

Lecture Notes in Computer Science 6299
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Zoltán Horváth Rinus Plasmeijer
Viktória Zsók (Eds.)

Central European
Functional Programming
School
Third Summer School, CEFP 2009
Budapest, Hungary, May 21-23, 2009
and Komárno, Slovakia, May 25-30, 2009
Revised Selected Lectures

13

Volume Editors

Zoltán Horváth
Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers
Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary
E-mail: hz@inf.elte.hu

Rinus Plasmeijer
Radboud University, Computer and Information Sciences Institute
Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
E-mail: rinus@cs.ru.nl

Viktória Zsók
Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers
Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary
E-mail: zsv@inf.elte.hu

Library of Congress Control Number: 2010940290

CR Subject Classification (1998): D.1.1, D.3.2, F.3.3, D.1-2, D.1.5, C.2, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-17684-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17684-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume presents the revised lecture notes of selected talks given at the third
Central European Functional Programming School, CEFP 2009, held during 25–
30 May in Komárno (Slovakia) at Selye János University. It was co-organized
with the TFP 2009 conference. The summer school included a three-day warm-
up session organized at Eötvös Loránd University, Budapest, Hungary during
21–23 May, 2009.

The summer school was organized in the spirit of the advanced program-
ming schools. CEFP focuses on involving an ever-growing number of students,
researchers, and teachers from Central- and Eastern-European countries. The
intensive program offered a creative and inspiring environment and a great
opportunity to present and exchange ideas on new topics of functional
programming.

The lectures covered a wide range of subjects like design patterns, semantics,
types, and advanced programming in various functional programming languages.

We are very grateful to the lecturers and researchers for the time and the
effort they devoted to the talks and the revised lecture notes. The lecture notes
were each carefully checked by reviewers selected from experts on functional
programming. Afterwards the papers were revised once more by the lecturers.
This revision process guaranteed that only high-quality papers were accepted
for the volume.

The last two papers of the volume are selected papers from the PhD workshop
of the summer school.

We would like to express our gratitude for the work of all the members of the
Program Committee and the Organizing Committee.

The web-page for the summer school can be found at
http://www.inf.elte.hu/english/conf/tfp cefp 2009/

August 2010 Zoltán Horváth
Rinus Plasmeijer

Viktória Zsók

Organization

CEFP 2010 was co-organized by the Selye János University, Komárno (Slovakia)
and Eötvös Loránd University, Budapest, Hungary.

Sponsoring Institutions

The summer school was supported by the CEEPUS program (via the CEEPUS
CII-HU-19 Network) and by the two organizing universities.

Table of Contents

Rapid Prototyping of DSLs with F# . 1
Adam Granicz

Erlang Behaviours: Programming with Process Design Patterns 19
Francesco Cesarini and Simon Thompson

Reasoning about Codata . 42
Ralf Hinze

Programming in Manticore, a Heterogenous Parallel Functional
Language . 94

Matthew Fluet, Lars Bergstrom, Nic Ford, Mike Rainey,
John Reppy, Adam Shaw, and Yingqi Xiao

Non-monadic Models of Mutable References . 146
Péter Diviánszky

Software Testing with QuickCheck . 183
John Hughes

An Effective Methodology for Defining Consistent Semantics of
Complex Systems . 224

Pieter Koopman, Rinus Plasmeijer, and Peter Achten

Types for Units-of-Measure: Theory and Practice . 268
Andrew Kennedy

Functional Programming with C++ Template Metaprograms 306
Zoltán Porkoláb

Embedding a Proof System in Haskell . 354
Gergely Dévai

Impact Analysis of Erlang Programs Using Behaviour Dependency
Graphs . 372

Melinda Tóth, István Bozó, Zoltán Horváth, László Lövei,
Máté Tejfel, and Tamás Kozsik

Author Index . 391

Rapid Prototyping of DSLs with F#

Adam Granicz

IntelliFactory, Budapest, Hungary
adam.granicz@intellifactory.com

http://www.intellifactory.com

Abstract. In these lecture notes we present the F# implementation of
a small programming language we call Simply. We give the parser im-
plementation using active patterns, F#’s unique feature for extensible
pattern matching, which as we demonstrate provide an elegant and type-
safe mechanism to embed parsers as an alternative approach to parser
generators. We also build an evaluator, and extend the core Simply lan-
guage with Logo-like primitives and build a graphical shell environment
around it.

As a warm-up, we give a rudimentary survey of some notable F#
features, including sequence expressions and active patterns. For a treat-
ment of units of measure, used briefly in the Simply shell environment,
the reader is encouraged to study [AK-09] and [AK-CEFP-09].

1 F#

F# is a statically type-checked, type-inferred, script-like functional programming
language for the .NET framework. It supports object-oriented and imperative
programming, and comes with built-in language features for asynchronous and
metaprogramming [DS-06]. For more information about F# refer to [DS-09].

1.1 Getting Started with F#

Most of the examples in this warm-up section and the later sections on DSL
development can be typed in directly into F# Interactive, and in fact, this is the
easiest way to get acquainted with F#. F# Interactive can be run in two modes:
directly as a command-line tool by invoking fsi.exe, or inside Visual Studio as
a plug-in - which is installed by default with the F# Visual Studio extensions
(part of the main F# installer). As the lecture goes on, it is suggested to try the
examples with Visual Studio, by opening an F# sandbox project and adding F#
source files to this project. Therefore, it is easy to interact with F# Interactive
either by typing code into the F# Interactive window, or highlighting some code
in the editor window and pressing Alt+Enter. This Visual Studio command
sends the highlighted text into F# Interactive, adding any new definitions into
the currently running session.

An F# Interactive session can be exited and restarted any time by typing
”exit 1;;” into the F# Interactive window.

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Granicz

1.2 Sequences and Sequence Expressions

Sequences are data that can be enumerated on demand - they are a lazy data
structure. The F# data type seq<’T> is an alias for the .NET interface type
IEnumerable<’T>, and effectively all of the .NET and F# collections are
sequences.

Sequences are a powerful abstraction in F# programming, and in fact they
are used to wrap all kinds of data sources besides ordinary collections, including
databases, LINQ queries for XML and relational data, and so on.

F# provides rich support for sequences. Ordinary sequences of integers and
real numbers can easily be constructed using the sequence notation:

{ 1 .. 100 } // All integers between 1 and 100.
{ 1.0 .. 100.0 } // All integers between 1 and 100 as doubles.
{ 1 .. 2 .. 100 } // All odd numbers between 1 and 100.

Sequence comprehensions are a formalism to construct a sequence of values
using a generator function:

seq { for i in 1 .. 100 -> i*i } // The first 100 squares.

This code is equivalent to

seq { 1 .. 100 } |> Seq.map (fun i -> i*i)

Sequence expressions are a form of computation expressions or workflows, F#’s
unique feature that adds monadic syntax over F# code.

Consider the example in Figure 1 that yields all the files in a given folder
including those in all the subfolders.

Note that subfolders are not searched until the sequence is enumerated, e.g.
until the file names are actually consumed. In this expression, yield is used to
return a single new element in the sequence, and yield! to return a sequence
of elements.

open System.IO

let rec AllFiles dir =

seq { for file in dir |> Directory.GetFiles do

yield file

for subdir in dir |> Directory.GetDirectories do

yield! subdir |> AllFiles }

Fig. 1. Returning all files in a given folder as a sequence

Rapid Prototyping of DSLs with F# 3

1.3 Pattern Matching and Active Patterns

Pattern matching is a fundamental concept in functional programming. Take a
look at the following code snippet:

type Expr =
| Integer of int
| Binop of (int -> int -> int) * Expr * Expr

let rec Eval = function
| Integer i ->

i
| Binop (f, e1, e2) ->

f (Eval e1) (Eval e2)

Here, the type Expr is defined to be an algebraic data type (a variant or
discriminated union type) with two shapes, each carrying different values. These
values can be extracted using pattern matching, and an example is given in the
Eval function above.

Active patterns [DS-07] are special functions that are applied on the value
being matched before pattern matching actually takes place. As with ordinary
pattern matching, active patterns are statically checked for exhaustiveness. Their
main advantage is that different conceptual views can be erected on any value,
at any time, preserving encapsulation.

Active patterns are defined inside pipes (and a surrounding set of parentheses).
Pattern cases can be closed or open (partial). Closed active patterns are made
up of one or more pattern cases that collectively completely describe their input,
whereas partial active patterns only attempt to describe parts of the input value
space.

Converting Values. Single-case active patterns can be used to convert values.
Consider the following:

open System

let (|NiceString|) s =
if s |> String.IsNullOrEmpty then

NiceString ""
else

NiceString (s.Trim())

Here, NiceString is the only pattern case and thus it always matches in a
pattern match:

let _ =
let (NiceString str) = " with whitespace "
str |> printf "Result = [%s]\n"

4 A. Granicz

Partitioning Values. A more typical use of active patterns is to decompose
or partition the input value:

let (|Empty|Number|String|) (s: string) =
let res = ref 0
if s |> String.IsNullOrEmpty && s.Trim() = "" then

Empty
elif Int32.TryParse(s, res) then

Number !res
else

String s

let _ =
match "123a" with
| Number i -> printf "Number: %d\n" i
| String s -> printf "String: %s\n" s
| Empty -> printf "empty\n"

let (|Even|Odd|) i = if i % 2 = 0 then Even else Odd

let _ =
match 154321 with
| Even -> printf "something strange happened"
| Odd -> printf "everything ok"

Describing Values. Partial active patterns work slightly differently from com-
plete active patterns in that they must indicate whether a pattern match is made
or not by returning an option value as opposed to one of the pattern cases. One
example of using active patterns for describing values is checking for primeness:

let (|Prime|_|) (n: int) =
{ 2 .. n |> float |> Math.Sqrt |> Math.Floor |> int }
|> Seq.exists (fun i -> n % i = 0)
|> function

| true -> None | false -> Some n

let _ =
match 13 with
| Prime _ -> printf "Prime\n"
| _ -> printf "Not prime\n"

Active patterns can be parameterized like any ordinary function. Consider the
following:

let (|DivisibleBy|_|) div num =
if num % div = 0 then Some () else None

Rapid Prototyping of DSLs with F# 5

let _ =
match 154323 with
| DivisibleBy 13 _ -> printf "divisible by 13\n"
| _ -> printf "not divisible\n"

2 Developing DSLs

Table 1 summarizes the grammar of the small programming language we call
Simply, for its simple but elegant syntax. In the subsequent sections we will
describe the steps necessary to implement an interpreter for Simply.

Table 1. The grammar of the Simply language

Symbol Definition Comment
f ::= i Numbers

v(e1...en) Function application
v Variables
(e)

t ::= f ∗ t Multiplication
f/t Division
f

e ::= t + e Addition
t − e Subtraction
t

command ::= [e1...en] Sequencing
repeat e as v command Repeat blocks
fun v (v1...vn) = command Function definition
e Yielding an expression

prog ::= command1...commandn

A short Simply program in Figure 2 gives a feeling of its syntax:

canvas(500 600)

fun oneStep(i) = [pendown() go(i) penup() turn(15) go(5)]

repeat 50 as i [oneStep(i)]

Fig. 2. A short Simply example program

6 A. Granicz

2.1 Defining the Language Primitives

Take a look at the following module definition. It is added to an explicit names-
pace, this is the namespace we will be using for this tutorial and all subsequent
modules will be added to it.

This Ast module defines three inner types. var and num are simply aliases and
define the types we are using to represent variables and numbers, respectively.

The Expr type defines the various shapes that Simply expressions can take.
There are four elementary shapes: numbers, variables, function applications, and
binary operations - all expressions in the language are built from them. These are
expressed as a discriminated union type, with the pipe character preceding each
union label, followed by the type of the value it carries. Note how additional
static members have been augmented to this expression type, each providing
shortcuts to the corresponding arithmetic operations.

F# function types are defined using the arrow (->), which has left associa-
tivity. For instance, num -> num -> num is the type of a curried function that
takes two numeric values and returns another.

namespace IntelliFactory.CEFP2009.Simply

module Ast =
type var = string

type num = float

type Expr =
| Number of num
| Var of var
| FunApply of var * Expr list
| BinOp of (num -> num -> num) * Expr * Expr

with
static member Sum (e1, e2) = Expr.BinOp ((+), e1, e2)
static member Diff (e1, e2) = Expr.BinOp ((-), e1, e2)
static member Prod (e1, e2) = Expr.BinOp ((*), e1, e2)
static member Div (e1, e2) = Expr.BinOp ((/), e1, e2)

Simply programs are made up of a sequence of commands, which we represent
as a list. Commands themselves are either repeat-blocks, function definitions,
ordinary expressions, or sequences of further commands.

type Command =
| Repeat of Expr * var * Command
| FunDef of var * var list * Command
| Yield of Expr
| Sequence of Command list

type Prog = Program of Command list

Rapid Prototyping of DSLs with F# 7

2.2 Building the Parser Using Active Patterns

The following module implements the parser for Simply using active patterns.
The heart of the parser is the matchToken function - this takes a regular ex-
pression pattern and an input string to match against and returns a pair option,
where the first value in the tuple is the matched string and the second is the
remaining string.

namespace IntelliFactory.CEFP2009.Simply

module Language =
open System
open System.Text.RegularExpressions

let matchToken pattern s =
Regex.Match(s, "\A(" + pattern + ")((?s).*)",

RegexOptions.Multiline)
|> fun m ->

if m.Success then
(m.Groups.[1].Value, m.Groups.[2].Value) |> Some

else
None

We can use matchToken to build active pattern recognizers for various termi-
nal (all capital-case) and non-terminal symbols. We start by implementing the
discarding of whitespace and comments, and the star operator (as a higher-order
active pattern, matching zero or many occurrences of a given recognizer).

let (|WS|_|) = matchToken "[|\t|\n|\n\r]+"
let (|COMMENT|_|) = matchToken "#.*[\n|\r\n]"

let (|DISCARDED|_|) s =
match s with
| WS rest
| COMMENT rest ->

rest |> Some
| _ ->

None

let rec (|Star|_|) f acc s =
match f s with
| Some (res, rest) ->

(|Star|_|) f (res :: acc) rest
| None ->

(acc |> List.rev , s) |> Some

8 A. Granicz

We can use these active patterns to implement a basic lexer that is able to
tokenize some input by splitting at whitespaces and matching against a given
pattern.

let (|Ignored|_|) s = (|Star|_|) (|DISCARDED|_|) [] s

let rec MatchTokenNoWS s pattern =
match (|Ignored|_|) s with
| Some (_, rest) ->

rest |> matchToken pattern
| None ->

s |> matchToken pattern

let MatchToken s f pattern =
pattern |> MatchTokenNoWS s |> Option.bind f

let MatchSymbol s pattern =
pattern |> MatchToken s (fun (_, rest) -> rest |> Some)

At this point, writing the active pattern recognizers for various terminal
symbols becomes straightforward:

let (|NUMBER|_|) s =
"[0-9]+\.?[0-9]*" |> MatchToken s

(fun (n, rest) -> (n |> Double.Parse, rest) |> Some)

let (|ID|_|) s =
"[a-zA-Z]+" |> MatchToken s (fun res -> res |> Some)

let (|PLUS|_|) s = "\+" |> MatchSymbol s
let (|MINUS|_|) s = "-" |> MatchSymbol s
let (|MUL|_|) s = "*" |> MatchSymbol s
let (|DIV|_|) s = "/" |> MatchSymbol s
let (|LPAREN|_|) s = "\(" |> MatchSymbol s
let (|RPAREN|_|) s = "\)" |> MatchSymbol s

let (|LBRACK|_|) s = "\[" |> MatchSymbol s
let (|RBRACK|_|) s = "\]" |> MatchSymbol s
let (|EQ|_|) s = "=" |> MatchSymbol s

let (|FUN|_|) s = "fun" |> MatchSymbol s
let (|REPEAT|_|) s = "repeat" |> MatchSymbol s
let (|AS|_|) s = "as" |> MatchSymbol s

Note that (|ID|_|) parses identifiers containing alphabetic characters only.
Note also how (|NUMBER|_|) extracts the number matched as a double value.
This kind of pattern is heavily used in the subsequent grammar rules, making

Rapid Prototyping of DSLs with F# 9

the building up of the parser type-safe. Any error in the parsing logic should now
surface as a compiler error, and as a result, building up more complex grammars
becomes significantly easier than using parser generators.

Now we get to implementing the parser for the grammar in Table 1. A translit-
eration is as follows:

let rec (|Factor|_|) = function
| NUMBER (n, rest) ->

(Ast.Expr.Number n, rest) |> Some
| ID (f, LPAREN (Star (|Expression|_|) []

(args, RPAREN rest))) ->
(Ast.Expr.FunApply (f, args), rest) |> Some

| ID (v, rest) ->
(Ast.Expr.Var v, rest) |> Some

| LPAREN (Expression (e, RPAREN rest)) ->
(e, rest) |> Some

| _ ->
None

and (|Term|_|) = function
| Factor (e1, MUL (Term (e2, rest))) ->

(Ast.Expr.Prod (e1, e2), rest) |> Some
| Factor (e1, DIV (Term (e2, rest))) ->

(Ast.Expr.Div (e1, e2), rest) |> Some
| Factor (e, rest) ->

(e, rest) |> Some
| _ ->

None

and (|Expression|_|) = function
| Term (e1, PLUS (Expression (e2, rest))) ->

(Ast.Expr.Sum (e1, e2), rest) |> Some
| Term (e1, MINUS (Expression (e2, rest))) ->

(Ast.Expr.Diff (e1, e2), rest) |> Some
| Term (e, rest) ->

(e, rest) |> Some
| _ ->

None

let rec (|Command|_|) = function
| LBRACK (Star (|Command|_|) [] (commands,

RBRACK rest)) ->
(Ast.Command.Sequence commands, rest) |> Some

| REPEAT (Expression (i, AS (
ID (v, Command (body,

10 A. Granicz

rest))))) ->
(Ast.Command.Repeat (i, v, body), rest) |> Some

| FUN (ID (f, LPAREN (Star (|ID|_|) []
(pars, RPAREN

(EQ (Command (body,
rest))))))) ->

(Ast.Command.FunDef (f, pars, body), rest) |> Some
| Expression (e, rest) ->

(Ast.Command.Yield e, rest) |> Some
| _ ->

None

Finally, programs are simply a sequence of commands:

let (|Prog|_|) = function
| Star (|Command|_|) [] (commands, rest) ->

(Ast.Prog.Program commands, rest) |> Some
| _ ->

None

It is also useful to provide an active pattern recognizer that can recognize the
end of the input string, we will be using this in the user interface code to check
against badly formed input.

let (|Eof|_|) s =
if s |> String.IsNullOrEmpty then

() |> Some
else

match s with
| Ignored (_, rest)

when rest |> String.IsNullOrEmpty ->
() |> Some

| _ ->
None

2.3 Writing the Evaluator

The evaluator is implemented as a new module and uses a custom record type
Env to keep track of the variables/bindings and functions (these are treated sep-
arately for simplicity reasons) encountered during evaluation. This environment
can also be instantiated with various pre-defined, built-in functions as we will
see later.

module Evaluator =
type Env = {

Variables: Map<Ast.var, Ast.num>

Rapid Prototyping of DSLs with F# 11

Functions: Map<Ast.var, (Ast.var list * Ast.Command)>
BuiltInFunctions: Map<Ast.var, Ast.num list -> Ast.num>

}
with

member self.AddVar v i =
{ self with Variables = Map.add v i self.Variables }

static member BuiltIns =
{ Variables = Map.empty
Functions = Map.empty
BuiltInFunctions = Map.empty }

member self.AddFun f pars body =
{ self with

Functions =
Map.add f (pars, body) self.Functions }

member self.AddBuiltInFun fname f =
{ self with

BuiltInFunctions =
Map.add fname f self.BuiltInFunctions }

The evaluator is a set of mutually-recursive functions: EvalProg evaluates an
entire program, EvalCommand evaluates a command, and EvalExpr evaluates an
expression.

let rec EvalProg env (Ast.Prog.Program prog) =
List.fold (fun (env, _) command ->

EvalCommand env command) (env, 0.) prog
and EvalCommand (env: Env) = function

| Ast.Command.Repeat (e, v, body) ->
{ 1 .. e |> EvalExpr env |> snd |> int}
|> Seq.fold (fun ((env: Env), _) i ->

body
|> EvalCommand (env.AddVar v (float i))) (env, 0.)

|> fun (_, res) ->
env, res

| Ast.Command.FunDef (f, pars, body) ->
env.AddFun f pars body, 0.

| Ast.Command.Yield e ->
EvalExpr env e

| Ast.Command.Sequence commands ->
commands
|> Seq.fold (fun (env, acc) e ->

EvalCommand env e) (env, 0.)
and CombineExpr env e1 e2 f =

12 A. Granicz

let _, r1 = EvalExpr env e1
let _, r2 = EvalExpr env e2
env, f r1 r2

and EvalExpr (env: Env) = function
| Ast.Expr.Number n ->

env, n
| Ast.Expr.BinOp (f, e1, e2) ->

CombineExpr env e1 e2 f
| Ast.Expr.Var v ->

match Map.tryFind v env.Variables with
| None ->

v |> sprintf "Unbound ’%s’" |> failwith
| Some i ->

env, i
| Ast.Expr.FunApply (f, args) ->

match Map.tryFind f env.Functions with
| None ->

match Map.tryFind f env.BuiltInFunctions with
| None ->

f
|> sprintf "Unbound function ’%s’"
|> failwith

| Some ff ->
env, args

|> List.map (EvalExpr env >> snd)
|> ff

| Some (pars, body) ->
List.fold2 (fun (env: Env) param arg ->

arg
|> EvalExpr env
|> snd
|> env.AddVar param) env pars args

|> fun env2 ->
EvalCommand env2 body
|> fun (_, res) ->

env, res

3 The Programming Shell around Simply

Figure 3 depicts a possible embedding of Simply into a shell environment. This
has two main parts: the shell environment itself and the language extensions for
the Simply-based DSL’s initial vocabulary. We will cover both in this section,
however the UI build-up of the shell environment is left as an exercise to the
reader, and here we assume that this is supplied by another project in the same
Visual Studio solution. This UI project is expected to implement the main UI

Rapid Prototyping of DSLs with F# 13

Fig. 3. The Simply language instantiated with a Logo-like shell

window as depicted in Figure 3, with the main form type LogoUI in the same
namespace as the previous modules, and expose (e.g. make public) certain con-
trols by the names we use in the consuming shell client (implemented in the
FrontEnd module) in this section.

The shell client uses a global state, encapsulated by the State type, to store
the position and direction of the Logo turtle, the state of the drawing pen
(whether it is on or off), and the reference to the canvas we are drawing on.

namespace IntelliFactory.CEFP2009.Simply

module FrontEnd =
open System
open System.Windows.Forms
open System.Drawing
open IntelliFactory.CEFP2009.Simply.Language
open IntelliFactory.CEFP2009.Simply.Evaluator

[<Measure>]
type deg

[<Measure>]
type rad

14 A. Granicz

let (|Radian|) (i: float<deg>) = i / 180.<deg> * Math.PI
let deg (f: float) = f * 1.<deg>

type Position = {
mutable X: float
mutable Y: float

}
type State = {

mutable Position: Position
mutable Direction: float<deg>
mutable PenOn: bool
mutable Canvas: Graphics

}

At this point, we can create shorthand bindings to the main shell UI form (this
is to be assembled as a WinForms project separately by the reader - dragging and
dropping the appropriate controls as seen in Figure 3, and setting their visibility
to public in the code behind file), the canvas on the form (this is assumed to
be a PictureBox object), and a simple white pen object that we are going to be
using for drawing.

let form = new LogoUI.MainForm()
let canvas = form.PictureBox
let pen = new Pen(Color.White)

We create the initial state of the shell: the turtle at (0, 0) facing upward.

let state = ref {
Position = { X=0.; Y=0. }
Direction = 90.<deg>
PenOn = true
Canvas = null

}

Simply can easily be extended with built-in functions by adding them to the
environment that is used during evaluation. Below we take the initial empty
environment and add a handful of functions as follows:

– canvas (width height) - creates a new canvas of the given size. This function
must be called before any drawing operation.

– turn (deg) - turns the turtle deg degrees counter-clockwise. Note the clever
use of units of measure to ensure that degrees are used.

– penup () - turns the pen off, causing any drawing operation to leave no
mark.

– pendown () - turns the pen on, causing any drawing operation to show up.

Rapid Prototyping of DSLs with F# 15

– go (length) - moves the turtle length pixels. Once again, note the use of the
(|Radian|) active pattern to convert degrees to radians to work with the
standard math functions.

let builtins =
Env.BuiltIns
|> fun env ->

env.AddBuiltInFun "canvas" (fun [f1; f2] ->
let bmp =

new Bitmap(
f1 |> int,
f2 |> int,
Imaging.PixelFormat.Format16bppRgb555)

let gra = System.Drawing.Graphics.FromImage bmp
canvas.Image <- bmp
canvas.Width <- bmp.Width
canvas.Height <- bmp.Height
(!state).Canvas <- gra
(!state).Direction <- 90.<deg>
(!state).PenOn <- true
(!state).Position <-

{ X = canvas.Height / 2 |> float
Y = canvas.Height / 2 |> float }

0.)
|> fun env ->

env.AddBuiltInFun "turn" (fun [f] ->
(!state).Direction <- (!state).Direction+deg f
0.)

|> fun env ->
env.AddBuiltInFun "penup" (fun [] ->

(!state).PenOn <- false
0.)

|> fun env ->
env.AddBuiltInFun "pendown" (fun [] ->

(!state).PenOn <- true
0.)

|> fun env ->
env.AddBuiltInFun "go" (fun [f] ->

let (Radian rad) = (!state).Direction
let dx = Math.Cos rad |> (*) f
let dy = Math.Sin rad |> (*) f
if (!state).PenOn then

(!state).Canvas.DrawLine(pen,
(!state).Position.X |> int,
(!state).Position.Y |> int,
(!state).Position.X + dx |> int,

16 A. Granicz

(!state).Position.Y + dy |> int)
(!state).Position <-

{ X = (!state).Position.X + dx
Y = (!state).Position.Y + dy }

0.)

Next is adding an event handler for the Run button (which is to be exposed
as btnRun by the UI project added by the reader). This takes the text from the
code input control (tbInput), tries to parse it as a valid program ending with
Eof, and if succeeds evaluates it with the environment we just assembled, or
otherwise signals a syntax error.

form.btnRun.Click.Add (fun _ ->
match form.tbInput.Text with
| Prog (e, Eof) ->

try
e
|> EvalProg builtins |> snd
|> printf "Result=%f"

with
| e ->

e.Message
|> sprintf "Execution Error\n%s"
|> MessageBox.Show |> ignore

| Prog (e, rest) ->
rest
|> sprintf "Syntax Error\nRemaining text=%s"
|> MessageBox.Show |> ignore

| _ ->
sprintf "Syntax error" |> MessageBox.Show |> ignore)

form |> Application.Run

4 Further Considerations

The evaluator presented here comes with a number of simplifications. Some of
these include:

– Limited language features. There are no variable assignments, condition-
als, types other than real numbers, higher-order functions, etc. Simply in the
implementation presented here only supports defining and calling functions,
a simple looping construct (repeat <e> as <v> <body>), and basic arith-
metic.

– Lacking proper semantic checking. Parameter shadowing in nested func-
tions, multiple types, and type checking is missing. This is addressed in
[AG-09].

Rapid Prototyping of DSLs with F# 17

– Efficient parsing. The active pattern-based implementation presented here
has the obvious advantage of being a straightforward transliteration of the
corresponding BNF grammar, being type-safe, and being unambiguous. Un-
ambiguity is achieved automatically by the pattern matching semantics: once
a successful match is made, all other possibilities are ignored. This requires
the parser writer to list rules in a well-defined order, but this in most real-life
situations is easy to derive.

However, the highly nested nature of the grammar causes a great number
of token derivations and this makes the parser’s performance sub-standard.
There are at least two different ways to address this:

• Memoizing tokens read at a particular position in the source string. This
is not difficult but its memory consumption can be large.

• Restructuring/left-factoring the grammar rules to avoid backtracking.
For instance,

and (|Term|_|) = function
| Factor (e1, MUL (Term (e2, rest))) ->

(Ast.Expr.Prod (e1, e2), rest) |> Some
| Factor (e1, DIV (Term (e2, rest))) ->

(Ast.Expr.Div (e1, e2), rest) |> Some
| Factor (e, rest) ->

(e, rest) |> Some
| _ ->

None
becomes this:

and (|Term|_|) = function
| Factor (e1, rest) ->

match rest with
| MUL (Term (e2, rest)) ->

(Ast.Expr.Prod (e1, e2), rest) |> Some
| DIV (Term (e2, rest)) ->

(Ast.Expr.Div (e1, e2), rest) |> Some
| _ ->

(e1, rest) |> Some
| _ ->

None

5 Conclusions

F# active patterns provide a quick and type-safe mechanism to prototype parsers
in near-BNF style. This allows language implementers to describe their gram-
mars and the subsequent phases in their interpreters or compilers in F#, without
having to resort to external tools such as parser generators.

The implementation of Simply as given in these lecture notes follows the stan-
dard interpreter pattern. F# provides easy access to various .NET libraries, and
even our rudimentary graphics implementation shows the strengths associated
with this coupling.

18 A. Granicz

References

[AG-09] Granicz, A.: Prototyping DSLs in F#: Parsing and Semantic Check-
ing (August 24, 2009),
http://www.devx.com/dotnet/Article/42552, DevX.com

[IF-09] Granicz, A., Tayanovskyy, A., Björnson, J., Echeverri, D., et al.: In-
telliFactory blogs (2009), http://www.intellifactory.com/blogs

[DS-07] Syme, D., Neverov, G., Margetson, J.: Extensible Pattern Matching
Via a Lightweight Language Extension. In: The Proceedings of the
International Conference on Functional Programming, vol. 42(9), pp.
29–42 (2007)

[DS-06] Syme, D.: Leveraging.NET Meta-Programming Components from F#
- Integrated Queries and Interoperable Heterogeneous Execution. In:
The Proceedings of the ACM SIGPLAN Workshop on ML and its
Applications, pp. 43–54 (2006)

[DS-09] Syme, D., et al.: The F# Web Site (2009), http://fsharp.net
[AK-09] Kennedy, A.: Blog Site (2009),

http://blogs.msdn.com/andrewkennedy

[AK-CEFP-09] Kennedy, A.: Types for Units-of-Measure: Theory and Practice
(2009),
http://research.microsoft.com/en-us/um/people/akenn/units/

CEFP09RevisedNotes.pdf

http://www.devx.com/dotnet/Article/42552
http://www.intellifactory.com/blogs
http://fsharp.net
http://blogs.msdn.com/andrewkennedy
http://research.microsoft.com/en-us/um/people/akenn/units/CEFP09RevisedNotes.pdf
http://research.microsoft.com/en-us/um/people/akenn/units/CEFP09RevisedNotes.pdf

Erlang Behaviours:
Programming with Process Design Patterns

Francesco Cesarini1 and Simon Thompson2

1 Erlang Solutions Ltd., London, United Kingdom
francesco@erlang-solutions.com

http://www.erlang-solutions.com
2 School of Computing, University of Kent, Canterbury, United Kingdom

s.j.thompson@kent.ac.uk

http://www.cs.kent.ac.uk/~sjt/

Abstract. Erlang processes run independently of each other, each us-
ing separate memory and communicating with each other by message
passing. These processes, while executing different code, do so follow-
ing a number of common patterns. By examining different examples of
Erlang-style concurrency in client/server architectures, we identify the
generic and specific parts of the code and extract the generic code to form
a process skeleton. In Erlang, the most commonly used patterns have
been implemented in library modules, commonly referred to as OTP be-
haviours. They contain the generic code framework for concurrency and
error handling, simplifying the complexity of concurrent programming
and protecting the developer from many common pitfalls.

Keywords: Erlang, OTP, behaviour, generic, client/server, process,
message passing, design pattern, concurrency, fault-tolerance.

1 Introduction

Processes in Erlang systems run concurrently in separate memory, and commu-
nicate with each other by message passing. Processes can be used for a wealth
of applications, including as gateways to databases, as handlers for protocol
stacks, and to manage the logging of trace messages from other processes. Al-
though these processes handle different requests, there will be similarities in how
these requests are handled. We call these similarities design patterns.

In these lecture notes, we will look at the particular example of the client/ser-
ver process design pattern, abstracting out generic principles from specific ex-
amples. An experienced Erlang programmer will recognize these patterns in the
design phase of the project, and so will use libraries and templates that are part
of the OTP framework. Section 1 gives a brief introduction to Erlang, providing
the necessary background to the rest of the chapter. Section 2 of these lecture
notes introduces the concept of an Erlang process skeleton, a pattern followed
by most processes irrespective of their behaviour or function. Section 3 intro-
duces client/server behaviours in Erlang processes, using an example taken from

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 19–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.erlang-solutions.com
http://www.cs.kent.ac.uk/~sjt/

20 F. Cesarini and S. Thompson

mobile telephony. Section 4 takes this example, and re-implements it using the
gen server OTP behaviour library. These lecture notes are based on the au-
thors’ book Erlang Programming, ISBN: 978-0-596-51818-9 published in 2009 by
O’Reilly Media.

2 Erlang

This section gives a brief overview of those aspects of Erlang covered in these
notes; more details of these and other aspects of Erlang and the OTP library can
be found in the online documentation for the language as well as in our book.

Erlang is at basis a functional language, with no side-effects due to assignment
since Erlang contains single assignment: each (instance of a) variable can only
be assigned to once, so that variables assignments play the role of definitions in
other languages. An example module is given now

-module(factorial).
-export([fac/1]).

fac(0) -> 1;
fac(N) when N>0 ->

Prev = fac(N-1),
n*Prev.

This contains an assignment to Prev, as well as a simple case of definition by
pattern matching. The clauses of the function definition are separated by semi-
colons, and the first head matching the argument is used. In this example, the
first clause gives the factorial of zero, the second factorials of positive numbers.
The body of each clause is a sequence of expressions, and the result of that clause
is the final expression in the body.

Within the module functions are called in the usual way; outside, the name
of the module is prepended as in factorial:fac(3). It is possible to define
functions with the same name but different numbers of arguments this is called
their “arity”. In the export directive in the factorial module the fac function
of arity one is denoted by fac/1.

Erlang contains tuples (or product types) and lists. Tuples are enclosed in
curly brackets, as in {ok,37}; lists in square brackets [23,34]. The notation
[X|Xs] matches a non empty list with head X and tail Xs. Identifiers beginning
with a lower case letter denote atoms, which simply stand for themselves; the
‘ok’ in the tuple {ok,37} is an example of an atom. Atoms used in this way are
often used to distinguish between different kinds of function result: as well as
‘ok’ results, there might be results of the form {error, ‘‘Error string’’}.

Erlang concurrency is by message passing between processes, each executing
in a separate memory space. Processes are identified by process identifiers, called
‘Pid’s, but processes can also be registered under a name; this should only be
used for long-lived, “static” processes. A message Msg is sent to a process with
process id Pid thus: Pid ! Msg. A process can find out its pid by calling the

Erlang Behaviours: Programming with Process Design Patterns 21

built-in function (BIF) self/0, and this can then be sent to other processes for
them to use to communicate with the original process.

Suppose that a process expects to receive messages of the form {ok, N} and
{error, St}. To process these it uses a receive statement

receive
{ok, N} ->

N+1;
{error, _} ->

0
end

The result of this is a number, with the particular result determined by pattern
matching. When the value of a variable is not needed, the wild-card ‘ ’ can be
used, as shown.

Message passing between processes is asynchronous, and the messages received
by a process are placed in the process’s mailbox in the order in which they arrive.
Suppose that now the receive statement above is to be executed: if the first
element in the mailbox is either {ok, N} or {error, St}: the corresponding
result will be returned. If the first message in the mailbox is not of this form,
it is retained in the mailbox, and the second is processed in a similar way. If
no messages match, then the receive will wait for a matching message to be
received.

The remainder of these notes give many examples of concurrent Erlang pro-
cesses, and we move to looking at those now.

3 Process Skeletons

There is a common pattern to the behaviour of processes, regardless of the
particular purpose for which the process was created. To start with, a processes
has to be spawned and then, optionally, have its alias registered. The first action
of the newly spawned process is to initialize the process loop data. The loop data
is often the result of arguments passed to the spawn built-in function (BIF) at
the initialization of the process. Its loop data is stored in a variable we refer to
as the process state. The state is passed to a receive-evaluate function, running
a loop which receives a message, handles it, updates the state, and passes it back
as an argument to a tail-recursive call. If one of the messages it handles is a ‘stop’
message, the receiving process will clean up after itself and then terminate.

This is a recurring design among processes that we usually refer to as a design
pattern, and it will occur regardless of the task the process has been assigned to
perform in the body of the loop. Figure 1 shows an example skeleton.

Let’s now look at the differences between the particular processes which con-
form to this pattern:

– The arguments passed to the spawn BIF calls will differ from one process to
another.

22 F. Cesarini and S. Thompson

Fig. 1. Process skeleton

– You have to decide whether you should register a process under an alias,
and, if you do register it, what alias should be used.

– In the function that initializes the process state, the actions taken will differ
based on the tasks the process will perform.

– The state of the system is represented by the loop data in every case, but
the contents of the loop data will vary among processes.

– When in the body of the receive-evaluate loop, processes will receive different
messages and handle them in different ways.

– Finally, on termination, the cleanup will vary from process to process.

So, even if a skeleton of generic actions exists, these actions are complemented
by specific ones that are directly related to the specific tasks assigned to the
process. Using this skeleton as a template, one can create processes which act
as servers, as finite state machines, as event handlers and as supervisors. In the
following sections, we will concentrate on client/server models.

4 Client/Server Models

Erlang processes can be used to implement client/server solutions, where both
clients and servers are represented as Erlang processes. A server could be a FIFO
queue to a printer, a window manager, or a file server. The resources it handles
could be a database, calendar, or finite list of items such as rooms, books, or
radio frequencies. Clients access these resources by sending the server a request
to print a file, to update a window, to book a room, or to use a frequency. The
server receives the request, handles it, and responds with an acknowledgment
and a return value if the request was successful, or with an error if the request
did not succeed.

Erlang Behaviours: Programming with Process Design Patterns 23

When implementing client/server behaviour, clients and servers are repre-
sented as Erlang processes. Interaction between them takes place through the
sending and receiving of messages. Message passing is often hidden in functional
interfaces, so that instead of calling:

printerserver ! {print, File}

a client would call a print function, as in:

printerserver:print(File)

This is a form of information hiding, where we do not make the client aware
that the server is a process, that it could be registered, and that it might reside on
a remote computer. Nor do we expose the message protocol being used between
the client and the server, keeping the interface between them safe and simple.
All the client needs to do is call a function and use with the return value of the
fucntion.

Fig. 2. Synchronous message passing

If a client using the service or resource handled by the server expects a reply to
the request, the implementation of the call to the server has to be synchronous,
as in Figure 2. If the client does not need a reply, the call to the server can be
asynchronous. When you encapsulate synchronous and asynchronous calls in a
function call, the function commonly returns the atom ok, indicating that the
request was sent to the server. Functions encapsulating synchronous calls will
return the value expected by the client. These return values usually follow the
format ok, {ok, Result}, when the result is successful or {error, Reason}
when it is unsuccessful. In the latter case the Reason encapsulates why the
request has failed.

4.1 A Client/Server Example

So that you understand what we are talking about, let’s walk through a client/
server example and test it in the shell. This server is responsible for managing
radio frequencies on behalf of its clients, the mobile phones connected to the
network. The phone requests a frequency whenever a call needs to be connected,
and releases it once the call has terminated (see Fig. 3 below).

When a mobile phone has to set up a connection to another subscriber, it calls
the client function frequency:allocate/0. This call has the effect of generating

24 F. Cesarini and S. Thompson

Fig. 3. Synchronous message passing

a synchronous message which is sent to the server. The server handles it and
responds with either a message containing an available frequency or an error if
all frequencies are being used. The result of the allocate/0 call will therefore
be either {ok, Frequency} or {error, no_frequencies}.

Through a functional interface, we hide the message-passing mechanism, the
format of these messages, and the fact that the frequency server is implemented
as a registered Erlang process. If we were to move the server to a remote host,
we could do so without having to change the client interface.

When the client has completed its phone call and releases the connection, it
needs to deallocate the frequency so that other clients can reuse it. It does so by
calling the client function frequency:deallocate(Frequency). The call results
in a message being sent to the server. The server can then make the frequency
available to other clients and responds with the atom ok. The atom is sent back
to the client and becomes the return value of the deallocate/1 call. Figure 3
above shows the message sequence diagram of this example.

The code for the server is in the frequency module. Here is the first part:

-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

%% These are the start functions used to create and
%% initialize the server.

start() ->
register(frequency, spawn(frequency, init, [])).

init() ->
Frequencies = {get_frequencies(), []},
loop(Frequencies).

When spawning a process, you have to export the init/0 function because
it is used by the spawn/3 BIF. We have put this function in a separate export
clause to distinguish it from the client functions, which are supposed to be called
from other modules. On the other hand, calling frequency:init() explicitly
anywhere in your code is considered to be very bad practice.

Erlang Behaviours: Programming with Process Design Patterns 25

The newly spawned process starts executing in the init/0 function. It
creates a tuple consisting of the available frequencies, retrieved through the
get frequencies/0 call, and a list of the allocated frequencies – initially given
by the empty list – as the server has just been started. The tuple, which forms
the state or loop data, is bound to the Frequencies variable and passed as an
argument to the receive-evaluate function, which in this example we’ve called
loop/1.

In the init/0 function, we use the variable Frequencies for readability rea-
sons, but nothing is stopping us from creating the tuple directly in the call thus
loop({get_frequencies(), []}).

Here is how the client functions are implemented:

%% The client Functions
stop() -> call(stop).
allocate() -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

%% We hide all message passing and the message
%% protocol in a functional interface.

call(Message) ->
frequency ! {request, self(), Message},
receive

{reply, Reply} -> Reply
end.

Client and supervisor processes can interact with the frequency server using
what we refer to as client functions. These exported functions include start,
stop, allocate, and deallocate. They call the call/1 function, passing the
message to be sent to the server as an argument. This function will encapsulate
the message protocol between the server and its clients, sending a message of the
format {request, Pid, Message}. The atom request is a tag in the tuple, Pid
is the process identifier of the calling process (returned by calling the self/0
BIF in the calling process), and Message is the argument originally passed to
the call/1 function.

When the message has been sent to the process, the client is suspended in the
receive clause waiting for a response of the format {reply, Reply}, where the
atom reply is a tag and the variable Reply is the actual response. The server
response is pattern-matched, and the contents of the variable Reply become the
return value of the client functions.

Pay special attention to how message passing and the message protocol have
been abstracted to a format independent of the action relating to the message
itself; this is a form of information hiding, that allows the details of the protocol
and the message structure to be modified without affecting any of the client
code. Now that we have covered the code to start and interact with the frequency
server, let’s take a look at its receive-evaluate loop:

26 F. Cesarini and S. Thompson

%% The Main Loop
loop(Frequencies) ->

receive
{request, Pid, allocate} ->

{NewFrequencies, Reply} = allocate(Frequencies, Pid),
reply(Pid, Reply),
loop(NewFrequencies);

{request, Pid , {deallocate, Freq}} ->
NewFrequencies = deallocate(Frequencies, Freq),
reply(Pid, ok),
loop(NewFrequencies);

{request, Pid, stop} ->
reply(Pid, ok)

end.

reply(Pid, Reply) ->
Pid ! {reply, Reply}.

The receive clause will accept three kinds of requests originating from the client
functions, namely allocate, deallocate, and stop. These requests follow the
format defined in the call/1 function, that is, {request, Pid, Message}. The
Message is pattern-matched in the expression and used to determine which clause
is executed. This, in turn, determines the internal functions that are called. These
internal functions will return the new loop data, which in our example consists
of the pair of lists of available and allocated frequencies, and where needed, a
reply to send back to the client. The client Pid, sent as part of the request, is
used to identify the calling process and is used in the reply/2 call.

Assume a client wants to initiate a call. To do so, it would request a frequency
by calling the frequency:allocate/0 function. This function sends a message of
the format {request, Pid, allocate} to the frequency server, pattern match-
ing in the first clause of the receive statement. This message will result in the
server function allocate(Frequencies, Pid) being called, where Frequencies
is the loop data containing a tuple of allocated and available frequencies. The
allocate function will check whether there are any available frequencies:

allocate({[], Allocated}, _Pid) ->
{{[], Allocated}, {error, no_frequencies}};

allocate({[Freq|Frequencies], Allocated}, Pid) ->
link(Pid),
{{Frequencies,[{Freq,Pid}|Allocated]},{ok,Freq}}.

If there are frequencies available, it will return the updated loop data, where
the newly allocated frequency has been moved from the available list and stored
together with the Pid in the list of allocated frequencies. The reply sent to the
client is of the format {ok, Frequency}.

If no frequencies are available, the loop data is unchanged and the {error,
no_frequency} message is returned as a reply.

Erlang Behaviours: Programming with Process Design Patterns 27

After calling the allocate function, the reply is sent to the client by calling
reply(Pid, Message), which formats the message according to the internal
client/server message format and sends it back to the client. Finally, the function
loop/1 is called recursively, passing the new loop data as an argument.

Deallocation works in a similar way. The client function call results in
the message {request, Pid, {deallocate, Frequency}} being sent and
matched in the second clause of the receive statement. This makes a call to
deallocate(Frequencies, Frequency) and the deallocate function moves
the Frequency from the allocated list to the deallocated one, returning the up-
dated loop data. The atom ok is sent back to the client, and the loop/1 function
is called recursively with the updated loop data.

If the stop request is received, ok is returned to the calling process and the
server terminates, as there is no more code to execute. In the previous two
clauses, loop/1 was called in the final expression of the receive clause, but not
in this case.

We complete this system by implementing the deallocation function, which
assumes that it is only called when the frequency to be deallocated is indeed
allocated:

deallocate({Free, Allocated}, Freq) ->
NewAllocated=lists:keydelete(Freq, 1, Allocated),
{[Freq|Free], NewAllocated}.

The allocate/2 and deallocate/2 functions are local to the frequency
module, and are what we refer to as internal help functions. You can see an
example of the frequency allocator in action now:

1> c(frequency).
{ok,frequency}
2> frequency:start().
true
3> frequency:allocate().
{ok,10}
4> frequency:allocate().
{ok,11}
5> frequency:allocate().
{ok,12}
6> frequency:allocate().
{ok,13}
7> frequency:allocate().
{ok,14}
8> frequency:allocate().
{ok,15}
9> frequency:allocate().
{error,no_frequency}
10> frequency:deallocate(11).
ok

28 F. Cesarini and S. Thompson

11> frequency:allocate().
{ok,11}
12> frequency:stop().
ok

4.2 A Process Pattern Example

In this section we look at two other client-server examples, and when doing so,
we compare and contrast them to the frequency server we described in the pre-
vious section. Picture an application, either a web browser or a word processor,
which handles many simultaneously open windows centrally controlled by a win-
dow manager. As we aim to have a process for each truly concurrent activity,
spawning a process for every window is the way to go. These processes would
probably not be registered, as many windows of the same type could be running
concurrently, so communication to them is by means of their Pid.

After being spawned, each process would call the initialize function, which
draws and displays the window and its contents. The return value of the initial-
ize function contains references to the widgets displayed in the window. These
references are stored in the state variable and are used whenever the window
needs updating. The state variable is passed as an argument to a tail-recursive
function that implements the receive-evaluate loop.

In this loop function, the process waits for events originating in or relating
to the window it is managing. It could be a user typing in a form or choosing
a menu entry, or an external process pushing data that needs to be displayed.
Every event relating to this window is translated to an Erlang message and
sent to the process. The process, upon receiving the message, calls the handle
function, passing the message and state as arguments. If the event were the result
of a few keystrokes typed in a form, the handle function might want to display
them. If the user picked an entry in one of the menus, the handle function would
take appropriate actions in executing that menu choice. Or, if the event was
caused by an external process pushing data, possibly an image from a webcam
or an alert message, the appropriate widget would be updated. The receipt of
these events in Erlang would be seen as a generic pattern in all processes. What
would be considered specific and change from process to process is how these
events are handled.

Finally, what if the process receives a stop message? This message might
have originated from a user picking the Exit menu entry or clicking the Destroy
button, or from the window manager broadcasting a notification that the ap-
plication is being shut down. Regardless of the reason, a stop message is sent
to the process. Upon receiving it, the process calls a terminate function, which
destroys all of the widgets, ensuring that they are no longer displayed. After the
window has been shut down, the process terminates because there is no more
code to execute.

Look at the following process skeleton. Could you not fit all of the specific
code into the initialize/1, handle_msg/2, and terminate/1 functions for not
only the window example, but also the frequency server?

Erlang Behaviours: Programming with Process Design Patterns 29

-module(server).
-export([start/2, stop/1, call/2]).
-export([init/1]).

start(Name, Data) ->
Pid = spawn(server, init,[Data]),
register(Name, Pid),
ok.

stop(Name) ->
Name ! {stop, self()},
receive {reply, Reply} -> Reply end.

call(Name, Msg) ->
Name ! {request, self(), Msg},
receive {reply, Reply} -> Reply end.

reply(To, Msg) ->
To ! {reply, Msg}.

init(Data) ->
loop(initialize(Data)).

loop(State) ->
receive

{request, From, Msg} ->
{Reply,NewState} = handle_msg(Msg, State),
reply(From, Reply),
loop(NewState);

{stop, From} ->
reply(From, terminate(State))

end.

initialize(...) -> ...
handle_msg(...,...) -> ...
terminate(...) -> ...

Using the generic code in the preceding skeleton, let’s go through the GUI
example one last time:

– The initialize/1 function draws the window and displays it, returning a
reference to the widget that gets bound to the state variable.

– Every time an event arrives in the form of an Erlang message, the event is
taken care of in the handle_msg function. The call takes the message and
the state as arguments and returns an updated State variable. This variable
is passed to the recursive loop call, ensuring that the process is kept alive.
Any reply is also sent back to the process where the request originated.

30 F. Cesarini and S. Thompson

– If the stop message is received, terminate/1 is called, destroying the win-
dow and all the widgets associated with it. The loop function is not called,
allowing the process to terminate normally.

This server skeleton example actually exists for client/servers, finite state ma-
chines, event handlers and supervisor processes as library modules which come
as part as the OTP middleware. In the next section, we describe the clientserver
behaviour, often referred to as the gen_server.

5 OTP Behaviours

In previous section, we introduced patterns that recur when you program using
the Erlang concurrency model. We discussed functionality common to concurrent
systems, and you saw that processes will handle very different tasks in a similar
way. We also emphasized special cases and potential problems that have to be
handled when dealing with concurrency.

Picture a project with 50 developers spread across several geographic loca-
tions. If the project is not properly coordinated and no templates are provided,
how many different client/server implementations might the project end up with?
Even more dangerous, how many of these implementations will handle special
borderline cases and concurrency-related errors correctly, if at all? Without a
code review, can you be sure there is a uniform way across the system to han-
dle server crashes that occur after clients have sent a request to the server? Or
guarantee that the response from a request is indeed the response, and not just
any message that conforms to the internal message protocol?

OTP behaviours address all of these issues by providing library modules that
implement the most common concurrent design patterns. Behind the scenes,
without the programmer having to be aware of it, the library modules ensure
that errors and special cases are handled in a consistent way. As a result, OTP
behaviours provide a set of standardized building blocks used in designing and
building industrial-grade systems. The subject of OTP behaviours and their
related middleware is vast. In this section, we provide the overview you need to
get started.

5.1 Introduction

OTP behaviours are a formalization of process design patterns. They are im-
plemented in library modules that are provided with the standard Erlang dis-
tribution. These library modules do all of the generic process work and error
handling. The specific code, written by the programmer, is placed in a separate
module and called through a set of predefined callback functions.

OTP behaviours include worker processes, which do the actual processing, and
supervisors, whose task is to monitor workers and other supervisors. Worker be-
haviours, often denoted in diagrams as circles, include servers, event handlers,
and finite state machines. Supervisors, denoted in illustrations as squares, mon-
itor their children, both workers and other supervisors, creating what is called a
supervision tree.

Erlang Behaviours: Programming with Process Design Patterns 31

Fig. 4. OTP Supervision Tree

Supervision trees are packaged into a behaviour called an application. OTP
applications not only are the building blocks of Erlang systems, but also are a
way to package reusable components. Industrial-grade systems consist of a set of
loosely-coupled, possibly distributed applications. These applications are part of
the standard Erlang distribution or are specific applications developed by you,
the programmer.

Do not confuse OTP applications with the more general concept of an appli-
cation, which usually refers to a more complete system that solves a high-level
task. Examples of OTP applications include the Mnesia database or the Sim-
ple Network Management Protocol (SNMP) agent. An OTP application is a
reusable component that packages library modules together with supervisor and
worker processes. From now on, when we refer to an application, we will mean
an OTP application.

The behaviour module contains all of the generic code. Although it is possible
to implement your own behaviour module, doing so is rare because the behaviour
modules that come as part of the Erlang/OTP distribution will cater to most
of the design patterns you would use in your code. The generic functionality
provided in a behaviour module includes operations such as the following:

– Spawning and possibly registering the process
– Sending and receiving client messages as synchronous or asynchronous calls,

including defining the internal message protocol
– Storing the loop data and managing the process loop
– Stopping the process

32 F. Cesarini and S. Thompson

Fig. 5. Splitting the code in generic and specific modules

Although the behaviour module is provided, the programmer has to develop the
callback module. A callback module contains all of the specific code required to
deliver the desired functionality. The specific code is invoked through a callback
interface that is standardized for each behaviour.

The loop data is a variable that will contain the data the behaviour needs
to store in between calls. After the call, an updated variant of the loop data
is returned. This updated loop data, often referred to as the new loop data, is
passed as an argument in the next call. Loop data is also often referred to as the
behaviour state.

The functionality to be included in the callback module for the generic server
application to deliver the specific required behaviour includes the following:

– Initializing the process loop data, and, if the process is registered, the process
name.

– Handling the specific client requests, and, if synchronous, the replies sent
back to the client.

– Handling and updating the process loop data in between the process re-
quests.

– Cleaning up the process loop data upon termination.

There are many advantages to splitting the code into generic behaviour libraries
and specific callback modules:

– Because many of the special cases and errors that might occur are already
handled in the solid, well-tested behaviour library, you can expect fewer bugs
in your product.

– For this reason, and also because so much of the code is already written for
you, you can expect to have a shorter time to market.

– It forces the programmer to write code in a way that avoids errors typically
found in concurrent applications.

– Finally, your whole team will come to share a common programming style.

When reading someone else’s code while armed with a basic comprehension of
the existing behaviours, no effort is required to understand the client/server
protocol, looking for where and how processes are started or terminated, or how
the loop data is handled. All of it is managed by the generic behaviour library.
Instead of having to focus on how everything is done, you can focus on what is
being done specifically in this case, as coded in the callback module.

Erlang Behaviours: Programming with Process Design Patterns 33

5.2 Generic Servers

Generic servers that implement client/server behaviours are defined in the
gen_server behaviour that comes as part of the standard library application.
In explaining generic servers, we will use the frequency server example from the
client server section.

We will rewrite the frequency.erl module, migrating it from an Erlang
process to a gen_server behaviour. In doing so, we will not touch the client
interface, keeping the API as it is. When working your way through the example,
if you are interested in the details, have the online Erlang manual pages for the
gen_server module to hand.

5.3 Starting Your Server

With the gen_server behaviour, instead of using the spawn and spawn_link
BIFs, you will use the gen_server:start/4 and gen_server:start_link/4
functions.

The main difference between spawn and start is the synchronous nature of
the call. Using start instead of spawn makes starting the worker process more
deterministic and prevents unforeseen race conditions, as the call will not return
the pid of the worker until it has been initialized. You call the functions as follows
(we show two variants for each of the functions):

gen_server:start_link(ServerName,CallBackModule,Arguments,Options)
gen_server:start(ServerName, CallBackModule, Arguments, Options)

gen_server:start_link(CallBackModule, Arguments, Options)
gen_server:start(CallBackModule, Arguments, Options)

In the preceding calls:

– ServerName is a tuple of the format {local, Name} or {global, Name},
denoting a local or global. Name for the process if it is to be registered. If
you do not want to register the process and instead reference it using its pid,
you omit the argument and use a start_link/3 or start/3 function call
instead.

– CallbackModule is the name of the module in which the specific callback
functions are placed.

– Arguments is a valid Erlang term that is passed to the init/1 callback func-
tion. You can choose what type of term to pass: if you have many arguments
to pass, use a list or a tuple; if you have none, pass an atom or an empty
list, ignoring it in the callback function.

– Options is a list that allows you to set the memory management flags
fullsweep_after and heapsize, as well as tracing and debugging flags.
Most behaviour implementations just pass the empty list.

The start functions will spawn a new process that calls the init(Arguments)
callback function in the CallbackModule, with the Arguments supplied.

34 F. Cesarini and S. Thompson

The init function must initialize the LoopData of the server and has to return
a tuple of the format {ok, LoopData}. LoopData contains the first instance of
the loop data that will be passed between the callback functions. If you want to
store some of the arguments you passed to the init function, you would do so in
the LoopData variable.

The obvious difference between the start_link and start functions is that
start_link links to its parent and start doesn’t. This needs a special mention,
however, as it is an OTP behaviour’s responsibility to link itself to the supervisor.
The start functions are often used when testing behaviours from the shell, as
a typing error causing the shell process to crash would not affect the behaviour.
All variants of the start and start_link functions return {ok, Pid}.

Before going ahead with the example, let’s quickly review what we
have discussed so far. You start a gen_server behaviour using the
gen_server:start_link call. This results in a new process that calls the init/1
callback function. This function initializes the LoopData and returns the tuple
{ok, LoopData}.

In our example, we call start_link/4, registering the process with the same
name as the callback module, using the ?MODULE macro call. We don’t pass any
arguments, and as a result, just send the empty list. The options list is kept
empty:

start() ->
gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

init(_Args) ->
{ok, {get_frequencies(), []}}.

get_frequencies() -> [10,11,12,13,14,15].

Although the supervisor process might call the start_link/4 function, the
init/1 callback is called by a different process: the one that was just spawned.
Our LoopData contains the tuple of available and allocated frequencies. If the
server LoopData does not need to be passed inbetween calls, a value still has to
be included when returning the {ok, LoopData} structure. We get around it by
returning the atom null.

Do only what is necessary and minimize the operations in your init function,
as the call to init is a synchronous call that prevents all of the other serialized
processes from starting until it returns.

5.4 Passing Messages

If you want to send a message to your server, you use the following calls:

gen_server:cast(Name, Message)
gen_server:call(Name, Message)

Erlang Behaviours: Programming with Process Design Patterns 35

In the preceding calls:
– Name is either the local registered name of the server or the tuple {global,

Name}. It could also be the process identifier of the server.
– Message is a valid Erlang term containing a message passed on to the server.

For asynchronous message requests, you use cast/2. If you’re using a pid,
the call will immediately return the atom ok, regardless of whether the
gen_server to which you are sending the message is alive. These seman-
tics are no different from the standard Name! Message construct, where if
the registered process Name does not exist, the calling process terminates.

Upon receiving the message, gen_server will call the function
handle_cast(Message, LoopData) in the callback module. Message is
the argument passed to the cast/2 function, and LoopData is the argument
originally returned by the init/1 callback function. The handle_cast/2
callback function handles the specifics of the message, and upon finishing, it
has to return the tuple {noreply, NewLoopData}. In future calls to the server,
the NewLoopData value most recently returned will be passed as an argument
when a message is sent to the server.

If you want to send a synchronous message to the server, you use
the call/2 function. Upon receiving this message, the process uses the
handle_call(Message, From, LoopData) function in the callback module. It
contains specific code for the particular server, and having completed, it returns
the tuple {reply, Reply, NewLoopData}. Only now does the call/3 function
synchronously return the value Reply. If the process to which you are send-
ing a message does not exist, regardless of whether it is registered, the process
invoking the call function terminates.

Let’s start by taking two functions from our service API; we will provide
the whole program later. They are called by the client process and result in a
synchronous message being sent to the server process registered with the same
name as the callback module. Note that validating the data sent to the server
should occur on the client side. If the client sends incorrect information, the
server should terminate.

allocate() ->
gen_server:call(?MODULE, {allocate, self()}).

deallocate(Freq) ->
gen_server:call(?MODULE, {deallocate, Freq}).

Upon receiving the messages, the gen_server process calls the
handle_call/3 callback function dealing with the messages in the same
order in which they were sent:

handle_call({allocate, Pid}, _From, Frequencies) ->
{NewFrequencies, Reply} = allocate(Frequencies, Pid),
{reply, Reply, NewFrequencies};

handle_call({deallocate, Freq}, _From, Frequencies) ->
NewFrequencies=deallocate(Frequencies, Freq),
{reply, ok, NewFrequencies}.

36 F. Cesarini and S. Thompson

Note the return value of the callback function. The tuple contains the control
atom reply, telling the gen_server generic code that the second element of the
tuple is the Reply to be sent back to the client. The third element of the tuple is
the new LoopData, which, in a new iteration of the server, is passed as the third
argument to the handle_call/3 function; in both cases here it is unchanged.
The argument _From is a tuple containing a unique message reference and the
client process identifier. The tuple as a whole is used in library functions that
we will not be discussing in this article. In the majority of cases, you will not
need it.

The gen_server library module has a number of mechanisms and safeguards
built in that function behind the scenes. If your client sends a synchronous
message to your server and you do not get a response within five seconds, the
process executing the call/2 function is terminated. You can override this by
using the following code:

gen_server:call(Name, Message, Timeout)

where Timeout is a value in milliseconds or the atom infinity. The timeout
mechanism was originally put in place for deadlock prevention purposes, ensuring
that servers that accidentally call each other are terminated after the default
timeout. The crash report would be logged, and hopefully would result in a patch.
Most applications will function appropriately with a timeout of five seconds, but
under very heavy loads, you might have to fine-tune the value and possibly even
use infinity; this choice is very application-dependent. All of the critical code
in Erlang/OTP uses infinity.

Other safeguards when using the gen_server:call/2 function include the
case of sending a message to a non-existing server as well as the case that a
server that crashes before sending its reply. In both cases, the calling process
will terminate. In raw Erlang, sending a message that is never pattern-matched
in a receive clause is a bug that can cause a memory leak.

What do you think happens if you do a call or a cast to your server, but
do not handle the message in the handle_call/3 and handle_cast/2 calls,
respectively? In OTP, when a call or a cast is called, the message will always
be extracted from the process mailbox and the respective callback functions are
invoked. If none of the callback functions pattern-matches the message passed
as the first argument, the process will crash with a function clause error. As a
result, such issues will be caught in the early stages of the testing phase and
dealt with accordingly.

5.5 Stopping the Server

How do you stop the server? In your handle call/3 and handle_cast/2
callback functions, instead of returning {reply, Reply, NewLoopData}
or {noreply, NewLoopData}, you can return {stop, Reason, Reply,
NewLoopData} or {stop, Reason, NewLoopData}, respectively. Something
has to trigger this return value, often a stop message sent to the server. Upon

Erlang Behaviours: Programming with Process Design Patterns 37

receiving the stop tuple containing the Reason and LoopData, the generic code
executes the terminate(Reason, LoopData) callback.

The terminate function is the natural place to insert the code needed to
clean up the LoopData of the server and any other persistent data used by the
system. The stop call does not have to occur within a synchronous call, so let’s
use cast when implementing it:

stop() ->
gen_server:cast(?MODULE, stop).

handle_cast(stop, Frequencies) ->
{stop, normal, Frequencies}.

terminate(_Reason, _Frequencies) ->
ok.

Remember that stop/0 will be called by the client process, while the
handle_cast/2 and handle_call/2 functions are called by the behaviour pro-
cess. In the handle_cast/2 callback, we return the reason normal in the stop
construct. Any reason other than normal will result in an error report being
generated.

With thousands of generic servers potentially being spawned and terminated
every second, generating error reports for every one of them is not the way to go.
You should return a non-normal value only if something that should not have
happened occurs and you have no way to recover. A socket being closed or a
corrupt message from an external source should not promot a non-normal exit
reason.

Use of the behaviour callbacks as library functions and invoking them from
other parts of your program is an extremely bad practice. For example, you
should never call frequency:init(FileName) from another module to retrieve
the initial loop data. Calls to behaviour callback functions should originate only
from the behaviour library modules as a result of an event occurring in the
system, and never directly by the user.

The Example in Full
Here is the frequency.erlmodule in full, rewritten as a gen_server behaviour:

% File: frequency.erl
%% Purpose gen_server call back module for the frequency
%% allocator

-module(frequency2).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/1, terminate/2, handle_cast/2, handle_call/3]).

38 F. Cesarini and S. Thompson

%% The start and stop Functions
start() ->

gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

stop() ->
gen_server:cast(?MODULE, stop).

%% The client Functions
allocate() ->

gen_server:call(?MODULE, {allocate, self()}).
deallocate(Freq) ->

gen_server:call(?MODULE, {deallocate, Freq}).

%% Callback functions
handle_call({allocate, Pid}, _From, Frequencies) ->

{NewFrequencies, Reply} = allocate(Frequencies, Pid),
{reply, Reply, NewFrequencies};

handle_call({deallocate, Freq}, _From, Frequencies) ->
NewFrequencies=deallocate(Frequencies, Freq),
{reply, ok, NewFrequencies}.

handle_cast(stop, Frequencies) ->
{stop, normal, Frequencies}.

init(_Args) ->
{ok, {get_frequencies(), []}}.

terminate(_Reason, _Frequencies) ->
ok.

%% Local Functions
get_frequencies() -> [10,11,12,13,14,15].

allocate({[], Allocated}, _Pid) ->
{{[], Allocated}, {error, no_frequencies}};

allocate({[Freq|Frequencies], Allocated}, Pid) ->
{{Frequencies,[{Freq,Pid}|Allocated]},{ok,Freq}}.

deallocate({Free, Allocated}, Freq) ->
{value,{Freq, _Pid}}= lists:keysearch(Freq,1,Allocated),
NewAllocated=lists:keydelete(Freq,1,Allocated),
{[Freq|Free], NewAllocated}.

Erlang Behaviours: Programming with Process Design Patterns 39

Running the gen server
When testing the gen_server instance in the shell, you get exactly the same
behaviour as when you used the server process that you coded yourself. However,
the code is more solid, as deadlocks, server crashes, timeouts, and other errors
related to concurrent programming are handled behind the scenes. The following
calls:

start(Name, Mod, Arguments, Opts)
start_link(Name, Mod, Arguments, Opts),

where Name is an optional argument, spawn a new process. The process will
result in the callback function init(Arguments) being called, which should re-
turn one of the values {ok, LoopData} or {stop, Reason}. If init/1 returns
{stop, Reason} the terminate/2 “cleanup” function will not be called.

Synchronous communication
Use call(Name, Msg) to send a synchronous message to your server. It will re-
sult in the callback function handle_call(Msg, From, LoopData) being called
by the server process. The expected return values include {reply, Reply,
NewLoopData} and {stop, Reason, Reply, NewLoopData}.

Asynchronous communication
If you want to send an asynchronous message, use cast(Name, Msg). It will
be handled in the handle_cast(Msg, LoopData) callback function, returning
either {noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Non-OTP-compliant messages
Upon receiving non-OTP-compliant messages, gen_server will execute the
handle_info(Msg, LoopData) callback function. The function should return
either {noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Termination
Upon receiving a stop construct from one of the callback functions (except for
init), the terminate(Reason, LoopData) callback is invoked. In terminate/2,
you would typically undo things you did in init/1. Its return value is ignored.

6 Other Behaviours

Finite state machines are a crucial component of telecom systems. The gen_fsm
module provides you with a behaviour that you can use to implement processes
acting as finite state machines. States are defined as callback functions that
return a tuple containing the next State and the updated loop data. You can
send events to these states synchronously and asynchronously. The finite state
machine callback module should also export the standard callback functions such
as init, terminate, and handle_info. Examples of processes acting as finite
state machines include protocol stacks, communication layers, mutex semaphores
as well as high level control flow in telephony systems.

40 F. Cesarini and S. Thompson

Event handlers and managers are another behaviour implemented in the
gen_event library module. The idea is to create a centralized point that receives
events of a specific kind. Events can be sent synchronously and asynchronously
with a predefined set of actions being applied when they are received. Possible
responses to events include logging them to file, sending off an alarm in the form
of an SMS, or collecting statistics. Each of these actions is defined in a separate
callback module with its own loop data, preserved in between calls. Handlers
can be added, removed, or updated for every specific event manager. So, in
practice, for every event manager, there could be many callback modules, and
different instances of these callback modules could exist in different managers.
Event handlers include processes receiving alarms, live trace data, equipment
related events or simple logs.

The supervisor behaviour’s task is to monitor its children and, based on
some preconfigured rules, take action when they terminate. The children that
make up the supervision tree include both supervisors and worker processes.
Worker processes are OTP behaviours including gen_server and gen_event.

Worker processes have to link themselves to the supervisor behaviour and
handle specific system messages that are not exposed to the programmer. This
is different from the way in which one process links to another in raw Erlang,
and because of this, we cannot mix the two mechanisms.

The application behaviour is used to package Erlang modules into reusable
components. An Erlang system will consist of a set of loosely-coupled applica-
tions. Some are developed by the programmer or the open source community,
and others will be part of the OTP distribution. The Erlang runtime system and
its tools will treat all applications equally, regardless of whether they are part
of the Erlang distribution or not.

There are two kinds of applications. The most common form of applications,
called normal applications, will start the supervision tree and all of the relevant
static workers. Library applications such as the Standard Library, which come
as part of the Erlang distribution, contain library modules but do not start the
supervision tree. This is not to say that the code may not contain processes or
supervision trees. It just means they are started as part of a supervision tree
belonging to another application.

For more information on behaviours not covered in this paper, we recommend
the OTP Design Principles User’s Guide, available in the documentation section
of the http://erlang.org website.

7 Conclusions

The generic servers described in these lecture notes give an example of how OTP
behaviours work. Behaviours we have not covered but which we briefly intro-
duced in this chapter include finite state machines, event handlers, supervisors
and special processes. All of these behaviour library modules have manual pages
that you can reference. In addition, the Erlang documentation has a section on
OTP design principles that provides more detailed explanations and examples.

http://erlang.org

Erlang Behaviours: Programming with Process Design Patterns 41

Workers and supervisors create supervision trees which when packaged in ap-
plications give software architects a generic and powerful approach to packaging
and deployment of software. The benefits are reduced code sizes, generic error
handling and reuse of components, ensuring that you don’t “reinvent the wheel”
in writing Erlang solutions.

Reasoning about Codata

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Programmers happily use induction to prove properties of
recursive programs. To show properties of corecursive programs they
employ coinduction, but perhaps less enthusiastically. Coinduction is of-
ten considered a rather low-level proof method, in particular, as it de-
parts quite radically from equational reasoning. Corecursive programs
are conveniently defined using recursion equations. Suitably restricted,
these equations possess unique solutions. Uniqueness gives rise to a sim-
ple and attractive proof technique, which essentially brings equational
reasoning to the coworld. We illustrate the approach using two major
examples: streams and infinite binary trees. Both coinductive types ex-
hibit a rich structure: they are applicative functors or idioms, and they
can be seen as memo-tables or tabulations. We show that definitions and
calculations benefit immensely from this additional structure.

1 Introduction

These lecture notes show how to use codata in modelling and programming and
how to reason about codata, with the main focus on the latter. Codata is the
dual of data, with an emphasis on observation rather than construction, and the
indefinite rather than the finite.

Data is captured by inductive datatypes, whose elements can be constructed
in a finite number of steps. Functional programming has been characterised as
data-oriented programming: new datatypes are introduced with ease; elements of
those types are analysed by recursive functions, conveniently defined by recursion
equations; data constructors can be used on the right-hand side of equations to
synthesise data and on the left-hand side to analyse data. Programmers happily
use equational reasoning and induction to prove properties of recursive programs.

Dually, codata is captured by coinductive datatypes, whose elements can be
deconstructed in a finite number of steps. Codata is synthesised using corecursive
programs. To show properties of corecursive programs, programmers employ
coinduction, but perhaps less enthusiastically. Coinduction is often considered
a rather low-level proof method, especially, as it departs quite radically from
equational reasoning. In these notes we introduce an alternative proof technique,
based on unique fixed points, that remedies these problems. But we are skipping
ahead.

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 42–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reasoning about Codata 43

Though data is dual to codata, it is not equally appreciated. For instance, in
the seminal textbook on the “Algebra of Programming” [3] the authors devote
a single paragraph to codata, remarking “We shall not have any use for such
infinite data structures, however, and their discussion is therefore omitted.” We
hope to convince the reader that the notion of codata is equally valuable and
that it has a lot to offer, both for the working programmer and for the working
mathematician. For the programmer, it promises

– more elegant programs through a holistic or wholemeal approach,
– avoidance of case analysis,
– increased compositionality through separation of concerns.

For the mathematician, it promises

– more elegant proofs through a holistic or wholemeal approach,
– avoidance of index variables and subscripts,
– avoidance of case analysis and induction.

The simplest example of a coinductive type is the type of streams, where a
stream is an infinite sequence of elements. In a lazy functional language, such
as Haskell [31], streams are easy to define and many textbooks on Haskell re-
produce the folklore examples of Fibonacci or Hamming numbers defined by
recursion equations over streams. One has to be a bit careful in formulating a
recursion equation, basically avoiding that the sequence defined swallows its own
tail. However, if this care is exercised, the equation possesses a unique solution.
Uniqueness can be exploited to prove that two streams are equal: if they satisfy
the same recursion equation, then they are!

Let us illustrate the proof technique using a concrete example. Consider
Figure 1, which displays a proof concerning a simple property of the Fibonacci
numbers. The setting is very conventional, using a recurrence to define the Fi-
bonacci numbers and an inductive proof to establish the property. The formali-
sation makes intensive use of the delimited Σ-notation. (Fourier introduced the
notation in 1820, and it is reported to have taken the mathematical world by
storm [14].) Summation is a binder introducing an index variable that ranges over
some set. More often than not, the index variable then appears as a subscript
referring to an element of some other set or sequence. In Figure 1, summation
introduces the variable i , which is then used to index the Fibonacci sequence.
Now, for comparison, let us re-develop the proof in a coinductive setting.

The Fibonacci sequence is defined by a set of recursion equations.

fib = 0 ≺ fib′

fib′ = 1 ≺ fib′′

fib′′ = fib + fib′

The definitions that make this work are introduced in Section 3. For the mo-
ment, it suffices to know that ≺ prepends an element to a stream and that
the arithmetic operations are lifted point-wise to streams. Quite noticeable, in-
dex variables and subscripts are avoided by treating the sequence of Fibonacci
numbers as a single entity.

44 R. Hinze

The Fibonacci numbers are defined by the recurrence

F0 = 0
F1 = 1
Fn+2 = Fn + Fn+1 .

The numbers satisfy a myriad of properties. For instance, if we add the first k
Fibonacci numbers, we obtain Fk+1 − 1. Let us prove this simple fact. We
show ∀n ∈ N . P (n), where P is given by

P (k) :⇐⇒
k−1∑
i=0

Fi = Fk+1 − 1 .

The proof proceeds by induction. Basis: P (0).

−1∑
i=0

Fi

= { empty sum }
0

= { arithmetic }
1 − 1

= { definition of F1 }
F1 − 1

Inductive step: ∀n ∈ N . P (n) =⇒ P (n + 1). Assume P (n), then

n∑
i=0

Fi

= { split sum }(
n−1∑
i=0

Fi

)
+ Fn

= { ex hypothesi P (n) }
Fn+1 − 1 + Fn

= { arithmetic and definition of Fn+2 }
Fn+2 − 1 .

Fig. 1. A famous recurrence and an inductive proof

Reasoning about Codata 45

In the same spirit, summation is defined as a stream transformer or operator:
it takes an input stream to the stream of its partial sums. Summation Σ is
characterised by the following property.

Σ s = t ⇐⇒ t = 0 ≺ s + t

The equivalence captures the fact that summation is the unique solution of the
equation on the right-hand side.

The property of the Fibonacci numbers, adding the first k numbers yields
Fk+1 − 1, is then captured by a simple stream equation: Σ fib = fib′− 1. Again,
neither binders nor index variables are required. (By contrast, the correspond-
ing statement in Figure 1 involves three binders: the universal quantifier intro-
duces n, the abstraction defining the predicate P introduces k, and the delimited
sum introduces i.) The proof is fairly straightforward. The characterisation of Σ
leaves us with the task of showing fib′ − 1 = 0 ≺ fib + fib′ − 1. We reason

fib′ − 1
= { definition of fib′ and fib′′ }

(1 ≺ fib + fib′)− 1
= { arithmetic }

0 ≺ fib + fib′ − 1 .

The fairly voluminous, inductive argument in Figure 1 is replaced by a simple
two-step calculation. It is the fact that summation is the unique solution of
Σ s = 0 ≺ s + Σ s that makes the proof fly. In a nutshell, the proof method
of unique fixed points brings equational reasoning to the coworld. Of course,
it is by no means restricted to streams and can be used equally well to prove
properties of infinite trees or the observational equivalence of instances of an
abstract datatype.

Objectives. The primary goal of these lecture notes is to familiarise you with the
notion of codata. We shall make the ideas hinted above concrete using two major
running examples: streams and infinite binary trees. At the end of the course, you
should be able to capture sequences, iterative algorithms, infinite processes etc
using recursion equations, and you should be able to prove properties using the
unique fixed-point principle. Streams and infinite trees exhibit a rich structure:
they are idioms and tabulations. We investigate these notions in considerable
depth as they enable us to structure calculations more clearly.

Prerequisites. We assume a basic knowledge of the functional programming lan-
guage Haskell [31] — we shall make use of kinds, datatypes, type classes and
lazy evaluation. Some knowledge of category theory is helpful, but not required.

Outline. The rest of these notes are structured as follows. Section 2 reviews
the notion of an applicative functor or idiom. Section 3 introduces the type
of streams, our prime example of a coinductive datatype. Section 4 illustrates

46 R. Hinze

capturing recurrences using streams and investigates the relationship between
streams and functions from the natural numbers. Section 5 applies the frame-
work to finite calculus, the discrete counterpart of infinite calculus, where finite
difference replaces the derivative and summation replaces integration. Section 6
introduces infinite trees, our second example of an inductive datatype, and dis-
cusses some applications. Both streams and infinite trees can be seen as tabu-
lations or memo-tables. Section 7 investigates the notion of tabulation in more
detail. Finally, Section 8 concludes. Related work is discussed at the end of each
section, where appropriate.

2 Background: Idioms

Most definitions we encounter later on make use of operations lifted to streams
or infinite trees. We obtain these liftings almost for free, as these datatypes are
so-called applicative functors or idioms [27].

infixl 9 �
class Idiom φ where

pure :: α→ φ α
(�) :: φ (α → β) → (φ α→ φ β)

The constructor class introduces an operation for embedding a value into an id-
iomatic structure, and an application operator that takes a structure of functions
to a function between structures. Consider as a simple example the dual-core id-
iom, which executes two programs in parallel.

data Pair α = Pair {outl :: α, outr :: α}
instance Idiom Pair where

pure a = Pair a a
u � v = Pair ((outl u) (outl v)) ((outr u) (outr v))

The method pure duplicates its argument; idiomatic apply takes a pair of func-
tions and a pair of arguments to a pair of results.

The type Pair can be seen as a very simple container type, which can accom-
modate exactly two elements. An alternative representation of a two-element
container is a function from the Booleans: Pair α ∼= Bool → α. Generalising
from Bool , we obtain the environment idiom ‘α →’ — the type ‘α→’ is actually
a monad, but we shall not make use of the additional structure.

instance Idiom (α →) where
pure a = λx → a
f � g = λx → (f x) (g x)

The idiom threads an environment, the argument x , through an idiomatic struc-
ture: pure discards the environment and � distributes it to its two arguments.
Interestingly, pure is the combinator K and ‘�’ is the combinator S from com-
binatory logic [7]. The combinators were re-discovered in the 1970s to form the
basis of an implementation technique for lazy functional languages [37].

Reasoning about Codata 47

Idioms abound, here are further examples of idioms and idiom transformers.

– The constant type constructor Const A with

Const α β = α

is an idiom if A is a monoid.
– The identity type constructor is an idiom.

Id α = α

– Idioms are closed under type composition.

(φ · ψ) α = φ (ψ α)

– Idioms are closed under type pairing.

(φ ×̇ ψ) α = (φ α, ψ α)

The type constructor ×̇ lifts pairing to parametric datatypes, type construc-
tors of kind � → �. The type Pair is isomorphic to Id ×̇ Id .

– Every monad is an idiom — but not the other way round.

Exercise 1. Define suitable datatypes to represent the idioms and idiom trans-
formers listed above. Then turn the types into instances of the Idiom class.

instance (Monoid α) ⇒ Idiom (Const α)
instance Idiom Id
instance (Idiom φ, Idiom ψ) ⇒ Idiom (φ · ψ)
instance (Idiom φ, Idiom ψ) ⇒ Idiom (φ ×̇ ψ)

(Section 6.2 defines the Monoid type class.) �	

Using nested idiomatic applications, we can lift an arbitrary function point-
wise to an idiomatic structure. Here are generic combinators for lifting unary
and binary operations.

map :: (Idiom φ) ⇒ (α → β)→ (φ α → φ β)
map f u = pure f � u
zip :: (Idiom φ) ⇒ (α → β → γ)→ (φ α→ φ β → φ γ)
zip g u v = pure g � u � v

Using zip we can, for instance, lift pairing to idioms.

infixl 6 �
(�) :: (Idiom φ) ⇒ φ α→ φ β → φ (α, β)
(�) = zip (,)

The quizzical ‘(,)’ is Haskell’s pairing constructor.

48 R. Hinze

For convenience and conciseness of notation, we lift the arithmetic operations
to idioms. In Haskell, this is easily accomplished using the numeric type classes.
Here is an excerpt of the code.1

instance (Idiom φ,Num α) ⇒ Num (φ α) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate -- unary minus
fromInteger i = pure (fromInteger i)

We shall make intensive use of overloading, going beyond Haskell’s predefined
numeric classes. For instance, we also lift exponentiation uv to idioms.

In these lecture notes, we mainly consider two idioms, streams and infinite
trees. In both cases, the familiar arithmetic laws also hold for the lifted operators.

Speaking of laws, every instance of Idiom must satisfy four laws:

pure id � u = u (identity)
pure (·) � u � v � w = u � (v � w) (composition)
pure f � pure x = pure (f x) (homomorphism)
u � pure x = pure (λf → f x) � u (interchange)

The first two laws imply the well-known functor laws : map preserves identity
and composition (hence the names of the idiom laws).

map id = id
map (f · g) = map f · map g

Every instance of Haskell’s Functor class should satisfy these two laws (map is
called fmap in Functor).

The interchange law allows us to swap pure and impure computations. This
move possibly brings together pure computations, which can subsequently be
merged using the homomorphism law. In fact, the idiom laws imply a normal
form: every idiomatic expression can be rewritten into the form pure f �u1 � · · ·�
un, a pure function applied to impure arguments. Put differently, applicative
functors or idioms capture the notion of lifting: λu1 · · · un → pure f �u1�· · ·�un

is the lifted version of the nary function f (assuming that f is curried). For
instance, the environment idiom ‘α →’ captures lifting operators to function
spaces: zip (+) f g = pure (+) � f � g = S (S (K (+)) f) g = λx → f x + g x .

Every structure comes equipped with structure-preserving maps; so do idioms:
a polymorphic function h :: ∀α . φ α→ ψ α is called an idiom homomorphism if
and only if it preserves the idiomatic structure:

h (pure a) = pure a (1)
h (x � y) = h x � h y . (2)

1 Unfortunately, this does not quite work with the Standard Haskell libraries, as Num
has two super-classes, Eq and Show , which cannot sensibly be defined generically.

Reasoning about Codata 49

The function pure ::∀α . α→ φ α itself is a homomorphism from the identity id-
iom Id to the idiom φ. Condition (2) for pure is equivalent to the homomorphism
law, hence its name.

2.1 Summary and Related Work

Idioms capture the notion of lifting. Using pure and � we can, in particular, lift
arithmetic operations point-wise to structures. The environment functor is the
paradigmatic example of an idiom; it captures lifting operations point-wise to
functions.

Categorically, idioms are lax monoidal functors [26] with strength. Program-
matically, idioms arose as an interface for parsing combinators [34]. McBride
and Paterson [27] introduced the notion to a wider audience. For the idioms we
consider in these notes, the lifted operators satisfy the same properties as the
‘unlifted’ ones. This does, however, not hold in general [21].

3 Streams

A stream is an infinite sequence of elements. Here are some examples of (initial
segments of) streams of natural numbers.

〈0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, . . .〉
〈1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .〉
〈0, 0, 1, 1, 2, 4, 3, 9, 4, 16, 5, 25, 6, 36, 7, 49, . . .〉
〈0, 0, 2, 4, 8, 14, 24, 40, 66, 108, 176, 286, 464, 752, . . .〉
〈0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, . . .〉

Exercise 2. Describe the streams using natural language. �	

Since Haskell is a lazy language, we can capture the type of streams as a datatype:
Stream α is like Haskell’s list data type [α], except that there is no base construc-
tor so we cannot construct a finite stream. The Stream type is not an inductive
type, but a coinductive type, whose semantics is given by a final coalgebra [1].

data Stream α = Cons {head :: α, tail :: Stream α}
infixr 5 ≺
(≺) :: ∀α . α → Stream α → Stream α
a ≺ s = Cons a s

Streams are constructed using ≺, which prepends an element to a stream. They
are destructed using head , which yields the first element, and tail , which returns
the stream without the first element.

Streams are an idiom, which means that we can effortlessly lift functions to
streams:

instance Idiom Stream where
pure a = s where s = a ≺ s
s � t = (head s) (head t) ≺ (tail s) � (tail t) .

50 R. Hinze

Using this vocabulary we are already able to define the usual suspects: the nat-
ural numbers (A0014772), the factorial numbers (A000142), and the Fibonacci
numbers (A000045).

nat = 0 ≺ nat + 1
fac = 1 ≺ (nat + 1) ∗ fac
fib = 0 ≺ fib′

fib′ = 1 ≺ fib + fib′

Note that ≺ binds less tightly than +. For instance, 0 ≺ nat + 1 is grouped
0 ≺ (nat + 1). The definitions capture invariants. For instance, incrementing
the naturals by 1 and then prepending 0 yields again the naturals. Here is an
attempt to visualise the invariant:

0 1 2 3 4 5 6 7 8 9 · · · nat
+ + + + + + + + + + · · · +

0 1 1 1 1 1 1 1 1 1 1 · · · 0 ≺ 1

= = = = = = = = = = = · · · =

0 1 2 3 4 5 6 7 8 9 10 · · · nat .

The table makes explicit that 1 in nat +1 is actually an infinite sequence of ones
and that ‘+’ zips two streams using addition.

The four sequences are given by recursion equations adhering to a strict
scheme: each equation defines the head and the tail of the sequence, the latter
possibly in terms of the entire sequence. As an aside, we will use the convention
that the identifier x ′ denotes the tail of x , and x ′′ the tail of x ′. The Fibonacci
numbers provide an example of mutual recursion: fib′ refers to fib and vice versa.
Actually, in this case mutual recursion is not necessary, as a quick calculation
shows: fib′ = 1 ≺ fib + fib′ = (1 ≺ fib) + (0 ≺ fib′) = (1 ≺ fib) + fib. So, an
alternative definition is

fib = 0 ≺ fib + (1 ≺ fib) .

The table below visualises the definition.

0 1 1 2 3 5 8 13 21 34 · · · fib
+ + + + + + + + + + · · · +

0 1 0 1 1 2 3 5 8 13 21 · · · 0 ≺ 1 ≺ fib

= = = = = = = = = = = · · · =

0 1 1 2 3 5 8 13 21 34 55 · · · fib

The Fibonacci function is the folklore example of a function whose straightfor-
ward definition leads to a very inefficient program, see Exercise 9. By contrast,
the stream definition, fib, does not suffer from this problem: to determine the
nth element only max {n − 1, 0} additions are required.
2 Most if not all integer sequences defined in these lecture notes are recorded in Sloane’s

On-Line Encyclopedia of Integer Sequences [35]. Keys of the form Annnnnn refer
to entries in that database.

Reasoning about Codata 51

It is fun to play with the sequences. Here is a short interactive session.

� fib
〈0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . .〉
� nat ∗ nat
〈0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . .〉
� fib′2 − fib ∗ fib′′

〈1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1, . .〉
� fib′2 − fib ∗ fib′′ (−1)nat

True

The part after the prompt, � , is the user’s input. The result of each submis-
sion is shown in the subsequent line. This document has been produced using
lhs2TEX [22]. The session displays the actual output of the Haskell interpreter,
generated automatically with lhs2TEX’s active features.

Obviously, we cannot print out a sequence in full. The Show instance for Stream
only displays the first n elements. Likewise, we cannot test two streams for equal-
ity: only checks whether the first n elements are equal. So, ‘equality’ is most
useful for falsifying conjectures. For the purposes of these notes, n equals 15.

In Haskell, the same function can be defined in at least three different ways3.
The same is true of sequences: here are three different variants of the stream of
natural numbers — and there are more to come.

nat = 0 ≺ nat + 1
nat = 0 ≺ pure (+) � nat � pure 1
nat = 0 ≺ map (1+) nat

The definitions can be shown equivalent using the idiom laws. As an example,
the following calculation proves nat + 1 = map (1+) nat — the most difficult
part has been relegated to an exercise.

nat + 1
= { definition of + and fromInteger }

zip (+) nat (pure 1)
= { definition of zip }

pure (+) � nat � pure 1
= { Exercise 3 }

pure (+) � pure 1 � nat
= { homomorphism law }

pure (1+) � nat
= { definition of map }

map (1+) nat

3 See http://www.willamette.edu/~fruehr/haskell/evolution.html for an amus-
ing illustration of this fact using the factorial function as an example.

http://www.willamette.edu/~fruehr/haskell/evolution.html

52 R. Hinze

The proof exemplifies the typical style of reasoning: we transform the left-hand
side into the right-hand side by repeatedly replacing equals by equals. The com-
ments in curly braces justify the individual steps.

Exercise 3. Show s + 1 = 1 + s using solely the idiom laws. (First, make sure
that your understand why the laws are baptised ‘identity’, ‘composition’, ‘homo-
morphism’ and ‘interchange’. The text explains why.) Does lifted commutativity
s + t = t + s hold in every idiom? Conversely, what base-level identities can be
lifted through any idiom? The paper “Lifting Operators and Laws” [21] answers
these questions. �	

3.1 Interleaving

Another important operator is interleaving of two streams.

infixr 5 �
(�) :: ∀α . Stream α → Stream α → Stream α
s � t = head s ≺ t � tail s

Though the symbol is symmetric, � is not commutative. Neither is it associative.
Let us consider an example application. The above definition of the naturals is
based on the unary number system. Using interleaving, we can alternatively base
the sequence on the binary number system.

bin = 0 ≺ 2 ∗ bin + 1 � 2 ∗ bin + 2

Since � has lower precedence than the arithmetic operators, the right-hand side
of the equation above is grouped 0 ≺ ((2 ∗ bin + 1) � (2 ∗ bin + 2)).

Now that we have two, quite different definitions of the natural numbers, the
question naturally arises as to whether they are actually equal. Reassuringly,
the answer is yes. Proving the equality of streams or of stream operators is one
of our main activities in these lecture notes. However, we postpone a proof of
nat = bin , until we have the prerequisites at hand.

Many numeric sequences are actually interleavings in disguise: for instance,
(−1)nat = 1 � −1, nat div 2 = nat � nat , and nat mod 2 = 0 � 1.

The interleaving operator interacts nicely with lifting.

pure a � pure a = pure a
(s1 � s2) � (t1 � t2) = (s1 � t1) � (s2 � t2)

A simple consequence is (s � t) + 1 = s + 1 � t + 1 or, more generally,
map f (s � t) = map f s � map g t . The two laws show, in fact, that in-
terleaving is a homomorphism (from Pair · Stream to Stream). Interleaving is
even an isomorphism; the reader is encouraged to work out the details.

Property (3) is also called abide law because of the following two-dimensional
way of writing the law, in which the two operators are written either above or
beside each other.

s1 � s2
�

t1 � t2
=

s1 s2
� � �
t1 t2

s1 | s2
——–
t1 | t2

=
s1 s2

—— ——
t1 t2

Reasoning about Codata 53

The two-dimensional arrangement is originally due to Hoare, the catchy name
is due to Bird [4]. The geometrical interpretation can be further emphasised by
writing the two operators | and −, like on the right-hand side [11].

Exercise 4. Try to capture the sequences listed in the introduction to Section 3
using stream equations. For the latter two puzzles experiment a little with the
Fibonacci sequences fib and fib′. Hint: Sloane’s On-Line Encyclopedia of Integer
Sequences lists most integer sequences one can think of. �	

Exercise 5. Turn the following verbal descriptions into streams.

1. The sequence of natural numbers divisible by 3.
2. The sequence of natural numbers not divisible by 3.
3. The sequence of cubes.
4. The sequence of all finite binary strings:

〈[], [0], [1], [0, 0], [1, 0], [0, 1], [1, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], . .〉 .

5. The bit-reversed positive numbers:

〈1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 15, . .〉 .

The order of all bits, except the most significant one, in the binary expansion
of n is reversed. �	

3.2 Definitions and Proofs

Not every legal Haskell definition of type Stream τ actually defines a stream.
Two simple counterexamples are s1 = tail s1 and s2 = head s2 ≺ tail s2. Both of
them loop in Haskell; when viewed as stream equations they are ambiguous.4 In
fact, they admit infinitely many solutions: every constant stream is a solution of
the first equation, every stream is a solution of the second one. This situation is
undesirable from both a practical and a theoretical standpoint. Fortunately, it is
not hard to restrict the syntactic form of equations so that they possess unique
solutions. We insist that equations adhere to the following form:

x = h ≺ t ,

where x is an identifier of type Stream τ , h is a constant expression of type τ ,
and t is an expression of type Stream τ possibly referring to x or some other
stream identifier in the case of mutual recursion. However, neither h nor t may
contain head or tail .

If x is a parametrised stream or a stream operator,

x x1 . . . xn = h ≺ t

4 There is a slight mismatch between the theoretical framework of streams and the
Haskell implementation of streams. Since products are lifted in Haskell, Stream τ
additionally contains partial streams such as ⊥, a0 ≺ ⊥, a0 ≺ a1 ≺ ⊥ and so forth.
We simply ignore this extra complication here.

54 R. Hinze

then h and t may use head xi or tail xi provided xi is of the right type. Apart
from that, no other uses of head or tail are permitted. Equations of this form
are called admissible.

For a formal account of these requirements, we refer the interested reader to
the paper “Streams and Unique Fixed Points” [18], which contains a constructive
proof that admissible equations indeed have unique solutions. Looking back, we
find that the definitions we have encountered so far, including those of pure, �
and �, are admissible.

If x = ϕ x is an admissible equation, we denote its unique solution by fix ϕ.
(The equation implicitly defines a function in x . A solution of the equation is a
fixed point of this function and vice versa.) The fact that the solution is unique
is captured by the following property.

fix ϕ = s ⇐⇒ ϕ s = s

Read from left to right it states that fix ϕ is indeed a solution of x = ϕ x . Read
from right to left it asserts that any solution is equal to fix ϕ. Now, if we want
to prove s = t where s = fix ϕ, then it suffices to show that ϕ t = t .

As a first example, let us prove the idiom homomorphism law.

pure f � pure a
= { definition of � }

(head (pure f)) (head (pure a)) ≺ tail (pure f) � tail (pure a)
= { definition of pure }

f a ≺ pure f � pure a

Consequently, pure f � pure a equals the unique solution of x = f a ≺ x , which
by definition is pure (f a).

That was easy. The next proof is not much harder. We show that the natural
numbers are even and odd numbers interleaved: nat = 2 ∗ nat � 2 ∗ nat + 1.

2 ∗ nat � 2 ∗ nat + 1
= { definition of nat }

2 ∗ (0 ≺ nat + 1) � 2 ∗ nat + 1
= { arithmetic }

(0 ≺ 2 ∗ nat + 2) � 2 ∗ nat + 1
= { definition of � }

0 ≺ 2 ∗ nat + 1 � 2 ∗ nat + 2
= { arithmetic }

0 ≺ (2 ∗ nat � 2 ∗ nat + 1) + 1

Inspecting the second but last term, we note that the result furthermore implies
nat = 0 ≺ 2 ∗ nat + 1 � 2 ∗ nat + 2, which in turn proves nat = bin .

Reasoning about Codata 55

Now, if both s and t are given as fixed points, s = fix ϕ and t = fix ψ, then
there are at least four possibilities to prove s = t :

ϕ (ψ s) = ψ s =⇒ ψ s = s =⇒ s = t
ψ (ϕ t) = ϕ t =⇒ ϕ t = t =⇒ s = t .

We may be lucky and establish one of the equations. Unfortunately, there is no
success guarantee. The following approach is often more promising. We show
s = χ s and χ t = t . If χ has a unique fixed point, then s = t . The important
point is that we discover the function χ on the fly during the calculation. Proofs
in this style are laid out as follows.

s
= { why? }

χ s
⊂ { x = χ x has a unique solution }

χ t
= { why? }

t

The symbol ⊂ is meant to suggest a link connecting the upper and the lower
part. Overall, the proof establishes that s = t .

Let us illustrate the technique by proving Cassini’s identity: fib′2−fib ∗fib′′ =
(−1)nat .

fib′2 − fib ∗ fib′′

= { definition of fib′′ and arithmetic }
fib′2 − (fib2 + fib ∗ fib′)

= { definition of fib and definition of fib′ }
1 ≺ (fib′′2 − (fib′2 + fib′ ∗ fib′′))

= { arithmetic }
1 ≺ (−1) ∗ (fib′2 − (fib′′ − fib′) ∗ fib′′)

= { fib′′ − fib′ = fib }
1 ≺ (−1) ∗ (fib′2 − fib ∗ fib′′)

⊂ { x = 1 ≺ (−1) ∗ x has a unique solution }
1 ≺ (−1) ∗ (−1)nat

= { definition of nat and arithmetic }
(−1)nat

When reading ⊂-proofs, it is easiest to start at both ends working towards the
link. Each part follows a typical pattern, which we will see time and time again:
starting with e we unfold the definitions obtaining e1 ≺ e2; then we try to
express e2 in terms of e.

56 R. Hinze

So far, we have been concerned with proofs about streams. However, the proof
techniques apply equally well to parametric streams or stream operators! As an
example, let us prove the abide law by showing f = g where

f s1 s2 t1 t2 = (s1 � s2) � (t1 � t2) and g s1 s2 t1 t2 = (s1 � t1) � (s2 � t2) .

The proof is straightforward involving only bureaucratic steps.

f a b c d
= { definition of f }

(a � b) � (c � d)
= { definition of � and definition of � }

head a � head b ≺ (c � d) � (tail a � tail b)
= { definition of f }

head a � head b ≺ f c d (tail a) (tail b)
⊂ { x s1 s2 t1 t2 = head s1 � head s2 ≺ x t1 t2 (tail s1) (tail s2) }

head a � head b ≺ g c d (tail a) (tail b)
= { definition of g }

head a � head b ≺ (c � tail a) � (d � tail b)
= { definition of � and definition of � }

(a � c) � (b � d)
= { definition of g }

g a b c d

Henceforth, we leave the two functions implicit sparing ourselves two rolling and
two unrolling steps. On the downside, this makes the common pattern around
the link more difficult to spot.

Exercise 6. The parametric stream from is given by
from :: Nat → Stream Nat
from n = n ≺ from (n + 1) .

Show that from n + pure k = from (n + k) in at least two different ways. �	
Exercise 7. Prove the other idiom laws using the unique fixed-point
principle. �	

3.3 Recursion and Iteration

The stream nat is constructed by repeatedly mapping a function over a stream.
We can capture this recursion scheme using a combinator, which implements
recursive or top-down constructions.

recurse :: ∀α . (α → α) → (α→ Stream α)
recurse f a = s

where s = a ≺ map f s

So, nat = recurse (+1) 0.

Reasoning about Codata 57

Alternatively, we can build a stream by repeatedly applying a given function
to a given initial seed. The combinator iterate captures this iterative or bottom-up
construction.

iterate :: ∀α . (α→ α) → (α → Stream α)
iterate f a = loop a

where loop x = x ≺ loop (f x)

So, iterate (+1) 0 is yet another definition of the naturals. The type α can be
seen as a type of states and the resulting stream as an enumeration of the state
space. One could argue that iterate is more natural than recurse. This intuition
is backed up by the fact that map g · iterate f is the unfold or anamorphism of
the Stream codatatype. Very briefly, the unfold is characterised by the following
universal property.

h = unfold g f ⇐⇒ head · h = g and tail · h = h · f

Read from left to right it states that unfold g f is a solution of the equations
head · h = g and tail · h = h · f . Read from right to left the property asserts
that unfold g f is the unique solution.

The functions iterate and recurse satisfy an important fusion law, which
amounts to the free theorem of ∀α . (α→ α) → (α → Stream α).

map h · recurse f1 = recurse f2 · h
⇑

h · f1 = f2 · h
⇓

map h · iterate f1 = iterate f2 · h

Here is a unique fixed-point proof of the first fusion law.

map h (iterate f1 a)
= { definition of iterate and map }

h a ≺ map h (iterate f1 (f1 a))
⊂ { x a = h a ≺ x (f1 a) has a unique solution }

h a ≺ iterate f2 (h (f1 a))
= { assumption: h · f1 = f2 · h }

h a ≺ iterate f2 (f2 (h a))
= { definition of iterate }

iterate f2 (h a)

The linking equation g a = h a ≺ g (f1 a) corresponds to the unfold for Stream,
which as we have noted can be defined in terms of map and iterate.

The fusion law implies map f · iterate f = iterate f · f , which is the key for
proving nat = iterate (+1) 0, or, more generally,

recurse f a = iterate f a .

58 R. Hinze

We show that iterate f a is the unique solution of x = a ≺ map f x .

iterate f a
= { definition of iterate }

a ≺ iterate f (f a)
= { iterate fusion law: h = f1 = f2 = f }

a ≺ map f (iterate f a)

Exercise 8. When are iterate f a and iterate g b equal? As a simple example,
consider iterate (["hi"]++) [] and iterate (++["hi"]) []. Can you find sufficient
and necessary conditions? �	

3.4 Summary and Related Work

The type of streams is a simple example of a coinductive datatype. The type has
the structure of an idiom, which allows us to lift arbitrary functions to streams.
Streams can be conveniently defined using recursion equations. Admissible equa-
tions have unique solutions, which is the basis of the unique fixed-point principle.
For streams, recursive and iterative constructions coincide.

This section is based on the paper “Streams and Unique Fixed Points” [18],
which in turns draws from Rutten’s work on stream calculus [32,33]. Rutten
introduces streams and stream operators using coinductive definitions, which he
calls behavioural differential equations. As an example, the Haskell definition of
lifted addition

s + t = head s + head t ≺ tail s + tail t

translates to

(s + t)(0) = s(0) + t(0) and (s + t)′ = s ′ + t ′ ,

where s(0) denotes the head of s , its initial value, and s ′ the tail of s , its stream
derivative. (The notation goes back to Hoare.) However, Rutten relies on coin-
duction as the main proof technique.

Various proof methods for corecursive programs are discussed by Gibbons
and Hutton [13]. Interestingly, the technique of unique fixed points is not among
them. Unique fixed-point proofs are closely related to the principle of guarded
induction [6], which goes back to the work on process algebra [30]. Loosely speak-
ing, the guarded condition ensures that functions are productive by restricting
the context of a recursive call to one ore more constructors. For instance,

nat = 1 ≺ nat + 1

is not guarded as + is not a constructor. However, nat can be defined by
iterate (+1) 0 as iterate is guarded. The proof method then allows us to show
that iterate (+1) 0 is the unique solution of x = x ≺ x + 1 by constructing
a suitable proof transformer using guarded equations. Indeed, the central idea
underlying guarded induction is to express proofs as lazy functional programs.

Reasoning about Codata 59

4 Application: Recurrences

A recurrence or recurrence relation is a set of equations that defines a sequence,
a function from the natural numbers. It typically provides a boundary value
and an equation for the general value in terms of earlier ones, see Figure 1 for
an example. Using ≺ and � we can often capture a function from the natural
numbers by a single equation. Though functions from the naturals and streams
are in a one-to-one correspondence, a stream is usually easier to manipulate.
Before we consider concrete examples, we first explore tabulation in more depth.

4.1 Tabulation

In Section 2 we have noted in passing by that Pair s are in a one-to-one corre-
spondence to functions from the Booleans. Streams enjoy an analogous property,
they are in a one-to-one correspondence to functions from the natural numbers:

Stream α ∼= Nat → α ,

where the inductive datatype Nat is given by the Pseudo-Haskell definition

data Nat = 0 | Nat + 1 .

(Strictly speaking, this defines the unary numbers or Peano numerals, which
represent the natural numbers.) A stream can be seen as the tabulation of a
function from the natural numbers. Conversely, a function of type Nat → α can
be implemented by looking up a memo-table. Here are the functions that witness
the isomorphism.

tabulate :: ∀α . (Nat → α) → Stream α
tabulate f = f 0 ≺ tabulate (f · (+1))
lookup :: ∀α . Stream α → (Nat → α)
lookup s 0 = head s
lookup s (n + 1) = lookup (tail s) n

The functions lookup and tabulate are mutually inverse

lookup · tabulate = id
tabulate · lookup = id ,

and they satisfy the following naturality properties.

map f · tabulate = tabulate · (f ·)
(f ·) · lookup = lookup · map f

Note that post-composition (f ·) is the mapping function for the environment
idiom τ →. The laws are somewhat easier to memorise, if we write them in a
point-wise style.

map f (tabulate g) = tabulate (f · g)
f · lookup t = lookup (map f t)

60 R. Hinze

A simple consequence of the first law is tabulate f = map f (tabulate id). Hence,
tabulate is fully determined by the image of the identity, which is the stream of
natural numbers (see below). So, one way of tabulating an arbitrary function is
to map the function over the stream of natural numbers.

The simplest recurrences are of the form a0 = k and an+1 = f(an), for some
natural number k and some function f on the naturals. As an example, the
recurrence below defines Tn , the minimum number of moves to solve the Tower
of Hanoï problem for n discs.

T0 = 0
Tn+1 = 2 ∗ Tn + 1

It is not hard to see that the stream defined

tower = 0 ≺ 2 ∗ tower + 1

implements the same sequence. In general, the recurrence a0 = k and an+1 =
f(an) is captured by the stream equation s = k ≺ map f s , or more succinctly
by recurse f k . Though fairly obvious, the relation is worth exploring.

On the face of it, the linear recurrence corresponds to the fold or catamorphism
of the inductive type Nat .

fold :: ∀α . (α→ α)→ α → (Nat → α)
fold s z 0 = z
fold s z (n + 1) = s (fold s z n)

Catamorphisms are dual to anamorphisms, enjoying a dual characterisation.

h = fold s z ⇐⇒ h 0 = z and h · (+1) = s · h

Some consequences of the universal property are the reflection law, fold (+1) 0 =
id , and the computation laws, fold s z 0 = z and fold s z · (+1) = s · fold s z .

Now, tabulating fold s z gives recurse s z (hence the name of the combinator).
The proof of this fact makes crucial use of tabulate’s naturality property.

tabulate (fold s z)
= { definition of tabulate }

fold s z 0 ≺ tabulate (fold s z · (+1))
= { computation laws }

z ≺ tabulate (s · fold s z)
= { naturality of tabulate }

z ≺ map s (tabulate (fold s z))

Consequently, there are, at least, three equivalent ways of expressing the linear
recurrence a0 = k and an+1 = f(an).

tabulate (fold f k) = recurse f k = iterate f k

Reasoning about Codata 61

Using the reflection law, this furthermore implies that nat is the tabulation of
the identity function:

tabulate id
= { reflection law: fold (+1) 0 = id }

tabulate (fold (+1) 0)
= { see above }

recurse (+1) 0 .

Exercise 9. The naîve implementation of the Fibonacci numbers is horribly in-
efficient.

F0 = 0
F1 = 1
Fn+2 = Fn + Fn+1

But, can you make this more precise? For instance, how many additions are
performed in order to compute Fn , or, how many recursive calls are made?
Express your findings as stream equations. Then try to relate the two streams
to examples we have encountered so far. �	

Exercise 10. Determine the number of binary strings of some given length that
do not contain adjacent zeros. Again, first try to come up with a system of
recursion equations and then try to relate the streams to known examples. �	

We already know that fib tabulates the Fibonacci function F. To sharpen our
calculational skills let us try to derive the stream definition from the recurrence
given in Exercise 9. The recurrence does not fit the simple scheme discussed
above, so we have to start afresh. The calculations are effortless if we make use
of the fact that tabulate is an idiom homomorphism between the environment
idiom Nat → and Stream.

tabulate (pure a) = pure a
tabulate (x � y) = tabulate x � tabulate y

Since tabulation and look-up are inverses, this implies that lookup is an idiom
homomorphism, as well.

lookup (pure a) = pure a
lookup (x � y) = lookup x � lookup y

Returning to the problem of tabulating F, it is useful to rewrite the last
equation of F in a point-free style: F · (+2) = F + F · (+1). The right-hand
side makes use of addition lifted to the environment idiom.

tabulate F
= { definition of tabulate }
F0 ≺ tabulate (F · (+1))

62 R. Hinze

= { definition of tabulate and arithmetic }
F0 ≺ F1 ≺ tabulate (F · (+2))

= { definition of F }
0 ≺ 1 ≺ tabulate (F + F · (+1))

= { tabulate is an idiom homomorphism }
0 ≺ 1 ≺ tabulate F + tabulate (F · (+1))

= { definition of tabulate }
0 ≺ 1 ≺ tabulate F + tail (tabulate F)

The only non-trivial step is the second but last one, which uses tabulate (f +g) =
tabulate f + tabulate g, which in turn is syntactic sugar for tabulate (pure (+) �
f � g) = pure (+) � tabulate f � tabulate g. Since tabulate preserves the idiomatic
structure, the derivation goes through nicely. The resulting equation

fib = 0 ≺ 1 ≺ fib + tail fib

is equivalent to the definitions given in Section 3.
Tabulation and look-up allow us to switch swiftly between functions from the

naturals and streams. So, even if coinductive structures are not available in your
language of choice, you can still use stream calculus for program transformations.
The next exercise aims to illustrate this point by deriving an efficient iterative
implementation of F.

Exercise 11. Turn the Fibonacci sequence

fib = 0 ≺ fib + (1 ≺ fib)

into an iterative form: map g (iterate f a) = unfold g f . There are, at least, two
approaches:

– Pair fib and fib′

fib � fib′ ,

where (�) = zip (,) turns a pair of streams into a stream of pairs, see
Section 2.

– Use the fact that the tails of fib are linear combinations of fib and fib′.
i ∗ fib + j ∗ fib′

Hint: Express the tail of i ∗ fib + j ∗ fib′ as a linear combination of fib and
fib′ and then capture the corecursion using unfold .

Try to relate the two approaches. �	
Exercise 12. Turn the equation

x = (a ≺ map f x) + s

into an iterative form. Hint: You may find the function tails = iterate tail
useful. Try pairing x with tails s . As an aside, tails is the comultiplication of the
comonad Stream. �	
Exercise 13. Complete the proof that tabulate f = map f nat . �	

Reasoning about Codata 63

4.2 Bit-Fiddling

Now, let us tackle a slightly more involved class of recurrences. The sequence
given by the ‘binary’ recurrence a0 = k, a2n+1 = f(an) and a2n+2 = g(an)
corresponds to the stream s = k ≺ map f s � map g s . We have already seen
an instance of this scheme in Section 3.

bin = 0 ≺ 2 ∗ bin + 1 � 2 ∗ bin + 2

Here, the parameters of the general scheme are instantiated by k = 0, f n =
2 ∗ n + 1 and g n = 2 ∗ n + 2. In other words, a is the identity and bin is its
tabulation: bin = tabulate id = nat . For the positive numbers, we can derive a
similar equation.

bin + 1
= { definition of bin }

(0 ≺ 2 ∗ bin + 1 � 2 ∗ bin + 2) + 1
= { abide law and arithmetic }

1 ≺ 2 ∗ (bin + 1) � 2 ∗ (bin + 1) + 1

We have calculated the definition below.

bin ′ = 1 ≺ 2 ∗ bin ′ � 2 ∗ bin ′ + 1

Since the equation has a unique solution, we know that bin ′ = bin + 1 = nat +
1 = nat ′. The definition of bin ′ captures a well-known recipe for generating the
positive numbers in binary: start with 1, then repeatedly shift the bits to the
right (lsb first), placing a 0 or a 1 in the left-most, least significant position.

Using a similar approach we can characterise the most significant bit of a
positive number (0 ≺ msb is A053644).

msb = 1 ≺ 2 ∗msb � 2 ∗msb

The most significant bit of 1 is 1, the most significant bit of both 2 ∗ bin ′ and
2 ∗ bin ′ + 1 is 2 ∗msb.

Another example along these lines is the 1s-counting sequence (A000120), also
known as the binary weight. The binary representation of the even number 2∗nat
has the same number of 1s as nat ; the odd number 2 ∗ nat + 1 has one 1 more.
Hence, the sequence satisfies ones = ones � ones +1. Adding two initial values,
we can turn the property into a definition.

ones = 0 ≺ ones ′

ones ′ = 1 ≺ ones ′ � ones ′ + 1

It is important to note that x = x � x + 1 does not have a unique solution.
However, all solutions are of the form ones + c.

Exercise 14. Prove this claim. Hint: Let s be a solution of x = x � x + 1. Show
that s − pure (head s) satisfies the definition of ones . �	

64 R. Hinze

Let us inspect the sequences.

� msb
〈1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, . .〉
� bin ′ −msb
〈0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, . .〉
� ones
〈0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, . .〉

The sequence bin ′ − msb (A053645) exhibits a nice pattern; it describes the
distance to the largest power of two at most bin ′. In binary, this amounts to
removing the most significant bit.

Here is a sequence that every computer scientist should know: the binary carry
sequence or ruler function (A007814).

carry = 0 � carry + 1

(The form of the equation does not quite meet the requirements. We allow
ourselves some liberty, as a simple unfolding turns it into an admissible form:
carry = 0 ≺ carry + 1 � 0. The unfolding works as long as the first argument of
� is a sequence defined elsewhere.) Let us peek at some values.

� carry
〈0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, . .〉

The sequence gives the exponent of the largest power of two dividing bin ′, that
is, the number of leading zeros in the binary representation (lsb first). In other
words, it specifies the running time of the binary increment. The table below
illustrates the relationship.

1
0 1
1 1
0 0 1
1 0 1
0 1 1
1 1 1
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1
0 0 0 0 1

Reasoning about Codata 65

For emphasis, prefixes of zeros are underlined. There is also an intriguing con-
nection to infinite binary trees. If we turn the table by 90◦ to the left, we can
see the correspondence more clearly.

1 0
1

1
1

0
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

0
0

1
1

1
0

1
1

0
1

1
1

1
1

1
1

0
0

0
0

1

The lines correspond to the marks on a (binary) ruler; this is why carry is also
called the ruler function. If we connect each 0-prefix of length n with the nearest
0-prefix of length n + 1, we obtain the so-called sideways tree, an infinite tree,
which has no root, but extends infinitely upwards.

Exercise 15. Prove that the sequence given by a0 = k, a2n+1 = f(an) and
a2n+2 = g(an) corresponds to the stream s = k ≺ map f s � map g s . Hint:
Use nat = bin and Exercise 13. �	

4.3 Summary and Related Work

A stream tabulates a function from the naturals. Tabulation and look-up are
idiom isomorphisms between the environment idiom Nat → and Stream. Using
≺ and � we can capture ‘unary’ and ‘binary’ recurrences.

The section is also based on “Streams and Unique Fixed Points” [18].

5 Application: Finite Calculus

Let us move on to another application of streams: finite calculus. Finite calculus
is the discrete counterpart of infinite calculus, where finite difference replaces
the derivative and summation replaces integration. We shall see that difference
and summation can be easily recast as stream operators. The resulting calculus
is elegant and fun to use.

5.1 Finite Difference

A common type of puzzle asks the reader to continue a given sequence of num-
bers. A first routine step towards solving the puzzle is to calculate the difference
of subsequent elements. This stream operator, finite difference or forward differ-
ence, enjoys a simple, non-recursive definition.

Δ :: (Num α) ⇒ Stream α→ Stream α
Δ s = tail s − s

66 R. Hinze

Here are some examples (A000079, A094267, A003215, A033428).

� Δ 2nat

〈1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, . .〉
� Δ carry
〈1,−1, 2,−2, 1,−1, 3,−3, 1,−1, 2,−2, 1,−1, 4, . .〉
� Δ nat3

〈1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, . .〉
� 3 ∗ nat2

〈0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, . .〉

Infinite calculus has an attractive rule for the derivative of a power: (xn+1) d
dx =

(n + 1)xn. Unfortunately, the last two examples show that finite difference does
not interact well with ordinary powers: Δ nat3 is by no means 3 ∗ nat2. An
alternative power that blends nicely with Δ is the falling factorial power defined

x 0 = 1
xn+1 = x ∗ (x − 1)n .

As usual, we lift the operator to streams: sn = map (λx → xn) s . The new
power satisfies s ∗ (s − 1)n = sn+1 = sn ∗ (s − n). Hence, finite calculus has a
handy rule to match the one for the derivative of a power.

Δ (natn+1) = (pure n + 1) ∗ natn

The proof is entirely straightforward.

Δ (natn+1)
= { definition of Δ }

tail (natn+1)− natn+1

= { definition of nat }
(nat + 1)n+1 − natn+1

= { s ∗ (s − 1)n = sn+1 = sn ∗ (s − n) }
(nat + 1) ∗ natn − natn ∗ (nat − pure n)

= { arithmetic }
(pure n + 1) ∗ natn

The following session shows that falling factorial powers behave as expected.

� nat3

〈0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, . .〉
� Δ (nat3)
〈0, 0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, . .〉
� 3 ∗ nat2

〈0, 0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, . .〉

Reasoning about Codata 67

Table 1. Converting between powers and falling factorial powers

x0 = x0

x1 = x1

x2 = x2 + x1

x3 = x3 + 3 ∗ x2 + x1

x4 = x4 + 6 ∗ x3 + 7 ∗ x2 + x1

x0 = x0

x1 = x1

x2 = x2 − x1

x3 = x3 − 3 ∗ x2 + 2 ∗ x1

x4 = x4 − 6 ∗ x3 + 11 ∗ x2 − 6 ∗ x1

Table 2. Laws for finite difference (c and n are constant streams)

Δ (tail s) = tail (Δ s)
Δ (a ≺ s) = head s − a ≺ Δ s
Δ (s � t) = (t − s) � (tail s − t)
Δ n = 0
Δ (n ∗ s) = n ∗ Δ s

Δ (s + t) = Δ s + Δ t
Δ (s ∗ t) = s ∗ Δ t + Δ s ∗ tail t
Δ cnat = (c − 1) ∗ cnat

Δ (natn+1) = (n + 1) ∗ natn

One can convert mechanically between powers and falling factorial powers
using Stirling numbers [14]. The details are beyond the scope of these lecture
notes. For reference, Table 1 displays the correspondence up to the fourth power.

Table 2 lists the rules for finite differences. First of all, Δ is a linear operator : it
distributes over sums. The stream 2nat is the discrete analogue of ex as Δ 2nat =
2nat . The product rule is similar to the product rule of infinite calculus except
for an occurrence of tail on the right-hand side.

Δ (s ∗ t)
= { definition of Δ and definition of ∗ }

tail s ∗ tail t − s ∗ t
= { arithmetic }

s ∗ tail t − s ∗ t + tail s ∗ tail t − s ∗ tail t
= { distributivity }

s ∗ (tail t − t) + (tail s − s) ∗ tail t
= { definition of Δ }

s ∗Δ t + Δ s ∗ tail t

Exercise 16. The product rule Δ (s ∗ t) = s ∗ Δ t + Δ s ∗ tail t is somewhat
asymmetric. Can you find a symmetric variant? Prove it correct. �	

5.2 Summation

Finite difference Δ has a right-inverse: the anti-difference or summation operator
Σ. We can easily derive its definition.

Δ (Σ s) = s

68 R. Hinze

⇐⇒ { definition of Δ }
tail (Σ s)−Σ s = s

⇐⇒ { arithmetic }
tail (Σ s) = s + Σ s

Setting head (Σ s) = 0, we obtain

Σ :: (Num α) ⇒ Stream α→ Stream α
Σ s = t where t = 0 ≺ s + t .

We have additionally applied λ-dropping [8], turning the higher-order equation
Σ s = 0 ≺ s + Σ s defining Σ into a first-order equation t = 0 ≺ s + t
defining t = Σ s with s fixed. The firstification of the definition enables sharing
of computations as illustrated below.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · · t

= = = = = = = = = = = · · · =

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · 0 ≺ s
+ + + + + + + + + + · · · +
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 · · · t

Here are some applications of summation (A004520, A000290, A011371, 0 ≺
A000330 and 0 ≺ A036799).

� Σ (0 � 1)
〈0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, . .〉
� Σ (2 ∗ nat + 1)
〈0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . .〉
� Σ carry
〈0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, . .〉
� Σ nat2

〈0, 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, . .〉
� Σ (nat ∗ 2nat)
〈0, 0, 2, 10, 34, 98, 258, 642, 1538, 3586, 8194, 18434, 40962, 90114, . .〉

The definition of Σ suggests an unusual approach for determining the sum
of a sequence: if we observe that a stream satisfies t = 0 ≺ s + t , then we may
conclude that Σ s = t . The step makes use of the fact that Σ s is the unique
solution of its defining equation. For example, Σ 1 = nat as nat = 0 ≺ nat + 1,
Σ (2 ∗ nat + 1) = nat2 as nat2 = 0 ≺ nat2 + 2 ∗ nat + 1, and Σ (1 ≺ fib) = fib
as fib = 0 ≺ (1 ≺ fib) + fib. This is summation by happenstance.

Of course, if we already know the sum, we can use the definition to verify our
conjecture. As an example, let us prove Σ fib′2 = fib ∗fib′ — the elements of this
sequence are known as the golden rectangle numbers (A001654).

fib ∗ fib′

= { definition of fib and definition of fib′ }

Reasoning about Codata 69

(0 ≺ fib′) ∗ (1 ≺ fib + fib′)
= { arithmetic }

0 ≺ fib′2 + fib ∗ fib′

The unique fixed-point proof avoids the inelegant case analysis of a traditional
inductive proof.

The Fundamental Theorem of finite calculus relates Δ and Σ.

t = Δ s ⇐⇒ Σ t = s − pure (head s)

The implication from right to left is easy to show using Δ (Σ t) = t and Δ c = 0.
For the reverse direction, we reason

Σ (Δ s)
= { definition of Σ }

0 ≺ Σ (Δ s) + Δ s
⊂ { x = 0 ≺ x + Δ s has a unique solution }

0 ≺ s − pure (head s) + Δ s
= { definition of Δ and arithmetic }

(head s ≺ tail s)− pure (head s)
= { extensionality: s = head s ≺ tail s }

s − pure (head s) .

For instance, Σ 2nat = 2nat − 1, since 2nat = Δ 2nat and head (2nat) = 1.
Using the Fundamental Theorem we can transform the rules in Table 2 into

rules for summation, see Table 3. As an example, the rule for products, summa-
tion by parts, can be derived from the product rule of Δ. Let c = pure (head (s ∗
t)), then

s ∗Δ t + Δ s ∗ tail t = Δ (s ∗ t)
⇐⇒ { Fundamental Theorem }

Σ (s ∗Δ t + Δ s ∗ tail t) = s ∗ t − c
⇐⇒ { Σ is linear }

Σ (s ∗Δ t) + Σ (Δ s ∗ tail t) = s ∗ t − c
⇐⇒ { arithmetic }

Σ (s ∗Δ t) = s ∗ t −Σ (Δ s ∗ tail t)− c .

Unlike the others, this law is not compositional: Σ (s ∗ t) is not given in terms
of Σ s and Σ t , a situation familiar from infinite calculus.

Here is an alternative proof of Σ fib = fib′ − 1 that uses some of the laws in
Table 3.

fib = 0 ≺ fib + (1 ≺ fib)
⇐⇒ { summation by happenstance }

70 R. Hinze

Table 3. Laws for summation (c and n are constant streams)

Σ (tail s) = tail (Σ s) − pure (head s)
Σ (a ≺ s) = 0 ≺ pure a + Σ s
Σ (s � t) = u � (s + u)

where u = Σ s + Σ t
Σ (s ∗ Δ t) = s ∗ t − Σ (Δ s ∗ tail t)

− pure (head (s ∗ t))

Σ n = n ∗ nat
Σ (n ∗ s) = n ∗ Σ s
Σ (s + t) = Σ s + Σ t
Σ cnat = (cnat − 1) / (c − 1)
Σ (natn) = natn+1 / (n + 1)

Σ (1 ≺ fib) = fib
⇐⇒ { summation law }

0 ≺ 1 + Σ fib = fib
=⇒ { s1 = s2 =⇒ tail s1 = tail s2 }

1 + Σ fib = fib′

⇐⇒ { arithmetic }
Σ fib = fib′ − 1

Using the rules we can mechanically calculate summations of polynomials. The
main effort goes into converting between ordinary and falling factorial powers.
Here is a formula for the sum of the first n squares, the square pyramidal numbers
(0 ≺ A000330).

Σ nat2

= { converting to falling factorial powers }
Σ (nat2 + nat1)

= { summation laws }
1
3 ∗ nat3 + 1

2 ∗ nat2

= { converting to ordinary powers }
1
3 ∗ (nat3 − 3 ∗ nat2 + 2 ∗ nat) + 1

2 ∗ (nat2 − nat)
= { arithmetic }

1
6 ∗ (nat − 1) ∗ nat ∗ (2 ∗ nat − 1)

Calculating the summation of a product, say, Σ (nat ∗ 2nat) is often more
involved. Recall that the rule for products, summation by parts, is imperfect:
to be able to apply it, we have to spot a difference among the factors. In the
expression above, there is an obvious candidate: cnat . Let us see how it goes.

Σ (nat ∗ 2nat)
= { Δ 2nat = 2nat }

Σ (nat ∗Δ 2nat)
= { summation by parts }

nat ∗ 2nat −Σ (Δ nat ∗ tail 2nat)

Reasoning about Codata 71

= { Δ nat = 1, and definition of nat }
nat ∗ 2nat − 2 ∗Σ 2nat

= { summation law }
nat ∗ 2nat − 2 ∗ (2nat − 1)

= { arithmetic }
(nat − 2) ∗ 2nat + 2

As a final example, let us tackle a sum that involves the interleaving opera-
tor: Σ carry (A011371). The sum is important, as it determines the amortised
running time of the binary increment. Let us experiment (A011371, A000120).

� Σ carry
〈0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, . .〉
� nat −Σ carry
〈0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, . .〉
� nat � Σ carry
True

We observe that the sum is always at most nat , which would imply that the
amortised running time, Σ carry / nat , is constant. This is nice, but can we
actually quantify the difference? Let us approach the problem from a different
angle. The binary increment changes the number of 1s, so we might hope to relate
carry to ones . The increment flips the leading 1s to 0s and flips the first 0 to 1.
Since carry defines the number of leading 0s, we obtain the following alternative
definition of ones .

ones = 0 ≺ ones + 1− carry

We omit the proof that both definitions are indeed equal. (If you want to try,
use a ⊂-proof.) Now, we can invoke the summation by happenstance rule.

ones = 0 ≺ ones + (1 − carry)
⇐⇒ { summation by happenstance }

Σ (1 − carry) = ones
⇐⇒ { arithmetic }

Σ carry = nat − ones

Voilà. We have found a closed form for Σ carry .

Exercise 17. Derive the sum rule Σ (s + t) = Σ s + Σ t from the sum rule
Δ (s + t) = Δ s + Δ t using the Fundamental Theorem. �	

Exercise 18. Work out Σ nat3 using the summation laws and the correspondence
between powers and falling factorial powers. �	

Exercise 19. Here is an alternative definition of Σ

Σ s = 0 ≺ pure (head s) + Σ (tail s) ,

72 R. Hinze

which uses a second-order fixed point. The code implements the naîve way of
summing: the ith element is computed using i additions not reusing any previous
results. Prove that the two definitions of Σ are equivalent. �	

Exercise 20. Generalise the derivation of Σ (nat ∗ 2nat) to Σ (nat ∗ cnat), where
c is a constant stream. �	

5.3 Summary and Related Work

Finite calculus serves as an elegant application of corecursive definitions and
the unique fixed-point principle. Index variables and subscripts are avoided by
taking a holistic view treating sequences as a single entity.

Again, most of the material has been taken from “Streams and Unique Fixed
Points” [18]. Two further corecursion schemes for stream-generating functions,
scans and convolutions, are introduced in a recent paper [20]. The paper also
presents a novel proof of Moessner’s theorem. Scans generalise summation, con-
volution generalises the product of power series. Very briefly, a sequence of num-
bers, a0, a1, a2 . . . , can be used to represent a power series, a0 + a1z + a2z

2 +
a3z

3 + · · ·, in some formal variable z. In fact, many papers on streams emphasise
the ‘power series’ view of streams, most notably, [24,28,29]. Interestingly, the
papers use lazy lists to represent streams, resulting in additional code to cover
the empty list.

6 Infinite Trees

Streams are a lovely example of a coinductive datatype, but there is, of course,
the danger of overspecialisation. To counteract this danger, we look at a second
example in this section: infinite binary trees (trees for short). Trees are in many
respects similar to streams, but, as we shall see, there are also some impor-
tant differences. In a nutshell, streams relate to trees in the same way as unary
numbers (Peano numerals) relate to binary numbers (bit strings).

Figure 2 displays the first five levels of an infinite binary tree that contains
all the naturals. It is a fractal object, in the sense that parts of it are similar
to the whole. The tree can be transformed into its left subtree by first doubling
and then incrementing the elements (which is why the subtree contains exactly
the odd numbers). To obtain the right subtree, we have to interchange the order
of the two steps: the elements are first incremented and then doubled (which
explains why the subtree contains exactly the even numbers greater than 0).
This description can be nicely captured by a corecursive definition:

nat = Node 0 ((2 ∗ nat) + 1) (2 ∗ (nat + 1)) .

(We re-use some of the identifiers introduced in the previous sections to denote
infinite trees. In case of ambiguity, we employ qualified names.) As to be ex-
pected, the operations are lifted point-wise to trees. Like streams, trees are an
idiom. But we are skipping ahead.

Reasoning about Codata 73

0

1

3

7

15 23

11

19 27

5

9

17 25

13

21 29

2

4

8

16 24

12

20 28

6

10

18 26

14

22 30

Fig. 2. The tree of natural numbers

The type Tree α is a coinductive datatype. Its definition is similar to the stan-
dard textbook definition of binary trees, except that there is no base constructor,
so we cannot build a finite tree.

data Tree α = Node {root :: α, left :: Tree α, right :: Tree α}

Trees are constructed using Node. They are destructed using root , which yields
the label of the root node, and left and right , which return the left and the right
subtree, respectively.

As mentioned above, trees are an idiom, which means that we can effortlessly
lift functions to trees:

instance Idiom Tree where
pure a = t where t = Node a t t
t � u = Node ((root t) (root u)) (left t � left u) (right t � right u) .

Recall that pure, map and zip and the arithmetic operations are overloaded to
work with an arbitrary idiom. By virtue of the above instance declaration we can
use them for infinite trees, as well. Here is variation of nat that captures a well-
known recipe for generating the positive numbers: start with 1, then repeatedly
double the number, adding 0 or 1 to the result.

pos = Node 1 (2 ∗ pos + 0) (2 ∗ pos + 1)

6.1 Definitions and Proofs

As for streams, we can restrict the syntactic form of equations so that they
possess unique solutions. As admissible equation is of the form

x x1 . . . xn = Node a l r ,

where x is an identifier of type τ1 → · · · → τn → Tree τ , a is a constant
expression of type τ , and l and r are expressions of type Tree τ possibly referring
to x or some other tree operator in the case of mutual recursion. The expressions
may use root xi, left xi or right xi provided xi is of the right type. Apart from
that, no other uses of the projection functions are permitted.

74 R. Hinze

Admissible equations have unique solutions. Hence we can adopt the unique
fixed-point principle to prove that two infinite trees are equal: if they satisfy
the same recursion equation, then they are. The proof of nat + 1 = pos below
illustrates the principle: we show that nat + 1 satisfies the recursion equation of
pos .

nat + 1
= { definition of nat }

(Node 0 ((2 ∗ nat) + 1) (2 ∗ (nat + 1))) + 1
= { arithmetic }

Node 1 (2 ∗ (nat + 1) + 0) (2 ∗ (nat + 1) + 1)

Like for streams, the familiar arithmetic laws also hold for the lifted operators.

Exercise 21. There are essentially two ways of generating an infinite tree that
contains all bit strings (lists of zeros and ones).

lbits = Node [] (map ([0]++) lbits) (map ([1]++) lbits)
rbits = Node [] (map (++[0]) rbits) (map (++[1]) rbits)

Show that map reverse lbits = rbits using the unique fixed-point principle. How
are lbits and rbits related to nat and pos? �	

6.2 Recursion and Iteration

The combinator recurse captures recursive or top-down tree constructions; the
functions f and g are repeatedly mapped over the whole tree:

recurse :: ∀α . (α → α) → (α→ α)→ (α → Tree α)
recurse f g a = t

where t = Node a (map f t) (map g t) .

Thus, an alternative definition of nat is recurse (λn → 2∗n+1) (λn → 2∗n+2) 0.
We can also construct a tree in an iterative or bottom-up fashion; the functions

f and g are repeatedly applied to the given initial seed a:

iterate :: ∀α . (α→ α) → (α → α) → (α → Tree α)
iterate f g a = loop a

where loop x = Node x (loop (f x)) (loop (g x)) .

The type α can be seen as a type of states and the infinite tree as an enumeration
of the state space.

We have overloaded the names recurse and iterate to denote operations both
on streams and on trees. The abuse of language is justified as both sets of
operations satisfy similar laws. For instance, map h · iterate f g is the unfold of
the Tree codatatype. Furthermore, both recurse and iterate satisfy a fusion law:

Reasoning about Codata 75

map h · recurse f1 g1 = recurse f2 g2 · h
⇑

h · f1 = f2 · h ∧ h · g1 = g2 · h
⇓

map h · iterate f1 g1 = iterate f2 g2 · h .

Exercise 22. Prove the fusion laws, and then use fusion to give an alternative
proof of map reverse lbits = rbits . �	

How are recurse f g a and iterate f g a related? Contrary to the situation for
streams, they are certainly not equal. Consider Figure 3, which displays the trees
recurse ([0]++) ([1]++) [] and iterate ([0]++) ([1]++) []. Since f and g are applied
in different orders — inside out and outside in — each level of recurse f g a
is the bit-reversal permutation of the corresponding level of iterate f g a. For
brevity’s sake, one tree is called the bit-reversal permutation tree of the other.
Exercises 21 and 22 explain the term bit-reversal permutation: a bit string can
be seen as a path into an infinite tree — this is the central theme of Section 6.3
— following the reversed path leads to the permuted element.

Now, can we transform an instance of recurse into an instance of iterate? Yes,
if the two functions are pre- or post-multiplications of elements of some given
monoid. Let us introduce a suitable type class:

infixr 5 ◦
class Monoid α where

ε :: α
(◦) :: α→ α → α .

The recursion-iteration lemma then states

recurse (a◦) (b◦) ε = iterate (◦a) (◦b) ε , (3)

where a and b are elements of some monoid (M , ◦, ε). To establish the lemma, we
show that iterate (◦a) (◦b) ε satisfies the defining equation of recurse (a◦) (b◦) ε,
that is t = Node ε (map (a◦) t) (map (b◦) t):

iterate (◦a) (◦b) ε

= { definition of iterate }
Node ε (iterate (◦a) (◦b) (ε ◦ a)) (iterate (◦a) (◦b) (ε ◦ b))

= { ε ◦ x = x = x ◦ ε }
Node ε (iterate (◦a) (◦b) (a ◦ ε)) (iterate (◦a) (◦b) (b ◦ ε))

= { fusion: (x◦) · (◦y) = (◦y) · (x◦) }
Node ε (map (a◦) (iterate (◦a) (◦b) ε)) (map (b◦) (iterate (◦a) (◦b) ε)) .

As an example, recurse ([0]++) ([1]++) [] = iterate (++[0]) (++[1]) []; both
expressions construct the infinite tree of all bit strings, shown in Figure 3 (a).

76 R. Hinze

[]

[0]

[0,0]

[0,0,0] [0,0,1]

[0,1]

[0,1,0] [0,1,1]

[1]

[1,0]

[1,0,0] [1,0,1]

[1,1]

[1,1,0] [1,1,1]

(a) recurse ([0]++) ([1]++) []

[]

[0]

[0,0]

[0,0,0] [1,0,0]

[1,0]

[0,1,0] [1,1,0]

[1]

[0,1]

[0,0,1] [1,0,1]

[1,1]

[0,1,1] [1,1,1]

(b) iterate ([0]++) ([1]++) []

Fig. 3. A tree that contains all bit strings and its bit-reversal permutation tree

At first sight, it seems that the applicability of the lemma is somewhat ham-
pered by the requirement on the form of the two arguments. However, since
endomorphisms, functions of type τ → τ for some τ , form a monoid, we can eas-
ily rewrite an arbitrary instance of recurse into the required form (� is function
application below, the ‘apply’ of the identity idiom):

recurse f g a
= { identity }

recurse f g ((�a) id)
= { fusion: (�x) · (f ·) = f · (�x) }

map (�a) (recurse (f ·) (g ·) id)
= { definition of map }

pure (�a) � recurse (f ·) (g ·) id
= { interchange law }

recurse (f ·) (g ·) id � pure a
= { recursion-iteration lemma }

iterate (· f) (· g) id � pure a .

(Note that we cannot ‘un-fuse’ the final expression.) This transformation turns a
recursive construction into an iterative one, where functions serve as the internal
state. One could argue the resulting construction is not really iterative (after all,

Reasoning about Codata 77

the functions involved create a chain of closures). However, often we can provide
a concrete representation of these functions, for instance, as a matrix, see the
paper “The Bird tree” [19] for an example along these lines.

6.3 Tabulation

Like streams, infinite trees are a tabulation: they are in a one-to-one correspon-
dence to functions from the binary numbers:

Tree α ∼= Bin → α ,

where the datatype Bin is given by

data Bin = Nil | One Bin | Two Bin .

(The type is isomorphic to the type of lists of bits, that we have used in the
previous section. For the purposes of this section, a tailor-made datatype is
preferable.) A tree can be seen as the tabulation of a function from the binary
numbers. Conversely, a function of type Bin → α can be implemented by looking
up a memo-table. Here are the functions that witness the isomorphism.

tabulate :: ∀α . (Bin → α) → Tree α
tabulate f = Node (f Nil) (tabulate (f · One)) (tabulate (f · Two))
lookup :: ∀α . Tree α → (Bin → α)
lookup t Nil = root t
lookup t (One b) = lookup (left t) b
lookup t (Two b) = lookup (right t) b

Again, we have overloaded the names to also denote operations on trees. (Exer-
cise 24 asks you to capture the overloading using type classes.) This is justified
as the new functions satisfy exactly the same properties as the old ones: they
are mutually inverse and they are natural in the value type α. Tabulating the
identity yields the infinite tree of binary numbers:

tabulate id
= { definition of tabulate }

Node Nil (tabulate One) (tabulate Two)
= { naturality of tabulate }

Node Nil (map One (tabulate id)) (map Two (tabulate id)) .

Consequently, tabulate id = bin where bin is given by

bin = Node Nil (map One bin) (map Two bin) .

Modulo the representation of binary numbers, bin is equivalent to nat , lbits and
rbits .

In Section 4.1 we have discussed at length how to tabulate functions. For
variety, we consider the opposite problem here, namely, how to turn an infinite

78 R. Hinze

tree into a recursive or iterative algorithm. To this end, we require the fold or
catamorphism for the inductive datatype Bin .

fold :: ∀α . (α → α) → (α → α) → α→ (Bin → α)
fold one two nil Nil = nil
fold one two nil (One b) = one (fold one two nil b)
fold one two nil (Two b) = two (fold one two nil b)

The naming of identifiers makes explicit that a fold replaces constructors by
functions. Like for streams, tabulation relates fold to recurse. Conversely, un-
tabulating a recursive construction yields a fold.

tabulate (fold one two nil) = recurse one two nil
lookup (recurse one two nil) = fold one two nil

As an example, let us derive a recursive algorithm for fast exponentiation.
Let c be a constant. We seek an efficient implementation of (pure c)nat . Let us
calculate.

(pure c)nat

= { definition of nat }
Node c0 (pure c)(2∗nat)+1 (pure c)2∗(nat+1)

= { laws of exponentials }
Node 1 (((pure c)nat)2 ∗ pure c) ((pure c)nat ∗ pure c)2

Consequently, (pure c)nat = recurse (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1 or equiva-
lently lookup (pure c)nat = fold (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1. The derivation
can be readily generalised to an arbitrary monoid. For instance, 2 × 2 matri-
ces with matrix multiplication form a monoid, so the program can be used to
calculate the Fibonacci numbers in logarithmic time:(

0 1
1 1

)n

=
(
Fn−1 Fn

Fn Fn+1

)
,

with F−1 = 1.
Can we also derive an iterative algorithm for fast exponentiation? There are,

at least, two choices: we can use the recursion-iteration lemma (see the previous
section) and go higher-order, or we can use the bit-reversal permutation lemma
(introduced below) and do some bit-fiddling.

Very briefly, the first approach yields

lookup (recurse f g a) n
= { Section 6.2 }

lookup (iterate (· f) (· g) id � pure a) n
= { lookup is an idiom homomorphism }

(lookup (iterate (· f) (· g) id) � lookup (pure a)) n
= { environment idiom }

lookup (iterate (· f) (· g) id) n a .

Reasoning about Codata 79

We build up an infinite tree of functions, look-up the function at position n and
then apply it to a.

For the second approach, recall that recurse f g a is the bit-reversal per-
mutation tree of iterate f g a. One way to formulate this relationship is via
lookup:

lookup (recurse f g a) = lookup (iterate f g a) · reverse , (4)

where reverse mirrors a binary number. The proof of Equation (4), dubbed
the bit-reversal permutation lemma, proceeds smoothly if we turn Bin into an
instance of Num, Enum and Monoid . Then tabulate can be written more per-
spicuously as

tabulate f = Node (f ε) (tabulate (f · (1◦))) (tabulate (f · (2◦))) .

Equation (4) calls for an inductive proof. We can circumvent induction by ap-
plying tabulate to both sides of the equation. Let h = lookup (iterate f g a), we
show that tabulate (h · reverse) satisfies the recursion equation of recurse f g a.

tabulate (h · reverse)
= { definition of tabulate and (h · reverse) ε = a }

Node a (tabulate (h · reverse · (1◦))) (tabulate (h · reverse · (2◦)))
= { definition of reverse }

Node a (tabulate (h · (◦1) · reverse)) (tabulate (h · (◦2) · reverse))
= { proof obligation }

Node a (tabulate (f · h · reverse)) (tabulate (g · h · reverse))
= { naturality of tabulate }

Node a (map f (tabulate (h · reverse))) (map g (tabulate (h · reverse)))

It remains to discard the proof obligations h · (◦1) = f · h and h · (◦2) = g · h,
which capture the fact that the most significant bit determines the function ap-
plied in the last iteration. Again, to avoid an inductive proof we show the equiv-
alent tabulate (h · (◦1)) = map f (iterate f g a). Let k = lookup · iterate f g,
then

tabulate (k a · (◦1))
= { definition of tabulate and (k a · (◦1)) ε = f a }

Node (f a) (tabulate (k a · (◦1) · (1◦))) (tabulate (k a · (◦1) · (2◦)))
= { monoids: (x◦) · (◦y) = (◦y) · (x◦) }

Node (f a) ε) (tabulate (k a · (1◦) · (◦1))) (tabulate (k a · (2◦) · (◦1)))
= { definition of k }

Node (f a) (tabulate (k (f a) · (◦1))) (tabulate (k (g a) · (◦1)))
⊂ { x a = Node (f a) (x (f a)) (x (g a)) has a unique solution }

Node (f a) (map f (iterate f g (f a))) (map f (iterate f g (g a)))

80 R. Hinze

= { definition of map and iterate }
map f (iterate f g a) .

The proof of h · (◦2) = g · h proceeds analogously.
It remains to deforest the intermediate data structure created by iterate. If

we ‘un-tabulate’ iterate, setting loop f g = lookup · iterate f g, we obtain an
iterative or tail-recursive function, which can be seen as the counterpart of foldl
for binary numbers.

loop :: ∀α . (α → α) → (α → α) → α→ (Bin → α)
loop f g a Nil = a
loop f g a (One b) = loop f g (f a) b
loop f g a (Two b) = loop f g (g a) b

To summarise, we have derived two iterative algorithms for fast
exponentiation:

power c n = loop (· (λx → x 2 ∗ c)) (· (λx → (x ∗ c)2)) id n 1
power c n = loop (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1 (reverse n) .

The latter function is called the square-and-multiply algorithm or binary ex-
ponentiation. In fact, it corresponds to a variant known as the Montgomery
powering ladder. (Exponentiation is used in most public-key crypto systems.
The algorithm above is less vulnerable to attacks, since in each step a squaring
and a multiplication is performed.)

Exercise 23. The datatype Bin implements the 1-2 number system, a variant of
the binary system, which uses the digits {1, 2}, rather than {0, 1}. (A distinct
advantage of this number system is that each natural number has a unique
representation.) The functions

toNat :: Bin → Nat
toNat = fold (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0
toBin :: Nat → Bin
toBin = fold succ zero

convert between unary numbers and these binary numbers. Implement zero ::Bin
and succ :: Bin → Bin . Show that toNat and toBin are inverses. �	

Exercise 24. Capture lookup and tabulate using a type class. Since two types are
involved, the type of keys and the type of tables, you need either multi-parameter
type classes or type families. �	

6.4 Infinite Trees and Sequences

The type of natural numbers is isomorphic to the type of binary numbers: Nat ∼=
Bin . This implies that the type of streams is isomorphic to the type of infinite
binary trees:

Stream α ∼= Tree α .

Reasoning about Codata 81

We obtain the canonical isomorphism for converting a stream into a tree and vice
versa by following the aforementioned chain of isomorphisms. Let toNat ::Bin →
Nat and toBin :: Nat → Bin be the isomorphisms witnessing Nat ∼= Bin , see
Exercise 23. Then stream :: Tree α → Stream α and tree :: Stream α → Tree α
are given by the following diagram.

Stream α
lookup �≺
tabulate

Nat → α

Tree α

tree

�

stream

�

lookup �≺
tabulate

Bin → α

toBin → id

�

toNat → id

�

(5)

Here, f → g is the mapping function of the function space type constructor
defined (f → g) h = g · h · f .

The interactive session below shows that stream converts the tree of natural
numbers, see Figure 2, into the stream of natural numbers.

� stream (recurse (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0)
〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . .〉
� stream (iterate (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0)
〈0, 1, 2, 3, 5, 4, 6, 7, 11, 9, 13, 8, 12, 10, 14, . .〉

It is important to note that stream does not list the elements level-wise from
left to right, rather, it involves a bit-reversal permutation. Hence, streaming the
iterative construction yields the permuted list of naturals (0 ≺ A081241).

For calculational purposes, it is useful to derive versions of stream and tree
that do not involve number systems. For streaming, the idea is to define functions
that mimic the projection functions head and tail . Clearly, root is the counterpart
of head , the counterpart of tail is chop given by

chop :: ∀α . Tree α → Tree α
chop t = Node (root (left t)) (right t) (chop (left t)) .

The name indicates that it chops off the root of a given tree, interleaving the
two subtrees. (The definition is reminiscent of �, this is not a coincidence, see
below.) The projection functions are related by

root = head · stream (6)
stream · chop = tail · stream . (7)

In other words, stream is a so-called representation changer [23]. Given these
prerequisites, it is a simple exercise to derive stream.

stream t
= { extensionality: s = head s ≺ tail s }

head (stream t) ≺ tail (stream s)
= { stream is a representation changer: (6) and (7) }

root t ≺ stream (chop s)

82 R. Hinze

We obtain
stream :: ∀α . Tree α→ Stream α
stream t = root t ≺ stream (chop t) .

Conversely, for tree we define functions that mimic the projection functions
root , left and right . The counterparts of left and right are even · tail and odd ·
tail , respectively, where even and odd are given by

even , odd :: ∀α . Stream α→ Stream α
even s = head s ≺ odd (tail s)
odd s = even (tail s) .

Exercise 25. Formulate laws that capture the fact that head is the counterpart
of root etc. Use the laws to derive an implementation of tree. (The resulting
equation is displayed below.) �	
The isomorphism tree is then given by

tree :: ∀α . Stream α → Tree α
tree s = Node (head s) (tree (even (tail s))) (tree (odd (tail s))) .

Exercise 26. Both stream and tree are given as unfolds or anamorphisms — they
construct a stream from a tree and vice versa. In Haskell, inductive datatypes
and coinductive types coincide [12]. For that reason, we can also define the
isomorphisms as folds or catamorphisms — these variants deconstruct a tree to
form a stream and vice versa.

stream ′ (∼(Node a l r)) = node a (stream ′ l) (stream ′ r)
tree ′ (∼(Cons a s)) = cons a (tree ′ s)

(The twiddles on the left-hand side delay pattern matching for increased lazi-
ness.) Define the helper functions node and cons. �	
The two functions stream and tree satisfy a variety of properties: they are mu-
tually inverse, they are natural in the element type and, most importantly, they
are idiom homomorphisms. If you have solved Exercise 26, then you know that
constructing a node corresponds roughly to interleaving two streams.

stream (Node a l r) = a ≺ stream l � stream r (8)
tree (a ≺ l � r) = Node a (tree l) (tree r) (9)

Finally, the stream of natural numbers corresponds to the tree of natural num-
bers. The proof is straightforward: we show that tree Stream.nat satisfies the
recursion equation of Tree.nat .

tree nat
= { property of nat and definition of � }

tree (0 ≺ 2 ∗ nat + 1 � 2 ∗ (nat + 1))
= { property of tree (9) }

Node 0 (tree (2 ∗ nat + 1)) (tree (2 ∗ (nat + 1)))
= { tree is an idiom homomorphism }

Node 0 (2 ∗ tree nat + 1) (2 ∗ (tree nat + 1))

Reasoning about Codata 83

We have noted in the introduction to this section that streams relate to trees
in the same way as unary numbers relate to binary numbers. A stream corre-
sponds to a function from the natural numbers. Looking up the stream has, at
best, a linear running time — if each element of the sequence is constructed
in constant time. A tree corresponds to a function from the binary numbers.
Looking up the tree has, at best, a logarithmic running time. Consequently,
transforming a stream into a tree possibly transforms a linear into a logarithmic
algorithm. In a sense, we have already seen an example along those lines: fast
exponentiation. In the previous section we have derived an efficient implemen-
tation of Tree.lookup ((pure c)Tree.nat). It remains to make the transition from
streams to trees explicit.

Stream.lookup ((pure c)Stream.nat)
= { isomorphism: stream · tree = id }

Stream.lookup (stream (tree ((pure c)Stream.nat)))
= { Stream.lookup · stream = (toBin → id) · Tree.lookup (5) }

Tree.lookup (tree ((pure c)Stream.nat)) · toBin
= { tree is an idiom homomorphism }

Tree.lookup ((pure c)tree Stream.nat) · toBin
= { tree Stream.nat = Tree.nat }

Tree.lookup ((pure c)Tree.nat) · toBin

The example nicely demonstrates separation of concerns: a program is factored
into a corecursive part that constructs codata and a recursive part that inspects
the codata, taking care of termination.

The central step in the above derivation is the use of tree, which transforms
a stream to a tree. Perhaps surprisingly, the opposite transformation is equally
useful. If we view an infinite binary tree as a state space, then stream enumerates
this space. The next section considers such an example.

Exercise 27. Is chop an idiom homomorphism? �	

6.5 Application: Enumerating the Positive Rationals

This section is organised as a set of exercises around a common theme: enu-
merating the positive rationals. The challenge is to set things up so that every
positive rational occurs exactly once. This side condition rules out the naîve ap-
proach, generating all possible combinations of numerators and denominators,
as the resulting enumeration will contain infinitely many copies of every positive
rational.

There are, in fact, several ways to enumerate the positive rationals with-
out duplicates. Probably the oldest method was discovered in the 1850s by
the German mathematician Stern and independently a few years later by the
French clockmaker Brocot. It is deceptively simple: Start with the two ‘boundary

84 R. Hinze

rationals’ 0/1 and 1/0, which are not included in the enumeration, and then re-
peatedly insert the so-called mediant a+b/c+d between two adjacent rationals a/c

and b/d.
Since the number of inserted rationals doubles with every step, the process

can be pictured by an infinite binary tree, the so-called Stern-Brocot tree, see
Figure 4. Its root is labelled with the first inserted mediant: 0+1/1+0 = 1/1.

1/1

1/2

1/3

1/4

1/5
2/7

2/5

3/8
3/7

2/3

3/5

4/7
5/8

3/4

5/7
4/5

2/1

3/2

4/3

5/4
7/5

5/3

8/5
7/4

3/1

5/2

7/3
8/3

4/1

7/2
5/1

Fig. 4. Stern-Brocot tree

Exercise 28. (Turn the informal description into a program) If we represent an
inserted rational a+b/c+d by the matrix

(
a b
c d

)
, then its left and right descendant

can be determined as follows.(
a a + b
c c + d

)
←�

(
a b
c d

)
�→

(
a + b b
c + d d

)

Phrase the transformations as matrix multiplications and then define the Stern-
Brocot tree as an unfold , a map after an iterate. �	

Exercise 29. (Turn the iterative form into a recursive form) Show that the it-
erative formulation is equivalent to the following recursive definition.

stern :: Tree Rational
stern = Node 1 (1 / (1 / stern + 1)) (stern + 1)

The definition makes explicit that the right subtree is the ‘successor’ of the entire
tree, see Figure 4. Hint: Use fusion and the recursion-iteration lemma. �	

Exercise 30. (Relate the Stern-Brocot tree to Dijkstra’s fusc sequence) In one of
his EWDs [9], Dijkstra introduced the following function, also known as Stern’s
diatomic sequence

S1 = 1
S2∗n = Sn

S2∗n+1 = Sn + Sn+1 ,

which is a strange variant of fib.
Tabulate the function: fusc = tabulate S. Hint: You may find it helpful to use

the function chop that serves as the counterpart of tail .

Reasoning about Codata 85

Show that stern = fusc÷fusc′, where÷ constructs a rational from two integers
and fusc′ = chop fusc. �	

Exercise 31. (Turn the recursive form of fusc into an iterative one) Turn the
trees

num = Node 1 num (num + den)
den = Node 1 (num + den) den

into an iterative form (num and den are more telling names for fusc and fusc′).
There are, at least, two approaches:

– Pair num and den

num � den ,

where (�) = zip (,) turns a pair of trees into a tree of pairs.
– Use the fact that the subtrees of num are linear combinations of num and

den .

i ∗ num + j ∗ den

(Dijkstra [10] uses a similar approach to show that fusc+ fusc′ = brp (fusc+
fusc′), where brp transforms a tree to its bit-reversal permutation.)

Try to relate the two approaches, see also Exercise 11. �	

Exercise 32. (Show that the rationals are in their lowest common form) In Ex-
ercise 30 we have shown that stern = num ÷ den. This fact does not, however,
imply that map numerator stern = num and map denominator stern = den .
(Why?) In order to prove the latter two equations, we have to show that the ra-
tionals num÷den are in their lowest common form, that is, the greatest common
divisor of num and den is 1:

num � den = 1 ,

where � denotes the greatest common divisor lifted to trees. �	

Exercise 33. (Show that the Stern-Brocot tree contains every rational at most
once) Again, there are, at least, two approaches. One can show that stern is a
search-tree using the following fact about mediants: if a/c � b/d, then

a/c � a+b/c+d � b/d .

Alternatively, one can show that lookup stern is injective by demonstrating that
it has a left-inverse (g is the left-inverse of f iff g · f = id). Rational numbers
are in a one-to-one correspondence to bit strings. The following instrumented
version of the greatest common divisor

a � b = case compare a b of
LT → 0 : (a � (b − a))
EQ → []
GT → 1 : ((a − b) � b) ,

86 R. Hinze

maps two positive numbers to a bit string. We claim that this defines the required
left-inverse. Establish the result by showing

num � den = tabulate id .

Why is this sufficient? �	

Exercise 34. (Show that the Stern-Brocot tree contains every rational at least
once) Show that lookup stern is surjective by demonstrating that it has a right-
inverse (g is the right-inverse of f iff f · g = id). �	

Exercise 35. (Linearise the Stern-Brocot tree) Turn stream stern into an itera-
tive form. In other words, enumerate the rationals!

1. As a first step, linearise den. You have to express chop den in terms of den
and possibly num. To this end show that chop den = num + den − 2 ∗ x
where x is the unique solution of x = Node 0 num x .

2. Show that the unique solution of x = Node 0 num x equals num mod den.
3. Using the results of the two previous items, linearise num and den , defining

snum = stream num and sden = stream den .
4. Turn snum � sden into an iterative form.
5. Polishing up: Use the formula

1 / (�n ÷ d�+ 1− {n ÷ d}) = d ÷ (n + d − 2 ∗ (n mod d))

to turn the result of the previous item into the following amazingly short
program for enumerating the rationals.

rationals = iterate next 1
where next r = 1 / (�r�+ 1− {r})

Here, �r� denotes the integral part of r and {r} its fractional part, such that
r = �r�+ {r}. �	

6.6 Summary and Related Work

The type of infinite binary trees is another example of a coinductive datatype.
Like streams, infinite trees form an idiom. Trees can be defined using recursion
equations; admissible equations have unique solutions. Unlike streams, recursive
and iterative constructions do not coincide: one tree is the bit-reversal permu-
tation tree of the other. A tree tabulates a function from the binary numbers.
Tabulation and look-up are idiom isomorphisms between the environment idiom
Bin → and Tree.

The section is loosely based on the paper “The Bird tree” [19], which introduces
an alternative scheme for enumerating the positive rationals. It also develops
an almost loopless algorithm for enumerating the elements of the infinite tree
recurse (a◦) (b◦) ε, where a and b are elements of some given group.

Reasoning about Codata 87

7 Tabulation

We have repeatedly stressed the fact that a stream can be seen as a tabulation
of a function from the unary numbers and that a tree tabulates a function from
the binary numbers.

Nat → γ ∼= Stream γ

Bin → γ ∼= Tree γ

In this section we look at this relationship from a more principled perspective
and show, among other things, that the two isomorphisms are based on the laws
of exponentials.

As a warm-up exercise, consider tabulating a function from a non-recursive
datatype. Probably every textbook on computer architecture includes truth ta-
bles for the logical connectives.

(∧) :: (Bool ,Bool) → Bool
False False
False True

A function from a pair of Booleans can be represented by a two-by-two table.
Expressed in terms of type constructors we have

(Bool ,Bool) → Bool ∼= ((Bool ,Bool), (Bool ,Bool)) .

The relationship becomes more perspicuous, if we use mathematical notation for
the types: (Bool ,Bool) corresponds to (1 + 1)× (1+ 1) where 1 is a one-element
type, + is disjoint union and × denotes the cartesian product — called (), Either
and (,) in Haskell. Rephrasing the above isomorphism in terms of the ‘arithmetic
types’ we obtain

(1 + 1)× (1 + 1)→ Bool ∼= (Bool × Bool)× (Bool × Bool) . (10)

If we furthermore write the function space K → V as an exponential V K —
the type K is mnemonic for key type and V for value type — we realise that
tabulation rests on the well-known laws of exponentials.

X 0 ∼= 1 X 1 ∼= X XA+B ∼= XA ×XB XA×B ∼= (XB)A

A straightforward application of these laws proves the correspondence above,
namely that we can tabulate a function from a pair of Booleans using a two-by-
two table.

Bool (1+1)×(1+1)

= { XA×B ∼= (XB)A }
(Bool1+1)1+1

= { XA+B ∼= XA ×XB }
(Bool1 × Bool1)1 × (Bool1 × Bool1)1

= { X 1 ∼= X }
(Bool × Bool)× (Bool × Bool)

88 R. Hinze

The derivation holds for every return type, so Equation (10) can, in fact, be
generalised to an isomorphism between two type constructors

Λ V . (1 + 1)× (1 + 1)→ V ∼= Λ V . (V ×V)× (V ×V) ,

or equivalently, in a ‘point-free style’,

(1 + 1)× (1 + 1)→ ∼= (Id ×̇ Id) ×̇ (Id ×̇ Id) .

This is an isomorphism between two type constructors of kind � → �. On the
left-hand side, the two-argument type constructor ‘→’ is written without its
second argument, so Bool ×Bool → has kind � → �. On the right-hand side, we
use the identity type constructor of kind � → � and the lifted product, which
sends two type constructors of kind � → � to another type constructor of this
kind. Using the types introduced in Section 2, the laws of exponentials can be
rephrased as follows:

0 → γ ∼= 1
1 → γ ∼= γ

(α + β)→ γ ∼= (α → γ)× (β → γ)
(α × β)→ γ ∼= α → (β → γ)

0 → ∼= Const 1
1 → ∼= Id
(α + β) → ∼= (α →) ×̇ (β →)
(α× β) → ∼= (α →) · (β →) .

The constructors on the right-hand side are container types. To represent a
function from the empty type, we use an empty container; to represent a func-
tion from the one-element type, we use a one-element container; to represent a
function from a disjoint union, we use a pair of containers; and finally, to rep-
resent a function from a pair, we use nested containers. The last law captures
currying: a function of two arguments can be treated as a function of the first
argument whose values are functions of the second argument. The law underlies,
for instance, representations of two-dimensional arrays as arrays of arrays in the
programming languages C or Java.

As an intermediate summary, tabulation is defined by induction on the struc-
ture of the key type; the construction is, however, parametric in the return type.
Looking back at Section 2, we notice that all the container types involved have
the structure of an idiom. Moreover, tabulation preserves the idiomatic struc-
ture of the environment idiom: one can show that datatype-generic versions of
tabulate and lookup are idiom isomorphisms between the environment idiom and
memo-tables. The proof is beyond the scope of these lecture notes.

Turning to recursive datatypes, we note that a function from a recursive type
is tabulated by a recursive container type. Actually, we can be more precise than
that: a function from an inductive type is tabulated by a coinductive container
type. And indeed, both Nat and Bin are inductive types and both Stream and
Tree are coinductive types. (In Haskell, inductive and coinductive types coincide,
but it is useful to maintain the distinction.) Writing μ α . τ for an inductive type
and ν α . τ for a coinductive type, the isomorphisms for streams and infinite
trees can be written

(μ α . 1 + α) → ∼= ν β . Id ×̇ β

(μ α . 1 + α + α) → ∼= ν β . Id ×̇ β ×̇ β .

Reasoning about Codata 89

The notation nicely makes the structure of the key and the corresponding con-
tainer type explicit. In terms of constructors and destructors: 0 and +1 corre-
spond to head and tail ; Nil , One and Two correspond to root , left and right .

Table 4 extends the correspondence between key and container types to para-
metric types and types with embedded recursive types. To reduce clutter, we
abbreviate (α1, . . . , αn) by α. It is understood that for each definition of K in
the left column, T is defined by the corresponding entry in the right column.

Table 4. Tabulation: types of keys K (α) and tables T (β)

K (α) = αi T (β) = βi

K (α) = 0 T (β) = Const 1
K (α) = 1 T (β) = Id
K (α) = K1(α) + K2(α) T (β) = T1(β) ×̇ T2(β)
K (α) = K1(α) × K2(α) T (β) = T1(β) · T2(β)
K (α) = μ α . K1(α, α) T (β) = ν β . T1(β, β)

Without proof we state the following

Theorem 1 (Tabulation). Let K (α) and T (β) be defined as in Table 4. Then

K (τ1, . . . , τn)→ ∼= T (τ1 →, . . . , τn →) .

for all types τ1, . . . , τn. �	

Note that the type T (β) of memo-tables contains only products, no sums, hence
the terms table and tabulation. All the examples of tabulation we have seen be-
fore are instances of this scheme. For variety, let us discuss two further examples.

We have primarily considered functions from the natural numbers, what about
the integers? Well, if integers are represented by

data Int = Neg Nat | Zero | Pos Nat ,

then

data Tape α = Window {neg :: Stream α, zero :: α, pos :: Stream α} .

is a suitable container type. A container of type Tape α can be seen as a tape
that extends infinitely to the left and infinitely to the right, with the zero com-
ponent marking the current position. Phrased in terms of the arithmetic type
constructors, the two types are related by

Nat + 1 + Nat → ∼= Stream ×̇ Id ×̇ Stream .

If the key type involves products, then the container type is nested accordingly.
For instance to represent a function from a pair of natural numbers, we use a
stream of streams.

Nat ×Nat → ∼= Stream · Stream

90 R. Hinze

As we have noted before, the isomorphism above also underlies the usual encod-
ing of two-dimensional arrays in C or Java — an array is a finite map of type
{0, . . . ,n − 1} → where n is the size.

Let us conclude the section with a brief discussion of proof techniques. If
we want to establish a property of a function from the naturals, we have, at
least, two choices. The standard approach is to use induction and case analysis,
see Figure 1. A less conventional approach, favoured in these lecture notes, is to
rephrase the function and the property in terms of streams and to use coinduction
or, preferably, the unique fixed-point principle. Theorem 1 explains why the
eschewed case-analysis disappears, it is replaced by a proof about pairs.

case analysis K1(α) + K2(α) T1(β) ×̇ T2(β) pairs
pairs K1(α)×K2(α) T1(β) · T2(β) nested proofs
induction μ α . K1(α, α) ν β . T1(β, β) coinduction

The laws of exponentials eliminate sums and consequently proofs by case anal-
ysis. This is why the unique fixed-point proof in Section 1 is so much more
attractive than the inductive proof. To establish the equality of two pairs, we
simply have to show that the corresponding elements are equal.

However, all that glitters is not gold. If the key type involves products, then
we have to deal with a nested container type, which is often less manageable. Of
course, tabulation establishes an isomorphism, which also allows us to transfer
proofs from one setting to the other. So in principle, we can port an inductive
proof to the coinductive setting. Conversely, even if we do not use streams or
other coinductive types directly, we may profit from the widened perspective.

Overall, tabulation is a very valuable tool in the arsenal of techniques for
program derivation and verification and it certainly deserves to be better known.

7.1 Summary and Related Work

Tabulation is based on the laws of exponentials. A function from an inductive
type is tabulated by a coinductive type. Memo-tables are basically products,
hence the name. In particular, they do not contain sums, which explains why
the proofs in these lecture notes do without case analysis.

Finite versions of memo-tables are known as tries or digital search trees. Knuth
[25] attributes the idea of a trie to Thue [36]. Connelly and Morris [5] formalised
the concept of a trie in a categorical setting: they showed that a trie is a functor
and that the corresponding look-up function is a natural transformation. The
author gave a datatype-generic or polytypic definition of tries and memo-tables
using type-indexed datatypes [16,17]. The insight that a function from an induc-
tive type is tabulated by a coinductive type is due to Altenkirch [2]. If the trie
structures are deforested, we obtain linear algorithms for sorting and grouping
[15]. Like tries, these algorithms do not depend on an ordering relation, but use
the structure of the elements to organise the working.

Reasoning about Codata 91

8 Conclusion

I hope you have enjoyed the journey. By and large, coinductive datatypes and
corecursive programs are under-appreciated. We have demonstrated that they
nicely support a holistic or wholemeal approach to programming and proving.
A stream enables us to treat an infinite sequence of elements as a single entity.
Likewise, a tree captures an infinite binary process.

Streams and trees can be conveniently defined using recursion equations. Ad-
missible equations have unique solutions, which is the basis of the unique fixed-
point principle. Both coinductive types have additional structure that can be
put to good use. The idiomatic structure allows us to lift operations, which is
a notational convenience not to be underestimated. Definitions and calculations
benefit from the fact that streams and trees are memo-tables and that look-up
and tabulation are idiom homomorphisms.

References

1. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt,
D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science.
LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Altenkirch, T.: Representations of first order function types as terminal coalge-
bras. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 62–78. Springer,
Heidelberg (2001)

3. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall Europe, London
(1997)

4. Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Proceedings
of the NATO Advanced Study Institute on Logic of programming and calculi of
discrete design, Marktoberdorf, Germany, pp. 5–42. Springer, Heidelberg (1987)

5. Connelly, R.H., Morris, F.L.: A generalization of the trie data structure. Mathe-
matical Structures in Computer Science 5(3), 381–418 (1995)

6. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

7. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)
8. Danvy, O.: An extensional characterization of lambda-lifting and lambda-dropping.

In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 241–250. Springer,
Heidelberg (1999)

9. Dijkstra, E.W.: EWD570: An exercise for Dr.R.M.Burstall (May 1976), the
manuscript was published as Dijkstra, E.W.: Selected Writings on Computing: A
Personal Perspective, pp. 215–216. Springer, Heidelberg (1982) ISBN 0-387-90652-5

10. Dijkstra, E.W.: EWD578: More about the function “fusc” (a sequel to EWD570)
(May 1976), the manuscript was published as Dijkstra, E.W.: Selected Writings on
Computing: A Personal Perspective, pp. 230–232. Springer, Heidelberg (1982)

11. Fokkinga, M.M.: Law and Order in Algorithmics. Ph.D. thesis, University of Twente
(February 1992)

12. Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous alge-
bras. Tech. Rep. CS-R9104, Centre of Mathematics and Computer Science, CWI,
Amsterdam (January 1991)

92 R. Hinze

13. Gibbons, J., Hutton, G.: Proof methods for corecursive programs. Fundamenta
Informaticae (XX), 1–14 (2005)

14. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics, 2nd edn.
Addison-Wesley Publishing Company, Reading (1994)

15. Henglein, F.: Generic discrimination: Sorting and partitioning unshared data in
linear time. In: Thiemann, P. (ed.) Proceedings of the 13th ACM Sigplan Interna-
tional Conference on Functional Programming (ICFP 2008), Victoria, BC, Canada,
September 22–24, pp. 91–102. ACM, New York (2008)

16. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming 10(4),
327–351 (2000)

17. Hinze, R.: Memo functions, polytypically! In: Jeuring, J. (ed.) Proceedings of the
2nd Workshop on Generic Programming, Ponte de Lima, Portugal, pp. 17–32 (July
2000), The proceedings appeared as a technical report of Universiteit Utrecht,
UU-CS-2000-19

18. Hinze, R.: Functional Pearl: Streams and unique fixed points. In: Thiemann, P.
(ed.) Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2008), pp. 189–200. ACM Press, New York (2008)

19. Hinze, R.: Functional Pearl: The Bird tree. J. Functional Programming 19(5), 491–
508 (2009)

20. Hinze, R.: Scans and convolutions—a calculational proof of Moessners theorem.
In: Scholz, S.B. (ed.) Post-proceedings of the 20th International Symposium on the
Implementation and Application of Functional Languages (IFL 2008), University of
Hertfordshire, UK,September 10–12. LNCS, vol. 5836, Springer, Heidelberg (2009)

21. Hinze, R.: Lifting operators and laws (2010),
http://www.comlab.ox.ac.uk/ralf.hinze/Lifting.pdf

22. Hinze, R., Löh, A.: Guide2lhs2tex (for version 1.13) (February 2008),
http://people.cs.uu.nl/andres/lhs2tex/

23. Hutton, G., Meijer, E.: Functional Pearl:Back to basics: Deriving representation
changers functionally. J. Functional Programming 6(1), 181–188 (1996)

24. Karczmarczuk, J.: Generating power of lazy semantics. Theoretical Computer Sci-
ence 187, 203–219 (1997)

25. Knuth, D.E.: The Art of Computer Programming, Sorting and Searching, 2nd edn.,
vol. 3. Addison-Wesley Publishing Company, Reading (1998)

26. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, 2nd edn. Springer, Heidelberg (1998)

27. McBride, C., Paterson, R.: Functional Pearl: Applicative programming with effects.
Journal of Functional Programming 18(1), 1–13 (2008)

28. McIlroy, M.D.: Power series, power serious. J. Functional Programming 3(9), 325–
337 (1999)

29. McIlroy, M.D.: The music of streams. Information Processing Letters 77, 189–195
(2001)

30. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall International, Englewood Cliffs (1989)

31. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press,
Cambridge (2003)

32. Rutten, J.: Fundamental study: Behavioural differential equations: A coinductive
calculus of streams, automata, and power series. Theoretical Computer Science 308,
1–53 (2003)

33. Rutten, J.: A coinductive calculus of streams. Math. Struct. in Comp. Science 15,
93–147 (2005)

http://www.comlab.ox.ac.uk/ralf.hinze/Lifting.pdf
http://people.cs.uu.nl/andres/lhs2tex/

Reasoning about Codata 93

34. Röjemo, N.: Garbage collection, and memory efficiency, in lazy functional lan-
guages. Ph.D. thesis, Chalmers University of Technology (1995)

35. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2009),
http://www.research.att.com/~njas/sequences/

36. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter
udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-Naturvidenskabelig
Klasse 1, 1–67 (1912), reprinted in Thue’s Selected Mathematical Papers (Oslo:
Universitetsforlaget), 413–477 (1977)

37. Turner, D.: A new implementation technique for applicative languages. Software -
Practice and Experience 9, 31–49 (1979)

http://www.research.att.com/~njas/sequences/

Programming in Manticore,
a Heterogenous Parallel Functional Language

Matthew Fluet1, Lars Bergstrom2, Nic Ford2, Mike Rainey2, John Reppy2,
Adam Shaw2, and Yingqi Xiao2

1 Rochester Institute of Technology, Rochester NY 14623, USA
mtf@cs.rit.edu

2 University of Chicago, Chicago IL 60637, USA
{larsberg,nford,mrainey,jhr,adamshaw,xiaoyq}@cs.uchicago.edu

Abstract. The Manticore project is an effort to design and implement
a new functional language for parallel programming. Unlike many ear-
lier parallel languages, Manticore is a heterogeneous language that sup-
ports parallelism at multiple levels. Specifically, the Manticore language
combines Concurrent ML-style explicit concurrency with fine-grain, im-
plicitly threaded, parallel constructs. These lectures will introduce the
Manticore language and explore a variety of programs written to take
advantage of heterogeneous parallelism.

At the explicit-concurrency level, Manticore supports the creation
of distinct threads of control and the coordination of threads through
first-class synchronous-message passing. Message-passing synchroniza-
tion, in contrast to shared-memory synchronization, fits naturally with
the functional-programming paradigm.

At the implicit-parallelism level, Manticore supports a diverse col-
lection of parallel constructs for different granularities of work. Many
of these constructs are inspired by common functional-programming
idioms.

In addition to describing the basic mechanisms, we will present a
number of useful programming techniques that are enabled by these
mechanisms.

1 Introduction

Future improvements in microprocessor performance will largely come from
increasing the computational width of processors, rather than increasing the
clock frequency [33]. This trend is exhibited by multiple levels of hardware
parallelism: single-instruction, multiple-data (SIMD) instructions; simultaneous-
multithreading executions; multicore processors; multiprocessor systems. As a
result, parallel computing is becoming widely available on commodity hard-
ware. While these new designs solve the computer architect’s problem of how to
use an increasing number of transistors in a given power envelope, they create
a problem for programmers and language implementors. Ideal applications for

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 94–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Programming in Manticore 95

this hardware, such as multimedia processing, computer games, and small-scale
simulations, can themselves exhibit parallelism at multiple levels with different
granularities, which means that a homogeneous language design will not take
full advantage of the available hardware resources. For example, a language that
provides data parallelism but not explicit concurrency will be inconvenient for
the development of the networking and GUI components of a program. Similarly,
a language that provides concurrency but not data parallelism will be ill-suited
for the components of a program that demand fine-grain SIMD parallelism, such
as image processing and particle systems.

Our thesis is that parallel programming languages must provide mechanisms
for multiple levels of parallelism, both because applications exhibit parallelism
at multiple levels and because hardware requires parallelism at multiple levels
to maximize performance. For example, consider a networked flight simulator
(Figure 1). This application might use SIMD instructions for physics simulation;
data-parallel computations for particle systems [35] to model natural phenom-
ena (e.g., rain, fog, and clouds); light-weight parallel executions for preloading
terrain and computing level-of-detail refinements; speculative search for artifi-
cial intelligence; concurrent threads for user interface and network components.
Programming such an application will be challenging without language support
for parallelism at multiple levels.

User Interface

sound

keyboard

mouse

Network

server

player 2

player 3

Physics Simulation

Particle Systems
(rain, fog, clouds)

Artificial Intelligence

Flight Simulator

Graphics

Fig. 1. An application with multiple levels of parallelism

96 M. Fluet et al.

Traditional imperative and object-oriented languages are poor choices for par-
allel applications. While they may support, or be extended with, concurrency
constructs, their reliance on mutation of state as their core mechanism makes
both writing correct programs and compiling efficient executables difficult. Ex-
isting parallel languages are also not a solution, since they have mostly been
targeted at the narrow domain of high-performance scientific computing and
large-scale parallelism. We need languages that can be used to write traditional
commodity applications while exploiting the performance of tomorrow’s multi-
core hardware.

The Manticore project at the University of Chicago and the Rochester Insti-
tute of Technology1 is an ambitious effort to lay the foundation for programming
the commodity processors of the future, addressing the issues of language design
and implementation for multicore processors [17,16]. As described above, our
emphasis is on applications that might run on commodity multicore processors
— applications that can exhibit parallelism at multiple levels with different gran-
ularities. To meet the demands of such applications, we propose a heterogeneous
parallel language: a language that combines support for parallel computation at
different levels into a common linguistic and execution framework.

We envision a high-level parallel programming language targeted at what we
expect to be a typical commodity microprocessor in 2012. While predicting the
future is always fraught with danger, we expect that these processors will have 8
or more general-purpose cores (e.g., x86-64 processors) with SIMD instructions
and 2–4 hardware thread contexts [33]. It is quite likely that these processors
will also have special-purpose vector units, similar to those of the IBM Cell pro-
cessor [23]. Furthermore, since it is unlikely that shared caches will scale to large
numbers of cores, we expect a non-uniform or distributed-memory architecture
inside the processor.

The problem posed by such processors is how to effectively exploit the different
forms of parallelism provided by the hardware. We believe that mechanisms that
are well integrated into a programming language are the best hope for achieving
parallelism across a wide range of applications, which is why we are focusing on
language design and implementation.

In the Manticore project, we are designing and implementing a parallel pro-
gramming language that supports a range of parallel programming mechanisms.
These include explicit threading with message passing to support both concur-
rent systems programming and coarse-grain parallelism, and nested-data paral-
lelism mechanisms to support fine-grain computations.

The Manticore language is rooted in the family of statically-typed strict
functional languages such as OCaml and SML. We make this choice because
functional languages emphasize a value-oriented and mutation-free program-
ming model, which avoids entanglements between separate concurrent compu-
tations [21,38,24,32]. We choose a strict language, rather than a lazy or lenient
one, because we believe that strict languages are easier to implement efficiently

1 Fluet was affiliated with the Toyota Technological Institute at Chicago for the first
three years of this project.

Programming in Manticore 97

and accessible to a larger community of potential users. On top of the sequen-
tial base language, Manticore provides the programmer with mechanisms for
explicit concurrency and coarse-grain parallelism and mechanisms for fine-grain
parallelism.

Manticore’s concurrency mechanisms are based on Concurrent ML
(CML) [39], which provides support for threads and synchronous message pass-
ing. Manticore’s support for fine-grain parallelism is influenced by previous work
on nested data-parallel languages, such as NESL [4,3,5] and Nepal [8,9,27].

In addition to language design, we are exploring a unified runtime frame-
work, capable of handling the disparate demands of the various heterogeneous
parallelism mechanisms exposed by a high-level language design and capable of
supporting a diverse mix of scheduling policies. It is our belief that this runtime
framework will provide a foundation for rapidly experimenting with both ex-
isting parallelism mechanisms and additional mechanisms not yet incorporated
into high-level language designs for heterogeneous parallelism.

These lecture notes will introduce the Manticore language and selected pro-
gramming techniques. Section 2 gives a brief overview of the Manticore lan-
guage, setting the stage for more detailed treatment of specific language features.
Section 3 describes the explicit-concurrency level of the Manticore language.
Section 4 describes the implicit-parallelism level of the Manticore language.

2 Overview of the Manticore Language

Parallelism mechanisms can be roughly grouped into three categories:

– implicit parallelism, where the compiler and runtime system are exclusively
responsible for partitioning the computation into parallel threads. Examples
of this approach include Id [31], pH [32], and Sisal [20].

– implicit threading, where the programmer provides annotations (or hints)
to the compiler as to which parts of the program are profitable for parallel
evaluation, but mapping onto parallel threads is left to the compiler and
runtime system. Examples of this approach include Nesl [3] and Nepal [9].

– explicit threading, where the programmer explicitly creates parallel threads.
Examples of this approach include CML [39] and Erlang [1].

These different design points represent different trade-offs between programmer
effort and programmer control. Automatic techniques for parallelization have
proven effective for dense regular parallel computations (e.g., dense matrix algo-
rithms), but have been less successful for irregular problems. Manticore provides
both implicit threading and explicit threading mechanisms. The former supports
fine-grained parallel computation, while the latter supports coarse-grained par-
allel tasks and explicit concurrent programming. These parallelism mechanisms
are built on top of a sequential functional language. In the sequel, we briefly
discuss each of these in turn, starting with the sequential base language.

98 M. Fluet et al.

2.1 Sequential Programming

Manticore’s sequential core language is based on the Standard ML (SML) lan-
guage. The main differences are that Manticore does not have mutable data
(i.e., reference cells and arrays) and, in the present language implementation,
Manticore has a simplified module system (omitting functors and sophisticated
type sharing). Manticore does, however, have the functional elements of SML
(datatypes, polymorphism, type inference, and higher-order functions) as well
as exceptions. The inclusion of exceptions has interesting implications for the
implicitly threaded mechanisms, but we believe that some form of exception
mechanism is necessary for systems programming. As many researchers have ob-
served, using a mutation-free computation language greatly simplifies the imple-
mentation and use of parallel features [21,38,24,32,13]. In essence, mutation-free
functional programming reduces interference and data dependencies.

As the syntax and semantics of the sequential core language are largely or-
thogonal to (but potentially synergistic with) the parallel language mechanisms,
we have resisted tinkering with the sequential SML core. The Manticore Basis,
however, differs significantly from the SML Basis Library [19]. For example, we
have a fixed set of numeric types — int, long, integer, float, and double
— instead of SML’s families of numeric modules.

2.2 Explicitly-Threaded Parallelism

The explicit concurrent programming mechanisms presented in Manticore serve
two purposes: they support concurrent programming, which is an important fea-
ture for systems programming [22], and they support explicit parallel program-
ming. Like CML, Manticore supports threads that are explicitly created using
the spawn primitive. Threads do not share mutable state (as there is no muta-
ble state in the sequential core language); rather they use synchronous message
passing over typed channels to communicate and synchronize. Additionally, we
use CML communication mechanisms to represent the interface to imperative
features such as input/output. Section 3 explores this programming paradigm
in more detail.

The main intellectual contribution of CML’s design is an abstraction mech-
anism, called first-class synchronous operations, for building synchronization
and communication abstractions. This mechanism allows programmers to encap-
sulate complicated communication and synchronization protocols as first-class
abstractions, called event values, which encourages a modular style of program-
ming where the actual underlying channels used to communicate with a given
thread are hidden behind data and type abstraction. Events can range from
simple message-passing operations to client-server protocols to protocols in a
distributed system.

CML has been used successfully in a number of systems, including a mul-
tithreaded GUI toolkit [18], a distributed tuple-space implementation [39], a
system for implementing partitioned applications in a distributed setting [44],
and a higher-level library for software checkpointing [45]. The design of CML

Programming in Manticore 99

has inspired many implementations of CML-style concurrency primitives in other
languages. These include other implementations of SML [29], other dialects of
ML [25], other functional languages, such as Haskell [40], Scheme [15], and
other high-level languages, such as Java [14]. We believe that this history demon-
strates the effectiveness of CML’s approach to concurrency.

2.3 Implicitly-Threaded Parallelism

Manticore provides implicitly-threaded parallel versions of a number of sequen-
tial forms. These constructs can be viewed as hints to the compiler about which
computations are good candidates for parallel execution; the semantics of (most
of) these constructs is sequential and the compiler and/or runtime system may
choose to execute them in a single thread.2

Having a sequential semantics is useful in two ways: it provides the program-
mer with a deterministic programming model and it formalizes the expected
behavior of the compiler. Specifically, the compiler must verify that the individ-
ual sub-computations in a parallel computation do not send or receive messages
before executing the computation in parallel. Furthermore, if a sub-computation
raises an exception, the runtime code must delay delivery of that exception until
it has verified that all sequentially prior computations have terminated. Both
of these restrictions require program analysis to implement efficiently. In some
instances, a dynamic runtime check is used to guarantee the sequential semantics
in a parallel execution.

Section 4 explores this programming paradigm in more detail. Here, we
briefly introduce the implicitly parallel mechanisms:

Parallel arrays. Support for parallel computations over arrays and matrices is
common in parallel languages. In Manticore, we support such computations
using the nested parallel array mechanism inspired by NESL [4,3,5] and
developed further by Nepal [8,9,27].

The key operations involving parallel arrays are parallel comprehensions,
which allow the concise expressions of parallel loops that consume arrays
and return a new array, and parallel reductions, which allow the concise
expression of parallel loops that consume arrays and return scalars.

Parallel tuples. The parallel tuple expression form provides a hint to the com-
piler that the elements of the tuple may be evaluated in parallel. The basic
form is

(| e1, ..., en |)

which describes a fork-join evaluation of the expressions ei in parallel. The
result is a normal tuple value.

Parallel bindings. Parallel arrays and tuples provide a fork-join pattern
of computation, but in some cases more flexible scheduling is desirable.

2 Shaw’s Master’s paper [42] provides a rigorous account of the semantics of a subset
of these mechanisms.

100 M. Fluet et al.

In particular, we may wish to execute some computations speculatively. Man-
ticore provides a parallel binding form

pval pat = exp

that launches the evaluation of the expression exp as a parallel thread. The
sequential semantics of a parallel binding are similar to lazy evaluation: the
binding is only evaluated (and only evaluated once) when one of its bound
variables is demanded. In the parallel implementation, we use eager eval-
uation for parallel bindings, but such computations are canceled when the
main thread of control reaches a point where their result is guaranteed never
to be demanded.

Parallel cases. The parallel case expression form is a nondeterministic coun-
terpart to SML’s sequential case form. In a parallel case expression, the
discriminants are evaluated in parallel and the match rules may include
wildcard patterns that match even if their corresponding discriminants have
not yet been fully evaluated. Thus, a parallel case expression nondeterminis-
tically takes any match rule that matches after sufficient discriminants have
been evaluated.

Unlike the other implicitly-threaded mechanisms, parallel case is nonde-
terministic. We can still give a sequential semantics, but it requires including
a source of non-determinism, such as McCarthy’s amb [28], in the sequential
language.

2.4 Future Directions

This section describes a first-cut design meant to give us a base for exploring
multi-level parallel programming. Based on experience with this design, we plan
to explore a number of different evolutionary paths for the language. First, we
plan to explore other parallelism mechanisms, such as the use of futures with
work stealing [30,7,6]. Such medium-grain parallelism would nicely complement
the fine-grain parallelism (via parallel arrays) and the coarse-grain parallelism
(via concurrent threads) present in Manticore. Second, there has been significant
research on advanced type systems for tracking effects, which we may use to
introduce imperative features into Manticore. As an alternative to traditional
imperative variables, we will also examine synchronous memory (i.e., I-variables
and M-variables à la Id [31]) and software transactional memory (STM) [41].

3 Explicit Concurrency in Manticore

3.1 Introduction

The explicit-concurrency mechanisms of Manticore are based on Concurrent ML
(CML) [39]. CML extends SML with synchronous message passing over typed
channels and a powerful abstraction mechanism, called first-class synchronous
operations, for building synchronization and communication abstractions. This

Programming in Manticore 101

mechanism allows programmers to encapsulate complicated communication and
synchronization protocols as first-class abstractions, which encourages a modular
style of programming where the actual underlying channels used to communicate
with a given thread are hidden behind data and type abstraction.

Concurrent ML, as its name implies, emphasizes concurrent programming —
programs consisting of multiple independent flows of sequential control, called
processes. The execution of a concurrent program can be viewed as an interleav-
ing of the sequential executions of its constituent processes. Although concurrent
programming can be motivated by a desire to improve performance by exploit-
ing multiprocessors, concurrency is a useful programming paradigm for certain
application domains. For example, interactive systems (e.g., graphical-user in-
terfaces) have a naturally concurrent structure; similarly, distributed systems
can often be viewed as concurrent programs.

As noted above, Manticore adopts Standard ML as its sequential core
language, providing first-class functions, datatypes and pattern matching, excep-
tion handling, strong static typing, parametric polymorphism, etc. The explicit-
concurrency mechanisms add the following features:

– dynamic creation of threads and typed channels.
– rendezvous communication via synchronous message passing.
– first-class synchronous operations, called events.
– automatic reclamation of threads and channels.
– pre-emptive scheduling of explicitly concurrent threads.
– efficient implementation — both on uniprocessors and multiprocessors.

3.2 Basic Concurrency Primitives

This section discusses the basic concurrency primitives provided by Manticore,
including process creation and simple message passing via typed channels. Both
processes and channels are created dynamically.

Threads. Processes (independent flows of sequential control) in Manticore are
called threads. This choice of terminology emphasizes the fact that threads are
lightweight and to distinguish them from other forms of process abstraction used
in the Manticore runtime model. When a Manticore program begins executing,
it consists of a single thread; this initial thread may create additional threads
using the spawn e expression form. In the expression spawn e, the expression e

is of type unit and the expression spawn e is of type tid (the type of a thread
identifier). When the expression spawn e is evaluated, a new thread is created
to evaluate the expression e. The newly created thread is called the child and its
creator is called the parent. The child thread will execute until the evaluation of
its initial expression is complete, at which time it terminates. In Manticore, the
parent-child relationships between threads have no effect on the semantics of the
program. For example, the termination of a parent thread does not affect child
threads; each child thread is an independent flow of sequential control. Similarly,
the termination of a child thread does not affect its parent thread; in particular,

102 M. Fluet et al.

a parent thread does not wait for the termination of its children. Note that this
means that the initial Manticore thread may terminate while other (children,
grand-children, etc.) threads continue to execute. The whole program does not
terminate until all threads have terminated or are blocked.

A thread may terminate in one of three ways. First, a thread may complete
the evaluation of its initial expression. Second, a thread may explicitly terminate
itself by calling the exit function, which has the signature:

val exit : unit -> ’a

Like a raise e expression, the result type of exit is ’a since it never returns.
Third, a thread may raise an uncaught exception.3 Note that such an exception
is local to the thread in which it is raised; it is not propagated to its parent
thread.

Because the number of threads in a Manticore program is unbounded and the
number of (physical) processors is finite, the processors are multiplexed among
the Manticore threads.4 This is handled automatically by the Manticore run-
time system, using periodic timer interrupts to provide preemptive scheduling
of Manticore threads. Thus, the programmer is not required to ensure that each
thread yields the processor at regular intervals (as is required by the so-called
coroutine implementations of concurrency). This preemptive scheduling is im-
portant to support program modularity, because sequential code does not need
to be modified to support explicit scheduling code. On the other hand, it places
additional burden on the runtime system to efficiently manage the disparate
demands of computation-bound and interactive threads.

In the concurrent-programming style promoted by Concurrent ML, threads
are used very liberally. This style is supported by building threads upon first-
class, heap-allocated continuations which yields threads are extremely cheap to
create (on the order of 10 instruction) and impose very little space overhead (on
the order of 100 bytes) [39,16,36]. Furthermore, the storage used to represent
threads can be reclaimed by the garbage collector.

Channels. In order for multiple independent flows of sequential control to be
useful, there must be some mechanism for communication and synchronization
between the threads. In Manticore, the most important such mechanism is syn-
chronous message passing on typed channels. The type constructor chan is used
to generate the types of channels; a channel for communicating values of type
t has the type t chan. There are two operations for channel communication,
which have the signatures:

val recv : ’a chan -> ’a
val send : ’a chan * ’a -> unit

3 In a sense, this is equivalent to the first manner in which a thread may terminate:
the thread has completed the evaluation of its initial expression to an uncaught
exception.

4 The processors are further multiplexed to support the implicitly-threaded parallelism
described in Section 4.

Programming in Manticore 103

Message passing is synchronous, which means that both the sender and the re-
ceiver must be ready to communicate before either can proceed. When a thread
executes a recv or send on a channel, we say that the thread is offering com-
munication. The thread will block until some other thread offers a matching
communication: the complementary operation on the same channel. When two
threads offer matching communications, the message is passed from the sender
to the receiver and both threads continue execution. Thus, message passing
involves both communication of data and synchronization. Furthermore, mes-
sage passing (specifically, the matching of senders and receivers) is a source
of non-determinism. (In practice, a sender is matched with the receiver that
has been blocked the longest or a receiver is matched with the sender that has
been blocked the longest. However, the non-determinism in scheduling individual
threads means that order in which threads become blocked on a message-passing
operation is not deterministic.)

Note that channels are first-class values, created by the channel function,
which has the signature:

val channel : unit -> ’a chan

Channels can be viewed as labels for rendezvous points — they do not name the
sender or receiver, and they do not specify a direction of communication. Over
the course of its lifetime, a channel may pass multiple values between multiple
different threads. At any given time, there may be multiple threads offering to
recv or send on the same channel. The nature of synchronous message passing
ensures that each recv is matched with exactly one send.

Examples

Updatable storage cells. Although mutable state makes concurrent programming
difficult, it is relatively easy to give an implementation of updatable storage
cells on top of threads and channels. (Furthermore, updatable storage cells are a
natural first example, since the desired behavior is well-known, placing the focus
on the use of threads and channels.)

We define the following abstract interface to storage cells:

signature CELL = sig
type ’a cell
val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val put : ’a cell * ’a -> unit

end

The operation cell creates a new cell initialized to the given value; the opera-
tions get and put are used to read and write a cell’s value. Our approach is to
represent the state of a cell by a thread, which we call the server, and to rep-
resent the ’a cell type as a channel for communicating with the server. The
complete implementation is as follows:

104 M. Fluet et al.

structure Cell : CELL = struct
datatype ’a req = GET of ’a chan | PUT of ’a
datatype ’a cell = CELL of ’a req chan

fun get (CELL reqCh) =
let

val replyCh = channel ()
in

send (reqCh, GET replyCh) ;
recv replyCh

end

fun put (CELL reqCh, y) =
send (reqCh, PUT y)

fun cell z =
let

val reqCh = channel ()
fun loop x =
case recv reqCh of

GET replyCh => (send (replyCh, x) ; loop x)
| PUT y = loop y

val _ = spawn (loop z)
in

CELL reqCh
end

end

The datatype ’a req defines the type of requests: either a GET to read the
cell’s value or a PUT to write the cell’s value. The implementations of the get

and put operations is straightforward. Each operation requires sending the
appropriate request message to the server on the request channel. In the case of
the get operation, the client first creates a reply channel, then the client sends
the GET message (carrying the reply channel) to the server, and finally the client
receives the cell’s value on the reply channel. In the case of the put operation,
the client sends the PUT message (carrying the new value for the cell).

The implementation of the cell operation is slightly more complicated. The
cell operation creates a new cell, which involves allocating the request channel
and spawning a new server thread to handle requests. Servers are typically im-
plemented as infinite loops, with each iteration corresponding to a single client
request. Since we are programming in a functional programming language, we
use a tail recursive function to implement the loop.

The implementation of the CELL abstraction is a prototypical example of the
client-server style of concurrent programming.

Sieve of Eratosthenes. Another important style of concurrent programming
is the dataflow network style. In this style, computations are structured as
networks of processes, where the data from one process flows to other processes

Programming in Manticore 105

in the network. Many of the processes in a dataflow network can be implemented
as an infinitely looping thread that carries some local state from one iteration
to the next. The forever function is useful for constructing such threads:

fun forever (init : ’a) (f: ’a -> ’a) : unit =
let

fun loop s = loop (f s)
val _ = spawn (loop init)

in
()

end

The forever function takes two arguments, an initial state (of type ’a) and a
function from states to states (of type ’a -> ’a), and it spawns a thread that
repeatedly iterates the function.

A classic application of dataflow networks is for stream processing. A stream
can be viewed as a possibly infinite sequence of values. For example, the succs

function takes an initial integer and returns a channel on which a client may
receive the stream of successors of the initial integer:

fun succs (i : int) : int chan =
let

val succsCh = channel ()
fun succsFn j = (send (succsCh, j) ; j + 1)
val () = forever i succsFn

in
succsCh

end

Each application of the succs function creates a new instance of the stream of
numbers; values are consumed from the stream by applying recv to the result
channel.

This style of stream processing is similar to the notion of lazy streams as used
in idiomatic functional programming. A principal difference is that these streams
are stateful: once a value is read from a stream it cannot be read again.

A traditional example of stream programming is computing prime numbers
using the Sieve of Eratosthenes. We start with the stream of integers beginning
with 2 (the first prime number). To compute the primes, we filter out multiples of
2, which gives a stream beginning with 3 (the second prime number). We then
filter out multiples of 3, yielding a stream beginning with 5 (the third prime
number). At each step, we take the head of the stream (which is the next prime)
and construct a new stream by filtering out multiples of the prime.

The filtering of a stream is provided by the following function, which takes
a prime number p and an input stream inCh and returns a new stream outCh

with multiples of p removed:

106 M. Fluet et al.

fun filter (p, inCh : int chan) : int chan =
let

val outCh = channel ()
fun filterFn () =

let
val i = recv inCh

in
if (i mod p) <> 0 then send (outCh, i) else ()

end
val () = forever () filterFn

in
outCh

end

The stream of primes is created by the following function:

fun primes () : int chan =
let

val primesCh = channel ()
fun primesFn ch =

let
val p = recv ch

in
send (primesCh, p) ;
filter (p, ch)

end
val _ = forever (succs 2) primesFn

in
primesCh

end

The primes function creates a network of threads consisting of a succFn

thread, which produces the stream of integers starting at 2, a chain of filterFn
threads, which filter out multiples of primes that have been sent, and a primeFn

thread, which sends primes on the primesCh channel and spawns new filterFn

threads.
We can use the primes function (and associated dataflow network) to

compute a list of the first n prime numbers:

fun firstPrimes n =
let

val primesCh = Primes.primes ()
in

List.tabulate (n, fn _ => recv primesCh)
end

One may wonder what happens to the dataflow network after the list of the first
n prime numbers has been returned. All of the threads created for the dataflow

Programming in Manticore 107

network are blocked sending to or receiving from channels in the network. None
of these channels are used by non-blocked threads (in particular, the primesCh

channel used in firstPrimes is unused once firstPrimes returns), and the
whole network (threads and channels) is garbage collected. The key implemen-
tation strategy is that a channel maintain a reference to the threads that are
blocked waiting to communicate on it (rather than a thread maintaining a ref-
erence to the channel on which it is blocked waiting to communicate). Thus, a
blocked thread is automatically garbage collected when the channel on which it
is blocked is garbage collected.

Fibonacci series. Another classic example of dataflow programming is the Fi-
bonacci series, defined by the recurrence:

fib1 = 1
fib2 = 1

fibi+2 = fibi+1 + fibi

Before implementing a Manticore program that generates the stream of Fi-
bonacci numbers, it is worthwhile to consider the structure of the process net-
work. Each element in the series is computed from the two previous elements.
Thus, when the value fibi is computed, it needs to be fed back into the network
for the computation of fibi+1 and fibi+2. Such a process network requires nodes
that copy an input stream to two output streams and a node that provides a
one-element delay in a stream. We also require a node that adds the values re-
ceived from two streams. Figure 2 gives a pictorial representation of the process
network for generating the Fibonacci series.

ch1 copy

copy

adddelay
ch5

ch3

ch4

ch2

fibsCh

Fig. 2. The Fibonacci stream process network

As show in Figure 2, we can implement the Fibonacci stream using three
general-purpose dataflow combinators: add, copy, and delay:

108 M. Fluet et al.

fun addStrms (inCh1, inCh2, outCh) =
forever () (fn () =>

send (outCh, (recv inCh1) + (recv inCh2)))

fun copyStrm (inCh, outCh1, outCh2) =
forever () (fn () =>

let val x = recv inCh
in send (outCh1, x) ; send (outCh2, x)
end)

fun delayStrm first (inCh, outCh) =
forever first (fn x =>

(send (outCh, x) ; recv inCh))

Unlike the Sieve of Eratosthenes example, the process creation functions do
not create their own channels. Because we need to construct a cyclic process
network, we will pre-allocate the channels and supply them as arguments to the
process creation functions. Note that the delayStrm combinator is similar to the
copyStrm combinator, since it copies the elements from the inCh to the outCh;
the difference is that the delayStrm first sends an initial value on the outCh,
before copying the elements from the inCh to the outCh.

The implementation of the Fibonacci stream simply constructs the process
network described in Figure 2:

fun fibs () : int chan =
let

val fibsCh = channel ()
val ch1 = channel ()
val ch2 = channel ()
val ch3 = channel ()
val ch4 = channel ()
val ch5 = channel ()

in
copyStrm (ch1, ch2, fibsCh) ;
copyStrm (ch2, ch3, ch4) ;
delayStrm 0 (ch4, ch5) ;
addStrms (ch3, ch5, ch1) ;
send (ch1, 1) ;
fibsCh

end

As noted above, the channels for the network are allocated first and then the
process nodes are created. A minor subtlety of the implementation is initializing
the network: the delay node is initialized with the value 0 (one may think of
this as fib0 = 0) and the value 1 (fib1) is sent on the channel ch1. This value is fed

Programming in Manticore 109

back into the network (via ch2 and ch3) to be added to 0 to produce the value
1 (fib2).

3.3 First-Class Synchronous Operations

Basic First-class Synchronous Operations. Thus far, we have seen simple
synchronous message passing examples using recv and send. While these oper-
ations permit the implementation of interesting concurrent programs, there are
limits to the kinds of concurrent programs that can be expressed with just these
operations.

A key programming mechanism in message-passing concurrency programming
is selective communication. The basic idea is to allow a thread to block on a
nondeterministic choice of several blocking communications — the first com-
munication that becomes enabled is chosen. If two or more communications
are simultaneously enabled, then one is chosen nondeterministically.5 For ex-
ample, note that there is a subtlety in the implementation of the Fibonacci
network. The correctness of the implementation depends on the order in which
the copyStrm combinator sends messages on its two output channels and on
the order in which the addStrms combinator receives messages on its two in-
put channels. If one were to reverse the order of the sends on ch3 and ch4,
then the network would deadlock: the addStrms node would be attempting to
receive a value on ch3, while the copyStrm node would be attempting to send
a value on ch4, and the delayStrm node would be attempting to send a value
on ch5.

Although we were able to carefully construct the Fibonacci network to avoid
this problem, a more robust solution is to eliminate the dependence on the or-
der of the blocking operations. For example, the addStrms combinator should
block on reading a value from either inCh1 or inCh2; if it receives a value on
inCh1 first, then it must block to receive a value on inCh2 (and vice versa).
Similarly, the copyStrm combinator should block on sending a value to either
outCh1 or outCh2; if it sends a value on outCh2 first, then it must block to
send a value on outCh2 (and vice versa). Most concurrent languages with mes-
sage passing provide a mechanism for selecting from a choice of several blocking
communications.

However, there is a fundamental conflict between the desire for abstraction and
the need for selective communication. In most concurrent languages with message
passing, in order to formulate the selection from a choice of several blocking
communications, one must explicitly list the blocking communications (i.e., the
individual recvs and sends with their arguments). This makes it difficult to
construct abstract synchronous operations, because the constituent recvs and
sends must be revealed (breaking the abstraction) in order for the synchronous
operation to be used in selective communication.

5 In practice, this nondeterminism is tempered by imposing priorities and/or fairness
mechanisms on selective communication [39, Chapter 10].

110 M. Fluet et al.

Concurrent ML solves this problem by introducing first-class synchronous op-
erations. The basic idea is to decouple the description of a synchronous operation
(e.g., “send the message m on the channel c”) from the actual act of synchroniz-
ing on the operation. To do so, we introduce a new kind of abstract value, called
an event, which represents a potential synchronous operation. (This is analogous
to the way in which a function value represents a potential computation.) The
type constructor event is used to generate the types of abstract synchronous
operations; the type t event is the type of a synchronous operation that returns
a value of type t when it is synchronized upon.

The basic event operations have the following signature:

val sync : ’a event -> ’a

val recvEvt : ’a chan -> ’a event
val sendEvt : ’a chan * ’a -> unit event

val choose : ’a event * ’a event -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event

The sync operator forces synchronization on an event value. (This is analogous
to the way in which a function application forces the potential computation
represented by a function value.)

The recvEvt and sendEvt operators represent channel communication. The
recvEvt and sendEvt operators are called base-event constructors, because
they create event values that describe a single primitive synchronous operation.
We can define recv and send as follows:

val recv = fn ch => sync (recvEvt ch)
val send = fn (ch, x) => sync (sendEvt (ch, x))

Later, we will see a small number of other base-event constructors.
The power of first-class synchronous operations comes from event combinators,

which can be used to build more complicated event values from the base-event
values. The choose combinator provides a generalized selective communication
mechanism; the wrap combinator augments an event with a post-synchronization
action (called the wrapper function); the guard combinator creates an event from
a pre-synchronous action (called the guard function). Note that it is important
that both the wrapper function and the guard function may spawn threads and
may perform synchronizations.

It is worth considering (informally) the semantics of event synchronization.
An event value can be viewed as a tree, where the leaves correspond to the base
events (e.g., recvEvt and sendEvt) and applications of guard, and the internal
nodes correspond to applications of choose and wrap. For example, consider
the event value constructed by:

Programming in Manticore 111

val g2 = fn () => (spawn e2 ; wrap (bev2, w2))
val g3 = fn () => (spawn e3 ; bev3)
val ev = choose (

wrap (bev1, w1),
wrap (choose (

guard g2,
wrap (guard g3, w3)

), w4)
)

where the bevi are base events, the gi are guard functions, and the wi are wrapper
functions. The leftmost portion of Figure 3 gives a pictorial representation of
this event value, where choose nodes are labeled with ⊕, and wrap nodes are
labeled with the wrapper functions, and guard nodes are labeled with the guard
functions. When a thread evaluates sync ev, each of the guard functions at
the leaves is evaluated to an event value, which replaces the guard node; if the
resulting event value has additional guard functions at the leaves, then they are
evaluated and replaced, until the final event value has only base events at the
leaves. The rightmost portion of Figure 3 gives a pictorial representation of this
final event value. The thread blocks until one of the bevi is enabled by some
other thread offering a matching communication. If multiple bevi are enabled
by matching communications, then one is chosen nondeterministically. Once a
pair of matching communications are chosen, the sender’s base event returns ()
and the receiver’s base event returns the message. The wrapper functions on the
path from the selected base event to the root are applied to the result, producing
the result of the synchronization. For example, if bev2 is selected, with result v,
then the result of sync ev is w4(w2(v)).

bev1

w1

⊕

w3

⊕

g2

w4

bev1

bev2 bev3

w1

⊕

w3

⊕

w2

w4

g3

Fig. 3. An event value

We can use the choose and wrap combinators to give more robust implemen-
tations of the addStrms and copyStrm combinators:

112 M. Fluet et al.

fun addStrms (inCh1, inCh2, outCh) =
forever () (fn () =>

let
val (a, b) =
sync (choose (

wrap (recvEvt inCh1, fn a => (a, recv inCh2)),
wrap (recvEvt inCh2, fn b => (recv inCh1, b))

))
in

send (outCh, a + b)
end)

fun copyStrm (inCh, outCh1, outCh2) =
forever () (fn () =>

let
val x = recv inCh

in
sync (choose (
wrap (sendEvt (outCh1, x),

fn () => send (outCh2, x)),
wrap (sendEvt (outCh2, x),

fn () => send (outCh1, x))
))

end)

In the revised addStrms combinator, we are choosing between the operation of
receiving a message on inCh1 and the operation of receiving a message on inCh2;
in each case, we use the wrap combinator to associate the action of receiving a
message on the other channel. Similarly, in the revised copyStrm combinator,
we are choosing between the operation of sending a message on outCh1 and
the operation of sending a message on outCh2; in each case, we use the wrap

combinator to associate the action of sending the value on the other channel.
Using these revised combinators in the implementation of the Fibonacci network
avoids the subtle correctness issue; more importantly, it frees clients that use
the revised addStrms and copyStrm combinators from needing to know their
specific behavior (i.e., the revised addStrms and copyStrm combinators are more
abstract).

Example — Swap channels. A simple example of a communication abstrac-
tion that uses all of the event combinators in its implementation is the swap
channel. This is a new type of channel that allows two processes to swap val-
ues when they rendezvous. We define the following abstract interface to swap
channels:

Programming in Manticore 113

signature SWAP_CHANNEL = sig
type ’a swap_chan
val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan * ’a -> ’a event

end

The operation swapChannel creates a new swap channel; the operation swapEvt

is used to create an event that, when synchronized, simultaneously sends and
receives a value on a swap channel. When two processes communicate on a swap
channel, each sends a value and each receives a value; it is important that exactly
two processes swap values.

Because swap channels provide symmetric message passing and the implemen-
tation is based on the asymmetric message-passing operations, each thread in a
swap must offer to send a message and to receive a message on the same channel.
The choose combinator suffices for this purpose. Once one thread has sent a
value (and the other thread has received the value), a value must be sent in the
other direction to complete the swap. We cannot use the channel on which the
first value was sent, because other threads synchronizing on a swapEvt are try-
ing to send and receive on that channel. We also cannot use another (dedicated)
channel to complete the swap. For example, Figure 4 shows a swap mismatch.
Threads P1 and P2 are matched (by sending and receiving on ch) and thread
Q1 and Q2 are matched (by also sending and receiving on ch), but the values
sent to complete the swap are mismatched: the value sent by P2 on ch’ (meant
for P1) is received by Q1 and the value sent by Q2 also on ch’ (meant for Q2)
is received by P1.

P1 P2 Q2Q1

ch

ch

ch’

ch’

Fig. 4. A swap mismatch

To avoid this problem, we allocate a fresh channel to complete the second
phase of the swap operation each time the swap operation is executed. The
implementation is as follows:

114 M. Fluet et al.

structure SwapChannel : SWAP_CHANNEL = struct
datatype ’a swap_chan = SC of (’a * ’a chan) chan

fun swapChannel () = SC (channel ())

fun swapEvt (SC ch, msgOut) =
guard (fn () =>

let
val inCh = channel ()

in
choose (

wrap (recvEvt ch,
fn (msgIn, outCh) =>
(send (outCh, msgOut) ; msgIn)),

wrap (sendEvt (ch, (msgIn, inCh)),
fn () => recv inCh)

)
end)

end

A swap channel is represented by a single channel on which is sent a pair consist-
ing of both the value communicated in the first phase and a (private) channel on
which is sent the value communicated in the second phase. Making the channel
for the second phase private to each instance of the swap operation ensures that
there is never a mismatch when sending the value in the second phase. However,
this channel for the second phase must be allocated after the synchronization
begins (because it must be private to this instance of the swap operation) and
before the communication of the first value. This is precisely the behavior of the
guard combinator.

The swap-channel abstraction illustrates several important programming tech-
niques. The use of dynamically allocating a new channel to serve as the unique
identifier for an operation is a common idiom. (Note that we used this technique
in the implementation of updatable storage cells.) It is also an example that uses
all of the event combinators: choose, wrap, and guard. Finally, it is a example
that shows the utility of the event abstraction: clients that use the SWAP_CELL

abstraction may treat the swapEvt operation as though it were a base event —
it may be used in choose, wrap, and guard combinators.

3.4 Additional First-Class Synchronous Operations

We can extend the set of primitive first-class synchronous operations discussed
above with additional combinators, base-event constructors, and various miscel-
laneous operations.

Simple Base-event Constructors. Recall that the recvEvt and sendEvt

base-event constructors are enabled when there is a matching communication
being offered by another synchronizing thread. One can imagine two extreme

Programming in Manticore 115

cases of recvEvt — one in which there is always another thread offering the
matching communication and one in which there is never another thread offering
the matching communication.

It is useful to realize these two extremes as (primitive) base-event constructors:

val alwaysEvt : ’a -> ’a event
val neverEvt : ’a event

The alwaysEvt constructor is used to build an event value that is always
enabled for synchronization. The neverEvt constructor is used to build an event
value that is never enabled for synchronization. Because a neverEvt can never
be chosen for synchronization, it is the identity for the choose combinator;
hence, it is useful for choosing from a list of event values:

val chooseList : ’a event list -> ’a event =
fn l => List.foldl choose neverEvt l

(Note that the nondeterminism in choose makes it an associative and symmetric
operator; the choice of fold direction is arbitrary.)

Note that one cannot implement a reliable polling mechanism by combining
alwaysEvt and choose. For example, the following function does not accurately
poll a channel for input:

fun recvPoll (ch : ’a chan) : ’a option =
sync (choose (

alwaysEvt NONE,
wrap (recvEvt ch, fn x => SOME x)

))

Although it will never block, it may return NONE even when there is a matching
communication available on ch. This is because the choice of enabled events to
be returned by the synchronization is nondeterministic — the alwaysEvt may
be chosen over the recvEvt.

Negative Acknowledgements. When programming in the client-server style,
we can characterize servers as either idempotent or not idempotent. A server
that is idempotent is one such that the handling of a given request is indepen-
dent of other requests. A server that is not idempotent may be servicing multiple
requests at once (having accepted multiple requests), where each client is block-
ing on the receive of a reply from the server. If a client receives the reply, then
(due to the synchronous nature of message passing) the server knows that the
client has completed the request-reply protocol. However, if the client uses the
receive of the reply in a choose combinator and another event is chosen for
synchronization, then the server cannot know that the client will never complete
the request-reply protocol.

116 M. Fluet et al.

To ensure the correct semantics in this kind of situation, we need a mechanism
for negative acknowledgements. The following event combinator provides such a
mechanism:

val withNack : (unit event -> ’a event) -> ’a event

This combinator behaves like the guard combinator — it takes a function (which
we continue to call the guard function) whose evaluation is delayed until syn-
chronization time. The difference is that the function is applied to an abort event,
which is enabled only if the event returned by the guard function is not chosen
in the synchronization.

External Synchronous Events. As noted earlier, concurrent programming
is a useful programming paradigm for interactive systems (e.g., graphical-user
interfaces). An interactive system must deal with multiple (asynchronous) input
streams (e.g., keyboard, mouse, network) and multiple (asynchronous) output
streams (e.g., display, audio, network). Similarly, an interactive system often
provides multiple services, where each service is largely independent, having its
own internal state and control-flow. In sequential languages, these issues are
often dealt with through complex event loops and callback functions.

Here, we describe the interface to various kinds of external synchronous events.
By using first-class synchronous events, we can treat these external events using
the same framework as internal synchronization.

Intput/Output. An important form of external event is the availability of user
input. A very simplistic account of input/output for a console application would
be to take the standard input, output, and error streams to be character channels:

val stdInCh : char channel
val stdOutCh : char channel
val stdErrCh : char channel

Of course, it is not sensible to send on stdInCh or to receive on stdOutCh or
stdErrCh. A better interface is to expose the streams as events:

val stdInEvt : char event
val stdOutEvt : char -> unit event
val stdErrEvt : char -> unit event

We can naturally extend this style of interface to accommodate events for reading
from and writing to files, sending and receiving on a network socket, etc.

In practice, one builds a higher-level I/O library above these primitive oper-
ations, much as the Standard ML Basis Library [19] builds imperative I/O and
stream I/O levels above the primitive I/O level, which provides abstractions of
the underlying operating system’s unbuffered I/O operations.

Timeouts. Timeouts are another important example of external synchronous
events. Most concurrent languages provide special mechanisms for “timing out”
on a blocking operation. Using the framework of events, one can give base-event
constructors for synchronizing on time events:

Programming in Manticore 117

val timeOutEvt : time -> unit event
val atTimeEvt : time -> unit event

The time type represents both absolute time and durations of time intervals.
The timeOutEvt constructor takes a time value t (representing a time interval)
and returns an event that becomes enabled at a time t units relative to the time
at which the synchronization is performed. For example, a thread that evaluates
the following expression will be delayed for one second:

sync (timeOutEvt (timeFromSeconds 1))

The atTimeEvt constructor takes a time value t (representing an absolute time)
and returns an event that becomes enabled at time t.

Note that synchronization on time values is, by necessity, approximate. The
granularity of the underlying system clock, scheduling delays in both the underly-
ing operating system and the Manticore scheduler tend to delay synchronization
on a time value slightly.

The fact that both input/output and timeouts are represented by events
allows threads to combine them with other synchronous operations. For
example, suppose that the program has prompted the user to enter Y or N, but
wishes to proceed as though the user had entered N after a 10 second delay.
This could be expressed by the following event:

choose (
wrap (timeOutEvt (timeFromSeconds 10), fn () => #"N"),
stdInEvt

)

3.5 Examples

We conclude with a few more examples of useful abstractions built atop the
first-class synchronous operations.

Buffered Channels. The send and recv operations provide synchronous com-
munication — both sender and receiver block until there is a matching commu-
nication. It is sometimes useful to support asynchronous communication — a
sender does not block (its message is buffered in the channel) and a receiver
blocks until there is an available message. This buffering of communication can
be useful when a cyclic communication pattern is required (as in the Fibonacci
process network).

We define the following abstract interface to buffered channels:

signature BUFFERED_CHAN = sig
type ’a buffered_chan
val bufferedChan : unit -> ’a buffered_chan
val bufferedSend : ’a buffered_chan * ’a -> unit
val bufferedRecvEvt : ’a buffered_chan -> ’a event

end

118 M. Fluet et al.

As described above, a buffered channel consists of a queue of messages. The
send operation adds a message to the queue without blocking the sender. The
recvEvt operations attempts to take a message from the queue; if the queue is
empty, it blocks until some other thread sends a message.

The implementation of buffered channels is similar to the implementation of
the updatable storage cells: each time a buffered channel is created, a server
thread is spawned to service requests to send on and receive on the channel.

structure BufferedChan : BUFFERED_CHAN = struct
datatype ’a buffered_chan =

BC of {inCh: ’a chan, outCh: ’a chan}

fun bufferedSend (BC {outCh, ...}, x) = send (outCh, x)
fun bufferedRecvEvt (BC {inCh, ...}) = recvEvt inCh

fun bufferedChan () =
let

val (inCh, outCh) = (channel (), channel ())
fun loop ([], []) = loop ([recv inCh], [])
| loop ([], rear) = loop (rev rear, [])
| loop (front as frontHd::frontTl, rear) =

let
val (front’, rear’) =

sync (choose (
wrap (recvEvt inCh,

fn y => (front, y::rear)),
wrap (sendEvt (outCh, frontHd),

fn () => (frontTl, rear))
))

in
loop (front’, rear’)

end
val _ = spawn (loop ([], []))

in
BC {inCh = inCh, outCh = outCh}

end
end

Futures. Futures are a common mechanism for specifying parallel computation.
(Indeed, many of the mechanisms in Section 4 can be seen as special cases of
futures.) The future construct takes a computation, creates a (logically) separate
thread and returns a placeholder (called a future cell) for the computation’s
result. The act of reading a value from a future cell is called touching. If a thread
attempts to touch a future, before the computation of its value is completed, then
the thread blocks.

Implementing futures is straightforward. Since touching a future is a syn-
chronous operation, we represent a future cell as an event value and we use sync
to touch a value. We define the following abstract interface to futures:

Programming in Manticore 119

signature FUTURE = sig
datatype ’a result = VAL of ’a | EXN of exn
val future : (’a -> ’b) -> ’a -> ’b result event

end

Because the evaluation of a future might result in a raised exception, we intro-
duce the result type constructor to distinguish evaluation to a value (VAL) from
evaluation to a raised exception (EXN). The implementation is quite simple:

structure Future : FUTURE = struct
datatype ’a result = VAL of ’a | EXN of exn
fun future f x =

let
val ch = channel ()
val _ = spawn (
let

val r = (VAL (f x)) handle exn => EXN exn
in

forever () (fn () => send (ch, r))
end)

in
recvEvt ch

end
end

To create a future, we create a channel on which to communicate the future
result and spawn a thread to evaluate the computation and then repeatedly
send the result on the channel. The future cell is represented by the event that
receives the result on the channel.

Note that this is not a particularly efficient implementation of futures. A
more efficient implementation can be build using synchronizing shared-memory
(e.g., M-variables and I-variables [31]), which themselves fit naturally into the
framework of first-class synchronous events.

3.6 Conclusion

This section has discussed the explicit-concurrency mechanisms of Manticore,
based upon those of Concurrent ML (CML). A much longer exposition, includ-
ing detailed descriptions of non-trivial applications (a software build system;
a concurrent window system; a distributed tuple-space), can be found in the
book-length treatment of CML [39]. Two recent papers describe the parallel
implementation of the Concurrent ML operations provided by Manticore [37,36].

4 Implicit Parallelism in Manticore

4.1 Introduction

Manticore provides implicitly-threaded parallel versions of a number of sequen-
tial forms. These constructs can be viewed as hints to the compiler about which

120 M. Fluet et al.

computations are good candidates for parallel execution; the semantics of (most
of) these constructs is sequential and the compiler and/or runtime system may
choose to execute them in a single thread.

There are number of distinct reasons for introducing implicitly-threaded
parallel constructs into a language (in addition to the explicitly-threaded con-
currency constructs of Section 3). As noted in Section 1, parallel program-
ming languages must provide mechanisms at multiple levels of parallelism,
both because applications exhibit parallelism at multiple levels and because
hardware requires parallelism at multiple levels to maximize performance. The
implicitly-threaded parallel constructs are much better suited for expressing
fine-grained parallelism (as might be executed using SIMD instructions). In
a sense, the implicitly-threaded parallel constructs ease the burden for both
the programmer and the compiler: the programmer is able to utilize simple
parallel constructs, which efficiently (in terms of program text) express the
desired parallelism, and the compiler is able to analyze and optimize these
constructs, yielding programs that efficiently (in terms of time and computa-
tional resources) execute. Although the implicitly-threaded parallel constructs
are necessarily more specific (and therefore less expressive) than the explicitly-
threaded parallel constructs, this does not diminish their utility. Rather, they
express common idioms of parallel computation and their limited expressive-
ness allows the compiler and runtime system to better manage the parallel
computation.

Manticore introduces a number of implicitly-threaded parallel constructs:

– parallel arrays
– parallel tuples
– parallel bindings
– parallel cases

In addition to these implicitly-threaded parallel constructs visible in the source
language, there is a general-purpose cancellation mechanism that is used to stop
the (parallel) execution of computations when their results are guaranteed never
to be demanded. (Note that this cancellation only applies to the implicitly-
parallel constructs of Manticore, not to the explicitly-parallel constructs de-
scribed in the previous section.)

As noted above, the implicitly-threaded parallel constructs provide a parallel
execution of a sequential semantics. Having a sequential semantics is useful in
two ways: it provides the programmer with a deterministic programming model
and it formalizes the expected behavior of the compiler. Specifically, the compiler
must verify that the individual sub-computations in a parallel computation do
not send or receive messages before executing the computation in parallel. Fur-
thermore, if a sub-computation raises an exception, the runtime code must delay
delivery of that exception until it has verified that all sequentially prior compu-
tations have terminated. Both of these restrictions require program analysis to
implement efficiently.

Programming in Manticore 121

4.2 Parallel Arrays

Support for parallel computations on arrays and matrices is common in parallel
languages. The reason for this is that operations on arrays and matrices naturally
express data parallelism, in which a single computation is performed in parallel
across a large number of data elements. In Manticore, we support such compu-
tations using the nested parallel array mechanism inspired by NESL [4,3,5] and
developed further by Nepal [8,9,27] and Data Parallel Haskell (DPH) [11,10].

As might be expected, the type constructor ’a parray is used to generate the
types of parallel arrays, which are immutable sequences that can be computed in
parallel. An important feature of parallel arrays is that they may be nested (i.e.,
one can construct a parallel array of parallel arrays); multi-dimensional arrays
need not be rectangular, which means that many irregular data structures can be
represented. Furthermore, Manticore (like Nepal and DPH, but unlike NESL)
supports parallel arrays of arbitrary types, admitting arrays of floating-point
numbers, user-defined datatypes (e.g., polymorphic lists or trees), functions,
etc. Based on the parallel array element type and the parallel array operations,
the compiler will map parallel array operations onto the appropriate parallel
hardware (e.g., operations on parallel arrays of floating-point numbers may be
mapped onto SIMD instructions).

Parallel-Array Introduction. There are three basic expression forms that
yield a parallel array. The simplest is an explicit enumeration of the expressions
to be evaluated in parallel to yield the elements of the parallel array:

[| e1, ..., en |]

Thus, this parallel-array expression form constructs a parallel array of n ele-
ments, where the [| |] delimiters alert the compiler that the ei may be evaluated
in parallel.

Integer sequences are a common data structure in parallel algorithms.
Manticore provides a parallel-array expression form for conveniently expressing
integer sequences:

[| el to eh by es |]

This parallel-array expression form constructs a parallel array of integers, where
the first element is el, the successive elements are el + es, el + 2 * es,
. . ., and the last element is el + n * es for the largest n such that
el + n * es <= eh. For example, the expression

[| 1 to 31 by 10 |]

is equivalent to the expression

[| 1, 11, 21, 31 |]

If the step expression (“by es”) is omitted, then it naturally defaults to 1.

122 M. Fluet et al.

The final expression form that creates a parallel array is a parallel-array com-
prehension, which provides a concise description of a parallel loop. In its full
generality, a parallel-array comprehension has the form:

[| e | x1 in ea1, ..., xn in ean where ep |]

where e is an expression that computes the elements of the array, the eai are
parallel-array expressions that provide inputs to e, and ep is a boolean expres-
sion that filters the input. (If the filter expression (“where ep” is omitted, then
it naturally defaults to true.) If the input arrays eai have different lengths, all
are truncated to the length of the shortest input, and they are processed, in
parallel, in lock-step.6

Parallel-array comprehensions can be used to specify both SIMD parallelism
that is mapped onto vector hardware (e.g., Intel’s SSE instructions) and SPMD
parallelism where parallelism is mapped onto multiple cores. For example, to
double each positive integer in a given parallel array of integers nums, one
would use the following expression:

[| 2 * n | n in nums where n > 0 |]

This expression can evaluated efficiently in parallel using vector instructions.
Two additional examples are the definitions of parallel map and parallel filter
combinators; the former applies a function to each element of an array in
parallel, while the latter discards elements of an array that do not satisfy a
predicate:

fun mapP f xs = [| f x | x in xs |]
fun filterP p xs = [| x | x in xs where p x |]

Parallel-array comprehensions are first-class expressions; hence, the expres-
sions defining the source parallel arrays of a comprehension can themselves be
parallel-array comprehensions. For example, the main loop of a ray tracer gen-
erating an image of width w and height h can be written

[| [| trace(x,y) | x in [| 0 to w-1 |] |]
| y in [| 0 to h-1 |] |]

This parallel comprehension within a parallel comprehension is an example of
nested data parallelism.

The sequential semantics of expression forms that create (and eliminate) par-
allel arrays is defined by mapping them to lists (see [17] or [42] for details). The
main subtlety in the parallel implementation is that if an exception is raised
when computing its ith element, then we must wait until all preceding elements
have been computed before propagating the exception.

6 This behavior is known as zip semantics, since the comprehension loops over the
zip of the inputs. Both NESL and Nepal have zip semantics, but Data Parallel
Haskell [11] has Cartesian-product semantics where the iteration is over the product
of the inputs.

Programming in Manticore 123

Parallel-Array Elimination. There are a number of basic expression forms
that consume a parallel array. The parallel-array comprehension described above
is one such form. Another simple elimination form is the subscript operator that
extracts a single element of a parallel array:

ea ! ei

where ea is a parallel-array expression and ei is an integer expression. Parallel
arrays are indexed by zero; if the index is outside the range of the array, then
the Subscript exception is raised.

An important expression form that consumes a parallel array is a parallel-
array reduction, which provides a concise description of a parallel loop. This
operation is available through a combinator with the signature:

val reduceP : (’a * ’a -> ’a) -> ’a -> ’a array -> ’a

The expression reduceP f b ea is similar to folding the function f over the
elements of ea using the base value b. The difference is that the function is
applied in parallel to the elements, using a tree-like decomposition of the array
elements. Hence, it is important that the function f is an associative function
with b as a left zero.

An obvious application of a parallel-array reduction is to sum all of the ele-
ments of a parallel array of integers:

fun sumP a = reduceP (fn (x, y) => x + y) 0 a

Note that + is an associative function with 0 as a (left and right) zero.

Additional Parallel-Array Operations. Before turning to some more ex-
amples, we describe a number of additional parallel-array operations. Although
these operations can be implemented in terms of the expression forms and op-
erations given above, most of them have direct implementations, for efficiency.

Since parallel arrays are finite data structures, it is often useful to query
the number of elements in the parallel array. The lengthP operation has the
signature:

val lengthP : ’a parray -> int

One possible implementation of lengthP is the following:

fun lengthP a = sumP (mapP (fn _ => 1) a)

Although parallel-array comprehensions may be used to express many
computations, it is sometimes necessary to explicitly decompose a computation
and explicitly combine the results. Hence, it is useful to be able to concatenate
and flatten parallel arrays:

val concatP : ’a parray * ’a parray -> ’a parray
val flattenP : ’a parray parray -> ’a parray

Because concatP is an associative function with [||] as a (left and right) zero,
we can implement flattenP using reduceP and concatP:

124 M. Fluet et al.

fun flattenP a = reduceP concatP [| |] a

The concatenation of parallel arrays can be expressed as a comprehension:

fun concatP (a1, a2) =
let

val l1 = lengthP a1
val l2 = lengthP a2

in
[| if i < l1 then a1 ! i else a2 ! (i - l1)

| i in [| 0 to (l1 + l2 - 1) |] |]
end

Examples. Parallel arrays are a natural representation for images:

type pixel = int * int * int
type img = pixel parray parray

We assume that a pixel represents the red, green, and blue components, each of
which is in the range 0 to 255. Many image transformations can be expressed as
a computation that is applied to each pixel of an image. For example, to convert
a color image to a gray-scale image, we simply need to convert each color pixel
to a gray-scale pixel:

fun rgbPixToGrayPix ((r, g, b) : pixel) : pixel =
let

val m = (r + g + b) / 3
in

(m, m, m)
end

fun rgbImgToGrayImg (img : img) : img =
[| [| rgbPixToGrayPix pix | pix in row |] | row in img |]

We can express the entire family of pixel-to-pixel transformations with a higher-
order function:

fun xformImg (xformPix: pixel -> pixel) (img : img) : img =
[| [| xformPix pix | pix in row |] | row in img |]

Although xformImg is simply a specialization of mapP, it serves as another ex-
ample of conciseness of nested comprehensions.

Operations on vectors and matrices are classic motivating examples for
nested data parallelism. A parallel array can be used to represent both dense
and sparse vectors:

type vector = real parray
type sparse_vector = (int * real) parray

A sparse matrix can be can be represented naturally as an array of rows, where
each row is a sparse vector:

type sparse_matrix = sparse_vector parray

Programming in Manticore 125

To multiply a sparse matrix by a dense vector, we simply compute the dot prod-
uct for each row:

fun dotp (sv: sparse_vector) (v: vector) : real =
sumP [| x * (v!i) | (i,x) in sv |]

fun smvm (sm: sparse_matrix) (v: vector) : vector =
[| dotp (row, v) | row in sm |]

Note that smvm expresses a nested parallel computation: dotp is applied to
each row of the sparse matrix in parallel, while dotp is itself a parallel oper-
ation (comprised of both a parallel-array comprehension and a parallel-array
reduction).

The quicksort algorithm is a common example in the nested data parallelism
literature. We can implement quicksort in Manticore as follows:

fun quicksort (a: int parray) : int parray =
if lengthP a < 2

then a
else let

val pivot = ns ! 0
val ss = [| filterP cmp a

| cmp in [| fn x => x < pivot,
fn x => x = pivot,
fn x => x > pivot |] |]

val rs =
[| quicksort a | a in [| ss!0, ss!2 |] |]

val sorted_lt = rs!0
val sorted_eq = ss!1
val sorted_gt = rs!1

in
flattenP [| sorted_lt, sorted_eq, sorted_gt |]

end

In this implementation, the argument parallel array a is partitioned into ele-
ments less than, equal to, and greater than the pivot element. Note the use of
a parallel-array comprehension over an array of comparison functions, which is
another example of nested data parallelism. The arrays of less-than and greater-
than elements are recursively sorted in parallel by using another parallel compre-
hension. Finally, the sorted arrays of elements are flattened into a single array
of sorted elements.

4.3 Parallel Tuples

The parallel arrays of the previous section provide a very regular form of paral-
lelism. However, it is sometimes more convenient to express a less regular form
of parallelism. Parallel tuples are similar in spirit to the explicit-enumeration
parallel-array expression form. The parallel-tuple expression form provides a
hint to the compiler that the elements of the tuple may be evaluated in parallel:

(| e1, ..., en |)

126 M. Fluet et al.

Thus, this parallel-tuple expression form constructs a tuple of n elements, where
the (| |) delimiters alert the compiler that the ei may be evaluated in parallel.

A parallel tuple expresses a simple fork/join form of parallelism; each of the
tuple components is evaluated in parallel and the computation of the tuple
result blocks until all the sub-expressions are fully evaluated. Like parallel
arrays, they enable the expression of computations with a high degree of
parallelism in a very concise manner. Unlike parallel arrays, they support
heterogeneous parallelism, because a tuple may be comprised of heterogeneous
types and heterogeneous computations. Parallel tuples can thus avoid some
awkwardness that can arise when using parallel arrays exclusively. For example,
here is a revised quicksort implementation that uses both parallel arrays and
parallel tuples to more naturally express the computation:

fun quicksort (a: int parray) : int parray =
if lengthP a < 2

then a
else let

val pivot = ns ! 0
val (sorted_lt, sorted_eq, sorted_gt) =
(| quicksort (filterP (fn x => x < pivot) a),

filterP (fn x => x = pivot),
quicksort (filterP (fn x => x > pivot) a) |)

in
flattenP [| sorted_lt, sorted_eq, sorted_gt |]

end

The sequential semantics of parallel tuples is trivial: the expressions are eval-
uated in left-to-right order, just as they are for a (non-parallel) tuple. The im-
plication for the parallel implementation is similar to that for parallel arrays: if
an exception is raised when computing its ith element, then the implementation
must wait until all preceding elements have been computed before propagating
the exception.

Parallel tuples are convenient for expressing recursive functions, where the
recursive calls can be evaluated in parallel. For example, here is a function to
compute the binomial coefficient:

fun add (a, b) = a + b
fun choose (n, k) =
if n = k then 1
else if k = 0 then 1
else add (| choose (n - 1, k), choose (n - 1, k - 1) |)

Similarly, here is a function to sum the leaves of a binary tree:

datatype tree = Lf of int | Br of tree * tree
fun trAdd t =
case t of

Lf i => i
| Br (t1, t2) => add (| trAdd t1, trAdd t2 |)

Programming in Manticore 127

As noted above, the implicitly-threaded parallel constructs are hints to the
compiler about which computations are good candidates for parallel execution.
As demonstrated by the previous examples, parallel tuples make it very easy to
express parallel computations; indeed, they can often express more parallelism
that can be effectively utilized. An important problem is to determine when
parallel execution is likely to be profitable: the compiler and runtime must de-
termine when the overhead of starting a parallel execution does not outweigh the
benefits of parallel execution (else, sequential execution would be more efficient).
By integrating analyses and transformations into the compiler and runtime sys-
tem, we preserve a simple source language but provide sophisticated runtime
behavior.

For example, the trAdd function concisely expresses the fact that one may sum
the branches of a binary tree in parallel. However, it should be clear that sum-
ming all the branches of a binary tree in parallel would have poor performance:
a balanced binary tree of depth N would induce the creation of 2N − 2 paral-
lel sub-computations. Realizing each of these sub-computations as an indepen-
dent thread would quickly result in more threads than physical processors, and
many threads would be blocked waiting for the completion of sub-computations.
Even reifying each of these sub-computations as a unit of work for a collection
of work-stealing threads would induce an unacceptable overhead. In order to
achieve high-performance executions, it is necessary to ensure that there is suf-
ficient (sequential) computation to warrant the overhead of parallel execution.
For example, we might wish to transform the treeAdd function as follows:

datatype tree = Tr of int * tree’
and tree’ = Lf’ of int | Br’ of tree * tree

fun Lf n = Tr (1, Lf’ n)
fun Br (t1 as Tr (d1, _), t2 as Tr (d2, _)) =
Tr (max(d1, d2) + 1, Br’ (t1, t2))

fun trAdd (Tr (d,t’)) =
if (d < 16 orelse numIdleProcs () < 2)

then tr’Add_seq t’
else tr’Add_par t’

and trAdd_seq (Tr (_,t’)) = tr’Add_seq t’
and tr’Add_seq t’ =
case t’ of

Lf’ i => n
| Br’ (t1, t2) => add (trAdd_seq t1, trAdd_seq t2)

and tr’Add_par t’ =
case t’ of

Lf’ i => n
| Br’ (t1, t2) => add (| trAdd t1, trAdd t2 |)

Under this transformation, the tree datatype maintains the depth of binary tree.
We use the depth of the binary tree to ensure that any binary tree of depth less
than 16 is summed as a sequential computation (trAdd_seq and trAdd’_seq).
Similarly, we suppress parallel execution when there are insufficient computational

128 M. Fluet et al.

resources available (numIdleProcs () < 2). An important point is that we would
like this transformation to be automatically generated by the compiler. The orig-
inal trAdd function is only two lines long and manifestly correct; the translated
function above is significantly more complex. Making the analysis and transfor-
mation a duty of the compiler helps to ensure that the transformed program is
semantically equivalent to the original program.

4.4 Parallel Bindings

Parallel arrays and tuples provide a fork-join pattern of computation, but in
some cases more flexible scheduling is desirable. In particular, we may wish to
execute some computations speculatively. Manticore provides a parallel binding
form

pval p = e

that spawns the evaluation of the expression e as a parallel thread. The sequential
semantics of a parallel binding are similar to lazy evaluation: the binding is only
evaluated (and only evaluated once) when one of the variables bound in the
pattern p is demanded by the evaluation of some expression in the main thread
of control. One important subtlety in the semantics of parallel bindings is that
any exceptions raised by the evaluation of the binding must be postponed until
one of the variables is touched, at which time the exception is raised at the point
of the touched variable.

The distinguishing characteristic of the parallel-binding declaration form is
that the spawned computation may be canceled before completion. When a
(simple, syntactic) program analysis determines the program points at which a
spawned computation is guaranteed never to be demanded, the compiler inserts
a corresponding cancellation.

The following function computes the product of the leaves of a tree:

datatype tree = Lf of int | Br of tree * tree
fun trProd t=
case t of

Lf i => i
| Br (t1, t2) =

let
pval p1 = trProd t1
pval p2 = trProd t2

in
if p1 = 0

then 0
else p1 * p2

end

This implementation short-circuits when the product of the left subtree of a Br

variant evaluates to zero. Note that if the result of the left product is zero, we do
not need the result of the right product. Therefore its subcomputation and any
descendants may be canceled. The short-circuiting behavior is not explicit in the
function; rather, it is implicit in the semantics of the parallel-binding declaration

Programming in Manticore 129

form that when control reaches a point where the result of an evaluation is
known to be unneeded, the resources devoted to that evaluation are freed and
the computation is abandoned.

The analysis to determine when a future is subject to cancellation is not as
straightforward as it might seem. The following example includes two parallel
bindings linked by a common computation:

let
pval x = f 0
pval y = (| g 1, x |)

in
if b then x else h y

end

In the conditional expression here, while the computation of y can be canceled
in the then branch, the computation of x cannot be canceled in either branch.
Our analysis must respect this dependency and similar subtle dependencies.

We will give more examples of the use of parallel bindings in Section 4.7.
However, as a very simple example, we note that the behavior of parallel
tuples may be encoded using parallel bindings; in particular, we encode
(|e1, ..., en |) as

let
pval x1 = e1
...
pval xn = en

in
(x1, ..., xn)

end

4.5 Parallel Cases

The parallel-case expression form is a nondeterministic counterpart to Stan-
dard ML’s sequential-case expression form. In a parallel-case expression, the
discriminants are evaluated in parallel and the match rules may include wild-
card patterns that match even if their corresponding discriminants have not
yet been fully evaluated. Thus, a parallel case expression nondeterministically
takes any match rule that matches after sufficient discriminants have been evalu-
ated. The parallel-case expression form leverages the familiar pattern-matching
idiom and is flexible enough to express a variety of non-deterministic parallel
mechanisms.

Unlike the other implicitly-threaded mechanisms, the parallel-case expression
form is nondeterministic. We can still give a sequential semantics, but it re-
quires including a source of non-determinism (e.g., McCarthy’s amb [28]), in
the sequential language.

In many respects, the parallel-case expression form is syntactically similar to
the sequential-case expression form:

130 M. Fluet et al.

pcase e1 & ... & en of
pp11 & ... & pp1n => e’1

| ...
| ppm1 & ... & ppmn => e’m
| otherwise => e

The metavariable pp denotes a parallel pattern, which is either

– a nondeterministic wildcard ?,
– a handle pattern handle p, or
– a pattern p,

where p in the latter two cases signifies a conventional SML pattern. Further-
more, pcase expressions include an optional otherwise branch (which must be
the last branch) which has a special meaning as discussed below.

A nondeterministic wildcard pattern can match against a computation that
is either finished or not. It is therefore different than the usual SML wildcard,
which matches against a finished computation, albeit one whose result remains
unnamed. Nondeterministic wildcards can be used to implement short-circuiting
behavior. Consider the following parallel-case branch:

| false & ? => 9

Once the constant pattern false has been matched with the result of the first
discriminant’s computation, the running program need not wait for the second
discriminant’s computation to finish; it can immediately return 9.

A handle pattern catches an exception if one is raised in the computation of
the corresponding discriminant. It may furthermore bind the raised exception to
a pattern for use in subsequent computation.

We can transcribe the meaning of otherwise concisely, using SML/NJ-style
or-patterns in our presentation for brevity. An otherwise branch can be
thought of as a branch of the form:

| (_ | handle _) & ... & (_ | handle _) => e

The fact that every position in this pattern is either a deterministic wildcard or
a handle means it can only match when all computations are finished. It also
has the special property that it takes lowest precedence when other branches
also match the evaluated discriminants. In the absence of an explicit otherwise
branch, a parallel-case expression is evaluated as though it were specified with
the following branch:

| otherwise => raise Match

To illustrate the use of parallel case expressions, we consider parallel choice.
A parallel choice expression e1 |?| e2 nondeterministically returns either the
result of e1 or e2. This is useful in a parallel context, because it gives the program
the opportunity to return whichever of e1 or e2 evaluates first.

Programming in Manticore 131

We might wish to write a function to obtain the value of some leaf of a given
tree:

datatype tree = Lf of int | Br of tree * tree
fun trPick t =
case t of

Lf i => i
| Br (t1, t2) = (trPick t1) |?| (trPick t2)

This function evaluates trPick(t1) and trPick(t2) in parallel. Whichever
evaluates to a value first, loosely speaking, determines the value of the choice
expression as a whole. Hence, the function is likely, but not required, to return
the value of the shallowest leaf in the tree. Furthermore, the evaluation of the
discarded component of the choice expression—that is, the one whose result is
not returned—is canceled, as its result is known not to be demanded. If the
computation is running, this cancellation will free up computational resources
for use elsewhere. If the computation is completed, this cancellation will be a
harmless idempotent operation.

The parallel choice operator is a derived form in Manticore, as it can be ex-
pressed as a pcase in a straightforward manner. The expression e1 |?| e2 is
desugared to:

pcase e1 & e2 of
x & ? => x

| ? & x => x

Parallel case gives us yet another means to write the trProd function:

datatype tree = Lf of int | Br of tree * tree
fun trProd t =
case t of

Lf i => i
| Br (t1, t2) =>

(pcase trProd t1 & trProd t2 of
0 & ? => 0

| ? & 0 => 0
| p1 & p2 => p1 * p2)

This function will short-circuit when either the first or second branch is matched,
implicitly canceling the computation of the other sub-tree. Because it is nonde-
terministic as to which of the matching branches is taken, a programmer should
ensure that all branches that match the same discriminants yield acceptable re-
sults. For example, if trProd(t1) evaluates to 0 and trProd(t2) evaluates to
1, then either the first branch or the third branch may be taken, but both will
yield the result 0.

As a third example, consider a function to find a leaf value in a tree that
satisfies a given predicate. The function should return an int option to
account for the possibility that no leaf value in the tree match the predicate.
We might mistakenly write the following code:

132 M. Fluet et al.

fun trFind (p, t) =
case t of

Lf i => if p i then SOME i else NONE
| Br (t1, t2) => (trFind (p, t1)) |?| (trFind (p, t2))

In the case where the predicate p is not satisfied by any leaf values in the
tree, this implementation will always return NONE, as it should. However, if the
predicate is satisfied at some leaf, the function will nondeterministically return
either SOME n, for a satisfying n, or NONE. In other words, this implementation
will never return a false positive, but it will, nondeterministically, return a false
negative. The reason for this is that as soon as one of the operands of the parallel
choice operator evaluates to NONE, the evaluation of the other operand might be
canceled, even if it were to eventually yield SOME n.

A correct version of trFind may be written as follows:

fun trFind (p, t) =
case t of

Lf i => if p i then SOME i else NONE
| Br (t1, t2) =>

(pcase trFind (p, t1) & trFind (p, t2) of
SOME i & ? => SOME i

| ? & SOME i => SOME i
| NONE & NONE => NONE)

This version of trFind has the desired behavior. When either trFind(p, t1)

or trFind(p, t2) evaluates to SOME n, the function returns that value and
implicitly cancels the other evaluation. The essential computational pattern here
is a parallel abort mechanism, a common device in parallel programming.

A parallel case can also be used to encode a short-circuiting parallel boolean
conjunction expression. We first consider some possible alternatives. We can
attempt to express parallel conjunction in terms of parallel choice using the fol-
lowing strategy. We mark each expression with its originating position in the
conjunction; after making a parallel choice between the two marked expres-
sions, we can determine which result to return. Thus, we can write an expres-
sion that always assumes the correct value, although it may generate redundant
computation:

datatype z = L | R
val r = case (e1, L) |?| (e2, R) of

(false, L) => false
| (false, R) => false
| (true, L) => e2
| (true, R) => e1

This expression exhibits the desired short-circuiting behavior in the first two
cases, but in the latter cases it must restart the other computation, having can-
celed it during the evaluation of the parallel choice expression. So, while this
expression always returns the right answer, in non-short-circuiting cases its per-
formance is no better than sequential, and probably worse.

Programming in Manticore 133

We encounter related problems when we attempt to write a parallel conjunc-
tion in terms of pval, where asymmetries are inescapable.

val r =
let

pval b1 = e1
pval b2 = e2

in
if (not b1)

then false
else e2

end

This short-circuits when e1 is false, but not when e2 is false. We cannot write
a parallel conjunction in terms of pval such that either subcomputation causes
a short-circuit when false.

The pcase mechanism offers the best encoding of parallel conjunction:

val r =
pcase e1 & e2 of

false & ? => false
| ? & false => false
| true & true => true

Only when both evaluations complete and are true does the expression as a
whole evaluate to true. If one constituent of a parallel conjunction evaluates to
false, the other can be safely canceled. As soon as one expression evaluates to
false, the other is canceled, and false is returned. As a convenience, Manticore
provides |andalso| as a derived form for this expression pattern.

In addition to |andalso|, we provide a variety of other similar derived parallel
forms whose usage we expect to be common. Examples include |orelse| and
|*| (parallel multiplication, short-circuiting with 0). Because Manticore has
a strict evaluation semantics for the sequential core language, such operations
cannot be expressed as simple functions: to obtain the desired parallelism, the
subcomputations must be unevaluated expressions. Thus, it may be desirable
to provide a macro facility that enables a programmer to create her own novel
syntactic forms in the manner of these operations.

4.6 Exceptions

The interaction of exceptions and parallel constructs must be considered in the
implementation of the parallel constructs. Raises and exception handlers are
first-class expressions, and, hence, they may appear at arbitrary points in a
program, including in a parallel construct. For example, the following is a legal
parallel-array expression:

134 M. Fluet et al.

[| 2+3, 5-7, raise A |]

Evaluating this parallel array expression should raise the exception A.
Note the following important detail. Since the compiler and runtime system

are free to execute the subcomputations of a parallel array expression in any
order, there is no guarantee that the first raise expression observed during the
parallel execution corresponds to the first raise expression observed during
a sequential execution. Thus, some compensation is required to ensure that
the sequentially first exception in a given parallel array (or other implicitly-
threaded parallel construct) is raised whenever multiple exceptions could be
raised. Consider the following minimal example:

[| raise A, raise B |]

Although the exception B might be raised before A during a parallel execution,
A must be the exception observed to be raised by the context of the parallel
array expression in order to adhere to the sequential semantics. Realizing this
behavior in this and other parallel constructs requires our implementation to
include compensation code, with some runtime overhead.

In choosing to adopt a strict sequential core language, Manticore is commit-
ted to realizing a precise exceptions semantics in the implicitly-threaded parallel
features of the language. This is in contrast to an imprecise exception seman-
tics [34] that arise from a lazy sequential language. While a precise semantics
requires a slightly more restrictive implementation of the implicitly-threaded
parallel features than would be required with an imprecise semantics, we believe
that support for exceptions and the precise semantics is crucial for systems pro-
gramming. Furthermore, implementing the precise exception semantics is not
particularly onerous.

It is possible to eliminate some or all of the compensation code with the
help of program analyses. There already exist various well-known analyses for
identifying exceptions that might be raised by a given computation [43,26]. If,
in a parallel array expression, it is determined that no subcomputation may
raise an exception, then we are able to omit the compensation code and its
overhead. As another example, consider a parallel array expression where all
subcomputations can raise only one and the same exception.

[| if x<0 then raise A else 0,
if y>0 then raise A else 0 |]

The full complement of compensation code is unnecessary here, since any excep-
tion raised by any subcomputation must be the exception A.

Although exception handlers are first-class expressions, their behavior is or-
thogonal to that of the parallel constructs and mostly merit no special treatment
in the implementation.

Programming in Manticore 135

Note that when an exception is raised in a parallel context, the implementa-
tion should free any resources devoted to parallel computations whose results
will never be demanded by virtue of the control-flow of raise. For example, in
the parallel tuple

(| raise A, fact(100), fib(200) |)

the latter two computations should be abandoned as soon as possible.

4.7 Examples

We consider a few examples to illustrate the use and interaction of our lan-
guage features in familiar contexts. We choose examples that stress the parallel
binding and parallel case mechanisms of our design, since examples exhibiting
the use of parallel arrays and comprehensions are covered well in the existing
literature.

A Parallel Typechecking Interpreter. First we consider an extended ex-
ample of writing a parallel typechecker and evaluator for a simple model pro-
gramming language. The language in question, which we outline below, is a
pure expression language with some basic features including boolean and arith-
metic operators, conditionals, let bindings, and function definition and appli-
cation. A program in this language can, as usual, be represented as an ex-
pression tree. Both typechecking and evaluation can be implemented as walks
over expression trees, in parallel when possible. Furthermore, the typechecking
and evaluation can be performed in parallel with one another. In our exam-
ple, failure to type a program successfully implicitly cancels its simultaneous
evaluation.

While this is not necessarily intended as a realistic example, one might won-
der why parallel typechecking and evaluation is desirable in the first place. First,
typechecking constitutes a single pass over the given program. If the program
involves, say, recursive computation, then typechecking might finish well before
evaluation. If it does, and if there is a type error, the presumably doomed eval-
uation will be spared the rest of its run. Furthermore, typechecking touches all
parts of a program; evaluation might not.

Our language includes the following definition of types:

datatype ty = NatTy | BoolTy | ArrowTy of ty * ty

For the purposes of yielding more useful type errors, we assume each expression
consists of a location (some representation of its position in the source program)
and a term (its computational part). These are represented by the following
datatype definition:

136 M. Fluet et al.

datatype term =
NatTerm of int

| AddTerm of exp * exp
| BoolTerm of bool
| IfTerm of exp * exp * exp
| VarTerm of var
| LetTerm of var * exp * exp
| LamTerm of var * ty * exp
| AppTerm of exp * exp
...

withtype exp = loc * term

We assume that variables in the parse tree are uniquely identified.
For typechecking, we need a function that checks the equality of types. When

we compare two arrow types, we can compare the domains of both types in
parallel with comparison of the ranges. Furthermore, if either the domains or
the ranges turn out to be not equal, we can cancel the other comparison. Here
we encode this, in the ArrowTy case, as an explicit short-circuiting parallel
computation:

fun tyEq (ty1, ty2) =
case (ty1, ty2) of

(BoolTy, BoolTy) => true
| (NatTy, NatTy) => true
| (ArrowTy (ty1a, ty1r), ArrowTy (ty2a, ty2r)) =>

(pcase tyEq (ty1a, ty2a) & tyEq (ty1r, ty2r) of
false & ? => false

| ? & false => false
| true & true => true)

| _ => false

In practice, we could use the parallel-and operator |andalso| for the ArrowTy

case
tyEq (ty1a, ty2a) |andalso| tyEq (ty1r, ty2r)

which would desugar into the expression explicitly written above.
We present a parallel typechecker as a function typeOfExp that consumes

an environment (a map from variables to types) and an expression. It returns
either a type, in the case that the expression is well-typed, or an error, in
the case that the expression is ill-typed. We introduce a simple union type to
capture the notion of a value or an error.

datatype ’a res = Ans of ’a | Err of loc

The signature of typeOfExp is

val typeOfExp : env * exp -> ty res

Programming in Manticore 137

We consider a few representative cases of the typeOfExp function. To
typecheck an AddTerm node, we can simultaneously check both subexpressions.
If the first subexpression is not of type NatTy, we can record the error and
implicitly cancel the checking of the second subexpression. The function behaves
similarly if the first subexpression returns an error. Note the use of a sequential
case inside a pval block to describe the desired behavior.

fun typeOfExp (G, e as (loc, term)) =
case term of

NatTerm _ => Ans NatTy
| AddTerm (e1, e2) =

let
pval rty2 = typeOfExp (G, e2)

in
case typeOfExp (G, e1) of

Ans NatTy =>
(case rty2 of

Ans NatTy => Ans NatTy
| Ans _ => Err (locOf e2)
| Err loc => Err loc)

| Ans _ => Err (locOf e1)
| Err loc => Err loc

end

The IfTerm case is similar to the AddTerm case. Its first component must
have type BoolTy, and its second and third components must have the same
type as one another.

| BoolTerm _ => Ans BoolTy
| IfTerm (e1, e2, e3) =

let
pval rty2 = typeOfExp (G, e2)
pval rty3 = typeOfExp (G, e3)

in
case typeOfExp (G, e1) of

Ans BoolTy =>
(case (rty2, rty3) of

(Ans ty2, Ans ty3) =>
if tyEq (ty2, ty3)

then Ans ty2
else Err (locOf e)

| (Err loc, _) => Err loc
| (_, Err loc) => Err loc)

| Ans _ => Err (locOf e1)
| Err loc => Err loc

end

In the Apply case, we require an arrow type for the first subexpression and
the appropriate domain type for the second.

138 M. Fluet et al.

| ApplyTerm (e1, e2) =
let

pval rty2 = typeOfExp (G, e2)
in

case typeOfExp (G, e1) of
Ans (ArrowTy (ty11, ty12)) =>
(case rty2 of

Ans ty2 =>
if tyEq (ty2, ty11)

then Ans ty12
else Err (locOf e2)

| Err loc => Err loc)
| Ans _ => Err (locOf e1)
| Err loc => Err loc

end

Of course, when there are no independent subexpressions, no parallelism is
available:

| VarTerm var =>
(case envLookup (G, var) of

NONE => Err (locOf e)
| SOME ty => Ans ty)

| LamTerm (var, ty, e) =>
(case typeOfExp (envExtend (G, (var, ty)), e) of

Ans ty’ => Ans (ArrowTy (ty, ty’))
| Err loc => Err loc)

However, the representation of the environment (e.g., as balanced binary tree)
may enable parallelism in the envLookup and envExtend functions.

Throughout these examples, the programmer rather than the compiler is iden-
tifying opportunities for parallelism.

We have also written the typeOfExp function to report the earliest error
when one exists. If we wished to report any error when multiple errors exist,
then we could use a parallel case:

| ApplyTerm (e1, e2) =
(pcase typeOfExp (G, e1) & typeOfExp (G, e2) of

Ans ty1 & Ans ty2 =>
(case ty1 of

ArrowTy (ty11, ty12) =>
if tyEq (ty11, ty2)

then Ans ty12
else Err (locOf e2)

| _ => Err (locOf e1))
| Err loc & ? => Err loc
| ? & Err loc => Err loc)

Programming in Manticore 139

For evaluation, we need a function to substitute a term for a variable in
an expression. Substitution of closed terms for variables in a pure language
is especially well-suited to a parallel implementation. Parallel instances of
substitution are completely independent, so no subtle synchronization or
cancellation behavior is ever required. Parallel substitution can be accomplished
by means of our simplest parallel construct, the parallel tuple. We show a few
cases here.

fun substExp (t, x, e as (p, t’)) =
(p, substTerm (t, x, t’))

and substTerm (t, x, t’) =
case t’ of

NumTerm n => NumTerm n
| AddTerm (e1, e2) =>

AddTerm (| substExp (t, x, e1),
substExp (t, x, e2) |)

| BoolTerm b => BoolTerm b
| IfTerm (e1, e2, e3)

IfTerm (| substExp (t, x, e1),
substExp (t, x, e2),
substExp (t, x, e3) |)

(* ... *)

Like the parallel typechecking function, the parallel evaluation function
simultaneously evaluates subexpressions. Since we are not interested in identi-
fying the first runtime error (when one exists), we use a parallel case:

exception EvalError
fun evalExp (p, t) =
case t of

NumTerm n => NumTerm n
| AddTerm (e1, e2) =>

(pcase evalExp e1 & evalExp e2 of
NumTerm n1 & NumTerm n2 => NumTerm (n1 + n2)

| otherwise => raise EvalError)

The IfTerm case is notable in its use of speculative evaluation of both branches.
As soon as the test completes, the abandoned branch is implicitly canceled.

| IfTerm (e1, e2, e3) =>
let

pval v2 = evalExp e2
pval v3 = evalExp e3

in
case evalExp e1 of

BoolTerm true => v2
| BoolTerm false => v3
| _ => raise EvalError

end

140 M. Fluet et al.

We conclude the example by wrapping typechecking and evaluation together
into a function that runs them in parallel. For this language, type checker, and
evaluator, it is the case that a well-typed program cannot raise EvalError. If
the typechecker discovers an error, the evaluation is implicitly cancelled. Note
that even if the evaluation function raises an EvalError exception before the
typechecking function returns an error, then the execution of the typechecking
function continues until it returns an error (at which point, the first match rule
applies). If the typechecking function returns any type at all, we simply discard
it and return the value returned by the evaluator.

fun typedEval e : term res =
pcase typeOfExp (emptyEnv, e) & evalExp e of

Err loc & ? => Err loc
| Ans _ & v => Ans v

Parallel Game Search. We now consider the problem of searching a game
tree in parallel. This has been shown to be a successful technique by the Cilk
group for games such as Pousse [2] and chess [12].

For simplicity, we consider the game of tic-tac-toe. Every tic-tac-toe board is
associated with a score: 1 if X holds a winning position, ˜1 if O holds a winning
position, and 0 otherwise. We use the following polymorphic rose tree to store a
tic-tac-toe game tree.

datatype ’a rose_tree =
RoseTree of ’a * ’a rose_tree parray

Each node contains a board and the associated score, and every path from the
root of the tree to a leaf encodes a complete game.

A player is either of the nullary constructors X or O; a board is a parallel
array of nine player options, where NONE represents an empty square.

datatype player = X | O
type board = player option parray

Extracting the available positions from a given board is written as a parallel
comprehension as follows:

fun availPositions (b: board) : int parray =
[| i | s in b, i in [| 0 to 8 |] where isNone s |]

Generating the next group of boards given a current board and a player to
move is also a parallel comprehension:

fun succBoards (b: board, p: player) : board parray =
[| mapP (fn j => if i = j then SOME p else b!j)

[| 0 to 8 |]
| i in availPositions b |]

With these auxiliaries in hand we can write a function to build the full game
tree using the standard minimax algorithm, where each player assumes the op-
ponent will play the best available move at the given point in the game.

Programming in Manticore 141

fun maxP a = reduceP (fn (x, y) => max (x, y)) ˜1 a
fun minP a = reduceP (fn (x, y) => min (x, y)) 1 a
fun minimax (b: board, p: player) : board rose_tree =
if gameOver b

then RoseTree ((b, boardScore b), [| |])
else let

val ss = succBoards (b, p)
val ch =
[| minimax (b, flipPlayer p) | b in ss |]

val chScores = [| treeScore t | t in ch |]
in

case p of
X => Rose ((b, maxP chScores), ch)

| O => Rose ((b, minP chScores), ch)
end

Note that at every node in the tree, all subtrees can be computed indepen-
dently of one another, as they have no interrelationships. Admittedly, one would
not write a real tic-tac-toe player this way, as it omits numerous obvious and
well-known improvements. Nevertheless, as written, it exhibits a high degree of
parallelism and performs well relative both to a sequential version of itself in
Manticore and to similar programs in other languages.

Using alpha-beta pruning yields a somewhat more realistic example. We im-
plement it here as a pair of mutually recursive functions, maxT and minT:

fun maxT (b, alpha, beta) =
if gameOver board

then RoseTree ((b, boardScore b), [| |])
else let

val ss = succBoards (b, p)
val t0 = minT (ss!0, alpha, beta)
val alpha’ = max (alpha, treeScore t0)
fun loop i =
if i = lengthP ss

then [| |]
else let

pval ts = loop (i + 1)
val ti = minT (ss!i, alpha’, beta)

in
if (treeScore ti) >= beta

then [| ti |] (* prune *)
else concatP ([| ti |], ts)

end
val ch = concatP ([| t0 |], loop 1)
val chScores = [| treeScore t | t in ch |]

in
Rose ((b, maxP chScores), ch)

end
and minT (b, alpha, beta) = (* symmetric *)

142 M. Fluet et al.

Alpha-beta pruning is an inherently sequential algorithm, so we must adjust it
slightly. This program prunes subtrees at a particular level of the search tree if
they are at least as disadvantageous to the current player as an already-computed
subtree. (The sequential algorithm, by contrast, considers every subtree com-
puted thus far.) We compute one subtree sequentially as a starting point, then
use its value as the pruning cutoff for the rest of the sibling subtrees. Those
siblings are computed in parallel by repeatedly spawning computations in an
inner loop by means of pval. Pruning occurs when the implicit cancellation of
the pval mechanism cancels the evaluation of the right siblings of a particular
subtree.

4.8 Conclusion

This section has discussed the implicit-parallelism mechanisms of Manticore.
Although many of these mechanisms appear simple, that is a significant contri-
bution to their appeal — they provide light-weight syntactic hints of available
parallelism, relieving the programmer from the burden of orchestrating the com-
putation. Furthermore, since val declaration bindings and case expressions are
essential idioms in a functional programmer’s repertoire, providing implicitly-
threaded forms allows parallelism to be expressed in a familiar style.

5 Conclusion

These notes have described Manticore, a language (and implementation) for
heterogeneous parallelism, supporting parallelism at multiple levels. By com-
bining explicit concurrency and implicit parallelism into a common linguistic
and execution framework, we hope to better support applications that might
run on commodity processors of the near future, such as multimedia process-
ing, computer games, small-scale simulations, etc. As a statically-typed, strict,
functional language, Manticore (like other functional languages) emphasizes a
value-oriented and mutation-free programming model, which avoids entangle-
ments between separate threads of execution.

We have made steady progress on a prototype implementation of the Man-
ticore language. A significant portion of the implementation is completed, and
we have been able to run examples of moderate size (e.g. a parallel ray tracer).
Some of the more novel features (e.g., the pcase expression form) have only
preliminary implementations, without significant optimization.

Acknowledgments. Portions of this work performed while Matthew Fluet was
affiliated with the Toyota Technological Institute at Chicago.

Supported in part by National Science Foundation Grants 0811389 and
1010568 (transferred from 0811419). The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

Programming in Manticore 143

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent programming
in ERLANG, 2nd edn. Prentice Hall International (UK) Ltd., Hertfordshire (1996)

2. Barton, R., Adkins, D., Prokop, H., Frigo, M., Joerg, C., Renard, M., Dailey, D.,
Leiserson, C.: Cilk Pousse(1998), http://people.csail.mit.edu/pousse/
(viewed on March 20, at 2:45 PM)

3. Blelloch, G.E.: Programming parallel algorithms. Communications of the
ACM 39(3), 85–97 (1996)

4. Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipelstein, J., Zagha, M.: Imple-
mentation of a portable nested data-parallel language. Journal of Parallel and
Distributed Computing 21(1), 4–14 (1994)

5. Blelloch, G.E., Greiner, J.: A provable time and space efficient implementation of
NESL. In: Proceedings of the 1996 ACM SIGPLAN International Conference on
Functional Programming, pp. 213–225. ACM, New York (1996)

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5), 720–748 (1999)

7. Carlisle, M., Hendren, L.J., Rogers, A., Reppy, J.: Supporting SPMD execution
for dynamic data structures. ACM Transactions on Programming Languages and
Systems 17(2), 233–263 (1995)

8. Chakravarty, M.M.T., Keller, G.: More types for nested data parallel program-
ming. In: Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, pp. 94–105. ACM, New York (2000)

9. Chakravarty, M.M.T., Keller, G., Leshchinskiy, R., Pfannenstiel, W.: Nepal –
Nested Data Parallelism in Haskell. In: Sakellariou, R., Keane, J.A., Gurd, J.R.,
Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 524–534. Springer,
Heidelberg (2001)

10. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G.: Partial Vec-
torisation of Haskell Programs. In: Proceedings of the ACM SIGPLAN Workshop
on Declarative Aspects of Multicore Programming, ACM, New York (2008)

11. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:
Data Parallel Haskell: A status report. In: Proceedings of the ACM SIGPLAN
Workshop on Declarative Aspects of Multicore Programming, pp. 10–18. ACM,
New York (2007)

12. Dailey, D., Leiserson, C.E.: Using Cilk to write multiprocessor chess programs. The
Journal of the International Computer Chess Association (2002)

13. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clus-
ters. In: Proceedings of the Sixth Symposium on Operating Systems Design and
Implementation, pp. 137–150 (December 2004)

14. Demaine, E.D.: Higher-order concurrency in Java. In: Proceedings of the Parallel
Programming and Java Conference (WoTUG20)., pp. 34–47 (April 1997), http:
//theory.csail.mit.edu/˜edemaine/papers/WoTUG20/

15. Flatt, M., Findler, R.B.: Kill-safe synchronization abstractions. In: Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2004), pp. 47–58 (June 2004)

16. Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Status Report: The
Manticore Project. In: Proceedings of the 2007 ACM SIGPLAN Workshop on ML,
pp. 15–24. ACM, New York (2007)

17. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: A heterogeneous
parallel language. In: Proceedings of the ACM SIGPLAN Workshop on Declarative
Aspects of Multicore Programming, pp. 37–44. ACM, New York (2007)

144 M. Fluet et al.

18. Gansner, E.R., Reppy, J.H.: A Multi-threaded Higher-order User Interface Toolkit,
Software Trends, vol. 1, pp. 61–80. John Wiley & Sons, Chichester (1993)

19. Gansner, E.R., Reppy, J.H. (eds.): The Standard ML Basis Library. Cambridge
University Press, Cambridge (2004)

20. Gaudiot, J.L., DeBoni, T., Feo, J., Bohm, W., Najjar, W., Miller, P.: The Sisal
model of functional programming and its implementation. In: Proceedings of the
2nd AIZU International Symposium on Parallel Algorithms / Architecture Synthe-
sis (pAs 1997), pp. 112–123. IEEE Computer Society Press, Los Alamitos (1997)

21. Hammond, K.: Parallel SML: a Functional Language and its Implementation in
Dactl. The MIT Press, Cambridge (1991)

22. Hauser, C., Jacobi, C., Theimer, M., Welch, B., Weiser, M.: Using threads in in-
teractive systems: A case study. In: Proceedings of the 14th ACM Symposium on
Operating System Principles, pp. 94–105 (December 1993)

23. Hofstee, H.P.: Cell broadband engine architecture from 20,000 feet (Au-
gust 2005), http://www-128.ibm.com/developerworks/power/library/
pa-cbea.html

24. Jones, M.P., Hudak, P.: Implicit and explicit parallel programming in Haskell. Tech.
Rep. Research Report YALEU/DCS/RR-982, Yale University (August 1993)

25. Leroy, X.: The Objective Caml System (release 3.00) (April 2000), http://caml.
inria.fr

26. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. ACM Trans-
actions on Programming Languages and Systems 22(2), 340–377 (2000)

27. Leshchinskiy, R., Chakravarty, M.M.T., Keller, G.: Higher order flattening. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3992, pp. 920–928. Springer, Heidelberg (2006)

28. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In:
Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Sys-
tems, pp. 33–70. North-Holland, Amsterdam (1963), citeseer.ist.psu.edu/
mccarthy63basis.html

29. MLton: Concurrent ML, http://mlton.org/ConcurrentML
30. Mohr, E., Kranz, D.A., Halstead Jr., R.H.: Lazy task creation: a technique for

increasing the granularity of parallel programs. In: Conference record of the 1990
ACM Conference on Lisp and Functional Programming, pp. 185–197. ACM, New
York (1990)

31. Nikhil, R.S.: ID Language Reference Manual. Laboratory for Computer Science.
MIT, Cambridge (1991)

32. Nikhil, R.S.: Arvind: Implicit Parallel Programming in pH. Morgan Kaufmann
Publishers, San Francisco (2001)

33. Olukotun, K., Hammond, L.: The future of microprocessors. ACM Queue 3(7)
(September 2005), http://www.acmqueue.org

34. Peyton Jones, S., Reid, A., Henderson, F., Hoare, T., Marlow, S.: A semantics for
imprecise exceptions. In: Proceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 1999), pp. 25–36. ACM, New
York (1999)

35. Reeves, W.T.: Particle systems — a technique for modeling a class of fuzzy objects.
ACM Transactions on Graphics 2(2), 91–108 (1983)

36. Reppy, J., Russo, C., Xiao, Y.: Parallel Concurrent ML. In: Proceedings of the
14th ACM SIGPLAN International Conference on Functional Programming, pp.
257–268. ACM, New York (2009)

Programming in Manticore 145

37. Reppy, J., Xiao, Y.: Toward a parallel implementation of Concurrent ML. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Declarative Aspects of Multicore
Programming. ACM, New York (2008)

38. Reppy, J.H.: CML: A higher-order concurrent language. In: Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 1991), pp. 293–305. ACM, New York (1991)

39. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press,
Cambridge (1999)

40. Russell, G.: Events in Haskell, and how to implement them. In: Proceedings of the
Sixth ACM SIGPLAN International Conference on Functional Programming, pp.
157–168 (September 2001)

41. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pp.
204–213. ACM, New York (1995)

42. Shaw, A.: Data Parallelism in Manticore. Master’s thesis, University of Chicago
(July 2007), http://manticore.cs.uchicago.edu

43. Yi, K.: An abstract interpretation for estimating uncaught exceptions in Standard
ML programs. Sci. Comput. Program. 31(1), 147–173 (1998)

44. Young, C., Szymanski, Y.N,L., Reppy, T., Pike, J., Narlikar, R., Mullender, G.,
Grosse, S.E.: Protium, an infrastructure for partitioned applications. In: Proceedings
of the Twelfth IEEE Workshop on Hot Topics in Operating Systems (HotOS-XII),
pp. 41–46 (January 2001)

45. Ziarek, L., Schatz, P., Jagannathan, S.: Stabilizers: a modular checkpointing ab-
straction for concurrent functional programs. In: Proceedings of the 11th ACM
SIGPLAN International Conference on Functional Programming, pp. 136–147.
ACM, New York (2006)

Non-monadic Models of Mutable References

Péter Diviánszky

Eötvös Loránd University, Fac. of Informatics, Programming Lang. and Compilers
Dep., Budapest, Hungary
divip@aszt.inf.elte.hu

Abstract. Pointers are known as mutable references in pure functional
programming languages. In Haskell, IO-references and ST-references are
the well-known monadic models of references. This paper propose a
model of mutable references based on unique heaps. This model put less
restriction on the evaluation order of basic reference operations. More-
over it has simpler, more tractable semantics and it supports features
like shared references between heaps and virtual union of heaps.

The proposed model needs uniqueness typing. This need could be seen
as a drawback but it can also be seen as a motivation for the spread of
uniqueness typing in functional languages.

1 Introduction

Mutable references are well known in functional programming languages; they
are called pointers in imperative languages. From now on, we will call mutable
references just references.

Pointers and references are sources of several programming errors. One goal
of this paper to give a safer model of references. In the pure functional language
Haskell[15], references already have the following two safety properties:

– Referential transparency holds even for references.
– The are no references similar to null-pointers, so errors about null-pointers

do not appear.

Haskell has monadic reference models which means that the functions on ref-
erences produce computations rather than values (this is explained in Sect. 2).
In the pure functional language Clean[17] there is a possibility for non-monadic
models of references. These models use unique heaps which are explained in Sect.
3. Heap values represent part of the computer memory.

The difference between monadic and unique-state models is already discussed.
In [20], Philip Wadler says that there is a tradeoff between monads and the
unique world model (he compares the IO-monad with a unique-world IO model
used in Clean): “[Unique worlds] require a sophisticated type system, and forces
the code to be cluttered by passing around the current state. . . . Although
mentioning the state explicitly is something of a pain when there is just one
state, it may become a boon if one fragments the state into separate components

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 146–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Non-monadic Models of Mutable References 147

representing portions of the world that do not interact. . . . Further practical
experience is needed to determine where the balance lies.”

This paper shows how to split one component of the world, the heap. More-
over, we will also fragment the heap into several independent pieces. The eval-
uation order between operations on two distinct heaps is not fixed, which is
an advantage over monadic models of references where the evaluation order of
composed computations is fixed.

Once we have independent heap values, it is possible to explore more exciting
features like shared references between heaps and virtual union of heaps (dis-
cussed in Sect. 3.8 and Sect. 3.9). These operations help to write safer pointer
algorithms (examples can be found in Sect. 4).

1.1 Overview

In Sect. 2 the monadic models of IO-references and ST-references are introduced.
The proposed non-monadic model is described in Sect. 3.
It is not easy to design a new model of references because lots of different fea-

tures can be supported by the model. The goal is to have a reference model with
as many features as possible without sacrificing the simplicity of the semantics
of the model, so I decided to include all but one the examined features.

The implementation is complicated, so we will start with a simple model, and
add features one by one until we have reached the model with all the wanted
features.

The examined features are the following:

feature name introduced in included in the proposed model
heap seeds Sect. 3.3 No
homogeneous heaps Sect. 3.5 Yes
separate seeds Sect. 3.6 Yes
deletable references Sect. 3.7 Yes
shared references Sect. 3.8 Yes
union of heaps Sect. 3.9 Optional

These are independent features, but the existence of all possible combinations
of these features is not justified in this paper.

For each model a fast implementation and a pure implementation exist with
the same interface. The pure implementations are much simpler and they help
to understand the semantics of the models. Sect. 3.4 describes the background
of the pure implementations of the examined models.

In Sect. 3.2 a common interface is defined which fits for each model to be
examined.

Section 4 shows the expressive power of the proposed model by applications.

2 Monadic Models of References

In Haskell two types of references are defined in the base package[4]: IO-references
in the Data.IORef module and ST-references in the Data.STRef module. More-
over, several unified monadic models exist, see 2.3.

148 P. Diviánszky

IO-references and ST-references are monadic in the sense that their opera-
tions are computations. A computation has a side-effect and a return value. The
return value of a computation cannot be used directly, which prevents the spread
of side-effects in the program. Computations are values which can be composed
into more complex computations. The structure of computations can be mathe-
matically described as a monad, but the mathematical background is not needed
to understand this section.

2.1 IO-References

The interface of IO-references is the following:

newIORef :: a → IO (IORef a)
readIORef :: IORef a → IO a
writeIORef :: IORef a→ a→ IO ()

IORef σ is the type of IO-references where σ is the type of the referred value. IO
σ is the type of IO-computations, which are computations with arbitrary side
effects; σ is the type of the return value of the computation. newIORef maps
a value to a computation which creates a reference to the value and returns
the reference. readIORef maps a reference to a computation which reads the
reference and returns the read value. writeIORef maps a reference and a value
to a computation which writes the reference with the value and returns a unit1

value. The exact semantics of IO-references are given in [10] and [19].
There is a syntactic sugar called do-notation2, with which one can com-

pose computations into more complex computations. The following function
exchanges the referred values of two given references:

swap :: IORef a→ IORef a→ IO ()
swap x y = do
a← readIORef x
b← readIORef y
writeIORef x b
writeIORef y a

Let us see a simple application of swap:

main = do
x← newIORef 13
y← newIORef 14

a← readIORef x
print a -- prints 13
swap x y
a← readIORef x
print a -- prints 14

1 A unit value is returned in computations which are invoked only for its side effects.
2 Do-notation can be read intuitively; the semantics of do-notation is given in [14].

Non-monadic Models of Mutable References 149

Referential transparency says that same expressions should yield the same
values. Referential transparency holds here because the readIORef x expressions
denote the same computation of reading the variable x, and the two print a
expressions are different because the variable a is defined twice3.

2.2 ST-References

ST-references are introduced in [11]. The type of ST-references can separate
different reference classes and encapsulation of references is also possible. The
interface of ST-references is the following:

newSTRef :: a → ST t (STRef t a)
readSTRef :: STRef t a → ST t a
writeSTRef :: STRef t a→ a→ ST t ()

runST :: (∀t.ST t a)→ a

STRef τ σ is the type of ST-references. σ is the type of the referred value and τ
is always a type variable4. We call τ the tag of the reference.5 The only purpose
of the tag is to separate different reference classes.

ST τ σ is the type of an ST-computation. σ is the type of the return value
of the computation and τ is a type variable which we call the tag of the ST-
computation. An ST-computation tagged with τ can perform very limited side
effects: it can only manipulate references tagged with τ .6

The newSTRef, readSTRef and writeSTRef functions perform the same task
as the corresponding functions of IO-references.

runST is explained in 2.2.

Reference Classes. One can separate classes of ST-references via their tags.
For example, the following functions swaps the referred values of two references
with the same tag:

swap′ :: STRef t a→ STRef t a→ ST t ()
swap′ x y = do
a← readSTRef x
b← readSTRef y
writeSTRef x b
writeSTRef y a

The type of swap is the most general type which can be given because the typing
rules of the do-notation unifies the tags between the combined computations.
3 The second definition of a shadows the first variable a.
4 This type variable could be instantiated, i.e. it could be replaced by a more specific

type in applications, but the interface of ST-references provides meaningful opera-
tions only in case of not instantiated variables.

5 It is originally called state variable, but we put the emphasis on classes of references
rather than on computations with inner states.

6 It can also manipulate other data structures like ST-arrays but we are interested in
references in this paper.

150 P. Diviánszky

Functional Encapsulation. There is a possibility to encapsulate references
into values.

As an example we will see the encapsulation of references used in the Fibonacci
number computation. First let us see the function which maps an integer to an
ST-computation which computes the corresponding Fibonacci number:

fib :: Int→ ST t Integer
fib n = do
x← newSTRef 0
y← newSTRef 1

replicateM n $ do
a← readSTRef x
b← readSTRef y
writeSTRef x b
writeSTRef y (a + b)

readSTRef x

The computation creates two ST-references, x and y and replicates a computa-
tion which updates x and y applying well-known computation steps. Finally it
returns the value referred by x.

The type of the computation is ST t Integer. Note that the final Integer
value does not depend on the tag t. In this case the return value can be safely
extracted with the runST function:

pureFib :: Int→ Integer
pureFib n = runST (fib n)

runST is a function in the interface of ST-references7:

runST :: (∀t.ST t a)→ a

The short explanation of the type of runST is that the type variable a cannot be
instantiated by a type which contains t because a appears at least once outside
of the scope of t.

2.3 Monad-Independent Interfaces

One can define monad-independent interfaces for references with type
classes. Such interfaces are already defined in the stateref package[5], in
the Data.Ref.Universal module in the ArrayRef package[3], and in the
Control.Monad.Adaptive.Ref module in the Adaptive package[2].

The interface defined in Data.Ref.Universal is the most succinct, it consists
of one type class8:

7 In fact, runST is defined in another module, Control.Monad.ST.
8 Another type class is defined for unboxed references which is not discussed here.

Non-monadic Models of Mutable References 151

class Monad m⇒ Ref m r where
newRef :: a→ m (r a)
readRef :: r a→ m a
writeRef :: r a→ a→ m ()

The corresponding instances:

instance Ref IO IORef where
newRef = newIORef
readRef = readIORef
writeRef = writeIORef

instance Ref (ST s) (STRef s) where
newRef = newSTRef
readRef = readSTRef
writeRef = writeSTRef

The interface defined in Control.Monad.Adaptive.Ref is similar to the interface
defined in Data.Ref.Universal.

The interface defined in the stateref package has a more refined structure.
Separate type classes are defined for reference creation, read and write:

class NewRef r m a | r→ a where
newReference :: a→ m r

class ReadRef r m a | r→ a where
readReference :: r→ m a

class WriteRef r m a | r→ a where
writeReference :: r→ a→ m ()

These type classes have three type parameters: r is the type of the references,
m is the type of the monad in which the actual computation occur, and a is
the type of the referred values. a is determined by r, this is expressed by the
functional dependency[9] r→ a after the vertical bars.

Lots of instances are defined for these type classes in the stateref package.
Three of them are:

instance ReadRef (IORef a) IO a
instance ReadRef (TMVar a) IO (Maybe a)
instance ReadRef (STRef s a) (ST s) a

The second instance could not be defined in the simpler interface defined in
Data.Ref.Universal because the type of the referred value is not equal to the
type parameter of the reference type constructor.

3 References Based on Unique Heaps

After the introduction of the well-known monadic models of references, we will
explore non-monadic models of references. This section is the main contribution
of the paper together with the examples described in the next section.

152 P. Diviánszky

As stated in the overview in Sect. 1.1, we will start with a simple model, and
add features one by one until we reach a sufficiently complex model. Sect. 3.1 is
a short introduction to uniqueness typing. Sect. 3.2 defines a common interface
for the examined models. The following subsections introduce the mentioned
features with the exception of Sect. 3.4 which gives the background of the pure
implementations of the examined models.

3.1 Uniqueness Typing

In the following models of references, heap values cannot be used arbitrarily by
the programmer. The restrictions on heap values can be expressed in a so-called
uniqueness type system.

The uniqueness type system developed in Nijmegen [6] is a special extension
of the Milner/Hindley/Mycroft type inferencing/checking system.

The use of uniqueness typing in Haskell raise several questions. I try to answer
these questions in the following subsections.

Introduction to Uniqueness Typing. The first question we need to consider
what the programmer should know about uniqueness typing.

Uniqueness typing put more restrictions on functional programs via type at-
tributes. Uniqueness typing can be seen as an extra phase after Hindley-Milner
typing, so every program which is typeable in the uniqueness type system is also
typeable if we omit the uniqueness type attributes.

This means that reading code which is typeable with uniqueness type at-
tributes is as simple as reading it without uniqueness attributes while writing
code typeable with uniqueness type attributes one has to obey more rules.

The uniqueness type system described in [6] has polymorphic type attributes,
but in this paper we use only the monomorphic star attribute. Values with type
∗σ are unique. Unique values should be used in a single-threaded way, with at
most a single reference to it.

For example, suppose that the function f has type ∗ Heap → (Int, ∗ Heap).
Suppose that we have an application f h. Then h should have type ∗ Heap and
the h value may not be referenced in other application. Suppose that we have a
binding (i, h′) = f h. Then h′ has type ∗Heap so it should be referenced at most
once in an application which needs a unique value.

The benefit of uniqueness typing is that if a value has a unique type (like the
heaps in this paper), a function applied to it can update the value in-place in
the object code. In-place updates improve the efficiency of functional languages
while maintaining referential transparency.

Practical Aspects. Uniqueness typing is not a supported extension to the
Haskell language. The main obstacles for such an extension are the little mo-
tivation to use it, and the complex interaction between uniqueness typing and
other type system extensions. The simplified uniqueness typing described in [7]
recently brings this extension closer.

Non-monadic Models of Mutable References 153

A more viable option is to use Clean with its uniqueness type system.9 I did
not have this option in this paper because I use the type families type system
extension which is not supported by the Clean compiler. However, type families
are used only in the common interface, so in a simplified setting (without multiple
models, in case of a concrete application) type families are not needed.

Here I chose a third option. The uniqueness properties of the source code in
this section and in the examples section was tested in runtime.10 Testing cannot
replace type checking but in this case it claimed to have the following property:
Until a program does not halt with a uniqueness runtime error, every destructive
update is as safe as in the type checked case.

Discussion. Using uniqueness typing has its drawbacks and advantages which
is discussed already in the introduction in Sect. 1. Here I put another remark.

The drawbacks are not only the extra complexity in typing but also the fact
that uniqueness typing invalidates some natural program transformation rules.
From this point of view, a functional program with unique values has a lower
abstraction level.

On the other side, every program which is typeable with uniqueness type
attributes can also be typed without it, so the program with unique values
is purely functional but it obeys some extra rules which allows the compiler to
produce more efficient code from it. From this point of view, a functional program
with unique values is a normal high-level functional program with some extra
information.

3.2 The Common Interface

First a common interface is defined which fits for each model of references to be
examined.

The common interface consists of four basic type classes introduced here:
HeapRef, NewRef, Split and NewSeed. An additional type class will be defined
in Sect. 3.9 and several auxiliary functions will be added in Sect. 3.7.

The type variables in the type classes have the following meaning:

type variable denoted objects
h heaps
r references
s seeds (explained in this section)
v referred values
i type-level integers (explained in Sect. 3.8)

Let us see the four basic type classes.
9 The next version of the Clean compiler might allow mixed Clean and Haskell sources

too.
10 The runtime testing of uniqueness attributes was done by assigning a unique iden-

tifier to each unique value. For this purpose I had to reimplement the type class
instances defined in Sect. 3.2. I omit further details here.

154 P. Diviánszky

Reference Read and Write Functions. The HeapRef type class contains the
reference read and write functions:

class HeapRef h r where

type Value h r

readRef :: r→ ∗h→ (Value h r, ∗h)
writeRef :: r→ Value h r→ ∗h→ ∗h

The HeapRef class is parametrized by the type of heaps and the type of references,
because these two types is not determined by each-other in general. However, the
type of referred values is always determined by h and r together, but cannot be
expressed with them in general, so we will use an associated type synonym[18] for
it: Value h r. A functional dependency could also be used instead of the associated
type synonym as in the stateref package shown in Sect. 2.3.

Stars in types are uniqueness type attributes: heaps should be used in a single-
threaded way, see Sect. 3.1.

readRef returns the referred value of a given reference in a given heap; it
also returns the given heap unchanged. The heap to be read cannot be used for
other purposes, that is why a new, unique and unchanged heap is returned by
readRef. writeRef replaces the referred value of a given reference in a given
heap.

One can define modifyRef in terms of readRef and writeRef:

modifyRef :: HeapRef h r⇒ r→ (Value h r→ Value h r)→ ∗h→ ∗h
modifyRef r f h = writeRef r (f v) h′ where

(v, h′) = readRef r h

modifyRef gets a reference, a value-modifying function and a heap and modifies
the referred value of the given reference with the function in the heap.

Reference Creation. The NewRef type class contains the reference creation
function:

class NewRef s r where

type InitValue s r

newRef :: InitValue s r→ ∗s→ (r, ∗s)

Reference creation is separated from the reference read and write operations in a
distinct type class because in some models heaps cannot provide new references.

InitValue s r is an associated type synonym similar to Value h r.
InitValue s r and Value h r are equal in some of the models but not in all.

The unique state for reference creation will be called seed. In the heap-seeds
model defined in Sect. 3.3, heaps are seeds also.

newRef returns a fresh reference which is not already in domain of any heap.
newRef also extends every heap with the new reference and the given referred
value (this will not cause problems as we will see).

Non-monadic Models of Mutable References 155

Unique State Splitting. The Split type class contains the function split2
which splits a unique state:

class Split s where

split2 :: ∗s→ (∗s, ∗s)

Note that after the split the original state cannot be used any more because the
uniqueness type system prevents its usage.

The idea behind unique state splitting is that in some models seeds are split-
table (but not in all of them). Splittable seeds are handy in recursive functions
which consume fresh references.

Seed Creation. The NewSeed type class provides a function for seed creation:

class NewSeed s h where

newSeed :: ∗h→ (∗s, ∗h)

With newSeed one can create new seeds from a given heap. The idea between
NewSeed is that in some models it is possible to create seeds from heaps.

3.3 Heap Seeds

First we define a model of references similar to ST-references.11 In this model
one have two data types, Refhs v t for references (the v and t type parameters
are explained later) and Heaphs t for heaps. One can read, write and create
references with heaps, so we will have the following two instances:

instance HeapRef (Heaphs t) (Refhs v t)
instance NewRef (Heaphs t) (Refhs v t)

The name of the model is heap seeds because heaps are seeds (i.e. sources of new
references) in this model. We will use “heap seeds” as a name of feature too:
each model in which heaps are seeds supports the “heap seeds” feature. Our first
model supports the “heap seeds” feature and no other feature introduced later,
so it is a simple model in this sense.

First we give the fast implementation of the model. Fast means here (and also
later in this paper) that the creation of a new reference, and writing and reading
a reference are constant-time operations.

The definitions of the data types are simple enough:

newtype Refhs v t = Refhs (IORef v)

A reference is modeled with an IO-reference. v is the type of the referred value.
The tag t is a phantom type variable12 which helps to relate references to par-
ticular heaps.
11 It is also possible to define a heap-based model of references similar to IO-references,

but we omit that step because that model is too restrictive for out purposes.
12 A phantom type variable is a type variable which appears only on the left hand side

of a data type definition. Phantom type variables are used only in the static type
checking of expressions.

156 P. Diviánszky

data Heaphs t = Heaphs

Heaps are implemented with nothing at all, because the actual referred values
are stored in the references (in the fast implementation).

Let us see the HeapRef instance definition:

instance HeapRef (Heaphs t) (Refhs v t) where

type Value (Heaphs t) (Refhs v t) = v

readRef (Refhs r) Heaphs = unsafePerformIO$ do
v← readIORef r
return (v, Heaphs)

writeRef (Refhs r) v Heaphs = unsafePerformIO $ do
writeIORef r v
return Heaphs

The Value associated type synonym equals to the first parameter of the Refhs
type constructor. In this model the type of references determines the type of the
referred values but it is not the case in other models.

readRef and writeRef reads and writes the underlying IO-references. Both
operations use unsafePerformIOwhich turns an IO-computation into its return
value. We need unsafePerformIO here because we are not in an IO-monad but
we would like to cause some side effect.

For every use of unsafePerformIO a proof should be given that its actual
use is safe. A claim about it can be found in 3.4. A vague explanation is that
the heap is used in a single-threaded way in all operation, so we have threaded
heap objects at runtime. Suppose that the t tag is unique for heap objects, i.e. if
two heaps have the same tag then one heap was created from the other with a
sequence of readRef, writeRef or newRef operations. References tagged with t
store the values of the heap object tagged with t at every moment at runtime.
So we have to destructive update the reference value when we write a reference.
The unsafePerformIO in reference read can be explained also in a similar way.

The NewRef instance definition is the following:

instance NewRef (Heaphs t) (Refhs v t) where

type InitValue (Heaphs t) (Refhs v t) = v

newRef v Heaphs = unsafePerformIO$ do
r← newIORef v
return (Refhs r, Heaphs)

The definition of InitValue is equal to the definition of Value in this model.
newRef creates a new IO-reference with the help of unsafePerformIO.

The only function which is needed to turn this model usable is a function
which creates a new unique heap:

newHeaphs :: (∀t.∗Heaphs t→ a)→ a
newHeaphs f = f Heaphs

Non-monadic Models of Mutable References 157

newHeaphs maps a function to its return value. The parameter function gets a
heap for free from newHeaphs. Note that a cannot be instantiated with a type
which contains t because a is outside of the scope of t. This makes possible the
encapsulation of references as explained in Sect. 2.2 .

Running Example (v1). Will use doubly linked list implementations as a
running example to show the differences between the models. Let us see the
running example for heap seeds.

We need two data structure, one will point to the ends of the list and the
other will be the list node.

data DList1 a
= Empty1
| ∀t.NonEmpty1

{first1 :: Refhs (DListNode1 t a) t
, last1 :: Refhs (DListNode1 t a) t
, nodes1 :: Heaphs t
}

DList1 is the main data structure for doubly linked lists. In case of non-empty
lists it contains a reference to first and last nodes in the lists and a heap. The
tag is encapsulated into the list; t is an existentially quantified type variable[13]
here.

data DListNode1 t a
= DListNode1

{previous1 :: Maybe (Refhs (DListNode1 t a) t)
, next1 :: Maybe (Refhs (DListNode1 t a) t)
, value1 :: a
}

DListNode1 is the data type of nodes. Each node contains two references which
points to the previous and next nodes, respectively, and a value.

(�) :: a→ DList1 a→ DList1 a
x � Empty1 = singleton1 x
x � (NonEmpty1 r1 r2 n)

= NonEmpty1 r′1 r2 (modifyRef r1 f n′) where

(r′1, n
′) = newRef v n

v = DListNode1
{previous1 = Nothing
, next1 = Just r1
, value1 = x
}

f x = x {previous1 = Just r′1}

(�) inserts an elem into the beginning of the list. In case of non-empty lists it
performs the following operations: It creates a new reference, builds a new node,

158 P. Diviánszky

rewrites the previous1 field of first reference with the new node, and replaces
the first reference.

singleton1 :: ∀a.a→ DList1 a
singleton1 x = newHeaphs f where

f :: Heaphs t→ DList1 a
f h = NonEmpty1

{first1 = r
, last1 = r
, nodes1 = h′

} where

(r, h′) = newRef (DListNode1 Nothing Nothing x) h

singleton1 creates a singleton list. It can use the newHeaphs function because
the tag is encapsulated in the list and cannot escape.

3.4 Pure Implementation

The exact semantics of references can be given by a pure implementation. The
pure implementation is quite simple, which is an advantage compared to the
monadic models of references.

Heaps can be modeled with functions with finite domain so it is natural to
use finite maps in the pure implementation.13 For a short introduction to finite
maps, here is a simplified interface of them:

empty :: Map k a
keys :: Map k a→ [k]

lookup :: Ord k⇒ k→ Map k a→ Maybe a
insert :: Ord k⇒ k→ a→ Map k a→ Map k a
delete :: Ord k⇒ k→ Map k a→ Map k a

Map κ σ is the type of finite maps. κ is the type of map keys and σ is the map
values. A finite map represents a function with a finite domain which maps keys
to values. An ordering should be exists on keys, but for our purposes equality
would be also enough. empty represents a function with an empty domain. keys
returns the domain of the represented function. lookup applies the function
represented by a given map on a given key. lookup returns a Maybe a value14;
it returns Nothing if the key is not in the domain. insert returns a map which
represents a function which is either extended with a given key and value or
updated on the given key with the value. delete removes a given key from the
function represented by the given map.

Let us see the pure implementation of references which support the “heap
seeds” feature but nothing else.
13 We could use association lists also but the interface of finite maps is closer to the

interface of references.
14 A value of type Maybe σ is either Nothing or Just v where v is a value of type σ.

Non-monadic Models of Mutable References 159

newtype Ref′hs v t = Ref′hs Integer

A reference has an identifying integer value which makes possible to distinguish
two references with the same tag. The type of the referred value and the tag are
phantom type variables. The referred value is not stored in the reference but in
the heap.

data Heap′hs t = Heap′hs Integer (Map Integer Any)

A heap is a finite map which represents the function which maps the identifiers
of references to referred values. The additional Integer value is used to generate
fresh keys for the map. An invariant property is that the keys of the map are
always less than this value. Note that this value is not strictly needed (it could
be defined as the maximum key of the map or 1 if the map is empty), but we
would like to put emphasize on the fact that the heap is used as a seed also.

Any is a data type defined in the GHC.Prim module in the ghc-prim package.
One can unsafely coerce any lifted type to it, and back. One could use dynamic
types here too. The difference would be that with dynamics runtime type check-
ing could be done at some cost. See the following documentation of the readRef
member.

instance HeapRef (Heap′hs t) (Ref′hs v t) where

type Value (Heap′hs t) (Ref′hs v t) = v

readRef (Ref′hs i) h@(Heap′hs m)
= case lookup i m of
Just x→ (unsafeCoerce x, h)

writeRef (Ref′hs i) v (Heap′hs s m)
= Heap′hs s (insert i (unsafeCoerce v) m)

The definition of Value is the same as in the fast implementation (it should be
the same).

readRef looks up the referred value of a given reference in a given heap. Note
that this function may not fail because every time a new reference is created a
corresponding referred value is stored in the heap with the same tag. The type
system guarantees that one can read a tagged reference in a heap with the same
tag.

writeRef inserts the given reference and referred value into the map.
Unfortunately this implementation is not quite pure because it uses an unsafe

type-casting function, unsafeCoerce. This is a shortcoming even if one can prove
that the actual use of unsafeCoerce is safe. To cure this shortcoming, we will
move on to other models of references.

instance NewRef (Heap′hs t) (Ref′hs v t) where

type InitValue (Heap′hs t) (Ref′hs v t) = v

newRef v (Heap′hs s m)
= (Ref′hs s, Heap

′
hs (s + 1) (insert s (unsafeCoerce v) m))

160 P. Diviánszky

The definition of InitValue is the same as in the fast implementation (it should
be the same).

newRef returns a fresh reference and extends the heap with the new reference
and a given referred value.

newHeap′hs :: (∀t.∗Heap′hs t→ a)→ a
newHeap′hs f = f (Heap′hs 1 empty)

New heaps are empty; the auxiliary value for creating fresh keys is initially 1.

The Correctness of the Fast Implementation. The following theorem for-
mulates the correctness of the fast implementation:

Theorem. Let P be a program which uses the pure implementation. Let P’ be
a similar program which uses the fast implementation. If P’ can be type checked
by the uniqueness type system of Clean, then the observable behaviour of P and
P’ is the same.

As we said before fast implementation of references means that the cre-
ation of a new reference, and writing and reading a reference are constant-time
operations.

The correct formulation of the theorem and the proof is future work.

3.5 Homogeneous Heaps

The primary cause that we could not give a completely pure implementation for
the previous model is that the heaps were not homogeneous, i.e. a heap could
store values with different types because the type of the values were determined
by the type of the keys instead of the heaps.

This section we introduce homogeneous heaps, where the type of the stored
values are determined by the type of the heaps. Whether this fact reduces the
abstraction power of the model is a subject of further investigation. The ap-
plications shown in Sect. 4 suggest that the expression power is not reduced
considerably.

The fast implementation of this model is similar to the fast implementation
of the previous. Let us see the pure implementation of the model which supports
“heap seeds” and “homogeneous heaps” but nothing else.

data Heaphom v t = Heaphom Integer (Map Integer v)

In case of homogeneous heaps the type of the heap is parametrized by the type
of the stored values.

newtype Refhom t = Refhom Integer

A reference is also just an integer. The type constructor is not parametrized by
the referred value (it could be but it is not necessary).

Non-monadic Models of Mutable References 161

instance HeapRef (Heaphom v t) (Refhom t) where

type Value (Heaphom v t) (Refhom t) = v

readRef (Refhom i) h@(Heaphom m) = case lookup i m of
Just x→ (x, h)

writeRef (Refhom i) v (Heaphom s m) = Heaphom s (insert i v m)

The referred value is now determined by the type of the heap. The definition
of readRef and writeRef is similar to the definition in the previous model. No
unsafeCoerce is needed this time.

The NewRef instance definition is similar to the definition in the simple tagged
model, without unsafeCoerce.

The definition of newHeaphom is similar to the definition in the simple tagged
model.

3.6 Separate Seeds

The previous models supported the “heap seeds” feature. Let us see the model
which supports the “separate seeds” and “homogeneous heaps” but nothing else.
Separate seeds means that the creation of references is possible without a heap
as explained in Sect. 3.2.

The fast implementation of separate seeds is not complicated. Seeds are de-
fined similarly to heaps:

data Seedsep v t = Seedsep

A seed is implemented with nothing at all; the actual values for new references
will be stored in the references.

instance NewRef (Seedsep v t) (Refsep t) where

type InitValue (Seedsep v t) (Refsep t) = v

newRef v Seedsep = unsafePerformIO$ do
r← newIORef (unsafeCoerce v)
return (Refsep r, Seedsep)

The creation of references is the same as defined in 3.3.

instance Split (Seedsep v t) where

split2 Seedsep = (Seedsep, Seedsep)

The split2 do not have to do anything as seed values are trivial.

newHeapsep :: (∀t.∗Heapsep v t→ ∗Seedsep v t→ a)→ a

newHeapsep f = f Heapsep Seedsep

We have no heap seeds, so every time a heap is created a corresponding seed
have to be created too.

162 P. Diviánszky

Let us see the pure implementation of the model which supports the “separate
seeds” and “homogeneous heaps” but nothing else.

data Ref′sep t = Ref′sep Any Integer

In case of separate seeds a pure reference should also contain the value which is
given when the reference is created. It has type Any because the homogeneous
reference type constructor is not parametrized by the type of the referred value.
This renders the implementation less pure. We could cure this by adding the
type of the referred value as a parameter to Ref′sep but we will give an other
solution in the next section.

newtype Heap′sep v t = Heap′sep (Map Integer v)

newtype Seed′sep v t = Seed′sep Integer

Heap′sep v t do not have to store an auxiliary Integer value for creating fresh
keys; it is stored in Seed′sep v t.

instance HeapRef (Heap′sep v t) (Ref′sep t) where

type Value (Heap′sep v t) (Ref′sep t) = v

readRef (Ref′sep d i) h@(Heap′sep m) = case lookup i m of
Nothing→ (unsafeCoerce d, h)
Just v → (v, h)

writeRef (Ref′sep d i) v (Heap′sep m) = Heap′sep (insert i v m)

The interesting point is the definition of readRef. If the lookup fails then that
means that the reference was never written; the referred value is the value which
was stored in the reference at its creation.

instance NewRef (Seed′sep v t) (Ref′sep t) where

type InitValue (Seed′sep v t) (Ref′sep t) = v

newRef v (Seed′sep s) = (Ref′sep (unsafeCoerce v) s, Seed′sep (2 ∗ s))

newRef stores the initial value for the reference in the reference as it has no
access to the heap. Note that the auxiliary Integer value is doubled; see the
next definition.

instance Split (Seed′sep v t) where

split2 (Seed′sep s) = (Seed′sep (2 ∗ s), Seed′sep (2 ∗ s + 1))

A seed should yield infinitely many new Integer keys. The following invariant
holds: Seed′sep i may yield keys whose binary form is prefixed by the binary
form of i. This invariant holds for newRef and split2 too. At the same time it
is guaranteed that the two split seeds will yield different keys. Note that after

Non-monadic Models of Mutable References 163

the split the original seed cannot be used any more because the uniqueness type
system prevents its usage.

newHeap′sep :: (∀t.∗Heap′sep v t→ ∗Seed′sep v t→ a)→ a

newHeap′sep f = f (Heap′sep empty) (Seed′sep 1)

newHeap′sep creates a new heap and a corresponding new seed with the same tag.
It is possible to define a model of homogeneous maps which supports both

“heap seeds” and “separate seeds” but we are not interested in it.

3.7 Deletable References

Deletable references are references which can be deleted from the heap. From
a point of view, deletable references are just normal references whose referred
value’s type is Maybe σ for some σ.

Let us see the pure implementation of the model which supports “homoge-
neous heaps”, “separate seeds” and “deletable references”.

data Seeddel t = Seeddel Integer

The main benefit of deletable references is that the seeds for deletable references
should not parametrized by the referred type because the default Nothing value
can be given for new references of any types. This will ease the implementation
of the “shared references” feature.

newtype Heapdel v t = Heapdel (Map Integer v)

newtype Refdel t = Refdel Integer

The definition of the heap and reference types did not change, but be aware that
Heapdel v t corresponds to Heap (Maybe v) t!

instance HeapRef (Heapdel v t) (Refdel t) where

type Value (Heapdel v t) (Refdel t) = Maybe v

readRef (Refdel i) h@(Heapdel m) = (lookup i m, h)

writeRef (Refdel i) Nothing (Heapdel m) = Heapdel (delete i m)
writeRef (Refdel i) (Just v) (Heapdel m) = Heapdel (insert i v m)

The Value definition is different because Heapdel v t corresponds to
Heap (Maybe v) t, so the referred value is Maybe v, not v.

The type system forces us to give writeRef a more sophisticated definition:
if the new value is Nothing, the reference is deleted from the heap. At the same
time we do not have to make a case distinction on the lookup i m value in the
definition of readRef.

instance NewRef (Seeddel t) (Refdel t) where

type InitValue (Seeddel t) (Refdel t) = ()

newRef () (Seeddel s) = (Refdel s, Seeddel (2 ∗ s))

164 P. Diviánszky

InitValue cannot determine the type of the referred value because the type of
seeds is not parametrized by it. The unit type seem to be a perfect choice here.

We can define specialized functions for deletable references. These functions
could be added also to the general interface:

deleteRef :: (HeapRef h r, Value h r∼Maybe v)⇒ r→ h→ h
deleteRef r h = writeRef r Nothing h

deleteRef deletes a deletable reference. Its type says that if the type of the
referred value is Maybe v for some v (i.e. it is a deletable reference), then the
reference can be indeed deleted.

insertRef :: (HeapRef h r, Value h r∼Maybe v)⇒ r→ v→ h→ h
insertRef r v h = writeRef r (Just v) h

insertRef writes a reference with a new value. insertRefwraps the given value
in a Just constructor.

newDeletableRef :: (NewRef s r, InitValue s r∼()) ⇒ s→ (r, s)
newDeletableRef s = newRef () s

newDeletableRef allow us to omit the mandatory unit argument in the creation
of a deletable reference.

3.8 Shared References

In the previous models a reference could be stored in one heap at most. Models
with the “shared references” feature allow references stored in more than one
heap.

Type-Level Integers. Heaps will be tagged with type-level integers, so we
need type-level integers.

Type-level integers are build with two type constructor, Zero and Succ:

data Zero

data Succ a

For convenience, we define the first four type level integers as type synonyms:

type I0 = Zero
type I1 = Succ I0
type I2 = Succ I1
type I3 = Succ I2

We will need a function num which maps type-level integers to the corresponding
Int values. Such a function can be defined with a type class member:

Non-monadic Models of Mutable References 165

class I m where

num :: m→ Int

The I type class should have an instance on all type-level integers so we define
instances for Zero and Succ:

instance I Zero where

num = 0

instance I a⇒ I (Succ a) where

num = 1 + num (⊥ :: a)

Note that we need the ScopedTypeVariables language extension for this Succ
instance.

Fast Implementation. Let us see the fast implementation of the model which
supports “homogeneous heaps” , “separate seeds”, “deletable references” and
“shared references”.

newtype Refsh t = Refsh (IOArray Int (Maybe Any))

Shared references are implemented with integer-indexed mutable arrays. In case
of deletable references this array contains Maybe-values. The nth elem of the
array will store the referred value corresponding to the nth map. The size of the
array is determined by t.

data Heapsh i v t = Heapsh

data Seedsh i t = Seedsh

The type of heaps and heaps have and additional type variable i which is a
type-level integer. v is the type of the values stored in the heap and t is the tag
as usual.

heapIndex :: ∀i v t.I i⇒ Heapsh i v t→ Int
heapIndex = num (⊥ :: i)

seedIndex :: ∀i t.I i⇒ Seedsh i t→ Int
seedIndex = num (⊥ :: i)

heapIndex and seedIndex are two auxiliary functions which gives back the
type-level integer index of heaps and seeds as Int values.

instance I i⇒ HeapRef (Heapsh i v t) (Refsh t) where

type Value (Heapsh i v t) (Refsh t) = Maybe v

readRef (Refsh r) h@Heapsh = unsafePerformIO$ do
v← readArray r (heapIndex h)
return (unsafeCoerce v, Heapsh)

166 P. Diviánszky

writeRef (Refsh r) v h@Heapsh = unsafePerformIO $ do
writeArray r (heapIndex h) (unsafeCoerce v)
return Heapsh

Value is defined as appropriate for deletable references. readRef and writeRef
reads and writes the nth value of array of the reference where n is computed
from the type-level integer index of the heap. Note that the calculation of n is
done in compile-time if the type-level integer is known statically. This is the case
in the example shown in 3.8.

instance I i⇒ NewRef (Seedsh i t) (Refsh t) where

type InitValue (Seedsh i t) (Refsh t) = ()

newRef () s@Seedsh = unsafePerformIO $ do
r← newArray (0, seedIndex s) (unsafeCoerce Nothing)
return (Refsh r, Seedsh)

InitValue is defined as appropriate for deletable references. newRef creates a
new array of n Nothing values where n is computed from the type-level integer
index of the seed. Usually n is known statically.

instance Split (Seedsh i t) where

split2 Seedsh = (Seedsh, Seedsh)

The definition of split2 is nothing special.

newHeaps1 :: (∀t.∗(∀v.Heapsh I0 v t)→ ∗Seedsh I0 t→ a)→ a
newHeaps1 f = f Heapsh Seedsh

newHeaps2 :: (∀t. ∗(∀v.Heapsh I0 v t)
→ ∗(∀v.Heapsh I1 v t)
→ ∗Seedsh I2 t
→ a)→ a

newHeaps2 f = f Heapsh Heapsh Seedsh

A family of definitions is needed for the creation of heaps and seeds for shared
references.15 Note the number of needed maps should be known in advance.

Pure Implementation. The pure implementation of homogeneous heaps with
separate seeds and deletable shared references is quite easy.

newtype Heap′sh i v t = Heap′sh (Map Integer v)

newtype Seed′sh i t = Seed′sh Integer

The extra type-level integer is a phantom type in the definition of heaps and
seeds.

The type-level integer has no role in the pure implementation because finite
maps may share keys, so the definition of HeapRef, NewRef and Split instances
are the same as for deletable references.
15 It is possible to give only one definition instead of this family of definitions with the

help of GADTs. The description of this method is future work.

Non-monadic Models of Mutable References 167

Running Example (v2). Let us see the doubly linked list running example
for shared references.

With shared references we can simplify the code of the doubly linked lists
defined is Sect. 3.3.

The trick is that we use three heaps instead of a heap which contains
DListNode1 records:

data DList2 a
= Empty2
| ∀t.NonEmpty2

{first2 :: Refsh t
, last2 :: Refsh t
, previous2 :: Heapsh I0 (Refsh t) t
, next2 :: Heapsh I1 (Refsh t) t
, value2 :: Heapsh I2 a t
, seed2 :: Seedsh I2 t
}

Note that the type-level integers are hard-coded for best performance. An extra
seed2 field is needed because the heaps used here do not store seeds. In the next
version this field will be eliminated.

(�2) :: a→ DList2 a→ DList2 a
x �2 Empty2 = singleton2 x
x �2 (NonEmpty2 r1 r2 p n v s)

= NonEmpty2
{first2 = r′1
, last2 = r2
, previous2 = insertRef r1 r′1 p
, next2 = insertRef r′1 r1 n
, value2 = insertRef r′1 x v
, seed2 = s′

} where

(r′1, s′) = newDeletableRef s

The definition of (�2) is considerably clearer. One can see that inserting a new
elem to the beginning of a doubly-linked lists needs three pointer operations.

singleton2 :: ∀a.a→ DList2 a
singleton2 x = newHeaps3 f where

f :: (∀v.Heapsh I0 v t)
→ (∀v.Heapsh I1 v t)
→ (∀v.Heapsh I2 v t)
→ Seedsh I2 t
→ DList2 a

f p n v s = NonEmpty2 r r p n (insertRef r x v) s′ where

(r, s′) = newDeletableRef s

168 P. Diviánszky

Unfortunately in the code for singleton2 one have to give the type of the inner
function because its type is rank 2 polymorphic.

3.9 Union of Heaps

Doubly linked lists defined in 3.8 cannot be joined because if we open two
NonEmpty2 values the phantom type variables cannot be unified by the type
system (which is all right).

It would be nice if we could join classes of references. For that purpose we
define a new type constructor:

data t1 : | : t2

The data type t1 : | : t2 has no constructor. This type will be used for tagging
and tags have no runtime values.

Tag Subtyping. If c is a type constructor then c (t1 : | : t2) will denote a type
which is a subtype of both c t1 and c t2.

There is no subtyping in Haskell; fortunately we need a restricted form of
subtyping which is manageable. Three steps are needed.

The first step is to define a type class Incl for inclusion functions:

class Incl c where

left :: c a→ c (a : | : b)
left = unsafeCoerce

right :: c b→ c (a : | : b)
right = unsafeCoerce

The second step is to define instances of this type class. For every a data type
with a tag type variable a new instance should be defined. Fortunately Incl has
default definitions so this task is easy enough:

instance Incl Refsh
instance Incl Refsep
instance Incl (Seedsep v)

In the pure implementations the instances are somewhat trickier, but that is not
need in real-world applications. For example the Incl instance for Refdel is the
following:

instance Incl Refdel where

left (Refdel i) = Refdel (2 ∗ i)
right (Refdel i) = Refdel (2 ∗ i + 1)

The third step is the most tiresome: we have to use the left, right, fmap left,
fmap right, . . . functions explicitly in the places where the subtyping is needed.
An example will be given in Sect. 3.9.

Non-monadic Models of Mutable References 169

We will need the generalization of the Functor type class too:

class Functor2 (f :: ∗ → ∗ → ∗) where
fmap2 :: (a→ b)→ f a x→ f b x

At one point we will have to use fmap2 left on a value x with type Heapsh i v t.
We cannot define such instance, however it is clear that fmap2 left x ≡
unsafeCoerce x.

One solution is to define a dummy Functor2 instance on Heapsh i and give
safe rewrite rules which eliminates the runtime invocation of fmap2 left:

instance Functor2 (Heapsh i) where
fmap2 = unsafeCoerce

{-# RULES "fmap/left" forall x. fmap left x = unsafeCoerce x #-}
{-# RULES "fmap/right" forall x. fmap right x = unsafeCoerce x #-}
{-# RULES "fmap2/left" forall x. fmap2 left x = unsafeCoerce x #-}
{-# RULES "fmap2/right" forall x. fmap2 right x = unsafeCoerce x #-}

Rewrite rules are an extension to GHC. These rules apply program transforma-
tions during compilation.

The Union Type Class. We extend the general interface with a new type
class:

class Union h where

union :: h t1 → h t2 → h (t1 : | : t2)

An instance of Union will be defined for heaps in models which support the
“union” feature. In the fast implementations the Union instances are simple:

instance Union (Heapsh i v) where

union Heapsh Heapsh = Heapsh

In the pure implementation the Union instance can be defined with the
Data.Map.union function. This function returns the unions of two maps. We
need disjoint union so first we translate the keys in the maps:

instance Union (Heap′sh i v) where

union (Heap′sh m1) (Heap′sh m2)
= Heap′sh (Data.Map.union

(mapKeys (λx→ 2 ∗ x) m1)
(mapKeys (λx→ 2 ∗ x + 1) m2))

Running Example (v3). Let us see the doubly linked list running example
for union of heaps.

170 P. Diviánszky

In models with the “union” feature we can define the join operation for doubly
linked lists.

data DList3 a
= Empty3
| ∀t.NonEmpty3

{first3 :: Refsh t
, last3 :: Refsh t
, previous3 :: Heapsh I0 (Refsh t) t
, next3 :: Heapsh I1 (Refsh t) t
, value3 :: Heapsh I2 a t
}

DList3 is similar to DList2 defined in Sect. 3.8. Note that we do not need the
seed2 field any more, because we can always get fresh identifiers by joining a
new class of identifiers.

(�3) :: a→ DList3 a→ DList3 a
a �3 b = singleton3 a �� b

If we have join operation then inserting a new element to the beginning of the
list is quite simple.

(��) :: DList3 a→ DList3 a→ DList3 a
a �� Empty3 = a
Empty3 �� b = b
NonEmpty3 f l p n v �� NonEmpty3 f

′ l′ p′ n′ v′

= NonEmpty3
{first3 = left f
, last3 = right l′

, previous3 = insertRef (right′ pu f′) (left l) pu
, next3 = insertRef (left′ nu l) (right f′) nu
, value3 = v ‘union‘ v′

} where

pu = fmap2 left p ‘union‘ fmap2 right p
′

nu = fmap2 left n ‘union‘ fmap2 right n
′

right′ :: Incl d⇒ c (t1 : | : t2) → d t2 → d (t1 : | : t2)
right′ = right

left′ :: Incl d⇒ c (t1 : | : t2)→ d t1 → d (t1 : | : t2)
left′ = left

The union of the value3 heaps is simple. The union of the previous3 and next3
heaps is more complicated: these heaps stores references, and their content should
also lifted.

right′ and left′ help the type checking of associated type synonyms. right′

and left′ is not needed in case of a real-world library which contains only one
model and need no associated type synonyms.

Non-monadic Models of Mutable References 171

3.10 The Proposed Model

Let us see again the examined features:

feature name introduced in included
heap seeds Sect. 3.3 No
homogeneous heaps Sect. 3.5 Yes
separate seeds Sect. 3.6 Yes
deletable references Sect. 3.7 Yes
shared references Sect. 3.8 Yes
union of heaps Sect. 3.9 Optional

We have to decide which one is worth to be supported. Separate seeds are
useful in case of shared references but separate seeds and heap seeds together
overly complicates the pure implementation. So we chose all the features but
exclude heap seeds. In this way the pure implementation of the model do not
use unsafe operations.

The inclusion of the “union” feature is optional. One has to consider whether
it worth the extra complexity in the fast implementation.

The implementation of the final model consists of the following definitions:

data Ref t
data Heap i v t
data Seed i t

instance HeapRef (Heap i v t) (Ref t)
instance NewRef (Seed i t) (Ref t)

instance Split (Seed i t)

instance Union (Heap i v)

newHeaps1 :: (∀t.∗(∀v.Heap I0 v t)→ ∗Seed I0 t→ a)→ a

newHeaps2 :: (∀t. ∗(∀v.Heap I0 v t)
→ ∗(∀v.Heap I1 v t)
→ ∗Seed I2 t
→ a)→ a

3.11 Extensions

The proposed model can be extended further with additional operations. Here
we consider one small extension: reference equality check. Its type signature is
the following:

equalBy :: Ref t→ Ref t→ ∗Heap i a t→ (Bool, ∗Heap i a t)

The heap argument is needed because otherwise the following expression would
have different meaning in the pure and the fast implementation:

would be bad = equalBy (left r) (right r)

172 P. Diviánszky

This misuse is prevented by the additional parameter because a heap cannot be
united with itself; the uniqueness type system rejects the expression

rejected = equalBy (left r) (right r) (union h h)

It is easy to define equalBy. For example in the fast implementation of the
proposed model it is defined as

equalBy (Refsh a) (Refsh b) Heapsh = (a ≡ b, Heapsh)

The equality check in the definition is the built-in equality of mutable arrays.

4 Applications

The applications defined in this section use the proposed model defined in Sect.
3.10 with the extension defined in Sect. 3.11.

For the strongly connected components implementation the “deletable refer-
ences” feature is essential; for the pointer reversal reversal implementation the
“shared references” feature is essential; and all implementation is influenced by
the “homogeneous heaps” feature. The “separate seeds” feature is important
when one tries to construct the input graphs for these algorithms.

4.1 Strongly Connected Components

We define a strongly connected component calculation algorithm. The following
type and function will be handy:

type Set i t = Heap i () t

memberRef :: I i⇒ Ref t→ ∗Set i t→ (Bool, ∗Set i t)
memberRef x s = case readRef x s of

(Nothing, s′) → (False, s′)
(Just , s′) → (True, s′)

Depth-First Walk. Consider the graph on Figure 1. The result of the depth-
first walk started from node A is A, B, D, E, C, F, G, H.

We represent directed graphs as functions from nodes to the list of their
children:

type Graph t = Ref t→ [Ref t]

The depthFirstWalk function gets a graph, the set of already visited nodes
(usually empty at the beginning) and the nodes to be visited (usually one node
at the beginning), and produces the list of reachable nodes in a depth-first order:

depthFirstWalk :: I i⇒ ∗Graph t→ ∗Set i t→ [Ref t]→ [Ref t]

depthFirstWalk g [] = []

Non-monadic Models of Mutable References 173

Fig. 1. Example Graph

depthFirstWalk g s (r : rs) = case r ‘memberRef‘ s of
(True, s′)→ depthFirstWalk g s′ rs
(False, s′)→ r : depthFirstWalk g (insertRef r () s′) (g r ++ rs)

The implementation of depthFirstWalk makes a pattern match on list of nodes
to be visited. If it is not empty, it tests whether the first node is in the set of
already visited nodes. If it is not in the set, its result is a list. The head of list
is the node, and the tail of the is is the depth first walk of the same graph with
an extended set of visited nodes and an extended list of nodes to be visited (the
children of the node have to be visited).

Postorder Walk. Consider the graph on Figure 1. The result of the postorder
walk started from node A is D, E, B, F, H, G, C, A.

During the postorder walk we will use a task list. A task is an algebraic data
structure:

data Task a = Return a | Visit a

Return a is a task that the node a should be returned as the next node during
the walk. Visit a is a task that the node a should be visited (i.e. processed)
during the walk. The task list contains tasks which should be done in order: the
first task in the list should be done first.

The type of postOrderWalk is the same as the type of depthFirstWalk:

postOrderWalk :: I i⇒ ∗Graph t→ ∗Set i t→ [Ref t]→ [Ref t]

postOrderWalk g s = collect s ◦ map Visit where

collect [] = []
collect s (Return r : ts) = r : collect s ts
collect s (Visit r : ts) = case r ‘memberRef‘ s of

(True, s′)→ collect s′ ts
(False, s′)→ collect (insertRef r () s′)

(map Visit (g r) ++ Return r : ts)

174 P. Diviánszky

The implementation first make a task list: all nodes should be visited in the
given order. The local function collect is a recursive function.

It makes pattern matching on the task list. If it is not empty, and the first
reference is a Return task then it returns it and goes on with the remained tasks.
If the first reference is a Visit task then collect tests whether it is in the set
of already visited nodes. If it is not in the set, it proceeds with an extended set
and an extended task list.

The extended task list contains the children of the first reference (as Visit
tasks) and the first reference as Return task, and the old tasks.

One can easily derive a variant of postOrderWalk which returns the visited
nodes in reversed post-order and also returns the set of visited nodes:16

revPostOrderWalk
:: I i⇒ ∗Graph t→ ∗Set i t→ [Ref t]→ (∗Set i t, [Ref t])

The implementation of revPostOrderWalk is similar to the implementation of
postOrderWalk but it uses a list which accumulates the nodes to be returned.

Mapped Walk. A “mapped” walk is a mapped depth-first walk, but the re-
peated nodes are removed from the result. In other words, mapWalk takes a list
of nodes. It returns a list of lists with the same length as the input lists. The first
list contains the nodes reachable from the first node. The second list contains
the nodes reachable from the second node leaving nodes in the first list out,
etc. A variant of this function will be used in the strongly connected component
calculation.

Consider the graph on Figure 1. The result of the “mapped” walk started
from nodes B, G, A is [E, D, B], [H, G], [F, C, A].

The type of mapWalk is similar to the type of depthFirstWalk but it returns
list of lists of nodes:

mapWalk :: I i⇒ ∗Graph t→ ∗Set i t→ [Ref t]→ [[Ref t]]

mapWalk g [] = []
mapWalk g s (r : rs) = c : mapWalk g s′ rs where

(s′, c) = collect s [] [r]

collect s a [] = (s, a)
collect s a (r : rs) = case r ‘memberRef‘ s of

(True, s′)→ collect s′ a rs
(False, s′)→ collect (insertRef r () s′) (r : a) (g r ++ rs)

The collect local function is an accumulating variant of depthFirstWalk.
For the strongly connected component computation we need a variant of

mapWalk which collects the nodes only which are present in the given set and
returns the result in reversed order. Its type is the same as the type of mapWalk:

16 Creation of reference maps is not simple so it is a good practice to return them after
use.

Non-monadic Models of Mutable References 175

revMapWalk :: I i⇒ ∗Graph t→ ∗Set i t→ [Ref t]→ [[Ref t]]

The implementation of revMapWalk is similar to the implementation of mapWalk
but it uses an accumulator, negates the result of the memberRef function and
deletes the node from the set instead of insertion.

Strongly Connected Components. Consider the graph on Figure 1. Started
from node A, the strongly connected components are {D}, {E}, {B}, {I, H, G},
{C, F, A}.17

The function gets a graph, the reverse of the first graph (the directed edges
are reversed), an empty set and some initial nodes, and it returns the list of
strongly connected components of reachable nodes in depth-first order:

scc :: I i⇒ Graph t→ Graph t→ Set i t→ [Ref t]→ [[Ref t]]

scc g g′ s
= filter (¬ ◦ null)
◦ uncurry (revMapWalk g′)
◦ revPostOrderWalk g s

The implementation is the composition of 3 phases: first it walks the graph in
reversed post-order, then is maps a depth-first walk with the reversed graph on
the node list and reverse the result, then it filters empty components out.

Note that the time consumption of the graph walks and the scc function
defined here is proportional to the nodes in the graph provided that the number
of the children and the parents of nodes in the graph is bounded.

4.2 Pointer Reversal Walk

replaceAndShiftOne :: Int→ [a]→ a→ [a]
replaceAndShiftOne 0 [c] x = [x]
replaceAndShiftOne 0 (c : : cs) x = (x : c : cs)
replaceAndShiftOne n (c : cs) x = c : replaceAndShiftOne (n− 1) cs x

replaceAndShiftOne is a function which replaces a list’s nth element and shift
the old element one position to the right.

prWalk
:: (I i, I j)
⇒ Heap i [Ref t] t -- a graph
→ Heap j Int t -- an empty map
→ Ref t -- start node
→ [Ref t] -- reachable nodes in depth first order

17 If the nodes of the graphs are modules in a programming language, and the edges
are dependencies between the modules, then this is the right compilation order if we
want to compile the module A.

176 P. Diviánszky

prWalk m0 n t = follow m0 n t t where

follow m n x t = case readRef t n of
(Just , n′) → back m n′ t x -- already visited
(Nothing, n′) → t : case readRef t m of

(Just (l : u), m′) → follow (insertRef t (x : u) m′) (insertRef t 0 n′) t l

(, m′) → back m′ (insertRef t 0 n′) t x

back m n x t = case equalBy x t m of
(True, m) → []
(False, m) → let

(Just ns, m′) = readRef t m

(Just i, n′) = readRef t n

m′′ = insertRef t (replaceAndShiftOne i ns x) m′

n′′ = insertRef t (i + 1) n′

in if (i + 1 ≡ length ns)
then back m′′ n′′ t (ns !! i)
else follow m′′ n′′ t (ns !! (i + 1))

prWalk is the pointer reversal algorithm.
follow follows an edge, back goes back on an edge.

The index map contains already visited nodes. The index show how many chil-
dren of the node was completely visited.

The graph is transformed in each step a little but at the end it will have its
original shape.

4.3 Type Equations Solver

A type equations solving algorithm preceded by a disjoint set data structure
implementation which is used in it.

Disjoint Sets type DSet i t = Heap i (Ref t) t

A disjoint set is heap with self-references.

follow′ a m = case readRef a m of
(Nothing, m′) → (a, m′)
(Just b, m′) → follow′ b m′

follow′ follows the links until no link is found.

follow :: I i⇒ Ref t→ ∗DSet i t→ (Ref t, ∗DSet i t)
follow a m = case readRef a m of

(Nothing, m′) → (a, m′)
(Just b, m′) → case readRef b m′ of

(Nothing, m′′) → (b, m′′)
(Just c, m′′) → let

(d, m′′′) = follow c m′′

in (d, insertRef a d m′′′)

follow is a faster version of follow′.

Non-monadic Models of Mutable References 177

link :: I i⇒ Ref t→ Ref t→ ∗DSet i t→ ∗DSet i t
link a b m = case same a b m of

(True, m′)→ m′

(False, m′)→ let (a′, m′′) = follow a m′ in insertRef a′ b m′′

link makes a link from the first reference to the second reference.

same :: I i⇒ Ref t→ Ref t→ ∗DSet i t→ (Bool, ∗DSet i t)
same a b m = equalBy a′ b′ m′′ where

(a′, m′) = follow a m
(b′, m′′) = follow b m′

same decides whether two reference are linked or not.

Type Equations Solver. This section shows an efficient type equations solver
which uses type graphs.

type TypeGraph t = Ref t→ TypePiece t

A type graph is a function from references to type pieces.18

data TypePiece t = Var | Con | App (Ref t) (Ref t)

A type piece is either a type variable, a type constructor, or a type application.
Note that type variables and type constructors do not need additional infor-

mation because their positions identifies them in the type graph. Figure 2 shows
the type graph of the type of the head function and Figure 3 shows the type
graph of the type of the map function.

A type equation is a pair of references in the type graph:

type TEq t = (Ref t, Ref t)

The equation solving function need a type graph, type equations, and a fully
separated disjoint set of the type graph nodes (which are the references of type
pieces), and results a disjoint set which represents the unifications needed to
solve the type equations19:

solveEquations
:: I i⇒ TypeGraph t→ [TEq t]→ DSet i t→ DSet i t

The input type graph is the union of the type graphs made from the left and right
hand sides of ordinary type equations. The input type equations are the pairs
of root nodes of the type graphs made from the left and right hand sides of the
ordinary type equations. For example, consider the ordinary type equations20

(names beginning with lower letter are type variables):
18 A reference map could also be used instead of a function. A function is used here

because we do not alter the type graph, only read it.
19 solveEqutions stops with an error message if there is no solution. One can easily

modify this function such that is returns the unsolvable equations instead of raising
an error message.

20 These are the type equations of the single line program f x = (head x, head x).

178 P. Diviánszky

Fig. 2. Graph of the type of head

Fig. 3. Graph of the type of map

[a]→ a = x→ z
[b]→ b = x→ v

c→ d→ (c, d) = z→ v→ y
f = x→ y

The type graph is constructed from the pieces [a] → a, x → z, [b] → b,
x→ v, c→ d→ (c, d), z→ v→ y, f and x→ y. There are four type equations,
the first is (r1, r2) where r1 is the root of [a] → a in the type graph and r2 is
the root of x→ z in the type graph.

Non-monadic Models of Mutable References 179

solveEquations is implemented as successive unification:

solveEquations g es s = foldr (unify g) s es

unify need a type graph, two nodes and a unification represented by a disjoint
set, and it results a more general unification which also unifies the two subgraph
of the type graph rooted in the given nodes:

unify :: I i⇒ TypeGraph t→ (Ref t, Ref t)→ DSet i t→ DSet i t

The code for unify is quite simple. If the nodes are equal according to the given
unification, then there is nothing to do.

unify g (x, y) s = case same x y s of
(True, s′)→ s′

(False, s′)→ let
(x′, s′′) = follow x s′

(y′, s′′′) = follow y s′′

in case (g x′, g y′) of

(App a b, App c d)→ unify g (a, c) (unify g (b, d) (link x y s′′′))
(Var ,) → link x y s′′′

(, Var) → link y x s′′′

(,) → error ”The equations cannot be solved.”

Note that the solution of the type equations may be cyclic types according to
the algorithm given here, which can be seen as a feature.

The time consumption of solveEquations is linear; to be more precise it is
proportional to the maximum of the number of type equations and the number
of type application nodes in the type graph.

Here is a sketch of the proof: Let i the number of type equations and let n the
number of App nodes in the type graph. The recursive case of unify happens n
times in the worst case, because each time it happens, two App nodes are unified.
Thus the total number of unify calls is at most i+ 2n because unify calls itself
2 times in the recursive case. Let t be the average time consumption of unify
not counting the cost of the recursive calls. t is almost constant according to 4.3.
So the time consumption of solveEquations is t(i + 2n) < 3t max{i, n} where
t is an almost constant value.

5 Related Work

5.1 An Existing Model in Clean

References based on unique heaps appear in Clean compiler sources[1] and in the
iTask system[16] but they are not documented. The interface is the following21:
21 We use Haskell syntax in function types. The string Ptr is replaced by HeapRef in

names.

180 P. Diviánszky

newHeap :: . Heap a
newRef :: a → ∗Heap a→ (Ref a, ∗Heap a)
readRef :: Ref a → ∗Heap a→ (a, ∗Heap a)
sreadRef Clean :: Ref a → Heap a→ a
writeRef :: Ref a→ a→ ∗Heap a→ ∗Heap a

Ref σ is the type of references where σ is the type of the referred value. Heap σ
is the type of heaps.

The dot attribute in the type of newHeap means that multiple use of newHeap
is allowed and newHeap values can be seen as unique values. So new heaps can
be created at any point of the program.

According our classification these are untagged homogeneous heaps.

Two Flavor of Reference Reads. A possible definition of swap in the Clean
model is:

swap :: Ref a→ Ref a→ ∗Heap a→ ∗Heap a
swap x y h1 = writeRef y a (writeRef x b h3) where

(a, h2) = readRef x h1
(b, h3) = readRef y h2

If we can ensure that reading a reference in a heap is always done before writes
on that heap, the sreadRef Clean function can be used instead of readRef. For
example, we can simplify the swap function:

swap′2 :: Ref a→ Ref a→ ∗Heap a→ ∗Heap a
swap′2 x y h

#! a = sreadRef Clean x h
b = sreadRef Clean y h

= writeRef y a (writeRef x b h)

#! is a special let expression, called let-before. Before evaluating the main expres-
sion of the let-before expression, the runtime system evaluates the bindings in
the let-before expression. The uniqueness type system of Clean is smart enough
to see that h is referenced only once at the point when is should be unique.

Problems. The introduced model in Clean has a serious problem: there is a
interference between maps of the same type. Consider the following value:

x :: Char
x = sreadRef Clean r h where

(r,) = newRef ’a’ newHeap
(, h) = newRef ’b’ newHeap

x is either ’a’ or ’b’ depending on the evaluation order.

Non-monadic Models of Mutable References 181

5.2 Other Related Works

The Disciplined Disciple Compiler (DDC)[12] is an explicitly lazy dialect of
Haskell which supports destructive update and computational effects. It is re-
lated work because its effect system tracks what computational effects are being
used in a program, without the need for state monads. But even if non-monadic
references can be expressed in DDC, its effects system is more complicated than
the basic form of uniqueness typing used in this paper.

Monadic regions[8] is technique for managing resources like memory areas, file
handles and database connections. But it is a monadic framework.

6 Future Work

The correctness proof of the fast implementations is missing.
The models should be investigated in multithreading environment.
In theory the performance of the described models are comparable to the

performance of pointer operations in imperative languages. In practice, however
lots of details are missing, first of all measurements and benchmarks.

An interesting research area are the introduction of two non-destructive op-
erations. The first is a non-destructive reference read operation, which does not
return the heap:

sreadRef :: HeapRef h r⇒ r→ h→ Value h r
sreadRef r h = fst (readRef r h)

The second is a non-destructive union operation which does not block the unified
heaps. These operations are easy to define but it is not easy to extend the
uniqueness type system so that it accepts these operations if they do not cause
trouble.

7 Conclusion

The paper investigates non-monadic models of references based on unique heaps.
The main advantage over monadic models is that the evaluation order between
operations on two distinct heaps is not fixed, while the evaluation order of com-
posed computations in monadic models is fixed. Another advantage is that the
proposed model has a simple functional semantics (the semantics is close to
the semantics of finite maps) so it is perfect for proving properties of pointer
algorithms.

With independent heap values it is possible to model shared references be-
tween heaps and virtual union of heaps. These operations help to write safer
pointer algorithms.

The main shortcoming that uniqueness typing is not yet supported in Haskell.
Either one can consider references based on unique heaps as a motivating ex-
ample to introduce a basic form of uniqueness typing in Haskell or one can use

182 P. Diviánszky

the Clean uniqueness type system. In the second case, one has to consider that
this paper use several extensions to Haskell’98. The most important extensions
are multi parameter type classes and rank n types which are also available in
Clean. The type families extension is only needed if one needs a common interface
of several models; this is not the case in practice. One need rewrite rules (a
compiler pragma in GHC) for the virtual union of heaps.

References

1. The Clean compiler sources, http://clean.cs.ru.nl/Download/download.html
2. The Haskell Adaptive package, http://hackage.haskell.org/package/Adaptive
3. The Haskell ArrayRef package, http://hackage.haskell.org/package/ArrayRef
4. The Haskell base package, http://hackage.haskell.org/package/base
5. The Haskell stateref package, http://hackage.haskell.org/package/stateref
6. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph

rewriting semantics. Mathematical Structures in Computer Science 6(6), 579–612
(1996)

7. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing simplified. In:
Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 201–218.
Springer, Heidelberg (2008)

8. Fluet, M., Morrisett, G.: Monadic regions. SIGPLAN Not. 39(9), 103–114 (2004)
9. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP

2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000)
10. Jones, S.P.: Tackling the awkward squad: monadic input/output, concurrency, ex-

ceptions, and foreign-language calls in haskell
11. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. SIGPLAN Not. 29(6),

24–35 (1994)
12. Lippmeier, B.: Type inference and optimisation for an impure world. PhD thesis,

Australian National University (2009)
13. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM

Transactions on Programming Languages and Systems 16 (1994)
14. Jones, S.P., et al.: The Haskell 98 language and libraries: The revised report. Jour-

nal of Functional Programming 13(1),0-255 (2003),
http://www.haskell.org/definition/

15. Jones, S.P., Hughes, J., et al.: Report on the Programming Language Haskell 98,
A Non-strict, Purely Functional Language (February 1999)

16. Plasmeijer, R., Achten, P., Koopman, P.: itasks: executable specifications of inter-
active work flow systems for the web. SIGPLAN Not. 42, 141–152 (2007)

17. Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language Report
(2001)

18. Schrijvers, T., Jones, S.P., Chakravarty, M., Sulzmann, M.: Type checking with
open type functions. In: ICFP 2008: Proceeding of the 13th ACM SIGPLAN in-
ternational conference on Functional programming, , pp. 51–62. ACM, New York
(2008)

19. Swierstra, W., Altenkirch, T.: Beauty in the beast: A functional semantics for the
awkward squad. In:Haskell 2007: Proceedings of the ACM SIGPLAN workshop on
Haskell workshop, pp. 25–36. ACM, New York (2007)

20. Wadler, P.: How to declare an imperative. ACM Comput. Surv. 29(3), 240–263
(1997)

http://clean.cs.ru.nl/Download/download.html
http://hackage.haskell.org/package/Adaptive
http://hackage.haskell.org/package/ArrayRef
http://hackage.haskell.org/package/base
http://hackage.haskell.org/package/stateref
http://www.haskell.org/definition/

Software Testing with QuickCheck

John Hughes

Chalmers University of Technology and Quviq AB

Abstract. This paper presents a tutorial, with extensive exercises, in
the use of Quviq QuickCheck—a property-based testing tool for Erlang,
which enables developers to formulate formal specifications of their code
and to use them for testing. We cover the basic concepts of properties
and test-data generators, properties for testing abstract data types, and
a state-machine modelling approach to testing stateful systems. Finally
we discuss applications of QuickCheck in industry.

1 Introduction

Testing is a major part of all real software development; its practical importance
can hardly be overemphasized. Yet the rigour with which it is performed varies
enormously, from the exacting standards demanded in the aerospace industry, to
sloppy ad hoc tests and “letting customers find the bugs”. Ideally, since testing
is the main way we establish that software works, then it should be founded on
a formal specification of what it means to “work”—yet this is very rarely the
case. Indeed, it is rare that a formal specification even exists.

In this paper, we present a tutorial in the use of QuickCheck, a tool designed
to address this problem. QuickCheck enables programmers to write and test for-
mal properties of their code in a simple and practical way, making it easy and
attractive both to formulate formal specifications, and to use them for testing.
First developed in Haskell [4], QuickCheck has become the most-used testing
tool in the Haskell community, and has been emulated in many other program-
ming languages, including Scala (ScalaCheck), Microsoft’s F# (FSCheck), and
even Google’s Go (quick.Check). A commercial version has been implemented
in Erlang at Quviq AB, with many extensions.

This tutorial introduces the Erlang version, and is largely based on parts of
Quviq’s training course. There are three sections, each corresponding to a lecture
of around 45 minutes, followed by extensive exercises. The first section introduces
the fundamental QuickCheck concepts of properties and test data generators,
using simple functions on lists as examples. The second section introduces the
important idea of symbolic test cases—generated test cases which are essentially
fragments of code, rather than test data—and applies it to test implementations
of abstract data types using an approach that can be traced back to Hoare. Up
to this point, all the code tested is purely functional—there are no side-effects
involved, no hidden state. The third section shows how to apply similar ideas to
test stateful code too, using Erlang’s process registry as an example.

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 183–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 J. Hughes

Finally, we report on some of the industrial applications of QuickCheck, which
suggest that this approach to testing really can improve the quality of real soft-
ware.

2 Properties and Generators

2.1 Testing and Test Automation

How do we know that software works? The answer, almost always, is that we
test it. For example, consider the delete function in the Erlang lists module,
which removes an element from a list. We might test it in the Erlang shell as
follows:

4> lists:delete(2,[1,2,3]).
[1,3]
5> lists:delete(4,[1,2,3]).
[1,2,3]

See, it obviously works!
The biggest problem with testing is actually not that bugs may remain in well-

tested code—although of course they may. The biggest problem is that reaching
acceptable quality by testing is so inordinately expensive! Testing typically ac-
counts for around half the cost of a software project—so finding ways to reduce
its cost, without compromising the quality of the result, is very valuable indeed.

Running tests manually is the most expensive way to perform them. In prac-
tice, developers automate their tests in order to write them once, then run them
many times. For example, the two tests above might be automated via the func-
tion definitions

delete_present_test() ->
lists:delete(2,[1,2,3]) == [1,3].

delete_absent_test() ->
lists:delete(4,[1,2,3]) == [1,2,3].

Many unit testing tools exist to find and run such tests automatically, of which
EUnit [3] is the most popular for Erlang. Such tools make running the test suite
very easy, which encourages developers to do so often. Running tests often, as
software evolves, helps developers to catch mistakes that break something in the
code as soon as the mistake is made. This practice is the foundation of test-driven
development, which encourages developers to write their tests even before the
code itself. Under test-driven development, the tests are used as a criterion for
when the job is done—coding is considered complete when all the tests pass.
This approach to development is claimed to improve quality and productivity
(although the results of actual studies are somewhat mixed [12]).

Yet even automated testing is expensive. Thorough testing demands an enor-
mous volume of test code: at Ericsson, 35% of all code written is test code. Even

Software Testing with QuickCheck 185

so, it can never be economic to write a test case for every possible scenario, with
the result that there is always a risk that bugs remain undetected by the test
suite. In practice, many test cases are added to the test suite to provoke an error
already discovered by other means—such test cases do not help to find the error
in the first place, but they do help developers to avoid making the same mistake
twice.

2.2 Property-Based Testing

How can we reduce the cost of automated testing? Since the costly part is writing
the test code in the first place, the key to doing so must be to generalise the
test functions, so that each function covers not one test case, but many. In the
case of the lists:delete function, let us generalise the element and the list,
and write one test function that can test delete with any element and list:

...lists:delete(I,L)...

We run into a problem immediately: we can no longer predict the “expected”
result, as we did in the two tests above, unless of course we reimplement the
delete function in another way—which rather defeats the purpose. Instead, we
must find some other way to determine whether the result of delete is correct.
We can do so by identifying a general property of the result that should hold in
all cases—such as, that I does not occur in the list after the deletion:

prop_delete0(I,L) ->
not lists:member(I, lists:delete(I,L)).

This is not a complete test by any means—lists:delete might always return
the empty list, for example, and still pass this test—but on the other hand, it is
applicable in any test case. By identifying sufficiently many such properties, we
can give a complete specification of the delete function, which can be used to
test it with any inputs whatsoever.

Once we’ve identified a general property such as this, we would like to test it
automatically in many different cases, without the effort of specifying each case
manually. But since the property should now hold, whatever the inputs, then
we can safely generate them instead of choosing them by hand. This is what
QuickCheck [4, 5, 10] does—we rewrite the definition above as a QuickCheck
property,

prop_delete1() ->
?FORALL({I,L},{int(),list(int())},

not lists:member(I, lists:delete(I,L))).

and then test it using QuickCheck:

21> eqc:quickcheck(examples:prop_delete1()).
...
...................................
OK, passed 100 tests

186 J. Hughes

We can read the additional line of code logically as

∀{I,L} ∈ int()× list(int()). . . .

making a universal statement of the truth of the property. QuickCheck instead
interprets {int(),list(int())} as a test data generator, which produces pairs
of an integer and a list of integers, and uses it to generate test cases which are
bound to the pattern {I,L} in the rest of the test. Note that the first argument of
?FORALL is the binding occurrence of the variables I and L. Running quickcheck
then performs (by default) 100 random tests of the property, and in this case,
they all passed—each dot represents a successful test.

Of course, such a property is a partial formal specification of the delete
function; using QuickCheck, we test code against a formal specification, rather
than a set of test cases. We focus our effort on formulating properties, rather
than on coming up with corner cases. We find this shift in perspective not only
helps us test more effectively, but also improves our understanding of the code
under test, and of the problem that it solves.

2.3 Failure Diagnosis and Shrinking

Having defined a QuickCheck property, we can test it in very many test cases—
for example, as follows:

29> eqc:quickcheck(eqc:numtests(1000,examples:prop_delete1())).
...
...
...
...
...
....................Failed! After 346 tests.
{2,[-7,-13,-15,2,2]}
Shrinking.(1 times)
{2,[2,2]}

The numtests function sets the number of tests that should be performed to
1,000, and QuickCheck then begins testing—but after almost 350 tests, one of
them fails! The next line of output

{2,[-7,-13,-15,2,2]}

is the failed test case itself; it is the data generated in the ?FORALL, and so is the
value bound to the pattern {I,L}. So when I is 2, and L is [-7,-13,-15,2,2],
then the property fails.

In this example, as in many cases, the randomly generated test case contains
junk values that have nothing to do with the test failure itself. The next step is
therefore to search for a simpler, but similar test case that also fails. We call this
process “shrinking”—it is similar to Hildebrandt and Zeller’s delta-debugging
[8]—and its result in this case is the last line of output:

{2,[2,2]}

Software Testing with QuickCheck 187

That is, the property fails when I is 2 and L is [2,2]. This is a minimal example,
derived (in this case) by discarding irrelevant elements from the first failing case
that was generated. We can think of shrinking as filtering away the “noise” from
the test case, that random generation inevitably creates, leaving just the “sig-
nal” that is actually responsible for the test failure. Shrinking is tremendously
important in making QuickCheck useful, since it automates the first stage of
fault diagnosis—finding a minimal example that provokes failure. Without it,
randomly generated failing cases would often be so large as to be almost useless.

When we see the result of shrinking, then the reason the property fails is
almost obvious. In this case,

16> lists:delete(2,[2,2]).
[2]

we only delete the first occurrence of 2 from the list,

17> lists:member(2,[2]).
true

with the result that 2 is still a member of the list after deletion,

18> not true.
false

and the test fails.
Shrinking is performed via a search for smaller failing tests, using a customis-

able strategy (as we will see later). The number of shrinking steps reported is
the number of smaller failing tests found during this search, which is of interest
when optimising search strategies, but otherwise quite unimportant.

2.4 Conditional Properties

Now in fact, although the failed test does reveal a problem, it is not in the
implementation of delete. Rather, the problem is sloppiness or a misconception
on our part—the delete function does not delete all occurrences of the element
from a list, but only one occurrence. From the documentation:

“Returns a copy of List1 where the first element matching Elem is
deleted, if there is such an element.”

So we must correct the property, not the definition of delete.
One way to correct the property is to note that it does indeed hold, provided

the list contains no duplicates. So if we instead formulate a conditional property,
then our tests should pass. We can define such a property as follows:

prop_delete2() ->
?FORALL({I,L},{int(),list(int())},
?IMPLIES(no_duplicates(L),

not lists:member(I,lists:delete(I,L)))).

no_duplicates(L) -> lists:usort(L) == lists:sort(L).

188 J. Hughes

where no_duplicates(L) returns true if L contains no duplicate elements, using
the library function lists:usort which sorts a list and removes any duplicates
in one go. The most interesting line here is

?IMPLIES(no_duplicates(L),...)

which we can read logically as no duplicates(L) =⇒ . . ., and which restricts
test cases to those where the precondition holds.

With this new definition, testing the property succeeds:

39> eqc:quickcheck(examples:prop_delete2()).
....................x........x..................x.x......xx....
.......x....x....xx....x..x..........x.x.........x..
OK, passed 100 tests

The crosses (‘x’) in the output represent test cases which were generated, but
were not run because the precondition was not satisfied; they are not counted
among the 100 successful tests.

Note that, although each of these crosses represents a test case in which the
generated list contains duplicates, it does not necessarily represent a test case
that would cause the original property to fail. A list with duplicates is only a
counterexample to the original property if the element we choose to delete (I)
is the duplicated one—this is why counterexamples to the original property are
far rarer than the crosses we see above.

Digression: on partial properties. We have just restricted our test cases to
avoid lists with duplicated elements, and of course, one may wonder whether this
is desirable. After all, lists:delete is intended to handle lists with duplicate
elements also—so why should we exclude them from our tests?

The reason is quite simply that it enables us to formulate a simple prop-
erty that clearly ought to hold. This property alone is not a complete spec-
ification of lists:delete—because it applies only to a part of the intended
domain, and also because it checks only a part of the intended postcondition.
(A version of lists:delete that always returns the empty list would satisfy
this property, even though it is not correct). Thus this property is not suffi-
cient for lists:delete to be correct, but it is necessary. In practice, we find
that necessary conditions that are simple to formulate make good properties
for testing—complemented, of course, with other tests covering the important
missing cases.

We could also formulate a necessary and sufficient correctness property for
lists:delete. Here is one way to do so:

prop_delete3() ->
?FORALL({I,L},{int(),list(int())},

case lists:member(I,L) of
false ->
lists:delete(I,L) == L;

true ->

Software Testing with QuickCheck 189

lists:any(
fun(N) ->
{Before,[_|After]} = lists:split(N,L),
L == Before++[I]++After
andalso
lists:delete(I,L) == Before++After
andalso
not lists:member(I,Before)

end,
lists:seq(0,length(L)-1))

end).

That is, deleting an element from a list which does not contain it leaves the list
unchanged, and deleting an element that does occur removes the first occurrence.
This version of the property tests delete more thoroughly, but is also longer,
more complex—and harder to understand.

In practice, there is a trade-off to be made between testing thoroughly and
testing cheaply—complete necessary and sufficient correctness conditions may
simply be too costly to formulate. Moreover, there is a risk that a programmer
trying to compute a precise “expected value” for a test essentially replicates
the code of the implementation—including any misconceptions in that code. For
both these reasons, we find simple necessary correctness conditions, such as the
simpler property of delete above, to be a cost-effective way of revealing bugs.
For a detailed study of the effectiveness of such “partial oracles” in the setting
of image compression algorithms, see Just and Schweiggert [11].

2.5 Custom Generators

Conditional properties can be very useful, but at the same time they incur a cost
during testing—some test cases are generated, then discarded. If too many test
cases are discarded, then testing will become very slow. Wouldn’t it be better
just to generate lists without duplicates in the first place?

QuickCheck provides an API for defining custom generators, and when test
data satisfying complex invariants is needed, then writing a custom generator is
the only reasonable approach. In this case, a good way to generate a random list
without duplicates is first to generate a random list, and then remove duplicates
from it. We can define a custom list generator which does so as follows:

ulist(Elem) ->
?LET(L,list(Elem),

lists:usort(L)).

Here Elem is a generator for list elements, so list(Elem) is a generator for
arbitrary lists of these elements. ?LET sequences two generators: it binds L to the
list generated by list(Elem), then uses it in a second generator—in this case
lists:usort(L), which just returns L with the duplicates removed. Note that
it would be wrong to write

190 J. Hughes

ulist(Elem) ->
L = list(Elem),
lists:usort(L).

because list(Elem) returns a generator, not a list, and lists:usort would
complain of an argument of the wrong type. Generators must be treated as an
abstract data type, and sequenced using ?LET when multi-stage generation is
needed1.

Once a custom generator is defined, then we can use it like any other:

prop_delete4() ->
?FORALL({I,L},{int(),ulist(int())},

not lists:member(I,lists:delete(I,L))).

When we test this property, then lists with duplicates are still generated by the
list(int()) generator, but rather than discarding them as ?IMPLIES does, the
ulist generator converts them into a usable test case by removing the duplicates,
and so no generated data need be discarded. In this example the gain is relatively
small, because most generated lists lacked duplicates anyway, so discarding those
that did was not so expensive—but in other examples ?IMPLIES may discard a
large fraction of the generated test cases, and in that case replacing it by a
custom test data generator can make testing very much more efficient.

2.6 Distribution of Test Cases

Returning to our original—buggy—property, note that the problem was quite
hard to find: we had to run over 300 tests to do so. In retrospect, it’s clear why: I
is chosen from int(), while L is chosen from list(int()), and for the property
to fail then I must occur in L not just once, but twice. The probability of finding
a random integer twice in a randomly generated list is not very high! This is
why many tests were needed to provoke the error.

However, it is dangerous to guess the probabilities of different kinds of test data;
much better is to measure them. We can do so by instrumenting a QuickCheck
property to collect statistics during testing. For example, we might instrument
prop_delete4 as follows, to measure how often I appears at all in L:

prop_delete5() ->
?FORALL({I,L},{int(),list(int())},
collect(lists:member(I,L),

not lists:member(I,lists:delete(I,L))).

The effect of the line

collect(lists:member(I,L),...)

1 Generators are a monad [13], and ?LET is its bind—for those familiar with those
concepts.

Software Testing with QuickCheck 191

is to collect the value of lists:member(I,L) in each test, and after testing is
complete, to display the distribution of the values collected. In this case, testing
the instrumented property yields

34> eqc:quickcheck(examples:prop_delete5()).
...
.......................................
OK, passed 100 tests
88% false
12% true

We can see from this that, most of the time, I doesn’t even occur once in L, let
alone twice!

Thus, almost ninety percent of the time, we are testing lists:delete in the
case of an element that does not appear at all in the list. It is clear that this is not
an efficient use of testing time. We can improve test efficiency by generating test
cases more carefully, to increase the probability—or even to guarantee—that the
element will occur in the list, at least once. One way to do so is to generate the
list first, and then simply choose one of its elements to delete. We can express
this by nesting ?FORALL,

prop_delete6() ->
?FORALL(L,list(int()),
?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L))).

where elements(L) generates a random element of the list L. In fact, this
property has to be refined slightly further, since elements([]) fails with an
exception—what could it generate, after all? We add a precondition to avoid
this case:

prop_delete7() ->
?FORALL(L,list(int()),
?IMPLIES(L /= [],
?FORALL(I,elements(L),

not lists:member(I,lists:delete(I,L)))).

and now testing this revised property finds a counterexample quickly.

45> eqc:quickcheck(examples:prop_delete7()).
.xx.x.x.xx...x.x...x....x.......xx.....Failed! After 28 tests.
[-8,0,7,0]
0
Shrinking...(3 times)
[0,0]
0

In this small example, the poor distribution of tests data wasn’t really important.
We could find the fault quickly anyway, just by running a few hundred tests. In

192 J. Hughes

more complex situations, measuring the distribution of test data, and ensuring
it is appropriate, is essential to find errors in a reasonable time.

(Why did we shrink three times, just to discard two elements from the list?
Presumably because QuickCheck happened to try shrinking one of the numeric
values before discarding the other element—the sequence of shrinking test cases
could have been [−8, 0, 7, 0] → [0, 7, 0] → [0, 0, 0] → [0, 0] for example. There is
no guarantee that QuickCheck will find the shortest shrinking path—only that
the final result of shrinking can be shrunk no further.)

2.7 Properties That Fail

When a property fails, it is tempting just to correct it or delete it—after all, it was
proven to be incorrect. Yet in some cases, it’s worth retaining such properties,
and recording the fact that they fail. We can do so by adding fails to the
property definition:

prop_delete_misconception() ->
fails(
?FORALL(L,list(int()),
?IMPLIES(L /= [],

?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L)))))).

When such a property is tested, it is expected to fail:

49> eqc:quickcheck(examples:prop_delete_misconception()).
x...x.x....x..........OK, failed as expected. After 19 tests.

An error will be reported only if the property unexpectedly passes.
Failing properties serve two useful purposes.

– Firstly, they document a misconception that one might well harbour about
the code. “You might think that XY Z holds, but oh no! Here is a coun-
terexample.” By documenting the misconception, we help to ensure that it
will not be repeated.

– Secondly, they test our test case generation. If the distribution of test data
that we generate is not good enough to falsify the property within the spec-
ified number of tests, then an error is reported.

2.8 Points to Remember

Using QuickCheck, we test code against a formal specification. Often, as in
the example we presented, the errors that emerge are in the specification, not
the code. Do not hold formal specifications in awe just because they are called
specifications—they are as likely to be wrong as programs. Errors are revealed
by inconsistencies between the properties and the code, which describe the same
behaviour in two different ways. When an inconsistency is found, it is the de-
veloper’s responsibility to decide whether the code or the specification is wrong,

Software Testing with QuickCheck 193

and make an appropriate correction. This results not only in high quality code,
but in a specification which has been tested against the code, and is therefore
much more likely to be correct than a formal specification which has simply
been formulated.

The biggest danger in using QuickCheck is that we no longer see the test
data—nor would we want to, there is far too much of it. As a result, we may be
lulled into a false sense of security by a large number of passing tests, but fail to
notice that the distribution is badly skewed. For example, if the list(int())
generator were always to generate the empty list, then all the tests in this section
would pass—but that would mean very little. QuickCheck users cannot abdicate
responsibility for the test data, just because they do not see it—but they exercise
that responsibility at a higher level. Rather than focussing on individual test
cases, we collect statistics on the test data, and satisfy ourselves that it is relevant
and thorough. Traditional tools such as code coverage measures can be used to
help evaluate the quality of our test data.

2.9 Exercises

1. Getting Started. The version of QuickCheck described in these notes
is a commercial product, but you can download a free trial version from
www.quviq.com. Follow the instructions to install QuickCheck and activate
your trial licence.

Once you have done so, you can start QuickCheck by starting an Erlang
shell, and typing

eqc:start().

QuickCheck will download an activation from the licence server, and begin
a session—you should see something like

Starting eqc version 1.162 (compiled at {{2009,4,22},{16,10,31}})

Licence reserved until {{2009,4,22},{19,1,51}}

You can test whether QuickCheck is working by running

eqc:quickcheck(true).

which tests the property true—which should pass 100 tests, of course.
QuickCheck is supplied with HTML documentation (generated by edoc);

you should make a bookmark to it in your browser. The two modules needed
for these exercises are eqc, which defines properties and the shell API, and
eqc_gen which defines generators. Don’t take more than a quick look at the
documentation right now: it is more important to get on with some practical
exercises.

If you are using Emacs, then you should install the QuickCheck Emacs
mode now: run

eqc_emacs_mode:install().

in an Erlang shell before starting Emacs.

194 J. Hughes

In section 2.10 you will find the contents of a file lecture1.erl, contain-
ing the example properties presented above. You can either type in the file
yourself, or download a copy from http://www.chalmers.se/~rjmh/CEFP.
Open the file in an editor. If you are using Emacs, then you should find that
a “QuickCheck” menu appears whenever you edit an Erlang file. Clicking
on the menu, you should see sub-menus “Properties” and “Generators” that
contain all the forms of property and generator that QuickCheck provides:
if you’re looking for something, this is a good way to find it. Choosing one
of the functions from the menu prompts you for the parameters. The “full
module header” entry under “Properties” can be used for quickly creating
a new QuickCheck specification module. If you aren’t using Emacs, then no
such support is provided. You will need to manually insert

-include_lib("eqc/include/eqc.hrl").

at the head of each module that uses QuickCheck, to make the QuickCheck
API available.

Compile the lecture1 file, and use QuickCheck to test the two properties
it contains.

c(lecture1).
eqc:quickcheck(lecture1:prop_delete()).
eqc:quickcheck(lecture1:prop_delete_misconception()).

2. Simple numeric properties. Add properties to the lecture1 file stating
that the square of a real number is always positive, and that the square
root of a real squares to the original real. You will need the generator for
real numbers, which is called real(), and the square root function, which is
called math:sqrt.

You may find this informal partial grammar of properties helpful:

<property> ::= ?FORALL(<pattern>,<generator>,<property>)
| ?IMPLIES(<boolean expression>,<property>),
| collect(<expression>,<property>)
| begin <erlang expressions>, <property> end

The last case was not presented above, and is just there to remind you that a
begin. . . end block whose value is a property can also be used as a property.
The Erlang expressions can also bind variables—for example, they might be

Y = math:sqrt(X)

3. Properties of deletion. The properties developed in the lecture are far
from a complete characterization of deletion. To strengthen the specification,
implement, test, and debug if necessary, these properties too:
(a) Deleting an element that does not occur in a list leaves the list un-

changed.
(b) Deleting X from L1++[X]++L2 returns L1++L2.
Together, these properties completely characterize deletion.

Software Testing with QuickCheck 195

4. Choice of test data. So far, we have generated list elements using the
primitive generator int(), which generates values between ±30, roughly.
We could have specified the upper and lower bounds explicitly, using the
generator choose(-30,30) instead. Use this generator to experiment with
larger and smaller ranges of test data, and investigate the effect this variation
has on the number of tests needed to falsify the property

prop_delete8() ->
?FORALL({I,L},{elem(),list(elem())},

not lists:member(I, lists:delete(I,L)))

(where elem() is the element generator that you define). What general lesson
can you draw about the choice of test data generator?

5. Generating lists without duplicates. We saw a simple way to generate
lists without duplicate elements above: just generate a random list, then
sort it with usort. One disadvantage of this method is that it only gener-
ates sorted lists, and so the properties we tested using it might only hold
for sorted lists. Define your own generator for lists without duplicates that
does not suffer from this limitation—rather, it should potentially be able to
generate any list of elements without duplicates. You may find the function
eqc_gen:sample(G) useful, which displays a selection of values generated by
G; alternatively you can collect statistics about your generated values using
a property of the form

prop_collect() ->
?FORALL(X,<my generator>,

collect(<some property of X>,
true)).

Hint: one solution to this exercise uses the list difference operator Xs--Ys.

2.10 lecture1.erl

-module(lecture1).
-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

prop_delete() ->
?FORALL({I,L},

{int(),list(int())},
?IMPLIES(no_duplicates(L),

not lists:member(I,lists:delete(I,L)))).

no_duplicates(L) ->
lists:usort(L) == lists:sort(L).

196 J. Hughes

ulist(Elem) ->
?LET(L,list(Elem),

lists:usort(L)).

prop_delete_misconception() ->
fails(
?FORALL(L,list(int()),
?IMPLIES(L /= [],

?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L)))))).

3 Symbolic Test Cases

3.1 An Abstract Data Type of Dictionaries

In this section we shall introduce a number of methods useful for testing data-
structure libraries. As an example, we shall test the dict module from the Erlang
standard libraries. This module implements a key-value store as an abstract data
type, with a rich API containing such functions as

– new()—which returns a new, empty dictionary,
– store(Key,Val,Dict)—which returns a new dictionary extending Dictwith

the pair {Key,Val},
– fetch(Key,Dict)—which returns the value associated with Key in Dict.

It is important to note that these are not stateful operations: the Erlang dic-
tionary implementation is purely functional. We will turn to testing stateful
operations in section 4.

The representation of dictionaries is complex—in fact, they are hash tables—
but our goal is not to understand it: we aim to test dict without needing to
understand the internal representations. Thus we are engaged in black box
testing, where we test the module’s API, but need know nothing about the
module internals. This is an appropriate kind of testing for the user of the dict
module to apply.

We note in passing that the developer of the dict module would no doubt be
interested in other properties, such as that invariants of the dictionary represen-
tation are preserved. This would be an example of “white box” testing, in which
the module internals are also tested. Both kinds of testing are appropriate in
some situations, and of course, QuickCheck can be used for either.

3.2 Generating Dictionaries

We begin by testing a very simple property indeed: the dict library provides a
way to extract the list of keys from a dictionary; we shall check that each key is
unique.

Software Testing with QuickCheck 197

prop_unique_keys1() ->
?FORALL(D,dict(),
no_duplicates(dict:fetch_keys(D))).

Now this property might or might not be true, depending on how the dict
library is designed, but it is reasonable to test it in any case—by doing so, we
will improve our understanding of the dict library. Thus at this point we are
using QuickCheck as a program understanding tool, rather than a testing tool.

However, we cannot begin to test this property until we can generate dictio-
naries. Since we do not understand the structure of dictionaries, the only way
we can do so is using the API that the dict library provides. To begin with, we
shall use only the dict:new and dict:store operations to generate test data.

A first stab at a dictionary generator might be as follows:

dict() ->
oneof([dict:new(),

?LET({K,V,D},{key(),value(),dict()},
dict:store(K,V,D))]).

The oneof function is provided by QuickCheck: it combines a list of generators
into a generator that chooses one of the generators randomly, and then uses it
to generate its own result. In this case we either generate a new dictionary, or
generate a dictionary in two stages (?LET), first by choosing a key, value, and
(recursively) a dictionary, then by storing the key value pair in that dictionary
D. Note that we can freely use values as generators (dict:new()), and use tuples
(or lists for that matter) containing generators as generators themselves.

We can use oneof to generate more interesting data as keys and values also—
for example,

key() -> oneof([int(),real(),atom()]).
value() -> key().

Here the atom() generator just chooses from a representative sample of atoms:

atom() -> elements([a,b,c,undefined]).

(where elements is another QuickCheck function that just generates one of
the elements of a list). Here a, b, c and undefined are Erlang atoms—that is,
symbolic constants—so remember that they are constants, not variables, when
you see them shortly in generated test cases.

Now although the dict() generator above looks appealing, it does not actu-
ally work—and the reason is that Erlang is a strict programming language. The
second choice in the list passed to oneof contains a recursive call of dict(),
and this is an infinite recursion. Even though oneof only uses one element of
its argument, the entire list, with all of its elements, must be evaluated since
Erlang is strict. Thus, even when oneof chooses an empty dictionary, we still
recursively construct another dictionary to store into—and the infinite loop is a
fact.

198 J. Hughes

We would often like to use lazy evaluation when building generators, so that
only the part of the generator that is actually used is ever constructed. To
make this possible, QuickCheck provides a generator construction ?LAZY(Gen),
which is entirely equivalent to Gen, except that constructing the generator is
always constant time. The price of constructing the argument is paid only if the
generator is actually used. Thus we can avoid the infinite loop in the dict()
generator as follows:

dict() ->
?LAZY(
oneof([dict:new(),

?LET({K,V,D},{key(),value(),dict()},
dict:store(K,V,D))])

).

Only one ?LAZY is needed to guarantee that recursive calls to dict() terminate
at once.

Now we can test our simple property, and. . . surprise, surprise. . . it fails!

9> eqc:quickcheck(eqc:numtests(10000,examples2:prop_unique_keys1())).

...

...

...

...

...

...

....................................Failed! After 451 tests.

{dict,2,16,16,8,80,48,

{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},

{{[[0.0|0.0],[0|0.0]],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}}}

false

Thus this is an example of a dictionary which contains duplicate keys—but
the failure report reveals a problem with our approach. Since we are engaged
in black box testing, we do not understand the representation (as a hash table)
of the problematic dictionary that QuickCheck has reported. We do not even
know where the keys are in the structure that we see! Clearly, displaying the
representation of failing test cases is not appropriate for black box testing—and
in the next subsection, we will see how to avoid it.

3.3 Symbolic Test Cases

As we just saw, the representation of test data is often not useful for under-
standing a test failure. Instead, we would like to know how the test data was
constructed using the API under test. We can indeed display this information
instead—if we construct a symbolic representation of the test case, instead of its
actual value.

QuickCheck supports a simple symbolic representation of function calls as
Erlang terms: the term {call,M,F,Args} is used to represent the function

Software Testing with QuickCheck 199

call M:F(. . .Args. . .). Symbolic representations can be interpreted using the
function eval(X), which takes any term X containing symbolic function calls, and
replaces each call by its value. Thus we can convert our dictionary generator to
generate symbolic dictionaries instead, and add a call of eval to the property
like this:

prop_unique_keys2() ->
?FORALL(D,dict(),

no_duplicates(dict:fetch_keys(eval(D)))).

The symbolic dictionary generator can be defined as follows:

dict() ->
?LAZY(oneof([{call,dict,new,[]},

{call,dict,store,[key(),value(),dict()]}])).

Note that we no longer need to use ?LET to generate the key, value, and recursive
dictionary before constructing the call to dict:store. . . we can simply insert
their generators directly into the symbolic call. These generators will still be
converted to proper values before the call to dict:store is actually made, since
this now happens later on in eval(D), rather than during the generation of the
test data.

Now when we test the property, then the failing case is reported in an under-
standable form:

13> eqc:quickcheck(examples2:prop_unique_keys2()).

...Failed! After 4 tests.

{call,dict,store,

[1,0.0,

{call,dict,store,

[0.0,undefined,

{call,dict,store,

[-1.0,c,

{call,dict,store,

[0.0,1,

{call,dict,store,

[0,b,

{call,dict,store,

[1.0,1,

{call,dict,store,

[a,-1.0,{call,dict,new,[]}]}]}]}]}]}]}]}

We can see exactly how the dictionary with non-unique keys was constructed
using the dict API: it is the value of

dict:store(1,0.0,
dict:store(0,0,undefined,
dict:store(-1.0,c,
dict:store(0.0,1,

dict:store(0,b,

200 J. Hughes

dict:store(1.0,1,
dict:store(a,-1.0,
dict:new())))))))

It must be admitted that this information is less useful than we might have
hoped. It is hard to believe that such a complex construction is necessary to
provoke the problem we have discovered. But wait. . . this is just the test case
that QuickCheck first generated, which as we already learned contains a lot of
random noise. Shouldn’t it shrink to a simpler case? Indeed, it does—here is the
result of shrinking in this case:

Shrinking.........(9 times)

{call,dict,store,

[0,0.0,

{call,dict,store,

[0.0,a,

{call,dict,store,

[0.0,a,

{call,dict,store,

[0.0,0,

{call,dict,store,

[0,a,

{call,dict,store,

[0.0,0,

{call,dict,store,

[a,0.0,{call,dict,new,[]}]}]}]}]}]}]}]}

false

Unfortunately, this term is the same size as, and has the same structure as,
the original. The only simplification is that some keys and values have been
replaced by others—all the numbers are now zero, for example. Sadly, this is
only of limited help in understanding the cause of the failure.

What we would like, of course, is to see QuickCheck simplify the test case
be eliding unnecessary symbolic calls. Why doesn’t this happen? The answer
is that QuickCheck cannot know the semantics of the test data, and so cannot
know which simplifications make sense. For example, we know that it makes
sense to simplify {call,dict,store,[K,V,D]} to just D, because D is a simpler
argument of the same type. But QuickCheck cannot know this—unless we tell
it! In the next section we will see how to tailor QuickCheck’s shrinking strategy
so that it shrinks these examples well.

3.4 Shrinking Symbolic Tests

Shrinking is one of the most useful features of QuickCheck, and so in addition
to built-in strategies, QuickCheck provides many ways to tailor the shrinking
for particular kinds of test data. Shrinking is thus very much under the user’s
control, and can be used to replace test data by any data that the user considers
“simpler”—even terms that are actually larger, if that is what the user wants.
Shrinking is specified as a part of generators: a QuickCheck generator specifies a

Software Testing with QuickCheck 201

set of possible test data, a probability distribution over that set, and a shrinking
strategy.

In particular, QuickCheck provides a construction

?LETSHRINK([X1,X2,...],
[G1,G2,...],
Result(X1,X2,...))

which is intended for use in recursive generators, such as the dict() generator
above. ?LETSHRINK generates a list of values using [G1,G2,...] (which are in-
tended to be the recursive components of the result), binds them to the variables
X1, X2,. . . , then returns a value generated by Result. Should the resulting test
fail, then QuickCheck will try to simplify this result to each of the values X1,
X2,. . . in turn—in addition to the other shrinking steps inherent in G1,G2,. . . and
Result.

For example, to allow symbolic calls of dict:store to be elided, we could use
?LETSHRINK as follows:

dict() ->
?LAZY(oneof([{call,dict,new,[]},

?LETSHRINK([D],[dict()],
{call,dict,store,[key(),value(),D]})])).

Now symbolic calls {call,dict,store,[K,V,D]} can shrink to D.
With this revision to the dict() generator, failing test cases shrink much

more effectively. For example,

20> eqc:quickcheck(examples2:prop_unique_keys2()).

...Failed! After 4 tests.

{call,dict,store,

[-1.0,b,

{call,dict,store,

[-1,-1.0,

{call,dict,store,

[c,c,

{call,dict,store,

[0,-1,

{call,dict,store,

[1.0,b,{call,dict,new,[]}]}]}]}]}]}

Shrinking.....(5 times)

{call,dict,store,[-1.0,a,{call,dict,store,[-1,0.0,{call,dict,new,[]}]}]}

false

All but two calls of store shrink away, and we are left with a dictionary
that just contains two keys— -1.0 and -1. Hmmm. Does this dictionary con-
tain duplicate keys? That may depend very critically on the exact definition of
“duplicate”. . . !

We will not diagnose this problem further, but just close by remarking that,
just as in the last section, effective shrinking makes the cause of a test failure very
easy to spot. Effective shrinking may require domain-specific shrinking strategies,

202 J. Hughes

which only the user can formulate, test, and debug—but QuickCheck provides
customisation mechanisms to make such strategies easy to implement.

3.5 “Hoare Testing” of Abstract Data Types

We have now developed a good generator for dictionaries, but the property we
are testing is still very weak—many incorrect implementations would satisfy this
property. In this section, we shall see how to define stronger properties that char-
acterize correct behaviour of the library. These properties are based on Hoare’s
1972 article on proving the correctness of abstract data type implementations
[9], and so we refer to this kind of testing as “Hoare testing”.

The key idea is to relate the implementation to an abstract model of the data
type, which is to taken to define correct behaviour. Hoare used set-theoretic
models, but we need executable Erlang ones, and so we shall model dictionaries
by lists of key-value pairs, or “property lists”. With this simple representation,
it is easy to see how each operation should behave; moreover we can use another
Erlang library, the proplists library, to define the operations in the model.

Having chosen a model, the first step is to relate the implementation to the
model. This is done by defining an abstraction function that uses the dict API
to convert a dictionary representation into the corresponding abstract value. In
this case, this is very easy, since the dict API already contains an operation to
do precisely that:

model(Dict) -> dict:to_list(Dict).

Now, to test each operation, we need to define a corresponding operation
in the model. For example, adding a key-value pair to a property list can be
achieved by

model_store(K,V,L) -> [{K,V} | L].

Correctness of each operation can then be formulated as a commuting diagram:

In other words, for any dictionary Dict, storing a key-value pair, and con-
verting the result to its model, should give the same result as converting the
original dictionary to its model, and adding the key-value pair using the model
operation. If every operation in the API satisfies such a commuting diagram,
then any program using the dict operations will behave in the same way as an
abstract program using model operations instead. That is, if these properties
hold, then dict is a correct implementation of the model.

Software Testing with QuickCheck 203

Commuting diagrams such as these can easily be represented as QuickCheck
properties. For example, the diagram above can be represented as:

prop_store() ->
?FORALL({K,V,D},

{key(),value(),dict()},
begin
Dict = eval(D),
model(dict:store(K,V,Dict)) == model_store(K,V,model(Dict))

end).

A similar property can be written for each of the API operations; if all these
properties pass an arbitrary number of tests, then we know that the implemen-
tation of dictionaries is correct. Thus, a complete test suite for the dict module
should contain one such property for each API operation.

(The astute reader may worry that, with this approach, the two paths around
the commuting diagram might result in equivalent, but different values, causing
these properties to fail. For example, if we really intend to model a datatype by
a mathematical set, but choose instead to use Erlang lists in our test code, then
we might obtain two different lists representing the same set—two lists with the
same elements, but in a different order. The solution is either to replace the
equality test in the properties by an explicit test for equivalence, or to normalise
the Erlang model so that equivalent values are always equal. In the case of
lists representing sets, one can normalise by sorting the elements and removing
duplicates: two such lists are equal if and only if they represent the same set.)

Yet the properties described, alone, are not enough to test the dict module
thoroughly. It is also important that the dict() generator used in these proper-
ties can generate any possible dictionary—otherwise we are testing the correct-
ness properties in only a subset of the relevant cases. The generator presented
above may not do so, because it only constructs dictionaries using dict:new and
dict:store. The real dict API provides a variety of other ways to construct
dictionaries, such as append, update, filter and merge—and any one of these
operations might break a dictionary invariant and construct a dictionary repre-
sentation on which other operations fail. We therefore need to include every API
operation that returns a dictionary in the dict() generator.

When we do so, then note that the property above does not only test the store
operation, it actually tests store plus all of the operations used to construct the
test data Dict—a much more thorough test.

We leave completion of the test suite as an exercise for the reader. For now,
let us just test the property above—which reveals that it is not true!

29> eqc:quickcheck(examples2:prop_store()).
..Failed! After 3 tests.
{0,0.0,{call,dict,store,[0,0.0,{call,dict,new,[]}]}}
false

That is, when we insert the key-value pair {0,0.0} into a dictionary that already
contains it, then the implementation and the model disagree. Assuming that a

204 J. Hughes

well-tested library module is probably correct, then there is a deficiency in our
model—but it is far from clear what that might be. In the next section we will
see how to debug failing properties of this sort.

3.6 Debugging Failing Properties

When a property fails, we often need more information than just the inputs
to the test if we are to diagnose the failure easily. An easy way to generate
this information is just to print additional values using io:format from within
the property. Yet if we simply add such calls to our properties, then output is
generated during every test QuickCheck runs—including the tests that pass, and
the tests that QuickCheck runs while searching for a minimal failing example.
The result is usually an enormous volume of information, almost all of which is
irrelevant.

Ideally, we would like to add print-outs that are performed only in test cases
that QuickCheck is reporting, namely the first failed test, and the final result of
shrinking. QuickCheck provides another form of property to achieve this:

?WHENFAIL(Action,Property)

is equivalent to Property, but also performs Action when a failed test is re-
ported to the user. Typically Action is a call to io:format that displays useful
additional information.

For example, in the properties used in Hoare testing, then the property holds
if two terms in the model are equal. We can replace the equality test by a call
of the following function

equals(X,Y) ->
?WHENFAIL(io:format("~p /= ~p~n",[X,Y]),

X==Y).

which is logically equivalent, but reports the two values that differ when a test
fails2. With this modification, prop_store becomes

prop_store() ->
?FORALL({K,V,D},

{key(),value(),dict()},
begin
Dict = eval(D),
equals(model(dict:store(K,V,Dict),

model_store(K,V,model(Dict)))
end).

and retesting it generates the following output:

2 Newer versions of QuickCheck include this function in the library, under the name
equals.

Software Testing with QuickCheck 205

31> eqc:quickcheck(eqc:numtests(10000,examples2:prop_store())).

Failed! After 1 tests.

{a,0,

{call,dict,store,

[a,undefined,

{call,dict,store,

[0,b,{call,dict,store,[undefined,0,{call,dict,new,[]}]}]}]}}

[{0,b},{a,0},{undefined,0}] /= [{a,0},{0,b},{a,undefined},{undefined,0}]

Shrinking...(3 times)

{a,0,{call,dict,store,[a,a,{call,dict,new,[]}]}}

[{a,0}] /= [{a,0},{a,a}]

false

The penultimate line displays the two abstract values that differ; we see im-
mediately that the one on the right (produced by our model_store function)
contains a duplicate key, which the real implementation avoided. Referring back
to the definition of model_store,

model_store(K,V,L) -> [{K,V} | L].

we see at once that it does not model a dictionary which maintains only a single
value per key—which is what dict is intended to do. So as we suspected, our
model needs to be adjusted to match the real intent of the library.

In the exercises that follow, we will improve this specification of the dict
library.

3.7 Exercises

In section 3.8 you will find the contents of a file lecture2.erl, which con-
tains some of the definitions from this lecture—namely, a partial specification
of the dict library. You can either type this file in, or download a copy from
http://www.chalmers.se/~rjmh/CEFP. Compile the file, and run

eqc:module(lecture2).

which tests all the properties exported from the module. You will see that both
properties fail.

1. Property debugging. The property prop_dict() expresses a correspon-
dance between dictionaries constructed from a property list using the
from_list function, and the original property list—but it fails. Generate
several counter-examples using QuickCheck, examine them for common fea-
tures, and form a hypothesis about why the property fails. Make a simple
correction to the property so that it passes instead.

2. Correcting the model. The property prop_store() performs Hoare test-
ing of the store operation, but it fails because the model is incorrect.
Use QuickCheck to derive counterexamples to the property, then adjust the
model (i.e. the functions model and model_store) until the property passes.
Do not modify the property itself—there is no need to do so.

206 J. Hughes

3. Adding an operation. So far, the only operations tested are new and
store. Read the documentation of dict:erase(Key,Dict), and define a
model version model_erase and Hoare correctness property prop_erase.
Use QuickCheck to check that your model is correct.

4. Extending the generator. To test erase properly, it should also be added
to the dict() generator, since it provides yet another way to build dictionar-
ies. Do so, and think specifically about how to shrink symbolic dictionaries
once erase is introduced. In general, calling erase may make a dictionary
smaller—does this mean that shrinking ought to insert calls of erase, rather
than remove them?

5. Controlling size in generators. The purpose of this exercise is to add
the merge function to the tested API—read the documentation of this func-
tion now. Testing merge demands that we construct a model and a Hoare
property, but also that we add it to the dict() generator. This step is the
trickiest, so it is the one we will focus on.

To begin with, add a generator for calls of merge to the dict() gen-
erator, using the approach illustrated in the lecture. You will need to gen-
erate random 3-argument functions that return values, which you can do
using the generator function3(value()). Compile your specification and
test prop_store() again. You are likely to find that you run out of memory.
The problem is that a symbolic call of merge contains two recursive dictio-
naries, with the result that generated terms can grow exponentially. In this
situation, it is essential to limit the size of terms that dict() can gener-
ate. Add a natural number parameter Size to the dict() generator, and
reduce it in the recursive calls, to ensure that generated terms cannot con-
tain more than Size+1 symbolic calls. (The smallest possible dictionary,
{call,dict,new,[]}, contains one call, and must be generated when Size
is zero). You can redefine an unparameterised dictionary generator via

dict() -> ?SIZED(Size,dict(Size)).

which gives control of the Size parameter to QuickCheck. Now check that
your properties still pass using

eqc:module(lecture2).

6. Adding real numbers. The key() generator provided in lecture2.erl
generates only integers and atoms—real numbers, which caused problems in
the lecture, have been omitted for simplicity. Add real() as a possible way
to generate keys, and retest all the properties in your module using

eqc:module({numtests,1000},lecture2).

which returns a list of the properties that fail. You can inspect the counterex-
amples found using eqc:counterexamples(). Diagnose the failures, and cor-
rect your model so that the properties pass once again. Hint: read section
6.11 of the Erlang reference manual, on “Term Comparisons”.

Software Testing with QuickCheck 207

7. Specifying merge. Complete your specification of merge, by adding a
model_merge to the model, and a Hoare property prop_merge(). (This will
be easiest to do if you do not include real numbers in the test data).

This exercise can of course be continued much further. There are many more
operations in the dict module, waiting to be specified. There are other similar
modules—such as orddict and gb_trees—which provide related functionality
in a different way. These modules could be tested against the same (or a very
similar) model. Why not choose an abstract datatype implementation from the
Erlang libraries, and build a complete QuickCheck specification of your own?

3.8 lecture2.erl

-module(lecture2).

-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

%% A generator for symbolic dictionaries

dict() ->

?LAZY(oneof(

[{call,dict,new,[]},

?LETSHRINK([D],[dict()],

{call,dict,store,[key(),value(),D]})])).

%% Auxiliary generators

key() ->

oneof([int(),atom()]).

value() ->

key().

atom() ->

elements([a,b,c,undefined]).

%% Dictionaries constructed using from_list behave

%% like property lists

prop_dict() ->

?FORALL(L,list({key(),value()}),

?IMPLIES(L/=[],

?FORALL(K,elements(proplists:get_keys(L)),

equals(proplists:get_value(K,L) ,

dict:fetch(K,dict:from_list(L)))))).

%% Hoare testing: the model

208 J. Hughes

model(Dict) ->

dict:to_list(Dict).

%% Hoare testing of store

model_store(K,V,L) ->

[{K,V}|L].

prop_store() ->

?FORALL({K,V,D},

{key(),value(),dict()},

begin

Dict = eval(D),

equals(model(dict:store(K,V,Dict)),

model_store(K,V,model(Dict)))

end).

%% Property auxiliary

equals(X,Y) ->

?WHENFAIL(io:format("~p /= ~p~n",[X,Y]),

X==Y).

4 Testing Stateful Systems

4.1 The Process Registry

In many cases, real software manipulates internal state and offers a stateful API.
A useful testing tool must be able to test stateful systems also, not just purely
functional libraries. In this section we introduce QuickCheck’s support for testing
stateful software using abstract state machines.

The example we use for illustration is the Erlang process registry. This is a
local name server that enables Erlang processes to find services running on the
same node. Processes are named by atoms, and the central functions of the API
are:

– register(Name,Pid)—which creates an association between an atom Name
and a process identifier Pid,

– unregister(Name)—which removes any association for the given Name, and
– whereis(Name)—which returns the pid associated with Name, if any.

These functions are all in the erlang module containing built-in functions; de-
tailed documentation can be found in the documentation of that module.

Interestingly, the process registry is really just another example of a key-value
store—and we shall test it against a model in a similar way.

4.2 Testing Stateful Interfaces

Stateful APIs offer new challenges for testing (one good reason to prefer purely
function APIs whenever possible!). The state is an implicit argument to and

Software Testing with QuickCheck 209

result from every API call, yet it is not directly accessible to the test code. We
would like to model the state abstractly, just as we did in the previous section,
and test in a similar way—but because the state is not directly observable,
then we cannot define an abstraction function model which recovers the abstract
state before and after a test. Although such a function should exist in principle,
and the same diagram ought to commute as in the previous section, we cannot
implement our tests in this manner. We must find an alternative.

However, although we cannot observe the abstract state directly, we can com-
pute it using state transition functions that model the operations in the API
under test. These functions correspond to model_store, model_erase and so
on defined above, and are used in the same way to predict the model state after
each operation—but whereas in the last section we could directly compare the
predicted model state to the actual observed one, in this section we will only
be able to use the results returned by the API operations. Our approach will
thus be to test whether the real observed results of each API call are consistent
with the predicted model state. If the predicted state and the actual state ever
become inconsistent, then this inconsistency will eventually be observed via the
result of some sequence of API calls—unless, of course, no sequence of calls can
distinguish the two, in which case the difference is arguably of no importance.

The test cases we generate for stateful systems are sequences of API calls. We
can gain a general idea of how such test cases are generated and used from the
property used to test the registry:

prop_registry() ->
?FORALL(Cmds,commands(?MODULE),
begin
{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup(),
?WHENFAIL(

io:format("History: ~p\nState: ~p\nRes: ~p\n", [H,S,Res]),
Res == ok)

end).

Referring to this definition, we see that:

– We quantify over a list of symbolic commands, Cmds, generated by the func-
tion commands, which is a part of QuickCheck. These correspond to the
symbolic dictionaries of the previous section.

– We execute the list of commands using run_commands, another function pro-
vided by QuickCheck, which corresponds to eval in the previous section.

– The result of run_commands is a triple whose third component, Res, sum-
marizes the outcome of the test. If this is the atom ok, then the test passed.

– The other components of the result contain debugging information; it is
useful to display this when a test fails using ?WHENFAIL.

– After each test, the registry must be restored to a known state in preparation
for the next test; properties for testing stateful systems almost always need
to contain clean-up code to do this.

210 J. Hughes

– Both commands and run_commands take a module name as a parameter.
This module provides callbacks that define the behaviour of the state ma-
chine model, and it is these callbacks that are the heart of the QuickCheck
specification.

In the next sections we will explain the callbacks that make up a QuickCheck
state machine specification. Definitions of these callbacks must be placed in, and
exported from, the module whose name appears in the property above.

4.3 Generating Commands

The first callback we shall consider, called command, defines how the symbolic
API calls that make up a test case should be generated. Since we intend to test
register, unregister and whereis, then we might expect to define

command() ->
oneof([{call,erlang,register,[name(),pid()]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]}
]).

where name() generates a random atom, and pid() generates a random process
identifier. We generate names via

name() -> elements([a,b,c,d]).

choosing atoms from a small set so that a test case is likely to refer to the same
name several times. But what about pid()? This should choose from a small
pool of process identifiers—but process identifiers must be created dynamically.
It is important to create new process identifiers each time a test case is run,
since otherwise earlier tests may corrupt the test data (process identifiers) used
in later ones, leading to test failures that are virtually impossible to diagnose.

It follows that process creation must be a part of the generated test cases.
This is easy to achieve by defining a local function spawn() that just starts a
process that does nothing, and including calls in test cases:

command() ->
oneof([{call,erlang,register,[name(),pid()]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

However, we still have to arrange for pid() to choose one the processes previously
created by a spawn() in the same test case.

In order to do so, we maintain a test case state which collects all the process
identifiers generated by spawn(), and we parameterise pid() (and command())
on this state so that previously spawned pids can be chosen:

Software Testing with QuickCheck 211

command(S) ->
oneof([{call,erlang,register,[name(),pid(S)]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

The command callback is thus a one-argument function, not a zero-argument one
as it appeared to be earlier. In fact, this kind of situation arises frequently: it is
often the case that a resource allocated by one API call needs to be passed as a
parameter to a later one, and so a mechanism for supporting this is an important
part of a state machine testing framework.

We now need to maintain a test case state for two different reasons: firstly, as
an abstract model of the state of the system under test, and secondly, so that
we can generate call sequences that reuse the results of earlier calls later in the
sequence. In principle we might track two separate states, but we have chosen
instead to merge them into one. We are thus now in a position to choose a model
state for testing the process registry: it is an Erlang record defined as follows:

-record(state,{pids=[],
regs=[]

}).

The first component is a list of the pids spawned in the current test, while the
second is a property list modelling the state of the registry. With this definition,
we can finally define

pid(S) -> elements(S#state.pids).

4.4 Modelling State Transitions

We have now defined how to generate the next command from a test case state,
but we have yet to define how each command changes the state. We do this via a
next_state callback, which maps the state before a call, and the symbolic call,
into the resulting state afterwards. Since this state may depend on the actual
result of the call, then this is also supplied as a parameter. For example, the
clause for spawn adds the result of the call (the parameter V, a pid) to the list
of pids in the test case state:

next_state(S,V,{call,_,spawn,_}) ->
S#state{pids=[V|S#state.pids]};

The next_state function is used to simulate the test case state as a test case
is generated, enabling the command generator in the previous section to refer to
previously spawned pids.

Similarly, the state transitions for register and unregister make the ex-
pected changes to the modelled registry contents:

212 J. Hughes

next_state(S,_V,{call,_,register,[Name,Pid]}) ->
S#state{regs=[{Name,Pid}|S#state.regs]};

next_state(S,_V,{call,_,unregister,[Name]}) ->
S#state{regs=proplists:delete(Name,S#state.regs)};

Finally, we include a catch-all clause specifying that other calls do not change
the model state.

next_state(S,_V,{call,_,_,_}) ->
S.

In this case the only other call is whereis, and sure enough, we do not expect
it to change the registry state.

We also need to define the initial test case state, which is done by a third
callback that can simply construct a state record with default field values:

initial_state() -> #state{}.

4.5 Conditional Generation

Glossing over a few details, we are now ready to run our first tests. When we do
so, they fail immediately:

40> eqc:quickcheck(reg_eqc:prop_registry()).
Failed! Reason:
{’EXIT’,{eqc,elements,[[]]}}
After 1 tests.
false

The error message indicates that the test failed because of an exception raised
when elements([]) was called—to generate an element of the empty list! Of
course, this is impossible, so elements should not be called in this way—we have
a bug in our command generator. The problem is that in the initial test case
state, S#state.pids is empty—and so if we try to generate a call of register,
then we must choose a pid from the empty list, which raises the exception. The
solution is to include register as an alternative in the list of possible commands
only if S#state.pids is non-empty. We could do so using a case-expression,
but we prefer a little trick which offers a very concise notation, so we revise our
definition of command(S) again as follows:

command(S) ->
oneof([{call,erlang,register,[name(),pid(S)]}

|| S#state.pids/=[]] ++
[{call,?MODULE,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

Software Testing with QuickCheck 213

The first operand of ++ above is a list comprehension with no generators, a form
one does not see very often, but which is just what we need here. Such a compre-
hension is evaluated as follows: [X||true] evaluates to [X], while [X||false]
evaluates to []. Thus the effect is to include the call to register in the list from
which oneof chooses precisely when the list of pids in the state is non-empty. In
fact, the generator for register is not even evaluated if the condition is false—so
such a list comprehension can be used as a kind of “if. . . then. . . ” expression in
Erlang, something many programmers more used to imperative languages miss
sorely.

With this change, our command generator works, and we can start running
tests for real.

4.6 Specifying Preconditions

Once again, when we try to test our property, then it fails immediately:

42> eqc:quickcheck(reg_eqc:prop_registry()).

Failed! After 1 tests.

[{set,{var,1},{call,reg_eqc,spawn,[]}},

{set,{var,2},{call,erlang,whereis,[b]}},

{set,{var,3},{call,erlang,unregister,[d]}},

{set,{var,4},{call,reg_eqc,spawn,[]}},

{set,{var,5},{call,reg_eqc,spawn,[]}},

{set,{var,6},{call,erlang,register,[b,{var,5}]}},

{set,{var,7},{call,erlang,whereis,[c]}},

{set,{var,8},{call,erlang,whereis,[a]}},

{set,{var,9},{call,erlang,whereis,[a]}},

{set,{var,10},{call,erlang,register,[d,{var,1}]}},

{set,{var,11},{call,erlang,unregister,[d]}},

{set,{var,12},{call,erlang,register,[c,{var,1}]}}]

History: [{{state,[],[]},<0.2066.0>},{{state,[<0.2066.0>],[]},undefined}]

State: {state,[<0.2066.0>],[]}

Res: {exception,{’EXIT’,{badarg,[{erlang,unregister,[d]},

<...7 more lines...>]}}}

We can see from the output that test cases are more than just a list of
symbolic commands: they are a list of symbolic variable bindings. Just as
{call,M,F,Args} represents a function call symbolically, so {var,N} represents
a variable. . . think of it as vN . The test case above binds {var,1} to the result
of spawn, {var,2} to the result of whereis, and so on. Variables can be reused
in the arguments of later symbolic calls—for example, {var,1} is reused as an
argument in the line binding {var,10}. One of the main differences between
eval and run_commands is just that the latter manages these symbolic variable
definitions, as well as performing symbolic calls.

Looking at the diagnostic output from the ?WHENFAIL, we see that the reason
for the test failure was a badarg exception raised by unregister. However, the
test case is too complex for us to understand the problem immediately. Luckily,
it shrinks to a much simpler one—continuing the QuickCheck output, we see

214 J. Hughes

Shrinking....(4 times)
[{set,{var,3},{call,erlang,unregister,[a]}}]
History: []
State: {state,[],[]}
Res: {exception,{’EXIT’,{badarg,[{erlang,unregister,[a]},

<...7 more lines...>]}}}
false

This test does nothing other than call unregister(a). Now it is pretty clear
that the exception is raised because we are unregistering a name which has
not previously been registered—and indeed, the documentation confirms that
unregister is supposed to raise an exception in this case. We must revise our
model to reflect this.

One way to do so is to specify a precondition for unregister, stating that it
may only be called when the name to be unregistered is actually in the registry.
QuickCheck uses a fourth callback, precondition, to determine when API calls
may be made. We can define unregister’s precondition as follows:

precondition(S,{call,_,unregister,[Name]}) ->
unregister_ok(S,Name);

precondition(_S,{call,_,_,_}) ->
true.

unregister_ok(S,Name) ->
proplists:is_defined(Name,S#state.regs).

(where the second clause of the precondition callback was already present—
otherwise the tests would have failed with an undefined function). QuickCheck
ensures that all preconditions hold in every generated test case, so with this
addition then the problem we encountered can no longer occur.

4.7 Specifying Postconditions

The change we just made to the specification is an example of “positive
testing”—we restrict test cases to those in which we expect unregister to work.
Yet it is in a sense unsatisfactory. We know that unregister is intended to raise
an exception when called with a name that is not in the registry, but positive
tests will never test this case. We might therefore prefer not to specify a precon-
dition for unregister, but instead allow arbitrary calls to be made, and check
that an exception is indeed raised whenever it ought to be. This kind of testing
is referred to as “negative testing”, because we also test the (specified) error
behaviour of the system under test.

We can perform this kind of testing using QuickCheck by removing the pre-
condition, and adding a postcondition for unregister instead. Postconditions
are defined via the fifth and final callback that makes up a QuickCheck state
machine model. This callback is passed the state before a call, the symbolic call,
and the actual result of the call, and is expected to return true or false. We
can add a postcondition for unregister as follows:

Software Testing with QuickCheck 215

postcondition(S,{call,_,unregister,[Name]},Res) ->
case Res of
{’EXIT’,_} -> not unregister_ok(S,Name);
true -> unregister_ok(S,Name)

end;
postcondition(_S,{call,_,_,_},_Res) ->
true.

where once again, the last clause was already present. Examining the code, we
see that if the actual result Res is an exit value, then the postcondition holds
only if the call was expected to fail, while if the actual result is true, then the
postcondition holds only if the call was expected to succeed.

Note that we have made heavy use of unregister_ok, which defines when a
call of unregister is expected to succeed. It is because such conditions are often
moved between pre- and post-conditions that we defined a separate function to
test it in the first place.

Our job is not quite complete. We have added a postcondition to test for an
exception, but this will have no effect unless we arrange to catch the exception
first—QuickCheck always considers an uncaught exception to be a test failure.
We can catch the exception by defining a local version of unregister that does
so,

unregister(Name) -> catch erlang:unregister(Name).

and replacing calls of erlang:unregister in test cases by calls of the local
version:

command(S) ->
oneof([...{call,?MODULE,unregister,[name()]},...]).

With these changes, we can now rerun our tests—and they will fail for a different
reason!

44> eqc:quickcheck(reg_eqc:prop_registry()).

.Failed! After 2 tests.

<... 35 lines omitted ...>

Shrinking......(6 times)

[{set,{var,1},{call,reg_eqc,spawn,[]}},

{set,{var,3},{call,erlang,register,[a,{var,1}]}},

{set,{var,4},{call,erlang,register,[a,{var,1}]}}]

History: [{{state,[],[]},<0.2101.0>},{{state,[<0.2101.0>],[]},true}]

State: {state,[<0.2101.0>],[{a,<0.2101.0>}]}

Res: {exception,{’EXIT’,{badarg,[{erlang,register,[a,<0.2101.0>]},

<... 7 lines omitted ...>]}}}

false

This time the failed test spawns a process, then tries to register it twice.
We can see from the failure reason that one of the calls to register raised a
badarg exception. The diagnostic information contains a history, in the form of
the state before and result of each operation performed, and the final state after

216 J. Hughes

the last call—we can see that spawn returned the pid <0.2101.0>, the first call
of register returned true, and that {a,<0.2101.0>} was in the model state
after that call. It is not too big a stretch to guess that register is supposed
to raise an exception when the name to be registered is already present in the
registry, and so we now have enough information to refine our model further.

We will leave further model refinement to the exercises. For now, notice that
the same property has revealed two different bugs—or rather, inconsistencies
between the model and the real code. The ability to find different bugs using the
same property is a major advantage of property-based testing over a fixed set of
test cases, in which one test case can hardly ever reveal more than one bug.

4.8 Exercises

In section 4.9 you will find the contents of the file reg_eqc.erl, which provides
an incomplete specification of the process registry. Type in this file, or download
a copy from http://www.chalmers.se/~rjmh/CEFP. Note the line

-include_lib("eqc/include/eqc_statem.hrl").

at the top of the file, which is needed to make the QuickCheck state machine
features available. Should you need to develop such a specification yourself, then
a skeleton specification can be created by selecting “Complete eqc statem spec”
from the “State machine specs” menu in the QuickCheck Emacs mode.

1. Adding a precondition. Compile reg_eqc.erl, and use QuickCheck
to test prop_registry(). You will find that the property fails, because
register raises an exception. Define a function register_ok(S,Name,Pid)
which returns true if register(Name,Pid) ought to succeed in state S, and
use it to specify a precondition for register that enables this property to
pass.
Hint: the function lists:keymember may be useful.

2. Adding a postcondition. The previous exercise implements positive test-
ing of register. Now we shall implement negative testing instead. First
remove the precondition just added, and instead add a postcondition for
register saying that an exception is raised precisely when register_ok is
false. Revise your specification until prop_registry() passes.

3. Testing whereis. Add another postcondition to your specification, testing
that whereis returns the correct result.

4. Killing processes. In this exercise, we shall investigate how the registry
behaves when processes crash. Add the following definition to reg_eqc.erl:

stop(Pid) ->
exit(Pid,kill),
timer:sleep(1).

This function kills the process referred to by Pid (and then waits a mil-
lisecond for it to die completely). Add calls of stop to your generated test
cases, and retest prop_registry(). Since the registry documentation does

Software Testing with QuickCheck 217

not mention dead processes, then we would expect stop to have no effect on
test case behaviour. Since the default clauses in next_state, precondition
and postcondition say that stop may be called at any time, and has no
effect, then we would expect all tests to pass. If this is the case, then you
are finished with this exercise.

If not, then your task is to revise the model so that the property passes
again—without imposing restrictive preconditions on the operations, because
the whole point of this exercise is to test what happens to the registry when
relevant processes really do die.

Hint: the function lists:keydelete may be useful.
5. Dealing with non-determinism. This is an ambitious exercise, so don’t

worry if you find it puzzling or difficult.
Taking your passing specification from the previous exercise, remove the

call to timer:sleep(1) from the definition of stop, and observe the effect
on tests. Try to adjust your model so that tests pass again. You are likely to
encounter evidence of non-deterministic behaviour, caused when the Erlang
scheduler preempts your running test at an unpredictable point.

To make any further progress, you need to recover deterministic testing.
This can be achieved by a combination of techniques:
– Restrict your test cases to a maximum of 30 commands. This keeps them

short enough to run to completion in one time slice.
– Add ?SOMETIMES to your property, to permit occasional failures (read

the documentation, to be found in module eqc).
Once your tests run deterministically, then failed tests should shrink to a
test case that makes diagnosis possible. Finish adjusting your model.

Finally, extend your command generator so as to add explicit calls of
timer:sleep(1) to your test cases. Once again, you will need to adjust your
model to make tests pass: having done so, you will have a good understanding
of both the immediate, and the delayed effects of a process crash.

Having finished the exercises, why not select one of the Erlang library modules
with a stateful interface, and construct a QuickCheck state machine specification
of your own?

4.9 reg eqc.erl

-module(reg_eqc).

-include_lib("eqc/include/eqc.hrl").

-include_lib("eqc/include/eqc_statem.hrl").

-compile(export_all).

-record(state,{pids=[], % pids spawned in this test

regs=[] % list of {Name,Pid} in the registry

}).

218 J. Hughes

%% Initialize the state

initial_state() ->

#state{}.

%% Command generator, S is the state

command(S) ->

oneof([{call,erlang,register,[name(),pid(S)]}

|| S#state.pids/=[]] ++

[{call,?MODULE,unregister,[name()]},

{call,erlang,whereis,[name()]},

{call,?MODULE,spawn,[]}

]).

-define(names,[a,b,c,d]).

name() ->

elements(?names).

pid(S) ->

elements(S#state.pids).

%% Next state transformation, S is the current state

next_state(S,V,{call,_,spawn,_}) ->

S#state{pids=[V|S#state.pids]};

next_state(S,_V,{call,_,register,[Name,Pid]}) ->

S#state{regs=[{Name,Pid}|S#state.regs]};

next_state(S,_V,{call,_,unregister,[Name]}) ->

S#state{regs=proplists:delete(Name,S#state.regs)};

next_state(S,_V,{call,_,_,_}) ->

S.

%% Precondition, checked before command is added to the

%% command sequence

precondition(_S,{call,_,_,_}) ->

true.

%% Postcondition, checked after command has been evaluated

%% OBS: S is the state before next_state(S,_,<command>)

postcondition(S,{call,_,unregister,[Name]},Res) ->

case Res of

{’EXIT’,_} ->

not unregister_ok(S,Name);

true ->

unregister_ok(S,Name)

end;

postcondition(_S,{call,_,_,_},_Res) ->

true.

%% The conditions under which operations ought to succeed.

Software Testing with QuickCheck 219

unregister_ok(S,Name) ->

proplists:is_defined(Name,S#state.regs).

%% The main property.

prop_registry() ->

?FORALL(Cmds,commands(?MODULE),

begin

{H,S,Res} = run_commands(?MODULE,Cmds),

cleanup(),

?WHENFAIL(

io:format(

"History: ~p\nState: ~p\nRes: ~p\n",

[H,S,Res]),

Res == ok)

end).

cleanup() ->

[catch erlang:unregister(Name) || Name <- ?names].

%% Exception-catching versions of the API under test

unregister(Name) ->

catch erlang:unregister(Name).

%% Spawn a dummy process to use as test data.

%% Processes die after 5 seconds, long after the

%% test is over, to avoid filling the Erlang

%% heap with dummy processes.

spawn() ->

spawn(timer,sleep,[5000]).

5 QuickCheck in Industry

In these notes, we show how to use QuickCheck to test parts of the Erlang stan-
dard libraries—relatively simple (and well-tested) code, in comparison to real
industrial products. Yet the principles we have presented are equally applicable
to testing real applications.

In a typical industrial scenario, QuickCheck might be used to test a system
that communicates with the outside world using one of the standardized tele-
com or internet protocols. In this case, a QuickCheck state machine is used to
generate test cases containing commands that send a protocol message to the
system under test, then wait for and check the response. Typically the protocol
messages are large and complex, and a significant amount of work goes into con-
tructing suitable generators. This work can be partially automated—tools exist
to convert both ABNF and ASN.1 grammars into QuickCheck generators—but
manual intervention is needed to generate protocol messages that “make sense”,

220 J. Hughes

as opposed to random rubbish. The state machine then models just enough of
the internal state of the system to generate sensible message sequences, and val-
idate the responses. When a test fails, then QuickCheck finds a minimal failing
sequence as usual. We shall illustrate this with a couple of examples of real bugs
found using QuickCheck.

For example, in one project (which cannot be identified for commercial rea-
sons), QuickCheck was used to test a 3G radio base station for mobile telephony
(RBS), by sending control messages using the NBAP3 protocol and observing
the responses. An RBS maintains a number of radio channels which are used to
exchange information with the mobile phones in each cell. During a call, there
is a dedicated radio channel between the handset and the base station, but even
handsets which are not currently making a call need to communicate with the
base station occasionally. A single signalling channel is used for this purpose,
shared between all the handsets in a cell. Now, every channel needs to be set
up, and parameters such as the power level assigned—this is done when another
product, a Radio Network Controller, sends NBAP commands to the base sta-
tion telling it how to set up each channel. Note that even though there is only
one signalling channel, it still needs to be set up and configured. Thus there is
a command in the NBAP protocol for this purpose. Although this command
should only be sent once, since there can only be one such channel, it is of
course possible to send it to the base station more than once—and it is easy to
imagine situations in which this might really happen, for example when a Ra-
dio Network Controller has crashed and is coming back online. If the signalling
channel has already been set up, than an RBS is supposed to reject subsequent
attempts to set it up again. We found this to be true for the software we were
testing—almost always. But QuickCheck found a combination of parameters in
the first and second set-up messages which caused the RBS to accept the second
set-up command—and to create two signalling channels at the same time. This
violated a fundamental invariant of the base station software, leading within a
few seconds to a hard failure, with the base station becoming unresponsive to all
further commands. Interestingly, the first sign of trouble turned out to be Java
exceptions in the base station log. . . which surprised us since we knew that the
base station was implemented using C++! It transpired that Java had been used
to build an operator GUI, which visualized the state of the base station, and
this visualization was the first part of the software to crash when the signalling
channel invariant was violated.

In another project, QuickCheck was used to test an Ericsson Media Proxy
[1]. This is a kind of firewall for multimedia IP-telephony (that is, carried using
the internet protocol); it is one component of a Session Border Gateway, that
isolates an operator’s network from the internet at large. The Media Proxy opens
and closes “media pinholes” to allow the media streams making up a call to pass
the firewall. It is controlled by the H.248 or Megaco protocol [7], which defines
commands to add and remove callers from a call (or “terminations” from a
“context”, in Megaco-speak). A call is created when the first caller is added,

3 http://www.3gpp.org/ftp/Specs/html-info/25433.htm

Software Testing with QuickCheck 221

and deleted when the last caller is removed—and just as in the process registry
tests, a call-ID is created by the first addition, and must be embedded in later
messages to the Proxy concerning the same call.

The Megaco protocol supports any number of callers in a call, but the Media
Proxy product is restricted to just two. Nevertheless, QuickCheck found the
following command sequence that provoked a crash:

– First, two callers are added to a call (the normal situation).
– Now the call is “full”, and no further caller can be added—but one caller

can be removed.
– Now the call is not full: a third caller can be added, and then removed again.
– The call is still not full; a fourth caller can be added and removed. On this

final removal, something inside the Proxy crashes!

This sequence of seven commands was minimal for provoking this crash.
This case is interesting for several reasons. Firstly, because it cannot reason-

ably be found using manually constructed test cases—no tester in their right
minds would test this case! After all, if adding and removing a caller works once,
and works twice, then “by induction” it must work three times—right? Yet it
does not. More seriously, because it is expensive to construct test cases manu-
ally, then it is impractical to test all sequences of seven commands, and there is
no a priori reason to suspect that this one is worth testing. Coverage measures
would not help here—it is likely that all the code, all the paths, and all the
state transitions were already covered by the first five commands, so coverage
measures would not indicate that we should go on to test the last two also.

Secondly, this example illustrates the tremendous power of shrinking—this
minimal test failure was extracted from a random failing sequence of over 160
commands. The problem was tricky enough to diagnose from this minimal ex-
ample; from a sequence of 160 commands, diagnosis would have been impossible.

Thirdly, this case will probably never, ever arise in practice—but the failed
case is just the symptom of a fault, not the cause. The cause turned out to be
corruption of internal data-structures on removing a caller from a call—and this
corruption occurred every time a caller was removed. It just so happened that,
in the normal case, when the only thing following the removal of the first caller
was the removal of the second, then the data corruption passed unobserved. The
fourth to the seventh commands in the failing test are needed just in order to
convert the corrupted data into a crash. Even if it was not causing a problem
at the time, it was well worth while discovering and correcting this corruption.
After all, in a year’s time another developer might well modify the code, and
would naturally assume that the data structures inside such a tried-and-tested
product were correct—but they were not. The corrupt data would have been a
trap lying in wait for future developers, if QuickCheck had not revealed it and
enabled the problem to be fixed.

Interestingly, QuickCheck was able to reveal these corrupt data structures
even though we did not know of their existence! Had we known about them, and
added code to the specification to check their invariants after each call, then the
fault would have been found more quickly, and with a shorter failing test—only

222 J. Hughes

the first three commands would have been needed to provoke a failure. But this
more detailed specification was not necessary to reveal the fault. This is a general
observation—we find that surprisingly simple properties often suffice to reveal
deeply-hidden bugs. Once software begins to go wrong, then there is often some
continuation which makes it go very wrong indeed—and so testing basic proper-
ties can often reveal subtle bugs, if we only run enough tests. For this reason it is
often not worthwhile to formulate a complete formal specification of the system
under test, which can be quite expensive—we can trade off specification effort
against testing time instead.

Boberg reported an interesting study of two larger projects at Erlang Training
and Consulting, one developed with and one without using QuickCheck [2]. An
email gateway was developed using QuickCheck for system testing, and com-
pared to an instant messaging gateway developed without using it. Boberg mea-
sured fault slip-through at each stage of testing—the percentage of faults which
should have been found at an earlier stage—and found that 86% of the faults
found during acceptance testing of the instant messaging gateway should have
been found earlier, while the same was true of only 39% of the faults found during
acceptance testing of the email gateway. This indicates that using QuickCheck
for system testing improved the quality of the delivered system substantially, a
conclusion which was also supported by a qualitative assessment of the devel-
opers’ confidence in their code. Boberg’s paper contains a wealth of other infor-
mation also, including the somewhat surprising observation that the quality of
unit testing of the email gateway appeared to decline as the study progressed!
Boberg suggests that the developers spent less effort on unit testing (without
QuickCheck), since they expected their errors to be found anyway during system
testing (with QuickCheck).

6 Conclusions

In this tutorial we have shown how to write testable formal specifications in
the form of QuickCheck properties, for both purely functional and stateful code.
The appeal of the approach should be clear. However, proving that property-
based testing is not only fun, but also a cost-effective way to find bugs in large-
scale software, is still a challenge. The industrial experiences related above are
encouraging, as is Boberg’s study, which presents positive results in one context.
An interesting small-scale experiment with students suggested that properties
may be harder to write than unit tests, but once written are much more effective
at revealing bugs [6]. But for definitive proof that this approach is cost-effective,
we must await the results of larger scale industrial case studies, some of which
will be completed in the not-too-distant future.

References

[1] Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with
quviq quickcheck. In: Feeley, M., Trinder, P.W. (eds.) Erlang Workshop, pp. 2–
10. ACM, New York (2006)

Software Testing with QuickCheck 223

[2] Boberg, J.: Early fault detection with model-based testing. In: ERLANG 2008:
Proceedings of the 7th ACM SIGPLAN workshop on ERLANG, pp. 9–20. ACM,
New York (2008)

[3] Carlsson, R., Rémond, M.: Eunit: a lightweight unit testing framework for erlang.
In: ERLANG 2006: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
pp. 1–1. ACM, New York (2006)

[4] Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: ICFP 2000: Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pp. 268–279. ACM Press, New
York (2000)

[5] Claessen, K., Hughes, J.: Specification based testing with QuickCheck. In: The
Fun of Programming, Cornerstones of Computing, pp. 17–40. Palgrave (2003)

[6] Claessen, K., Hughes, J., Pa�lka, M., Smallbone, N., Svensson, H.: Ranking pro-
grams using black box testing. In: AST 2010: Proceedings of the 5th Workshop
on Automation of Software Test, pp. 103–110. ACM, New York (2010)

[7] Greene, N., Ramalho, M., Rosen, B.: Rfc-2805, media gateway control protocol
architecture and requirements. Technical report, Network Working Group (2000)

[8] Hildebrandt, R., Zeller, A.: Simplifying failure-inducing input. SIGSOFT Softw.
Eng. Notes 25(5), 135–145 (2000)

[9] Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281
(1972)

[10] Hughes, J.: Quickcheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006)

[11] Just, R., Schweiggert, F.: Automating software tests with partial oracles in in-
tegrated environments. In: AST 2010: Proceedings of the 5th Workshop on Au-
tomation of Software Test, pp. 91–94. ACM, New York (2010)

[12] Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149(5), 131–136 (2002)

[13] Wadler, P.: Comprehending monads. In: LISP and Functional Programming, pp.
61–78 (1990)

An Effective Methodology for Defining
Consistent Semantics of Complex Systems

Pieter Koopman, Rinus Plasmeijer, and Peter Achten

Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{pieter,rinus,p.achten}@cs.ru.nl

Abstract. This paper has two contributions. First, it gives a seman-
tics for the iTask workflow management system. Second, it describes an
effective methodology to construct such a semantics.

Semantics is a formal description of the meaning of language con-
structs. Just like any other formal description there are umpteen ways of
introducing flaws in such a description. Even trained people are not very
effective in spotting issues in formal text. In this paper we show that it is
very well possible to describe semantics of programming languages using
a modern functional programming as carrier of the specification. This
enables automatic sanity checks by the language compiler, simulation
of the described semantics to validate the specification, and automatic
testing of properties of the semantics.

We illustrate this technique with the well-known example of simple
imperative language as well as the iTask workflow management system.
In our experience this methodology works very well. The combination
of sanity checks, simulation and automatic testing of properties really
helped to construct a trustworthy semantics for the iTask system.

1 Introduction

The semantics of a system is a formal description of the meaning of that system.
In these notes we define the semantics of programming language constructs like
expressions, assignments, conditionals and loops. The definition of all language
constructs and the way to combine them specifies the meaning of programs in
that language. Although the formal semantics is usually a much simpler system
than the system described, the semantics itself can be quite complicated as
well. Since the semantics is a piece of formal language, the semantics itself is
error prone just like any other large formal system (e.g. a computer program,
or a mathematical proof). There are several kinds of potential problems with
such a formal system: 1) the system is incomplete, e.g. not all notions used are
defined properly; 2) the system is inconsistent, e.g. functions are used with the
wrong number or type of arguments; 3) the system does not possess the required
properties, e.g. addition is not associative, commutative and distributive; 4) the
system does not prescribe the right semantics, e.g. the semantics of multiplication
accidentally specifies addition. In these notes we show an effective way to tackle

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 224–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Effective Methodology for Defining Consistent Semantics 225

these problems and illustrate our method by a well-known as well as a nontrivial
example.

Problems 1) and 2) are avoided by using a high level functional programming
language as carrier of the formal semantics. The burden of using such a language
as formalism instead of ordinary mathematics appears to be very limited. The
advantage is obvious; the compiler checks consistency and well-definedness of the
semantics. Problem 4) can now be handled by simulating the specified semantics.
In our experience such a validation is very effective. In these notes we show how
problem 3) can be treated by stating desired properties of the semantics and test
these properties automatically with the model-based test system G∀st. During
the development of the semantics one does not want the burden of formal proofs
of properties for intermediate versions of the semantics; a test system yields a
solid approximation of correctness within seconds. In a next step one can use
this semantics to test the real implementation of the specified system with G∀st.

The semantics is expressed in the functional programming language Clean

instead of the more common Scott Brackets, denotational semantics [22], or hor-
izontal bar style, structural operational semantics à la Plotkin [18]. The close
correspondence between semantics and functional programs goes back at least
to [15]. Expressing the operational semantics in a FPL is as concise as in Scott
Brackets style. Using a functional programming language as carrier of the specifi-
cation of the semantics has a number of advantages: 1) the type system performs
basic consistency checks on the semantics; 2) the semantics is executable; 3) us-
ing the iTask system it is easy to validate the semantics by interactive simulation;
4) using the model-based test tool G∀st [8] it is possible to express properties
about the semantics and equivalence of language constructs/tasks concisely, and
to test these properties fully automatically. Although the semantics is executable,
it is not a serious implementation of the described language itself. The seman-
tics assigns a meaning to expressions represented by some data structure, a real
implementation generally provides a parser and type checker to map textual
representations to such a data structure. The iTask semantics is a model of the
real system, it lacks for instance a frontend (user interface) as well as a backend
(e.g. interface to a database).

Especially the ability to express properties of the specified semantics and to
test them automatically appears to be extremely convenient in the development
of the semantics and associated notions described in this paper. An alterna-
tive, more traditional, approach would be to define a semantics in a common
mathematical style, state properties in logic, and formally prove these proper-
ties. Using a proof assistant like COQ [23] or SPARKLE [14] for this purpose
requires a transformation of the semantics to the language of the proof assis-
tant. In the past we have used this approach for the iData system [1]. In such a
mathematically based approach it is much harder to experiment with different
formulations of the semantics and to get the system consistent after a change.
Proving a property of a new version of the semantics typical takes some days
of human effort where testing the same property is done in seconds by a com-
puter. When we have a final version of the semantics obtained in this way, we

226 P. Koopman, R. Plasmeijer, and P. Achten

can decide to prove (some of) the tested properties in order to obtain absolute
confidence in their correctness.

We will illustrate our approach with two case studies. The first one is the
semantics of the very simple imperative language While to explain the concepts.
This language, or a very similar language, can be found in many text books
about semantics. We compare our formulation of semantics with standard ways
to specify the semantics. The second case study is the iTask WFMS (WorkFlow
Management System). A WFMS is a system that supports users and machines
to execute tasks. The iTask systems consists of a language to describe the task to
be executed, as well as the tools to administrate and guide the execution of these
tasks via a web based user interface. The iTask example is a good test case since
it is still under development and hence requires agile validation. It is a complex
system, hence its properties are not cut and clear, and they require exploration.

In this paper we provide a basic rewrite semantics for iTasks as well as a
number of useful contributions to reason about tasks, such as needed events and
equivalences of tasks. As usual we omit many details in the semantics to express
the meaning of the basic iTask combinators as clearly as possible.

Section 2 gives a short introduction to the various kind of semantics that exist
and shows how this can be expressed concisely in a functional language. In section
3 we show how we model iTasks. We also define useful notions about subtasks,
such as when they are enabled or needed. In section 4 we define the equivalence of
tasks and how the equivalence of tasks can be determined in two different ways.
Some important properties of the semantics of iTasks are given in section 5, we
also show how these properties can be tested fully automatically. In the future we
will use this semantics for model-based testing of the real iTask implementation,
this will increase the confidence that the system obeys the semantics. Finally,
we discuss related work in section 6 and there is a discussion and a conclusion
in section 7.

2 Formal Semantics

The semantics [15] of a programming language defines the meaning of programs.
In order to reason about the semantics we need a formal definition of the seman-
tics, rather than an informal textual description. There is a considerable amount
of research done in this field. As a result there are many different ways to de-
scribe the semantics of some programming language. The three main approaches
are:

Operational semantics. This approach assigns a meaning to the syntactical
constructs in a programming language. The meaning of each language con-
struct is specified by the computations it induces when the construct is exe-
cuted. This approach focusses on how the effect of each language construct
is built in some kind of mathematical interpretation of the programming
language.

Within the operational semantics we distinguish two approaches. The
structural operational semantics (or small-step semantics) focusses on details

An Effective Methodology for Defining Consistent Semantics 227

of individual execution steps. The semantics is a mathematical interpreter
of the programming language that hides details like storage allocation, but
otherwise specifies the effect of each language construct in detail. The nat-
ural semantics (or big step semantics) hides even more details. There is no
emphasis on specifying the meaning of individual execution steps, but one
specifies the meaning of a language constructs in larger steps than in the
structural operational semantics.

Denotational semantics. The focus in this approach is on the value that a
language construct denotes, rather than how this value is obtained. For sim-
ple language constructs the denotational description resembles the opera-
tional semantics. For more complicated constructs like loops and recursive
function applications one often uses a fixed point description. For instance,
for a loop the denotational semantics specifies the state of the program after
termination of the loop, while the operational semantics describes the state
change by executing the loop once.

Axiomatic semantics. In this approach specific properties of executing lan-
guage constructs are expressed as assertions. These properties specify the
effect of language constructs, but there can be aspects of the execution that
are ignored in an axiomatic semantics.

These approaches to specify the semantics have in common that they pattern
match on the syntactic constructs of the language. A meaning is assigned to each
of the alternatives in the syntax. For this reason we will represent the language
by a data structure that has one constructor for each alternative in the syntax.

2.1 The Imperative Language While

In order to illustrate these approaches to specify the semantics and our own
approach based on functional programming, we specify the semantics of a very
simple imperative language called While in this section. Similar languages can be
found in most textbooks about formal semantics. This language While and its
semantics is taken from [15]. We start with the classical formal semantical de-
scription. Since this approach assigns a meaning to the syntactical constructs in
a programming language, we need a specification of the syntax. For the language
While we use the following meta-variables and catagories:
n ranges over integer numbers;
v ranges over variables;
a ranges over arithmetical expressions;
b ranges over Boolean expressions;
S ranges over statements.

These meta-variables can be primed or subscripted if we need more than one
instance, e.g. v′ and v1 are also variables. We do not need to know the syntac-
tical details of numbers and variables. Such details are usually omitted in the
semantics. The syntax for the other constructs is:

a ::= v | n | a + a | a− a | a ∗ a
b ::= TRUE | FALSE | a = a | a < a | ¬ b | b && b
S ::= x := a | skip | S1 ; S2 | if b S1 else S2 | while b S

228 P. Koopman, R. Plasmeijer, and P. Achten

The arithmetic expressions do not contain a division operator, /, since that
would involve exceptions in the semantics. Division by zero is undefined, hence
it cannot yield an ordinary number. It is perfectly possible to handle this in
the semantical description of a language, but it makes things more complex as
wanted in these notes.

2.2 The Semantics of Expressions in While

In order to specify the semantics we need an environment, also called state1,
that relates variables and their values. Usually this environment is modeled as
a function from variables, modeled by the type Var, to their values, modeled by
the type Int: State : Var → Int, i.e. a State is a function from variables to integers.
Here we have to make our first semantic choice: do variables that did not occur
on the left-hand side of an assignment have a value (and if they have a value,
what is that value), or is the value of these variables undefined (and is the state
a partial function Var ↪→ Int). For simplicity we assume that the state is a total
function and that the value of all variables are initialized to 0.

In order to compare the classical mathematical way to define semantics with
our functional programming based definitions, we repeat some of the classical
definitions. In figure 1 we define the semantics of arithmetic expressions by a
function from the expression and a state to an integer value. This definition
is very similar to [15], the only difference is the resulting type of expressions.
In the version of the Nielsons the result is a natural number, N , while our
version produces its representation in computers, Int. Problems that are caused
by a finite representation are ignored for the moment. It is perfectly possible to
tackle these issues, but that complicates the definition.

In this function we use the Scott brackets [[]] to denote a match on syntax
using the syntactical categories defined above. This function specifies that the
semantics of a number denotation n is the value of that denotation generated by
N [[n]]. For brevity we ignored the syntactic details of numbers n, hence we also
omit the definition of their semantics N . The value of a variable v is obtained
by looking it up in the state s. For operators we determine the values of the
operands recursively and apply the mathematical operator corresponding to the
operator indicated in the syntax. Note that the operators +, − and ∗ occurring
on the left in these equations are just syntax, while their counterparts on the
right are the corresponding operations on values.

The function A is a mathematical entity that assigns a value to syntax. In [15]
the Nielsons already indicate that there is a direct mapping from this mathemat-
ical function to a function in a functional programming language. In a modern
functional programming language like Clean this can be further improved for
instance by user defined infix operators and constructors. The advantages of us-
ing a functional language instead of a mathematics are 1) the compiler of the

1 While we follow the approach of the Nielson’s we will call the relation between
variables and their values state, just as they do. In our own work we call this function
environment.

An Effective Methodology for Defining Consistent Semantics 229

A :: A → State → Int
A [[n]] s = N [[n]]
A [[v]] s = s v
A [[a1 + a2]] s = A [[a1]] s + A [[a2]] s
A [[a1 − a2]] s = A [[a1]] s −A [[a2]] s
A [[a1 ∗ a2]] s = A [[a1]] s × A [[a2]] s

Fig. 1. Classical definition of the semantics of arithmetic expressions

functional language can be used for static sanity checks of the specification (e.g.
that all identifiers are defined and the specification is correctly typed); 2) the
specification can be executed. The execution of the semantics can for instance be
used to validate the definition by interactive simulation, or to test properties of
the semantics automatically. Possible drawbacks of using a functional language
instead of mathematics are 1) there are constructs in mathematics that cannot
be expressed directly in a functional programming language; 2) in general it
is easier to add ad-hoc notation and new constructs to mathematics than in a
functional language; 3) in mathematics it is very well possible to reason about
undefinedness and nontermination, if we are not careful this might cause run-
time errors on nonterminating computations in a functional language. In this
section we show that a modern functional language is very suited to express the
semantics in a concise way.

As a first example we restate the semantics of arithmetic expressions in Clean

instead of the mathematical formulation above. In order to mimic the syntactic
match we model the arithmetic expressions by the datatype AExpr. This data type
directly mimics the syntax of allowed expressions given above. In this datatype
we append a dot to the names of infix operators (like +) that are defined with
a different purpose in Clean. The priority of the operators is chosen such that
expressions like Var "x" +. Int 2 *. Var "y" have the usual binding of operators
(here Var "x" +. (Int 2 *. Var "y")). This detail is left unspecified or implicit
above. If we do not want to specify those details we can simply label the infix
constructors as infix.

:: AExpr

= Int Int

| Var Var

| (+.) infixl 6 AExpr AExpr

| (-.) infixl 6 AExpr AExpr

| (*.) infixl 7 AExpr AExpr

:: Var :== String

If desired we can even reuse the the ordinary Cleaninfix symbols in right-hand
sides of definitions by defining appropriate instances of the infix symbols.

instance - AExpr where (-) a b = a -. b

The environment used in the semantics is a function from variables, Var, to
integers, Int.

230 P. Koopman, R. Plasmeijer, and P. Achten

:: Env :== Var → Int

emptyEnv :: Env

emptyEnv = λx → 0

The equivalent of the mathematical semantic function A from figure 1 is the
function A given in figure 2. Note that these functions have exactly the same
length and structure. In the function A we are not bound to the naming conven-
tions of A. Hence we can use x and y instead of a1 and a2. The various elements
of the language are determined by the type they obtain from the context in
which they are used instead of the naming conventions.

1A :: AExpr Env → Int

2A (Int i) env = i

3A (Var v) env = env v

4A (x +. y) env = A x env + A y env

5A (x -. y) env = A x env - A y env

6A (x *. y) env = A x env * A y env

Fig. 2. Semantics of arithmetic expressions in Clean

In exactly the same way we define a data type for Boolean expressions and
the associated semantics in figure 3. This data type directly follows the syntax
for B given above. Just like above we added priorities to the infix operators in
order to assign the usual binding to Boolean expressions without parentheses.

1:: BExpr

2= TRUE

3| FALSE

4| (=.) infix 4 AExpr AExpr

5| (<.) infix 4 AExpr AExpr

6| ¬. BExpr

7| (&&.) infixr 3 BExpr BExpr

8

9B :: BExpr Env → Bool

10B TRUE env = True

11B FALSE env = False

12B (x =. y) env = A x env == A y env

13B (x <. y) env = A x env < A y env

14B (¬. exp) env = not (B exp env)
15B (x &&. y) env = B x env && B y env

Fig. 3. Boolean expressions and their semantics

According to these definitions the semantics of integers and Booleans in While

inherits the semantics of Int and Bool in Clean. If this is not desired we can define
tailor made data types and operations to describe the desired semantics.

An Effective Methodology for Defining Consistent Semantics 231

2.3 Denotational Semantics

The goal of denotational semantics is to show the effect of executing a program.
In the traditional formulation this is done by a function DS :: S → State ↪→
State using a syntactic pattern match on statements. The state of a program
is just its environment. The effect of an assignment is a change in the state or
environment:

DS [[v := a]] s = s [v �→ A [[a]] s]

This reads that the same environment is returned that is received as argument,
but the binding of variable v is mapped to the value of the arithmetic expression
a. Note that v and a are meta variables, they represent all concrete variable and
expressions that can occur in the language While.

The updated state function s [x �→ i] associates the same value to every
argument as s except the argument x is mapped to i:

(s [x �→ i]) x = i

(s [x �→ i]) y = s y, if x �= y

In Clean we define the operator �→ (written in plain text as |->) to achieve this
effect, e.g. ("x" �→ 1) emptyEnv.

(�→) infix :: Var Int → Env → Env

(�→) v i = λenv x.if (x==v) i (env x)

We use the functional language approach where the statements are represented
by a data structure and an associated interpretation function as specified in
figure 4. Again this is a direct transcription of the usual mathematical formula-
tion of the denotational semantics using Scott brackets.

1:: Stmt

2= (:=.) infix 2 Var AExpr

3| (:.) infixl 1 Stmt Stmt

4| Skip

5| IF BExpr Stmt Stmt

6| While BExpr Stmt

7

8ds :: Stmt Env → Env

9ds (v :=. a) env = (v �→ A a env) env

10ds Skip env = env

11ds (s1 :. s2) env = ds s2 (ds s1 env)
12ds (IF c t e) env = i f (B c env) (ds t env) (ds e env)
13ds (While c stmt) env

14= fix (λf env2 . i f (B c env2) (f (ds stmt env2)) env2) env

15

16fix :: (a → a) → a

17fix f = f (fix f)

Fig. 4. Statements and their denotational semantics

232 P. Koopman, R. Plasmeijer, and P. Achten

The denotational semantics focusses on the meaning of programs and not on
their detailed execution. For this reason the while-statement is not evaluated step
by step in the semantics. The semantics simply states that the state produced
by the semantics of the while statement (if any) is the fixed point of the given
function. Of course there are statements (like While TRUE Skip) that have no fixed
point. Technically the semantics is a partial function that assigns a meaning,
state transformation, to correct terminating statements.

Example. As an example we show how the famous Euclid algorithm to compute
greatest common divisors in the language While can be expressed as a data
structure of type Stmt. This algorithm expects the arguments in the variables a
and b and leaves the result in the variable b. Since the language While has no
functions nor print statement this is about the best we can do.

gcdStmt

= IF (va =. zero)
(c :=. vb)
(While (¬. (vb =. zero))

(IF (vb <. va)
(a :=. va -. vb)
(b :=. vb -. va)

) :.

c :=. va

)
where

a = "a" ; va = Var a

b = "b" ; vb = Var b

c = "c" ; vc = Var c

We can use the executability of the semantics to compute for instance the great-
est common divisor of 294 and 546 by storing these values at the labels a (repre-
sented as "a") and b (represented as "b") in an (empty) environment (emptyEnv).
The denotational semantics (ds) of the gcdStmt and this environment yields an
environment that contains the result at "c". Hence applying the environment to
"c" yields the value given by the denotational semantics of this While program.
This can be computed by the following one-liner in Clean:

Start = ds gcdStmt (("a" �→ 294) (("b" �→ 546) emptyEnv)) "c"

As expected this produces the value 42, which is the correct result.

2.4 Natural Semantics

The natural semantics is a big step semantics that focuses on the effect of the
individual language constructs. Since this is a big step semantics it constructs
the final state in one go by applying the semantic function recursively to inter-
mediate results, just like the denotational semantics. For the while-statement it
will evaluate the body once if the condition holds and continue with the seman-
tics of the same loop in the new state. For all other statements the formulation

An Effective Methodology for Defining Consistent Semantics 233

1ns :: Stmt Env → Env

2ns (v :=. e) env = (v �→ A e env) env

3ns (s1 :. s2) env = ns s2 (ns s1 env)
4ns Skip env = env

5ns (IF c t e) env | B c env = ns t env

6ns (IF c t e) env | ¬(B c env) = ns e env

7ns (While c s) env | B c env = ns (While c s) (ns s env)
8ns (While c s) env | ¬(B c env) = env

Fig. 5. The natural semantics of statements

of the semantics in figure 5 is identical to the denotational semantics given in
figure 4.

This natural semantics (ns) can be executed in exactly the same way as the
denotational semantics (ds). As required this produces the same result for the
gcdStmt shown above. Below we discuss how the equivalency of those semantics
can be investigated more thoroughly.

In the traditional representation of the operational semantics, the semantics is
often specified by a transition system. This system has two kind of configurations:
a tuple < S, s > connecting a statement S and a state s, or a final state s.
Transitions are given in the form of axioms. If the premisses above the line and
the condition to the right of the line holds, the conclusion below the line holds.
For instance the natural semantics for the while-statement if the condition of
the statement holds is expressed as:

[whileTRUE]
< S, s >→ s1, < while b S, s1 >→ s2

< while b S, s >→ s2
if B [[b]] s

The part within the square brackets on the left is the name of this axiom. The
phrase if B [[b]] s is the condition. If this condition does not hold, the rest of the
axiom cannot be applied.

The advantage of this approach is that it is not necessary to give an order in
the reduction rules, nor to be complete (as in an axiomatic semantics). However,
in order to obtain a deterministic semantics we have to prove that the result of
semantics is independent of the order of applying these axioms, or we have to
show that there is only one order. In figure 5 we use one function to represent all
axioms. It is easy to see that the alternatives of the function ns all cover different
cases, and hence these alternatives can be written in any order.

If necessary the natural semantics of While in Clean can be formulated in closer
correspondence to the axiom by writing:

ns (While b s) env | B b env = env2

where env1 = ns s env ; env2 = ns (While b s) env1

We prefer the equivalent formulation in figure 5 since it is shorter and shows the
difference and similarity with the denotational semantics clearer.

234 P. Koopman, R. Plasmeijer, and P. Achten

2.5 Structural Operational Semantics

The structural operational semantics is a small-step semantics. It specifies the
result of individual reduction steps. Hence the semantics does not always yield
the final state, it can also yield an intermediate configuration consisting of a
statement and the associated environment:

:: Config = Final Env | Inter Stmt Env

The structural operational semantics of our example language While is given in
figure 6.

1sosStep :: Stmt Env → Config

2sosStep (v :=. e) s = Final ((v �→ A e s) s)
3sosStep Skip s = Final s

4sosStep (s1 :. s2) s

5= case sosStep s1 s of
6Final s ‘ = Inter s2 s ‘
7Inter s1 ‘ s ‘ = Inter (s1 ‘ :. s2) s ‘
8sosStep (IF c t e) s | B c s = Inter t s

9sosStep (IF c t e) s | ¬(B c s) = Inter e s

10sosStep (While c body) s = Inter (IF c (body :. While c body) Skip) s

Fig. 6. The structural operational semantics of statements

By applying this function repeatedly until we reach a Final configuration we
obtain a trace of the reduction. For non terminating programs this trace will be
an infinite list of configurations2.

sosTrace :: Config → [Config]
sosTrace c=:(Final _) = [c]
sosTrace c=:(Inter ss s) = [c: sosTrace (sosStep ss s)]

Using this trace we can construct a function sos with the same type as the other
functions specifying the semantics. This function yields the state in the final
state that can be found in the last configuration of the trace.

sos :: Stmt Env → Env

sos s env = env1 where (Final env1) = last (sosTrace (Inter s env))

There is much more to be said about semantics. For instance the language While

can be extended by language constructs like pure functions and procedures.
In a similar style we can also define the semantics of functional programming
languages. Due to space limitations we will not elaborate on this here.

2 The pattern c=:(Final s) for function arguments allows us to use the entire argu-
ment as c in the right-hand side, as well as to do a pattern match on a constructor
and to use sub-arguments (like s) in the right-hand side.

An Effective Methodology for Defining Consistent Semantics 235

2.6 Sanity Checks

Since our semantics is just a set of types and functions in a functional pro-
gramming language, we can use the language implementation (here Clean) for
elementary sanity checks of the specified semantics. In our examples the Clean

compiler checks that all identifiers used are defined and used in a proper type
context. Also the compiler checks the type correctness of each and every sub-
expression. Moreover the compiler can produce a warning if the semantics is
a partial function, e.g. since no semantics is given for one of the language con-
structs. For a semantics defined in mathematics one has to rely on humans. If the
semantics is formalized in some proof tool, this tool will provide similar support.

Although this sounds simple, it appears to be very useful. The draft version
of these notes contained for a very long time the rule

DS [[v := a]] s = s [x �→ A [[a]] s]

Neither the authors nor the readers discovered that there was a wrong meta
variable used in this definition3 for a very long time. This mistake was found
with a lot of luck. If we would have made the corresponding error in the semantics
expressed in Clean(line 9 of figure 4), the Clean compiler would have indicated a
problem immediately. We do not claim that the compiler of the host language
will find all issues, but in our experience it really helps to get the semantics
correctly.

2.7 Simulating the Semantics

Having the statements available as a data type and semantics available as func-
tions in Clean we can use the fact that the semantics is executable. For instance
we can make an editor for statements using iTasks. At the push of a button the
iTask system can show the trace of the reduction of such a program using the
structural operational semantics defined by sos, or the value of all used variables
in the environment that is yielded by execution of the semantics. Since this is a
straightforward application of iTasks that has its power in interactive simulation,
we do not elaborate on this here.

2.8 Testing Properties of the Semantics

Another possibility is to test properties of the semantics using our model based
test system G∀st. We now give a quick overview of model-based testing with log-
ical properties as models, see [8] for details. Next we will show some applications
of model-based testing for the semantics of While.

Model-Based Testing of Logical Properties. The main difference between
model-based testing with logical properties and an ordinary automated test tool

3 Another option is that the readers discovered it, but didn’t tell it to the authors.
Given the other feedback, this is highly unlikely.

236 P. Koopman, R. Plasmeijer, and P. Achten

like JUnit4 is that the model-based test tool generates the test case while in
JUnit they are always specified by the programmer. Both kind of test tools
execute the tests automatically and give a verdict.

We will illustrate this with a few simple examples. First we introduce the
enumeration type Color and the recursive algebraic data type Tree.

:: Color = Red | Yellow | Blue

:: Tree a = Leaf | Node (Tree a) a (Tree a)

The function mirror recursively flips the left and right subtree of nodes in the
tree.

mirror :: (Tree a) → Tree a

mirror Leaf = Leaf

mirror (Node l a r) = Node (mirror r) a (mirror l)

A desirable property of this mirror function is that applying it twice to a tree t
yields the original tree. In logic this is:

∀ t ∈ Tree τ . mirror (mirror t) = t

In a JUnit setting the user chooses some typical values for the tree t and checks
the property for these values. For example equal (mirror (mirror Leaf)) Leaf

and equal (mirror (mirror (Node Leaf Red (Node Leaf Blue Leaf)))) (Node Leaf

Red (Node Leaf Blue Leaf)).
In the model-based test tool G∀st we only indicate the type of arguments that

need to be generated, otherwise it is a direct translation of the logical property:

propMirror1 :: (Tree Color) → Bool

propMirror1 t = mirror (mirror t) === t

Any function yielding a Boolean, or special test value of type Property, can
be interpreted as property where the arguments are interpreted as universal
quantified variables. G∀st test this property by generating a large number of
elements of type Tree Color and evaluates the function propMirror1 for these
test cases. We have to indicate the type in order to allow G∀st to generate the
test cases.

The list of test cases is generated by the generic function ggen. In most situ-
ations we can just derive the generation from the generic algorithm:

derive ggen Color , Tree

For any data type this generic generation algorithm [6] produces a list of all
instances of that type. If the instances of the type have more than one subtype,
these instances are generated in a breadth first way. To make the testers happy
4 JUnit is a well known test tool for the Java programming language. It executes a

number of predefined tests (basically expression yielding a Boolean value). If such a
test yields True it is regarded a success, otherwise it indicates an issue. JUnit gener-
ates a report giving the number of successes and issues. For the test yielding False

JUnit prints the arguments of the test function. Originally JUnit was associated
with Java, meanwhile it is ported to most mainstream languages.

An Effective Methodology for Defining Consistent Semantics 237

there is some pseudo random perturbation of the order of elements compared
to pure breadth first traversal. As a consequences elements can appear some-
what earlier or later in the list of test values. For instance the first 10 elements
generated of type Tree Color are:

[Leaf
,Node Leaf Blue Leaf

,Node (Node Leaf Red Leaf) Blue Leaf

,Node Leaf Yellow Leaf

,Node (Node (Node Leaf Red Leaf) Red Leaf) Blue Leaf

,Node (Node Leaf Red Leaf) Yellow Leaf

,Node Leaf Blue (Node (Node Leaf Red Leaf) Red Leaf)
,Node (Node Leaf Yellow Leaf) Blue Leaf

,Node (Node (Node Leaf Red Leaf) Red Leaf) Yellow Leaf

,Node (Node Leaf Red Leaf) Blue (Node (Node Leaf Red Leaf) Red Leaf)
]

Executing Start = test propMirror1 yieldsPass5, no counterexamples are found
in the executed tests.

As a second property we might formulate that the function mirror should
change its argument tree:

propMirror2 :: (Tree Color) → Bool

propMirror2 t = mirror t =!= t

The test system immediately finds a large number of counterexamples like Leaf,
Node Leaf Red Leaf and so on. If we think a little harder we would realize that
this property holds for nonsymmetric trees. An appropriate way to improve the
property is by adding a precondition; only if the tree is not symmetric mirroring
should change it:

propMirror3 :: (Tree Color) → Property

propMirror3 t = not (symmetric t) ==> mirror t =!= t

symmetric Leaf = True

symmetric (Node l _ r) = l === r && symmetric l && symmetric r

Another direction to tackle the problems with the second property is by gener-
ating only asymmetric trees. The generic generation algorithm cannot do this
all by itself. A possible solution is replacing the generic generation algorithm
by a specific instance that transforms lists to list like trees (all left subtrees are
empty):

ggen{|Tree|} f n r = map listToTree (ggen{|*→*|} f n r)

listToTree :: ([t] → Tree t)
listToTree = foldr (Node Leaf) Leaf

5 Only in exceptional cases G∀st is able to prove properties by exhaustive testing. For
such tests we either have to give a finite test suite by hand, or the only universal quan-
tified variables are of nonrecursive algebraic data types or finite primitive types (like
Bool and Char).

238 P. Koopman, R. Plasmeijer, and P. Achten

Now G∀st uses this generator of list-like trees in any property tested. If we want
specific test cases only for one test, we should use the operator For (see be-
low). Executing the test shows that this does not remove the problems with
propMirror2, if there are less than two Nodes in the tree, it is still symmetric.

Some other possibilities of the test system are introduced below, see [8] for a
more elaborate and complete treatment.

Model-Based Testing of the Semantics of While. Now we turn to model-
based testing properties of the semantics of While. Consider the factorial function
in While:

facStmt :: Stmt

facStmt

= y :=. one :.

While (one <. vx)
(

y :=. vy *. vx :.

x :=. vx -. one

)
where

x = "x" ; vx = Var x

y = "y" ; vy = Var y

instance one AExpr where one = Int 1

Given any semantics sem, the semantics of the factorial function used with an
environment that assigns 4 to the variable "x", should produce an environment
that associates 24 to the variable "y". In logic this is:

∀ sem ∈ (Stmt → Env → Env) . sem facStmt (x �→ 4 (λ x . 0)) y = 24

In G∀st this property reads:

propFac :: (Stmt Env → Env) → Bool

propFac sem = sem facStmt (("x" �→ 4) emptyEnv) "y" == 24

We can test this property for our three versions of the semantics (ds, ns, and
sos) by executing:

Start = test (propFac For [ds , ns , sos])

Executing this program yields Proof. The Proof by exhaustive testing produced
by the test system gives us confidence in the consistency and hence the correct-
ness of the various semantics.

Of course one can think of many incorrect semantics that produce an incorrect
environment in the example above. That is exactly the reason why we explicitly
enumerate the semantics that needs to be used in testing this property, rather
that let the test system generate a semantics.

Generating Terminating Statements. More general, the semantics of any
statement should be equal for the natural semantics (ns) and the denotational

An Effective Methodology for Defining Consistent Semantics 239

semantics (ds). In order to guarantee that the test terminates we only want to
consider statements that are known to terminate. We ensure this by generating
only while-statements that correspond to for-loops with a limited number of
iterations.

We cannot directly use the generic algorithm [6] to generate statements to
be used in the tests: instances of the type Stmt. Since the generic generation
algorithm has no notion of statements nor of their semantics, it will simply
generate valid instances of this type without taking care of the desired properties.
In general there are two ways to solve this kind of generation issues. First we can
specify the generation completely by hand instead of using the generic algorithm.
In this situation we need to derive ggen{|Stmt|} such that it yields (an infinite)
list of terminating statements. In general this can be quite tricky. An easier and
more elegant alternative is to define an additional data type that represents
only terminating statements Gstmt and the associated transformation conv to
statements. Once we start doing this we also introduce types to control the
generation of numbers, variables and so on. The only interesting point is that
we replace general while-loops that might cause nontermination with for-loops
with a decreasing counter and a small counter value.

:: Gstmt

= Assign Gvar GAExpr

| Comp Gstmt Gstmt

| Gskip

| GIF GBExpr Gstmt Gstmt

| GFor (Maybe GBExpr) Gvar GNat Gstmt

:: GNat = GNat Int

:: Gvar = Gvar String

:: GAExpr

= GInt Int

| GVar Gvar

| GPlus GAExpr GAExpr

| GMinus GAExpr GAExpr

| GTimes GAExpr GAExpr

Instances of the generic generation function ggen for the natural numbers and
variables are defined by hand: positive numbers and single letter variables.

ggen{|GNat|} n r = map GNat [0..]
ggen{|Gvar|} n r = map (Gvar o toString) [’a’..’z’]

For all other and more complex types, we use the generic algorithm incorporated
in G∀st. Since those types have many combinators and (double) recursion it would
be rather cumbersome to define generation for those types manually.

derive ggen Gstmt , GAExpr , Maybe

For convenience we introduce a class conv to do the transformation from the
generation types to the types used in the semantics.

240 P. Koopman, R. Plasmeijer, and P. Achten

class conv a b :: a → b

The transformation of expressions is a very simple one to one mapping:
instance conv GAExpr AExpr

where
conv (GInt i) = Int i

conv (GVar (Gvar v))= Var v

conv (GPlus x y) = conv x +. conv y

conv (GMinus x y) = conv x -. conv y

conv (GTimes x y) = conv x *. conv y

The transformation of most statements is equally simple. Only in the transfor-
mation of for-loops to while-loops we need to do some work: we introduce a
semi-fresh counter, initialize it with the given integer value and enter a while
loop. The condition is the combination of the given boolean value (if the maybe
type provides it) and the boolean expression that checks if the value of the
counter is still positive. Since the introduced variable is only fresh in the body of
the loop, introducing this variable can alter the semantics of the existing state-
ment in Gstmt form. Since our only purpose is to generate valid and terminating
statements, this is no problem whatsoever.

instance conv Gstmt Stmt

where
conv (Assign (Gvar v) e) = v :=. conv e

conv (Comp x y) = conv x :. conv y

conv Gskip = Skip

conv (GIF c t e) = IF (conv c) (conv t) (conv e)
conv (GFor b (Gvar v) (GNat n) s)
= counter :=. (Int n) :.

While cond

(body :.

counter :=. Var counter -. one

)
where

counter = fresh v (allvars body)
cond = case b of

Nothing = c0

Just b = c0 &&. conv b

body = conv s

c0 = Int 0 <. Var counter

The function allvars that yields all variables that occur on the left-hand side of
an assignment in a program in the language While is defined as

allvars :: Stmt → [Var]
allvars (x :=. e) = [x]
allvars (s :. t) = allvars s + allvars t

allvars Skip = []
allvars (IF c t e) = allvars t + allvars e

allvars (While c b) = allvars b

instance + [x] | Eq x where (+) x y = removeDup (x++y)

An Effective Methodology for Defining Consistent Semantics 241

Having the generic generation of the new data types and the conversion of
these data types to the data types used for statements in the semantics, we can
define the generation of statements as a simple combination of these items.

ggen{|Stmt|} n r = map conv stmts

where stmts :: [Gstmt]
stmts = ggen{|
|} n r

Since Gstmt only contains quickly terminating statements, the statements of type
Stmt generated in this way will also terminate.

The first 10 elements of the list of statements generated are:

[a :=. a

, a0 :=. 0 :.

While (0 <. a0 &&. -2147483648 <. a+.1+.0)
(Skip :.

a :=. 0 :.

a0 :=. a0 -. 1
)

, b :=. a

, a :=. (0 *. (1 -. 0)) +. 2147483647
, Skip

, a :=. -2147483648 :.

a :=. -2147483648 :.

a :=. -1 :.

a :=. -1

, IF TRUE

(a :=. -1 -. a)
(a :=. 2147483647)

, IF FALSE

(a :=. -1 -. a)
(a :=. 2147483647)

, c :=. a

, Skip :.

a :=. 1
]

This generation of terminating statements is used in each and every property
below that quantifies over statements.

Comparing Environments. The semantic functions yield the final environ-
ment which is a function. In general it is very hard to compare functions. Here
it is sufficient to check that the environment produces the same value for all
variables that occur in the statement. For this purpose we use the function
allvars defined above. The function eqEnv that determines the equivalence of
environments is straightforward.

eqEnv :: Env Env [Var] → Bool

eqEnv f g vars = and [f v == g v \\ v←vars]

242 P. Koopman, R. Plasmeijer, and P. Achten

Testing Semantic Properties of While Part 2. After these preparations,
the property of testing equivalences between natural semantics and denotational
semantics becomes:

prop1 :: Stmt → Bool

prop1 stmt = eqEnv (ns stmt emptyEnv) (ds stmt emptyEnv) (allvars stmt)

Similar properties can be stated for other combinations of the various versions
of the semantics. Executing these tests yield Pass, which further increases the
confidence in our definitions.

Our next property says that for all semantics and statements stmt, the se-
mantics of that statement is equal to the semantics of Skip :. stmt.

propSkip :: (Stmt Env → Env) Stmt → Bool

propSkip sem stmt

= eqEnv (sem stmt emptyEnv) (sem (Skip :. stmt) emptyEnv) (allvars stmt)

Another property used in the test is that the semantics for all terminating while-
statements While b s is equivalent to the semantics of IF b (s :. While b s) Skip.
This property needs some tweaking to generate terminating while statements cor-
responding to for loops.

propWhile :: (Stmt Env → Env) (Maybe GBExpr) Gvar GNat Gstmt → Bool

propWhile sem b v n s

= eqEnv (sem stmt emptyEnv)
(sem (decl :. IF cond loop Skip) emptyEnv)
(allvars stmt)

where (stmt =: (decl :. loop =: (While cond body))) = conv (GFor b v n s)

Of course we do not require that this property holds for each and every semantics
one can imagine. It is sufficient if this property holds for the three semantics in-
troduced above. We achieve this by executing test (propWhile For [ds ,ns ,sos])
instead of test propWhile. Also this property passes the tests.

In the same spirit we can test whether for all of our three versions of the
semantics the binding direction of the semi colon is irrelevant. In mathematics
this reads ∀ s, t, u ∈ Stmt . sem ((s ; t) ; u) env = sem (s ; (t ; u)) env. As
a property in G∀st this reads:

propSemiColon :: (Stmt Env → Env) Stmt Stmt Stmt → Property

propSemiColon sem s t u

= name ";"

λsem .

(eqEnv (sem (s :. (t :. u)) e)
(sem ((s :. t) :. u) e)
(allvars (s :. t :. u))

)
where e = emptyEnv

Obviously we have chosen to test this with an empty environment. If desired we
can of course extend the property, and hence the test to various environments.
Fortunately also this properties passes the tests.

An Effective Methodology for Defining Consistent Semantics 243

In our final example we extend the first test we used for Euler’s algorithm to
all our semantics and all integer arguments. we compute the desired result by
the function gcd provided by Clean’s standard libraries.

propGCD :: (Stmt Env → Env) (Int ,Int) → Property

propGCD sem (a ,b)
= sem gcdStmt (("a" �→ a) (("b" �→ b) emptyEnv)) "c" == gcd a b

We can test this property for our three versions of the semantics and all argu-
ments between 0 and 100 by executing:

Start = test ((λsem.propGCD sem For [(a ,b) \\ a←[0..100] , b←[0..100]])
For [ds ,ns ,sos])

If we allow sufficient test instances, G∀st is able to prove this property by ex-
haustive testing the property for the given values after executing 30603 test
cases.

These examples illustrates how one can formulate properties about the se-
mantics in G∀st and test these properties fully automatically. This leaves us with
the problem how to find properties to be tested. We handle this question in the
next paragraph.

Developing Properties to be Tested. There is always human intelligence
necessary to define properties of a semantics that can be tested in order to gain
confidence in the quality of specification. Nevertheless, it is not all black magic.
A few simple guidelines provide helpful hints to construct properties.

1. First there are the general properties that are known to hold in the seman-
tics of the language at hand. Examples of such properties are propSkip and
propWhile above. It is straight forward to transform the known mathematical
properties to G∀st and to execute the associated tests. This is an easy check
after the basic sanity checks provided by the Clean compiler.

2. We can often easily indicate properties of a semantics or structures used in
such a semantics.

For instance for the environment used here: the empty environment
should yield the value O for all variables, and after storing a result for some
variable, looking up the value of that variable should produce the stored
value.

pEnv1 :: Var → Bool

pEnv1 v = emptyEnv v == 0

pEnv2 :: Var Res → Bool

pEnv2 v i = (v �→ i) emptyEnv v == i

In the same spirit, but slightly more advanced, storing a value with a different
name in an environment does not change the value of the original variable
in the environment.

pEnv3 :: Var Res Var Res → Property

pEnv3 v i w j = w = v ==> (w �→ j) ((v �→ i) emptyEnv) v == i

244 P. Koopman, R. Plasmeijer, and P. Achten

The property pEnv3 produces a Property instead of a Boolean as result since
we used the logical combinator ==>. This operator mimics implication, ⇒,
from logic and is used here as additional constraint on the values used in the
tests.

3. Finally, the issues6 found during the development of the semantics are a
valuable source of testable properties. If there was ever an issue with the
semantics of a specific construct and value, we can state the property that it
should produce the correct value. It is even better if we can generalize such
a property for all values and introduce a universal quantified variable. We
will encounter some examples in the iTask semantics given below.

This completes our introduction to semantics and testing properties of such a
semantics. In the next section we apply these techniques to give a semantics for
iTask workflow management system.

3 A Semantics for iTasks

The iTask system supports workers executing the specified tasks by a web-based
interface. Typical elementary user tasks in this system are filling in forms and
pressing buttons to make choices. The elementary tasks are implemented on top
of the iData system [16]. Based on an input the iTask system determines the new
task that has to be done and updates the interface in the browser. Arbitrary
complex tasks are created by combining (elementary) tasks. The real power of
data dependent tasks is provided by the monadic bind operator that contains a
function to generate the next task based on the value produced by the previous
task.

The iTask implementation executes the tasks, but has to cope with many other
things at the same time: e.g. i/o to files and database, generation of the multi-
user web interface, client/server evaluation of tasks, and exception handling. The
iTask system uses generic programming to derive interfaces to files, databases and
web-browsers for data types. The combination of these things makes the imple-
mentation of iTasks much too complicated to grasp the semantics. To overcome
these problems we develop a high level operational semantics for iTasks in this
paper. The semantics in this paper is an extended version of our earlier work
published in [9]. This semantics is used to explain the behavior of the iTask sys-
tem, and to reason about the desired behavior of the system. In the future we
will use this semantics as model to test the real iTask implementation with our
model-based test tool G∀st. A prerequisite for model-based testing is an accurate
model of the desired behavior. Making a model with the desired properties is
not easy. Such a model is developed, validated, and its properties are tested in
this paper.
6 Issue is the notion used in model based testing to indicate any failing test. This

includes all sources of failure. A failing test indicates not always an error in the
tested software. Failing test can also be caused by, for instance, erroneous properties
or invalid test data.

An Effective Methodology for Defining Consistent Semantics 245

In the original iTask system a task is a state transformer of the strict and
unique Task State TSt. The required uniqueness of the task state (to guarantee
single threaded use of the state in a pure functional language) is in Clean indicated
by the type annotation *. The type parameter a indicates the type of the result.
This result is returned by the task when it is completely finished.

:: Task a :== *TSt → *(a ,*TSt) // an iTask is a state transition of type TSt

Hence, a Task of type a is a function that takes a unique task state TSt as
argument and produces a unique tuple with a value of type a and a new unique
task state. In these notes we consider only one basic task: the edit task.

editTask :: String a → Task a | iData a

The function editTask takes a string and a value of type a as arguments and
produces a (Task a) under the context restriction that the type a is in the type
class iData. The class iData is used to create a web based editor for values of
this type. Here we assume that the desired instances are defined.

The editTask function creates a GUI to modify a value of the given type, and
adds a button with the given name to finish the task. A user can change the value
as often as she wants. The task is not finished until the button is pressed. There
are predefined editors for all basic data types. For other data types an editor
can be derived using Clean’s generic programming mechanism, or a tailor-made
editor can be defined for that type.

In these notes we focus on the following basic iTask combinators to compose
tasks.
return :: a → Task a | iData a

(>>=) infixl 1 :: (Task a) (a→Task b) → Task b | iData b

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a ,b) | iData a & iData b

The combinators return and >>= are the usual monadic return and bind. The
return combinator transforms a value to a task yielding that value immediately.
The bind combinator is used to indicate a sequence of tasks. The expression
t >>= u indicates that first task t must be done completely. When this is done,
its result is given to u in order to create a new task that is executed subsequently.

The expression t -||- u indicates that both iTasks can be executed in any
order and interleaved, the combined task is completed as soon as any subtask is
done. The result is the result of the task that completes first, the other task is
removed from the system. The expression t -&&- u states that both iTasks must
be done in any order (interleaved), the combined task is completed when both
tasks are done. The result is a tuple containing the results of both tasks.

All these combinators are higher order functions manipulating the complex
task state TSt. This higher order function based approach is excellent for con-
structing such a library in a flexible and type safe way. However, if we want to
construct a program with which we can reason about iTasks, higher order func-
tions are rather inconvenient. In a functional programming language like Haskell

or Clean it is not possible to inspect which function is given as argument to a
higher order function. The only thing we can do with such a function given as

246 P. Koopman, R. Plasmeijer, and P. Achten

argument is applying it to arguments. In a programming context this is exactly
what one wants to do with such a function. In order to specify the semantics
of the various iTask combinators however, we need to know which operator we
are currently dealing with. This implies that we need to replace the higher order
functions by a representation that can be handled instead. We replace the higher
order functions and the task state TSt by the algebraic data type ITask. We use
infix the constructor .||. for the or-combinator, -||-, and the combinator .&&.

for and-combinator, -&&-, from the original iTask library.

:: ITask

= EditTask ID String BVal // an editor
| .||. infixr 3 ITask ITask // OR-combinator
| .&&. infixr 4 ITask ITask // AND-combinator
| Bind ID ITask (Val→ITask) // sequencing-combinator
| Return Val // return the value

:: Val = Pair Val Val | BVal BVal

:: BVal = String String | Int Int | VOID

Instances of this type ITask are called task trees. Without loss of generality we
assume here that all editors return a value of a basic type (BVal). In the real
iTask system, editors can be used with every (user defined) data type. Using only
these basic values in the semantics makes it easier to construct a simulator that
preserves types (see section 7). Since the right-hand side of the sequencing oper-
ator Bind is a normal function, this model has here the same rich expressibility
as the real iTask system.

In order to write ITasks conveniently we introduce two abbreviations. For the
monadic Bind operator we define an infix version. This operator takes a task and
a function producing a new task as arguments and adds a default id to the Bind

constructor.

() infixl 1 :: ITask (Val→ITask) → ITask

() t f = Bind id1 t f

For convenience we introduce also the notion of a button task. It executes the
given iTask after the button with the given label is pressed. A button task is
composed of a VOID editor and a Bind operator ignoring the result of this editor.

ButtonTask i s t = EditTask i s VOID 	 λ_ → t

No implementation of the iTask system will show an editor for the type VOID,
the only value of this type cannot be changed. As a consequence the GUI of
the ButtonTask will be only the button with the label s. This is exactly what is
required.

3.1 Task Identification

The task to be executed is composed of elementary subtasks. These subtasks
can be changed by events in the generated web-interface, like entering a value
in a text-box or pushing a button. In order to link these events to the correct

An Effective Methodology for Defining Consistent Semantics 247

subtask we need an identification mechanism for subtasks. We use an automatic
system for the identification of subtasks. Neither the worker (the user executing
a task), nor the workflow developer has to worry about these identifications. The
fact that the iTask system is a multi-user system implies that there are multiple
views on the workflow. Each worker can generate events, input for the workflow,
independently of the other workers. The update of the task tree can generate
new subtasks as well as remove subtasks of other workers. This implies that
the ids of subtasks must be persistent. Hence, the numbering system has to be
more advanced than just a numbering of the nodes. The semantics in these notes
ignore the multi-user aspect of the semantics, but the numbering system is able
to handle this (just as the real iTask system).

Tasks are identified by a list of integers. These task identifications are used
similar to the sections in a book. On top level the tasks are assigned integer
numbers starting at 0. In contrast to sections, the least significant numbers are
on the head of the list rather than on the tail. The data type used to represent
these task identifiers, ID, is just a list of integers.

:: ID = ID [Int]

next :: ID → ID

next (ID [a:x]) = ID [a+1:x]

Whenever a task is replaced by its successor the id is incremented with the
function next. For every id, i, we have that next i �= i. In this way we distinguish
inputs for a specific task from inputs to its successor. The function splitID

generates a list of task identifiers for subtasks of a task with the given id. This
function adds two numbers to the identifier, one number uniquely identifies the
subtask and one number serves as version for this subtask. This version number
is increased each time when the task accepts an edit event. This implies that
applying an event repeatedly to a task has at most once an effect. If we would
use the same number for both purposes, one application of the function next

would incorrectly transform the identification of the current subtask to that of
the next subtask.

splitID :: ID → [ID]
splitID (ID i) = [ID [0 ,j:i] \\ j ← [0..]]

These identifiers of subtasks are used to relate inputs to the subtasks they belong
to. The function nmbr is used to assign fresh and unique identifiers to a task tree.

nmbr :: ID ITask → ITask

nmbr i (EditTask _ s v) = EditTask i s v

nmbr i (t .||. u) = nmbr j t .||. nmbr k u where [j ,k:_] = splitID i

nmbr i (t .&&. u) = nmbr j t .&&. nmbr k u where [j ,k:_] = splitID i

nmbr i (Bind _ t f) = Bind k (nmbr j t) f where [j ,k:_] = splitID i

nmbr i t=:(Return _) = t

By convention we start numbering with id1 = ID [0] in these notes.

248 P. Koopman, R. Plasmeijer, and P. Achten

3.2 Events

The inputs for a task are called events. This implies that the values of input
devices are not considered as values that change in time, as in FRP (Functional
Reactive Programming). Instead changing the value of an input device generates
an event that is passed as an argument to the event handling function. This
function generates a new state and a new user interface.

An event is either altering the current value of an editor task or pressing
the button of such an editor. At every stage of running an iTask application,
several editor tasks can be available. Hence many inputs are possible. Each event
contains the id of the task to which it belongs as well as additional information
about the event, the EventKind.

:: Event = Event ID EventKind | Refresh

:: EventKind = EE BVal | BE

The event kind EE (Editor Event) indicates a new basic value for an editor. A
Button Event BE signals pressing the button in an editor indicating that the
user finished editing.

Apart from these events there is a Refresh event. In the actual system it
is generated by each refresh of the user-interface. In the real iTask system this
event has two effects: 1) the task tree is normalized ; and 2) an interface cor-
responding to the normalized task is generated. In the semantics we only care
about the normalization effect. Normalization of a task tree has an effect on
all subtasks that can be rewritten without user events. For instance, the task
editTask "ok" 1 -||- return 5 is normalized to return 5. Similarly the task
return 7 >>= editTask "ok" is replaced by editTask "ok" 7. We elaborate on nor-
malization in the next section.

3.3 Rewriting Tasks Given an Event

In this section we define a rewrite semantics for iTasks by defining how a task
tree changes if we apply an event to the task tree. Rewriting is defined by an
operator @., pronounced as apply. We define a class for @. in order to be able to
overload it, for instance with the application of a list of events to a task.

class (@.) infixl 9 a b :: a b → a

Given a task tree and an event, we can compute the new task tree representing
the task after handling the current input. This is handled by the main instance
of the operator @. for ITask and Event listed in figure 7. It is assumed that the
task is properly numbered and normalized, and that the edit events have the
same type as stored currently in the editor.

This semantics shows that the ids play a dominant role in the rewriting of
task trees. An event only has an effect on a task with the same id. Edit tasks can
react on edit events (line 3) as well as button events (line 4). Line 14 shows why
the Bind operator has an id. Events are never addressed to this operator, but the
id is used to normalize (and hence number) the new subtask that is dynamically
generated by f v if the left-hand side task is finished. All other constructs pass

An Effective Methodology for Defining Consistent Semantics 249

1instance @. ITask Event

2where
3(@.) (EditTask i n v) (Event j (EE w)) | i==j = EditTask (next i) n w

4(@.) (EditTask i n v) (Event j BE) | i==j = Return (BVal v)
5(@.) (t .||. u) e = case t @. e of
6t=:(Return _) = t

7t = case u @. e of
8u=:(Return _) = u

9u = t .||. u

10(@.) (t .&&. u) e = case (t @. e , u @. e) of
11(Return v , Return w) = Return (Pair v w)
12(t , u) = t .&&. u

13(@.) (Bind i t f) e = case t @. e of
14Return v = normalize i (f v)
15t = Bind i t f

16(@.) t e = t

Fig. 7. The basic semantics of iTasks

the events to their subtasks and check if the root of the task tree can be rewritten
after the reduction of the subtasks. The recursive call with @. e on line 13 can
only have an effect when the task was not yet normalized, in all other situations
applying the event has no effect.

An event is enabled if there is a task in the task tree that is rewritten when
the event is applied. For an edit task the enabled events are the edit and button
event with the corresponding id. Also the edit tasks that are composed with the
combinators .||. and .&&. and on the left-hand side of the Bind operator in an
enabled subtask are enabled. All events that belong to the right-hand side of
a bins operator are not enabeled. All events that are not enabled are ignored
(line 16).

A properly numbered task tree remains correctly numbered after reduction.
Editors that receive a new value get a new unique number by applying the
function next to the task identification number. The numbering scheme used
guarantees that this number cannot occur in any other subtask. If the left hand
task of the bind-operator is rewritten to a normal form, a new task tree is
generated by f v. The application of normalize (next i) to this tree guarantees
that this tree is normalized and properly numbered within the surrounding tree.

The handling of events for a task tree is somewhat similar to the reduction in
combinator systems or in the λ-calculus. An essential difference of such a reduc-
tion system with the task trees considered here is that all needed information is
available inside a λ-expression. The evaluation of task trees needs the event as
additional information.

Event sequences are handled by the following instance of the apply operator:

instance @. t [e] | @. t e where (@.) t es = foldl (@.) t es

Normalization. A task t is normalized (or well formed) iff t @. Refresh =
t. The idea is that all reductions in the task tree that can be done without a

250 P. Koopman, R. Plasmeijer, and P. Achten

new input should have been done. In addition we require that each task tree
considered is properly numbered (using the algorithm nmbr in section 3.1). In
the definition of the operator @. we assume that the task tree given as argument
is already normalized. Each task can be normalized and properly numbered by
applying the function normalize1 to that task.

normalize :: ID ITask → ITask

normalize i t = nmbr i (t @. Refresh)

normalize1 :: ITask → ITask

normalize1 t = normalize id1 t

Enabled Subtasks. All editor tasks that are currently part of the task tree
are enabled, which implies that they can be rewritten if the right events are
supplied. The subtasks that are generated by the function on the right-hand
side of a Bind construct are not enabled, even if we can predict exactly what
subtasks will be generated. The subtasks in the right-hand side of a bind do
not exists until the Bind operator is rewritten. Until this rewrite takes place
there is just a function that will produce the new task. Sometime this is rather
confusing for human reader since the subtasks in the function seem to be present.
Textually these subtasks are there, but operationally they are there only after
the evaluation of the function. For instance, in task t5 defined below the subtask
ButtonTask id2 "c" .. is not enabled until EditTask id1 "b" (Int 5) is finished.

Events accepted by the enabled subtasks are called enabled events, this is the
set of events that have an effect on the task when it is applied to such an event.
Consider the following tasks:

t1 = EditTask id1 "b" (Int 1) .&&. EditTask id2 "c" (Int 2)
t2 = EditTask id1 "b" (Int 1) .||. EditTask id2 "c" (Int 2)
t3 = ButtonTask id1 "b" (EditTask id2 "c" (Int 3))
t4 = ButtonTask id1 "b" t4

t5 = EditTask id1 "b" (Int 5) 	 λv.ButtonTask id2 "c" (Return (Pair v v))
t6 = EditTask id1 "b" (Int 6) 	 λv.t6
t7 v p = EditTask id1 "ok" v 	 λr=:(BVal w).if (p w) (Return r) (t7 w p)

In t1 and t2 all integer and button events with identifier id1 and id2 are enabled.
In t3 and t4 only the event Event id1 BE is enabled. In t5, t6 and t7 all integer
and button events with identifier id1 are enabled. All other events can only be
processed after the button event for the task with id1 on the left-hand side of
the bind operator.

Task t4 rewrites to itself after a button event. In t6 the same effect is reached
by a bind operator. The automatic numbering system guarantees that the tasks
obtain another id after applying the enabled button events. Task t7 is parame-
terized with a basic value and a predicate on such a value, and terminates only
when the worker enters a value satisfying the predicate. This simple example
shows that the bind operator is more powerful than just sequencing fixed tasks.
In fact any function of type Val→ITask can be used there.

An Effective Methodology for Defining Consistent Semantics 251

Normal Form. A task is in normal form if it has the form Return v for some
value v. A task in normal form is not changed by applying any event. The
function isNF :: ITask → Bool checks if a task is in normal form. In general
a task tree does not have a unique normal form. The normal form obtained
depends on the events applied to that task. For task t2 above the normal form
of t2 @. Event id1 BE is Return (BVal (Int 1)) while t2 @. Event id2 BE is Return
(BVal (Int 2)). However, for any given scenario that produces a normal form the
obtained normal form is unique. The recursive tasks t4 and t6 do not have a
normal form at all.

Needed Events. An event is needed in task t if the subtask to which the
event belongs is enabled and the top node of the task tree t cannot be rewritten
without that event.

In task t1 above the events Event id1 BE and Event id2 BE are needed. Task t2

has no needed event. This task can evaluate to a normal form by applying either
Event id1 BE or Event id2 BE. As soon as one of these events is applied, the other
task disappears. In t3 only Event id1 BE is needed, the event Event id2 BE is not
enabled. Similarly, in t4, t5 and t6 (only) the event Event id1 BE is needed.

For an edit-task the button-event is needed. Any number of edit-events can
be applied to an edit-task, but they are not needed. For the task t1 .&&. t2

the needed events are the sum of the needed events of t1 and the needed events
of t2. For a monadic bind the only needed events are the needed events of the
left hand task. The needed events of a task t are obtained by collectNeeded. To
ensure that needed events are collected in a normalized task we apply normalize1

before scanning the task tree. In the actual iTask system the task is normalized
by the initial refresh event and needs no new normalization ever after. In the
task t1 .||. t2 none of the events is needed, the task is finished as soon as the
task t1 or the task t2 is finished. Normalization is only included here to ensure
that the task is normalized in every application of this function.

collectNeeded :: ITask → [Event]
collectNeeded t = col (normalize1 t)
where

col (EditTask id n v) = [Event id BE]
col (t1 .&&. t2) = col t1 ++ col t2

col (Bind id t f) = col t // no events from f
col _ = [] // Return and the OR-combinator

In exactly the same spirit collectButtons collects all enabled button events
in a task tree, and collect yields all enabled button events plus the enabled
edit events containing the current value of the editors. The function collectEdit

yields all enabled edit events in the given task tree with the current value of the
editors in the tree. All edit events with the same id and another value of the
same type will also be accepted when we apply them to the task tree. The list
of events is needed for the simulation of the task discussed in section 7.

An event is accepted if it causes a rewrite in the task tree, i.e. the correspond-
ing subtask is enabled. A sequence of events is accepted if each of the events
causes a rewrite when the events are applied in the given order. This implies

252 P. Koopman, R. Plasmeijer, and P. Achten

that an accepted sequence of events can contain events that are not needed, or
even not enabled in the original tree. In task t2 the button event with id1 and
id2 are accepted, also the editor event Event id1 (EE (Int 42)) is accepted. All
these events are enabled, but neither of them is needed. The task t5 accepts the
sequence [Event id1 BE , Event id2 BE] . The second event is not enabled in t5,
but applying Event id1 BE to t5 enables it.

Value. The value of a task is the value returned by the task if we repeatedly
press the left most button in the task until it returns a value. This implies
that the value of task t1 is Pair (Int 1) (Int 2), the value of t2 is Int 1 since
buttons are pressed from left to right. The value of t3 is Int 3 and the value
of t5 is Pair (Int 5) (Int 5). The value of t4 and t6 is undefined. Since a task
cannot produce a value before all needed events are supplied, we can apply all
needed events in one go (there is no need to do this from left to right).

For terminating tasks the value can be computed by inspection of the task
tree, there is no need to do the actual rewrite steps as defined by the @. operator.
For nonterminating tasks the value is undefined, because these tasks never return
a value. The class val determines the value by inspection of the data structure.

class val a :: a → Val

instance val BVal where val v = BVal v

instance val Val where val v = v

instance val ITask

where
val (EditTask i n e) = val e

val (Return v) = val v

val (t .||. u) = val t // priority for the left subtask
val (t .&&. u) = Pair (val t) (val u)
val (Bind i t f) = val (f (val t))

The value produced is always equal to the value returned by the task if the
user presses all needed buttons and the leftmost button if there is no needed
button. The property pVal in section 5 states this and testing does not reveal
any problems with this property.

The value of a task can change after applying an edit event. For instance the
value of task EditTask id1 "ok" (BVal (Int 2)) is BVal (Int 2). After applying
Event id1 (BVal (Int 7)) to this task the value is changed to BVal (Int 7).

Type. Although all values that can be returned by a task are represented by
the type Val, we occasionally want to distinguish several families of values within
this type. This type is not the data type Val used in the representation of tasks,
but the type that the corresponding tasks in the real iTask system would have.
We assign the type Int to all values of the form Int i. All values of the form
String s have type String . If value v has type v and value w has type w then the
value Pair v w has type Pair v w. The types allowed are:

Type = Int | String | VOID | Pair Type Type

An Effective Methodology for Defining Consistent Semantics 253

To prevent the introduction of yet another data type, we represent the types
yielded by tasks in these notes as instance of Val. The type Int is represented
by Int 0 and the type String is represented as String "". We define a class type

to determine types of tasks.

:: Type :== Val

class type a :: a → Type

Instances of this class for Val and ITask are identical to the instances of val

defined in section 3.3. Only the instance for BVal is slightly different:

instance type BVal

where
type (Int i) = BVal (Int 0)
type (String s) = BVal (String "")
type VOID = BVal VOID

This reuse of the type Val to represent the type of instances of this type appears
to be very handy in the generation of values needed to test properties of iTasks.

In the next section we use to semantics and notions introduces in this section
to define equivalence of tasks.

4 Equivalence of Tasks

Given the semantics of iTasks we can define equivalence of tasks. Informally we
want to consider two tasks equivalent if they have the same semantics. Since we
can apply infinitely many update events to each task that contains an editor we
cannot determine equivalence by applying all possible input sequences. Moreover,
tasks containing a bind operator also contain a function and the equivalence of
functions is in general undecidable. iTasks are obviously Turing complete and hence
equivalence is also for this reason known to be undecidable. It is even possible to
use more general notions of equivalence, like tasks are equivalent if they can be
used to do the same job. Hence, developing a useful notion of equivalence for tasks
is nontrivial.

In these notes we develop a rather strict notion of equivalence of tasks: tasks
t and u are equivalent if they have an equal value after all possible sequences
of events and at each intermediate state the same events are enabled. Since the
identifications of events are invisible for the workers using the iTask system, we
allow that the lists of events applied to t and u differ in the event identifications.
The strings that label the buttons in t and u do not occur in the events, hence
it is allowed that these labels are different for equivalent tasks.

This notion of equivalence is based on observational equivalence for workers.
At any moment during the execution of a task the worker should have the same
options for entering input (generating events), and both tasks should yield the
same normal form for any sequence of inputs that produces a normal form in
one of the tasks.

First we introduce the notion of simulation. Informally a task u can simulate
a task t if a worker can do everything with u that can be done with t. It is very

254 P. Koopman, R. Plasmeijer, and P. Achten

well possible that a worker can do more with u than with t. The notation t
 u
denotes that u can simulate t. Technically we require that: 1) for each sequence
of accepted events of t there is a corresponding sequence of events accepted by
u; 2) the values of the tasks after applying these events is equal; and 3) after
applying the events, all enabled events of t have a matching event in u. Two
events are equivalent, e1 ∼= e2, if they differ at most in their identification.

t
 u ≡ ∀ i ∈ accept(t).∃j ∈ accept(u).i ∼= j ∧ val (t @. i) = val(u @. j)
∧collect(t @. i) ⊆ collect(u @. j)

The notion t
 u is not symmetrical, it is very well possible that u can do
much more than t. As an example we have that for all tasks t and u that are
not in normal form t
 t .||. u, and t
 u .||. t. If one of the tasks is in normal
form it has shape Return v, after normalization the task tree u .||. t will have the
value Return v too. Any task can simulate itself t
 t, and an edit task of any
basic value v can simulate a button task that returns that value: ButtonTask id1

"b" (Return (BVal v))
 EditTask id2 "ok" v. In general we have t .||. t
/ t: for
instance if t is an edit task, in t .||. t we can put a new value in one of the editors
and produce the original result by pressing the ok button in the other editor,
the task t cannot simulate this. The third requirement in the definition above
is included to ensure that t .||. t
/ t also holds for tasks with only one button
ButtonTask id1 "b1" (BVal (Int 36)).

Two tasks t and u are considered to be equivalent iff t simulates u and u
simulates t.

t ∼= u ≡ t
 u ∧ u
 t

This notion of equivalence is weaker then the usual definition of bisimulation
[21] since we do not require equality of events, but just equivalency. Two editors
containing a different value are not equivalent. There exist infinitely many event
sequences such that these editors produce the same value. But for the input
sequence consisting only of the button event, they produce a different value.

Since each task can simulate itself (t
 t), any task is equivalent to itself:
t ∼= t. If t and u are tasks that are not in normal form we have t .||. u ∼= u .||. t.
Consider the following tasks:

u1 = ButtonTask id1 "b1" (Return (BVal (Int 1)))
u2 = EditTask id2 "b2" (Int 1)
u3 = EditTask id2 "b3" (Int 2)
u4 = EditTask id2 "b4" (String "Hi")
u5 = u1 .||. u2

u6 = u2 .||. u1

u7 = u2 .&&. u4

u8 = u4 .&&. u2

u9 = u2 	 λv.Return (BVal (Int 1))
u10 = u2 	 λx.u4 	 λy.Return (Pair x y)

The trivial relations between these tasks are ui
 ui and ui
∼= ui for all ui. The

nontrivial relations between these tasks are: u1
 u2, u1
 u5, u1
 u6, u1

An Effective Methodology for Defining Consistent Semantics 255

u9, u2
 u5, u2
 u6, u5
 u6, u6
 u5, u10
 u7, u10
 u8, and u2 ∼= u9, u5
∼= u6. Note that u7 � u8 since the tasks yield another value, a result of type
Pair Int String can never be equal to a result of type Pair String Int. When
we swap the elements in the resulting pair of either u7 or u8 these tasks are
equivalent: for example u7 	 λ(Pair a b) → Return (Pair b a) ∼= u8.

Due to the presence of functions in the task expressions it is in general un-
decidable if one task simulates another or if they are equivalent. This implies
that an testing approach needs to approximate this equivalence relation in some,
preferably safe, way. However, in many situations we can decide these relations
between tasks by inspection of the task trees that determine the behavior of the
tasks. The next sections show how equivalence can be approximated and used
in test of the semantics of iTasks.

4.1 Determining the Equivalence of Task Trees

The equivalence of tasks requires an equal result for all possible sequences of
accepted events. Even for a simple integer edit task there are infinitely many
sequences of events. This implies that checking equivalence of tasks by applying
all possible sequences of events is in general impossible.

In this section we introduce two algorithms to approximate the equivalence
of tasks. The first algorithm, section 4.2, is rather straightforward and uses only
the enabled events of a task tree and the application of some of these events to
approximate equivalence. The second algorithm, section 4.3 is somewhat more
advanced and uses the structure of the task trees to determine equivalence when-
ever possible.

We will use a four valued logic as for the result:

:: Result = Proof | Pass | CE | Undef

The result Proof corresponds to True and indicates that the relation is known
to hold. The result CE (for CounterExample) is equivalent to False, the relation
does not hold. The result Pass indicates that functions are encountered during
the scanning of the trees. For the tried values the properties holds. The property
might hold for all other values, but it is also possible that there exist inputs
to the tasks such that the property does not hold. The value Undef is used as
result of an existential quantified property (∃w.P x) where no proof is found in
the given number of test cases; the value of this property is undefined [8]. This
type Result is a subset of the possible test results handled by the test system
G∀st. For these results we define disjunction (‘or’, ∨·), conjunction (‘and’, ∧.), and
negation (‘not’, ¬) with the usual binding power and associativity. In addition
we define the type conversion from Boolean to results and the weakening of a
result which turns Proof in Pass and leaves the other values unchanged.

class (∨·) infixr 2 a b :: a b → Result // a OR b
class (∧.) infixr 3 a b :: a b → Result // a AND b

instance ¬ Result // negation

256 P. Koopman, R. Plasmeijer, and P. Achten

toResult :: Bool → Result // type conversion
toResult b = i f b Proof CE

pass :: Result → Result // weakens result to at most Pass
pass r = r ∧. Pass

For ∨· and ∧. we define instances for all combinations of Bool and Result as a
straightforward extension of the corresponding operation on Booleans.

4.2 Determining Equivalence by Applying Events

In order to compare ITasks we first ensure that they are normalized and supply an
integer argument to indicate the maximum number of reduction steps. The value
of this argument N is usually not very critical. In our tests 100 and 1000 steps
usually gives identical (and correct) results. The function equivalent first checks
if the tasks are returning currently the same value. If both tasks need inputs we
first check 1) if the tasks have the same type, 2) if the tasks currently offer the
same number of buttons to the worker, 3) if the tasks have the same number
of needed buttons, and 4) if the tasks offer equivalent editors. Whenever either
of these conditions does not hold the tasks t and u cannot be equivalent. When
these conditions hold we check equivalence recursively after applying events. If
there are needed events we apply them all in one go, without these events the
tasks cannot produce a normal form. If the tasks have no needed events we apply
all combinations of button events and check if one of these combinations makes
the tasks equivalent. We need to apply all combinations of events since all button
events are equivalent. All needed events can be applied in one go since they are
needed in order to reach a normal form and the order of applying needed events
is always irrelevant. If there are edit tasks enabled, length et>0, in the task the
result is at most Pass. This is achieved by applying the functions pass or id.

equivOper :: ITask ITask → Result

equivOper t u = equivalent N (normalize1 t) (normalize1 u)

equivalent :: Int ITask ITask → Result

equivalent n (Return v) (Return w) = v == w

equivalent n (Return v) _ = CE

equivalent n _ (Return w) = CE

equivalent n t u

| n≤0
= Pass

= i f (length et>0) pass id

(type t == type u ∧. lbt == lbu ∧. lnt == lnu ∧. sort et == sort eu

∧. i f (lnt>0)
(equivalent (n-lnt) (t @. nt) (u @. nu))
(exists N [equivalent n (t @. i) (u @. j)\\(i ,j)←diag2 bt bu]))

where
bt = collectButtons t ; nt = collectNeeded t

bu = collectButtons u ; nu = collectNeeded u

et = collectEdit t ; eu = collectEdit u

lnt = length nt ; lnu = length nu ; lbt = length bt ; lbu = length bu

An Effective Methodology for Defining Consistent Semantics 257

The function exists checks if one of the first N values are Pass or Proof.

exists :: Int [Result] → Result

exists n [] = CE

exists 0 l = Undef

exists n [a:x] = a ∨· exists (n-1) x

The edit events are sorted before we compare them in order to get rid of possible
different ids. We only compare the values of edit events in the comparison of
events. Button events are considered to be smaller than edit events.

In this approach we do not apply any edit events. It is easy to design examples
of tasks where the current approximation yields Pass, but applying some edit
events reveals that the tasks are actually not equivalent (e.g. t = EditTask id1

(BVal (Int 5)) and t 	 Return (BVal (Int 5))). We obtain a better approxima-
tion of the equivalence relation by including some edit events in the function
equivalent. Due to space limitations and to keep the presentation as simple as
possible we have not done this here.

4.3 Determining Equivalence of Tasks by Comparing Task Trees

Since the shape of the task tree determines the behavior of the task corresponding
to that task tree, it is tempting to try to determine properties like t
 u and
t ∼= u by comparing the shapes of the trees for u and t. For most constructs
in the trees this works very well. For instance it is much easier to look at the
structure of the tasks EditTask id1 "ok" (BVal (Int 5)) and EditTask id2 "done"

(BVal (Int 5)) to see that they are equivalent, than approximating equivalence of
these tasks by applying events to these tasks and comparing the returned values.
In this section we use the comparison of task trees to determine equivalence of
tasks. The function eqStruct implements this algorithm.

There are a number of constructions that allow different task trees for equiv-
alent tasks. These constructs require special attention in the structural compar-
ison of task trees:

1. The tasks ButtonTask id1 "b" (Return v) .&&. Return w and ButtonTask id1

"b" (Return (Pair v w)) are equivalent for all basic values v and w. This kind
of equivalent tasks with a different task tree can only occur if one of the
branches of .&&. is in normal form and the other is not. On lines 9, 16 and
17 of the function eqStruct there are special cases handling this. The problem
is handled by switching to a comparison by applying events, very similar to
the equivalent algorithm in the previous section. The function equ takes care
of applying events and further comparison.

2. The choice operator .||. should be commutative, (t.||.u � u.||.t), and
associative ((t.||.u).||.v � t.||.(u.||.v)). In order to guarantee this,
eqStruct collects all adjacent or-tasks in a list and checks if there is a unique
mapping between the elements of those list such that the corresponding sub-
tasks are equivalent (using eqStruct recursively). The implementation of the
auxiliary functions is straightforward.

258 P. Koopman, R. Plasmeijer, and P. Achten

3. The Bind construct contains real functions, hence there are many ways to
construct equivalent tasks with a different structure. For instance, we have
that any task t is equivalent to the task t 	 Return, or slightly more ad-
vanced: s.&&.t is equivalent (t .&&. s) 	 λ(Pair x y)→Return (Pair y x)
for all tasks s and t.

The function eqStruct checks if the left-hand sides and the obtained right-
hand sides of two bind operators are equivalent. If they are not equivalent
the tasks are checked for equivalence by applying inputs, see line 13-15.

The eqStruct algorithm expects normalized task trees. The operator � takes
care of this normalisation.

class (�) infix 4 a :: a a → Result // is arg1 equivalent to arg2?

instance � ITask where (�) t u = eqStruc N (normalize1 t) (normalize1 u)

If the structures are not equal, but the task might be event equal we switch
to applying inputs using the function equ. This function is very similar to the
function equivalent in the previous section. The main difference is that the
function equ always switches to eqStruct instead of using a recursive call. If
a structural comparison is not possible after applying an event, the function
eqStruct will switch to equ again.

1eqStruc :: Int ITask ITask → Result

2eqStruc 0 t u = Pass

3eqStruc n (Return v) (Return w) = v � w

4eqStruc n (Return v) _ = CE

5eqStruc n _ (Return w) = CE

6eqStruc n (EditTask _ _ e) (EditTask _ _ f) = e�f

7eqStruc n s=:(a .&&. b) t=:(x .&&. y)
8= eqStruc (n-1) a x ∧. eqStruc (n-1) b y ∨·
9((inNF a || inNF b || inNF x || inNF y) ∧. equ n s t)
10eqStruc n s=:(a .||. b) t=:(x .||. y)
11= eqORn n (collectOR s) (collectOR t)
12eqStruc n s=:(Bind i a f) t=:(Bind j b g)
13= eqStruc (n-1) a b ∧. eqStruc (n-2) (f (val a)) (g (val b)) ∨· equ n s t

14eqStruc n s=:(Bind _ _ _) t = equ n s t

15eqStruc n s t=:(Bind _ _ _) = equ n s t

16eqStruc n s=:(a .&&. b) t = (inNF a||inNF b) ∧. equ n s t

17eqStruc n s t=:(x .&&. y) = (inNF x||inNF y) ∧. equ n s t

18eqStruc n s t = CE

This uses instances of � for basic values (BVal) and values (Val). For these
instances no approximations are needed. Line 10 and 11 implements the com-
mutativity of the operator .||.: collectOR produces a list of all subtasks glued
together with this operator, and eqORn determines if these lists of subtasks are
equivalent in some permutations.

eqORn :: Int [ITask] [ITask] → Result

eqORn n xs ys

= coversUnique (eqStruc n) xs ys ∧. coversUnique (eqStruc n) ys xs

An Effective Methodology for Defining Consistent Semantics 259

The definitions are a direct generalization of the ordinary equality ==.
The function coversUnique checks if there is an unique mapping between el-

ements of the given lists using the comparison operator. As a simple example
coversUnique (ab.toResult (a==b)) [1 ,1 ,2] [1 ,2 ,1] will produce OK, but compar-
ing the list [1 ,1 ,2] and [1 ,2 ,2] as well as any list different length will produce
CE.

coversUnique :: (a a→Result) [a] [a] → Result

coversUnique f xs ys = eq xs ys []
where

eq [] ys zs = Proof

eq [x:xs] [] zs = CE

eq [x:xs] [y:ys] zs

| f x y = CE

= eq xs (zs++ys) [] ∨· eq [x:xs] ys [y:zs]
= eq [x:xs] ys [y:zs]

If the elements of the list can be sorted it is much easier to sort the lists of
values and compare the elements one by one. The given algorithm works also if
the lists cannot be sorted. We needed this to compare tasks, we have no less-then
operator for tasks.

As indicated above the function equ takes care of applying events and further
comparison of task trees. This function first checks if there are approximation
steps to be done (n≤0). If no steps can be done the result is Pass. Otherwise we
check compare the current value of the task trees, the number of button events,
the number of needed events, and the edit events. If there are needed events we
apply them to the tasks. Otherwise we try if any pairs of button events for the
tasks is structurally equivalent.

equ :: Int ITask ITask → Result

equ n t u

| n≤0
= Pass

= val t == val u ∧. lbt == lbu ∧. lnt == lnu

∧. sort (collectEdit t) == sort (collectEdit u)
∧. i f (lnt>0)

(eqStruc (n-lnt) (t @. nt) (u @. nu))
(i f (lbt>0)

(exists N [eqStruc (n-1) (t @. i) (u @. j)
\\ (i ,j) ← diag2 bt bu

]
)
(case (t ,u) of

(Return x ,Return y) = x�y

_ = CE)
)

where
bt = collectButtons t ; nt = collectNeeded t

bu = collectButtons u ; nu = collectNeeded u

et = collectEdit t ; eu = collectEdit u

260 P. Koopman, R. Plasmeijer, and P. Achten

lnt = length nt ; lnu = length nu

lbt = length bt ; lbu = length bu

A similar approach can be used to approximate the simulation relation
.
Property pEquiv in the next section states that both notions of equivalence

yield equivalent results, even if we include edit events. Executing the associated
tests indicate no problems with this property. This test result increases the
confidence in the correct implementation of the operator � . Since � uses the
structure of the tasks whenever possible, it is more efficient than equivOper that
applies events until the tasks are in normal form. The efficiency gain is completely
determined by the size and contents of the task tree, but can be significant. It
is easy to construct examples with an efficiency gain of one order of magnitude
or more.

5 Testing Properties of iTasks

Above we mentioned a number of properties of iTasks and their equivalency like
∀ s, t ∈ iTask . (s.||.t)� (t.||.s). Although we designed the system such that
these properties should hold, it is good to verify that the properties do hold
indeed. Especially during the development of the semantic description many
versions have been created in order to find a concise formulation of the semantics
and an effective check for equivalence.

The above property can be stated in G∀st as:

pOr :: GITask GITask → Property

pOr x y = normalize1 (t.||.u) � normalize1 (u.||.t)
where t = toITask x ; u = toITaskT (type t) y

Since some ITask constructs contain a function, we use an additional data type,
GITask, to generate the desired instances. We follow exactly the approach as
outlined in [7]. The type GITask contains cases corresponding to the constructors
in ITask, for button tasks, for tasks of the form t 	 Return, and for some simple
recursive terminating tasks. For pOr we need to make sure the tasks t and u have
the same type since we combine them with an or-operator. The conversion by
toITask from the additional type GITasks used for the generation to ITasks takes
care of that.

After executing 23 tests G∀st produces the first counterexample that shows
that this property does not hold for t = Return (BVal (Int 0)) and u = Return

(Pair (BVal (Int 0)) (BVal (Int 0))). Using the semantics from figure 7 it is
clear that G∀st is right, our property is too general. A correct property imposes
the condition that t and u are not in normal form:

pOr2 x y = notNF [t ,u] ==> normalize1 (t.||.u) � normalize1 (u.||.t)
where t = toITask x ; u = toITaskT (type t) y

In the same way we can show that t.||.t � t for tasks that are not in normal
form (p2) and test the associativity of the .||. operator (p3).

An Effective Methodology for Defining Consistent Semantics 261

p2 :: GITask GITask → Property

p2 x y = notNF [s ,t] ==> (s.||.t) �t

where s = toITask x ; t = toITaskT (type s) y

p3 :: GITask GITask GITask → Property

p3 x y z = (s .||. (t .||. u))� ((s .||. t) .||. u)
where s = toITask x ; t = toITaskT (type s) y ; u = toITaskT (type s) z

In total we have defined over 70 properties to test the consistency of the defini-
tions given in these notes. We list some representative properties here. The first
property states that needed events can be applied in any order. Since there are
no type restrictions on the type t we can quantify over ITasks directly.

pNeeded :: ITask → Property

pNeeded t = (λj. t @. i � t @. j) For perms i where i = collectNeeded t

In this test the fragment For perms i indicates an additional quantification over
all j in perms i. The function perms :: [x] → [[x]] generates all permutations
of the given list. In logic this property would have been written as ∀t ∈ ITask,
∀j ∈ perms (collectNeeded t). t @. (collectNeeded t) t @. j.

The next property states that both approximations of equivalence discussed
in the previous section produce equivalent results.

pEquiv :: ITask ITask → Property

pEquiv t u = (equivOper t u) � (t�u)

The type of a task should be preserved under reduction. In the property pType

also events that are not well typed will be tested. Since we assume that all events
are well typed (the edit events have the same type as the edit task they belong
to), it is better to use pType2 where the events are derived from the task t.

pType :: ITask → Property

pType t = (λi.type t == type (t @. i)) For collect t

pType2 :: ITask → Property

pType2 t = pType t For collect t

The phrase For collect t indicates that for testing these properties the events
are collected from the task tree rather than generated systematically by G∀st.
However the tasks to be used in the test are generated systematically by G∀st.

The property pVal states that the value of a task obtained by the optimized
function val is equal to the value of the task obtained by applying events obtained
by collectVal until it returns a value. The function collectVal returns all needed
events and the leftmost events if these are no needed events.

pVal :: ITask → Property

pVal t = val t == nf t

where
nf (Return v) = v

nf t = nf (t @. collectVal t)

When two tasks are equivalent it is not required that their buttons are exactly
equivalent, some differences in layout and hence button labeling are allowed.

262 P. Koopman, R. Plasmeijer, and P. Achten

However, there should be an unique coverage of the buttons of those tasks. This
is tested by property p50.

p50 :: ITask ITask→ Property

p50 s t = (s � t) ==> (coversUnique (�) (collect s) (collect t))

In general it is not enough to check that tasks are currently structural equiv-
alent, this equivalence should be preserved after processing events. Details of
this equivalence are beyond the scope of this paper. For our iTasksemantics we
defined a notion of equivalent that covers this requirement. Many properties and
hence use these notion of equivalence.

The definitions presented in these notes pass all stated properties. On a normal
laptop (Intel core2 Duo (using only one of the cores), 1.8 GHz) it takes about
7 seconds to check all defined properties with 1000 test cases for each property.
This is orders of magnitude faster and more reliable then human inspection,
which is on its turn much faster than a formal proof (even if it is supported by a
state-of-the-art tool). Most of these properties are very general properties, like
the properties shown here. Some properties however check specific test cases that
are known to be tricky, or revealed problems in the past. If there are problems
with one of the properties, they are usually spotted within the first 50 test cases
generated. It appears to be extremely hard to introduce flaws in the system that
are not revealed by executing these tests. For instance omitting one of the special
cases in the function eqStruct is spotted quickly. Hence testing the consistency of
the system in this way is an effective and efficient way to improve the confidence
in its consistency.

For iTasks it might be tempting to state properties in temporal logic. Currently
temporal logic is not yet supported by G∀st, it is restricted to a slightly extended
version of first order logic. G∀st does support also specifications by extended
state machines and has a notion of behavioral equivalence of state machines.
These state based specifications can be used to test state based properties of
iTaskseffectively. However, this way of testing is outside the scope of this paper.

6 Related Work

This is certainly not the first paper on tool support for semantics, neither will
it be the last one. There are several classes of related work.

The first class of papers aims to derive efficient implementations from the se-
mantical description. Lakin and Pitts [10] propose a meta language for structural
operational semantics. Their treated meta language is able to animate the de-
scribed language, the long term goal is to execute it efficiently. They spend much
effort in the implementation of a variable binding mechanism that is aware of
α–equivalence, known as the Barendregt variable convention [3]. To that extend
they implement nominal unification [24] to judge equivalence of environments
(binding of variables to values). Cheney’s scrap your nameplate [4] provides sim-
ilar binding tools using generic programming techniques. We provide a more
basic notion of binding without silent α–equivalence, nor do we aim to provide

An Effective Methodology for Defining Consistent Semantics 263

an efficient implementation. For the semantics given in this paper such an ad-
vanced notion of equivalence of environments is not needed. For specifying the
semantics of, for instance, the λ-calculus, such a notion of equivalence would
be a valuable addition. If necessary, such a notion of equivalence can be used
instead of the simple environments used here.

A second class of related papers is about support for mechanical proofs of
properties of the given semantics. These papers recognize that it is next to
impossible to get a large semantical specification without an automatic sanity
checking. To conquer this problem Sewell et al. [20] define the metalanguage
Ott, specifications in this language are checked and can be compiled to LATEX
as well as code for proof assistants. Although proofs using a proof assistant
are extremely valuable for semantical specifications and encouraging progress
has been made with proof assistants in recent years, constructing such proofs
still requires usually much human guidance [2]. If any detail of the semantics
is changed the proofs need to be redone typically with new human guidance.
For this reason proofs are typically delayed until the semantics is assumed to
be correct, or omitted. Our test based approach gives quickly a fairly good
approximation of the correctness of the properties stated. This appears to be
very useful during the development of the semantics. We plan to investigate the
combination of testing and proving properties as future research.

We neither aim to animate the semantics efficiently, nor do we directly target
proof support. The possibilities for simulating the semantics using the iTask

system as described in this paper are purely intended as an interactive way to
create task and perform reductions. Efficiency is not an issue at all, the only
purpose is the human validation of the observed reduction behavior.

Beauty, clearness and correctness of the semantics is our business. Our ex-
perience is that fast feedback from a test system is more valuable during the
development of the semantics than support for proofs. Once the semantics is
stable, off–line proofs do provide more confidence than tests. In our experience
it is very hard to construct faithful properties for a semantics that does not hold
and where the test system does not produce a counterexample quickly. In other
words: if one of the stated properties does not hold, the test system G∀st is usu-
ally able to find a counterexample quickly. And if we have sufficient properties
stated, issues in the semantics usually are indicated by counterexamples for one
or more of the properties. Of course it would be nice to have a set of properties
that completely fixes the desired semantics, but ad-hoc sets of properties appear
to be effective as well.

Compared with these two classes of tools our approach has the advantage that
no special purpose language needs to be designed, implemented and mastered.
An existing and well-known language is reused for a new goal. We reuse all
existing features of the language as well as all existing tooling (IDE, compiler,
test-tool, ..), only a small number of tailor made features have to be provided
to obtain a powerful embedded modeling language for semantics. A potential
pitfall is that the semantics of the embedding functional language is silently
inherited in the given semantics. The semantics of high level functional languages

264 P. Koopman, R. Plasmeijer, and P. Achten

is usually not complete and rigourously defined. For Clean the basic semantics is
given as a term graph rewrite system [17], de Mol [13] gives a precise definition
of large parts of Clean. Since the semantics definitions directly corresponds to
their counterparts in a mathematical formulation of the semantics the meaning
of semantic formulation is never an issue. Moreover, only very basic rewrite
semantics of the embedding language is used. All places where the semantics of
the functional embedding language might be a little unclear are easily avoided.

The ability to test properties of the described semantics is an important con-
tribution of our work.

In [5] Danvy describes various semantics in ML for simple systems and their
transformation.

A third class of related papers is about semantics of workflow systems. The
semantics of many other workflow systems is based on Petri-nets, e.g. [19], actor-
oriented directed graphs (including some simple higher order constructs) [12], or
abstract state machines (ASM) [11]. Neither of these alternatives is capable to
express the flexibility covered by the dynamic generation of tasks of the monadic
bind operation of the iTask system.

7 Discussion

In this paper we give a rewrite semantics for iTasks. Such a semantics is necessary
to reason about iTasks and their properties, it is also well suited to explain their
behavior. In addition we defined useful notions about iTasks and stated properties
related to them. The most important notion is the equivalence of tasks.

Usually the semantics of workflow systems is based on Petri nets, abstract
state machines, or actor-oriented directed graphs. Since the iTask system al-
lows arbitrary functions to generate the continuation in a sequence of tasks (the
monadic bind operator), such an approach is not flexible enough. To cope with
the rich possibilities of iTasks our semantics incorporates also a function to de-
termine the continuation of the task after a Bind operator.

We use the functional programming language Clean as carrier for the seman-
tical definitions. The tasks are represented by a data structure. The effect of
supplying an input to such a task is given by an operator modifying the task
tree. Since we have the tasks available as data structure, we can easily extract
information from the task, like the events needed or accepted by the task. A
typical case of the operator @. (apply) that specifies the semantics is:

(@.) (EditTask i n e) (Event j BE) | i==j = Return (BVal e)

In the more traditional Scott Brackets style this alternative is written as:

A [[EditTask i n e]] (Event j BE) = Return (BVal e), if i = j

Our representation has the same level of abstraction and has as advantages that
it can be checked by the type system and executed (and hence simulated and
tested).

An Effective Methodology for Defining Consistent Semantics 265

Having the task as a data structure it is easy to create an editor and simulator
for tasks using the iTask library. Editing and simulating tasks is helpful to validate
the semantics. Although simulating iTasks provides a way to interpret the given
task, the executable semantics is not intended as an interpreter for iTasks. In an
interpreter we would have focused on a nice interface and efficiency, the semantics
focusses on clearness and simplicity.

Compared with the real iTask system there are a number of important sim-
plifications in our ITask representation. 1) Instead of arbitrary types, the ITasks
can only yield elements of type Val. The type system of the host language is
not able to prevent type errors within the ITasks. For instance it is possible
to combine a task that yields an integer, BVal (Int i), with a task yielding a
string, BVal (String s), using an .||. operator. In the ordinary iTasks the type
system does not allow to combine (which indeed is semantically not desirable)
tasks of type Task Int with Task String using a -||- operator. Probably GADTs
would have helped us to enforce this condition in our semantical representation.
2) The application of a task to an event does not yield an HTML-page that can
be used as GUI for the iTask system. In fact there is no notion at all of HTML

output in the ITask system. 3) There is no way to access files or databases in
the ITask system. 4) There is no notion of workers and assigning subtasks to
them. 5) There is no difference between client site and server site evaluation
of tasks. 6) There is only one workflow process which is implicit. In the real
iTask system additional processes can be created dynamically. 7) The exception
handling from the real iTask system is missing in this semantics.

Adding these aspects would make the semantics more complicated. We have
deliberately chosen to define a concise system that is as clear as possible.

Using the model-based test system it is possible to test the stated properties
fully automatically. We maintain a collection of over 70 properties for the iTask

semantics and test them with one push of a button. Within seconds we do known
if the current version of the system obeys all properties stated. This is extremely
useful during the development and changes of the system. Although the defined
notions of equivalence are in general undecidable, the given approximation works
very well in practice. Issues in the semantics or properties are found very quickly
(usually within the first 100 test cases). We attempted to insert deliberately
small errors in the semantics that are not detected by the automatic tests, but we
failed miserably. Many of these incorrect versions look very plausible for humans,
without the test system one might believe that this version of the semantics is
actually correct. This does give us confidence in the power of automatic testing
of semantical properties. Nevertheless, a successful test is in general not a proof.
Proving properties remains necessary to obtain maximum certainty about the
properties. Using automatic testing as a first indication of correctness will reduce
the proving effort significantly, there is a strongly reduced change that we try to
prove incorrect versions of the semantics.

In the near future we want to test with G∀st if the real iTask system obeys the
semantics given in this paper. In addition we want to extend the semantics in
order to cover some of the important notions omitted in the current semantics, for

266 P. Koopman, R. Plasmeijer, and P. Achten

instance task execution in a multi-user workflow system. When we are convinced
about the quality and suitability of the extended system we plan to prove some of
the tested properties. Although proving properties gives more confidence in the
correctness, it is much more work then testing. Testing with a large number of
properties has shown to be an extremely powerful way to reveal inconsistencies
in the system.

References

1. Achten, P., van Eekelen, M., de Mol, M., Plasmeijer, R.: An Arrow based semantics
for interactive applications. In: Morazán, M. (ed.) Proceedings of the 8th Sympo-
sium on Trends in Functional Programming, TFP 2007, New York, NY, USA, April
2-4 (2007)

2. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metathe-
ory for the masses: The poplmark challenge. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)

3. Barendregt, H.: The lambda calculus, its syntax and semantics (revised edition).
Studies in Logic, vol. 103. North-Holland, Amsterdam (1984)

4. Cheney, J.: Scrap your nameplate (functional pearl). SIGPLAN Not. 40(9), 180–
191 (2005)

5. Danvy, O.: From reduction-based to reduction-free normalization. In: Koopman,
P., Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 66–164.
Springer, Heidelberg (2009)

6. Koopman, P., Plasmeijer, R.: Generic generation of elements of types. In: Pro-
ceedings of the 6th Symposium on Trends in Functional Programming, TFP 2005,
Tallin, Estonia, Septmeber 23-24, pp. 163–178. Intellect Books, Bristol (2005) ISBN
978-1-84150-176-5

7. Koopman, P., Plasmeijer, R.: Automatic testing of higher order functions. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 148–164. Springer,
Heidelberg (2006)

8. Koopman, P., Plasmeijer, R.: Fully automatic testing with functions as specifica-
tions. In: Horváth, Z. (ed.) CEFP 2005. LNCS, vol. 4164, pp. 35–61. Springer,
Heidelberg (2006)

9. Koopman, P., Plasmeijer, R., Achten, P.: An executable and testable semantics for
iTasks. In: Scholz, S.-B. (ed.) Revised Selected Papers of the 20th International
Symposium on the Implementation and Application of Functional Languages,
IFL 2008, pp. 53–64. University of Hertfordshire, UK (2008)

10. Lakin, M.R., Pitts, A.M.: A metalanguage for structural operational semantics. In:
Morazán, M. (ed.) Trends in Functional Programming, vol. 8, pp. 19–35. Intellect
(2008)

11. Lee, S.-Y., Lee, Y.-H., Kim, J.-G., Lee, D.C.: Workflow system modeling in the
mobile healthcare B2B using semantic information. In: Gervasi, O., Gavrilova,
M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.)
ICCSA 2005, Part II. LNCS, vol. 3481, pp. 762–770. Springer, Heidelberg (2005)

12. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience 18, 2006 (2005)

An Effective Methodology for Defining Consistent Semantics 267

13. de Mol, M.: Reasoning About Functional Programs - Sparkle: a proof assistant for
Clean. PhD thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen,(2009) ISBN 978-90-9023885-2

14. de Mol, M., van Eekelen, M., Plasmeijer, R.: The mathematical foundation of the
proof assistant Sparkle. Technical Report ICIS-R07025, Institute for Computing
and Information Sciences, Radboud University Nijmegen, (November 2007)

15. Nielson, H., Nielson, F.: Semantics with applications: a formal introduction. John
Wiley & Sons, Chichester (1992)

16. Plasmeijer, R., Achten, P.: iData for the world wide web - Programming intercon-
nected web forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945,
pp. 242–258. Springer, Heidelberg (2006)

17. Plasmeijer, R., van Eekelen, M.: Functional programming and parallel graph rewrit-
ing. Addison-Wesley Publishing Company, Reading (1993) ISBN 0-201-41663-8

18. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic
and Algebraic Programming 60-61, 3–15 (2004)

19. Russell, N., ter Hofstede, A., van der Aalst, W.: newYAWL: specifying a workflow
reference language using coloured Petri nets. In: Proceedings of the 8th 2007 (2007)

20. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa,
R.: Ott: effective tool support for the working semanticist. SIGPLAN Not. 42(9),
1–12 (2007)

21. Stirling, C.: The joys of bisimulation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)
MFCS 1998. LNCS, vol. 1450, pp. 142–151. Springer, Heidelberg (1998)

22. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge (1977)

23. Team, T.C.D.: The Coq proof assistant reference manual, (version 7.0) (1998),
http://pauillac.inria.fr/coq/doc/main.html

24. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323, 473–497 (2004)

Types for Units-of-Measure:
Theory and Practice

Andrew Kennedy

Microsoft Research, Cambridge, UK
akenn@microsoft.com

1 Introduction

Units-of-measure are to science what types are to programming. In science and
engineering, dimensional and unit consistency provides a first check on the cor-
rectness of an equation or formula, just as in programming the validation of a
program by the type-checker eliminates one possible reason for failure.

Units-of-measure errors can have catastrophic consequences, the most famous
of which was the loss in September 1999 of NASA’s Mars Climate Orbiter probe,
caused by a confusion between newtons (the SI unit of force) and lbf (pound-
force, a unit of force sometimes used in the US). The report into the disaster
made many recommendations [15]. Notably absent, though, was any suggestion
that programming languages might assist in the prevention of such errors, either
through static analysis tools, or through type-checking.

Over the years, many people have suggested ways of extending programming
languages with support for static checking of units-of-measure. It’s even possible
to abuse the rich type systems of existing languages such as C++ and Haskell to
achieve it, but at some cost in usability [19,6]. More recently, Sun’s design for its
Fortress programming language has included type system support for dimensions
and units [2].

In this short course, we’ll look at the design supported by the F# program-
ming language, the internals of its type system, and the theoretical basis for
units safety. The tutorial splits into three parts:

– Section 2 is a programmer’s guide to units-of-measure in F#, intended
to be accessible to any programmer with some background in functional
programming.

– Section 3 presents details of the type system and inference algorithm.
– Section 4 considers the semantics of units, including a link with classical

dimensional analysis.

The tutorial concludes with a brief discussion in Section 5. Each section contains
a number of exercises; solutions to some of these can be found in an appendix.

2 An Introduction to Units-of-Measure in F#

We begin by taking a gentle tour through the units-of-measure feature of F#.
For this you will need the F# command-line compiler (fsc) and interactive

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 268–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Types for Units-of-Measure: Theory and Practice 269

Fig. 1. Editing F# code in Visual Studio

environment (fsi), and optionally (available on Windows only), the Visual Stu-
dio integrated development environment. Throughout the tutorial we will present
code snippets, like this,

let rec fact n = if n=0 then 1 else n * fact(n-1)

and also fragments of dialogue from fsi, like this:

> let rec fact n = if n=0 then 1 else n * fact(n-1);;

val fact : int -> int

If you are reading this tutorial online using a program such as Adobe Reader,
you can copy-and-paste examples directly into fsi.

If you have Visual Studio you might instead prefer to try out code in its editor,
as shown in Figure 1. The tooltips feature of VS is especially useful: if you hover
the mouse cursor over an identifier, its type will be displayed in a box, along
with information gathered from the “///” comment preceding its definition.

The F# programming language shares a subset with Caml; this subset will be
familiar to Standard ML programmers, and unsurprising for Haskell programmers
too. For the most part, we stay within this subset, extended with units-of-measure
of course, even though some examples can be made slicker by using the object-
oriented and other advanced features of F#. (One significant departure from Caml
is the use of F#’s indentation based layout, similar to Haskell’s ‘offside rule’.)
Sticking to this subset also illustrates how units-of-measure types and inference
could usefully be added to other functional languages. (Language designers, take
note!)

2.1 Introducing Units

We must first declare some base units. As it’s the 21st century, we shall employ
the SI unit system (Système International d’Unités [1]) and declare units for
mass, length and time:

270 A. Kennedy

[<Measure>] type kg // kilograms

[<Measure>] type m // metres

[<Measure>] type s // seconds

The [<Measure>] attribute in front of type indicates that we’re not really intro-
ducing types in the usual sense, but rather measure constructors, namely kg, m
and s.

Now let’s declare a well-known constant1 with its units, which we can do sim-
ply by tacking the units onto a floating-point literal, in between angle brackets:

let gravityOnEarth = 9.808<m/s^2> // an acceleration

Notice how conventional notation for units is used, with / for dividing, and ^ for
powers. Juxtaposition just means product (or you can write * if you prefer), and
negative powers can be used in place of division. We could express the units of
acceleration slightly differently:

let gravityOnEarth = 9.808<m * s^-2>

Or we might even go against recommended practice and write it this way:

let gravityOnEarth = 9.808<m/s/s>

What is the type of gravityOnEarth? In F# Interactive, the compiler tells us:

> let gravityOnEarth = 9.808<m/s/s>;;

val gravityOnEarth : float<m/s ^ 2> = 9.808

The float type is parameterized on units-of-measure, here instantiated with
m/s^2, just as list takes a type parameter, as in list<int>. (In F#, ordinary
type parameters can be written prefix, as in int list, or postfix in angle brack-
ets, as in list<int>. Units-of-measure parameters must be written in the latter
style.)

Now we can do some physics! If an object is dropped off a building that is
40 metres tall, at what speed will it hit the ground?2 A little bit of Newtonian
dynamics answers this question with the formula

√
2gh, in which g is acceleration

due to gravity and h is the height. Let’s do the calculuation in F#

> let heightOfBuilding = 40.0<m>;;

val heightOfBuilding : float<m> = 40.0

> let speedOfImpact = sqrt (2.0*gravityOnEarth*heightOfBuilding);;

val speedOfImpact : float<m/s> = 28.01142624

Note the units, computed automatically! Units-of-measure are not just handy
comments-on-constants: they are there in the types of values, and, moreover, F#
knows the “rules of units”. When values of floating-point type are multiplied,
the units are multiplied too; when they are divided, the units are divided too,
1 Constant at a particular point on the surface of the earth, at least!
2 Assuming no atmosphere!

Types for Units-of-Measure: Theory and Practice 271

Fig. 2. A units error in Visual Studio

and when taking square roots, the same is done to the units. So by the rule for
multiplication, the expression inside sqrt above must have units m^2/s^2, and
therefore the units of speedOfImpact must be m/s.

What if we make a mistake?

> let speedOfImpact = sqrt (2.0*gravityOnEarth+heightOfBuilding);;

let speedOfImpact = sqrt (2.0*gravityOnEarth+heightOfBuilding);;

---^^^^^^^^^^^^^^^^

stdin(142,50): error FS0001: The unit of measure ’m’ does not match

the unit of measure ’m/s ^ 2’

We’ve tried to add a height to an acceleration, and F# tells us exactly what we’ve
done wrong. The units don’t match up, and it tells us so! In Visual Studio, errors
are shown interactively: a red squiggle will appear, and if you hover the mouse
cursor over it, the error message will be shown, as in Figure 2.

Now let’s do a little more physics. What force does the ground exert on me
to maintain my stationary position?

> let myMass = 65.0<kg>;;

val myMass : float<kg> = 65.0

> let forceOnGround = myMass*gravityOnEarth;;

val forceOnGround : float<kg m/s ^ 2> = 637.52

We’ve just applied Newton’s Second Law of motion. Newton’s eponymous unit,
the newton, is the SI unit of force. Now instead of the cumbersome kg m/s^2

we can introduce a derived unit and just write N, the standard symbol for
newtons.

[<Measure>] type N = kg m/s^2

let forceOnGround:float<N> = myMass*gravityOnEarth

Derived units are just like type aliases: as far as F# is concerned, N and
kg m/s^2 mean exactly the same thing with respect to checking of types. Note,
though, that when F# displays types, it won’t automatically ‘discover’ derived
units, as there are typically many ways of writing down equivalent units-of-
measure.

272 A. Kennedy

2.2 Interlude: The F# PowerPack

The F# ‘PowerPack’ library declares all of the
SI base and derived units, under the names-
pace Microsoft.FSharp.Math.SI. It also defines
various physical constants in the namespace
Microsoft.FSharp.Math.PhysicalConstants. To
import this library, you will need to reference it from your project in Vi-
sual Studio, by right-clicking on References (see right) and then selecting the
FSharp.PowerPack component. Alternatively, you can use the #r directive in fsi,
as below:

> #r "FSharp.PowerPack";;

--> Referenced ’C:\Program Files\FSharp\bin\FSharp.PowerPack.dll’

Now let’s use the units and constants from the PowerPack to implement New-
ton’s law of universal gravitation:

F = G
m1m2

r2

Here m1 and m2 are the masses of two bodies, r is the distance between them,
G is the gravitational constant and F is the force of attraction between the two
bodies. We can code this as follows:

> open Microsoft.FSharp.Math;;

> open SI;;

> let attract (m1:float<kg>) (m2:float<kg>) (r:float<m>) : float<N> =

- PhysicalConstants.G * m1 * m2 / (r*r);;

val attract : float<kg> -> float<kg> -> float<m> -> float<N>

>

Figure 3 shows this function being defined in Visual Studio.

2.3 Unit Conversions

With SI units and standard physical constants built-in, this is no excuse for
physicists to go non-metric. But if you insist, you can define units from other
systems. Here is our earlier example, using feet instead of metres as the unit of
length.

[<Measure>] type ft

let gravityOnEarth = 32.2<ft/s^2>

let heightOfBuilding = 130.0<ft>

let speedOfImpact = sqrt (2.0 * gravityOnEarth * heightOfBuilding)

What if you need to convert between feet and metres? First, define a conversion
factor.

let feetPerMetre = 3.28084<ft/m>

Types for Units-of-Measure: Theory and Practice 273

Fig. 3. Using the PowerPack in Visual Studio

Naturally enough, the units of feetPerMetre are feet per metre, or ft/m for short.
Now we can convert distances...

let heightOfBuildingInMetres = heightOfBuilding / feetPerMetre

...and speeds...

let speedOfImpactInMPS = speedOfImpact / feetPerMetre

...and we can convert back the other way by multiplying instead of dividing:

let speedOfImpactInFPS = speedOfImpactInMPS * feetPerMetre

As far as F# is concerned, ft and m have nothing to do with each other. It’s up
to the programmer to define appropriate conversion factors. But the presence
of units on the conversion factors makes mistakes much less likely. For example,
what happens if we divide instead of multiply above? The type of the result
suggests that something is awry, and will probably lead to a compile-time error
later in the code:

> let speedOfImpactInFPS = speedOfImpactInMPS / feetPerMetre;;

val speedOfImpactInFPS : float<m ^ 2/(ft s)> = 8.500500698

It’s a good idea to package up conversion factors with the unit-of-measure to
which they relate. A convenient way to do this in F# is to make use of the
ability to define static ‘members’ on types:

[<Measure>]

type ft =

static member perMetre = 3.28084<ft/m>

Now we can just write ft.perMetre.

2.4 Interfacing Non-unit-aware Code

We’ve seen how to use syntax such as 2.0<s> to introduce units-of-measure into
the types of floating-point values. But what if a quantity is stored in a file, or

274 A. Kennedy

entered by the user through a GUI, or in a web form? In that case it’ll probably
start out life as a string, to be parsed and converted into a float. How can
we convert a vanilla float into, say, a float<s>? That’s easy: just multiply by
1.0<s>! Here’s an example:

let rawString = reader.ReadLine()

let rawFloat = System.Double.Parse(rawString)

let timeInSeconds = rawFloat * 1.0<s>

If we want to convert back to a vanilla float, say, to pass to a non-units-aware
function or method, we just divide by 1.0<s>:

let timeSpan = System.TimeSpan.FromSeconds(timeInSeconds / 1.0<s>)

2.5 Dimensionless Quantities

But hold on – what’s going on with that last example? The variable timeInSeconds
has type float<s>, and we divided it by 1.0<s> which has type float<s>. So the
units cancel out, producing units which we write simply as the digit 1. Hence the
type of timeInSeconds / 1.0<s> is float<1>. Such a quantity is called dimension-
less. Conveniently, F# defines the ordinary float type to be an alias for float<1>,
as if there is a definition

type float = float<1>

which makes use of overloading on the arity of the type constructor.
Traditionally, angles have been considered dimensionless, since they are de-

fined as the ratio of arc length to radius. The built-in trigonometric functions
sin, cos, and so on, accept dimensionless floats. There are, however, several
units used to measure angles, such as degrees, or revolutions, in addition to the
‘natural’ unit radians. It’s easy enough to define such units, and appropriate
conversion factors, if stricter type-checking is required:

[<Measure>]

type deg =

static member perRadian = 360.0<deg> / (2.0 * System.Math.PI)

[<Measure>]

type rev =

static member perRadian = 1.0<rev> / (2.0 * System.Math.PI)

let l = sin (90.0<deg> / deg.perRadian)

2.6 Parametric Polymorphism

So far, we’ve seen how to write code that uses specific units-of-measure. But what
about generic code that is independent of the units of the values? Let’s start
simple. What is the type of fun x -> x*x? Well, multiplication is overloaded,
and F# defaults to integers:

Types for Units-of-Measure: Theory and Practice 275

> let sqr x = x*x;;

val sqr : int -> int

But if we annotate the argument, we can define squaring for all kinds of floats:

> let sqrLength (x:float<m>) = x*x;;

val sqrLength : float<m> -> float<m ^ 2>

> let sqrSpeed (x:float<m/s>) = x*x;;

val sqrSpeed : float<m/s> -> float<m ^ 2/s ^ 2>

This is very painful: we’d really like to write a single, generic squaring function,
and then re-use it on values with differing units. And indeed, we can do just
that:

> let sqr (x:float<_>) = x*x;;

val sqr : float<’u> -> float<’u ^ 2>

The underscore notation in float<_> tells the F# compiler to infer the unit-of-
measure parameter, and as can be seen from the output, it infers a generic or
parametrically-polymorphic type for squaring. The notation ’u looks like a type
variable, but is in fact a unit-of-measure variable that can be instantiated with
any unit-of-measure expression. Let’s use it on lengths and speeds:

> let d2 = sqr 3.0<m>;;

val d2 : float<m ^ 2> = 9.0

> let v2 = sqr 4.0<m/s>;;

val v2 : float<m ^ 2/s ^ 2> = 16.0

F# can fully infer polymorphic unit-of-measure types, with type annotations
required only in situations where overloaded operators must be resolved. More-
over, as with ordinary ML-style type inference, it infers the most general, or
principal type, of which all other possible types are instances. Here are some
simple examples:

> let cube x = x*sqr x;;

val cube : float<’u> -> float<’u ^ 3>

> let pythagoras x y = sqrt (sqr x + sqr y);;

val pythagoras : float<’u> -> float<’u> -> float<’u>

> let average (x:float<_>) y = (x+y)/2.0;;

val average : float<’u> -> float<’u> -> float<’u>

276 A. Kennedy

Here’s one that requires a bit of head-scratching to understand:

> let silly x y = sqr x + cube y;;

val silly : float<’u ^ 3> -> float<’u ^ 2> -> float<’u ^ 6>

We can now see that many of the built-in arithmetic operators and functions
have a unit-polymorphic type as one possible overloading:

> let add (x:float<_>) y = x+y;;

val add : float<’u> -> float<’u> -> float<’u>

> let sub (x:float<_>) y = x-y;;

val sub : float<’u> -> float<’u> -> float<’u>

> let mul (x:float<_>) y = x*y;;

val mul : float<’u> -> float<’v> -> float<’u ’v>

> let div (x:float<_>) y = x/y;;

val div : float<’u> -> float<’v> -> float<’u/’v>

> fun (x : float<_>) -> sqrt x;;

val it : float<’u ^ 2> -> float<’u> = <fun:clo0>

> fun x -> sqrt x;;

val it : float -> float = <fun:clo0-1>

The last example here illustrates that without a type annotation, sqrt defaults
to dimensionless float. This is in part to avoid units-of-measure confusing novice
programmers, and in part to retain some compatibility with Caml.

Exercise 1. Without trying it out, what do you think is the most general type
of the following function?

let sillier x y z = sqr x + cube y + sqr z * cube z

Now try it. Were you right?

2.7 Zero

Suppose we want to sum the elements of a list. In true functional style, we use
one of the fold operators.

> let sum xs = List.fold (+) 0.0 xs;;

val sum : float list -> float

Types for Units-of-Measure: Theory and Practice 277

Oops – we don’t have a nice polymorphic type! The reason is simple: unless units
are specified, constants, including zero, are assumed to have no units, i.e. to be
dimensionless. (This means that the subset of F# that coincides with Caml has
the same static and dynamic behaviour as in Caml.) So instead, let’s give 0.0

some units, but not tell F# what they are, by writing 0.0<_>:

> let sum xs = List.fold (+) 0.0<_> xs;;

val sum : float<’u> list -> float<’u>

That’s better!
Zero is the only numeric literal that is ‘polymorphic’ in its units, as is illus-

trated by the dialogue below.

> 0.0<_>;;

val it : float<’u> = 0.0

> 1.0<_>;;

val it : float = 1.0

Exercise 2. Can you think why this is so? (When we study the semantics of
units, we will see the reason why it must be the case.) In fact, there are some
other very special floating-point values that are polymorphic. Can you guess
what they are?

2.8 Application Area: Statistics

Now let’s do some statistics. First, we define the arithmetic mean μ of a list of n
numbers [a1; . . . ; an], as given by the formula

μ =
1
n

n∑
i=1

ai.

This is easy, using the sum function defined earlier:

> let mean xs = sum xs / float (List.length xs);;

val mean : float<’u> list -> float<’u>

Exercise 3. Write a unit-polymorphic function to compute the standard devia-
tion σ of a list of n numbers [a1; . . . ; an], as given by the formula

σ2 =
1
n

n∑
i=1

(ai − μ)2.

The geometric mean is given by

g = (a1 · a2 · · · an)
1
n

A straightforward implementation of this function does not get assigned a nice
polymorphic type:

278 A. Kennedy

> let reciplen x = 1.0 / float (List.length x)

val reciplen : ’a list -> float

> let gmean (x:float<_> list) = List.reduce (*) x ** reciplen x;;

let gmean (x:float<_> list) = List.reduce (*) x ** reciplen x;;

-------------------^

stdin(15,21): warning FS0191: This code is less generic than

indicated by its annotations. A unit-of-measure specified using

’_’ has been determined to be ’1’, i.e. dimensionless. Consider

making the code generic, or removing the use of ’_’.

val gmean : float list -> float

We have ‘hinted’ to the compiler that we want a parameterized float type, but
it has inferred a dimensionless type, and so it helpfully emits a warning. But why
did it not infer the type float<’u> list -> float<’u>? The answer lies in the
type of the product and in the type of the exponentiation operator **. Consider
first the expression List.reduce (*) x, which implements the product a1 ·
a2 · · · an. If x has type float<’u> list then we might expect it to have type
float<’u^n>. But n is the length of the list, which is not known statically – we
want a dependent type! Furthermore, the type of exponentiation is

val (**) : float -> float -> float

in which both its arguments and result are dimensionless.

Exercise 4. With a little work, it is possible to write a function gmean that is
assigned the polymorphic type that we expected. Hint: consider ‘normalizing’
the list before computing the product.

2.9 Application Area: Calculus

Now let’s do some calculus. Higher-order functions abound here: for example,
differentiation is a higher-order function D : (R → R) → (R → R). To numer-
ically differentiate a function f to obtain its approximate derivative f ′, we can
use the formula

f ′(x) ≈ f(x + h)− f(x− h)
2h

,

where h represents a small change in x. Let’s write this in F#:

> let diff (h:float<_>) (f:_ -> float<_>) = fun x -> (f(x+h)-f(x-h))

/ (2.0*h);;

-

val diff : float<’u> -> (float<’u> -> float<’v>) -> float<’u> ->

float<’v/’u>

Types for Units-of-Measure: Theory and Practice 279

Notice how the type of diff precisely describes the effect of differentiation on
the units of a function. For example, let’s use it to compute the rate of change
of the gravitational force between the earth and the author as the author moves
away from the earth:

> let earthMass = 5.9736e24<kg>;;

val earthMass : float<kg> = 5.9736e+24

> diff 0.01<m> (attract myMass earthMass);;

val it : (float<m> -> float<kg/s ^ 2>) = <fun:it54-6>

The units kg/s^2 appear a little strange, but we can confirm that they really are
‘force per unit length’:

> (diff 0.01<m> (attract myMass earthMass) : float<m> -> float<N/m>)

;;

val it : (float<m> -> float<N/m>) = <fun:it57-8>

We can likewise integrate a function, using one of the simplest methods: the
trapezium rule [18, Section 4.1]. It is defined by the following formula, which
gives an approximation to the area under the curve defined by f in the interval
a � x � b using n + 1 values of f(x):∫ b

a

f(x) dx ≈ h

2
(f(a) + 2f(a + h) + · · ·+ 2f(b− h) + f(b)) , h =

b− a

n
.

Here is an implementation in F#:

let integrate (a:float<_>) (b:float<_>) n (f:_ -> float<_>) =

let h = (b-a) / (float n)

let rec iter x i =

if i=0 then 0.0<_>

else f x + iter (x+h) (i-1)

h * (f a / 2.0 + iter (a+h) (n-1) + f b / 2.0)

Exercise 5. Without typing it in, what do you think the unit-polymorphic type
of integrate is?

Our final example is an implementation of the Newton-Raphson method for
finding roots of equations, based on the iteration of

xn+1 = xn −
f(xn)
f ′(xn)

.

This method calculates a solution of f(x) = 0, making use of the derivative f ′.
The F# code is as follows:

let rec findRoot (f:float<_> -> float<_>) f’ x xacc =

let dx = f x / f’ x

let x’ = x - dx

if abs dx / x’ < xacc

then x’

else findRoot f f’ x’ xacc

280 A. Kennedy

It accepts a function f, its derivative f’, an initial guess x and a relative accu-
racy xacc. Its type is

val findRoot :

(float<’u> -> float<’v>) ->

(float<’u> -> float<’v/’u>) -> float<’u> -> float -> float<’u>

2.10 Unit-Parameterized Types

So far we have seen units applied to float, the built-in primitive type of double-
precision floating-point numbers. The types float32 and decimal can be param-
eterized by units too:

[<Measure>] type USD

[<Measure>] type yr

let fatcatsalary = 1000000M<USD/yr> // decimal constants have suffix M

let A4paperWidth = 0.210f<m> // float32 constants have suffix f

It’s natural to parameterize other numeric types on units, such as a a type
for complex numbers, or a type for vectors in 3-space. Or a unit-parameterized
numeric type might be required for a component of some other type, such as a
scene model type for a ray-tracer, and so that type must be parameterized too.
Such types are supported in F# simply by marking the parameters with the
[<Measure>] attribute:

// Record types parameterized by units

type complex< [<Measure>] ’u> = { re:float<’u>; im:float<’u> }

type vector3< [<Measure>] ’u> = { x:float<’u>; y:float<’u>; z:float<’u> }

type sphere< [<Measure>] ’u> = { centre:vector3<’u>; radius:float<’u> }

// A discriminated union parameterized by units

type obj< [<Measure>] ’u> =

| Sphere of sphere<’u>

| Group of obj<’u> list

We can now instantiate such types with concrete units:

> let gravity = { x = 0.0<_>; y = 0.0<_>; z = -9.808<m/s^2> };;

val gravity : vector3<m/s ^ 2> = {x = 0.0;

y = 0.0;

z = -9.808;}

> let scene = Group [Sphere {centre={x=2.0<m>;y=3.0<m>;z=4.0<m>};

radius = 1.5<m> }];;

val scene : obj<m> = Group [Sphere {centre = {x = 2.0;

y = 3.0;

z = 4.0;};

radius = 1.5;}]

It’s straightforward to write functions over such types, with appropriate unit-
polymorphic types. For example, the dot product of two vectors can be defined
as follows, with its type inferred automatically:

Types for Units-of-Measure: Theory and Practice 281

> let dot v w = v.x*w.x + v.y*w.y + v.z*w.z;;

val dot : vector3<’u> -> vector3<’v> -> float<’u ’v>

Here are functions to convert from and to the polar representation of complex
numbers:

let fromPolar (m:float<_>) p = { re = m*cos p; im = m*sin p }

let magnitude c = sqrt (c.re*c.re + c.im*c.im)

let phase c = atan2 c.im c.re

It’s desirable to define unit-polymorphic arithmetic operators for types such
as complex and vector3. This is supported through the use of ‘static members’:

type complex< [<Measure>] ’u> = { re:float<’u>; im:float<’u>} with

static member (+) (a:complex<’u>,b) = { re = a.re+b.re; im = a.im+a.im }

static member (-) (a:complex<’u>,b) = { re = a.re-b.re; im = a.im-a.im }

static member (*) (a:complex<’u>,b:complex<’v>) =

{ re = a.re * b.re - a.im * b.im; im = a.im * b.re + b.im * a.re }

We can now use complex numbers to do arithmetic on AC (alternating current)
voltages:

> let voltage1 = fromPolar 2.0<V> 0.0;; // 2 volts

val voltage1 : complex<V> = {re = 2.0;

im = 0.0;}

> let voltage2 = fromPolar 3.0<V> (System.Math.PI/4.0);; // 3 volts

at 45 degree phase

val voltage2 : complex<V> = {re = 2.121320344;

im = 2.121320344;}

> magnitude (voltage1 + voltage2);;

val it : float<V> = 4.635221826

> phase (voltage1 + voltage2);;

val it : float = 0.4753530566

2.11 Polymorphic Recursion

For our final example of unit-parameterized types we return to calculus. We saw
that given a function of type float<’u> -> float<’v>, its derivative has type
float<’u> -> float<’v/’u>. Naturally enough, its second-order derivative (the
derivative of the derivative) has type float<’u> -> float<’v/’u^2>. What if we
want to repeat this process, and create a list of successive derivatives? We can’t
just use the built-in list type, because it requires list elements to have identical
types. We want a list in which the types of successive elements are related but
not the same. We can define such a custom type as follows:

type derivs<[<Measure>] ’u, [<Measure>] ’v> =

| Nil

| Cons of (float<’u> -> float<’v>) * derivs<’u,’v/’u>

282 A. Kennedy

An expression Cons(f,Cons(f’,Cons(f’’,. . .))) of type derivs<’u,’v> repre-
sents a function f of type float<’u> -> float<’v>, its first-order derivative f’

of type float<’u> -> float<’v/’u>, its second-order derivative f’’ having type
float<’u> -> float<’v/’u^2>, and so on. The type makes use of polymorphic
recursion in its definition, meaning that the recursive reference (derivs) is used
at a type distinct from its definition. (This is also called a nested or non-regular
datatype in the literature.)

In order to use such a type in a recursive function, the type of the function
must be annotated fully with its type, as type inference for polymorphic recur-
sion is in general undecidable. Here is a function that makes use of our earlier
numerical differentiation function diff to compute a list of the first n derivatives
of a function f.

let rec makeDerivs<[<Measure>] ’u, [<Measure>] ’v>

(n:int)

(h:float<’u>)

(f:float<’u> -> float<’v>) : derivs<’u,’v> =

if n=0 then Nil else Cons(f, makeDerivs (n-1) h (diff h f))

3 Polymorphic Type Inference for Units-of-Measure

Ever since Robin Milner’s classic paper on polymorphic type inference [14], re-
searchers have developed ever more sophisticated means of automatically infer-
ring types for programs. Pottier’s survey article presents a good overview of the
state-of-the-art [17, §10]. The variety of parametric polymorphism described in
Milner’s original work has become known as “let-polymorphism”, being equiv-
alent in expressivity to the simple, monomorphic typing of a program after ex-
panding all let-bindings. One fruitful direction for research has been to support
‘first-class’ polymorphism in the style of System F and beyond [12,11,23]. Others
have extended inference to handle new type constructs such as Generalized Alge-
braic Data Types (GADTs) [20] or existentials. Another direction is to consider
polymorphism over entities other than just types, for example records or effects.
Units-of-measure are an instance of this last idea.

Before proceeding, we answer the question: how are units different from types?
Even the original ML type system can be used to encode all sorts of invariants
such as well-formed contexts [13] and well-formed lambda terms [4]. To encode
units, we could define dummy type constructors UOne, UProd and UInv, together
with base units, and then build derived units, e.g. UProd<m,UInv<UProd<s,s>>> en-
codes the units m/s^2. The crucial aspect of units-of-measure that is not captured
by this encoding is equations that hold between syntactically distinct units. For
example, the units m s are equivalent to s m; and s s^-1 can be simplified to 1.
Any encoding of units in types must somehow encode this equational theory of
units, typically requiring some syntax that witnesses the use of properties such
as commutativity and associativity. It’s better to build this theory in: more-
over, it turns out that the equational theory associated with units has some very
handy properties that support full type inference.

Types for Units-of-Measure: Theory and Practice 283

u =U u
(refl)

u =U v

v =U u
(sym)

u =U v v =U w

u =U w
(trans)

u =U v

u^-1 =U v^-1
(cong1)

u =U v u′ =U v′

u * u′ =U v * v′
(cong2)

u * 1 =U u
(id)

(u * v) * w =U u * (v * w)
(assoc)

u * v =U v * u
(comm)

u * u^-1 =U 1
(inv)

Fig. 4. Equational theory of units =U

3.1 Grammar for Units

First let’s pin down a formal grammar for unit expressions:

u, v, w ::= b | α | 1 | u * v | u^-1

We use u, v and w for unit expressions. They’re built from

– base units such as kg, ranged over by b, and drawn from a set UBase;
– unit variables, which we write as α, β, etc., and drawn from a set UVars;
– the ‘unit’ unit, written 1, representing dimensionless quantities without units;
– product of units, written u * v; and
– inverse of units, written u^-1.

Let vars(u) be the unit variables occurring in unit expression u. For example,
vars(α * β^-1) = {α, β}.

For the surface syntax, we de-sugar quotients and integer powers of units:

u/v = u * v^-1

u^n =

⎧⎨
⎩

u * u^(n− 1) if n > 0,
1 if n = 0,
u^-1 * u^(n + 1) if n < 0.

For clarity, we will often write un for powers.

3.2 Equations for Units

Units of measure obey rules of associativity, commutativity, identity and inverses,
and thus form an Abelian group. We can formalize this as an equivalence relation
on unit expressions =U , defined inductively by the rules of Figure 4. These rules
just say that =U is the smallest congruence relation that is closed under the
Abelian group axioms.

The relation =U is an example of an equational theory. Other common exam-
ples are AC (Associativity and Commutativity), AC1 (adding the identity axiom
to AC), and ACI (adding an axiom for Idempotency to AC). These three theo-
ries are all regular, meaning that if a term t is equivalent to a term t′ under the

284 A. Kennedy

equational theory, then vars(t) = vars(t′). In contrast, our theory AG (Abelian
groups) is non-regular, due to the axiom (inv) whose left and right sides do not
have matching sets of variables.

Baader and Nipkow’s book on term rewriting provides a good introduction to
equational theories, and the problem of unification that we study later [3].

3.3 Deciding Equations

An obvious first question is: how can we decide whether two unit expressions u
and v are equivalent, i.e. is the equation u =U v valid? It turns out that any
unit expression is equivalent to a unique normal form with respect to =U , as
follows:

α1
x1 * · · · * αm

xm * b1
y1 * · · · * bn

yn

Here the x’s and y’s are non-zero integers, and the unit variables and base units
are ordered alphabetically. (In fact the F# compiler does something similar
when displaying units-of-measure, except that units with negative powers are
separated from those with positive powers.)

One way of checking whether two unit-of-measure expressions are equivalent
is to ‘normalize’ them by interpreting the rules of Figure 4 as oriented rewrite
rules. In practice, one can go straight to the normal form of a unit expression u
by calculating an exponent for each variable and base unit that occurs in u:

exp(u) : (UBase ∪UVars)→ Z

exp(1)(w) = 0
exp(u * v)(w) = exp(u)(w) + exp(v)(w)
exp(u^-1)(w) = −exp(u)(w)

exp(α)(w) =

{
1, if w = α

0, otherwise

exp(b)(w) =

{
1, if w = b

0, otherwise

It’s then easy to check equivalence of unit expressions u and v simply by checking
that exp(u) matches exp(v) on all variables and base units in the expressions.

Exercise 6. Prove that u =U v if and only if exp(u) = exp(v) (hard). Now prove
the following corollary:

u =U α1
exp(u)(α1) * · · · * αm

exp(u)(αm) * b1
exp(u)(b1) * · · · * bn

exp(u)(bn)

where α1, . . . , αm and b1, . . . , bn are respectively the unit variables and base units
occurring in u.

3.4 Solving Equations

For languages such as Pascal and Java that support only type checking, it is
relatively easy to add support for checking units-of-measure, using the procedure

Types for Units-of-Measure: Theory and Practice 285

outlined in the previous section. But for F#, we go further, and support full type
inference. To do this, we must not only check equations; we must solve them.
Consider the following dialogue:

> let area = 20.0<m^2>;;

val area : float<m ^ 2> = 20.0

> let f (y:float<_>) = area + y*y;;

val f : float<m> -> float<m ^ 2>

In order to infer a type for f, the compiler will generate a fresh unit variable α
for the units of y, and will then solve the equation

α2 =U m2

in order to satisfy the requirements of the addition operation. Of course, this
equation is easy to solve (just set α := m), but in general, the equation can have
arbitrarily complex units on either side.

Moreover, there may be many ways to solve the equation. Consider the
equation

α * β =U m2

for which {α := m, β := m}, {α := m2, β := 1}, and {α := 1, β := m2} are three
distinct solutions. These solutions are all ground, meaning that they contain only
base units and no variables. All three, though, are subsumed by the non-ground,
‘parametric’ solution S = {α := β^-1 * m2}, in the following sense: each can be
presented as {β := u}◦S for some u. (To verify this, instantiate u to be m, 1 and
m2 respectively.) In fact, here S is the most general solution for this equation
from which all others can be derived by instantiation.

Exercise 7. Present solutions in α and β to the equation

α * β =U kg * s

Can you express a most general solution? Can you express a most general solu-
tion without using the inverse operation?

The idea of solving equations by computing a syntactic substitution for its vari-
ables is known as unification, and will be familiar to anyone who has studied
the type inference algorithms for ML, Haskell, or other similar languages. The
well known principal types property for those languages relies on the following
property of syntactic unification: if two types are unifiable, then there exists a
most general unifier from which all other unifiers can be derived.

For units-of-measure we must solve equations with respect to the equational
theory ofAbelian groups. In general, for an equational theory =E, an E-unification
problem is the following: for given terms t and u, find a substitution S such that
S(t) =E S(u).

286 A. Kennedy

If the terms are unifiable at all, there can be an infinite number of possible
unifiers. We say that a unifier S1 is more general than a unifier S2 and write
S1 $E S2 if R ◦ S1 =E S2 for some substitution R. (And we say that S2 is an
instance of S1.) In contrast to syntactic unification, for equational unification
there may not be a single most general unifier. For example, in the presence of
nullary constants, unification problems in AC1 may have a finite set of unifiers
of which all unifiers are instances, but which are not instances of each other.
This was hinted at in Exercise 7: under AC1, in which the rule (inv) of Abelian
groups is not available, there are in fact four incomparable unifiers, namely {α :=
kg, β := s}, {α := s, β := kg}, {α := 1, β := kg * s} and {α := kg * s, α := 1}.

3.5 A Unification Algorithm

We are fortunate that the theory of Abelian groups (AG) with nullary constants
is unitary, the technical term for “possesses most general unifiers”. Rather few
equational theories have this property; one other is the theory of Boolean Rings.
Moreover, AG-unification is decidable, and the algorithm is straightforward to
implement.

Figure 5 presents the algorithm Unify , which takes a pair of unit expressions u
and v and either returns a substitution S such that S(u) =U S(v), or returns fail
indicating that no unifier exists. First observe that the equation

u =U v

is equivalent (i.e. has the same set of solutions) to

u * v^-1 =U 1,

and so unification can be reduced to the problem of matching against 1.
The core algorithm UnifyOne is a variant of Gaussian elimination, and works

by iteratively applying a solution-set-preserving substitution that reduces the
size of the minimum exponent in the normal form until it reaches an equation
containing at most one variable. Consider each subcase in turn:

Unify(u, v) = UnifyOne(u * v^-1)

UnifyOne(u) =
let u =U αx1

1 * · · · * αxm
m * by11 * · · · * bynn

where α1, . . . , αm, b1, . . . , bn distinct, x1, . . . , xm, y1, . . . , yn positive, |x1| � |x2|, · · · , |xm|
in

if m = 0 and n = 0 then id
if m = 0 and n �= 0 then fail

if m = 1 and x1 | yi for all i then {α1 �→ b
−y1/x1
1 * · · · * b

−yn/x1
m }

if m = 1 otherwise then fail
else S2 ◦ S1 where

S1 = {α1 �→ α1 * α
−�x2/x1�
2 * · · · * α

−�xm/x1�
m * b

−�y1/x1�
1 * · · · * b

−�yn/x1�
n }

S2 = UnifyOne(S1(u))

Fig. 5. Unification algorithm for units-of-measure

Types for Units-of-Measure: Theory and Practice 287

– If there are no variables (m = 0) then either we have 1 (n = 0), and so we’re
done, or we have just base units (n �= 0), and so there is no unifier.

– If there is exactly one variable (m = 1) then we check to see if its exponent
divides all of the exponents of the base units. If not, then there is no unifier:
an example would be the unification problem α2 =U kg3. If it does divide,
then the unifier is immediate: an example would be the problem α2 =U m2 *
s−4 with unifier {α := m * s−2}.

– Otherwise, we recurse, after applying a substitution S1, whose effect is to
transform the unit expression to

αx1
1 * αx2 modx1

2 * · · · * αxm modx1
m * by1 mod x1

1 * · · · * byn modx1
n .

Termination is ensured as the size of the smallest exponent, which was x1,
has been reduced, as each of the mod x1 is smaller than x1.

The following theorem characterizes the result of Unify as the most general
unifier.

Theorem 1 (Soundness and completeness of Unify).
(Soundness) If Unify(u, v) = S then S(u) =U S(v).
(Completeness) If S(u) =U S(v) then Unify(u, v) $U S.

Proof. See [7].

Exercise 8. Compute the most general unifier to the equation α2 * β =U m6.

3.6 Types

As we saw in Section 2.10, type constructors in F# can take both types and
units-of-measure as parameters. The distinction is enforced by a trivial kind
system, in which type parameters are one of two kinds, type, the default, and
measure, as indicated by the attribute [<Measure>]. We won’t formalize this kind
system here, and simply use the same set of variables for both types and units,
relying on the context to distinguish their kinds.

Suppose that the grammar of types is really simple, consisting just of type
variables, floating-point types parameterized by units and functions:

τ ::= α | float<u> | τ -> τ

This will be enough to illustrate the process of type inference.
The relation =U extends in an obvious way to types, the important point

being that float<u> =U float<v> if and only if u =U v. A simple unification
algorithm for types with respect to =U makes use of our existing unification
algorithm for units in the case for float. This is shown in Figure 6. The most
general unifier property for units of measure extends to types.

Theorem 2 (Soundness and completeness of UnifyTy).
(Soundness) If UnifyTy(τ1, τ2) = S then S(τ1) =U S(τ2).
(Completeness) If S(τ1) =U S(τ2) then UnifyTy(τ1, τ2) $U S.

Proof. See [7].

288 A. Kennedy

UnifyTy(α, α) = id

UnifyTy(α, τ) = UnifyTy(τ, α) =
{

fail if α in τ
{α := τ} otherwise.

UnifyTy(float<u>, float<v>) = Unify(u, v)

UnifyTy(τ1 -> τ2, τ3 -> τ4) = S2 ◦ S1

where S1 = UnifyTy(τ1, τ3)
and S2 = UnifyTy(S1(τ2), S1(τ4))

Fig. 6. Unification algorithm for types

3.7 Type Schemes

Polymorphic types as displayed in F# are in fact shorthand for type schemes of
the form

σ ::= ∀α1, . . . , αn.τ

Top-level type schemes as presented to the programmer are always closed, mean-
ing that all variables in the type τ are bound by the ∀ quantifier: the variables
are implicitly quantified. Internally, the F# type system and inference algorithm
make use of open schemes such as ∀α.float<α> -> float<β> in which β occurs
free. Nevertheless, for the purposes of these notes, we will study in detail only
closed type schemes, and in Section 3.10 briefly discuss some interesting chal-
lenges that are presented by open type schemes.

Type schemes can be instantiated to types by replacing occurrences of unit
variables by unit expressions. Formally, we write σ $ τ if σ = ∀α1, . . . , αn.τ ′

instantiates to τ , that is τ = {α1 := u1, . . . , αn := un}τ ′ for some unit expres-
sions u1, . . . , un. We write σ $U τ if σ $U τ ′ and τ ′ =U τ for some τ ′: in other
words, τ is an instance of σ with respect to the rules of units.

Exercise 9. Show that ∀α.float<α * kg> -> float<α * kg> $U float<1> ->
float<1>.

3.8 A Type System and Inference Algorithm

We are finally ready to present a small subset of the F# type system. As with
all members of the ML family, parametric polymorphism is introduced through
let bindings, as in the following sample:

> let pair =

- let id = fun y -> y in (id 5, id true);;

val pair : int * bool = (5, true)

Here the type system will assign the let-bound identifer id a polymorphic type
scheme ∀α.α -> α, which is instantiated to int -> int and bool -> bool at its
uses. Contrast the following code, which is not typeable under the type system
and is rejected by F#’s type checker:

Types for Units-of-Measure: Theory and Practice 289

Expressions: Γ � e : τ

(var)
Γ, x:σ � x : τ

σ � τ (app)
Γ � e1 : τ1 -> τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2

(abs)
Γ, x:τ1 � e : τ2

Γ � (fun x -> e) : τ1 -> τ2

(eq)
Γ � e : τ1

Γ � e : τ2

τ1 =U τ2

Top-level: Γ � t : σ

(let)
Γ � t1 : σ1 Γ, x:σ1 � t2 : σ2

Γ � let x = t1 in t2 : σ2

(gen)
Γ � e : τ

Γ � e : ∀α.τ
α = vars(τ)

Fig. 7. Typing rules

> let pair =

- let applyFun id = (id 5, id true) in applyFun (fun y -> y);;

let applyFun id = (id 5, id true) in applyFun (fun y -> y)

----------------------------^^^^

stdin(4,28): error FS0001: This expression was expected to have type

int

but here has type

bool

In this example id is λ-bound, and so cannot be used polymorphically.
The full type system permits let expressions to appear locally, under λ-

abstractions. For our presentation, to avoid the need for open type schemes
in type inference we allow let constructs to appear only at top-level, specifiying
the following grammar for expressions and top-level expressions:

(expressions) e ::= x | fun x -> e | e e
(top-level) t ::= e | let x = t in t

Here t represents top-level expressions consisting of a sequence of let bindings
followed by an expression e to evaluate. Expressions consist of variables, λ-
abstractions, and function application. Constants and primitive operations are
assumed to be declared in some ‘pervasive’ environment.

Figure 7 presents a polymorphic type system for this language. Here the typing
judgment Γ % e : τ assigns a type τ to an expression e under the environment
Γ that maps variables to type schemes. Top-level expressions are assigned type
schemes using the judgment Γ % t : σ.

In essence, it is a very modest extension to the usual ML type system, such as
that presented in Pierce’s book on types and programming languages [16]. Apart
from the stratification of syntax into expressions and top-level expressions, the
main addition is the rule (eq), that incorporates the equational theory =U into

290 A. Kennedy

Infer(Γ ∪ {x : ∀α.τ}, x) = (id , {α := β}τ) where β are fresh

Infer(Γ, fun x -> e) = (S, S(α) → τ)
where Infer(Γ ∪ {x : α}, e) = (S, τ) for fresh α

Infer(Γ, e1 e2) = (S3 ◦ S2 ◦ S1, S3(α))
where Infer(Γ, e1) = (S1, τ1)

Infer(S1(Γ), e2) = (S2, τ2)
UnifyTy(S2(τ1), τ2 → α) = S3

InferTop(Γ, let x = t1 in t2) = σ2

where InferTop(Γ, t1) = σ1

InferTop(Γ ∪ {x : σ1}, t2) = σ2)

InferTop(Γ, e) = ∀α.τ
where Infer(Γ, e) = (S, τ)

vars(τ) = α

Fig. 8. Type inference algorithm

the type system. (Compare the subsumption rule from systems that support
subtyping.)

Exercise 10. Suppose that

Γ = { + : ∀α.float<α> -> float<α> -> float<α>,
recip : ∀α.float<α> -> float<α^-1>}.

Present a typing derivation for

Γ % fun x -> fun y -> x + recip y :∀α.float<α> ->float<α^-1> ->float<α>.

The usual inference algorithm for ML can be adapted very easily to this system,
simply by replacing the use of syntactic unification by our equational unification
algorithm UnifyTy . Figure 8 presents the algorithm.

Exercise 11. Dry-run the algorithm on the top-level expression from Exercise 10.

Theorem 3 (Soundness and completeness of InferTop). Suppose Γ is
closed. Then:
(Soundness) If InferTop(Γ, t) = σ then Γ % t : σ.
(Completeness) If Γ % t : σ then InferTop(Γ, t) $U σ.

Proof. First prove that if Infer(Γ, e) = (S, τ), then S(Γ) % e : τ (soundness for
Infer), and that if S(Γ) % e : τ then Infer(Γ, e) = (S0, τ0) such that τ =U S′(τ0)
and S =U S′ ◦S0 for some S′ (completeness for Infer). (This proof will make use
of Theorem 2.) The result concerning InferTop then follows straightforwardly.

Types for Units-of-Measure: Theory and Practice 291

3.9 Type Scheme Equivalence

A type scheme represents an infinite family of types, and we define

InstsU (σ) = {τ | σ $U τ}.

This provides a natural notion of type scheme equivalence, namely that two
schemes are equivalent if they instantiate to the same set of types. We write

σ1 ∼=U σ2 iff InstsU (σ1) = InstsU (σ2)

For vanilla ML types, type scheme equivalence is trivial: the only way that
schemes can differ is in naming and redundancy of type variables. For example,
writing ∼= for equivalence, we have

∀αβγ.α -> β -> α ∼= ∀αβ.β -> α -> β.

For units-of-measure, in addition to naming, we have the underlying equiva-
lence =U on types, but it goes further than that. For example, consider the
following three equivalent type schemes for the division operation:

∀αβ.float<α> -> float<β> -> float<α * β^-1> (1)
∀αβ.float<α * β> -> float<α> -> float<β> (2)
∀αβ.float<α> -> float<β^-1> -> float<α * β> (3)

The bodies of these type schemes differ even with respect to =U , yet they in-
stantiate under $U to the same set of types.

We can characterize type scheme equivalence in terms of substitutions that
map from one type scheme to the other and vice versa. Suppose σ1 = ∀α.τ1 and
σ2 = ∀α.τ2. Then σ1 ∼=U σ2 if and only if σ1 $U τ2 and σ2 $U τ1. In other
words, recalling the definition of $U from Section 3.7, to show two type schemes
equivalent we must merely find substitutions both ways.

Exercise 12. Demonstrate the equivalence of the types for reciprocal just pre-
sented. Hint: you can halve the number of substitutions required by mapping
(1) to (2) to (3) and back to (1).

As far as the theory of units is concerned, the form of type schemes doesn’t much
matter. But for the programmer, it could be confusing to be presented with
seemingly-different schemes that are in fact equivalent. Partly for this reason,
F# presents type schemes to the programmer in a consistent way, putting them
in a normal form.

This normal form has pleasant properties (e.g. it minimizes the number of
quantified and ‘free’ variables) and corresponds to a well-known form (the Her-
mite Normal Form) from algebra. There is not space in these notes to present
details; if you are interested, consult the author’s thesis [7].

292 A. Kennedy

3.10 Open Type Schemes and Generalized Let

We now consider type schemes in which not every variable is bound by a quan-
tifier. Consider the following three type schemes:

∀α.float<α> -> float<α^-1>
∀αβ.float<α * β> -> float<α^-1 * β^-1>
∀α.float<α * β^-1> -> float<α^-1 * β>

The first of these is clearly the type that one would expect of the reciprocal func-
tion fun (x:float<_>) -> 1.0/x. In fact, the other two schemes are equivalent,
despite the presence of a ‘redundant’ bound variable β in the second scheme,
and a redundant free variable β in the third scheme.

Now suppose that we generalize our type system to support polymorphic let
underneath λ’s. We can add the following standard rule:

Γ % e1 : τ1 Γ, x:∀α.τ1 % e2 : τ2

Γ % let x = e1 in e2 : τ2
α not free in Γ

Then we can extend the type inference algorithm with the standard clause:

Infer (Γ, let x = e1 in e2) = (S2 ◦ S1, τ2)
where Infer(Γ, e1) = (S1, τ1)

vars(τ1) \ vars(S1(Γ)) = α
Infer(S1(Γ) ∪ {x : ∀α.τ1}, e2) = (S2, τ2)

Unfortunately, although this algorithm is sound (it does not accept ill-typed
expressions), it is not complete (it rejects typeable expressions). The problem lies
with its use of vars(Γ): as we saw from the open type scheme illustrated above,
the notion of ‘free’ variable in a type scheme or environment is rather slippery:
it’s not respected by type scheme equivalence. It’s not even enough to minimize
‘free’ variables by simplifying type schemes in the environment with respect to
type scheme equivalence, as the following example demonstrates. Suppose

Γ0 ≡ { div : ∀αβ.float<α * β> -> float<α> -> float<β>,
mass : float<kg>,
time : float<s>}

and we wish to type-check the following expression under Γ0 (assuming that
we’ve added pairs to the language):

e ≡ fun x -> let d = div x in (d mass, d time)

Now there is a typing derivation of Γ0 % e : float<α> -> float<α * kg^-1> ->
float<α * s^-1>. The let-bound variable d is given a polymorphic type, which
is used at two instances when applied to mass and time. Unfortunately, the
inference algorithm will reject e. If you run the algorithm until the crucial point
in the new rule for let, you will find that

τ1 = float<α> -> float<β>
S1(Γ) = Γ0 ∪ {x : float<α * β>}

Types for Units-of-Measure: Theory and Practice 293

for some fresh variables α and β. Hence there is no possible generalization of
variables, as all of the variables present in the type τ1 of x also occur in the
environment.

Exercise 13. As is usual, our type system has a substitution property, namely,
that if Γ % e : τ then for any substitution S there is a derivation of S(Γ) %
e : S(τ). Furthermore, one can show that if Γ1 ∼=U Γ2 and Γ1 % e : τ then
Γ2 % e : τ . (Optional: prove these results.) Now use these two properties and
find a substitution that can be applied to the judgment of

Γ0 ∪ {x : float<α * β>} % div x : float<α> -> float<β>

to ‘reveal’ a generalizable variable in the type of div x.

The above exercise suggests a means of fixing the inference algorithm: before
applying the usual rule (“generalize over variables not free in the context”),
apply a substitution that reveals the generalizable variables. There are a couple
of ways that this can be done [7,8]. The end result is that full let-polymorphism
for units-of-measure shares with ML the existence of principal type schemes and
an inference algorithm.

4 Semantics of Units

In his original paper on polymorphic type inference, Milner defined a denota-
tional semantics for a small ML-like language [14]. This semantics incorporated
a value wrong to correspond to the detection of a failure at run-time, such as
applying a non-functional value as the operator of an application. Milner proved
that “well-typed programs don’t go wrong”, showing that if a program passes
the type-checker, then no run-time failure occurs.

When working with a small-step operational semantics, as has become popular
more recently, one instead proves syntactic type soundness, stating that

1. reduction preserves types: if e : τ and e → e′ then e′ : τ ; and
2. reduction makes progress : if e is not a final value then there exists an e′ such

that e → e′.

Both the idea of wrong values and the notion that programs make ‘reductions’
until reaching a final value are convenient fictions that don’t really correspond
to the actual execution of real programs. (Machine instructions do not do β-
reduction!) Nevertheless, for a language with, say, just integers and function
values, it can be argued that the attempted ‘application’ of an integer really does
constitute a run-time failure (which might be manifested as a memory violation),
so syntactic type soundness is saying something about program safety.

4.1 Units Going Wrong

For units-of-measure, though, this argument makes no sense. What “goes wrong”
if a program contains a unit error? If run-time values do not carry their units, as

294 A. Kennedy

is the case with F# and other systems [19], then syntactic type soundness tells us
precisely nothing. Of course, we could incorporate units into the semantics and
ensure that operations with mismatched units evaluate to wrong (denotation-
ally), or get stuck (in a small step operational semantics). But that’s cheating:
we have instrumented the semantics and thereby changed it to match some re-
finement of the type system, when in fact the behaviour of programs with and
without unit annotations should be the same.

Instead, let’s use nature as our guide – after all, we are talking about units of
measure. Nature does not seg-fault or throw ClassCastException! In nature,
physical laws are independent of the units used, i.e. they are invariant under
changes to the unit system. This, then, is the real essence of unit correctness:
the ability to change the unit system without affecting behaviour.

Consider the following ‘correct’ function and sample data that an airline might
use as part of its check-in procedure:

let checkin(baggage:float<lb>, allowance:float<lb>) =

if baggage > allowance then printf "Bags�exceed�limit"

checkin(88.0<lb>, 44.0<lb>)

Now suppose that we metricate the program by replacing lb with kg and con-
verting all constants from pounds to kilograms.

let checkin(baggage:float<kg>, allowance:float<kg>) =

if baggage > allowance then printf "Bags�exceed�limit"

checkin(40.0<kg>, 20.0<kg>)

The behaviour remains the same, namely, the passenger is turned away.
Now consider an ‘incorrect’ program that breaks the rules of units, confusing

the weight limit with the length limit:

let checkin(baggage:float<lb>, allowance:float<cm>) =

if baggage > allowance then printf "Bags�exceed�limit"

checkin(88.0<lb>, 55.0<cm>)

No run-time errors occur, and the passenger is turned away – but clearly the
business logic used to arrive at this conclusion is faulty. Again, let’s metricate:

let checkin(baggage:float<kg>, allowance:float<cm>) =

if baggage > allowance then printf "Bags�exceed�limit"

checkin(40.0<kg>, 55.0<cm>)

This time, after metrication, the passenger can fly: the behaviour of the program
changed when using a different system of units!

The fact that this program was not invariant under change-of-units revealed
an underlying units error. This is the essence of unit correctness. Notice that in
contrast to syntactic type soundness this is inherently a relational property: it
does not say anything about the behaviour of a single program, but instead tells
us about the relationship between one program and a transformed one.

Types for Units-of-Measure: Theory and Practice 295

4.2 Polymorphic Functions Going Wrong

Suppose we have a polymorphic function such as

val f : float<’u> -> float<’u^2>

How do we characterize ‘going wrong’ for such a function? We certainly know it
when we see it: if we were told that f was implemented by

let f (x:float<’u>) = x*x*x

then we would rightly be suspicious of its type! But it’s clearly not enough to
consider just changes to the base units, as none are used here.

Furthermore, f might not even be implemented in F#. Suppose that f were
implemented in assembly code, or by dedicated hardware. What test applied to f

would refute its type? The answer is: it should be invariant under scaling in ’u,
in the following sense: if its argument is scaled by some factor k (corresponding to
the units ’u) then its result should scale by k2 (corresponding to the units ’u^2).
That is:

∀k > 0, f(k*x) = k2*f(x)

So if we fed f the value 2, and it responded with 8, and we then fed it 4, and it
responded with 64, we would know that its type ‘lied’.

4.3 Parametricity

We’ve now seen how the semantics of base units and of unit polymorphism can
be explained in terms of invariance under scaling. This is reminiscent of the idea
of representation independence in programs: that the behaviour of a program
can be independent of the representation of its data types. For example, we
can choose to represent booleans as a zero/non-zero distinction on integers, or
we could use a string "F" for false and "T" for true. As long as the underlying
representation can’t be ‘broken’ by a client of the boolean type, then it should
not be possible to observe the difference.

The similarity goes deep, in fact, as one popular characterization of represen-
tation independence, namely relational parametricity, can be applied very fruit-
fully to units-of-measure. We first define a map ψ from unit variables to positive
‘scale factors’, which we call a ‘scaling environment’. This can be extended to
full unit expressions in an obvious way:

ψ(1) = 1
ψ(u * v) = ψ(u) · ψ(v)
ψ(u^-1) = 1/ψ(u)

So if ψ = {α �→ 2, β �→ 3} then ψ(α * β2) = 18.
We then define a binary relation ∼ψ

τ , indexed by types, and parameterized
by ψ, whose interpretation is roughly “has the same behaviour when scaled
using ψ”.

x ∼ψ
float<u> y ⇔ y = ψ(u) * x

f ∼ψ
τ1->τ2 g ⇔ ∀xy, x ∼ψ

τ1
y ⇒ f(x) ∼ψ

τ2
g(y)

296 A. Kennedy

The interpretation of a type scheme ∀α.τ is then “related for all possible scalings
for unit variables α”. Formally:

x ∼∀α.τ y ⇔ ∀k, x ∼{α�→k}
τ y

It’s then possible to prove a ‘fundamental theorem’ that states that an ex-
pression with closed type is related to itself at that type, i.e. if e : σ, then e ∼σ e.
From this simple idea flow many consequences.

4.4 Theorems for Free

For first-order types, we immediately get what Wadler describes as ‘theorems
for free’ [24], namely theorems that hold simply due to the type of an ex-
pression, irrespective of the details of the code. For example, if f has type
∀αβ.float<α> -> float<β> -> float<α * β^-1> then we know that for any
positive k1 and k2, we have

f (k1 * x) (k2 * y) = (k1/k2) * f x y

We can even prove such theorems for higher-order types, such as the type of
diff from Section 2.9:

diff h f x =
k2

k1
∗ diff

(
h

k1

)(
λx.

f(x ∗ k1)
k2

)(
x

k1

)
.

4.5 Zero

We can now explain semantically why zero is polymorphic in its units (i.e. it has
type ∀α.float<α>) whilst all other values are dimensionless (i.e. they have type
float<1>). It’s easy: zero is invariant under scaling (because k * 0.0 = 0.0 for
any scale factor k) whilst other values are not.

4.6 Definability

Another well-known application of parametricity is to prove that certain func-
tions cannot be defined with a particular type – and even, to show that there
are no functions with a particular type, i.e. the type is uninhabited, or at least
that there are no interesting functions with that type.

Exercise 14. In a statically-typed pure functional language with only total func-
tions, what functions can you write with type ∀α.α -> α -> α? What happens
if you add general recursion to the language?

Exercise 15. Do any functions have the type ∀αβ.α -> β? Can you explain?

For units-of-measure, it’s possible to use parametricity to show similar definabil-
ity results. For example, in a pure functional language with only total functions
we can tell that the only function f with type type ∀α.float<1> -> float<α>
is the constant zero function, because by invariance under scaling we must have
f(x) = k * f(x) for any k.

Types for Units-of-Measure: Theory and Practice 297

Exercise 16. Can you think of any functions with the type ∀αβ.float<α * β> ->
float<α>∗float<β>? Can you think of any interesting ones? Why not? Can you
give a formal argument based on parametricity?

Most interestingly of all, if the relation ∼ψ
τ is beefed up a bit, it’s possible to

show that in a language with only basic arithmetic (i.e. +, -, * and /), there are
no interesting functions with type ∀α.float<α2> -> float<α>. In other words,
square root is not definable.

Exercise 17. Can you think why not? Hint: try using Newton’s method from
Section 2.9 to construct such a function.

4.7 Semantic Typing

For some program code, the type assigned by a type system for units-of-measure
might be strictly weaker than the code’s true ‘semantic type’. A trivial example
is fun x -> x + 1.0 - 1.0, which is assigned the type float<1> -> float<1> by
F# (because 1.0 is dimensionless), but semantically has the more general type
float<’u> -> float<’u>. But what do we mean by ‘semantic type’? The answer
is: a type that corresponds to the code’s behaviour with respect to scaling.
Formally, if an expression e satisfies e ∼σ e then e has semantic type σ.

We’ve already seen a more sophisticated example of this phenomenon, in
Exercise 4. The naive definition of gmean is assigned a dimensionless type, even
though it satisfies the following scaling property: for any k > 0,

gmean (map (fun x -> k*x) y) = k ∗ gmean y

This scaling property corresponds to float<’u> list -> float<’u>, the most
general semantic type of gmean.

4.8 Type Isomorphisms

Two types τ and τ ′ are said to be isomorphic, written τ ∼= τ ′, if there are
functions i : τ → τ ′ and j : τ ′ → τ such that j ◦ i = idτ and i ◦ j = idτ ′

where idτ and idτ ′ are identity functions on τ and τ ′ respectively. We need to
be a bit more precise about what we mean by function (should it be definable
in the programming language?) and = (is this observational equivalence?). For
simple isomorphisms, the distinction doesn’t matter. For example, it’s obvious
that int*bool ∼= bool*int by the (definable) functions

let i (p:int*bool) = (snd p, fst p)

let j (q:bool*int) = (snd q, fst q)

Exercise 18. Show that the types int*bool -> unit*int and bool*int -> int

are isomorphic.

298 A. Kennedy

More subtle isomorphisms make use of parametricity. For example:

τ ∼= ∀α.(α -> τ) -> τ
∀α.(τ1 -> τ2 -> α) -> α ∼= τ1 * τ2

These latter isomorphisms are not definable in ML (or F#), because they require
functions that take polymorphic arguments.

Exercise 19. For each isomorphism above, write down maps i and j that exhibit
the isomorphisms, supposing that you had a language with ‘first-class’ polymor-
phism à la System F.

For units-of-measure, some rather surprising isomorphisms hold. Suppose for a
moment that all values of float type are positive, and that operations on floats
preserve this invariant (this rules out ordinary subtraction, for example). Then
the following isomorphism between types

∀α.float<α> -> float<α> ∼= float<1>

holds, i.e. the set of unary polymorphic functions that simply preserve their
units is isomorphic to the set of dimensionless values! This isomorphism can be
demonstrated by the maps i : (∀α.float<α> -> float<α>) → float<1> and
j : float<1>→ (∀α.float<α> -> float<α>) below:

i(f) = f(1.0)
j(x) = λy.y * x

We now prove that these maps compose to give the identity. First, i ◦ j = id , by
simple equational reasoning:

i ◦ j
= λx.i(j(x)) (definition of composition)
= λx.i(λy.y * x) (applying j)
= λx.1.0 * x (applying i)
= λx.x (arithmetic identity)

Now, j ◦ i = id , by scaling invariance:

j ◦ i
= λf.j(i(f)) (definition of composition)
= λf.j(f(1.0)) (applying i)
= λf.λy.y ∗ f(1.0) (applying j)
= λf.λy.fy (instance of scaling invariance)
= λf.f (eta)

This is a semi-formal argument, which can be made completely rigorous [10].
For a less formal but perhaps more intuitive explanation, consider a concrete

inhabitant of the type ∀α.float<α> → float<α>. What can it do with an
argument x of type float<α>? It cannot add x to anything except for zero or x

Types for Units-of-Measure: Theory and Practice 299

itself, as there are no other values of type float<α> available. It can multiply or
divide by a dimensionless value, as this results in a value with the appropriate
type. But that’s it: in fact, the function must be observably equivalent to one
having the form λx.k * x for some k. In other words, a value k of type float<1>
completely determines the function.

Exercise 20. Prove the following isomorphism:

∀α.float<α> -> float<α> -> float<α> ∼= float<1> -> float<1>

4.9 Dimensional Analysis

The invariance of physical laws under changes to the units not only provides
a simple check on the correctness of formulae, it also makes it possible to de-
rive laws simply through consideration of the units. This is called dimensional
analysis [21] and its origins go back at least a century.

The idea is simple: when investigating some physical phenomenon, if the equa-
tions governing the phenomenon are not known but the parameters are known,
one can use the dimensions of the parameters to narrow down the possible form
the equations may take. (Dimensions are classes of units: for example, an accel-
eration has dimensions LT−2 where L and T stand for units of length and time
respectively.)

For example, consider investigating the equation which determines the period
of oscillation t of a simple pendulum. Possible parameters are the length of the
pendulum l, the mass m, the initial angle from the vertical θ and the acceleration
due to gravity g. After performing dimensional analysis it is possible to assert
that the equation must be of the form t =

√
l/g φ(θ) for some function φ of the

angle θ. Let’s see how this is done. We first write down the dimensions of the
parameters:

parameter name dimensions
period of oscillation t T
length of pendulum l L
mass of pendulum m M
angle from vertical θ 1
acceleration due to gravity g LT−2

We now suppose that there is some relationship between the parameters, de-
scribed by a function f :

f(t, l, m, θ, g) = 0

Now supposing that the parameters are measured in some particular system of
units, under the assumption that physical laws are invariant under changes to
the units we can assume that

f(T t, Ll, Mm, θ, LT−2g) = 0

Now we can set the scale factors T , L and M arbitrarily. Let’s set T = 1/t, and
L = 1/l, and M = 1/m (it’s not always this easy!). We then obtain

300 A. Kennedy

f(1, 1, 1, θ,
gt2

l
) = 0

In other words, there are actually only two degrees of freedom in the system,
described by θ and gt2

l . Assuming that the above relationship is functional, and
rearranging a little, we must have

t =
√

l/g φ(θ)

for some function φ.
By experiment or through application of Newtonian mechanics one can deter-

mine that for small angles φ(θ) ≈ 2π, but dimensional analysis got us a long way!
(Note in particular that the period of oscillation turned out to be independent
of the mass m.)

In general, any dimensionally consistent equation over several variables can be
reduced to an equation over a smaller number of dimensionless terms which are
products of powers of the original variables. This is known as the Pi Theorem [5].

Theorem 4 (Pi Theorem). Fix a set of m base dimensions B1, . . . , Bm and
let x1, . . . , xn be positive variables with the exponent of Bj in the dimension of
xi being given by the i, j’th element of an m×n matrix of integers A. Then any
scale-invariant relation of the form

f(x1, . . . , xn) = 0

is equivalent to a relation

f ′(Π1, . . . , Πn−r) = 0

where r is the rank of the matrix A and Π1, . . . , Πn−r are dimensionless power-
products of x1, . . . , xn.

Proof. See Birkhoff [5].

In our pendulum example, we have three base dimensions M , L and T , and five
variables t, l, m, θ and g. The matrix A is then

t l m θ g
M 0 0 1 0 0
L 0 1 0 0 1
T 1 0 0 0 -2

We can now make a link with the type isomorphisms described in Section 4.8.
There, we showed that certain polymorphic function types are isomorphic to
dimensionless types over fewer parameters; compare the example of the pendu-
lum in which we reduced a relation over several parameters to one over fewer
parameters that are dimensionless power-products of the original parameters.

Assuming that float values are positive, we can prove the following result
analogous to the Pi Theorem concerning type isomorphisms for first-order unit-
polymorphic types.

Types for Units-of-Measure: Theory and Practice 301

Theorem 5 (Pi Theorem for programming). Let τ be a closed type of the
form

∀α1, . . . , αm.float<u1> -> · · · -> float<un> -> float<u0>.

Let A be the m × n matrix of unit variable exponents in u1, . . . , un, and B the
m-vector of unit variable exponents in u0. If the equation AX = B is solvable
for integer variables in X, then

τ ∼= float<1>
n−r

-> · · · -> float<1>→ float<1>

where r is the rank of A.

Proof. See [9].

We can now apply this theorem to the pendulum example, recast in type-
theoretic terms. Suppose that the square of the period of a pendulum is de-
termined by a function

p : ∀M.∀L.∀T.float<M> -> float<L>
-> float<L * T−2> -> float<1> -> float<T2>

whose arguments represent the mass and length of the pendulum, the acceler-
ation due to gravity and the angle of swing. Then for positive argument values
float<1> -> float<1> is an isomorphic type.

5 Discussion

In this tutorial, we’ve studied types for units-of-measure from the viewpoint of
three parties: the programmer (Section 2), the implementer (Section 3), and the
theorist (Section 4).

There are two ways in which F#’s type system as described in Section 2 might
be extended. The first is some kind of automated unit conversion, a feature that
is often requested. For example, one might extend the base unit declaration
syntax to incorprate a conversion factor:

[<Measure>] type ft = 0.3048<m>

This simple idea does inhabit a sizeable design space, though. Is ft a distinct
unit-of-measure, or simply a convenient means of writing constants, such as
2.0<ft>? If it’s a separate unit-of-measure, how do conversions lift through the
type structure? Can I pass a value of type float<ft> -> float<m> to a function
expecting an argument of type float<m> -> float<ft>? How do multiple con-
versions get ordered, bearing in mind that in practice floating-point arithmetic
doesn’t satisfy even basic properties such as associativity of multiplication?

The second possible extension is a kind system richer than the current type-
measure dichotomy. This crops up as soon as one tries to parameterize over both
the underlying numeric type (e.g. to support float and float32) and units-of-
measure. We might introduce a syntax for kinds less clunky than the current
[<Measure>], and write something like

302 A. Kennedy

type Matrix<’t : measure=>type, ’u : measure> = ’t<’u> list list

Here a matrix type is parameterized by a unit-of-measure and an element type
constructor, using the notation => for type-level functions. So the instantiated
type Matrix<float32,kg> would expand to float32<kg> list list.

As we saw in Section 3, although the core of type inference for units-of-
measure, namely unification, is straightforward, there are subtleties associated
with supporting principal types in the presence of local let-polymorphism. In-
deed, the current implementation of F# doesn’t actually use the more sophis-
ticated algorithm hinted at in Section 3.10. Recent work suggests that local
let-polymorphism is rarely used in practice, and can always be worked around
via explicit type annotations [22].

It might seem that the theoretical results of Section 4 have little relevance to
practice. Far from it! Imagine a units-refactoring tool that uniformly changes
code to use a different system of units. That this refactoring is semantics-
preserving is guaranteed by our scaling invariance results, and any ‘holes’ in the
type system (e.g. the ability to cast polymorphically from one unit to another)
would break this. The idea of ‘semantic type’ is applicable to foreign-function
interfaces. We might wish to provide an interface utilising units-of-measure for
a numeric library implemented in a language (e.g. C++) that does not support
units. The scaling invariance propositions associated with the interface type are
exactly the proof obligations appropriate for safety. Finally, it’s conceivable that
type isomorphisms such as those studied in Section 4.8 might be used in an
optimizing compiler to generate more efficient code, reducing the number of
arguments to a function.

Acknowledgements

The author would like to thank Nick Benton, James Margetson, Simon Peyton
Jones, Claudio Russo, Don Syme and Dimitrios Vytiniotis for numerous dis-
cussions on the topics covered in this tutorial, the anonymous reviewers of the
published version of the lecture notes for their very helpful remarks, and the
attendees at the CEFP’09 (Komarno, Slovakia) and “Types at Work” (Copen-
hagen, Denmark, 2009) summer schools for their keen interest.

References

1. The International System of Units (SI). Technical report, Bureau International des
Poids et Mesures (2006)

2. Allen, E., Chase, D., Hallett, J., Lunchangco, V., Maessen, J.-W., Ryu, S., Steele
Jr., G.L., Tobin-Hochstadt, S.: The Fortress Language Specification, Version 1.0
(2008)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1988)

4. Bird, R.S., Paterson, R.: de brujn notation as a nested datatype. Journal of Func-
tional Programming 9(1), 77–92 (1999)

Types for Units-of-Measure: Theory and Practice 303

5. Birkhoff, G.: Hydrodynamics: A Study in Logic, Fact and Similitude. Princeton
University Press, Princeton (1960)

6. Buckwalter, B.: dimensional: statically checked physical dimensions for Haskell
(2008)

7. Kennedy, A.J.: Programming Languages and Dimensions. PhD thesis, University
of Cambridge (1995)

8. Kennedy, A.J.: Type inference and equational theories. Technical Report
LIX/RR/96/09, École Polytechnique, Paris, France (1996)

9. Kennedy, A.J.: Relational parametricity and units of measure. In: POPL 1997:
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 442–455. ACM Press, New York (1997)

10. Kennedy, A.J.: Formalizing an extensional semantics for units of measure. In: 3rd
ACM SIGPLAN Workshop on Mechanizing Metatheory, WMM (2008)

11. Le Botlan, D., Rémy, D.: MLF: Raising ML to the power of System F. In: 8th ACM
SIGPLAN International Conference on Functional Programming, ICFP (2003)

12. Leijen, D.: HMF: Simple type inference for first-class polymorphism. In: 13th ACM
SIGPLAN International Conference on Functional Programming, ICFP (2008)

13. Lindley, S.: Many holes in Hindley-Milner. In: Proceedings of the 2008 Workshop
on ML (2008)

14. Milner, R.: A theory of type polymorphism in programming. Journal of computer
and system sciences 17, 348–375 (1978)

15. NASA. Mars Climate Orbiter Mishap Investigation Board: Phase I Report,
(November 1999)

16. Pierce, B.C. (ed.): Types and Programming Languages. MIT Press, Cambridge
(2002)

17. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT
Press, Cambridge (2005)

18. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:
The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

19. Schabel, M.C., Watanabe, S.: Boost.Units (2008)
20. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and de-

cidable type inference for GADTs. In: International Conference on Functional Pro-
gramming, ICFP (2009)

21. Szirtes, T.: Applied Dimensional Analysis and Modeling, 2nd edn. Butterworth-
Heinemann, Butterworths (2007)

22. Vytiniotis, D., Peyton Jones, S., Schrijvers, T.: let should not be generalized. In:
Proceedings of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI (2010)

23. Vytiniotis, D., Weirich, S., Peyton Jones, S.: FPH: First-class polymorphism for
Haskell. In: 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP (2008)

24. Wadler, P.: Theorems for free! In: Proceedings of the 4th International Symposium
on Functional Programming Languages and Computer Architecture (1989)

Appendix: Solutions to Selected Exercises

Exercise 2. Non-zero literals cannot be polymorphic, else we would be able to
“cheat” the type system and assign any old polymorphic type to an expression.
For example, we would be able to write

304 A. Kennedy

let cube (x:float<’u>) = x*x*1.0<’u>

in order to “pretend” that squaring has the type float<’u> -> float<’u^3>!
There are three other special values that are polymorphic in their units: pos-

itive and negative infinity, and the special NaN (not a number) value. Like zero,
these are all invariant under scaling.

> open Microsoft.FSharp.Math.Measure;;

> infinity;;

val it : float<’u> = infinity

> nan;;

val it : float<’u> = nan

Exercise 4. Suppose the list parameter has type float<’u>. Pick an element from
the list (e.g. the head). Divide all elements of the list by this value, obtaining
a list of type float<1> list. Pass this list to the original gmean function, then
multiply the result by the original head, obtaining a result of type float<’u>.

> let gmean’ (xs:float<_> list) =

- let h = List.head xs in h * gmean (List.map (fun z -> z/h) xs);;

val gmean’ : float<’u> list -> float<’u>

Exercise 7. A most general solution is {β := α^-1 * kg * s}. There is no most
general solution that does not use inverse.

Exercise 12. The substitution {α := α * β, β := α} takes us (1) to (2). The
substitution {α := β^-1, β := α * β} takes us from (2) to (3). The substitution
{β := β^-1} takes us from (3) to (1), thus proving that all three are equivalent.

Exercise 13. The substitution {α := α * β^-1} can be applied, to obtain a
derivation of

Γ0 ∪ {x : float<α>} % div x : float<α * β^-1> -> float<β>.

From this, the variable β can be generalized.

Exercise 14. There are two functions with type ∀α.α -> α -> α:

λx.λy.x and
λx.λy.y

In a (call-by-value) language with general recursion, there is one additional
function:

λx.λy.Ω

where Ω is a divergent term.

Types for Units-of-Measure: Theory and Practice 305

Exercise 15. In a pure functional language with only total functions, no functions
have type ∀αβ.α -> β. Informally, given a parameter of type α, how can a
function possibly produce a value of type β? More formally, a consequence of
parametricity (representation independence) is that for a function f of type
∀αβ.α -> β,

f(ψ(x)) = φ(f(x))

for any changes of representation ψ and φ. Now take β to be bool, φ to be
negation, and ψ to be the identity, and we get a contradiction.

Exercise 16. There is just one pure total function with type ∀αβ.float<α * β> ->
float<α>∗float<β>:

f(x) = (0, 0)

Informally, it’s clear that f can’t ‘take apart’ its argument to obtain values of
type float<α> or float<β>, and as the only unit-polymorphic value is zero
(ignoring infinities and NaNs), it must therefore return a pair of zeroes. More
formally, scaling invariance tells us that for any k1, k2 > 0, we have

f(x) = (y, z)⇒ f(k1k2x) = (k1y, k2z)

Now first set k1 = 1 and k2 = 2, and then set k1 = 2 and k2 = 1, giving

f(x) = (y, z)⇒ f(2x) = (y, 2z) = (2y, z)

and so y = 2y and z = 2z. Hence y = z = 0.

Exercise 17. Let’s try using Newton’s method. For an input a we wish to find x
such that x2 − a = 0. Hence let f(x) = x2 − a and its derivative is f ′(x) = 2x.
So using the code from Section 2.9 we might write

let sqrt (a:float<’u^2>) : float<’u>

= newton (fun x -> x*x - a) (fun x -> 2.0*x) ? 0.001

But what can we write for the initial estimate ? above? It has to be of type
float<’u> but the only value of that type at our disposal is zero, which will not
converge to the root.

Exercise 18. We can write F# functions to map between these types:
let i (f:int*bool -> unit*int) = fun x:bool*int -> snd (f (snd x, fst x))

let j (g:bool*int -> int) = fun y:int*bool -> ((), g(snd y, fst y))

Functional Programming with
C++ Template Metaprograms

Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics
Dept. of Programming Languages and Compilers

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
gsd@elte.hu

Abstract. Template metaprogramming is an emerging new direction
of generative programming. With the clever definitions of templates
we can force the C++ compiler to execute algorithms at compilation
time. Among the application areas of template metaprograms are the
expression templates, static interface checking, code optimization with
adaption, language embedding and active libraries. However, as template
metaprogramming was not an original design goal, the C++ language
is not capable of elegant expression of metaprograms. The complicated
syntax leads to the creation of code that is hard to write, understand
and maintain. Although template metaprogramming has a strong rela-
tionship with functional programming, this is not reflected in the lan-
guage syntax and existing libraries. In this paper we give a short and
incomplete introduction to C++ templates and the basics of template
metaprogramming. We will enlight the role of template metaprograms,
and some important and widely used idioms. We give an overview of
the possible application areas as well as debugging and profiling tech-
niques. We suggest a pure functional style programming interface for
C++ template metaprograms in the form of embedded Haskell code
which is transformed to standard compliant C++ source.

1 Introduction

Templates are key elements of the C++ programming language [3,26]. They
enable data structures and algorithms to be parameterized by types, thus cap-
turing commonalities of abstractions at compilation time without performance
penalties at runtime [29]. Generic programming [22,21,14] is a popular program-
ming paradigm, which enables the developer to implement reusable codes easily.
Reusable components – in most cases data structures and algorithms – are im-
plemented in C++ with the heavy use of templates. The most notable example,
the Standard Template Library [14] is now an unavoidable part of professional
C++ programs.

In C++, in order to use a template with some specific type, an instantiation is
required. This process can be initiated either implicitly by the compiler when a
template with a new type argument is referred, or explicitly by the programmer.

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 306–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Functional Programming with C++ Template Metaprograms 307

During instantiation the template parameters are substituted with the concrete
arguments, and the generated new code is compiled.

This instantiation mechanism enables us to write smart template codes that
execute algorithms at compilation time. To demonstrate the power of C++ tem-
plates, in 1994 Erwin Unruh wrote a program [28] which displayed a list of prime
numbers as part of the error messages emitted by the compiler during the com-
pilation process. In fact, Unruh used C++ templates and the template instantia-
tion rules to write a program that is “executed” as a side effect of compilation. It
turned out that a cleverly designed C++ code is able to utilize the type-system
of the language and force the compiler to execute a desired algorithm [31]. These
compile-time programing is called C++ Template Metaprograming and has been
proved to be a Turing-complete sublanguage of C++ [8].

In the last fifteen years lots of effort have been spent to improve the pro-
cess of template metaprogramming. Essential compilation time algorithms have
been identified, and used for basic metaprogram libraries. Data structures are
implemented in various forms to hold compile time informations. Despite of the
growing number of positive examples, developers are still wary of using template
metaprogramming in strict, time-restricted software projects.

One of the reasons is the improper syntax of C++ to express template
metaprograms. The syntax of a programming language is often a major fac-
tor when developing programs in a new paradigm. C++ has a strong her-
itage of imperative programming (namely from C and Algol68) influenced by
object-orientation (Simula67). In the same time, template metaprogramming is
much closer to functional programming. Furthermore, the syntax of the C++
templates is especially complicated. Therefore, metaprogram implementors are
forced to use alien techniques and unnecessary complex syntax. As a result,
C++ template metaprograms are hard to read, understand and often hopeless
to maintain [1,2,5,8,10].

The relationship between C++ template metaprograms and functional pro-
gramming is well-known: most properties of template metaprograms are closely
related to the principles of the functional programming paradigm. The compiler
evaluates constant and enumerated values, determines types, etc. Once a certain
entity has been evaluated or computed, it will be immutable during the rest
of the compilation process. There is no assignment in template metaprograms.
This is the same as referential transparency in functional programming. The
control structures of metaprograms are based on pattern matching, similarly to
functional programming languages. We will discuss further similarities in the
paper.

The author strongly believe that in an ideal situation the syntax of the pro-
gramming language should support the appropriate programming paradigm.
Therefore, a pure functional programming interface could produce a more ef-
fective programming environment for C++ template metaprograms.

In this paper we give an overview C++ templates and the basic concepts of tem-
plate metaprogramming with the help of short, motivating examples. To improve
development process and code maintenance, we suggest a pure functional style

308 Z. Porkoláb

programming interface for C++ template metaprograms in the form of embedded
Haskell code which is transformed to standard compliant C++ source. The lack of
essential tools, such as debuggers and profiles supporting metaprogram develop-
ment is a serious restriction in industrial projects. Therefore we suggest metapro-
gram debugging and profiling techniques.

The paper is organized as follows. In Section 2 we give a short informal intro-
duction to C++ template mechanism. In Section 3 C++ template metaprogram-
ming is presented and compared to runtime functional programming. We discuss
the fundamental connections between functional programming and C++ tem-
plate metaprogramming in Section 4. In Section 5 we examine the possibility of
pure functional style programming interface for C++ template metaprograms.
We explain possible debugging and profiling techniques in Section 6. Related
work is presented in Section 7. We support our material with sample programs.
Inside the text of the article mostly smaller – and sometimes incomplete – code
snippets are shown. However, in Appendix A we present a full set of complete
examples which the reader can examine, compile, and run. For the full, syntacti-
cally correct examples we will refer in the form of (example NN). The examples
are also available at http://aszt.inf.elte.hu/~gsd/cefp/.

2 Informal Introduction to C++ Templates

Templates are an essential part of the C++ language, by enabling data structures
and algorithms to be parameterized by types. This abstraction is frequently
needed when using general algorithms such as finding an element in a data
structure, or defining data types such as a matrix of elements of the same type.
The mechanism behind a matrix containing integer or floating point numbers, or
even strings is essentially the same, it is only the type of the contained objects
that differs. With templates we can express this abstraction in one chunk of
code, avoiding code duplication, thus the generic language construct aids code
reuse and the introduction of higher abstraction levels. The abstraction over
type parameters – often called parametric polymorphism – emphasizes that the
variability is supported by compile-time template parameter(s).

In the following we give an informal introduction to templates in the C++
language. We will sometimes simplify the complex rules of templates for the sake
of general understanding of the whole mechanism. To those who are interested
in the detailed rules, a fundamental source is [29]. For language lawyers the best
source is the C++ standard itself [3]. We will be less rigorous in C++ syntactical
rules, often omitting headers like <iostream>, and namespace tags, like std::.

Let us start with a very simple problem: we have to compute the maximum of
two parameters – a rather trivial task in most programming languages. However,
without some kind of abstraction mechanism over the type of the parameters we
soon end up in a nasty, unmanageable code duplication:

// a max function for "int" type
int max(int a, int b)

Functional Programming with C++ Template Metaprograms 309

{
if (a > b)
return a;

else
return b;

}

// a max function for "double" type
double max(double a, double b)
{
if (a > b)
return a;

else
return b;

}

// and a lot of other overloadings for other parameter types.

While overloading allows us in most modern programming languages to write
the correct, type-safe functions, the result is a number of overloaded versions of
the max() function. Should we modify the algorithm (in a more realistic case),
we have to update all of their overloaded instances in a consistent way.

Moreover, we can write overloading functions only for the already defined
types. If somebody creates a new type with a well-defined less-then operator to
compare the objects, we have to write a new overloading version. We cannot
implement and compile a max() function on type T before creating T, even if we
know what that function will look like. Strongly typed programming languages
allows writing programs on non-existing types only a very restricted manner1.

It is tempting to try non-typesafe solutions. For a C/C++ programmer a
precompiler macro seems to solve the problem:

#define MAX(a,b) a > b ? a : b

As precompiler macro functions are typeless, this will work not only for the
existing types, but on every future type too. Unfortunately, precompiler macros
are not the answer for writing generic algorithms over types. Precompiler macros
are replaced before the running of the C++ compiler, therefore we may encounter
a huge number of side-effects and type-safety problems (example 01). Apart from
that, the attempt to solve more complex problems with macros is hopeless.

To demonstrate this, let us implement a swap function, which changes the
values of two parameters. Here is the trivial solution in C++ for parameters of
type int:

1 Polymorphic functions may be defined on base classes and work on derived classes
defined later. In many cases, however, the runtime overhead of polymorphism are
not acceptable.

310 Z. Porkoláb

void swap(int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}

This is simple. The & symbols in the parameter list denote that the parameter
passing should happen by reference, therefore x and y inside the function body
yield the original variables which we want to swap via the temporary variable
temp. Variable temp should have the same type as the function parameters.

At this point we are in trouble. Since precompiler macros are replaced before
the C++ compiler itself starts, we cannot use any type inference information
from the C++ compiler. We are not able to identify the type of the parameters
of the swap macro in an automated way2. What we need is an intelligent macro-
like feature working together with the type system of the C++ language. This
language element in C++ is called template.

Templates allow us to write both the max and swap in a generic way in one
code snippet working over different types:

template <class T>
T max(T a, T b)
{
if (a > b)
return a;

else
return b;

}

template <typename T>
void swap(T& x, T& y)
{
T temp = x;
x = y;
y = temp;

}

The typename and the class keywords are interchangeable in the template def-
initions and declarations, but we should repeat them for all parameters. It is
important to understand that templated max and swap are not functions in the
traditional sense. They are not compiled and they will be not called during the
execution of the program. Templates are rather skeletons, describing a manu-
facturing process of real functions instantiated by the compiler in an automated
2 The new C++ standard, C++0x provides the auto keyword, which allows us to

define a variable of the specific type corresponding to the actual initializer. This is a
nice feature, but does not invalidate our message here on the lack of type inference
regarding macros.

Functional Programming with C++ Template Metaprograms 311

way during the compilation process. Therefore we call them: function templates
rather than template functions.

The automated instantiation process is the most remarkable feature of the
C++ templates. In the following example (example 02) we apply this process to
the function template max():

int i = 3, j = 4, k;
double x = 3.14, y = 4.14, z;
const int ci = 6;

k = max(i, j); // -> max(int, int)
z = max(x, y); // -> max(double, double)
k = max(i, ci); // -> max(int, int)

The compilation of the above code snippet requires a number of distinct actions
from the compiler. In the first step, the compiler has to decide whether a function
template is applicable at the calling sites of max(). Then the parameter type(s)
should be decided. Parameter types are normally decided based on the actual
arguments: i,j,x,y,ci. This process is called template parameter deduction.
In our example the first and third call of max leads to calling an instance of
max(int,int), while the second indicates to call max(double,double). These
concrete versions of templates are called specializations.

When a specialization is not available, the compiler generates it. Thus one
max function with two int parameters and one with two double parameters are
created and will be called. Let us recognize that the first and third call will
refer to the same specialization. The concrete implementation process may be
compiler dependent, and later we will see that we should be extremely careful
with such situations.

Which specialization will be called in the following case?

z = max(i, x); // syntax error

Under the parameter deduction process, from the type of the argument i the
compiler deduces the template parameter type T to be int. However, the sec-
ond argument x contradicts this, suggesting a double parameter. Therefore the
parameter deduction process will fail and the compiler raises a syntax error.

How can we fix this problem? As you might expect, templates may be defined
with two or more type parameters. Thus we can provide another templated
max(), accepting two different type parameters (example 03):

template <typename T, typename S>
T max(T a, S b)
{
if (a > b)
return a;

else
return b;

}

312 Z. Porkoláb

int i = 3;
double x = 3.14;

z = max(i, x); // -> max(int, double)
std::cout << z << std::endl;

At first sight, everything seems to have been solved. The parameter deduction
identifies parameter T as int and parameter S as double based on the types of ac-
tual arguments i and x. The instantiation process creates the max(int,double)
specialization, and the right function will be called during runtime.

However, the result printed to the output will be 3 and not 3.14 as we may
expect. This is a consequence of the template mechanism we discussed above.
When parameters have been decided in the deduction process, also the return
type has been determined. Yielded by T in the code of max, it will be int as well
as the type of the first parameter. When the function is called in run-time, a>b
evaluates as false, and 3.14 is to return. However, as the return type has been
defined at compilation time as int, this 3.14 value will be converted to integer,
and thus we get 3 assigned to z. It is clear that any attempt to change the role
of parameters T and S could lead us to the same problem.

It is also irrelevant that the return value will be assigned to z – a variable
of type double. Programming languages rarely provide overloading on return
types, and never do parameter deduction on them.

Can we construct a better max(), a template which returns with the type of
the greater value? Not in a strongly typed programming language like C++, un-
fortunately. In such languages, types are fully decided during compilation time:
in run-time we cannot change them anymore. As templates are compile-time
language features, once the template parameter deduction decides template pa-
rameters, these decisions are final. Whether the first or the second argument of
the max(i,x) call is greater is a completely run-time property. Compilation time
and run-time are fundamentally separated in strongly typed, compiled program-
ming languages.

Even if we understand this phenomenon, it may be a bit embarassing. Looking
at the actual code it seems natural for the programmer to define double as
the return type of the max function called with an integer and a floating point
argument. Programmers understand that double is ”wider” then int. Why were
we not able to tell this to the compiler?

The root of the problem is that when speaking about templates we have to
consider not only two stages – compilation time and run-time – of the full process,
but also the very first one: the definition time of the template function. When
we had defined the templated max(T,S) with two different type parameters T
and S, we had no idea about its usage environment. We had to decide whether
the type T or S or some other type would be the appropriate return type. At
that point, however, we had no information about whether the actual arguments
in a call environment would be of type int, double or something else. We still
had to make final decisions.

Functional Programming with C++ Template Metaprograms 313

In the next stage, in compilation time, the compiler instantiates the code of
max(i,x), with actual i and x arguments. Now the compiler apprehends the
environment of the call, recognizes the actual types of i and x, but cannot
overrule the decisions made in template definition time.

Finally, in run-time the program works with the given set of types and rules,
and is able only to decide, whether the value of i or x is the greater, but is
unable to overrule the type and the conversion rules regarding the return value.

In the next table we summarized the main stages of programming with
templates.

Table 1. Programming with templates

Stage Template definition Compilation time Run-time
Role Design of algorithms Template instantiation Execution of algorithm

The templated code Types used in program Program evaluates
has been defined is being decided expressions

Example Return type of max(T,S) Parameter deduction Greater argument value
has been decided determines T and S is chosen to return

The two fundamental problems we have: (1) the gap between template defini-
tion time and compilation/template instantiation time: this inhibits choosing
the “better” return type out of int and double, and (2) the gap between com-
pilation and the run-time: this inhibits choosing the type of the greater value to
return. Dynamic and script languages sometimes can help in the second prob-
lem. Template metaprograms will give us the power to bridge the first gap in
C++.

Before we proceed with template metaprograms, we have to learn some more
technicalities on templates.

We may be tempted to improve our max() template with a third type param-
eter, which yields the return type:

template <class R, class T, class S>
R max(T a, S b)
{
if (a > b)
return a;

else
return b;

}

Unfortunately, the parameter deduction will fail as there is no information about
type R. There are a number of reasons why template parameters are not deduced
based on return values, but to understand the potential problems consider the
following example:

314 Z. Porkoláb

int i = 3;
double x = 3.14, z;

z = max(i, x); // (1)
cout << max(i, x); // (2)

Deduction (theoretically) may work in case (1), but there is no reasonable way to
choose the correct return type in case (2). However, inventive C++ programmers
found the way to smuggle the return type into ordinary arguments, to make it
deducible (example 04):

template <class R, class T, class S>
R max(T a, S b, R)
{
if (a > b)
return a;

else
return b;

}

double z = max(i, x, 0.0);

The extra argument works, but it is ugly and possibly misleading. The C++
standard committee recognized this requirement, and introduced a more readable
notation (example 05):

template <class R, class T, class S>
R max(T a, S b)
{
if (a > b)
return a;

else
return b;

}

double z = max<double>(i, x);
long l = max<long, int, long>(i, x);

This syntax above is called explicit specialization. In the first case max() will be
instantiated with template parameters: R=double given explicitly, and T=int,
and S=double deduced from function arguments. In the second case, all the
parameters are given explicitly: R=long, S=int, and T=long. Actual parameter
x will be converted to long as well as the return value. The shortage of this
solution is that we have to decide the actual type parameters manually.

Functional Programming with C++ Template Metaprograms 315

We can further specialize templates by eliminating all the template parameters.

template <> const char *max(const char *s1, const char *s2)
{
return strcmp(s1, s2) < 0;

}

char *s1 = "Hello";
char *s2 = "world";

cout << max(s1, s3);

It is clear that the original algorithm of max() would not work properly when
comparing the pointer values rather than the contents of the char arrays. We pro-
vided a user specialization for defining an exceptional behavior of the maximum
algorithm for character arrays.

Different template definitions may exist with the same name: overloading of
templates is possible. Hence we may define all previously discussed versions of
max at the same time (example 06).

template <typename T> T max(T,T);
template <typename R, typename T, typename S> R max(T,S);
template <> const char *max(const char *s1, const char *s2);

When instantiating max template, the compiler will choose the most specific
version of template definitions applicable for the actual call.

Up to this point we mainly discussed function templates. Class templates play
a similarly important role when implementing abstract data structures like list,
generalized array, matrix, etc. In the rest of this section we will discuss class
templates in detail as they form the base of template metaprogramming.

The following code snippet defines a matrix class template. The typename of
the matrix elements yielded by T is the parameter of the class. Apart from the
usual set of constructor, copy constructor, destructor and assignment operator
we have methods to retrieve size parameters with rows, and cols parameters,
and accessing elements with the pair of at methods.

C++ uses value semantics, i.e. when copying a matrix we have to copy each
stored element one by one. We implement the copy semantic with the help of
the private copy method.

template <typename T>
class matrix
{
public:
matrix(int i, int j); // constructor
matrix(const matrix &other); // copy constructor
~matrix(); // destructor
matrix& operator=(const matrix &other); // assignment

316 Z. Porkoláb

int rows() const { return x; } // returns x dimension
int cols() const { return y; } // returns y dimension

T& at(int i, int j); // element at position x,y
T at(int i, int j) const; // element at position x,y for read

matrix& operator+=(const matrix &other); // A += B
private:
int x;
int y;
T *v;
void copy(const matrix &other); // helper to copy elements

};

Note that each method of a class template is a function template itself. This
seems natural for methods explicitly referring the template parameter, like the
at method, but also holds for other member functions like rows() and cols(),
which are also templated by T.

As object constructors’ parameters do not hold relevant information on class
template parameters, objects of class templates are instantiated explicitly speci-
fying their type parameters. Here we define matrix objects with type parameter
int, double, and matrix<double> respectively:

matrix<int> im;
matrix<double> dm;
matrix<matrix<double> > dmm;

A possible implementation of the matrix allocates x*y objects of type T dynam-
ically. This is a fair solution unless T is (logically) very small. Allocating an x*y
length array of type bool does not neccessary give what one expects. In some
implementions bool type has a size of 4 bytes (for compatibility with int type).
Even if sizeof(bool)==1, we can work out a better implementation by storing
8 boolean values on every single byte.

Naturally, this economical solution may require a totally different representa-
tion. Additional attributes, methods, different function bodies should be imple-
mented in a class specialization.

template <>
class matrix<bool>
{
// a totally different implementation

};

The specialization and the original template only share their names, otherwise
they are considered separate classes. A specialization does not need to provide
the same functionality, interface, or implementation as the original one. It is

Functional Programming with C++ Template Metaprograms 317

possible, but generally a bad practice to change the public interface between
specializations.

We have to mention that not only typenames, but constant expressions of
certain types (bool, int, etc..) are also allowed as template arguments:

template <typename T, int SIZE>
class array
{
T t[SIZE];
//...

};

With a partial specialization we can bind one or more types of arguments:

template<class T, class U>
class A { ... };

template <class U>
class A<int,U> { ... };

This partial specialization will be selected by the compiler if A is instantiated
with its first argument being int.

Templates can not always accept arbitrary type parameters. For example,
abstract priority queues should contain types which are comparable, accumulator
functions applies for additive types. These assumptions are restrictions against
genericity. In some programming languages the constraints could be expressed
explicitly by the language. Among others, Java’s wildcards [27], the inheritance
hierarchy in Eiffel, and the with keyword in Ada serves this purpose. If we
break the constraints, we get clear and straightforward error messages from the
compiler.

C++ has no language-level support to describe explicit requirements for cer-
tain template properties, i.e. C++ templates are not constrained [9]. When we
pass a type without proper comparison methods to an abstract priority queue,
we do not experience an immediate syntax error. In contrast, the instantiation
process starts and it will fail only when the lacking method is explicitly referred,
in most cases somewhere deeply in the chain of instantiations. The canonical
example is the standard template library (STL), where algorithms require cer-
tain types of iterators. E.g. the sort algorithm requires parameters in form of
random access iterators. When sort is called with parameters only satisfying
the criteria of forward iterators we end up with a few pages of error messages
and none of them will explicitly tell us the root of the problem.

Due to lack of compiler support, the problem had to be remedied on the library
level. Complex language constructs have been created to inspect the characteris-
tics of types. Existence of certain attributes or methods, usage of polymorphism,
inheritance relationships, etc. can be determined at compilation time using tem-
plate metaprograms [35]. Based on the inspections, in case of certain conditions,

318 Z. Porkoláb

the designer of the program may decide to abort compilation. This area of re-
search is called static interface checking or concept checking [16,20].

The ANSI C++ committee started to work on a proposal to extend C++
with language-based concepts. With the help of concepts [19] programmers could
specify the requirements against template parameters of classes and functions
in a clear syntax, and could separate concept checking from the instantiation
process. Unfortunately, this enhancement requires enourmous amount of work
– especially reimplementing existing libraries by the enrichment of concepts. In
the summer of 2009 the C++ standardization committee excluded concepts from
the already late C++0X standard. Concepts are not forgotten but it is hard to
predict when they will be part of the official C++ standard. Until then, we
may utilize library based concepts implemented mostly by means of template
metaprograms [36,35].

3 C++ Template Metaprograms

In 1994 Erwin Unruh wrote and circulated at C++ standards committee meeting
a very interesting C++ program. The program did not even succesfully compile,
but when the compiler printed the error messages, parts of them were the prime
numbers appeared in increasing order.

// Erwin Unruh, untitled program,
// ANSI X3J16-94-0075/ISO WG21-462, 1994.

template <int i>
struct D
{

D(void *);
operator int();

};
template <int p, int i>
struct is_prime
{

enum { prim = (p%i) && is_prime<(i>2?p:0), i>::prim };
};
template <int i>
struct Prime_print
{

Prime_print<i-1> a;
enum { prim = is_prime<i,i-1>::prim };
void f() { D<i> d = prim; }

};
struct is_prime<0,0> { enum { prim = 1 }; };
struct is_prime<0,1> { enum { prim = 1 }; };
struct Prime_print<2>

Functional Programming with C++ Template Metaprograms 319

{
enum { prim = 1 };
void f() { D<2> d = prim; }

};
void foo()
{

Prime_print<10> a;
}
// output:
// unruh.cpp 30: conversion from enum to D<2> requested in Pri..
// unruh.cpp 30: conversion from enum to D<3> requested in Pri..
// unruh.cpp 30: conversion from enum to D<5> requested in Pri..
// unruh.cpp 30: conversion from enum to D<7> requested in Pri..
// unruh.cpp 30: conversion from enum to D<11> requested in Pri..
// unruh.cpp 30: conversion from enum to D<13> requested in Pri..
// unruh.cpp 30: conversion from enum to D<17> requested in Pri..
// unruh.cpp 30: conversion from enum to D<19> requested in Pri..

Erwin Unruh’s prime number computing template demonstrated that it is pos-
sible to use the C++ template system to write compile-time programs. Such
programs are called template metaprograms. A metaprogram is a program that
manipulates other programs; for example, compilers, partial evaluators, parser
generators and so forth are metaprograms. Template metaprograms are special
ones in the sense that they are self-contained: the program which manipulates
the code is the C++ compiler itself.

The canonical template metaprogram for showing the basic behavior is the
compile time evaluation of factorial numbers. Let us compare a run-time solution
and the metaprogram version.

The run-time version is straightforward. Basically the similar code could be
implemented in various programming languages ranging from FORTRAN to
Pascal.

// runtime recursion
int Factorial(int N)
{
if (1 == N) return 1;
return N * Factorial(N-1);

};

int main()
{
int r = Factorial(5);
cout << r << endl;
return 0;

}

320 Z. Porkoláb

There are other possibilities to implement the algorithm: specially we may use
loop instead of recursion.

The template metaprogram solution takes two template definitions: one for
the generic solution of Factorial, and another for the specialization of the
parameter value 1 (example 07).

// compile-time recursion
template <int N>
struct Factorial
{
enum { value = N * Factorial<N-1>::value };

}

template<>
struct Factorial<1>
{
enum { value = 1 };

};

int main()
{
int r = Factorial<5>::value;
cout << r << endl;
return 0;

}

Let us analyze what happens here. The main() function is used to start the
instantiation steps. When the assignment refers to Factorial<5>::value the
compiler is forced to instantiate the Factorial template with argument 5. As
we have a correspondent template definition, the compiler starts the instan-
tiation and reaches the initialization of enumeration value inside Factorial.
Here we refer to Factorial<4>::value. The instantiation of Factorial<5> is
suspended and the compiler starts to instantiate Factorial<4>::value. This
way we imitate recursion, which will descend down to the instantiation request
of Factorial<1>. Here the compiler will find a full specialization template for
Factorial with argument value 1, which is “more specialized” than the generic
one. Therefore the full specialization is used to generate the requested class, and
instantiation of Factorial<1> completes.

At this point we are coming back from the instantiation chain. In this process
Factorial<1>::value is used to finalize Factorial<2>, etc... The suspended
instantiations are completed in the reverse order. At the end, this results in gen-
erating five classes; four of them instantiated from the generic template definition
and one from the template specialization.

As the compiler has Factorial<5>::value in hand, it simply replaces the
right hand side of the assignment in main(). In run-time, we will execute only

Functional Programming with C++ Template Metaprograms 321

the output statement. Hence, we “executed” the factorial algorithm – a C++
template metaprogram – at compilation time.

Two important template rules have been tacitly used here: (1) Templates
which are not referred must not be instantiated – C++ template mechanism is
lazy. (2) Constant expressions – which can be evaluated at compilation time –
must be evaluated at compilation time. Such constant expression appears on the
left side of the enumeration initialization of value in class Factorial.

Lazyness is essential for writing template metaprograms. Let us consider the
following example:

template <bool condition, class Then, class Else>
struct IF
{
typedef Then RET;

};

template <class Then, class Else>
struct IF<false, Then, Else>
{
typedef Else RET;

};

int main()
{
IF< sizeof(int)<sizeof(long), long, int>::RET i;
cout << sizeof(i) << endl;
return 0;

}

This seems a bit more cryptic than the factorial example. First let us draw up
an inventory. We have a generic version of a template called IF and a partial
specialization for it. It is partial, since only one, the leftmost argument has been
specialized to the false boolean value. The first type parameter of the class IF
is a (constant) value, the remaining arguments are type parameters.

When we instantiate the IF template, we provide a boolean expression as
the first argument. In our example this is sizeof(int)<sizeof(long). The
expression is evaluated at compilation time. If this is true, then the generic
template is instantiated, and hence the typedef Then RET is in effect. With
the actual arguments this defines RET as long. However, when the expression
is evaluated as false, we have a “better” specialization, and typedef Else RET
means RET is defined as int. As a result, based on whether the size of int is
smaller than the size of long, we define i as a variable of the widest type.

The construct is symmetric – it would be an equally working solution to define
the generic function typedefing the Else branch, and writing a specialization for
the true value as the first parameter.

The IF construct – the generic template and the specialization – works like a
branching metaprogram. Having recursion and branching with pattern matching

322 Z. Porkoláb

we have a complete programming language – executing programs at compilation
time. In 1966 Bohm and Jacopini proved, that Turing machine implementation
is equivalent to the existence of conditional and looping control structures in
a programming language [4]. C++ template metaprograming forms a Turing
complete programming language executed at compilation time [8].

Now we can revisit the max() function we discussed earlier (example 09):

template <class T, class S>
IF< sizeof(T)<sizeof(S), S, T>::RET max(T x, S y)
{
if (x > y)
return x;

else
return y;

}

This version of max() is able to choose the “widest” of the argument types
and define it as the return type. In the template definition we did not commit
ourselves to any return type. Instead of choosing one of the argument types,
we defined a small metaprogram which will be executed during compilation, i.e.
template instantiation time. When the template is instantiated the actual types
of T and S are known and the metaprogram is evaluated. Either T or S will be
selected as typedef of IF<...>::RET, based on the metaprogram’s algorithms.

When this template is instantiated with argument types int and double, the
return value will be double. Similarly, when the arguments are short and long,
the latter will be chosen as the return type.

Table 2. Programming with template metaprograms

Stage Template definition Compilation time Run-time
Role Design of algorithms Template instantiation Execution of algorithm

The templated code Parameter deduction Program evaluates
has been defined Metaprograms are executed expressions

Example Return type of max(T,S) Parameter deduction Greater argument value
defined with metaprogram determines T and S. is chosen to return

IF<T,S>::RET is selected

It is important to understand two facts. First, we cheated a bit. The “widest”
type – which has the greater sizeof value – is not always the best return type.
Sometimes the size of a class is unrelated to the arithmetical representation – this
is true especially for classes allocating extra space in the heap. But conceptually
this is not a problem for us: anyway, we are in a Turing complete language, so
we are able to define as complex algorithms as we wish.

Functional Programming with C++ Template Metaprograms 323

Second, we were still not able to choose the type of the greater value, we have
chosen the type which seemed better during compilation. It is still possible that
double has been chosen as return type, but the int run-time value is greater. In
such situation the return type value will be converted to double. In other words,
we are not breaking the rules of strongly typed programming languages. Types
are not selected in run-time. What we added to the earlier version of max is the
possibility of selecting the return type not in template definition/design time,
but latter, at compilation time, when the template is instantiated. We delegated
an algorithm written in design time, executed at compilation time which – based
on the actual types of the template arguments – was able to select the better
return type. This has happened in an automated way with the execution of a
small and simple template metaprogram.

4 Connection between Functional Programming and
C++ Template Metaprograms

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations at compilation time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms. Executing programs in either way
means executing pre-defined actions on certain entities. It is useful to compare
those actions and entities between runtime programs and metaprograms.

C++ template metaprogram actions are defined in the form of template defi-
nitions and they are “executed” when the compiler instantiates them. Templates
can refer to other templates, therefore their instantiation can instruct the com-
piler to execute other instantiations. This way we get an instantiation chain very
similar to a call stack of a runtime program. Recursive instantiations are not only
possible, but occur regularly in template metaprograms to model loops.

In metaprograms we use static const and enumeration values to store quan-
titative information. Results of computations during the execution of a metapro-
gram are stored either in other constants or enumerations. Furthermore, the
execution of a metaprogram may trigger the creation of new types by the com-
piler. These types may hold information that influences the further execution of
the metaprogram [34].

However, there is a fundamental difference between usual runtime programs
and C++ template metaprograms: once a certain entity (constant, enumeration
value, type) has been evaluated or constructed, it will be immutable. There is no
way to change its value or meaning. When we initialized a constant or enumera-
tion we are not able to change its value. When a type has been constructed, it is
not possible to redefine it. Therefore metaprogram assignment does not exist. In
this sense metaprograms are similar to pure functional programming languages,
where referential transparency is obtained. That is the reason why we use recur-
sion and specialization to implement loops: we cannot change the value of any

324 Z. Porkoláb

Table 3. Comparison of functional programs and template metaprograms

Runtime functional program C++ template metaprogram
values run-time data static const and

(constant, literal) enum class members
variables variables symbolic names

(typenames, typedefs)
initialization constants static const initialisation

generators enum definition
assignment no no
I/O helpers monads warnings, error messages

no interactive input
branching pattern matching pattern matching

function specialization template specialization
looping recursive functions recursive templates
subprogram function (template) class
data types abstract data structures typelists, boost::vector
types type class (Haskell) concepts

loop variable. Immutability – as in functional languages – has a positive effect
too: unwanted side effects do not occur.

Based on these observations we can say that C++ template metaprogram-
ming is part of the functional programming paradigm. In the following table we
summarized the main similarities, tools, and language features.

Abrahams and Gurtovoy [1] defined the term template metafunction as a
special template class: the arguments of the metafunction are the template pa-
rameters of the class, the value of the function is a nested type of the template
called type.

Metafunctions – as we can expect in a functional programming language –
are first class citizens in C++ template metaprogramming. In the following
example we show a metaprogram Accumulate which summarizes the value of a
function given as a parameter at points in the interval 0..N. The function will
be a metaprogram itself, and it can be specified as an argument of Accumulate.

// Accumulate(n,f) := f(0) + f(1) + ... + f(n)
template <int n, template<int> class F>
struct Accumulate
{
enum { RET = Accumulate<n-1,F>::RET + F<n>::RET };

};

template <template<int> class F>
struct Accumulate<0,F>
{
enum { RET = F<0>::RET };

};

Functional Programming with C++ Template Metaprograms 325

template <int n>
struct Square
{
enum { RET = n*n };

};

int main()
{
cout << Accumulate<3,Square>::RET << endl;
return 0;

}

Previous examples show that there are sophisticated ways to build up, pass as
parameter, and execute functions at compilation time. We have similar profes-
sional tools to express lists, vectors, etc. as compile-time data structures.

Complex data structures are also available for metaprograms. Recursive tem-
plates store information in various forms, most frequently as tree structures, or
sequences. Tree structures are the favorite forms of implementation of expres-
sion templates [32]. The canonical examples for sequential data structures are
typelist [2] and the elements of the boost::mpl library [37].

We define a typelist with the following recursive template:

class NullType {};
struct EmptyType {}; // could be instantiated

typedef Typelist< char, Typelist<signed char,
Typelist<unsigned char, NullType> > > Charlist;

In the example we store the three character types in a typelist. We can use helper
macro definitions to make the syntax more readable.

#define TYPELIST_1(x) Typelist< x, NullType>
#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>
#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>
#define TYPELIST_4(x, y, z, w) Typelist< x, TYPELIST_3(y,z,w)>
// ...
typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Essential helper functions – like Length, which computes the size of a list at
compilation time – have been defined in Alexandrescu’s Loki library[2] in pure
functional programming style. Let us consider the typical template metapro-
gram components. We began with the declaration of the Length template. This
is followed by the specific version of Length applicable for the empty list as
a specialization for NullType. This template will be instantiated only at the
end of a typelist. Finally, we define the generic case on template parameter
Typelist<T,U> with further recursion on U.

326 Z. Porkoláb

template <class TList> struct Length;
template <>
struct Length<NullType>
{

enum { value = 0 };
};
template <class T, class U>
struct Length <Typelist<T,U> >
{

enum { value = 1 + Length<U>::value };
};

Length reads the size of the list. The IndexOf metafunction takes a type param-
eter and returns the position of that parameter in the list. If the actual argument
is not found in the list it returns the value -1.

template <class TList, class T> struct IndexOf;

template <class T>
struct IndexOf< NullType, T>
{

enum { value = -1 };
};
template <class T, class Head, class Tail>
struct IndexOf< Typelist<Head, Tail>, T>
{
private:

enum { temp = IndexOf<Tail, T>::value };
public:

enum { value = (temp == -1) ? -1 : 1+temp };
};

Similar data structures and algorithms can be found in the boost::mplmetapro-
gramming library.

5 Functional Interface for Template Metaprograms

Writing programs today is largely supported by various automated tools, such
as code generators mapping UML notations to source code, model driven archi-
tectures, cross-compilers, RAD tools, etc. Coding, however, is still considerably
influenced by personal experiences, conventions, traditions, and customs. The
syntax and the semantics of the programming language is a major factor as it
seriously drives the programmer’s attitude. It is possible, but it is not easy to
program in a style which is not directly supported by the actual programming
language. It is even worse if the required programming paradigm is not sup-
ported by the language. Similarly, as the spoken language has impact on human

Functional Programming with C++ Template Metaprograms 327

perception, the programming language may drive the programmer’s style. In
an ideal situation the applied programming language supports the paradigm in
which the task has to be solved.

C++ templates are designed to express genericity on data structures and al-
gorithms – i.e. parametric polymorphism. Template metaprogramming has been
discovered almost as a side effect. At that time template syntax has already been
formulated, and it is far from expressive regarding template metaprograms.

Let’s examine the following C++ template metaprogram which decides at
compilation time whether its parameter is a prime number.

#include <iostream>

namespace { int helper_begin(char*); }

template <int n>
struct Print { enum{ helper_begin_=sizeof(helper_begin(""))}; };

template <bool condition, class True, class False>
struct If : True {};

template <class True, class False>
struct If<false, True, False> : False {};

template <bool b>
struct Bool { static const bool value = b; };

template <class a, class b>
struct And : Bool<a::value && b::value> {};

template <int from, int to, int n>
struct IsPrimeImpl : If< from <= to,

And< Bool<n%from!=0>,
IsPrimeImpl<from+1,to,n>

>,
Bool<true>

> {};
template <int n>
struct IsPrime {
static const bool value=IsPrimeImpl<2,n/2,n>::value;

};

struct Nop {};

template <int n>
struct PrintIfPrime : If< IsPrime<n>::value,

Print<n>,

328 Z. Porkoláb

Nop
> {};

template <class A, class B>
struct Sequence
{
A a;
B b;

};

template <int from, int to>
struct PrintPrimes : If< from <= to,

Sequence<PrintIfPrime<from>,
PrintPrimes<from+1,to>

>, Nop> {};
int main()
{
std::cout << IsPrime<337>::value << std::endl;

}

As we have seen in Section 4, the behavior of C++ template metaprograms is
very close to the functional programming paradigm. Although this relationship
is well-known, current C++ template metaprogramming libraries do not sup-
port functional programming directly. Metaprogram implementors are forced to
use alien techniques and extremely intricate syntax to implement their own con-
cepts. This often leads to cryptic, unmanageable and fragile code as the sample
above.

In this section we propose a functional programming interface for C++ tem-
plate metaprograms. Using that idea metaprogram developers write embedded
Haskell code to express compile time algorithms and data structures inside the
C++ host language. These Haskell fragments are automatically translated to
native C++ code, which then can be compiled by any standard-compliant C++
compiler. Haskell snippets can communicate with the surrounding C++ envi-
ronment and – via the host language – each other.

With the help of a translator we can write the previous prime-decider program
in the following way:

#include <lambda.h>

__BEGIN(Haskell)
divides b a = (a ‘mod‘ b == 0)
hasDivider n from to = (from <= to) && ((divides from n) ||

(hasDivider n (from + 1) to));
isPrime 1 = False;
isPrime n = not (hasDivider n 2 (n ‘div‘ 2));

Functional Programming with C++ Template Metaprograms 329

main = print (isPrime 1);
__END(Haskell)

#include <iostream>

int main()
{
cout << lambda::Reduce< HaskellMain >::type::value << endl;

}

To implement this idea we use a step-wise transformation using intermediate lan-
guages. Intermediate languages not only make the implementation more stable
but are also useful for executing everyday tasks like debugging. Our experimen-
tal transformator uses Yhc.Core, the York Haskell Compiler’s core language [40]
as the first intermediate language, and Lambda, our own language for express-
ing lambda expressions [23] as the second intermediate language. Therefore the
transformation proceeds in three major steps. First, Haskell code is translated
to Yhc.Core with the Yhc compiler. In the second step the Yhc.Core is adjusted
to our Lambda language. In the last step, Lambda is used to generate standard
compliant C++ source. Then users may compile the final result with any recent
C++ compiler.

C++

Haskell

Haskell Yhc.Core

Yhc.Core

C++
C++

Lambda

Lambda

Lambda

C++native

Template

Template

Template

metaprog.

metaprog.

metaprog.

Lambda gen.
C++ Template

metaprog. gen.

Yhc

Fig. 1. Transformation schema of embedded Haskell to template metaprograms

There are other possible transformation schemas. Instead of Yhc, one can con-
sider using the Glasgow Haskell Compiler [39] to utilize better parsing possibili-
ties. Another experimental project uses EClean, a subset of the Clean functional
language [6,12]. A Clean to Template Metaprogram translator has been written,
and tested on various applications [24].

5.1 Generating Yhc.Core Code

Yhc.Core [13,40] is a core Haskell-like language in which all Haskell programs
can be expressed. It uses a small number of structures making it easy to process
further translating steps. Haskell programs can be transformed into Yhc.Core

330 Z. Porkoláb

using the York Haskell Compiler using the --showcore argument. It generates
a human readable code which is easy to use for further processing. The Core
language can be treated as a subset of Haskell with restrictions:

– Case statements examine their outermost constructor
– Does not contain type classes
– Does not contain where statements
– Has only top level functions
– Has fully qualified names
– Constructors and primitives are fully applied

Currently lambda expressions are guaranteed not to appear in the output of the
Haskell to Core transformation. The syntax of Yhc Core is found in [13].

5.2 Generating Lambda Expressions

We defined our Lambda language to express lambda expressions. Lambda is a
full-featured language. Programmers may embed Lambda code into C++ [23]
and generate C++ template metaprograms. However, in this case Lambda is
used as an intermediate language.

We use the definition of non-typed enriched lambda expressions from [17].
We express the λ symbol with the \ character. Our solution supports naming
lambda expressions.

The code generated by Yhc contains a list of function definitions. Each func-
tion definition is converted into a named lambda expression with a correspond-
ing name. Functions taking arguments are converted into lambda abstractions: a
new abstraction is introduced for each argument of the function. These lambda
abstractions wrap each other in their order of appearance in the argument list.
The lambda abstraction generated for the leftmost argument is the outermost.
The innermost lambda abstraction encapsulates the body of the function.

Function applications are handled by our lambda expressions. The let expres-
sions and the case expressions are transformed into lambda expressions supported
by our syntax based on the transformation techniques described in [17].

5.3 Generating Template Metaprograms

In the next step lambda expressions are transformed into C++ template
metaprograms which can be compiled by any standard C++ compiler. These
metaprograms have the ability to access any other part of the C++ code. There-
fore they provide interoperability between independent lambda expressions (and
thus individual Haskell functions).

During the execution of the generated template metaprograms the C++ com-
piler builds the graph of the expression and reduces it lazily. Our compiler com-
piles named lambda expressions into C++ classes (metafunction classes [1]) im-
plementing the lambda expression. The names of the classes are the names of
the lambda expressions indicating that they have to be valid C++ identifiers.

Functional Programming with C++ Template Metaprograms 331

Since these expressions are translated into C++ classes they can be at any part
of the code where classes can be defined [3] indicating that Haskell code can be
embedded at any part of the C++ code where classes can be defined.

Lazy and eager evaluation. Our compiler supports lazy evaluation of lambda
expressions: every (sub)expression is evaluated only when its value is needed. It
makes implementation of infinite data structures (such as infinite lists) pos-
sible. Eager evaluation is supported by the classes implementing the lambda
expressions in C++ but are not supported directly in the lambda expressions
themselves.

Currying. Currying is supported: when the number of elements applied to a
function symbol is less than the number of elements required by the function
symbol, then the result is a new function symbol. For example: we have an
anonymous function requiring two elements to be applied to it: \x.\y. + x y.
When only one element is applied to this function the result is a new function
requiring one element to be applied to it. (\x.\y. + x y) 5 is equivalent to
\y. + 5 y.

Lambda abstractions. Lambda abstractions are implemented by metafunc-
tion classes whose embedded apply metafunction takes exactly one argument.
The name of the argument is the name of the variable the lambda abstraction
bounds. Let us consider the following lambda expression and its implementation:

// The lambda expression
__lambda I = \x. y;

// It’s implementation
struct I {
template <class x>
struct apply {
typedef y type;

};
};

Variables. Variables are implemented by their names. A name symbol from
the lambda expression becomes a name symbol in C++. Binding of the names
in lambda abstractions is done by the C++ compiler. As we could see it in
the previous example the lambda expression y becomes typedef y type in the
C++ template metaprogram. The example has a lambda abstraction binding x.
This lambda abstraction is represented by a template metafunction taking one
argument called x. When this metafunction is instantiated the x symbol in its
body (if there are any) are replaced by the class with which the metafunction is
instantiated.

332 Z. Porkoláb

Eagerly evaluated applications. Eager application of a lambda expression
to a lambda abstraction is implemented by the evaluation of the apply meta-
function. The C++ compiler does β conversion during the instantiation because
the name of the bounded variable is the name of the argument of the nested
apply metafunction (and the variables are implemented by their names).

The I lambda expression defined in the previous code example can be evalu-
ated either in an eager or a lazy way. To specify eager evaluation, the user should
use the following C++ construct:

typedef I::apply<I>::type ApplicationOfIToItself;

Currying in built-in functions. Built-in functions (such as the arithmeti-
cal or logical operators) have more than one arguments. Their implementation
has to support currying. They have to be implemented as lambda abstractions.
For example applying an element to the plus operator has to evaluate to an-
other lambda abstraction, applying another element to that has to evaluate to
a constant (and the value of it has to be the sum of the arguments). It can
be implemented easily using nested types and templates. Let us consider the
implementation of the plus operator:

struct OperatorPlus {
template <class a>
struct apply {
struct type {

template <class b>
struct apply {
// ... implementation of addition,
// possibly by boost::mpl

};
};

};
}

We assume that every built-in function supports partial evaluation (to a lambda
abstraction).

5.4 Lazy Application

Applications in lambda expressions (and in Haskell) are evaluated only when
their value is needed, they cannot be translated into eager applications. We use
the following template to implement lazy application:

template <class left, class right>
struct Application {};

Functional Programming with C++ Template Metaprograms 333

Using this metafunction lazily evaluated template expressions can be built as
binary trees of applications: the instances of the Application template represent
the application nodes of the tree, the left and right arguments represent the
sub-trees of the application nodes.

We define a metafunction implementing reduction of expressions to weak head
normal form [7]. Standalone lambda abstractions, constants and built-in func-
tions are in weak head normal form. Lazy applications are never in weak head
normal form, since we assume that every built-in function supports partial eval-
uation. These considerations simplify the reduction algorithm:

while (the top level element is a lazy application)
reduce the left side of the top level element to
weak head normal form

evaluate the top level application

We implemented this in a metafunction called Reduce:

template <class T> struct Reduce {typedef T type;};

template <class left, class right>
struct Reduce< Application<left, right> > {
typedef
typename Reduce<
typename
Reduce<left>::type::template
apply<right>::type

>::type type;
};

The general case handles lambda expressions which are already in weak head nor-
mal form. There is a specialization of the template for reducing lazy applications
in normal order reduction: it reduces the left sub-expression of the application to
weak head normal form (typename Reduce<left>::type) after which the left
side is in weak head normal form, so the next redex is this application:

typename Reduce<left>::type::template apply<right>::type

Finally the resulting expression is reduced as well.

5.5 Interoperability with Directly Implemented C++
Metafunctions

Lambda expressions are translated to their C++ equivalents. The generated code
is valid C++ source with template definitions. Such templates can be written
directly, without implementing their Lambda equivalents. Directly implemented
Lambda expressions can be used in generated Lambda expressions as constants.
For example:

334 Z. Porkoláb

struct DirectLambdaExpression {
// implementation...

};

__lambda f = \n. DirectLambdaExpression 2 n;

It makes extension of the built-in operators possible and parts of the expressions
can be implemented using other techniques.

Lambda expressions can be used by directly implemented C++ template
metaprograms as well. After they are translated into template metaprograms
there is no difference between a directly implemented lambda expression and a
translated one. Lambda expressions can be used as built-in functions in other
lambda expressions, for example:

__lambda add = \a.\b. + a b;
__lambda f = \n. * n (add 6 7);

Lambda expressions can be used in their own definition simplifying the creation
of recursive expressions:

__lambda rec = \n. (< n 1) 13 (rec (- n 1));

Due to the visibility rules of C++ [3] lambda expressions are visible after their
declaration. For example the following code cannot be compiled because b is
defined after a:

__lambda a = \n. b n;
__lambda b = \n. + 1 n;

Our compiler supports forward declaration of lambda expressions by ensuring
that every lambda expression translated to C++ is implemented as a struct.
In the previous example b can be declared before a is defined:

struct b;
__lambda a = \n. b n;
__lambda b = \n. + 1 n;

Haskell functions are visible in the whole Haskell block. To support this our
Yhc.Core to lambda expression transformation tool adds forward declaration
of the named lambda expressions to the beginning of each lambda expression
list generated from an embedded Haskell block. Note that this makes functions
visible to each other within an embedded Haskell block. Visibility of functions
defined in separate Haskell blocks depend on the C++ visibility rules [3] because
Haskell functions are transformed into C++ classes.

5.6 Evaluation

Ideally, the syntax of a programming language should match the paradigm the
program is written in. Template metaprogramming, a Turing-complete subset

Functional Programming with C++ Template Metaprograms 335

of the C++ language, is many times regarded as a pure functional language.
Unfortunately, the current way of writing metaprograms is far from ideal, mainly
due to the complicated template syntax and the different original design goals
of C++.

In this section we described a method which makes metaprogram developers
able to express their intentions directly in functional style using Haskell syntax.
Haskell code snippets are embedded into the C++ program and are translated
into native C++ code. The translation process uses a stepwise approach; and
the last step generates C++ template metaprograms which can be compiled by
any standard conformant C++ compiler.

We have shown that using embedded Haskell simplifies template metapro-
grams, makes them easier to write and maintain. The developer can focus on the
functionality of the metaprogram, reusing a huge number of existing algorithms
and data structures implemented as Haskell libraries making them available to
the C++ metaprogramming community.

6 Debugging Template Metaprograms

Debuggers are software tools helping the debugging process. The main objec-
tive of a debugger is to help us understand the hidden sequence of events that
led to the error. In most cases this means following the program’s control flow,
retrieving information on memory locations, and showing the execution con-
text. Debuggers also offer advanced functionality to improve efficiency of the
debugging process. These include stopping the execution at a certain breakpoint,
continuing the execution step by step, step into, step out, or step over functions,
etc. Still, debugging can be one of the most difficult and frustrating tasks for a
programmer.

In this section we describe possible debugging strategies for C++ template
metaprograms. First we discuss the ontology of template metaprogram errors
[25], then we give an overview of possible implementation strategies for debug-
ging template metaprograms.

6.1 Ontology of Template Metaprogram Errors

As we have seen in section 3, Unruh’s first template metaprogram emitted error
messages to print prime numbers. The program is erroneous in the traditional
sense, as it would not compile and therefore is unable to run. Was this program
correct or erroneous as a template metaprogram? As the goal of the program –
printing prime numbers – has been achieved, we should consider Unruh’s code a
correct metaprogram. This example points out the difference of the notions cor-
rect and erroneous behavior between traditional runtime programs and template
metaprograms.

Let us examine the Factorial metaprogram described in Section 3, and let
us suppose that the template specialization Factorial<1> has a syntactic error:
a semicolon is missing at the end of the class definition.

336 Z. Porkoláb

template <int N>
class Factorial
{
public:
enum { value = N*Factorial<N-1>::value };

};
template<>
class Factorial<1>
{
public:
enum { value = 1 };

} // ; missing

This is an ill-formed template metaprogram, with a diagnostic message. The
metaprogram was not executed: no template instantiation happened. Another
ill-formed template metaprogram with diagnostic message is shown in the next
example. However, it starts to “run”, i.e. the compiler starts to instantiate the
Factorial classes, but the metaprogram aborts (at compilation time).

template <int N>
class Factorial
{
public:
enum { value = N*Factorial<N-1>::value };

};
template<>
class Factorial<1>
{
// public: missing
enum { value = 1 };

};
int main ()
{
const int f = Fibonacci<4>::value;
const int r = Factorial<5>::value;

}

As the full specialization for Factorial<1> is written in form of a class, the
default visibility rule for a class is private. Thus enum { value=1 } is a private
member, so we receive a compile-time error when the compiler tries to acquire the
value of Factorial<1>::value, when Factorial<2> is being instantiated. The
main difference from the earlier ill-formed example is that here instantiations
are started. For example, the Fibonacci<4>::value is computed.

In our next example we remove the full specialization Factorial<1>:

template <int N>
struct Factorial

Functional Programming with C++ Template Metaprograms 337

{
enum { value = N*Factorial<N-1>::value };

};
// specialization for N==1 is missing
int main ()
{
const int r = Factorial<5>::value;

}

As the Factorial template has no explicit specialization, the Factorial<N-1>
expression will trigger the instantiations of Factorial<1> followed by the instan-
tiation of Factorial<0>, Factorial<-1> etc. We have written a compile-time
infinite recursion. This is an ill-formed template metaprogram with no diagnostic
message, equivalent to infinite loops of run-time programs.

The C++ standard requires a maximum of 17 level of recursive template in-
stantiations. Therefore portable metaprograms must not exceed this limit. How-
ever, different compilers have rather diverse behavior.

Compiler g++ 3.4 halts the compilation process after the 17 levels of implicit
instantiations is reached, as defined by the C++ standard. This limit can be
modified by compiler flags. The MSVC 6 compiler runs until its resources are
exhausted (reached Factorial<-1308> in our test). MSVC 7.1 halted the com-
pilation reaching a certain recursion depth. The error message received was fatal
error C1202: recursive type or function dependency context too complex.

However, some compilers, like g++ can be parameterized to accept deeper
instantiation levels. In this case the compiler continues the instantiation risking
that the resources will be exhausted. In that unfortunate situation the compiler
crashes.

6.2 Debugging Techniques

Tools used for debugging in run-time programming are not available in the well–
known way when dealing with metaprograms. We have no command for printing
to the screen (in fact we have practically no commands at all), and we have no
framework to manage running code. On the other hand, we still have some op-
tions. Having a set of good debugging tools in the runtime world and a strong
analogue between the runtime and compile-time realm, we can attempt to imple-
ment a template metaprogram debugging framework. In the following we explain
the structure of Templight, a template metaprogram debugger framework [18].

A common property of debugging tools is that they analyze a specific execu-
tion of the program. In the case of debugging C++ template metaprograms our
goal is to retrieve the chain of template instantiations with as much additional
information (template parameters, etc.) as we can.

In the most favorable case the execution does not depend on the usage of
the debugging tool. In such cases it does not matter whether we are using the
tool on the running program itself or we analyze a previously generated trace of
its runtime steps. Most compilers generate additional information for debuggers

338 Z. Porkoláb

and profilers. Obviously, the simplest way for providing trace information on in-
stantiations would be the implementation of another compiler feature. However,
an immediate and more portable solution is to use external tools cooperating
with standard C++ language elements. The appropriate compiler support could
be an ideal long-term solution.

Without the modification of the compiler the only way of obtaining any in-
formation during compilation is generating informative warning messages that
contain the details we are looking for [1]. Therefore the task is the instrumenta-
tion of the source, i.e. its transformation into a functionally equivalent modified
form that triggers the compiler to emit talkative warning messages. The con-
cept of such instrumentation is common in the field of debuggers, profilers and
program slicers. Everytime the compiler starts to instantiate a template, defines
an inner type etc. the inserted code fragments generate detailed information on
the actual template-related event. Similar warnings should be emitted when we
reach the end of the template. Embedded start and end markers unambigously
identifies the chain of template instantiations – similar to the stack frames of
runtime programs. We have to collect the desired information from the corre-
sponding warning messages in the compilation output and form a trace file. A
front-end tool may use this information to implement various debugging features
and visualization of the instantiations.

The input of the process is a C++ source file and the output is a trace file,
containing a list of events like instantiation of template X began, instantiation of
template X ended, typedef definition found etc. The procedure begins with the
execution of the preprocessor with exactly the same options as if we were to com-
pile the program. As a result we acquire a single file, containing all #included
template definitions and the original code fragment we are debugging. The pre-
processor decorates its output with #line directives to mark where the different
sections of the file come from. This information is essential for a precise jump
to the original source file positions as we step through the compilation while
debugging. To simplify the process we handle the mapping of the locations in
the single processed file to the original source files in a separate thread. Simple
filter scripts move the location information from #line directives into a separate
mapping file and delete #line directives.

At this point we have a single preprocessed C++ source file, that we trans-
form into a C++ token sequence. To make our framework as portable and self-
containing as possible we apply the boost::wave C++ parser. Note that even
though boost::wave supports preprocessing, we still use the original preproces-
sor tool of the compilation environment to eliminate the chance of bugs occurring
due to different tools being used. Our aim is to insert warning-generating code
fragments at the instrumentation points. As wave does no semantic analysis
we can only recognize these places by searching for specific token patterns. We
go through the token sequence and look for patterns like template keyword +
arbitrary tokens + class or struct keyword + arbitrary tokens + { to identify
template definitions. The end of a template class or function is only a } token
that can appear in quite many contexts, so we should track all { and } tokens

Functional Programming with C++ Template Metaprograms 339

in order to correctly determine where the template contexts actually end. This
pattern matching step is called annotating, its output is an XML file containing
annotation entries in a hierarchical structure following the scope.

The instrumentation takes this annotation and the single source and inserts
the warning-generating code fragments for each annotation at its corresponding
location in the source. Therefore a source is produced that emits warnings at
each annotation point during its compilation. The next step is the execution
of the compiler to have these warning messages generated. The inserted code
fragments are intentionally designed to generate warnings that contain enough
information about the context and details of the actual event. Since the compiler
may produce output independently of our instrumentation, it is important for
debugger warnings to have a distinct format that differentiates them. This is the
step where we ask the compiler for valuable information from its internals. Here
the result is simply the build output as a text file. The warning translator takes
the build output, looks for the warnings with the aforementioned special format
and generates an event sequence with all the details. The result is an XML
file that lists the events that occurred during the compilation in chronological
order. The annotations and the events can be paired. Each event signals that the
compiler went through the corresponding annotation point. We can say events
are actual occurrences of the annotation points in the compilation process.

6.3 Profiling

Unfortunately, implementations of template metaprograms are typically far from
optimal [1]. One reason is that compilers are optimized to generate efficient run-
time code and not designed to maximize efficiency of the compilation process
itself. Another reason is that programmers are not familiar with all the back-
ground costs of the metaprogram constructs. This may result in a very long
compilation time and huge memory usage. With a profiling tool we should be
able to identify these “noisy” code segments that hold up the compilation pro-
cess. Since traditional profiler tools are unapplicable to metaprograms running
at compilation time, the development of metaprogram-specific profiling tools is
crucial. Unfortunately, today there are no C++ template metaprogram profiling
tools available. In this subsection we describe methods for template metapro-
gram profiling, which could serve as foundations of an optimization process.

Measuring compilation units. The simplest method for measuring compile-
time performance is measuring the full compilation of units. Compilation of full
source files does not require code modification, therefore this is a non-intrusive
method, and does not add overhead or significant distortion. Although filtering
out all perturbations is not easy, most operating systems provide fair tools to
measure the experienced real-time, user- and system times on a compilation
session.

In most cases locating, loading, and parsing header files is a non-trivial ef-
fort. To filter out this effect we can run the precompiler in a separate session

340 Z. Porkoláb

in one step
already preprocessed

separate preprocessing

Fig. 2. Compilation time with separate precompilation

and measure only further compilation stages. Figure 2 shows that separating
precompiler tasks changes the compilation times significantly.

Compiling full programs or compilation units can reveal significant behavioral
patterns of programs or template constructs. Abrahams and Gurtovoy measured
template metaprogram constructs in [1] with this method and could point to
fundamental differences in strategy and tactics of different compilers. They have
shown the effect of certain techniques, like memoization and have measured
structural complexity of metaprograms.

However, measuring full compilation time has shortages. It is not always trivial
to write wrapper programs around specific template constructs without seriously
distorting measurement results. The full session of compilation includes activi-
ties we are not interested in: initializations, solving non-template metaprogram
related tasks. Code generation, optimization steps produce significant overhead
too. When we analyze the results we get the compilation times, but no implica-
tions on how this gross time splits among different code components. Measuring
full compilation is great to prove concepts but hard to use for analysis.

Measuring with instrumenting. Most compilers generate additional infor-
mation for profilers. An appropriate compiler support for measuring template
metaprogram profiles would be the ideal solution. However, as this support is
unavailable today, an immediate and portable method is to use external tools
cooperating with standard C++ language elements.

Using the Templight tool – described in subsection 6.2 – is a natural choice in-
strumenting the source code providing profiling information. With the Templight
framework we have to execute only one compilation that emits warnings for each
instantiation, and a post processing pipelined tool memorizes the timestamps
whenever a warning occurs. This way we have timestamps for each template-
related event, and the processing time of a certain template instance can eas-
ily be computed by subtracting the timestamps stored at the corresponding
template-begin and template-end events (warning messages).

Functional Programming with C++ Template Metaprograms 341

A factor of distortion is the way we add timestamps to the emitted warning
messages. Compilers do not decorate warnings with timestamp info. In the sim-
plest solution an external program reads compiler output and records the actual
time whenever it sees some of our special warning messages being produced by
the instrumented fragments. In this case the delay between the warning is gen-
erated and timestamped can be sigificant. It is better to have the timestamp
generated inside the compiler when constructing the warning message, as this
delay can be eliminated. However, this requires the modification of the compiler.

Inheritance relationships require special attention when using Templight. As
warnings emitted by the injected code appear at the begin and end of templated
code, the end marker of the base class will be emitted before the begin marker
of the derived class. This could be solved by the extra decoration of the (first)
base class.

template <typename T>
class Derived : public ReportInherit<Derived<T>, Base<T> >::Base
{
/* skipping this instrumentation point */
// ..
/* remaining instrumentation point */

};

Modification of the compiler. The most accurate way of evaluating com-
pilation times is by acquiring timing information from the compiler itself. As
our metaprogram is executed on a meta-level from the viewpoint of C++, a
meta-level profiler is needed, i.e. one measuring the compiler’s action times. The
näıve approach – to use a profiler tool (like gprof) and measure the compiler’s
runtime – does not work, since we cannot identify which metaprogram elements
of the subject code are under compilation at a certain moment. Even though we
would be able to measure individual compiler method’s running time in general,
we could not disambiguate certain instantiations. In other words, we could ac-
quire the sum of all instaniation times, but would not be able to measure each
instantiation separately.

To gain the required detailed data on particular instantiations we have to
modify the compiler for the purpose. We instrument the code with Templight,
but generate warnings decorated with timestamps via the modified compiler.
Figure 3 shows the compilation time after we instrumented the GNU g++ com-
piler (version 3.4.3) The modification consists of generating timestamps when
entering and exiting these functions and adding it to the emitted message. We
used this approach to eliminate the distortion of generating the warning itself.
Experiments showed that in many cases the time we spent in these functions is
significant.

The measured code contains recursive template instantiation. The raw data
shows the observed times, i.e. the time the compiler spent on instantiating up
to 2500 instances of the measured class plus the time of the warning generation

342 Z. Porkoláb

raw

corrected

Fig. 3. Compilation time with the time spent for warnings (raw) and without it (cor-
rected) in a test of increasing template depth

due to code instrumentation. The corrected data has been constructed by sub-
tracting the time the compiler spent with warning generation from the observed
time.

7 Related Work

7.1 FC++

FC++ is a C++ library providing runtime support for functional programming
[15]. Using the tools the library provides functional programs can be written in
C++ from which the expression graph is built and evaluated at runtime. They do
not require any external tools (such as a translator), but use standard language
features only. The library focuses on runtime execution.

7.2 Boost Metaprogramming Library

Boost has a template metaprogramming library called boost::mpl which im-
plements several data types and algorithms following the logic of STL [11]. Our
solution is designed to be compatible with it (the lambda expressions produced
by our compiler are designed to be template metafunction classes taking one ar-
gument). Boost::mpl has lambda expression support: the library provides tools
to create lambda abstractions easily: placeholders (1, 2, etc.) are provided and
arguments of metafunctions can be replaced by them. The result of evaluating a
metafunction with a placeholder argument is not directly usable, a metafunction
called lambda generates a metafunction class from them. Using these lambda ab-
stractions, partial function applications can be implemented, but since lambda
bounds every placeholder, lambda abstractions with other lambda abstractions
as their value can’t be defined. For example λx.λy.+xy can’t be expressed (and
neither can be the Y fixpoint operator) [38].

Functional Programming with C++ Template Metaprograms 343

7.3 Haskell Type Classes

Zalewski et al. defined a mapping from generic Haskell specifications to C++
with concepts [33]. Haskell multi-parameter type classes with functional depen-
dencies have been translated to ConceptC++, an experimental implementation
of the concept feature of C++0x. The translation process consists of three major
parts: the division of Haskell class variables into ConceptC++ concept param-
eters and associated types, the corresponding division of superclasses in the
context of a type class, and the flattening of Haskell AST to the concrete syn-
tax of ConceptC++. The main motivation of the authors was to model software
components in Haskell type classes, then transform them to C++ concepts. Thus
the implementation in C++ is checked against the constraints defined originally
in Haskell.

7.4 Debugging and Profiling

Template metaprogramming was first investigated in Veldhuizen’s articles
[31,30]. Static interface checking was introduced by McNamara [16] and Siek
[20]. The compile-time assertion appeared in Alexandrescu’s work [2]. Vandevo-
orde and Josuttis introduced the concept of a tracer, which is a specially designed
class that emits runtime messages when its operations are called [29]. When this
type is passed to a template as an argument, the messages show in what order
and how often the operations of that argument class are called. The authors also
defined the notion of an archetype for a class whose sole purpose is checking that
the template does not set up undesired requirements on its parameters. In their
book [1] Abrahams and Gurtovoy devoted a whole section to diagnostics, where
the authors showed methods for generating textual output in the form of warning
messages. They implemented the compile-time equivalent of the aforementioned
runtime tracer (mpl::print, see [37]).

8 Conclusion

In this paper we gave a brief and incomplete introduction to C++ templates
and template metaprogramming. We learned the fundamental methods of writ-
ing metaprograms, and discussed the connection of C++ metaprogramming and
the functional programming paradigm. We proposed a pure functional interface
in form of embedded Haskell code to improve metaprogram development. Tech-
niques for supporting tools – debugger and profiler – have been presented.

Ideally, the syntax of a programming language should match the paradigm the
program is written in. Template metaprogramming, a Turing-complete subset
of the C++ language for implementing compile-time algorithms is many times
regarded as a pure functional language. Unfortunately, the current way of writing
metaprograms is far from ideal, mainly due to the complicated template syntax
and the different original design goals of C++. Therefore template metaprograms
are hard to read, understand and maintain.

344 Z. Porkoláb

The author’s idea is to write template metaprograms in functional style with
the help of a functional programming language. Haskell code fragments em-
bedded into C++ host language can be compiled into template metaprograms.
Thus we are able to write clear, maintenable metaprogram code, reusing a huge
number of the existing codebase of the Haskell community.

Acknowledgements

The author would like to thank Zoltán Csörnyei and Péter Diviánszky for clari-
fying the details of the functional programming paradigm, and József Mihalicza
for his indispensable work on debugging and profiling metaprograms. Norbert
Pataki and Melinda Simon helped to develop various metaprogram examples.
Ábel Sinkovics, Ádám Sipos, and Viktória Zsók made fundamental work on im-
plementing translators from Haskell and Clean to C++ template metaprograms.
Zalán Szűgyi and István Zólyomi inspired me and made important contributions
on various topics of C++ template metaprogramming.

References

1. Abrahams, D., Gurtovoy, A.: C++ template metaprogramming, Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley, Boston (2004)

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, Reading (2001)

3. ANSI/ISO C++ Committee. Programming Languages – C++. ISO/IEC
14882:1998(E). American National Standards Institute (1998)

4. Bohm, C., Jacopini, G.: Flow Diagrams, Turing Machines and Languages with
Only Two Formation Rules. Communications of the ACM 9(5), 366–371 (1966)

5. Bravenboer, M., Vermaas, R., Vinju, J., Visser, E.: Generalized Type-Based Dis-
ambiguation of Meta Programs with Concrete Object Syntax. In: Glück, R., Lowry,
M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 157–172. Springer, Heidelberg (2005)

6. Brus, T.H., van Eekelen, C.J.D., van Leer, M.O., Plasmeijer, M.J.: CLEAN: A
language for functional graph rewriting. In: Kahn, G. (ed.) FPCA 1987. LNCS,
vol. 274, pp. 364–384. Springer, Heidelberg (1987)

7. Csörnyei, Z., Dévai, G.: An introduction to the lambda-calculus. In: Horváth, Z.,
Plasmeijer, R., Soós, A., Zsók, V. (eds.) Central European Functional Programming
School. LNCS, vol. 5161, pp. 87–111. Springer, Heidelberg (2008)

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Reading (2000)

9. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: A Comparative Study
of Language Support for Generic Programming. In: Proceedings of the 18th ACM
SIGPLAN OOPSLA, pp. 115–134 (2003)

10. Juhász, Z., Sipos, Á., Porkoláb, Z.: Implementation of a Finite State Machine with
Active Libraries in C++. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative
and Transformational Techniques in Software Engineering II. LNCS, vol. 5235, pp.
474–488. Springer, Heidelberg (2008)

11. Karlsson, B.: Beyond the C++ Standard Library, A Introduction to Boost.
Addison-Wesley, Reading (2005)

12. Koopman, P., Plasmeijer, R., van Eeekelen, M., Smetsers, S.: Functional program-
ming in Clean (2002)

Functional Programming with C++ Template Metaprograms 345

13. Mitchell, N., Runciman, C.: A Supercompiler for Core Haskell. In: Chitil, O.,
Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 147–164. Springer,
Heidelberg (2008)

14. Musser, D.R., Stepanov, A.A.: Algorithm-oriented Generic Libraries. Software-
practice and experience 27(7), 623–642 (1994)

15. McNamara, B., Smaragdakis, Y.: Functional programming in C++. In: Proceed-
ings of the Fifth ACM SIGPLAN International Conference on Functional Program-
ming, pp. 118–129 (2000)

16. McNamara, B., Smaragdakis, Y.: Static interfaces in C++. In: First C++ Template
Programming Workshop, Erfurt (October 2000)

17. Jones, S.L.P.: The Implementation of Functional Languages, pp. 4–45. Prentice-
Hall, Englewood Cliffs (1987)

18. Porkoláb, Z., Mihalicza, J., Sipos, Á.: Debugging C++ template metaprograms.
In: Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L. (eds.) Proceedings Generative
Programming and Component Engineering, 5th International Conference, GPCE
2006, Portland, Oregon, USA, October 22-26, pp. 255–264. ACM, New York (2006)

19. Gregor, D., Järvi, J., Siek, J.G., Reis, G.D., Stroustrup, B., Lumsdaine, A.: Con-
cepts: Linguistic Support for Generic Programming in C++. In: Proceedings of
the 2006 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006 (October 2006)

20. Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in
C++. In: First C++ Template Programming Workshop, Erfurt (October 2000)

21. Siek, J., Lumsdaine, A.: Essential Language Support for Generic Programming. In:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, New York, NY, USA, pp. 73–84 (2005)

22. Siek, J.: A Language for Generic Programming. PhD thesis, Indiana University
(August 2005)

23. Sinkovics, Á., Porkoláb, Z.: Expressing C++ Template Metaprograms as Lambda
expressions. In: Horváth, Z., Zsók, V., Achten, P., Koopman, P. (eds.) Tenth sym-
posium on Trends in Functional Programming (TFP 2009), Komarno, Slovakia,
June 2 - 4, pp. 97–111 (2009)

24. Sipos, Á., Porkoláb, Z., Zsók, V.: Meta<fun> – Towards a functional-style interface
for C++ template metaprograms. In: Frentiu, et al. (eds.) Studia Universitatis
Babes-Bolyai Informatica LIII,Cluj-Napoca, pp. 55–66 (Febraury 2008)

25. Sipos, Á.: Effective development of C++ Template Metaprograms. PhD thesis.
Eötvös Loránd University, Budapest, Hungary (2009)

26. Stroustrup, B.: The C++ Programming Language Special Edition. Addison-
Wesley, Reading (2000)

27. Torgersen, M., Hansen, C.P., Ernst, E., Ahe, P., Bracha, G., Gafter, N.: Adding
Wildcards to the Java Programming Language. In: Proceedings of the 2004 ACM
Symposium on Applied Computing (SAC) 2004, pp. 1289–1296 (2004)

28. Unruh, E.: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462
29. Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide.

Addison-Wesley, Reading (2003)
30. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers

and libraries. In: Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientic and Engineering Computing (OO 1998), pp. 21–23.
SIAM Press, Philadelphia (1998)

31. Veldhuizen, T.: Using C++ Template Metaprograms. C++ Report 7(4), 36–43
(1995)

346 Z. Porkoláb

32. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26–31 (1995)
33. Zalewski, M., Priesnitz, A.P., Ionescu, C., Botta, N., Schupp, S.: Multi-language

library development: From Haskell type classes to C++ concepts. In: MPOOL 2007
Ecoop workshp (2007)

34. Zólyomi, I., Porkoláb, Z., Kozsik, T.: An extension to the subtype relationship in
C++. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
209–227. Springer, Heidelberg (2003)

35. Zólyomi, I., Porkoláb, Z.: Towards a template introspection library. In: Karsai, G.,
Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 266–282. Springer, Heidelberg
(2004)

36. Boost Concept checking,
http://www.boost.org/libs/concept_check/concept_check.htm

37. Boost Metaprogramming library,
http://www.boost.org/libs/mpl/doc/index.html

38. The boost lambda library,
http://www.boost.org/doc/libs/1_40_0/doc/html/lambda.html

39. Glasgow Haskell Compiler,
http://www.haskell.org/ghc/

40. York Haskell Compiler,
http://community.haskell.org/~ndm/yhc/

A Appendix: The Sample Programs

In this appendix we publish a selection of examples. All the examples could
be independently compiled and run. We tested the examples with g++ version
4.3 compiler, however most of them will work fine with other compilers. No-
table exceptions are example 15 and 16 which generate warnings for debug-
ging purposes. Here passing a string literal to a char* parameter emits the
warning. In the case of older compilers or compiler versions the assingnment
unsigned int i = -1.0 will generate warning. All the examples could be
downloaded from http://aszt.inf.elte.hu/~gsd/cefp/.

//--
// example 01
// side effects of C/C++ macros
//--
#include <iostream>
#define MAX(a,b) a > b ? a : b

int main()
{
int i = 3;
double d = 3.14;

std::cout << "MAX(i, d) = "
<< (MAX(i, d)) << std::endl;

std::cout << "MAX(i, d)*2 = "
<< (MAX(i, d)*2) << std::endl;

http://www.boost.org/libs/concept_check/concept_check.htm
http://www.boost.org/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_40_0/doc/html/lambda.html
http://www.haskell.org/ghc/
http://community.haskell.org/~ndm/yhc/

Functional Programming with C++ Template Metaprograms 347

std::cout << "MAX(++i, d) = "
<< (MAX(++i, d)) << std::endl;

return 0;
}

//--
// example 02
// simple template with on type argument
//--
#include <iostream>

template <typename T>
T max(T x, T y)
{
if (x > y)
return x;

else
return y;

}
int main()
{
int i = 3, j = 4;
double d = 3.14, e = 2.71;

std::cout << "max(i, j) = "
<< max(i, j) << std::endl;

std::cout << "max(d, e) = "
<< max(d, e) << std::endl;

// syntax error:
std::cout << "max(i, d) = "

<< max(i, d) << std::endl;
return 0;

}

//--
// example 03
// template with two type arguments
//--
#include <iostream>

template <typename T, typename S>
T max(T x, S y)
{
if (x > y)
return x;

348 Z. Porkoláb

else
return y;

}
int main()
{
int i = 3;
double d = 3.14;

std::cout << "max(d, i) = "
<< max(d, i) << std::endl;

std::cout << "max(i, d) = "
<< max(i, d) << std::endl;

return 0;
}

//--
// example 04
// template with three type arguments
//--
#include <iostream>

template <typename R, typename T, typename S>
R max(T x, S y, R)
{
if (x > y)
return x;

else
return y;

}
int main()
{
int i = 3;
double d = 3.14;

std::cout << "max(d, i, 0.0) = "
<< max(d, i, 0.0) << std::endl;

std::cout << "max(i, d, 0.0) = "
<< max(i, d, 0.0) << std::endl;

return 0;
}

//--
// example 05
// explicit specialization
//--

Functional Programming with C++ Template Metaprograms 349

#include <iostream>

template <typename R, typename T, typename S>
R max(T x, S y)
{
if (x > y)
return x;

else
return y;

}
int main()
{
int i = 3;
double d = 3.14;

std::cout << "max<double>(d, i) = "
<< max<double>(d, i) << std::endl;

std::cout << "max<double>(i, d) = "
<< max<double>(i, d) << std::endl;

return 0;
}

//--
// example 06
// overloading of templates
//--
#include <iostream>

template <typename T>
T max(T x, T y)
{
std::cout << "T max(T x, T y) = ";
if (x > y)
return x;

else
return y;

}
template <typename R, typename T, typename S>
R max(T x, S y)
{
std::cout << "R max(T x, S y) = ";
if (x > y)
return x;

else
return y;

350 Z. Porkoláb

}
int main()
{
int i = 3;
double d = 3.14;

std::cout << max(2, i) << std::endl;
std::cout << max<double>(i, d) << std::endl;

return 0;
}

//--
// example 07
// the factorial template metaprogram
//--
#include <iostream>

template <int N>
struct Fact
{
enum { value = Fact<N-1>::value * N };

};
template <>
struct Fact<1>
{
enum { value = 1 };

};
int main()
{
std::cout << Fact<6>::value << std::endl;
return 0;

}

//--
// example 08
// the fibonacchi template metaprogram
//--
#include <iostream>

template <int N>
struct Fib
{
enum { value = Fib<N-1>::value + Fib<N-2>::value };

};

Functional Programming with C++ Template Metaprograms 351

template <>
struct Fib<0>
{
enum { value = 0 };

};
template <>
struct Fib<1>
{
enum { value = 1 };

};
int main()
{
std::cout << Fib<6>::value << std::endl;
return 0;

}

//--
// example 09
// if-then-else template metaprogram
//--
#include <iostream>

template <bool cond, typename Then, typename Else>
struct If
{
typedef Then Ret;

};
template <typename Then, typename Else>
struct If<false, Then, Else>
{
typedef Else Ret;

};
template <typename T, typename S>
If<sizeof(T)<sizeof(S), S, T>::Ret max(T x, S y)
{
if (x > y)
return x;

else
return y;

}
int main()
{
int i = 3;
double d = 3.14;

352 Z. Porkoláb

std::cout << "max(d, i) = "
<< max(d, i) << std::endl;

std::cout << "max(i, d) = "
<< max(i, d) << std::endl;

return 0;
}

//--
// example 10
// debugging the factorial metaprogram
//--
#include <iostream>

static inline int f(char *s){ return 1;}

template <int N>
struct Fact
{
enum { begin = sizeof (f("")) };
enum { value = Fact<N-1>::value * N };
enum { end = sizeof (f("")) };

};
template <>
struct Fact<1>
{
enum { begin = sizeof (f("")) };
enum { value = 1 };
enum { end = sizeof (f("")) };

};
int main()
{
std::cout << Fact<6>::value << std::endl;
return 0;

}

//--
// example 11
// debugging the fibonacchi metaprogram
//--
#include <iostream>

static inline int f(char *s){ return 1;}

template <int N>

Functional Programming with C++ Template Metaprograms 353

struct Fib
{
enum { begin = sizeof (f("")) };
enum { value = Fib<N-1>::value + Fib<N-2>::value };
enum { end = sizeof (f("")) };

};
template <>
struct Fib<0>
{
enum { value = 0 };

};
template <>
struct Fib<1>
{
enum { value = 1 };

};
int main()
{
std::cout << Fib<6>::value << std::endl;
return 0;

}

Embedding a Proof System in Haskell�

Gergely Dévai

Eötvös Loránd University, Faculty of Informatics
Dept. of Programming Languages and Compilers

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
deva@elte.hu

Abstract. This article reports about a work-in-progress project that
aims at embedding a proof system [4] in the Haskell programming lan-
guage. The goal of the system is to create formally verified software using
the correctness by construction principle. Using Haskell as the host lan-
guage provides a powerful and flexible environment so that programming
language tools can be used to build proofs.

The main contribution of this paper is the systematic analysis of dif-
ferent techniques for language embedding. We present design decisions
by pointing out which techniques are applicable and which ones are inap-
propriate or inconvenient to use when embedding a proof system like the
our one. We also point out the advantages of the embedding compared
to a previous implementation of the same system.

1 Introduction

Correctness by construction [20] is a reasonable way of producing formally veri-
fied software. Writing the specification first and deriving a program from it helps
in design decisions. We can also avoid making too much effort to prove a program
that is actually wrong, while this can happen in case of posterior verification.

Deriving a program means that one replaces the original specification with a
more detailed one using refinement rules. This refinement process results in a
proof that can be validated automatically.

In systems like the B-method [5] there are refinement rules that introduce
programming structures. This means that the refinement process results in a
program which is a solution for the problem defined by the specification. In our
system it is not necessary to derive a program by hand during the refinement
process: It is possible to automatically generate program code from the axioms
used to complete the proof. This way, the system is independent of the tar-
get programming language, it can be equipped with sets of axioms and code
generator modules for different programming languages.

Our system was first implemented as a standalone specification and proof lan-
guage. It supports the construction of imperative programs with a C++ backend.
The proof checker itself was also implemented in C++. The expressive power of

� This work is supported by ELTE IKKK (KMOP-1.1.2-08).

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 354–371, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Embedding a Proof System in Haskell 355

this language was tested by implementing axioms about pointer operations [13]
and containers in the C++ Standard Template Library [14].

We concluded that generalizing and parametrizing often used proof fragments
made proof construction much more effective. We introduced a meta language [12]
on top of the proof language to be able to define and reuse these generalized proof
fragments that we call templates. Adding more features to this meta language
made proof templates more flexible and powerful: We were able to use them as
proof generators. However, the lack of λ-abstraction was a severe restriction.

These observations inspired the embedding of our system in a functional lan-
guage. In case of deep embedding, one defines data types in the host language
to represent constructs of the embedded language. To complete the embedding,
a set of functions has to be defined to make the manipulation of the represented
constructs convenient. This means that the host language becomes a meta lan-
guage: It is possible to use all its power to generate programs of the embedded
language. Haskell, as a pure, lazy functional language with an unobtrusive syntax
is especially well-suited to be a host language.

The current status of the project is the following. We have embedded our
proof-system in Haskell by implementing the necessary data structures, the fron-
tend library and the proof verification algorithm. The next step is to port the
axioms and proof templates created for the earlier C++ implementation into
the new, Haskell-based one. The C++ code generator backend is also to be
re-implemented in Haskell to complete the system.

In the next section we give an overview on the proof system that we have
embedded in Haskell. In section 3 we discuss design decisions we had to make
during the embedding process and point out the advantages and disadvantages
of the different approaches. Section 4 presents the frontend of the language. It
is a library that defines the “syntax” of the language and makes construction of
expressions, formulas and proofs more convenient. In the last section we point
out that using the functional programming paradigm and language embedding
technologies can make the implementation simpler and more powerful at the
same time. Finally we present related and future work.

2 Overview of the Proof System

This section informally presents the proof system we would like to embed in
Haskell. It uses classical first order logic and a special type of temporal logic. It is
suitable both for imperative and purely functional programs. The system was de-
signed for program development using the correctness by construction paradigm.

2.1 Proof Structure

Specification statements of the system consist of progress and safety properties.
Progress properties are built up of a pre- and a postcondition. In case of imper-
ative programs, a progress property states that whenever the program reaches
a state where the precondition holds, it has to reach eventually a state where
the postcondition is true. Purely functional programs have no state, therefore

356 G. Dévai

pre- and postconditions in that case define the relation between the inputs and
outputs of functions: For all possible input that makes the precondition true,
the function’s result has to satisfy the postcondition.

While the semantics of pre- and postconditions are different for imperative and
functional programs, their refinement rules are identical. We use three refinement
rules to split up a specification: sequence, selection and induction.

Sequence introduce an intermediate step in-between the precondition and
postcondition. If we can prove that an imperative program makes the intermedi-
ate condition true starting from the precondition, and reaches the postcondition
from the intermediate one, then we can conclude that it eventually reaches the
postcondition from the precondition. In case of purely functional programs, the
sequencing rule is even more simple: If we can prove the intermediate condi-
tion from the precondition and the postcondition from the intermediate one, we
have proved the postcondition from the precondition. These sequencing rules
can easily be generalized for more than one intermediate steps as well.

In case of selection, we split the precondition into several conditions, such that
their disjunction follows from the precondition. If the imperative program reaches
the postcondition from each of these conditions, it reaches the postcondition from
the precondition as well. In case of purely functional programs, this rule splits
the proof in several cases.

While proving a theorem in this system, we may use the statement of the
theorem itself with different arguments in order to complete the proof. In order
to ensure the well-foundness of the induction one has to prove that the new set of
arguments is positive and strictly less than the original arguments of the theorem
(according to a suitable ordering on the possible values and a zero element).

In case of imperative programs, progress properties can be extended by safety
properties. A program satisfies such an extended property, if during the progress
from the precondition to the postcondition, in case the safety property becomes
true it remains true at least until the program reaches the postcondition. In order
to prove a safety property attached to a progress property, the system checks all
the temporal axioms used to complete the proof of the progress property if they
maintain the safety property.

A property and its proof can be represented by a proof tree. The root of the tree
is the property to prove. If the proof is a sequence or selection, the proof obligations
we mentioned earlier will be the child nodes in the tree. These child nodes may
also have children according to the corresponding proof. A leaf of the proof tree
is either a inductive application of the theorem in the root, or an axiom.

2.2 Program Extraction

Axioms may describe mathematical properties of functions (eg. transitivity of
equality) or properties of elementary constructs of the target programming lan-
guage (eg. temporal properties of an assignment). In the second case, a rep-
resentation of the programming construct is encapsulated in the axiom. This
representation can be arbitrary data structure, its form is up to the programmer
who implements the axiomatization of the given target programming language.

Embedding a Proof System in Haskell 357

A theorem to prove is in fact a specification of the program to develop. Using
the constructs described in the previous subsection, one creates a proof for the
theorem in a top-down manner. Proofs can be completed by using some of the
available axioms.

The proof checker algorithm provided by the system validates this proof. Its
result is either a set of error messages, or a list of program fragments collected
from the axioms used in the proof. This algorithm terminates for all proofs
and is sound (i.e. it only accepts valid proofs). This proof checking algorithm is
implemented by the validate function mentioned in section 3.4.

The list of program fragments collected by the proof checker can be trans-
formed to program text according to the syntax of the target programming
language. This transformation is completely independent of the proof system
itself, it has to be provided by the library supporting the given target language.
This design makes the proof system highly extensible.

Correctness by construction means, that the generated program fulfils the
specification provided at the beginning of the development process. The sound-
ness of the program has two conditions: both the implementation of the proof
system and the axioms about the target programming language have to be sound.

3 Design Decisions

Creating an embedded language consists of the following tasks:

– representing the constructs of the embedded language using the features of
the host language,

– creating frontend, that is, a library that provides an easy way for users to
express embedded language programs,

– writing backend, that is, a compiler, interpreter or some other program that
implements the semantics of the embedded language.

The current section of this paper discusses the first task, the representation of the
language constructs. Section 4 presents briefly the frontend library. The backend is
mainly out of scope of this paper, but the proof checking rules andbasics of program
extraction are informally presented in section 2 (see [11] for formal discussion).

If we want to embed a proof system like the one described in section 2, we need
a host language that makes symbolic manipulation of expressions and formulas
easy. This suggests declarative languages. We used Haskell, because it is an
advanced functional programming language with a sophisticated type system.
In addition, Haskell has a minimalistic syntax that makes it especially suitable
for being a host language.

We had to make several design decisions while embedding the proof system
in Haskell. In this section we summarize the most important ones by presenting
solutions we applied together with other techniques that have turned out to be
not or hardly applicable for our problems.

358 G. Dévai

3.1 Shallow or Deep Embedding

Shallow embedding means that entities of the embedded language and the host
language coincide. In our case this means that functions in the specification
statements would be Haskell functions. A logical formula then could be a Haskell
function of return type Bool. This would be an option only if Haskell supported
symbolic manipulation of functions, which is not the case. It is not possible to
infer a == c from a == b && b == c if these are Haskell expressions of type
Bool. The inference function would have type

infer :: Bool -> Bool -> Bool

and it would not be possible to observe the structure of the expressions passed
to this function.

Deep embedding encodes the constructs of the embedded language using data
types. A naive representation of expressions and formulas could be implemented
using the following data structures.

data Expression
= Symbol String
| Appl Expression Expression
| Lambda String Expression

data Formula
= Literal Expression
| And Formula Formula
| Or Formula Formula
| Not Formula
| Forall String Formula
| Exists String Formula

The previous formula a == b && b == c could then be encoded as follows1.

And
(Literal $ Appl (Appl (Symbol "==") (Symbol "a")) (Symbol "b"))
(Literal $ Appl (Appl (Symbol "==") (Symbol "b")) (Symbol "c"))

In case of deep embedding, an inference function would get Formulas as param-
eters and could perform pattern matching on them:

infer :: Formula -> Formula -> Bool

3.2 Typed Expressions

Types and static type checking is crucial for our proof system. Partly because
writing sound axioms or meaningful specification is quite difficult using expres-
sions without types, partly because the system mainly targets statically typed
programming languages.
1 The $ operator in Haskell stands for function application and it has low precedence. It

can be used to spare parentheses: One writes f $ g $ h x instead of f (g (h x)).

Embedding a Proof System in Haskell 359

One possibility to introduce typed expressions is to extend the data types
shown above with type parameters. In order to do this we need an extra data
type that represents the possible types.

data Type
= Simple String
| Arrow Type Type

This Type type could then be used to extend the Expression data type:

data Expression
= Symbol String Type
| Appl Expression Expression
| Lambda String Expression

This approach unfortunately allows ill-typed expressions like the following one.

Appl (Symbol "f" $ Arrow (Simple "Int") (Simple "Char"))
(Symbol "x" $ Simple "Bool")

This means that we need a type-checking function that computes the types
of compound expressions and finds type errors. Writing such a function is a
straightforward but tiresome task.

Fortunately, we can use the type checking algorithm of the Haskell compiler
to perform this work for us. There is an extension to the Haskell language
supported by the Glasgow Haskell Compiler tools, called generalized algebraic
data types (GADTs)[16]. In case of GADTs, the type parameters are flexible
in the constructors’ types, making it possible to implement typing rules for our
expressions.

data Expression t where
Symbol :: String -> Expression a
Appl :: Expression (a -> b) -> Expression a -> Expression b
Lambda :: String -> Expression b -> Expression (a -> b)

This way we can reuse Haskell types for our expressions and can use the Haskell
compiler to catch type errors. Here is our previous ill-typed expression encoded
using the new representation.

Appl (Symbol "f" :: Expression (Int -> Char))
(Symbol "e" :: Expression Bool)

The Haskell compiler reports in this case the following error.

Couldn’t match expected type ‘Int’ against inferred type ‘Bool’
...

Note, that the Haskell compiler cannot always infer all types. Sometimes the user
has to explicitly declare the types of certain expressions; however, this burden
is outweighed by the safety that static type checking provides.

360 G. Dévai

3.3 Parameters

Embedding of parametric entities. Let us observe how to implement
beta-reduction for expressions defined in the previous section. In order to
perform the reduction

Appl (Lambda “x” $ Symbol “x”) (Symbol “a”) −→ Symbol “a”

we have to find all occurrences of Symbol “x” inside the λ-expression
and replace them with the right-hand side of the application. Furthermore, such
a reduction function has to take care of variable scopes and name capture too.

Again, this work can be saved by making use of the Haskell machinery. The
idea is to use a Haskell function inside the lambda expression. We change the
declaration of the Lambda constructor to the following one.

Lambda :: (Expression a -> Expression b) -> Expression (a -> b)

This way, the expression seen above is encoded as follows.

Appl (Lambda $ \x -> x) (Symbol a)

Implementation of reduction2 becomes quite straightforward: We have to apply
the function inside the λ-expression on the second argument of the application.

reduce :: Expression a -> Expression a
reduce (Symbol s) = Symbol s
reduce (Appl (Lambda f) e) = reduce $ f e
reduce (Appl f e) = Appl (reduce f) (reduce e)
reduce (Lambda f) = Lambda $ \x -> reduce $ f x

The same technique can be applied in several cases while embedding our proof
system. For example, the parameters of universal and existential quantifiers can
also be Haskell functions from expressions to formulas. It is possible to make use
of this technique to add parameters to theorems too.

The next code snippet shows the altered representation of formulas. As ex-
pressions have a type parameter which formulas does not, we need a GADT
again.

data Formula where
Literal :: (Expression Bool) -> Formula
Forall :: (Expression a -> Formula) -> Formula
Exists :: (Expression a -> Formula) -> Formula
...

Note, how simple it is to express that an expression inside a literal has to have
boolean type. Also note, that the type variable a in the types of Forall and
2 Note, that the goal of the reduce function is just to simplify expressions to help

the validation of proofs. It is not an interpreter that could be used to evaluate
expressions.

Embedding a Proof System in Haskell 361

Exists are unbound. According to the rules of Haskell, there is an implicit
universal quantifier on these type variables.

However, there is a possible problem with this approach. The parameter of
the Forall constructor may be a function that performs pattern matching on its
parameter and results in different formulas depending on it, like in the following
example.

Forall $ \expr -> case expr of
Symbol "x" -> Literal $ Symbol "a"
otherwise -> Literal $ Symbol "b"

It is not clear which logical formula is encoded by this example. The solution is
to forbid the user to observe the internal structure of expressions. This can be
achieved by hiding the constructors and any other function that deconstructs
formulas and expressions. The frontend of the language should export functions
only to construct them.

Unique parameters. We have implemented the simple inference function
infer :: Formula -> Formula -> Bool, that tries to infer a formula from an-
other one. Such a function can be sound, but, of course, cannot be complete.
It returns True if it succeeds to prove the inference and False otherwise, but
in the latter case it is still possible that the second formula is a consequence
of the first one. The algorithm is described in detail in [10]. It first converts
formulas to a generalized conjunctive normal form. The inference is first done
between conjunctive chains, then between disjunctive chains and finally between
formulas which are either literals or quantified formulas. This inference algo-
rithm performs well, if the proof requires axioms of propositional logic only, but
its capabilities are limited when working with quantified formulas.

To conclude Forall $ \x -> p x ⇒ Forall $ \y -> q y, the algorithm
tries to prove p t ⇒ q t, where t is a parameter not contained in p and q. We
extend the data type Expression with a new constructor3:

Parameter :: Id -> Expression a

This constructor is not visible in the frontend of the language, it can only be
used by the proof checking algorithm. The argument of a Parameter has to be
a unique identifier. There are basically two solutions for generating such a fresh
identifier: an elementary one and one using monads.

In the first solution, it is handy to use integers as Ids. We can generate a
fresh identifier by first applying p and q to a dummy, parameter-free expression,
and then traversing the resulting formulas to find the maximal integer used as
an identifier of a Parameter in any of them. Adding one to this maximum gives
a suitable identifier for the fresh parameter we need.

The same solution can be applied when plugging fresh parameters into a
parametric proof in order to validate it. However, traversing huge proofs each
time when a fresh identifier is needed can be inefficient.
3 If we used the Symbol constructor for parameters, the generated identifiers could

clash with the user-defined ones.

362 G. Dévai

In the other solution Id is the Unique data type from the standard Haskell
Data.Unique module. The module exports the function newUnique :: IO
Unique, that generates a fresh identifier within the IO monad each time we
call it. This way the generation of a fresh parameter is possible in constant
time, but the inference algorithm (and consequently the entire proof checking)
is monadic. Here is an example code fragment from the inference algorithm.

infer :: Formula -> Formula -> IO Bool
infer (Forall e1) (Forall e2) = do

id <- newUnique
infer (e1 $ Parameter id) (e2 $ Parameter id)

In order to infer one universally quantified formula from another one, this pro-
gram first generates a new, unique identifier (id), plugs a parameter with this
identifier into the quantified expressions and calls the inference function recur-
sively on the results.

3.4 Proof Representation

Data structures. Proofs presented in section 2 can be represented using Haskell
data structures in several ways. A series of experiments led us to the relatively
compact representation that we describe in this section.

The most important data structure is Statement, consisting of a precondition,
a postcondition and safety properties.

data Statement
= Statement
{ pre :: Formula
, post :: Formula
, safeties :: [Formula]
}

Precondition and postcondition together form a progress property, while each
element of the safeties list defines a safety property (see section 2).

Leaves of a proof are axioms, and each of them is composed of a statement and
a list of programs. A program is a representation of elementary components of the
target programming language like assigning value to a variable, passing control,
binding etc. These elements are different for each possible target programming
language, therefore it is a good idea to pass this type as a parameter.

data Axiom prg
= Axiom
{ axiomStatement :: Statement
, axiomProgram :: [prg]
}

An axiom ax states that axiomStatement ax is valid for any program that
contains all elements of axiomProgram ax.

Embedding a Proof System in Haskell 363

Now we can define a data structure representing the constructs for creating
proofs.

data Proof prg
= Step Statement (Proof prg)
| Sequence [Proof prg]
| Selection [(Formula,Proof prg)]
| Call (Axiom prg)
| ...

A step consists of a statement (a sub-goal for example) and its proof, a sequence
is list of proof steps, a selection splits the current precondition in several cases
and gives a proof for each case, while a call of an axiom completes a branch of
the proof. We will shortly alter this data structure a little bit to add an induction
alternative.

A theorem contains a statement and its proof.

data Theorem prg
= Theorem
{ theoremStatement :: Statement
, theoremProof :: Proof prg
}

Induction and theorem parameters. Say, p is a predicate on integers with
axioms stating that p(0) holds as well as p(n) implies p(n + 1). By a simple
inductive proof we can have p(n) for all non-negative ns. This theorem is para-
metric, n being its parameter and its proof contains induction with parameter
n− 1.

myTheorem :: Expression Int -> Theorem ()
myTheorem n =

Theorem
{ theoremStatement =

Statement
{ pre = n >= 0
, post = p n
, ...
}

, theoremProof =
...
Induction (n-1)
...

}

That is, we have to extend the Proof data structure with a new constructor:

data Proof prg param
= ...
| Induction param

364 G. Dévai

As we have to bound the type variable param, the data type Proof gets a second
type parameter. Consequently, the data type Theorem also needs this second
type parameter.

The validate function checks if a given (parametric) theorem and its proof
is sound or not. If validate myTheorem succeeds, the theorem is valid for any
integer n, so passing anything of type Expression Int to myTheorem results in
a valid theorem.

Note, that validate gets a function argument of type (a -> Theorem prg
a). Let us call this argument the parametric theorem. First, a parameter p with
unique identifier is generated (see section 3.3) and plugged into the parametric
theorem. Then the proof of the resulting non-parametric theorem is checked.
When an Induction p’ leaf of this proof is encountered, the proof checker plugs
the inductive parameter p’ into the parametric theorem and uses its statement
as inductive hypothesis.

The proof checking algorithm also enforces well-foundness of inductions. In
order to achieve this, we restrict the param type parameter of Theorem and
Proof such that the values of the type have to be linearly ordered and there
has to be a zero element. This way, the proof checker can verify if the inductive
parameter is non-negative (p′ ≥ 0) and less than the original one (p′ < p) in
order to enforce well-foundness.

As described in section 2.2, the validate function returns a list of elementary
programs if the proof is valid. Its result is returned inside the IO monad, because
of the need for unique identifiers. Using the IO monad is handy also for reporting
errors. Thus, the type signature of the proof-checker function is the following:

validate :: (param -> Theorem prg param) -> IO [prg]

4 Frontend

In section 3 we discussed design decisions related to the representation of proofs
as Haskell data structures. In order to make the embedding of the proof language
complete, we have to create a frontend. It is a library consisting of functions that
programmers can use to construct expressions, formulas and proofs.

As discussed earlier, in our case it is also important to completely hide the
representation, so programmers can construct proofs using the frontend only, in
order to avoid erroneous formulas like the one in section 3.3.

4.1 Frontend for Expressions and Formulas

Let us try to encode the formula ∀p∃q p + q = 0 in our embedded language.
If we use only the representation presented in the previous section, we get the
following lengthy code.

Embedding a Proof System in Haskell 365

Forall $ \p -> Exists $ \q -> Literal $
Appl
(Appl
(Symbol "==")
(Appl (Appl (Symbol "+") p) q))

(Symbol "0")

The Forall constructor needs a function parameter from expressions to for-
mulas. This function is the lambda expression \p -> Exists ..., where the
argument of Exists is a similar function. However, in that function we need the
Literal constructor to convert an expression to a formula. Functions have one
argument in our representation. That is, functions like addition and equality are
represented in a curried form, which is the reason for using the Appl constructor
four times in the expression.

Instead of Symbol ”0” we would like to write simply 0. In Haskell an integer
literal can be of any type if that type is instance of the Num class. In order to
make our Expression type an instance of this class, we have to define at least
addition, multiplication, absolute value and signum functions for our data type,
as well as the fromInteger function, which converts an integer to Expression
Int. The latter function is straightforward to implement:

fromInteger i = Symbol $ show i

The show function used here converts an integer to string.
The mentioned arithmetic operations have to build compound expressions of

their parameters instead of “doing computation”, and their implementations are
similar to each other. As an example, we present the definition of addition.

e1 + e2 = Appl (Appl (Symbol "+") e1) e2

The equality function is also used in our example formula. Haskell’s standard
equality returns a boolean value, but we need Expression Bool instead. This
means that we should hide the standard (==) operator and define it similarly to
addition.

The expression inside the literal can now be written conveniently. We can also
make the quantifiers easier to use by removing the need for the explicit conversion
from boolean expressions to formulas. We have achieved this by defining the class
ToFormula providing the function toFormula which converts from a given type
to Formula. It is easy to create instances of this class for the types Expression
Bool4 and Formula. In the former case toFormula is identity, in the latter case
it is the Literal constructor. Given these instances, we can define the exists
and forall functions such that they get parameters of type Expression a ->
t, where t is a type that is instance of the ToFormula class.

exists :: (ToFormula t) => (Expression a -> t) -> Formula
exists f = Exists $ \p -> toFormula (f p)
4 Expression Bool can only be instance of a class if the Haskell extension
FlexibleInstances is enabled.

366 G. Dévai

Using this frontend, we can encode the example formula much more conveniently:

forall $ \p -> exists $ \q -> p + q == 0

4.2 Frontend for Proofs

As an example let us consider the axiom stating the transitivity of equality.

eqTrans a b c =
Axiom
{ axiomStatement =

(Statement
(a == b && b == c)
(Literal $ a == c)
[]

)
, axiomProgram = []
}

According to the semantics of axioms given in section 3.4, eqTrans states that
the axiomStatement is valid for any program containing all elements of the
axiomProgram list. As the statement expresses a mathematical property of equal-
ity, which is true regardless of the program being verified, the axiomProgram field
of this axiom is an empty list.

To make statements more convenient to write, we have created a set of oper-
ators like the following one.

infix 0 =>.
(=>.) :: (ToFormula t, ToFormula u) => t -> u -> Statement
pre =>. post = Statement (toFormula pre) (toFormula post) []

The resulting “syntax” for axioms is then the following.

eqTrans a b c = Axiom
(a == b && b == c =>. a == c)
[]

We can use this axiom to prove the following theorem.

myTheorem (a,b,c,d)
= Theorem

(Statement
(a == b && b == c && c == d)
(Literal $ a == d)
[]

)
(Sequence

[Call (eqTrans a b c)
, Call (eqTrans a c d)
]

)

Embedding a Proof System in Haskell 367

First of all, the previously defined =>. operator can be used here too, to shorten
the statement of the theorem. To make proof construction easier, we have de-
fined the class ToProof with the function toProof that can turn different data
structures to a proof. If we make an instance of this class for lists, we will be
able to encode a sequence with a list. For selection and other constructs we need
further instances.

This class can be implemented in an elegant way using the TypeFamilies
extension of Haskell. This feature allows us to declare type functions for a class
and define these types in each instance. In our case these type functions will give
the two type parameters of the Proof data structure.

class ToProof t where
type Prg t
type Param t
toProof :: t -> Proof (Prg t) (Param t)

First we need Proof prg param to be instance of this class. The type functions
Prg and Param will return the prg and param type parameters, while toProof
will be the identity function.

In our example, we will use the instance for lists.

instance ToProof t => ToProof [t] where
type Prg [t] = Prg t
type Param [t] = Param t
toProof ps = Sequence $ map toProof ps

This instance requires that the elements of the list can also be transformed to
proofs. The type parameters are that of the type parameters of the list elements,
and the list is transformed to a sequence by applying the toProof function
recursively to all elements of the list.

To complete our example, instead of the Theorem constructor, we need a func-
tion that can accept anything in its second parameter that can be transformed
to a proof.

theorem :: ToProof t =>
Statement -> t -> Theorem (Prg t) (Param t)

theorem s p = Theorem s $ toProof p

Note how the type functions of the ToProof class are used in the type signature
of this function.

Having implemented these parts of the frontend, we can already write our
example theorem in a much more comprehensible form.

myTheorem (a,b,c,d) = theorem
(a == b && b == c && c == d =>. a == d)
[Call (eqTrans a b c)
, Call (eqTrans a c d)
]

368 G. Dévai

This theorem can be checked by the validate function. It confirms that the
proof is sound and extracts an empty program from this proof, because this
theorem is a purely mathematical one.

Of course, we have presented only a small subset of the frontend library, but
these examples should give the general idea.

5 Summary and Discussion

5.1 Conclusions

An earlier implementation of our proof system was created as a standalone lan-
guage using C++. During the work presented in this paper we experienced that
using an advanced functional language with a smart type system enhanced the
implementation of our proof system. The code became shorter and easier to
maintain. We had the impression that development in C++ became more and
more difficult as code complexity grew, while in Haskell the main effort was
needed to create a suitable representation of expressions, formulas and proofs.
Once the right design decisions were made, writing code became almost trivial.

The Haskell implementation yields shorter and less complex code because of
the following reasons:

– In case of an embedded language, there is no need for lexer and parser.
– Type checking and scope analysis is done by the Haskell compiler due to the

smart expression, formula and proof representation described in section 3.
– The proof checker backend can be implemented in a more elegant way using

a declarative language compared to an imperative/object-oriented one.

Additionally, as a consequence of the embedding, Haskell itself became a meta
language on top of the embedded one: One can use any feature of Haskell to
write a function that generates a proof. This way we have got advanced tools for
free to build tactics. These meta-language elements had to be implemented in
the standalone version of our system, which is a task commensurable with the
implementation of the proof language itself.

Only few problems were easier to solve using an imperative language. For
example, a simple problem like the need for unique identifiers, which is trivial
to solve in an imperative language, forced us to turn a part of the Haskell im-
plementation monadic. Another issue is performance. Although we have not en-
countered problems concerning the speed or memory consumption of our system
yet, it seems that it may be easier to optimize the imperative implementation.
The Haskell version is much more abstract, but at the same time we are more
dependent on the optimization technologies of the Haskell compiler.

The most tricky part of the embedding is clearly to define the “syntax” of the
language by implementing the frontend library. Even if Haskell’s own syntax is
unobtrusive, it is sometimes harder to define convenient frontend functions than
to invent own syntax and implement that with a context-free grammar.

Embedding a Proof System in Haskell 369

5.2 Related Work

Proof systems for imperative languagesusually takedifferentapproaches compared
to our system. There are automatic provers like [23] and [8] which are limited by
the fact that proving a program’s soundness is not a decidable problem. Other edu-
cational [22] or industrial [6] projects include interactive theorem provers to verify
a program already implemented. The philosophy of the B-method [5] is similar to
that of our system: It can be used to derive programs from specifications. However,
it includes own languages both for specification and program constructions, and
proposes interactive theorem provers for discharging proof obligations.

For functional programs we can also find interactive provers, like Sparkle [9].
A common feature that this system shares with our one is, that it also uses
a functional language (Clean) to express specifications. In fact, the prover only
adds the equality as predicate, otherwise the theorems to prove can be composed
of functions defined in Clean. The difference from our specification language is
twofold: First, in our system it is possible to use functions which are axiomatized
only and have no executable implementation. Secondly, expressions of Sparkle
theorems are built of Clean expressions while in our case these are data structures
because of deep embedding. The purpose of the two proof systems are also
different: Sparkle can be used to verify properties of previously implemented
Clean functions, while in our system one derives programs from specifications.
An interesting common feature of the two systems is the support for temporal
logic: There is an extension of Sparkle [15] that supports temporal operators.

Using the type system of functional languages to express specifications is
another connected approach. This can be achieved by dependent type systems,
used for example by Epigram [19] or Agda [21], and also using subtype marks [17].
In these cases the type signatures express a theorem and the function definitions
are the proofs. In our case the program is generated from the proof, but the two
entities do not coincide. Each approach has its advantages: Proofs, which are in
fact programs, are executable and may also be easier for programmers to write,
while in our case it is easier to add new target languages to the system. It is an
interesting fact, that it is possible to simulate dependent typing using Haskell
[18], although its type system does not support it directly.

As we pointed out in this paper, embedded language development requires
less code to write and this makes it easier to experiment with different lan-
guage constructs. Therefore embedding is a popular approach especially in case
of domain specific languages (DSL). At the languages section of the Hackage
library database [3], there are several embedded languages. We summarize here
those dealing with similar implementation problems discussed in this paper and
compare their solutions to ours.

– Atom is a DSL for embedded hard real-time applications. Expressions in
Atom are typed similarly to our solution but there is a fixed set of functions
and there is no lambda abstraction. The frontend of the language is monadic.

– Feldspar [1] is an embedded language for digital signal processing. It is also
a deep embedding with typed expressions consisting of a fixed set of opera-
tions without lambda abstraction. Its frontend re-implements standard list

370 G. Dévai

operations such that it performs fusion to optimize programs. Like in our
case, unique identifiers are needed to build the internal representation. Here,
this problem is solved by the technique called observable sharing [7]. Its im-
plementation also uses Haskell’s Unique type but this use of the IO monad
is converted to a pure computation using the unsafePerformIO function.

– ForSyDe [2] is a library to design systems consisting of processes and com-
munications channels carrying signals. Both types of embedding are applied
in this project: The shallow one for simulation, the deep one for compilation
with VHDL and GraphML backends.

– HJavaScript and HJScript are core and frontend libraries of deep embedding
of JavaScript in Haskell. Typed expressions are similar to our ones but there
is a fixed set of operations and lambda abstraction is not present. Variables
have names of type String serving as unique identifiers.

– LambdaCalculator is a small library for working with lambda calculus. Ex-
pressions are embedded in a way we mentioned in section 3.1 to demonstrate
deep embedding. This library demonstrates that using this technique one
has to write transformations like β-reduction manually instead of reusing
Haskell’s runtime support.

All the packages at the Hackage database under the theorem provers section, con-
tain deeply embedded formulas. As most of these projects (Ivor, Logic-TPTP and
Pesca) include parsers and pretty printers instead of implementing embedded
languages, the formulas are represented essentially with their syntax tree. The
only library we found techniques similar to ours was Dedukti. This project uses
the technique described in section 3.3 to encode application and λ-abstraction
for untyped terms.

5.3 Future Work

We summarize here the most important ideas we would like to implement in the
future in order to improve our proof system.

– Currently there is a list-based frontend for proof development. We would
like to experiment with a monadic frontend which may be more convenient
to use.

– As we discussed in this paper, by embedding our proof system to Haskell we
get a powerful meta language. We would like to study these possibilities in
more detail and implement a library that supports proof generation.

– In section 2 we pointed out that the refinement rules of our system are also
suitable to develop purely functional programs. We plan to create more case
studies to test this possibility and identify proof construction schemes for
purely functional programs as we did earlier in case of imperative ones.

References

1. Home of Feldspar: http://feldspar.sourceforge.net
2. Home of ForSyDe, http://www.ict.kth.se/forsyde

http://feldspar.sourceforge.net
http://www.ict.kth.se/forsyde

Embedding a Proof System in Haskell 371

3. Home of HackageDB, http://hackage.haskell.org
4. Home of LaCert, http://deva.web.elte.hu/LaCert
5. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University

Press, New York (1996)
6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
7. Claessen, K., Sands, D.: Observable sharing for functional circuit description. In:

Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 62–73.
Springer, Heidelberg (1999)

8. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

9. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem proving for functional pro-
grammers, Sparkle: A functional theorem prover. In: Arts, T., Mohnen, M. (eds.)
IFL 2002. LNCS, vol. 2312, pp. 55–72. Springer, Heidelberg (2002)

10. Dévai, G.: Programming language elements for proof construction. In: Volume of
abstracts of the 6th Joint Conference on Mathematics and Computer Science (2006)

11. Dévai, G.: Programming language elements for correctness proofs. Acta Cybernet-
ica (accepted for publication 2007)

12. Dévai, G.: Meta programming on the proof level. Acta Universitatis Sapientiae,
Informatica 1(1), 15–34 (2009)

13. Dévai, G., Csörnyei, Z.: Separation logic style reasoning in a refinement based lan-
guage. In: Proceedings of the 7th International Conference on Applied Informatics
(2007) (to appear)

14. Dévai, G., Pataki, N.: A tool for formally specifying the C++ standard template li-
brary. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nom-
inatae, Sectio Computatorica 31, 147–166 (2009)

15. Horváth, Z., Kozsik, T., Tejfel, M.: Extending the Sparkle core language with object
abstraction. Acta Cybernetica 17, 419–445 (2005)

16. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: ICFP 2006: Proceedings of the eleventh ACM
SIGPLAN International Conference on Functional Programming, pp. 50–61. ACM
Press, New York (2006)

17. Kozsik, T.: Proving Program Properties Specified with Subtype Marks. In:
Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 163–
180. Springer, Heidelberg (2007)

18. McBride, C.: Faking it: Simulating dependent types in Haskell. Journal of Func-
tional Programming 12(5), 375–392 (2002)

19. McBride, C.: Epigram: Practical programming with dependent types. In: Advanced
Functional Programming, pp. 130–170 (2004)

20. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International
(UK) Ltd. Englewood Cliffs (1994)

21. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (2007)

22. Schreiner, W.: The RISC ProofNavigator: A proving assistant for program verifi-
cation in the classroom. Formal Aspects of Computing 21(3) (2009)

23. Winkler, J.: The frege program prover FPP. Internationales Wissenschaftliches
Kolloquium 42, 116–121 (1997)

http://hackage.haskell.org
http://deva.web.elte.hu/LaCert

Impact Analysis of Erlang Programs Using
Behaviour Dependency Graphs�

Melinda Tóth, István Bozó, Zoltán Horváth, László Lövei,
Máté Tejfel, and Tamás Kozsik

Eötvös Loránd University, Budapest, Hungary
{toth_m,bozo_i,hz,lovei,matej,kto}@inf.elte.hu

Abstract. During the lifetime of a software product certain changes
could be performed on its source code. After those changes a regres-
sion test should be performed, which is the most expensive part of the
software development cycle. This paper focuses on programs written in
a dynamic functional programming language Erlang, and discusses a
mechanism that could select those test cases, which are affected by a
change, i.e. altering the program on some point may have impact on the
result/behaviour of those test cases. In the result of that analysis it is
possible to reduce the number of necessary test cases, and after modify-
ing the source code, just a subset of the test cases should be retested.
The discussed approach introduces a behaviour dependency graph for
Erlang programs to represent the dependencies in the source code. The
impact of a change can be calculated by traversing the graph.

1 Introduction

Changes often happen in a software lifetime. These changes can be done man-
ually by a programmer or using a refactoring tool. The phase “refactoring” [3]
introduces a meaning preserving source code transformation, thus you change
the structure of a program without altering its external behaviour. Refactoring
could be done manually by a programmer or using a refactoring tool. The former
case is tedious and error prone, the latter is safer and faster. A refactoring tool
guarantees that the transformation does not change the meaning of the program
and all the necessary changes will happen. However refactoring in Erlang [2] is
not straightforward. The language is dynamically typed, so the syntactic and
static semantic information sometimes may be not enough to guarantee a mean-
ing preserving transformation, and the programmer want to test the behaviour
of the transformed program. Since testing is a very expensive part of the software
development process, we want to help the programmers to reduce the number
of test cases which should be performed after a transformation or a sequence of
transformations. Therefore we try to find the affected parts in the source code
by analyzing the spread of the impact of performed changes. Assume we have
found the affected code parts, then only a subset of test cases should be retested,
those which are affected by the change.
� Supported by TECH 08 A2-SZOMIN08, ELTE IKKK, and Ericsson Hungary.

Z. Horváth, R. Plasmeijer, and V. Zsók (Eds.): CEFP 2009, LNCS 6299, pp. 372–390, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 373

To find the affected parts we have to propagate the change of some data,
therefore we introduce a behaviour dependency graph. During the generation
of this graph we use static syntactic and semantic information based on the
semantic program graph of the RefactorErl.

RefactorErl [6,5] is a refactoring tool for Erlang. To represent the source code
the tool uses its own semantic program graph model, which contains lexical, syn-
tactic and semantic information about the loaded Erlang programs. The graph
is based on the AST. RefactorErl uses its own layout preserving parser to gener-
ate the syntax tree, then different semantic analyzers (function, variable, record,
etc) extend the syntax tree to semantic program graph. The constructed program
graph provides good interface for further source code analysis.

The rest of this paper is structured as follows. In Section 2 a motivating ex-
ample is given. Section 3 introduces the used model of Erlang programs. Then
the Section 4 introduces the behaviour dependency graph, the method of con-
structing the behaviour dependency edges and the way of retrieving dependency
information from this graph. Section 5 presents related work, and Section 6
concludes the paper and discusses future work.

2 Motivating Example

For the sake of simplicity we demonstrate our mechanism in a more general
example. We do not transform the source code by a refactoring and analyze its
impact, rather we modify an element of a list (Figure 1 and 2) and then we
estimate the impact of the data change to determine the test cases which should
be retested.

Consider the following example (Figure 1), where we define the tag_add/1
recursive function, which transforms the elements of the given list to a tagged
tuple. We expect from this function, that it does not alter the length of the
given list. The test_tag_add/2 function is intended to describe this property of
the tag_add/2 function. The len/1 function calculates and returns the length
of the given list. In our example the tag_list/0 function calls the tag_add/2
function with a list containing two integers: [1,2].

Assume, that the programmer modify the first element of the list [1,2] in
the body of tag_list/0. This value flows into the variable H1 (in tag_add/2)
through the list construct. The result of the tag_add/2 function is a list which
spine does not depend on the value of H1 variable, however the elements of this
result list depend on the value of H1. Therefore, we have to detect whether
the elements of the resulted list are used elsewhere in the code. It can be
used those point in the program where the tag_add/2 function is called. The
test_tag_add/2 function calls the tag_add/2 function, thus it uses its return
value, so the elements of the resulted list may be used. The test_tag_add/2
function passes the result of the tag_add(L1, Tag) function call as an argu-
ment for the len/1 function and calculates the length of the resulted list with
len/1, but during the calculation len/1 does not use the value of the elements
coming form its argument (in the body of len/1 the values of the elements

374 M. Tóth et al.

tag_add([], _Tag) ->

[];

tag_add([H1|T1], Tag)->

[{Tag, H1} | tag_add(T1, Tag)].

tag_list() ->

tag_add([1,2], integer).

test_tag_add(L1, Tag)->

len(L1) == len(tag_add(L1, Tag)).

len([]) ->

0;

len([_H | T]) ->

1 + len(T).

Fig. 1. The definition of tag add/2

(_H) of the parameter list are not used). Therefore the result of the len(L1)
and len(tag_add(L1)) function calls do not depend on the values of the ele-
ments coming from the L1 list and the return value of the tag_add(L1) function
call. We can see, that changing any element of the list [1,2] under writing
the program does not have any impact on the result of these function calls,
thus does not have any impact on the return value and on the behaviour of the
test_tag_add/2 function, so we must not retest it.

However the elements of the list depend on the operation (a tuple constructor),
in this case the structure of the list is independent of this operation. The change
of one list element does not always has impact on the structure of the list or the
context of the list usage.

In the second part of the example we give the definition of a similar function,
but the behaviour of these functions are different. On Figure 2 we define the
tag_filter/2 recursive function, which filters the elements of the list with a
given tag Tag. This function selects a sublist of the given list, it may throw
out element from the list. Thus changing the elements of the parameter list may
affect the spine of the resulted list. This function may keep or decrease the length
of the list (depending on the given tag and the content of the given list), but it
can never increase it. The test_tag_filter/2 function is intended to describe
this property of the tag_filter/2 function. The filter_list/0 function calls
the tag_filter/2 function to select the elements with key integer from the
list [{integer, 1}, {atom, a}].

Assume, that the programmer change the first element of the list in the func-
tion call tag_filter([{integer, 1}, {atom, a}], integer)). The impact of
this modification flows into the H2 variable, in the same way as in the first part of
our example where the elements of the [1,2] list flows into the H1 variable, but
after this point the difference between the tag_add/2 and tag_filter/2 func-
tions shows up. The return value of the tag_filter/2 function depends on the

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 375

tag_filter([], _Tag) ->

[];

tag_filter([H2|T2], Tag) ->

case H2 of

{Tag, _Elem} -> [H2 | tag_filter(T2, Tag)];

_ -> tag_filter(T2, Tag)

end.

filter_list() ->

tag_filter([{integer, 1}, {atom, a}], integer).

test_tag_filter(L2, Tag) ->

len(L2) >= len(tag_filter(L2, Tag)).

len([]) ->

0;

len([_H | T]) ->

1 + len(T).

Fig. 2. The definition of tag filter/2

elements passed as its arguments, because the case-expression depends on the
result of the H2 expression, thus the return value of the tag_filter/2function
depends on the elements of its parameter list (H2 gets its value from that
list). The expression len(tag_filter(L2, Tag)) comprehends a function call
of tag_filter/2, which return value depends on the elements of its parameter
list, thus the result of the entire expression depends transitively on the elements
of the argument list. Therefore, any change on the elements of the input list may
have an impact on the test_tag_filter/2 function.

To detect these dependencies in an Erlang program, we have to define a depen-
dency graph for Erlang. It should contain the data flow edges and behaviour depen-
dency edges, too. The rules when the value or the behaviour of an expression has an
impact on an other expression (for example, the case expression in the mentioned
example depends on the expression H2) are defined in the following sections.

3 A Partial Model for Erlang Programs

In Section 4 we use the Erlang syntax shown in Figure 3. This syntax is a subset
of the Erlang syntax presented in [4]. The symbol P denote the patterns can
be used in Erlang, E represents guard expressions and expressions that can be
defined in the language, and F denotes the named functions.

The presented syntax contains some simplification:

– Guard expressions are represented as expressions with some restrictions.
Guard expressions can contain “guard” built-in function calls or type tests.
The infix guard expressions are arithmetic or boolean expressions, or term
comparisons. Guards can contain only bound variables.

376 M. Tóth et al.

V ::= variables (including , the underscore pattern)
A ::= atoms
I ::= integers
K ::= A | I | other constants (e.g. strings, floats)
P ::= K | V | {P,. . .,P} | [P,. . .,P|P]

E ::= K | V | {E,. . .,E} | [E,. . .,E|E] | [E||P<-E] | P = E |
E ◦ E | (E) | E(E,. . .,E) |
case E of

P when E -> E,. . .,E;
...
P when E -> E,. . .,E

end

F ::= A(P,. . .,P) when E -> E,. . .,E;
...
A(P,. . .,P) when E -> E,. . .,E.

Fig. 3. The used Erlang syntax subset

– It does not contain those expression types which can be handled in the
same way as one from the presented expressions. For example, the if and try
construct can be handled similar as case expressions.

– Those language constructs which are not used to build the data dependency
graph also left out from the model. For example, the attributes of an Erlang
module do not hold relevant information in the meaning of data dependency.

4 Behaviour Dependency Graph

The most natural way to represent the impact of a change is a graph. To prop-
agate dependency information we build a behaviour dependency graph (BDG).

4.1 The Representation of the Erlang Programs

To build the Erlang dependency graph we use the semantic program graph of
RefactorErl. RefactorErl constructs the syntax tree representation of the source
code and extends it with static semantic and lexical information. In RefactorErl
each expression and pattern node is identified uniquely, we use these nodes as
a base of the dependency graph, and the new edges represent the dependency
information among them. While constructing the dependency graph we traverse
the semantic graph, we take information from the graph, i.e. the structure of the
syntax tree (expressions are attached to corresponding code parts), semantic
information (the binding structure of the variables, the function calls are linked
to the definition of the function, etc). Just those syntactic nodes (mainly the
expressions) appear in the dependency graph which are relevant in dependency
propagation.

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 377

4.2 Dependency Information

All the dependency information is represented in the behaviour dependency
graph (BDG). The nodes of the graph are the expressions and patterns from
the Erlang source code, the edges of the graph are representing dependency
information. There are different kinds of dependency information, that is repre-
sented with labeled edges in the graph (n1

label→ n2, where n1 and n2 are nodes
of the graph). The different kinds of dependency edges are the followings:

Definition 1.

– Data flow edges – represent data flow between two nodes. There are dif-
ferent kinds of data flow information [7]:
• Flow edges – n1

f→ n2, represents that the result of n2 can be a copy of
the result of n1. They value exactly the same, and changing the value of
n1 results the same change in the value of n2.

• Constructor edges – n1
ci→ n2, represents that the result of n2 can be a

compound value that contains n1 as the ith element
• Selector edges – n1

si→ n2, represents that the result of n2 can be the ith
element of the n1 compound data

– Data dependency edges – n1
d→ n2, represents that the result of n2 can

directly depend on the result of n1. Any change in n1 may result a data or
a behaviour change in n2.

– Behaviour dependency edges – n1
b→ n2, represents that the behaviour

of n2 can directly depend on the result of n1. Any change in n1 may result
a behaviour change in n2.

Note, that in case of constructing a list e is used as an element label, because
we can not usually track their indexes([7]).

The change of a data has an impact on the behaviour of those expressions
which depend on that data, thus each data dependency edge also represents
behaviour dependency:

n1
d→ n2

n1
b→ n2

(d-b-rule)

Similar, most of the flow edges propagate the change of the data, thus propa-
gate dependency. Therefore there are nodes in the graph which are linked with
multiply edges.

Examples. The following example demonstrate the differences among the edge
types.

e:
case X of

{ok, Result} -> Result + 2;
_ when is_list(X) -> X

end

378 M. Tóth et al.

There are different kinds of flow edges in case of this case expression: e. The
result of the variable X simply flows to the tuple pattern: X

f→ {ok, Result},
then while this pattern is a selector, it selects the elements from the tuple:
{ok, Result}

s1→ ok, {ok, Result}
s2→ Result. The result if this case expression

is the result of the last expression in its branches, so the result of the last
expressions flow into the case expression: Result+2

f→ e and X
f→ e.

The result of the infix expression Result+2 depends on the value of its subex-
pressions: Result d→ Result+2 and 2

d→ Result+2.
This simple example also represent behaviour dependency information. The

behaviour of the case expression is depend on the behaviour of its subexpressions.
If the infix expression can not be evaluated then e also can not be evaluated:
Result+2

b→ e.

4.3 Dependency Rules

As it is mentioned before, the dependency graph can be constructed based on the
syntax tree and semantic information. The construction rules are summarized
in Figures 4 and 5, and the major rules are described in the followings. The
notation on the figures are: e is an expression (E), g is a guard expression (E),
p is a pattern (P) and f is a function (F).

Variable. The only dependency among the variable bindings and the variable oc-
currences is the data flow (Figure 4: Variable). It does not hold data dependency,
or behaviour dependency information.

Match expression. Figure 4: Match exp. shows that the match expression con-
tains a various number of dependency. The value of the expression e simply
copied to the pattern p and to the expression e0, that represented by flow edges.
Each expression depends on the behaviour of its subexpressions, thus the match
expression also represents behaviour dependency. The expression p = e binds
the value of e to p. In case if the variable p is already bound, then the match
expression fails if the value of the variable p and the value of e do not match,
so the result of the match expression e0 may depend on the value of e, thus the
match expression contains data dependency.

Infix expressions. The infix expression does not propagate data flow information,
rather propagates data dependency information (Figure 4: Infix exp.). The result
of an infix expression depends on the result of its subexpressions. If one of the
subexpressions can not be evaluated, the infix expression can not be evaluated,
so it also propagate behaviour dependency information.

Compound data structures. Beside data flow (flow, constructor and selector
edges) information compound data structures (tuples, lists) also hold behaviour
dependency information (Figures 4: Tuple exp., List exp. and List gen.). The be-
haviour of a compound data structure depends on the behavior of its elements,
i.e. the expression depends on the behaviour of its subexpression.

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 379

Expressions Graph edges

(Variable)
p is a binding
n is a usage of the same variable p

f→ n

(Match exp.)
e0:

p = e
e

f→ e0, e
d→ e0, e

b→ e0

e
f→ p

(Pattern)
p0:

p1 = p2

p0
f→ p1

p0
f→ p2

(Infix exp.)
e0:

e1 ◦ e2

e1
d→ e0, e1

b→ e0

e2
d→ e0, e2

b→ e0,

(Parenthesis)
e0:

(e) e
f→ e0, e

b→ e0

(Tuple exp.)
e0:

{e1, . . . , en}
e1

c1→ e0, . . . , en
cn→ e0

e1
b→ e0, . . . , en

b→ e0

(Tuple pat.)
p0:

{p1, . . . , pn} p0
s1→ p1, . . . , p0

sn→ pn

(List exp.)
e0:

[e1, . . . , en|en+1]
e1

ce→ e0, . . . , en
ce→ e0, en+1

f→ e0

e1
b→ e0, . . . , en

b→ e0, en+1
b→ e0

(List gen.)
e0:

[e1||p ← e2]
e1

ce→ e0, e2
se→ p

e1
b→ e0, e2

b→ e0

(List pat.)
p0:

[p1, . . . , pn|pn+1]
p0

se→ p1, . . . , p0
se→ pn

p0
f→ pn+1

(BIF 1)
e0:

hd(e1)
e1

se→ e0

e1
b→ e0

(BIF 2)
e0:

tl(e1)
e1

f→ e0

e1
b→ e0

(BIF 3)
I is constant,
e0:

element(I, e1)

e1
sI→ e0

e1
b→ e0

Fig. 4. Static behaviour dependency graph generation rules

Conditional expressions. The behaviour of a conditional expression, like each
complex expression, depends on its subexpressions. Thus each subexpression is
linked to the expression with a behaviour dependency edge (Figure 4: Case exp.).
For example, the case-expression depends on the behaviour of the expressions
of its clauses, because an exception in these expressions propagate an exception
into the case-expression.

Function calls. A function call similar to complex expressions, depends on its
arguments, but it also depends on the body of the referred function (Figure 5:
Fun. call 1). An exception from the body of the function has an impact on the
function call expression, too. The result of an actual parameter flows into the
corresponding formal parameter of the function, and the return value of the

380 M. Tóth et al.

Expressions Graph edges

(Case exp.)

e0:
case e of

p1 when g1 → e1
1, . . . , e

1
l1 ;

...
pn when gn → en

1 , . . . , en
ln

end

e
f→ p1, . . . , e

f→ pn

e1
l1

f→ e0, . . . , e
n
ln

f→ e0

e
d→ e0, e

b→ e0

e1
1

b→ e0, . . . , e
1
l1

b→ e0

...
en
1

b→ e0, . . . , e
n
ln

b→ e0

g1
b→ e0, . . . , gn

b→ e0

(Fun. call 1)

e0:
f(e1, . . . , en)

f/n:
f(p1

1, . . . , p
1
n) when g1 →

e1
1, . . . , e

1
l1

;
...

f(pm
1 , . . . , pm

n) when gm →
em
1 , . . . , em

lm .

e1
b→ e0, . . . , en

b→ e0

e1
l1

f→ e0, . . . , e
m
lm

f→ e0

e1
f→ p1

1, . . . , e1
f→ pm

1

...

en
f→ p1

n, . . . , en
f→ pm

n

e1
1

b→ e0, . . . , e
1
l1

b→ e0

...
em
1

b→ e0, . . . , e
m
lm

b→ e0

g1
b→ e0, . . . , gm

b→ e0

(Fun. call 2)

e0:
e(e1, . . . , en)

e is not constant, or e/n undefined

e1
d→ e0, . . . , en

d→ e0, e
d→ e0

e1
b→ e0, . . . , en

b→ e0, e
b→ e0

Fig. 5. Static behaviour dependency graph generation rules (cont.)

function (the result of the last expression of the function clause) flows back into
the function call expression.

e(e1, . . . , en) is an Erlang function call. In case when e is not a constant,
we can not create dependency edges between the application and the function
definition. The same situation occurs when the function is not defined in our
graph – it is not added to the database(Figure 5: Fun. call 2). We handle that
case as a worst case scenario, and we generate data dependency edges among
the function call and its subexpressions, because we do not know anything about
the body of the function and the way how it uses and transforms the value of
its parameters.

Built in functions (BIF). There are some built in function in Erlang which
operate similar to the data selectors (Figure 4: BIF). For example the hd/1
function selects the first elements of the list, or the element/2 function selects
the I-th element of a tuple. In these cases we add selector edges to the graph.

When the first parameter of the element/2 function (I) is not a constant, the
Function call 2 rule is applied.

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 381

4.4 Deriving Dependency Information

To determine the impact of a modification we need indirect/deeper dependency
knowledge, thus we should calculate the transitive closure of the graph and tra-
verse that graph. Each edge in the graph represent a dependency in the program,
therefore when we want to determine the impact of a change, we have to traverse
the graph using the corresponding defined edges.

A dependency relation between two graph nodes (n1 � n2) means the be-
haviour of n2 depends on the result/behaviour of n1, so the change of the value
of n1 may have an impact on n2. This relation can be computed using the data
flow, data dependency and the behaviour dependency edges.

The informal definition of the dependency relation n1 � n2 is that n2 is
an expression in the graph which could be affected by changing the value of n1.
Those nodes from the graph which could be a copy of n1 are affected by changing
the value of n1, so modifying n1 could have an impact on them. Therefore the
data flow propagate the changes (data-rule).

Consider the following expression: 1+2. Changing the expression 1 to atom
results that the expression 1+2 could not be evaluated and that results a run-
time error. Then each expression which behaviour depend on the value of 1+2
also could not be evaluated. Therefore when there is data dependency connection
between two nodes (n1

d→ n2), changing the data in n1 could have an impact on
the behaviour of n2, and those node which behaviour may depend from n2, also
could alter behaviour from the same data change (b-dep-rule). Data flow and the
behaviour dependency edges (b→) also propagates behaviour dependency among
expressions (d-rule, b-rule).

In the followings we formalize the mentioned behaviour dependency relation.

Definition 2. The data flow relation d
� is defined as the minimal that satisfies

the following rules [7]:

n
d
� n (reflexive)

n1
f→ n2

n1
d
� n2

(f-rule)

n1
ci→ n2, n2

d
� n3, n3

si→ n4

n1
d
� n4

(c-s-rule)

n1
d
� n2, n2

d
� n3

n1
d
� n3

(transitive)

Definition 3. The behaviour dependency relation b
� is defined as the minimal

relation that satisfies the following rules:

n1
d
� n2

n1
b
� n2

(d-rule)

382 M. Tóth et al.

n1
b
� n2, n2

b→ n3, n3
b
� n4

n1
b
� n4

(b-rule)

Definition 4. The dependency relation � is defined as the minimal relation that
satisfies the following rules:

n1
d
� n2

n1 � n2
(data-rule)

n1
d
� n2, n2

d→ n3, n3
b
� n4

n1 � n4
(b-dep-rule)

4.5 Lemmas

In this section some lemmas about the properties of relations b
� and � are

introduced. The detailed proofs of the lemmas are presented in appendix A.

Lemma 1 (b
� reflexive)

n
b
� n

Proof. Applying the rules (reflexive) and (d-rule).

Lemma 2 (b
� transitive)

n1
b
� n2, n2

b
� n3 ⇒ n1

b
� n3

Proof. Applying structural induction on n1
b
� n2 and then structural induction

on n2
b
� n3.

Lemma 3 (� reflexive)
n � n

Proof. Applying the rules (reflexive) and (data-rule).

Lemma 4 (� transitive)
n1 � n2, n2 � n3 ⇒ n1 � n3

Proof. Applying case distinction on n1 � n2 and then case distinction on
n2 � n3.

Lemma 5 (generalized b-dep-rule)
n1

d
� n2, n2

d→ n3, n3 � n4 ⇒ n1 � n4

Proof. Applying case distinction on n3 � n4.

Lemma 6 (b
� is not symmetrical and is not anti-symmetrical)

Proof. See the counterexamples in appendix A.

4.6 Example

Figures 6 and 7 shows the relevant part of the dependency graphs for the moti-
vation examples.

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 383

Fig. 6. Dependencies in tag add Fig. 7. Dependencies in tag filter

The main difference between them is the H2
d→ case H2 of ... end edge,

which describes that the result and the behaviour of the case-expression depends
on H2.

On the left hand side figure, the value 1 simply flows (as a meaning of data
flow) into the variable _H (in len/1). The len/1 function does not use the value
of _H, so its return value does not depend on it. On the other figure the value of

384 M. Tóth et al.

the tuple {integer, 1} flows into the variable H2 (in tag_filter/2). The case-
expression depends on the value of H2, the value of the case-expression copied
to the result of tag(L1, Tag) (in len/1), so the change of the tuple may have
an impact on the len/1 function.

In summary, if we modify the integer 1 we must not the test_tag_add/2
test case, but if we modify the tuple {integer, 1}, we should run test case
test_tag_filter/2.

5 Related Work

A methodology for regression test selection in object oriented designs have been
already presented in [1]. That methodology represents the designs using the
Unified Modeling Language, and gives a formal mapping between design changes
and a classification of regression test cases (reusable, retestable, obsolete).

Our model tries to find affected test cases using a graph traversal on the BDG.
The BDG adds behaviour edges according to the semantics of the Erlang language
to a 0-th order Data Flow Graph (0DFG). Most of the data flow and the behaviour
flow edges are specific for Erlang (some of them are discussed in Section 4.3) which
do not appears in other languages. Specially, the behaviour edges manly refers to
exceptions (that can arise during the evaluation after a data change) in our model.
In the analysis of other languages this kind of edges usually do not appear with a
data flow graph, rather just the exception handling constructs are handled in a
control flow graph [9]. Our model could be applicable to other strict functional
languages to detect the spread of a data change, however when applying it to a
lazy language further analysis could be useful.

Estimating the impact of a change in functional programming languages is not
really widespread yet, however control flow analysis have been already studied by
Shivers [8], but this work applied for optimizing compilers. Data flow analysis al-
ready defined for Erlang [7] and successfully applied to module interface upgrade.
For Erlang the Control flow analysis successfully applied for improving testing [10].

6 Conclusions and Future Work

In this paper we present a dependency graph to calculate the impact of some
modification in an Erlang source code. The base idea behind this is to support the
programmers to reduce the number of test cases which should be performed after
a refactoring transformations. Therefore we have to propagate the change made
by the transformation in a behaviour dependency graph. This graph contains the
relevant expression nodes from the syntax tree and data flow, data dependency
and behaviour dependency edges. The result of the dependency graph has been
illustrated in the motivating example.

The size of the presented graph is linear to the size of the syntax tree. If there
are n expression nodes in the syntax tree, the size of the graph is O(n), the size
of its transitive closure is maximum O(n2).

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 385

This paper shows a structural algorithm to construct the BDG and a relation
to calculate the dependency in that graph. The DFG is already implemented in
the RefactorErl system, thus we should add the behaviour edges to that graph
and implement the dependency relation. Then we could examine the efficiency
of our model.

We can improve the presented solution in different ways. The presented model
does not make a distinction among the different calls of a function, and the return
value of the function is linked to each function call. The problem with that
approach is that when we call the function, we reach the result of other function
calls, too. To solve this problem we should store context information about the
source, i.e. where is the function called. Therefore, more accurate graph could be
generated using 1CFA-s [8] or nCFA-s, as the behaviour dependency edges could
be generalized according to the order of the analysis, so labeled edges could be
used in our BDG to represent the context information. We note, that our model
based on a 0DFG and adds behaviour edges to that graph, and it results less
test case subset in our example, but using 1DFG-s could also result less test case
subset than using 0DFG-s.

When we generate a BDG, it could grow fast, and could be unnecessary huge.
Therefore, we should trim the irrelevant parts from the graph. A possible solution
should be to combine the control flow with the result of a call graph. First we
can create a call graph part from the change, and then we can should create the
data flow and the control flow using the affected functions from the call graph.
We can build the whole dependency graph and then trim it (for example with
slicing), or just build the smaller graph. Thus we can calculate other analysis
and iterative algorithms on smaller graphs.

References

1. Briand, L., Labiche, Y., Soccar, G.: Automating impact analysis and regression
test selection based on uml designs. In: 18th IEEE International Conference on
Software Maintenance, ICSM 2002 (2002)

2. Ericsson, AB, Erlang Reference Manual,
http://www.erlang.org/doc/reference_manual/part_frame.html

3. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, Reading (1999)

4. Fredlund, L.-A.: A Framework for Reasoning about ERLANG code. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden (2001)

5. Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Tóth, M., Bozó, I., Király, R.: Mod-
eling semantic knowledge in Erlang for refactoring. In: Knowledge Engineering:
Principles and Techniques, Proceedings of the International Conference on Knowl-
edge Engineering, Principles and Techniques, KEPT 2009, Cluj-Napoca, Romania,
Sp. Issue of Studia Universitatis Babe-Bolyai, Series Informatica, vol. 54, pp. 7–16
(July 2009)

6. Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Vı́g, A.N., Nagy, T., Tóth, M., Király,
R.: Building a refactoring tool for erlang. In: Workshop on Advanced Software
Development Tools and Techniques, WASDETT 2008, Paphos, Cyprus (July 2008)

http://www.erlang.org/doc/reference_manual/part_frame.html

386 M. Tóth et al.

7. Lövei, L.: Automated module interface upgrade. In: Erlang 2009: Proceedings of
the 8th ACM SIGPLAN workshop on Erlang, pp. 11–22. ACM, New York (2009)

8. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University (1991)

9. Sinha, S., Harrold, M.J.: Control-flow analysis of programs with exception-handling
constructs. Technical Report (1998)

10. Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings
of the ACM SIGPLAN 2004 Erlang Workshop, pp. 48–53 (2004)

A The Detailed Proofs of Lemmas.

Lemma 1 (b
� reflexive)

n
b
� n

Proof

n
d
� n (reflexive)

|============ (d-rule)
n

b
� n

�	

Lemma 2 (b
� transitive)

n1
b
� n2, n2

b
� n3 ⇒ n1

b
� n3

Proof. structural induction on n1
b
� n2

a) (base step) n1
d
� n2, n2

b
� n3 ⇒ n1

b
� n3

structural induction on n2
b
� n3

i) (base step) n1
d
� n2, n2

d
� n3 ⇒ n1

b
� n3

n1
d
� n2, n2

d
� n3

|============ (transitive)

n1
d
� n3

|========= (d-rule)
n1

b
� n3

ii) (induction step) n1
d
� n2, n2

b
� n4, n4

b→ n5, n5
b
� n3 ⇒ n1

b
� n3

n1
d
� n2, n2

b
� n4, n4

b→ n5, n5
b
� n3

|======================== (induction hypothesis)

n1
b
� n4, n4

b→ n5, n5
b
� n3

|===================== (b-rule)
n1

b
� n3

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 387

b) (induction step) n1
b
� n4, n4

b→ n5, n5
b
� n2, n2

b
� n3 ⇒ n1

b
� n3

n1
b
� n4, n4

b→ n5, n5
b
� n2, n2

b
� n3

|======================== (induction hypothesis)

n1
b
� n4, n4

b→ n5, n5
b
� n3

|===================== (b-rule)
n1

b
� n3

�	

Lemma 3 (� reflexive)
n � n

Proof

n
d
� n (reflexive)

|============ (data-rule)
n � n

�	

Lemma 4 (� transitive)
n1 � n2, n2 � n3 ⇒ n1 � n3

Proof
case distinction on n1 � n2

a) n1
d
� n2, n2 � n3 ⇒ n1 � n3

case distinction on n2 � n3

i) n1
d
� n2, n2

d
� n3 ⇒ n1 � n3

n1
d
� n2, n2

d
� n3

|============ (transitive)

n1
d
� n3

|========= (data-rule)
n1 � n3

ii) n1
d
� n2, n2

d
� n4, n4

d→ n5, n5
b
� n3 ⇒ n1 � n3

n1
d
� n2, n2

d
� n4, n4

d→ n5, n5
b
� n3

|======================== (transitive)

n1
d
� n4, n4

d→ n5, n5
b
� n3

|================== (b-dep-rule)
n1 � n3

b) n1
d
� n4, n4

d→ n5, n5
b
� n2, n2 � n3 ⇒ n1 � n3

case distinction on n2 � n3

388 M. Tóth et al.

i) n1
d
� n4, n4

d→ n5, n5
b
� n2, n2

d
� n3 ⇒ n1 � n3

n1
d
� n4, n4

d→ n5, n5
b
� n2, n2

d
� n3

|======================== (d-rule)

n1
d
� n4, n4

d→ n5, n5
b
� n2, n2

b
� n3

|======================== (b
� transitive)

n1
d
� n4, n4

d→ n5, n5
b
� n3

|===================== (b-dep-rule)
n1 � n3

ii) n1
d
� n4, n4

d→ n5, n5
b
� n2, n2

d
� n6, n6

d→ n7, n7
b
� n3

⇒ n1 � n3

n1
d
� n4, n4

d→ n5, n5
b
� n2,

n2
d
� n6, n6

d→ n7, n7
b
� n3

|===================== (d-rule)
n1

d
� n4, n4

d→ n5, n5
b
� n2,

n2
b
� n6, n6

d→ n7, n7
b
� n3

|===================== (b
� transitive)

n1
d
� n4, n4

d→ n5,

n5
b
� n6, n6

d→ n7, n7
b
� n3

|===================== (d-b-rule)
n1

d
� n4, n4

d→ n5,

n5
b
� n6, n6

b→ n7, n7
b
� n3

|===================== (b-rule)

n1
d
� n4, n4

d→ n5, n5
b
� n3

|===================== (b-dep-rule)
n1 � n3

�	

Lemma 5 (generalized b-dep-rule)

n1
d
� n2, n2

d→ n3, n3 � n4 ⇒ n1 � n4

Proof
case distinction on n3 � n4

a) n1
d
� n2, n2

d→ n3, n3
d
� n4 ⇒ n1 � n4

n1
d
� n2, n2

d→ n3, n3
d
� n4

|===================== (b-rule)

n1
d
� n2, n2

d→ n3, n3
b
� n4

|===================== (b-dep-rule)
n1 � n4

Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs 389

b) n1
d
� n2, n2

d→ n3, n3
d
� n5, n5

d→ n6, n6
b
� n4 ⇒ n1 � n4

n1
d
� n2, n2

d→ n3, n3
d
� n5, n5

d→ n6, n6
b
� n4

|============================= (d-b-rule)

n1
d
� n2, n2

d→ n3, n3
d
� n5, n5

b→ n6, n6
b
� n4

|============================= (d-rule)

n1
d
� n2, n2

d→ n3, n3
b
� n5, n5

b→ n6, n6
b
� n4

|============================= (b-rule)

n1
d
� n2, n2

d→ n3, n3
b
� n4

|===================== (b-dep-rule)
n1 � n4

�	

Lemma 6 (b
� is not symmetrical and is not anti-symmetrical)

Proof. Lets consider the following examples:

Example 1

ten()-> 10.
add_ten(X) -> X + ten().

b
� is not symmetrical if exist two expression in the graph n1 and n2 where

n1
b
� n2 but not n2

b
� n1. If n1 is the integer 10 from the body of ten/0 and

n2 is the function call ten() in the body of add_ten/1 then:

n1
b
� n1, n1

b→ n2, n2
b
� n2

|===================== (b-rule)
n1

b
� n2

Based on the behaviour dependency graph building rules (Figures 4. and 5.),
only two edges start from n2: a b→ and a d→ edge, both to the direction of the
infix expression X + ten(). There is now direct edges or graph paths starting
from the expression X + ten(), thus does not exist any path from n2 to n1, so
not n2

b
� n1.

Example 2

f(0) -> 0;
f(A) when A > 0 -> f(A) - 1.

b
� is not anti-symmetrical if exist two expression in the graph n1 and n2

where n1
b
� n2 and n2

b
� n1. If n1 is the infix expression f(A)-10 and n2 is the

function call f(A) then both n1
b
� n2 and n2

b
� n1 are true:

390 M. Tóth et al.

n1
f→ n2

|========= (f-rule)

n1
d
� n2

|========= (d-rule)
n1

b
� n2

n2
b
� n2 (b

� reflexive), n2
b→ n1, n1

b
� n1 (b

� reflexive)
|==================================== (b-rule)

n2
b
� n1

n1
f→ n2 is based on the rule Fun call 1. and n2

b→ n1 is based on the rule
Infix exp.

�	

Author Index

Achten, Peter 224

Bergstrom, Lars 94
Bozó, István 372

Cesarini, Francesco 19

Dévai, Gergely 354
Diviánszky, Péter 146

Fluet, Matthew 94
Ford, Nic 94

Granicz, Adam 1

Hinze, Ralf 42
Horváth, Zoltán 372
Hughes, John 183

Kennedy, Andrew 268
Koopman, Pieter 224
Kozsik, Tamás 372

Lövei, László 372

Plasmeijer, Rinus 224
Porkoláb, Zoltán 306

Rainey, Mike 94
Reppy, John 94

Shaw, Adam 94

Tejfel, Máté 372
Thompson, Simon 19
Tóth, Melinda 372

Xiao, Yingqi 94

	Title
	Preface
	Organization
	Table of Contents
	Rapid Prototyping of DSLs with F\#
	F\#
	Getting Started with F\#
	Sequences and Sequence Expressions
	Pattern Matching and Active Patterns

	Developing DSLs
	Defining the Language Primitives
	Building the Parser Using Active Patterns
	Writing the Evaluator

	The Programming Shell around Simply
	Further Considerations
	Conclusions
	References

	Erlang Behaviours: Programming with Process Design Patterns
	Introduction
	Erlang
	Process Skeletons
	Client/Server Models
	A Client/Server Example
	A Process Pattern Example

	OTP Behaviours
	Introduction
	Generic Servers
	Starting Your Server
	Passing Messages
	Stopping the Server

	Other Behaviours
	Conclusions

	Reasoning about Codata
	Introduction
	Background: Idioms
	Summary and Related Work

	Streams
	Interleaving
	Definitions and Proofs
	Recursion and Iteration
	Summary and Related Work

	Application: Recurrences
	Tabulation
	Bit-Fiddling
	Summary and Related Work

	Application: Finite Calculus
	Finite Difference
	Summation
	Summary and Related Work

	Infinite Trees
	Definitions and Proofs
	Recursion and Iteration
	Tabulation
	Infinite Trees and Sequences
	Application: Enumerating the Positive Rationals
	Summary and Related Work

	Tabulation
	Summary and Related Work

	Conclusion
	References

	Programming in Manticore, a Heterogenous Parallel Functional Language
	Introduction
	Overview of the Manticore Language
	Sequential Programming
	Explicitly-Threaded Parallelism
	Implicitly-Threaded Parallelism
	Future Directions

	Explicit Concurrency in Manticore
	Introduction
	Basic Concurrency Primitives
	First-Class Synchronous Operations
	Additional First-Class Synchronous Operations
	Examples

	Implicit Parallelism in Manticore
	Introduction
	Parallel Arrays
	Parallel Tuples
	Parallel Bindings
	Parallel Cases
	Exceptions
	Examples
	Conclusion

	Conclusion
	References

	Non-monadic Models of Mutable References
	Introduction
	Overview

	Monadic Models of References
	IO-References
	ST-References
	Monad-Independent Interfaces

	References Based on Unique Heaps
	Uniqueness Typing
	The Common Interface
	Heap Seeds
	Pure Implementation
	Homogeneous Heaps
	Separate Seeds
	Deletable References
	Shared References
	Union of Heaps
	The Proposed Model
	Extensions

	Applications
	Strongly Connected Components
	Pointer Reversal Walk
	Type Equations Solver

	Related Work
	An Existing Model in Clean
	Other Related Works

	Future Work
	Conclusion
	References

	Software Testing with QuickCheck
	Introduction
	Properties and Generators
	Testing and Test Automation
	Property-Based Testing
	Failure Diagnosis and Shrinking
	Conditional Properties
	Custom Generators
	Distribution of Test Cases
	Properties That Fail
	Points to Remember
	Exercises
	lecture1.erl

	Symbolic Test Cases
	An Abstract Data Type of Dictionaries
	Generating Dictionaries
	Symbolic Test Cases
	Shrinking Symbolic Tests
	``Hoare Testing'' of Abstract Data Types
	Debugging Failing Properties
	Exercises
	lecture2.erl

	Testing Stateful Systems
	The Process Registry
	Testing Stateful Interfaces
	Generating Commands
	Modelling State Transitions
	Conditional Generation
	Specifying Preconditions
	Specifying Postconditions
	Exercises
	reg_eqc.erl

	QuickCheck in Industry
	Conclusions
	References

	An Effective Methodology for Defining Consistent Semantics of Complex Systems
	Introduction
	Formal Semantics
	The Imperative Language While
	The Semantics of Expressions in While
	Denotational Semantics
	Natural Semantics
	Structural Operational Semantics
	Sanity Checks
	Simulating the Semantics
	Testing Properties of the Semantics

	A Semantics for iTasks
	Task Identification
	Events
	Rewriting Tasks Given an Event

	Equivalence of Tasks
	Determining the Equivalence of Task Trees
	Determining Equivalence by Applying Events
	Determining Equivalence of Tasks by Comparing Task Trees

	Testing Properties of iTasks
	Related Work
	Discussion
	References

	Types for Units-of-Measure: Theory and Practice
	Introduction
	An Introduction to Units-of-Measure in F#
	Introducing Units
	Interlude: The F\# PowerPack
	Unit Conversions
	Interfacing Non-unit-aware Code
	Dimensionless Quantities
	Parametric Polymorphism
	Zero
	Application Area: Statistics
	Application Area: Calculus
	Unit-Parameterized Types
	Polymorphic Recursion

	Polymorphic Type Inference for Units-of-Measure
	Grammar for Units
	Equations for Units
	Deciding Equations
	Solving Equations
	A Unification Algorithm
	Types
	Type Schemes
	A Type System and Inference Algorithm
	Type Scheme Equivalence
	Open Type Schemes and Generalized Let

	Semantics of Units
	Units Going Wrong
	Polymorphic Functions Going Wrong
	Parametricity
	Theorems for Free
	Zero
	Definability
	Semantic Typing
	Type Isomorphisms
	Dimensional Analysis

	Discussion
	References

	Functional Programming with C\++ Template Metaprograms
	Introduction
	Informal Introduction to C\++ Templates
	C\++ Template Metaprograms
	Connection between Functional Programming and C++ Template Metaprograms
	Functional Interface for Template Metaprograms
	Generating Yhc.Core Code
	Generating Lambda Expressions
	Generating Template Metaprograms
	Lazy Application
	Interoperability with Directly Implemented C++ Metafunctions
	Evaluation

	Debugging Template Metaprograms
	Ontology of Template Metaprogram Errors
	Debugging Techniques
	Profiling

	Related Work
	FC\++
	Boost Metaprogramming Library
	Haskell Type Classes
	Debugging and Profiling

	Conclusion
	References

	Embedding a Proof System in Haskell�
	Introduction
	Overview of the Proof System
	Proof Structure
	Program Extraction

	Design Decisions
	Shallow or Deep Embedding
	Typed Expressions
	Parameters
	Proof Representation

	Frontend
	Frontend for Expressions and Formulas
	Frontend for Proofs

	Summary and Discussion
	Conclusions
	Related Work
	Future Work

	References

	Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs
	Introduction
	Motivating Example
	A Partial Model for Erlang Programs
	Behaviour Dependency Graph
	The Representation of the Erlang Programs
	Dependency Information
	Dependency Rules
	Deriving Dependency Information
	Lemmas
	Example

	Related Work
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

