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Abstract. We exploit the game-theoretic ideas presented in [12] to
study the vertex coloring problem in a distributed setting. The vertices
of the graph are seen as players in a suitably defined strategic game,
where each player has to choose some color, and the payoff of a vertex is
the total number of players that have chosen the same color as its own.
We extend here the results of [12] by showing that, if any subset of non-
neighboring vertices perform a selfish step (i.e., change their colors in or-
der to increase their payoffs) in parallel, then a (Nash equilibrium) proper
coloring, using a number of colors within several known upper bounds
on the chromatic number, can still be reached in polynomial time. We
also present an implementation of the distributed algorithm in wireless
networks of tiny devices and evaluate the performance in simulated and
experimental environments. The performance analysis indicates that it
is the first practically implementable distributed algorithm.

1 Introduction

One of the central optimization problems in Computer Science is the problem
of vertex coloring of graphs, i.e., the problem of assigning a color to each vertex
of the graph so that no pair of adjacent vertices gets the same color (i.e., so
that the coloring is proper) and so that the total number of distinct colors used
is minimized. In this work, we deal with the problem of vertex coloring in a
distributed setting, with a focus on distributed implementations applicable to
Wireless Sensor Networks (WSNs). Finding a good (with respect to the total
number of colors used) coloring of the nodes of a WSN has many practical
applications: First, colors may be seen as frequencies, so that a proper coloring
of the nodes corresponds to a solution to the frequency assignment problem;
Furthermore, a coloring of a WSN actually partitions its nodes into subsets
(each corresponding to a color), such that no communication link exists between
any pair of nodes in the same subset, and such a partition might be useful when
designing sleep/awake protocols in order to save energy or providing secure group
communication.
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The challenge of designing vertex coloring algorithms applicable in WSNs lies
in both the intrinsic difficulty of the original problem of vertex coloring and
the particularities of WSNs. More specifically, the global optimum of vertex
coloring is NP-hard [7], and the best polynomial time approximation algorithm
achieves an approximation ratio of O(n(log log n)2/(logn)3) [6] (n being the
number of vertices). In the distributed setting of wireless sensor networks the
problem of vertex coloring has been studied before; the randomized algorithm
presented in [10] needs, with high probability, O(Δ log n) time and uses O(Δ)
colors, where n and Δ are the number of nodes in the network and the maximum
degree, respectively. This algorithm requires knowledge of a linear bound on n
and Δ. This result was improved in [14], where the coloring problem is solved
in O(Δ + log Δ log n) time, given an estimate of n and Δ, and O(Δ + log2 n)
without knowledge of Δ, while it needs Δ + 1 colors.

In this work, our objective is to find a (suboptimal, inevitably) proper color-
ing, that at least guarantees some bounded maximum total number of colors used.
Towards this direction, we try to exploit the ideas presented in [12]: the vertices
of the graph are seen as players in a suitably defined strategic game, where each
player has to choose some color, and the payoff of a player is the total number
of players that have chosen the same color as his own (unless some neighbor has
also chosen the same color, in which case the payoff is 0). The vertices are al-
lowed to perform, sequentially, selfish steps, i.e., change their colors in order to
increase their payoffs, and in [12] it was shown that this selfish improvement se-
quence converges, in polynomial time, into a pure Nash equilibrium of the game,
which is actually a proper coloring of the vertices of the graph that uses a total
number of colors satisfying all known upper bounds on the chromatic number of
the graph (that is, the minimum number of colors needed to color the graph).

Our contribution. Our objective here is to exploit the game-theoretic ideas pre-
sented in [12] so as to deploy an efficient, in terms of both time complexity and
number of colors used, distributed algorithm for vertex coloring. The algorithm
of [12] is in fact a local search method (the vertices perform local changes, by
moving to color classes of higher cardinality, until no further local moves are pos-
sible); however, it relies on several assumptions that obstruct its straightforward
implementation in a distributed setting. In particular, it requires that global
information about the cardinalities of all color classes is at any time available to
each vertex, and that only a single vertex at each time is allowed to perform a
local move. Here, we propose an implementation of the algorithm that deals with
these issues, thus enabling its application to distributed settings, while preserv-
ing both the efficiency (in terms of time complexity) and the quality (in terms
of number of colors used) of the coloring produced.

The solution we propose relies on an extension of the results of [12] that we give
here. Namely, we raise the requirement that only one vertex at a time is allowed
to perform a selfish step in order to guarantee polynomial time convergence into
a Nash equilibrium coloring. In particular, we show that if any subset of non-
neighboring vertices perform a selfish step in parallel, then a Nash equilibrium
coloring satisfying the bounds given in [12] can still be reached in polynomial time.
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This potentiality of parallelization of selfish steps allows us to derive a dis-
tributed implementation of the game-theoretic vertex coloring algorithm, which
computes, in polynomial time, a proper coloring of the vertices of a graph using
at most

k ≤ min
{

Δ2(G) + 1 ,
n + ω(G)

2
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1 +
√

1 + 8m

2
,
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2

+
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m − (χ(G) − 1)(χ(G) + 1)

4

}

distinct colors, where n is the number of vertices, m is the number of edges,
Δ2(G) is the maximum degree of a vertex which is connected to a vertex of equal
or higher degree, and ω(G), α(G) and χ(G) are the clique number, independence
number and chromatic number, respectively, of the graph under consideration.
To the best of our knowledge, this is the first distributed, polynomial-time imple-
mentation of a vertex coloring algorithm that achieves all the above bounds. Our
algorithm requires O(n) memory to maintain the local lists with the cardinali-
ties of all color classes. Also, the protocol does not require any initial knowledge
on the network (e.g., network size, average node degree etc.) but gathers all
necessary information dynamically.

The paper is organized as follows. The next section introduces the definitions
and notations needed to solve the problem of vertex coloring. We then present
the game-theoretic approach for vertex coloring based on local search. In Section
3 we first prove that a “parallelization” of the local search approach is still
possible. Based on this fact, we then present a distributed implementation of
the algorithm that converges fast into a pure Nash equilibrium, and thus into
a proper coloring. We also describe a self-stabilizing version of the distributed
algorithm that recovers from transient faults regardless of its initial state. Section
4 presents an implementation of the distributed algorithm in wireless networks
of tiny devices and evaluates the performance in simulated and experimental
environments. The performance analysis indicates that our distributed algorithm
is the first practically implementable for real networks.

2 Background

Definitions and notation. For a finite set A we denote by |A| the cardinality
of A. For a positive integer n ∈ N let [n] = {1, . . . , n}. Denote G = (V, E) a
simple, undirected graph with vertex (node) set V and set of edges E. For a
vertex v ∈ V denote N(v) = {u ∈ V : {u, v} ∈ E} the set of its neighbors,
and let deg(v) = |N(v)| denote its degree. Let Δ(G) = maxv∈V deg(v) be the
maximum degree of G. Let

Δ2(G) = max
u∈V

max
v∈N(u):d(v)≤d(u)

deg(v)

be the maximum degree that a vertex v can have, subject to the condition
that v is adjacent to at least one vertex of degree no less than deg(v). Clearly,
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Δ2(G) ≤ Δ(G). Let diam(G) be the diameter of G, i.e., the maximum length
of a shortest path between any pair of vertices of G. Let ω(G) and α(G) denote
the clique number and independence number of G, i.e. the number of vertices in
a maximum clique and a maximum independent set of G.

The Vertex Coloring problem. One of the central optimization problems
in Computer Science is the problem of vertex coloring of graphs: given a graph
G = (V, E) of n vertices, assign a color to each vertex of G so that no pair
of adjacent vertices gets the same color (i.e., so that the coloring is proper)
and so that the total number of distinct colors used is minimized. The chromatic
number of G, denoted by χ(G), is the global optimum of vertex coloring, i.e., the
minimum number of colors needed to properly color the vertices of G. The vertex
coloring problem is known to be NP-hard [7], and the chromatic number cannot
be approximated to within Ω(n1−ε) for any constant ε > 0, unless NP ⊆ co-RP
[5].

The game-theoretic approach. Panagopoulou and Spirakis [12] proposed an
efficient vertex coloring algorithm that is based on local search: Starting with an
arbitrary proper vertex coloring (e.g. the trivial proper coloring where each ver-
tex is assigned a unique color), each vertex (one at a time) is allowed to move to
another color class of higher cardinality, until no further local moves are possible.
This local search method is illustrated in [12] via a game-theoretic analysis, be-
cause of the natural correspondence of the local optima of the proposed method
to the pure Nash equilibria of a suitably defined strategic game.

In particular, given a finite, simple, undirected graph G = (V, E) with |V | = n
vertices, the graph coloring game Γ (G) is defined as the game in strategic form
where the set of players is the set of vertices V , and the action set of each vertex
is a set of n colors [n] = {1, . . . , n} (for simplicity, we represent each color by
an integer). A configuration or pure strategy profile c = (cv)v∈V ∈ [n]n is a
combination of actions, one for each vertex. That is, cv is the color chosen by
vertex v. For a configuration c ∈ [c]n and a color x ∈ [n], we denote by nx(c)
the number of vertices that are colored x in c, i.e. nx(c) = |{v ∈ V : cv = x}|.
The payoff that vertex v ∈ V receives in the configuration c ∈ [n]n is

λv(c) =
{

0 if ∃u ∈ N(v) : cu = cv

ncv(c) else .

In other words, given a proper coloring, the payoff of a vertex equals the cardi-
nality of the color class it belongs to.

A pure Nash equilibrium [11] is a configuration c ∈ [n]n such that no vertex can
increase its payoff by unilaterally deviating. Let (x, c−v) denote the configuration
resulting from c if vertex v chooses color x while all the remaining vertices pre-
serve their colors. Then, a configuration c ∈ [n]n of the graph coloring game Γ (G)
is a pure Nash equilibrium if, for all vertices v ∈ V , λv(x, c−v) ≤ λv(c) ∀x ∈ [n].
We also say that c is a Nash equilibrium coloring.

A vertex v ∈ V is unsatisfied in the configuration c ∈ [n]n if there exists a
color x �= cv such that λv(x, c−v) > λv(c); else we say that v is satisfied. Clearly,
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a configuration c is a Nash equilibrium coloring if and only if all vertices are
satisfied in c. For an unsatisfied vertex v ∈ V in the configuration c, we say that
v performs a selfish step if v unilaterally deviates to some color x �= cv such that
λv(x, c−v) > λv(c).

The analysis of the graph coloring game given in [12] illustrates that Γ (G)
has always pure Nash equilibria, and that each pure equilibrium is a proper
coloring of G. Furthermore, there exists a pure equilibrium that corresponds to
an optimum coloring. It is also shown that any pure Nash equilibrium of the game
is a proper coloring of G that uses a number of colors, k, bounded above by all the
general known to us upper bounds on the chromatic number of G. In particular, k
is proved to be bounded above by Δ2(G)+1, n+ω(G)

2 , n−α(G)+1, and 1+
√

1+8m
2 .

In [4], it was further shown that k ≤ χ(G)+1
2 +

√
m − (χ(G)−1)(χ(G)+1)

4 . Therefore,
the number of colors used by any pure Nash equilibrium of Γ (G) is at most

k ≤ min
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Most interestingly, it is proven that any sequence of selfish steps, when started
with a proper (e.g., the trivial) coloring, always reaches a pure Nash equilibrium
in O(n · α(G)) selfish steps. The proof follows from the existence of a potential
function [9], which is a function defined over the set of pure strategy profiles of
a game, and has the property that the difference of the function’s value after
a player deviates equals the corresponding difference of that player’s payoff. In
particular, [12] showed that the graph coloring game Γ (G) possesses a potential
function defined as

Φ(c) =
1
2

∑
x∈[n]

(nx(c))2 ∀c ∈ [n]n ,

with the property that, for any proper coloring c ∈ [n]n, for any vertex v ∈ V ,
and for any color x ∈ [n], it holds that

λv(x, c−v) − λv(c) = Φ(x, c−v) − Φ(c) .

Therefore, if any vertex v performs a selfish step then the value of Φ is increased
as much as the payoff of v is increased. Since the payoff of v is increased by
at least 1 and the value of Φ is bounded above by n·α(G)

2 , it follows that after
at most n·α(G)

2 selfish steps there will be no vertex that can improve its payoff
(because Φ will have reached a local maximum, which is no more than the global
maximum, which is no more than (n ·α(G))/2), so a pure Nash equilibrium will
have been reached. This implies the following simple centralized algorithm A
that computes, in polynomial time, a pure Nash equilibrium of Γ (G) – and thus
a proper coloring of G, satisfying Inequality 1:
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Algorithm A
Input: Graph G with vertex set V = {v1, . . . , vn}
Output: A pure Nash equilibrium c = (cv1 , . . . , cvn) ∈ [n]n of Γ (G)
Initialization: for i = 1 to n do cvi = i
repeat

find an unsatisfied vertex v ∈ V and a color x ∈ [n]
such that λv(x, c−v) > λv(c)

set cv = x
until all vertices are satisfied

3 Distributed Vertex Coloring as a Game

The algorithm A presented in the previous section is actually a local search
algorithm: starting with an arbitrary proper vertex coloring (such as the trivial
proper coloring), we allow each vertex (one at a time) to move to another color
class of higher cardinality, until no further local moves are possible. Our aim is
to apply this local search method in a distributed environment, so that we end
up with a distributed algorithm that computes a proper coloring of the vertices
of a graph using a total number of colors satisfying Inequality 1.

However, there are two main challenges arising in implementing A in a dis-
tributed environment: First, A requires mutual exclusion: only one node at a
time can perform a selfish step in order to guarantee convergence into a pure
Nash equilibrium coloring. Second, A requires global knowledge: each node needs
to be aware of the cardinalities of each color class in order to decide whether to
perform a selfish step or not.

In this section, we deal with both the above challenges. First, we prove that a
“parallelization” of algorithm A is possible, in the sense that even if we allow mul-
tiple non-neighboring unsatisfied vertices to perform simultaneous selfish steps,
then (a slight modification of) the algorithm still converges into a pure Nash
equilibrium, and thus into a proper coloring satisfying the bounds of Inequality
1. Then, we propose a method to deal with the global information problem (pos-
sibly at the expense of parallelization) so that, after performing a selfish step, a
node needs not to inform all the other nodes about the change, but only a small
subset of them. Finally, we discuss the ability of our distributed algorithm to
self-stabilize.

In the following, we assume that each node has, and is aware of, a unique
identification number (id).

3.1 Simultaneous Execution of Selfish Steps

We study whether polynomial time convergence into a Nash equilibrium coloring
can still be guaranteed if vertices are allowed to perform selfish steps simultane-
ously. We still assume however that all vertices have access to global information
about the cardinality of each color class. Note that, in order to avoid non-proper
colorings, we should not allow any pair of neighboring vertices change their colors
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simultaneously. Towards this direction, we allow an unsatisfied vertex to perform
a selfish step only if it has the maximum id among the unsatisfied vertices in the
neighborhood.

More specifically, given a configuration c ∈ [n]n, we say that the vertices
perform a joint selfish step if:

1. Each vertex that is unsatisfied in c sends a message to inform its neighbors.
2. If an unsatisfied vertex v does not receive any message from a vertex of

higher id, then it performs a selfish step, i.e., it changes its color to c′v such
that λv(c′v, c−v) > λv(c).

Clearly, in a joint selfish step, possibly more than one vertices will change their
color simultaneously. We will examine whether a sequence of joint selfish steps
converges into a Nash equilibrium coloring.

Given a configuration c ∈ [n]n, we define vector Λ(c) as the n-vector whose
ith entry, Λi(c), is the cardinality of the ith largest color class. We say that Λ(c)
is lexicographically greater than Λ(c′) if Λi(c) > Λi(c′) for some i ∈ [n] and, if
i > 1, then Λj(c) = Λj(c′) for all j ∈ {1, . . . , i}. If Λi(c) = Λi(c′) for all i ∈ [n],
then Λ(c) is lexicographically equal to Λ(c′).

Lemma 1. Let c ∈ [n]n be any configuration and let c′ ∈ [n]n be a configuration
that results from c after a joint selfish step. Then, Λ(c) can not be lexicograph-
ically greater than Λ(c′).

Proof. Let Y ⊆ [n] be the subset of colors that correspond to the color classes
of maximum cardinality in c. If the cardinality of such a maximum color class
increases, then Λ1(c) < Λ1(c′) and we are done.

Assume now that the cardinality of each maximum color class in c does not
increase. Observe that a vertex colored x in c for some x ∈ Y gets maximum
payoff, so it could improve it only by moving to a color class of equal (and thus
maximum, as well) cardinality. But since the cardinality of each maximum color
class in c does not increase, it must be the case that all these cardinalities remain
the same. Therefore Λi(c) = Λi(c′) for all i ∈ [k]. This further implies that no
vertex colored x′ /∈ Y in c chooses color x ∈ Y in c′.

Similar arguments apply for the cardinalities of the second to maximum color
classes in c and so on, to conclude that either (i) Λ(c′) is lexicographically greater
than Λ(c′) or (ii) Λ(c′) is lexicographically equal to Λ(c′) and each vertex that
performs a selfish step moves to a color class of equal cardinality in c. 	


Lemma 2. Let c ∈ [n]n be any configuration and let c′ ∈ [n]n be a configuration
that results from c after a joint selfish step. If Λ(c) is lexicographically greater
than Λ(c′), then Φ(c) > Φ(c′).

Proof. Clearly, for any configuration c′′, Φ(c′′) =
∑n

i=1 Λ2
i (c

′′). The proof follows
from the fact that Λ(c′) has at least the same number of zero entries as Λ(c′),
since no vertex has an incentive to choose a color that is not used by any other
vertex. 	
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In order to avoid loops of the joint selfish steps sequence, we have to deal with
the case where Λ(c′) is lexicographically equal to Λ(c), and hence Φ(c′) = Φ(c).
To do so, we propose the probabilistic joint selfish step, given a configuration
c ∈ [n]n:

1. The vertices perform a joint selfish step, resulting in configuration c′.
2. Each vertex which performed a selfish step checks if Φ(c) = Φ(c′). If yes, it

changes back to its previous color with probability 1/2 and repeats this step.

We show that the probabilistic joint selfish steps sequence converges into a pure
Nash equilibrium in polynomial time, with high probability:

Theorem 1. With high probability, the probabilistic joint selfish step sequence
converges in polynomial time into a Nash equilibrium coloring.

Proof. Assume Φ(c′) = Φ(c) after a joint selfish step. Then Lemma 1 and Lemma
2 imply that at least k ≥ 2 vertices with different colors but with the same payoff
in c permuted their colors. If some, but not all, of these vertices return to their
original colors, then some payoffs will increase, yielding to a lexicographically
greater configuration c′′, and thus Φ(c′′) > Φ(c). The probability that this does
not happen is 2 · 2−k (equal to the probability that all change their colors or all
preserve their colors). So the probability that Step 2 of the probabilistic joint
selfish steps sequence is repeated t times is 2−t−k+1. 	


3.2 Distributing Global Information

The (probabilistic) joint selfish steps sequence converges to a Nash equilibrium
coloring provided that all vertices know the cardinalities of all color classes. In
order to achieve this in a distributed environment, we let each vertex maintain a
local list with the cardinalities of all color classes. Initially, each vertex is assumed
to have a unique color (its id) and all these cardinalities equal to 1. An arbitrary
vertex, which we call the Judge initiates the coloring procedure. It performs a
selfish step, if possible, and sends the original list of cardinalities to its neighbors,
who become its children. Then these nodes perform a joint selfish step, if possible,
and also pass the original list to their neighbors. If a vertex has no parent and
receives the list from some vertex, it sets itself as the child of that vertex.

This way, a tree (whose root is the Judge) is constructed, and when the
leaves are reached, all unsatisfied vertices will have actually performed a joint
selfish step, based on the same global information about the cardinalities of color
classes. This is assured by the fact that no matter if a vertex performs a selfish
step or not, it sends to its children the list of cardinalities that was originally
sent by the Judge.

Now, the information about the color changes has to be sent back to the
Judge: starting by the leaves, each child sends the information about its new
color to its parent and so on, until the root of the tree gets informed about
the new cardinalities of all color classes. Then the root sends the updated list
to its children and the above procedure is repeated until the Judge gets the
same list in two successive steps. In order to avoid loops, if the root observes that
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the list has changed but the value of the potential function Φ did not change, a
message is forwarded to ask the vertices to change back to their original color
with probability 1/2.

The above procedure, combined with the results of the previous subsection,
guarantees that after at most O(n · a(G)) phases (each phase starting with the
Judge forwarding the list of cardinalities and ending with the Judge receiving
the information about all color changes that have occurred), a proper coloring
of G = (V, E) will be produced, using a number of colors satisfying the bounds
of Inequality 1. To the best of our knowledge, this is the first distributed im-
plementation of a coloring algorithm that achieves all these bounds. We also
note that the complexity bound of O(n · a(G)) is rather strict, in the sense that
it assumes that no more than o(1) vertices perform a selfish step in the same
phase. In Section 4 we provide experimental evidence that, in practice, the num-
ber of vertices performing a joint selfish step is large, and therefore the coloring
procedure converges faster than the O(n · a(G)) bound suggests.

3.3 Self-stabilization

We now present a self-stabilizing version of the distributed vertex coloring algo-
rithm; that is, starting from an arbitrary state (coloring of vertices), it guarantees
to converge to a legitimate state (proper coloring) in finite number of steps and
to remain in a legitimate set of states thereafter. Essentially the self-stabilizing
version of our distributed algorithm can recover from transient faults.

In the sequel we consider that the system can start in any configuration.
That is, the color of each vertex can be corrupted. Note that we do not make
any assumption on the bound of the corrupted nodes. In the worst case all the
nodes in the system may start in a corrupted configuration. However, we assume
that the unique identification numbers of the vertices are stored in a read-only
memory segment that cannot be affected by transient faults.

A central modification to the algorithm is to force vertices to periodically
broadcast their color and id to their neighbors. By doing so they can detect (a)
whether the coloring is not proper and (b) if a vertex is unsatisfied. This simple
mechanism allows the vertices to detect if a transient fault has occurred or if the
algorithm was initiated from an arbitrary state. The periodic broadcasting also
guarantees that after all vertices have been satisfied the algorithm will not ter-
minate; it will continue to check whether a selfish step can be taken indefinitely.
Therefore, when a transient failure occurs, the procedure will be re-initiated.

When two or more vertices detect that their color is not proper (i.e., the same
color is used by another vertex) they locally resolve the conflict by changing
their color. Each vertex chooses as a new color the maximum color used in the
neighborhood plus its own id (recall that for simplicity colors are represented
as integers). This will increase the number of colors used in the neighborhood
but will result in a proper coloring in O(1) steps. After selecting the new colors,
the vertices notify the Judge about the conflict resolution by using the tree
structure. In order to guarantee that the tree structure will be functional despite
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the transient failures, we replace the tree construction algorithm used in the
previous section with a self-stabilizing tree structure (e.g., see [1]).

When the Judge receives notification of a conflict resolution, it waits for a
O(diam(G)) period (where diam(G) is a predefined upper bound of the diameter
of G) so that any other conflict is propagated through the tree structure. Then
the Judge broadcasts a request message to all vertices to report their color as if
they have changed their color during the previous phase. This allows the Judge
to recount the color classes and reconstruct the necessary global information.
Finally when this reconstruction phase is complete, the new list of colors is
broadcast to the vertices to locally check if they wish to conduct a selfish step
or not.

The above discussion clearly implies the following:

Lemma 3. The self-stabilizing version of the distributed vertex coloring algo-
rithm assures that:

1. Starting from an arbitrary configuration, eventually all vertices are properly
colored.

2. Starting from an arbitrary configuration, the Judge is informed about the
color of each vertex.

3. Starting from an arbitrary configuration, eventually all vertices are informed
about the cardinality of each color class.

4. Starting from an arbitrary configuration, the algorithm returns to a proper
configuration ( convergence).

5. Starting from a proper configuration, the algorithm preserves the proper con-
figuration ( closure).

4 Algorithm Engineering

Most of the times in Computer Science, researchers tend to design an algorithm
in an abstract way. This happens because an algorithm should be able to be
used in many different situations and it is up to the developer to decide the
way it should be turned into code for a real system. Almost every time the
developer finds many limitations in the ways she can operate within the given
hardware and software specifications. These problems are further augmented
when implementing algorithms for wireless sensor networks due to the extremely
limited resources and also due to the heterogeneous nature (both in terms of
hardware and software). Algorithm development for such networks is complex as
it unites the challenges of distributed applications and embedded programming.

As a starting point we implemented a centralized version that follows closely
the initial design of [12]. We call this algorithm JColoring (noted as JC in the
figures). The algorithm was implemented in a real environment that actually
exchanged network messages containing protocol payload. The implementation
of this centralized version required two sub-protocols that enabled (i) only a
single vertex to perform a selfish step each time (mutual exclusion) and (ii) all
vertices to know the cardinalities of all color classes (global knowledge).
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In this centralized version, the Judge coordinates the graph coloring game
by communicating with each vertex sequentially. The Judge sends a message
to the next vertex in the sequence containing the list of color classes along
with their cardinalities. Upon receiving this message, the vertex has to decide
whether to take a selfish step or not and informs the Judge about its new color.
Communication between vertices is implemented using the well-established ad-
hoc routing protocol TORA [13]. The particular protocol was selected because
of its simplicity and ability to operate adequately in wireless settings.

As expected, the evaluation of this version indicated the very poor scala-
bility of the system due to the single point of coordination. It also revealed
another major practical problem: in the hardware platform we used to test the
algorithm, the available payload of each packet was about 120 bytes. There-
fore in a single message we were able to store about 30 colors. So when the
number of vertices grew beyond this number, the messages containing the list
with the color cardinalities were fragmented in two (or more) packets thus
drastically decreasing the available bandwidth and leading to longer execution
times.

After achieving a satisfactory state of the centralized version, the next step
was to implement our distributed algorithm as described in Section 3. We call this
algorithm PJColoring (noted as PJC in the figures). With the data structures and
the message fragmentation mechanism in place we proceeded by implementing (i)
the simultaneous execution of selfish steps (thus leveraging the mutual exclusion
limitation) and (ii) the distributed global information provisioning. Essentially
the tree construction algorithm used for efficiently broadcasting the distributed
global information replaced the TORA routing algorithm.

The evaluation of our distributed algorithm revealed yet another interesting
Algorithm Engineering issue. The convergecast operation for collecting the infor-
mation about the color changes resulted in a high number of message exchanges.
To resolve this issue we implemented an aggregation mechanism. Each parent,
after collecting the new colors of its children, it summarizes the information and
propagates a single message to its parent. This aggregation is repeated by each
parent until the root of the tree is reached. In many cases this technique led
to a reduction of up to 50% of message exchanges. In the figures we note this
improved version of the algorithm as PJC (with aggregation).

Successful Algorithm Engineering for tiny artifacts requires the validation and
evaluation of algorithms in experiments on real networked embedded devices.
We ported our distributed algorithm into the real hardware platform as a final
step of validation and evaluation of its performance. This immediately revealed a
serious problem related to wireless communication, that of medium congestion.
The implementation of the simultaneous execution produced a large number of
concurrent exchanges and thus message collisions that were unresolved by the
MAC. To reduce the collisions we imposed a short random delay before each
transmission; yet, some messages were still not delivered properly. This was
inevitable due to the non-deterministic behavior of the wireless medium. To



114 I. Chatzigiannakis et al.

completely overcome these problems we implemented the self-stabilizing version
of the algorithm leading to a system that was fully operational in real wireless
sensor network deployments.

4.1 Implementation Details

We decided to implement our algorithms using Wiselib [2]: a code library, that
allows implementations to be OS-independent. It is implemented based on C++
and templates, but without virtual inheritance and exceptions. Algorithm im-
plementations can be recompiled for several platforms and firmwares, without
the need to change the code. Wiselib can interface with systems implemented
using C (Contiki), C++ (iSense), and nesC (TinyOS).

Furthermore, an important feature of Wiselib is the already implemented algo-
rithms and data structures. Since different kind of hardware uses different ways
to store data (due to memory alignment, inability to support dynamic memory,
etc.), it is important to use these safe types as much as possible since they have
been tested before on most hardware platforms. As of mid 2010, the Wiselib
includes about 40 Open Source implementations of standard algorithms, and is
scheduled to grow to 150-200 algorithms by the end of 2011. We use Wiselib data
structure to implement the maps for counting the cardinalities of the colors and
the implementation of TORA algorithm.

Finally, Wiselib also runs on the simulator Shawn [8], hereby easing the tran-
sition from simulation to actual devices. This feature allows us to validate the
faithfulness of our implementation and also get results concerning the quality of
our algorithms without time consuming deployment procedures and harsh de-
bugging environments. Shawn allows repeatability of simulations in an easy way
by using only a single configuration file. It provides many options such as packet
loss, radius of communication, ways of communicating and even mobility in an
abstract way, without needing to provide specific code for every hange.

4.2 Performance Evaluation: Simulations

We start by presenting the results of the validation and performance evaluation
based on simulated executions of our implementation in the Shawn environment.
Using different types of networks and experimenting with the different parame-
ters, we were able to identify that parameters that influence the correctness and
performance of our protocol. The first type of network topologies (called “Fixed
Diameter”), deploys n = [25, 250] vertices in a way such that the network diame-
ter remains constant as n increases: the resulting networks have diam(G) = 6 and
the average vertex degree (which we call “density”) is 2 ≤ avgDeg(G) ≤ 40. The
second type of network topologies (called “Fixed Density”), deploys n = [10, 230]
in a way such that the average vertex degree remains constant as n increases:
the resulting networks have 3 ≤ diam(G) ≤ 15 and avgDeg(G) = 12.

A very important performance metric is the number of colors used. Figure 1
depicts the number of colors used for each set of topologies. As expected, as
the density of the network increases (i.e., the average vertex degree), the chro-
matic number increases and hence the number of colors used by our algorithm.



Distributed Game-Theoretic Vertex Coloring 115

Fig. 1. Colors used for both types of network topologies

Fig. 2. Time complexity for both types of network topologies

When the density remains more or less constant, the chromatic number remains
constant, as also does the number of colors used by the algorithm.

The next algorithm property that we evaluate is the time complexity. Figure 2
depicts the number of rounds required to reach a Nash equilibrium. It is evident
that as the number of vertices increases, so does the number of rounds required.
However, the “Fixed Diameter” topologies seem to be harder to address. This
is caused due to the fact that only few vertices can change color in each step of
the algorithm in dense environments. As a result the algorithm takes more steps
until it reaches an equilibrium. These topologies require about twice the number
of rounds than the “Fixed Density” topologies. In these figures we have not
included the results for the JColoring algorithm as they cannot be fit properly:
in all cases the resulting rounds are about 20 times more than the PJColoring
algorithm and thus even for n = 50 it becomes totally impractical.

In the sequel we examine the communication complexity of the algorithms.
Figure 3 shows the number of message exchanges for each set of topologies consid-
ered. The behavior of the algorithms are similar to that observed in the previous
figure: (a) as the number of vertices increases, so does the number of messages
exchanged, (b) the “Fixed Diameter” topologies seem to be harder to address
and (c) the JColoring exchanges much greater messages than the PJColoring algo-
rithms. In these figures it is clear that for n > 50 the JColoring algorithm becomes
impractical, while PJColoring performs well for all the topologies examined.
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Fig. 3. Communication complexity for both types of network topologies

Fig. 4. Colors used as the simulation evolves for PJColoring (with aggregation) for
different type of topologies of fixed number of vertices (n = 150)

We conduct a final set of simulated executions to evaluate the ability of PJ-
Coloring (with aggregation) to perform parallel selfish steps. Figure 4 depicts the
number of colors used as the network evolves over time. We present the re-
sults for both types of topologies when n = 150. We observe that in both cases
the algorithm reaches the equilibrium fast, although in the denser topology the
progress is slower. It is evident that the algorithm succeeds in parallelizing the
process of selfish coloring.

4.3 Performance Evaluation: Experiments

Although simulations enable both verification and performance evaluation of
protocols, they do not take into account read-world effects that may change
their behavior. Also, in physical deployment protocols must operate within the
given hardware and software specifications (i.e., memory and message payload
constrains). Thus we continue the evaluation of the PJColoring (with aggregation)
algorithm in our experimental testbed that consists of iSense sensor nodes with
a 32 Bit RISC Controller running at 16 MHz, with 96 KB RAM and 128 KB
Flash and an IEEE 802.15.4 compliant wireless radio interface. All nodes come
with a permanent energy source allowing for an arbitrary duty cycle. Nodes
are equipped with a multitude of sensors measuring light, temperature, humidity,
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acceleration, magnetic-field levels and barometric pressure. For more details on
the installation and technical aspects of the experimental testbed see [3]. In the
sequel we consider that each node represents a single vertex.

The first set of experiments was conducted in networks where all the nodes
were within communication range of each other, thus forming a clique. In Tab. 1
we can see the breakdown of the total execution time of the protocol. The selec-
tion of this topology is twofold. Firstly, to determine the effect of network density
in the execution of our protocol (i.e., collisions, etc.). We observed that up to
networks sizes of eight nodes the results were always correct (i.e., messages were
delivered properly), while in larger networks message loses always occurred forc-
ing the non-stabilizing version of the protocol to produce not consistent results.
Secondly, to determine the real execution time of a protocol phase. In these
topologies the protocol terminates immediately after the initial assignment of
colors, i.e., after checking that every available color is taken by a neighbor. For
all topologies considered the execution time of a single phase is about 130ms.

Table 1. Real execution times of PJColoring (with aggregation) for clique topology

Nodes Tree Construction PJColoring Total

5 745 ms 132 ms 877 ms
6 739 ms 133 ms 872 ms
7 754 ms 141 ms 895 ms
8 752 ms 137 ms 889 ms

The second set of experiments was conducted in networks where the nodes
where positioned in a line. Tab. 2 lists the total execution time of the protocol.
This topology produces networks of increasing diameter thus requiring more time
to construct the broadcast tree and complete the convergecast operation. Based
on the results, the initialization of the two processes requires about 750ms, and
then for each further hop an additional time of about 300ms was required. The
initialization time of the two processes is also confirmed by the previous set of
experiments that used single-hop networks (see Tab. 1). In these topologies, we
observe that the time required by the selfish steps is also increasing with the
network size. It seems that for each additional hop an additional time of 600ms
is required, or, based on the previous set of experiments, about 4 protocol phases.
By carefully examining the particular topology, it is evident that the addition
of a new node forces all other nodes to take additional selfish steps until a Nash
equilibrium is reached.

The performance evaluation we conducted both in simulated and experimen-
tal environments indicates interesting aspects of the vertex coloring problem. It
also indicates that our solution successfully raises the limitation of [12] where
only one vertex at a time is allowed to perform a selfish step in order to guarantee
polynomial time convergence into a Nash equilibrium coloring. Our distributed
algorithm allows non-neighboring vertices to perform a selfish step in parallel,
thus drastically reducing time complexity. The Algorithm Engineering process
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Table 2. Real execution times of PJColoring (with aggregation) for line topology

Nodes Tree Construction PJColoring Total

2 736 ms 138 ms 1389 ms
3 1032 ms 728 ms 1760 ms
4 1298 ms 1324 ms 2622 ms
5 1756 ms 2011 ms 3767 ms

led to a practical algorithm that can be executed in real networks and, inter-
estingly, further reduces communication complexity while preserving the time
complexity and the number of colors used.
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