
RoboCast: Asynchronous Communication in

Robot Networks

Zohir Bouzid1,�, Shlomi Dolev2,��,
Maria Potop-Butucaru1, and Sébastien Tixeuil1

1 Université Pierre et Marie Curie - Paris 6, France
2 Ben Gurion University of the Negev, Israel

Abstract. This paper introduces the RoboCast communication abstrac-
tion. The RoboCast allows a swarm of non oblivious, anonymous robots
that are only endowed with visibility sensors and do not share a com-
mon coordinate system, to asynchronously exchange information. We
propose a generic framework that covers a large class of asynchronous
communication algorithms and show how our framework can be used to
implement fundamental building blocks in robot networks such as gath-
ering or stigmergy. In more details, we propose a RoboCast algorithm
that allows robots to broadcast their local coordinate systems to each
others. Our algorithm is further refined with a local collision avoidance
scheme. Then, using the RoboCast primitive, we propose algorithms for
deterministic asynchronous gathering and binary information exchange.

1 Introduction

Existing studies in robots networks focus on characterizing the computational
power of these systems when robots are endowed with visibility sensors and com-
municate using only their movements without relying on any sort of agreement
on a global coordinate system. Most of these studies [1,5,4] assume oblivious
robots (i.e. robots have no persistent memory of their past actions), so the
“memory” of the network is implicit and generally deduced from the current
positions of the robots. Two computation models are commonly used in robot
networks: ATOM [9] and CORDA [7]. In both models robots perform in Look-
Compute-Move cycles. The main difference is that these cycles are executed in a
fully asynchronous manner in the CORDA model while each phase of the Look-
Compute-Move cycle is executed in a lock step fashion in the ATOM model.
These computation models have already proved their limitations. That is, the

� Supported by DIGITEO project PACTOLE and the ANR projects R-DISCOVER
and SHAMAN.

�� Part of the research was done during a supported visit of Shlomi Dolev at LIP6
Universit Pierre et Marie Curie - Paris 6. Partially supported by Rita Altura trust
chair in computer sciences, ICT Programme of the European Union under contract
number FP7-215270 (FRONTS), and US Air Force European Office of Aerospace
Research and Development, grant number FA8655-09-1-3016.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 16–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

RoboCast: Asynchronous Communication in Robot Networks 17

deterministic implementations of many fundamental abstractions such as gather-
ing or leader election are proved impossible in these settings without additional
assumptions ([8]). The purpose of this paper is to study how the addition of
bounded memory to each individual robot can increase the computational power
of an asynchronous swarm of robots. We focus on an all-to-all communication
primitive, called RoboCast, which is a basic building block for the design of any
distributed system. A positive answer to this problem is the open gate for solving
fundamental problems for robot networks such as gathering, scattering, election
or exploration.

In robot networks, using motion to transmit information is not new [9,10,6].
In [9], Suzuki and Yamashita present an algorithm for broadcasting the local
coordinate system of each robot (and thus build a common coordinate system)
under the ATOM model. The algorithm heavily relies on the phase atomicity in
each Look-Compute-Move cycle. In particular, a robot a that observes another
robot b in four distinct positions has the certitude that b has in turn already
seen a in at least two different positions. The situation becomes more intricate
in the asynchronous CORDA model. Indeed, the number of different positions
observed for a given robot is not an indicator on the number of complete cycles
executed by that robot since cycles are completely uncorrelated. By contrast, our
implementation of RoboCast is designed for the more general CORDA model
and uses a novel strategy: the focus moves from observing robots in different
positions to observing robots moving in different directions. That is, each robot
changes its direction of movement when a particular stage of the algorithm is
completed; this change allows the other robots to infer information about the
observed robot.

Another non trivial issue that needs to be taken care of without explicit
communication is collisions avoidance, since colliding robots could be confused
due to indistinguishability. Moreover, robots may physically collide during their
Move phase. One of the techniques commonly used to avoid collisions consists in
computing a Voronoi diagram [2] and allowing robots to move only inside their
Voronoi cells [5]. Since the Voronoi cells do not overlap with one another, robots
are guaranteed to not collide. This simple technique works well in the ATOM
model but heavily relies on the computation of the same Voronoi diagram by
the robots that are activated concurrently, and thus does not extend to the
CORDA model where different Voronoi diagrams may be computed by different
robots, inducing possible collisions. Our approach defines a collision-free zone of
movement that is compatible with the CORDA model constraints.

Applications of our RoboCast communication primitive include fundamental
services in robot networks such as gathering and stigmergy. Deterministic gath-
ering of two stateless robots has already been proved impossible when robots
have no common orientation [9]. In [9], the authors also propose non-oblivious
solutions for deterministic gathering in the ATOM model. Our RoboCast per-
mits to extend this result to the CORDA model, using bounded memory and a
limited number of movements. Recently, in [6], the authors extend the work of
[9] to efficiently implement stigmergy in robot networks in the ATOM model.

18 Z. Bouzid et al.

Stigmergy is the ability for robots to exchange binary information that is en-
coded in the way they move. This scheme is particularly appealing for secure
communication in robot networks, since e.g. jamming has no impact on robot
communication capability. The RoboCast primitive allows to extend this mech-
anism to the CORDA model, with a collision-free stigmergy scheme.

Our contribution. We formally specify a robot network communication prim-
itive, called RoboCast, and propose implementation variants for this primitive,
that permit anonymous robots not agreeing on a common coordinate system,
to exchange various information (e.g. their local coordinate axes, unity of mea-
sure, rendez-vous points, or binary information) using only motion in a two
dimensional space. Contrary to previous solutions, our protocols all perform in
the fully asynchronous CORDA model, use constant memory and a bounded
number of movements. Then, we use the RoboCast primitive to efficiently solve
some fundamental open problems in robot networks. We present a fully asyn-
chronous deterministic gathering and a fully asynchronous stimergic communi-
cation scheme. Our algorithms differ from previous works by several key features:
they are totally asynchronous (in particular they do not rely on the atomicity
of cycles executed by robots), they make no assumption on a common chirality
or knowledge of the initial positions of robots, and finally, each algorithm uses
only a bounded number of movements. Also, for the first time in these settings,
our protocols use CORDA-compliant collision avoidance schemes.

Roadmap. The paper is made up of six sections. Section 2 describes the com-
puting model and presents the formal specification of the RoboCast problem.
Section 3 presents our protocol and its complexity. The algorithm is enhanced
in Section 4 with a collision-avoidance scheme. Using the Robocast primitive,
Section 5 proposes algorithms for deterministic asynchronous gathering and bi-
nary information exchange. Finally, Section 6 provides concluding remarks. Due
to space limitations, some proofs are given in a companion technical report [3].

2 Model

We consider a network that consists of a finite set of n robots arbitrarily deployed
in a two dimensional space, with no two robots located at the same position.
Robots are devices with sensing, computing and moving capabilities. They can
observe (sense) the positions of other robots in the space and based on these
observations, they perform some local computations that can drive them to
other locations.

In the context of this paper, the robots are anonymous, in the sense that they
can not be distinguished using their appearance and they do not have any kind
of identifiers that can be used during the computation. In addition, there is no
direct mean of communication between them. Hence, the only way for robots to
acquire information is by observing their positions. Robots have unlimited visibil-
ity, i.e. they are able to sense the entire set of robots. We assume that robots are
non-oblivious, i.e. they can remember observations, computations and motions

RoboCast: Asynchronous Communication in Robot Networks 19

performed in previous steps. Each robot is endowed with a local coordinate sys-
tem and a local unit measure which may be different from those of other robots.
This local coordinate system is assumed to be fixed during a run unless it is
explicitly modified by the corresponding robot as a result of a computation. We
say in this case that robots remember their own coordinate systems. This is a
common assumption when studying non-oblivious robot networks [9,6].

A protocol is a collection of n programs, one operating on each robot. The
program of a robot consists in executing Look-Compute-Move cycles infinitely
many times. That is, the robot first observes its environment (Look phase). An
observation returns a snapshot of the positions of all robots within the visibility
range. In our case, this observation returns a snapshot of the positions of all
robots. The observed positions are relative to the observing robot, that is, they
use the coordinate system of the observing robot. Based on its observation,
a robot then decides — according to its program — to move or to stay idle
(Compute phase). When a robot decides a move, it moves to its destination
during the Move phase.

The local state of a robot is defined by the content of its memory and its
position. A configuration of the system is the union of the local states of all the
robots in the system. An execution e = (c0, . . . , ct, . . .) of the system is an infinite
sequence of configurations, where c0 is the initial configuration of the system, and
every transition ci → ci+1 is associated to the execution of a non empty subset
of actions. The granularity (or atomicity) of those actions is model-dependent
and is defined in the sequel of this section.

A scheduler is a predicate on computations, that is, a scheduler defines a set
of admissible computations, such that every computation in this set satisfies
the scheduler predicate. A scheduler can be seen as an entity that is external
to the system and selects robots for execution. As more power is given to the
scheduler for robot scheduling, more different executions are possible and more
difficult it becomes to design robot algorithms. In the remainder of the paper, we
consider that the scheduler is fair and fully asynchronous, that is, in any infinite
execution, every robot is activated infinitely often, but there is no bound on
the ratio between the most activated robot and the least activated one. In each
cycle, the scheduler determines the distance to which each robot can move in
this cycle, that is, it can stop a robot before it reaches its computed destination.
However, a robot ri is guaranteed to be able to move a distance of at least δi
towards its destination before it can be stopped by the scheduler.

We now review the main differences between the ATOM [9] and CORDA [7]
models. In the ATOM model, whenever a robot is activated by the scheduler,
it performs a full computation cycle. Thus, the execution of the system can be
viewed as an infinite sequence of rounds. In a round one or more robots are acti-
vated by the scheduler and perform a computation cycle. The fully-synchronous
ATOM model refers to the fact that the scheduler activates all robots in each
round, while the regular ATOM model enables the scheduler to activate only a
subset of the robots. In the CORDA model, robots may be interrupted by the
scheduler after performing only a portion of a computation cycle. In particular,

20 Z. Bouzid et al.

phases (Look, Compute, Move) of different robots may be interleaved. For ex-
ample, a robot a may perform a Look phase, then a robot b performs a Look-
Compute-Move complete cycle, then a computes and moves based on its previous
observation (that does not correspond to the current configuration anymore). As
a result, the set of executions that are possible in the CORDA model are a strict
superset of those that are possible in the ATOM model. So, an impossibility
result that holds in the ATOM model also holds in the CORDA model, while
an algorithm that performs in the CORDA model is also correct in the ATOM
model. Note that the converse is not necessarily true.

The RoboCast Problem. The RoboCast communication abstraction provides
a set of robots located at arbitrary positions in a two-dimensional space the
possibility to broadcast their local information to each other. The RoboCast ab-
straction offers robots two communication primitives: RoboCast(M) sends Mes-
sage M to all other robots, and Deliver(M) delivers Message M to the local robot.
The message may consists in the local coordinate system, the robot chirality, the
unit of measure, or any binary coded information.

Consider a run at which each robot ri in the system invokes RoboCast(mi) at
some time ti for some message mi. Let t be equal to max{t1, . . . , tn}. Any pro-
tocol solving the RoboCast Problem has to satisfy the following two properties:

Validity: For each message mi, there exists a time t′i > t after which every
robot in the system has performed Deliver(mi).
Termination: There exists a time tT ≥ max{t′1, . . . , t′n} after which no
robot performs a movement that causally depends on the invocations of
RoboCast(mi).

3 Local Coordinate System RoboCast

In this section we present algorithms for robocasting the local coordinate system.
For ease of presentation we first propose an algorithm for two-robots then the
general version for systems with n robots.

The local coordinate system is defined by two axes (abscissa and ordinate),
their positive directions and the unity of measure. In order to robocast this in-
formation we use a modular approach. That is, robots invoke first the robocast
primitive (LineRbcast1 hereafter) to broadcast a line representing their abscissa.
Then, using a parametrized module (LineRbcast2), they robocast three succes-
sive lines encoding respectively their ordinate, unit of measure and the positive
direction of axes. This invocation chain is motivated by the dependence between
the transmitted lines. When a node broadcasts a line, without any additional
knowledge, two different points have to be sent in order to uniquely identify the
line at the destination. However, in the case of a coordinate system, only for the
first transmitted axis nodes need to identify the two points. The transmission of
the subsequent axes needs the knowledge of a unique additional point.

RoboCast: Asynchronous Communication in Robot Networks 21

3.1 Line RoboCast

In robot networks the broadcast of axes is not a new issue. Starting with their
seminal paper [9], Suzuki and Yamashita presented an algorithm for broadcast-
ing the axes via motion that works in the ATOM model. Their algorithm heavily
relies on the atomicity of cycles and the observation focus on the different posi-
tions of the other robots during their Move phase.

This type of observation is totally useless in asynchronous CORDA model.
In this model, when a robot r moves towards its destination, another robot r′

can be activated k > 1 times with k arbitrarily large, and thus observe r in k
different positions without having any clue on the number of complete cycles
executed by r. In other words, the number of different positions observed for a
given robot is not an indicator on the number of complete executed cycles since
in CORDA cycles are completely uncorrelated.

Our solution uses a novel strategy. That is, the focus moves from observing
robots in different positions to observing their change of direction: each robot
changes its direction of movement when a particular stage of the algorithm is
completed; this change allows the other robots to infer information about the
observed robot.

Line RoboCast Detailed Description. Let r0 and r1 be the two robots in
the system. In the sequel, when we refer to one of these robots without specifying
which, we denote it by ri and its peer by r1−i. In this case, the operations on the
indices of robots are performed modulo 2. For ease of presentation we assume
that initially each robot ri translates and rotates its local coordinate system such
that its x-axis and origin coincide with the line to be broacast and its current
location respectively. We assume also that each robot is initially located in the
origin of its local coordinate system.

At the end of the execution, each robot must have broadcast its own line and
have received the line of its peer. A robot “receives” the line broadcast by its
peer when it knows at least two distinct positions of this line. Thus, to send its
line, each robot must move along it (following a scheme that will be specified
later) until it is sure that it has been observed by the other robot.

The algorithm idea is simple: each robot broadcasts its line by moving along
it in a certain direction (considered to be positive). Simultaneously, it observes
the different positions occupied by its peer r1−i. Once ri has observed r1−i in
two distinct positions, it informs it that it has received its line by changing its
direction of movement, that is, by moving along its line in the reverse direction
(the negative direction if the first movement have been performed in the positive
direction of the line). This change of direction is an acknowledgement for the
reception of the peer line. A robot finishes the algorithm once it changed its
direction and observed that the other robot also changed its direction. This
means that both robots have sent their line and received the other’s line.

The algorithm is described in detail as Algorithm 1. Its proof can be found in
[3]. Each robot performs four stages referred in Algorithm 1 as states:

22 Z. Bouzid et al.

– state S1: This is the initial state of the algorithm. At this state, the robot
ri stores the position of its peer in the variable pos1 and heads towards the
position (1.0) of its local coordinate system. That is, it moves along its line
in the positive direction. Note that ri stays only one cycle in this state and
then goes to state S2.

– state S2: A this point, ri knows only one point of its peer line (recorded in
pos1). To be able to compute the whole peer line, ri must observe r1−i in
another (distinct) position of this line. Hence, each time it is activated, ri
checks if r1−i is still located in pos1 or if it has already changed its position.
In the first case (line 2.a of the code), it makes no movement by selecting
its current position as its destination. Otherwise (line 2.b), it saves the new
position of r1−i in pos2 and delivers the line formed by pos1 and pos2. Then,
it initiates a change of direction by moving towards the point (−1.0) of its
local coordinate system, and moves to state S3.

– state S3: at this point ri knows the line of its peer locally derived from pos1
and pos2. Before finishing the algorithm, ri must be sure that also r1−i knows
its line. Therefore, it observes r1−i until it detects a change of direction (the
condition of line 3.a). If this is not the case and if ri is still in the positive
part of its x-axis, then it goes to the position (−1, 0) of its local coordinate
system (line 3.b). Otherwise (if ri is already in the negative part of its x-
axis), it performs a null movement (line 3.c). When ri is in state S3 one is
sure, as we shall show later, that r1−i knows at least one position of li, say
p. Recall that li corresponds to the x-axis of ri. It turns out that p is located
in the positive part of this axis. In moving towards the negative part of its
x-axis, ri is sure that it will eventually be observed by r1−i in a position
distinct from p which allows r1−i to compute li.

– state S4: At this stage, both ri and r1−i received the line sent by each others.
That is, ri has already changed its own direction of movement, and observed
that r1−i also changed its direction. But nothing guarantees that at this
step r1−i knows that ri changed its direction of movement. If ri stops now,
r1−i may remain stuck forever (in state S3). To announce the end of the
algorithm to its peer, ri heads towards a position located outside li, That is,
it will move on a line nextli (distinct from li) which is given as parameter
to the algorithm. During the move from li to nextli, ri should avoid points
outside these lines. To this end, ri must first pass through myIntersect -
which is the intersection of li and nextli - before moving to a point located
in nextli but not on li (refer to lines 3.a.2, 3.a.3 and 4.a of the code).

Note that the robocast of a line is usually followed by the robocast of
other information (e.g. other lines that encode the local coordinate system).
To helps this process the end of the robocast of li should mark the beginning
of the next line, nextli, robocast. Therefore, once ri reaches myIntersect,
ri rotates its local coordinate system such that its x-axis matches now with
nextli, and then it moves toward the point of (1,0) of its (new) local coordi-
nate system. When r1−i observes ri in a position that is not on li, it learns
that ri knows that r1−i learned l1−i, and so it can go to state S4 (lines 3.a.∗)
and finish the algorithm.

RoboCast: Asynchronous Communication in Robot Networks 23

Algorithm 1. Line RoboCast LineRbcast1 for two robots: Algorithm for
robot ri

Variables:
state: initially S1
pos1, pos2: initially ⊥
destination, myIntersect: initially ⊥

Actions:
1. State [S1]: %Robot ri starts the algorithm%

a. pos1 ← observe(1 − i)
b. destination ← (1, 0)i
c. state ← S2
d. Move to destination

2. State [S2]: %ri knows one position of l1−i%

a. if (pos1 = observe(1 − i)) then destination ← observe(i)
b. else

1. pos2 ← observe(1 − i)
2. l1−i ← line(pos1, pos2)
3. Deliver (l1−i)
4. destination ← (−1, 0)i
5. state ← S3 endif

c. Move to destination

3. State [S3]: %ri knows the line robocast by robot r1−i%

a. if (pos2 is not inside the line segment [pos1, observe(1 − i)]) then
1. state ← S4
2. myIntersect ← intersection(li, nextli)
3. destination ← myIntersect

b. else if (observe(i) ≥ (0, 0)i) then destination ← (0,−1)i
c. else destination ← observe(i) endif endif
d. Move to destination

4. State [S4]: %ri knows that robot r1−i knows its line li%

a. if (observe(i) �= myIntersect) then destination ← myIntersect
b. else

1. ri rotates its coordinate system such that its x-axis and the origin match with
nextli and myIntersect respectively.
2. destination ← (1, 0)i; return endif

c. Move to destination

3.2 Line RoboCast: A Composable Version

Line RoboCast primitive is usually used as a building block for achieving more
complex tasks. For example, the RoboCast of the local coordinate system re-
quires the transmission of four successive lines representing respectively the ab-
scissa, the ordinate, the value of the unit measure and a forth line to determine
the positive direction of axes. In stigmergic communication a robot has to trans-
mit at least a line for each binary information it wants to send. In all these
examples, the transmitted lines are dependent one of each other and therefore
their successive transmission can be accelerated by directly exploiting this de-
pendence. Indeed, the knowledge of a unique point (instead of two) is sufficient
for the receiver to infer the sent line. In the following we propose modifications
of the Line RoboCast primitive in order to exploit contextual information that
are encoded in a set of predicates that will be detailed in the sequel.

In the case of the local coordinate system, the additional information the
transmission can exploit is the fact that the abscissa is perpendicular to the or-
dinate. Once the abscissa is transmitted, it suffices for a robot to simply send a
single position of its ordinate, say pos1. The other robots can then calculate the
ordinate by finding the line that passes through pos1 and which is perpendicular

24 Z. Bouzid et al.

to the previously received abscissa. In the modified version of the Line RoboCast
algorithm the predicate isPerpendicular encodes this condition.

For the case of stigmergy, a robot transmits a binary information by robo-
casting a line whose angle to the abscissa encodes this information. The lines
transmitted successively by a single robot are not perpendicular to each others.
However, all these lines pass through the origin of the coordinate system of the
sending robot. In this case, it suffices to transmit only one position located on
this line as long as it is distinct from the origin. We say in this case that the line
satisfies the predicate passThrOrigin.

A second change we propose relates to the asynchrony of the algorithm. In
fact, even if robots execute in unison, they are not guaranteed to finish the
execution of LineRbcast1 at the same time (by reaching S4). A robot ri can
begin transmitting its k-th line li when its peer r1−i is still located in its (k−1)-
th line ancientl1−i that ri has already received. ri should ignore the positions
transmitted by r1−i until it leaves ancientl1−i for a new line. It follows that to
make the module composable, the old line that the peer has already received
from its peer should be supplied as an argument (ancientl1−i) to the function.
Thus, it will not consider the positions occupied by r1−i until the latter leaves
ancientl1−i.

In the following, we present the code of the new Line RoboCast function that
we denote by LineRbcast2. Its description and its formal proof are omitted since
they follow the same lines as those of LineRbcast1.

3.3 RoboCast of the Local Coordinate System

To robocast their two axes (abscissa and ordinate), robots call LineRbcast1 to
robocast the abscissa, then LineRbcast2 to robocast the ordinate. The parameter
�= myOrdinate of LineRbcast2 stands for the next line to be robocast and it
can be set to any line different from myOrdinate. The next line to robocast
(unitLine) is a line whose angle with the x-axis encodes the unit of measure.
This angle will be determined during the execution LineRbcast2.

1. peerAbscissa← LineRbcast1(myAbscissa,myOrdinate)
2. peerOrdinate←
LineRbcast2(myOrdinate, �= myOrdinate, peerAbscissa, isPerpendicular)

After executing the above code, each robot knows the two axes of its peer coor-
dinate system but not their positive directions neither their unit of measure. To
robocast the unit of measure we use a technique similar to that used by [9]. The
idea is simple: each robot measures the distance di between its origin and the
peer’s origin in terms of its local coordinate system. To announce the value of di

to its peer, each robot robocast via LineRbcast2 a line, unitLine, which passes
through its origin and whose angle with its abscissa is equal to f(di) where for
x > 0, f(x) = (1/2x) × 90◦ is a monotonically increasing function with range
(0◦, 90◦). The receiving robot r1−i can then infer di from f(di) and compute
the unit measure of ri which is equal to d1−i/di. The choice of (0◦, 90◦) as a
range for f(x) (instead of (0◦, 360◦)) is motivated by the fact that the positive

RoboCast: Asynchronous Communication in Robot Networks 25

Algorithm 2. Line RoboCast LineRbcast2 for two robots: Algorithm for
robot ri

Inputs:
li : the line to robocast
nextli: the next line to robocast after li
precedentl1−i: the line robocast precedently by r1−i
predicate: a predicate on the output l1−i, for example isPerpendicular and passThrOrigin.

Outputs:
l1−i : the line robocast by r1−i

Variables:
state: initially S1
pos1: initially ⊥
destination, myIntersect, peerIntersect: initially ⊥

Actions:
1. State [S2]: %ri starts robocasting its line li%

a. if (observe(1 − i) ∈ precedentl1−i) then destination ← observe(i)
b. else

1. pos3← observe(1 − i)
2. l1−i ← the line that passes through pos3 and satisfies predicate.
3. Deliver (l1−i)
4. peerIntersect ← intersection between l1−i and precedentl1−i
5. destination ← (0,−1)i
6. state ← S3 endif

c. Move to destination

2. State [S3]: %ri knows the line robocast by robot r1−i%

a. if (pos3 is not inside the line segment [peerIntersect, observe(1 − i)]) then
1. state ← S4
2. myIntersect ← intersection(li, nextli)
3. destination ← myIntersect

b. else if (observe(i) ≥ (0, 0)i) then destination ← (0,−1)i
c. else destination ← observe(i) endif endif
d. Move to destination

3. State [S4]: similar to state S4 of the lineRbcast1 function.

directions of the two axes are not yet known to the robots. It is thus impossible
to distinguish between an angle α with α ∈ (0◦, 90◦) and the angles Π −α, −α,
and Π + α. To overcome the ambiguity and to make f(x) injective, we restrict
the range to (0◦, 90◦). In contrast, Suzuki and Yamashita [9] use a function f ′(x)
slightly different from ours: (1/2x)×360◦. That is, its range is equal to (0◦, 360◦).
This is because in ATOM, robots can robocast at the same time the two axis
and their positive directions, for example by restricting the movement of robots
to only the positive part of their axes. Since the positive directions of the two
axes are known, unitLine can be an oriented line whose angle f ′(x) can take
any value in (0◦, 360◦) without any possible ambiguity.

Positive directions of axes. Once the two axes are known, determining their
positive directions amounts to selecting the upper right quarter of the coordinate
system that is positive for both x and y. Since the line used to robocast the unit
of distance passes through two quarters (the upper right and the lower left), it
remains to choose among these two travelled quarters which one corresponds to
the upper right one. To do this, each robot robocast just after the line encod-
ing the unit distance another line which is perpendicular to it such that their
intersection lays inside the upper right quarter.

Generalization to n robots. The generalization of the solution to the case
of n > 2 robots has to use an additional mechanism to allow robots to “rec-
ognize” other robots and distinguish them from each others despite anonymity.

26 Z. Bouzid et al.

Let us consider the case of three robots r1, r2, r3. When r1 looks the second
time, r2 and r3 could have moved (or be moving), each according to its local
coordinate system and unit measure. At this point, even with memory of past
observations, r1 may be not able to distinguish between r2 and r3 in their new
positions given the fact that robots are anonymous. Moreover, r2 and r3 could
even switch places and appear not to have moved. Hence, the implementation
of the primitive observe(i) is not trivial. For this, we use the collision avoidance
techniques presented in the next section to instruct each robot to move only in
the vicinity of its initial position. This way, other robots are able to recognize it
by using its past positions. The technical details of this mechanism are given at
the end of the next section.

Apart from this, the generalization of the protocol with n robots is trivial.
We present its detailed description in [3].

3.4 Motion Complexity Analysis

Now we show that the total number of robot moves in the coordinate system
RoboCast is upper bounded. For the sake of presentation, we assume for now that
the scheduler does not interrupt robots execution before they reach their planned
destination. Each robot is initially located at the origin of its local coordinate
system. To robocast each axis, a robot must visit two distinct positions: one
located in the positive part of this axis and the other one located in its negative
part. For example, to robocast its x-axis, a robot has first to move from its origin
to the position (1.0)i, then from (1.0)i to the (−1, 0)i. Then, before initiating a
robocast for the other axis, the robot must first return back to its origin. Hence,
at most 3 movements are needed to robocast each axis. This implies that to
robocast the whole local coordinate system, at most 12 movements have to be
performed by a particular robot.

In the general CORDA model, the scheduler is allowed to stop robots be-
fore they reach their destination, as long as a minimal distance of δi has been
traversed. In this case, the number of necessary movements is equal to at most
8 ∗ (1 + 1/δi). This worst case is obtained when a robot is not stopped by the
scheduler when moving from its origin towards another position (thus letting it
go the farthest possible), but stopped whenever possible when returning back
from this (far) position to the origin.

This contrasts with [9] and [6] where the number of positions visited by each
robot to robocast a line is unbounded (but finite). This is due to the fact that
in both approaches, robots are required to make a non null movement when-
ever activated until they know that their line has been received. Managing an
arbitrary large number of movements in a restricted space to prevent collisions
yields severe requirements in [6]: either robots are allowed to perform infinitely
small movements (and such movements can be seen by other robots with infinite
precision), or the scheduler is restricted in its choices for activating robots (no
robot can be activated more than k times, for a given k, between any two acti-
vations of another robot) and yields to a setting that is not fully asynchronous.
Our solution does not require any such hypothesis.

RoboCast: Asynchronous Communication in Robot Networks 27

4 Collision-Free RoboCast

In this section we enhance the algorithms proposed in Section 3 with the collision-
free feature. In this section we propose novel techniques for collision avoidance
that cope with the system asynchrony.

Our solution is based on the same principle of locality as the Voronoi Diagram
based schemes. However, acceptable moves for a robot use a different geometric
area. This area is defined for each robot ri as a local zone of movement and is
denoted by ZoMi. We require that each robot ri moves only inside ZoMi. The
intersection of different ZoMi must remain empty at all times to ensure collision
avoidance. We now present three possible definitions for the zone of movement:
ZoM1

i , ZoM2
i and ZoM3

i . All three ensure collision avoidance in CORDA, but
only the third one can be computed in a model where robots do not know the
initial position of their peers.

Let P (t) = {p1(t), p2(t) . . . , pn(t)} be the configuration of the network at
time t, such that pi(t) denotes the position of robot ri at time t expressed in a
global coordinate system. This global coordinate system is unknown to individual
robots and is only used to ease the presentation and the proofs. Note that P (t0)
describes the initial configuration of the network.

Definition 1. (Voronoi Diagram) [2] The Voronoi diagram of a set of points
P = {p1, p2, . . . , pn} is a subdivision of the plane into n cells, one for each point
in P . The cells have the property that a point q belongs to the Voronoi cell of
point pi iff for any other point pj ∈ P , dist(q, pi) < dist(q, pj) where dist(p, q) is
the Euclidean distance between p and q. In particular, the strict inequality means
that points located on the boundary of the Voronoi diagram do not belong to any
Voronoi cell.

Definition 2. (ZoM1
i) Let DV (t0) be the Voronoi diagram of the initial config-

uration P (t0). For each robot ri, the zone of movement of ri at time t, ZoM1
i (t),

is the Voronoi cell of point pi(t0) in DV (t0).

Definition 3. (ZoM2
i) For each robot ri, define the distance di=min{dist(pi(t0),

pj(t0)) with rj �= ri}. The zone of movement of ri at time t, ZoM2
i (t), is the

circle centered in pi(0) and whose diameter is equal to di/2. A point q belongs
to ZoM2

i (t) iff dist(q, pi(t0)) < di/2.

Definition 4. (ZoM3
i) For each robot ri, define the distance di(t) = min{dist

(pi(t0), pj(t)) with rj �= ri} at time t. The zone of ri at time t, ZoM3
i (t), is

the circle centered in pi(t0) and whose diameter is equal to di(t)/3. A point q
belongs to ZoM3

i (t) iff dist(q, pi(t0)) < di(t)/3.

Note that ZoM1 and ZoM2 are defined using information about the initial
configuration P (t0), and thus cannot be used with the hypotheses of Algorithm 2.
In contrast, robot ri only needs to know its own initial position and the current
positions of other robots to compute ZoM3

i . As there is no need for ri to know
the initial positions of other robots, ZoM3

i can be used with Algorithm 2. It

28 Z. Bouzid et al.

p

current position

initial position

zone of movement

d

d/2

p qq

(a) ZoM2
p

p

q

current position

initial position

zone of movement

d'

d'/3

p q

(b) ZoM3
p

Fig. 1. Example zones of movement: The network is formed of two robots: p and q. d is
the distance between the initial positions of p and q (dashed circles), d′ is the distance
between the initial position of p and the current position of q. The diameter of ZoM2

p

(blue) is d/2 and that of ZoM3
p (yellow) is d′/3.

remains to prove that ZoM3
i guarantees collision avoidance. We first prove that

ZoM1
i does, which is almost trivial because its definition does not depend on

time. Then, it suffices to prove that ZoM3
i ⊆ ZoM2

i ⊆ ZoM1
i . Besides helping

us in the proof, ZoM2
i can be interesting in its own as a cheap collision avoidance

scheme in the ATOM model, as computing a cycle of radius half the distance
to the nearest neighbor is much easier that computing a full blown Voronoi
diagram.

Lemma 4.1. If ∀t, for each robot ri, the destination point computed by ri at t
remains inside ZoM1

i (t), then collisions are avoided.

Proof. By definition of Voronoi diagram, different Voronoi cells do not overlap.
Moreover, for a given i, ZoM1

i is static and does not change over time. Hence,
∀i, j ∈ Π , ∀t, t′, ZoM1

i (t) ∩ ZoM1
j (t′) = ∅.

Clearly,ZoM2
i ⊆ ZoM1

i which means thatZoM2
i ensures also collision avoidance.

Lemma 4.2. If ∀t, for each robot ri, the destination point computed by ri at t
always remains inside ZoM2

i (t), then collisions are avoided.

The proof of the above lemma follows directly from the fact that ∀tZoM2
i (t) ⊆

ZoM1
i (t) and Lemma 4.1.

Lemma 4.3. ∀t, ZoM3
i (t) ⊆ ZoM2

i (t).

Ensuring Collision-freedom in Line Robocast Algorithms. To make
LineRbcast1 and LineRbcast2 collision-free, it is expected that any destination
computed by a robot ri at t be located within its ZoM3

i (t). The computation of
destinations is modified as follows: Let desti(t) be the destination computed by
a robot ri at time t. Based on desti(t), ri computes a new destination dest′i(t)

RoboCast: Asynchronous Communication in Robot Networks 29

that ensures collision avoidance. dest′i(t) can be set to any point located in
[pi(t0), desti(t)]∩ZoM3

i (t). For example, we can take dest′i(t) to be equal to the
point located in the line segment [pi(t0), desti(t)] and distant from pi(t0) by a
distance of di(t)/2 with di(t) computed as explained in Definition 4.

This modification of the destination computation method does not impact
algorithms correctness since it does not depend on the exact value of computed
destinations, but on the relationship between the successive positions occupied
by each robot. The algorithms remain correct as long as robots keep the capabil-
ity to freely change their direction of movement and to move in both the positive
and the negative part of each such direction. This capability is not altered by
the collision avoidance scheme since the origin of the coordinate system of each
robot - corresponding to its original position - is strictly included in its zone of
movement, be it defined by ZoM1, ZoM2 or ZoM3.

Generalisation of the Protocols to n Robots. As explained at the end
of Section 3, the generalisation of our algorithms to the case of n robots has
to deal with the issue of distinguishing robots from each others despite their
anonymity. The solution we use is to instruct each robot to move in the close
neighbourhood of its original position. Thus, other robots can recognize it by
comparing its current position with past ones. For this solution to work, it is
necessary that each robot always remains the closest one to all the positions
it has previously occupied. Formally speaking, we define the zone of movement
ZoM4 in a similar way as ZoM3 except that the diameter is this time equal to
di(t)/6 (vs. di(t)/3). We now show that ZoM4 provides the required properties.
Let ri and rj be an arbitrary pair of robots and Let dij denotes the distance
between their initial positions. It can easily shown, using the same arguments as
the proof of Lemma 4.3, that:

1. Neither of the two robots moves away from its initial position by a distance
greater than dij/4. This implies that each robot remains always at a distance
strictly smaller than dij/2 from all the positions it has previously held.

2. The distance between ri (resp. rj) and all the positions held by rj (ri) is
strictly greater than dij/2.

Hence, ri can never be closer than rj to a position that was occupied by rj ,
and vice versa. This implies that it is always possible to recognize a robot by
associating it with the position which is closest to it in some previously observed
configuration.

5 RoboCast Applications

5.1 Asynchronous Deterministic 2-Gathering

Given a set of n robots with arbitrary initial locations and no agreement on a
global coordinate system, n-Gathering requires that all robots eventually reach
the same unknown beforehand location. n-Gathering was already solved when

30 Z. Bouzid et al.

n > 2 in both ATOM [9] and CORDA [4] oblivious models. The problem is
impossible to solve for n = 2 even in ATOM, except if robots are endowed with
persistent memory [9]. In this section we present an algorithm that uses our
RoboCast primitive to solve 2-Gathering in the non-oblivious CORDA model.

A first “naive” solution is for each robot to robocast its abscissa and ordinate
axes and to meet the other robot at the midpoint m of their initial positions.
RoboCasting the two axes is done using our Line RoboCast function described
above in conjunction with the ZoM3−based collision avoidance scheme.

A second possible solution is to refine Algorithm ψf−point(2) of [9,10] by using
our Line RoboCast function to “send” lines instead of the one used by the
authors. The idea of this algorithm is that each robot which is activated for the
first time translates and rotates its coordinate system such that the other robot
is on its positive y-axis, and then it robocasts its (new) x-axis to the other robot
using our Line Robocast function. In [9], the authors give a method that allows
each robot to compute the initial position of one’s peer by comparing their two
robocast x-axes defined above. Then each robot moves toward the midpoint of
their initial positions. Our Line RoboCast routine combined with the above idea
achieves gathering in asynchronous systems within a bounded (vs. finite in [9])
number of movements of robots and using only two (vs. four) variables in their
persistent memory.

Theorem 5.1. There is an algorithm for solving deterministic gathering for two
robots in non-oblivious asynchronous networks (CORDA).

5.2 Asynchronous Stigmergy

Stigmergy [6] is the ability of a group of robots that communicate only through
vision to exchange binary information. Stigmergy comes to encode bits in the
movements of robots. Solving this problem becomes trivial when using our Robo-
Cast primitive. First, robots exchange their local coordinate system as explained
in Section 3. Then, each robot that has a binary packet to transmit robocasts
a line to its peers whose angle with respect to its abscissa encodes the binary
information. Theoretically, as the precision of visual sensors is assumed to be in-
finite, robots are able to observe the exact angle of this transmitted line, hence
the size of exchanged messages may be infinite also. However, in a more real-
istic environment in which sensor accuracy and calculations have a margin of
error, it is wiser to discretize the measuring space. For this, we divide the space
around the robot in several sectors such that all the points located in the same
sector encode the same binary information (to tolerate errors of coding). For
instance, to send binary packets of 8 bits, each sector should have an angle equal
to u = 360◦/28. Hence, when a robot moves through a line whose angle with re-
spect to the abscissa is equal to α, the corresponding binary information is equal
to �α/n. Thus, our solution works in asynchronous networks, uses a bounded
number of movements and also allows robots to send binary packets and not
only single bits as in [6].

RoboCast: Asynchronous Communication in Robot Networks 31

6 Conclusion and Perspectives

We presented a new communication primitive for robot networks, that can be
used in fully asynchronous CORDA networks. Our scheme has the additional
properties of being motion, memory, and computation efficient. We would like
to raise some open questions:

1. The solution we presented for collision avoidance in CORDA can be used
for protocols where robots remain in their initial vicinity during the whole
protocol execution. A collision-avoidance scheme that could be used with all
classes of protocol is a challenging issue.

2. Our protocol assumes that a constant number of positions is stored by each
robot. Investigating the minimal number of stored positions for solving a par-
ticular problem would lead to interesting new insights about the computing
power that can be gained by adding memory to robots.

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Transactions on
Robotics and Automation 15(5), 818–828 (1999)

2. Aurenhammer, F.: Voronoi diagrams a survey of a fundamental geometric data
structure. ACM Computing Surveys (CSUR) 23(3), 405 (1991)

3. Bouzid, Z., Dolev, S., Potop-Butucaru, M., Tixeuil, S.: RoboCast: Asynchronous
Communication in Robot Networks. Technical report (2010)

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Automata, Languages and Programming, pp. 192–192 (2003)

5. Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: POMC, pp. 97–104 (2002)

6. Dieudonné, Y., Dolev, S., Petit, F., Segal, M.: Deaf, dumb, and chatting asyn-
chronous robots. In: OPODIS, pp. 71–85 (2009)

7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots:
The role of common knowledge in pattern formation by autonomous mobile robots.
In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp.
93–102. Springer, Heidelberg (1999)

8. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer,
Heidelberg (2005)

9. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. of Computing 28(4), 1347–1363 (1999)

10. Suzuki, I., Yamashita, M.: Erratum: Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM J. of Computing 36(1), 279–280 (2006)

	RoboCast: Asynchronous Communication in Robot Networks
	Introduction
	Model
	Local Coordinate System RoboCast
	Line RoboCast
	Line RoboCast: A Composable Version
	RoboCast of the Local Coordinate System
	Motion Complexity Analysis

	Collision-Free RoboCast
	RoboCast Applications
	Asynchronous Deterministic 2-Gathering
	Asynchronous Stigmergy

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

