorithm was tested for a few registered image pairs and the results were

promising. The algorithm was able to find almost every changed building and to
filter out non-changed ones.

The main advantage of our method is that it does not need any building tem-
plate and can detect objects of any size and shape. The method has difficulties in
finding objects with similar colour to the background and sometimes one object
is described with more than one subgraphs. These problems need to be solved
in a forthcoming semantic or object evaluation step.

Harris characteristic function was used to determine changes between regis-
tered image pairs scanned with long time interval. The detected keypoint candi-
dates were then filtered and the number of remaining keypoints was enhanced by
saliency methods. A graph based representation was used to create initial contour
of changed objects, then GVF snake method generated the object boundaries.
Our experiments showed that saliency methods can be efficient tools when de-
termining changes. Our future works includes more evaluation and comparison
with other state-of-the-art algorithms.

Fig. 10. Results of the contour detection by GVS snake method. The initial contour

was the convex hull of the vertices in the subgraph representing the object.
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Abstract. In this paper, a regularized kernel locality preserving

discriminant analysis (RKLPDA) method is proposed for facial feature

extraction and recognition. The proposed RKLPDA comes into the char-

acteristic of LPDA that encodes both the geometrical and discriminant

structure of the data manifold, and improves the classification ability

for linear non-separable data by introducing kernel trick. Meanwhile, by

regularizing the eigenvectors of the kernel locality preserving within-class

scatter, RKLPDA utilizes all the discriminant information and elimi-

nates the small sample size (SSS) problem. Experiments on ORL and

FERET face databases are performed to test and evaluate the proposed

algorithm. The results demonstrate the effectiveness of RKLPDA.

Keywords: Locality preserving discriminant analysis, Kernel method,

Feature extraction, Face recognition.

1 Introduction

Discriminant analysis is a technique of finding a transformation which character-
izes or separates two or more classes by maximizing the inter-class diversity and
meanwhile minimizing the intra-class compactness. Representative discriminant
analysis methods include linear discriminant analysis (LDA) [1], locality preserv-
ing discriminant analysis (LPDA) [2], and their null space extensions, null space
LDA (NLDA) [3], null space DLPP (NDLPP) [4] and etc.. LDA based methods,
which dwell on estimating the global statistics, fail to discover the underlying
structure if the data lie on or close to a sub-manifold embedding in the high-
dimensional input space. LPDA based methods, as the discriminant analysis
extensions of locality preserving projections (LPP)[5], encode both the geomet-
rical and discriminant structure of the data manifold and are more powerful.
However, when applied to face recognition, they may suffer from the following
problems: (1) Due to the high dimensionality of the sample space and the lim-
ited training samples, LDA and LPDA always suffer from the well-known SSS
problem; (2) The discriminative information resides in both the principal and
the null subspaces of intra-class compactness matrix [6]. Nevertheless, NLDA
and NLPDA extract only that in the null subspace; (3) For C-class recognition

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 284–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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task, the number of features obtained by all the aforementioned methods has an
upper limit C − 1, which is often insufficient to separate the classes well.

Kernel methods [7] [8] [9], which provide powerful extensions of linear methods
to nonlinear cases by performing linear operations on higher or even infinite di-
mensional features transformed by a kernel mapping function, have been widely
researched. The kernel-based formulations of many linear subspace methods have
been proposed so far , including kernel PCA (KPCA) [10], kernel fisher discrim-
inant analysis (KFDA) [7], kernel class-wise LPP (KCLPP) [8] and etc.. Most of
these kernel-based methods outperform their corresponding linear cases for face
recognition. However, the kernel extensions of the discriminant analysis methods,
called kernel discriminant analysis methods, also suffer from the aforementioned
problems.

In this paper, we derive the kernel locality preserving discriminant analysis
(KLPDA) by introducing kernel trick to improve the classification ability of
LPDA on linear non-separable face images. To address the above problems,
a regularization procedure is then employed, by which the eigenvectors of the
kernel locality preserving within-class scatter matrix are weighted according to
the corresponding predicted eigenvalues, and finally discriminant features are
extracted in the regularized subspace spanned by the weighted eigenvectors. In
predicting eigenvalues, the small ones which are suspicious to sample noises are
raised and the zeros are set to a small constant. Through this procedure, the
entire space including the principal subspace and the null subspace is utilized to
extract the discriminant features, even the null space is highlighted. And also, the
regularized kernel locality preserving within-class scatter matrix is nonsingular,
hence the SSS problem is eliminated and the number of final features obtained
by RKLPDA is extended to n − 1, where n is number of training samples.

2 Kernel LPDA (KLPDA)

2.1 Schema of LPDA

LPDA tries to find a linear transformation to project the high-dimensional
dataset to a low-dimensional embedding, which preserves the local neighbor-
hood relationship of samples and meanwhile enhances the separability of sam-
ples. Given a set of N -dimensional face image samples X = {xi}n

i=1, xi ∈ �N×1

from C classes, the linear transformation A ∈ �d×n, where d is the reduced
dimensionality, can be obtained by maximizing an objective function as follows:

J(A) =

∑C
i,j=1(mi − mj)bij(mi − mj)T∑C

k=1
∑

yi,yj∈ωk,yi �=yj
(yi − yj)wk

ij(yi − yj)T
(1)

where yi = AT xi, mi = (1/ni)
∑

yk∈ωi
yk are the low-dimensional embedding and

class mean vector, ni is the number of samples in class ωi,
∑C

i=1 ni = n. The
weight matrices W = {diag([wk

ij ]
nk

i,j=1)}C
k=1 and B = [bij ]Ci,j=1 are constructed
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by the neighborhood relationships and labels of samples. Their components are
defined as

wk
ij =

{
exp(− ‖xi−xj‖2

2t2 ), xi ∈ NNp(xj) or xj ∈ NNp(xi), xi, xj ∈ ωk.
0, otherwise.

(2)

bij =

{
exp(− ‖ui−uj‖2

2t2 ), ui ∈ NNp(uj) or uj ∈ NNp(ui).
0, otherwise.

(3)

where parameter t is a suitable constant, ui = (1/ni)
∑

xk∈ωi
xk is the mean

vector of class i in input space, and NNp(·) denotes the p nearest neighbors.
The maximization problem (1) can be converted to solve a generalized eigenvalue
problem as follow:

(UHUT )A = λ(XLXT )A (4)

where H = E − B, L = D − W are Laplacian matrices, E and D are diagonal
matrices with their diagonal elements being the column or row(B and W are
symmetric) sums of B and W , respectively.

2.2 Derivation of KLPDA

Although LPDA is successful in many circumstances, it often fails to deliver good
performance when face images are subject to complex nonlinear changes due to
large poses, expressions, or illumination variations, for it is a linear method in
nature. In this section, we extend LPDA to its kernel formulation which is to yield
a nonlinear locality preserving discriminant subspace by combining the kernel
trick and LPDA. The image samples are primarily projected into an implicit
high-dimensional feature space, in which different classes are supposed to be
linearly separable, by a nonlinear mapping, φ : x ∈ �N �→ f ∈ F . Then the
LPDA is conducted in the high-dimensional feature space F . Benefit from the
Mercer kernel function, it is unnecessary to compute φ explicitly but compute
the inner product of two vectors in F with an inner product kernel function:
k(x, y) =< φ(x), φ(y) > .

For the same given dataset as in section 2.1, let Xφ and Uφ be the projections
of X and U in F , yi = AT xφ

i , mi = AT uφ
i be the representations of xφ

i and
uφ

i with linear transform A. Define the weight matrices in kernel space Wφ =
{diag([wφk

ij ]nk
i,j=1)}C

k=1 and Bφ = [bφ
ij ]

C
i,j=1 in the similar manner with those in

the input space

wφk
ij =

{
exp(− ‖xφ

i −xφ
j ‖2

2t2 ), xφ
i ∈ NNp(x

φ
j ) or xφ

j ∈ NNp(x
φ
i ), xφ

i , xφ
j ∈ ωk.

0, otherwise.
(5)

bφ
ij =

{
exp(− ‖uφ

i −uφ
j ‖2

2t2 ), uφ
i ∈ NNp(u

φ
j ) or uφ

j ∈ NNp(u
φ
i ).

0, otherwise.
(6)
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Unfortunately, we don’t know the explicit form of xφ
i and uφ

i in kernel space,
it is therefore impossible to compute Wφ and Bφ directly. Hence, the so-called
distance kernel trick is employed to solve this problem, which makes the distances
of vectors in kernel space be a function of the distance of input vectors, i.e.,

‖xφ
i − xφ

j ‖2 = 〈xφ
i − xφ

j , xφ
i − xφ

j 〉
= 〈xφ

i , xφ
i 〉 − 2〈xφ

i , xφ
j 〉 + 〈xφ

j , xφ
j 〉

= k(xi, xi) − 2k(xi, xj) + k(xj , xj) (7)

Define kernel matrices, KXX = [k(xi, xj)]ni,j=1, KUU = [k(ui, uj)]Ci,j=1, and
KXU = [k(xi, uj)]ni=1

C
j=1,expression (5) and (6) can be rewritten as

wφk
ij =

⎧⎪⎨⎪⎩ exp(−KXX
ii −2KXX

ij +KXX
jj

2t2 ),
xφ

i ∈ NNk(xφ
j ) or xφ

j ∈ NNk(xφ
i ),

xφ
i , xφ

j ∈ ωk.
0, otherwise.

(8)

bijφ =

{
exp(−KUU

ii −2KUU
ij +KUU

jj

2t2 ), uφ
i ∈ NNk(uφ

j ) or uφ
j ∈ NNk(uφ

i ).
0, otherwise.

(9)
Then, KLPDA is to maximize the following function

J(A) =

∑c
i,j=1(mi − mj)b

φ
ij(mi − mj)T∑c

k=1
∑

yi,yj∈ωk

yi �=yj

(yi − yj)w
φk
ij (yi − yj)T

=
AT UφHφ(Uφ)T A

AT XφLφ(Xφ)T A
(10)

where Eφ and Dφ are diagonal matrices with the diagonal entries being the
column or row (Bφ and Wφ are symmetric) sums of Bφ and Wφ, Hφ = Eφ−Bφ

and Lφ = Dφ − Wφ are Laplacian matrices.
Since any solution of (10), ai ∈ F , must lie in the span of all the samples in

F , there exist coefficients ψi = {ψij}n
j=1, such that ai =

∑n
j=1 ψijx

φ
j = Xφψi,

that is A = XφΨ . Thus, problem (10) can be converted to

J(A) =
ΨT (Xφ)T UφHφ(Uφ)T XφΨ

ΨT (Xφ)T XφLφ(Xφ)T XφΨ
=

ΨT KXUHφ(KXU )T Ψ

ΨT KXXLφ(KXX)T Ψ
(11)

For convenience, we call Sφ
b = KXUHφ(KXU )T , Sφ

w = KXXLφ(KXX)T , and
St = Sb + Sw the kernel locality preserving between-class,within-class, and total
scatter matrix respectively. So the problem of (11) is converted to solve the
following generalized eigenvalue problem

Sφ
b Ψ = λSφ

wΨ (12)

The solution of (12) is consist by the d leading eigenvectors of (Sφ
w)−1Sφ

b .
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3 Regularized KLPDA (RKLPDA)

Obviously, rank(Sφ
w) ≤ rank(KXX) ≤ n. If Sφ

w is full rank, i.e.,rank(Sφ
w) =

n, then Sφ
w is nonsingular and there will be no singularity problem when the

matrix (Sφ
w)−1Sφ

b is computed. Otherwise, if rank(Sφ
w) < n, where this is always

true in face recognition, the SSS problem will occur. For this case, eigenvalue
regularization (ER) scheme proposed in [6] is employed to Sφ

w. First, perform
the eigenvalue decomposition of Sφ

w, Sφ
w = ΦwΛwΦT

w, where Φw = {ϕw
i }n

i=1 is
the eigenvectors of Sφ

w corresponding to the eigenvalues Λ = {diag(λw
i )}n

i=1,
λw

1 ≥ · · · ≥ λw
r ≥ λw

r+1 = · · · = 0, r is the rank of the Sφ
w. As ER scheme, the

eigenspace of Sφ
w is decomposed into reliable face space FS = {ϕw

k }m
k=1, unstable

noise space NS = {ϕw
k }r

k=m+1, and null space ∅ = {ϕw
k }n

k=r+1 . The starting
point of noise region m is set by λw

m−1 = max{∀λw
k |λw

k < (λw
med) + μ(λw

med −
λw

r )}, where λw
med = median{∀λw

k |k ≤ r} is the point near the center of the
noise region, μ is a constant, in all experiments of this paper μ is fixed to be 1
for simple. Utilizing the spectrum model λ̂w

k = α/(k + β), the eigenvalues are
predicted as

λ̂w
k =

⎧⎨⎩λw
k , k ≤ m(facespace)

α/(k + β), m < k ≤ r(noisespace)
α/(r + 1 + β), r < k ≤ n(nullspace)

(13)

where the parameters α and β are given by letting λ̂w
1 = λw

1 and λ̂w
m = λw

m. Then
using the predicted eigenvalues to weight the corresponding eigenvectors, it has

Φ̃w = {ϕw
k /

√
λ̂w

k }n
k=1 (14)

To obtain more features, Sφ
t is adopted instead of Sφ

b in discriminant feature
extraction, since only no more than C−1 features will be obtained when utilizing
Sφ

b , while n− 1 features might be obtained when utilizing Sφ
t . The projection of

Sφ
t in the space spanned by the regularized eigenvectors is

S̃φ
t = (Φ̃w)T Sφ

t Φ̃w (15)

The transformation matrix is consisted of the d leading eigenvectors of S̃φ
t : Φt =

{ϕt
i}d

i=1.
Therefore, for a face image vector x, x ∈ RN×1, let its projection in kernel

space be xφ, then the discriminant features by the proposed RKLPDA method
is given by

y = AT xφ = (XφΨ)T xφ = (XφΦ̃wΦt)T xφ = ΦT
t Φ̃T

w(Xφ)T xφ = ΦT
t Φ̃T

wKXx (16)

where KXx = {k(xi, x)}n
i=1 is kernel function.

4 Experiments and Discussions

4.1 Face Databases and Image Preprocessing

In all experiments reported in this work, images are preprocessed following the
CSU Face Identification Evaluation System [11]. The ORL face database [12]



RKLPDA for Face Recognition 289

Fig. 1. Preprocessed sample images of the two databases: (a)ORL database; (b)FERET

database

and FERET face database [13] are used for testing. The ORL database contains
400 images from 40 individuals. The FERET database contains 14126 images
from 1199 individuals. From FERET database, a subset containing 1131 frontal
images from 229 individuals with at least 4 images per individuals, is selected
in this work. All the images are scaled to 32 × 32 pixels and represented by
1024-dimensional vectors. Fig. 1 shows the preprocessed sample images from the
two face databases.

4.2 Recognition Experiments and Discussion

In this section, the recognition performances of the proposed RKLPDA with
LDA [1], LPDA [2], KFDA [7] and KCLPP [8] are compared. In experiments,
cosine polynomial kernel function is chosen, and the parameters are set the same
as [14]. For all algorithms, we randomly select i (i = 2, 3, 4, 5 for ORL database
and i = 2, 3 for FERET subset) images of each individual for training and the
remaining images for testing. The nearest-neighbor classifier based on cosine
distance metric is used for classification. The recognition results from 20 runs
are given in Table 1 and 2. Also, an illustration of the recognition accuracies
against the number of features on ORL database for i = 5 is given in Fig. 2.

From Table 1 and 2, the proposed RKLPDA method consistently and re-
markably outperforms the other 4 methods, which validates the effectiveness
of the proposed method. In experiments on ORL, the kernel-based methods

Table 1. Recognition accuracy (%) and corresponding number of features on ORL

database

TrNum LDA LPDA KFDA KCLPP RKLPDA

2 75.5±2.62(39) 58.1±3.05(30) 78.0±2.47(39) 78.4±2.51(39) 79.1±2.55(39)

3 84.5±2.44(39) 77.5±2.10(35) 86.7±2.16(39) 86.0±2.79(39) 89.0±2.29(39)

4 90.5±2.10(39) 87.2±2.49(35) 91.9±1.90(39) 89.5±2.07(39) 94.2±1.62(39)

5 91.9±1.98(39) 91.4±1.85(35) 93.7±1.91(39) 92.6±1.59(39) 96.1±1.08(60)

Table 2. Recognition accuracy (%) and corresponding number of features on FERET

database

TrNum LDA LPDA KFDA KCLPP RKLPDA

2 68.5±1.74(30) 68.2±1.69(30) 68.4±1.64(228) 40.5±1.77(228) 74.3±1.68(80)

3 79.4±1.34(20) 79.4±1.51(20) 79.0±1.88(228) 58.3±1.97(457) 85.2±1.31(90)
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Fig. 2. Recognition accuracy (%) of different algorithms on ORL database

(KFDA and KCLPP) slightly outperform the corresponding linear methods
(LDA and LPDA), while in experiments on FERET, the performance of KCLPP
is dissatisfactory. This might be caused by the following two reasons: (1) Im-
proper kernel and kernel parameters are chosen; (2) Though KCLPP utilizes the
label information, it is not a discriminant analysis method in nature. In addi-
tion, as shown in Fig. 2, the LDA, LPDA, KFDA and KCLPP methods obtain
at most C − 1 discriminant features, while RKLPDA can obtain at most n − 1
discriminant features. Meanwhile, the recognition accuracies increase with the
increasing of number of samples, and RKLPDA methods achieves a relative good
and stable performance with a smaller number of features.

5 Conclusions

This paper presents a regularized kernel locality preserving discriminant analy-
sis (RKLPDA) method. Kernel trick is introduced to extend LPDA to its kernel
formulation. To address the singularity problem of kernel locality preserving
within-class scatter matrix and utilize the discriminative information in both
the principal and null subspace of kernel locality preserving within-class scatter
matrix, the eigencvectors are regularized according to the predicted eigenvalues,
which de-emphasizes the eigenvectors susceptible to samples noises by raising
the eigenvalues, and heavily emphasizes the null space which contains abun-
dant of discriminative information. Extensive experiments on ORL database
and FERET subset show that RKLPDA consistently outperforms other linear
and kernel methods, which indicates the effectiveness of the proposed method.
However, the performance of kernel-based methods diversifies with different ker-
nel functions and kernel parameters, so more attentions on kernel function and
kernel parameter choosing should be paid in the future work. Also, the regular-
ization strategy is a key point to be considered.
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An Appearance-Based Prior for Hand Tracking
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Abstract. Reliable hand detection and tracking in passive 2D video still remains
a challenge. Yet the consumer market for gesture-based interaction is expanding
rapidly and surveillance systems that can deduce fine-grained human activities
involving hand and arm postures are in high demand. In this paper, we present
a hand tracking method that does not require reliable detection. We built it on
top of “Flocks of Features” which combines grey-level optical flow, a “flock-
ing” constraint, and a learned foreground color distribution. By adding proba-
bilistic (instead of binary classified) detections based on grey-level appearance as
an additional image cue, we show improved tracking performance despite rapid
hand movements and posture changes. This helps overcome tracking difficul-
ties in texture-rich and skin-colored environments, improving performance on a
10-minute collection of video clips from 75% to 86% (see examples on our web-
site).1

1 Introduction

While reliable and fast methods to detect and track rigid objects such as faces and cars
have matured in the last decade, articulated objects–such as the human body and hand–
continue to pose difficult problems to recognition algorithms. The consumer demand
for gesture-based interaction, exemplified by the success of and anticipation for the
game platforms Wii and Project Natal, has brought about sensing modalities other than
color video, including acquisition of depth through active sensors. These are more ex-
pensive and less prevalent than video cameras. Particularly, human activity monitoring
for elderly care and surveillance applications has to rely on legacy sensors.

Articulated objects present such a difficult challenge because almost every aspect
of their characteristics can change: their orientation, size, and shape (silhouette), their
apparent color, and their appearance especially due to self-occlusion. No one image
cue can be expected to contain sufficient information for detection or tracking. Hence,
our approach to overcome these difficulties is to combine many image cues into a rich
feature vector that permits more reliable, multimodal hand tracking. We started with a
multi-cue method called “Flocks of Features” [8] (FoF) that combines grey-level LK-
feature tracking, a proximity constraint on the tracked features, and a learned fore-
ground color distribution. It can track fast movements and posture changes despite a
dynamic background. Still, tracking is difficult if the hand undergoes posture changes
and the background color is similar to the tracked object’s color and the background
contains high gradients to which the LK-features might attach. The hand’s appearance–
that is, all or part of its grey-level texture–should be taken into consideration for track-
ing as well. In this paper, we present a method that allows for fast calculation of a

1 http://www.movesinstitute.org/%7Ekolsch/paper241Video.wmv

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 292–303, 2010.
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Fig. 1. The appearance-based prior for select hand images

probability that an area’s appearance could be attributed to a hand. Features that have
strayed from the flock are then moved to areas of high color and appearance probabil-
ity. While a traditional FoF is agnostic of the object it is tracking except for color and
motion consistency, this improved FoF has knowledge of the object’s appearance.

To obtain this appearance-based probability, we trained a Viola-Jones-based detec-
tor [20] (VJ) on hands in arbitrary postures and then attempt hand detections at similar
scales as the tracked object. Yet, this achieves only poor performance: hands are too var-
ied in appearance for reliable detection. The main innovation of this paper is a method
that utilizes incomplete detections to make predictions about the presence of a hand.
Incomplete detections are areas that successfully passed some but not all VJ cascades.
Scores obtained from incomplete detections are integrated over scale and space to yield
a prior probability per pixel (see Fig. 1). This image cue is largely orthogonal to color
and optical flow, hence providing new information onto which the tracking decision can
be based.

The paper is organized as follows. We first discuss the background against which this
research has been conducted, including related work. We then present the method to
calculate the prior in detail and explain how it is built into FoF tracking. The following
experiment section describes the test data and evaluation method, before we present and
discuss the results in the last two sections.

2 Background

We briefly discuss related work on object tracking, the traditional Flock of Features
(FoF) approach and methods for incomplete detections, or object priors.

2.1 Object Tracking

Rigid objects with a known shape can be tracked reliably before arbitrary backgrounds
in grey-level images [1,7]. However, when the object’s shape varies vastly such as with
gesturing hands, most approaches resort to shape-free color information or background
differencing [4,9,15]. Yet these approaches rely, for example, on a stationary camera
and are not robust to related unimodal failure modes. Multi-cue methods, on the other
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Fig. 2. The color segmentation is useless whereas the appearance probability correctly picks out
the hand in front of the walkway

hand, integrate two or more modalities such as texture and color information, allowing
recognition and tracking of fixed shapes despite arbitrary backgrounds [3]. The FoF
method also employs a multimodal technique to track hands even while changing shape.
Here, we add a third modality to further improve tracking.

Pyramid-based LK feature tracking [11,16] describes how to find and track small
image artifacts from frame to frame. If the feature match correlation between two con-
secutive frames is below a threshold, the feature is considered “lost.” (FoF makes use
of this feature tracker to track objects, which are larger than, and a composition of,
features.)

2.2 Flock of Features Tracking

Flock of Features tracking [8] (FoF) is motivated by the seemingly chaotic flight be-
havior of a flock of birds such as pigeons. No single bird sets the flock’s direction and
the birds frequently exchange relative positions in the flock. Yet, the entire flock stays
tightly together as a large “cloud” and is able to perform quick maneouvers and direc-
tion changes. Reynolds [13] found that this decentralized organization can be modeled
with two constraints: birds like to maintain a minimum safe flying distance to the other
birds, but desire not to stray too far from the flock.

LK features, tracked over time, exhibit “flight paths” similar to a flock of birds. In-
dividual features attach to arbitrary artifacts of the object, such as the fingers of a hand.
They can then move independently along with the artifact, without disturbing most other
features and without requiring the explicit updates of model-based approaches, result-
ing in flexibility, speed, and robustness. FoF features are constrained to stay a minimum
distance apart, yet no more than a maximum distance from their median. Features in
violation are repositioned to a conforming location that also has a high skin color prob-
ability (see Fig. 2), avoiding dense clusters that ignore parts of the object, and avoiding
tracking background artifacts by falling back on a second modality. The FoF can be
seen in the various figures and the video as clouds of little dots, their mean (and hand
location) as the big dot. Note that FoF tracking–with or without our extension–makes
no attempt at estimating the articulation of the hand’s digits (fingers) as model-based
approaches do (see for example [21,17]).

One of its strengths is also a weakness: FoF does not rely on an object model beyond
object color; the myriad of possible hand configurations does not have to be modeled



An Appearance-Based Prior for Hand Tracking 295

explictly. Here, we introduce a probabilistic appearance-based model that helps con-
strain the feature locations without placing restrictions on the possible hand configura-
tions and without incurring extraneous computational costs.

2.3 Object Priors

Whereas traditional object detection methods make a binary decision about the presence
of the object of interest, our goal is to estimate the probability for the object and to delay
the classification decision. Also, instead of a decision for rectangular areas, we need to
know the probability per pixel. Lastly, a test area implies a hypothesis about the object’s
scale, yet we would like an estimate irrespective of scale.

In principle, many object detectors are capable of reporting a score instead of a
thresholded classification. Take a PCA-based [19] or wavelet-based [12,14] object de-
scriptor, for example: it measures the distance of the observation from the training mean
in image- or feature space. A method is particularly suitable for articulated objects if the
different appearances are not aggregated and reduced to a mean. Instead, it must be able
to learn dissimilar appearances. For describing dissimilar objects, shape as prior prob-
ability has been applied successfully to segmentation and tracking, for example, in an
application of the powerful level-set methods [5]. However, appearance-based methods
are likely to outperform shape-based methods for natural objects. Yet, appearance-based
priors are only recently becoming a popular alternative. Most notable are the excellent
tracking and segmentation results of Leibe and Schiele et al. [10].

3 Method

Our method makes three improvements to FoF tracking. First, a posture-independent
hand detector is applied to the image at multiple scales, reporting unclassified scores
for hand presence. Second, a per-pixel hand probability is calculated from these multi-
scale scores of image areas. Third, this hand prior is integrated into the FoF tracking as
third image cue and observation modality. This section details each of these steps.

3.1 Hand Scores

If hands could be detected reliably in any posture, tracking by detection would be vi-
able. However, since hands are too varied in appearance, we avoid making the binary
classification decision and instead obtain a probabilistic score that directly aids track-
ing. To calculate a score for an image area to contain an object of interest (at a certain
scale and the proper position inside the area), we chose to modify Viola and Jones’ de-
tection approach [20] because a) it is very fast, permitting real-time image scanning, b)
it is inherently based on local image features, benefitting articulated objects (detect the
fingers, not the hand), c) its iterative bootstrapping training method is naturally suited
to increasing levels of confidence for object presence, and d) we had prior experience
with this method. We are currently evaluating other approaches to calculate this score.

The typical VJ cascade is built with AdaBoost [6] training and consists of
N stages, each of which is a linear combination of M weak classifiers. Weak classifiers
ht(x) ∈ {0, 1}make their decision based on intensity comparisons between rectangular
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image areas. During testing, stage i is passed successfully if the weighted sum exceeds
a stage threshold ti:

βi =
Mi∑
j=1

αijhij(x) ≥ ti (1)

All components including weak classifiers, weights and thresholds are learned during
the training stage.

A detection occurs when an image area passes all N stages. For our method, we also
consider incomplete detections, that is, when the image area only passes s stages and
gets rejected by stage s + 1. We calculate a score oi(x, y) for an image area of scale i,
centered at pixel (x, y) as follows. A completely successful detection has passed all N
stages, and hence is assigned the score o = s/N = N/N = 1. A partially successful
detection has passed s stages, s ∈ {0, 1, .., N − 1}, and is assigned the score o=(s+k)

N .
Without k, the score is proportional to the number of passed stages. To smooth this
step function, k is set to the degree of success within a stage, in the range from zero to
exclusive one, k ∈ [0; 1).

Considering only one stage, k is ideally set proportional to the sum of weights below
the threshold ti:

k =
βi − βmin

ti − βmin
, where βmin = min

A

∑
j∈A

αjhj(x) (2)

for any subset A of weights. Note that the weights αj can be positive or negative and
that the minimum achievable sum βmin need not be zero. We avoid computing all com-
binations of weights to find βmin and, instead, set it to a fixed value and ensure k ≥ 0.
This has worked well in practice without negative impact on the generated probability
image.

3.2 Formal Justification of Prior

For this score to reflect the probability of a hand, care has to be taken during training to
provide the AdaBoost algorithm with a representative set of negative training images
per stage. If this set is too uniform, then the resulting stage will not proportionally
dismiss a more diverse set of negative test areas. In other words, if the first few stages do
not typically discard test areas at the same rate as later stages, then the score obtained
from the first few stages will be artificially inflated. We trained a Viola-Jones-based
detector on hands in arbitrary postures and varied the negative training set to avoid such
artifacts, allowing us to obtain this appearance-based posture-independent score that an
area’s appearance could be attributed to a hand.

To aid in placing tracked LK-features, it is desirable to know a probability instead
of a score, to know this per pixel instead of per scanned area, and to be considerate of
areas scanned at the same center but at multiple scales. The next subsection details how
the scores obtained from incomplete detections are integrated over scale and space to
yield the prior probability.
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3.3 Per-Pixel Object Probability

VJ object detectors require that the actual classifier is scanned across the image, testing
rectangular areas at increments in x- and y-position. To detect an object at different
scales, either the image needs to be down-scaled or the detector upscaled, typically by
10-25%. After scanning, our modified detector returns one “score image” per scale, its
resolution equal to the number of area tests in the x- and y-directions.

An object will typically get detected at multiple adjacent positions and frequently
also at nearby scales. The traditional VJ detector heuristically post-processes these de-
tections to combine them into one. Similarly, we devised a way to combine incomplete,
rather than binary, adjacent detections. This has the effect of outlier removal and em-
phasis on actual detections. To this end, every score image is smoothed with a Gaussian.
Next, a grey-level morphology (dilation) spreads the point-wise detections to cover a
slightly larger area. The combination of the Gaussian covariance, the size of the mor-
phological structuring element, and the number of dilation repetitions should roughly
correspond to the size of the object of interest (the hand) within the rectangular VJ area.
We chose two configurations, one keeping the point detections rather confined (Oi

t),
and one “spreading” them out further (Oi

s, see Fig. 3 and Sec. 5). The resulting point-
symmetrical spread is appropriate for hands. Other objects, such as pedestrians, likely
benefit from a spread pattern in the shape of the object.

Thereafter, every value is squared to put more emphasis on almost-detections and to
devalue not-even-close incomplete detections (remember that the score value is between
zero and one). The score images are generally no larger than 160x120 pixels, hence,
these are rather quick operations.

Finally, every score image Oi
s/t is upscaled to the size of the original video frame

and combined with the score images at all resolutions to yield Ps/t. Since we have fairly
good knowledge of the expected scale of the hand in our application, we can constrain
the search to such scales and avoid combining scores from much-too-large and much-
too-small scales. The desired operation emphasizes detections at the same location in
nearby scales, without penalizing detections only at a single scale. Hence, we add the
scores, capping them at one. (A max operator would not emphasize, and multiplication

Fig. 3. Small vs. large “spreading” of incomplete detections
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would be low-score dominated.) This yields an estimate Ps/t(x, y) of a pixel belonging
to the hand, irrespective of scale:

Oi
s = γs(Di ⊗ G3×3,σ ⊕ S7×7)2 (3)

Oi
t = γt(Di ⊗ G3×3,σ ⊕ S5×5 ⊕ S5×5)4 (4)

Ps/t = min(1,
∑

i

↑ Oi
s/t) (5)

Di are the incomplete detections at scale i (skipping the image coordinates (x, y)), S is
an elliptical structuring element for dilation (⊕), G is the Gaussian, γ a constant factor,
and ↑ is the upscale operator.

3.4 Multimodal Integration

The hand appearance probability calculated as described above, together with the grey-
level optical flow with flocking constraint from the feature tracking, and the particular
hand color learned at initial hand detection make for three largely orthogonal image
cues that need to be combined into one tracking result. We first combine the color
and appearance cues into a joint probability map which is then used to aid the feature
tracking.

Preliminary experiments with the joint probability of color and appearance (using
their minimum, maximum, weighted average, and product) found that treating the two
probabilities as statistically independent distributions and multiplying them yielded the
best results: Phand = PcolorPs/t.

For fusion with the tracking information, we follow the same approach as with the
original FoF. If a feature is “lost” between frames because the image mark it tracked
disappeared or if it violated the flocking constraints, it is moved to a random area of
high appearance color probability (p > 0.5). If this is not possible without repeated
violation of the flocking conditions, it is chosen randomly. Hence, this improved FoF
can take advantage of the object’s appearance by relocating features to pixels that “look
like hand.” The result is an improvement to the feature re-localization method as the
previous approach could not distinguish between the object of interest and background
artifacts.

As with the original FoF, this method leads to a natural multimodal integration, com-
bining cues from feature movement based on grey-level image texture with cues from
texture-less skin color probability and object-specific texture. Their relative contribu-
tion is determined by the desired match quality for features between frames. If this
threshold is low, features are relocated more frequently, raising the importance of the
color and appearance modalities, and vice versa.

4 Experiments

We compared the performance of the traditional FoF tracking to two parameterizations
of FoF with appearance-based prior. We also investigated whether the appearance cue
could replace the color cue entirely. The features and color information were initialized
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in the same fashion for all configurations, through automatic detection of an “initial-
ization” posture (see [8]). We did not compare against the CamShift tracker [2] since
superior performance of traditional FoF tracking was shown already [8].

4.1 Video Sequences

We recorded a total of 16,042 frames of video footage in 13 sequences, over 10 minutes
in total, including five of the sequences from [8]. Each sequence follows the motions of
the right hand of one of three people, some filmed from the performer’s point of view,
some from an observer’s point of view. The videos were shot in an office, a lab, and a
hallway as well as at various outdoor locations in front of walkways, vegetation, walls
and other common scenes. The videos were recorded with a hand-held DV camcorder,
a webcam, and a digital still camera in video mode, then copied to our computer and
processed in real-time. A sample video (excerpts from sequence 12) is available from
our web site,2 showing FoF tracking (big and little dots), the color model backprojection
(in white) and the appearance prior. The appearance-based probability is shown in cyan,
overlaid over a red edge image to improve viewing. (The edges were not used for any
calculation.)

5 Results

Following the FoF evaluation [8], we consider tracking to be lost when the mean loca-
tion (the big dot) is no longer on the hand. The wrist is not considered part of the hand.
The tracking for the sequence was stopped then, even though the hand might coinciden-
tally “catch” the tracked feature points again. Since the average feature location cannot
be guaranteed to be on the center of the hand or any other particular part, measuring
the distance between the tracked location and some ground truth data is not an accu-
rate measure for determining tracking loss. We thus visually inspected and manually
annotated every video sequence.

Fig. 4 shows the time until tracking was lost, normalized to the length of the video
sequence. The rightmost bars are the average over all sequences. The appearance-added
FoF (with larger spread, see below) tracks the hand on average 13.9% longer than the
original FoF. As expected, appearance-based FoF can handle some cases where both
the flocking and the color modalities break down. Fig. 2 shows two screen shots from
sequence 12 where the hand is in front of a walkway and color segmentation does
not yield a good result. The hand appearance, however, is visibly distinct from the
background and our method produces a high probability for hand pixels. LK feature
tracking fails shortly after, and only re-localization on high appearance probabilities
allows the hand tracking to continue successfully.

5.1 Spreading Incomplete Detections

Incomplete detections are post-processed as explained in Sec. 3.3. We experimented
with two sets of parameters, shown in Eq. 3 (Oi

s, larger spread) and 4 (Oi
t smaller

2 http://www.movesinstitute.org/%7Ekolsch/paper241Video.wmv

http://www.movesinstitute.org/%7Ekolsch/paper241Video.wmv
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Fig. 4. Time until tracking loss: comparing the original FoF to FoF with appearance cue added,
normalized to the length of every video sequence. The rightmost bars are the average over all
sequences.

Fig. 5. A wider spread of incomplete detections outperforms too narrow an influence area

spread) to test whether a larger or smaller neighborhood of higher appearance probabil-
ities would yield better results. Fig. 5 shows the tracking length on the same sequences
as above and their average.

Spreading incomplete detections only a small amount in fact hurts the performance
by, on average, 6.9% (70.48%) compared to the original FoF (75.68%, see Fig. 4).
Whereas spreading the incomplete detections to a larger area (Eq. 3) improves tracking
by 22.3% over the small spread, or 13.9% over original FoF tracking. Small-spread
suffers from poor performance early on in sequence 10. Not counting this sequence, its
performance would go up to 77.74%, which is better than original FoF tracking but still
not as good as with a wider spread.

5.2 Appearance versus Color

One might consider replacing the color cue entirely with the appearance-based proba-
bility. However, as Fig. 6 illustrates, the performance suffers significantly, whether with
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Fig. 6. Contribution of appearance versus color. Shown are the averages over all sequences.

or without a larger “spread.” One notes also that spreading incomplete detections with-
out combining with the color probability exhibits even worse performance, and only in
the combination into a three-cue versus a two-cue tracker does the appearance-based
FoF tracker’s full potential get realized.

6 Discussion

Most of the performance improvement can be attributed to the appearance cue providing
useful information when the color segmentation fails and considers nearly every pixel
as skin-colored. If LK features are lost or in violation of the flocking constraints during
those cases, the appearance cue limits the placement of re-located features to likely
hand pixels, instead of landing on background artifacts that happen to be skin-colored.
The color modality generally fails if the tracking initialization is poor (no good match
between observed hand location and mask), and if extensive camera motion changed
the composition of the background color.

A wider spread considers rather more than fewer pixels of hand appearance, due to
the imprecise segmentation achieved. Hence, the color cue is often still very important,
particularly with very cluttered backgrounds in which the hand detection returns rather
high scores. Given these considerations, failures most frequently occur when the hand
posture changes in front of skin-colored, cluttered backgrounds.

Appearance on its own is currently an inferior cue to color. If a good color histogram
is learned during tracking initialization, it provides an excellent and very precise cue
for which pixels belong to the hand and which do not. As articulated object detection
improves, we expect the appearance cue to become more important. Equally, segmen-
tation during detection (e.g., [10,18]) can supply probabilistic segmentation with better
resolution than Eq. 3-5, in turn improving the value of the appearance cue.

Traditional FoF tracking favors objects with more distinct and more uniform color.
Tracking with this extenion to FoF eccels in performance if the object has a distinct
appearance.

7 Conclusions

The power of the traditional FoF tracking lies in its combination of two image cues
so that it can continue to track successfully even if only one “constancy” assumption
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is violated. Our improved approach integrates three image cues, making it robust to
incorrect information from two modalities.

We demonstrated improved performance with an appearance-based prior on the
tracking of hands in videos without a static background. As an extension to Flock of
Features tracking it provides a third, orthogonal image cue that the tracking decision
can be based on. This makes it more robust to strong background gradients, back-
ground in a color similar to the hand color, and rapid posture changes. The resulting
tracking method is rather robust and operates indoors and outdoors, with different peo-
ple, and despite dynamic backgrounds and camera motion. The method was developed
for a real-time gesture recognition application and currently requires around 20ms per
720x480 video frame.

Despite the advantages of the chosen appearance-based prior, we are currently eval-
uating the performance of other methods including some for whole objects and some
parts-based approaches [18,10]. The integration of their results into this tracking frame-
work follows the same multimodal fusion approach as this paper’s contribution.

While the current interest in virtual and augmented reality as well as 3D technolo-
gies provides ample applications and need for good hand tracking, this method is not
limited to hands but likely also applicable to tracking of other articulated objects such
as pedestrians, for example, for surveillance applications.
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Abstract. An incremental approach to the discriminative common vec-

tor (DCV) method for image recognition is presented. Two different but

equivalent ways of computing both common vectors and corresponding

subspace projections have been considered in the particular context in

which new training data becomes available and learned subspaces may

need continuous updating. The two algorithms are based on either scat-

ter matrix eigendecomposition or difference subspace orthonormalization

as with the original DCV method. The proposed incremental methods

keep the same good properties than the original one but with a dramatic

decrease in computational burden when used in this kind of dynamic

scenario. Extensive experimentation assessing the properties of the pro-

posed algorithms using several publicly available image databases has

been carried out.

1 Introduction

Representing images in appropriate subspaces in order to dramatically reduce
the volume of the corresponding data to improve their discriminability is a com-
mon trend in many image recognition algorithms proposed to date [1, 2]. When
applied to very large images, these methods imply relatively high time and space
requirements as they are usually need non trivial numerical operations on large
matrices computed from a previously given training set.

In particular dynamic or interactive scenarios, image recognition algorithms
may require retraining as new information becomes available. New (labeled)
data may be then added to the previous training set so that the original (batch)
algorithm can be used but this involves prohibitive computational burden for
most practical applications. Instead, incremental subspace learning algorithms
have been proposed for basic algorithms such as Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDA) in order to alleviate these
requirements while keeping most of the performance properties of its batch coun-
terpart [3, 4, 5, 6, 7].

Subspace learning methods based on Discriminative Common Vectors (DCV)
have been recently proposed for face recognition [2]. The rationale behind DCV
� Work partially funded by FEDER and Spanish and Valencian Governments through
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Ingenio 2010 CSD07-00018.
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is close to LDA but is particularly appealing because its good performance be-
havior and flexibility of implementation specially in the case of very large di-
mensionalities [8, 2].

In this paper, incremental formulations corresponding to basic (batch) im-
plementations of the DCV method are proposed. The derived algorithms follow
previously published ideas about (incrementally) modifying subspaces [9,10] but
in the particular context of DCV. Both subspace projections and explicit vec-
tors are efficiently recomputed allowing the application of these algorithms in
interactive and dynamic problems.

2 Discriminant Common Vectors for Image
Characterization and Recognition

The DCV method has been recently proposed for face recognition problems
in which input data dimension is much higher than the training set size [2].
In particular, the method looks for a linear projection that maximizes class
separability by considering a criterion very similar to the one used for LDA-
like algorithms and also uses the within-class scatter matrix, Sw. In short, the
method consists of constructing a linear mapping onto the null space of Sw in
which all training data gets collapsed into the so-called discriminant common
vectors. Classification of new data can be then accomplished by first projecting
it and then measuring similarity to DCVs of each class with an appropriate
distance measure.

Let X ∈ Rd×M be a given training set consisting of M d-dimensional (column)
vector-shaped images, xi

j ∈ Rd, where i = 1, . . . , Mj refers to images of any of the
c given classes, j = 1, . . . , c and M =

∑c
j=1 Mj . Let Sw

X be their corresponding
within-class scatter matrix and let xj be the j-th class mean vector from X .

2.1 DCV through Eigendecomposition

Let U ∈ Rd×r and U ∈ Rd×n be matrices formed with the eigenvectors corre-
sponding to non zero and zero eigenvalues, computed from the eigenvalue de-
composition (EVD) of Sw

X where r and n = d− r are the dimensions of its range
and null spaces, respectively. The j-th class common vector can be computed as
the orthonormal projection of the j-th class mean vector onto this null space,
U U

T
xj or, equivalently as the residue of xj with regard to U . That is

xj
com = xj − UUT xj (1)

In both expressions, the mean vector xj may in fact be substituted by any other
j-class training vector [2]. Note that it is much easier and convenient to use U
rather than U , partially because in the context of image recognition usually r ! n.

These d-dimensional common vectors constitute a set of size c to which stan-
dard PCA can be applied. The combination of this with the previous mapping
gives rise to a linear mapping onto a reduced space, W ∈ R

d×(c−1). Reduced
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dimensionality discriminative common vectors (DCVs) can be then computed
as Ωj = WT xj . When new (test) data, x, is to be classified, it can get projected
as WT x and then appropriately compared to Ωj in order to be recognized.

Even after several improvements that can be applied [11,2], the computational
burden associated to this procedure is dominated by the eigendecomposition of
Sw

X and leads to a cost in O(�M3 + dM2), where � is a constant related to the
iterative methods used for EVD.

2.2 DCV through Orthonormalization

An alternative and more efficient way of computing an equivalent projection
requires the use of Gram-Schmidt orthonormalization (GSO) instead of EVD.

Let BX ∈ Rd×(M−c) be a matrix whose columns are given by difference vectors
xi

j − x1
j , where j = 1, . . . , c, and i = 2, . . . , Mj. It can be shown that the range

subspace of Sw
X and the subspace spanned by BX are the same. Therefore, a

mapping Θ ∈ R
d×r can be computed using the r base vectors obtained from

BX through GSO. This mapping can equivalently substitute the mapping U in
Equation 1 to compute the same common vectors.

The difference common vectors,

BX
com = [(x2

com − x1
com) . . . (xc

com − x1
com)] ∈ R

d×(c−1),

can now be computed and a linear mapping to a reduced space is obtained from
BX

com using GSO. The composition of this mapping with the previous one leads
to a linear mapping, Ψ , equivalent (but different in general) to the composite
mapping in the previous section, W . This mapping represents the same subspace
as W given that WWT = ΨΨT .

As in the previous case, the cost of obtaining the reduced mapping can be
neglected with regard to the cost of computing the projection Θ that amounts
to O(dM2).

3 Incrementally Computing Discriminative Common
Vectors

Both basic algorithms in the previous section have a first phase in which pro-
jections (U or Θ) are obtained in order to apply Equation 1. And a second one
in which a definitive mapping (W or Ψ) is obtained. From an algorithmic view-
point, the second phase mimics the first one at a much smaller scale in both
cases. Consequently, only details about the first phase will be given here.

Let X be as defined in Section 2 and let Y ∈ Rd×N be the currently available
training set (new incoming data) consisting of Nj vectors from each of the c
classes. And let Z = [X Y] ∈ Rd×(M+N).

3.1 Incremental DCV through EVD

Basic DCV method on Z would require eigendecomposing Sw
Z first in order to

use Equation 1 to compute the common vectors and go forward. To avoid this,
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Sw
Z must be decomposed into simpler parts that can be put in terms of eigende-

compositions Sw
X = UΛUT (from the previous iteration) and Sw

Y = V ΔV T (that
can be done straightaway as N ! M) along with their corresponding mean vec-
tors xj and yj. From the standard within-class scatter matrix definition we can
arrive at

Sw
Z = Sw

X + Sw
Y + SST (2)

which could be seen as a generalization of the decomposition in [9]. In this
expression, S ∈ Rd×c is a matrix whose columns are defined in terms of mean
vectors from X and Y as

√
MjNj

(Mj+Nj)
(xj − yj) for each class j.

To effectively arrive at a convenient eigendecomposition of Sw
Z , an orthonormal

basis, [U v] ∈ Rd×s (where s is the rank of Sw
Z ), spanning S and the centered

versions of X ,Y (that is, range spaces of Sw
X and Sw

Y ) needs to be obtained. The
unknown v ∈ R

d×(s−r) is computed by using the residual operator with regard to
U (as in Equation 1) of added subspaces (related to Y and S) and then applying
GSO to the composite residual set [(V −UUT V ) (S −UUTS)] (after removing
any zero vectors).

As [U v] only differs from the sought U ′ (in Sw
Z = U ′Λ′U ′T ) in a rotation, R,

we can now write

Sw
X + Sw

Y + SST = [Uv]R Λ′RT [Uv]T

and modify it to have instead:

RΛ′RT =
[
Λ 0
0 0

]
+
[
UT V ΔV T U UT V ΔV T v
vT V ΔV T U vT V ΔV T v

]
+
[
UTSST U UTSST v
vTSST U vTSST v

]
which constitutes a new eigenproblem that allows us to compute R and corre-
spondingly U ′ = [U v]R.

The above computation needs O(�(N3 + s3) + d(N2 + s2)) time and dom-
inates the cost of the whole incremental algorithm that will be referred to as
IDCV-EVD. This constitutes an improvement with respect to the correspond-
ing basic algorithm which would imply a computation time in O(�(M + N)3 +
d(M +N)2). Note that the benefit will be higher if the rank of the overall scatter
matrix, s, is reduced. This can be easily done by neglecting small eigenvalues in
the EVD decompositions used.

3.2 Incremental DCV through GSO

An incremental version of the GSO-based DCV is also possible by constructing
BY ∈ Rd×N , the difference vectors in Y with regard to the same samples as BX ,
namely as yk

j −x1
j , with j = 1, .., c, and k = 1, .., Nj .

In this case, GSO can be applied to BY starting with the orthonormal ba-
sis previously computed for BX , Θ, to add new vectors to complete an incre-
mented orthonormal basis, Θ′, that spans the whole difference set, [BX BY ] ∈
R

d×(M+N−c).
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As with IDCV-EVD, the computation of Θ′ dominates the cost of the whole
algorithm, which will be referred to as IDCV-GSO. In this case, the cost of the
GSO-based DCV algorithm can be cut from O(d(M +N)2) to O(dN2) if all new
samples are linearly independent.

4 Experiments and Discussion

A number of experiments have been carried out to assess the relative benefits of
the IDCV algorithms with regard to the direct methods using data in a range of
situations. In this work, 3 publicly available image databases have been consid-
ered. Images were previously normalized in intensity, scaled and aligned using
the position of eyes and mouth. Figure 1 shows some sample images and their ba-
sic characteristics as dimensionality (image size), number of classes (c), number
of objects (per class), and type of variability. More details about these databases
can be found in the corresponding references also given as part of Figure 1.

In particular, an experimental setup in which more training data becomes
available to the algorithm has been designed. For each database, the available
data has been split into 3 disjoint sets. The first two are test (20%) and initial
training set (30%), respectively and the remaining 50% is made available as
new training data in portions of N images per class. Starting from a random
permutation of the images, test and train blocks in the partition have been
shifted throughout all the database so that all images have been used as test after
each evaluation round. Moreover, the incremental data subset has been randomly
permuted after each shift to remove any kind of dependence on the order in
which data is made available to the algorithm. The results presented correspond
then to an average across the whole database along with corresponding standard
deviations.

name [ref] image size c size/c M N type
CMU-PIE [12] 120×160 68 56 [16,40] 4 expression, pose & light

JAFFE [13] 256×256 10 20 [6,14] 2 expression
Coil-20 [14] 128×128 20 72 [22,54] 4 pose

Fig. 1. Sample images from the 3 databases used in the experiments along with

corresponding details
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Fig. 2. Results obtained with the 3 databases, CMU-PIE, JAFFE and Coil-20, one

at each row. (a),(c),(e) Averaged accuracy vs accumulated training set size for DCV

and IDCV-EVD. Results with IDCV-GSO and DCV are identical. (b),(d),(f) Relative

CPU time of both IDCV methods with regard to corresponding DCV ones.

At each iteration, N new images per class are available. The IDCV algorithms
are then run using the previous M images. The basic DCV algorithm is also run
from scratch using the current M + N images. In this way, M values range
approximately from 30 to 80% while the value of N has been fixed for each
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database according to its global size (in the range from 6 to 10%). Particular M
and N values used are also shown in Figure 1.

The accuracy of the minimum distance classifier using DCVs in the projected
subspace has been considered [2]. Also, relative CPU time for each incremental
algorithm at each iteration with regard to the basic DCV algorithm has been
adopted to put forward the relative computational benefit of using incremental
versus batch algorithms. Both, classification and efficiency results are shown in
Figure 2.

Accuracy plots clearly show that there is not a significant difference between
incremental and batch classification results as expected. In the case of IDCV-
GSO, classification results are exactly the same as with DCV since this incre-
mental procedure is less prone to numerical errors. On the other hand, a small
decrease is observed in all cases when comparing IDCV-EVD to DCV due to
numerical inaccuracies when computing eigendecompositions. Take also into ac-
count that we could have fixed a more strict tolerance level in the numerical
procedures but this would have had an impact in the computation times. It is
worth noting that with our current implementation, the observed degradation
in performance is kept into an insignificant level as the training set is increased.
More interestingly, relative times plot in Figure 2 exhibit relative savings from
about 30% up to 95% of the time spent by the basic DCV algorithm. Obviously,
the relative CPU time decreases with M while N is kept fixed.

Several interesting facts can be put forward. First, the IDCV-GSO algorithm
gets significantly higher savings than the IDCV-EVD one in the first iteration
(smallest value of M). This situation is only partially kept for the smallest
database. On the contrary, IDCV-EVD is more efficient than IDCV-GSO (with
regard to its batch counterpart) for larger values of M . This behavior gets more
evident in the case of the largest database.

Both incremental algorithms are able to cut computational cost to 25% or less
of their corresponding batch algorithm. Preference to use one or another will de-
pend also on absolute computation times which in turn may depend on the
particular implementation. For example, in our unoptimized implementation,
GSO is roughly 5 times slower than EVD. With a more careful and efficient
implementation this situation could be turned upside-down [2]. Regardless of
computational cost, IDCV-EVD may lead to some additional benefits as it per-
mits controlling the size of the null space as in [15] which may help in increasing
the generalization ability of the incremental algorithm.

5 Concluding Remarks and Further Work

Incremental algorithms to compute DCVs and corresponding subspaces have
been proposed. The algorithms use incremental eigendecomposition and Gram-
Schmidt orthonormalization, respectively as in the original (batch) algorithms.
Dramatic computational savings are observed while performance behavior of
DCV is preserved.

Further work is driven towards the implementation of more general common
vector based subspace algorithms, using extended null space and kernels, in an
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incremental way along with extending the experimentation to other, more chal-
lenging truly dynamic scenarios. In particular, biometric recognition applications
with limited resources (i.e. mobile platforms) in which templates of different users
may need constant and frequent updates are the target applications.
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Abstract. Feature extraction and representation are critical in facial expression
recognition. The facial features can be extracted from either static images or dy-
namic image sequences. However, static images may not provide as much dis-
criminative information as dynamic image sequences. On the other hand, from
the feature extraction point of view, geometric features are often sensitive to the
shape and resolution variations, whereas appearance based features may contain
redundant information. In this paper, we propose a component-based facial ex-
pression recognition method by utilizing the spatiotemporal features extracted
from dynamic image sequences, where the spatiotemporal features are extracted
from facial areas centered at 38 detected fiducial interest points. Considering
that not all features are important to the facial expression recognition, we use
the AdaBoost algorithm to select the most discriminative features for expres-
sion recognition. Moreover, based on median rule, mean rule, and product rule
of the classifier fusion strategy, we also present a framework for multi-classifier
fusion to improve the expression classification accuracy. Experimental studies
conducted on the Cohn-Kanade database show that our approach that combines
both boosted component-based spatiotemporal features and multi-classifier fu-
sion strategy provides a better performance for expression recognition compared
with earlier approaches.

Keywords: Component, facial interest point, feature selection, multi-classifier
fusion, spatiotemporal features.

1 Introduction

A goal of facial expression recognition is to determine the emotional state, e.g. happi-
ness, sadness, surprise, neutral, anger, fear, and disgust, of human beings based on the
facial images, regardless of the identity of the face. To date, most of facial expression
recognition are based on static images or dynamic image sequences [1,2,3], where dy-
namic image sequences based approaches provide more accurate and robust recognition
of facial expressions than the static image based approaches.
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Facial feature representation in dynamic image sequences is critical to facial expres-
sion recognition. Generally, two sorts of features can be extracted, i.e. the geometric
features versus the appearance based features. Geometric features, often extracted from
the shape and locations of facial components, are concatenated by feature vectors to rep-
resent the face geometry. A typical geometric feature extraction procedure can be state
as follows: automatically detecting the approximate location of facial feature points in
the initial frame, then manually adjusting the points, and finally tracking the changes
of all points in the next frame. Most studies focused on how to detect and track motion
of facial components based on lips, eyes, brows, cheek through building a geometric
model. For example, Tian et al. [4] proposed multi-state models to extract the geomet-
ric facial features for detecting and tracking the changes of facial components in near
frontal face images. Kobayashi et al. [5] proposed a geometric face model described by
30 facial feature points to this purpose. Appearance features represent texture changes
of skin in the face, such as wrinkles and furrows. Some techniques, such as Gabor
wavelet representation [6], optical flow [7], independent component analysis (ICA) [8],
and local feature analysis (LFA) [9], are widely used to extract the facial appearance
features. For example, Kotsia et al. [10] proposed a grid-tracking and deformation sys-
tem based on deformation models and tracking the grid in consecutive video frames
over time. Donato et al. [11] compared the above techniques on analyzing facial ac-
tions of the upper and lower face in image sequences. Feng et al. [12] used local binary
patterns on small facial regions for describing facial features. However, the major lim-
itation of the geometric features is that they may be sensitive to shape and resolution
variations, whereas the appearance features may contain redundant information.

Some researches combine both geometric and appearance features for designing au-
tomatic facial expression recognition to overcome the limitation of the geometric and
the appearance based features. For example, Lanitis et al. [13] used the active appear-
ance models (AAM) to interprete the face images. Yesin et al. [14] proposed a method
to extract positions of the eyes, eyebrows and the mouth, for determining the cheek and
forehead regions, and then apply the optical flow on these regions, and finally feed the
resulting vertical optical flow values to the discrete Hopfield network for recognizing
expressions. Recent studies [15,16] have shown that the combination of geometric and
appearance based features can achieve excellent performance in face recognition with
robustness to some problems caused by pose motion and partial occlusion. However,
these methods are only based on static images, rather than dynamic image sequences.
Therefore, we limit our attention to the extension of the these methods to the dynamic
image sequence. To this end, we propose a framework for detecting facial interest points
based on the active shape model (ASM) [17] and then extracting the spatiotemporal fea-
tures from the region components centered at these facial interest points for dynamic
image sequences. Moreover, to reduce the feature dimensionality and select the more
discriminative features, the AdaBoost method [18] is used for building robust learning
models and for boosting our component-based approach.

The classifier design is another important issue in facial expression recognition. Most
of the facial expression recognition approaches use only one classifier. Some stud-
ies [19,20] have shown that combining the output of several classifiers will lead to an
improved classification performance, because each classifier makes errors on a different
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region of the input space and multiple classifiers can supplement each other. According
to our best knowledge, only few studies in facial expression recognition paid attention
to multi-classifier fusion. To utilize the advantage of the multi-classifier fusion, in this
paper, we also extend a framework of multi-classifier fusion based on decision rules to
facial expression recognition.

In this paper, we propose a novel component-based approach for facial expression
recognition from video sequences. Inspired by the methods presented in [15,21], 38 im-
portant facial interest regions based on prior information are first determined, and then
spatiotemporal feature descriptors are used to describe facial expressions from these ar-
eas. Furthermore, we use AdaBoost to select the most important discriminative features
for all components. In the classification step, we present a framework for fusing recog-
nition results from several classifiers, such as support vector machines, boosting, Fisher
discriminant classifier for exploiting the complementary information among different
classifiers. Extensive experiments on the Cohn-Kanade facial expression database [22]
are carried out to evaluate the performance of the proposed approach.

2 Boosted Component-Based Spatiotemporal Feature Descriptor

2.1 Facial Interest Points

In many earlier methods [1,2,23], fusion of geometric features and appearance features
can improve the performance of expression recognizers. Geometric features are usually
formed by parameters obtained by tracking facial action units or facial points’ variation.

It is well known that not all features from the whole face are critical to expression
recognizers. Yesin et al. [14] proposed to apply optical flow to regions based on posi-
tions of the eyes, eyebrows and the mouth. Zhang et al. [24] developed a framework
in which Gabor wavelet coefficients were extracted from 34 fiducial points in the face
image. In methods on scale-invariant feature transform (SIFT) [21], SIFT keypoints of
objects are first extracted from a set of reference images in order to avoid from comput-
ing all points in an image. It is thus found that the search of interest points or regions in
facial images is more important to component-based approach.

However, faces are different from other objects, in other words, important features
for facial expression are always expressed in some special regions, such as mouth, cheek
etc. Thus different from SIFT, our interest points detection is based on prior-experience.
In our paper, 38 facial points are considered, shown in Fig. 1(a).

The approach for detecting those interest points is critical to our approach. If con-
sidering accuracy, manual labeling facial points for face image is good for expression
recognizers. Unfortunately, this method costs much time and is not practical. It is well
known that some methods are proposed for detecting or tracking facial points, such as
AAM, ASM, and Elastic Bunch Graph Matching etc. After comparison, ASM [25] is
applied to detect the facial points.

Geometric information from the first frame is obtained by applying ASM as shown
in Fig. 1(a). Here, geometric models are trained from FRAV2D database [26] and MMI
database [27].
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Fig. 1. (a) Results of facial points detection (b) Components for calculating spatiotemporal
features

2.2 Component-Based Spatiotemporal Feature Descriptor

It is well known that feature extraction is critical to any facial expression recognition
system. After detecting interest points, the appearance feature is considered next in
our approach. Based on those facial interest points, the areas centered at these points
have more discriminative information as shown in Fig. 1(b). The size of each area is
32×32, it is observed that majority of features are focused on eyes and mouth. And
the regions near cheeks and forehead are also considered in our approach. If the size
of each area is too small, the features extracted from forehead, cheek, eyebrows have
too little discriminative information. In contrast, if too large, most areas near mouth and
eyes are overlapping too much, which would cause too much redundant information. In
our experiments (Sec. 4), we will show the influence of region sizes.

LBP-TOP (local binary pattern from three orthogonal planes) has been proposed for
motion analysis and shown excellent performance in the classification of expression
recognition [28]. Features extracted by this method describe effectively appearance,
horizontal motion and vertical motion from the image sequence.

We extend to use LBP-TOP to describe the spatiotemporal features of 38 compo-
nents, shown in Fig. 2. In Fig. 2, XY plane shows the appearance of each component,
XT plane shows the horizontal motion, which gives the idea of how one row changes
in the temporal domain, YT as well shows the vertical motion, which gives the idea
of how one column changes in the temporal domain. For LBP-TOP, it is possible to
change the radii in axes X, Y and T, which are marked asRX , RY and RT . Also dif-
ferent numbers of neighboring points are used in the XY, XT and YT planes, which are
marked as PXY , PXT and PY T . Using these notions, LBP-TOP features are denoted
as LBP-TOPPXY ,PXT ,PY T ,RX ,RY ,RT . After detecting each component, the LBP-TOP
histograms for each component are computed and concatenated into a single histogram
to represent the appearance and motion of the facial expression sequence. In our further
experiments, the radii in axes X, Y and T are set as 3; the numbers of local neighboring
points around the central pixel for all three planes are set as 8. In our case, we use CSF
(Component-based Spatialtemporal F eatures) for abbreviation.

The component detection of images with pose variation in a near-frontal view face
is a challenge to our present implementation, since the component extraction is based
on the first frame. For solving this problem, we use a simple solution to align face
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Fig. 2. Component-based spatiotemporal features

movement due to pose variation. For the first frame, ASM detects 38 facial interest
points to provide 38 components for LBP-TOP. To reduce the effects of pose variations,
ASM in the next frame detects the variation of eye coordinates. If the coordinates of
the eyes are changed at a large extent compared with the former frame, the ASM is run
again for providing new 38 facial components.

2.3 Boosted by AdaBoost

All components do not contain as much discriminative information as others for dif-
ferent expressions. It is not wise to use all information available in the image, but only
the most important areas in terms of distinguishing between subjects or events. On the
other hand, the dimensionality of the features extracted by CSF is quite high (38*59*3).
Therefore, it is important to reduce the dimensionality of these features.

In order to select the different discriminative features for different expression pairs,
we adopt AdaBoost and the concept of Intra-expression similarity and Extra-expression
dissimilarity. In other words, the learners are designed for every expression-pair with
an aim to learn more specific and discriminative features for each pair. Assume that the
training samples P and Q belong to the i-th and j-th class, respectively. The dissimilarity
of these samples is computed as

χP,Q = {χ2
P,Q(XY ), χ2

P,Q(XT ), χ2
P,Q(Y T )} (1)

and the class for AdaBoost is labeled as +1 if i = j, otherwise labeled as −1. Next
this dissimilarity and class information is fed into weak learners. Thus the AdaBoost
algorithm selects features for discriminating the i-th and j-th class. In the same way, the
features are learned for each expression-pair.



Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion 317

Here, the Chi square statistic was used as the dissimilarity measure of two LBP-TOP
histograms computed from the components:

χ2
P,Q =

L∑
i=1

(Pi − Qi)2

Pi + Qi
(2)

where P and Q are two CSF histograms, and L is the number of bins in the histogram.

3 Multi-classifier Fusion

We consider a C-class classification problem. A pattern described by CSF is, in general,
a p-dimensional vector X . It is associated with a class label which can be represented
by ωt ∈ {1 . . . , C}. Consider also the a posteriori probability function P (ωt = i|X)
represents the probability of the pattern X belonging to a given i-th class, given that X
was observed. It is then natural to classify the pattern by choosing the j-th class with
largest posteriori probability:

P (ωt = j|X) = max
i∈{1,...,C}

P (ωt = i|X) (3)

Some studies [19,20] show better classification can be obtained if multiple classifiers
are used instead of a single classifier. Consider that we have R classifiers (each repre-
senting the given pattern by a distinct measurement vector [19]), which are denoted as
Dk, k = 1, . . . , R, for the same pattern X . In the k-th single classifier, its outputs are
approximated by a posteriori probabilities P (ωt = i|X), i.e.

P (ωt = i|Dk) = P (ωt = i|X) + εi(X) (4)

where εi(X) represents the error that a single classifier introduces.
From Eqn. 4, we consider a classifier that can approximate the a posteriori proba-

bility function P (ωt = i|X), when εi(X) is small. According to Bayesian theory, the
pattern X should be assigned to the i-th class provided the a posteriori probability of
that interpretation is maximum:

Assign X → {ωt = j} if

P (ωt = j|X, D1, . . . , DR) = max
i∈{1,...,C}

P (ωt = i|X, D1, . . . , DR) (5)

Fig. 3. The structure of multi-classifier fusion
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For exploiting the complementary information among all classifiers, we investigated
three decision rules (mean rule, product rule, and median rule). Detailed derivation of
decision rules by Eqn. 5 and Bayesian theorem can be found e.g. in [19]. Assume that
all classifiers used are generally statistically independent, and the priori probability of
occurrence for i-th class model are under assumption of equal priors, the rule of multi-
classifier fusion is simplified to

Assign X → {ωt = j} if

P (ωt = j|X, Dk) = max
i∈{1,...,C}

DecisionRule
k∈{1,...,R}

P (ωt = i|X, Dk) (6)

As shown in Fig. 3, many popular classifiers, such as SVM, can output a voting vec-
tor which represents the voting numbers for each class. We denote V k

i , for the voting
number of i-th class from k-th classifier Dk.

These voting numbers are then converted to probabilities by applying the softmax
function

P k
i = P (ωt = i|X, Dk) =

exp(V k
i )∑C

i=1 exp(V k
i )

(7)

Using this transformation does not change the classification decision for a classifier;
moreover, it allows us to treat the classifier within Bayesian probabilistic framework.

4 Experiments

The proposed approach was evaluated with the Cohn-Kanade facial expression database.
In our experiments, 374 sequences were selected from the database for basic expres-
sions recognition. The sequences came from 97 subjects, with one to six expressions
per subject.

Coordinates of facial fiducial points in the first frame are determined by ASM, and
then the CSF features extracted from 38 facial components with fixed block size on
those points are concatenated into one histogram. Ten-fold cross validation method was
used in the whole scenario.

It was anticipated that the component size will influence the performance. Fig. 4
presents results using four block sizes with CSF. From this figure we can observe that
the highest mean performance (94.92%) is reached when the component size is 16×16,
which was then selected for the following experiments.

AdaBoost is used to select the most important slices, as described in Sec. 2.3. In
our experiments, the number of slices varies at 15, 30, 45, 60, 75, 90. The average
recognition accuracies corresponding to different number of slices are 90.37%, 91.98%,
94.12%, 93.32%, 93.05%, 92.25%, respectively. It is observed that the best accuracy
of 94.12% is obtained with 45 slices. Compared with the result in Fig. 4 at optimal
block size, the accuracy decreases by 0.8%, but the dimensionality of the feature space
is reduced from 38*59*3 (6726) to 45*59 (2655).

The six-expression classification problem was decomposed into 15 two-class prob-
lems. Therefore, each test sample is classified by 15 expression-pair sub-classifiers. In
multi-classifier fusion, 15 sub-classifiers as a whole were thought as an individual clas-
sifier Dk as shown in Fig. 3. After selecting the optimal component size, five different
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Fig. 4. Performance comparison (%) with features from different size of components

Fig. 5. Performance comparison (%) using AdaBoost on different slice numbers with multi-
classifier fusion (using median rule)

classifiers, i.e. three support vector machines (SVM) based on linear kernel, gaussian
kernel and poly kernel, a boosting classifier (Boosting) and a Fisher linear discriminant
classifier (FLD) were chosen as individual classifiers. These classifiers performed better
in our experiments than a Bayesian classifier and k-nearest neighbor classifier.

For boosting the performance of each individual classifier, three decision rules, i.e.
median rule, mean rule, and product rule, are investigated for multi-classifier fusion.
The average accuracies are 94.39%, 95.19%, and 94.39% for the mean, median and
product rule, respectively. Comparing with Fig. 4, the performance of multi-classifier
fusion is increased by 0.27% when using the median rule, while the two other rules
cannot boost the performance of individual classifiers for this dataset.

Fig. 5 lists the results for feature selection by AdaBoost on different number of slices
with multi-classifier fusion (using median rule). It can be observed that the average
performance gets the best rate (96.32%) with 45 slices.

Table 1 compares our methods: CSF, CSF with multi-classifier fusion (CSFMC),
Boosted CSF with multi-classifier fusion (BCSFMC), and some other methods, pro-
viding the overall results obtained with Cohn-Kanade Database in terms of the number
of people (PN), the number of sequences (SN), expression classes (CN), with different
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Table 1. Comparison with different approaches

Method PN SN SN Decision Rule Measure Recognition Rate(%)
[14] 97 - 6 - Five-fold 90.9
[29] 96 320 7(6) - Ten-fold 88.4
[30] 90 284 6 - - 93.66
[31] 90 313 7 - Leave-One-Subject-Out 93.8
[32] 97 374 6 - Ten-fold 91.44
CSF 97 374 6 - Ten-fold 94.92

CSFMC 97 374 6 Median rule Ten-fold 95.19
BCSFMC 97 374 6 Median rule Ten-fold 96.32

measures. It should be noted that the results are not directly comparable due to differ-
ent experimental setups, processing methods, the number of sequences used etc., but
they still give an indication of the discriminative power of each approach. From this ta-
ble, we can see that CSF obtained better result than block-based LBP-TOP that divided
face image into 8×8 overlapping blocks [32], with an increase of 3.48%. Additionally,
CSFMC and BCSFMC are slightly better compared to CSF. BCSFMC outperformed
all the other methods.

5 Conclusion

In order to boost facial expression recognition, we propose a component-based spa-
tiotemporal feature (CSF) to describe facial expressions from video sequences. In our
approach, facial interest points in an initial frame are detected by ASM that is robust
to errors in fiducial point localization. According to those interest points, facial com-
ponents are computed on areas centered at those points in a sequence, providing less
redundant information than block-based methods. Comparing with appearance and ge-
ometric approaches, our component-based spatiotemporal approach belongs to hybrid
methods with advantages from both. However, our method describes the dynamic fea-
tures from video sequences. Furthermore, for boosting CSF and reducing the compu-
tational cost of each classifier, AdaBoost is utilized to select the most discriminative
spatiotemporal slices from the facial components. Finally, we also present an approach
for fusing several individual classifiers based on mean, median or product rule.

In experiments on the Cohn-Kanade database we have demonstrated that the CSF de-
scriptors with multi-classifier fusion and AdaBoost feature selection lead to a promising
improvement in facial expression classification. In future work we plan to explore how
our approach could be adopted to very challenging problems including more severe
head pose variations and occlusion. Spontaneous facial expressions common in many
practical applications of facial expression recognition will also be studied.
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Abstract. Gender recognition is one of fundamental tasks of face im-

age analysis. Most of the existing studies have focused on face images

acquired under controlled conditions. However, real-world applications

require gender classification on real-life faces, which is much more chal-

lenging due to significant appearance variations in unconstrained sce-

narios. In this paper, we investigate gender recognition on real-life faces

using the recently built database, the Labeled Faces in the Wild (LFW).

Local Binary Patterns (LBP) is employed to describe faces, and Ad-

aboost is used to select the discriminative LBP features. We obtain the

performance of 94.44% by applying Support Vector Machine (SVM) with

the boosted LBP features. The public database used in this study makes

future benchmark and evaluation possible.

Keywords: Gender Classification, Local Binary Patterns, AdaBoost,

Support Vector Machines.

1 Introduction

Gender classification is a fundamental task for human beings, as many social
functions critically depend on the correct gender perception. Automatic gender
recognition has many potential applications, for example, shopping statistics
for marketing, intelligent user interface, visual surveillance, etc. Human faces
provide important visual information for gender perception. Gender classification
from face images has received much research interest in last two decades.

In the early 1990s various neural network techniques were employed to rec-
ognize gender from frontal faces [1,2], for example, Golomb et al. [1] trained a
fully connected two-layer neural network, SEXNET, which achieves the recog-
nition accuracy of 91.9% on 90 face images. Recent years have witnessed many
advances (e.g., [3,4]); we summarize recent studies in Table 1. Moghaddam and
Yang [5] used raw image pixels with nonlinear Support Vector Machines (SVMs)
for gender classification on thumbnail faces (12×21 pixels); their experiments on
the FERET database (1,755 faces) demonstrated SVMs are superior to other
classifiers, achieving the accuracy of 96.6%. In [6], local region matching and
holistic features were exploited with Linear Discriminant Analysis (LDA) and
SVM for gender recognition. On the 12,964 frontal faces from multiple databases
� Supported by the Visual Context Modelling (ViCoMo) project.

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 323–331, 2010.
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Table 1. Overview of recent studies on gender classification from face images

Data Set Approach
Study

Data Real-Life Public Feature Classifier
Performance

2002 [5] 1,755 No Yes raw pixels SVM 96.62%

2002 [10] 3,500 Yes No haar-like features Adaboost 79.0%

2005 [6] 12,964 No Yes local-region matching SVM 94.2%

2006 [7] 5,326 No Yes fragment-based boosting 91.72%

filter banks

2007 [8] 2,409 No Yes pixel comparisons Adaboost 94.3%

2008 [9] 500 No Yes raw pixels SVM 86.54%

2009 [11] 10,100 Yes No haar-like features probabilistic 95.51%

boosting tree

our work 7,443 Yes Yes boosted LBP features SVM 94.44%

(including FERET and PIE), local region-based SVM achieved the performance
of 94.2%. Lapedriza et al. [7] compared facial features from internal zone (eyes,
nose, and mouth) and external zone (hair, chin, and ears). Their experiments on
the FRGC database show that the external face zone contributes useful infor-
mation for gender classification. Baluja and Rowley [8] introduced an efficient
gender recognition system by boosting pixel comparisons in face images. On the
FERET database, their approach matches SVM with 500 comparison operations
on 20×20 pixel images. Mäkinen and Raisamo [9] systematically evaluated dif-
ferent face alignment and gender recognition methods on the FERET database.

Fig. 1. Examples of real-life faces (from the LFW database). (top 2 rows) Female;

(bottom 2 rows) Male.
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A common problem of the above studies is that face images acquired under
controlled conditions (e.g., FERET database) are considered, which usually are
frontal, occlusion-free, with clean background, consistent lighting, and limited fa-
cial expressions. However, in real-world applications, gender classification needs
to be performed on real-life face images captured in unconstrained scenarios;
see Fig. 1 for examples of real-life faces. As can be observed, there are signif-
icant appearance variations in real-life faces, which include facial expressions,
illumination changes, head pose variations, occlusion or make-up, poor image
quality, and so on. Therefore, gender recognition on real-life faces is much more
challenging compared to the case of faces captured in constrained environments.
Few studies in the literature have addressed this problem. Shakhnarovich et al.
[10] made an early attempt by collecting over 3,500 face images from the web. On
this difficult data set, using Haar-like features, they obtained the performance of
79.0% (Adaboost) and 75.5% (SVM). More recently Gao and Ai [11] adopted the
probabilistic boosting tree with Haar-like features, and obtained the accuracy
of 95.51% on 10,100 real-life faces. However, the data sets used in these studies
are not publicly available; therefore, it is difficult to use them as benchmark in
research.

In this paper, we focus on gender recognition on real-life faces. Specifically, we
use a recently built public database, the Labeled Faces in the Wild (LFW) [12].
To the best of our knowledge, this is the first study about gender classification
on this difficult database. Local Binary Patterns (LBP) [13] is employed to ex-
tract facial features. We adopt Adaboost to learn the most discriminative LBP
features, which, when used with SVM, provide the performance of 94.44%. The
public database used in this study enables future benchmark and evaluation.

2 Gender Recognition

2.1 Data Set

The Labeled Faces in the Wild is a database for studying the problem of uncon-
strained face recognition, which contains 13,233 color face photographs of 5,749
subjects collected from the web. Fig. 1 shows example images in the database.
All the faces were detected by the Viola-Jones face detector, and the images are
centered using detected faces and scaled to the size of 250×250 pixels.

We manually labeled the ground truth regarding gender for each face. We did
not consider the faces that are not (near) frontal, as well as those for which it is
difficult to establish the ground truth. Some examples of the removed faces are
shown in Fig. 2. In our experiments, we chose 7,443 face images (2,943 females
and 4.500 males); see Fig. 1 for some examples. As illustrated in Fig. 3, all
images were aligned with a commercial face alignment software [14], and then
the grayscale faces of 127×91 pixels were cropped from aligned images for use.
The data set we used will be shared online for public benchmark and evaluation.
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Fig. 2. Example images that are not considered

Fig. 3. The pre-processing process on face images. (left) original image; (middle)

aligned image; (right) cropped face.

2.2 Our Approach

A gender recognition system consists of two key components: facial feature ex-
traction and classifier design. As reviewed in Section 1 and Table 1, raw image
pixels and Haar-like features are two often-used representations. In this work, we
employ LBP features, which have been widely exploited for facial representation
in recent years [13]. The most important properties of LBP features are their tol-
erance against monotonic illumination changes and their computational simplic-
ity. The LBP operator labels the image pixels by thresholding a neighborhood of
each pixel with the center value and considering the results as a binary number.
As shown in Fig. 4, face images are divided into non-overlapping sub-regions,
and the LBP histograms extracted from each sub-region are concatenated into
a feature histogram. Following the parameter settings suggested in [13], in our
experiments, face images of 127×91 pixels were divided into 42 sub-regions of
18×15 pixels, and the 59-label LBP (8, 2, u2) operator [13] was adopted to ex-
tract LBP features. Thus each face image was described by a LBP histogram
of 2,478 (42×59) bins. With the LBP-based representation, SVM can be used
for gender classification, which has been an effective classification method in
existing studies [5,9].

Beyond the above standard representation, we further adopt Adaboost to
learn the discriminative LBP-Histogram (LBPH) bins for gender classification.
Adaboost has proved effective in both accuracy and speed for gender classifica-
tion [10,8]. Here we aim to select the LBPH bins which best separate the female
and male samples. The weak classifier hj(x) consists of a feature fj which corre-
sponds to the LBPH bin, a threshold θj and a parity pj indicating the direction
of the inequality sign:

hj(x) =
{

1 if pjfj(x) ≤ pjθj

0 otherwise (1)
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Fig. 4. Each face image is divided into sub-regions from which LBP histograms are

extracted and concatenated into a single, spatially enhanced feature histogram

In [15], Adaboost was used to select the discriminative sub-regions (in terms
of LBP histogram) from a large pool generated by shifting and scaling a sub-
window over face images. In contrast, here we look at regional LBP histograms
at the bin level, to identify the discriminative LBPH bins.

3 Experiments

All experimental results were obtained using the 5-fold cross-validation. We parti-
tioned the data set into five subsets of similar size, with a similar balance between
the two classes. The images of a particular subject appear only in one subset. In
each trial, one subset was used for testing, while the remaining four subsets were
used for training. The recognition results were averaged over the 5 trials.

In our experiments, we used the SVM implementation in the library SPIDER1.
The Radius Basis Function (RBF) kernel was utilized, and the parameters were
tuned to obtain the best performance. Meanwhile, each dimension of the feature
vector was scaled to be between -1 and 1. As a baseline to compare against, we
also applied SVM with raw image pixels, which delivers the best performance
on face images acquired in controlled environments [5]. For computational sim-
plicity, face images of 127×91 pixels were down-scaled to 64×46 pixels, thus
each image represented by a vector of 2,944 dimensions. We summarize the re-
sults of SVM with raw pixels and standard LBP features in Table 2. As can
be observed, LBP features produce better performance than raw image pixels.
Regarding support vectors, with raw pixels, the learned SVMs utilized 51-53%
of the total number of training samples (in each trial of cross-validation, the
number varies slightly), while SVMs with LBP features employ 58-61%.

For boosting learning, to generate a large LBP feature pool, we can generate
many more sub-regions by shifting and scaling a sub-window over face images.
In this study, we fixed the size of sub-window as 18×15 pixels, and shifted the
sub-window with the shifting step of 4 pixels vertically and 3 pixels horizontally.
In total 700 sub-regions were obtained. By applying 59-label LBP (8, 2, u2) to
each sub-regions, a histogram of 413,000 (700×59) bins was extracted from each
face image. We adopted Adaboost to learn discriminative LBPH bins and boost

1 http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html

http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
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Table 2. Experimental results of gender classification

Approach Recognition Rates (%)

Feature Dim. Classifier Female Male Overall

raw pixels 2,944 SVM 86.89 94.13 91.27±1.67

standard LBP 2,478 SVM 89.78 95.73 93.38±1.50

boosted LBP 500 Adaboost 91.13 94.82 93.36±1.49

boosted LBP 500 SVM 91.91 96.09 94.44±1.19

a strong classifier. We plot in Fig. 5 the average accuracy of Adaboost as a
function of the number of features selected. With the 500 selected LBPH bins,
Adaboost achieves recognition rate of 93.36%, which is comparable to that of
SVM using the standard LBP (2,478 bins). However, Adaboost is much more
computationally efficient than SVM, requiring much less features.

We plot in the left side of Fig. 6 the top 20 sub-regions that contain most
LBPH bins selected. The right side of Fig. 6 further shows the spatial distribution
of the selected 500 LBPH bins in the 5-fold cross-validation experiments, where
each small patch represents the corresponding sub-region, and the grayscale in-
tensity of each patch is proportional to the number of bins selected from that
sub-region. It is observed that the discriminative LBPH bins are mainly dis-
tributed in the regions around/above eyes. Although faces are (on average) sym-
metric, the selected features are not symmetric, because of the pose/illumination
variations in the dataset. Regarding the distribution of selected features among
59 bins, we plot in Fig. 7 the distribution of the 500 features selected. We can
observe that selected bins distribute in all 59 bins, but some bins do have more
contributions (e.g., bin 2, 12, 27, and 34).

We further adopted SVM with the selected LBPH bins for gender classifica-
tion, which achieves the best performance of 94.44%. Moreover, the numbers of
support vectors were 32-35% of the total number of training samples, which are
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Fig. 6. (left) The top 20 sub-regions that contain most LBPH bins selected; (right)
the spatial distribution of the 500 LBPH bins selected
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Fig. 7. The distribution of the selected 500 LBP features

Fig. 8. Examples of failure on gender recognition. (top): female mis-recognized as male;

(bottom): male mis-recognized as female.
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much less than those of SVMs using raw pixels or standard LBP. As observed in
Table 2, the boosted LBP based SVM also produces the smallest standard vari-
ation, thus more robust than other methods. We see in Table 2 there is notable
bias towards males in all experiments. This is also observed in existing studies
[10]. Finally we show in Fig. 8 some examples of mis-classification, some of which
could be due to pose variations, occlusion (e.g., glasses), and facial expressions.

4 Conclusions

In this paper, we investigate gender recognition from faces acquired in uncon-
strained conditions. Extensive experiments have been conducted on the LFW
database. We adopted Adaboost to learn the discriminative LBP features, and
SVM with boosted LBP features achieves the accuracy of 94.44% on this difficult
database.
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Abstract. Images of a face under arbitrary distant point light source

illuminations can be used to construct its illumination cone or a linear

subspace that represents the set of facial images under all possible illu-

minations. However, such images are difficult to acquire in everyday life

due to limitations of space and light intensity. This paper presents an

algorithm for face recognition using multidirectional illumination gener-

ated by close and extended light sources, such as the computer screen.

The Contourlet coefficients of training faces at multiple scales and ori-

entations are calculated and projected separately to PCA subspaces and

stacked to form feature vectors. These vectors are projected once again

to a linear subspace and used for classification. During testing, similar

features are calculated for a query face and matched with the training

data to find its identity. Experiments were performed using in house

data comprising 4347 images of 106 subjects and promising results were

achieved. The proposed algorithm was also tested on the extended Yale B

and CMU-PIE databases for comparison of results to existing techniques.

1 Introduction

Face recognition under varying illumination is a challenging problem because the
appearance of a face changes dramatically with illumination. In fact, changes
due to illumination can be greater than the changes due to face identity. Other
variations due to pose and facial expressions can introduce further challenges
however, they are less problematic when the subject is cooperative. In this paper,
we consider variations due to illumination alone.

Face recognition is extensively studied due to its potential applications in se-
curity, surveillance and human computer interaction. Zhao et. al. [26] provide a
detailed survey of face recognition literature and categorize them into holistic
face recognition techniques which match global features of the complete face
[23][3], feature-based techniques which match local features of the face [25] and
hybrid techniques which use both holistic and local features. From the perspec-
tive of data, face recognition can be divided into appearance based or shape
based techniques. While appearance based techniques are considered sensitive

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 332–344, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to illumination variations, there are claims that 3D face recognition is illumina-
tion invariant. Although 3D faces are illumination invariant once the data has
been acquired, the data acquisition process itself is not illumination invariant.
This is because accurate 3D face data requires active illumination from a laser
or a projector. Moreover, changes in ambient illumination can still have a great
impact on the accuracy and completeness of 3D data. Dark regions such as eye-
brows and specularities can cause missing data or spikes. These problems are
discussed in detail by Bowyer et al. [5] in their survey of 3D face recognition.

In search of illumination invariance, Chu et al. [7] proposed active frontal illu-
mination from NIR LEDs for face recognition. This approach has the advantage
of being invariant to ambient lighting and the NIR illumination is impercep-
tible to the eye. However, like 3D face recognition, this approach is not truly
illumination invariant as it relies on active illumination and custom hardware.

The human visual perception has inspired many researchers to use video or
image sequences to construct a joint representation of the face in spatial and tem-
poral space for identification [26]. A single image contains spatial information but
the temporal dimension defines trajectories of facial features and body motion
characteristics which may further assist classification. Arandjelovic and Cipolla
[1] proposed shape-illumination manifolds to represent a face under changing
illumination conditions. They first find the best match to a video sequence in
terms of pose and then re-illuminate them based on the manifold. Appearance
manifolds under changing pose were also used by Lee and Kriegman [12] to per-
form face recognition. Both approaches assume the presence of pose variations
which imply image acquisition over longer durations.

Li et al. [14] extracted the shape and pose free facial texture patterns from
multi-view face images and used KDA for classification. Liu et al. [16] per-
form online learning for multiple image based face recognition without using a
pre-trained model. Tangelder and Schouten [22] used a sparse representation of
multiple still images for face recognition. A common aspect of existing multiple
image/video-based techniques is that they rely on changes in pose or long term
changes to extract additional information which implies longer acquisition times.
An underlying assumption is that the images must contain non-redundant infor-
mation either due to the relative motion of the camera and the face or the motion
of the facial features due to expressions. Multiple images of a face acquired in-
stantly e.g. 10 frames/sec, from a fixed viewpoint, will be mostly redundant and
the temporal dimension will not contain any additional information.

It is possible to instantly acquire non-redundant images by changing the illu-
mination. Belhumeur and Kriegman used multiple images under arbitrary point
source illuminations to construct the 3D shape of objects [4]. Lee et al. [9] ex-
tended the idea to construct 3D faces and its corresponding albedo and subse-
quently used them to synthesize a large number (80-120) of facial images under
novel illuminations. The synthetic images were used to estimate the illumina-
tion cone of the face for illumination invariant face recognition. Hallinan [10]
empirically showed that the illumination cone can be approximated by a five
dimensional subspace. Basri and Jacobs [2] showed that the illumination cone of
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convex Lambertian surfaces can be approximated by a nine dimensional linear
subspace. According to Lee et al.’s interpretation [13], there exist nine universal
virtual lighting conditions such that the images under these illuminations are
sufficient to approximate its illumination cone. Lee et al. [13] showed that a
linear subspace can be constructed from nine physical lighting conditions that
provides a good representation for illumination invariant face recognition. With
nine physical lighting directions, the need for 3D face construction and albedo
required by [9][2] can be avoided. However, some of the light source directions
suggested in [13] are at angles greater than 100 degrees. Distant light sources at
such angles are difficult to achieve in practical situations due to space limitations.

Another difficulty with point light sources is that they must be of significantly
high intensity. Schechner et al. [18] showed that images under multiplexed illu-
mination of a collection of point light sources can solve this problem by offering
better signal to noise ratio. The results of Lee et al. [13] suggest that the super-
position of images under different point source lighting or images with a strong
ambient component are more effective for face recognition. These findings natu-
rally hint towards studying face recognition under extended light sources which
is the focus of our research. In this paper, we try to answer the question: Is
it possible to construct a subspace representation of the face for illumination
invariant face recognition using extended light sources? Besides, minimizing the
need for space, the proposed face recognition algorithm is designed with the fol-
lowing practical constraints. (1) Use of desktop/office equipment and no custom
hardware. (2) Minimization of the number of training images. (3) Minimization
of representation/memory requirements.

Unlike distant point light source, extended light source implies that it will
not essentially form a constant vector towards all points on the face. Thus stan-
dard photometric stereo techniques cannot be used in this case and neither can
the illumination cone be estimated. However, on the bright side, extended light
sources can be placed close to the face alleviating the need for large space and
high brightness. In our setup, illumination is varied by scanning a horizontal and
then a vertical white stripe (with black background) on the computer screen in
front of the subject. Fig. 1 shows an illustration of our approach. The Contourlet
coefficients [8] of the images at different scales and orientations are projected
separately to PCA subspaces and then stacked to form a feature vector. These
features are projected once again to a linear subspace and used for classification.

Our setup was initially proposed in [17] where we used 47 images. In this
paper, we drop the number of images to 23 because adjacent images had quite
similar illumination in [17]. In [17], we constructed two global space-time rep-
resentations using multiple images per face and sliding windows to match the
two representations to the database separately. In this paper, a single image per
face is used to construct its spatial representation and multiple representations
are used to construct a subspace for training a classifier. Hence, recognition is
performed using a single image. The database has been increased from 10 to 106
subjects and comparison with other techniques is performed on the extended
Yale B and CMU-PIE databases.
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2 Subspace Feature Representation

Fig. 1 shows our image acquisition setup. For a good signal to noise ratio, the
subject must not be far from the screen. The camera’s output is displayed on
the screen so that the subject can approximately center his/her face. Image
capture is automatically initiated [24] when the face is correctly positioned, or
it can be manually initiated. A white horizontal stripe scans from the top to
bottom of the screen followed by a white vertical stripe which scans from left
to right. In our experiments, the stripe was 200 pixels thick and 8 images were
captured during vertical scan and 15 during horizontal scan (given the aspect
ratio of the screen). A final image was captured in ambient light for subtracting
from all other images if required. All images are normalized so that a straight
horizontal line passes through the center of their eyes. The scale of the images is
also normalized based on the manually identified centers of eyes and lips. This
normalization is similar to the normalization used for Yale B database in [9]. The
manual identification of eyes and lips can be replaced with automatic eyes and
lips detection which can be accurately performed on the basis of all 23 images
given that they are captured instantly without subject movement. See Fig. 2 for
sample images. A mask was used to remove the lower corners of the image. We
imaged 106 subjects over a period of eight months. Out of these, 83 were imaged
in two different sessions with an average of 60 days gap.

We construct the subspaces in the feature space and use the Contourlet trans-
form [8] for extracting features. The Contourlet transform is an extension of
Wavelets. Gabor wavelets have been well studied for face recognition and many
variants exist [25][27][15]. A survey of wavelets based face recognition is given in

Fig. 1. Multiple images of a subject are acquired while illumination is varied by moving

a white stripe on a computer screen

Fig. 2. Sample faces after preprocessing
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Fig. 3. Contourlet coefficients of a sample face

[19]. Wavelets provide a time-frequency representation of signals and are good
at analyzing point (or zero dimensional) discontinuities. Therefore, Wavelets are
suitable for analyzing one dimensional signals. On the other hand, images are
inherently two dimensional and can have one dimensional discontinuities such
as curves. These discontinuities can be captured by Contourlets [8]. The Con-
tourlet transform performs multi-resolution and multi-directional decomposition
of images allowing for different number of directions at each scale [8].

Let ask
i represent the vector of Contourlet coefficients of the ith image (where

i = 1 . . . 23) at scale s and orientation k. The Contourlet transform has 33%
inherent redundancy [8]. Moreover, the Contourlet coefficients (at the same scale
and orientation) of many faces can be approximated by a much smaller linear
subspace. Therefore, the Contourlet coefficients of all training images calculated
at the same scale and orientation are projected separately to PCA subspaces.

Let Ask = [ask
ij ] (where i ∈ {1, 2 . . .23}, and j = 1, 2, . . .G) represent the

matrix of Contourlet coefficients of N training images (under different illumina-
tions) of G subjects in the training data at the same scale s and same orientation
k. Note that only a subset of the 23 images under different illuminations are used
for training. Each column of Ask contains the Contourlet coefficients of one im-
age. The mean of the matrix is given by

μsk =
1

N × G

N×G∑
n=1

Ask
n , (1)

and the covariance matrix by

Csk =
1

N × G

N×G∑
n=1

(Ask
n − μsk)(Ask

n − μsk)T . (2)

The eigenvectors of Csk are calculated by Singular Value Decomposition

UskSsk(Vsk)T = Csk , (3)

where the matrix Usk contains the eigenvectors sorted according to the decreas-
ing order of eigenvalues and the diagonal matrix Ssk contains the respective



Face Recognition 337

eigenvalues. Let λn (where n = 1, 2, . . .N × G) represent the eigenvalues in de-
creasing order. We select the subspace dimension (i.e. number of eigenvectors) so
as to retain 90% energy and project the Contourlet coefficients to this subspace.
If Usk

L represents the first L eigenvectors of Usk then the subspace Contourlet
coefficients at scale s and orientation k are given by

Bsk = (Usk
L )T (Ask − μskp) , (4)

where p is a row vector of all 1’s and equal in dimension to μsk. Note that Usk
L

represents the subspace for Contourlet coefficients at scale s and orientation k.
Similar subspaces are calculated for different scales and orientations using the
training data and each time, the subspace dimension is chosen so as to retain
90% energy. In our experiments, we considered three scales and a total of 15
orientations along with the low pass sub-band image. Fig. 3 shows samples of a
sub-band image and Contourlet coefficients at two scales and seven orientations.

The subspace Contourlet coefficients were normalized so that the variance
along each of the L dimensions becomes equal. This is done by dividing the
subspace coefficients by the square root of the respective eigenvalues. The nor-
malized subspace Contourlet coefficients at three scales and 15 orientations of
each image are stacked to form a matrix of feature vectors B where each column
is a feature vector of the concatenated subspace Contourlet coefficients of an
image. These features are once again projected to a linear subspace however,
this time without subtracting the mean. Since the feature dimension is usually
large compared to the size of the training data, BBT is very large. Moreover,
at most N ×G− 1 orthogonal dimensions (eigenvectors and eigenvalues) can be
calculated for a training data of size N ×G. The (N ×G)th eigenvalue is always
zero. Therefore, we calculate the covariance matrix C = BT B instead and find
the N × G − 1 dimensional subspace as follows

U′SVT = C , (5)

U = BU′/
√

diag(S) . (6)

In Eqn. 6, each dimension (i. e. column of AU′) is divided by the square root
of the corresponding eigenvalue so that the eigenvectors in U (i. e. columns) are
of unit magnitude. The last column of AU′ is ignored to avoid division by zero.
Thus U defines an N × G − 1 dimensional linear subspace. The feature vectors
are projected to this subspace and used for classification

F = UT B (7)

3 Classification

We tested three different classification approaches. In the first approach, the cor-
relation between the features of the query and the training images was calculated
by

γ =
n
∑

tq−∑
t
∑

q√
n
∑

(t)2 − (
∑

t)2
√

n
∑

(q)2 − (
∑

q)2
, (8)
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where t and q are the subspace Contourlet coefficients of the target and query
faces and n is the subspace dimension. The query image was assigned the iden-
tity of the one with the highest correlation. In the second approach, we used
the feature to subspace distance for classification and assigned the identity of
the nearest subspace to the query face. More specifically, we define face specific
subspaces comprising the subspace Contourlet coefficients (i.e. columns of F) of
the face as the basis vectors. This is similar to Lee et al. [13] who defined face
specific subspaces using the images as basis vectors. The difference in our case is
that the face specific subspace is defined by features rather than the images. In
the third classification approach, we train a Support Vector Machine (SVM) [11]
using Radial Basis Function (RBF) kernel whose parameters are optimized using
the k-fold cross validation approach on the training data. All three classification
techniques gave similar identification rates however, the first technique consis-
tently gave much better verification results on all three databases. Therefore, we
will report results for classification based on correlation coefficient.

4 Results

Three experiments were performed using our database (4347 images of 106 sub-
jects), the extended Yale B database (1710 images of 38 subjects) and the CMU-
PIE database (1344 images of 68 subjects). The number of different illumination
conditions for these databases are 23, 45 and 21 respectively. All images were
with frontal pose. Details of each experiment are given below.

4.1 Experiment 1

This experiment studies the recognition rate versus the number of subspace Con-
tourlet coefficients. This experiment was first performed using the first session
(23 images of 106 subjects) of our database where five images per person were
used for training and the rest for testing. The experiment was then repeated by
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Fig. 4. (a) Recognition rate vs. the number of subspace Contourlet coefficients. (b)
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training the system with five images per person from the first session and testing
with all the images from the second session i.e. 23 images of 83 subjects. Similar
results were achieved in both cases. Fig. 4-a shows the plot for the second case.
The recognition rate reaches its maximum with only 340 coefficients.

We also studied the relationship of incident light and recognition accuracy and
found the recognition rates for individual images corresponding to one of the 23
illumination conditions. The system was trained with a single image per person
from the first session and then tested with a single image that corresponds to
the same illumination conditions from the second session. Results are reported in
Fig. 4-b. As expected, the images with frontal illumination yield high recognition
rates. Interestingly, for vertical stripe illumination, the recognition rate first
drops and then rises again as the stripe moves away from the center of the
screen indicating a non-linear relationship between the recognition accuracy and
lateral angle of incident light.

4.2 Experiment 2

In experiment 2, we study the relationship between the number of training im-
ages and recognition/verification rates. One or more images/person are used for
training and a single image/person is used for testing. We avoid testing all com-
binations of training images and take advantage or Lee et al.’s [13] findings that
one or two frontal and four to five laterally lit images are sufficient for training.

This experiment was performed using the first session of our database, the
extended Yale B database and the CMU-PIE database. Fig. 5 shows the recog-
nition and verification rates, using our database, when 5 to 8 images per identity
are used for training and the remaining are used for testing. Table 1 summa-
rizes the results. Using 8 training images, the recognition and verification rate
at 0.001FAR was 99.87%. The 8 training images that gave the best performance
were number 2, 5, 12, 14, 17, 20, 21, 23. Note that this is consistent with the
findings in [13]. For fewer training images, we removed images that were lit from
large angles one by one in the following order 23, 21, 12, 20, 2, 17, 14 until we
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Table 1. Experiment 2 results (in %) using our database

Training error recog. verif. rate
images rate rate at 0.1% FAR

8 0.13 99.87 99.87

7 0.18 99.82 99.87

6 0.66 99.33 99.67

5 0.63 99.37 99.37

4 0.89 99.11 98.76

3 1.32 98.68 98.76

2 3.10 96.90 95.69

1 14.41 85.59 79.46
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Fig. 6. Experiment 2 results for the extended Yale B database. (a) CMC curves for 5

to 8 training images and the corresponding (b) ROC curves.

were left with image 5 only. This order was chosen so that there is at least one
frontal lit image in the training data and the lateral images are the ones that
make a smaller angle with the optical axis. This is sensible from a practical stand
point because placing lights at smaller angles requires less space.

Fig. 6 shows the CMC and ROC curves of our algorithm on the extended Yale
B database and a summary of the results is presented in Table 2. Fig. 7 shows
plots of error rates for different subsets of the database for direct comparison
with [13]. Our algorithm achieved 100% recognition rate and 100% verification
rate at 0.001FAR on this database. On the CMU-PIE database [20], with just five
images used for training and the remaining for testing, our approach achieved
100% recognition rate and 100% verification rate at 0.01% FAR. Using three
training images, the recognition rate dropped to 94.6%.

4.3 Experiment 3

In this experiment, we study the effects of time lapse between training and test
images. This experiment cannot be performed on the Yale B and CMU-PIE
databases because they were acquired in a single session per subject.Therefore,
we perform this experiment on our database only. The setup of this experiment
is similar to experiment 2 except that the system is trained using images from
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Table 2. Experiment 2 results (in %) using the extended Yale B database

Training error rates for subset recog. verif. rate FAR at 100%
images 1&2 3 4 total rate at 0.1% FAR recog. rate

8 0 0 0 0 100 100 0.1

7 0 0.22 0.56 0.28 99.72 99.44 1.39

6 0 0 1.31 0.48 99.52 99.25 3.78

5 0.42 0 2.44 1.06 98.94 98.08 4.16

4 0.42 0 10.15 3.69 96.31 94.24 74.89

3 1.39 0 22.0 8.02 91.98 88.64 98.86

2 1.80 19.08 44.55 20.78 79.22 70.90 98.39

1 8.86 60.75 86.09 48.13 58.17 36.81 98.59
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Fig. 7. Error rates for different subsets of the extended Yale B database

the first session and then tested on images from the second session. The average
time lapse between the first and second sessions in our database was 60 days.
The gallery size is 106 and number of test images is 23×83 = 1909. Fig. 8 shows
the CMC and ROC curves for this experiment for different number of training
images. The results are summarized in Table 3. The recognition rate drops to
96.65% and the verification rate at 0.001FAR drops to 94.34%. The algorithm
performs well for as low as 5 training images and then breaks down.

Table 3. Experiment 3 results (in %) using our database

Training error recog. verif. rate
images rate rate at 0.1% FAR

8 3.35 96.65 94.34

7 3.35 96.65 93.29

6 4.06 95.91 92.51

5 6.02 93.98 90.10

4 9.32 90.68 83.55

3 10.58 89.42 77.06

2 15.14 84.86 70.40

1 36.83 63.17 37.45
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Fig. 8. Experiment 3 results for our database. (a) CMC curves for 5 to 8 training

images and the corresponding (b) ROC curves.

Table 4. Comparison of different techniques on the Yale B (10 subjects) and extended

Yale B databases. The second citation (if present) refers to the source of results.

Method subjects Error rate on Yale B database
subset 1&2 subset 3 subset 4 total

Eigen Face w/o first 3 [13] 10 0.0 19.2 66.4 25.8

Cones-attached [9][13] 10 0.0 0.0 8.6 2.7

Harmonic Image-cast [2][13] 10 0.0 0.0 2.7 0.85

9 Points of light [13] 10 0.0 0.0 0.0 0.0

Logarithmic Total Variation [6][21] 38 0.0 1.6 1.1 -

Local Texture Features [21] 38 0.0 0.0 0.8 -

Subspace Contourlet Coeff. 38 0.0 0.0 0.0 0.0

4.4 Timing and Comparison with Other Techniques

Using a Matlab implementation on a 2.4GHz machine with 4GB RAM, the
training time using our database of 106 subjects and 6 images per subject was 2
minutes. The recognition time on the same machine and with the same gallery
size was 258 msecs. The average time required for calculating the Contourlet
transform of a face at 3 scales and 15 orientations was 100 msecs and for matching
two faces was 0.4 msecs. Table 4 shows a comparison of our algorithm to existing
techniques.

5 Conclusion

We presented a novel algorithm that exploits desktop equipment for face recogni-
tion under varying illumination. We demonstrated that it is possible to construct
subspaces in the feature space for illumination invariant face recognition using
multiple images of the face under extended light source illuminations from a
computer screen. Our results on the extended Yale B and CMU-PIE databases
revealed that the subspace constructed from the Contourlet coefficients [8] of 5
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to 8 images out performs existing state of the art algorithms. In the future, we
plan to use our database of images to construct the 3D face models for pose
invariant recognition.
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Abstract. This article presents a novel method for classification of

plants using their leaves. Most plant species have unique leaves which dif-

fer from each other by characteristics such as the shape, colour, texture

and the margin. The method introduced in this study proposes to use two

of these features: the shape and the texture. The shape-based method

will extract the contour signature from every leaf and then calculate the

dissimilarities between them using the Jeffrey-divergence measure. The

orientations of edge gradients will be used to analyse the macro-texture

of the leaf. The results of these methods will then be combined using an

incremental classification algorithm.

Keywords: Plant identification; Shape-based analysis; texture-based

analysis; Sobel operator; incremental classification.

1 Introduction

The role of plants is one of the most important in the natural circle of life.
As they form the bulk of the living organisms able to convert the sun light
energy into food, they are indispensable to almost every other form of life. They
have interested humans since Greek antiquity and the efforts to classify them is,
perhaps, the most ancient activity of Science.

Since the development of a systematic classification of plants by the Swedish
botanist Carolus Linnaeus in the 18th century [9], plant classification has been
attempted in many different ways. The first person who studied the leaf features
in this purpose was L.R. Hicher in 1973.

Since then, with the dramatic development of digital image processing, ma-
chine vision and pattern recognition, numerous techniques for plant classification
using leaves have been investigated. To contribute to these techniques, this paper
proposes to develop a classification system using both shape-based and texture-
based analysis.

Section 2 introduces the dataset used in this paper, and the outlines the pre-
processing performed.

Section 3 presents the shape-based method which uses the contour signa-
tures of the leaves and calculates the dissimilarities between them using the
Jeffrey distance. This method has proven its effectiveness for leaf identification
[15,13,14,3,19].

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 345–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The texture-based method is presented in Section 4. The most common tech-
niques of texture description are, in general, based on the statistical analysis of
the pixels (co-occurence matrices, etc.) [8,21,5,17], and their spectral analysis
(Fourier Transform, Wavelet Transform, Gabor filters, etc.)[20,11,4,22,12,7,1].

Although there are numerous techniques for texture classification, few of them
have been applied to leaves [6,10,18,2]. The technique implemented by the au-
thors makes use of the Sobel operator to analyse the macro-texture of the leaf.

Finally, Section 5, will present an incremental algorithm used to combine the
results of the previous methods using probability density functions.

2 Data Pre-processing

The leaves used in this work were collected in the Royal Botanic Gardens, Kew,
UK. The dataset contains 3 to 10 leaves from each of 18 different species.

As the colour of the leaves cannot be used as reliable information, since it
varies depending on the period of the year as well as other factors, the data has
been transformed into greyscale images. The image background, the paper on
which the leaf is mounted, is removed using Otsu’s thresholding method [16].

3 Analysis of the Contour Signature

Two contour signatures are calculated for analysing leaf shapes. For each leaf,
first the outline is extracted by selecting from the image the foreground pixels
which neighbour a background pixel on at least one of their four main sides
(N,S,E,W). Moving in a clockwise direction, for every l

n

th
contour pixel, where

l is the length of the outline and n is the number of points to be sampled, two
values, f(i) and g(i) are calculated:

f(i) =
√

(contx(j) − centx)2 + (conty(j) − centy)2 (1)

g(i) = | tan(
contx(j) − centx
conty(j) − centy

) − 2iπ

n
| (2)

Where, j = i×l
n , contx(j),conty(j) are the x and y co-ordinates respectively for

the jth contour pixel, and centx, centy are the x and y co-ordinates of the leaf’s
centroid.

The first of the resulting signatures f , gives the distances between the contour
point and the centre of the leaf. The second, g, is the absolute difference between
the angle at the leaf centre between the starting point and the current point,
and the corresponding angle on a circle. Together, these two signatures provide
a significant amount of information about the leaf’s shape.

These signatures are treated like probability density functions (pdfs) by divid-
ing each value by the sum of all the values in the signature. Doing this provides
us with scale-invariance. The difference between the signatures for two leaves
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Fig. 1. With the smoothing, the lobed leaf (bottom) is distinguished from the serrated

leaf (top)

can then calculated using the Jeffrey-divergence distance measure. For two pdfs,
fa and fb, the distance between them, JD(fa, fb), is calculated as follows:

JD(fa, fb) =
∑

i

∑
j

fa(i, j)log(
2fa(i, j)

fa(i, j) + fb(i, j)
)+fb(i, j)log(

2fb(i, j)
fa(i, j) + fb(i, j)

)

(3)
Since the signatures for two leaves may begin at different points on the leaves,
the signature must be aligned before they can be compared. This can by using

Table 1. The confusion matrix for the contour signatures, including lobe differentiation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0.94 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0
1 0 0.64 0 0 0.08 0.24 0 0.04 0 0 0 0 0 0 0 0 0 0
2 0 0 0.47 0.11 0 0 0.19 0 0 0 0 0 0 0.19 0 0.02 0 0
3 0 0 0 0.56 0 0 0.43 0 0 0 0 0 0 0 0 0 0 0
4 0 0.37 0 0 0.37 0.18 0 0.06 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0.18 0.78 0 0 0.06 0 0 0 0 0 0 0 0 0
6 0 0 0 0.36 0 0 0.64 0 0 0 0 0 0 0 0 0 0 0
7 0 0.22 0 0 0.13 0.19 0 0.38 0.02 0 0 0.02 0 0 0 0 0 0
8 0 0.04 0 0 0.04 0.28 0 0.08 0.40 0 0 0.16 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0.97 0 0 0 0 0 0 0.02 0
10 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0
11 0 0.06 0 0 0.07 0.20 0 0.11 0.08 0 0 0.45 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0.77 0 0.22 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0.11 0 0 0.22 0 0.44 0 0.22 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
16 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0.02 0 0.91 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22 0 0 0 0.77
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(a) Overlapping regions

(b) Varied petiole lengths

Fig. 2. The main issues for the contour signature method

cross-correlation, whereby the amount to offset the second leaf’s signature by is
calculated as follows:

offset = argmin
j=0..(n−1)

(
n∑

i=0

(fa(i) − fb(i + j))2) (4)

3.1 Differentiation between Lobed and Unlobed Leaves

Shape-based leaf classification can be improved by differentiating between lobed
and unlobed leaves. This can be done by calculating the number of inflection
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points in the contour distance signature. Each point in the signature is compared
to the 3 points either side of it. If the point is either less than all these neighbours,
or greater than them, then the point is an inflection point. Once every inflection
point has been detected, they are counted and if the total number is above some
threshold, the leaf is considered lobed.

Using this method, serrated leaves would be identified as having many lobes.
To prevent this, the signature is first smoothed by using a Gaussian filter. The
difference between a lobed and a serrated leaf, as well as their contour graphs
(normal and smoothed), can be observed in figure 1. The normal graph would
give a lot of inflection points for these two leaves and would classify both in the
lobed category although only the first one actually is.

3.2 Results

The results of the contour signature method can be seen in table 1. All the leaves
in the dataset were compared to all others, and classified as the same species
as the closest other leaf. The overall correct classification rate is 69.2%. Whilst
some of the species achieved a high recognition rate (with 3 at 100%), many did
much worse, with 6 under 50%. Part of reason for this is the high intra-species
variation present within some lobed species, and the low inter-species variation
between species with ovate leaves. Another cause of errors appears when leaves
have overlapping regions, which cause the contours to be incorrectly traced, as
shown in figure 2a. Figure 2b shows that petiole (stems) cut that different lengths
before imaging the leaves can also cause problems.

4 Texture Analysis Using Sobel

The results for the contour signatures suggest that leaves cannot be adequately
classified based on shape alone. The texture is also an important feature of the
leaf. Two types of texture can be defined: the micro-texture at the microscopic
scale and the macro-texture which is the pattern formed by the venation of the
leaf. The venation is specific to every leaf, similar to a fingerprint. In this chapter,
the concept of macro-texture is quantified using edge gradients.

4.1 Histogram of the Gradient Intensity

For each image, we calculate a histogram of the gradient orientations, whereby
for the angle θ:

h(θ) =
∑

x

∑
y

M(x, y) if Θ(x, y) = θ, 0 otherwise (5)

Where M(x, y) is the gradient magnitude at pixel (x, y) and Θ(x, y) is the gra-
dient direction, calculated using the Sobel operator. This histogram provides
a description of the relative directions of the main veins. Examples of these
histograms for four leaves from the species Quercus Ilex can be seen in figure 3.
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Fig. 3. Sobel direction histograms for four leaves from the same species

The difference between the gradient histograms is again calculated using the
Jeffrey-divergence distance measure. The confusion matrix for this method can
be seen in table 2. Table 3 shows the correct classification rates for the shape
and texture methods. Whilst the Sobel method only achieved a rate of 66.1%,
it can be seen that though some species are classified more accurately using the
contour method, others do much better using the Sobel method. For instance, the
Agrifolia, the 1982 and the 1998-4292 are well recognized by the contour method,
due to low intra-species variation, and very badly by the Sobel method, possibly
due to uneven lighting in the images. On the other hand, the Ellipsoidalis, the
Turneri and the 2005 are better identifyed by the Sobel method, where flatter
leaves created less shadowing. It may therefore be possible to greatly improve
the overall results by combining the two methods in the correct manner.

Table 2. The confusion matrix for the gradient histograms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0.27 0.11 0 0 0 0 0 0 0.13 0 0 0 0.13 0 0 0 0.33 0
1 0 0.88 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0.77 0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0.25 0.56 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0
4 0 0.37 0 0 0.43 0.12 0 0 0.06 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0.06 0.81 0 0 0.12 0 0 0 0 0 0 0 0 0
6 0 0 0 0.28 0 0 0.72 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0.02 0 0.72 0.25 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0.04 0 0.08 0.76 0 0 0.04 0 0 0 0 0.08 0
9 0 0.03 0 0 0 0 0 0 0 0.32 0 0.11 0.12 0 0.16 0 0.26 0
10 0 0 0 0 0 0.06 0 0.06 0 0 0.75 0 0 0 0 0 0.12 0
11 0 0.03 0 0 0 0 0 0.01 0.02 0.17 0 0.29 0.11 0 0.14 0 0.19 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0 0.52 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.88 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.93 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0 0.33
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Table 3. Results for the two methods

Contour Score Sobel Score

1 Agrifolia 0.94 0.27

2 Castaneifolia 0.64 0.88

3 Ellipsoidalis 0.47 0.77

4 Frainetto 0.56 0.56

5 Hispanica 0.37 0.43

6 Ilex 0.78 0.81

7 Robur 0.64 0.72

8 Turneri 0.38 0.72

9 Variabilis 0.40 0.76

10 1982 0.97 0.32

11 1995 1.00 0.75

12 1996 0.45 0.29

13 1998-523 0.77 1.00

14 1998-4292 1.00 0.48

15 2005 0.44 0.88

16 2008 1.00 0.93

17 F184 0.91 1.00

18 Passifloranono 0.77 0.33

Table 4. The confusion matrix for the final, incremental classification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0.88 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0.86 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0.81 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0
4 0 0.37 0 0 0.43 0.18 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0.37 0.56 0 0 0.06 0 0 0 0 0 0 0 0 0
6 0 0 0 0.24 0 0 0.76 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0.02 0 0.75 0.22 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0.04 0 0.16 0.76 0 0 0.04 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0 0.50 0
10 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0
11 0 0.27 0 0 0 0.06 0 0.07 0.18 0 0 0.40 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.88 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00

5 Incremental Classification

It seems that leaves cannot be sufficiently well classified based on the shape or
the texture alone, though good results may be achieved by using both of these
features. In order to limit the risks of failure and improve the recognition rate,
we will use an incremental classification method. Firstly, the calculation of the
inflection points is used to separate the lobed and unlobed leaves. The species
which are in the same category as the leaf being analysed are kept and the other
species are ignored.
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Secondly, a classification using only the contour signature method is performed
(the shape of the leaf being the most important feature for classification). Leaves
for which the distance between their contour signatures and those of the leaf be-
ing classified are greater than some threshold are removed. The same procedure
is then performed on the remaining leaves using the texture histograms.

For the final remaining leaves, the distances between both contour signature
and the texture histogram are combined, and the leaf is classified as the same
species as the closest of these. The results for this are shown in table 4. The overall
classification rate is 81.1%, a clear improvement over the separate methods.

6 Conclusion

In this work, an efficient classification framework was proposed to classify a
dataset of 18 species of leaves.

Firstly, a classification based on the shape of the leaf is described. Two contour
signatures are calculated based on the distance and angle of contour points from
the leaf’s centre. This operation is done for every leaf of the dataset and the
dissimilarties between the graphs are calculated using the Jeffrey distance. This
classification, called the contour signature method, presents quite good results.
Further improvement is made by the separation of the lobed leaves from the
unlobed leaves by the calculation of the signature’s inflection points.

Secondly, a classification using the Sobel operator is used in order to capture
the dissimilarities of the macro-texture of the leaves. A histogram is formed from
the orientation and magnitude of the edge gradients. Finally, a method com-
bining the lobe differentiation, the shaped-based and the texture-based method
through the use of probability density functions is implemented. The incremental
process is intended to extract the most potential from each individual method.
The results show that 10 species out of 18 are successfully classified with a clas-
sification rate greater than 85% and 4 with one of more than 75%. The overall
classification rate was 81.1%.

The identification of the leaves is a difficult problem because there is often
high intra-species variability, and low inter-species variation. Nevertheless, the
approach adopted in this work demonstrates the classification of leaves using a
combination of relatively simple methods is a valid and promising approach.
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Abstract. In this paper a fast and robust visual tracking approach based on GPU
acceleration is proposed. It is an effective combination of two GPU-accelerated
algorithms. One is a GPU accelerated visual tracking algorithm based on the
Efficient Second-order Minimization (GPU-ESM) algorithm. The other is a GPU
based Scale Invariant Feature Transform (SIFT) algorithm, which is used in those
extreme cases for GPU-ESM tracking algorithm, i.e. large image differences, oc-
clusions etc. System performances have been greatly improved by our combina-
tion approach. We have extended the tracking region from a planar region to a 3D
region. Translation details of both GPU algorithms and their combination strategy
are described. System performances are evaluated with experimental data. Opti-
mization techniques are presented as a reference for GPU application developers.

Keywords: ESM, SIFT, GPU, Visual tracking.

1 Introduction

Visual tracking is the critical task in computer vision applications, such as visual servo,
augmented reality, etc. Visual tracking methods can be mainly divided into two cate-
gories: Feature-based methods and Region-based methods[1]. Feature-based methods
mainly track local features such as points, line segments, edges or corners in the images.
These local feature detections are easy to process but sensitive to illumination change,
occlusion and so on. Region-based methods only use the image intensity information
in a certain region. By minimizing the sum of squared differences (SSD) between a
region in reference image and a warped region in current image, the transformation
parameters can be estimated[2] in these methods . For example, the transformation be-
tween two images of a plane is a homography[3]. A well-known Region-based method
is the Lucas-Kanade algorithm [4][5]. It computes the displacement of points between
consecutive frames when the image brightness constancy constraint is satisfied.

To minimizing the SSD between a template region and a warped region in Lucas-
Kanade algorithm, many nonlinear optimization approaches have been proposed with
different kinds of approximations, such as Standard Newton method [3], Gauss-Newton
approximation. Among these solutions, the Efficient Second-order Minimization (ESM)
algorithm[6] is an elegant idea which obtains the same convergence speed as standard
Newton method while not computing the computationally costly Hessian matrix. Based
on the ESM algorithm, Malis has proposed an efficient “ESM visual tracking algorithm”
and extended it to visual servo[6][7] .

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 354–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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However, when considering a visual tracking system, the main requirements of the
tracking algorithms are about efficiency, accuracy and stability. From our experience,
with the increase of tracking region size (for example a 360× 360 pixels region), the
ESM computation still costs too much time and induces a relative low processing speed.
This low processing speed will cause a larger image difference in the two successive
images of a fast moving object. As ESM tracking algorithm can only work well with
small image differences, these large differences will cause tracking failure.

To deal with these problems, we propose a novel approach of using GPU as copro-
cessor to enhance the system performance. Our contributions are mainly as follows.

We present a GPU based ESM tracking algorithm (GPU-ESM tracking) to address
the need for faster tracking algorithms. The speedup allows for a higher speed cam-
era so that there will be smaller difference between two successive frames, which will
make the ESM tracking result more reliable and robust. Besides GPU-ESM, we adopt
GPU based object recognition algorithms to solve those extreme cases for GPU-ESM
tracking, such as large image differences and occlusions, etc. We implement Lowe’s
Scale Invariant Feature Transform (SIFT) algorithm[8] on GPU (GPU-SIFT) and ex-
tend GPU-SIFT algorithm with “RANdom SAmple Consensus” (RANSAC) method
to increase its accuracy. With an approximately 20 times GPU speedup, our extended
GPU-SIFT tracking greatly enhances the system reliability.

We propose an effective combination strategy of both algorithms mentioned above.
When GPU-ESM tracking failure happens, GPU-ESM will automatically load the re-
sult from GPU-SIFT so that it can continue tracking. Therefore, the whole system can
work smoothly with high reliability at a high processing speed. The previous paper [9]
mentions the ESM tracking and visual servo and in this paper 3D region tracking is
developed with this combination strategy.

The rest of this paper is organized as follows. Section II reviews the relative works
on ESM tracking and SIFT algorithms. Section III introduces the translation details of
two GPU algorithms so as to fully utilize the parallel capacity of GPU. This part also
covers the combination model of both algorithms in detail. Section IV describes the
experimental results to validate our proposed approach. Section V describes the key
optimization techniques in our GPU applications. Section VI concludes this paper.

2 Related Works

Our proposed approach is a combination of GPU-ESM tracking and GPU-SIFT algo-
rithms. For simplicity, we review the ESM tracking algorithm and SIFT algorithm.

2.1 ESM Tracking Algorithm

ESM tracking algorithm was proposed by Malis in 2004[6]. By performing second
order approximation of the minimization problem with only first order derivative, ESM
algorithm can get a high convergence rate and avoid local minima close to the right
global minima. Different kinds of its applications have been realized, such as visual
tracking of planar object and deformable object[10], visual servo[7] etc.

Suppose the tracking object is planar and projected in a reference image I∗ with a
“Template” region of m pixels. Tracking this region consists in finding the homography
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G that transforms each pixel P∗
i of the template region into its corresponding pixel in

the current image I, i.e. finding the homography G such that ∀i ∈ {1,2, ...m}:

I(w(G)(P∗
i )) = I∗(P∗

i ) (1)

P∗
i = [u∗v∗1]" is the homogeneous image coordinate. Homography G is defined in the

Special Linear group SL(3). The matrix G defines a projective transformation in the
image. w is a group action defined from SL(3) on P2:

w : SL(3)×P
2 = P

2 (2)

Therefore, for all G ∈ SL(3), w(G) is a P2 atuomorphism:

w(G) : P
2 → P

2

P∗ → P = w(G)(P∗)
(3)

such that:

P = w(G)(P∗) =

⎡⎢⎢⎢⎢⎢⎣
g11u∗+g12v∗+g13
g31u∗+g32v∗+g33

g21u∗+g22v∗+g23
g31u∗+g32v∗+g33

1

⎤⎥⎥⎥⎥⎥⎦ (4)

Suppose that we have an approximation Ĝ of G , the problem consists in finding an
incremental transformation ΔG, such that the difference between a region in current
image I (transformed from Template region by the composition w(Ĝ) ◦w(ΔG) ) and
the corresponding region in reference image I∗ is null.

Homography G is in the SL(3) group which is a Lie group. The Lie algebra asso-
ciated to this group is SL(3). Let {A1,A2, ...,A8} be a basis of the Lie algebra SL(3).
Then a matrix A(x) can be expressed as follows:

A(x) =
8

∑
i=1

xiAi (5)

A projective transformation G(x) ∈ SL(3) in the neighborhood of I can be parameter-
ized as follows:

G(x) = exp(A(x)) =
∞

∑
i=0

1
i!

(A(x))i (6)

As incremental transformation ΔG also belongs to SL(3), it can be expressed as ΔG(x),
where x is a 8× 1 vector. Therefore tracking consists in finding a vector x such that
∀i ∈ {1,2, ...m}, the image difference

di(x) = I((w(Ĝ)◦w(ΔG(x)))(P∗
i ))− I∗(P∗

i ) = 0 (7)

Let d(x) = [d1(x),d2(x), ...,dm(x)]" be the m× 1vector containing the image differ-
ences.Therefore, the problem consists in finding x = x0 verifying:

d(x0) = 0 (8)
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Linearize the vector d(x) at x = 0 with a second-order Taylor series approximation:

d(x) = d(0)+ J(0)x+
1
2

x"H(0)x (9)

where J(0) and H(0) are the Jacobian matrix and Hessian matrix at x = 0, separately.
In the ESM algorithm, the Hessian matrix is replaced by a first-order Taylor Series
approximation of vector J(x) about x = 0:

J(x) = J(0)+ x"H(0) (10)

Then Eq. 9 becomes

d(x) = d(0)+
1
2
(J(0)+ J(x))x (11)

With some mathematical proofs by Malis [7], Eq. 11 can be simplified to follows:

d(x0) = d(0)+ Jesmx0 = 0 (12)

where Jesm = 1
2 (J(0)+ J(x0)). Therefore, the solution x0 can be obtained by:

x0 = −J+
esmd(0) (13)

where J+
esm is the pseudoinverse inverse matrix of Jesm. The incremental transformation

ΔG(x0) can be calculated with x0 by Eq. 5 and Eq. 6. Then a new homography G
solution can be obtained by such update:

G = ĜΔG(x0) (14)

With this homography G, visual tracking can be implemented.

2.2 SIFT Algorithm

SIFT was proposed by Lowe in 1999[11]. Compared with other feature matching ap-
proaches, the SIFT algorithm has been demonstrated to have a better performance with
respect to variations in scale, rotation, and translation[8]. However, its computation in-
volves a high dimensional descriptor which is computational intensive and difficult to
apply for realtime processing. To improve its performance, various algorithms have
been proposed, including Affine SIFT [12], PCA-SIFT [13] and SURF[14] and so on.

2.3 GPU-Based Visual Tracking

The increasing programmability and computational capability of the GPU has shown
great potential for computer vision algorithms which can be parallelized[15]. For ex-
ample, a versatile framework for programming GPU-based computer vision tasks (ra-
dial distortion, corner detection etc) was recently introduced by [15][16]. There are
also GPU implementations for visual tracking, such as GPU-KLT tracker[17], GPU-
SIFT[17] [18][19]. These applications can get a 10∼20 times speedup.



358 C. Zang and K. Hashimoto

3 Implementation

3.1 System Configuration

GPU implementations are realized on a desktop with Intel Core i7-920 (2.67 GHz) ,
3GB RAM and a NVIDIA GTX295 graphic board. The GTX295 graphic board inte-
grates two GTX280 GPUs inside and has 896MB GPU RAM for each GPU. Operating
system is Windows XP (service pack 2).

Our GPU applications are developed with NVIDIA’s CUDA (Compute Capability
1.3). In CUDA’s programming model, functions are expressed as kernels and the small-
est execution unit on GPU is a thread. Usually multiple CUDA kernels are needed to
realize different kinds of functions in one algorithm.

3.2 Implementation of GPU-ESM

The proposed GPU-ESM tracking algorithm can be categorized into 6 CUDA kernels.
1) Warping. This kernel completes the task that warps a reference image to the cur-

rent image with a known homography.
2) Gradient. This kernel calculates the intensity gradient in X and Y directions.
3) Jesm. This kernel calculates the Jesm matrix in ESM algorithm.
4) Solving. This kernel finds the solution x of linear equations

Jesmx = −d(0) (15)

Jesm is of m× 8, x is of 8× 1, therefore this equation is overdetermined. To solve this
equation, we multiply the transpose of Jesm on both sides:

J"esmJesmx = −J"esmd(0) (16)

and adopt the Cholesky decomposition method to solve Eq. 16 for the solution x0.
5) Updating. This kernel updates homography with solution x from “Solving” ker-

nel. Calculation methods are shown in Eq. 5, 6 and 14. In our application, we use the
following SL(3) basis matrices:

A1 =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ A2 =

⎡⎣0 0 0
0 0 1
0 0 0

⎤⎦A3 =

⎡⎣ 0 1 0
0 0 0
0 0 0

⎤⎦A4 =

⎡⎣0 0 0
1 0 0
0 0 0

⎤⎦

A5 =

⎡⎣1 0 0
0 −1 0
0 0 0

⎤⎦A6 =

⎡⎣0 0 0
0 −1 0
0 0 1

⎤⎦A7 =

⎡⎣0 0 0
0 0 0
1 0 0

⎤⎦A8 =

⎡⎣0 0 0
0 0 0
0 1 0

⎤⎦
(17)

We adopt such approximation to calculate the matrix exponential of exp((A(x0))):

G(x0) = exp(A(x0)) =
∞

∑
i=0

1
i!

(A(x0))i

≈ I+ A(x0)+
1
2

A(x0)
2 +

1
6

A(x0)
3

(18)
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Due to the small eigenvalues of A(x0) (near 0), above approximation can work well
without loosing accuracy.

6) Correlation. This kernel calculates the correlation of warped region I and template
region I∗(m pixels) with the Zero mean Normalized Cross Correlation (ZNCC):

∑m
k=1 (I(k)− I)(I∗(k)− I∗)√

∑m
k=1 (I(k)− I)2 ∑m

k=1 (I∗(k)− I∗)2
(19)

where I and I∗ are the mean intensity values of warped region I and template region I∗,
respectively. As a quality evaluation criterion, the correlation has played two important
roles in our application. On one hand, if the correlation is smaller than a preset lower
threshold, it will be treated as ESM tracking failure has happened. On the other hand,
if the correlation is larger than a preset upper threshold, the iterative ESM processing
loop will stop and continue to process the next input image. As an iterative minimization
method, such threshold to stop the ESM loop is necessary.

3.3 Implementation of GPU-SIFT

In our GPU-SIFT, we transfer Changchang Wu’s GPU-SFIT matching[19] to match the
features. Then we adopt the RANSAC method to improve the homography accuracy.
RANSAC method has shown a better performance than least squares methods as it can
effectively remove some of the mismatched pairs of points in GPU-SIFT.

3.4 Combination Strategy

As mentioned above, ESM tracking algorithm can provide a fast and accurate homog-
raphy solution when the solution is near the global minimum point, but its convergence
region is small. For large image difference it will loose tracking. Meanwhile, SIFT al-
gorithm can offer a robust solution in a large region. But it is not fast enough for a real
time visual servo system. Limited by the mismatched outliers, the homography solution
is not so accurate as that from ESM tracking algorithm.

Therefore we combine the GPU-ESM tracking and GPU-SIFT methods to enhance
the system performance. The combination model is shown in Fig.1. Both GPU-ESM
tracking and GPU-SIFT run on GPUs simultaneously to process the input images.
Though the two threads might process two different frames because of their differ-
ent processing speed, the system can still work well because there is no large image
difference between the two images in such a small delay time.

In GPU-ESM tracking algorithm, the ZNCC correlation value will be checked af-
ter processing each image to determine whether ESM tracking failure has happened or
not. If tracking failure happens, GPU-ESM will automatically load current homography
from GPU-SIFT and set it as the new initial value. By this means, the GPU-ESM track-
ing algorithm can continue working. Therefore, the whole homography-based visual
servo system can work smoothly with high reliability at a high processing speed.

4 Experiments

Four experiments have been carried out to evaluate the system. The first two experi-
ments are to evaluate the efficiency of our GPU-ESM tracking algorithm. The third is
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Load one image 

ESM processing 

Tracking fails? 

GPU-SIFT starts 

Load one image 

SIFT processing 

GPU-ESM starts 

RANSAC solving 

Load homography from SIFT 

No 

Yes 
Store homography 

Fig. 1. Combination of GPU-ESM algorithm and GPU-SIFT

to verify the combination efficiency of both algorithms. 3D region tracking is devel-
oped in the last experiment. Images are captured from a 200 fps camera (Grasshopper
GRAS-03K2M/C). Size is 640×480.

4.1 Experiment I: Evaluation with Image Sequence

One image sequence (3000 frames of 640× 480 grayscale images ) are loaded into
memory. Then the GPU-ESM and CPU-ESM process the same sequence from the mem-
ory. The number of ESM processing loop is set to 5. The tracking region size is chosen
from 64×64 to 360×360. Their processing speed (fps) and ratio are shown in Fig. 2.

0 2 4 6 8 10 12 14

x 10
4

0

50

100

150

200

250

300

350

Pixels

F
P

S

 

 
GPU−ESM(fps)
CPU−ESM(fps)

0 2 4 6 8 10 12 14

x 10
4

0

5

10

15

20

25

30

35

Pixels

G
P

U
/C

P
U

 R
at

io

Fig. 2. Comparison on processing frame rate of GPU-ESM tracking and CPU-ESM tracking. X
axis is the number of pixels in a square tracking region from 4096(64×64) to 129600(360×360).

Fig. 2 shows that GPU has greatly accelerated the ESM tracking algorithm. Though the
processing speed of both decreases with the increase of tracking region size, GPU-ESM
can still work at a relative high speed. As the ‘GPU/CPU Ratio’ increases with the pixel
number, it also shows that GPU is more preferable for highly parallel tasks.

4.2 Experiment II: Evaluation with Real Application

Input images are from a 200 fps camera. The captured images are processed simul-
taneously by both GPU-ESM thread and CPU-ESM thread. Images extracted from
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t=1.00s t=3.23s t=4.00s t=4.12s

Fig. 3. GPU-ESM tracking. The second row shows the warped images from the boxed region in
current images (the first row). The result that all warped images are nearly the same shows that
GPU-ESM can track the fast moving object.

t=1.00s t=3.23s t=4.00s t=4.12s

Fig. 4. CPU-ESM tracking. The change of warped images shows that CPU-ESM tracking can not
track the same moving object as in Fig. 3.

the GPU-ESM and CPU-ESM tracking sequences are shown separately in Fig. 3 and
Fig. 4. Tracking region is a 200×200 region shown in t = 1.00s.

The boxed regions in the first row of Fig. 3 and Fig. 4 are warped back with homogra-
phy and shown in their second rows. Despite illumination change and image noise, the
warped regions should be very close to the reference template when the tracking is ac-
curately performed. During the experiment, we start to move the object from t = 1.00s.
From the sequences in Fig. 4 we can see the CPU-ESM performs poorly with moving
object (from t = 3.23s tracking error happens, for t > 4.00s the warped regions are to-
tally different from the warped region of t = 1.00s ) while GPU can still perform visual
tracking well (the warped regions in Fig. 3 are nearly the same). This experiment shows
that our system performance has been greatly enhanced by GPU acceleration.

4.3 Experiment III: Combination Evaluation

Occlusions are added to test the combination performance. The lower ZNCC threshold
is set to 0.6 and the ZNCC value of each frame is plotted in Fig. 5. When occlusion
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Fig. 5. ZNCC values respecting to time

t=0.00s t=4.82s t=4.90s t=6.62s t=6.65s

Fig. 6. Combination evaluation. Occlusion happens at t = 4.82s and t = 6.62s. After occlusion is
moved, it can continue tracking (see t = 4.90s, t = 6.65s). The red boxes shown in the first row
show that by loading from SIFT, the ESM tracking can continue working even with occlusion.

happens at t = 4.82s and t = 6.62s, the ZNCC value fell down (in Fig. 5). The GPU-
ESM detected the tracking error and loaded the homography from GPU-SIFT. There-
fore it can continue tracking at an acceptable accuracy. After occlusion is moved, the
GPU-ESM can continue tracking (see the image sequences in Fig. 6). This has verified
the effectiveness of our combination model.

4.4 Experiment IV: 3D Object Tracking

This experiment is to evaluate the 3D object tracking. Thanks to the GPU speedup, we
extend the 2D planar tracking to 3D region tracking based on multiple planes tracking.
In many applications a 3D tracking region can be separated into multiple adjacent planar
regions. We can carry out ESM tracking on each planar region and merge the warped
regions again to realize the tracking task. As shown in Fig. 7, for tracking area of 240×
416 with two planar regions, the processing speed is 130 fps.

In our previous work of 3D region tracking, the boundaries of template region are
manually chosen. Now the GPU-SIFT is also extend to 3D tracking. A 3D template
region is chosen from current image (two adjacent regions in Fig. 7). Then the object
is moved to a random initial pose(see the warped image of t = 0.00s).GPU-ESM will
continue loading the homographies for two regions from SIFT and tracking the 3D
region on the moving object until t = 1.12s, when the GPU-ESM has found an accurate
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Template t=0.00s t=1.12s t=5.22s t=5.50s

Fig. 7. 3D object tracking based on 2 planar regions tracking. Two adjacent tracking regions are
described in red and blue boxes separately. The color boxes in first raw show the tracked regions
in current images. The warped images are shown in the second row. SIFT tracking results are
shown in the third row. The tracked region by SIFT is also shown with color boxes. Occlusion
happens at t = 5.22s and disappears at t = 5.50s.

homography solution. The tracked regions at t = 5.22s and t = 5.50s show that our
system can still track the 3D region by using SIFT results even when occlusion happens.

5 Optimization

Though CUDA uses C language with several extensions which makes it easier than
other GPU languages, to make GPU code highly proficient, carefully optimization must
be exploited and several important factors must be considered. In this section, we de-
scribe our optimization experience in our GPU applications.

5.1 Memory Hierarchy

CUDA provides a hierarchy of memory resources including on-chip memory (register,
shared memory) and off-chip memory (local memory, global memory const and tex-
ture memory) . In our GPU applications, we intensively utilize the fast on-chip shared
memory instead of the long-latency global memory. For example, in kernel “Jesm”, the
computation of Jesm matrix needs several intermediate results based on the image gra-
dient. So we first load the image gradient data into shared memory and then continue
other computation from shared memory. By using this “cache” like strategy, we have
greatly reduced the kernel’s running time.
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We use texture memory in kernel “Warping”. With the bilinear filter function by
CUDA, we only need to set the filter mode parameter to bilinear. When fetching the
texture memory, the returned value is computed automatically based on the input coor-
dinates with the bilinear filter. This hardware function helps us to skip its programming.

5.2 Memory Coalescing

By using memory coalescing in CUDA, a half warp of 16 GPU threads can finish 16
global data fetching in as few as 1 or 2 transactions. In our applications, we has inten-
sively used this optimization technique. For example, to calculate the mean I in ZNCC
correlation of a 360×360 region, first we need to calculate the sum of I. We use 1 block
of 512 threads (the index of each thread “threadID” is from 0 to 511) to accumulate all
the 129600 pixels. As 129600 = 254 ∗ 510 + 60, the number of data processed by each
thread is 254 (except the last two threads with only 60 data). The normal idea is using
“for-loop” in each GPU thread like this:

f or( j = threadID∗ 254; j < (threadID+ 1)∗ 254; j ++){sum+= I[ j];}

To fully use memory coalescing, we change the code to follows:

f or( j = threadID; j < 129600; j+ = 512){sum+ = I[ j];}

Both “for-loops” seem to have same performance for a GPU thread. But due to GPU’s
particular memory fetching mechanism, speedup really happens on GPU.

GPU memory is accessed in a continuous block mode, i.e. during one GPU memory
access, data from a block of continuously addressing memory space will be loaded si-
multaneously. For example, it can load T [0]∼ T [15] simultaneously by 16 GPU threads.
In the latter loop, the fetched 16 data can be parallel processed by 16 GPU threads.
Meanwhile in the former loop, only 1 data of these 16 data is used by 1 thread while all
other 15 data is deserted. Each of other 15 threads must invoke other 15 GPU memory
access to fetch their own data. Therefore, for the same data fetching, the former loop
costs about 15 times more memory access time than the latter loop. With memory coa-
lescing strategy shown in the latter loop, we have substantially reduced the total number
of running time.

6 Conclusions

In this paper, an efficient combination approach of GPU-ESM and GPU-SIFT is pre-
sented. Experimental results verified the efficiency and effectiveness of our approach.
The optimization techniques in our implementations are presented as a reference for
other GPU application developers.
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Abstract. This paper presents a novel tool for detecting human actions

in stationary surveillance camera videos. In the proposed method there

is no need to detect and track the human body or to detect the spatial or

spatio-temporal interest points of the events. Instead our method com-

putes single-scale spatio-temporal descriptors to characterize the action

patterns. Two different descriptors are evaluated: histograms of optical

flow directions and histograms of frame difference gradients. The inte-

gral video method is also presented to improve the performance of the

extraction of these features. We evaluated our methods on two datasets:

a public dataset containing actions of persons drinking and a new dataset

containing stand up events. According to our experiments both detec-

tors are suitable for indoor applications and provide a robust tool for

practical problems such as moving background, or partial occlusion.

Keywords: Human action recognition, optical flow, frame difference.

1 Introduction

In the last decade human action detection and recognition in video streams have
been an active field of research. They can often be a prerequisite for applications
such as visual surveillance, semantic video annotation/indexing and retrieval, or
higher level video analysis. It is still a challenging problem due to the variations
in body size and shape, clothing, or the diverse characteristic (e.g. velocity, gait,
posture) of the actions performed by different actors. The environmental noise
(e.g. illumination change, shadows, occlusion, moving or cluttered background)
also increases the complexity of the problem.

Several methods have been developed for detecting objects (e.g. human body,
face, vehicle) in static images, and some of the concepts have been extended for
recognizing action in video sequences. Most of these methods rely on the sparsely
detected interest points and features extracted at the location of these points.
Our approach is also inspired by object detection approaches, but contrary to
other methods we neglect the interest points, instead we create a dense grid of
local statistics in a predefined size spatio-temporal window containing the whole

J. Blanc-Talon et al. (Eds.): ACIVS 2010, Part II, LNCS 6475, pp. 366–375, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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action. This single-scale descriptor can be used to scan across the multi-scale
representation of the input video segments.

The rest of the paper is organized as follows. In Sec. 2 we briefly present
related work in human action recognition. Our method is introduced in Sec. 3,
including the parameter settings we used in our experiments. The datasets we
used for evaluating the proposed methods are discussed in Sec. 4. In Sec. 5 we
give our experimental results. Finally Sec. 6 concludes the paper.

2 Related Work

Early approaches to human behavior recognition are based on the detection and
tracking of the body. Spatial 2-D or 3-D features are extracted at each time step
and the time series of these features provide the description of the action to be
recognized. For a broad overview of these approaches see [1]. Instead of object
tracking, several approaches track the spatial features and perform recognition
on the feature tracks (e.g. the collection of body parts [2] or view-invariant
representation of trajectories [3]).

Most of the recent methods first employ sparse spatio-temporal interest point
(feature point) detection (e.g. [4,5,6]) and extract features at the location of
these points. Finally, the extracted feature set is used to distinguish the dif-
ferent action classes. Dollár et al. [4] extend spatial interest point detection in
the spatio-temporal case by applying temporal 1-D Gabor filters, and tuned the
detector to evoke strong responses to periodic motions (other spatio-temporal
corners also have strong responses). At each interest point normalized pixel val-
ues, brightness gradients and optical flow are extracted. The descriptors are com-
puted by concatenating all the gradients in a region, the dimension is reduced by
Principal Component Analysis (PCA). The space-time extension of the Harris
operator is used by Schüldt et al. [7] to find spatio-temporal feature points, and
local features are combined with a Support Vector Machine (SVM) [8] classifier
to recognize the action. Kläser et al. in [9] use the same interest point detector
and propose the HOG3D descriptor, which is based on histograms of 3-D im-
age gradient orientations and combines shape an motion information. Laptev et
al. in [10] extract the histogram of gradients and the histogram of optical flow
features in the location of space-time interest points, and the extracted features
are represented as bag-of-features.

Several existing approaches do not use interest point detection. Efros et al.
in [11] introduce an optical flow based motion descriptor, and use global mea-
surement for the whole stabilized and figure-centric sequence. In [12] the original
histogram of gradient-based approach [13] was extended by motion information,
which was achieved by using optical flow orientation of two consecutive frames.
The detection is performed in a spatial window similarly to the original method.
In [14] each event was represented by a spatio-temporal volume containing mo-
tion and shape features. Havasi et al. in [15] present a real-time tracking method
to recognize one specific event, the human walk. The proposed descriptor is
based on the structural changes of human legs, and achieved high detection rate
in indoor and outdoor scenes using several different classifiers.
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Our method is closely related to the work of [12] and [14]. The main difference
is that instead of image gradients we calculate the gradients of the difference of
consecutive video frames, therefore our descriptor contains motion information
only. Moreover, we evaluate two special arrangements for the quantization of
the directions. An action is represented by these features in a fixed size spatio-
temporal rectangular cuboid, and this single 3-D descriptor (on single scales)
can be used for recognizing actions on the multi-scale representation of the input
video segments.

3 Proposed Method

The proposed method is based on the original HOG-based human detector of
[13], however we extended it with a third dimension. That is we calculate our
features in spatio-temporal rectangular cuboids. Two different motion features
are extracted: histograms of optical flow directions (HFD) and histograms of
frame difference gradients (HDG).

3.1 Optical Flow Directions

For each frame in the sequence we extracted the optical flow vectors using the im-
plementation [16] of the method proposed by [17]. From the fi = (xi, yi, vxi, vyi)
optical flow vector its direction di and magnitude mi is computed using

di =
360
2π

tan−1
(

vyi

vxi

)
(1)

mi =
√

vx2
i + vy2

i , (2)

then the directions are linearly quantized. Fig. 1 (a) and (b) present two possible
arrangements. In our experiments we evaluated both types.

3.2 Frame Difference Gradients

Let gi = (gxi, gyi) denote the gradient of the absolute difference of two consecu-
tive video frames at position i, calculated by using 3× 3 vertical and horizontal
Sobel operator. The orientation and the magnitude of gi can be calculated by us-
ing Eq. 1. Finally, the orientations are quantized using an arrangement presented
in Fig. 1.

(a) (b) (c)

Fig. 1. (a) and (b) are two possible arrangements of quantization; (c) is the range of

directions (hue) in the HSL color space and is used for visualizing our features
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3.3 Descriptors

We use the original terms of [13] with the temporal extension. A cell is a small
spatio-temporal rectangular cuboid of 8 × 8 pixels and 1/6 sec duration, and
in each cell a 4, 6 or 8-bin histogram is calculated from the quantized optical
flow directions and frame difference gradient directions, while the magnitudes
are used for weighted voting. A block is created as a group of several adjacent
cells (2 × 2 × 2 cells in our experiments), and is used for normalizing the his-
tograms of the cells. The features are the normalized histograms: HFD and
HDG. A detection window of 96× 128 pixels and 1 sec duration is tiled by these
overlapping blocks. The features (normalized histograms of the blocks) in the
spatio-temporal window are concatenated to form a vector and are used to rec-
ognize the event. Fig. 2 demonstrates the extracted optical flow cell histograms
before block normalization, (a) and (b) are two samples taken from the positive
dataset containing stand up events, while (c) is one sample from the negative
set. Each direction in the 6-bin histogram is represented by 10 pixels in the cell,
color is determined in the HSL color space according to

Hi = (i − 1/2) × 30� − 90� (3)
Si = 1 (4)
Li = 0.5 × hi , (5)

where hi is the histogram value of the ith bin, and Hi is determined as the
mean direction of the bin (see Fig. 1(b) and (c)). To express the direction of the
motion the center pixels are represented by the bin with the highest hi value.

Since each descriptor is single-scale, the detection window can be used to scan
the multi-scale representation of the input video segments, and the extracted fea-
ture vectors are used in SVM classifier to recognize the action. In our experiments
to obtain the desired 1 sec long window we applied temporal nearest neighbor

(a) (b) (c)

Fig. 2. Extracted histograms in the cells without block normalization, taken from the

same temporal positions; (a) and (b) are from the positive sample set (stand up event);

(c) is one sample from the negative set. The hue value in the HSL color space is used

for visualizing the directions of the bins (see Fig. 1(c)).
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a

c

b

g

f

h

Fig. 3. Integral video representation: the sum in any rectangular cuboid can be

computed using eight references

interpolation on the optical flow vectors and on the frame difference gradients
extracted from the input video segments. In practice this means that in case of
shorter segments the optical flow and the frame difference of some video frames
were duplicated, while in case of larger duration several were dropped.

3.4 Integral Video Representation

The integral image representation proposed in [18] speeds up the computation of
any rectangular sum, and therefore can be used to compute histograms efficiently.
This technique can be extended to three dimensions. The integral video (iv) in
3-D is defined as follows. Let f(x, y, t) denote the pixel at position (x, y) of the
video frame at time t, then the iv is defined as

iv(x, y, t) =
∑

x′≤x,y′≤y,t′≤t

f(x′, y′, t′) . (6)

Extending the original recurrences to 3D we will get

sf(x, y, t) = sf(x, y, t − 1) + f(x, y, t) (7)
sr(x, y, t) = sr(x, y − 1, t) + sf(x, y, t) (8)
iv(x, y, t) = iv(x − 1, y, t) + sr(x, y, t) , (9)

where sf(x, y, t) is the cumulative frame sum at position (x, y), sr(x, y, t) is
the cumulative row sum at time t, sf(x, y,−1) = 0, sr(x,−1, t) = 0, and
iv(−1, y, t) = 0. Using the integral group of frames any sum can be computed in
rectangular cuboid (Fig. 3) using eight references as a+d−(b+c)+f +g−(e+h).

4 Datasets

Our tests were performed on two datasets: one is publicly available and one was
recorded in our offices.
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Fig. 4. Example video frames from the positive samples (frontal stand up events).

Practical problems (e.g. motion in background) and inner-class variability (e.g. hand

gestures, phone call) are clearly visible.

4.1 Drinking Dataset

To evaluate our method from the existing public datasets we used the drinking
events introduced in [14]. However, on the author’s website only a limited number
of shots are publicly available (33 shots in a single avi file). Therefore, our tests
are also limited to these shots. Negative training and test samples were created
by cropping random sized video parts from random temporal positions. The
negative dataset contains 39 samples.

4.2 Stand Up Dataset1

Most of existing datasets were recorded in controlled environment, hence we
started to develop a new realistic dataset recorded in indoor environment. During
the development we focused on practical problems such as moving objects in the
background, occlusion or hand movements of the actors. Videos were recorded
in our office by an ordinary IP camera. The dataset currently contains actions
of six actors recorded at seven different scenes. For the recordings we used the
camera’s own software, which used a standard MPEG-4 ASP coder at 1200 kbps
rate for compression. The videos were recorded at 640×480 fsize and 30 fps rate.

Positive samples. From the recordings we manually cropped the frontal stand
up events using a window with 0.75 aspect ratio. This window contained the
body from the knee to the head with several extra pixels at the borders. Finally
the windows were resized to 96 × 128 pixels using bicubic interpolation. In this
set the duration of the events falls between 0.58 sec (18 frames) and 1.37 sec (41
frames). Currently the dataset contains 72 video sequences of the event. Fig. 4
presents example frames from the dataset.

Negative samples. We used two sets as negative samples. For the first set we
manually selected some segments where different types of actions/movements
were present and used the same method for resizing as we used for the positive
samples. This dataset currently contains 67 video sequences. The second negative
set was created by cropping random sized spatio-temporal windows (assuming

1 Publicly available at http://web.eee.sztaki.hu/~ucu/sztaki_standup.tar.gz

http://web.eee.sztaki.hu/~ucu/sztaki_standup.tar.gz
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Fig. 5. Example video frames from the negative samples: hand selected video sequences

(top); randomly cropped from the recordings (bottom)

0.75 aspect ratio) at random spatial and temporal positions. This dataset con-
tains 63 sequences. The two negative sample sets currently contain 130 video
sequences. Fig. 5 demonstrates some frames from the two negative samples.

5 Experimental Results

In our experiments we tested the two descriptors presented in Sec. 3.1 and
Sec. 3.2, and both quantization arrangements (see Fig. 1) were evaluated with
4, 6, and 8 bins. Moreover, we also included in our tests the publicly available
implementation of the HOG3D descriptor[9] using the default settings.

In our first experiment we used the drinking dataset presented in Sec. 4.1 to
evaluate the performance of our methods. Two tests were performed with differ-
ent size of training data. In the first test for training we used 10 samples from
the positive and 11 from the negative dataset, while in case of the second test
we increased the number of training samples to 17 (positive) and 20 (negative).
The rest of the datasets were used for testing, and the trained SVM was used
to recognize the action. Table 1 presents the confusion matrix of the recognition
results of the first test with the smaller training set. Here we show the best
results obtained by each descriptor, which were achieved in both cases by using
the arrangement presented in Fig. 1b with 6 bins. Due to the larger training sets
used in the second test the number of False Negatives decreased to FN=0, while
the number of False Positives changed to FP=1 for HDG and HFD. In case of
the HOG3D we obtained FN=0 and FP=1.

We used our stand up dataset (see Sec. 4.2) in the second experiment. Again,
two tests were performed with training data of different size. In the first test we
used 24 samples from the positive and 36 from the negative dataset for training,
while in case of the second test we increased the number of training samples to
41 (positive) and 87 (negative). Table 2 summarizes the recognition results of
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Table 1. Confusion matrix of the recognition results of the first experiment, where 10

positive and 11 negative samples were used for training the SVM. The remaining data

(23 positive and 28 negative) were used for evaluation.

HDG HFD HOG3D

Positive Negative Positive Negative Positive Negative

R
e
fe

re
n
c
e

Positive TP=18 FN=5 TP=19 FN=4 TP=23 FN=0

Negative FP=0 TN=28 FP=3 TN=25 FP=1 TN=27

Table 2. Confusion matrix of the recognition results of the second experiment. In

this test 24 positive and 36 negative samples were used for training the SVM. The

remaining data (48 positive and 94 negative) were used for evaluation.

HDG HFD HOG3D

Positive Negative Positive Negative Positive Negative

R
e
fe

re
n
c
e

Positive TP=46 FN=2 TP=48 FN=0 TP=48 FN=0

Negative FP=1 TN=93 FP=3 TN=91 FP=2 TN=92

Table 3. Computational costs of the different steps in the recognition procedure

HDG extraction 21.18 msec

HFD extraction 48.81 msec

HOG3D extraction 34.30 msec

SVM-based recognition 0.79 msec

the first test, where the HDG-based recognition resulted in a 95.83% TPR (true
positive rate), and a 1.06% FPR (false positive rate), while using the HFD -based
detector a TPR=100% and a FPR=3.19% were achieved. Please note that only
the best results are presented, which were obtained by using the arrangement of
Fig. 1b with 6 and 8 bins for the HFD and the arrangement of Fig. 1a with 6
and 8 bins for the HDG. In the second test by using the increased training set
we obtained FP=1 and FN=0 for the HFD method, FP=1 and FN=2 for the
HDG, FP=3 and FN=0 for the HOG3D.

Finally, we also measured the duration of each step in the recognition proce-
dure. The computation results are summarized in Table 3.

6 Conclusion

In this paper we presented a novel approach for recognizing human action. We
used two different spatio-temporal motion-based descriptors and different quanti-
zation arrangements to characterize the event. Instead of representing the action
as a set of features extracted at interest point locations, in our approach one sin-
gle feature describes the whole action. To test our method we used a publicly
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available dataset, but additionally we created a dataset of persons standing up,
which contained several types of practical problems (e.g. motion in background
or partial occlusion). According to our experiments the simple frame-difference
based descriptor achieved recognition rates comparable to the optical flow-based
approach, with significantly lower computational complexity. In the future we
are planning to increase the size of our current dataset and also the number
of different action types. Moreover, we will also evaluate how the different pa-
rameter settings (e.g. quantization or cell and block size) affect the recognition
performance.
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