
Partitioning Real-Time Systems on Multiprocessors with
Shared Resources�

Farhang Nemati, Thomas Nolte, and Moris Behnam

Mälardalen Real-Time Research Centre, Västerås, Sweden
{farhang.nemati,thomas.nolte,moris.behnam}@mdh.se

Abstract. In this paper we propose a blocking-aware partitioning algorithm
which allocates a task set on a multiprocessor (multi-core) platform in a way that
the overall amount of blocking times of tasks are decreased. The algorithm re-
duces the total utilization which, in turn, has the potential to decrease the
total number of required processors (cores). In this paper we evaluate our al-
gorithm and compare it with an existing similar algorithm. The comparison cri-
teria includes both number of schedulable systems as well as processor reduction
performance.

1 Introduction

Two main approaches for scheduling real-time systems on multiprocessors exist; global
and partitioned scheduling [1–4]. Under global scheduling, e.g., Global Earliest Dead-
line First (G-EDF), tasks are scheduled by a single scheduler and each task can be
executed on any processor. A single global queue is used for storing jobs. A job can
be preempted on a processor and resumed on another processor, i.e., migration of tasks
among processors is permitted. Under a partitioned scheduling, tasks are statically as-
signed to processors and tasks within each processor are scheduled by a uniprocessor
scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is associated
with a separate ready queue for scheduling task jobs.

Partitioned scheduling protocols have been used more often and are supported (with
fixed priority scheduling) widely by commercial real-time operating systems [5], inher-
ent in their simplicity, efficiency and predictability. Besides, the well studied unipro-
cessor scheduling and synchronization methods can be reused for multiprocessors with
fewer changes (or no changes). However, partitioning (allocating tasks to processors)
is known to be a bin-packing problem which is a NP-hard problem in the strong sense;
hence finding an optimal solution in polynomial time is not realistic in the general case.
Thus, to take advantage of the performance offered by multi-cores, scheduling protocols
should be coordinated with appropriate partitioning algorithms. Heuristic approaches
and sufficient feasibility tests for bin-packing algorithms have been developed to find a
near-optimal partitioning [1, 3]. However, the scheduling protocols and existing parti-
tioning algorithms for multiprocessors (multi-cores) mostly assume independent tasks
while in real applications, tasks often share resources.

� This work was partially supported by the Swedish Foundation for Strategic Research (SSF)
via Mälardalen Real-Time Research Centre (MRTC) at Mälardalen University.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 253–269, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 F. Nemati, T. Nolte, and M. Behnam

We have developed a heuristic partitioning algorithm [6], under which our system
assumptions include presence of mutually exclusive shared resources. The heuristic
partitions a system (task set) on an identical shared memory single-chip multiprocessor
platform. The objective of the algorithm is to decrease blocking overheads by assigning
tasks to appropriate processors (partitions). This consequently increases the schedula-
bility of the system and may reduce the number of processors. Our heuristic identifies
task constraints, e.g., dependencies between tasks, timing attributes, and resource shar-
ing, and extends the best-fit decreasing (BFD) bin-packing algorithm with blocking
time parameters. In practice, industrial systems mostly use Fixed Priority Scheduling
(FPS) protocols. The Multiprocessor Priority Ceiling Protocol (MPCP) which was pro-
posed by Rajkumar in [7], for many years, has been a standard multiprocessor synchro-
nization protocol under fixed priority partitioned scheduling. Thus, both our algorithm
and an existing similar algorithm proposed in [5] assume that MPCP is used for lock-
based synchronization. We have investigated MPCP in more details in [6]. Our algorith,
however, can be easily extended to other synchronization protocols under partitioned
scheduling policies. The algorithm proposed in [5] is named the Synchronization-Aware
Partitioning Algorithm (SPA), and our algorithm is named the Blocking-Aware Parti-
tioning Algorithm (BPA). From now on we refer them as SPA and BPA respectively.

1.1 Contributions

The contributions of this paper are threefold:
(1) We propose a blocking-aware heuristic algorithm to allocate tasks onto the pro-
cessors of a single chip multiprocessor (multi-core) platform. The algorithm extends a
bin-packing algorithm with synchronization parameters.
(2) We implement our algorithm together with the best known existing similar heuris-
tic [5]. The implementation is modular in which any new partitioned scheduling and
synchronization protocol as well as any new partitioning heuristic can easily be in-
serted.
(3) We evaluate our algorithm together with the existing heuristic and compare the two
approaches to each other as well as to an blocking-agnostic bin-packing partitioning
algorithm, used as reference. The blocking-agnostic algorithm, in the context of this
paper, refers to a bin-packing algorithm that does not consider blocking parameters to
increase the performance of partitioning, although blocking times are included in the
schedulability test.

The rest of the paper is as follows: we present the task and platform model in Sec-
tion 2. We explain the existing algorithm (SPA) and present our partitioning algorithms
(BPA) in Section 3. In Section 4 the experimental results of both algorithms are pre-
sented and the results are compared to each other as well as to the blocking-agnostic
algorithm.

1.2 Related Work

A significant amount of work has been done in the domain of task allocation on mul-
tiprocessors and distributed systems. The emerging of multi-core architectures has in-
creased the interest in the multiprocessor methods. However, in this paper we present
the most related works to our approach.

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 255

Tindell et al. [8] describe a method called simulated annealing for partitioning a
task set on a distributed system. The simulated annealing technique is not a heuristic
solution but a global optimization method which is used to find a near-optimal solution.
The important factor in simulated annealing is that it includes jumps to new solutions to
be able to get a better one. The simulated annealing techniques do not include heuristics
and it is usually difficult to find a good or even any feasible partitioning [9].

The Slack Method presented in [9] is a partitioning heuristic in which the first step
is to divide the tasks into sets of communicating tasks (precedence constraint). The size
of each set then is reduced based on the concept of task slack which is the delay a task
can tolerate without missing its deadline. The second step is to map the sets of tasks
onto the processors in a way to reduce the communication among processors.

A study of bin-packing algorithms for designing distributed real-time systems is pre-
sented in [10]. The method partitions software into modules to be allocated on hardware
nodes. In their approach they use two graphs; a graph which models software mod-
ules and a graph that represents the hardware architecture. The authors extend the bin-
packing algorithm with heuristics to minimize the number of bins (processors) needed
and the bandwidth required for the communication between nodes. However, their par-
titioning method assumes independent tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm (first-fit de-
creasing (FFD) algorithm) in [11] for a set of sporadic tasks on multiprocessors. The
tasks are indexed in non-decreasing order based on their relative deadlines and the al-
gorithm assigns the tasks to the processors in first-fit order. The algorithm, however,
assumes independent tasks. On the other hand their algorithm has been developed under
the EDF scheduling protocol while most existing real-time systems use fixed priority
scheduling policies. The focus of our proposed heuristic, in this paper, is fixed priority
scheduling protocols, although it can easily be extended to other policies.

Of great relevance to our work presented in this paper is the work presented by
Lakshmanan et al. in [5]. In the paper they investigate and analyze two alternatives
of execution control policies (suspend-based and spin-based remote blocking) under
MPCP. They have developed a blocking-aware task allocation algorithm (an extension
to BFD) and evaluated it under both execution control policies.

In their partitioning algorithm, the tasks that directly or indirectly share resources are
put into what they call bundles (in this paper we call them macrotasks) and each bundle
is tried to be allocated onto a processor. The bundles that cannot fit into any existing pro-
cessors are ordered by their cost, which is the blocking overhead that they introduce into
the system. Then the bundle with minimum cost is broken and the algorithm is run from
the beginning. However, their algorithm does not consider blocking parameters when
it allocates the current task to a processor, but only its size (utilization). Furthermore,
no relationship (e.g., as a cost based on blocking parameters) among individual tasks
within a bundle is considered which could help to allocate tasks from a broken bundle
to appropriate processors to decrease the blocking times. However, their experimental
results show that a blocking-aware bin-packing algorithm for suspend-based execution
control policy does not have significant benefits compared to a blocking-agnostic bin-
packing algorithm. Firstly, for the comparison, they have only focused on the processor
reduction issue; they suppose that the algorithm is better if it reduces the number of

256 F. Nemati, T. Nolte, and M. Behnam

processors. They have not considered the worst case as it could be the case that an al-
gorithm fails to schedule a task set. In our experimental evaluation, besides processor
reduction, we have considered this issue as well. If an algorithm can schedule some task
sets while others fail, we consider it as a benefit. Secondly, in their experiments they
have not investigated the effect of some parameters such as the different number of re-
sources, variation in the number and length of critical sections of tasks. By considering
these parameters, our experimental results show that in most cases our blocking-aware
algorithm has significantly better results than blocking-agnostic algorithms. However,
according to our experimental results, their heuristic performs slightly better than the
blocking-agnostic algorithm, and our algorithm performs significantly better than both.

In the context of multiprocessor synchronization, Rajkumar et al. for the first time
proposed a synchronization protocol in [12] which later [7] was called Distributed Pri-
ority Ceiling Protocol (DPCP). DPCP extends PCP to distributed systems and it can
be used with shared memory multiprocessors. However, a major motivation of increas-
ing interest in the multiprocessor methods is the emerging of multi-core platforms for
which DPCP is not an appropriate synchronization protocol. Rajkumar in [7] presented
MPCP, which extends PCP to multiprocessors hence allowing for synchronization of
tasks sharing mutually exclusive resources using partitioned FPS. Considering that
MPCP has been a standard multiprocessor synchronization protocol, our partitioning
algorithm attempts to decrease blocking times under MPCP and consequently decrease
worst case response times which in turn may reduce the number of needed processors.
Gai et al. [13, 14] present MSRP (Multiprocessor SRP), which is a P-EDF (Partitioned
EDF) based synchronization protocol for multiprocessors. The shared resources are
classified as either (i) local resources that are shared among tasks assigned to the same
processor, or (ii) global resources that are shared by tasks assigned to different proces-
sors. In MSRP, tasks synchronize local resources using SRP [2], and access to global
resources is guaranteed a bounded blocking time. Lopez et al. [15] present an imple-
mentation of SRP under P-EDF. Devi et al. [16] present a synchronization technique
under G-EDF. The work is restricted to synchronization of non-nested accesses to short
and simple objects, e.g., stacks, linked lists, and queues. In addition, the main focus of
the method is soft real-time systems.

Block et al. [17] present Flexible Multiprocessor Locking Protocol (FMLP) , which
is the first synchronization protocol for multiprocessors that can be applied to both par-
titioned and global scheduling algorithms, i.e., P-EDF and G-EDF. An implementation
of FMLP has been described in [18]. However, although in a longer version of [17]1, the
blocking times have been calculated, but to our knowledge there is no concrete schedu-
lability test for FMLP under global scheduling protocols. However, Brandenburg and
Anderson in [19] have extended partitioned FMLP to fixed priority scheduling policy
and derived a schedulability test for it. In a later work [20], the same authors have
compared DPCP, MPCP and FMLP. However, as the partitioned scheduling approaches
suffer from bin-packing problem, we believe to achieve a better and fair comparison of
the approaches, they should be coordinated with task allocation algorithms.

Recently, Easwaran and Andersson have proposed a synchronization protocol [21]
under global fixed priority scheduling protocol. In this paper, for the first time, the

1 Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 257

authors have derived schedulability analysis of the priority inheritance protocol under
global scheduling algorithms.

2 Task and Platform Model

In this paper we assume a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi, {ci,p,q})
where Ti denotes the minimum inter-arrival time between two successive jobs of task
τi with worst-case execution time Ci and ρi as its priority. The tasks share a set of re-
sources, R, which are protected using semaphores. The set of critical sections, in which
task τi requests resources in R is denoted by {ci,p,q}, where ci,p,q indicates the maxi-
mum execution time of the pth critical section of task τi in which the task locks resource
Rq ∈ R. Critical sections of tasks should be sequential or properly nested. The deadline
of each job is equal to Ti. A job of task τi, is specified by Ji. The utilization factor of
task τi is denoted by ui where ui = Ci/Ti.

We also assume that the multiprocessor (multi-core) platform is composed of iden-
tical, unit-capacity processors (cores) with shared memory. The task set is partitioned
into partitions {P1, . . . , Pm}, and each partition is allocated onto one processor (core),
thus m represent the minimum number of processors needed.

3 The Blocking Aware Partitioning Algorithms

3.1 Blocking-Aware Partitioning Algorithm (BPA)

In this section we propose a partitioning algorithm that groups tasks into partitions so
that each partition can be allocated and scheduled on one processor. The objective of
the algorithm is to decrease the overall blocking times of tasks. This generally increases
the schedulability of a task set which may reduce the number of required partitions
(processors).

Considering the blocking factors of tasks under MPCP, tasks with more and longer
global critical sections lead to more blocking times. This is also shown by experiments
presented in [14]. Our goal is to (i) decrease the number of global critical sections by
assigning the tasks sharing resources to the same partition as far as possible, (ii) de-
crease the ratio and time of holding global resources by assigning the tasks that request
the resources more often and hold them longer to the same partition as long as possible.

In our previous work [22] we have presented a partitioning framework in which
tasks are grouped together based on task preferences and constraints. The framework
partitions tasks based on a cost function which is derived from task preferences and
constraints. The framework attempts to allocate the tasks that directly or indirectly share
resources onto the same processor. Tasks that directly or indirectly share resources are
called macrotasks, e.g., if tasks τi and τj share resource Rp and tasks τj and τk share
resource Rq , all three tasks belong to the same macrotask. However, there are cases that
a macrotask cannot fit in one processor (i.e., assuming that the tasks in the macrotask are
the only tasks allocated on a processor, still it can not be scheduled by the processor). In
this case tasks belonging to the same macrotask can be allocated to different partitions
(processors).

258 F. Nemati, T. Nolte, and M. Behnam

The goal of the framework presented in [22] is to put the tasks into appropriate par-
titions so that the costs are minimized. The framework may have different partitioning
strategies, e.g., increasing cache hits, decreasing blocking times, etc. The strategy of
partitioning may differ, depending on the nature of a system, and result in different par-
titions. The framework is a general partitioning approach without deeply focusing on
any specific strategy and thus we have not presented any evaluation except one example.
Obviously, for different partitioning strategies (e.g., increasing cache hits) the guiding
heuristics as well as the implementation of the algorithm will be completely different.
In current work, however, we specifically focus on a partitioning strategy for decreas-
ing remote blocking overheads of tasks which leads to increasing the schedulability of
a task set and possibly will reduce the number of processors required for scheduling the
task set. We derive heuristics to specifically guide the partitioning algorithm to reduce
the remote blocking times. We have also performed detailed experimental evaluation
according to different resource sharing parameters.

We have developed a blocking-aware algorithm that is an extension to the BFD al-
gorithm. In a blocking-agnostic BFD algorithm, bins (processors) are ordered in non-
increasing order of their utilization and tasks are ordered in non-increasing order of
their size (utilization). The algorithm attempts to allocate the task from the top of the
ordered task set onto the first processor that fits it (i.e., the first processor on which the
task can be allocated while all processors are schedulable), beginning from the top of
the ordered processor list. If none of the processors can fit the task, a new processor is
added to the processor list. At each step the schedulability of all processors should be
tested, because allocating a task to a processor can increase the remote blocking time
of tasks previously allocated to other processors and may make the other processors
unschedulable. This means, it is possible that some of the previous processors become
unschedulable even if a task is allocated to a new processor, which makes the algorithm
fail.

The Algorithm: The algorithm performs partitioning of a task set in two rounds and
the result will be the output of the round with better partitioning results. However, the
algorithm performs a few common steps before starting to perform the rounds. Each
round allocates tasks to the processors (partitions) in a different strategy. When a BFD
algorithm allocates an object (task) to a bin (processor), it usually puts the object in a bin
that fits it better, and it does not consider the unallocated objects that will be allocated
after the current object. The rationale behind the two rounds is that the heuristic tries
to consider both past and future by looking at tasks allocated in the past and those that
are not allocated yet. In the first round the algorithm considers the tasks that are not
allocated to any processor yet; and tries to take as many as possible of the best related
tasks (based on remote blocking parameters) with the current task. On the other hand, in
the second round it considers the already allocated tasks and tries to allocate the current
task onto the processor that contains best related tasks to the current task. In the second
round, the algorithm performs more like the usual bin packing algorithms (i.e., tries
to find the best bin for the current object), although it considers the remote blocking
parameters while allocating a task to a processor. Any time the algorithm performs
schedulability test, for more precise schedulability analysis, it always performs response
time analysis [23].

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 259

The common steps of the algorithm before the two rounds are performed are as follow:

1. Each task is assigned a weight. The weight of each task, besides its utilization, should
depend on parameters that lead to potential remote blocking time caused by other tasks:

wi = ui+

�(
∑

ρi<ρk

NCi,kβi,k� Ti

Tk
� + NCi max

ρi≥ρk

βi,k)/Ti� (1)

where, NCi,k is the number of critical sections of task τk in which it shares a resource
with τi, among these critical sections βi,k is the longest one, and NCi is the total number
of critical sections of τi.

Considering the remote blocking terms of MPCP [6], the rationale behind the defi-
nition of weight is that the tasks that can be punished more by remote blocking become
heavier. Thus, they can be allocated earlier and attract as many as possible of the tasks
with which they share resources.

2. Macrotasks are generated, i.e., the tasks that directly or indirectly share resources
are put into the same macrotask. A macrotask has two alternatives; it can either be
broken or unbroken. If a macrotask cannot fit in one processor, (i.e., it is not possible
to schedule the macrotask on a single processor even if there is no any other tasks), it is
set as broken, otherwise it is denoted as unbroken. Please observe that the test of fitting
a macrotask in a single processor (to set it as broken or unbroken) is only done at the
beginning. Later on at any time the algorithm tests fitting an unbroken macrotask in a
processor, the macrotask may co-exist with other tasks and/or macrotasks on the same
processor.

If a macrotask is unbroken, the partitioning algorithm always allocates all tasks in
the macrotask to the same partition (processor). This means that all tasks in the macro-
task will share resources locally relieving tasks from remote blocking. However, tasks
within a broken macrotask will be distributed into more than one partition. Similar to
tasks, a weight is assigned to each unbroken macrotask, which equals to the sum of the
utilizations (not weights) of its tasks . This is because all the tasks within an unbroken
macrotask will always be allocated on the same processor and the tasks will not suffer
from any remote blocking, hence there is no need to consider blocking parameters in
the weight of an unbroken macrotask.

3. The unbroken macrotasks together with the tasks that do not belong to any unbroken
macrotasks are ordered in a single list in non-increasing order of their weights. We de-
note this list the mixed list.

The strategy of allocation of tasks in both rounds depends on attraction between tasks.
The attraction function of task τk to a task τi is defined based on the potential remote
blocking overhead that task τk can introduce to task τi if they are allocated onto different
processors. We represent the attraction of task τk to task τi as vi,k which is defined as
follows:

vi,k =
{

NCi,kβi,k� Ti

Tk
� ρi < ρk;

NCiβi,k ρi ≥ ρk
(2)

260 F. Nemati, T. Nolte, and M. Behnam

The rationale of the attraction function is to allocate the tasks that may remotely
block a task, τi, to the same processor as of τi (in order of the amount of remote blocking
overhead) as far as possible. Please notice, the definition of weight (Equation 1) and
attraction function (Equation 2) are heuristics that guide the algorithm under MPCP.
However, these functions may differ under other synchronization protocols, e.g., MSRP
and partitioned FMLP, which have different remote blocking terms.

There can be the case in which all tasks sharing resources end up in one macrotask.
In this case if the macrotask can fit in one processor, there is no need to use MPCP
or any other multiprocessor synchronization protocol, because there will not be any
global resources in the system. On the other hand, if the macrotask does not fit in one
processor (i.e., should be broken) the algorithm attempts, by using weight (Equation 1)
and attraction (Equation 2) functions to put attracted tasks on the same processor as far
as possible which leads to reducing the remote blocking overhead.

Now we present the continuation of the algorithm in two rounds:

First Round: After the common steps the following steps are repeated within the
first round until all tasks are allocated to processors (partitions):
1. All processors are ordered in their non-increasing order of utilization.
2. The object at the top of the mixed list is picked. (i) If the object is a task, τi, and it
does not belong to a broken macrotask (τi does not share any resource) τi will be allo-
cated onto the first processor that fits it (all tasks on the processor are still schedulable),
beginning from the top of the ordered processor list (similar to blocking-agnostic BFD).
If none of the processors can fit τi a new processor is added to the list and τi is allocated
onto it. (ii) If the object is an unbroken macrotask, all its tasks will be allocated onto
the first processor that fits all of them. If none of the processors can fit the macrotask,
it (all its tasks) will be allocated onto a new processor.(iii) If the object is a task, τi,
that belongs to a broken macrotask, the algorithm orders the tasks (those that are not
allocated yet) within the macrotask in non-increasing order of attraction to τi based on
equation 2. We call this list the attraction list of τi. Task τi itself will be on the top of its
attraction list. The best processor for allocation is selected, which is the processor that
fits the most tasks from the attraction list, beginning from the top of the list. As many
as possible of the tasks from the attraction list are then allocated to the processor. If
none of the existing processors can fit any of the tasks, a new processor is added and as
many tasks as possible from the attraction list are allocated to the processor. However,
if the new processor cannot fit any task from the attraction list, i.e., at least one of the
processors become unschedulable, the first round fails and the algorithm moves to the
second round and restarts.

Second Round: The following steps are repeated until all tasks are allocated to pro-
cessors:
1. The object at the top of the mixed list is picked. (i) If the object is a task and it does not
belong to a broken macrotask, this step is performed the same way as in the first round.
(ii) If the object is an unbroken macrotask, in this the algorithm performs the same way
as in the first round. (iii) If the object is a task, τi, that belongs to a broken macrotask,
the processors are put in a ordered list, denoted as Plist. However the processors are put
in Plist in two steps. First, the processors that include some tasks from τi’s macrotask

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 261

are added to Plist in non-increasing order of processors’ attraction to τi (according to
equation 2), i.e., the processor which has the greatest sum of attractions of its tasks
to the picked task (τi) is the most attracted processor to τi and is added to Plist first.
Second, the processors that do not contain any task from τi’s macrotask are added to
Plist in non-increasing order of their utilization. After the two steps, the processors
which contain at least one task from τi’s macrotask will be located at the top of the
ordered list, Plist, followed by the processors not containing any task from τi’s macro
task. The rationale behind this is that the algorithm first attempts to allocate τi on a
processor containing some tasks from τi’s macro task and if not succeeded then it tries
other processors. The picked task (τi) will be allocated onto the first processor from the
processor list (Plist) that will fit τi. Task τi will be allocated to a new processor if none
of the existing ones can fit it. And the second round of the algorithm fails if allocating
the task to the new processor makes some of the processors unschedulable.

If both rounds fail to schedule a task set the algorithm fails. If one of the rounds fails
the result will be the output of the other one. If both rounds succeed to schedule the task
set, the one with fewer partitions (processors) will be the output of the algorithm.

3.2 Synchronization-Aware Partitioning Algorithm (SPA)

We have implemented the best known existing partitioning algorithm proposed in [5]
in our experimental evaluation framework. The implementation of the algorithm re-
quired details of the algorithm which were not presented in [5], hence, in this section
we present the algorithm in more details.

1. First, the macrotasks are generated. In [5], macrotasks are denoted as bundles. A
number of processors (enough processors that fit the total utilization of the task set) are
added.

2. The macrotasks together with other tasks are ordered in a list in non-increasing order
of their utilization. The algorithm attempts to allocate each macrotask (i.e., allocate
all tasks within the macrotask) onto a processor. Without adding any new processor,
all macrotasks and tasks that fit are allocated onto the processors. The macrotasks that
can not fit are put aside. After any allocation, the processors are ordered in their non-
increasing order of utilization.

3. The remaining macrotasks are ordered in the order of the cost of breaking them. The
cost of breaking a macrotask is defined based on the estimated cost (blocking overhead)
introduced into the tasks by transforming a local resource into a global resource (i.e.,
the tasks sharing the resource are allocated to different processors). The estimated cost
of transforming a local resource Rq into a global resource is calculated as follows:

Cost(Rq) = Global Overhead − Local Discount (3)

The Global Overhead is calculated as follows:

Global Overhead = max(|Csq|)/ min
∀τi

{ρi} (4)

where max(|Csq|) is the length of longest critical section accessing Rq.

262 F. Nemati, T. Nolte, and M. Behnam

The Local Discount is defined as follows:

Local Discount = max
∀τi accessing Rq

(max(|Csi,q |)/ρi) (5)

where max(|Csi,q|) is the length of longest critical section of τi accessing Rq .
The cost of breaking any macrotask, mTaskk, is calculated as the summation of

blocking overhead caused by transforming its accessed resources into global resources.

Cost(mTaskk) =∑

∀Rq accessed by mTaskk

Cost(Rq) (6)

4. The macrotask with minimum breaking cost is picked and is broken in two pieces
such that the size of one piece is as close as the largest utilization available among
processors. This means, tasks within the selected macrotask are ordered in decreasing
order of their size (utilization) and the tasks from the ordered list are added to the pro-
cessor with the largest available utilization as far as possible. In this way, the macrotask
has been broken in two pieces; (i) the one including the tasks allocated to the processor
and (ii) the tasks that could not fit in the processor. If the fitting is not possible a new
processor is added and the whole algorithm is repeated again.

Firstly, as one can see, the SPA algorithm does not consider blocking parameters
when it allocates the current task to a processor, but only its utilization, i.e. the tasks
are ordered in order of their utilization only. However, our algorithm assigns a weight
(Equation 1) which besides the utilization includes the blocking terms as well. Sec-
ondly, no relationship (e.g., as a cost based on blocking parameters) among individual
tasks within a bundle (macrotask) is considered which could help to allocate tasks from
a broken bundle to appropriate processors to decreases the blocking times. In our heuris-
tic, we have defined an attraction function (Equation 2), which attempts to allocate the
most attracted tasks from the current task’s broken macrotask, on a processor. As the
experimental evaluation in Section 4 shows, considering these issues can improve the
partitioning significantly.

4 Experimental Evaluation and Comparison of Algorithms

In this section we present our experimental results of our blocking-aware bin-packing
algorithm (BPA) together with the blocking-aware algorithm recently proposed in [5]
(SPA), as well as the reference blocking-agnostic algorithm. For a number of systems
(task sets), we have compared the performance of the algorithms in two different as-
pects; (1) Given a number of systems, the total number of systems that each of the
algorithms can schedule, (2) The processor reduction aspect of algorithms.

4.1 Experiment Setup

We generated systems (task sets) for different workloads; we denote workload as a
defined number of fully utilized processors, e.g., the workload equal to 3 fully utilized

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 263

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2

1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6

2 4 6 8

BPA SPA Agnostic

Cs. Len.

Cs. Num.

Res. Num.

S
y
s
.
N
u
m
.

(a) Workload: 3 processors, 3 tasks per proces-
sor

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2

1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6

2 4 6 8

BPA SPA Agnostic

Cs. Len.

Cs. Num.

Res. Num.

S
y
s
.
N
u
m
.

(b) Workload: 3 processors, 6 tasks per proces-
sor

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2

1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6

2 4 6 8

BPA SPA Agnostic

Cs. Len.

Cs. Num.

Res. Num.

S
y
s
.
N
u
m
.

(c) Workload: 3 processors, 9 tasks per proces-
sor

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2

1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6

2 4 6 8

BPA SPA Agnostic

Cs. Len.

Cs. Num.

Res. Num.

S
y
s
.
N
u
m
.

(d) Workload: 6 processors, 6 tasks per proces-
sor

Fig. 1. Total number of task sets each algorithm schedules

processors means the summation of utilizations of all tasks in the system equals to
3. Please notice that the definition of the workload as a number of processors is only
to show the total utilization of the task set and it is not the same as the number of
required processors (which may be more than the workload) to schedule the task set.
Given a workload, the full capacity of each processor (utilization of 1) is randomly
divided among a defined number of tasks. Usually for generating systems, utilization
and periods are randomly assigned to tasks, and worst case execution times of tasks are
calculated based on them. However, in our system generation, the worst case execution
times (WCET) of tasks are randomly assigned and the period of each task is calculated
based on its utilization and WCET. The reason is that we had to restrict that the WCET
of a task not to be less than the total length of its critical sections. Since we have limited
the maximum number of critical sections to 6 and the maximum length of any critical
section to 6 time units, hence the WCET of each task is greater than 36 (6 × 6) time
units. The WCET of each task was randomly chosen between 36 and 150 time units.
The system generation was based on different settings; the input parameters for settings
are as follows:
1. Workload (3, 4, 6, or 8 fully utilized processors).

2. The number of tasks per processor (3, 6 or 9 tasks per processor), e.g., 3 tasks per

processor means that the utilization of one processor (utilization = 1) is randomly
distributed among 3 tasks.

264 F. Nemati, T. Nolte, and M. Behnam

3. The number of resources (2, 4, 6, or 8). For each alternative, the resource accessed by
each critical section is randomly chosen among the resources, e.g, given the alternative
with 2 resources (R1 and R2), the resource accessed by any critical section is randomly
chosen from {R1, R2}.
4. The range of the number of critical sections per task (1 to 2, 3 to 4 or 5 to 6 critical

sections per task). For an alternative (e.g., 1 to 2 critical sections per task), the number
of critical sections of any task τi is randomly chosen from {1, 2}.
5. The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6). The length of each

critical section is chosen the same way as the number of critical sections per task.

For each setting, we generated 100.000 systems, and combining the parameters
of settings, i.e., (workloads)×(tasks per processor)×(resources)×(critical sections per
task)×(critical section lengths)= 4×3×4×3×3 = 432 different settings, total number
of systems generated for the experiment were 43.200.000.

With the generated systems we were able to evaluate the partitioning algorithms with
respect to different factors, i.e., various workloads (number of fully utilized processors),
number of tasks per processor, number of shared resources, number of critical sections
per task, and length of critical sections.

4.2 Results

In this section we present the evaluation results of our proposed blocking-aware algo-
rithm (BPA), an existing blocking-aware algorithm [5] (SPA) and the blocking-agnostic
algorithm.

The first aspect of comparison of the results from the algorithms is, given a number of
systems, the total number of systems each algorithm successfully schedules (Figure 1).
Figures 1(a), 1(b) and 1(c) represent the results for 3, 6 and 9 tasks per processor re-
spectively. The vertical axis shows the total number of systems that the algorithms could
schedule successfully. The horizontal axis shows three factors in three different lines;
the bottom line shows the number of shared resources within systems (Res. Num.), the
second line shows the number of critical sections per task (Cs. Num.), and the top line
represents the length of critical sections within each task (Cs. Len.), e.g., Res. Num.=4,
Cs. Num.=1-2, and Cs. Len.=1-2 represents the systems that share 4 resources, the num-
ber of critical sections per each task are between 1 and 2, and the length of these critical
sections are between 1 and 2 time units. For some settings the number of schedulable
systems were too few to be shown on the graphs, thus we omitted these settings from
the graphs, e.g., The results for the combination of the number of critical sections = 3-4
and the length of critical sections = 5-6 are not shown in Figure 1.

As depicted in Figure 1, considering the total number of systems that each algorithm
succeeds to schedule, our blocking-aware algorithm (BPA) performs better (can sched-
ule more systems) compared to the SPA and the blocking-agnostic algorithm. However
the SPA performs better than the blocking-agnostic algorithm. As shown in the figure,
by increasing the number of resources, the number of successfully scheduled systems
in all algorithms is increased. The reason for this behavior is that with fewer resources,
more tasks share the same resource introducing more blocking overheads which leads

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 265

to fewer schedulable systems. However, it is illustrated that the blocking-aware algo-
rithms perform better as the number of resources is increased. It is also shown that in-
creasing the number and/or the length of critical sections generally reduces the number
of schedulable systems significantly. The reason is that more and longer critical sections
introduce greater blocking overhead into the tasks making fewer systems schedulable.

As the number of tasks per processor is increased from 3 (Figures 1(a)) to 6 (Fig-
ures 1(b)) and to 9 (Figures 1(c)), the BPA performs significantly better (i.e., schedules
significantly more systems) than the SPA and blocking-agnostic bin-packing. However,
as one can see, the SPA does not perform significantly better than the blocking-agnostic
algorithm as the number of tasks per processor are increased. Increasing the number
of tasks per processor lead to smaller tasks (tasks with smaller ui). The BPA allocates
tasks from a broken macrotask based on Equations 1 and 2, which are functions of
the blocking parameters (the number and length of critical sections) as well as the size
of the tasks. On the other hand, with the smaller size of tasks, the blocking parame-
ters have a bigger role in these functions, hence more dependent tasks are allocated to
the same processor. This leads to less blocking overhead and increased schedulability,
hence more systems are scheduled by BPA as the tasks per processor are increased. On
the other hand, in SPA, allocation of tasks from a broken macrotask is only based on
their utilization, and this does not necessarily allocates highly dependent tasks to the
same processor.

As the workload (the number of fully utilized processors) is increased, although the
BPA still performs better than the SPA and the blocking-agnostic algorithm, gener-
ally the number of schedulable systems by all algorithms is significantly reduced (Fig-
ure 1(d)). The reason for this behavior is that the number of tasks within systems are
relatively many (36 tasks per each system in Figure 1(d)) and the workload is high (6
fully utilized processors), and all the tasks within systems share resources. On the other
hand, the MPCP is pessimistic. This introduces a lot of interdependencies among tasks
and consequently a huge amount of blocking overheads, making fewer systems schedu-
lable. In practice in big systems with many tasks, not all of the tasks share resources,
which leads to fewer interdependencies among tasks and less blocking times. However,
we continued the experiment with higher workload in the same way as the other experi-
ments (that all tasks share resources) to be able to compare the results with the previous
results. We believe that realistic systems, even with high workload and many tasks can
benefit from our partitioning algorithm to increase the performance.

The second aspect for comparison of performance of the algorithms is the processor
reduction aspect. To show this, for each algorithm, we ordered the total schedulable
systems in order of the number of required processors. Figure 2 illustrates the results
for the workload of 3 fully packed processors and different number of tasks (3, 6 and
9) per processor. For each algorithm, the schedulable systems by each number of pro-
cessors are shown as percentage of the total scheduled systems by that algorithm. As
the results show, for 3 tasks per processor all three algorithms perform almost the same
(Figure 2(a)), i.e., each algorithm schedules around 80% of its schedulable systems by
4 processors, 15% to 18% by 5 processors and less than 3% by 6 processors, etc. The
reason is that the tasks are large (the utilization of a processor is distributed among 3
task), thus the blocking-aware algorithms do not have much possibility to increase the

266 F. Nemati, T. Nolte, and M. Behnam

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

3 4 5 6 7 8 9

BPA SPA Agnostic

Processors

S
c
h
e
d
u
le
d

S
y
s
te
m
s

(a) 3 tasks per processor

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors

S
c
h
e
d
u
le
d

S
y
s
te
m
s

(b) 6 tasks per processor

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors

S
c
h
e
d
u
le
d

S
y
s
te
m
s

(c) 9 tasks per processor

Fig. 2. Percentage of systems each algorithm schedules, ordered by required number of processors

performance. However as the number of tasks per processor is increased (Figures 2(b)
and 2(c) for 6 and 9 tasks per processor respectively), the blocking-aware algorithms,
generally, perform better in processor reduction aspect. Especially the BPA, performs
significantly better than the the SPA and the blocking-agnostic algorithm. This means
that BPA reduces the required number of processors compared to SPA and the blocking-
agnostic algorithm, e.g., as shown in Figure 2(c), 68% and 28% of the systems sched-
uled by BPA require 4 and 5 processors respectively, while 54% and 37% of systems

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 267

scheduled by SPA can be scheduled by 4 and 5 processors respectively. This means a
bigger part (68%) of systems scheduled by BPA require only 4 processors while with
SPA this number is smaller (54%).

5 Conclusion

In this paper we have proposed a heuristic blocking-aware algorithm, for identical
unit-capacity multiprocessor systems, which extends a bin-packing algorithm with syn-
chronization parameters. The algorithm allocates a task set onto the processors of a
single-chip multiprocessor (multi-core) with shared memory. The objective of the al-
gorithm is to decrease blocking times of tasks by means of allocating the tasks that
directly or indirectly share resources onto appropriate processors. This generally in-
creases schedulability of a task set and may lead to fewer required processors compared
to blocking-agnostic bin-packing algorithms. We have also presented and implemented
an existing similar blocking-aware algorithm originally proposed in [5].

Since in practice most systems use fixed priority scheduling protocols, we have de-
veloped our algorithm under MPCP, a standard synchronization protocol for multipro-
cessors (multi-cores) which works under fixed priority scheduling. Another reason to
implement our algorithm under MPCP was to be able to compare our approach to the
existing similar approach [5] which has also been developed under MPCP. However, our
approach is not limited to MPCP and it can easily be extended to other synchronization
protocols such as MSRP and partitioned FMLP.

Our experimental results confirm that our algorithm mostly performs significantly
better than the blocking-agnostic as well as the existing heuristic with respect to the
number of schedulable systems and the number of required processors. However, given
a NP-hard problem, a bin-packing algorithm may not achieve the optimal solution, i.e,
there can exist systems that only one of the algorithms can schedule. Thus using a com-
bination of heuristics improves the results with respect to the total number of schedula-
ble systems and processor reduction.

A future work will be extending our partitioning algorithm to other synchroniza-
tion protocols, e.g., MSRP and FMLP for partitioned scheduling. A very interesting
future work is to apply our approach to different synchronization protocols and investi-
gate the effect of bin-packing on those protocols and compare the improvement in their
performance. Another interesting future work is to apply our approach to real systems
and study the performance gained by the algorithm on these systems. In the domain
of multiprocessor scheduling and synchronization our future work also includes inves-
tigating global and hierarchical scheduling protocols and appropriate synchronization
protocols.

Acknowledgments

The authors wish to thank Karthik Lakshmanan for fruitful discussions, helping out in
improving the quality of this paper.

268 F. Nemati, T. Nolte, and M. Behnam

References

1. Baker, T.: A comparison of global and partitioned EDF schedulability test for multiproces-
sors. Technical report (2005)

2. Baker, T.: Stack-based scheduling of real-time processes. Journal of Real-Time Systems 3(1),
67–99 (1991)

3. Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A categorization
of real-time multiprocessor scheduling problems and algorithms. In: Handbook on Schedul-
ing Algorithms, Methods, and Models. Chapman Hall/CRC, Boca (2004)

4. Devi, U.: Soft real-time scheduling on multiprocessors. In: PhD thesis (2006),
http://www.cs.unc.edu/˜anderson/diss/devidiss.pdf

5. Lakshmanan, K., de Niz, D., Rajkumar, R.: Coordinated task scheduling, allocation and syn-
chronization on multiprocessors. In: Proceedings of 30th IEEE Real-Time Systems Sympo-
sium (RTSS 2009), pp. 469–478 (2009)

6. Nemati, F., Nolte, T., Behnam, M.: Blocking-aware partitioning for multiprocessors. Techni-
cal report, Mälardalen Real-Time research Centre (MRTC), Mälardalen University (March
2010), http://www.mrtc.mdh.se/publications/2137.pdf

7. Rajkumar, R.: Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Dordrecht (1991)

8. Tindell, K.W., Burns, A., Wellings, A.J.: Allocating hard real-time tasks: An NP-hard prob-
lem made easy. Journal of Real-Time Systems 4(2), 145–165 (1992)

9. Altenbernd, P., Hansson, H.: The slack method: A new method for static allocation of hard
real-time tasks. Journal of Real-Time Systems 15(2), 103–130 (1998)

10. de Niz, D., Rajkumar, R.: Partitioning bin-packing algorithms for distributed real-time sys-
tems. Journal of Embedded Systems 2(3-4), 196–208 (2006)

11. Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of sporadic task systems.
In: Proceedings of 26th IEEE Real-Time Systems Symposium (RTSS 2005), pp. 321–329
(2005)

12. Rajkumar, R., Sha, L., Lehoczky, J.P.: Real-time synchronization protocols for multiproces-
sors. In: Proceedings of the 9th Real-Time Systems Symposium, RTSS 1988 (1988)

13. Gai, P., Lipari, G., Natale, M.D.: Minimizing memory utilization of real-time task sets in sin-
gle and multi-processor systems-on-a-chip. In: Proceedings of 22nd IEEE Real-Time Sys-
tems Symposium (RTSS 2001), pp. 73–83 (2001)

14. Gai, P., Di Natale, M., Lipari, G., Ferrari, A., Gabellini, C., Marceca, P.: A comparison of
MPCP and MSRP when sharing resources in the janus multiple processor on a chip platform.
In: Proceedings of 9th IEEE Real-Time And Embedded Technology Application Symposium
(RTAS 2003), pp. 189–198 (2003)

15. López, J.M., Dı́az, J.L., Garcı́a, D.F.: Utilization bounds for EDF scheduling on real-time
multiprocessor systems. Journal of Real-Time Systems 28(1), 39–68 (2004)

16. Devi, U., Leontyev, H., Anderson, J.: Efficient synchronization under global EDF schedul-
ing on multiprocessors. In: Proceedings of 18th IEEE Euromicro Conference on Real-time
Systems (ECRTS 2006), pp. 75–84 (2006)

17. Block, A., Leontyev, H., Brandenburg, B., Anderson, J.: A flexible real-time locking protocol
for multiprocessors. In: Proceedings of 13th IEEE Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2007), pp. 47–56 (2007)

18. Brandenburg, B., Calandrino, J., Block, A., Leontyev, H., Anderson, J.: Synchronization on
multiprocessors: To block or not to block, to suspend or spin? In: Proceedings of 14th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2008), pp. 342–
353 (2008)

http://www.cs.unc.edu/~anderson/diss/devidiss.pdf
http://www.mrtc.mdh.se/publications/2137.pdf

Partitioning Real-Time Systems on Multiprocessors with Shared Resources 269

19. Brandenburg, B., Anderson, J.: An implementation of the PCP, SRP, D-PCP, M-PCP, and
FMLP real-time synchronization protocols in LITMUS. In: Proceedings of 14th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2008), pp. 185–194 (2008)

20. Brandenburg, B.B., Anderson, J.H.: A comparison of the M-PCP, D-PCP, and FMLP on
LITMUSRT. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp.
105–124. Springer, Heidelberg (2008)

21. Easwaran, A., Andersson, B.: Resource sharing in global fixed-priority preemptive multi-
processor scheduling. In: Proceedings of 30th IEEE Real-Time Systems Symposium (RTSS
2009), pp. 377–386 (2009)

22. Nemati, F., Behnam, M., Nolte, T.: Efficiently migrating real-time systems to multi-cores.
In: Proceedings of 14th IEEE Conference on Emerging Techonologies and Factory, ETFA
2009 (2009)

23. Burns, A.: Preemptive priority based scheduling: An appropriate engineering approach. In:
Principles of Real-Time Systems, pp. 225–248. Prentice Hall, Englewood Cliffs (1994)

	Partitioning Real-Time Systems on Multiprocessors with Shared Resources
	Introduction
	Contributions
	Related Work

	Task and Platform Model
	The Blocking Aware Partitioning Algorithms
	Blocking-Aware Partitioning Algorithm (BPA)
	Synchronization-Aware Partitioning Algorithm (SPA)

	Experimental Evaluation and Comparison of Algorithms
	Experiment Setup
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

