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Preface

The 14th International Conference on Principles of Distributed Systems (OPODIS
2010) took place during December 14–17, 2010 in Tozeur, Tunisia. It continued
a tradition of successful conferences; Chantilly (1997), Amiens (1998), Hanoi
(1999), Paris (2000), Mexico (2001), Reims (2002), La Martinique (2003), Greno-
ble (2004), Pisa (2005), Bordeaux (2006), Guadeloupe (2007), Luxor (2008) and
Nı̂mes (2009).

The OPODIS conference constitutes an open forum for the exchange of state-
of-the-art knowledge on distributed computing and systems among researchers
from around the world. Following the tradition of the previous events, the pro-
gram was composed of high-quality contributed papers. The program call for
papers looked for original and significant research contributions to the theory,
specification, design and implementation of distributed systems, including:

– Communication and synchronization protocols
– Distributed algorithms, multiprocessor algorithms
– Distributed cooperative computing
– Embedded systems
– Fault-tolerance, reliability, availability
– Grid and cluster computing
– Location- and context-aware systems
– Mobile agents and autonomous robots
– Mobile computing and networks
– Peer-to-peer systems, overlay networks
– Complexity and lower bounds
– Performance analysis of distributed systems
– Real-time systems
– Security issues in distributed computing and systems
– Sensor networks: theory and practice
– Specification and verification of distributed systems
– Testing and experimentation with distributed systems

In response to this call for papers, 122 papers were submitted. Each paper was
reviewed by at least three reviewers, and judged according to scientific and pre-
sentation quality, originality and relevance to the conference topics. The Program
Committee selected 32 papers for regular presentations at the conference and 4
papers as brief announcements.

It is impossible to organize a successful program without the help of many
individuals. We would like to express our appreciation to the authors of the
submitted papers, the Program Committee members and the external refer-
ees. We would also like to thank the OPODIS Steering Committee members, in
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particular Hacene Fouchal, who supervised and supported the continuation of
this event. We owe special thanks to the Organizing Committee for the hard
work they did locally in Tozeur.

December 2010 Chenyang Lu
Toshimitsu Masuzawa

Mohamed Mosbah
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Pattern Formation through Optimum Matching

by Oblivious CORDA Robots

Nao Fujinaga, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita

Department of Informatics, Graduate School of Information Science and Electrical
Engineering, Kyushu University, Fukuoka 819-0395, Japan
{fuji,ono,shuji,mak}@tcslab.csce.kyushu-u.ac.jp

Abstract. A (new) geometric pattern formation problem by a set of
oblivious, anonymous, asynchronous (i.e., CORDA) robots is investi-
gated in this paper. The conventional pattern formation problem as-
sumes that the target pattern is given as a set of the positions by their
coordinates in the global coordinate system, under the assumption that
the robots are not aware of it. In the pattern formation problem we
discuss in this paper, the points comprising the pattern are assumed to
be “visible” to all robots, like landmarks. However, the robots still can-
not obtain their positions in the global coordinate system. This paper
shows that this pattern formation problem is solvable by oblivious asyn-
chronous robots through the optimum matching between the robots and
the pattern’s points.

Our study is partly motivated by the state-of-arts of the conventional
pattern formation problem by oblivious asynchronous robots; description
and correctness proof of a formation algorithm is usually complicated
and ambiguous, because of the oblivious and asynchronous natures of
the robots. A modular method is thus looked for to describe and prove
algorithm in a clearer and more concrete way. Our pattern formation
problem and the formation algorithm based on the optimum matching
are used as a primitive building block in the modular method.

1 Introduction

This paper considers a system R of anonymous mobile robots, each represented
by a point in 2D Euclidean space. A robot, given an algorithm, repeats a “Look–
Compute–Move” cycle, to observe the other robots’ positions (in Look phase),
to compute the next position by using the algorithm (in Compute phase), and
to move toward the next position (in Move phase). The robots are anonymous
in the sense that they do not have identifiers (and are not identified just by their
looks neither), and are controlled by the same algorithm. A basic and crucial
assumption on the system is that they are not aware of the global coordinate
system, and all the actions by robots are via their local coordinate systems,
which may be inconsistent each other.

The problem of forming a given pattern F by a set of robots R is called
the (geometric) pattern formation problem and has been studied extensively.
The difficulty of solving the problem depends mainly on two factors; the degree

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 N. Fujinaga et al.

of asynchrony and the amount of memory. As for the asynchrony, three kinds
of robots have been discussed. A (fully) synchronous robot synchronously exe-
cutes a Look–Compute–Move cycle; all robots simultaneously start and finish
the Look, Compute and Move phases in each iteration, and they always reach
their next positions (computed in their Compute phases) in their Move phases.
We call this robot model FSYNCH. An asynchronous robot, on the other hand,
asynchronously executes a Look–Compute–Move cycle. Moreover, a Move phase
may finish when a robot is still on the way to its next position. We call this robot
model ASYNCH (or CORDA). Finally, a semi-synchronous robot is the same
as an asynchronous robot, except that a Look and a Move phases of two robots
never overlap, or informally, no robots observe other robots moving. We call this
robot model SSYNCH (or SYM). As for the amount of memory, we assume that
a robot has sufficient memory in general. However, an oblivious robot does not
have a memory, so that any algorithm to compute the next position must be a
function of the current robots’ positions.

Main known results about formation are summarized as follows. Assume that
|R| = |F |. F may be decomposed into k/|F | k-sets such that these k-sets form
co-centered k-gons. ρ(F ) is defined as the maximum of such k. A configuration
C of R contains for each robot its position and local coordinate system. Let FC

be the set of the robots’ positions in C.

1. For anonymous FSYNCH robots (and hence for anonymous SSYNCH and
ASYNCH robots), a pattern F is formable from an initial configuration I,
only if the symmetricity σ(I) of I divides ρ(F ) [14, 16]1

2. There is a pattern formation algorithm for (non-oblivious) anonymous
ASYNCH robots (and hence for anonymous SSYNCH and FSYNCH robots)
that forms pattern F from any initial configuration I such that σ(I) divides
ρ(F ) [11].2

3. There is a pattern formation algorithm for oblivious anonymous FSYNCH
robots that forms a pattern F from any initial configuration I such that σ(I)
divides ρ(F ) [16]. Oblivious anonymous FSYNCH robots thus have exactly
the same formation power as the non-oblivious anonymous FSYNCH robots.

4. Except the gathering problem for two robots (i.e., F is a singleton with mul-
tiplicity 2), there is a pattern formation algorithm for oblivious anonymous
SSYNCH robots that forms a pattern F from any initial configuration I such
that σ(I) divides ρ(F ) [16]. Oblivious anonymous SSYNCH robots thus have
almost the same formation power as the non-oblivious anonymous FSYNCH
robots.

5. Any pattern F is formable by oblivious anonymous ASYNCH robots, if
ρ(FI) = 1. [5] It is however still open to decide whether or not oblivious
anonymous ASYNCH robots have (almost) the same formation power as
the non-oblivious anonymous FSYNCH robots.

1 See [14, 16] for the definition of symmetricity σ.
2 The algorithm in [11] solves the agreement problem on their initial positions FI , but

it is easy to modify so that all robots agree on I . From I , each robot can determine
whether or not F is formable, compute its final position, and move there.
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The formation problem for oblivious ASYNCH robots when ρ(FI) > 2 is thus
a promising target in this area. We however hesitate to dash to the target, since
oblivious formation algorithms in the current form look to be very complicated,
and both their descriptions and their correctness proofs are hard to understand
as in [16]. The authors of [16] introduced many tricks to overcome the difficulties
appeared in different phases in the algorithm, but they might fail to clearly state
their meanings to readers.

In this paper, we propose a building block to construct an easy-understanding
algorithm, motivated by the following observation: The formation algorithm in
[16] first agrees on a coordinate system defined by the positions of three robots.
Let R′ be the set of the robots supporting the coordinate system. Then all robots
can put pattern F in their working space in terms of the coordinate system, and
all robots in R\R′ move their corresponding positions in F . Note that the robots
in R′ stop motionless to maintain the coordinate system unchanged, while the
robots in R\R′ are moving. When the robots in R\R′ reach their final positions,
the robots in R′ agree on a coordinate system defined by the positions of the
robots in R \ R′, and move to their final positions in F .

The algorithm in [16] is thus constructed from two sub-formation tasks, one
for the robots in R \ R′, and the other for the robots in R′. If we could treat
these tasks more elegantly, we might be able to make the whole algorithm clearer.
Emphasizing that a common coordinate system exists in each task, we formulate
our formation problem: Given a geometric pattern F , we discuss the pattern
formation problem for oblivious ASYNCH robots. The crucial difference between
our problem and the conventional problem is that in our problem, the points in
F are assumed to be “visible” to all robots in their working space like landmarks,
or equivalently, every robot observes their positions, as well as the positions of
the robots, in its local coordinate system, whenever it executes the Look phase.

Apart from the above motivation, this formation problem has many applica-
tions. Some of them are when the points of F are anonymous home bases of the
robots, and when they are tasks assigned to the robots.

This paper proposes a formation algorithm CWM-Form and proves its cor-
rectness. CWM-Form makes use of the optimum matching M between R and
F , and shows that asynchronous behaviors of the robots obeying CWM-Form
maintain M as the optimum matching.

Related work. In SSYNCH, since point gathering problem by two robots is not
solvable in general and solvable if robots agree on the north and have common
handedness, as intermediate model, unreliable compass model was considered [8,
9, 13]. Izumi et al. showed in [9] that 1) the gathering problem by two SSYNCH
robots can be solved if and only if the maximum deviation angle of the compasses
is less than π/2 for static compass model, and π/4 for dynamic compass model,
2) the gathering problem by two ASYNCH robots can be solved if and only if the
maximum deviation angle of the compasses is less than π/2 for static compass
model.
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Other inaccurate sensor/controlmodel was discussed in [4, 15]. They measured
errors by a pair of the maximum angle and distance errors, and showed necessary
and sufficient conditions of the pair for robots to have a convergence algorithm.

The model in which robots have limited visibility was considered in [7, 13].
Flocchini et al. showed in [7] that gathering problem can be solved by robots with
limited visibility if they agree on the north and have common handedness. Souissi
et al. in [13], extended the result to the eventually consistent compass model.

For other related works that focused on fault-tolerant formation/convergence
for anonymous robots, see [1–3].

Organization. The rest of paper is organized as follows: In section 2.1 we present
formal definition of our model of robots. In section 2.2 we give the outlook of our
algorithm CWM-Form and present the main theorem (Theorem 1). In section
2.3 we define terminology that we use in this paper. For formal definition and
discussion of “clockwise matching” which plays key role in our algorithm, whole
section 3 is devoted. In section 4 we give the proof of Theorem 1.

2 Preliminary

2.1 Model

In this section we introduce our model of robots. For x, y ∈ R2, d(x, y) denotes
the Euclidean distance between coordinates x and y, and xy denotes the line
segment {x + t(y − x) : t ∈ [0, 1]} and −→xy denotes the half line {x + t(y − x) :
t ∈ [0,∞)}. We call a set of finite number of points in R2 a pattern. Let Ln

denotes all patterns of n points. Let T be a set of all transformations consisting
of rotation, translation and uniform scaling. An element of T is called a local
coordinate system. Let R denotes a set of robots.

In our model, every robot observes other robots’ positions A and goal pattern
B via its own (local) coordinate system (Look), and computes bijective maps
(i.e., perfect bipartite matchings) between A and B minimizing total Euclidean
distance and decides its own target point of B by an algorithm ψ (Compute),
and move to the direction of the target with ε (or larger) length if there is no
other robot(s) along the way (Move). Note that robots cannot communicate each
other, and use distinct local coordinate systems where each robot only knows
its own system, hence does not know others’ ones. Thus if there uniquely exists
the minimum perfect matching M = {(ai, bi) ∈ A ×B : i = 1, . . . , n} between A
and B, minimizing

∑
(ai,bi)∈M d(ai, bi), a formation is easily done. In this paper,

we are concerned with symmetrical patterns A and B, for which there are some
minimum perfect matchings between A and B (See e.g. Fig. 1 appearing later).

An algorithm ψ is described by a function, which takes two patterns A, B ∈ Ln

as an input (where A is positions of robots and B is the points of target pattern),
and returns a bijective map ψ(A, B) : A → R2 which indicates that the robot at
a ∈ A calculates the destination ψ(A, B)(a) ∈ R2 if activated. Additionally, we
require an algorithm ψ to satisfy

Z(ψ(A, B)(a)) = ψ(Z(A), Z(B))(Z(a)) , (1)
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for all Z ∈ T, A, B ∈ Ln and a ∈ A. We call this property local coordinate
system independency. In this paper, since elements in T consist of rotations,
translations and uniform scalings, this suggests that the robots do not have
common knowledge about the north (directions of y-axis of local coordinate
systems may not agree) and the unit length. However, since we do not allow
mirror transformation, the robots have common handedness, i.e., bases of their
local coordinate system have same orientation.

For an algorithm ψ and patterns A, B ∈ Ln, let P(ψ, A, B) denotes a set of
all executions which we consider, i.e., P(ψ, A, B) is a set of all executions P :
R×N → R2 where P (r, t) denotes the position of robot r at time t. Expansively,
let P (R, t) denotes the positions of all robots in R at time t. Note that P (r, t)
includes uncertainty even when an algorithm ψ and patterns A and B are fixed
since robots in our model are (oblivious and) asynchronous.

In our model, all robots in R at time 0 are located at A, i.e., P (R, 0) = A.
We assume that there exists a minimal moving distance ε which is a positive
real number. For each robot r ∈ R, there exists monotonically increasing infinite
sequence t

(r)
1 , t

(r)
2 , · · · ∈ N where t

(r)
i express the starting time of the ith cycle

of r. The position of r does not change till the beginning of the first cycle, i.e.,
P (r, t) = P (r, 0) for all t ≤ t

(r)
1 . For the ith cycle, let ar,i denotes the position of

r at the beginning of the ith cycle, and br,i denotes the destination r calculated
in the ith cycle, i.e., ar,i = P (r, t(r)

i ) and br,i = ψ
(
P (R, t

(r)
i ), B

)
(ar,i). Robot

r moves along the line ar,ibr,i, i.e., P (r, t) ∈ ar,ibr,i for all t ∈ [t(r)
i , t

(r)
i+1], and

d(ar,i, P (r, t)) ≤ d(ar,i, P (r, t′)) for all t, t′ ∈ [t(r)
i , t

(r)
i+1] such that t < t′. The

robot r arrives at the destination br,i or moves away from ar,i at least ε at the
end of the ith cycle, i.e., P (r, t(r)

i+1) = br,i or ε < d(ar,i, P (r, t(r)
i+1)) .

Pattern formation is defined as follow.

Definition 1. An algorithm ψ forms a pattern B from a pattern A if for all
possible executions P ∈ P(ψ, A, B), there exists a time t∗ ∈ N such that for all
t > t∗, P (R, t) = B.

2.2 Algorithm — CWM-Form

Now we describe an outline of our algorithm CWM-Form.
Given a pair of patterns A and B, let M be a bijective map from A to B

which we call clockwise matching (shortly CWM) uniquely defined for A and B.
We show an example of CWM in Fig. 1 where black dots represent positions of
the robots and white dots represent the points of the target pattern. We will
give a formal definition of CWM in Section 3. With M , CWM-Form is defined
by

CWM-Form(A, B)(a) =

{
a if ∃a′ ∈ A s.t. a′ ∈ aM(a)
M(a) otherwise

. (2)

That is, the robot at a ∈ A calculates its matched destination M(a) ∈ B, and if
there is other robot(s) along the way, it does not move, otherwise, it moves to
M(a).
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Theorem 1. Given any patterns A, B ∈ Ln, CWM-Form forms B from A.

We show Theorem 1 in the rest of this paper. Since our robots are oblivious
and asynchronous, the point of Theorem 1 is that every robot can reach its own
point of B assigned by CWM during formation steps. In Section 3, we define a
clockwise matching which is local coordinate system independent and show that
it presents a kind of “canonical matching” in our formation step.

Fig. 1. An example of CWM

2.3 Terminology

Todescribe “clockwisematching”we define our terminology (c.f., [6, 10]). Through-
out this paper, we consider bipartite graph G = (V, E) with vertex set V = A∪B
and edge set E ⊆ A × B. We draw vertices of A with black and vertices of B
with white in Figures 1-7. The vertex set of a graph G is referred to as V (G)
and its edge set as E(G). K2 denotes complete graph with 2 vertices. A graph G
is elementary if the union of all perfect matchings of G is a connected subgraph
of G. For a bipartite graph G and its perfect matchings M and M ′, the cycle C
of G is an alternating cycle of M and M ′ if the edges of C appear alternately
in M and M ′. For a plane graph, the boundary of exterior face is called the
periphery. A bijective map from A to B (i.e., matching) is denoted by a set of
pairs of vertices of A and B; e.g., if M is a bijection defined by M(ai) = bi for
i = 1, 2, . . . , n then we may also consider M = {(ai, bi) : i = 1, 2, . . . , n}. Since
we only consider graphs which are union of perfect matchings of A and B, and
do not allow isolated vertices, we sometimes specify a graph only by its edge set.
For S ⊆ A × B, we define A(S) to be a set {a : (a, b) ∈ S} and B(S) to be a
set {b : (a, b) ∈ S}. For a pair of patterns A and B such that |A| = |B|, U(A, B)
denotes a set of all perfect matchings of A and B (bijection from A to B). For
a matching M ∈ U(A, B) we define cost of the matching by

d(M) =
∑

(a,b)∈M

d(a, b) . (3)
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Let M(A, B) denotes a set of all matchings M ∈ U(A, B) which minimize d(M)
and for all distinct (a, b), (a′, b′) ∈ M , a, a′, b′, b does not reside on a line in the
order. Note that as an element of M(A, B), we do not allow matching whose
edge includes its another edge as in Fig. 2 (a), while allowing parallel edges
as in Fig. 2 (b). See that M(A, B) 	= ∅ (except A = B = ∅), but not nec-
essarily |M(A, B)| = 1. We call a matching M ∈ U(A, B) to be optimum if
M ∈ M(A, B). G(A, B) denotes a bipartite graph with vertex set V = (A, B)
and edge set E =

⋃
M∈M(A,B) M . See Fig. 3 for an example of G(A, B). For a

Jordan curve C on Euclidean plane, tour T of C is a continuous injective map
T : [0, 1) → R2 which satisfies T ([0, 1)) = C. We call T to be CCW tour of C,
if T is tour of C and

∫ 1

0
dθT,p

dt dt = 2π where (x(t), y(t)) = T (t) and p = (px, py)
is some point of inner face of C and θT,p(t) = arctan y(t)−py

x(t)−px
. Expansively, for a

cycle C of a plane graph, a sequence of vertices v0v1 . . . vnv0 of C is CCW tour if
there exists CCW tour T of Ĉ = V (C) ∪

⋃
E(C) and monotonically increasing

sequence t0, t1, . . . , tn ∈ [0, 1) such that T (ti) = vi, and CW tour otherwise.

Fig. 2. Fig. 3. An example of G(A,B)

3 Clockwise Matching

In this section, we define the “clockwise-matching” CWM(A, B) of pattern A
and B, which plays a key role in our algorithm. To begin with, we analyze a
graph G = G(A, B), in order to define CWM.

3.1 Graph G(A, B)

Though we want to consider G to be a plane graph by replacing each edge (a, b)
with a line ab, G is not a plane graph in general unfortunately. First, we look
at the relation between two edges of G. The following holds even if G is not
connected graph.
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Lemma 2. There are four cases3 between two edges e = (a, b) and e′ = (a′, b′)
of G. See Fig. 4 for illustration.

– (separate) ab ∩ a′b′ = ∅.
– (fold) e and e′ have exactly one common end vertex and a′ ∈ ab.
– (adjacent) e and e′ have exactly one common end vertex and not (fold).
– (parallel) a, a′, b, b′ reside on one line in the order.

Fig. 4. Possible relation of two edges of G(A, B)

Fig. 5. Impossible relation of two edges of G(A, B)

Proof. We classify the other cases which do not satisfy the above relation as
follow. For each case, we derive contradiction. See Fig. 5. Let e = (a, b) and
e′ = (a′, b′) be two edges that are not adjacent and let M, M ′ ∈ M(A, B) be
matchings such that e ∈ M , e′ ∈ M ′. Since e and e′ are not adjacent, a 	= a′

and b 	= b′.

– Case 1. M = M ′.
• (cross) Two lines ab and a′b′ cross at a point.
• (opposite-direction) a, b′, b, a′ reside on a line in the order.
• (include) a, a′, b′, b reside on a line in the order.

– Case 2. M 	= M ′.
• (cross) Two lines ab and a′b′ cross at a point.
• (colinear-and-intersect) a, b, a′, b′ are colinear and ab ∩ a′b′ 	= ∅.

3 We do not consider the cases in which the color of each the vertices is converted to
the other color, since those are symmetric.
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Let ẽ = (a, b′), ẽ′ = (a′, b).

– Case 1. M = M ′. Let W = M \ {e, e′} ∪ {ẽ, ẽ′}. Obviously, W ∈ U(A, B).
• (cross) Let p be the crossing point. By the triangle inequality, d(a, b′) +

d(a′, b) < d(a, p) + d(p, b) + d(a′, p) + d(p, b′) = d(a, b) + d(a′, b′). Thus
d(W ) = d(M \{e, e′}∪{ẽ, ẽ′}) = d(M)−

{
d(a, b)+d(a′, b′)

}
+
{
d(a, b′)+

d(a′, b)
}

< d(M). This contradict with M ∈ M(A, B).
• (opposite-direction) Same as the case (cross).
• (include) This contradict with M ∈ M(A, B).

– Case 2. M 	= M ′.
• (cross) Let C = (M ⊕ M ′) \ {e, e′} ∪ {ẽ, ẽ′}. Then, each connected com-
ponent of C forms an alternating cycle and d(C) < d(M ⊕ M ′) by the
same argument as the case (cross) of Case 1. Thus, there exists W, W ′ ∈
U(A, B) such that d(W ⊕ W ′) < d(M ⊕ M ′) and M ∩ M = W ∩ W ′.
This is because, as edges of W and W ′, you can take edges of the al-
ternating cycle alternately for each connected component of C and for
the rest of the W and W ′, you can take edges both from M ∩M ′. Thus,
d(W )+d(W ′) = d(W ⊕W ′)+2d(W ∩W ′) < d(M ⊕M ′)+2d(M ∩M ′) =
d(M) + d(M ′). Furthermore, since M and M ′ are optimum matchings,
d(M) = d(M ′). Therefore, d(W ) < d(M) or d(W ′) < d(M). This con-
tradict with M ∈ M(A, B).

• (colinear-and-intersect) In this case, though each connected component
of M ⊕ M ′ must form alternating cycle, this is impossible because two
edges in the same matching cannot have relation (cross) or (opposite-
direction) as we proved in Case 1. �

We consider the connected component of G. When G is connected, let’s see,
what kind of graph we can draw on the plane. To begin with edge e1, by
Lemma 2, as the next edge e2, we can draw edge which have either (adjacent)
or (fold) relation with e1. If we choose (fold), the next edge e3 must be the
(parallel) relation with e1. Then, for the next edge e4, you can choose (adjacent)
or (fold). However in case you choose (fold) you have to be careful not to draw
the line too long and include e2, and so on, and of course any of two edges could
never cross each other.

With that observation, let us define the plane graph representation D(G) of G
as follow. We call an alternating path a1b1 . . . ambm of G which satisfy ai+1 ∈ aibi

and bi ∈ ai+1bi+1 for all i = 1 . . .m − 1, a folded-path. Any edge is a folded-path
with length 1. A maximal folded-path is a folded-path, which by extending the
path with one more vertex, no longer holds above condition. D(G) is a plane
graph which is produced by replacing each maximal folded-path aPb of G with
a line ab. See that those two lines never intersect with each other except for end
points and for any perfect matching of D(G), there is a corresponding perfect
matching of G since each aPb is an alternating path without branch from inner
vertices.

From the definition, Lemma 2 and the above arguments, we obtain the following
Corollaries.



10 N. Fujinaga et al.

Fig. 6. An example of folded-path Fig. 7. An example of G and D(G)

Corollary 3. G is bipartite elementary.

Corollary 4. D(G) is plane bipartite elementary.

We also remark the followings.

Theorem 5. [10] Elementary bipartite graph is 2-connected.

Theorem 6. [6] Any face of 2-connected plane graph with more than 4 vertices
is bounded by a cycle of the graph.

The geometrical property defined on plane graph D(G) is naturally lifted to
the original graph G. i.e., if the tour x0x1 . . . xm−1x0 of the cycle C of D(G)
is CW, as there is unique maximal folded-path Pi of G that connect xi and
xi+1 mod m, we define the tour x0P0x1P1 . . . xm−1Pm−1x0 of G to be CW and
CCW otherwise. The periphery of G is defined in the same manner. By the above
theorems, we can say that the periphery of any connected component of G is
either K2 or an alternating cycle.

3.2 Definition of CWM

In order to define CWM(A, B), we first define functions ToCycles and CWMC
which are building blocks of CWM.

Given a pair of patterns A and B which satisfies |A| = |B|, let G1, G2, . . . , GN

be connected components of G(A, B), and let Ci be the periphery of Gi, and let
Ai = A(Gi \ Ci) and Bi = B(Gi \ Ci). ToCycles(A, B) is a subgraph of G(A, B)
each connected component of which is a cycle or K2, defined by

ToCycles(A, B) =

{
∅ if A = B = ∅⋃N

i=1

{
Ci ∪ToCycles(Ai, Bi)

}
otherwise

. (4)

Note that ToCycles(A, B) consists of even cycles andK2s. In Fig. 1 ToCycles(A, B)
is union of CWM and CCWM.

Given a graph C which is a cycle or K2, CWMC′(C) is a matching of C
defined by

CWMC′(C) =

{
E(C) if C = K2

{(a1, b1), (a2, b2), . . . , (am, bm)} otherwise
, (5)

where sequence a1b1 . . . ambma1 is CW tour of C and ai ∈ A.
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Extending the definition of CWMC′, we define a matching CWMC(G) of a
graph G consisting of even cycles and K2s by

CWMC(G) =
N⋃

i=1

CWMC′(Gi) , (6)

where G1, G2, . . . , GN is connected components of G.
Finally, for a pair of patterns A and B which satisfies |A| = |B|, let G =

ToCycles(A, B). CWM(A, B) is a perfect matching of A and B defined by

CWM(A, B) = CWMC(G) . (7)

3.3 Properties of CWM

Here, we show the properties of CWM(A, B) (Corollary 10 and Lemma 11) which
we will use to prove Theorem 1.

Lemma 7. Any perfect matching of G(A, B) is optimum.

Proof. Let |M(A, B)| = k and cost of each matching of M(A, B) to be w.
Here, we consider a multi graph Ĝ(A, B) consisting of (disjoint) union of k
perfect matchings, hence Ĝ(A, B) is k-regular. Suppose that there exists perfect
matching M of G(A, B) that is not optimum. Since M is not optimum, w <
d(M). The sum of weight of all edges of G is kw. Consider G \ M . The sum
of weight of all edges of G \ M is less than (k − 1)w. However, since G \ M is
(k − 1)-regular graph, by Hall’s marriage theorem, G \ M can be decomposed
into k − 1 perfect matchings. Thus at least one of the k − 1 perfect matchings
has the cost less than w. This contradict with optimality of M(A, B). �

Theorem 8. [17] The periphery of a plain elementary bipartite graph is an
alternating cycle of two perfect matchings.

Lemma 9. The periphery of G(A, B) is an alternating cycle of two optimum
matchings.

Proof. Consider G = G(A, B). By Corollary 4 and Theorem 8, the periphery of
D(G) is an alternating cycle of two perfect matchings. Thus by its corresponding
two perfect matchings of G, the periphery of G is an alternating cycle of the two
perfect matchings. Furthermore by Lemma 7, these two matchings of G are
optimum. �

By Lemma 9 and definition of CWM(A, B), we obtain the following.

Corollary 10. CWM(A, B) is an optimum matching.

We define binary relation (�) on M(A, B) as follow.

Definition 2. M � M ′ def⇐⇒ CWMC(M ∪ M ′) = M .

Intuitively, M � M ′ means M is “closer to clockwise” than M ′ and the following
Lemma states that CWM(A, B) is “exactly clockwise” matching of M(A, B).
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Lemma 11. For all M ∈ M(A, B), CWM(A, B) � M .

Proof. We prove CWMC(CWM(A, B) ∪ M) = CWM(A, B). Since it is obvious
that CWMC takes the edges of CWM(A, B) ∩M . We only need to focus on the
edges of CWM(A, B)⊕M each connected component of which is an alternating
cycle. Let C be such a cycle. C is an alternating cycle of CWM(A, B) and M .
Of the edges of C, either edges of C ∩ CWM(A, B) or C ∩ M will be chosen as
edges of CWMC(CWM(A, B) ∪ M). By the definition of the algorithm CWM,
some cycle C′ in ToCycles(A, B) has common edges with C while inner face
of C is included in that of C′. This is because, if not, it contradicts with the
definition of ToCycles, which takes the periphery of the connected component of
the graph one by one. This suggests that edges of C∩CWM(A, B) will be chosen
for the cycle C since any point of inner face of C is also a point of inner face
of C′ and clockwise tour of these cycles never contradict with each other. The
same argument holds for other alternating cycles of CWM(A, B)⊕M . Therefore,
CWMC(CWM(A, B) ∪ M) = CWM(A, B). �

4 Proof of Theorem 1

In this section, we prove Theorem 1, by using the properties of CWM we pre-
sented in the previous section.

Lemma 12. Let A, B, X be patterns which satisfy following,

1. {(a1, b1), (a2, b2), . . . , (an, bn)} ∈ M(A, B).
2. X = {x1, x2, . . . , xn} where xi ∈ aibi.
3. if there exists i′ 	= i such that ai′ ∈ aibi then xi = ai.

then {(x1, b1), (x2, b2), . . . , (xn, bn)} ∈ M(X, B).

Lemma 12 states that an optimum matching continues to be optimum even after
some robots moved according to the matching.

Proof. Let M = {(a1, b1), . . . , (an, bn)}, M ′ = {(x1, b1), . . . , (xn, bn)}. First, con-
sider the case in which only one point has moved. Without loss of generality,
let aj 	= xj and ai = xi for all i 	= j. i.e., aj has moved to xj along the line
ajbj and the rest of the points has not moved. Since aj 	= xj , we can assume
there is no element of A on xjbj . (That is, for all distinct (a, b), (a′, b′) ∈ M ′,
we can assume that a, a′, b′, b does not reside on a line in the order.) Sup-
pose M ′ /∈ M(X, B). This implies that there exists W ′ ∈ U(X, B) such that
d(W ′) < d(M ′). Let {(a1, b

′
1), . . . , (xj , b

′
j), . . . , (an, b′n)} be such W ′ and W

be {(a1, b
′
1), (a2, b

′
2), . . . , (an, b′n)}. Since W ∈ U(A, B), d(M) ≤ d(W ). Let

δ = d(aj , xj), a = d(xj , b
′
j), d(aj , b

′
j) = b. By the triangle inequality, −δ ≤ a − b.

Therefore, d(M ′) = d(M) − δ ≤ d(W ) + a − b = d(W ) − d(xj , b
′
j) + d(aj , b

′
j) =

d(W ′). This contradict with d(W ′) < d(M ′).
In case that arbitrary number of points have moved, inductively applying the

same argument for the one point case, we obtain the claim. �
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Lemma 13. Let A, B, X be patterns which satisfy following,

1. CWM(A, B) = {(a1, b1), (a2, b2), . . . , (an, bn)}.
2. X = {x1, x2, . . . , xn} where xi ∈ aibi.
3. if there exists i′(	= i) such that ai′ ∈ aibi then xi = ai.

then CWM(X, B) = {(x1, b1), (x2, b2), . . . , (xn, bn)}.

Lemma 13 states that CWM of the robots and the pattern never change while
the execution. Thus justifies Theorem 1.

Proof. Let M = {(a1, b1), . . . , (an, bn)}, M ′ = {(x1, b1), . . . , (xn, bn)}. Suppose
W ′ = {(x1, b

′
1), . . . , (xn, b′n)} = CWM(X, B) and W = {(a1, b

′
1), . . . , (an, b′n)}

and M ′ 	= W ′. First consider the case in which only one point has moved.
Without loss of generality, let aj 	= xj and ai = xi for all i 	= j. Since aj 	= xj ,
we can assume there is no element of A on xjbj. Now we are considering the
following four matchings.

M = {(a1, b1), (a2, b2), . . . , (aj , bj), . . . , (an, bn)} ,

W = {(a1, b
′
1), (a2, b

′
2), . . . , (aj , b

′
j), . . . , (an, b′n)} ,

M ′ = {(a1, b1), (a2, b2), . . . , (xj , bj), . . . , (an, bn)} ,

W ′ = {(a1, b
′
1), (a2, b

′
2), . . . , (xj , b

′
j), . . . , (an, b′n)} .

By Lemma 12 and Lemma 10, M ′, W ′ ∈ M(X, B). Therefore, by Lemma 11,
CWM(X, B) = W ′ ≺ M ′, also since W, M ∈ M(A, B), CWM(A, B) = M ≺ W .

– Case bj = b′j. In this case W ′ ⊕M ′ = W ⊕M and for all e ∈ W ⊕M , e ∈ W
if and only if e ∈ W ′ and e ∈ M if and only if e ∈ M ′. Thus W ≺ M . This
contradict with CWM(A, B) = M ≺ W .

– Case bj 	= b′j . In this case, b′j is on the half line
−−→
xjbj since if not, it contradict

with M ′, W ′ ∈ M(X, B). Thus bjajb
′
j and bjxjb

′
j is a folded-path and the

rest of the alternating cycle is the same as in Case bj = b′j . ThereforeW ≺ M .
This contradict with CWM(A, B) = M ≺ W .

In case that arbitrary number of points have moved, inductively applying the
same argument for the one point case, we obtain the claim. �

5 Conclusion

In this paper, we considered autonomous mobile robots and constructed the algo-
rithm CWM-Form which forms any given pattern under assumption of CORDA,
anonymous and oblivious autonomous mobile robots. We assumed that they do
not have common knowledge about the north and the unit length, but have
common handedness. Besides, we assumed that they can observe target pattern
according to their view of the world. By CWM-Form, robots always calculate
matching of the robots and the pattern which minimize the sum of distances.
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CWM-Form precedes CW matching to CCW. We showed such simple algo-
rithm can form any given pattern even if robots are anonymous, oblivious and
asynchronous.

Although we have not considered in this paper, in the conventional problem,
robots only know shape of target pattern and cannot see the pattern itself.
Whether the idea of pattern formation by matching we considered in this paper
can be applied to these models and is effective approach in pattern formation in
general, remains to be investigated.
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M.: The Gathering Problem for Two Oblivious Robots with Unreliable Compasses
(to appear)

9. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass
models and gathering algorithms for autonomous mobile robots. In: Prencipe, G.,
Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg
(2007)

10. Lovasz, L., Plummer, M.: Matching Theory. AMS Chelsea Publishing, Providence
(2009)

11. Nagamochi, H., Yamashita, M., Ibaraki, T.: Distributed algorithms for cooperative
controlling of anonymous mobile robots. Technical Reports of IEICE, COMP95-24,
pp. 31–40 (1995) (in Japanese)

12. Prencipe, G.: Distributed coordination of a set of autonomous mobile robots. PhD
Thesis, Universita di Pisa (2002)
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Abstract. This paper introduces the RoboCast communication abstrac-
tion. The RoboCast allows a swarm of non oblivious, anonymous robots
that are only endowed with visibility sensors and do not share a com-
mon coordinate system, to asynchronously exchange information. We
propose a generic framework that covers a large class of asynchronous
communication algorithms and show how our framework can be used to
implement fundamental building blocks in robot networks such as gath-
ering or stigmergy. In more details, we propose a RoboCast algorithm
that allows robots to broadcast their local coordinate systems to each
others. Our algorithm is further refined with a local collision avoidance
scheme. Then, using the RoboCast primitive, we propose algorithms for
deterministic asynchronous gathering and binary information exchange.

1 Introduction

Existing studies in robots networks focus on characterizing the computational
power of these systems when robots are endowed with visibility sensors and com-
municate using only their movements without relying on any sort of agreement
on a global coordinate system. Most of these studies [1,5,4] assume oblivious
robots (i.e. robots have no persistent memory of their past actions), so the
“memory” of the network is implicit and generally deduced from the current
positions of the robots. Two computation models are commonly used in robot
networks: ATOM [9] and CORDA [7]. In both models robots perform in Look-
Compute-Move cycles. The main difference is that these cycles are executed in a
fully asynchronous manner in the CORDA model while each phase of the Look-
Compute-Move cycle is executed in a lock step fashion in the ATOM model.
These computation models have already proved their limitations. That is, the
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deterministic implementations of many fundamental abstractions such as gather-
ing or leader election are proved impossible in these settings without additional
assumptions ([8]). The purpose of this paper is to study how the addition of
bounded memory to each individual robot can increase the computational power
of an asynchronous swarm of robots. We focus on an all-to-all communication
primitive, called RoboCast, which is a basic building block for the design of any
distributed system. A positive answer to this problem is the open gate for solving
fundamental problems for robot networks such as gathering, scattering, election
or exploration.

In robot networks, using motion to transmit information is not new [9,10,6].
In [9], Suzuki and Yamashita present an algorithm for broadcasting the local
coordinate system of each robot (and thus build a common coordinate system)
under the ATOM model. The algorithm heavily relies on the phase atomicity in
each Look-Compute-Move cycle. In particular, a robot a that observes another
robot b in four distinct positions has the certitude that b has in turn already
seen a in at least two different positions. The situation becomes more intricate
in the asynchronous CORDA model. Indeed, the number of different positions
observed for a given robot is not an indicator on the number of complete cycles
executed by that robot since cycles are completely uncorrelated. By contrast, our
implementation of RoboCast is designed for the more general CORDA model
and uses a novel strategy: the focus moves from observing robots in different
positions to observing robots moving in different directions. That is, each robot
changes its direction of movement when a particular stage of the algorithm is
completed; this change allows the other robots to infer information about the
observed robot.

Another non trivial issue that needs to be taken care of without explicit
communication is collisions avoidance, since colliding robots could be confused
due to indistinguishability. Moreover, robots may physically collide during their
Move phase. One of the techniques commonly used to avoid collisions consists in
computing a Voronoi diagram [2] and allowing robots to move only inside their
Voronoi cells [5]. Since the Voronoi cells do not overlap with one another, robots
are guaranteed to not collide. This simple technique works well in the ATOM
model but heavily relies on the computation of the same Voronoi diagram by
the robots that are activated concurrently, and thus does not extend to the
CORDA model where different Voronoi diagrams may be computed by different
robots, inducing possible collisions. Our approach defines a collision-free zone of
movement that is compatible with the CORDA model constraints.

Applications of our RoboCast communication primitive include fundamental
services in robot networks such as gathering and stigmergy. Deterministic gath-
ering of two stateless robots has already been proved impossible when robots
have no common orientation [9]. In [9], the authors also propose non-oblivious
solutions for deterministic gathering in the ATOM model. Our RoboCast per-
mits to extend this result to the CORDA model, using bounded memory and a
limited number of movements. Recently, in [6], the authors extend the work of
[9] to efficiently implement stigmergy in robot networks in the ATOM model.
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Stigmergy is the ability for robots to exchange binary information that is en-
coded in the way they move. This scheme is particularly appealing for secure
communication in robot networks, since e.g. jamming has no impact on robot
communication capability. The RoboCast primitive allows to extend this mech-
anism to the CORDA model, with a collision-free stigmergy scheme.

Our contribution. We formally specify a robot network communication prim-
itive, called RoboCast, and propose implementation variants for this primitive,
that permit anonymous robots not agreeing on a common coordinate system,
to exchange various information (e.g. their local coordinate axes, unity of mea-
sure, rendez-vous points, or binary information) using only motion in a two
dimensional space. Contrary to previous solutions, our protocols all perform in
the fully asynchronous CORDA model, use constant memory and a bounded
number of movements. Then, we use the RoboCast primitive to efficiently solve
some fundamental open problems in robot networks. We present a fully asyn-
chronous deterministic gathering and a fully asynchronous stimergic communi-
cation scheme. Our algorithms differ from previous works by several key features:
they are totally asynchronous (in particular they do not rely on the atomicity
of cycles executed by robots), they make no assumption on a common chirality
or knowledge of the initial positions of robots, and finally, each algorithm uses
only a bounded number of movements. Also, for the first time in these settings,
our protocols use CORDA-compliant collision avoidance schemes.

Roadmap. The paper is made up of six sections. Section 2 describes the com-
puting model and presents the formal specification of the RoboCast problem.
Section 3 presents our protocol and its complexity. The algorithm is enhanced
in Section 4 with a collision-avoidance scheme. Using the Robocast primitive,
Section 5 proposes algorithms for deterministic asynchronous gathering and bi-
nary information exchange. Finally, Section 6 provides concluding remarks. Due
to space limitations, some proofs are given in a companion technical report [3].

2 Model

We consider a network that consists of a finite set of n robots arbitrarily deployed
in a two dimensional space, with no two robots located at the same position.
Robots are devices with sensing, computing and moving capabilities. They can
observe (sense) the positions of other robots in the space and based on these
observations, they perform some local computations that can drive them to
other locations.

In the context of this paper, the robots are anonymous, in the sense that they
can not be distinguished using their appearance and they do not have any kind
of identifiers that can be used during the computation. In addition, there is no
direct mean of communication between them. Hence, the only way for robots to
acquire information is by observing their positions. Robots have unlimited visibil-
ity, i.e. they are able to sense the entire set of robots. We assume that robots are
non-oblivious, i.e. they can remember observations, computations and motions
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performed in previous steps. Each robot is endowed with a local coordinate sys-
tem and a local unit measure which may be different from those of other robots.
This local coordinate system is assumed to be fixed during a run unless it is
explicitly modified by the corresponding robot as a result of a computation. We
say in this case that robots remember their own coordinate systems. This is a
common assumption when studying non-oblivious robot networks [9,6].

A protocol is a collection of n programs, one operating on each robot. The
program of a robot consists in executing Look-Compute-Move cycles infinitely
many times. That is, the robot first observes its environment (Look phase). An
observation returns a snapshot of the positions of all robots within the visibility
range. In our case, this observation returns a snapshot of the positions of all
robots. The observed positions are relative to the observing robot, that is, they
use the coordinate system of the observing robot. Based on its observation,
a robot then decides — according to its program — to move or to stay idle
(Compute phase). When a robot decides a move, it moves to its destination
during the Move phase.

The local state of a robot is defined by the content of its memory and its
position. A configuration of the system is the union of the local states of all the
robots in the system. An execution e = (c0, . . . , ct, . . .) of the system is an infinite
sequence of configurations, where c0 is the initial configuration of the system, and
every transition ci → ci+1 is associated to the execution of a non empty subset
of actions. The granularity (or atomicity) of those actions is model-dependent
and is defined in the sequel of this section.

A scheduler is a predicate on computations, that is, a scheduler defines a set
of admissible computations, such that every computation in this set satisfies
the scheduler predicate. A scheduler can be seen as an entity that is external
to the system and selects robots for execution. As more power is given to the
scheduler for robot scheduling, more different executions are possible and more
difficult it becomes to design robot algorithms. In the remainder of the paper, we
consider that the scheduler is fair and fully asynchronous, that is, in any infinite
execution, every robot is activated infinitely often, but there is no bound on
the ratio between the most activated robot and the least activated one. In each
cycle, the scheduler determines the distance to which each robot can move in
this cycle, that is, it can stop a robot before it reaches its computed destination.
However, a robot ri is guaranteed to be able to move a distance of at least δi

towards its destination before it can be stopped by the scheduler.
We now review the main differences between the ATOM [9] and CORDA [7]

models. In the ATOM model, whenever a robot is activated by the scheduler,
it performs a full computation cycle. Thus, the execution of the system can be
viewed as an infinite sequence of rounds. In a round one or more robots are acti-
vated by the scheduler and perform a computation cycle. The fully-synchronous
ATOM model refers to the fact that the scheduler activates all robots in each
round, while the regular ATOM model enables the scheduler to activate only a
subset of the robots. In the CORDA model, robots may be interrupted by the
scheduler after performing only a portion of a computation cycle. In particular,
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phases (Look, Compute, Move) of different robots may be interleaved. For ex-
ample, a robot a may perform a Look phase, then a robot b performs a Look-
Compute-Move complete cycle, then a computes and moves based on its previous
observation (that does not correspond to the current configuration anymore). As
a result, the set of executions that are possible in the CORDA model are a strict
superset of those that are possible in the ATOM model. So, an impossibility
result that holds in the ATOM model also holds in the CORDA model, while
an algorithm that performs in the CORDA model is also correct in the ATOM
model. Note that the converse is not necessarily true.

The RoboCast Problem. The RoboCast communication abstraction provides
a set of robots located at arbitrary positions in a two-dimensional space the
possibility to broadcast their local information to each other. The RoboCast ab-
straction offers robots two communication primitives: RoboCast(M) sends Mes-
sage M to all other robots, and Deliver(M) delivers Message M to the local robot.
The message may consists in the local coordinate system, the robot chirality, the
unit of measure, or any binary coded information.

Consider a run at which each robot ri in the system invokes RoboCast(mi) at
some time ti for some message mi. Let t be equal to max{t1, . . . , tn}. Any pro-
tocol solving the RoboCast Problem has to satisfy the following two properties:

Validity: For each message mi, there exists a time t′i > t after which every
robot in the system has performed Deliver(mi).
Termination: There exists a time tT ≥ max{t′1, . . . , t′n} after which no
robot performs a movement that causally depends on the invocations of
RoboCast(mi).

3 Local Coordinate System RoboCast

In this section we present algorithms for robocasting the local coordinate system.
For ease of presentation we first propose an algorithm for two-robots then the
general version for systems with n robots.

The local coordinate system is defined by two axes (abscissa and ordinate),
their positive directions and the unity of measure. In order to robocast this in-
formation we use a modular approach. That is, robots invoke first the robocast
primitive (LineRbcast1 hereafter) to broadcast a line representing their abscissa.
Then, using a parametrized module (LineRbcast2), they robocast three succes-
sive lines encoding respectively their ordinate, unit of measure and the positive
direction of axes. This invocation chain is motivated by the dependence between
the transmitted lines. When a node broadcasts a line, without any additional
knowledge, two different points have to be sent in order to uniquely identify the
line at the destination. However, in the case of a coordinate system, only for the
first transmitted axis nodes need to identify the two points. The transmission of
the subsequent axes needs the knowledge of a unique additional point.
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3.1 Line RoboCast

In robot networks the broadcast of axes is not a new issue. Starting with their
seminal paper [9], Suzuki and Yamashita presented an algorithm for broadcast-
ing the axes via motion that works in the ATOM model. Their algorithm heavily
relies on the atomicity of cycles and the observation focus on the different posi-
tions of the other robots during their Move phase.

This type of observation is totally useless in asynchronous CORDA model.
In this model, when a robot r moves towards its destination, another robot r′

can be activated k > 1 times with k arbitrarily large, and thus observe r in k
different positions without having any clue on the number of complete cycles
executed by r. In other words, the number of different positions observed for a
given robot is not an indicator on the number of complete executed cycles since
in CORDA cycles are completely uncorrelated.

Our solution uses a novel strategy. That is, the focus moves from observing
robots in different positions to observing their change of direction: each robot
changes its direction of movement when a particular stage of the algorithm is
completed; this change allows the other robots to infer information about the
observed robot.

Line RoboCast Detailed Description. Let r0 and r1 be the two robots in
the system. In the sequel, when we refer to one of these robots without specifying
which, we denote it by ri and its peer by r1−i. In this case, the operations on the
indices of robots are performed modulo 2. For ease of presentation we assume
that initially each robot ri translates and rotates its local coordinate system such
that its x-axis and origin coincide with the line to be broacast and its current
location respectively. We assume also that each robot is initially located in the
origin of its local coordinate system.

At the end of the execution, each robot must have broadcast its own line and
have received the line of its peer. A robot “receives” the line broadcast by its
peer when it knows at least two distinct positions of this line. Thus, to send its
line, each robot must move along it (following a scheme that will be specified
later) until it is sure that it has been observed by the other robot.

The algorithm idea is simple: each robot broadcasts its line by moving along
it in a certain direction (considered to be positive). Simultaneously, it observes
the different positions occupied by its peer r1−i. Once ri has observed r1−i in
two distinct positions, it informs it that it has received its line by changing its
direction of movement, that is, by moving along its line in the reverse direction
(the negative direction if the first movement have been performed in the positive
direction of the line). This change of direction is an acknowledgement for the
reception of the peer line. A robot finishes the algorithm once it changed its
direction and observed that the other robot also changed its direction. This
means that both robots have sent their line and received the other’s line.

The algorithm is described in detail as Algorithm 1. Its proof can be found in
[3]. Each robot performs four stages referred in Algorithm 1 as states:
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– state S1: This is the initial state of the algorithm. At this state, the robot
ri stores the position of its peer in the variable pos1 and heads towards the
position (1.0) of its local coordinate system. That is, it moves along its line
in the positive direction. Note that ri stays only one cycle in this state and
then goes to state S2.

– state S2: A this point, ri knows only one point of its peer line (recorded in
pos1). To be able to compute the whole peer line, ri must observe r1−i in
another (distinct) position of this line. Hence, each time it is activated, ri

checks if r1−i is still located in pos1 or if it has already changed its position.
In the first case (line 2.a of the code), it makes no movement by selecting
its current position as its destination. Otherwise (line 2.b), it saves the new
position of r1−i in pos2 and delivers the line formed by pos1 and pos2. Then,
it initiates a change of direction by moving towards the point (−1.0) of its
local coordinate system, and moves to state S3.

– state S3: at this point ri knows the line of its peer locally derived from pos1

and pos2. Before finishing the algorithm, ri must be sure that also r1−i knows
its line. Therefore, it observes r1−i until it detects a change of direction (the
condition of line 3.a). If this is not the case and if ri is still in the positive
part of its x-axis, then it goes to the position (−1, 0) of its local coordinate
system (line 3.b). Otherwise (if ri is already in the negative part of its x-
axis), it performs a null movement (line 3.c). When ri is in state S3 one is
sure, as we shall show later, that r1−i knows at least one position of li, say
p. Recall that li corresponds to the x-axis of ri. It turns out that p is located
in the positive part of this axis. In moving towards the negative part of its
x-axis, ri is sure that it will eventually be observed by r1−i in a position
distinct from p which allows r1−i to compute li.

– state S4: At this stage, both ri and r1−i received the line sent by each others.
That is, ri has already changed its own direction of movement, and observed
that r1−i also changed its direction. But nothing guarantees that at this
step r1−i knows that ri changed its direction of movement. If ri stops now,
r1−i may remain stuck forever (in state S3). To announce the end of the
algorithm to its peer, ri heads towards a position located outside li, That is,
it will move on a line nextli (distinct from li) which is given as parameter
to the algorithm. During the move from li to nextli, ri should avoid points
outside these lines. To this end, ri must first pass through myIntersect -
which is the intersection of li and nextli - before moving to a point located
in nextli but not on li (refer to lines 3.a.2, 3.a.3 and 4.a of the code).

Note that the robocast of a line is usually followed by the robocast of
other information (e.g. other lines that encode the local coordinate system).
To helps this process the end of the robocast of li should mark the beginning
of the next line, nextli, robocast. Therefore, once ri reaches myIntersect,
ri rotates its local coordinate system such that its x-axis matches now with
nextli, and then it moves toward the point of (1,0) of its (new) local coordi-
nate system. When r1−i observes ri in a position that is not on li, it learns
that ri knows that r1−i learned l1−i, and so it can go to state S4 (lines 3.a.∗)
and finish the algorithm.



RoboCast: Asynchronous Communication in Robot Networks 23

Algorithm 1. Line RoboCast LineRbcast1 for two robots: Algorithm for
robot ri

Variables:
state: initially S1
pos1, pos2: initially ⊥
destination, myIntersect: initially ⊥

Actions:
1. State [S1]: %Robot ri starts the algorithm%

a. pos1 ← observe(1 − i)
b. destination ← (1, 0)i
c. state ← S2
d. Move to destination

2. State [S2]: %ri knows one position of l1−i%

a. if (pos1 = observe(1 − i)) then destination ← observe(i)
b. else

1. pos2 ← observe(1 − i)
2. l1−i ← line(pos1, pos2)
3. Deliver (l1−i)
4. destination ← (−1, 0)i
5. state ← S3 endif

c. Move to destination

3. State [S3]: %ri knows the line robocast by robot r1−i%

a. if (pos2 is not inside the line segment [pos1, observe(1 − i)]) then
1. state ← S4
2. myIntersect ← intersection(li, nextli)
3. destination ← myIntersect

b. else if (observe(i) ≥ (0, 0)i) then destination ← (0, −1)i
c. else destination ← observe(i) endif endif
d. Move to destination

4. State [S4]: %ri knows that robot r1−i knows its line li%

a. if (observe(i) �= myIntersect) then destination ← myIntersect
b. else

1. ri rotates its coordinate system such that its x-axis and the origin match with
nextli and myIntersect respectively.
2. destination ← (1, 0)i; return endif

c. Move to destination

3.2 Line RoboCast: A Composable Version

Line RoboCast primitive is usually used as a building block for achieving more
complex tasks. For example, the RoboCast of the local coordinate system re-
quires the transmission of four successive lines representing respectively the ab-
scissa, the ordinate, the value of the unit measure and a forth line to determine
the positive direction of axes. In stigmergic communication a robot has to trans-
mit at least a line for each binary information it wants to send. In all these
examples, the transmitted lines are dependent one of each other and therefore
their successive transmission can be accelerated by directly exploiting this de-
pendence. Indeed, the knowledge of a unique point (instead of two) is sufficient
for the receiver to infer the sent line. In the following we propose modifications
of the Line RoboCast primitive in order to exploit contextual information that
are encoded in a set of predicates that will be detailed in the sequel.

In the case of the local coordinate system, the additional information the
transmission can exploit is the fact that the abscissa is perpendicular to the or-
dinate. Once the abscissa is transmitted, it suffices for a robot to simply send a
single position of its ordinate, say pos1. The other robots can then calculate the
ordinate by finding the line that passes through pos1 and which is perpendicular
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to the previously received abscissa. In the modified version of the Line RoboCast
algorithm the predicate isPerpendicular encodes this condition.

For the case of stigmergy, a robot transmits a binary information by robo-
casting a line whose angle to the abscissa encodes this information. The lines
transmitted successively by a single robot are not perpendicular to each others.
However, all these lines pass through the origin of the coordinate system of the
sending robot. In this case, it suffices to transmit only one position located on
this line as long as it is distinct from the origin. We say in this case that the line
satisfies the predicate passThrOrigin.

A second change we propose relates to the asynchrony of the algorithm. In
fact, even if robots execute in unison, they are not guaranteed to finish the
execution of LineRbcast1 at the same time (by reaching S4). A robot ri can
begin transmitting its k-th line li when its peer r1−i is still located in its (k−1)-
th line ancientl1−i that ri has already received. ri should ignore the positions
transmitted by r1−i until it leaves ancientl1−i for a new line. It follows that to
make the module composable, the old line that the peer has already received
from its peer should be supplied as an argument (ancientl1−i) to the function.
Thus, it will not consider the positions occupied by r1−i until the latter leaves
ancientl1−i.

In the following, we present the code of the new Line RoboCast function that
we denote by LineRbcast2. Its description and its formal proof are omitted since
they follow the same lines as those of LineRbcast1.

3.3 RoboCast of the Local Coordinate System

To robocast their two axes (abscissa and ordinate), robots call LineRbcast1 to
robocast the abscissa, then LineRbcast2 to robocast the ordinate. The parameter
	= myOrdinate of LineRbcast2 stands for the next line to be robocast and it
can be set to any line different from myOrdinate. The next line to robocast
(unitLine) is a line whose angle with the x-axis encodes the unit of measure.
This angle will be determined during the execution LineRbcast2.

1. peerAbscissa ← LineRbcast1(myAbscissa, myOrdinate)
2. peerOrdinate ←
LineRbcast2(myOrdinate, 	= myOrdinate, peerAbscissa, isPerpendicular)

After executing the above code, each robot knows the two axes of its peer coor-
dinate system but not their positive directions neither their unit of measure. To
robocast the unit of measure we use a technique similar to that used by [9]. The
idea is simple: each robot measures the distance di between its origin and the
peer’s origin in terms of its local coordinate system. To announce the value of di

to its peer, each robot robocast via LineRbcast2 a line, unitLine, which passes
through its origin and whose angle with its abscissa is equal to f(di) where for
x > 0, f(x) = (1/2x) × 90◦ is a monotonically increasing function with range
(0◦, 90◦). The receiving robot r1−i can then infer di from f(di) and compute
the unit measure of ri which is equal to d1−i/di. The choice of (0◦, 90◦) as a
range for f(x) (instead of (0◦, 360◦)) is motivated by the fact that the positive



RoboCast: Asynchronous Communication in Robot Networks 25

Algorithm 2. Line RoboCast LineRbcast2 for two robots: Algorithm for
robot ri

Inputs:
li : the line to robocast
nextli: the next line to robocast after li
precedentl1−i: the line robocast precedently by r1−i
predicate: a predicate on the output l1−i, for example isPerpendicular and passThrOrigin.

Outputs:
l1−i : the line robocast by r1−i

Variables:
state: initially S1
pos1: initially ⊥
destination, myIntersect, peerIntersect: initially ⊥

Actions:
1. State [S2]: %ri starts robocasting its line li%

a. if (observe(1 − i) ∈ precedentl1−i) then destination ← observe(i)
b. else

1. pos3 ← observe(1 − i)
2. l1−i ← the line that passes through pos3 and satisfies predicate.
3. Deliver (l1−i)
4. peerIntersect ← intersection between l1−i and precedentl1−i
5. destination ← (0, −1)i
6. state ← S3 endif

c. Move to destination

2. State [S3]: %ri knows the line robocast by robot r1−i%

a. if (pos3 is not inside the line segment [peerIntersect, observe(1 − i)]) then
1. state ← S4
2. myIntersect ← intersection(li, nextli)
3. destination ← myIntersect

b. else if (observe(i) ≥ (0, 0)i) then destination ← (0, −1)i
c. else destination ← observe(i) endif endif
d. Move to destination

3. State [S4]: similar to state S4 of the lineRbcast1 function.

directions of the two axes are not yet known to the robots. It is thus impossible
to distinguish between an angle α with α ∈ (0◦, 90◦) and the angles Π − α, −α,
and Π + α. To overcome the ambiguity and to make f(x) injective, we restrict
the range to (0◦, 90◦). In contrast, Suzuki and Yamashita [9] use a function f ′(x)
slightly different from ours: (1/2x)×360◦. That is, its range is equal to (0◦, 360◦).
This is because in ATOM, robots can robocast at the same time the two axis
and their positive directions, for example by restricting the movement of robots
to only the positive part of their axes. Since the positive directions of the two
axes are known, unitLine can be an oriented line whose angle f ′(x) can take
any value in (0◦, 360◦) without any possible ambiguity.

Positive directions of axes. Once the two axes are known, determining their
positive directions amounts to selecting the upper right quarter of the coordinate
system that is positive for both x and y. Since the line used to robocast the unit
of distance passes through two quarters (the upper right and the lower left), it
remains to choose among these two travelled quarters which one corresponds to
the upper right one. To do this, each robot robocast just after the line encod-
ing the unit distance another line which is perpendicular to it such that their
intersection lays inside the upper right quarter.

Generalization to n robots. The generalization of the solution to the case
of n > 2 robots has to use an additional mechanism to allow robots to “rec-
ognize” other robots and distinguish them from each others despite anonymity.
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Let us consider the case of three robots r1, r2, r3. When r1 looks the second
time, r2 and r3 could have moved (or be moving), each according to its local
coordinate system and unit measure. At this point, even with memory of past
observations, r1 may be not able to distinguish between r2 and r3 in their new
positions given the fact that robots are anonymous. Moreover, r2 and r3 could
even switch places and appear not to have moved. Hence, the implementation
of the primitive observe(i) is not trivial. For this, we use the collision avoidance
techniques presented in the next section to instruct each robot to move only in
the vicinity of its initial position. This way, other robots are able to recognize it
by using its past positions. The technical details of this mechanism are given at
the end of the next section.

Apart from this, the generalization of the protocol with n robots is trivial.
We present its detailed description in [3].

3.4 Motion Complexity Analysis

Now we show that the total number of robot moves in the coordinate system
RoboCast is upper bounded. For the sake of presentation, we assume for now that
the scheduler does not interrupt robots execution before they reach their planned
destination. Each robot is initially located at the origin of its local coordinate
system. To robocast each axis, a robot must visit two distinct positions: one
located in the positive part of this axis and the other one located in its negative
part. For example, to robocast its x-axis, a robot has first to move from its origin
to the position (1.0)i, then from (1.0)i to the (−1, 0)i. Then, before initiating a
robocast for the other axis, the robot must first return back to its origin. Hence,
at most 3 movements are needed to robocast each axis. This implies that to
robocast the whole local coordinate system, at most 12 movements have to be
performed by a particular robot.

In the general CORDA model, the scheduler is allowed to stop robots be-
fore they reach their destination, as long as a minimal distance of δi has been
traversed. In this case, the number of necessary movements is equal to at most
8 ∗ (1 + 1/δi). This worst case is obtained when a robot is not stopped by the
scheduler when moving from its origin towards another position (thus letting it
go the farthest possible), but stopped whenever possible when returning back
from this (far) position to the origin.

This contrasts with [9] and [6] where the number of positions visited by each
robot to robocast a line is unbounded (but finite). This is due to the fact that
in both approaches, robots are required to make a non null movement when-
ever activated until they know that their line has been received. Managing an
arbitrary large number of movements in a restricted space to prevent collisions
yields severe requirements in [6]: either robots are allowed to perform infinitely
small movements (and such movements can be seen by other robots with infinite
precision), or the scheduler is restricted in its choices for activating robots (no
robot can be activated more than k times, for a given k, between any two acti-
vations of another robot) and yields to a setting that is not fully asynchronous.
Our solution does not require any such hypothesis.
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4 Collision-Free RoboCast

In this section we enhance the algorithms proposed in Section 3 with the collision-
free feature. In this section we propose novel techniques for collision avoidance
that cope with the system asynchrony.

Our solution is based on the same principle of locality as the Voronoi Diagram
based schemes. However, acceptable moves for a robot use a different geometric
area. This area is defined for each robot ri as a local zone of movement and is
denoted by ZoMi. We require that each robot ri moves only inside ZoMi. The
intersection of different ZoMi must remain empty at all times to ensure collision
avoidance. We now present three possible definitions for the zone of movement:
ZoM1

i , ZoM2
i and ZoM3

i . All three ensure collision avoidance in CORDA, but
only the third one can be computed in a model where robots do not know the
initial position of their peers.

Let P (t) = {p1(t), p2(t) . . . , pn(t)} be the configuration of the network at
time t, such that pi(t) denotes the position of robot ri at time t expressed in a
global coordinate system. This global coordinate system is unknown to individual
robots and is only used to ease the presentation and the proofs. Note that P (t0)
describes the initial configuration of the network.

Definition 1. (Voronoi Diagram) [2] The Voronoi diagram of a set of points
P = {p1, p2, . . . , pn} is a subdivision of the plane into n cells, one for each point
in P . The cells have the property that a point q belongs to the Voronoi cell of
point pi iff for any other point pj ∈ P , dist(q, pi) < dist(q, pj) where dist(p, q) is
the Euclidean distance between p and q. In particular, the strict inequality means
that points located on the boundary of the Voronoi diagram do not belong to any
Voronoi cell.

Definition 2. (ZoM1
i ) Let DV (t0) be the Voronoi diagram of the initial config-

uration P (t0). For each robot ri, the zone of movement of ri at time t, ZoM1
i (t),

is the Voronoi cell of point pi(t0) in DV (t0).

Definition 3. (ZoM2
i ) For each robot ri, define the distance di=min{dist(pi(t0),

pj(t0)) with rj 	= ri}. The zone of movement of ri at time t, ZoM2
i (t), is the

circle centered in pi(0) and whose diameter is equal to di/2. A point q belongs
to ZoM2

i (t) iff dist(q, pi(t0)) < di/2.

Definition 4. (ZoM3
i ) For each robot ri, define the distance di(t) = min{dist

(pi(t0), pj(t)) with rj 	= ri} at time t. The zone of ri at time t, ZoM3
i (t), is

the circle centered in pi(t0) and whose diameter is equal to di(t)/3. A point q
belongs to ZoM3

i (t) iff dist(q, pi(t0)) < di(t)/3.

Note that ZoM1 and ZoM2 are defined using information about the initial
configuration P (t0), and thus cannot be used with the hypotheses of Algorithm 2.
In contrast, robot ri only needs to know its own initial position and the current
positions of other robots to compute ZoM3

i . As there is no need for ri to know
the initial positions of other robots, ZoM3

i can be used with Algorithm 2. It
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Fig. 1. Example zones of movement: The network is formed of two robots: p and q. d is
the distance between the initial positions of p and q (dashed circles), d′ is the distance
between the initial position of p and the current position of q. The diameter of ZoM2

p

(blue) is d/2 and that of ZoM3
p (yellow) is d′/3.

remains to prove that ZoM3
i guarantees collision avoidance. We first prove that

ZoM1
i does, which is almost trivial because its definition does not depend on

time. Then, it suffices to prove that ZoM3
i ⊆ ZoM2

i ⊆ ZoM1
i . Besides helping

us in the proof, ZoM2
i can be interesting in its own as a cheap collision avoidance

scheme in the ATOM model, as computing a cycle of radius half the distance
to the nearest neighbor is much easier that computing a full blown Voronoi
diagram.

Lemma 4.1. If ∀t, for each robot ri, the destination point computed by ri at t
remains inside ZoM1

i (t), then collisions are avoided.

Proof. By definition of Voronoi diagram, different Voronoi cells do not overlap.
Moreover, for a given i, ZoM1

i is static and does not change over time. Hence,
∀i, j ∈ Π , ∀t, t′, ZoM1

i (t) ∩ ZoM1
j (t

′) = ∅.

Clearly,ZoM2
i ⊆ ZoM1

i whichmeans thatZoM2
i ensures also collision avoidance.

Lemma 4.2. If ∀t, for each robot ri, the destination point computed by ri at t
always remains inside ZoM2

i (t), then collisions are avoided.

The proof of the above lemma follows directly from the fact that ∀tZoM2
i (t) ⊆

ZoM1
i (t) and Lemma 4.1.

Lemma 4.3. ∀t, ZoM3
i (t) ⊆ ZoM2

i (t).

Ensuring Collision-freedom in Line Robocast Algorithms. To make
LineRbcast1 and LineRbcast2 collision-free, it is expected that any destination
computed by a robot ri at t be located within its ZoM3

i (t). The computation of
destinations is modified as follows: Let desti(t) be the destination computed by
a robot ri at time t. Based on desti(t), ri computes a new destination dest′i(t)
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that ensures collision avoidance. dest′i(t) can be set to any point located in
[pi(t0), desti(t)]∩ZoM3

i (t). For example, we can take dest′i(t) to be equal to the
point located in the line segment [pi(t0), desti(t)] and distant from pi(t0) by a
distance of di(t)/2 with di(t) computed as explained in Definition 4.

This modification of the destination computation method does not impact
algorithms correctness since it does not depend on the exact value of computed
destinations, but on the relationship between the successive positions occupied
by each robot. The algorithms remain correct as long as robots keep the capabil-
ity to freely change their direction of movement and to move in both the positive
and the negative part of each such direction. This capability is not altered by
the collision avoidance scheme since the origin of the coordinate system of each
robot - corresponding to its original position - is strictly included in its zone of
movement, be it defined by ZoM1, ZoM2 or ZoM3.

Generalisation of the Protocols to n Robots. As explained at the end
of Section 3, the generalisation of our algorithms to the case of n robots has
to deal with the issue of distinguishing robots from each others despite their
anonymity. The solution we use is to instruct each robot to move in the close
neighbourhood of its original position. Thus, other robots can recognize it by
comparing its current position with past ones. For this solution to work, it is
necessary that each robot always remains the closest one to all the positions
it has previously occupied. Formally speaking, we define the zone of movement
ZoM4 in a similar way as ZoM3 except that the diameter is this time equal to
di(t)/6 (vs. di(t)/3). We now show that ZoM4 provides the required properties.
Let ri and rj be an arbitrary pair of robots and Let dij denotes the distance
between their initial positions. It can easily shown, using the same arguments as
the proof of Lemma 4.3, that:

1. Neither of the two robots moves away from its initial position by a distance
greater than dij/4. This implies that each robot remains always at a distance
strictly smaller than dij/2 from all the positions it has previously held.

2. The distance between ri (resp. rj) and all the positions held by rj (ri) is
strictly greater than dij/2.

Hence, ri can never be closer than rj to a position that was occupied by rj ,
and vice versa. This implies that it is always possible to recognize a robot by
associating it with the position which is closest to it in some previously observed
configuration.

5 RoboCast Applications

5.1 Asynchronous Deterministic 2-Gathering

Given a set of n robots with arbitrary initial locations and no agreement on a
global coordinate system, n-Gathering requires that all robots eventually reach
the same unknown beforehand location. n-Gathering was already solved when
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n > 2 in both ATOM [9] and CORDA [4] oblivious models. The problem is
impossible to solve for n = 2 even in ATOM, except if robots are endowed with
persistent memory [9]. In this section we present an algorithm that uses our
RoboCast primitive to solve 2-Gathering in the non-oblivious CORDA model.

A first “naive” solution is for each robot to robocast its abscissa and ordinate
axes and to meet the other robot at the midpoint m of their initial positions.
RoboCasting the two axes is done using our Line RoboCast function described
above in conjunction with the ZoM3−based collision avoidance scheme.

A second possible solution is to refine Algorithm ψf−point(2) of [9,10] by using
our Line RoboCast function to “send” lines instead of the one used by the
authors. The idea of this algorithm is that each robot which is activated for the
first time translates and rotates its coordinate system such that the other robot
is on its positive y-axis, and then it robocasts its (new) x-axis to the other robot
using our Line Robocast function. In [9], the authors give a method that allows
each robot to compute the initial position of one’s peer by comparing their two
robocast x-axes defined above. Then each robot moves toward the midpoint of
their initial positions. Our Line RoboCast routine combined with the above idea
achieves gathering in asynchronous systems within a bounded (vs. finite in [9])
number of movements of robots and using only two (vs. four) variables in their
persistent memory.

Theorem 5.1. There is an algorithm for solving deterministic gathering for two
robots in non-oblivious asynchronous networks (CORDA).

5.2 Asynchronous Stigmergy

Stigmergy [6] is the ability of a group of robots that communicate only through
vision to exchange binary information. Stigmergy comes to encode bits in the
movements of robots. Solving this problem becomes trivial when using our Robo-
Cast primitive. First, robots exchange their local coordinate system as explained
in Section 3. Then, each robot that has a binary packet to transmit robocasts
a line to its peers whose angle with respect to its abscissa encodes the binary
information. Theoretically, as the precision of visual sensors is assumed to be in-
finite, robots are able to observe the exact angle of this transmitted line, hence
the size of exchanged messages may be infinite also. However, in a more real-
istic environment in which sensor accuracy and calculations have a margin of
error, it is wiser to discretize the measuring space. For this, we divide the space
around the robot in several sectors such that all the points located in the same
sector encode the same binary information (to tolerate errors of coding). For
instance, to send binary packets of 8 bits, each sector should have an angle equal
to u = 360◦/28. Hence, when a robot moves through a line whose angle with re-
spect to the abscissa is equal to α, the corresponding binary information is equal
to �α/n�. Thus, our solution works in asynchronous networks, uses a bounded
number of movements and also allows robots to send binary packets and not
only single bits as in [6].
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6 Conclusion and Perspectives

We presented a new communication primitive for robot networks, that can be
used in fully asynchronous CORDA networks. Our scheme has the additional
properties of being motion, memory, and computation efficient. We would like
to raise some open questions:

1. The solution we presented for collision avoidance in CORDA can be used
for protocols where robots remain in their initial vicinity during the whole
protocol execution. A collision-avoidance scheme that could be used with all
classes of protocol is a challenging issue.

2. Our protocol assumes that a constant number of positions is stored by each
robot. Investigating the minimal number of stored positions for solving a par-
ticular problem would lead to interesting new insights about the computing
power that can be gained by adding memory to robots.
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Abstract. Small-world networks are currently present in many distributed appli-
cations and can be built augmenting a base network with long-range links using a
probability distribution. Currently available distributed algorithms to select these
long-range neighbors are designed ad hoc for specific probability distributions.
In this paper we propose a new algorithm called Biased Selection (BS) that, us-
ing a uniform sampling service (that could be implemented with, for instance, a
gossip-based protocol), allows to select long-range neighbors with any arbitrary
distribution in a distributed way. This algorithm is of iterative nature and has a
parameter r that gives its number of iterations. We prove that the obtained sam-
pling distribution converges to the desired distribution as r grows. Additionally,
we obtain analytical bounds on the maximum relative error for a given value of
this parameter r. Although the BS algorithm is proposed in this paper as a tool to
sample nodes in a network, it can be used in any context in which sampling with
an arbitrary distribution is required, and only uniform sampling is available.

The BS algorithm has been used to choose long-range neighbors in complete
and incomplete tori, in order to build Kleinberg’s small-world networks. We ob-
serve that using a very small number of iterations (1) BS has similar error as a
simulation of the Kleinberg’s harmonic distribution and (2) the average number
of hops with greedy routing is no larger with BS than in a Kleinberg network.
Furthermore, we have observed that before converging to the performance of a
Kleinberg network, the average number of hops with BS is significantly smaller
(up to 14% smaller in a 1000 × 1000 network).

1 Introduction

Overlay networks are currently present in many distributed global applications and ser-
vices. Overlay networks based on a small-world topology are an efficient and flexible
alternative to structured overlays. Small-world networks can be built augmenting a base
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network with long-range links, where the long-range neighbors are chosen using a prob-
ability distribution [10,7]. In order to obtain small-world networks by augmentation, a
few distributed protocols have been proposed [5]. Among them, the simplest are epi-
demic protocols based on gossiping. However, these protocols only implement specific
probability distributions to select long-range neighbors, i.e., each protocol is designed
in an ad-hoc way for a given distribution. Gossip-based protocols have been designed
for the uniform distribution and an approximation of Kleinberg’s harmonic distribution
[9,3,2]. In this paper we propose a local algorithm that, using a uniform sampling ser-
vice (that could be implemented with, for instance, a gossip-based protocol), allows to
select long-range neighbors with any arbitrary distribution. This algorithm is of iterative
nature and we have found experimentally that in a small number of iterations converges
to the desired distribution.

1.1 Related Work

Small world networks have been introduced in an attempt to explain the properties
of social networks, and in particular the surprisingly small diameter and short rout-
ing in these networks [11]. One line of work on small-world networks has to do with
synthesizing networks that have these properties. This can be done by starting from a
base network (representing acquaintances geographically close) and adding long-range
links (representing distant acquaintances). This process is called augmentation of the
base network. Watts and Strogatz [14] considered a network augmentation in which the
long-range neighbors are chosen uniformly at random. However, Kleinberg [10] has
shown that a polylogarithmic greedy routing is achieved only if the long-range neigh-
bors are chosen with specific distributions. A network built this way is commonly called
a Kleinberg network. This seminal result has led to a large amount of subsequent work
on construction of small-world networks [1,5,6,7]. Most of the algorithms that have
been proposed are centralized. As far as we know, the first distributed algorithm to
build a small world network is due to Duchon et al. [5]. Bonnet et al. [3] have proposed
two gossip-based protocols to select long-range links, which are modified versions of
Cyclon [13]. One selects the long-range neighbors with uniform probability, while the
other selects them with an approximation to the Kleinberg distribution. This latter proto-
col has been improved in [2]. There have been other gossip-based protocols that sample
the network nodes with uniform probability [4,9,13].

1.2 Contributions

In this paper we provide an algorithm, called Biased Selection (BS), that implements
a sampling service in a set S with any probability distribution. The probability distri-
bution is proportional to probabilities (represented as weights) assigned to the element
in S. The algorithm BS is very simple and completely local. It only needs access to
a uniform sampling service (that could be implemented with a gossip-based protocol)
and to the weight assigned to each element returned by this service. This algorithm has
a parameter r that determines the number of times the uniform sampling service is used
(number of rounds) before returning a sample. (In fact, the times the uniform sampling
service is used is exactly r + 1.) We prove that the obtained sampling distribution con-
verges to the desired distribution as r grows. Additionally, we obtain analytical bounds
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on the maximum relative error for a given value of this parameter r. Although the BS
algorithm is proposed in this paper as a tool to sample nodes in a network, it can be
used in any context in which sampling with an arbitrary distribution is required, and
only uniform sampling is available.

To evaluate by simulation the performance of the algorithm, we use it to choose long
range neighbors in a torus, in order to build small-world networks similar to Kleinberg’s
[10]. In this network, every node i in the torus chooses another node j as its long-range
neighbor with a probability proportional to 1/d(i, j)2, where d(i, j) is the Euclidean
distance1 from i to j. For simplicity, we will call this the Kleinberg distribution. The
obvious way to choose the long range neighbor of a node i implies to know all the nodes,
the distance from i to each of them, and to compute the associated probabilities, which
requires Ω(n) operations in a network of n nodes. To do this for all nodes requires
Ω(n2) operations. On the other hand, BS does not need to know all the nodes, and only
requires the distance from i to the nodes returned by the uniform sampling service. If
BS uses r rounds, the overall number of operations needed for each node i is O(r),
and O(rn) operations for the whole network. We have observed experimentally that the
value of r required is much smaller than n.

Comparing the samples obtained simulating BS and samples from a simulation of
the Kleinberg distribution, we observe that in a very small number of rounds (10 in a
100×100 torus), both simulations have matching average relative error and very similar
maximum relative error. Then, we build networks by adding to each node in the torus
a long range neighbor. We evaluate the performance of greedy routing in networks in
which the long range neighbor is chosen with the BS algorithm (BS-network) when
different number of rounds is used. We compare these results with networks that use
the Kleinberg distribution (K-network) and the uniform distribution (U-network). We
observe that the average number of hops of greedy routes in the BS network converges
to the values obtained in the K-network as the number of rounds increases. Further-
more, with only a few rounds, the average number of hops in the BS network is sensi-
bly smaller than in the U-network (especially for large networks). Surprisingly, we have
observed that before converging to the K-network performance, the average number of
hops of the BS-network is significantly smaller (up to 14% smaller in a 1000 × 1000
network). In fact, the best performance of BS-networks is achieved with a small number
of rounds. The origin of this behavior is left for future study. Finally, we have done sim-
ilar experiments adding long range neighbors to incomplete tori. These are obtained by
deciding whether to remove each node with a fixed probability. The experiments have
been done with two probability values, namely 0.8 and 0.3, obtaining dense and sparse
networks. The results observed are consistent with those obtained in the complete torus.

1.3 Structure of the Rest of the Paper

In Section 2 we introduce concepts and notation that will be used in the rest of the
paper, along with the description of the experimental environment that will be used. In
Section 3 the BS algorithm is presented, its correctness is proven, and a bound on its
convergence rate is derived. Finally, in Section 4 simulation and experimental results
are presented.

1 Observe that Kleinberg used, instead, Manhattan distance on a grid.
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2 Definitions and Experimental Setup

2.1 Definitions

Although the BS algorithm is proposed in this paper as a tool to sample nodes in a
network, it will be presented in a more general form, to emphasize the fact that it could
possibly be used in other contexts. Let S be a set of n elements such that each element
i ∈ S has an associated weight w(i) > 0. The problem to solve is to sample the set S
with a probability distribution p such that the probability of choosing i is proportional
to w(i). Let us denote η =

∑
j∈S w(j). Then, the sampling probability of i ∈ S has to

be p(i) = w(i)/η. The challenges of sampling S are the following:

1. We assume that the whole set is not available.
2. The weight values can only be consulted for individual previously known elements.

These restrictions prevent, for instance, from even computing the value η. However, in
order to be able to solve the problem, we assume the availabilty of a sampling primitive
USelS that returns an element i of S chosen with uniform probability. Once an element
i ∈ S is obtained using USelS , its weight w(i) can also be obtained.

2.2 Experimental Setup

In the experiments conducted in this paper, we consider a 2-dimensional torus topology.
A pair of integer values (x, y) is used to locate each node into the 2-dimensional space.
The former node coordinates range from 0 to m − 1, and so the number of nodes in the
network is m2. In this topology, the distance between two nodes located at positions
(x1, y1) and (x2, y2) is the Euclidean distance in the torus, computed as:

de =
√
(min (|x1 − x2|, m − |x1 − x2|))2 + (min (|y1 − y2|, m − |y1 − y2|))2

To test the BS algorithm, we design two different types of experiments. The first
experiment (Section 4.1) shows the average and maximum relative error values of the
BS algorithm with respect to the Kleinberg probability distribution. These values are
also compared with the relative error values obtained with a real simulation of the ideal
Kleinberg distribution. The second group of experiments (Sections 4.2 and 4.3) com-
pares BS with the Kleinberg simulator with respect to the average number of hops when
these algorithms are used to greedily route packets in a network. This group of exper-
iments is executed in two different scenarios. Firstly, a complete torus with m2 nodes
is used. In this torus, each node has four local neighbors and one long range neighbor.
Secondly, we use an incomplete torus, where nodes are eliminated using a random uni-
form probability. In this network, the expected number of present nodes is m2q, being
q the probability of node presence. Note that q is equal for every node, and the presence
of each node is independent of the presence of other nodes. In this case, to allow for
greedy routing, each node i has links to seven neighbors. These include one long range
neighbor, and six local neighbors, that are the closest node in each of the six 60◦ wedge
in a circle centered on node i [15].
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Additionally, when using the BS algorithm, the number of rounds r will determine
the accuracy of the values obtained. Hence, experiments are executed several times. We
start with r = 0 rounds (uniform distribution) and we gradually increase r until the
BS algorithm converges to the Kleinberg distribution. Each experiment is repeated 10
times with different seeds, and we present the average of these executions.

3 Biased Selection

3.1 The Biased Selection Algorithm

We present here the algorithm that can be used to sample the set S as defined in Sec-
tion 2 with the desired probability distribution. The algorithm is called Biased Selection
and presented in Figure 1. The input of the algorithm is a value r that specifies the
number of rounds the algorithm must execute before returning the sample. As will be
shown, the larger the number of rounds r, the closer the output of BSelS(r) gets to the
desired probability distribution.

1 function BSelS(r)
2 x ← USelS

3 for i ← 1 to r do
4 y ← USelS

5 set x ← y with probability w(y)
w(x)+w(y)

6 end for
7 return x

Fig. 1. Biased Selection Algorithm for set S

3.2 Correctness

We first show that, as r goes to infinity, the probability distribution of the output values
of BSelS(r) converges to the desired probability distribution p. Let xi be the value
stored in variable x after i iterations of the for loop, being x0 the value assigned to x in
Line 2. Let us consider the infinite run of BSelS(∞). The infinite sequence of values
x0, x1, ... can be seen as a Markov chain2 M on the finite state space S. We will first
show that M has a unique stationary distribution π such that π = Aπ, where A is the
transition matrix of M . Finally, we show that π matches the probability distribution p.

The transition matrix A = [aij ] of the Markov chain M can be obtained from the
algorithm of Figure 1 in the following way. For each i, j ∈ S and i 	= j,

aij = Pr[xt+1 = j|xt = i] =
1
n

w(j)
w(j) + w(i)

=
1
n

p(j)
p(j) + p(i)

.

Additionally, aii = 1 −
∑

j �=i aij . Observe that for all j 	= i, aij < 1/n (recall that

n = |S|), and hence aii > 0. We show now that M is ergodic. Let a(s)
ij be the probability

2 Some familiarity of the reader with Markov chains is assumed.
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of reaching state j in s steps starting from state i. A Markov chain is ergodic if it is finite,
irreducible (∀i, j ∈ S, ∃s : a

(s)
ij > 0), and aperiodic (∀i, j ∈ S, gcd{s : a

(s)
ij > 0} = 1)

[12]. Ergodicity implies that the stationary distribution is unique.

Lemma 1. The Markov chain M is ergodic, and hence has a unique stationary distri-
bution π that satisfies π = πA.

Proof. The fact that the Markov chain M is irreducible follows directly from the fact
that aij > 0 for all i, j ∈ S. Additionally, since aii > 0 for all i ∈ S, M is aperiodic.
Hence, it is ergodic, and has a unique stationary distribution π that satisfies π = πA
[12].

Let us now prove that the stationary distribution is in fact the desired distribution p.

Theorem 1. The output of BSelS(r) converges to the probability distribution p as r
tends to infinity.

Proof. From the above lemma, the distribution of values xr output by the algorithm
converge to the stationary distribution π of Markov chain M as r goes to infinity. All
that has to be proven is that p = π, i.e., that p = pA. Consider any i ∈ S, we need to
prove that p(i) =

∑
j∈S p(j)aji. Replacing,

w(i)
η

=
∑
j∈S

w(j)
η

aji

=
∑
j �=i

w(j)
η

1
n

w(i)
w(j) + w(i)

+
w(i)

η
(1 −

∑
j �=i

aij)

=
∑
j �=i

w(i)
η

1
n

w(j)
w(j) + w(i)

+
w(i)
η

(1 −
∑
j �=i

aij)

=
w(i)
η

⎛
⎝∑

j �=i

aij + 1 −
∑
j �=i

aij

⎞
⎠

=
w(i)
η

Since this holds for all i ∈ S, the proof is complete.

3.3 Convergence Rate

We study now the number of rounds r that are needed for the distribution of the output
values of BSelS(r) to be almost the same as the probability distribution p. To measure
the distance between both distributions, we will use the relative pointwise distance as
defined in [12]. This parameter measures the largest relative error between the distri-
butions, for all possible final and initial values. Observe that a

(r)
ij is the probability that
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BSelS(r) outputs j if the initial value of x is i, i.e. a
(r)
ij = Pr[xr = j|x0 = i]. Then,

the maximum relative error is defined as

Δ(r) = max
i,j∈S

|a(r)
ij − p(j)|

p(j)
.

In order to bound Δ(r) we first prove that the Markov chain M is time-reversible, which
holds if aijp(i) = ajip(j) [12].

Lemma 2. The Markov chain M is time-reversible.

Proof. Replacing in aijp(i) = ajip(j), we get

aijp(i) =
1
n

w(j)
w(j) + w(i)

w(i)
η

=
1
n

w(i)
w(j) + w(i)

w(j)
η

= ajip(j)

Lemmas 1 and 2 are useful to bound Δ(r) because of the following result, derived from
Proposition 3.1 in [12].

Lemma 3 ([12]). Let A be the transition matrix of an ergodic time-reversible Markov
chain, p its stationary distribution, and 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λn−1 its (real)
eigenvalues. Then, for all r ≥ 1 the maximum relative error satisfies

Δ(r) ≤ λr

pmin
,

where λ = maxk≥1 |λk| and pmin = mini∈S p(i).

Clearly, λ = max(λ1, |λn−1|), where λ1 < |λn−1| only if λn−1 < 0. Let us define
amin = mini∈S aii. From the Gershgorin Circle Theorem [8], we have that λn−1 ≥
2amin − 1. Then, λ ≤ max{λ1, 1 − 2amin}. To bound λ1 we use the conductance
of M .

Definition 1. Consider the Markov chain M . For any set B ⊂ S, denote C(B) =∑
i∈B p(i) and F (B) =

∑
i∈B,j /∈B aijp(i). The conductance of M is defined as

Φ = min
∅⊂B⊂S:C(B)≤1/2

F (B)
C(B)

.

Lemma 3.3 in [12] shows that λ1 ≤ 1 − Φ2

2 . Then, we can bound λ1 as follows.

Lemma 4. The eigenvalue λ1 of the ergodic time-reversible Markov chain M satisfies

λ1 ≤ 1 − 1
2
(max{(1 − 1/n)pmin, 1/(4npmax)})2 ,

where pmin = mini∈S p(i) and pmax = maxi∈S p(i).
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Proof. Consider any set B such that ∅ ⊂ B ⊂ S and C(B) ≤ 1/2. Let us denote
Φ(B) = F (B)

C(B) . We will obtain two lower bounds for Φ(B).
First, since C(B) ≤ 1/2, then Φ(B) ≥ 2F (B). In order to bound F (B), we observe

that p(i)p(j)
p(j)+p(i) decreases with the values of p(i) and p(j), which implies that p(i)p(j)

p(j)+p(i) ≥
p2
min

2pmin
= pmin

2 . On the other hand, |B| · |S \ B| ≥ n − 1. Then,

F (B) =
∑

i∈B,j /∈B

aijp(i) =
1
n

∑
i∈B,j /∈B

p(i)p(j)
p(j) + p(i)

≥ 1
n

∑
i∈B,j /∈B

pmin

2
≥ n − 1

n

pmin

2
.

This implies that Φ(B) ≥ (1 − 1/n)pmin. For the second bound, observe that

F (B)=
1

n

∑
i∈B,j /∈B

p(i)p(j)

p(j) + p(i)
≥ 1

2npmax

∑
i∈B,j /∈B

p(i)p(j) =

(∑
i∈B p(i)

) (∑
j /∈B p(j)

)
2npmax

.

Then, since C(B) =
∑

i∈B p(i),

Φ(B) =
F (B)
C(B)

≥
∑

j /∈B p(j)
2npmax

≥ 1
4npmax

,

where the second inequality follows from
∑

j /∈B p(j) = 1 − C(B) and C(B) ≤ 1/2.
Since both bounds hold for any B, we obtain that Φ ≥ max{(1 − 1/n)pmin,

1/(4npmax)}. Combining this bound with Lemma 3.3 in [12], the claim follows.

From the above results we can bound the relative pointwise distance as follows.

Theorem 2. The maximum relative error of the Markov chain M satisfies

Δ(r) ≤
(
1 −min{1

2
(max{(1 − 1/n)pmin, 1/(4npmax)})2 , 2amin}

)r

/pmin,

where pmin = mini∈S p(i), pmax = maxi∈S p(i), and amin = mini∈S aii.

4 Experimental Results

4.1 Accuracy of Biased Selection

To be able to evaluate the goodness of BS, we compare its relative error with the one
measured in a simulation of the Kleinberg distribution. We define the relative error ei

for node i in a collection C of s samples as ei = |fsimi−fkli|
fkli

, where fsimi is the
number of instances of i in collection C, and fkli = p(i) · s is the expected number
of instances of i with the ideal Kleinberg distribution. The experiments have been done
in a 100× 100 torus. For each experiment, a collection of around 13.5 million samples
has been used in order to guarantee that every node appears on average at least 100
times. Additionally, in the BS algorithm, experiments have been performed using an
increasing number of rounds, trying to reach a behavior similar to that of the Kleinberg
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Fig. 2. Average relative error distribution of the Kleinberg simulator and BS (100 × 100 torus)

Fig. 3. Maximum relative error distribution of the Kleinberg simulator and BS (100× 100 torus)
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Fig. 4. Comparative of average routing hops (100 × 100 torus)

simulator. In the 10,000-node torus used this happens for relatively small number of
rounds (r = 10). We have not performed this experiment on larger networks (more than
100×100 nodes), due to limitations in the execution time needed to handle experiments
above that size.

In Figures 2 and 3 we show, respectively, the average and maximum relative error
values obtained using the BS algorithm against a Kleinberg simulator. Round numbers
approximately follow an exponential sequence of r = 0, 1, 3, 10 , 30, 100, 300, 1000,
and 3000. It must be noted that for r = 0, our BS algorithm is equivalent to a uniform
random distribution. We can observe that, for r ≥ 10 the mean values of the relative
errors in the BS algorithm match those obtained using the Kleinberg simulator.

4.2 Building Small-World Networks with Biased Selection

As previously commented, in this scenario we built a complete torus with m2 nodes.
In the experiments we perform 500,000 search operations, choosing source and desti-
nation uniformly at random for each search. We measure the average number of hops
needed to reach the destination with greedy routing. Let hK be the average number of
hops measured with the Kleinberg simulator, and hBS(r) the average number of hops
measured when using BS with r rounds. We consider that BS and Kleinberg have con-
verged for r rounds when, for all r′ ≥ r, it holds that |hBS(r′)−hK |/hK < 0.05 (they
are off by less than 5%). First, we run the Kleinberg simulator, and then we run the
BS algorithm, starting from r = 0 and gradually increasing the number of rounds until
convergence is reached. We use round numbers that approximately follow an exponen-
tial sequence, r = 0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10,000, and 30,000. We denote
the smallest of these values of r that satisfy convergence as rconv . It must be noted that
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Fig. 5. Comparative of average routing hops (300 × 300 torus)

Fig. 6. Comparative of average routing hops (1000 × 1000 torus)

using 0 rounds in BS is equivalent to using a uniform distribution to choose the long
range neighbor. The experiment was run using three different torus sizes, 100 × 100
(Figure 4), 300× 300 (Figure 5) and 1000× 1000 (Figure 6).
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Fig. 7. Comparative of average routing hops (100 × 100 Incomplete torus q = 0.8)

From these experiments, we can conclude that:

– As analytical results showed in section 3.3, the execution of the BS algorithm con-
verges to the Kleinberg simulator results when using a sufficient number of rounds.
The approximate number of rounds needed is 100 in the 100 × 100 torus, 1,000 in
the 300× 300 torus, and 10,000 in the 1000× 1000 torus. Note that the number of
rounds needed grows when the torus size increases.

– Using a uniform distribution to choose the long range link (equivalent to BS with 0
rounds) produces worse results than the Kleinberg and BS simulators with r ≥ 1.
The difference increases as the network size grows.

– With a relatively small number of rounds, BS outperforms the Kleinberg simulator.
This singular behavior appears in all the experiment executions. In a 100 × 100
torus, with 10 rounds, BS results are 8% better than the Kleinberg results and 10%
better than the uniform distribution. In a 300 × 300 torus, with 30 rounds, we get
improvements of 12% and 25% when comparing to the Kleinberg simulation and
the uniform distribution, respectively. Finally, in a 1000 × 1000 torus, with 100
rounds, improvements are of 14% and 45% when comparing to the Kleinberg sim-
ulation and the uniform distribution, respectively. It can be seen that the number of
rounds required by BS to obtain the minimum average number of hops grows as
the network size increases. We denote this number of rounds as rmin.

In Table 1, we present rmin and rconv as a function of the size of the network.

4.3 Building Incomplete Small-World Networks with Biased Selection

In this scenario we built an incomplete torus using two different probability values
(0.8 and 0.3) to determine node presence in 100 × 100 and 300 × 300 topologies. As
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Fig. 8. Comparative of average routing hops (300 × 300 Incomplete torus q = 0.8)

before, in this experiment, we perform 500,000 search operations, using alternatively
the Kleinberg and the BS simulators. The number of rounds in the BS algorithm started
with 0 and continued until reaching convergence with the Kleinberg simulator.

Figure 7 (100× 100 torus) and Figure 8 (300× 300 torus) compare the performance
of the BS algorithm with that of the Kleinberg simulator in a topology with a probability
value q = 0.8 of node presence in the network. Additionally, Figure 9 (100×100 torus)
and Figure 10 (300 × 300 torus) compare the former simulators using a topology with
a probability value q = 0.3 for node presence in the network. Finally, in Table 1, we
show rmin and rconv for each network considered.

From these experiments, we can conclude that:

– The results are similar to those obtained in the previous section when using a
complete torus. The values of rmin and rconv for networks with roughly the same
number of nodes are similar. These results are especially interesting because an
incomplete torus with q = 0.3 is almost a random network, so it seems that the re-
sults obtained are not associated only to a torus topology. In an incomplete network
with q = 0.8 the obtained improvements are: (a) in the 100 × 100 torus, with 10
rounds, BS results are 8% better than the Kleinberg results and 11% better than the
uniform distribution; and (b) in the 300× 300 torus, with 30 rounds, BS results are
12% better than the Kleinberg results and 26% better than the uniform distribution.
Using q = 0.3: (a) in the 100 × 100 torus, with 3 rounds, BS results are 8% better
than the Kleinberg results and 4% better than the uniform distribution; and (b) in
the 300× 300 torus, with 10 rounds, BS results are 12% better than the Kleinberg
results and 15% better than the uniform distribution.
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Fig. 9. Comparative of average routing hops (100 × 100 Incomplete torus q = 0.3)

Fig. 10. Comparative of average routing hops (300 × 300 Incomplete torus q = 0.3)

– In these experiments, the average number of routing hops and the number of rounds
needed to converge seem to be somewhat smaller than the values obtained in the
complete torus experiments. We presume that this result may be due to two fac-
tors: (a) the number of local neighbors is greater than in the previous experiment
(6 neighbors versus 4); and (b) each routing hop in this network generates a larger
advance than in a complete network.
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Table 1. Number of BS rounds for minimal number of routing hops rmin and for convergence
rconv in the different experiments

Topology Torus size Nodes (avg) rmin rconv

Complete 100 × 100 10, 000 10 100

Complete 300 × 300 90, 000 30 1, 000

Complete 1000 × 1000 1, 000, 000 300 10, 000

Incomplete (q = 0.8) 100 × 100 8, 000 10 100

Incomplete (q = 0.8) 300 × 300 72, 000 30 1, 000

Incomplete (q = 0.3) 100 × 100 3, 000 3 30

Incomplete (q = 0.3) 300 × 300 27, 000 10 300

5 Conclusions and Future Work

In this paper we proposed a simple, iterative and local algorithm (BS) that allows us
to select long-range neighbors with any arbitrary distribution to build small-world net-
works. BS uses a uniform sampling service and only needs one parameter determining
the number of rounds needed by the algorithm to converge to the desired distribution.
In this work, we use the Kleinberg distribution as the target. We also proved the algo-
rithm convergence and obtained analytical bounds on the maximum relative error for
a given value of the algorithm parameter. We evaluated the algorithm by simulation
in different scenarios, obtaining convergence with the Kleinberg simulator results. We
also observed that, before converging to the Kleinberg distribution, the BS algorithm
provided a smaller average number of hops, up to 14 % smaller in a 1000 × 1000 net-
work.

Future work will provide an analytical description of this behavior and evaluate the
algorithm with topologies different from the torus. We will also study the algorithm in a
dynamic network scenario. Finally, we would like to compare the properties of BS with
aggregation protocols.
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Abstract. The need for efficient decentralized recommender systems
has been appreciated for some time, both for the intrinsic advantages of
decentralization and the necessity of integrating recommender systems
into P2P applications. On the other hand, the accuracy of recommender
systems is often hurt by data sparsity. In this paper, we compare different
decentralized user-based and item-based Collaborative Filtering (CF) al-
gorithms with each other, and propose a new user-based random walk
approach customized for decentralized systems, specifically designed to
handle sparse data. We show how the application of random walks to
decentralized environments is different from the centralized version. We
examine the performance of our random walk approach in different set-
tings by varying the sparsity, the similarity measure and the neighbor-
hood size. In addition, we introduce the popularizing disadvantage of the
significance weighting term traditionally used to increase the precision of
similarity measures, and elaborate how it can affect the performance of
the random walk algorithm. The simulations on MovieLens 10,000,000
ratings dataset demonstrate that over a wide range of sparsity, our al-
gorithm outperforms other decentralized CF schemes. Moreover, our re-
sults show decentralized user-based approaches perform better than their
item-based counterparts in P2P recommender applications.

1 Introduction

Recommender systems are crucial to the success of e-commerce websites like
Amazon, eBay or Netflix. Different theoretical [4,14,3] or empirical [15,6,7,13]
approaches have addressed recommender systems. Collaborative Filtering (CF)
is the most popular strategy in recommender systems. The reason behind this
popularity is that CF requires no information about the content of the items.
Neighborhood Model [7,18] is the most widly used model of CF due to some
of its advantages like better explainability. It is important for a recommender
system to be capable of explaining the reason behind a given recommendation.
Consequently, the users may increase the quality of future predictions by giving
feedback about received recommendations.
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A neighborhood model consists of two phases: neighborhood formation and
rating estimation. In the neighborhood formation phase a set of similar items
(item-based approach) is formed for each item or alternatively a set of similar
users (user-based approach) is formed for each user based on some similarity
measure like Cosine similarity or Pearson correlation. Then, the neighborhood
is input to a prediction function in the rating estimation phase to predict scores
for items unseen by the client. Item-based approach has recently received more
attention in the domain of centralized recommenders for its better scalability.
More specifically, the number of users is usually larger and grows faster than the
number of items. These schemes also benefit from better explainability because
users have a better knowledge of items than of users.

Yet, recommender systems are confronted to a growing amount of data to
process as the number of online users increases, and typically require expensive
computational operations and significant storage to provide accurate results.
While this combination of factors may saturate centralized systems, fully decen-
tralized approaches provide an attractive alternative with multiple advantages.
Firstly, the computation of the predictions can be distributed among all users,
removing the need for a costly central server and enhancing scalability. Secondly,
a decentralized recommender improves the privacy of the users for there is no
central entity storing and owning the private information of the users. Several
existing algorithms [5], which are out of the scope of this paper, can eventu-
ally be deployed in decentralized environments to communicate users’ opinions
in encrypted form without disclosing their identity. Finally, a distributed rec-
ommender service is a valuable feature for peer-to-peer (P2P) applications like
BitTorrent and Gnutella as very popular media for users to share their content.

Beside scalability, sparsity is another well-known issue of recommender sys-
tems. Typically, each user only rates a small amount of items. Consequently,
the number of ratings given by the users is very small in comparison with the
total number of (user, item) pairs in the system. For example, the MovieLens
10,000,000 ratings dataset has a density of 1.31%. Therefore, the efficient use of
the data at hand is an essential matter to recommender systems.

Despite the numerous advantages that decentralized recommenders offer, the
majority of work on recommendation algorithms has been focused on centralized
systems so far. These algorithms are then not directly applicable to distributed
settings. In this paper, we investigate decentralized neighborhood-based CF recom-
menders for P2P applications. Each user can only leverage her own information
and data provided by a small (wrt the size of the system) number of other peers1.
We rely on epidemic algorithms as a decentralized method to form the neighbor-
hood. CF is particularly suitable for the P2P context where no assumption can
be made on the content of the items because of the incoherence of meta-data.
The contributions of this paper are as follows:

First, decentralized user-based and item-based CF algorithms are implemented
and compared in a P2P context using different similarity measures. We show that
decentralized user-based approaches deliver better precision and less complexity

1 The terms peer and user are interchangeable in this paper.
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than decentralized item-based approaches. In fact, decentralized user-based ap-
proach does not suffer from drawbacks usually attributed to their centralized
counterpart.

Second, we propose a new decentralized recommender system based on ran-
dom walks. We explain how the decentralized nature of P2P complicates the
application of random walks compared to centralized settings. In our algorithm,
each peer is provided with a neighborhood composed of a small (wrt the size of
the system) set of similar peers by means of an epidemic protocol. Then, the rat-
ings for unknown items of the neighborhood is estimated by running a random
walk on this neighborhood. Once the peers have formed their neighborhood, i.e.
the epidemic protocol has converged, each peer is thoroughly independent from
other peers in generating her recommendations. This algorithm has the best
performance over previous decentralized CF algorithms when the data is sparse.

Third, the behavior of the random walk algorithm is discussed in detail in
function of three parameters: sparsity, similarity measure, and neighborhood
size. This latter strongly affects the precision and complexity of the algorithm
in a P2P context. The optimal parameter values of the algorithm is empirically
found for MovieLens 10,000,000 ratings dataset. Fortunately, our algorithm sig-
nificantly improves the precision over a wide range of sparsity while keeping the
execution time affordable for peers. At the end of the paper, we show how signif-
icance weighting can be a barrier against the success of random walk algorithms.

The rest of this paper is organized as follows. In Section 2 we provide the
preliminaries necessary for understanding our approach. Related work is sum-
marized in Section 3. Decentralization of CF algorithms and our user-based ran-
dom walk recommender system are described in Sections 4 and 5 respectively.
In Section 6, we represent the simulation results and compare the performance
of different algorithms. The behavior of random walk is also analyzed in this
section. Section 7 concludes the paper.

2 Preliminaries

Traditionally, recommender systems are modeled by a two-dimensional matrix
denoted by R, with rows representing users and columns representing items.
Each entry rui of R contains the rating of user u for item i. We assume an M
user and N item system, that is u ∈ {1, 2, ..., M} and i ∈ {1, 2, ..., N}. Each
row Ru∗ is called the rating vector of user u, and each column R∗i the rating
vector of item i. The goal of the recommender system is to predict the missing
entries of this matrix. In this section, we provide some necessary background on
the CF approach. Moreover, epidemic protocols [10] are briefly discussed as the
decentralization method we use to form a neighborhood of similar users.

2.1 Collaborative Filtering

User-based CF is presented in [7]. In this approach, a neighborhood of simi-
lar users is assigned to each user using some similarity measure. One popular
coefficient is Cosine similarity. For users u and v it is defined as:
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cos(u, v) =

∑
i∈Iu∩Iv

ruirvi√∑
i∈Iu∩Iv

r2
ui

√∑
i∈Iu∩Iv

r2
vi

where Iu and Iu are the set of items rated by u and v respectively. A disadvantage
of Cosine similarity is that it does not take into account the differences in users’
rating behaviors. For example in a 5-star rating system, a user may rate from 3
to 5, but another one rates from 1 to 3 to reflect the same opinion on items.

The Pearson correlation lifts this drawback by considering the offset of each
rating from the user’s mean rating. It is defined as:

ρuv =

∑
i∈Iu∩Iv

(rui − ru)(rvi − rv)√∑
i∈Iu∩Iv

(rui − ru)2
√∑

i∈Iu∩Iv
(rvi − rv)2

where ru is the mean rating of user u. Pearson correlation considers only the
items rated by both users, but does not take into account the number of such
items. As a result, one may choose a user in her neighborhood while having very
few items in common.

To deal with this shortage, some authors opt for integrating a factor of trust
to Pearson correlation known as significance weighting [7]. This is achieved by
multiplying the Pearson correlation by a term reflecting the number of common
items. In [7], this term is defined as min(|Iv ∩ Iu| /50, 1). Choosing 50 as the
minimum number of ratings not to be attenuated is achieved empirically and
must be updated with the growth of the dataset and evolution of user ratings.
In this paper we use log as the term of significance weighting. Since the steep of
logarithmic function decreases constantly, it is more discriminating for smaller
numbers of common items. We call this modified Pearson coefficient and define
it as:

corr(u, v) = ρuv log(|Iv ∩ Iu|). (1)

Significance weighting has a popularizing disadvantage discussed in Section 6.
Once the neighborhood is formed, the rating estimation phase is accomplished

following some prediction rule, usually a weighted sum aggregation function:

r̂ui = r̄u +

∑
v∈N(u,i) ωuv(rvi − r̄v)∑

v∈N(u,i) ωuv
(2)

where r̂ui is the estimated rating of user u for item i, and N(u, i) the set of users
in the neighborhood of u having rated i. Henceforth, we call ωuv the similarity
weight between users u and v. In this paper, depending on the setting, it can
be either of the similarity measures presented in this section, or is the output of
the random walk algorithm.

Item-based CF [18] is quite similar to user-based CF. However, the rating
vectors of items are used instead of the rating vectors of users to form a neigh-
borhood of similar items for each item. More details and the relevant equations
are provided in the technical report [12].
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2.2 Epidemic Protocols

In centralized recommender systems, the entire rating matrix R is known to
the central recommender. Consequently, the recommender algorithm can search
among all the users to assign a neighborhood to a client. This is not efficiently
achievable in a decentralized system. Instead, we use epidemic protocols to create
users’ neighborhood.

In epidemic protocols (also known as gossip protocols), peers have access to a
Random Peer Sampling service (RPS) [10] providing them with a continuously
changing random subset of the peers of the network. When a peer joins the
network, her view is initialized at random through the RPS. Each peer also
maintains a view of the network. This view contains information about the c
peers that maximize a clustering function. In this paper, this clustering function
reflects how much the peers exhibit a similar rating behavior. It can be either of
the similarity measures presented in previous sections depending on the context.
In order to converge to the ideal view, each peer runs a clustering protocol [20,9].
A peer periodically selects a gossip target from her view and exchanges her view
information with her. Upon reception of new information, the peer compares
the new candidates with her actual view, and a set of random peers suggested
by RPS. Then, keeping only the c most similar entries, she updates her view
in order to improve its quality. While the clustering algorithm increases the
risks of network partition, the RPS ensures connectivity with high probability.
Gossip clustering protocols are known for converging quickly to high quality
views. By regularly communicating with the peers in the view, gossip protocols
also ensure their liveness and eliminate disconnected nodes. Gossip protocols are
fully decentralized, can handle high churn rates, and do not require any specific
protocol to recover from massive failures.

3 Related Work

In this section, we review the previous work on decentralized recommender sys-
tems and suggested solutions to sparsity. The research on decentralized recom-
mender systems has remained modest although the need for them grows rapidly.
Notable works on the context are as follows: Tribler [2], a decentralized search en-
gine using BitTorrent protocol, is capable of recognizing the user’s taste and give
recommendations after a few search queries by the user. Each entry of the binary
rating vector is 1 if the user has ever downloaded the corresponding item, and
0 otherwise. Tribler uses epidemic protocols to form the neighborhood, and Co-
sine function as similarity measure. The significance weighting term is defined as
min(1, |Iv| /40), where v is the corresponding neighbor. A non-normalized score
is computed for each item through user-based CF approach, being consequently
used to generate an ordered recommendation list.

PocketLens [16] is a decentralized recommender algorithm developed by Grou-
peLens research group. In [16], different architectures from centralized to fully de-
centralized are suggested for neighborhood formation. PocketLens uses the
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Cosine similarity to estimate the neighborhood quality. Once a neighborhood of
similar users is formed, an item-based algorithm is applied on the ratings exist-
ing in the neighborhood. The Cosine similarity is used as the similarity weight
between items, and predictions are made using a normalized weighted sum.

All of these works use classic similarity measures to predict the ratings. The
distinctive point of our work is to apply a model to introduce a decentralized
model-based CF algorithm.

Several solutions have been suggested to alleviate the problem of sparsity.
Some works exploit content information of items or demographic information [11]
of user’s profiles like age, gender or code area to improve the recommendations
when the data is not dense enough. Such information is not easy to collect in
P2P applications. Furthermore, providing demographic data endangers the users’
privacy. Default rating [17] is another method for dealing with sparsity. This so-
lution slightly improves the precision of the recommendations by assuming some
default value for missing ratings. The disadvantage of this method is in creation
of dense input data matrix, hugely increasing the complexity of computations.
Hence, this is not a proper solution for P2P either, because the computational
power of P2P processors is in general much less than central servers.

Hence, a lot of effort has been made to develop models to mine further the
existing data in order to detect potential hidden links between items or users. In
[8] trust-based and item-based approaches are combined by means of a random
walk model. The algorithm is centralized and the trust is explicitly expressed by
the users. The information about trust does not exist in the majority of datasets
including MovieLens. Authors in [21] suggest a random walk model as a solution
to sparsity in a centralized item-based CF approach. Their algorithm is to some
extent similar to an item-based version of our random walk algorithm, but does
not lend itself well to decentralized environments.

4 Decentralization of CF Algorithms

Themain difficulty in decentralization of the user-basedCF algorithm is the neigh-
borhood formation phase. Contrary to the central recommender algorithms, each
user of a P2P network can only access the data related to a limited number of
other users. It is therefore critical to devise a protocol able to efficiently navigate
through the P2P system and gather the most similar peers. Epidemic protocols
described in Section 2.2 are very suitable for this task, and converge to a view of
the most similar users in only a few cycles. Once the neighborhood is formed, the
rating estimation is done locally at each user. While scalability is an issue in cen-
tralized user-based recommender systems, decentralized approaches do not suffer
from this drawback as each user computes her own recommendations.

The decentralization of the item-based CF algorithm is more of a challenge
because the algorithm needs the rating vector of the items to find the similarity
between them. This vector can not be known by P2P users as they do not know
the ratings of the majority of other peers. Consequently, similar to the user-based
approach, each peer should find a neighborhood of similar users as a first step.
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A partial rating vector is then constructed for each item based on the ratings
available in the neighborhood, and the item-based CF algorithm is applied.

The complexity of CF algorithms is mostly due to the similarity computation
between users or items. For decentralized user-based algorithms, a similarity
vector between the central user and all peers in the neighborhood is calculated.
The complexity of each similarity calculation depends on the number of common
items between two users, which may go up to a considerable fraction of all items
in the system. The complexity of the operation is then O(SN) for each user,
where S is the neighborhood size, and N the number of items in the whole P2P
system. In decentralized item-based algorithms, the similarity between unknown
items of the neighborhood and the items rated by the user is calculated to form
a similarity matrix. Provided the neighborhood is big enough, it often contains
some users having rated the majority of items. Then, user u needs to compute
L(N − L) similarities where L equals |Iu|. The complexity of each similarity
calculation is proportional to the size of the item rating vectors , being up to
the neighborhood size. Hence, the complexity of the decentralized item-based
approach is at most O(N2S) for each peer, where the worst case happens when
L = N/2. Therefore, it is seen that the decentralized user-based approach is
much less complex than the decentralized item-based approach.

For the above reasons, user-based approaches seem to match better a P2P
setting. In Section 6, it is empirically shown that decentralized user-based ap-
proaches also have better precision than decentralized item-based schemes.

5 Decentralized Prediction through Random Walk

In CF recommender algorithms, the similarity weight (ωuv or ωij) is usually the
same as similarity measure. In our algorithm, this is computed through random
walks. Random walk has been used to design decentralized search engines [19].
In the context of recommender systems, some centralized approaches [21] have
used random walks to improve the precision of recommendations. In general, the
recommendation problem is modeled by a weighted and directed graph where
vertices represent the entity of interest. This entity is items in item-based rec-
ommenders or webpages in PageRank algorithm for example. The application of
random walks to centralized recommenders is relatively obvious. Since the whole
graph topology is known to the central algorithm, this latter can launch random
walks from a vertex and output a similarity score for each of the other vertices.
In other words, the random walk acts as a clustering mechanism on its own
to form the neighborhood. In P2P however, this can not be done because the
knowledge of each peer about the P2P network is limited to its neighborhood.

In our decentralized algorithm, each peer first locally executes a neighborhood
formation phase through clustering gossip protocols as described in Section 2.2.
Once the protocol has converged, each peer holds in its view the rating informa-
tion of the c closest peers according to the similarity measure used for clustering.
Note that only peers that get a strictly positive similarity score are inserted in
the view. When all the peers have selected their views, we define the P2P net-
work (or the topology of it) as the network created by the peers connected via
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edges to the peers in their views. c is typically small with respect to the size of
the network for scalability reasons. Gathering information from only c peers is
not enough to achieve good precision and high coverage due to data sparsity. In
order to obtain more data at a low network cost, each peer also uses information
of the peers in the view of her neighbors. Therefore, we define the neighborhood
of each user as the peers directly connected and the peers connected within a
distance of two hops in the P2P network. Depending on the clustering function,
the size of the neighborhood can be up to c2 + c. We evaluate the size of the
neighborhood on the MovieLens dataset in Section 6.2.

To compute a personalized score prediction for an item, a user a leverages
all the scores that users in her neighborhood have assigned to that item. Each
contribution is weighted to reflect the similarity between a and the corresponding
user. The users in the neighborhood are modeled as Markov Chain graph vertices,
and a random walk is applied on this graph. A Markov chain can be represented
by a directed graph where vertices are the states of the chain and edges represent
the transition probabilities from one state to another. In our case, the states
symbolize the users in the neighborhood of a peer, let us say peer a. Since the
vertices represent the users of the neighborhood, we call our algorithm user-
based random walk algorithm. The neighborhood size will consequently be an
important parameter of the algorithm, while in centralized algorithms it is always
fixed to the size of the complete graph, i.e. the graph containing all users or
items of the system. We will see in Section 6 that increasing the neighborhood
size until some threshold raises the precision of recommendations while keeping
the execution time in a reasonable level. Intuitively, the benefit of random walks
is to consider the whole graph topology when estimating the similarity between
users, while classic similarity meaures may only take advantage of the explicit
intersection between the rating vectors of each two users.

Let P a be the transition probability matrix corresponding to the graph of
user a’s neighborhood. Each element pa

uv of P a represents the probability that u
would ask v for recommendations. This probability is defined as the normalized
similarity of the tail peer to the head. Another parameter β ∈ (0, 1) is also
added to the equation to consider the case where each peer jumps randomly to
any other peer in the neighborhood during the random walk. Choosing very high
values of β leads to assignment of equal transition probability towards all users
in the neighborhood regardless of their similarity. It means that the ratings of
all users will have the same weight in predictions. The value pa

uv is computed
using the following equation:

pa
uv = (1 − β)

s′uv∑
z∈K(a) s′uz

+
β

m
, s′uv =

⎧⎪⎨
⎪⎩

suv if suv ≥ 0 and u 	= v

γu if u = v

0 otherwise

(3)

K(a) is the list of all users in the neighborhood of a, suv is the similarity be-
tween two users u and v. In the experiments presented in Section 6, suv is
either Pearson correlation or Modified Pearson correlation. γu is the self loop
parameter, modeling the case where a user answers the recommendation query
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before forwarding it to other users of the neighborhood. Since each user is log-
ically more confident in her own opinion than that of any other user, we fixed
γu as twice the similarity measure between u and the most similar user in her
view.

The random walk starts from the users directly connected to the active user a,
that is, peers having a one hop distance with the active peer in the network. The
vector of initial probability distribution over the neighborhood is represented by
da. Each entry of da is defined as:

da(v) =
s′′av∑

z∈K(a) s′′az

, s′′av =

{
sav if v ∈ clustering view of a

0 otherwise.
(4)

Since each user computes her own predictions, we omit the index of a for the
sake of simplicity. We use a finite length random walk where each peer decides to
continue the walk with probability α. In Markov chains, the probability of being
in a state at step k depends only on its previous state. Therefore, the probability
of being in state u at step k is:

Pr(Xk = u) = α

m∑
v=1

Pr(Xk−1 = v)pvu = αk
m∑

v=1

d(v)P k
vu

where m is the size of the active peer’s neighborhood, and P k the power k of the
transition probability matrix. This is equal to the inner product of the initial
distribution vector by column u of the P k matrix. The overall probability of
being in state u is then:

Pr(X = u) =
∞∑

k=1

αkd · P k
∗u.

At last, the final probability distribution vector over the neighborhood is:

R̂ =
∞∑

k=1

αkdP k = dαP (I − αP )−1. (5)

We use Equation (5) to estimate the final distribution vector, and α is optimized
empirically. Note that even in the real implementation of the algorithm, Equation
(5) may still be used instead of launching real random walks. Once the final
distribution vector is output by the random walk model, its entries are used as
similarity weights ωuv in Equation (2) in order to generate the recommendations.

The computation of transition similarity matrix and the matrix inversion of
Equation (5) are the main sources of complexity of the algorithm. The similarity
must be calculated between each two users. The complexity of matrix inversion is
O(S3), where S is the neighborhood size. Each similarity computation depends
on the number of items in the neighborhood. If the set of items of the neighbor-
hood gets close to the set of items in the whole system, the complexity of both
operations becomes O(S2N +S3). With a correct selection of neighborhood size,
the algorithm gives excellent performance with reasonable execution time.
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In the same way, we can also imagine applying the same algorithm on the
graph of items, then having an item-based random walk algorithm. The com-
plexity of this algorithm will be O(N2S + N3). Unfortunately, the execution
time of item-based random walk algorithm is far from being affordable for the
peers in real settings. The lack of efficiency of item-based random walk algorithm
pushed us through suggesting the user-based random walk as a better approach
for P2P applications. Furthermore, we will see in next section that item-based
approaches have in general poor results in P2P systems.

6 Experiments and Results

In this section we compare our algorithm with other decentralized CF algorithms.
Besides, the behavior of the random walk is analyzed.

6.1 Evaluation Methodology and Results

In P2P systems the users do not report any feedback to a central server. As
a result, no trace of real P2P data is available. In our experiments we use the
MovieLens 10,000,000 ratings dataset [1]. It consists of 10, 000, 054 ratings on
10, 681 movies, rated by 71, 567 real users of the MovieLens website, where each
user has rated at least 20 movies. A 5-star scale is used to ask for ratings. To
the best of our knowledge, this is the second biggest dataset available after the
Netflix dataset for research on recommender systems.

Since MovieLens is a central database, we adopt the following strategy to
adjust it for our P2P experiments: For each user in the database, a peer object
is instanced. This peer is attributed with the profile of the corresponding user
in the database. This profile contains the list of films and corresponding ratings
of the user. Consequently, each peer can access directly only her own ratings,
and needs to rely on the epidemic protocol described in Section 2.2 to find and
retrieve the profiles of similar peers. This strategy enables us to simulate a P2P
network of MovieLens users, as if each of them had registered her ratings on her
own computer instead of reporting them to the website.

We evaluate different recommender algorithms by cross validation. Namely,
each MovieLens user profile is split into 20 regular random slices. 20 comes from
the minimum number of ratings per user in the MovieLens dataset. Consequently,
each profile slice contains at least one rating. A number of slices form the training
profile input to the algorithm as the learning data. The predictions are made on
the test profile composed of the remaining slices. Different levels of sparsity are
modeled by changing the proportion of the test and training profiles.

We use Root Mean Squared Error (RMSE) to measure the precision of the
recommendations. For user u it is defined as

√
(
∑

rui∈ITu
(r̂ui − rui)2)/ |ITu |,

where |ITu | is the size of the test profile of u. Each peer computes its own
RMSE, and the total RMSE of the system is defined as the mean of RMSEs.

Coverage is another important measure of usefulness for recommender sys-
tems. It shows the proportion of items for which the algorithm can predict a
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Table 1. Short description of decentralized CF algorithms with their abbreviations

P-RW decentralized user-based random walk algorithm described in Section 5
MP-U decentralized version of the user-based algorithm in [7] with Modified Pearson correlation
P-U decentralized version of the user-based algorithm in [7] with Pearson correlation

Tribler[2] decentralized user-based approach with Cosine similarity and significance weighting
PocketLens [16] decentralized item-based approach using Cosine similarity

MP-I decentralized version of the item-based algorithm in [18] with Modified Pearson correlation
P-I decentralized version of the item-based algorithm in [18] with Pearson correlation

rating. Since the total number of items of a P2P network is not known to the
users, we define the coverage for user u as (

∣∣∣ÎTu

∣∣∣ / |ITu |), where ÎTu is the set
of predictable items in the test profile of u. The total coverage of the system is
then defined as the mean coverage of all peers.

The simulations are run for three view sizes: 10, 20 and 30. All results were
obtained after 30 cycles of gossip, and the epidemic protocol had converged.
β was fixed to 0.15 in the random walk algorithm. α was optimized by trying
values in (0, 1) with a step of 0.1 in different levels of sparsity. In general, we
observe that the optimal length of the random walk increases (larger α) as the
data becomes sparser. Even though the similarity between users is most often
transitive, it happens in few cases that users in a two hop distance have negative
similarity. We do not take such users into account when making predictions in
user-based approaches, although they exist in the neighborhood. This problem
never happens in the random walk algorithm because the similarity weights
generated by the algorithm are non-negative probabilities. In the same way, only
items with positive similarity are used for prediction in item-based methods.

We compare our algorithm with 6 decentralized recommender algorithms. The
description of these algorithms and corresponding abbreviations are listed in
Table 1. The best results, obtained with a view size of 30, is reported in Tables 2
and 3. The results for view sizes of 10 and 20 is found in the technical report [12].
The item scores computed by Tribler are not scaled. Hence, we generated a score
for each item using Equation (2) to be able to compare it with other algorithms.
In P-I and MP-I, both neighborhood formation and item-based prediction are
done using the same type of similarity measure, and the predictions are made
using the item-based version of Equation (2).

As seen in Table 2, P-RW algorithm outperforms all other decentralized
algorithms when the sparsity is less than 70%. P-U and MP-U approaches
significantly outperform all item-based approaches. Tribler shows the poorest
performance among user-based approaches, but still improves over item-based
approaches when sparsity is more than 5% and less than 25%. This shows that
Pearson correlation is a better choice than Cosine similarity in user-based ap-
proaches. PocketLens shows the best performance among item-based approaches.
Therefore, Cosine similarity seems to perform better in item-based approaches.
Moreover, comparing MP-U and MP-I with P-U and P-I proves that signifi-
cance weighting is efficient for both item-based and user-based approaches. As
a general term, we can state that provided the right similarity measure is used,



Application of Random Walks to Decentralized Recommender Systems 59

Table 2. RMSE in different levels of sparsity, view = 30

Training Profile 5% 10% 15% 20% 25% 30% 40% 50% 70% 90%
P-RW 1.0719 1.0147 0.9869 0.9693 0.9575 0.9513 0.9423 0.9327 0.9196 0.8842
MP-U 1.1164 1.0481 1.0081 0.9841 0.9717 0.9662 0.9522 0.9408 0.9168 0.8752
P-U 1.1288 1.0594 1.0220 0.9980 0.9812 0.9725 0.9594 0.9477 0.9294 0.8903

Tribler 1.2301 1.0946 1.0439 1.0234 1.0166 1.0119 1.0050 0.9988 0.9892 0.9489
PocketLens 1.2036 1.1110 1.0595 1.0296 1.0119 0.9998 0.9833 0.9721 0.9553 0.9174

MP-I 1.2218 1.1410 1.0867 1.0493 1.0211 1.0011 0.9732 0.9559 0.9338 0.8985
P-I 1.2508 1.1601 1.0984 1.0524 1.0255 1.0062 0.9805 0.9656 0.9441 0.9038

Table 3. Coverage in different levels of sparsity, view = 30

Training Profile 5% 10% 15% 20% 25% 30% 40% 50% 70% 90%
P-RW 0.8429 0.9272 0.9370 0.9487 0.9492 0.9506 0.9560 0.9540 0.9511 0.9474
MP-U 0.8324 0.9642 0.9854 0.9917 0.9943 0.9956 0.9969 0.9979 0.9983 0.9986
P-U 0.6971 0.8657 0.892 0.9220 0.9264 0.9316 0.9415 0.9407 0.9394 0.9364

Tribler 0.7469 0.9669 0.9881 0.9933 0.9952 0.9966 0.9978 0.9984 0.9990 0.9993
PocketLens 0.7435 0.9023 0.9337 0.9453 0.9515 0.9549 0.9583 0.9598 0.9582 0.9558

MP-I 0.8265 0.9612 0.9853 0.9924 0.9951 0.9963 0.9974 0.9979 0.9985 0.9989
P-I 0.6872 0.8844 0.9192 0.9406 0.9434 0.9470 0.9543 0.9521 0.9488 0.9458

user-based approach is preferable to item-based approach in P2P recommenders.
All methods have good coverage when the training profile is more than
5%. However, the coverage of the methods using significance weighting, that
is MP-U, MP-I and Tribler, is slightly better than others. P-RW improves the
coverage over P-U although they use the same neighborhood. This is because
P-RW can also use the ratings of users with negative direct similarity.

In most recommender systems, the predicted scores are used to propose a
recommendation list of top-N items to the user. The quality of this list strongly
depends on the RMSE of the system. The achievable RMSE lies in a very re-
stricted range in available datasets, but it is proven that only slight improvement
in RMSE yields much more satisfactory recommendation lists [13]. Hence, the
improvement of our algorithm over the best of previous algorithms is absolutely
valuable specifically because we are very close to the limit of achievable RMSE.

The precision and coverage of all approaches increase with the size of the
neighborhood. This is due to the fact that algorithms rely on more users for
making predictions. We observed in simulations that increasing the view size
over 30 does not yield any significant improvement. Note there is no advantage in
choosing very large views. Not only does it exponentially increase the execution
time, but also renders the recommendations less personalized. A view size about
30, allows for good precision and coverage while keeping the computation time
quite affordable. This value may be different for datasets other than MovieLens.

6.2 Analysis of the Behavior of Random Walk

In this section we discover further the behavior of random walk in function of
sparsity, neighborhood size and similarity measure.
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Fig. 1. RMSE
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Fig. 2. MP-neighborhood vs. P-neighborhood

Random Walk vs. Sparsity. Random walk works well when the data is so sparse
that classic similarity measures fail to detect meaningful relation between users.
By increasing the training set proportion, classic similarity measures deliver
better performance than the random walk algorithm. For the view size of 30,
P-RW gives the best results until when the training set proportion is below
70%. However, when the training set proportion goes beyond 70%, the direct
similarities become more reliable than random walk similarities.

Random Walk vs. Neighborhood Size. The precision of the three approaches
with the best precision is plot in Figure 1. Before the training profile arrives at a
threshold, P-RW delivers the best precision outperforming the MP-U algorithm
as the second best approach. This threshold increases rapidly with incrementing
the size of the neighborhood. It is 15% for a view size of 10, and goes up to 40% for
a view size of 20. The threshold reaches 70% for the view size of 30, suggested as
the best view size by our experiments. Furthermore, the amount of improvement
of P-RW over other approaches increases with the neighborhood size. In fact,
random walk reevaluates the similarity weight between users by mining longer
paths in the neighborhood to find implicit transitive similarities. However, classic
similarity measures can only capture direct similarity. The chance of detecting
the transitive similarities is naturally higher for larger neighborhoods. It is why
P-RW outperforms MP-U, but P-U has poorer precision than the latter, while
both P-U and P-RW use the same type of neighborhood.
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Random Walk vs. Similarity Measure. To see how significance weighting of the
similarity measure can influence the quality of the neighborhood, we compared
the average neighborhood size and the average number of ratings per prediction
for two types of neighborhood formed either through Pearson correlation or
Modified Pearson correlation (see Figure 2). It is seen that MP-neighborhood
has more ratings per prediction than P-neighborhood while its size is smaller. It
means that Modified Pearson correlation prefers over-active users having rated a
large number of items. Note P-RW has better precision than MP-U although it
uses less ratings, showing that P-RW learns faster than MP-U. With increasing
the training profile, the P-neighborhood approaches its maximum size (about
900) very soon. Unlike P-neighborhood, the size of MP-neighborhood decreases
continuously when the training profile goes beyond 15%. This indicates that the
P2P network becomes more clustered because the views of directly-connected
peers contain many common neighbors. In fact, since over-active users have
more ratings in each profile slice the significance weighting term grows faster for
them with incrementing the training profile. Consequently, their chance being
put in the neighborhood becomes more than moderate users, and their indegree
increases quickly. We call it the popularizing effect of significance weighting.
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Although the popularizing effect leads to better coverage, it prevents the
random walk algorithm from working in two ways: first, it decreases the ability
of the algorithm in similarity estimation by decreasing the neighborhood size and
omitting users with few ratings but implicit similarity to the central user. Second,
over-active users act as a sink in the Markov Chain model during the random
walk. Then, their state probability at the end of the random walk is higher than
other peers. In other words, random walk intensifies the influence of over-active
users in predictions with respect to the users with less ratings. This significantly
decreases the quality of random walk predictions in the MP-neighborhood. The
size of MP-neighborhood has a peak when the training profile is 15%. This
shows that the sinking behavior of significance weighting starts at this point.
For smaller training profiles, the P2P network is not still well clustered, and
peers continue to add new users to their views.

To investigate the performance of random walk on an MP-neighborhood, we
implemented two new variants of our algorithm. The first variant is MP-RW.
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Being quite similar to P-RW, it uses Modified Pearson correlation instead of
Pearson correlation for neighborhood formation and also as user similarity weight
suv in Markov chain model (see Equations (3) and (4)). The second one is MPP-
RW where the neighborhood is formed through Modified Pearson correlation,
while user similarity weight in Markov Chain model is assigned using Pearson
correlation. The results are plot in Figure 3. The exact RMSE values can be
found in the technical report [12].

When the training profile is more than 15%, MP-RW starts to show poorer
results than P-RW. Its performance is even worse than MP-U when the train-
ing set is more than 20%. The reason hides behind the popularizing effect of
significance weighting. The slightly better precision of MPP-RW than MP-RW
is due to the fact that the transition probability of the edges pointing towards
over-active users decreases when significance weighting is not used for user sim-
ilarity assignment. Hence, the sink role of such users is partly alleviated. It is
also observed that MPP-RW can outperform P-RW when the training profile is
extremely sparse (below 15%). This is due to the fact that the sinking behavior
of Modified Pearson correlation is not still severe in this range.

7 Conclusion

In this paper, we propose a user-based random walk algorithm to enhance the
precision of previous decentralized CF recommender systems. We use epidemic
protocols to assign each user with a neighborhood of similar peers. Each user
locally runs the random walk algorithm on her neighborhood, and computes
her recommendations. The algorithm is fully decentralized, and users are totally
independent from each other in computing their own recommendations.

We implemented decentralized CF recommenders using different similarity
measures and compared them with our algorithm. Our algorithm had the best
precision over a wide range of sparsity. Decentralized user-based algorithms
showed better precision and less complexity than their item-based counterparts.
Moreover, Cosine similarity performed better in decentralized item-based al-
gorithms, while Pearson correlation worked better for decentralized user-based
algorithms.

Simulating a P2P network using the MovieLens 10,000,000 ratings dataset,
we empirically showed how sparsity, neighborhood size, and similarity measure
are determining parameters of the random walk algorithm. This algorithm de-
livers better precision when the data gets sparser. It works better for larger
neighborhood sizes. The view size of 30 was given as a good trade-off between
precision and execution time for MovieLens dataset. In the end, the behavior
of the random walk was studied for two types of neighborhood formed either
through Pearson correlation or Modified Pearson correlation. We showed how
popularizing effect related to significance weighting term of Modified Pearson
correlation is a barrier against the performance of random walk.

Acknowledgements. We are very grateful to GroupLens research group for
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Abstract. We consider the problem of uniform sampling in large scale
open systems. Uniform sampling is a fundamental primitive that guar-
antees that any individual in a population has the same probability to
be selected as sample. An important issue that seriously hampers the
feasibility of uniform sampling in open and large scale systems is the
unavoidable presence of malicious nodes. In this paper we show that
restricting the number of requests that malicious nodes can issue and
allowing for a full knowledge of the composition of the system is a neces-
sary and sufficient condition to guarantee uniform and ergodic sampling.
In a nutshell, a uniform and ergodic sampling guarantees that any node
in the system is equally likely to appear as a sample at any non mali-
cious node in the system and that infinitely often any node has a non-null
probability to appear as a sample of honest nodes.

Keywords: Uniform sampling, unstructured peer-to-peer systems,
ergodicity, Byzantine adversary.

1 Introduction

We consider the problem of uniform sampling in large scale open systems with
adversarial (Byzantine) nodes. Uniform sampling is a fundamental primitive
guaranteeing that any individual in a population has the same probability to be
selected as sample. This property is of utmost importance in systems in which
the population is continuously evolving and where it is impossible to capture the
full complexity of the network through global snapshots. By collecting random
subsets of information over the network, one can infer at almost no cost some
global characteristic of the whole population (such as its size, its topological
organization, its resources, . . . ). Therefore uniform sampling finds its root in
many problems such as data collection, dissemination, load balancing, and data-
caching [1–4].

Providing unbiased (i.e., uniform) sampling in these open systems is a chal-
lenging issue. First, this primitive must cope with the continuous change of the
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network structure caused by nodes departures and arrivals. Nevertheless, it has
been shown through simulations [1, 5] and analytic studies [6–8] that simply
maintaining a partial and small local view of node identifiers (ids) is sufficient
to provide near uniform sampling. This can be achieved through gossip-based
algorithms [1, 9, 10] or through random walks [5, 11–13]. Gossip-based algo-
rithms mainly consist, for each node v in the system, in periodically selecting
some other node w in v’s local view and exchanging information. Information
can either be pushed to other nodes or pulled from other nodes. Over time, in-
formation spreads over the system in an epidemic fashion allowing each node
to continuously update its local view with fresh node ids. On the other hand, a
random walk on a network (which can be represented as a graph) is a sequential
process, starting from an initial node v, which consists in visiting a node in v’s
neighborhood according to some randomized order. In its simpler form, the next
node is chosen uniformly at random among the neighbors, while more sophis-
ticated choices are implemented to cope with the bias introduced towards high
degree nodes (for instance, through the Metropolis-Hastings algorithm [14]).

An important issue that seriously hampers the feasibility of uniform sam-
pling in open and large scale systems is the unavoidable presence of malicious
nodes. Malicious (or Byzantine) nodes typically try to manipulate the system
by exhibiting undesirable behaviors [15]. In our context, they try to subvert the
system by launching targeting attacks against nodes in the aim of biasing uni-
formity by isolating honest nodes within the system. This is quickly achieved by
poisoning local views of honest nodes with malicious node ids. For instance in
unstructured graphs, a number of push operations logarithmic in the size of local
views is sufficient to fully eclipse honest nodes from the local view of a node [16],
while in structured graphs, a linear number of join operations is required [17].
Recent works have been proposed to detect and exclude these adversarial be-
haviors [18–20] by observing that malicious nodes try to get an in-degree much
higher than honest nodes in order to isolate them. Extensive simulations [18]
have shown that this approach is only highly effective for a very small number
of malicious nodes (i.e., in O(log |S|) where |S| is the size of the network S),
otherwise detection mechanisms may boil down to false positive detection (i.e.,
detection of honest nodes).

On the other hand, when the system is harmed by a large number of malicious
peers (i.e., a linear proportion of the nodes of the system), which is definitively a
realistic assumption in peer-to-peer systems [15, 21], additional mechanisms are
required to prevent targeted attacks from succeeding. Specifically, in structured
peer-to-peer systems, analytical studies have shown that applying the “induced
churn” principle allows to defend the system against adversarial behaviors, either
through competitive induced churn strategies [22], or through global induced
churn [23]. Briefly, this principle states that, by forcing nodes to periodically
change their position in the graph, malicious peers cannot predict the evolution
of the state of the system after a given sequence of join and leave operations. By
taking advantage of the properties of structured graphs, the authors of both pa-
pers have shown that, with high probability, any node is equally likely to appear
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in the local view of each other honest node in a number of rounds polynomial
in the size of the system. Unfortunately, in unstructured peer-to-peer systems,
nodes cannot rely on the topological nature of structured graphs to reject new
node ids that do not conform to the imposed distance function (contrary to
structured networks [22, 23]). To circumvent this issue, Bortnikov et al. [16] rely
on the properties of min-wise independent permutations, which are fed by the
streams of gossiped node ids, to eventually converge towards uniform sampling
on the node ids. More precisely, these authors have derived an upper bound on
the expected time Ts to converge towards unbiased (uniform) samples. However,
by construction, this convergence is definitive in the sense that once a random
sample has been locally observed it is kept as a local sample forever. As a conse-
quence, beyond the time limit Ts, no other node ids received in the input stream
can ever appear in the random sample. The property of a sampler to guarantee
that each received node id infinitely often has a non-null probability to locally
appear as a sample is called the ergodic sampling property (this property is
formally defined later in the paper).

Intuitively, this lack of adaptivity seems to be the only defense against adver-
sarial behavior when considering bounded resources (memory and bandwidth).
This paper is devoted to the formal analysis of the conditions under which uni-
form and ergodic sampling is feasible or not. More precisely, the main contri-
bution of this paper is to show necessary and sufficient conditions under which
uniform and ergodic sampling is achievable in unstructured peer-to-peer systems
potentially populated with a large proportion of Byzantine nodes. Specifically,
let S represent the wide collection of nodes in the system, and k < 1 the propor-
tion of malicious nodes in S. Let δm be the number of (not necessarily unique)
malicious node ids gossiped by malicious nodes during a time interval Ts, and
Γ denote the local memory of any honest node u in S. In this context, we prove
the following assertions:

– If the number δm of (non-unique) malicious ids received at node u during a
given period of time Ts is strictly greater than Ts − |S|(1 − k) then, neither
uniform sampling nor ergodic sampling can be achieved;

– If δm ≤ Ts −|S|(1−k) and the size of the memory Γ is greater than or equal
to |S| then, both uniform and ergodic sampling can be achieved;

– If δm ≤ Ts − |S|(1 − k), and |Γ | < |S| then, uniform and ergodic sampling
cannot be achieved.

Briefly, these conditions show that if the system cannot provide the means to
limit the number of messages an adversary can periodically send, then solving
either uniform sampling or ergodic sampling is impossible. On the other hand,
if this assumption holds and if all honest nodes in the system have access to
a very large memory (in the size of the network) then, the problem becomes
trivially solvable. Unfortunately, as will be shown, both conditions are necessary
and sufficient to solve the uniform and ergodic sampling problem. Clearly, these
strong conditions highlight the damage that adversarial behavior can cause in
large-scale unstructured systems.
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To the best of our knowledge, we are not aware of any previous work that has
specified the conditions for which uniform and ergodic sampling is reachable in
presence of adversarial behaviors.

The outline of this paper is the following. In the next section, we describe the
model of the system and how it is vulnerable to malicious nodes. Afterwards
in Section 3, we define uniform and ergodic sampling, while in Section 4, re-
lated work is presented. Finally, Section 5 identifies the two conditions for which
uniform and ergodic sampling is achievable, before concluding in Section 6.

2 System Model

An overlay network is a logical network built on top of a physical network.
We consider an overlay network S populated with nodes labelled through a
system wide identifier. We assume that a unique and permanent identifier is
assigned to each node. In the following, nodes identifiers are abbreviated by
node ids. Nodes communicate among each other along the edges of the overlay
by using the communication primitives provided by the underlying network (e.g.,
IP network service). Nodes are free to join and leave the overlay at any time.
The particular algorithms use by nodes to choose their neighbors and to route
messages induce the resulting overlay topology. In particular, the topology of
unstructured overlays conforms with that of random graphs (i.e. relationships
among nodes are mostly set according to a random process).

2.1 Adversary

A fundamental issue faced by any practical open system is the inevitable pres-
ence of nodes that try to manipulate the system by exhibiting undesirable behav-
iors [15]. Such nodes are called malicious or Byzantine nodes. Malicious nodes
can simply display behaviors such as simply dropping or re-routing messages
towards other malicious nodes, or they can devise more complex strategies such
as mounting eclipse attacks (also called routing-table poisoning [15, 24]) by hav-
ing honest nodes redirecting outgoing links towards malicious ones. Moreover,
they can magnify the impact of their attacks by colluding and coordinating their
actions. In our work, we do not consider Sybil attacks [21], which mainly consist
in flooding the system with numerous fake identifiers. We assume the existence
of some external mechanism for solving this problem (for instance an off-line
certification authority, cf. Section 2.2). We model malicious behaviors through
a strong adversary that fully controls these malicious nodes. The adversary has
the ability to inspect the whole overlay and strategizes on the time at which ma-
licious nodes operations must be issued. We assume that the adversary cannot
control more than a fraction k < 1 of malicious nodes in the overlay. A node
which always follows the prescribed protocols is called honest. Note that honest
nodes cannot a priori distinguish honest nodes from malicious ones, which would
otherwise render the problem trivial.
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Fig. 1. Sampling component of node u ∈ N

2.2 Security Mechanisms

We assume the availability of a signature scheme that enables to verify the
validity of a signature on a message (i.e. the authenticity and integrity of this
message with respect to a particular node). Recipients of a message ignore any
message that is not signed properly. Nodes ids and keys (private and public) are
acquired via a registration authority [24] and it is assumed that honest nodes
never reveal their private keys to other nodes. We also assume the existence of
private channels (obtained through cryptographics means) between each pair of
nodes preventing an adversary from eavesdropping and unnoticeably tampering
with the content of a message exchanged between two honest nodes through
this channel. However of course, a malicious node has complete control over the
messages it sends and receives.

3 Uniform and Ergodic Sampling

In this section, we describe the terminology and assumptions used in this paper
and then define uniform and ergodic sampling.

3.1 Assumptions and Terminology

Similarly to Bortnikov et al. [16], we consider the following assumptions. There
exists a time T0 such that from time T0 onwards, the churn of the system ceases.
This assumption is necessary to make the notion of uniform sample meaningful.
Thus from T0 onwards, the population of the system S is composed of |S| nodes,
such that at least (1 − k)|S| of them are honest and no more than k|S| of them
are controlled by the adversary (for k < 1). The subset of honest nodes in the
overlay is denoted by N and we assume that all the nodes in N are weakly
connected from time T0 onwards.

Each node u ∈ N has locally access to a sampling component1 as presented
in Figure 1. The sampling component implements a strategy s and has uniquely
access to a data structure Γu, referred to as the sampling memory. The size
1 Although malicious nodes have also access to a sampling component, we cannot

impose any assumptions on how they feed it or use it as their behavior can be
totally arbitrary.
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of the sampling memory Γu is bounded and is denoted by |Γu|. The sampling
component Ss

u is fed with (non unique) node ids that correspond to the node
ids periodically received (either through gossip algorithms or through random
walks). This stream of node ids may contain repetition of the same node id, which
can be particularly frequent for malicious node ids, as discussed later. At each
time t, the following three steps are executed: the first element of the stream, say
node id v, is given as input to the sampler component. The sampling component
Ss

u reads v, and removes it from the stream. According to its strategy s, Ss
u may

store or not v in Γu (for example, the strategy s may consist in storing v if Γu is
not full or in substituting v for a randomly chosen node id in Γu), and outputs at
most one node id v′. The output at time t is denoted Ss

u(t). The produced node
id v′ is chosen among the node ids in Γu according to the strategy s (for instance,
strategy s may choose the smallest node id in Γu or the smallest node id under
a given min-wise permutation [16]). Note that these three steps are atomically
done. The maximum finite hitting time needed for the sampling component Ss

u

to reach a uniform sample is denoted by Ts. Clearly Ts depends on the strategy
s implemented by the sampling component and also on the stream of node ids
the sampling component has access to. Finally, δm represents the number of
malicious node ids received (possibly multiple times) in the stream of node ids
at node u during the time interval Ts.

3.2 Sampling Properties

We consider the problem of achieving an unbiased (uniform) and ergodic sam-
pling in large scale unstructured peer-to-peer systems subject to adversarial
attacks. A strategy s that solves this problem has to meet the following two
properties: i) Uniformity, which states that any node in the overlay should have
the same probability to appear in the sample of honest nodes in the overlay, and
ii) Ergodicity, which states that any node should have a non-null probability to
appear infinitely often in the sample of any honest nodes in the overlay. More
formally, strategy s should guarantee:

Property 1 (Uniformity). Let N be a weakly connected graph from time T0

onwards, then for any time t ≥ Ts, for any node u ∈ S, and for any node v ∈ N ,

�[u ∈ Ss
v(t)] =

1
|S| .

Property 2 (Ergodicity). Let N be a weakly connected graph from time T0 on-
wards, then for any time t ≥ T0, for any node u ∈ S, and for any node v ∈ N ,

� [{t′|t′ > t ∧ u ∈ Ss
v(t

′)} = ∅] = 0,

where ∅ represents the empty set. In the following, Properties 1 and 2 are re-
spectively denoted U and E .

Remark 1. Uniformity by itself does not imply ergodicity and conversely, ergod-
icity by itself does not imply uniformity. Indeed, Property 1 guarantees that any
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node (honest or not) has an equal probability to be sampled by any honest node
in the system. Nonetheless, once convergence to a random sample locally holds,
this property does not say that this sample must change over time to provide a
fresh and random node id (this is definitively important for data-caching appli-
cations which continuously require fresh node id). Guaranteeing this dynamicity
is formalized by Property 2 which states that each node has a non-null prob-
ability to be selected as a sample at any time, guaranteeing the access of new
sample graphs.

4 Related Work

In the literature, different approaches have been proposed to deal with malicious
behaviors, each one focusing on a particular adversarial strategy.

With respect to eclipse attacks, a very common technique, called constrained
routing table, relies on the uniqueness and impossibility of forging nodes iden-
tifiers. It consists in selecting as neighbors only the nodes whose identifiers are
closer to some particular points in the identifier space [24]. Such an approach
has been successfully implemented into several overlays (e.g., CAN, Chord, Pas-
try). More generally, to prevent messages from being misrouted or dropped, the
seminal works of Castro et al. [24] and Sit and Morris [15] on distributed hash
tables based overlays combine routing failure tests and redundant routing as a
solution to ensure robust routing. Their approach has then been successfully
implemented in different structured-based overlays (e.g., [25–27]). In all these
previous works, it is assumed that at any time, and anywhere in the overlay,
the proportion of compromised nodes is bounded and known, allowing powerful
building blocks such as Byzantine tolerant agreement protocols to be used among
peers subsets [26, 27]. When such an assumption fails, additional mechanisms
are needed. For instance, Awerbuch et al. [22] propose the Cuckoo&flip strategy,
which consists in introducing local induced churn (i.e., forcing a subset of nodes
to leave the overlay) upon each join and leave operation. This strategy prevents
malicious nodes from predicting what is going to be the state of the overlay
after a given sequence of join and leave operations. Subsequently to this theo-
retical work, experiments have been conducted to verify the practical feasibility
of global induced churn, which consists in having all the nodes of the overlay
periodically leaving their positions. These experiments assume that the overlay
is populated by no more than k = 25% of compromised nodes [28]. Authors
of [23] have analyzed several adversarial strategies, and show that an adversary
can very quickly subvert DHT-based overlays (DHT for Distributed Hash Ta-
bles) by simply never triggering leave operations. They also show that when all
nodes (honest and malicious ones) are imposed a limited lifetime, the system
eventually reaches a stationary regime where the ratio of corrupted clusters is
bounded, independently from the initial amount of corruption in the system.

Jesi et al. [18] propose a random sampling algorithm that deals with malicious
nodes. Their solution assumes that the ultimate goal of the malicious nodes is
to mutate the random graph in a hub-based graph, hub for which malicious
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nodes gain the lead. Once this goal is reached, malicious nodes can very quickly
and easily subvert the whole overlay by performing denial-of-service attacks.
Conducting a hub attack mainly consists for malicious nodes in increasing their
in-degree. Jesi et al. [18] propose to detect highly popular nodes by extending
classic node sampling services with a module that identifies and blacklists nodes
that have an in-degree much higher than the other nodes of the overlay. This
approach, also adopted in several structured based overlays [19] through auditing
mechanisms, or in sensor networks [20], is effective only if the number of malicious
nodes is very small with respect to the size of the overlay, typically of O(log |S|).

Recently, Bortnikov et al. [16] have proposed a uniform sampling algorithm
that tolerates up to a linear number of malicious nodes. Their sampling mecha-
nism exploits the properties offered by min-wise permutations. Specifically, the
sampling component is fed with the stream of node ids periodically gossiped by
nodes, and outputs the node id whose image value under the randomly chosen
permutation is the smallest value ever encountered. Thus eventually, by the prop-
erty of min-wise permutation, the sampler converges towards a random sample.
By limiting the number of requests malicious nodes can periodically issue, their
solution requires a single node id to be stored in the local memory. Nevertheless,
their solution does not satisfy the ergodicity property as convergence toward a
random sample is permanent. It is worth noting that our results complement
two previous results [6, 7], in which both papers propose an analysis of the class
of uniform and ergodic sampling protocols. Each paper provides a complete an-
alytical proof of a gossip-based protocol that reaches both U and E . However, in
contrast to the present work, adversarial behaviors were not considered.

Finally, taking a completely different approach from the previously mentioned
papers, which are based on gossip algorithms or on distance function properties,
the techniques presented in [29, 30] rely on social network topologies to guard
against Sybil attacks. Both protocols take advantage of the fact that Sybil attacks
try to alter the fast mixing property of social networks to defend against these
attacks. However, in presence of malicious nodes with a high degree, performance
of both protocols degrade drastically.

Note that the analysis presented in this paper is independent from the way the
stream of node ids at each node u has been generated. That is, it may result from
the propagation of node ids through gossip-based algorithms (namely through
push, pull or push-pull mechanisms initiated by u and its neighbors), from the
node ids received during random walks initiated at u, or even from the induced
churn imposed in structured-based overlays.

5 Characterization of the Uniform and Ergodic Sampling
Problem

We start our characterization by showing that the adversary can bias the input
stream in such a way that neither uniform nor ergodic properties can be met.
This is achieved by flooding the input stream with sufficiently many malicious
node ids. Specifically, Lemma 1 states that for any strategy s, if the number
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δm of non unique malicious node ids that appear in the input stream of node
u ∈ N during Ts time units exceeds a given threshold then it is impossible for
any node in the overlay to equally likely appear as a sample of node u, and this
holds forever. Let (C1) be a condition on δm value

δm ≤ Ts − (1 − k)|S|. (C1)

Condition (C1) characterizes the fact that for any honest node v ∈ N , during
the time interval Ts, v has a non-null probability to appear in the input stream.
We have

Lemma 1
¬(C1) =⇒ ¬U ∧ ¬E .

Proof. Let v ∈ N . Suppose that Condition (C1) does not hold, namely it exists
an adversarial behavior such that

δm > Ts − (1 − k)|S|.

In this case, the number of honest node ids in the input stream at v (i.e., Ts−δm)
is strictly lower than (1 − k)|S|, which means formally that

Ts − δm < (1 − k)|S|.

By assumption (cf. Section 3.1) the overlay is populated by (1 − k)|S| honest
nodes. Thus, as the adversary manages to flood the input stream at v, there
exists at least one node id u ∈ S that will never appear in the stream. Therefore,
whatever the strategy s, v’s sampling component can never output u. Thus,

∀t > T0, �[u ∈ Sv(t)] = 0, (1)

which clearly violates Property U .
Equation (1) can be rewritten as ∃t > T0, ∃u ∈ S, ∀t′ > t,�[u ∈ Sv(t′)] = 0,

which has for consequence that the set of instants t′ for which u can be sampled
by v is empty. Formally,

�[{t′|t′ > T0 ∧ u ∈ Sv(t′)} = ∅] = 1,

which violates Property E , and completes the proof of the lemma. �

We now assume that Condition (C1) holds. The second lemma states that if the
size of the sampling memory is large enough, then whatever the constrained
adversarial behavior, the sampling component succeeds in exhibiting uniform
and ergodic samples. This makes a sufficient condition to solve our problem.
Specifically, let (C2) be defined as follows

|Γ | < |S|. (C2)

Condition (C2) characterizes the fact that nodes cannot maintain the full knowl-
edge of the population overlay (essentially for scalability reasons). Then,
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Lemma 2
(C1) ∧ ¬(C2) =⇒ U ∧ E .

Proof. Proof of the lemma is straightforward. By Condition (C1), any node u ∈ S
has a non-null probability to appear in the input stream of any node v ∈ N .
By assumption of the lemma, |Γv| ≥ |S|. Consider the basic strategy s of v’s
sampling component that consists in storing into Γv, any new id read from the
input stream. Then eventually, all the node ids will be present into Γv, and thus
any node u is equally likely to be chosen in Γv, which guarantees Property U .

Moreover, v has the possibility to return infinitely often any node id u present
in Γv. Thus for any time t, the set of instants t′, with t′ > t, such that u is chosen
has a zero probability to be empty, which provides Property E and completes
the proof. �

The following Lemma completes the characterization of the problem, specifically:

Lemma 3
(C1) ∧ (C2) =⇒ ¬(U ∧ E).

Proof. Suppose that both Conditions (C1) and (C2) hold. Proving that ¬(U ∧E)
is equivalent to showing that (¬E ∨¬U) holds, and thus, that (E =⇒ ¬U) holds.
Suppose that (C1) ∧ (C2) ∧ E is met, we now show that U cannot hold.

Consider any node v ∈ N (the set of honest nodes) and let Γv(t) denote the
content of v’s sampling memory at the instant t. From Condition (C2),

∀t′ ≥ T0, ∃u ∈ S, u 	∈ Γv(t′). (2)

In particular, Equation (2) is true for t′ = Ts. Let node w ∈ S be such that
w /∈ Γv(Ts), then by assumption, Property E holds. Thus

∃t > Ts, w /∈ Γv(Ts) ∧ w ∈ Γv(t). (3)

w ∈ Γv w ∉ Γv

d

a

b c

Fig. 2. Markov chain that represents the evolution of w’s presence in the sampling
memory Γv of node v ∈ N

The presence of a node id in the local memory of the sampling component can
be represented by a Markov chain. Figure 2 depicts the evolution of w ∈ Γv as a
function of the time. Labels a, b, c and d on the edges represent the probability
of transitions from both states. We have a + c = b + d = 1. From Equation (3),
we have a > 0 and thus, c < 1. We prove by contradiction that d > 0.
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Suppose that d = 0, then ∀t′′ ≥ t, w ∈ Γv(t′′), the state (w ∈ Γv) is absorbing.
Suppose that the overlay contains only two nodes, v and w. By assumption, at
least one of the two nodes is honest (k < 1). Let us assume that v is honest
(the proof is similar for w). Then, by Condition (C2), we have |Γv| = 1 (the case
|Γv| = 0 trivially leads to impossibility). By assumption, we have ∀t′′ ≥ t, w ∈
Γv(t′′) and as |Γv| = 1, we also have ∀t′′ ≥ t, Γv(t′′) = {w}. As a consequence,
whatever the strategy s implemented in v’s sampling component,

∀t′′ ≥ t, �[v ∈ Ss
v(t

′′)] = 0 =⇒ �[{t′′|t′′ > t ∧ v ∈ Ss
v(t

′′)} = ∅] > 0,

contradicting E , and thus contradicting the assumption of the lemma. Thus d > 0
and, a fortiori, b < 1, and no state is absorbing.

Suppose now that U holds. We prove the lemma by contradiction. Consider
again the case where the overlay is populated by only two nodes, v and w.
As above suppose that node v is honest and that |Γv| = 1. The evolution of
the sampling memory at node v can be modeled by a Markov chain as repre-
sented in Figure 3. By assumption, E holds, thus infinitely often, and succes-
sively, both v and w appear in Γv. Moreover also by assumption, U holds, that
is, ∀t ≥ Ts,�[w ∈ Ss

v(t)] = �[v ∈ Ss
v(t)] =

1
2 . As a consequence, w has the same

probability as v to be in Γv, whatever the number of times w and v appear in
the stream before time Ts.

 Γv = {v}  Γv = {w}

Fig. 3. Markov chain that represents the state of the local memory Γv of v

Suppose now that node w is malicious. By Condition (C1), node id w can
appear in v’s stream no more than Ts − 1 times during any sliding window of
Ts time units. As |Γv| = 1, a single node id can be stored, and beyond this
node id, no other additional information can be stored. We show that whatever
the strategies s implemented by v’s sampling component, they all lead to a
contradiction.

Blind replacement. At any time t, the sampling component reads the first
node id in the stream, and stores it in Γv in place of the previous one.
By construction, any strategy has to select its output among the elements
stored in Γv, thus the output of the sampling component follows the same
probability distribution as the one observed in the stream. As the adversary
can flood the stream with up to Ts − 1 malicious node ids, this means that
property U cannot be met.

No replacement. Similarly to the blind replacement strategy, node ids are
read from the stream, and stored in Γv up to time t, where t is the first
time at which a specific node id is read. From time t onwards, this specific
node id is kept in Γv, independently from the node ids read from the stream
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after t, leading to an absorbing state of the Markov chain. For instance, this
specific node id can be the smallest image value under a random min-wise
independent function, such as the min-wise permutation [16]. Clearly, this
strategy violates property E .

Probabilistic replacement. This strategy consists in substituting the current
node id in Γv with the next one read from the stream according to a given
probability law. To guarantee that ∀t,�[w ∈ Ss

v(t)] = �[v ∈ Ss
v(t)] =

1
2 ,

then either both v and w have an equal probability to appear in the stream
or the sampling component must be able to remember the node ids it has
seen in the past to guarantee that, at any time t, each node id has the same
probability to be chosen as sample. The former case does not hold as by
assumption, the adversary can flood the stream with up to Ts − 1 malicious
ids. Moreover, the latter case is impossible as by assumption |Γv = 1|, and
thus a single information can be stored which prevents to store more than a
single piece of information (e.g., it is impossible to store both a node id and
a counter), therefore property U cannot hold.

Thus (C1) ∧ (C2) =⇒ ¬(U ∧ E), which concludes the proof of the lemma. �
The last lemma reformulates the necessary condition of the problem characteri-
zation by combining Lemmata 1 and 3.

Lemma 4
U ∧ E =⇒ (C1) ∧ ¬(C2).

Proof. The contrapositive form of writing Lemma 3 is U ∧ E =⇒ ¬((C1) ∧ (C2)),
and thus, by distributivity,

U ∧ E =⇒ ¬(C1) ∨ ¬(C2). (4)

On the other hand, the contraposition of Lemma 1 leads to U ∨ E =⇒ (C1). As
(U ∧ E ⇒ U ∨ E), we have

U ∧ E =⇒ (C1). (5)

By combining Equations 4 and 5, the following holds

U ∧ E =⇒ (C1) ∧ (¬(C1) ∨ ¬(C2)).

Thus,
U ∧ E =⇒ ((C1) ∧ ¬(C1)) ∨ ((C1) ∧ ¬(C2)) .

Due to the principle of contradiction, (C1) ∧ ¬(C1) cannot hold, leading to

U ∧ E =⇒ (C1) ∧ ¬(C2),

which completes the proof. �
The Uniform and Ergodic Sampling Problem defined in Sections 2 and 3 is
completely characterized by the following theorem:

Theorem 1. (C1) ∧ ¬(C2) is a necessary and sufficient condition for Uniform
and Ergodic Sampling Problem to hold.

Proof. This result follows directly from the statements of Lemma 2 and 4. �
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6 Conclusion

In this paper, we have investigated the sampling problem of large-scale unstruc-
tured peer-to-peer systems in adversarial environments. We have first shown
that, if the system cannot provide the means to limit resources of an adversary,
then solving either uniform sampling or ergodic sampling is impossible. We have
then demonstrated that, if this assumption holds and if all honest nodes in the
system have access to a very large memory (in the size of the system) then, the
problem becomes trivially solvable but not yet realistic. Unfortunately, we have
shown that both conditions are necessary and sufficient ingredients to solve the
uniform and ergodic sampling problem in potentially adversarial environments.
Clearly, these strong conditions highlight the damage that adversarial behavior
can cause in large-scale unstructured systems.

As future work, first we intend to study to which extent the adversary model
needs to be weaken to achieve uniform and ergodic sampling in a setting where
the nodes themselves have limited ressources (for instance in terms of memory).
Second, we plan to investigate an approximate version of the sampling primitive
to achieve near uniform and/or near ergodic sampling despite the presence of a
strong adversary. Both studies should have a positive impact for applications ex-
hibiting different requirements in terms of resources (i.e. memory, computational
power and communication complexity) and for settings in which probabilistic
guarantees on samples are sufficient.
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Abstract. Wireless Ad-hoc networks are distributed systems that of-
ten reside in error-prone environments. Self-stabilization lets the system
recover autonomously from an arbitrary state, making the system re-
cover from errors and temporarily broken assumptions. Clustering nodes
within ad-hoc networks can help in many ways like forming backbones,
facilitating routing, improving scaling, aggregating information and sav-
ing power. A (k,r)-clustering assigns cluster heads so that exists k cluster
heads within r communication hops for all nodes in the network while
trying to minimize the total number of cluster heads. We present the first
self-stabilizing distributed (k,r)-clustering algorithm. The algorithm uses
synchronous communication rounds and uses multiple paths to different
cluster heads for providing improved security, availability and fault tol-
erance. From any starting configuration the algorithm quickly assigns
enough cluster heads and stabilizes towards a local minimum using a
randomized scheme.

Keywords: Clustering, Self-Stabilization, Ad-hoc Networks,
(k,r)-dominating sets.

1 Introduction

An algorithm for clustering nodes together in an ad-hoc network serves an im-
portant role. It can be used for back bone formation, routing, data aggregation,
improve scaling and energy saving by taking turns. Clustering is a well studied
problem. Due to space constraints we point to the survey of the area with regard
to wireless ad-hoc networks by Chen et al. in [2] for references to the area in gen-
eral. We will focus on self-stabilization, redundancy and some security aspects.
One way of clustering nodes in a network is for nodes to associate themselves
with one or more cluster heads. In the (k,r)-clustering problem each node in the
network should have, if possible, at least k cluster heads within r communication
hops away. Assuming that the network topology allows k cluster heads for each
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node, the set of cluster heads forms a total (k,r)-dominating set where the nodes
in the set, the cluster heads, also need to have k nodes in the set within r hops.
The dominating set problem is well known to be NP-hard in general. Therefore,
instead of looking for a global minimum, approximate algorithms are proposed.

Starting from an arbitrary state, self stabilizing algorithms let a system sta-
bilize to, and stay in, a consistent state [3]. There is a multitude of existing
clustering algorithms for ad-hoc networks, of which a number is self-stabilizing.
A self-stabilizing (1,1)-clustering algorithm that converges fast is presented in [5].
A lot of organizational problems is tackled in a self-stabilizing manner and a self-
stabilizing (1,r)-clustering algorithm is presented in [4]. Weighted graphs is taken
into account in the self-stabilizing (1,r)-clustering in [1]. Algorithms for the full
(k,r)-clustering problem is presented in [7] and [9], but neither is self-stabilizing.
The algorithm presented in [8] groups nodes together without assigning cluster
heads. It considers malicious nodes inside the network, but is not self-stabilizing.

1.1 Our Contribution

We have constructed the first, to the best of our knowledge, self-stabilizing (k, r)-
clustering algorithm for ad-hoc networks. The algorithm is based on synchronous
rounds and makes sure that, within O(r) rounds, all nodes have at least k cluster
heads (if the topology permits it) using a deterministic scheme. A randomized
scheme complements the deterministic scheme and lets the set of cluster heads
stabilize to a local minimum. It stabilizes within O(g · r · logn) rounds with high
probability, where g is a bound on the number of nodes within 2r hops, and n
is the size of the network.

Our contribution is presented as follows. In section 2 we introduce the system
settings. Section 3 describes the algorithm. We discuss multiple paths, proofs
and experiments, and conclude in Section 4.

2 System Settings

We assume a static network. Changes in the topology are seen as transient
faults. We impose no restrictions on the network topology other than that an
upper bound, g, on the number of nodes within 2r hops of any node is known.
For a node pi in the network, we denote the nodes within one hop Ni, i.e. the
nodes to which it can directly send messages. The nodes within r hops from pi,
including pi itself, is denoted Gr

i . We assume undirected communication graphs,
i.e. pi ∈ Nj iff pj ∈ Ni. The system is synchronous and progresses in rounds.
Each round has two phases. In the receipt phase each node pi receives messages
from all nodes in Ni. In the step phase each node pi broadcasts a message to all
nodes pj ∈ Ni and that is received reliably in the next receipt phase.

3 Self-Stabilizing Algorithm for (k, r)-Clustering

The goal of the algorithm is, using as few cluster heads as possible, for each node
pi in the network to have a set of at least ki = min(k, |Gr

i |) cluster heads within
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1 on step phase:
2 increase timer modulo T
3 schedule escape attempt uniformly at random from [0,T-2r-2 ] if timer = 0
4 if state = HEAD and |heads|> k and it is time to attempt escape then
5 state ← ESCAPING
6 remove i from heads
7 if state = ESCAPING for 2r+1 rounds (all nodes in Gr

i had the chance to veto escape) then
8 state ← SLAVE
9 if |heads|< k then

10 add more nodes in Gr
i to heads, if there are any left to add

11 Broadcast state and heads with a TTL of r to direct neighbors, together with queued forwards
12

13 on receive jstate and jheads originating from node pj

14 if i ∈ jheads and state was not set to ESCAPING within the last 2r rounds then
15 state ← HEAD
16 add i to heads
17 if j ∈ heads and jstate = ESCAPING and |heads| > k then
18 remove j from heads
19 else if jstate = HEAD then
20 add j to heads if not present
21 queue up a forward of jstate and jheads with one lower TTL if TTL is not already 1

Fig. 1. Simplified pseudocode of the clustering algorithm, for a node pi with id i

its r-hop neighborhood Gr
i . We achieve a local minimum, i.e. a set from which

no cluster head can be removed without violating the aforementioned goal.
Space does not allow us to present the algorithm it its entirety. Full description

with all details and everything that is needed to get self-stabilization can be
found in [6]. The basic idea of the algorithm is presented in Figure 1. A node
can have state HEAD or ESCAPING, in which it is a cluster head, or have state
SLAVE, in which it is not a cluster head. In every round each node pi sends
out its state and its cluster heads (line 11). Forwarding (line 21) with a time-
to-live (TTL) mechanism makes sure that this information reaches all nodes in
Gr

i within r rounds. A node pi that does not have k cluster heads elects new
ones by adding them to heads (lines 9-10), which will be broadcasted as a join
signal (line 11). A node that receives such a join signal becomes a cluster head
if not already so (lines 14-16). A node that gets to know about a new cluster
head adds it to heads (lines 19-20).

This procedure might overshoot and establish too many cluster heads in the
network, i.e. there is some cluster head node pj for which all nodes that has
pj as a cluster head also have at least k other cluster heads. To reach a local
minimum, a cluster head node pi tries to escape at random points in time. This
is done by setting the state to ESCAPING (lines 2-6) and ignoring incoming
join signals for 2r rounds (line 14). If a node can allow a cluster head to go, it
removes it from heads (lines 17-18). Otherwise it disallows the escape attempt
by continuing to send join signals. If no nodes disallow an escape attempt, the
node can become SLAVE (line 7-8). If two cluster heads of which any one,
but only one, can be allowed escape, tries to escape concurrently, both might
fail. Therefore, the cluster heads repeatedly starts escape attempts at random
points in time, within periods of a constant T rounds, to resolve such conflicts.
Eventually their attempts will not overlap.
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4 Discussion and Conclusions

The full algorithm merges information received by different sources and with
different TTL values. This reduces the total amount of information that needs
to be transmitted. The flooding of messages makes sure that if there exist
multiple paths within r hops between a pair of nodes they will all be used. This
provides higher fault tolerance. It can also give us higher security if nodes in the
network can be compromised.

In [6] we prove that enough cluster heads are assigned within O(r) rounds.
Under the assumption of synchronized timers, we prove that the set of clus-
ter heads convergences to a local minimum within O(g · r · log n) rounds, with
high probability. We also show experimentally that synchronized timers are not
needed and that g does not have to be known very accurately. In addition, we
present some preliminary experimental results on how far from optima our sets
of cluster heads come, and provide more thorough discussions on security and
discussions on complexity versus fault tolerance.

To conclude, we have presented the first self-stabilizing (k, r)-clustering al-
gorithm for ad-hoc networks. A deterministic mechanism guarantees that all
nodes, if possible for the given topology, have k cluster heads within r hops. A
randomized mechanism lets the set of cluster heads stabilize to a local minimum.
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Abstract. We explore asynchronous unison in the presence of systemic
transient and permanent Byzantine faults in shared memory. We observe
that the problem is not solvable under less than strongly fair scheduler
or for system topologies with maximum node degree greater than two.

We present a self-stabilizing Byzantine-tolerant solution to
asynchronous unison for chain and ring topologies. Our algorithm has
minimum possible containment radius and optimal stabilization time.

Asynchronous unison [2, 3] requires processors to maintain synchrony between
their counters called clocks. Specifically, each processor has to increment its clock
indefinitely while the clock drift from its neighbors should not exceed 1. Asyn-
chronous unison is a fundamental building block for a number of principal tasks
in distributed systems such as distributed snapshots [4] and synchronization [5, 6].

A practical large-scale distributed system must counter a variety of transient
and permanent faults. A systemic transient fault may perturb the system and
leave it in an arbitrary configuration. Self-stabilization [7, 8] is a versatile tech-
nique for transient fault forward recovery. Byzantine fault [9] is the most generic
permanent fault model: a faulty processor may behave arbitrarily. However, de-
signing distributed systems that handle both transient and permanent faults
proved to be rather difficult [10–12]. Some of the difficulty is due to the inability
of the system to counter Byzantine behavior by relying on the information con-
tained in the global system configuration: a transient fault may place the system
in an arbitrary configuration.

In the context of the above discussion, considering joint Byzantine and sys-
temic transient fault tolerance for asynchronous unison appears futile. Indeed,
the Byzantine processor may keep setting its clock to an arbitrary value while
the clocks of the correct processors are completely out of synchrony. Hence, we
are happy to report that the problem is solvable in some cases. In this paper we
present a shared-memory Byzantine-tolerant self-stabilizing asynchronous uni-
son algorithm that operates on chain and ring system topologies. The algorithm
operates under a strongly fair scheduler. We show that the problem is unsolvable
� A full version of this work is available in [1].
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for any other topology or under less stringent scheduler. Our algorithm achieves
minimal fault-containment radius: each correct processor eventually synchronizes
with its correct neighbors. We prove our algorithm correct and demonstrate that
its stabilization time is asymptotically optimal.

Related work. The impetus of the present research is the result by Dubois et
al [13]. They consider joint tolerance to crash faults and systemic transient faults.
The key observation that enables this avenue of research is that the adopted
definition of asynchronous unison does not preclude the correct processors from
decrementing their clocks. This allows the processors to synchronize and main-
tain unison even while their neighbors may crash or behave arbitrarily.

There are several pure self-stabilizing solutions to the unison problem [2, 3,
14]. None of those tolerate Byzantine faults. Classic Byzantine fault tolerance
focuses on masking the fault. There are self-stabilizing Byzantine-tolerant clock
synchronization algorithms for completely connected synchronous systems both
probabilistic [11, 15] and deterministic [16, 17]. The probabilistic and determinis-
tic solutions tolerate up to one-third and one-fourth of faulty processors
respectively.

Another approach to joint transient and Byzantine tolerance is containment.
For tasks whose correctness can be checked locally, such as vertex coloring, link
coloring or dining philosophers, the fault may be isolated within a region of the
system. Strict stabilization guarantees that there exists a containment radius
outside of which the processors are not affected by the fault [12, 18–20]. We
say that that an algorithm is (c, f)−strictly stabilizing if it is strictly stabilizing
with a radius of c and can tolerate up to f Byzantine processors. Yet some prob-
lems are not local and do not admit strict stabilization. However, the tolerance
requirements may be weakened to strong-stabilization [21, 22] which allows the
processors outside the containment radius to be affected by Byzantine proces-
sors after the convergence of the system. The faulty processors can affect these
correct processors only a finite number of times after the convergence of the
system. Strong-stabilization enables solution to several problems, such as tree
orientation and tree construction.

Contributions. The first step is to characterize the necessary assumptions on the
system (topology, scheduling, and number of faults) to solve the asynchronous
unison in a strictly stabilizing way. Following [13] and the fact that a Byzantine
processor may simulate a crashed one, we can state some impossibility results.

Theorem 1. There does not exist a (f, d)-strictly stabilizing solution to the
asynchronous unison problem in shared memory for any distance d ≥ 0 if the
communication graph of the distributed system contains processors of degree
greater than two or if the number of faults is greater than one or if the scheduler
is either unfair or weakly fair.

Then, it remains to explore the case of asynchronous unison on chains and rings
under the strongly fair scheduler with at most one Byzantine processor. We
provide in the following the intuition of the provided algorithm.
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The drift between two processors p and q is the absolute value of the differ-
ence between their clock values. Two processors p and q are in unison if the drift
between them is no more than 1. An island is a segment of correct processors
such that for each processor p, if its neighbor q is also in this island, then p and q
are in unison. A processor with no in-unison neighbors is assumed to be a single-
processor island. The main idea of the algorithm is as follows. Our algorithm forms
islands of processors with synchronized clocks. The algorithm is designed such
that the clocks of the processors with adjacent islands drift closer to each other
and the islands eventually merge. If a faulty processor restricts the drift of one
such island, for example by never changing its clock, the other islands still drift
and synchronize with the affected island. Then, we prove the following theorem:

Theorem 2. Our algorithm is a (1, 0)-strictly stabilizing asynchronous unison
under the strongly fair scheduler on ring and chains topology.

Finally, we explore the time complexity of our algorithm and of the problem.
We prove the following result:

Theorem 3. The stabilization complexity of our algorithm is optimal. It stabi-
lizes in Θ(L) asynchronous rounds where L is the largest drift between correct
processors in the initial configuration of the system.

Conclusion. In this paper we explored joint tolerance to Byzantine and systemic
transient faults for the asynchronous unison problem in shared memory. Some
open problems follow.

Solutions under distributed scheduler, that allows multiple concurrent steps,
remain to be explored. Another way to complete these results is to consider
bounded clocks. The existence of a solution for shared memory execution model
opens another avenue of research. It is interesting to consider the existence of a
solution in lower atomicity models such as shared register or message-passing.We
conjecture that a solution in such model is more difficult to obtain as the lower
atomicity tends to empower faulty processors. Indeed, in the shared-register
model a Byzantine processor may report differing clock values to its right and left
neighbor. Such behavior makes a single fault ring topology essentially equivalent
to two fault chain topology. The latter is proven unsolvable. Hence, we posit
that in the lower atomicity models, the only topology that allows a solution to
asynchronous unison to the chain.
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Abstract. Local distributed algorithms can only gather sufficient infor-
mation to identify local graph traits, that is, properties that hold within
the local neighborhood of each node. However, it is frequently the case
that global graph properties (connectivity, diameter, girth, etc) have a
large influence on the execution of a distributed algorithm.

This paper studies local graph traits and their relationship with global
graph properties. Specifically, we focus on graph k-connectivity. First we
prove a negative result that shows there does not exist a local graph trait
which perfectly captures graph k-connectivity. We then present three
different local graph traits which can be used to reliably predict the
k-connectivity of a graph with varying degrees of accuracy.

As a simple application of these results, we present upper and lower
bounds for a local distributed algorithm which determines if a graph is
k-connected. As a more elaborate application of local graph traits, we
describe, and prove the correctness of, a local distributed algorithm that
preserves k-connectivity in mobile ad hoc networks while allowing nodes
to move independently whenever possible.

1 Introduction

The t-neighborhood of a node u of a graph G, is the induced subgraph of G
consisting of all vertices at distance at most t from u, and all edges connecting
two such vertices. A graph trait is a pair (t, T ) where t is a function from the
positive integers to the positive integers, and T is a predicate over a graph. A
graph trait (t, T ) is satisfied by a graph G on n vertices, if the t(n)-neighborhood
of every node of G satisfies T . A graph trait is local if t is a constant.

Our motivation for studying local graph traits comes from the classical syn-
chronous distributed system model. In this model, each node of an undirected
graph G is occupied by a processor. The system progresses in synchronous lock-
step rounds, and at each round a process can send a message to its neighbors,
receive messages, and perform local computation. Observe that after running
for t rounds, the knowledge of a process is limited to learning about all nodes
at distance at most t, as well as the edges present between these nodes (i.e. its
t-neighborhood). Since we do not restrict either the amount of local computation
or the message size, it follows that after O(diameter(G)) rounds, every process
can acquire complete knowledge of the graph and can compute any function of
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G. Therefore, distributed algorithms whose runtime is independent of the diam-
eter of the network are especially interesting. Awerbuch et al. [1] defined a local
algorithm as one whose runtime is significantly smaller than n for any possible
diameter of the network1. Local distributed algorithms can only learn their local
neighborhood, and therefore they are limited to observing local graph traits.

Despite the fact that local distributed algorithms are limited to observe local
graph traits, it is often the case that global graph properties have a great in-
fluence on the execution of a distributed algorithm. For example, the chromatic
number of a graph is a lower bound on the number of rounds required for ev-
ery node to broadcast once without colliding with its neighbors. Similarly, in
algorithms which require coordination, the connectivity of a graph is an upper
bound on the fault-tolerance of an algorithm, since higher connectivity implies
more nodes can fail without disconnecting the graph.

Given the effects that graph properties, both local and global, have on the
execution of distributed algorithms, it is not surprising that studying the re-
lationship between local graph traits and global graph properties is a fruitful
direction for proving upper and lower bounds on local distributed algorithms.
This was first observed in the seminal work of Linial [11], who used an elegant
construction relying on t-neighborhood graphs to prove that any distributed al-
gorithm that finds a maximal independent set in a cycle must take at at least
Ω(log∗ n) rounds.

However, the study of the relationship of local graph traits and global graph
properties dates further back. In 1983, Wigderson [14] showed that if a graph is
locally k-chromatic, then it has a chromatic number of O(

√
kn). Even earlier, in

1952, Dirac [6] proved that if G has at least three vertices, and all nodes have
degree at least n/2, then G is Hamiltonian. In the same vein, we study local
graph traits which imply global graph k-connectivity.

Paraphrasing the formal definition given in Section 2, the connectivity of a
graph G, denoted κ(G), is the size of the smallest set of vertices whose removal
disconnects the graph. Although a complete graph on n vertices cannot be dis-
connected by removing vertices, by convention its connectivity is n − 1. We say
a graph G is k-connected if κ(G) ≥ k. In Section 3, we show that there does not
exist a local graph trait that characterizes a k-connected graph. More precisely,
we prove that for any constant k > 0 there does not exist a local graph trait
(t, T ) such that a graph G satisfies (t, T ) if and only if G is k-connected. We
show a similar result holds even when considering only simply connected graphs.
Namely, there does not exist a local graph trait (t, T ) such that a connected
graph G satisfies satisfies (t, T ) if and only if G is k-connected. These results
hold even in the case of unit disk graphs.

Since its not possible to locally characterize the k-connectivity of a graph, in
Section 4 we turn our attention to local graph traits that when satisfied imply

1 We remark that the algorithms presented in this paper satisfy a more stringent
notion of locality, since their runtime is constant and therefore independent of n or
the diameter of the network. However, our impossibility results hold for the weaker
notion of locality.
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k-connectivity. Specifically, we describe three different local graph traits which
are parametrized by k, and when fulfilled imply that the is graph k-connected.

As a simple application of these results, in Section 5 we present straight-
forward algorithmic implementations of the local traits described in Section 4
which yield constant time distributed algorithms to test for k-connectivity. We
also describe a lower bound for distributed algorithms that reliably predict k-
connectivity, which is derived directly from the impossibility results described
in Section 3. As a more elaborate application, we show how to exploit the local
graph traits presented, to extend the algorithm described in [4] to preserve k-
connectivity in a mobile ad hoc network while allowing the agents of the network
to move as freely as possible.

Most of the previous work on k-connectivity is in the field of topology control.
Jorgic et al. [8] reported the experimental results of three different distributed
algorithms to detect k-connectivity on random geometric graphs, but the paper
lacks any formal guarantees. Czumaj and Zhao [5] presented a greedy centralized
algorithm to construct a k-connected t-spanner with runtime Õ(nk). Thurimella
[13] described a distributed algorithm to identify sparse k-connected subgraphs
that runs in O(diameter(G) +

√
n) time. Jia et al. [7] described a centralized

algorithm to approximate the minimum power assignment while preserving k-
connectivity. Similarly, Li and Hou [9] describe a distributed algorithm that
given a k-connected graph finds a k-connected spanner. For a list of related
work on preserving connectivity see [4] and references therein. A version of the
algorithmic counterpart of two of the local graph traits described in Section 4
appeared in [3].

2 Model

The communication network is modeled as a undirected graph. We use G =
(V, E) to denote an undirected graph, where V is the set of vertices, and E is the
set of edges (two-element subsets of V ). A pair of vertices u, v ∈ V are neighbors
if and only if {u, v} ∈ E. For ease of exposition we use the notation E(G) (and
V (G)) to denote the set of edges (and vertices) of a graph G. It is well known that
most graph functions cannot be computed in anonymous networks, even for very
simple graphs G. Hence, we define labeled graphs, denoted by a tuple (G, id),
where id : V → I is an injective function that maps each vertex to a unique
identifier. In mobile ad hoc networks it is often useful to assume processes know
their own position. To this end, we consider two-dimensional Euclidean graphs,
denoted by a tuple (G, p) (or (G, p, id) when considering labeled two-dimensional
Euclidean graphs) where p : V → R2 is a function that maps each vertex to a
point in the Euclidean plane. A two-dimensional Euclidean graph (G, p) is a
unit disk graph if there is an edge between two nodes if and only if they are at
distance at most one, that is E := {{u, v} | ‖p(u) − p(v)‖ ≤ 1}.

We consider a synchronous network model. Specifically, each node of an undi-
rected graph G is occupied by a process. The system progresses in synchronous
lock-step rounds. At each round a process can send a message to its neighbors,
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receive messages from its neighbors and perform local computation. If the graph
is labeled, we assume that at time zero the processor occupying node v ∈ V (G)
knows the identifier id(v) of that node. Similarly, if the graph has an associated
embedding (i.e. two-dimensional Euclidean graphs) we assume that at time zero
the processor occupying node v ∈ V (G) knows the position p(v) of that node.

For a positive integer t we denote with N t[u] the closed t-neighbors of u, the
set of vertices reachable by paths starting at u and of length at most t. Let Gt(u)
be the t-neighborhood of node u, the graph induced by the closed t-neighbors
of u in G. When t = 1 we simply use N [u] and G(u) to denote the 1-neighbors
and 1-neighborhood of node u respectively.

Since this model does not restrict the message size or the amount of local
computation, after t rounds a process at vertex v can learn about its t-neighbors
(including their unique ids and embedding when considering labeled Euclidean
graphs), but it cannot learn about any node which is more than t hops away.
In particular in unit disk graphs, after t rounds a process at vertex v can learn
exactly its t-neighborhood Gt(v). In general graphs, after t rounds a node can
learn all edges between its t-neighbors, except for those edges whose endpoints
are at distance exactly t. As shown in Section 5, this subtle difference between
unit disk graphs and general graphs can be bridged by using an additional com-
munication round to learn the t-neighborhood of a node in t+1 communication
rounds.

In Section 3 and 4 we e study the relationship between local graph traits and
global graph properties. A graph trait is a pair (t, T ) where t is a function from
the positive integers to the positive integers and T is a predicate over a graph,
which (if applicable) can make use of the labeling or embedding of the graph. A
graph G on n vertices satisfies a trait (t, T ), if the t(n)-neighborhood of every
vertex v ∈ V (G) satisfies T . A graph trait is local if t ∈ O(1); a graph trait is
weakly-local if t ∈ o(n).

A graph trait (t, T ) implies a graph property P if any graph which satisfies
(t, T ) also satisfies P . Similarly, a graph property P implies a graph trait (t, T ) if
any graph which satisfies P also satisfies (t, T ). A graph trait (t, T ) characterizes
a graph property P (or alternatively a graph property P is characterized by a
graph trait (t, T )) if (t, T ) implies P and P implies (t, T ). Given the graph traits
(t, T ) and (t′, T ′) which imply a graph property P , we say that (t, T ) is more
accurate than (t′, T ′) with respect to P if every graph which satisfies (t′, T ′) also
satisfies (t, T ), and there exists a graph which satisfies P and (t, T ), but not
(t′, T ′).

In particular, the global graph property that we are concerned with is graph
k-connectivity. A vertex cut C of a connected graph G is a set of vertices whose
removal renders G disconnected. The size of a vertex cut C is the number of
vertices |C|. A vertex cut is said to be a minimum vertex cut if it is a vertex cut
of smallest size. The connectivity of a graph G, denoted by κ(G), is the size of
a smallest vertex cut of G. A complete graph on n vertices has no cuts at all,
but by convention its connectivity is n − 1. We say a graph G is k-connected if
κ(G) ≥ k.
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3 The Impossibility of Locally Characterizing
Connectivity

In this section we show that it is impossible to characterize the k-connectivity of
a graph using (weakly-)local graph traits. The results hold even when restricted
to simply connected labeled unit disk graphs. As a warm up, we first show
that there does not exist a weakly-local graph trait that characterizes simple
connected graphs.

Fig. 1. All nodes are embedded in the horizontal axis. Neighboring nodes are 1 unit
apart.

Theorem 1. There does not exist a weakly-local graph trait (t, T ) that charac-
terizes a simply connected graph.

Proof. Fix any local trait (t, T ) which is implied by a simply connected graph.
We will show that there exists a disconnected graph G which satisfies (t, T ).

Since t ∈ o(n) there exists a sufficiently large n such that n > 4t(n), we
consider graphs over the vertex set V = {1, . . . , n}. Throughout the proof we
assume all graphs are labeled using the same injective function. We group the
vertices into two connected components L1 and L2. Component L1 is a line
graph of the first n

2 nodes, namely for each i ∈ [1, n
2 − 1] vertex i is connected

with vertex i+1. Component L2 is a line graph of the remaining nodes, namely
for each i ∈ [n2 + 1, n − 1] node i is connected with node i + 1.

In the rest of the proof we describe how to connect L1 and L2 to produce
a disconnected graph G and four connected graphs F , F ′, H and H ′. We then
show that since (t, T ) is satisfied by the four connected graphs by assumption,
it must be that G also satisfies (t, T ).

Specifically, G is the disconnected graph made up of L1 and L2 with no
additional edges. The graphs F and F ′ result from joining L1 and L2 with the
edge

{
n
2 , n

2 + 1
}
, and the graphs H and H ′ result from joining L1 and L2 with

the edge {n, 1}.
These graphs can be embedded as unit disk graph such that: (i) L1 has the

same embedding in F , G and H ′. (ii) L2 has the same embedding in F ′, G and
H (cf. figure 1).
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By assumption T is satisfied on the t(n)-neighborhood of every node in F , F ′,
H and H ′. To show that G satisfies the local trait (t, T ), it suffices to show
that every node has the same t(n)-neighborhood (including the labeling and
embedding of the nodes) in G as it does in F , F ′, H or H ′. We proceed by a
case analysis on i ∈ V .

1. If i ∈ [1, n
4 ] the t(n)-neighborhood of node i in G is a line graph with the nodes

max(1, i − t(n)), . . . , i, . . . , i + t(n), which is the same t(n)-neighborhood of
node i in F .

2. If i ∈ [n4 + 1, n
2 ] the t(n)-neighborhood of node i in G is a line graph

with the nodes i − t(n), . . . , i, . . . ,min(i + t(n), n
2 ), which is the same t(n)-

neighborhood of node i in H ′.
3. If i ∈ [n2 + 1, 3n

4 ] the t(n)-neighborhood of node i in G is a line graph
with the nodes max(n

2 , i − t(n)), . . . , i, . . . , i + t(n), which is the same t(n)-
neighborhood of node i in H .

4. If i ∈ [3n
4 + 1, n] the t(n)-neighborhood of node i in G is a line graph

with the nodes i − t(n), . . . , i, . . . ,min(i + t(n), n), which is the same t(n)-
neighborhood of node i in F ′.

The previous theorem relies on the fact that if t ∈ o(n) we can construct a
large enough disconnected graph where every t(n)-neighborhood is indistinguish-
able from one in a connected graph. The same argument can be extended to
show it is possible to construct a large enough disconnected graph whose t(n)-
neighborhood is indistinguishable from a k-connected graph.

However, if we restrict our attention to characterizing the connectivity of
simply connected graphs, the same argument no longer works. In particular in a
graph which is connected but not k-connected, there exists a minimum vertex
cut C of size 1 ≤ |C| < k. It is conceivable that the t(n)-neighborhood of a node
u ∈ C in the cut might not fulfill all the local traits implied by a k-connected
graph. The following theorem rules out that possibility by showing that even
when restricted to connected graphs, there does not exist a local graph trait
that characterizes a k-connected graph.

Theorem 2. For any constant k > 0 there does not exist a weakly-local graph
trait (t, T ) that characterizes k-connectivity of k

2 -connected graphs.

Proof. Let k be any positive constant, and fix any local trait (t, T ) which is
implied by k-connectivity. We will show that there exists a k

2 -connected graph
G which is not k-connected and satisfies (t, T ).

Since k is a constant and t ∈ o(n), then there exists a sufficiently large n
such that n = 2m · k where m > 4t(n), we consider graphs over the vertex
set V = {1, . . . , n}. We assume all graphs are labeled with the same injective
function. We partition the vertices V into four sets V1, V2, V3 and V4 each of size
mk/2. Each vertex set Vi is partitioned further into m cliques Ki

1, . . . , K
i
m, each

of size k
2 . In a slight abuse of notation we say cliques A and B are connected

if every node in A is connected to every node in B. For each vertex set Vi we
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Fig. 2. Each point in the graph represents a clique of size k/2 embedded at that point,
there is a line between cliques A and B if every node in clique A is connected to every
node in clique B. The clique cycle Ci is formed by arranging the cliques uniformly
around a circle at distance 1 from each other. To form F , H and G we arrange the
clique cycles in a ring, where each clique cycle is at distance 1 from its neighboring
clique cycle. To break the links between C1 and C2 in G′ we “push” the nodes of K1

m
4 −1

some ε > 0 towards the center of C1.

consider the clique cycle graph Ci = 〈Vi, Ei〉 formed by connecting clique Ki
j to

clique Ki
j+1 mod m for each j ∈ [1, m].

In the rest of the proof we describe how to connect these clique cycles to
produce the k-connected graphs F , G and H , and the graph G′ with connectivity
k
2 . We then argue that since (t, T ) is satisfied by F , G and H by assumption,
then it must also be satisfied by G′, which completes the theorem.

To construct the graphs F , G and H we connect the clique cycles C1, C2, C3

and C4 in a ring. Specifically in G we connect cliques K1
m
4 +1 and K2

3m
4 +1

, cliques

K2
m
2 +1 and K3

1 , cliques K3
3m
4 +1

and K4
m
4 +1, and cliques K4

1 and K1
m
2 +1. In F and

H we connect cliques K1
3m
4 +1

and K2
m
4 +1, cliques K2

m
2 +1 and K3

1 , cliques K3
m
2 +1

and K4
3m
4 +1

, and cliques K4
1 and K1

m
2 +1. Finally, G

′ is the graph that results from
removing the edges between C1 and C2 in G. Observe that to disconnect F , G
or H we need to remove delete all the nodes of at least two cliques, and since
each clique is of size k/2, it follows that these graphs are k-connected. Similarly,
to disconnect G′ it is sufficient and necessary to remove all the nodes of a single
clique, and since each clique is of size k/2, it follows G′ has connectivity k

2 .
These graphs can be embedded as a unit disk graph such that: (i) The em-

bedding of G and G′ are identical except for the clique K1
m
4 +1. (ii) The clique

cycles C1 and C4 have the same embedding in G′ and H . (iii) The clique cycles
C2 and C3 have the same embedding in G′ and F (cf. figure 2).
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By assumption G, F and H satisfy the local trait (t, T ), hence the t(n)-
neighborhood of every node satisfies T in each of these graphs. To show that G′

satisfies the local trait (t, T ) it suffices to show that ∀i ∈ [1, 4], ∀j ∈ [1, m] every
node v ∈ Ki

j has the same t(n)-neighborhood in G′ as it does in G, F or H .
Observe that G and G′ only differ by the embedding of K1

m
4 +1 and by the pres-

ence (or lack thereof) of the edges between K1
m
4 +1 and K2

3m
4 +1

. Therefore, for any

node whose t(n)-neighborhood does not include a node from K1
m
4 +1 or K2

3m
4 +1

,
its t(n)-neighborhood is identical in G and G′. Moreover since t(n) < m/4 only
a “few” nodes in C1 and C2 include a node from K1

m
4 +1 or K2

3m
4 +1

in their t(n)-

neighborhood. Specifically, only a node v in clique K1
j for j ∈ [2, m

2 ] can include
a node from K1

m
4 +1 in its t(n)-neighborhood. However, its t(n)-neighborhood

cannot include a node from K1
3m
4 +1

, and hence its t(n)-neighborhood is identical

in G′ and F . Similarly, only a node v in clique K2
k for k ∈ [m2 +2, m] can include

a node from K2
3m
4 +1

in its t(n)-neighborhood. However, its t(n)-neighborhood

cannot include a node from K2
m
4 +1, and hence its t(n)-neighborhood is identical

in G′ and H .

Given that it is impossible to characterize the connectivity of a graph with local
graph traits, in the next section we focus on studying local graph traits which
imply k-connectivity. In Section 5 we leverage these local graph traits to design
local distributed algorithms.

4 Local Graph Traits That Imply k-Connectivity

We describe three local graph traits which imply graph k-connectivity for simply
connected graphs. The first graph trait holds for general graphs, while the other
two local traits hold only for unit disk graphs.

4.1 A Natural Local Trait for k-Connectivity

Perhaps the simplest and most intuitive local graph trait for k-connectivity is to
check if the neighborhood of a vertex is k-connected. Specifically, consider the
local trait (c, K(k)) where c > 0 is a positive constant and K(k) is the predicate
that checks if the c-neighborhood of a vertex is k-connected. We now show that
this local graph trait implies k-connectivity.

Theorem 3. The local graph trait (c, K(k)) implies k-connectivity for simply
connected graphs.

Proof. Suppose by contradiction that a connected graph satisfies the local graph
trait (c, K(k)) but it is not k-connected. Since G satisfies (c, K(k)), then Gc(u)
must have at least k + 1 vertices, hence |V | ≥ k + 1. Since by assumption G is
not k-connected, it has a vertex cut with at most k − 1 vertices. On the other
hand since G is connected, any vertex cut is of size at least 1.
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In particular let C denote a minimum vertex cut, and let P and Q be two
connected components produced by removing all vertices in C. Fix any vertex
u ∈ C, we make the following claim (proved later):

Claim. There exists vertices p, q ∈ N(u) such that p ∈ P and q ∈ Q.

Let U = N t[u] \ {p, q}, where p and q are fixed as in the claim. Observe that
since G satisfies (c, K(k)) then Gc(u) is k-connected. In particular this means
|N c[u]| ≥ k+1 and hence |U | ≥ k−1. Moreover, this also implies that removing
any subset of U of size at most k − 1 leaves a path from p to q in Gc(u).

However by assumption, removing the set C ⊆ V of size at most k−1 produces
two connected components P and Q. Since removing C ⊆ V disconnects P from
Q in G, then removing U ∩ C ⊆ U has to disconnect p and q in Gc(u).

Finally since |C| ≤ k − 1 then |U ∩ C| ≤ k − 1, but this contradicts that
removing any subset of U of size at most k − 1 leaves a path from p to q in
Gc(u), which completes the theorem.

Proof. [of Claim] By assumption, C is a minimum vertex cut that separates P
and Q. Hence, if we consider the smaller vertex set C′ = C \ {u}, it must be
that removing the vertices from C′ does not separate P and Q.

This implies that for any pair of vertices p′ ∈ P and q′ ∈ Q there exists a
simple path between p′ and q′ using only vertices from the set V −C′. Since this
path does not exist when removing the set C, the path must go through u.

Follow the path starting at p′ ∈ P , and let p ∈ P be the last vertex in the
path that belongs to P . It must be that the vertex in the path after p is u (and
hence p ∈ N(u)). Otherwise it would contradict that P is a component separated
from the rest of the vertices when removing C. By following the path starting
at q′ ∈ Q the same argument can be used to show there exists a vertex q ∈ Q
such that q ∈ N(u), which completes the proof.

It’s not immediate how to improve the accuracy of (c, K(k)). To illustrate this
difficulty, assume there exists some local graph trait (c, K ′(k)) which implies k-
connectivity and is more accurate than (c, K(k)). Therefore, there must exist a
k-connected graph G with a vertex u ∈ V whose c-neighborhood does not satisfy
K(k) but does satisfy K ′(k). However, this also implies that if we consider the
graph G′ = Gc(u), then G′ is not k-connected but K ′(k) is satisfied at node u.

Using this logic it is tempting to go further and argue that since any local
graph trait which implies k-connectivity should not be satisfied by a graph which
is not k-connected, then K ′(k) does not imply k-connectivity (reaching a con-
tradiction). However, a graph trait (c, K ′(k)) is only satisfied by a graph, if the
c-neighborhood of all nodes satisfies K ′(k).

The next subsection describes a local graph traits which is less accurate than
(c, K). However, this local trait will introduce ideas which will inspire a better
graph trait presented in the last subsection, one which uses techniques that allow
us to use it to preserve k-connectivity in Section 5. We remark that up to this
point, we have not used either labeled or Euclidean graphs.
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4.2 Small Edges Increase Connectivity

Given an Euclidean graph (G, p), we define the length of an edge as the Euclidean
distance between the embedding of its endpoints. In unit disk graphs, one would
expect that moving all nodes closer together (thereby decreasing the length of
all the edges) would increase the connectivity of the graph. This observation is
exploited by the local graph trait (c, Small(k)). Here c > 0 is a positive constant
and Small(k) is a predicate that checks if the c-neighborhood of a node has at
least k + 1 nodes and has a connected spanning subgraph using only edges of
length at most 1/k. To prove that this local graph trait implies k-connectivity
we first show the following:

Lemma 4. If a unit disk graph with n ≥ k+1 vertices has a connected spanning
subgraph using edges of length at most 1/k, then it is k-connected.

Proof. Fix any unit disk graph graph G with n ≥ k + 1 vertices which has a
connected spanning graph using edges of length at most 1/k. If G were a clique
then it is k-connected, hence we assume G is not a clique and let C be a minimum
vertex cut of G. We will show that |C| ≥ k, which implies that G is k-connected.

Let P and Q be two connected components produced by the cut C. Since G
has a connected spanning subgraph using edges of length at most 1/k, then for
any pair of vertices p ∈ P and q ∈ Q there exists a simple path p � q from p to
q in using only edges of length 1/k. We use the vertices of C to define a gap in
p � q, as a maximal set of contiguous vertices in p � q that belong to C. For
each gap g let g.first and g.last be the vertices in the path immediately before
and after the gap.

Any gap g is of size at most |g| ≤ |C|, and the Euclidean distance between
g.first and g.last is bounded by (|g| + 1)/k. Hence if |C| ≤ k − 1, then the
distance between the g.first and g.last is at most k/k = 1. However, since G is
a unit disk graph by assumption, there must exist an edge (g.first, g.last) in G
which bridges the gap and there would exist a path from p to q. Therefore, for
C to be a cut, it must be that |C| ≥ k, and thus G is k-connected.

We can stitch Lemma 4 with Theorem 3, which showed that (c, K(k)) implies
k-connectivity of connected graphs, to prove the following.

Theorem 5. The local graph trait (c, Small(k)) implies k-connectivity for sim-
ply connected unit disk graphs.

Proof. By Theorem 3 it suffices to show that, for every vertex u ∈ V , if the
c-neighborhood of u satisfies Small(k) then it also satisfies K(k).

Fix a vertex u ∈ V which satisfies Small(k), then it follows that Gc(u) has at
least k+1 vertices and has a connected spanning subgraph using edges of length
at most 1/k. However, then by Lemma 4 Gc(u) is k-connected and it satisfies
K(k).

In the process of proving Theorem 5 we showed that the graphs which satisfy
(c, Small(k)) also satisfy (c, K(k)). It is not difficult to construct unit disk graphs
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which satisfy (c, K(k)) but where (c, Small(k)) does not hold (i.e. a clique with
k + 1 vertices using only “large” edges). Therefore it follows that by definition
(c, K(k)) is more accurate than (c, Small(k)) for k-connectivity.

A natural question, is to ask weather all edges in the connected spanning
graph need to be small for the connectivity of a graph to increase, or is it
sufficient only for some edges to be small? We answer this question in the next
subsection.

4.3 Spanning Trees with Small Edges Imply k-Connectivity

Given an Euclidean graph (G, p), let MSTG denote a minimum spanning tree
of G. Observe that in labeled graphs, ties between edges of the same length can
be broken consistently using the unique identifiers associated with each node.
Therefore, in Euclidean labeled graphs, we can assume distinct edge lengths,
which implies there is a unique minimum spanning tree.

For any positive constant c > 0, let LMST c
G = (V, F ) denote the local mini-

mum spanning tree of G = (V, E). The edge set of the local minimum spanning
tree is F :=

{
{u, v} | {u, v} ∈ E(MSTGc(u)) ∩ E(MSTGc(v))

}
. In other words,

LMST c
G is the intersection of the minimum spanning trees associated with the c-

neighborhood of every node in G. It is known [10] that in graphs G with a unique
minimum spanning tree MSTG, the local minimum spanning tree contains the
minimum spanning tree and is therefore connected. This property suggests an
improved local graph trait using the same ideas of (c, Small(k)).

Consider the local graph trait (c, MSTSmall(k)) where c > 0 is any positive
constant and MSTSmall(k) is a predicate that checks if the c-neighborhood of
a node u has at least k + 1 nodes and all the edges of the form {u, v} in its
minimum spanning tree have length at most 1/k. The next theorem shows that
(c, MSTSmall(k)) implies k-connectivity as a consequence from the properties
of LMST c

G and Lemma 4.

Theorem 6. The local graph trait (c, MSTSmall(k)) implies k-connectivity for
simply connected labeled unit disk graphs.

Proof. Let G be any simply connected labeled unit disk graph. Therefore G has
a unique minimum spanning tree MSTG. If G satisfies (c, MSTSmall(k)) then
by definition it follows that all the edges in LMST c

G are of length 1/k.
Moreover, since MSTG ⊂ LMST c

G and MSTG is a connected spanning graph
by definition, then clearly LMSTG is also a connected spanning subgraph of G.
Finally since G has a connected spanning subgraph with edges of length at most
1/k (namely LMST c

G), then Lemma 4 implies it is k-connected.

A feature which is shared by graphs that satisfy (c, MSTSmall(k)) and
(c, Small(k)), is that they contain connected spanning subgraphs using edges
of length at most 1/k. This will prove to be a valuable property in Section 6.

A well known folklore result is that amongst all spanning trees, a minimum
spanning tree minimizes the length of the longest edge. Together with the fact
that it is possible to construct a k-connected graph where (c, MSTSmall(k))
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is satisfied, but not (c, Small(k)), we can conclude (c, MSTSmall(k)) is more
accurate than (c, Small(k)) with respect to k-connectivity.

In fact, it turns out that (c, MSTSmall(k)) is satisfied in some k-connected
graphs where (c, K(k)) is not satisfied. However, the converse is also true,
and therefore the accuracy of (c, K(k)) and (c, MSTSmall(k)) for k-connected
graphs is incomparable. Which of them is more useful depends on the charac-
teristics of the graphs being considered.

5 Applying Local Graph Traits to Distributed Algorithms

In the first part of the section we warm up by designing a simple constant time
distributed algorithm that tests for k-connectivity using local graph traits. In the
later subsection we consider a more elaborate application that leverages the local
graph trait (c, MSTSmall(k)) together with a connectivity preserving algorithm
presented in [4], to yield a k-connectivity preserving algorithm for mobile ad hoc
networks.

5.1 Testing for k-Connectivity

Consider the following constant time procedure (which is the algorithmic coun-
terpart of the local trait (c, K(k))). The process running at each node u ∈ V (G)
executes a full information protocol for c + 1 communication rounds to recover
the c-neighborhood of u. At the end of the c + 1 rounds, the process outputs
true if Gc(u) is k-connected and outputs false otherwise.

Since (c, K(k)) implies k-connectivity, then if this procedure outputs true at
every node, then G is guaranteed k-connected. On the other hand, if G is not
k-connected we are guaranteed that at least one process will output false. We
remark that if G is disconnected, not all processes are guaranteed to output
false, just a non empty subset of them, which is enough for most of applications.

This procedure can be used by itself as a constant time distributed algorithm
to test for k-connectivity, or can be used as a building block to solve other
problems. For example in a distributed topology control algorithm, to guaran-
tee k-connectivity, every process could run the procedure repeatedly with an
increasing power assignment, stopping when the procedure outputs true. If the
maximum transmission power is sufficiently large and the graph has at least k+1
nodes, this algorithm eventually stops and guarantees a k-connected graph. How-
ever, it might not stop in the first round when the graph becomes k-connected.
Moreover, the impossibility result on weakly-local graph traits for k-connectivity,
implies that any distributed topology control algorithm that finds an optimal
solution requires at least Ω(n) communication rounds.

In deployments where the unit disk graph assumption holds and nodes are
equipped with GPS, an algorithmic implementation of (c, MSTSmall(k)) re-
quires one less communication round, and might yields better results.
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5.2 Maintaining k-Connectivity of Robot Swarms

We consider a mobile ad hoc network composed of n mobile robots (aka pro-
cesses). When possible we adhere to the standard synchronous network model
described in Section 2. At the beginning of every round, in addition to the usual
operations, each robot can query its own position (perhaps using GPS), query its
intended target position for the next round (via an existing motion planner) and
feed a trajectory to its actuators (for example, a linear trajectory to its intended
target). Actuators are imperfect, and hence a robot following a trajectory may
stop or slow down abruptly and travel only a fraction, possible none, of this
trajectory. We assume the communication graph is a unit disk graph induced by
the positions of the robots. For simplicity, we will assume that at the beginning
of every round each robot knows its neighbors in the communication graph and
their positions, this could be implemented by exchanging hello messages tagged
with the position of the robots. This model closely resembles the FSYNC model
introduced in [12], with some subtle yet important differences.

Since robots (as opposed to regular processes) can move and change their
position from round to round, we extend our notation to account for this. Let
p(v, r) denote the position of the robot occupying node v at round r. Similarly,
let G(r) = (V, E(r)) denote the communication graph induced at round r, and
let N [u, r]t be the closed t-neighbors of node u at round r. We use N [u, r] as
short hand notation for the closed 1-neighbors of u at round r.

In previous work [2, 4] we addressed the problem of maintaining connectiv-
ity (k = 1) for robot swarms. Specifically, we described a distributed algorithm
that modifies an existing short-term motion plan to ensure connectivity. The
algorithm uses only local information, is stateless, does not require a fixed set of
neighbors and does not make any assumptions on the current or goal configura-
tions. Moreover, the algorithm is robust to the robots’ speed changes; if robots
travel any fraction of the trajectory (perhaps none) at any speed, connectivity is
preserved. The progress of the algorithm is defined as the total distance traveled
by all robots (summing over all the robots) towards their intended destinations.
Let d be the minimal distance each robot intends to move and let R be the
communication radius. Assuming that the target configuration of the robots is
connected and the motion does not require breaking any cycles, we proved that
the algorithm guarantees that the progress is at least min(d, R). Furthermore,
we exhibited a class of configurations where no local algorithm can do better
than this bound, and hence under these conditions the bound is tight and the
algorithm is asymptotically optimal. Finally we proved that all robots get ε-
close to their target within O(D0/R+n2/ε) rounds where D0 is the total initial
distance to the targets and n is the number of robots [4].

Starting with a graph which satisfies the local trait (c, MSTSmall(k)), we
describe how to extend the ConnServ algorithm presented in [4] to enforce
the local graph trait (c, MSTSmall(k)) throughout the execution and preserve
k-connectivity with similar robustness, safety and progress conditions as the
original algorithm.
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Connectivity Maintenance Algorithm. The ConnServ algorithm [4] is
parametrized by a communication radius R ∈ R and a neighbor filtering func-
tion f : 2V → 2V which receives a closed set of neighbors N [u, r] and returns a
filtered set of neighbors N ′(u, r) ⊆ N [u, r]. These parameters should satisfy the
following properties: P1. Any two robots which are at distance R or less can re-
liably exchange a message (i.e. are connected). P2. Filtered neighbors are within
distance R (∀v ∈ N [u, r], ‖p(v) − p(v)‖ ≤ R). P3. Preserving connectivity with
the filtered neighbors is sufficient to preserve global graph connectivity. Formally,
if G(r) = (V, E(r)) is connected, then the spanning subgraph H = (V, F ) where
F := {{u, v} | u ∈ N ′(v, r) ∧ v ∈ N ′(u, r)} is also connected.

When run by a robot at node u at round r, the input of the ConnServ

algorithm is a tuple (pu, Nu, tu), where pu = p(u, r), Nu = N [u, r] and tu is the
intended target position at round r. The output of the ConnServ algorithm is
a new target position t∗u. For any parameters which satisfy the properties above,
the ConnServ algorithm was shown to provide the following guarantees [4].

Safety Theorem. If u ∈ N ′(v, r) and v ∈ N ′(u, r), then |t∗u − t∗v| ≤ R

In other words, if by the beginning of the next round every robot moves to the
target position output by ConnServ , if G(r) was connected then G(r+1) will
also be connected (this follows from the safety theorem and P3).

However, it would be unreasonable to expect all robots to be able to reach the
target output by the algorithm by the beginning of the next round. For example,
a robot might encounter an obstacle, it might stop or slow down suddenly due
to hardware malfunction, or it might be to slow to complete the trajectory. This
motivates the next result, which shows that the graph will remain connected
even if robots stop or slow down unexpectedly.

Robustness Theorem. If u ∈ N ′(v, r) and v ∈ N ′(u, r), then for any point p
in the linear trajectory from p(u, r) to t∗u, and any point q in the linear trajectory
from p(v, r) to t∗v, it holds that ‖p − q‖ ≤ R.
For the algorithm to be useful, it needs to provide a progress guarantee that
relates the input and the output target, since a trivial algorithm which forces
all robots to remain stationary vacuously satisfies the safety and robustness
theorems. On the other hand, it is not possible to guarantee progress uncondi-
tionally, since for example, if two robots want to move in opposite directions as
to disconnect the graph, guaranteeing any progress would violate the safety and
robustness theorems. Therefore, the progress guarantees must be conditioned
on the assumption that the intended targets do not require breaking any edges
needed for connectivity.

We define the progress of a robot as the distance advanced to the input target
assuming it moves to the output target. If at round r a robot at node u has an
input target tu, let du = ‖p(u, r) − tu‖ be the distance from its current position
to its input target. If the algorithm ConnServ outputs a target t∗u the progress
is defined as δu = du − ‖tu − t∗u‖

The progress of the system is then the sum of the progress of each robot, that
is

∑
u∈V δu. In the following d is defined as d = minu∈V du.
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Progress Theorem. In any configuration where the intended targets do not
require breaking edges needed for connectivity, the progress is at least min(d, R).

Finally, assuming the robots have the same target for sufficiently many rounds,
the following result provides an upper bound on the number of rounds required
for every robot to reach their target. Here D0 =

∑
u∈V du is the sum of the

distances from each robot to its intended long term target.

Termination Theorem. In any configuration where the intended targets do
not require breaking edges needed for connectivity, every robot gets ε-close to its
target within O(D0/R + n2/ε) rounds.

k-Connectivity Maintenance. We will argue that if the starting configu-
ration satisfies (c, MSTSmall(k)), it is possible to choose parameters for the
ConnServ algorithm so that it preserves k-connectivity.

Concretely, we let R = Rmin/k where Rmin is the smallest distance such that
any two robots within distance Rmin can exchange messages reliably. For the
filtering function f , let S ⊆ N [u, r] be the subset of vertices which are at distance
less than or equal to Rmin/k from u. We let f return every vertex v such that
v ∈ E(MSTS), in other words the neighbors of u in the minimum spanning tree
involving only vertices in S (i.e. at distance at most Rmin/k from u). Finally, we
assume the communication graph is initially k-connected, specifically we assume
G(0) satisfies the local graph trait (c, MSTSmall(k)).

It is clear that the parameters described satisfy P1 and P2, but it is not obvi-
ous that P3 is satisfied or that the resulting algorithm preserves k-connectivity.

Theorem 7. ∀r ≥ 0, f satisfies P3 and G(r) is k-connected.

Proof. Let H(r) be the graph that results from removing all edges of G(r) which
are of length more than Rmin/k. We make the following claim (proved later).

Claim. H(r) is a connected spanning subgraph of G(r).

Then it follows that H(r) satisfies (c, MSTSmall(k)) and hence H(r) (and there-
fore G(r)) are k-connected. Finally since the filtered neighbors returned by f
define a local minimum spanning tree over H(r), f satisfies P3.

Proof. [of Claim] We proceed by induction on r. The base case is trivial since
G(0) satisfies (c, MSTSmall(k)). Suppose by inductive hypothesis that H(r) is a
connected spanning subgraph of G(r). Let LMST (r) be the connected spanning
subgraph of H(r) described by the filtered neighbors returned by f .

By the safety and robustness theorems, all the edges of LMST (r) are present
in G(r+1) with length at most R = Rmin/k. Therefore the subgraph H(r+1) ⊆
G(r + 1) also contains LMST (r), and thus it is a connected spanning subgraph
of G(r + 1).

Therefore, since the parameters used in the ConnServ algorithm satisfy P1, P2
and P3, the safety and robustness theorems imply the graph is k-connected at
every time instant even if the robots slow down or stop unexpectedly and only
execute some fraction of the trajectory.
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Finally, observe that the progress theorem implies that at every round the
progress of the system is at least min(d, Rmin/k). Similarly the termination the-
orem implies the system gets ε-close to its targets within O(D0k/Rmin + n2/ε).
Thus, we conclude that leveraging local graph traits allows us to preserve k-
connectivity at a cost which is linear in k when compared to preserving simple
connectivity.
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Abstract. We exploit the game-theoretic ideas presented in [12] to
study the vertex coloring problem in a distributed setting. The vertices
of the graph are seen as players in a suitably defined strategic game,
where each player has to choose some color, and the payoff of a vertex is
the total number of players that have chosen the same color as its own.
We extend here the results of [12] by showing that, if any subset of non-
neighboring vertices perform a selfish step (i.e., change their colors in or-
der to increase their payoffs) in parallel, then a (Nash equilibrium) proper
coloring, using a number of colors within several known upper bounds
on the chromatic number, can still be reached in polynomial time. We
also present an implementation of the distributed algorithm in wireless
networks of tiny devices and evaluate the performance in simulated and
experimental environments. The performance analysis indicates that it
is the first practically implementable distributed algorithm.

1 Introduction

One of the central optimization problems in Computer Science is the problem
of vertex coloring of graphs, i.e., the problem of assigning a color to each vertex
of the graph so that no pair of adjacent vertices gets the same color (i.e., so
that the coloring is proper) and so that the total number of distinct colors used
is minimized. In this work, we deal with the problem of vertex coloring in a
distributed setting, with a focus on distributed implementations applicable to
Wireless Sensor Networks (WSNs). Finding a good (with respect to the total
number of colors used) coloring of the nodes of a WSN has many practical
applications: First, colors may be seen as frequencies, so that a proper coloring
of the nodes corresponds to a solution to the frequency assignment problem;
Furthermore, a coloring of a WSN actually partitions its nodes into subsets
(each corresponding to a color), such that no communication link exists between
any pair of nodes in the same subset, and such a partition might be useful when
designing sleep/awake protocols in order to save energy or providing secure group
communication.
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The challenge of designing vertex coloring algorithms applicable in WSNs lies
in both the intrinsic difficulty of the original problem of vertex coloring and
the particularities of WSNs. More specifically, the global optimum of vertex
coloring is NP-hard [7], and the best polynomial time approximation algorithm
achieves an approximation ratio of O(n(log logn)2/(logn)3) [6] (n being the
number of vertices). In the distributed setting of wireless sensor networks the
problem of vertex coloring has been studied before; the randomized algorithm
presented in [10] needs, with high probability, O(Δ log n) time and uses O(Δ)
colors, where n and Δ are the number of nodes in the network and the maximum
degree, respectively. This algorithm requires knowledge of a linear bound on n
and Δ. This result was improved in [14], where the coloring problem is solved
in O(Δ + logΔ logn) time, given an estimate of n and Δ, and O(Δ + log2 n)
without knowledge of Δ, while it needs Δ + 1 colors.

In this work, our objective is to find a (suboptimal, inevitably) proper color-
ing, that at least guarantees some bounded maximum total number of colors used.
Towards this direction, we try to exploit the ideas presented in [12]: the vertices
of the graph are seen as players in a suitably defined strategic game, where each
player has to choose some color, and the payoff of a player is the total number
of players that have chosen the same color as his own (unless some neighbor has
also chosen the same color, in which case the payoff is 0). The vertices are al-
lowed to perform, sequentially, selfish steps, i.e., change their colors in order to
increase their payoffs, and in [12] it was shown that this selfish improvement se-
quence converges, in polynomial time, into a pure Nash equilibrium of the game,
which is actually a proper coloring of the vertices of the graph that uses a total
number of colors satisfying all known upper bounds on the chromatic number of
the graph (that is, the minimum number of colors needed to color the graph).

Our contribution. Our objective here is to exploit the game-theoretic ideas pre-
sented in [12] so as to deploy an efficient, in terms of both time complexity and
number of colors used, distributed algorithm for vertex coloring. The algorithm
of [12] is in fact a local search method (the vertices perform local changes, by
moving to color classes of higher cardinality, until no further local moves are pos-
sible); however, it relies on several assumptions that obstruct its straightforward
implementation in a distributed setting. In particular, it requires that global
information about the cardinalities of all color classes is at any time available to
each vertex, and that only a single vertex at each time is allowed to perform a
local move. Here, we propose an implementation of the algorithm that deals with
these issues, thus enabling its application to distributed settings, while preserv-
ing both the efficiency (in terms of time complexity) and the quality (in terms
of number of colors used) of the coloring produced.

The solution we propose relies on an extension of the results of [12] that we give
here. Namely, we raise the requirement that only one vertex at a time is allowed
to perform a selfish step in order to guarantee polynomial time convergence into
a Nash equilibrium coloring. In particular, we show that if any subset of non-
neighboring vertices perform a selfish step in parallel, then a Nash equilibrium
coloring satisfying the bounds given in [12] can still be reached in polynomial time.
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This potentiality of parallelization of selfish steps allows us to derive a dis-
tributed implementation of the game-theoretic vertex coloring algorithm, which
computes, in polynomial time, a proper coloring of the vertices of a graph using
at most

k ≤ min
{

Δ2(G) + 1 ,
n + ω(G)

2
, n − α(G) + 1 ,

1 +
√
1 + 8m
2

,

χ(G) + 1
2

+

√
m − (χ(G) − 1)(χ(G) + 1)

4

}

distinct colors, where n is the number of vertices, m is the number of edges,
Δ2(G) is the maximum degree of a vertex which is connected to a vertex of equal
or higher degree, and ω(G), α(G) and χ(G) are the clique number, independence
number and chromatic number, respectively, of the graph under consideration.
To the best of our knowledge, this is the first distributed, polynomial-time imple-
mentation of a vertex coloring algorithm that achieves all the above bounds. Our
algorithm requires O(n) memory to maintain the local lists with the cardinali-
ties of all color classes. Also, the protocol does not require any initial knowledge
on the network (e.g., network size, average node degree etc.) but gathers all
necessary information dynamically.

The paper is organized as follows. The next section introduces the definitions
and notations needed to solve the problem of vertex coloring. We then present
the game-theoretic approach for vertex coloring based on local search. In Section
3 we first prove that a “parallelization” of the local search approach is still
possible. Based on this fact, we then present a distributed implementation of
the algorithm that converges fast into a pure Nash equilibrium, and thus into
a proper coloring. We also describe a self-stabilizing version of the distributed
algorithm that recovers from transient faults regardless of its initial state. Section
4 presents an implementation of the distributed algorithm in wireless networks
of tiny devices and evaluates the performance in simulated and experimental
environments. The performance analysis indicates that our distributed algorithm
is the first practically implementable for real networks.

2 Background

Definitions and notation. For a finite set A we denote by |A| the cardinality
of A. For a positive integer n ∈ N let [n] = {1, . . . , n}. Denote G = (V, E) a
simple, undirected graph with vertex (node) set V and set of edges E. For a
vertex v ∈ V denote N(v) = {u ∈ V : {u, v} ∈ E} the set of its neighbors,
and let deg(v) = |N(v)| denote its degree. Let Δ(G) = maxv∈V deg(v) be the
maximum degree of G. Let

Δ2(G) = max
u∈V

max
v∈N(u):d(v)≤d(u)

deg(v)

be the maximum degree that a vertex v can have, subject to the condition
that v is adjacent to at least one vertex of degree no less than deg(v). Clearly,
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Δ2(G) ≤ Δ(G). Let diam(G) be the diameter of G, i.e., the maximum length
of a shortest path between any pair of vertices of G. Let ω(G) and α(G) denote
the clique number and independence number of G, i.e. the number of vertices in
a maximum clique and a maximum independent set of G.

The Vertex Coloring problem. One of the central optimization problems
in Computer Science is the problem of vertex coloring of graphs: given a graph
G = (V, E) of n vertices, assign a color to each vertex of G so that no pair
of adjacent vertices gets the same color (i.e., so that the coloring is proper)
and so that the total number of distinct colors used is minimized. The chromatic
number of G, denoted by χ(G), is the global optimum of vertex coloring, i.e., the
minimum number of colors needed to properly color the vertices of G. The vertex
coloring problem is known to be NP-hard [7], and the chromatic number cannot
be approximated to within Ω(n1−ε) for any constant ε > 0, unless NP ⊆ co-RP
[5].

The game-theoretic approach. Panagopoulou and Spirakis [12] proposed an
efficient vertex coloring algorithm that is based on local search: Starting with an
arbitrary proper vertex coloring (e.g. the trivial proper coloring where each ver-
tex is assigned a unique color), each vertex (one at a time) is allowed to move to
another color class of higher cardinality, until no further local moves are possible.
This local search method is illustrated in [12] via a game-theoretic analysis, be-
cause of the natural correspondence of the local optima of the proposed method
to the pure Nash equilibria of a suitably defined strategic game.

In particular, given a finite, simple, undirected graph G = (V, E) with |V | = n
vertices, the graph coloring game Γ (G) is defined as the game in strategic form
where the set of players is the set of vertices V , and the action set of each vertex
is a set of n colors [n] = {1, . . . , n} (for simplicity, we represent each color by
an integer). A configuration or pure strategy profile c = (cv)v∈V ∈ [n]n is a
combination of actions, one for each vertex. That is, cv is the color chosen by
vertex v. For a configuration c ∈ [c]n and a color x ∈ [n], we denote by nx(c)
the number of vertices that are colored x in c, i.e. nx(c) = |{v ∈ V : cv = x}|.
The payoff that vertex v ∈ V receives in the configuration c ∈ [n]n is

λv(c) =
{
0 if ∃u ∈ N(v) : cu = cv

ncv(c) else .

In other words, given a proper coloring, the payoff of a vertex equals the cardi-
nality of the color class it belongs to.

A pure Nash equilibrium [11] is a configuration c ∈ [n]n such that no vertex can
increase its payoff by unilaterally deviating. Let (x, c−v) denote the configuration
resulting from c if vertex v chooses color x while all the remaining vertices pre-
serve their colors. Then, a configuration c ∈ [n]n of the graph coloring game Γ (G)
is a pure Nash equilibrium if, for all vertices v ∈ V , λv(x, c−v) ≤ λv(c) ∀x ∈ [n].
We also say that c is a Nash equilibrium coloring.

A vertex v ∈ V is unsatisfied in the configuration c ∈ [n]n if there exists a
color x 	= cv such that λv(x, c−v) > λv(c); else we say that v is satisfied. Clearly,
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a configuration c is a Nash equilibrium coloring if and only if all vertices are
satisfied in c. For an unsatisfied vertex v ∈ V in the configuration c, we say that
v performs a selfish step if v unilaterally deviates to some color x 	= cv such that
λv(x, c−v) > λv(c).

The analysis of the graph coloring game given in [12] illustrates that Γ (G)
has always pure Nash equilibria, and that each pure equilibrium is a proper
coloring of G. Furthermore, there exists a pure equilibrium that corresponds to
an optimum coloring. It is also shown that any pure Nash equilibrium of the game
is a proper coloring of G that uses a number of colors, k, bounded above by all the
general known to us upper bounds on the chromatic number of G. In particular, k
is proved to be bounded above by Δ2(G)+1, n+ω(G)

2 , n−α(G)+1, and 1+
√

1+8m
2 .

In [4], it was further shown that k ≤ χ(G)+1
2 +

√
m − (χ(G)−1)(χ(G)+1)

4 . Therefore,
the number of colors used by any pure Nash equilibrium of Γ (G) is at most

k ≤ min
{

Δ2(G) + 1 ,
n + ω(G)

2
, n − α(G) + 1 ,

1 +
√
1 + 8m
2

,

χ(G) + 1
2

+

√
m − (χ(G) − 1)(χ(G) + 1)

4

}
. (1)

Most interestingly, it is proven that any sequence of selfish steps, when started
with a proper (e.g., the trivial) coloring, always reaches a pure Nash equilibrium
in O(n · α(G)) selfish steps. The proof follows from the existence of a potential
function [9], which is a function defined over the set of pure strategy profiles of
a game, and has the property that the difference of the function’s value after
a player deviates equals the corresponding difference of that player’s payoff. In
particular, [12] showed that the graph coloring game Γ (G) possesses a potential
function defined as

Φ(c) =
1
2

∑
x∈[n]

(nx(c))2 ∀c ∈ [n]n ,

with the property that, for any proper coloring c ∈ [n]n, for any vertex v ∈ V ,
and for any color x ∈ [n], it holds that

λv(x, c−v) − λv(c) = Φ(x, c−v) − Φ(c) .

Therefore, if any vertex v performs a selfish step then the value of Φ is increased
as much as the payoff of v is increased. Since the payoff of v is increased by
at least 1 and the value of Φ is bounded above by n·α(G)

2 , it follows that after
at most n·α(G)

2 selfish steps there will be no vertex that can improve its payoff
(because Φ will have reached a local maximum, which is no more than the global
maximum, which is no more than (n ·α(G))/2), so a pure Nash equilibrium will
have been reached. This implies the following simple centralized algorithm A
that computes, in polynomial time, a pure Nash equilibrium of Γ (G) – and thus
a proper coloring of G, satisfying Inequality 1:
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Algorithm A
Input: Graph G with vertex set V = {v1, . . . , vn}
Output: A pure Nash equilibrium c = (cv1 , . . . , cvn) ∈ [n]n of Γ (G)
Initialization: for i = 1 to n do cvi = i
repeat
find an unsatisfied vertex v ∈ V and a color x ∈ [n]

such that λv(x, c−v) > λv(c)
set cv = x

until all vertices are satisfied

3 Distributed Vertex Coloring as a Game

The algorithm A presented in the previous section is actually a local search
algorithm: starting with an arbitrary proper vertex coloring (such as the trivial
proper coloring), we allow each vertex (one at a time) to move to another color
class of higher cardinality, until no further local moves are possible. Our aim is
to apply this local search method in a distributed environment, so that we end
up with a distributed algorithm that computes a proper coloring of the vertices
of a graph using a total number of colors satisfying Inequality 1.

However, there are two main challenges arising in implementing A in a dis-
tributed environment: First, A requires mutual exclusion: only one node at a
time can perform a selfish step in order to guarantee convergence into a pure
Nash equilibrium coloring. Second, A requires global knowledge: each node needs
to be aware of the cardinalities of each color class in order to decide whether to
perform a selfish step or not.

In this section, we deal with both the above challenges. First, we prove that a
“parallelization” of algorithmA is possible, in the sense that even if we allow mul-
tiple non-neighboring unsatisfied vertices to perform simultaneous selfish steps,
then (a slight modification of) the algorithm still converges into a pure Nash
equilibrium, and thus into a proper coloring satisfying the bounds of Inequality
1. Then, we propose a method to deal with the global information problem (pos-
sibly at the expense of parallelization) so that, after performing a selfish step, a
node needs not to inform all the other nodes about the change, but only a small
subset of them. Finally, we discuss the ability of our distributed algorithm to
self-stabilize.

In the following, we assume that each node has, and is aware of, a unique
identification number (id).

3.1 Simultaneous Execution of Selfish Steps

We study whether polynomial time convergence into a Nash equilibrium coloring
can still be guaranteed if vertices are allowed to perform selfish steps simultane-
ously. We still assume however that all vertices have access to global information
about the cardinality of each color class. Note that, in order to avoid non-proper
colorings, we should not allow any pair of neighboring vertices change their colors
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simultaneously. Towards this direction, we allow an unsatisfied vertex to perform
a selfish step only if it has the maximum id among the unsatisfied vertices in the
neighborhood.

More specifically, given a configuration c ∈ [n]n, we say that the vertices
perform a joint selfish step if:

1. Each vertex that is unsatisfied in c sends a message to inform its neighbors.
2. If an unsatisfied vertex v does not receive any message from a vertex of

higher id, then it performs a selfish step, i.e., it changes its color to c′v such
that λv(c′v, c−v) > λv(c).

Clearly, in a joint selfish step, possibly more than one vertices will change their
color simultaneously. We will examine whether a sequence of joint selfish steps
converges into a Nash equilibrium coloring.

Given a configuration c ∈ [n]n, we define vector Λ(c) as the n-vector whose
ith entry, Λi(c), is the cardinality of the ith largest color class. We say that Λ(c)
is lexicographically greater than Λ(c′) if Λi(c) > Λi(c′) for some i ∈ [n] and, if
i > 1, then Λj(c) = Λj(c′) for all j ∈ {1, . . . , i}. If Λi(c) = Λi(c′) for all i ∈ [n],
then Λ(c) is lexicographically equal to Λ(c′).

Lemma 1. Let c ∈ [n]n be any configuration and let c′ ∈ [n]n be a configuration
that results from c after a joint selfish step. Then, Λ(c) can not be lexicograph-
ically greater than Λ(c′).

Proof. Let Y ⊆ [n] be the subset of colors that correspond to the color classes
of maximum cardinality in c. If the cardinality of such a maximum color class
increases, then Λ1(c) < Λ1(c′) and we are done.

Assume now that the cardinality of each maximum color class in c does not
increase. Observe that a vertex colored x in c for some x ∈ Y gets maximum
payoff, so it could improve it only by moving to a color class of equal (and thus
maximum, as well) cardinality. But since the cardinality of each maximum color
class in c does not increase, it must be the case that all these cardinalities remain
the same. Therefore Λi(c) = Λi(c′) for all i ∈ [k]. This further implies that no
vertex colored x′ /∈ Y in c chooses color x ∈ Y in c′.

Similar arguments apply for the cardinalities of the second to maximum color
classes in c and so on, to conclude that either (i) Λ(c′) is lexicographically greater
than Λ(c′) or (ii) Λ(c′) is lexicographically equal to Λ(c′) and each vertex that
performs a selfish step moves to a color class of equal cardinality in c. �

Lemma 2. Let c ∈ [n]n be any configuration and let c′ ∈ [n]n be a configuration
that results from c after a joint selfish step. If Λ(c) is lexicographically greater
than Λ(c′), then Φ(c) > Φ(c′).

Proof. Clearly, for any configuration c′′, Φ(c′′) =
∑n

i=1 Λ2
i (c

′′). The proof follows
from the fact that Λ(c′) has at least the same number of zero entries as Λ(c′),
since no vertex has an incentive to choose a color that is not used by any other
vertex. �
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In order to avoid loops of the joint selfish steps sequence, we have to deal with
the case where Λ(c′) is lexicographically equal to Λ(c), and hence Φ(c′) = Φ(c).
To do so, we propose the probabilistic joint selfish step, given a configuration
c ∈ [n]n:

1. The vertices perform a joint selfish step, resulting in configuration c′.
2. Each vertex which performed a selfish step checks if Φ(c) = Φ(c′). If yes, it

changes back to its previous color with probability 1/2 and repeats this step.

We show that the probabilistic joint selfish steps sequence converges into a pure
Nash equilibrium in polynomial time, with high probability:

Theorem 1. With high probability, the probabilistic joint selfish step sequence
converges in polynomial time into a Nash equilibrium coloring.

Proof. Assume Φ(c′) = Φ(c) after a joint selfish step. Then Lemma 1 and Lemma
2 imply that at least k ≥ 2 vertices with different colors but with the same payoff
in c permuted their colors. If some, but not all, of these vertices return to their
original colors, then some payoffs will increase, yielding to a lexicographically
greater configuration c′′, and thus Φ(c′′) > Φ(c). The probability that this does
not happen is 2 · 2−k (equal to the probability that all change their colors or all
preserve their colors). So the probability that Step 2 of the probabilistic joint
selfish steps sequence is repeated t times is 2−t−k+1. �

3.2 Distributing Global Information

The (probabilistic) joint selfish steps sequence converges to a Nash equilibrium
coloring provided that all vertices know the cardinalities of all color classes. In
order to achieve this in a distributed environment, we let each vertex maintain a
local list with the cardinalities of all color classes. Initially, each vertex is assumed
to have a unique color (its id) and all these cardinalities equal to 1. An arbitrary
vertex, which we call the Judge initiates the coloring procedure. It performs a
selfish step, if possible, and sends the original list of cardinalities to its neighbors,
who become its children. Then these nodes perform a joint selfish step, if possible,
and also pass the original list to their neighbors. If a vertex has no parent and
receives the list from some vertex, it sets itself as the child of that vertex.

This way, a tree (whose root is the Judge) is constructed, and when the
leaves are reached, all unsatisfied vertices will have actually performed a joint
selfish step, based on the same global information about the cardinalities of color
classes. This is assured by the fact that no matter if a vertex performs a selfish
step or not, it sends to its children the list of cardinalities that was originally
sent by the Judge.

Now, the information about the color changes has to be sent back to the
Judge: starting by the leaves, each child sends the information about its new
color to its parent and so on, until the root of the tree gets informed about
the new cardinalities of all color classes. Then the root sends the updated list
to its children and the above procedure is repeated until the Judge gets the
same list in two successive steps. In order to avoid loops, if the root observes that
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the list has changed but the value of the potential function Φ did not change, a
message is forwarded to ask the vertices to change back to their original color
with probability 1/2.

The above procedure, combined with the results of the previous subsection,
guarantees that after at most O(n · a(G)) phases (each phase starting with the
Judge forwarding the list of cardinalities and ending with the Judge receiving
the information about all color changes that have occurred), a proper coloring
of G = (V, E) will be produced, using a number of colors satisfying the bounds
of Inequality 1. To the best of our knowledge, this is the first distributed im-
plementation of a coloring algorithm that achieves all these bounds. We also
note that the complexity bound of O(n · a(G)) is rather strict, in the sense that
it assumes that no more than o(1) vertices perform a selfish step in the same
phase. In Section 4 we provide experimental evidence that, in practice, the num-
ber of vertices performing a joint selfish step is large, and therefore the coloring
procedure converges faster than the O(n · a(G)) bound suggests.

3.3 Self-stabilization

We now present a self-stabilizing version of the distributed vertex coloring algo-
rithm; that is, starting from an arbitrary state (coloring of vertices), it guarantees
to converge to a legitimate state (proper coloring) in finite number of steps and
to remain in a legitimate set of states thereafter. Essentially the self-stabilizing
version of our distributed algorithm can recover from transient faults.

In the sequel we consider that the system can start in any configuration.
That is, the color of each vertex can be corrupted. Note that we do not make
any assumption on the bound of the corrupted nodes. In the worst case all the
nodes in the system may start in a corrupted configuration. However, we assume
that the unique identification numbers of the vertices are stored in a read-only
memory segment that cannot be affected by transient faults.

A central modification to the algorithm is to force vertices to periodically
broadcast their color and id to their neighbors. By doing so they can detect (a)
whether the coloring is not proper and (b) if a vertex is unsatisfied. This simple
mechanism allows the vertices to detect if a transient fault has occurred or if the
algorithm was initiated from an arbitrary state. The periodic broadcasting also
guarantees that after all vertices have been satisfied the algorithm will not ter-
minate; it will continue to check whether a selfish step can be taken indefinitely.
Therefore, when a transient failure occurs, the procedure will be re-initiated.

When two or more vertices detect that their color is not proper (i.e., the same
color is used by another vertex) they locally resolve the conflict by changing
their color. Each vertex chooses as a new color the maximum color used in the
neighborhood plus its own id (recall that for simplicity colors are represented
as integers). This will increase the number of colors used in the neighborhood
but will result in a proper coloring in O(1) steps. After selecting the new colors,
the vertices notify the Judge about the conflict resolution by using the tree
structure. In order to guarantee that the tree structure will be functional despite



112 I. Chatzigiannakis et al.

the transient failures, we replace the tree construction algorithm used in the
previous section with a self-stabilizing tree structure (e.g., see [1]).

When the Judge receives notification of a conflict resolution, it waits for a
O(diam(G)) period (where diam(G) is a predefined upper bound of the diameter
of G) so that any other conflict is propagated through the tree structure. Then
the Judge broadcasts a request message to all vertices to report their color as if
they have changed their color during the previous phase. This allows the Judge
to recount the color classes and reconstruct the necessary global information.
Finally when this reconstruction phase is complete, the new list of colors is
broadcast to the vertices to locally check if they wish to conduct a selfish step
or not.

The above discussion clearly implies the following:

Lemma 3. The self-stabilizing version of the distributed vertex coloring algo-
rithm assures that:

1. Starting from an arbitrary configuration, eventually all vertices are properly
colored.

2. Starting from an arbitrary configuration, the Judge is informed about the
color of each vertex.

3. Starting from an arbitrary configuration, eventually all vertices are informed
about the cardinality of each color class.

4. Starting from an arbitrary configuration, the algorithm returns to a proper
configuration ( convergence).

5. Starting from a proper configuration, the algorithm preserves the proper con-
figuration ( closure).

4 Algorithm Engineering

Most of the times in Computer Science, researchers tend to design an algorithm
in an abstract way. This happens because an algorithm should be able to be
used in many different situations and it is up to the developer to decide the
way it should be turned into code for a real system. Almost every time the
developer finds many limitations in the ways she can operate within the given
hardware and software specifications. These problems are further augmented
when implementing algorithms for wireless sensor networks due to the extremely
limited resources and also due to the heterogeneous nature (both in terms of
hardware and software). Algorithm development for such networks is complex as
it unites the challenges of distributed applications and embedded programming.

As a starting point we implemented a centralized version that follows closely
the initial design of [12]. We call this algorithm JColoring (noted as JC in the
figures). The algorithm was implemented in a real environment that actually
exchanged network messages containing protocol payload. The implementation
of this centralized version required two sub-protocols that enabled (i) only a
single vertex to perform a selfish step each time (mutual exclusion) and (ii) all
vertices to know the cardinalities of all color classes (global knowledge).
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In this centralized version, the Judge coordinates the graph coloring game
by communicating with each vertex sequentially. The Judge sends a message
to the next vertex in the sequence containing the list of color classes along
with their cardinalities. Upon receiving this message, the vertex has to decide
whether to take a selfish step or not and informs the Judge about its new color.
Communication between vertices is implemented using the well-established ad-
hoc routing protocol TORA [13]. The particular protocol was selected because
of its simplicity and ability to operate adequately in wireless settings.

As expected, the evaluation of this version indicated the very poor scala-
bility of the system due to the single point of coordination. It also revealed
another major practical problem: in the hardware platform we used to test the
algorithm, the available payload of each packet was about 120 bytes. There-
fore in a single message we were able to store about 30 colors. So when the
number of vertices grew beyond this number, the messages containing the list
with the color cardinalities were fragmented in two (or more) packets thus
drastically decreasing the available bandwidth and leading to longer execution
times.

After achieving a satisfactory state of the centralized version, the next step
was to implement our distributed algorithm as described in Section 3. We call this
algorithm PJColoring (noted as PJC in the figures). With the data structures and
the message fragmentation mechanism in place we proceeded by implementing (i)
the simultaneous execution of selfish steps (thus leveraging the mutual exclusion
limitation) and (ii) the distributed global information provisioning. Essentially
the tree construction algorithm used for efficiently broadcasting the distributed
global information replaced the TORA routing algorithm.

The evaluation of our distributed algorithm revealed yet another interesting
Algorithm Engineering issue. The convergecast operation for collecting the infor-
mation about the color changes resulted in a high number of message exchanges.
To resolve this issue we implemented an aggregation mechanism. Each parent,
after collecting the new colors of its children, it summarizes the information and
propagates a single message to its parent. This aggregation is repeated by each
parent until the root of the tree is reached. In many cases this technique led
to a reduction of up to 50% of message exchanges. In the figures we note this
improved version of the algorithm as PJC (with aggregation).

Successful Algorithm Engineering for tiny artifacts requires the validation and
evaluation of algorithms in experiments on real networked embedded devices.
We ported our distributed algorithm into the real hardware platform as a final
step of validation and evaluation of its performance. This immediately revealed a
serious problem related to wireless communication, that of medium congestion.
The implementation of the simultaneous execution produced a large number of
concurrent exchanges and thus message collisions that were unresolved by the
MAC. To reduce the collisions we imposed a short random delay before each
transmission; yet, some messages were still not delivered properly. This was
inevitable due to the non-deterministic behavior of the wireless medium. To
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completely overcome these problems we implemented the self-stabilizing version
of the algorithm leading to a system that was fully operational in real wireless
sensor network deployments.

4.1 Implementation Details

We decided to implement our algorithms using Wiselib [2]: a code library, that
allows implementations to be OS-independent. It is implemented based on C++
and templates, but without virtual inheritance and exceptions. Algorithm im-
plementations can be recompiled for several platforms and firmwares, without
the need to change the code. Wiselib can interface with systems implemented
using C (Contiki), C++ (iSense), and nesC (TinyOS).

Furthermore, an important feature of Wiselib is the already implemented algo-
rithms and data structures. Since different kind of hardware uses different ways
to store data (due to memory alignment, inability to support dynamic memory,
etc.), it is important to use these safe types as much as possible since they have
been tested before on most hardware platforms. As of mid 2010, the Wiselib
includes about 40 Open Source implementations of standard algorithms, and is
scheduled to grow to 150-200 algorithms by the end of 2011. We use Wiselib data
structure to implement the maps for counting the cardinalities of the colors and
the implementation of TORA algorithm.

Finally, Wiselib also runs on the simulator Shawn [8], hereby easing the tran-
sition from simulation to actual devices. This feature allows us to validate the
faithfulness of our implementation and also get results concerning the quality of
our algorithms without time consuming deployment procedures and harsh de-
bugging environments. Shawn allows repeatability of simulations in an easy way
by using only a single configuration file. It provides many options such as packet
loss, radius of communication, ways of communicating and even mobility in an
abstract way, without needing to provide specific code for every hange.

4.2 Performance Evaluation: Simulations

We start by presenting the results of the validation and performance evaluation
based on simulated executions of our implementation in the Shawn environment.
Using different types of networks and experimenting with the different parame-
ters, we were able to identify that parameters that influence the correctness and
performance of our protocol. The first type of network topologies (called “Fixed
Diameter”), deploys n = [25, 250] vertices in a way such that the network diame-
ter remains constant as n increases: the resulting networks have diam(G) = 6 and
the average vertex degree (which we call “density”) is 2 ≤ avgDeg(G) ≤ 40. The
second type of network topologies (called “Fixed Density”), deploys n = [10, 230]
in a way such that the average vertex degree remains constant as n increases:
the resulting networks have 3 ≤ diam(G) ≤ 15 and avgDeg(G) = 12.

A very important performance metric is the number of colors used. Figure 1
depicts the number of colors used for each set of topologies. As expected, as
the density of the network increases (i.e., the average vertex degree), the chro-
matic number increases and hence the number of colors used by our algorithm.
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Fig. 1. Colors used for both types of network topologies

Fig. 2. Time complexity for both types of network topologies

When the density remains more or less constant, the chromatic number remains
constant, as also does the number of colors used by the algorithm.

The next algorithm property that we evaluate is the time complexity. Figure 2
depicts the number of rounds required to reach a Nash equilibrium. It is evident
that as the number of vertices increases, so does the number of rounds required.
However, the “Fixed Diameter” topologies seem to be harder to address. This
is caused due to the fact that only few vertices can change color in each step of
the algorithm in dense environments. As a result the algorithm takes more steps
until it reaches an equilibrium. These topologies require about twice the number
of rounds than the “Fixed Density” topologies. In these figures we have not
included the results for the JColoring algorithm as they cannot be fit properly:
in all cases the resulting rounds are about 20 times more than the PJColoring
algorithm and thus even for n = 50 it becomes totally impractical.

In the sequel we examine the communication complexity of the algorithms.
Figure 3 shows the number of message exchanges for each set of topologies consid-
ered. The behavior of the algorithms are similar to that observed in the previous
figure: (a) as the number of vertices increases, so does the number of messages
exchanged, (b) the “Fixed Diameter” topologies seem to be harder to address
and (c) the JColoring exchanges much greater messages than the PJColoring algo-
rithms. In these figures it is clear that for n > 50 the JColoring algorithm becomes
impractical, while PJColoring performs well for all the topologies examined.
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Fig. 3. Communication complexity for both types of network topologies

Fig. 4. Colors used as the simulation evolves for PJColoring (with aggregation) for
different type of topologies of fixed number of vertices (n = 150)

We conduct a final set of simulated executions to evaluate the ability of PJ-
Coloring (with aggregation) to perform parallel selfish steps. Figure 4 depicts the
number of colors used as the network evolves over time. We present the re-
sults for both types of topologies when n = 150. We observe that in both cases
the algorithm reaches the equilibrium fast, although in the denser topology the
progress is slower. It is evident that the algorithm succeeds in parallelizing the
process of selfish coloring.

4.3 Performance Evaluation: Experiments

Although simulations enable both verification and performance evaluation of
protocols, they do not take into account read-world effects that may change
their behavior. Also, in physical deployment protocols must operate within the
given hardware and software specifications (i.e., memory and message payload
constrains). Thus we continue the evaluation of the PJColoring (with aggregation)
algorithm in our experimental testbed that consists of iSense sensor nodes with
a 32 Bit RISC Controller running at 16 MHz, with 96 KB RAM and 128 KB
Flash and an IEEE 802.15.4 compliant wireless radio interface. All nodes come
with a permanent energy source allowing for an arbitrary duty cycle. Nodes
are equipped with a multitude of sensors measuring light, temperature, humidity,
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acceleration, magnetic-field levels and barometric pressure. For more details on
the installation and technical aspects of the experimental testbed see [3]. In the
sequel we consider that each node represents a single vertex.

The first set of experiments was conducted in networks where all the nodes
were within communication range of each other, thus forming a clique. In Tab. 1
we can see the breakdown of the total execution time of the protocol. The selec-
tion of this topology is twofold. Firstly, to determine the effect of network density
in the execution of our protocol (i.e., collisions, etc.). We observed that up to
networks sizes of eight nodes the results were always correct (i.e., messages were
delivered properly), while in larger networks message loses always occurred forc-
ing the non-stabilizing version of the protocol to produce not consistent results.
Secondly, to determine the real execution time of a protocol phase. In these
topologies the protocol terminates immediately after the initial assignment of
colors, i.e., after checking that every available color is taken by a neighbor. For
all topologies considered the execution time of a single phase is about 130ms.

Table 1. Real execution times of PJColoring (with aggregation) for clique topology

Nodes Tree Construction PJColoring Total

5 745 ms 132 ms 877 ms
6 739 ms 133 ms 872 ms
7 754 ms 141 ms 895 ms
8 752 ms 137 ms 889 ms

The second set of experiments was conducted in networks where the nodes
where positioned in a line. Tab. 2 lists the total execution time of the protocol.
This topology produces networks of increasing diameter thus requiring more time
to construct the broadcast tree and complete the convergecast operation. Based
on the results, the initialization of the two processes requires about 750ms, and
then for each further hop an additional time of about 300ms was required. The
initialization time of the two processes is also confirmed by the previous set of
experiments that used single-hop networks (see Tab. 1). In these topologies, we
observe that the time required by the selfish steps is also increasing with the
network size. It seems that for each additional hop an additional time of 600ms
is required, or, based on the previous set of experiments, about 4 protocol phases.
By carefully examining the particular topology, it is evident that the addition
of a new node forces all other nodes to take additional selfish steps until a Nash
equilibrium is reached.

The performance evaluation we conducted both in simulated and experimen-
tal environments indicates interesting aspects of the vertex coloring problem. It
also indicates that our solution successfully raises the limitation of [12] where
only one vertex at a time is allowed to perform a selfish step in order to guarantee
polynomial time convergence into a Nash equilibrium coloring. Our distributed
algorithm allows non-neighboring vertices to perform a selfish step in parallel,
thus drastically reducing time complexity. The Algorithm Engineering process
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Table 2. Real execution times of PJColoring (with aggregation) for line topology

Nodes Tree Construction PJColoring Total

2 736 ms 138 ms 1389 ms
3 1032 ms 728 ms 1760 ms
4 1298 ms 1324 ms 2622 ms
5 1756 ms 2011 ms 3767 ms

led to a practical algorithm that can be executed in real networks and, inter-
estingly, further reduces communication complexity while preserving the time
complexity and the number of colors used.
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Abstract. We study the problem of mapping an unknown environment
represented as an unlabelled undirected graph. A robot (or automaton)
starting at a single vertex of the graph G has to traverse the graph and
return to its starting point building a map of the graph in the process.
We are interested in the cost of achieving this task (whenever possible)
in terms of the number of edge traversal made by the robot. Another
optimization criteria is to minimize the amount of information that the
robot has to carry when moving from node to node in the graph.

We present efficient algorithms for solving map construction using a
robot that is not allowed to mark any vertex of the graph, assuming the
knowledge of only an upper bound on the size of the graph. We also
give universal algorithms (independent of the size of the graph) for map
construction when only the starting location of the robot is marked. Our
solutions apply the technique of universal exploration sequences to solve
the map construction problem under various constraints. We also show
how the solution can be adapted to solve other problems such as the
gathering of two identical robots dispersed in an unknown graph.

Keywords: Graph Exploration, Map Construction, Anonymous Net-
works, Mobile Robot, Universal Exploration Sequences.

1 Introduction

We consider the problem of exploration and mapping of an unknown unlabelled
environment by a mobile entity which we call the agent. The environment is
usually modelled as a graph where the agent is initially located at any arbitrary
node of the graph. The objective of the agent is to build a map of the graph. The
graph is anonymous i.e. the nodes of the graph do not have any identifying labels
and thus, all nodes of the same degree look identical to the agent. However,
the edges incident to a node are locally ordered with a port numbering that
allows the agent to deterministically choose an edge and traverse along it. Note
that if the agent is allowed to somehow mark the nodes that it visits (such
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that it can recognize them on future visits), then a simple depth-first search
suffices to solve the problem. When the agents do not have the capability to
mark nodes it is sometimes difficult to solve the map construction problem. A
known technique for traversing unlabelled graphs is to use the so-called universal
traversal sequences [18]. A universal traversal sequence is a sequence of port
numbers such that if the agent traverses the edges of any graph G according to
this sequence it is guaranteed to visit all nodes of G irrespective of the topology
of G and the port-numbering on G. However, such sequences tend to be very
large and thus it is perhaps not the most efficient method of traversing a graph.
Moreover, traversing the graph does not necessarily imply that the agent can
build a map. In certain cases, when the graph has enough symmetry, it may not
be possible to build a map of the complete graph. In this paper, we concerned
about the time complexity (or number of moves made by the agent) for building
a map in those cases when it is possible to do so. An efficient method for map
construction is useful as a basic step for an autonomous agent in solving other
tasks in unknown unlabelled environments.

One application of the map construction problem is the task of gathering
together two autonomous agents that are dispersed in a unknown environment.
This is called the rendezvous problem. When the two dispersed entities can not
communicate from a distance, solving rendezvous is essential for an exchange
of information or for achieving even the simplest form of coordination between
the mobile entities. The rendezvous problem belongs to the class of symmetry-
breaking problems (e.g. leader election is another such problem) that are central
to study of computability in distributed systems. The importance of the problem
is evident from the large volume of literature [5,10,13,16,19,11,26] dedicated to
solving the problem under various conditions and restrictions.

Even if the agents succeed in building a map of the graph, it may not always
be possible to rendezvous. For instance, if the agents are in a ring of even size and
they start from diametrically opposite nodes in the ring, then no deterministic
algorithm is guaranteed to solve rendezvous in this case. However, if the agents
start from any other location (except being opposite to each other) then it is
possible to solve rendezvous, as soon as we allow the agents to mark their starting
locations [19]. In this paper, we solve rendezvous in anonymous graphs assuming
that the starting locations of the agents are marked. However, the agents are not
allowed to mark any other vertices during their traversal. Further, the agents
may not have any prior information about the graph not even the size of the
graph.

Related Work: Previous studies on graph exploration have mostly concen-
trated on labelled graphs (or digraphs), with an emphasis on minimizing the cost
of exploration in terms of either the number of moves (edge traversals) or the
amount of memory used by the agent. Panaite and Pelc [21] gave an algorithm
for exploring labelled undirected graphs that uses m+O(n) moves, improving on
the standard Depth-First Search algorithm that takes 2m moves. On the other
hand, Deng and Papadimitrou [12] as well as Albers and Henzinger [1] studied
the exploration of strongly connected directed graphs under the same conditions.



Constructing a Map of an Anonymous Graph 121

There have also been some studies on the efficiency of exploration when some
prior information about the graph is available with the agent—for instance, when
the agent possesses an unlabelled isomorphic map of the graph [22].

Given an unknown, unlabelled (sometime called anonymous) graph, it is not
always possible to construct an exact map of the graph (due to the presence
of symmetries). There exists characterizations of anonymous graphs where it is
possible to solve the problem [25].

For exploring arbitrary anonymous graphs, various methods of marking nodes
have been used by different authors. Bender et al. [7] proposed the method of
dropping a pebble on a node to mark it and showed that any strongly connected
directed graph can be explored using just one pebble, if the size of the graph
is known and using O(log logn) pebbles, otherwise. Dudek et al. [14] used a set
of distinct markers to explore unlabeled undirected graphs. In [15] the authors
focus on minimizing the amount of memory used by the agents for exploration
(however, they do not require the agents to construct a map of the graph).
Others have studied the exploration of mazes or labyrinths, which have been
shown [8] to be easier to explore than graphs, due to the availability of orientation
information.

In the absence of any device for marking nodes, unknown anonymous graphs
can still be explored using universal traversal/exploration sequences [18]. Aleliu-
nas et al. [2] showed that there exists universal traversal sequences of polynomial
size for all connected graphs of a given size n. A recent result by Reingold [23]
showed that universal exploration sequences can be constructed in logarithmic
space. Such sequences have been used for solving the rendezvous problem [10,24]
though only in the synchronous setting.

The problems of rendezvous and leader election has been extensively studied
as symmetry-breaking problems in unknown anonymous graphs, starting from
the work of Angluin [4]. Characterizations of the solvable instances for leader
election in message passing networks of processors, have been provided by Boldi
et al. [9] and by Yamashita and Kameda [25] among others. Recently, Fusco
and Pelc [17] have shown that leader election can be solved if each process has a
memory of O(log n) bits, matching the lower bound given by Ando et al. [3]. The
rendezvous problem has been solved under various different assumptions such as
distinct labels for the agents, sense of direction information, or prior knowledge of
topology (e.g.[5,13,16,19,26]). In the most general setting of unknown anonymous
graph with identical agents, the problem was recently solved in [10], though only
for synchronous agents. In the asynchronous case, an almost complete solution
using distinct labels has been provided in [11]. The idea of solving rendezvous
by marking the starting locations with tokens was first proposed by Baston and
Gal [6].

Our Results: We study the complexity of map construction in anonymous
graphs by a mobile agent that is not allowed to write on the nodes of the
graph. We present several polynomial time deterministic algorithms for map
construction.
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In the model where no vertices of the graph are marked, for the task of
map construction to be feasible, the agents must know some bound n on the
number of nodes of the graph and some bound d ≤ n on its degree. The folklore
algorithm based on view construction [25] requires O(dn) moves by the agent.
The recent paper [10] provides more efficient map construction algorithms: a
polynomial-time approach (with very high exponent) using small memory, and
an O(n10d5 log2 n)-time algorithm using O(n9d4 log2 n) memory. Herein we put
forward two improved algorithms which offer different time/memory tradeoffs:

– a simple algorithm running in O(n6d2 logn) time, using O(n6d2 logn) mem-
ory (Prop. 6),

– a more advanced algorithm running in O(n6d3 logn) time, using
O(n3d2 logn log d) memory (Prop. 7).

In the model in which the agent has no prior knowledge of graph parameters
(such as n or d), in order to make the problem feasible, we assume that the
starting location of the agent is specially marked. In this case, we show how to
guess the value of n and thus solve map construction in polynomial time using
an optimal memory (Θ(log n)) algorithm (Prop. 8). We also present another
algorithm which requires slightly more agent memory (O(nd log n)) but is much
more efficient in terms of time steps, requiring only O(n3d) steps (Prop. 9).
Finally, in this model we also show how our algorithms can be extended to
solve the rendezvous of two mobile agents in anonymous graphs with marked
homebases even in the asynchronous case (Prop. 11).

2 Model, Definitions and Known Results

2.1 Our Model

The environment is represented by a simple undirected connected graph G =
(V (G), E(G)). The agent starts from a single node of the graph, called the home-
base. The agent can traverse any edge of the graph incident to its current location.
At each node v ∈ V (G), the edges incident to v are distinguishable to any agent
arriving at v. There is a bijective function

λv : {(v, u) ∈ E(G) : u ∈ V (G)} → {0, 1, 2, . . . d(v) − 1}

which assigns unique labels (port-numbers) to the edges incident at node v
(where d(v) is the degree of v). An agent at a node u can choose to leave through
any incident edge e = (u, v) simply by specifying the port number λu(u, v) of
the edge. On reaching the node v, the agent knows the port number λv(v, u) of
the edge through which it arrived. The ith successor of a node u, denoted by
succ(u, i) is the node v reached by taking port number i from node u (where
0 ≤ i < deg(u)). For any edge (u, v), we use λ(u, v) to denote the ordered pair of
labels (λu(u, v),λv(u, v)). A path in G is a sequence of nodes P = (u0, u1, . . . , uk)
such that (uj, uj+1) ∈ E(G), ∀j, 0 ≤ j < k and the label sequence of path P is
Λ(P ) = (λ(u0, u1), . . . λ(uk−1, uk)).
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The nodes of G do not have visible identities by which a visiting agent can
identify them. In other words, nodes having the same degree look identical to
the agents. The agents have computing and storage capabilities. When an agent
moves from one node to another, it carries with its own local memory which
consists of two parts. One part is a write-only stable storage which is used to
write the output (we assume it is large enough to store a map of G). The other
part is the agent’s private memory which is used for remembering the information
obtained in previous moves. Our objective is to minimize the private memory
of the agent i.e. the amount of information it needs to remember while moving
along the graph. When the agent is located at any node of the graph, it has
access to a read-write memory which can be used for local computation (but
not for storing information). We are not concerned about the cost of performing
local computations at node. We are interested in minimizing the total number
of edge traversals (steps) made by the agent in achieving its tasks.

2.2 Universal Exploration Sequences

In this paper, we will use the notion of a Universal Exploration Sequence (UXS)
[18]. Let (a1, a2, . . . , ak) be a sequence of integers. An application of this sequence
to a graphG at node u is the sequence of nodes (u0, . . . , uk+1) obtained as follows:
u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ k, ui+1 = succ(ui, (p+ai) mod d(ui)),
where p is the port number at ui corresponding to the edge {ui−1, ui}. A sequence
(a1, a2, . . . , ak) whose application to a graph G at any node u contains all nodes
of this graph is called a UXS for this graph. A UXS for a class G of graphs is a
UXS for all graphs in this class.

For all feasible pairs of N and D, let U(N, D) be a UXS for the class GN,D of
all graphs with at most N nodes and maximum degree at most D. The following
important result, based on a reduction from Kouckỳ [18], is due to Reingold [23].

Proposition 1 ([23]). For any positive integer n, there exists a UXS Y (n) =
(a1, a2, . . . , aM ) for the class Gn of all graphs with at most n nodes, such that

– M is polynomial in n,
– for any i ≤ M , the integer ai can be constructed using O(log n) bits of

memory.

The above result implies that a (usually non-simple) path (u0, . . . , uM+1) travers-
ing all nodes can be computed (node by node) in memory O(log n), for any graph
with at most n nodes. Moreover, logarithmic memory suffices to walk back and
forth on this path: to walk forward at node ui, port (p + ai) mod d(ui) should
be computed when coming by port p, to walk backward, port (p−ai) mod d(ui)
should be computed.

Proposition 2 ([2]). For any positive integers n, d, d < n, there exists a uni-
versal exploration sequence of length O(n3d2 log n) for the family of all graphs
with at most n nodes and maximum degree at most d.
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Note that the exploration sequences in the proposition above are not con-
structible in logarithmic memory, while the log-space constructible sequences
from Proposition 1 are much longer (though still polynomial in n).

2.3 The Map Construction Problem

As mentioned before, the problem of reconstructing the topology of a network of
processors has been studied before, notably in [25]. That paper introduced the
concept of the view of a node in a graph, which we restate below:

Definition 1 ([25]). The view V G,λ(v) of node v, in a graph G with port-
numbering λ, is an infinite edge-labelled rooted tree T , whose root represents the
node v and for each neighboring node ui of v, there is a vertex xi in T and an
edge from the root to xi with the same labels as the edge from v to ui in G. The
subtree of T rooted at xi is again the view V G,λ(ui) of the node ui.

We shall drop the subscript λ when it is obvious from the context.

Proposition 3 ([20]). Given any simple graph G with n nodes and a port-
numbering λ, two vertices u, u′ ∈ V (G) have the same view (i.e. V G(u) =
V G(u′)) if and only if the views truncated to a depth of n are equal (i.e.
V n

G(u) = V n
G(u′)).

If two nodes of a graph have identical views then these nodes are said to be
equivalent to each other. If the nodes of the graph are grouped into classes such
that two nodes are put in the same class if and only if they have the same view,
then such a classification is an equivalence partition of V (G), where all classes
have the same size. Based on this partitioning, the quotient graph of G is defined
as follows.

Definition 2 ([25]). Given an undirected connected graph G with port-
numbering λ, the quotient graph H is an edge-labelled multigraph such that
there exists a homomorphism ϕ from G to H satisfying the following: (i) For
any two nodes u and v, ϕ(u) = ϕ(v) if and only if V G(u) = V G(v), (ii) For
each edge (u, v) of G, there is an edge (ϕ(u), ϕ(v)) in H labelled with λ(u, v) and
(iii) H has no other edges.

If two graphs G1 and G2 have identical quotient graph then it is not possible to
distinguish between them by just traversing them (without making any marks
on the graph). Any deterministic algorithm executed on G1 would produce the
same output as the same deterministic algorithm executed on G2. Thus, for such
graphs, it is not possible to reconstruct an exact copy of the graph. In fact the
maximum information that can be obtained by an agent traversing the graph,
is represented by the quotient graph.

Definition 3. We define the Map Construction problem as follows. Given an
undirected connected graph G with port-numbering λ, an agent starting at any
node of G has to build the (edge-labelled) multigraph H such that H is the quo-
tient graph of (G, λ).
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Note that if G has no symmetry (i.e. when all nodes have distinct views) then
the quotient graph of G is G itself. Thus for these cases, the maps constructed
by our algorithms would be the exact copy of G.

Finally we present a well known impossibility result for the rendezvous problem.

Proposition 4 ([9,25]). Given a graph G with a port-numbering λ, the deter-
ministic rendezvous of two agents is impossible if the starting location of the two
agents have the same view.
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Fig. 1. (a) An example graph containing two agents initially at the marked nodes. The
view of each agent is shown in (b) while the quotient graph is shown in (c).

3 Map Construction with Knowledge of Upper Bound

In this section, we assume that the agent has prior knowledge of n, the size of
the graph. In fact, in all our algorithms, the value of n can be replaced by any
upper bound N ≥ n.

A polynomial-time approach for solving the map construction problem can be
obtained by applying a subroutine from [10], which, for any given starting node,
computes an integer in the range [1, n] which is a unique identifier of the node
in the quotient graph. In this way, the map exploration problem can be solved
by performing a DFS exploration of the graph and computing the identifiers of
the endpoints of all the traversed edges. The claim below follows.

Proposition 5 ([10]). The map construction problem can be solved in time
O(nd · T (n, d)), where T (n, d) is the (polynomial) time complexity of computing
the identifier of a node in a graph of order n and degree d.

Using the routines from [10], the operation of computing the identifier is
extremely time consuming. When the agent is equipped with only O(log n)
memory, we have T (n, d) = O(|U(n2, d)|2|U(n, d)|2), where the used exploration
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sequences need to be logarithmically constructible. It is possible to implement
the signature detection routines in T (n, d) = O(|U(n2, d)||U(n, d)|) steps, but
using memory of the same order as the number of steps. Thus, for the best
known upper bounds on the length of exploration sequences, this means that
the map is constructed in O(n10d5 log2 n) time and O(n9d4 log2 n) memory.

In this section we put forward two algorithms which solve the map construc-
tion problem more efficiently. The first relies on the intriguing property that the
traversal of a sufficiently long exploration sequence is sufficient to identify the
graph. The second uses UXS-s in a completely different way.

3.1 Using a UXS as a Sequence for Graph Identification

Suppose that a fixed sequence Y = (a1, a2, . . . , aM ) applied at a node u = u0

of graph G results in the traversal of G visiting the nodes (u0, u1, . . . , uM+1).
The signature of node u is the sequence of edge labels which are traversed by
an application of the sequence in graph G starting at node u: S(Y,G)(u) =
(λ(u0, u1), . . . , λ(uM , uM+1)).

The results in [10] provide a constructive criterion for distinguishing the views
of two vertices of a graph G based on the signatures of vertices. In fact, by a
minor modification of their proof, we obtain a method for distinguishing the
views of vertices in any two (not necessarily identical) graphs, and we have the
following result.

Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with at most n
nodes. Then, for any nodes u1 ∈ V1, u2 ∈ V2, we have V G1(u1) 	= V G2(u2), if
and only if S(Y,G1)(u1) 	= S(Y,G2)(u2), where Y = U(2n2, d).

Proposition 6. There exists an algorithm for map construction which runs in
|U(2n2, d)| steps and requires O(|U(2n2, d)|) memory.

Proof. The algorithm proceeds by performing a traversal of the sequence Y =
U(2n2, d), starting from the agent’s homebase u. The agent records successive
labels encountered during its traversal, thus computing the signature S(Y,G)(u).
Based on this, the agent computes its quotient graph (using local computations
only), as the smallest graph G′ = (V ′, E′) with distinguished node u′ ∈ V ′ such
that S(Y,G′)(u′) = S(Y,G)(u). Such a graph must exist, since the tested property
is by Lemma 1 equivalent to the condition V G(u) = V G′(u′), which is satisfied
by a non-empty family of graphs, having a unique element which is smallest in
terms of the number of nodes. This element is precisely the quotient graph of G,
which completes the proof. �

3.2 An Algorithm with Efficient Identification of Nodes

We now present an algorithm to solve map construction more efficiently. Our al-
gorithm uses ideas that are usually used to minimize a deterministic automaton.

Given a graph G and node u of G and a sequence of edge-labels Y =
((p1, q1), (p2, q2), . . . , (pj , qj)), we say that Y is accepted from u if there exists a
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path P = (u = u0, u1, . . . , uj) in G such that Λ(P ) = Y , i.e. for each i, 1 ≤ i ≤ j,
(pi, qi) = λ(ui−1, ui). For any k > 0, two vertices u, v that have the same view
up to depth k are said to be k-equivalent; we denote it by u ∼k v. The k-class
of u is the set of all vertices that are k-equivalent to u and this set is denoted
by [u]k. Given any two distinct k-classes C, C′, a (C, C′)-distinguishing path is a
sequence of edge-labels YC,C′ = ((p1, q1), (p2, q2), . . . , (pj , qj)) of length at most
k such that YC,C′ is accepted from each node u ∈ C and it is not accepted from
any node v ∈ C′. For any two distinct k-classes, there always exists either a
(C, C′)-distinguishing path or a (C′, C)-distinguishing path.

To compute the quotient graph of G, it suffices to visit every node v of G and
identify the n-class of v and each of its neighbors. Recall from Proposition 3 that
[u]n = [u]∞ = [u] for any node u ∈ G. Once these equivalence classes are known,
one can construct the quotient graph H as follows. The vertices of H are the
equivalence classes, and there is an edge labelled by (p, q) from [u] to [v] in H if
and only if, u has a neighbor v′ ∈ [v] such that λu(u, v′) = p and λv(v′, u) = q.

We present an algorithm (See Algorithm 1) that iterates over k, and for each
k, explores the graph and identifies the k-classes of the visited nodes and their
neighborhoods. We use a UXS U(n, d) of size O(n3d2 logn) for the traversal.

For k = 1, it is easy to determine the k-class of any node v by traversing each
edge incident to v and noting the labels. From this information, one can find the
distinguishing paths for any pair of 1-classes. For k ≥ 2, it is possible to identify
the k-classes and the corresponding distinguishing paths (from knowledge of the
k − 1 classes) using the properties below.

Lemma 2. For k ≥ 2, two nodes u and v belong to the same k-class, if and only
if (i) u and v belong to the same 1-class and (ii) for each i, 0 ≤ i ≤ degG(u) =
degG(v), the ith neighbor ui of u and the ith neighbor vi of v belong to the same
(k − 1)-class and λ(u, ui) = λ(v, vi) = (i, j), for some j ≥ 0.

Proposition 7. Algorithm 1 solves map construction for any graph of size n in
O(|U(n, d)| · n3d) moves and requires O(n3 logn + |U(n, d)| log d) memory.

Proof. Let nk be the number of k-classes. During the kth iteration, on each node
v reached by the UXS, for each neighbor w of v, the agent computes the k − 1
class of w. To do so, it needs to check at most nk different paths of length k − 1.
Consequently, for each node v, it needs O(deg(v) · nk · k) moves to compute the
k-class of v. Thus, during the kth iteration of the algorithm, the agent performs
O(d ·nk · k · |U(n, d)|) moves, where d is the maximum degree of the graph. Due
to Proposition 3 there are at most n iterations, and nk ≤ n; so the total number
of moves made by the agent is O(|U(n, d)| · n3d).

At the end of the kth iteration, the agent needs to remember the number nk

of k-classes and nk(nk−1)/2 distinguishing paths, each of length at most k. This
can be stored using O(n3 logn) bits. During the kth iteration, the agent needs
to remember for each v and for each neighbor w of v, the label of the edge (v, w)
and the index of the (k−1)-class of w. For each v, it needs O(deg(v) · log n) bits.
However, the agent does not need to remember the k-class of each vi, but it is
sufficient to identify the distinct k-classes that exist in the graph. Thus, since



128 J. Chalopin, S. Das, and A. Kosowski

there are at most n different k-classes, the agent needs O(n · d · logn) bits of
memory to compute the number of k-classes, and to compute the corresponding
distinguishing paths using the distinguishing paths for the (k − 1)-classes. Since
the agent can store the UXS using O(|U(n, d)| log d) bits, the agent can execute
this algorithm using O(n3 logn + |U(n, d)| log d) memory. �

Algorithm 1. Class-Refinement(n)
Let v1, v2, . . . vt be the sequence of nodes visited by U(n, d), possibly containing
duplicate nodes ;
Apply U(n, d) and for each node vi do

Store the labels of each edge incident to vi;

Compute the number of 1-classes and store a distinguishing path for each pair
of distinct classes ;
k := 2;
repeat

Apply U(n, d) and for each node vi do
for each edge (vi, w) incident to vi do

Compute the (k − 1)-class of w (using the distinguishing paths);
Store the label of (vi, w) and the index of the (k − 1)-class of w ;

Compute the number of k-classes and store a distinguishing path for each
pair of distinct k-classes ;
Increment k;

until the number of k-classes is equal to the number of (k − 1)-classes ;
Compute the quotient graph ;

4 Universal Algorithms for Map Construction

In this section, we assume that the agents do not know the size of the graph G and
we are interested in designing universal algorithms that work for graphs of any
size. Note that it is not possible to perform exploration with stop in unlabelled
graphs of arbitrary size and topology. No terminating algorithm can guarantee
to visit all the nodes of an arbitrary connected graph with unmarked nodes. To
get around this problem, we assume that the starting location of an agent is
specially marked, so that it can be distinguished from the other nodes. This is a
much weaker assumption compared to allowing the agent to have a pebble which
it can drop at any node and later retrieve it. However this weak assumption is
sufficient for obtaining universal algorithms for the map construction problem.

4.1 Guessing the Value of n

The universal exploration sequences used in the previous section used the order
of the graph as input. If this information is not available, we can try to guess a
value of an upper bound N on n. If the assumed value of N is not big enough, we
may not be able to explore the entire graph using U(N, N). The idea is to detect
this fact and increase the value of N and try again. Eventually, we would reach a
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correct upper bound on the size of the graph. In this case, any of the algorithms
from the previous section can be applied to solve the map construction problem.

The first of the proposed approaches is implementable in logarithmic space.

Proposition 8. There exists an algorithm for an agent with a marked homebase
which computes an upper bound N ≥ n on the order of the graph, N ∈ poly(n),
using O(log n) memory.

Proof. Let K be a parameter which is initially set as 1 and doubled in successive
iterations of the algorithm. The idea of the proof is to detect in each iteration
whether the universal exploration sequence U(K, K), starting from the homebase
r of the agent has visited all nodes of the graph G. The considered UXS is
obtained through Reingold’s log-space construction [23]. For the smallest value
of parameter K such that U(2K, 2K) explores G, and U(K, K) does not, we
have that K < n ≤ U(2K, 2K). Hence, by putting N = U(2K, 2K) we obtain
the sought polynomial upper bound on the value of N , since the length of the
considered UXS is polynomial in K.

It remains to describe a subroutine which allows the agent to decide if an
exploration sequence U(K, K), starting from homebase r, explores the entire
graph G. Let S = (r = u0, u1, . . . , uM ) be the sequence of vertices visited during
the traversal, and U = {u0, u1, . . . , uM}. Observe that since G is a connected
graph, the considered traversal does not completely explore G if and only if
there exists a node v ∈ V \ U which is a neighbor of some node u ∈ U . The
algorithm proceeds by visiting the successive vertices (u0, u1, . . . , uM ) of the
exploration sequence. At each node ui, the agent makes a detour to explore its
neighborhood Nbd(ui). The agent visits successive nodes of this neighborhood,
and for each node v ∈ Nbd(ui), v 	= r, executes a subroutine to decide if v ∈ U .
More precisely, when located at v, for successive values of index j = 1, 2, . . . , M ,
the agent performs a test to decide whether v = uj, and then returns to v.
Testing the condition v = uj is performed by traversing a path starting at v
and defined through the sequence of port labels which appear in the traversal
(uj , uj−1, . . . , u0). In other words, we follow a reversal of the j-prefix of the
exploration sequence U(K, K), starting by leaving node v through the port by
which uj is entered in sequence S. Since each node can be uniquely identified by
the sequence of ports appearing on any path leading from the marked homebase
r to this node, we have that v = uj if and only if the traversal of the considered
path terminates at the marked node r.

We finally note that since navigating the robot along sequence U(K, K), or
any prefix or reversal of U(K, K), only requires O(log n) memory (cf. [18]), the
entire algorithm runs using O(log n) memory. �

4.2 More Efficient Map Construction

In this section we consider other methods of exploration rather than using an
UXS. The fact that the starting node r of the agent is marked and can be
distinguished from other nodes, makes it easier to perform an exploration. The
agent can perform a breadth-first traversal building a BFS-tree T rooted at r.
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During the traversal, whenever the agent explores a new edge and reaches a
node v, it checks whether v is same as some node u in its tree. This can be done
by successively applying the label-sequences for the back-paths from each node
u ∈ T to the root r, and checking if one of these hits the marked node. Based on
this idea, we have an algorithm for building a map of G starting from the single
marked homebase in G (See Algorithm 2). The algorithm maintain a BFS-tree
T containing the visited nodes and a data structure called ROOT PATHS that
stores the edge-labelled path P in T from any node v to the homebase r. For
such a stored path P , Start(P ) refers to the node v.

Proposition 9. There exists an algorithm for map construction for an agent with
a marked homebase which runs in O(n3d) steps and uses O(n · d logn) memory.

Proof. First we show that the Map output by algorithm BFS-Tree-Construction
is an exact copy of G and the graph T output by the algorithm is a spanning
tree of G. Note that the sequence of labels on the path from the homebase
r to each node in T is unique. Thus no node appears more than once in T .
Since the algorithm performs a breadth-first search, every node is reached by the
algorithm. If the algorithm does not add a reached node u to T then there is path
from u to r which is identically labelled as an exisitng path P ∈ ROOT PATHS.
Hence by the previous argument u already exists in T . It is easy to see that T
is connected and every edge in T appears in G. Thus, T is a spanning tree of G.
The Map is a super-graph of T and every edge that is traversed by the algorithm
is added to Map (either as tree-edge or as a cross-edge). The algorithm traverses
each edge incident to any node in T and thus all edges of G are traversed by the
algorithm. Thus we conclude that Map is an isomorphic copy of G.

Whenever the algorithm traverses an unexplored edge at a node v, it has to
check at most n paths in ROOT PATH, each of length at most n. This takes
O(n2) steps for each edge and thus O(n3d) steps in total. The agent requires
O(n ·d · log n) memory to store Map and T . The data-structure ROOT PATHS
does not need to be stored explicitly and can be obtained from T . �

4.3 Solving Rendezvous

We now show the above techniques can be used to solve the rendezvous of two dis-
persed agents in an unknown graph. Note the algorithm BFS-Tree-Construction
from the previous section will fail to build a map if there are more than one
agents in the graph. If there are two marked nodes in G and an agent can con-
fuse between these two nodes, as they would look identical to the agent. However,
if we execute the algorithm BFS-Tree-Construction in a graph with two marked
homebases, the following properties would be satisfied.

Lemma 3. If two agents starting from marked homebases in a connected graph
G execute algorithm BFS-Tree-Construction, then the following holds:
(i) The graph T constructed by each agent would be an acyclic connected (not
necessarily spanning) subgraph of G.
(ii) If the maps constructed by the two agents are identical then the views from
the two homebases are identical.
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Algorithm 2. BFS-Tree-Construction
Map := T := {r} ;
Add r to Queue;
ROOT PATHS := ∅;
while Queue is not empty do

Get next node v from Queue and go to v using Map;
while node v has unexplored edges do

Traverse the next unexplored edge e = (v, u);
for each path P ∈ ROOT PATHS do

Apply sequence Λ(P ) at node u ;
if successfully reached a marked node then

Add to Map a cross-edge from v to Start(P );
Update the number of explored edges at the node Start(P );
Return to node v using T and exit Loop;

else
Backtrack to node u ;

if All path sequences failed to reach a marked node then
Add a new node u to T and Map ;
Add edge (v, u) to T and Map ;
Insert u to Queue ;
ROOT PATHS := ROOT PATHS ∪ PathT (u, r) ;
Backtrack to node v ;

Proof. (i) An agent executing Algorithm 2 adds a node u to T only if this node
does not exist in T (If the node u already belongs to T the agent can correctly
detect this fact). Thus result (i) follows from properties of breadth-first search.
(ii) The Map constructed by an agent a consists of a BFS-tree (call it Ta) and
some cross-edges. The tree Ta is a subgraph of G rooted at the homebase ra of
the agent. If the maps of the two agents are identical then, for every cross-edge
(u, v) in the Map of agent a, there is a cross-edge (u′, v′) in the Map of the
other agent (say, agent b) such that either (u, v) and (u′, v′) are actual edges in
G, or (u, v′) and (u′, v) are edges in G. It is possible to build the view of the
agent a using the information contained in its Map (and the fact that the two
Maps are identical). We replace each cross-edge (u, v) in the Map, by an edge
(u, uv) and a new node uv, and plug in a copy of Map re-rooted at v at the new
node uv. We can repeat this recursively from the top level down to any depth N
until there are no cross-edges up to depth N . Finally, for each tree edge (x, y)
where x is the parent of y, we can add an edge (y, yx) and a new node yx and
attach a copy of the current Map re-rooted at x at the new node yx. Using this
process recursively, one can obtain the view of agent a up to any desired depth
N . Hence we conclude that the views of the two agents are identical if and only
if the Maps obtained by Algorithm 2 are identical. �
Due to the above results and Proposition 4, we know that when the maps ob-
tained by the two agents are identical, then rendezvous is not solvable determin-
istically. So, we only need to consider the case when the maps are distinct. In
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this case if we could compare the maps of the agents, we can elect one of the
agents and the agents could rendezvous at the homebase of the elected agent.

The map constructed by an agent is a rooted edge-labelled graph, where the
edge-labelling is a port-numbering on G. There exists a total ordering on the
family of such graphs. In the following we will use a fixed ordering on this family
of graphs and we say M1 < M2, if M1 is distinct from M2 and appears earlier
than M2 in this fixed ordering. We now present an algorithm for rendezvous
of the two agents using the algorithm BFS-Tree-Construction as a basic step,
followed by comparison of the maps (See Algorithm 3).

Algorithm 3. Universal-RDV
(T, Map) := BFS-Tree-Construction();
Let ROOTPATHS be the set of paths obtained during the algorithm;
Traverse Map and for each cross-edge e = (u, v) ∈ Map do

Apply the sequence λ(u, v);
Apply the sequence for the path P ∈ ROOTPATHS that starts at v;
// The agent has reached some marked homebase

(T2, Map2) := BFS-Tree-Construction();
if Map2 < Map then

Traverse tree edges from current node to reach root of Map2;
Terminate;

else if Map2 > Map then
Traverse tree edges from current node to reach node v;
Apply the sequence λ(v, u);
Apply the sequence for the path P ∈ ROOTPATHS that starts at u;
Terminate;

Output: “Rendezvous is not solvable”;

Proposition 10. Algorithm Universal-RDV solves rendezvous of two agents in
any connected graph G with marked homebases, whenever it is deterministically
possible and otherwise detects failure.

Proof. The algorithm constructs a map using Algorithm 2 as a sub-procedure
and then compares it with the map of the other agent. Since the procedure
BFS-Tree-Construction is deterministic, the map of the other agent can be
obtained by simply executing algorithm 2 from the homebase of the other agent.
So we need to show that the algorithm succeeds in reaching the other homebase.
Suppose Ta and Tb be the two trees constructed by the two agents a and b and
ra and rb be the corresponding homebases. Since each node is included in one of
the two trees, there exists a node v in Ta that is adjacent to some node w in Tb.
When agent a explored the neighborhood of v, the neighbor w was not added to
Ta. This implies that there must be a node u ∈ Ta, such the path from u to ra is
identically labelled as the path from w to rb. In other words there is a cross-edge
(v, u) in Mapa that corresponds to an actual edge (v, w) in G. Thus, when
the agent a traverses this cross-edge and follows the path to the root, it will reach
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the homebase of the other agent. Note that the agent does not know which path
leads to the other homebase, so it must repeat this process for each cross-edge
in its Map.

If the maps from the two homebases are distinct, the agents can always agree
on a rendezvous location by comparing the maps. The algorithm fails only if the
two maps are identical. In that case, we know that rendezvous is not solvable
due to Lemma 3 and Proposition 4. �

Proposition 11. Any execution of Algorithm Universal-RDV on a graph of size
n and maximum degree d by two agents, requires O(n4d2) moves by each agent.
Each agent requires a private memory of size O(nd log n).

Proof. If there are n nodes in the graph, then the Map of an agent can contain
at most n nodes. The map construction process requires O(n3d) steps as before.
However the process is repeated for each cross-edge in the Map. Each cross-edge
corresponds to a distinct edge in G, thus there can be at most n · d cross-edges.
Hence the result follows. The agent stores the Map in its memory, which requires
O(nd log n) memory space. �

Note that the algorithm presented here solves rendezvous with detect in the
asynchronous case (in contrast to [10]). In case the agents possess only logarith-
mic memory, we can use the techniques from Section 4.1 to obtain a log-space
algorithm for solving rendezvous with detect, in the same setting.
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Abstract. Existing approaches for verifying self-stabilization with sym-
bolic model checker have relied on the use of weak fairness. We point out
that this approach has limited scalability. To overcome this limitation, we
show that if self-stabilization is possible without fairness then cost of ver-
ifying self-stabilization is substantially lower. The practical meaning of
this observation is if the extra effort required to verify self-stabilization
under weak fairness is not necessary then the state space reached by
model checking of self-stabilizing programs could be substantially larger.
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1 Motivation

Verification of self-stabilizing programs is a challenging task [6, 1], because it
requires us to consider all possible states that could be substantially large [2].
Moreover, due to complex recovery algorithms used in self-stabilizing program,
it is desirable to automate the verification of the self-stabilization property.

One approach for automated verification of self-stabilization is to utilize sym-
bolic model checking, a technique to automatically verify whether a given model
meets a given property while utilizing boolean encoding to represent state space.
Unlike theorem proving approaches (e.g. [7]), the model checking approach does
not require the designer to have considerable experience in logic reasoning and
hence, it is widely used in verifying the distributed algorithms. Furthermore, if
the program does not meet the given property, the process of model checking
typically produces a counterexample. Besides, the problem of state space ex-
plosion can be reduced with the help of symbolic techniques. Thus, symbolic
model checking could be used as a useful tool by the designer while developing
self-stabilizing protocols.

Although the work in [1] has demonstrated feasibility of applying symbolic
model checking for verifying self-stabilizing programs, it also shows that verifi-
cation is feasible only for programs with a small number of processes. To over-
come this limitation, in this paper, we focus on the bottlenecks involved in the
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verification of self-stabilizing programs. In particular, we show that issue of fair-
ness significantly affects the verification performance for symbolic model check-
ing of self-stabilizing programs.

2 Current Results

Existing model checkers have focused on weak fairness in their representation of
fairness. We point out that if self-stabilization is possible under unfair compu-
tation, verification cost can be significantly lower. In fact, we observe from the
following case study where that the cost of verification under weak fairness is
more than 1000 times that of the cost under no fairness. The practical meaning
of this observation is if the extra effort required to verify self-stabilization under
weak fairness is not necessary and hence should be removed, the state space
reached by model checking of self-stabilizing programs could be larger.

2.1 Case Study: Dijkstra’s K-State Program

In this section, we study the K-state token ring program [2]. First, we describe
it in terms of guarded commands. Then, we show its modeling in SMV [5]. And,
finally, we provide verification results under unfair and weakly fair computation.

The K-state program consists of N +1 processes, numbered from 0 to N . The
program topology is a unidirectional ring. Each process p.i, 0 ≤ i ≤ N , has one
variable x.i that denotes the current state value. Each variable has the domain
[0, . . . , K − 1].

The program consists of two types of actions. The first type is for process 0.
This action is enabled when x.0 equals x.N . When p.0 executes its action, it
increments x.0 by 1 in modulo K arithmetic. The second type of action is for
process p.i, i 	= 0. This action is enabled when x.i does not equal to x.(i − 1).
When p.i executes its action, it copies x.(i−1). Thus, the actions are as follows:

K0:: x.0= x.N −→ x.0 = (x.0 + 1) mod K;
Ki:: x.i 	= x.(i − 1) −→ x.i = x.(i − 1);

Remark 1. This program is known to be self-stabilizing if K > N . In subsequent
discussion, we let K = N + 1.

Legitimate states. The state where x values of all processes is 0 is a legitimate
state. In this state, only process 0 is enabled. After process 0 executes, x.0 changes
to 1 and all other x values are still 0. In this state, only process 1 is enabled. Hence,
it can execute and change x.1 to 1. Continuing this further, eventually, we reach
a state where all x values are 1 where process 0 is the only enabled process and
process 0 will increment x.0 to 2. The legitimate states of the K-state program
are equal to all the states reached in such subsequent execution.

Now, we show how we model the K-state program in SMV under unfair
computation. Our illustration is for K=3. For unfair computations, we model
the K-state program in terms of its transitions. Specifically, we can model ac-
tion K0 as a set of transitions (s0, s1) where the guard of K0, (x.0=x.N),
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is true in s0 and s1 is obtained by executing x.0=x.0 + 1 from state s0. In
SMV, the action is written as a Boolean formula. In this formula, x.0, x.1,
x.2 denote the value of the corresponding variable in the source state, i.e.,
s0. And, next(x.0), next (x.1), next(x.2) denote the value of the correspond-
ing variable in the target state, i.e., s1. Thus, action K0 can be written as
(x.0 = x.2) ∧ next(x.0) = x.0 + 1 ∧ next(x.1) = x.1 ∧ next(x.2) = x.2.

To model the fact that the program starts from any initial state, we specify the
initial value of the state as: INIT x.i = {0, 1, 2}. Since SMV utilizes Boolean
representations of such states, the representation of corresponding formula is
true and, hence, is compact. (Additional details about modeling are available
in [9].)

We verified the K-state program for 3 ≤ K ≤ 9 or K = 50. Table 1 gives the
verification time for model checking the K-state program for different values of
K. N/A in this table means the result was not available within an admissible
amount of time (1 hour).

We chose the smaller values of K for comparing the verification time with [1]
where only weak fairness is considered. Specifically, in [1], authors have shown
the feasibility of verification for upto K = 8 . In particular, the time reported
in [1] for K = 8 is 1836.0s whereas the time for the corresponding verification
is 139.1s. Since the underlying tool as well as the program remains the same,
this change is due to improved hardware over last few years. However, what this
result does show is that in spite of the improved hardware, the ability to verify
under weak fairness remains essentially the same. Specifically, if we assume a
reasonable time constraint permissible (e.g., one hour) for verification then the
change in hardware made it possible to achieve verification for K = 9 as opposed
to K = 8.

By contrast, verification of much larger systems is possible if we consider
unfair computations. In particular, it was possible to achieve verification for
K = 50 in less than 1 hour. And, in this case, the corresponding state space
is 1085. By contrast, verification with weak fairness could not complete when
state space was 1011. We also studied other typical cases in the literature of self-
stabilization, including Ghosh’s mutual exclusion program [3] and Hoepman’s
ring-orientation program [4]. The details are discussed in [9]. Our case studies
show that scalability of verifying self-stabilization is unlikely to change with
improved hardware. However, scalability of verifying self-stabilization can be
significantly improved for the case where the program is correct self-stabilizing
without fairness.

Table 1. Verification Results for the K-state program

Execution time(s)

K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=50

unfair 0 0 0 0 0.02 0.03 0.05 0.08 3466.30
weakly-fair 0 0.03 0.63 5.33 34.30 139.10 1276.08 N/A N/A

results reported in [1] 0.1 0.4 4.6 43.5 285.2 1836.0 N/A N/A N/A

approximate state space 101 102 103 104 105 107 108 1010 1084
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2.2 Other Results

For those cases where weak fairness is essential for self-stabilization, we also iden-
tify two approaches: (1) manually assist the model checker to make it more effec-
tive (e.g., decomposition), or (2) verify a slightly different property (or model)
that still provides good assurance (e.g., weak stabilization [8]). We show that
both these approaches improve the scalability significantly in [9].

3 Conclusion

In this paper, we focused on scalable model checking of self-stabilizing algo-
rithms. We point out that while a significant percentage of the literature on
self-stabilization routinely assumes weak fairness, where if an action is contin-
uously enabled, it is guaranteed to be executed, verification under such weak
fairness is not scalable. Our observation was that in many cases, the assumption
of weak fairness is superfluous. And, in these cases, scalable verification of self-
stabilization is possible under unfair computation model. To our knowledge, this
is the first paper that has shown feasibility of verifying the typical self-stabilizing
programs, e.g., K-state program, with large number of processes. Thus, the re-
sults in this paper provide several avenues to designers of self-stabilizing pro-
grams to verify correctness of their programs or to identify bugs. In future, we
intend to provide a simplified tool that will allow designers to specify programs
in guarded commands and utilize verification under different levels of fairness.
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Abstract. We extend our previous work on model-based testing [2]. We
propose a formal framework for black-box conformance testing for distributed
real-time systems. Our framework is based on the model of partially-observable,
non-deterministic timed automata. A given distributed system can be modeled
either as a single timed automaton or a network of timed automata. Our algo-
rithm for generating test suites is based on an on-the-fly determinization of the
specification automaton. Our testing architecture may be either centralized or not.

1 Introduction

We are interested in conformance testing where the aim is to check conformance of
the system under test SUT to a given specification. The SUT is often a black box in
the sense that we do not have knowledge about its internals, thus, can only rely on its
observable input/output behavior. We focus our attention on real-time systems. These
are systems that operate in an environment with strict timing constraints. Distributed
real-time systems correspond to a particular class of real-time systems where the system
in hand is made of several interacting components. In this case, the real-time constraints
to consider may be either local (i.e., constraints on a single component) or global (i.e.,
constraints on the whole system). However, even though a local time constraint may
be defined locally at the level of a single component it will generally depend on the
interaction with other components of the system. This makes testing distributed real-
time systems a harder problem in general.

2 Modelling Distributed Systems Using Timed Automata

We use timed automata [1] with deadlines to model urgency. A timed automaton over
Act is a tuple A = (Q, q0, X, Act, E), where: Q is a finite set of locations; q0 ∈ Q
is the initial location; X is a finite set of clocks; E is a finite set of edges. Each edge
is a tuple (q, q′, ψ, r , d , a), where: q, q′ ∈ Q are the source and destination locations;
ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X , c is an
integer constant and # ∈ {<,≤,=,≥, >}; r ⊆ X is a set of clocks to reset to zero;
d ∈ {lazy, delayable, eager} is the deadline; a ∈ Act is the action.
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Fig. 1. An example of the structure of a real-time distributed system modeled using a network of
(four) timed automata

Specifications are usually built in a compositional way, from many components. This
greatly simplifies modeling. Notice that a compositional specification does not require
the SUT to be implemented following the same structure. Composition is merely a
way of modeling the specification. Thus, a given distributed system can be modeled
either as a single timed automaton or as a network of timed automata. To model our
system, we may associate one timed automaton per component or not. Moreover a
single timed automaton may be used to model the behavior of the composition of several
interacting components. Thus, the total number of timed automata used for modeling
and the number of components of the system to model may not be the same.

For instance, the distributed system shown in Figure 1 consists of four components,
namely C1, C2, C3 and C4. The behavior of component C1 (solid line box) is modeled
by TAIO A1 (dotted box). The behavior of C2 is modeled by TAIO A2‖A′

2 obtained by
the parallel composition of the two TAIO A2 and A′

2. Finally, the subsystem made of
the two components C3 and C4 is modeled by TAIO A3,4. That is we do not dispose,
in this case, of the model of each of the components C3 or C4 separately. Rather, we
dispose of a model of the subsystem they make.

3 Testing Architecture

The role of a tester consists in interacting with the SUT in order to execute the available
test cases and then to observe the response of the SUT due to this excitation. In case
of monitoring, the role of the tester is limited to observe the behavior of the SUT and
to decide whether the generated behavior is accepted or not. In case of on-line testing,
the tester may be also in charge of generating test cases (i.e., deriving them from the
specification) on-the-fly while testing.

A given tester may be global or local. We may either associate only one tester with
the whole system under test (e.g., Figure 2 - (a)) or associate one tester with each com-
ponent of the system (e.g., Figure 2 - (b)). These are two extreme situations for a pos-
sible testing architecture which may be referred to as global-tester based architecture
and local-tester based architecture, respectively.1

1 Also referred to as “centralized” and “decentralized” testing architectures.
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Fig. 2. Different possible testing architectures for distributed real-time systems

In this work, we propose a more general testing architecture named hybrid architec-
ture which allows both extreme situations. That is in our framework, a given component
of the SUT may be connected to more than one testers simultaneously. On the other
hand, a given tester may be associated with one or several components of the SUT as
well. For instance, a possible hybrid testing architecture for the distributed real-time
system of Figure 1 is depicted in Figure 2 - (c). Accordingly, one tester T1 is associated
with component C1; two testers T2 and T ′

2 are associated with C2; and a same tester
T3,4 is associated with the two components C3 and C4.

It is worth noting that the testing architecture proposed for this example is not unique.
Also note that there is no correlation between the way the SUT is modeled and the
testing architecture to adopt. In other terms, it is not necessary to associate a tester with
each TAIO appearing in the model of the SUT. For instance, the number of testers to use
may exceed the number of TAIO appearing in the model and vice versa. In our example,
we have chosen to test component C2 using two testers namely T2 and T ′

2. This may be
justifiable by the fact that in this case we are interested in checking the conformance of
C2 with respect to two distinct and independent properties (one encoded by A2 and the
other one by A′

2 for instance). So each tester has a separate job to achieve independently
from the other tester.

4 Test Generation Principle

We adapt the untimed test generation algorithm of [3]. Roughly speaking, the algorithm
builds a test in the form of a tree. A node in the tree is a set of states S of the specification
and represents the “knowledge” of the tester at the current test state. The algorithm
extends the test by adding successors to a leaf node, as illustrated in Figure 3. For all
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Fig. 3. Generic test-generation scheme

illegal outputs ai the test leads to Fail. For each legal output bi, the test proceeds to node
Si, which is the set of states the specification can be in after emitting bi (and possibly
performing unobservable actions). If there exists an input c which can be accepted by
the specification at some state in S, then the test may decide to emit this input. At any
node, the algorithm may decide to stop the test and label this node as Pass.

5 Conclusion and Future Work

An important contribution in this work was trying to make decorrelation between the
number of components of the system under test, the number of entities used to model
this system and finally the number of testers used for test.

Many extensions are possible. For instance, we need selection techniques -based on
coverage criteria- to guide test generation and to reduce the number of generated tests.
As a future work direction, we are intending to implement our testing methodology in
the context of distributed software architectures.
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Abstract. Providing application processes with strong agreement guarantees de-
spite failures is a fundamental problem of fault-tolerant distributed computing.
Correct processes have not to be “polluted” by the erroneous behavior of faulty
processes. This paper considers the consensus agreement problem in a setting
where some processes can behave arbitrarily (Byzantine behavior). In such a con-
text it is possible that Byzantine processes collude to direct the correct processes
to decide on a “bad” value (a value proposed only by faulty processes).

The paper has several contributions. It presents a family of consensus algo-
rithms in which no bad value is ever decided by correct processes. These pro-
cesses always decide a value they have proposed (and this is always the case
when they all propose the same value) or a default value ⊥. These algorithms are
called intrusion-free consensus algorithms. To that end, each consensus algorithm
is based on an appropriate underlying broadcast algorithm. One of these abstrac-
tions, called validated broadcast is new and allows the design of a resilience-
optimal consensus algorithm (i.e., it copes with up to t < n/3 faulty processes
where n is the total number of processes). All proposed consensus algorithms
assume the underlying system is enriched with additional computational power
provided by a binary Byzantine consensus algorithm. The paper presents also a
resilience-optimal randomized binary consensus algorithm based on the validated
broadcast abstraction. An important feature of all these algorithms lies in the fact
that they are signature-free (and hence particularly efficient).

Keywords: Asynchronous message-passing system, Broadcast abstraction,
Byzantine process, Consensus problem, Fault-tolerance, Intrusion-tolerance, Re-
liable broadcast, Resilience, Signature-free algorithm, Time-free algorithm.

1 Introduction

Asynchronous Byzantine consensus. A process has a Byzantine behavior when it be-
haves arbitrarily. This bad behavior can be intentional (malicious behavior, e.g., due to
intrusion) or simply the result of a transient fault that altered the local state of a pro-
cess, thereby modifying its behavior in an unpredictable way. We are interested here is
solving the consensus problem in asynchronous distributed systems prone to Byzantine
process failures whatever their origin.

In a classical crash failure setting, the consensus problem is defined as follows: ev-
ery process proposes a value and the non-faulty processes have to decide (termination
property) on the same value (agreement property), that has to be one of the proposed
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values (validity). In a Byzantine failure setting, the notion of “value proposed by a faulty
process” is not well-defined. Hence, the validity property is weakened and usually re-
placed by the following: if all non-faulty processes propose the same value, that value
is decided.

Aim of the paper. Unfortunately, the previous validity property leaves open the possi-
bility for the non-faulty processes to decide an arbitrary value when all of them do not
propose the same value, and such a “bad” value can “pollute” their behavior. Hence,
the idea to introduce an additional validity property, that we call non-intrusion, to pre-
vent this type of behavior, namely, a value proposed only by faulty processes cannot
be decided by non-faulty processes. Said in another way, the non-faulty processes are
required to decide the value proposed by one of them (and this has to be always the case
when they all propose the same value), or a default value (denoted ⊥) when they are
not enough to propose the very same value.

The paper presents a family of asynchronous Byzantine multivalued consensus al-
gorithms that satisfy the previous property. We call them intrusion-free consensus al-
gorithms. Of course, as consensus cannot be solved in asynchronous system in which
even only one process may crash [12], the underlying system has to be enriched with
additional computational power in order for the consensus to be solved despite the net
effect of asynchrony and Byzantine failures. We consider here that this additional power
is given by an underlying binary Byzantine consensus algorithm (e.g., [20,27]).

Content of the paper. All the multivalued Byzantine consensus algorithms presented in
the paper are signature-free (no underlying cryptography mechanism is assumed). Each
algorithm relies on an appropriate underlying broadcast operation (that can be imple-
mented despite asynchrony and up to t Byzantine processes, where t is constrained by
a function on the total number n of processes). These broadcast abstractions are the
classical unreliable broadcast (that requires t < n), the “echo” broadcast introduced
in [3] (that we call no-duplicity broadcast), the reliable broadcast introduced in [4],
plus a novel all-to-all broadcast abstraction that can be interesting by itself, that we call
validated broadcast. All these broadcast abstractions (but unreliable broadcast) require
n > 3t to be implemented in an asynchronous system prone to Byzantine failures. They
differ in the number of consecutive communication steps they need.

As we will see, the new validated broadcast abstraction is particularly interesting in
the context of Byzantine processes. This is because it allows a correct process to deliver
a message only if that message has been validated by at least one correct process. Said
differently, validated broadcast eliminates the “noise” introduced by “bad” values (i.e.,
values proposed only by Byzantine processes).

A resulting multivalued Byzantine consensus algorithm is then characterized by its
underlying broadcast algorithm that has a particular cost counted by the number of
communication steps, the size of control additional information messages have to carry,
and their messages. As we will see, the proposed algorithms are highly modular and
exhibit a tradeoff relating their time efficiency (the weaker the underlying broadcast
abstraction, the more efficient the algorithm), and the constraint on t they need (the
weaker the underlying broadcast abstraction, the stronger the constraint on t).
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The paper also presents a binary Byzantine consensus algorithm (which can provide
the previous algorithms with the required additional computing power). This algorithm
is signature-free, requires t < n/3 (and is consequently optimal with respect to re-
silience), and needs six communication steps per round.

Related work. Numerous Asynchronous Byzantine algorithms have been proposed
(e.g., [3,4,5,13,14,16,17,24,26] to cite a few; see also [21] for a short survey). To our
knowledge, the only algorithm that considers the non-intrusion property is the one de-
scribed in [10] (this algorithm requires messages to carry a vector of proposed values
which, as shown here, is not necessary).

The idea to direct the processes to decide ⊥ in “bad scenarios” (i.e., when they
cannot decide a value they have proposed) is different but in the same spirit as the idea
developed in the notion of abortable objects [1]. In that case, the “bad scenarios” are
when there is concurrency among operations. In a concurrency context, operations can
return ⊥, while an operation has always to return a non-trivial result when executed in
a concurrency-free context.

Road map. The paper is made up of 8 sections. Section 2 presents the computation
model, the different broadcast abstractions, and an algorithm implementing the vali-
dated broadcast abstraction. Section 3 presents the intrusion-free Byzantine consensus
problem. Then, Sections 4 and 5 present a suite of intrusion-free multivalued Byzantine
consensus algorithms that differ mainly in the underlying broadcast abstraction they
use. Section 6 discusses the previous algorithms. Section 7 presents a randomized bi-
nary consensus algorithm based on the validated broadcast abstraction. Finally, Section
8 concludes the paper. Due to page limitations, will find all proofs in [19]).

2 Computation System Model

2.1 Base Model

Asynchronous processes. The system is made up of a finite set of n > 1 processes
denoted p1, . . . , pn that communicate by exchanging messages through a communica-
tion network. Each process proceeds to its own speed, which means that processes are
asynchronous.

Multiset. All algorithms presented in the paper use multisets. A multiset (sometimes
also called bag) differs from a set in that it can contain several copies of the same value.
Given a multiset reci, #v(reci) denotes the occurrence number of v in reci.

Failure model. Up to t processes can exhibit a Byzantine behavior. A Byzantine pro-
cess is a process that behaves arbitrarily: it can crash, fail to send or receive messages,
send arbitrary messages, start in an arbitrary state, perform arbitrary state transition,
etc. Moreover, Byzantine processes can collude to “pollute” the computation. Yet, it
is assumed that they do not control the network. This means that they cannot corrupt
the messages sent by non-Byzantine processes, and the schedule of message delivery
is uncorrelated to Byzantine behavior. A process that exhibits a Byzantine behavior is
called faulty. Otherwise, it is correct or non-faulty. Given an execution, C denotes the
set of processes that are correct in that execution.
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Notation. This process model is denoted BZ ASn,t[∅]. In the following, this model
is enriched with a constraint on t and a specific broadcast abstraction. As an example,
BZ ASn,t[n > 5t, WB] is BZ ASn,t[∅] in which fewer than n/5 processes are faulty
and processes communicate using the operations of the WB broadcast abstraction (see
below).

2.2 Asynchronous Communication Network

Base communication network. Each pair of processes is connected by a channel (which
means that when a process receives a message, it knows which is the sender of the
message). Each channel is asynchronous (no bound on message transfer delay, except it
is finite), and reliable (no loss, creation or corruption of messages). Hence, the network
is asynchronous.

A process pi sends a message to a process pj by invoking the primitive “send TAG(m)
to pj”, where TAG is the type of the message and m its content. To simplify the pre-
sentation, it is assumed that a process can send messages to itself. A process receives a
message by executing the primitive “receive()”.

In the following, several types of broadcast operations are defined. They all can be
implemented from the base send and receive primitives, which means that, while they
provide us with distinct communication abstraction levels, they do not provide the pro-
cesses with additional computing power.

When considering the broadcast abstraction XX (where XX stands for WB, NDB, VB
or RB, see below), we say that a process “XX-broadcasts” or “XX-delivers” a message.

Unreliable broadcast. The pair of operations denoted WB broadcast() and WB deliver()
are used to denote a simple unreliable broadcast. WB broadcast TAG(m) is used as a
shortcut for

for each j ∈ {1, . . . , n} send TAG(m) to pj end for,
and WB deliver() is synonym with receive(). This means that a message broadcast by
a correct process is delivered to all correct processes. Differently, while it is assumed
to send the same message to all processes, a faulty process can actually send different
messages to distinct processes and no message to others.

Trivially, an invocation of WB broadcast TAG(m) costs one communication step and
O(n) messages (more precisely, n − 1 messages). This communication abstraction is
called WB, and the corresponding system model is denoted BZ ASn,t[WB].

Remark. When measuring the cost of a broadcast abstraction we do not take into ac-
count the size of the “data message” that is broadcast. This is because this size is in-
dependent of the way the broadcast is implemented. We only consider the size of the
additional control information required by the corresponding broadcast implementation.

No-duplicity broadcast. This communication abstraction, denoted NDB, is defined by
the operations NDB broadcast() and NDB deliver() that provide the processes with a
higher abstraction level than WB. Considering an instance where NDB broadcast() is
invoked by process pi, this broadcast abstraction is defined by the following properties.

– NDB-No-duplicity. No two correct processes NDB-deliver distinct messages from
pi.
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– NDB-Termination. If the sender is correct, all correct processes eventually NDB-
deliver its message.

The corresponding system model is denoted BZ ASn,t[NDB]. Let us observe that,
if the sender pi is faulty, it is possible that some correct processes deliver a message
from pi while others do not. The no duplicity property prevents correct processes from
delivering different messages from a faulty sender. (When considering the less severe
crash failure model, no-duplicity broadcast and weak broadcast are equivalent.)

This broadcast primitive has been defined by Toueg [26]. It can be built on top of
the base send/receive primitives in systems where t < n/3. Such an implementation
uses two consecutive communication steps and O(n2) underlying messages (n − 1 in
the first communication step, and n(n − 1) in the second one). The size of the control
information added to a message is log2 n (sender identity).

Reliable broadcast. The reliable broadcast abstraction, denoted RB, has been proposed
by Bracha [4]. Strictly stronger than the no-duplicity broadcast, it provides processes
with the operations RB broadcast() and RB deliver() defined by the following proper-
ties.

– RB-No-duplicity. No two correct processes RB-deliver distinct messages from pi.
– RB-Termination. If the sender is correct, all correct processes eventually RB-deliver

its message.
– RB-Uniformity. If a correct process RB-delivers a message from pi (possibly faulty)

then all correct processes eventually RB-deliver a message from pi.

It has been proved in [4] that n > 3t is a necessary requirement to implement this
operation. If the sender is correct, only three communication steps and O(n2) messages
whose size is O(log2 n) bits are necessary.

Validated broadcast. This last communication abstraction, denoted VB, is defined by
the operations VB broadcast() and VB deliver() described below. It is a new abstrac-
tion that provides the processes with a communication level higher than no-duplicity
broadcast. More precisely, validated broadcast is an all-to-all reliable broadcast with a
notion of message validation, namely, a message has to be validated by enough pro-
cesses in order to be VB-delivered, otherwise the default value ⊥ is VB-delivered in-
stead of it.

As it is an all-to-all broadcast abstraction, VB requires that all correct processes
invoke VB broadcast(). The idea is that a value v is valid if there is at least one correct
process that broadcasts that value. As no process knows if it is itself correct or faulty
(e.g., a process can correctly execute its algorithm and then crash), a value broadcast by
a process is required to be validated by n− 2t ≥ t+1 processes to be valid. As already
indicated, if a message value is not validated, ⊥ is delivered instead of it.

More precisely, assuming a broadcast instance in which every correct process in-
vokes VB broadcast(), let us consider the invocation of a particular process pi that
invokes VB broadcast(m). VB is defined by the following properties.

– VB-No-duplicity. No two correct processes VB-deliver distinct messages from pi

(the message that is VB-delivered can be a non-⊥ value or the default value ⊥).
– VB-Termination. If the sender is correct and VB-broadcast m, all correct processes

eventually VB-deliver the same message m′ where m′ is m or ⊥.
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– VB-Uniformity. If a correct process VB-delivers a message from pi (possibly
faulty), all correct processes eventually VB-deliver a message from pi.

– VB-Validation. If ⊥ is VB-delivered, there is at least one correct process that does
not validate the message VB-broadcast by pi. If m′ 	= ⊥ is VB-delivered, m′ has
been validated by at least one correct process.

Let us remark that a notion of validated broadcast based on local knowledge (and not
on distributed knoweledge as here) has been proposed in [8].

Table 1. Cost and constraint of the different broadcast abstractions

broadcast x-to-y # comm. steps message size # msgs constraint on t

WB 1-to-n 1 constant n − 1 n > t

NDB 1-to-n 2 log2 n 0(n2) n > 3t

RB 1-to-n 3 log2 n 0(n2) n > 3t

VB n-to-n 6 log2 n n × 0(n2) n > 3t

Comparing the broadcast abstractions. Table 1 compares the costs of the three pre-
vious broadcast abstractions. Considering one broadcast instance, the second column
indicates the broadcast type (1-to-n or n-to-n). The third column indicates the number
of (sequential) communication steps that are needed. The fourth column presents the
size of additional control information that an implementation message has to carry (the
log2 n comes from the fact that the identity of the process that broadcasts a message
has to be sent together with it when forwarded by another process). The fifth column
indicates the number of implementation messages that are needed. Finally, the last col-
umn states the constraint on t required to implement the corresponding abstraction in
BZ ASn,t[∅].

2.3 An Implementation of the Validated Broadcast Abstraction

Algorithm 1 implements the all-to-all validated broadcast. Let us recall that all-to-all
means here that all correct processes are assumed to invoke VB broadcast(). This
means that a process VB-delivers at least n − t messages. This implementation uses
two consecutive RB-broadcast invocations. Its cost is consequently, 2 × 3 = 6 com-
munication steps and O(n3) messages of size O(log2 n) bits. The implementation of a
VB-broadcast instance is made up of two parts.

– The first part is made up of two consecutive RB-broadcasts. More precisely, a pro-
cess pi first invokes RB broadcast INIT(vi) and waits until it has RB-delivered
messages from at least n − t processes (lines 01-03). The values RB-delivered are
deposited in a multiset denoted reci.
Then, if value vi has been RB-delivered from at least n − 2t ≥ t + 1 processes
(which means that it has been RB-broadcast by at least one correct process), pi

validates it by assigning yes to auxi. Otherwise pi sets auxi to no at line 04 (in
that case it does not validate vi). Then, pi issues a second RB-broadcast (line 05)
to disseminate auxi (that is equal to yes or no) to all processes.
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operation VB broadcast(vi)
(01) RB broadcast INIT(v);
(02) let reci let be the multiset of values RB delivered to pi;
(03) wait until (|reci| ≥ n − t);
(04) if (#vi(reci) ≥ n − 2t) then auxi ← yes else auxi ← no end if;
(05) RB broadcast VALID(auxi).

for 1 ≤ j ≤ n VB-delivery task Ti[j]:
(06) wait until

(
VALID(x) and INIT(v) are RB delivered from pj

)
;

(07) if (x = yes) then wait until (#v(reci) ≥ n − 2t); d ← v
(08) else wait until (#v′,v′′,... �=v(reci) ≥ t + 1); d ← ⊥
(09) end if;
(10) VB deliver(d) at pi as the value VB-broadcast by pj .

Algorithm 1. A reliable-broadcast-based implementation of VB-broadcast

– The second part is made up of n tasks. The task Ti[j] starts by the wait statement
for both the value v RB-broadcast by pj and the boolean x RB-broadcast by pj

to say whether its value v has been validated or not. Note that the value v can be
delivered either at line 03 or at line 06. (Let us remind that each time a message
INIT(v) is RB-delivered to pi, the value v is added to reci, which means that, after
the predicate |reci| ≥ n − t has become true at line 03, the set reci still keeps on
being updated when new messages INIT() are RB-delivered to pi.)
If x = yes, as pj can be Byzantine, v has not necessarily been validated. Hence, pi

has to check it. To that end, pi waits until the predicate #v(reci) ≥ n−2t becomes
true (line 07). When this predicate #v(reci) ≥ n−2t ≥ t+1 becomes true (if ever
it does, line 07) we have #v(reci) ≥ t+1 and, consequently, v is VB-delivered to
pi as being the value VB-broadcast by pj .
Differently, if x = no, pi waits until reci contains more than t values different from
v (the value RB-delivered from pj). When this occurs (if ever it does, line 07) pi

VB-delivers ⊥ as the value VB-broadcast by pj .

Theorem 1. Algorithm 1 implements the validated broadcast abstraction in the system
model BZ ASn,t[t < n/3, RB].

3 Intrusion-Tolerant Byzantine Consensus and the Enriched
Model

3.1 Byzantine Consensus

Byzantine consensus. The consensus problem has been informally stated in the Intro-
duction. Assuming that at least each correct process proposes a value, each of them has
to decide on a value in such a way that the following properties are satisfied.

– C-Termination. Every correct process eventually decides on a value.
– C-Agreement. No two correct processes decide on different values.
– C-Obligation (validity). If all correct processes propose the same value v, then v is

decided.
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Intrusion-tolerant Byzantine (ITB) consensus. In Byzantine consensus, if not all cor-
rect processes propose the same value, any value can be decided. As indicated in the
Introduction, we are interested in a stronger version of the consensus problem in which
a value proposed only by faulty processes can never be decided. This consensus prob-
lem instance is defined by the termination, agreement and obligation properties stated
above plus the following validity property.

– C-Non-intrusion (validity). A decided value is a value proposed by a correct process
or ⊥.

The fact that no value proposed only by faulty processes can be decided gives its name
(namely intrusion-tolerant) to that consensus problem instance.

Binary consensus. The consensus is binary when only two values (e.g., 0 and 1) can be
proposed. When more than two values can be proposed, consensus is multivalued.

Interestingly, the fact that only two values can be proposed to a binary Byzantine
consensus algorithm provides it with an interesting property, namely, if all correct pro-
cesses propose the same value b ∈ {0, 1}, it follows from the obligation property that
they decide b, whatever the value (b or b = 1 − b) proposed by the faulty processes.
Hence, we have the following property (that is no longer true for multivalued consen-
sus).

Property 1. Any binary Byzantine consensus algorithm that satisfies the obligation
property, satisfies also the non-intrusion property. Moreover, ⊥ is never decided.

3.2 Enriched Model for Multivalued ITB Consensus

Additional power is required. It is well-known that Byzantine consensus cannot be
solved when t ≤ n/3 in synchronous systems [15,22]. Moreover, consensus cannot
be solved in asynchronous systems as soon as even only one process may crash [12],
which means that Byzantine consensus cannot be solved either as soon as one process
can be faulty. Said another way, additional computational power is needed if one wants
to solve Byzantine consensus in an asynchronous system.

Such an additional power can be obtained by randomization (e.g., [3,10,14,23,26]),
failure detectors (e.g., [14,16]), additional synchrony assumptions (e.g., [11,17]), or
even the assumption that there is a binary consensus algorithm that is given for free by
the underlying system (e.g., [6,10,20,24,27]).

Enriched model for multivalued ITB consensus. In the following, BBC denotes any
algorithm that solves the binary Byzantine consensus problem. (Such algorithms are
described in [4,10,14,26]. See also Section 7). Let BZ ASn,t[XX,BBC ] denote the
system model BZ ASn,t[∅] enriched with BBC (computational power) and the broad-
cast abstraction XX.

As announced in the Introduction, the aim is to design a generic multivalued ITB
consensus algorithm on top of BZ ASn,t[XX,BBC ].
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4 Generic Consensus Based on the WB or NDB Abstraction

This section presents a generic multivalued ITB consensus algorithm that can be in-
stantiated with either WB or NDB instances. There is one instance of WB or NDB per
process. Moreover, all these instances are independent the ones from the others. The
algorithm uses two rounds for each process to compute a value it proposes to the under-
lying binary consensus. The instantiation with WB requires n > 5t, while the one with
NDB requires n > 4t.

Principles and description of the algorithm. When considering algorithm 2, a process
invokes propose(vi) where vi is the value it proposes to the consensus. It terminates
when it executes the return() statement (line 14) that supplies it with the decided value.
(In order to prevent confusion, the operation of the underlying binary consensus that is
built is denoted bin propose().)

In order to reduce the Byzantine consensus problem to its binary counterpart to ben-
efit from BBC , the processes first exchange the values they propose. If a process sees
that a value v has been proposed “enough” times, it proposes 1 to BBC , otherwise it
proposes 0. Then, if 1 is decided from BBC , the correct processes decide the value v
that has been proposed “enough” times, otherwise they decide ⊥ (lines 09-14). For this
to work, two things are necessary:

– (a) A value has to appear as if it has been proposed by enough processes.
– (b) If a process pi proposes 1 to BBC because it has seen enough copies of a value

v, it must be sure that any other correct process pj will be able to decide v even if
it has proposed 0 to BBC (because it has not seen enough copies of v).

operation propose(vi)
(01) XX broadcast EST1(vi);
(02) wait until

(
EST1(−) messages XX delivered from (n − t) processes

)
;

(03) let rec1i = multiset of values XX delivered and carried by EST1 messages;
(04) if (∃v : #v(rec1i) ≥ n − 2t) then auxi ← v else auxi ← ⊥ end if;
(05) XX broadcast EST2(auxi);
(06) wait until

(
EST2(−) messages XX delivered from (n − t) processes

)
;

(07) let rec2i = multiset of values XX delivered and carried by EST2 messages;
(08) if (∃v 
= ⊥ : #v(rec2i) ≥ n − 2t) then bpi ← 1 else bpi ← 0 end if;
(09) if (∃v 
= ⊥ : v ∈ rec2i) then let v = most frequent non-⊥ value in rec2i;
(10) resi ← v
(11) else resi ← ⊥
(12) end if;
(13) b deci ← bin propose(bpi); % underlying binary consensus %
(14) if (b deci = 1) then return(resi) else return(⊥) end if.

Algorithm 2. A generic intrusion-tolerant Byzantine consensus algorithm

These two issues are solved by two asynchronous rounds executed before invoking
the underlying BBC algorithm (lines 01-12). The messages of the first round and the
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second round are tagged EST1 and EST2, respectively. Interestingly, we will state below
two properties PR1 and PR2 that are the same as the properties used in [18] to solve
consensus on top of an asynchronous system enriched with any of Chandra and Toueg’s
failure detectors [9].

It is important to remark that, at the abstraction level of the consensus algorithm,
a message carries only a tag (EST1 or EST2) and a proposed value or ⊥. Hence, con-
sidering that proposed values have constant size, the size of the messages used by the
algorithm is O(1) (no message is required to carry array-like data structures whose size
would depend on n).

First round. The aim of this round (lines 01-04) is to direct each process pi to define a
“new” proposed value auxi in such a way that the values auxi of the correct processes
satisfy the following property:

PR1 ≡
[
∀i, j ∈ C :

(
(auxi 	= ⊥) ∧ (auxj 	= ⊥)

)
⇒

(auxi = auxj = v) ∧ (v has been proposed by a correct process)
]
.

Hence this round replaces (for the correct processes) the set of values they propose
by a non-empty set including at most two values (namely, a value v proposed by a
correct process and ⊥).

From an operational point of view, this is obtained as follows. The processes first
exchange (with the help of the underlying broadcast facility) the values they propose
(lines 01-02). The values delivered at pi are kept in the multiset rec1i. Then, if there
is a value v in rec1i such that #v(rec1i) ≥ n − 2t, v is assigned to auxi. Otherwise
auxi = ⊥.

Second round. The aim of the second round (lines 05-12) is to establish the following
property denoted PR2 in order the result of the underlying BBC algorithm can be
safely exploited as described previously (lines 13-14). The local variable bpi contains
the value proposed by pi to the underlying BBC algorithm, and resj contains the non-
⊥ value that any correct process pj will decide if ⊥ is not decided.

PR2 ≡
[
(∃i ∈ C : bpi = 1) ⇒ (∀j ∈ C : resj = resi = v 	= ⊥)

]
.

Operationally, this is obtained as follows. With the help of the underlying broadcast
abstraction the correct processes exchange the values of their auxi variables. The values
delivered at pi are saved in the multiset rec2i. (This multiset contains n− t values, and,
due to PR1, those can be ⊥, a non-⊥ value v proposed by a correct process, and at most
t arbitrary values sent by faulty processes.)

If there is a non-⊥ value v such that #v(rec2i) ≥ n − 2t, pi proposes bpi = 1
to the binary consensus. Otherwise, pi has not seen enough copies of a value v 	= ⊥
and consequently proposes bpi = 0. In all cases, pi defines resi as the most frequent
non-⊥ value it has received. As the proof shows [19], if a correct process pi invokes
bin propose(1), all correct processes will have the same non-⊥ value in their resj vari-
ables.

Theorem 2. Algorithm 2 solves the multivalued consensus problem (as defined by the
C-termination, C-agreement, C-obligation and C-non-intrusion properties) in both sys-
tem models BZ ASn,t[t < n/5, WB, BBC] and BZ ASn,t[t < n/4, NDB, BBC].
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5 Consensus Based on the Validated Broadcast Abstraction

This section presents an intrusion-free Byzantine consensus algorithm based on val-
idated broadcast. This algorithm requires t < n/3 and has consequently an optimal
resilience. It requires a single round (instead of 2 as in Figure 2) but, as it uses a vali-
dated broadcast, this round requires four communication steps.

operation propose(vi)
(01) VB broadcast EST1(vi);
(02) wait until

(
EST(−) messages VB delivered from (n − t) processes

)
;

(03) let reci = multiset of the values v such that EST(v) is VB delivered to pi;
(04) if (∃v 
= ⊥ : #v(reci) ≥ n − 2t) ∧ (reci contains a single non-⊥ value)
(05) then bpi ← 1 else bpi ← 0
(06) end if;
(07) b deci ← bin propose(bpi); % underlying binary consensus %
(08) if (b deci = 1)
(09) then wait until

(
∃v 
= ⊥ such that EST(v) VB delivered from (n − 2t) processes

)
;

(10) return(v)
(11) else return(⊥)
(12) end if.

Algorithm 3. A validated-broadcast-based intrusion-tolerant Byzantine consensus
algorithm

In Algorithm 3, after having VB-broadcast its value, a process pi waits for EST()
messages from n − t processes and deposits the corresponding values in the multiset
reci. Let us notice that all the values that are VB-delivered satisfy the VB-validation
property.

Then, pi checks if (in addition to ⊥) it has VB-delivered exactly one non-⊥ value v
and that value has been VB-broadcast by at least n − 2t processes (line 04). If there is
such a value, pi proposes 1 to the underlying binary consensus, otherwise it proposes 0
(line 05).

Finally, pi decides ⊥ if the underlying binary consensus returns 0 (lines 08 and 11).
Differently, if 1 is returned, pi waits until it has VB-delivered n − 2t EST() carrying
the very same value v (line 09) and then decides that value (line 10). Let us notice that,
among these n−2t messages, some have been already VB-delivered at line 02. The im-
portant point is (as shown in the proof) that the net effect of (a) the validated broadcast,
(b) the predicate used at line 04, and (c) the predicate used in the wait statement at line
09, ensures that if a correct process invokes bin propose(1), then all correct processes
eventually VB-deliver n − 2t times the very same value v and decide it.

Theorem 3. Algorithm 3 solves the multivalued consensus problem (defined by the C-
termination, C-agreement, C-obligation and C-non-intrusion properties) in the system
model BZ ASn,t[t < n/3, VB, BBC].
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6 Discussion

An additional property of the previous ITB consensus algorithms. Let v be the most
proposed value (it is possible that several values are equally most proposed, in that case
any of them is chosen), and let #v be the number of processes that propose it. The pre-
vious algorithms have the following noteworthy property. (This follows from properties
PR1 and PR1, Theorem 2 for the instances obtained from the generic Algorithm 2, and
from Theorem 3 for Algorithm 3 based on a validated broadcast.)

– If #v ≥ n − t, then v is always decided by the correct processes (let us observe
that, in that case, there is a single most proposed value).

– If #v < n − 2t, then ⊥ is always decided by the correct processes.
– If n − 2t ≤ #v < n − t, then which value (v or ⊥) is decided by the correct

processes depends on the behavior of the Byzantine processes.

non-deterministic deterministic

v is decided⊥ or v is decided

nn − t

n − t ≤ #v ≤ n

n − 2t1

deterministic

n − 2t − 1 t + 1t

n − 2t ≤ #v < n − t1 ≤ #v < n − 2t

⊥ is decided

Fig. 1. Deterministic vs non-deterministic scenarios

Let us consider an omniscient observer that would know which are the proposed
values. In the first and the second cases, this omniscient observer can compute the
result in a deterministic way. Differently, in the last case it cannot. The value that is
decided depends actually on the behavior of Byzantine processes (that can favor the
most proposed value, or entail a ⊥ decision). These different possibilities are depicted
on Figure 1. Of course, a value proposed only by Byzantine processes is necessarily
proposed by fewer than n − 2t processes as n > 3t and hence cannot be the decision
value.

Comparing the previous signature-free multivalued ITB algorithms. Table 2 presents a
summary of the cost and the constraint on t associated with the previous signature-free
multivalued ITB consensus algorithms. As they can all use the same underlying BCC
algorithm, the comparison does not take it into account.

Table 2. Cost of the ITB consensus algorithms

Consensus algorithm # communication message size # msgs constraint
instantiated with steps at send/receive level at send/receive level on t

Algorithm 2 with WB 2 × 1 = 2 constant O(n2) n > 5t

Algorithm 2 with NDB 2 × 2 = 4 log2 n O(n3) n > 4t

Algorithm 3 with VB 1 × 6 = 6 log2 n O(n3) n > 3t
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It is easy to see that, due the weaker constraint on t, Algorithm 3 instantiated with VB
outperforms Algorithm 1 instantiated with NDB. On another side, in a system where
the number of Byzantine processes remains small, Algorithm 1 instantiated with WB is
the most efficient.

7 A Randomized VB-Based Byzantine Binary Consensus
Algorithm

This section presents a randomized Byzantine binary consensus algorithm (that can be
used as the underlying BBC algorithm). The additional power needed to solve consen-
sus is given here by random coins. In addition to being optimal from a resilience point
of view (t < n/3), this algorithm has two noteworthy features:

– It is based on the validated broadcast abstraction, and
– Each round requires 6 communication steps (a single VB-broadcast instance).

When looking at Byzantine consensus algorithms that are optimal from a resilience
point of view (i.e., algorithms able to cope with up to �(n−1)/3� faulty processes), the
best consensus algorithm we are aware of has rounds made up of three communication
steps [7]. Moreover, this algorithm is based on signatures (public key cryptography). As
far as signature-free algorithms are concerned, the best resilience-optimal algorithm,
that uses control information whose size is only O(log2 n) we are aware of, is the one
described in [26,25], which requires five communication steps per round. Algorithm 4
that is presented in this section is signature-free and requires six communication steps
per round. The fifth step in [25] is necessary to ensure errorless termination as explained
in the original paper [26].

Common coin. The asynchronous system is equipped with a common coin as defined
by Rabin [23] and improved in [7] in order to get rid of the trusted dealer. Such an oracle
is denoted CC, hence the system model is BZ ASn,t[t < n/3,CC ]. A common coin
can be seen as a global entity that delivers a sequence of random bits b1, b2, . . . , br, . . .
to processes (each bit br has the value 0 or 1, with probability 1/2).

More precisely, this oracle provides the processes with a primitive denoted random()
that returns a bit each time it is called by a process. In addition to being random, this
bit has the following global property: the rth invocation of random() by any correct
process pi returns it the bit br. This means the same random bit br is returned to each
correct process as the result of its rth invocation of random(). It is important to notice
that the adversary (which determines the scheduling of processes and messages) has no
access to the common coin, which corresponds to the oblivious scheduler model [2].
(The reader interested in the implementation of a common coin can consult [2,7].)

On randomized consensus. When using additional computing power provided by ran-
dom coins, the consensus termination property can no longer be deterministic. The
Randomized Consensus problem is defined by C-validity (Obligation), C-agreement
plus the following termination property. [3,23]:

– Proba-C-Termination: Every correct process decides with probability 1.
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Underlying principles and description of the algorithm. In Algorithm 4, a process pi

invokes the function bin propose(vi) where vi is the value it proposes. It decides when
it executes the statement decide(v) (line 07). The design of Algorithm 4 is close to an
algorithm we have proposed in [14]. Its fundamental difference is that it is resilience-
optimal (t < n/3), while the one described in [14] requires t < n/5.

operation bin propose(vi)
esti ← vi; ri ← 0;
repeat forever
(01) ri ← ri + 1;
(02) VB broadcast EST(ri, esti);
(03) let reci = multiset of values est such that EST(ri, est) has been VB delivered to pi;
(04) wait until (|reci| ≥ n − t);
(05) si ← random();
(06) if (∃v 
= ⊥ : #v(reci) ≥ n − 2t) ∧ (reci contains a single non-⊥ value)
(07) then esti ← v;
(08) if (v = s) ∧ (pi has not yet decided) then decide(si) end if
(09) else esti ← si

(10) end if
end repeat.

Algorithm 4. A binary Byzantine consensus algorithm based on VB-broadcast

The local variable esti of process pi keeps its current estimate of the decision value
(initially, esti = vi). The processes proceed by consecutive asynchronous rounds. Thus,
the pair (ri, esti) of a correct process pi describes its current state (ri is pi’s current
round number). The first part of Algorithm 4 consists of lines 01-04 that describes the
communication of the current round. The second part, made up of lines 05-10, defines
the management of the local estimate esti and the decision rule. More precisely, we
have the following.

– At every round ri, each correct process pi VB-broadcasts EST(ri, esti), and waits
until it has VB-delivered EST(ri,−) from at least n − t processes (lines 02-04).

– In the second part, pi first computes the random number s associated with the cur-
rent round ri (line 05). Then, pi checks if it has received a non-⊥ value v from at
least n − 2t different processes, and v is the only non-⊥ value in reci (predicate at
line 06). If this predicate holds, pi adopts v as new estimate (line 07) and decides
the random value s if v = s (line 08). If the predicate is false, pi updates its estimate
esti to the random value s. In all cases, pi starts a new asynchronous round.

The statement decide() allows the invoking process to decide but does not stop its exe-
cution. Hence, a process executes rounds forever. This facilitates the description of the
algorithm. Using techniques such as the one developed in [14] allows a process to both
decide and stop.

Remark. It is possible to add the following test after line 04:
if (∃v : #v(reci) ≥ n − t) then decide(v) end if.
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This allows the algorithm to always terminate in a single round whatever the value of the
common coin when all correct processes propose the same value and no process exhibits
a Byzantine behavior. This scenario is very likely to happen in actual executions.

Theorem 4. Algorithm 4 solves the randomized binary consensus problem in the sys-
tem BZ ASn,t[t < n/3, VB,CC ].

Theorem 5. Let n > 3t. The expected decision time of Algorithm 4 is constant.

8 Conclusion

The paper has presented a family of multivalued intrusion-free Byzantine consensus al-
gorithms. The intrusion-freedom property means that no value proposed only by Byzan-
tine processes can ever be decided. These consensus algorithms are built on top of ap-
propriate broadcast abstractions. One of these abstractions, called validated broadcast,
is new (and can be interesting by itself to solve other problems than consensus). More-
over, all proposed algorithms are signature-free (hence efficient).

The intrusion-free consensus algorithm based on the validated broadcast abstraction
has several noteworthy features: it is optimal from a resilience point of view (t < n/3)
and each round requires a single validated broadcast.

The paper has also presented a novel randomized binary Byzantine consensus al-
gorithm that is resilient-optimal and, in a very interesting way, is also based on the
validated broadcast abstraction.
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19. Mostéfaoui, A., Raynal, M.: Signature-Free Broadcast-Based Intrusion Tolerance: Never De-
cide a Byzantine Value. Tech. Report #1954, IRISA, Université de Rennes, France (2010)
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Abstract. Reliability is a crucial issue for the development of stable and 
effective production grid infrastructures. That is, grid users must be able to 
trust upon the runtime service they request and receive from the underlying 
grid. Many runtime services and capabilities offered by modern Grid 
infrastructures are not available in advance to the application developers and 
dynamically bound only at the execution time, leading to an increased 
incidence of interaction faults. In this work we propose, implement and 
evaluate a novel low-impact fault-avoidance scheme, specifically conceived to 
improve the grid reliability from the user/application point of view, by 
providing proper service status information to the workload management 
system. In particular, starting from the EGEE experience, we designed a 
strategy inhibiting the use of some specific runtime capabilities on the 
available resources as soon as the monitoring system detect any anomalous 
behavior associated to these capabilities and re-integrating them when they re-
start to correctly work again. The results of a significant set of tests ran on the 
production EGEE infrastructure, have been presented to show the 
effectiveness of our approach.  

Keywords: Reliability, Fault Avoidance, Monitoring, Resource Management. 

1   Introduction 

Grid computing is evolving very rapidly, and the amount of heterogeneous resources 
and services made available from the participating sites, distributed all-over the 
world, is increasing at an astonishing pace. Unfortunately, Grid systems are highly 
dependent upon one another and their provided services become more and more 
important for several fields in the modern society so that in a few years they will be 
viewed as critical infrastructures. In such a complex and dynamic environment the 
possible fault conditions grow together with the available resources and services. This 
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makes troubleshooting an extremely difficult task and poses a severe limit on the 
overall model scalability. In more detail, the shared resources made available on a 
grid include supercomputers, computing clusters, storage systems, and associated 
hardware, together with all the needed managing and monitoring software. These 
resources may employ different processor architectures and operating systems and 
belong to many different organizations having little knowledge of each other. As 
such, they are likely to be managed in different administrative domains, with very 
dissimilar access, maintenance and security policies. All the above circumstances can 
undoubtedly lead to an increased incidence of interaction faults, hence, from the 
application’s point of view, there may be no guarantee that resources available in a 
grid will be reliable. This is especially true if the application consists of multiple tasks 
organized into a complex workflow or features a large amount of services. In the 
latter case a fault in a single service can be amplified as the effects of the fault move 
further down the chain. The likelihood of hardware and software errors interesting 
single or multiple devices is exacerbated by the fact that several applications may 
perform long tasks that may require the use of many resources for several days of 
computation. Furthermore, the great heterogeneity of the connected resources, 
together with their dynamic behavior in entering and leaving the grid, will likely lead 
to component interactions that may result in communication problems, which 
adversely affect the execution of user applications. Furthermore, the need for 
managing long-lasting high-bandwidth data connections to transport large data sets 
requires the concurrent use of a large number of network components. This in turn 
increases the chance of failures that necessitate rerouting connections through 
alternative devices/paths. For these reasons, ensuring reliable transport and runtime 
services in large-scale grid infrastructures is an extremely critical issue. 
Consequently, the involved technical support teams invest huge efforts in 
troubleshooting operations, fixing middleware bugs, repairing hardware and software 
faults and excluding the faulty or out-of-service resources from the information 
system. In order to promote the pervasive adoption of grid technologies within the 
emerging high-level application scenarios, future grid infrastructures must guarantee 
an adequate degree of service reliability and quality. The information system plays a 
fundamental role in associating the right resources to the applications and the 
presence of obsolete or incorrect information can cause scheduling error, frequent 
resubmission and, finally, job faults. For this sake we propose a low-impact 
application-driven fault avoidance strategy, easily implementable within the European 
Grid Infrastructure (EGI). This strategy is based on the introduction of a 
verification/feedback mechanism within the grid information system implemented 
through on-line service-monitoring checks periodically handled by several 
independent monitoring systems, The results of these checks are used to modify in 
real-time the information providing specific hints to the workload management 
system to drive resource discovery operations according to a fault-free resource 
scheduling plan.  

This solution, whose main goal is avoiding as many runtime failures as possible, to 
minimize the job execution time, demonstrated to be effective in incrementing both 
the user perceivable quality and the overall grid performance. 
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2   The EGI Grid: Technology Backgrounds 

EGI is the Europe’s flagship Research infrastructure, one of the greatest Grid 
experiences worldwide, developed within the Enabling Grid for E-sciencE project 
(EGEE) context, and collecting several grid communities whose cooperation is based 
on the gLite middleware [1] stack, that combines components developed in various 
related projects, such as Condor [2], Globus [3] and LCG [4]. Such middleware 
provides high level services for scheduling and running computational jobs, accessing 
and moving data, and obtaining information on the Grid infrastructure as well as Grid 
applications, all embedded into a consistent security infrastructure. The Workload 
Management System (WMS) is the gLite meta-scheduling engine that manages the 
assignment of the available computing and storage resources to the submitted jobs 
according to several performance objectives, user preferences and specific status 
information gathered from the grid information system. It also keeps track of the jobs 
it manages in a consistent way via the logging and bookkeeping service. The EGEE 
system for information and monitoring is based on the Top Berkeley Database 
Information Index (BDII). A specific top BDII management service gathers in a 
database (updated every couple of minutes) the information from all site Information 
Systems, thus having almost real time information from all the sites, their availability 
and operational and status details on their resources. The WMS takes decisions based 
on the information stored in the top BDII’s. There is in general one BDII for every 
WMS instance in the current EGI/LCG production infrastructure. The monitoring 
subsystem plays a central role in supporting the EGI grid operation and management 
activities, and in particular for troubleshooting problems on the individual resources. 
It is divided into two main service classes, corresponding at two different views of the 
Grid: the internal and the external ones. Essentially, internal monitoring is a way used 
by the resources to directly report information about their operating status. Typical 
examples of the information reported are the memory and CPU occupation, end-to-
end network performance measurements and so on. The most common internal 
monitoring tools used in EGI are GSTAT 2.0, GridView, GridMap. On the other 
hand, the external monitoring subsystem realizes a Grid snapshoot from the user 
perspective, that is, showing which services of resources are really available to the 
users. It is composed by a set of tools performing probes, tests and measurements 
directly at the middleware level, by simulating the user behavior. The main external 
monitoring service in the EGI infrastructure is the Service Availability Monitoring 
(SAM) Framework, a centralized service, periodically executing and checking a set of 
typical user actions such as job submission, data access, authentication etc. In recent 
times the system evolved according to a distributed probing scheme. In particular the 
Nagios-based centralized service availability monitor is a re-engineering of the SAM 
framework providing several regional Monitoring facilities based on the Nagios tool, 
instead of a centralized one, responsible to periodically perform the probes/tests on a 
more limited set of resource falling within their competence region. Through the 
SAM system the EGI collaboration calculates for each site offering services to the 
grid, an availability and reliability index. All the faults detected by SAM can be due 
to any kind of fault at the network, middleware or local operating system level, so that 
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each error really represents a set of possible faults in the chain from the user to the 
local resource. For this reason SAM is not an easy instrument for troubleshooting the 
grid but at the EGI state-of-the-art it is the most powerful available system to know its 
real behavior. However, the effectiveness of the monitoring subsystem alone in 
ensuring grid reliability is extremely limited since it can be only viewed as an almost 
passive fault reporting facility. More effective reliability improvements can be 
obtained by allowing the use of monitoring information to condition and change in 
real-time the top-level scheduling policies according to an end-user visibility of the 
really working services. We started from the consideration that the computing 
resources participating to a Grid usually don't publish any online information about 
the runtime operational status of their service portfolio or about the possible faults 
occurred on it (e. g. an host certificate is expired or some crucial service is down for 
some reason). Moreover, due to the strong interdependency among the Grid 
resources, we considered that the best monitoring approach is performing periodical 
sanity checks on the services offered on the individual resources and providing such 
information to the users through the Grid information system. 

3   Improving Grid Reliability through Fault Avoidance 

One of the best strategies available for ensuring reliability in complex systems is 
potentially preventing the occurrence of faults (aka fault avoidance), instead of 
recovering from failure situations that have already took place, with the consequent 
significant gains in terms of execution times and resource usage. In fact, preventing 
the selection of unreliable, flawed or incorrectly configured resources within the 
execution context of specific grid tasks may be extremely desirable to avoid handling 
error conditions, exceptions and re-runs adversely conditioning the individual task 
completion time and success chances, together with the overall grid performance. 
However, the main problems to be faced when designing a fault avoidance strategy 
arise from the necessity of ensuring a reasonable trade-off between scalability and the 
main objectives of availability and reliability. Accordingly, we propose a fault 
avoidance strategy operating at the information system layer and based on a common 
view of the different resource and status monitoring systems available on the grid 
sites. Such strategy has been specifically conceived to ensure the scalability needed 
from large production grid infrastructures, and at the same time its implementation is 
sufficiently simple and flexible to be introduced seamlessly within the most common 
existing middleware frameworks. Furthermore, it is not exclusive in its application 
and can be easily associated to other available fault tolerance and management 
techniques such as data replication, checkpointing, process migration and so on. The 
main idea behind our proposal is blacklisting at the collective Information Index level 
specific resources or services capabilities that are suspected to operate incorrectly, as 
soon as the monitoring system, by performing periodic sanity checks on them, detects 
any anomalous behavior, and re-putting them back in service when they restart 
working properly. Clearly, the exact knowledge of the real operational status of the 
various services offered by the available Grid resources is the crucial information 
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needed to support such a fault avoidance strategy. This can be achieved by 
introducing several advanced on-line service status monitoring objects within the grid 
information system. These objects, that are associated to online operational 
information periodically gathered from the individual resource capabilities and 
continuously kept up-to-date by the grid monitoring system, can be used, under the 
control of client applications, as specific hints to the workload management system to 
condition its resource discovery and selection decisions according to a scheduling 
plan that ensures the occurrence of no (avoidable) faults. Thus, the Grid’s resource 
scheduling system becomes the key element for handling these runtime faults, being 
able through its selection policies and choices to greatly reduce or exacerbate the 
above phenomena. The above methodology allows the users or applications to avoid 
the resources that doesn’t work correctly early at the submission time. The greatest 
strength of the approach is that it has minimal impacts on the existing grid 
middleware framework since we don’t need any change to be introduced in both local 
site middleware infrastructure and data model, and we can re-use the already existing 
resource monitoring information system (producing and consuming the above 
monitoring objects) to correctly drive resource selection in such a way that no (or 
minimal) runtime fault will occur. Moreover, only specific resource capabilities (i.e. 
the one that are in fault for some reason) can be selectively excluded from selection, 
without putting out-of-service, entire resources by ensuring that all the other services 
that are provided correctly will still be available to the grid. Such strategy allows us to 
guarantee at each time the greatest possible level of resource and services availability, 
simultaneously taking advantage from maximum reliability. The most significant 
expected benefits come from the ability of following the highly dynamic behavior of 
the grid model in excluding and reintegrating at the right time the specific runtime 
capabilities offered from the available resources.  

4   Introducing Fault-Avoidance in the EGI Production 
Infrastructure 

To implement a really effective fault avoidance solution in a wide and complex 
environment such as the EGI production infrastructure, we at first need to identify and 
categorize the most common runtime faults that may occur in EGI. Some immediate 
examples may include the incorrect or missing support of Message Passing Interface 
(MPI) or other library services. Such information is needed in order to provide clues 
to the underlying scheduling system (the gLite’s Workload Management System) for 
preventing as possible failure in applications due to their occurrence, with the 
consequent job resubmission, damaging both the individual job success and the 
overall grid performance. To benefit from these clues, the resource scheduler should 
enable autonomous and intelligent coupling of monitoring data and operational meta-
data in a framework able to condition its selection/admission decisions. Such 
association can be achieved by defining specific Job Description Language (JDL) [5] 
parameters, associated to job requests, to be checked by the WMS during the first 
stage of the resource brokering process. These parameters are based on Condor 
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classified advertisements (ClassAds) and structured as attribute-value pairs published 
on the Grid top-level information system database (the top-BDII). In such a way, we 
can easily embed some specific service operational status request into the scheduling 
strategy in order to improve the efficiency and the utilization of the Grid and 
avoiding, as possible, execution failures. ClassAds comparisons are performed in the 
matchmaking phase starting from JDL attributes in an evaluation environment that 
maps any attribute accessed to the match candidate under consideration. In detail, the 
users submitting a job to the Grid, can describe in advance their service status 
requirements by referencing the proper monitoring metric, by using JDL expressions 
containing a Requirements and a Rank ClassAds expression. This drives the discovery 
of grid-resources that are “certified” to support the needed services. “Requirements” 
is an expression defining the conditions to be met by the resource. It can include the 
check for extended attributes or specific runtime environment variables that can be 
used for referencing the proper service support capabilities on the involved node. 
“Rank” specifies the preference criteria to be adopted to select one of the resource 
instances that satisfy the Requirements. In addition, authorization checks are also 
performed against the Virtual Organization attributes. This lead to the formulation of 
a schedule plan conditioned, as possible, from the above requirements. In the 
following script (fig. 1) we show a JDL example with the requirements of discovering 
grid-resources that support the MPICH library service. Specifically, we are looking 
for computational resources within the “matisse” Virtual Organization that publish the 
MPICH variable in their runtime environment. Such variable indicates that the 
MPICH library is configured and the Nagios checks are enabled, so that the involved 
job can run only on sites/nodes supporting MPICH services. Thus, if the MPI library 
does not work correctly on specific nodes we can prevent job submission on them by 
deleting the MPICH label from the corresponding resources on the information 
system. Accordingly, the presence of the MPICH suffix guarantees that the MPI 
libraries are correctly working, so that the users don’t need to change their working 
conventions, that is a crucial issue in production infrastructures. 

Type = "Job"; 
JobType = "MPICH"; 
CpuNumber = 16; 
Executable = "mpi-start-wrapper.sh"; 
Arguments = "cpi MPICH"; 
StdOutput = "mpich-test.out"; 
StdError = "mpich-test.err"; 
InputSandbox = {"mpi-start-wrapper.sh", 
"mpi-hooks.sh","cpi.c"}; 
OutputSandbox = {"mpich-test.err","mpich-test.out"}; 
RetryCount = 1; 
Requirements = Member("MPICH", 
other.GlueHostApplicationSoftwareRunTimeEnvironment); 

Fig. 1. Simple JDL for MPICH test  

To support the above mechanisms we introduced additional information coming 
from the Nagios monitoring system on the top level information index, the top-BDII, 
that can be used in WMS “requirement” expressions matching. Thus the top-BDII 
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service will realize the additional function of aggregating at the grid collective 
services layer all the resources and services status update information provided from 
the centralized monitoring information system through properly crafted incremental 
ldif structures. An example entry in the ldif file used to inhibit the MPICH support for 
the Taiwan-LCG2 site is reported in the following figure. 

 

# SITE Taiwan-LCG2, CE quanta.grid.sinica.edu.tw 
# CHECK org.sam.WN-MPI, RETRIEVED FROM samnag012.cern.ch 
# SUMMARY: node147: CRITICAL: MPI Status: ERROR 
# EXECUTION TIME: 2010-04-15T12:20:22Z 
dn: 
GlueSubClusterUniqueID=quanta.grid.sinica.edu.tw, 
GlueClusterUniqueID=quanta.grid.sinica.edu.tw,Mds-Vo-name= 
Taiwan-LCG2,Mds-Vo-name=local,o=grid 
changetype:modify 
delete: GlueHostApplicationSoftwareRunTimeEnvironment 
GlueHostApplicationSoftwareRunTimeEnvironment:MPICH 
delete: GlueHostApplicationSoftwareRunTimeEnvironment 
GlueHostApplicationSoftwareRunTimeEnvironment:MPICH-1_2-7 
delete: GlueHostApplicationSoftwareRunTimeEnvironment 
GlueHostApplicationSoftwareRunTimeEnvironment:MPICH2 

Fig. 2. An example ldif entry 

In more detail, we identified a set of typical fault scenarios that are crucial for the 
success of Grid jobs and data-management activities and developed the corresponding 
runtime functional probes within the Nagios-Based centralized Service Availability 
Monitoring system. The Nagios system periodically runs the above runtime probes 
and sanity check jobs on all the available resources and collects the results through an 
Apache ActiveMQ messaging and Integration Patterns provider, exposing a STOMP 
(Streaming Text Orientated Messaging Protocol) interface that allows clients to 
subscribe for some specific event of interest. We created a new Python plug-in 
module interfacing the above system by subscribing through the STOMP protocol for 
the occurrence of each specific error event of interest (e. g. a fault in MPI 
availability). These custom “sensors” simulate typical grid client behavior by using 
required grid service interface to perform a specific operation to be probed on a node 
(e.g. submit job, transfer file). In particular, the result of each sensor check is 
represented by a string containing the probed status. For example, if the probed 
service does not respond, the sensor returns status Unknown. If the service responds, 
the corresponding sensor analyzes the output and if it is correct, the returned status is 
Ok, otherwise it is set to Failure. Hence, when a new failure event results from a 
resource check, the associated Python script updates the corresponding information on 
the top-BDII index by adding a new entry containing the needed directives in an ldif 
file to be periodically passed through HTTP to the new top level information index 
itself. In such a way all the information indexes locally available on each participating 
sites remains unmodified while only the top-BDII index used for requirements 
matching by the WMS should be reconfigured. The whole operating scenario is 
depicted in fig. 3 below. 
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Fig. 3. The fault-avoidance strategy scenario 

In the above sequence diagram the ROC Nagios service performs the sanity tests 
and sends the results to the Message Broker, that in turns reroutes them to the Stomp 
subsystem, if the involved topic has been previously subscribed by the Stomp client. 
When a fault is detected the Stomp client updates the ldif file. Periodically the TOP 
BDII downloads via http the latest ldif file and modifies its database accordingly. 

5   Performance Evaluation and Results Analysis 

In this section we present some performance evaluation experiences, based on real use 
cases within the EGI/EGEE community, aiming at demonstrating the effectiveness of 
the implemented architecture in providing reliability improvements from the user 
perspective.  

5.1   Studying the Impact of Fault Avoidance for MPI 

In the following tests, performed on the live EGI grid infrastructure, to avoid impacts 
on the production top-BDII, and to have a reference for comparison, we created a new 
LDAP collective information index server, with the same scope and visibility within 
the grid and following the same standard glue-schema (describing the Grid resources 
information stored in the information system), to be used in alternative to the 
production one for WMS “requirement” expressions matching. Then, in order to 
demonstrate the effectiveness of the proposed approach, we compared, by analyzing 
some specific status reporting objects, the content of the standard top-BDII egee-
bdii.cnaf.infn.it implemented at the CNAF site in Bologna with the information 
provided by the alternative top-BDII service create in the EGI Naples site, 
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grisu002.dsf.unina.it, taking into account the monitoring information to be used in our 
fault-avoidance strategy. We specifically observed the presence of potential faults in 
Message Passing Interface (MPI) library services. MPI is the most popular 
programming library for parallel computing available in the C, C++, and Fortran 
programming environments. Its diffusion within the European gLite-based Grids has 
greatly increased in the last years to support the emerging needs of scientific 
applications featuring a large degree of parallelism. The setup and configuration of 
MPI services on the generic worker nodes is a complex duty, especially when the site 
administrator has to manage different library implementation flavors, different 
programming environments and different underlying network fabrics. Moreover, the 
support of different MPI configurations is a requirement for many scientific 
communities and the online verification of a correctly working configuration is 
fundamental to avoid job aborts or abnormal behaviors. To do that, a site-level Nagios 
server in Naples periodically runs a proper plug-in comparing the number of sites that 
correctly provide the MPICH and OPENMPI capabilities in the two information 
systems. In the picture below (fig. 4) we show a 1-week time interval in which the red 
line represents the trend of standard top-BDII whereas the green one corresponds to the 
observations taken from the alternate top-BDII influenced by our strategy. As expected 
the number of sites supporting MPICH in the alternative top-BDII is always below the 
red line. In particular during the observation period our approach can successfully 
inhibit the selection of all the faulty resources from the information system.  

 

Fig. 4. Comparison between the number of MPI resources in the production top-BDII (red line) 
and on the modified top-BDII (green line) 

A monthly observation showed that the number of sites, which support the 
different MPI flavours, is an extremely dynamic value, with an increasing trend. 
During the observation period we detected a maximum of 9 nodes that failed the 
MPICH test at the same time and a mean of 2 nodes in fault (1.8 theoretical value) 
with a standard deviation of 1.3. The main outcome of our analysis is that in the 
98.2% of the time, we find in the standard top-BDII at least one resources that 
supports in some flavours of MPI but is in fault, and our approach is able to exclude 
these resources in real-time to improve the reliability from the user point of view, 
without excluding the resources from the information system. So the reliability is 
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maintained without decrease the availability. In the monthly histogram in fig. 5 below 
we show the frequency of resources experiencing failures with the MPI, in particular 
we note that all it is working fine just in the 1.8% of case and we have at least 1 
resource in fault in the 76.5% of the time, until more than 2 resource in fault is present 
in the 2.7% of the time. 

 

Fig. 5. MPI faults frequency on a monthly basis 

5.2   Job Submission Test 

In the second part of our performance evaluation we analyzed the reliability 
improvements from the user point of view, achieved in terms of jobs successful 
executed on the grid. In order to match a real use case, the evaluation tests, ran on the 
test virtual organization matisse, sharing about 10.000 CPUs dedicated to material 
science research on the EGI infrastructure, have been selected from the common 
simulation framework used by the local scientific community. We submitted a large 
bunch of parallel jobs, requesting the MPI library services, which perform basic 
simulation activities by using 16 processors at a time. Currently MPICH, OPENMPI 
and MVAPICH are the most popular MPI flavors, and whereas in the EGI production 
infrastructure more than 30% of the working sites publish the support for these 
libraries, a consistent part of them does not pass the basic Nagios sanity check.  

We create an alternative WMS services that point to the modified top-BDII that 
delete in real-time the MPICH tag from the resource that fault the test. To analyze the 
improvements on the runtime stability of the grid directly perceivable by the users we 
at first calculated an approximation of the worst-case job execution failure rate when 
no fault avoidance strategy is implemented. By querying the production Top BDII 
services (the collective informative system) we discovered 49 resources publishing 
the MPICH support available within the matisse Virtual Organization. We then 
verified that only 36 resources between the above ones passed the MPICH Nagios test 
at job execution time, so that we determined the worst-case failure rate value 
according to the following formula: 
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265.0
49

13

available resources enabled-MPI of#

Probe  MPICH the failed that resources enabled-MPI of # ==  

Starting from the above considerations we ran two sequences of tests needed to 
evaluate the introduced performance improvements on a significant number of jobs: 
 

1. Submission and analysis of 550 jobs on the Grid through the production 
WMS. 

2. Submission and analysis of 550 jobs on the Grid through by avoiding the 
failure resource by using the modified top-BDII.  

 

During the first test sequence, we obtained a total of 144 job faults, with a failure rate 
equal 0.261, that seems to be in accordance with the calculated value. So we can 
argue that, in absence of any specific Requirements or Ranking tag in the JDL, an 
increasing load on the Grid produces a uniform usage of the available resources. 

The aim of the second test block is quantifying the effective performance 
improvements introduced by our fault-avoidance strategy within the grid runtime 
system. First, by using the standard gLite matchmaking client (glite-wms-job-list-
match) we observed that the Requirements expression in the JDL script worked 
correctly forcing the WMS to filter out the 13 resources, which failed the Nagios 
MPICH probe.  After the complete execution of all the 550 jobs enforcing the MPI 
runtime status check through the JDL requirements mechanism, we detected a total of 
only 4 aborted jobs with a failure rate equal to 0.007, two order less than the previous 
case. The chart in figure 6 shows the percentage of jobs successfully completed when 
the fault-avoidance strategy is enforced, compared with the standard WMS behaviour. 

 

Fig. 6. Job execution histogram 
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The following picture (fig. 7) shows the failure behavior vs. the number of sent job 
compared in the two test series. The great difference that can be appreciated when our 
framework is operational gives some significant information about the improvements 
obtained in term of reliability and fault frequency. 

 

Fig. 7. The job failure rate 

6   Related Work and Discussion 

The interest in making Grid infrastructures fault-aware has received a certain attention 
in literature. In [6] is reported a complete state of the art about reliability support and 
strategies for Grid infrastructure together with the associated Open Grid Forum 
(OGF) efforts, particularly emphasizing the importance of the end user/application 
point of view that is at base of our approach. The same issue is also presented in [7] 
where failures in large grid infrastructure are demonstrated to be frequent phenomena. 
The aforementioned work proposes a fault-tolerance strategy based on the 
introduction of a novel meta-scheduler able to detect several Grid element failures, 
but does not implement any fault avoidance strategies. Other interesting works 
concerning reliability in Grid infrastructure are  [8], [9], [10], [11]. In particular, 
several specific fault detection service architectures have been developed for grid 
computing systems, as presented in [12], [13], [14]. Other applications adopted some 
ad hoc fault-tolerance mechanisms, which cannot be reused, nor shared among them 
[15]. For example, the Globus HBM [13] detects process failures by observing the 
received and missing heartbeats and is only effective when the host and network 
connections are functioning properly. Also, the above mechanism has been developed 
under the assumption that both the grid generic server and the heartbeat monitor run 
reliably. In any case all the above approaches require the introduction of new complex 
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services and significant modifications to several crucial components of the grid 
architecture (i.e. the resource broker). On the other side, the approach presented in 
this paper is based on the specialized use of already available features and 
mechanisms with no impact on strategic middleware services. We only require the 
introduction of some simple, flexible and modular monitoring plug-ins each dedicated 
to specific sanity checks. These features make our fault avoidance solution 
implementable in a seamless and straightforward way in existing production grids. It 
can also be easily extended, by adding new plug-ins specialized for checking new 
services, as they are added to the grid middleware platform. 

7   Conclusions 

Grid reliability encompasses the concept of guaranteeing that all applications to be 
executed on the grid will fully succeed with no errors or exception conditions. 
Unfortunately, as grid applications scale to take advantage from the huge quantity of 
available resources, the probability of runtime faults due becomes no longer 
negligible and must be taken into account in all the grid operations, management and 
planning/evolution activities. The introduction of monitoring metrics on the Grid 
information system that can be used to easily implement a user-driven fault avoidance 
strategy opens up new interesting scenarios to increase the grid stability and facilitate 
operations in a production infrastructure. The proposed fault avoidance schema 
represents a good compromise in reducing the likelihood of erroneous or 
unsatisfactory results being received by the grid users, and hence enhancing the 
overall perceived and effective runtime performance, without introducing significant 
impacts on the various middleware flavors co-operating within the European grid 
production architecture. By implementing the above strategy in the EGI environment 
we obtained interesting performance improvements particularly perceivable from the 
user’s point of view. This effect has been evidenced through a set of preliminary tests 
that showed the positive impact of the proposed approach in terms of number of jobs 
successfully completed. In future works we plan to deploy this approach in a large 
scale Grid and obtain further feedbacks in order to detect the best metrics to publish, 
to improve the data model and maximize the improvements on the infrastructure's 
stability and reliability. Finally, we plan to investigate the introduction of a site 
reputation concept as a new metric to be used during the resource discovery process. 
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Abstract. Failure detectors are commonly viewed as abstractions for
the synchronism present in distributed system models. However, inves-
tigations into the exact amount of synchronism encapsulated by a given
failure detector have met with limited success. The reason for this is that
traditionally, models of partial synchrony are specified with respect to
real time, but failure detectors do not encapsulate real time. Instead, we
argue that failure detectors encapsulate the fairness in computation and
communication. Fairness is a measure of the number of steps executed
by one process relative either to the number of steps taken by another
process or relative to the duration for which a message is in transit. We
argue that oracles are substitutable for the fairness properties (rather
than real-time properties) of partially synchronous systems. We propose
four fairness-based models of partial synchrony and demonstrate that
they are, in fact, the ‘weakest systems models’ to implement the canon-
ical failure detectors from the Chandra-Toueg hierarchy.

1 Introduction

The inability to distinguish a crashed process from a slow process makes it
impossible to solve several classic problems in distributed computing in crash-
prone asynchronous systems [9]. Efforts to circumvent this impossibility have
spawned two complementary approaches. The first approach, called partial syn-
chrony [8,7], focuses on assuming explicit temporal guarantees on computation
and communication to enable crash detection. The second approach focuses on
augmenting asynchronous systems with oracles, called failure detectors [3], that
provide potentially incorrect information about process crashes in the system.

It has long been held that failure detectors encapsulate partial synchrony. More
precisely, a failure detector D encapsulates a partially-synchronous system model
M if and only if the following two conditions hold: (1) D can be implemented
in M , and (2) every problem P that is solvable in system model M is also
solvable in an asynchronous system augmented with D. Alternatively (and more
informally), the notion of encapsulation by a failure detector may be viewed
synonymously with the notion of mutual reducibility; that is, a failure detector
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D encapsulates a system model M if and only if M can implement D, and D
can implement M . As such, if D encapsulates M , then D is substitutable for
M because any problem solvable in M is also solvable in asynchrony augmented
with D.

Partial Synchrony. A system model is partially synchronous [8] if it provides
temporal bounds on computational and/or communicational quantities such as
message delays and process speeds. The knowledge of such bounds may be in-
complete or unknown. Despite such uncertainty, partial synchrony is useful for
solving problems in crash-prone distributed systems, and several such models
have been proposed in the literature(e.g., [8,7,12,21,22,11,20]). These models
vary in the information they provide about these bounds, and consequently they
have different crash detection capabilities. One way to formalize this notion of
crash detection capability is with failure detectors.

Failure Detectors. Informally, a failure detector [3] can be viewed as a sys-
tem service (or oracle) that can be queried for (potentially unreliable) informa-
tion about process crashes. The unreliable outputs of such oracles can be false
positives (suspecting live processes) or false negatives (not suspecting crashed
processes). From an empirical standpoint, most fault-tolerant problems in dis-
tributed computing that are otherwise unsolvable in crash-prone asynchronous
systems can be solved by either (1) assuming adequate degrees of partial syn-
chrony [8], or (2) augmenting asynchronous systems with sufficiently powerful
oracles [15]. This observation suggests that the axiomatic properties of oracles
might encapsulate the temporal properties of (suitably defined) models of partial
synchrony. Accordingly, this conjecture has led to the pursuit of ‘weakest system
models’ to implement various classes of oracles.

Current work on the weakest system models for oracles (see Sect. 2) has met
with limited success partly because the proposed system models assume real-
time bounds on communication (and possibly computation too). Unfortunately,
failure detectors do not preserve such real-time bounds. To find such weakest
system models, we need to address a more fundamental question: what precisely
about partial synchrony do failure detectors preserve?

Results. We answer the foregoing question by demonstrating that failure detec-
tors (at least when restricted to the Chandra-Toueg hierarchy [3]) encapsulate
fairness: a measure of the number of steps executed by a process relative to other
events in the system. We argue that oracles are substitutable for the fairness
properties (rather than real-time properties) of partially synchronous systems.
We propose four fairness-based models of partial synchrony and demonstrate
that they are, in fact, the ‘weakest systems models’ to implement the canonical
failure detectors from the Chandra-Toueg hierarchy in the presence of arbitrary
number of crash faults.

Significance. Our results further the shift in the direction of oracular research
away from real-time notions of partial synchrony (which have traditionally been
understood with respect to events that are essentially external to the system)
and towards fairness-based partial synchrony (which can be understood solely
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with respect to other events that are internal to the system). In fact, our re-
sults suggest that fairness is the currency for crash tolerance and research on
weaker real-time bounds for crash tolerance should focus on enforcing appropri-
ate fairness constraints on empirical systems relative to which known oracles can
implemented.

Organization. We present related work in Sec. 2. Sect. 3 provides specifica-
tions for the asynchronous system model, the four failure detectors, and the
four fairness-based partially-synchronous systems that we consider. Sects. 4–6
present the four equivalences between the failure detectors and the fairness-based
partially-synchronous systems. We conclude with a discussion in Sect. 7.

2 Related Work

The Chandra-Toueg Hierarchy. Chandra and Toueg [3] introduced the fol-
lowing four popular oracles: (1) the perfect failure detector P , which never sus-
pects any process before the process crashes, after some (unknown) time perma-
nently suspects all the crashed processes, and never transitions from suspecting
a process to not suspecting that process; (2) the eventually perfect failure de-
tector �P , which after some (unknown) time stops suspecting correct processes
and begins to permanently suspect all crashed processes; (3) the strong failure
detector S, which never suspects some correct process, after some (unknown)
time permanently suspects all the crashed processes; (4) the eventually strong
failure detector �S, which after some (unknown) time stops suspecting some
correct process and begins to permanently suspects all the crashed processes.

Chasing the Weakest Model. Among the aforementioned four Chandra-
Toueg oracles, a significant amount of work focuses on �P and �S. A line of work
has focused on identifying the weakest system model assumptions that suffice
for implementing these oracles. One approach is to weaken real-time constraints
on synchrony, while another approach is to dispense with real-time altogether
and instead constrain the relative ordering of certain events.

Under the first approach, the weakest real-time based message-passing model
known to date that is sufficient to implement �P with arbitrary number of
crashes guarantees that relative process speeds are bounded (while absolute
speeds may remain unbounded above and below) [22] and that there exists an
upper bound on the average delay over subsets of messages that are separated
by bounded bursts of messages that may experience unbounded (or infinite) de-
lay [21]. Similarly, the weakest message-passing model known to date that is
sufficient to implement �S in the presence of up to f process crashes guarantees
that computation is synchronous and some correct process has f timely outgoing
links, although the set of timely links can vary over time [12].

Under the second approach, the weakest fairness-based message passing model
known to date for implementing �P in environments with at least two correct
processes are the Θ-model [11] and the ABC model [20]. The Θ-model bounds
the ratio of the end-to-end communication delay of messages that are simultane-
ously in transit, while the ABC model imposes a restriction on the ratio of the
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number of messages that can be exchanged between pairs of processes in certain
“relevant” segments of an asynchronous execution.

Similarly, for implementing �S, the weakest fairness-based message-passing
model known to date was recently proposed by Raynal et al. [1] for systems
consisting of n processes with at most f crash faults in which executions progress
in “rounds” (the notion of a round is local to each process, not global), and
processes send messages to all other processes in each round. A round terminates
at a process when the process has received messages from n − f processes for
that round. The model guarantees that there exists some correct process i such
that eventually some subset of f processes receive a message from i in each of
their rounds. Furthermore, this subset of f processes can vary over time, but at
all times such a subset exists.

An approach intermediate between the real-time-based and fairness-based ap-
proaches is presented by Biely et al. [2]. They prove equivalence (with respect to
solvability of some problems) between some models and a set of oracles includ-
ing �S and �P . Although the transformations presented in [2] do not preserve
bounds on real-time message delay, the authors claim that these bounds are pre-
served in a “relativistic” sense, but they do not expound on the interpretation
of the term “relativistic”. Our work formalizes the “relativistic” message delay
as a form of communicational fairness.

Rajsbaum et al. [18,19] have tackled the problem of finding the weakest read-
write shared memory model for implementing various kinds of oracles. They
have shown that the power of so-called limited scope oracles can be expressed
as restrictions on the number of read and write operations by each process in
every round. These results are similar to ours in that they identify the power of
oracles with some kind of “fairness”. Our results differ from theirs in two ways.
First, unlike [18,19] we investigate the exact synchronism in perpetually accurate
oracles P and S (we are the first to do so). Second, we consider message-passing
systems instead of shared-memory systems. In fact, message-passing systems
merit separate investigation because results regarding oracles in shared-memory
models in general do not carry over to message-passing models. For instance, the
weakest oracle for solving wait-free consensus in asynchronous shared-memory
is not the same as that for asynchronous message-passing [14,5].

3 Definitions

3.1 Asynchronous System Model

The asynchronous system [10] consists of a finite set of processes Π which can
communicate with each other by reliable communication channels. We consider
the standard asynchronous system model [10], but with correct-reliable channels,
and we assume that an arbitrary number of processes can crash. A concise de-
scription follows. The detailed description of the system model specifications is
available in the full version of the paper at [16] and has been omitted here due
to space limitations.
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While reliable channels deliver every message sent without duplication or cor-
ruption, we consider a weaker form of channels called correct-reliable channels
which are guaranteed to be reliable while both the sender and the receiver are
live. Therefore, if the sender and the receiver are correct, then the channel con-
necting them is guaranteed to be reliable. Otherwise, the channel is guaranteed
to behave like a reliable channel until either the sender or the receiver crashes.
Afterwards, the channel is allowed to drop the messages in transit (but not
corrupt any messages).

We posit the existence of a discrete global time base whose range of values is
the natural numbers IN. Global time is used to mark or count the events that
occur in the system, and it is not used to measure the real-time duration between
two events. Therefore, the real-time duration between consecutive ticks of the
global time may be arbitrary, but finite. In the remainder of this paper, ‘time’
will refer to global time unless explicitly stated otherwise.

Processes execute actions in atomic steps. In an atomic step, a process receives
at most one message from each process, makes a state transition, and sends at
most one message to each process. A run consists of an infinite sequence of steps
taken by processes while executing an algorithm.

We consider only crash faults. That is, a process can fail only by crashing,
which occurs when a process ceases execution without warning; a crashed process
never resumes execution. Any process that is not crashed is considered to be
live. In each run, processes are either correct or faulty. Correct processes execute
actions according to their algorithm specification, and never fail, whereas faulty
processes fail after finite time. In all runs, a fault process takes only finitely many
steps whereas correct processes take infinitely many steps.

In order to demonstrate our results, we consider two variations of the asyn-
chronous system. In the first variation, we assume that the asynchronous system
is augmented with a failure detector. In such systems, the state transition func-
tion of each process also considers the output of its local failure detector module
before determining the new state of the process and the set of messages to be
sent. Sect. 3.2 describes the failure detectors considered in this paper.

In the second variation, we assume that there are certain constraints on the
relative ordering of the atomic steps by different processes in the systems. Such
constraints determine the fairness properties satisfied by runs of these systems.
These constraints are described in Sect. 3.3.

3.2 Failure Detectors

The formal definitions of the Chandra-Toueg failure detectors are provided in [3].
Informally, failure detectors are characterized by the kind and degree of unreli-
ability of their output which is a set of suspected processes. Here, we consider
four classes of failure detectors from the original Chandra-Toueg hierarchy [3]:
Perfect failure detector (denoted P), Strong failure detector (denoted S), Eventu-
ally Perfect failure detector (denoted �P), and Eventually Strong failure detector
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(denoted �S). All four aforementioned failure detectors guarantee that even-
tually every faulty process is permanently suspected by every correct process.
Additionally, the four failure detectors satisfy the following properties:

– P ensures that no process suspects any live process.
– S ensures that some correct process is never suspected.
– �P ensures that correct processes are eventually never suspected.
– �S ensures that some correct process eventually is never suspected.

3.3 Fairness Constraints

We claim that Chandra-Toueg failure detectors encapsulate fairness guarantees
of the underlying system. Such fairness is of two kinds: computational and com-
municational. Computational fairness restricts the number of steps executed by
processes relative to each other. Communicational fairness restricts the number
of steps executed by the recipient of a message while that message is in transit.

Computational Fairness. A common specification for computational fairness
is bounded relative process speeds [8] which states that the system has a bound Φ
on relative process speeds if in all intervals where some process i takes Φ+1 steps,
then all the processes not crashed in that interval are guaranteed to take at least
1 step. Note that this fairness property is symmetric; that is, if i’s process speed
is bounded relative to j’s process speed, then vice versa is true as well. However,
it is possible to define computational fairness properties that are asymmetric.

Consider our definition of proc-fairness. A process i is said to be k-proc-fair
(where k is a non-negative integer) in an infinite suffix γ of a run α, if, for all
processes j ∈ Π , in every segment of γ in which j takes k + 1 steps, either
(1) i takes at least one step, or (2) i is crashed. Note that i being k-proc-fair
with respect to j does not imply j being k-proc-fair with respect to i. As such,
proc-fairness is an asymmetric fairness property.

We extend this notion of proc-fairness as follows:

– k-proc-distinguished: A process i is said to be k-proc-distinguished in run α
if i is k-proc-fair in all suffixes of α

– Eventually k-proc-distinguished: A process i is said to be eventually k-proc-
distinguished in α if there exists a prefix of α such that, in the infinite suffix
of α that follows, i is k-proc-fair.

Like proc-fairness, the property of being proc-distinguished in asymmetric as
well. While other processes may be ‘fair’ with respect to a proc-distinguished
process i, process i need not be fair with respect to other processes; i.e., a
proc-distinguished process may take an unbounded number of steps in the du-
ration between a non-proc-distinguished process’ two consecutive steps. This is
an important distinction between computational fairness and bounded relative
process speeds defined in [8,7]. Bounded relative process speeds may be viewed
as a special case where every process is (eventually) k-proc-distinguished.

Communicational Fairness. Specifying temporal bounds on communication
delay in terms of fairness is not straightforward. For a process i to satisfy com-
municational fairness, it is necessary that i not take ‘too many steps’ while a
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message m is en route to i. However, there is one exception: if the sender of m
crashes while m is in transit to i, then i can take an arbitrary number of steps
before m is delivered. In fact, m may even be dropped.

We capture the above intuition through the following definition for a com-fair
process. A process i is said to be d-com-fair (where d is a non-negative integer)
in a suffix γ of a run α, if, for all processes j ∈ Π , for each message m sent from
i to j in γ, during the segment of γ starting from the configuration in which m
is sent and ending with the configuration in which m is received, either (1) j
takes no more than d steps, or (2) i is crashed.

We extend this notion of com-fairness as follows:

– d-com-distinguished: A process i is said to be d-com-distinguished in run α
if i is d-com-fair in all suffixes of α.

– Eventually d-com-distinguished: A process i is said to be eventually d-com-
distinguished in run α if there exists a prefix of α such that, in the infinite
suffix of α that follows, i is d-com-fair.

Recall that in traditional partially-synchronous models [8,7] the bounds on mes-
sage delay are measured as the number of steps taken by the sender. In contrast,
our bounds on communicational fairness are measured as the number of steps
taken by the receiver, for the following reason. Since these traditional models
assume that relative process speeds are bounded, if some live process takes a
bounded number of steps while a message is in transit, then all processes take
a bounded number of steps while that message is in transit. Hence, asserting
the existence of a bound on the number of steps by the sender is equivalent to
asserting the existence of a bound on the number of steps by the recipient in the
same time interval. In our case, since computational fairness is not a symmetric
property, a bound on the number of steps by the sender need not translate to a
bound on the number of steps by the receiver in the same time interval. Conse-
quently, we denominate communicational fairness as the number of steps taken
by the recipient.

Furthermore, we bound the number of steps taken by the recipient only while
the sender is live for the following reason. While the sender is not crashed, it
can successfully maintain an operational communication link with the recipient,
and the link can ensure that messages are delivered before the recipient takes
‘too many steps’. However, if the sender crashes, the link is no longer guaranteed
to stay operational, and no guarantees can be provided on message delay and
delivery.

3.4 Fairness-Based Partially-Synchronous System Models

In this subsection we present four fairness-based partially-synchronous systems
models that represent the fairness encapsulated by the four Chandra-Toueg fail-
ure detectors specified in Sect. 3.2.

1. All Fair (AF) is an asynchronous system model where: in every run, all
processes are both k-proc-distinguished and d-com-distinguished, for known
k and d.
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2. Some Fair (SF) is an asynchronous system model where: in every run, some
correct process i is both k-proc-distinguished and d-com-distinguished, for
known k and d.

3. Eventually All Fair (�AF) is an asynchronous system model where: for
each run, there exists a (potentially unknown) time after which the system
behaves like AF .

4. Eventually Some Fair (�SF) is an asynchronous system model where: for
each run, there exists a (potentially unknown) time after which the system
behaves like SF .

4 Methodology

We claim that the Chandra-Toueg oracles encapsulate fairness (and not real-
time) properties of the underlying system. We will show that the amount of
fairness encapsulated by these oracles is specified by the aforedescribed fairness-
based system models. In a precise sense, AF , SF , �AF , and �SF specify
the exact amount of fairness encapsulated by P , S, �P , and �S, respectively.
Alternatively, it can be said that in environments where an arbitrary number of
processes may crash, AF , SF , �AF , and �SF are the ‘weakest’ system models
to implement P , S, �P , and �S, respectively.

The methodology used to establish the above equivalence is as follows. First,
we present a construction (described in Sect. 5) that uses a Chandra-Toueg or-
acle in an otherwise asynchronous system to schedule distributed applications
such that each process executes its application steps ‘fairly’ with respect to other
processes (and messages). The fairness properties guaranteed by the scheduler
depend on the available failure detector. By employing P , S, �P , or �S, the
scheduler provides fairness guarantees specified by AF , SF , �AF , or �SF ,
respectively. This shows that the failure detectors encapsulate at least as much
fairness as is specified in the corresponding fairness-based system models. Next,
we present an algorithm (described in Sect. 6) which implements a Chandra-
Toueg oracle on top of these fairness-based systems. When this algorithm is
deployed in AF , SF , �AF , or �SF , it implements P , S, �P , or �S, respec-
tively. Thus, we show that these failure detectors encapsulate no more guarantees
on fairness than what is provided by the corresponding fairness-based systems.

5 Extracting Fairness

In this section, we present a distributed scheduler that ‘extracts’ the fairness
encapsulated by the Chandra-Toueg failure detectors. The algorithm presented
is a universal construction for the Chandra-Toueg hierarchy in the sense that
depending on the failure detector used by the algorithm, the appropriate fair-
ness guarantees are provided by the distributed scheduler. For simplicity, we
assume that the application at each process always has some enabled step that
it can take. Therefore, the local scheduler module is always in one of two states:
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waiting and active. When the scheduler module is waiting, the associated appli-
cation module is not enabled to take steps. Upon becoming active, the scheduler
module enables the associated application module to execute a single step and
then the scheduler goes back to waiting. Additionally, the distributed scheduler
‘intercepts’ and forwards all the communication among the application modules.

The properties to be satisfied by the distributed scheduler are local progress
and fairness. Local progress states that every correct process must be scheduled
to execute its application steps infinitely often, regardless of process crashes in
the system. Fairness properties are as follows:

If the distributed scheduler uses:

– P , then the distributed scheduler implements the AF system model.
– S, then the distributed scheduler implements the SF system model.
– �P , then the distributed scheduler implements the �AF system model.
– �S, then the distributed scheduler implements the �SF system model.

5.1 Interface between Scheduler and Application

The scheduler provides three interfaces for an application module to interact
with the local scheduler module and the application modules at other processes:
executeAPP (), receiveAPP (), and sendAPP (). These interfaces are specified
in Alg. 1.2 and described below.

The scheduler enables the application to take a step by invoking executeAPP()
and in response, the application takes a single atomic step. If multiple actions
of the application are enabled to be executed, then the scheduler is assumed
to make a non-deterministic choice among the enabled actions subject to the
constraint of weak fairness (which states that a continuously enabled action is
eventually executed).

The application receives messages sent by other processes by invoking re-
ceiveAPP(). The scheduler at each process i takes all the messages destined for
the application module at i and stores them locally in a receive buffer. When
the application invokes receiveAPP (), the scheduler returns the contents of the
local receive buffer to the application.

The application sends messages by invoking the sendAPP () interface. While
taking a step, if the application at process i invokes sendAPP (), the scheduler at
i stores all the messages that the application wants to send to all the processes in
a local send buffer. The scheduler module at i then sends the messages to desti-
nation process where they are stored in the receive buffers of the corresponding
scheduler modules (in Actions 5 and 6 of Alg. 1.1 as described in Sect. 5.2).
These messages are then received by the respective recipient processes when the
latter invoke receiveAPP ().

5.2 Algorithm Description

The algorithm in Algs. 1.1 and 1.2 implements a distributed scheduler with
dynamic heights (or priorities) and permits. Alg. 1.1 shows the actions of the
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enum {waiting, active} : si.state ← waiting State variable is initially set to waiting
integer si.ht ← 0 The height of process i
∀j ∈ Π − {i} :

boolean si.permitj ← (i.id > j.id) Process with higher id holds the shared permit
boolean si.reqj ← (i.id < j.id) Process with lower id holds the shared request token
integer si.htj ← 0 Process i’s view of the height of process j
integer si.seqj ← 0 Generates a new sequence number to solicit messages from j
integer si.maxAckj ← 0 The highest seq. no. among the messages received from j
set si.send bufferj The send buffer through which apps. at i send messages to j
set si.receive bufferj The receive buffer from which apps. at i receive msgs. from j

boolean si.permitj ← true Process always holds its own the shared permit

1 : {si.state = waiting} −→ Action 1
2 : ∀j ∈ Π − {i} where si.reqj ∧ ¬si.permitj do Request permit
3 : send 〈request, si.ht〉 to sj ; si.reqj ← false

4 : {upon receive 〈request, ht〉 from sj} −→ Action 2
5 : si.reqj ← true Send permit if si is waiting
6 : si.htj ← ht and sj has higher priority
7 : if (si.permitj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j)))
8 : send 〈permit, si.ht〉 to sj ; si.permitj ← false

9 : {upon receive 〈permit, ht〉 from sj} −→ Action 3
10 : si.permit ← true Send permit if si is waiting
11 : si.htj ← ht and sj has higher priority
12 : if (si.reqj ∧ (si.state = waiting) ∧ ((ht > si.ht) ∨ ((ht = si.ht) ∧ (i < j)))
13 : send 〈permit, si.ht〉 to sj ; si.permitj ← false

14 : {(si.state = waiting) ∧ (∀j /∈ D :: si.permitj)} −→ Action 4 (Note: D is queried)
15 : si.state ← active Active upon holding permits from trusted processes
16 : foreach j in Π − {i}
17 : increment si.seqj by 1 Generate a new seq. no. to tag a request message
18 : send 〈reqMsg, si.seqj〉 to sj Send a request message to all processes

19 : {upon receive 〈reqMsg, num〉 from sj} −→ Action 5
20 : msgSet ← si.send bufferj Received a mesg request.
21 : si.send bufferj ← ∅
22 : send 〈msgSet,num〉 to sj Send the contents of the local send buffer

23 : {(upon receive 〈msgSet′, num〉 from sj)} −→ Action 6
24 : si.receive bufferj ← si.receive bufferj ∪ msgSet′ Add to local receive buffer
25 : si.maxAckj ← max(num, si.maxAckj) Update max. ack receive so far.

26 : {(si.state = active) ∧ (∀j ∈ Π − {i} :: ((si.maxAckj = si.seqj) ∨ (j ∈ D)))} −→
Action 7 (Note that the failure detector D is queried)

27 : executeAPP () Execute an app. step; executeAPP () is specified in Alg. 1.2
28 : si.ht ← min(∀j ∈ Π − {i} :: si.htj , si.ht) − 1 Reduce height below all neighbors
29 : ∀j ∈ Π − {i} where (si.permitj) do whose height is known.
30 : send 〈permit, si.ht〉 to sj ; si.permitj ← false Send all held permits
31 : si.state ← waiting Exit the active state after executing an app. step

Alg. 1.1. Actions for scheduler at process i
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procedure executeAPP ()
execute an enabled application action in which

application action invokes receiveAPP () to receive messages
application action invokes sendAPP (m,j) to send message m to process j

procedure receiveAPP ()
returnV alue ← ∪∀j∈Π−{i}{(si.receive bufferj , j)}
∀j ∈ Π − {i} do si.receive bufferj ← ∅
return returnV alue

procedure sendAPP (m, j)
si.send bufferj ← si.send bufferj ∪ {m}

Alg. 1.2. Interaction between the scheduler and the application

scheduler and Alg. 1.2 shows the interface between the scheduler and the sched-
uled application. The idea of dynamic heights and permits (also called forks) is
borrowed from the algorithms to solve the dining philosophers problem in [17].
All the processes are assigned a static id and all the ids are known to all the
processes in the system.

In Alg. 1.1 each process i has the following variables: si.state which determines
if the process is waiting or active. The height of a process is stored in the variable
si.ht which is initially 0. For each process j in the system, i maintains the
variables: (a) si.permitj to determine if the permit shared with j is currently
held by i, (b) si.reqj to determine if the request token to request a permit from
j is currently at i, and (c) si.htj which stores the last received value of j’s height
(in permits and request messages).

All processes start in the waiting state with the permits at higher-id processes
and request tokens at lower-id processes. For a waiting process to become active,
it must collect all its shared permits. A waiting process requests missing permits
in Action 1. Upon receiving such a request in Action 2, the process determines if
the request should be honored based on the following condition: if the process is
waiting, holds the shared permit, and the requesting process has greater height
(or equal height and higher process-id), then the process relinquishes the permit.
Otherwise the process simply holds the token and defers sending the permit if
the permit is present.

Upon receiving a permit in Action 3, the process again determines if the
permit should be kept (to be sent later) or sent based on the same condition
mentioned previously.

When a waiting process (say) i receives shared permits from all the processes
not suspected by the failure detector D, i becomes active in Action 4. Upon
becoming active, i sends an application-message request (denoted 〈reqMsg〉)
with a new sequence number (si.seqj) to each process j in the system. Upon
receiving such a message in Action 5, process j sends the contents of its local send
buffer appended with the sequence number in response. Process i receives such a
message sent by j in Action 6; process i adds the contents of the received message
to its local receive buffer and updates its local state to reflect the latest sequence
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number for which i has received a response from j (stored in si.macAckj). Upon
receiving responses from all trusted processes for the 〈reqMsg〉 messages sent
with the latest sequence number (that is, si.seqj = si.maxAckj for all j trusted by
i), Action 7 is enabled at process i. In Action 7, process i invokes executeAPP ()
to execute an application step before exiting.

This mechanism of receiving application messages before invoking execute
APP () ensures that an active process i ‘waits on’ all the messages sent by
a correct and trusted process j, thus guaranteeing that a correct and trusted
process j is also a com-distinguished process.

When a process executes an application step, the application invokes receive
APP () described in Alg. 1.2 to receive all the messages in the local receive buffer,
and the application action sends messages by invoking sendAPP () described in
Alg. 1.2 which simply adds the message to the local send buffer.

Eventually, the process exits its active state by reducing it height below all
processes (whose shared permits it holds), sends all the permits away and transits
to waiting in Action 7.

Relinquishing the shared permits before waiting ensures that a correct and
trusted process receives permits from other processes every time the other pro-
cesses take an application step. The reduction in height ensures that the process
does not ‘steal’ the permits (by sending a request token with greater height)
after relinquishing them. This allows a correct and trusted process to become a
proc-distinguished process as well.

The proof of correctness is available in the full version of the paper at [16]
and has been omitted here due to space limitations.

6 Extracting Chandra-Toueg Failure Detectors from
Fairness-Based Systems

In this section we present an algorithm that implements the failure detectors P ,
S, �P , and �S in the system models AF , SF , �AF , and �SF , respectively.
This result combined with the result in Sect. 5 shows that AF , SF , �AF , and
�SF have the minimal synchronism necessary to implement P , S, �P , and �S,
respectively. The algorithm is as follows:

The failure detector module at each process i maintains a timer timerValuej

for each process j in the system which counts down from k + d to 0, where
the bounds on fairness in the system models of Sect. 3.4 are specified by the
existence of k-proc-distinguished and d-com-distinguished processes. Every time
process i takes a step, it receives zero or more messages from all other processes,
decrements the value of timerValuej by 1, and sends a heartbeat to each process
j in the system. If i receives a heartbeat from j, then i trusts j and resets the
value of timerValuej to k + d. If timerValuej is decremented to 0, then i suspects
j. The pseudo-code for the algorithm is given in Alg. 1.3.

The proof of correctness is available in the full version of the paper at [16]
and has been omitted here due to space limitations.
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constant timeOut ← k + d
set suspectList ← ∅
∀j ∈ Π − {i} :

integer timerValuej ← timeOut

1 : {true} −→ Action 1
2 : receive 〈msgSet〉 Receives zero or more messages from each process
3 : ∀j ∈ Π − {i} do
4 : send 〈HB〉 to j Send a heartbeat to each process
5 : if (〈HB, j〉 ∈ msgSet)
6 : suspectList ← suspectList − {j} Trust upon receiving a heartbeat
7 : timerValuej ← timeOut Reset timer
8 : if (timerValuej = 0)
9 : suspectList ← suspectList ∪ {j} Suspect upon timer expiry
10 : timerValuej ← max(timerValuej − 1, 0) Decrement timer for each process

Alg. 1.3. Implementing Chandra-Toueg Oracles In System Models Where (Some)
Processes are k-Proc-Distinguished and d-Com-Distinguished

7 Discussion

Complete Synchrony and P. It was first noted in [4] that there exist time-
free problems solvable in synchronous systems that are unsolvable with P . This
points to a ‘gap in the synchronism’ between P and the synchronous system.
The following corollary of our results explains this gap.

AF — the weakest systemmodel to implement P — is extremely similar to the
synchronous system model with message delay being denominated in recipient’s
steps in the former and in real time in the latter. However, there is one significant
difference. AF ensures full synchrony for all messages as long as the senders are
live. When a sender crashes, AF ‘loses synchronism’ for all the sender’s messages
that are still in transit. On the other hand, synchronous systems ensure the
synchronism for these messages as well. This difference in the behavior between
AF and synchronous systems is the ‘gap in synchronism’ between the perfect
failure detector P and synchronous systems. To our knowledge, we are the first
to characterize this gap.

On Solving Consensus. It is well known that �S is the weakest failure de-
tector to solve consensus in asynchronous systems with a majority of correct
processes [14], and we have shown that �SF is the weakest fairness-based sys-
tem model to implement �S. Does that mean �SF is the weakest system model
to solve consensus? The answer is no. While �S is the weakest to solve consen-
sus only in majority-correct environments, �SF is the weakest to implement
�S in all environments. This obervationsuggests that there is a weaker system
model which can implement �S in majority-correct environments, but not in all
environments.

Open Questions. We have argued that several oracles encapsulate fairness
in executions and provided evidence by demonstrating that the oracles in the
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Chandra-Toueg hierarchy encapsulate such fairness constraints. This opens a
larger question: do all oracles encapsulate fairness? The answer is arguably no.
Notable candidates for counterexamples include the failure detectors proposed
in [13] whose output can be arbitrary and need not provide semantic informa-
tion about process crashes alone. This presents another question: what set of
oracles do encapsulate fairness? This question is open even when restricted to
the extended Chandra-Toueg hierarchy (which include oracles like T [6], and
other parametric oracles like the ones in [2,19]). If it turns out that all oracles
that output process ids do encapsulate fairness, then it provides us with a clean
hierarchy of fairness-based system models that mirrors the extended Chandra-
Toueg hierarchy. On the other hand, if we discover that there exist oracles within
the extended Chandra-Toueg hierarchy that do not encapsulate fairness, then
the implication is that these oracles encapsulate something other than fairness.
Knowledge of this other encapsulated information could help in designing crash
tolerant systems.

Another consequence of oracles encapsulating fairness is that fault environ-
ments might encapsulate fairness as well. Recall that the weakest oracles suffi-
cient to solve problems in distributed systems vary depending on the number of
processes that may crash. For instance, consider fault-tolerant consensus. Recall
that �S is the weakest to solve the problem only in majority-correct environ-
ments [14]. In environments where an arbitrary number of processes may crash,
the weakest failure detector for the problem is a stronger oracle (�S, Σ) [5].
Given that �S encapsulates some fairness constraints, and Σ can be imple-
mented in an asynchronous system with majority correct, we conjecture that
Σ and majority-correct encapsulate equivalent fairness constraints in the sys-
tem. Furthermore, this implies that fairness is also encapsulated by constraints
on the number of processes that may crash in the system. Based on the above
observations and arguments, consider the following question: Is fairness a more
general primitive to understand crash fault tolerance in distributed systems?
That is, can fairness unify the different weakest failure detector results for the
same problem in different fault environments?

Much effort is spent pursuing the ‘weakest’ real-time-based models to imple-
ment certain oracles (like Ω, �P , and such) for two reasons: (1) bounds in many
empirical distributed systems are specified with respect to real time, and (2)
these oracles are known to be the weakest to solve many problems in distributed
computing. However, given the dependence of the weakest-oracle results on the
fault environment, and the conjecture that fault environments themselves could
encapsulate fairness, it is perhaps beneficial to investigate the ‘weakest’ real-
time-based models to guarantee appropriate fairness constraints (rather than
oracles) so that these constraints can then be encapsulated by various combina-
tions of oracles and fault environments.
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Abstract. This paper considers the k-set agreement problem in a crash-
prone asynchronous message passing system enriched with failure detec-
tors. Two classes of failure detectors have been previously identified as
necessary to solve asynchronous k-set agreement: the class anti-leader
anti−Ωk and the weak-quorum class Σk. The paper investigates the fam-
ilies of failure detector (anti−Ωx)1≤x≤n and (Σz)1≤z≤n. It characterizes
in an n processes system equipped with failure detectors anti−Ωx and
Σz for which values of k, x and z k-set-agreement can be solved. While
doing so, the paper (1) disproves previous conjunctures about the weak-
est failure detector to solve k-set-agreement in the asynchronous message
passing model and, (2) introduces the first indulgent algorithm that tol-
erates a majority of processes failures.

Keywords: Set-agreement, asynchrony, failure detectors, indulgent al-
gorithms.

1 Introduction

The k-set-agreement problem k-set-agreement [10] is one of the fundamental
problem in fault tolerant distributed computing. In this problem, n processes
starting each with an initial private value are required to agree on at most k
values chosen among their initial values. The problem generalizes the consensus
problem, which corresponds to the case where k = 1. In an asynchronous sys-
tem, it is well known that 1-set-agreement is impossible as soon as at least one
process may fail by crashing [17], whereas the case k = n does not require any
coordination at all. For intermediate values of k (1 < k < n), asynchronous k-set
agreement tolerating t crash failures is possible if and only if k > t [6,25,30].

Failure detectors. A failure detector is a distributed oracle that provides pro-
cesses with possibly unreliable information on failures [9]. According to the quality
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of the information, several classes of failure detectors can be defined. Starting
with [27,31], the failure detector approach has been investigated to alleviate
the k-set-agreement impossibility in asynchronous systems. An algorithm that
tolerates unreliable failure detection is said to be indulgent towards its failure de-
tector [19,21]. Informally, an indulgent algorithm is always safe: it never violates
the safety part of the problem it is supposed to solve, even when the underlying
failure detector gives false information about failures.

The quest for the weakest failure detector for k-set-agreement. Given a dis-
tributed problem P , a natural question is to determine the weakest failure de-
tector for P , that is a failure detector D which is both sufficient to solve the
problem – there is an asynchronous algorithm based on D that solves P – and
necessary, in the sense that any failure detector D′ that allows solving P can be
used to emulate D.

The question of the weakest failure detector class for k-set agreement (1 < k <
n) has been first stated in [29]. This line of research [11,12,20,24] culminated with
the work of Zieliński who established that the failure detector class anti−Ωn−1 is
the weakest to solve (n−1)-set-agreement in the wait-free shared memory model
[32]. This has later been generalized to any k, 1 ≤ k < n by three independent
groups [2,15,18]. Informally, a failure detector anti−Ωk outputs sets of n − k
process ids such that some non faulty process id eventually never appear in the
outputs.

The situation is different in the message passing model where the answer is
known only for the two boundaries cases, i.e., k = 1 (consensus) and k = n − 1
[14]. For consensus (k = 1), it has been shown that the class of eventual leader
failure detector Ω = anti−Ω1 is the weakest failure detector in the asynchronous
message passing model in which a majority of processes are non-faulty (t < n

2 )
[8]. This result is generalized to the wait-free environment in [13] where it is
shown that Ω ×Σ is the weakest failure detector class for consensus when t < n.
Intuitively, failure detector Σ provides a reliable quorum system: when queried,
a failure detector of the class Σ returns a sets of processes ids, such that (1)
any two sets intersect and (2) eventually, every set contains only ids of correct
processes. Actually, Σ is the weakest failure detector to implement a register in
the message passing model [5,13].

Recently, the failure detector family (Σk×Ωk)1≤k<n has been conjunctured to
be the weakest failure detector classes for k-set-agreement [4]. Failure detector Σk

and Ωk generalizes the classes Σ and Ω respectively. Intuitively, a failure detector
Σk allows up to k partitions: any collection of k + 1 sets outputs by the failure
detector contain at least two intersecting sets. Ωk, which has been introduced
by Neiger [28], outputs sets of k ids that eventually converge to a set including
the id of a non-faulty process. It is shown in [4] that Σn−1 × Ωn−1 is equivalent
to the loneliness failure detector L which is the weakest failure detector class for
(n − 1)-set-agreement [14]. Before this paper, nothing specific was known about
the power of Σx × Ωx to solve k-set-agreement, for 1 < x < n − 1.



(anti−Ωx × Σz)-Based k-Set Agreement Algorithms 191

Content of the paper. The paper investigates in the message passing model
the computational power of the failure detector families (Σx)1≤x≤n and
(anti−Ωz)1≤z≤n as far as k-set-agreement is concerned. Its main contributions
are the following:

1. It has been shown that Σk is necessary to solve k-set-agreement, for each
k, 1 ≤ k ≤ n − 1 [4]. Moreover, for k = 1, Σ1 = Σ alone is not powerful
enough to solve consensus whereas Σn−1 is sufficient to solve (n − 1)-set-
agreement [4,14]. We give necessary and sufficient conditions on the values
of k, x and n in order to k-set-agreement to be solvable in an n processes
message passing system enriched with Σx (Theorem 1, section 3). Roughly
speaking, we show that Σx allows to eliminate at most � n

x+1� initial values,
thereby generalizing prior results for the cases k = 1 [12] and k = n− 1 [14].

2. The paper then investigates the combined power of Σx and anti−Ωz. For
k ≥ xz, we present a k-set-agreement algorithm that tolerates any number
of failures (Section 5).

To ensure safety, namely that no more than x values are decided, we de-
sign a non-trivial generalization of the alpha abstraction which is at the core
of indulgent consensus [22]. Our abstraction (called alphax, section 4) can be
seen as an obstruction-free object that allows processes to store and retrieve
at most x distinct values. Its implementation relies solely on a failure de-
tector of the class Σx. Of note, as Σx can be simulated in an asynchronous
message passing system when t < xn

x+1 , we obtain a xz-set-agreement al-
gorithm which is indulgent (towards the underlying failure detector of the
class anti−Ωz) and tolerates t < xn

x+1 failures. To our knowledge, every prior
indulgent algorithm assumes a majority of correct processes (t < n/2) or
relies on a strong failure detector (e.g., Σ) that cannot be implemented in
the asynchronous message passing model when a majority of processes may
fail (t ≥ n/2).

3. Finally, we show that for large enough values of n, there is no k-set-agreement
algorithm based on Σx×Ωz if k < xz (Theorem 2, section 5). This last result
has two noteworthy corollaries. First, as anti−Ωz can easily be simulated
using the output of Ωz , it implies that the previous algorithm is optimal.
Second, it rules out Πk = Σk × Ωk as a weakest failure candidate for k-set-
agreement, thus disproving Bonnet and Raynal’s conjuncture [4].

Roadmap. The paper is made up of 6 sections. Section 2 describes the com-
puting model and the families of failure detector we are interested in. Section 3
investigates the power of Σx with respect to the solvability of k-set agreement.
The alphak abstraction is introduced in section 4, which presents also an Σk-
based implementation. Section 5 then describes an indulgent k-set agreement
algorithm that relies on the previous abstraction and a failure detector of the
class anti−Ωx. A matching impossibility result is also presented. Finally, section
6 provides some concluding remarks. Due to space limitations, some proofs are
presented in a companion technical report [7].
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2 System Model and Failures Detectors

Asynchronous message passing system with process crash failures. The system
consists in a set of n processes denoted Π = {p1, . . . , pn}. Processes are asyn-
chronous and may fail by crashing. Processes communicate via sending and re-
ceiving messages over an asynchronous network. Each pair of processes is con-
nected by a bi-directional channel. The channels are asynchronous but reliable.
Reliable means that there is no creation, alteration or loss of messages whereas
asynchronous means that message transfer delays are finite but unbounded.

Processes may fail by crashing, i.e., prematurely stop executing their code. A
process is correct in an execution if it never crashes in this execution; otherwise
it is faulty. t(1 ≤ t < n) denotes an upper bound on the number of processes
that can crash in a run. Given an execution, Correct denotes the set of correct
processes.

Notation. As in [26], MPn,t denotes the asynchronous distributed system made
of n processes, among which at most t may crash in any run. MPn,t[X ] denotes
a system enriched with a failure detector of a class X .

The k-set agreement problem. In the k-set agreement problem, each process
proposes a value and has to decide a value such that the following properties are
satisfied: (Validity) A decided value is a proposed value; (Termination) Every
correct process eventually decides a value; (Agreement) The number of distinct
decided values is at most k.

Families of failure detector classes. For process pi, fd
τ
i is the value output by

the failure detector at time τ .

– The eventual leader family (Ωk)1≤k≤n. This family has been introduced in
[28] to generalizes the class of failure detectors Ω defined in [8], with Ω1 = Ω.
A failure detector of the class Ωk maintains at each process pi a set of
processes of size at most k (denoted leaderi) that satisfies the following
property:
• (Eventual multiple leadership). There is a time after which the sets

leaderi contains forever the same set of processes and at least one
process of this set is correct.

– The quorum family (Σk)1≤k≤n [4]. A failure detector of the class Σk main-
tains at each process pi a variable trustedi that contains a set of processes.
The family generalizes the “quorum” failure detector Σ = Σ1 introduced in
[13]. The sets output by a failure detector of the class Σz satisfy:
• (Completeness) There is a time after which every set trustedi contains
only correct processes.

• (Intersection) For every set Q = {Q1, . . . , Qk+1} of k +1 sets output by
the failure detector, there exists Qi, Qj ∈ Q, i 	= j such that Qi∩Qj 	= ∅.

Of note, a failure detector Σk can be implemented in MPn,t provided that
kn

k+1 > t. To simulate a failure detector query, a process sends a REQUEST
message to all processes and waits for matching RESPONSES. The set X



(anti−Ωx × Σz)-Based k-Set Agreement Algorithms 193

made of the ids of the senders of the first n− t responses received defines the
result of the query. It is easy to see that completeness is ensured: eventually,
only correct processes send responses. The intersection property follows from
the fact that each simulated query returns a set of n−t ≥ � n

k+1�+1 identities.
Hence, any collection of k+1 such sets contains at least two intersecting sets.

– The anti-Ω family (anti−Ωk)1≤k≤n [32]. A failure detector of the class
anti−Ωk outputs at each process pi a set anti-leaderi of n − k processes
ids. anti−Ω1 is equivalent to Ω . In every run, there is a correct process such
that eventually each set output by the failure detector does not contain the
identity of this process.
• (Anti-leadership) ∃pc ∈ Correct , ∃τ such that ∀τ ′ ≥ τ, ∀pi ∈ Π, c /∈

anti-leader
τ ′
i .

3 Σz and k-Set-Agreement

Among other results, [12] shows that there is a k-set-agreement algorithm based
on Σ1 if k > n/2. On the other side (k = n − 1), in [14] a (n − 1)-set agreement
message passing algorithm is presented. The algorithm relies on a failure detector
called L, which has been proved in [4] to be equivalent to Σn−1. Actually, it is
also shown in [14] that failure detector L is the weakest failure detector for
(n − 1)-set-agreement in the wait-free message passing model (t = n − 1). We
generalize these boundary results to the entire family (Σz)1≤z≤n. Specifically, we
present a k-set-agreement algorithm based on Σz, provided that k ≥ n − � n

z+1�.
A simple matching impossibility result is also presented.

Theorem 1. The k-set-agreement problem can be solved in MPn,n−1[Σz] if and
only if k ≥ n − � n

z+1�

Solving k-set-agreement with Σz. The algorithm combines ideas borrowed from
the (n − 1)-set-agreement protocol based on failure detector L presented in [14]
and a k-set-agreement protocol based on σ2k [12]. In short, a failure detector of
the class σ2k provides the properties of the class Σ only to a subset of size 2k of
the system. The algorithm is described in Figure 1.

Let A1, . . . , Az+1 be a partition of the set of processes such that ∀i, 1 ≤ i ≤
z, |Ai| = � n

z+1� and |Az+1| = � n
z+1� + (n mod (z + 1)). Each process in set

Ai tries to decide the proposal of some process that belongs to some partition
Aj , j < i. To that end, each process p ∈ Ai first sends its proposal to all processes
in “higher” partitions, i.e., the processes that belong to the sets Ai+1, . . . , Az+1

(line 1). When a process receives a value w from a “lower” partition, it decides
that value after broadcasting a DEC message carrying that value (line 5). A
process that has not yet decided also decides w when it receives such a message
DEC(w) (Task T3). Note that the initial values of the processes in the “highest”
partition (Az+1) cannot be decided using this mechanism. Hence at most n −
|Az+1| = z� n

z+1� are decided in that way.
The mechanism sketched above allows every correct process to eventually

decide as soon as at least two partitions contain correct processes. However,
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it may happen that all correct processes are contained in a single partition
Ai. We notice that in that case, the failure detector output at each process
is eventually contained in Ai (by the completeness property of the class Σz).
Henceforth, to prevent processes from waiting for values forever, each process
pi periodically checks its failure detector output; If the current set of trusted
processes is contained in pi’s partition, pi is allowed to decide its initial value
(task T2, lines 6-8). The proof shows (Lemma 1) that the total number of decided
values is at most k = z� n

z+1� + (n mod (z + 1)).

init A1, . . . , Az+1 sets of processes such that ∀i, j, i �= j, Ai ∩ Aj = ∅;
⋃

Ai = Π;
∀i ∈ [1..z]|Ai| = � n

z+1�; |Az+1| = � n
z+1� + n mod (z + 1)

propose(v) % code for process p ∈ Ai

(1) foreach q ∈
⋃

j>i Aj do send VAL(v) to q endfor

(2) start tasks T1, T2, T3

(3) Task T1: when VAL(w) is received do
(4) foreach q ∈ Π do send DEC(w) to q enddo
(5) decide w; return

(6) Task T2: repeat X ← Σz-query() until X ⊆ Ai

(7) foreach q ∈ Π do send DEC(v) to q enddo
(8) decide v; return

(9) Task T3: when DEC(w) is received
(10) foreach q ∈ Π do send DEC(w) to q enddo
(11) decide(w); return

Fig. 1. k-set agreement algorithm in MPn,n−1[Σz], k = z� n
z+1

� + (n mod (z + 1))

Lemma 1. The protocol described in the figure 1 solves k-set agreement in
MPn,n−1[Σz] for k ≥ n − � n

z+1�

An impossibility result. Together with Lemma 1, the following lemma completes
the proof of Theorem 1.

Lemma 2. ∀n, k, z such that k < n − � n
z+1�, there is no k-set-agreement algo-

rithm in MPn,n−1[Σz]

4 The Alphak Abstraction

This section presents the Alphak abstraction that generalizes the Alpha abstrac-
tion introduced by Guerraoui and Raynal in [22] to capture the safety part of
indulgent consensus1. In the very same way, the abstraction Alphak captures
the safety part of eventual failure detector based k-set-agreement algorithms.
In short, the Alphak abstraction can be viewed as a shared object intended to
store at most k values. A process accesses the object via the operation propose(·)
1 Another generalization has been introduced in [29]. The implementation presented

there relies on atomic registers which are not available in our settings.
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with as parameter a value it is willing to store and gets back one of the values
actually stored in the object. However, in case of concurrent accesses, propose(·)
operations may not store any value and return the special value ⊥, which is the
object initial value.

More precisely, an alphak object exports one operation propose(v, r) with input
parameters a value v and a round number r. As in [22], distinct processes must
input distinct round numbers and each process must use strictly increasing round
number. The Alphak abstraction is specified by the following properties, where
⊥ is a special value that cannot be proposed:

– Termination. Every invocation of propose(·) by any non-faulty process re-
turns.

– Validity. If the invocation propose(v, r) returns v′ 	= ⊥, then propose(v′, r′)
with r′ ≤ r has been invoked.

– k-Quasi-Agreement. Let V be the set of non-⊥ values that are returned by
propose(·) invocations. |V | ≤ k.

– Conditional non-⊥convergence. Let I = propose( , r) be a terminating invo-
cation. If for every invocation I ′ = propose( , r′) that starts before I returns,
we have r′ < r, I returns a non-⊥ value.

4.1 Implementing Alphak with Σk

The algorithm implementing Alphak in an asynchronous message passing system
is described in Figure 2. The algorithm relies on an underlying failure detector
of the class Σk. It tolerates any number of failures.

Algorithm principles. At any time, each process pi has a value v (initially ⊥)
stored in the local variable vali and a pair of integers 〈r, ρ〉 stored in the vari-
ables 〈lrei, posi〉. The pair 〈r, ρ〉 can be seen as the priority of value v from pi’s
point view. As in [22], lre stands for last round entered. r is the highest round
number passed as a parameter of a propose(.) operation so far, as far as pi knows.
Furthermore, each round r is associated with a sequence of positions numbered
from 1 to 2r. When 〈lrei, posi, vali〉 = 〈r, ρ, v〉, we say that value v has reached
position ρ in round r. Also, based on its position ρ at round r, value v logically
occupies a position ρ′ at round r+δ, for each δ > 0. ρ′ is defined by the following
function g:

g(ρ, δ) = 2δ(ρ − 1) + 1

Any pair of triplets 〈r, ρ, v〉, 〈r′, ρ′, v′〉, r ≤ r′ can be compared via the function
g: 〈r, ρ, v〉 ≺ 〈r′, ρ′, v′〉, i.e., v has a priority lower than v′ iff g(ρ, r′ − r) < ρ′2.

An operation propose(v, r) returns a value v′ 	= ⊥ (possibly v′ 	= v) only if v′

has obtained a priority high enough so that no more that k − 1 values 	= v′ can
be awarded higher priority. Operationally, a process pi that invokes propose(v, r)
proceeds as follows:

2 When g(ρ, r′ − r) = ρ′, v has a lower priority if v < v′. One can check that the ≺
relation is transitive, so g induces a total order on triplets 〈r, ρ, v〉.
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– In the first phase (lines 1-7), process pi broadcasts the message REQ R(r)
in order (1) to inform other processes that it has entered round r and (2) to
collect triplets 〈round, position, value〉 held by other processes.

When a process pj receives a message REQ R(r), it first updates its round
and the position of its value (using the function g) if r > lrej . It then sends
back the current value of its variables 〈lrei, posi, vali〉 in a response message
RSP R (lines 17-18).

pi is done collecting 〈round, position, value〉 triplets when it has received
such values from each process pj in a quorum, that is a set of processes
returned by a query to the underlying failure detector Σk. If p discovers
that another propose(·) operation with input r′ > r has already started, it
returns⊥ (line 5). Note that this does not violate the conditional convergence
property. Otherwise, pi selects among the values received the triplet with the
highest priority, and updates its 〈lrei, posi, vali〉 accordingly (lines 6). In the
case no triplets contain a value 	= ⊥, pi selects its own value with position 0
(line 7).

– The second phase (lines 8-16) consists in a repeat loop. In each iteration of
the loop, pi tries to increment the position of the value currently stored in
vali. To that end, it first broadcasts a request message REQ W that carries
pi’s current value together with its position and the current round r (lines 9).
Process pj that has learned that a round > r has been started ignores the
content of the messages REQ W(〈r, ρ, v〉) it receives. Otherwise, pj updates
its round number and the position of its value. In addition, it adopts the
received value if it has higher priority (lines 19-24). Finally, pj answers
with a message RSP W that carries the updated values of its variables
〈lrei, posi, vali〉 (lines 25).

As in the first phase, pi stops collecting responses matching its request
when a response message RSP W(·) has been received from each process pj

in a quorum Q. Similarly, if one of the response carries a round number > r,
pi returns ⊥. If this not the case, pi adopts among the values received the
triplet with the highest priority, and updates its 〈lrei, posi, vali〉 variables
accordingly (lines 14). Since pi always receives a response from itself, the
value of posi at the end of the iteration is greater that the value of this
variable at the end of the previous iteration. Finally, if the current value v
of pi reaches the last position associated with round r, v is returned (lines
15-16).

k-Quasi agreement. The main difficulty is to guarantee that propose(·) invoca-
tions return collectively no more than k non-⊥ values. Value v1 is returned at
round r1 if it reaches position ρ1 = 2r1 and it has been adopted by a quorum
Q1. This means that for each process q ∈ Q1, there is a point in time τq at
which we have 〈lreq, posq, valq〉 = 〈r1, ρ1, v1〉. However, because quorums may
not intersect, another value v′ 	= v1 may reach an arbitrary high position and
consequently replaces the value v1 at each process q ∈ Q1. For example, this
might happen if the quorums output by the failure detector during propose(r′, )
invocations with r′ > r1 do not intersect with Q1. In these invocations, v′ may
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init lrei ← 0; vali ← ⊥; posi ← 0;

function propose(r, v)
(1) for each j ∈ Π send REQ R(r) end for;
(2) repeat Q ← Σk-query()
(3) until (∀pj ∈ Q ∪ {pi} : RSP R(r, 〈lrej , posj , valj〉) has been received from pj)
(4) let RCV = {〈lrej , posj , valj〉 : RSP R(r, 〈lrej , posj , valj〉) has been received };
(5) if (∃lre : 〈lre, , 〉 ∈ RCV : lre > lrei) then return (⊥) endif
(6) let posM = max{pos : 〈r, pos, v〉} ∈ RCV ;

vali ← max{v : 〈r, posM , v〉 ∈ RCV }; posi ← posM ;
(7) if vali = ⊥ then vali ← v endif
(8) repeat posi ← posi + 1;
(9) for each pj ∈ Π send REQ W(〈r, posi, vali〉) to pj end for
(10) repeat Q ← Σk-query()
(11) until (∀pj ∈ Q ∪ {pi} : RSP W(r, posi, 〈lrej , posj , valj〉) has been received from pj)
(12) let RCV = {〈lrej , posj , valj〉 : RSP W(r, posi〈lrej , posj , valj〉) has been received };
(13) if (∃lrej , 〈lrej , , 〉 ∈ RCV : lrej > r) then return (⊥) end if
(14) let posM = max{pos : 〈r, pos, v〉 ∈ RCV };

vali ← max{v : 〈r, posM , v〉 ∈ RCV }; posi ← posM ;
(15) until (posi = 2r)
(16) return (vali)

when REQ R(rd) is received from pj

(17) if rd > lrei then posi ← g(posi, rd − lrei); lrei ← rd end if
(18) send RESP R(rd, 〈lrei, posi, vali〉) to pj

when REQ W(〈rd, posj , valj〉) is received from pj

(19) if (rd ≥ lrei) then posi ← g(posi, rd − lrei); lrei ← rd
(20) case posj > posi then vali ← valj ; posi ← posj

(21) posi = posj then vali ← max(vi, vj)
(22) posj < posi then nop
(23) end case
(24) end if
(25) send RSP W(rd, posj , 〈lrei, posi, vali〉) to pj

Fig. 2. Implementing Alphak with Σk (code for pi)

be selected at the end of the first phase and its position can be increased in
the second phase. In that case, v′ has an higher priority than v1, i.e., a process
q ∈ Q1 that receives 〈r′, ρ′, v′〉 will adopts v′.

The key idea of the algorithm is a as follows. Fix some round r′ > r1. In order
to value v′ to “overtake” value v1 in round r′, v′ has to be adopted by a quorum
Q′ that does not intersect with Q1. Consider the positions associated with round
r′. At the beginning of round r′, an odd position x might be logically occupied
by a value v. This is the case if for some process p and some round r < r′, we
have 〈lrep, posp, valp〉 = 〈r, ρ, v〉 and g(ρ, r′ − r) = x. Differently, by definition
of g, each even position is initially free. Let x′ and x1 = g(ρ1, r

′ − r1) be the
positions logically occupied by values v′ and v1 respectively at the beginning of
round r′. Observe that positions are increased by step of 1 and x′ + 2 ≤ x1. So,
to reach position x1 value v′ must first successfully go through position x1 − 1.
This can only happen if there is quorum Q′ that adopts 〈r′, x1 − 1, v′〉. For each
process q ∈ Q1, the value v1 held by q has an higher priority, since it logically
occupies position x1. So q cannot adopt 〈r′, x1 − 1, v′〉, hence Q′ ∩ Q1 	= ∅.

The rationale above can be extended to a chain of values v1, . . . , v� that each
reaches higher and higher priorities to imply the existence of � pairwise disjoint
quorums. As any collection of k + 1 quorums contains at least two intersecting
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quorums, the length of such a chain is at most k. In particular, this implies that
at most k distinct values are returned – see the second part of the proof for more
details (Lemmas 6–10).

Remark. The algorithm is generic in the sense that the parameter k is never
explicitly used in the code. In order to implement an Alphak′ abstraction, it is
sufficient to replace the underlying failure detector by a failure detector in the
class Σk′ . On the other hand, the algorithm uses 2r positions per round. We
have also developed along the same principles an algorithm that uses O(rk−1)
positions per round. However, determining which is the round r′ position corre-
sponding to a round r < r′ position, i.e., defining the equivalent of the g function,
is more involved. As a result, the correctness proof is more intricate.

4.2 Proof

Consider a well-formed execution, in which processes execute the algorithm de-
scribed in Figure 2 when propose(·) is invoked. An execution is well-formed if
the following conditions are fulfilled: (1) Only round number r > 0 are used as
input parameters; (2) For any invocations propose( , r) and propose( , r′) per-
formed by processes p and p′ respectively, if p 	= p′ then r 	= r′ and, if p = p′

and propose( , r) is invoked before propose( , r′) then r < r′.

Lemma 3 (Termination). Every invocation of propose(·) by a correct process
terminates.

Lemma 4 (Validity). Suppose that the invocation propose(r, v) returns v′ 	= ⊥.
Then propose(r′, v′) with r′ ≤ r has been invoked by some process.

Lemma 5 (Conditional non-⊥convergence). Let I = propose(r, ) be a ter-
minating invocation. If for every invocation I ′ = propose(r′, ) that starts before
I returns we have r′ < r, I returns a non-⊥ value.

k-quasi agreement. The next lemma is central in the proof of the k-quasi agree-
ment property. In the following, a quorum is a set of processes returned by a
query to the underlying Σk failure detector.

Lemma 6. Let V be the set non-⊥ values that are returned by the propose(·)
invocations. |V | = x ⇒ ∃x quorums Q1, . . . , Qx, ∀1 ≤ i < j ≤ x, Qi ∩ Qj = ∅.
The k-quasi agreement property then follows easily from Lemma 6.

Lemma 7 (k-quasi agreement). Suppose that the protocol described in Figure
2 is instantiated with a failure detector of the class Σk. The total number of non-
⊥ values that are returned by the propose(·) invocations is at most k.

Proof. Assume for contradiction that x > k non-⊥ values are returned. It then
follows from Lemma 6 that at least k + 1 disjoint quorums are output by the
underlying failure detector Σk. This contradicts the intersection property of the
class Σk.
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In order to prove Lemma 6, we define a sequence S = s1, . . . , si = 〈ri, ρi, vi〉, . . .
where for each i, ri is a round number, ρi a position associated to round ri, and
vi a value. The sequence S is defined inductively as follows:

– r1 is the smallest round r such that the invocation propose( , r) returns a
non-⊥ value, if any. ρ1 = 2r1 and v1 is the value returned by that invocation.

– Suppose that s1, . . . , si−1 have been defined. ri is the first round r > ri−1

during which a value v 	= {v1, . . . , vi−1} reaches a position ≥ g(ρi−1, r−ri−1)
(if such a round exists), i.e., ri = min

{
r : r > ri−1, ∃px, ∃v /∈ {v1, . . . , vi−1},

〈lrex, posx, valx〉 = 〈r, g(ρi−1, r − ri−1), v〉
}
. vi is then this value, and we

define ρi = g(ρi−1, ri − ri−1) − 1.

In the next lemma we give a formula for computing values ρi.

Lemma 8. Suppose that |S| ≥ �. ∀i, 2 ≤ i ≤ �, ρi = 2ri(1 − 1
2r1 − . . . − 1

2ri−1 )

Suppose that value v reaches position ρ in round r, i.e., there exists a process
pi for which we have 〈lrei, posi, vali〉 = 〈r, ρ, v〉 at some time. For every round
r′ ≥ r, value v then logically occupies round r position g(ρ, r′ − r). Indeed, if
process pi later receives a read or write request carrying round r′ ≥ r, posi is
updated to the value g(ρ, r′ − r) (at line 17 or line 19). Given a round r, we can
then define the highest position logically occupied by value v as follows:

Definition 1. Given a value v and a round number r, let mpos(v, r) denotes
the maximal position logically occupied by value v at the beginning of round r.
Formally, mpos(v, r) = max{g(ρ′, r − r′) : ∃pj , r

′ < r and a time at which
〈lrej , posj , valj〉 = 〈r′, ρ′, v〉}; if no invocation propose(r′, v) with r′ < r occurs,
mpos(v, r) = 0.

Lemma 9. Suppose that |S| ≥ �. Let 〈r, ρ, v〉 be the value of process pi variables
〈lrei, posi, vali〉 at some time. If r ≤ r� and v /∈ {v1, . . . , v�}, g(ρ, r� − r) < ρ�.

Lemma 10. Let V be the set non-⊥ values that are returned by the propose(·)
invocations. If |V | = x, s1, . . . , sx are well defined.

We are now ready to prove Lemma 6. To do so we associate to each si ∈ S a
quorum Qi. Intuitively, the processes in Qi are those processes that allow value vi

to reach position ρi during round ri. Each process q ∈ Qi hence holds the triplet
〈ri, ρi, vi〉 at some time. Note that, after that time, the round r and position ρ
are always such that r ≥ ri and ρ ≥ g(ρi, r − ri). The crucial observation is that
q cannot allow any value vj 	= vi to reach position ρj , essentially because either
ri > rj (in the case i > j) or g(ρi, rj − ri) > ρj (if j > i).

Proof of Lemma 6. Suppose that |V | = x. Let �, 1 ≤ � ≤ x. We first bound
mpos(v�, r�). Suppose that 〈r, ρ, v�〉 are stored by some process p, with r ≤ r�.
There are two cases:

– 1 ≤ r ≤ r�−1. Since v� /∈ {v1, . . . , v�−1}, it follows from Lemma 9 that
g(ρ, r�−1 − r) < ρ�−1. Hence, g(g(ρ, r�−1 − r), r� − r�−1) < g(ρ�−1, r� − r�−1)
from which we have g(ρ, r� − r) < g(ρ�−1, r� − r�−1).
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– r�−1 < r < r�. By definition of s�, we have ρ < g(ρ�−1, r − r�−1). There-
fore g(ρ, r� − r) < g(g(ρ�−1, r − r�−1), r� − r) which implies g(ρ, r� − r) <
g(ρ�−1, r� − r�−1).

We conclude that mpos(v�, r�) < g(ρ�−1, r� − r�−1) = ρ� + 1. By definition of
g(·), ρ + 1 is odd. Similarly, as there exists r′ < r�, ρ

′ such that mpos(v�, r�) =
g(ρ′, r� − r′), mpos(v�, r�) is odd. Consequently mpos(v�, r�) < ρ�.

We now define a quorum Q� associated with the triplet 〈r�, ρ�, v�〉. By defini-
tion of s�, r� is the first round during which value v� reaches a position ≥ ρ� +1.
There is a (unique) process p� that invokes propose(·) with input parameter
r�. Otherwise, round r� is never entered and value v� cannot reach position
g(ρ�−1, r� − r�−1) = ρ� + 1 in round r�.

Note that (1) value v� reaches a position ≥ ρ� +1 in round r�, (2) the highest
position logically occupied by v� at the beginning of round r� is < ρ�. Moreover,
(3) only process p� increases positions in round r�, and (4) p� tries to move at
most one value from position φ to position φ + 1, for every position φ. It then
follows that p� successfully moves value v� from position ρ�−1 to position ρ�+1.
In more details, this means that the variable pos� successively contains the values
ρ� − 1, ρ�, ρ� + 1 while the variables 〈lre�, val�〉 keep the values 〈r�, v�〉.

In particular, let us consider the iteration of the repeat loop (lines 8-15) in
which pos� = ρ�. Let Q� be the quorum that allows the inner repeat loop to
terminate (lines 10-11). Observe that Q� is a set of process returned by a query
to failure detector Σk. For each q ∈ Q�, the message RSP W received from q
must carry the triplet 〈r�, ρ�, v�〉. If not, p� either picks another pair 〈ρ, v〉 with
v 	= v� and ρ ≥ ρ� or returns ⊥. In both case, p stops moving value v�. It cannot
move v� later in the same round, as the highest position occupied by v� is ρ�,
and in subsequent iterations, only values located at position > ρ� can be moved.

Consequently, it follows that ∀pi ∈ Q� there exists a time τ �
i at which we have

〈lrei, posi, vali〉 = 〈r�, ρ�, v�〉.
Finally, we establish that ∀i, j, 1 ≤ i < j ≤ �, Qi ∩ Qj . Observe that if

〈r1, ρ1, v1〉 and 〈r2, ρ2, v2〉 are the values of the same process variables 〈lre, pos,
val〉 at times τ1 < τ2 respectively, (r1 = r2∧ρ1 ≤ ρ2)∨(r1 < r2∧g(ρ1, r2−r1) ≤
ρ2) (� � �).

Assume for contradiction that ∃�, m, 1 ≤ � < m ≤ x such that Q� ∩ Qm 	= ∅.
Let pi ∈ Q� ∩ Qm. There are two cases:

– τ �
i < τm

i . In that case, p� sends first a message RSP W carrying 〈r�, ρ�, v�〉
and later a message RSP W carrying 〈rm, ρm, vm〉. Note that the two triplet-
sare the values at times τ �

i and τm
i respectively of the variables 〈lrei, posi, vali〉.

We have:

g(ρ�, rm − r�) = 2rm(1 −
�∑

j=1

1
2rj

) + 1 and ρm = 2rm(1 −
m−1∑
j=1

1
2rj

)

from which we obtain ρm < g(ρ�, rm − r�), contradicting observation (� � �).
– τ �

i > τm
i . This implies that lrei first contains rm and later r� < rm, which is

impossible according to observation (� � �).
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5 A k-Set Agreement Algorithm

This section presents an (anti−Ωx × Σz)-based k-set-agreement protocol, and a
matching impossibility result on solving k-set agreement in the family of systems
(MPn,n−1[anti−Ωx, Σz])1≤x,z≤n. The main results of this section are summa-
rized by the following theorem:

Theorem 2. The k-set-agreement problem can be solved in MPn,n−1[anti−Ωx,
Σz] if k ≥ xz. Moreover, if 2xz ≤ n, the k-set-agreement problem cannot be
solved in MPn,n−1[Ωx, Σz] if k < xz.

5.1 Solving k-Set Agreement with anti−Ωx and Σz

For the system MPn,n−1[anti−Ωx, Σz], we describe a k-set agreement algorithm
that requires k ≥ xz. From a computability point of view, our algorithm is
optimal if n is large enough: we later establish that if k < xz and n ≥ 2xz there
is no k-set agreement algorithm in MPn,n−1[anti−Ωx, Σz] (Corollary 1).

Using Ω and Σz to solve k-set agreement for k ≥ z. The algorithm is a sim-
ple adaptation of the generic Ω-based consensus algorithm presented in [22], in
which an Alphak object is used in place of an Alpha object. For completeness,
the algorithm is described in Figure 3. The fact that any decided value has been
returned by an invocation of Alphak.propose(·) guarantees validity and agree-
ment. Because eventually a unique correct process considers itself the leader,
there is a time after which only this process invokes Alphak.propose(·). Hence, by
the conditional convergence property of the object, there is an invocation that
returns a non-⊥ value. This value is then broadcast, allowing every non-faulty
process to decide, therefore ensuring termination.

SA propose(v)
(1) deci ← ⊥; ri ← i;
(2) while (deci = ⊥) do
(3) if Ω -query() = i then deci ← Alphak.propose(ri, v)
(4) ri ← ri + n end if end do
(5) for each pj ∈ Π do send DECIDE(deci) to pj end do

when DECIDE(w) is received do
(6) for each pj ∈ Π do send DEC(w) to pj end do
(7) decide w; return

Fig. 3. k-set agreement algorithm in MPn,n−1[Ω, Σk], code for pi

Using anti−Ωx and Σz to solve k-set agreement for k ≥ xz Our algorithm
is based on a failure detector vector−Ωx [32]. A failure detector of the class
vector−Ωx is a vector of x sub-detectors, Ω1, . . . , Ωx, such that at least one
Ωi is a failure detector of the class Ω. When k = n − 1, the vector−Ω failure
detector proposed in [32] is obtained. It was shown there how vector−Ω can
be implemented from anti−Ωn−1 in the wait-free asynchronous shared memory
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model, and how it can be used to solve (n− 1)-set agreement. The failure detec-
tor vector−Ωx was also presented in [32]. It is claimed there that the algorithm
to transform anti−Ωn−1 into vector−Ωn−1 (Figure 1 in [32], see also [3]), can
be generalized to transform anti−Ωx into vector−Ωx. A close look at the trans-
formation algorithm reveals that it can be easily adapted to the message passing
case if a reliable broadcast primitive is available. As reliable broadcast can be
implemented in an asynchronous message passing system in which any number of
processes may fail [23], vector−Ωx can be implemented in MPn,n−1[anti−Ωx].

To solve k-set agreement in MPn,n−1[anti−Ωx, Σz], processes simulate out-
puts of a failure detector vector−Ωx. We associate to each sub-detector Ωi, 1 ≤
i ≤ x an instance of the (Ω, Σz)-based z-set agreement algorithm described in
Figure 3. Each processes participates simultaneously in each of the x instances,
and terminates as soon as it decides in one instance.

It follows from the fact that at least one sub detector Ωi is a failure detector
of the class Ω that at least one instance terminates. Moreover, since at most z
values are decided in each instance, the total number of decided value is upper
bounded by xz. Therefore,

Lemma 11. Let 1 ≤ k, x, z ≤ n. There is a k-set agreement algorithm in
MPn,n−1[anti−Ωx, Σz] if k ≥ xz.

5.2 An Impossibility Result

This section investigates k-set-agreement solvability when the system is enriched
with failure detectors of both classes Ωy and Σz. The main result is Lemma 13
which establishes that there is no k-set agreement algorithm in the wait-free
environment (t = n − 1) where failure detectors Ωy and Σz are provided if
k < yz.

Lemma 12. Let k, 1 ≤ k ≤ n and x, 1 ≤ 2x ≤ n. If k < x, there is no k-set
agreement algorithm in MPn,n−1[Ωx, Σ].

Lemma 13. Let k, 1 ≤ k ≤ and x, z, 1 ≤ 2xz ≤ n. If k < xz, there is no k-set
agreement algorithm in MPn,n−1[Ωx, Σz].

Given a failure detector Ωx, it is easy to simulate a anti−Ωx failure detector by
outputting the complement of the sets leader output by Ωx. Therefore,

Corollary 1. Let k, 1 ≤ k ≤ and x, z, 1 ≤ 2xz ≤ n. If k < xz, there is no k-set
agreement algorithm in MPn,n−1[anti−Ωx, Σz].

Bonnet and Raynal introduce in [4] the failure detector class Πk as a weakest
failure detector candidate for message passing k-set-agreement. Next corollary
disproves this conjuncture.

Corollary 2. Let k, n : 1 < k < n−1 and 2k2 ≤ n. There is no k-set agreement
algorithm in MPn,n−1[Πk].

Proof. [4] proves that Πk is equivalent to Σk × Ωk. The corollary then directly
follows from Lemma 13
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6 Concluding Remarks

The paper has investigated the computational power of the failure detector
classes Σx and anti−Ωz as far as k-set-agreement is concerned in the n-processes
message passing asynchronous model. The main result is that for large enough
values of n, namely n > 2kz, k-set agreement is possible if and only if k ≥ xz.

The main open question is the weakest failure detector for message passing
k-set-agreement, for 1 < k < n−1. Our xz-set agreement algorithm may help to
demonstrate the sufficiency of weakest failure detector candidate. Another inter-
esting avenue for future research is the complexity of k-set-agreement tolerating
t > n/2 failures. When a majority of processes does not fail, it has been shown
that the price of indulgence is constant [1,16]. Is it still true when a majority of
processes failures has to be tolerated?
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26. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: On the computability power
and the robustness of set agreement-oriented failure detector classes. Distributed
Computing 21(3), 201–222 (2008)
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1 Introduction

In round-by-round models of distributed computing processes run in a sequence
of (synchronous or asynchronous) rounds. The advantage of the round-by-round
approach is that invariants established in the first round are preserved in later
rounds. The round-by-round approach has been used successfully in previous
papers e.g. [2, 12, 14, 17, 20, 25, 29–31, 37–40] for message-passing as well as for
shared-memory models, to prove lower bounds and impossibility results. Also,
most of the distributed protocols for solving a task are structured in rounds.
When solving a task, processes start with private input values, communicate
with each other, and decide private output values that should satisfy the task’s
input/output specification.

The iterated snapshots model (IS) [9] is an elegant asynchronous round-by-
round shared memory model. Instead of the snapshots model where processes
share an array m[·] that can be accessed any number of times, indexed by process
ID, where Pi writes to m[i] and can take a snapshot [1] of the entire array, we
have processes share a two-dimensional array m[·, ·], indexed by iteration number
and by process ID, where Pi writes once to m[r, i] in iteration r, and takes a
snapshot of row r, m[r, ·]. Notice that the snapshots model where processes
share a single array m[i] is equivalent to the usual wait-free single-writer/multi-
reader (SWMR) shared memory model where any number of SWMR arrays
are available to the processes [1], for computability (we are not interested in
complexity issues in this paper).

The IS model is more restrictive than the snapshots model: processes can write
or snapshot each shared array m[r, ·] only once, and they access the shared arrays
in the same order, by iteration number. However, these restrictions induce two
advantages. First, an inductive reasoning is facilitated, that greatly simplifies the
understanding of distributed protocols e.g. [24]. Second, it is easier to analyze
this structured set of runs using topology e.g. [9, 29, 30, 32], than the much
larger set of runs of the snapshots model. But, is the IS model equivalent to the
snapshots model? Obviously any task solvable in the IS model is solvable in the
snapshots model, but is the converse true? In other words, to show that whenever
a task is impossible in the IS model the task is impossible in the snapshots model,
a simulation is needed. Such a simulation was introduced in [9]; namely, it was
shown how to take a wait-free protocol for the snapshots model, and transform
it into a protocol for the IS model, solving the same task.

Results. This paper presents a new, elegant simulation from the snapshots model
to the IS model. It shows that the simulation works with t-resilient models, and
with models that have access to 01-exclusion tasks. This is a large family of tasks
with power between set agreement and read/write memory [21]. Two important
consequences of the simulation are the following.

The simulation presented works with t-resilient models and the more general
dependent process failure model of Junqueira and Marzullo [34]. Thus, a con-
tribution of this paper is to show that the IS model is equivalent to the snapshots



Distributed Programming with Tasks 207

model, in the t-resilient case, and more generally, for an adversary that can
fail processes even in a non-independent way. As a consequence, the results of
[29, 30], that were proved in an IS model, are extended to the corresponding
non-iterated model. These results characterized the power of an adversary, in
terms of topological connectivity.

The so-called “subconsensus” tasks are tasks too weak to solve consensus for
two processes. After a substantial effort, it was discovered that two tasks, set
agreement [15] and renaming [4], which are both subconsensus tasks, cannot be
implemented in read/write memory [8, 13, 33, 41]. It follows that subconsensus
tasks have a fine structure, inaccessible by consensus-based analysis. Further
light on this fine structure was shed in [25] with the surprising result that re-
naming is strictly weaker than set agreement. However, this result was shown
in a certain IS model of computation, and it was left open the question weather
this result extends to the usual, non-iterated wait-free model. Our simulation
finally closes this question, by showing that the IS model used in [25] is indeed
equivalent to its non-iterated counterpart.

Discussion of the results and techniques. Our main result is the prove that
the snapshots model and the IS model are equivalent when enriched with 01-
exclusion tasks. Obtaining this result proved harder than we originally thought
it would be. It necessitated the discovery of a novel simulation of the snapshots
model by the IS model. We needed a simulation with the property that if in
the snapshots model a process obtained a snapshot of size n, then in the IS
simulating model, all processes which obtained a simulated snapshot of size n
obtained it at the same iteration. Furthermore, it necessitated the surprising use
of the notion of a “dual” of a task. This notion was introduced in [21] for the
01-exclusion family of tasks. The main difficulty when simulating the snapshots
model with 01-exclusion tasks, is that in this model processes are not required
to invoke 01-exclusion tasks in the same order. By “untangling” a program we
mean that two processes should invoke any two tasks always in the same order,
and only once.

We stress that extending the simulation to work with 01-exclusion tasks is
sufficient to prove the renaming vs. set agreement conjecture of [25]. Neverthe-
less, we claim that the simulation can be extended to apply to any task that is
solvable by set agreement. The main difficulty is how to define the dual for any
such task T . We leave an exploration of this issue for future work.

Characterizing and unifying models of distributed computing has been a cen-
tral concern of the Theory of Distributed Computing research. When two models
turn out to be equivalent one can examine a problem in either one. Some ques-
tions are natural and easy to answer in one model, and some in the other. An
example is the IS model enriched with failure detectors [40]. The glaring suc-
cess example is the equivalence between message-passing and shared-memory [3].
This paper takes another step in the quest of showing that an iterated model and
its non-iterated version are equivalent under a wide variety of circumstances.
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2 Model

We consider a set of n sequential and deterministic processes that communicate
by reading and writing a shared memory. Processes are asynchronous : there is
no bound on relative process speed. Processes can fail by halting. One process
cannot determine whether an unresponsive process has failed or is just slow.

Classical models implicitly assume that processes fail independently. In a dis-
tributed system, however, failures may be correlated. To model these situations,
it is natural to extend the classical failure models to encompass an adversary
scheduler A that can cause certain subsets of processes to fail, perhaps in a
non-uniform way.

Following Junqueira and Marzullo [34] we specify an adversary A as follows.
A core C for A is a set of processes such that (1) in every run, some process in
C does not fail, and (2) C is minimal: for every proper subset C′ of C, there is a
run in which every process in C′ fails. A survivor set S for A is a set of processes
such that (1) in some run, the set of processes that do not fail is exactly S, and
(2) S is minimal: for every proper subset S′ of S, there is no run in which S′ is
the set of processes that do not fail. For the wait-free adversary, the entire set of
processes is the only core, and for the t-faulty adversary, any set of t+1 processes
is a core. Notice that cores and survivor sets are dual notions: cores determine
survivor sets and vice-versa. For the t-faulty adversary, any set of n− t processes
is a survivor set. Delporte-Gallet et al. [16] used a more general notion to study
the computational power of adversaries in asynchronous shared memory.

A task [7] is a coordination problem in which each process starts with a private
input value taken from a finite set, communicates with the other processes, and
eventually decides on a private output value, also taken from a finite set. Exam-
ples of tasks include consensus [19], renaming [4], set agreement [15], committee
decision [26], and musical benches [23]. The k-set agreement task generalizes
consensus. Here up to k different values can be decided. In this paper we only
consider (n − 1)-set agreement, and call it simply set agreement. We consider
only bounded decision tasks, whose number of input vectors is finite.

Of special interest to this paper is the 01-exclusion family of tasks [21], in-
spired by the weak symmetry breaking task [13, 25, 33]. In a 01-exclusion task
processes have to decide either 0 or 1, but in runs where all participate, at least
one should decide 0 and at least one should decide 1. Each 01-exclusion task is
defined by a binary vector b1, . . . , bn−1, specifying that in a run where k processes
participate (and the others fail before taking any steps), not all can decide bk. It
is known that when bk = 1 for all k, the resulting 01-exclusion task is equivalent
to set agreement [8].

In the snapshots model processes share an n-element array m[·] where the i-th
process can write element m[i], and can take an atomic snapshot [1] of the entire
array. We consider full-information protocols: initially, each process’s state is
its input. Each process alternates between writing its state to memory, taking a
snapshot of the memory, and using that snapshot as its new state. A protocol
solves a task against adversary A if after a finite number of steps, the protocol
decides a value based on its current state, in every run that is fair with respect to
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A, called an A-run. Namely, runs where each time a process takes a snapshot, it
reads new values by a set of processes that include a survivor set (to implement
this property a process can repeatedly read the shared memory until it sees that
new values have been written by a survivor set).

We also consider a round-by-round version of this snapshots model, called the
iterated snapshots (IS) model. We refer to the processes of the snapshots model
as π = {p1, . . . , pn}, and of the IS model as Π = {P1, . . . , Pn}. Instead of having
processes share an array m[·], we have processes share a two-dimensional array
m[·, ·], indexed by iteration number and by process ID, where Pi in iteration r
writes to m[r, i] and can take a snapshot of row r. In iteration r, each process
Pi writes its state to m[r, i], and takes a snapshot of that row reading values
by a set of processes that include a survivor set; i.e., we consider only A-runs
(a process waits until the set of processes that have written to row r includes a
survivor set, and then takes a snapshot of that row).

The snapshots model and the IS model are equivalent with respect to wait-free
task solvability [9]. Furthermore, as we shall see, the two models are equivalent
with respect to any adversary (Section 3), and also when we enrich both models
with more powerful shared objects (Section 4).

3 Basic Protocol: Equivalence of Snapshots Model and IS
Model

Consider an adversary A. This section describes the protocol Simulation of
Figure 3 showing that the IS model, is equivalent to the snapshots memory
model described above.

Consider the snapshots model with processes p0, . . . , pn and adversary A. In
a full-information protocol, to solve a task, a process eventually decides a value
based on its current state s. Thus, a protocol defines a predicate undecided(s),
and a decision function δ(s). The function δ is defined on any state s such that
undecided(s) is false. Once a protocol decides, undecided(s) is forever false. Let
the k-th value read by pi be read(k, i), and write(k, i) the k-th value pi writes.
In protocol Simulation lines 7 and 9 describe how read(k, i) and write(k, i) get
their values during the simulation; these lines are inside comment brackets, as
they do not affect the actual operation of the protocol.

Consider the IS memory model with processes P0, . . . , Pn, and adversary A.
In iteration r, each process Pi writes a value c to m[r, i], waits until the set
of process that have written to row r includes a survivor set, and then takes a
snapshot of that row. A shorthand for this sequence of operations is ISi(c, r).
Thus, ISi(c, r) returns a snapshot of m[r, ·].

The protocol Simulation of Figure 3 implies the following result. The con-
verse is trivial. The theorem is proved in the rest of this section.

Theorem 1. Given a protocol that solves a task in the snapshots model with
adversary A, protocol Simulation solves the same task in the IS model with A.
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c[1].clock

c[1].val

c[2].clock

c[2].val

c[n].clock

c[n].val

Fig. 1. The c data structure

In the code of Figure 3, all variables are process-local; access to shared vari-
ables is encapsulated in the ISi(c, r) operation. Each Pi maintains a vector c
with one entry c[j] per process Pj , that consists of two values, c[j].clock and
c[j].val. See Figure 1.

When Pi writes k in c[i].clock we say “Pi invokes the k-th write operation of
pi.” Intuitively, when Pi has c[j].clock = k, c[j].val contains the value of the last
(simulated) write by pj known to Pi, the k-th write. We describe below when
this write is linearized in the simulated run.

Each iteration of the loop Pi accesses a new row of the array, via the IS invo-
cation in line 4. It stores in view the value returned by the ISi(c, r) operation.
Thus, view[j] will contain either a vector which was written by Pj , or ⊥ (if Pj ’s
execution of ISj(c, r) was not performed concurrently or before the one of Pi).
See Figure 2.

We use the following partial order on vectors: c ≤ c′ means c[i].clock ≤
c′[i].clock for every i, and we write c < c′ if c ≤ c′ and in addition, for some j,
c[j].clock < c′[j].clock. The operation |c| of line 6 adds up the clock entries of c.
The operation top(c) of line 5 computes the entry-wise maximum of each vector
the process has seen, as in the example of Figure 2.

Formally,

|c| =
∑

1≤i≤n

c[i].clock,

top(view)[i] = view[j][i], s.t. max
1≤j≤n

view[j][i].clock, for each i

where ⊥ entries count as 0 for the max operation.
In line 6, Pi checks if |c| = r, and if additionally pi is undecided, increments

c[i].clock by one, to issue a new simulated write. Let c.val be the vector without
the clock values: c.val[j] = c[j].val. That is, c.val contains a simulated snapshot,
in line 7. Else, the first time undecided(c.val) is false, the decision for pi is
produced, with δ(c.val).

The correctness of the simulation follows from the next lemmas. In line 6, when
|c| = r, we say “Pi completes the k-th operation of pi,” where k = c[i].clock. If
undecided(c.val) holds, Pi is trying to execute the k + 1-st operation of pi. We
assume that once undecided(c.val) is false, it remains so, and hence from then
on Pi never again increases c[i].clock. (It is necessary that Pi keeps on running
after deciding, otherwise it could block other processes when they are waiting to
hear from a survivor set. But Pi should stop increasing its clock, see Lemma 5)
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Fig. 2. The top operation on a view

Consider the value of c just before line 5, and suppose it becomes c′ after
executing line 5. Then, c′ ≥ c, and we have the following simple invariant:

r ≤ |c|, (1)

where once a process Pi decides, the invariant may not hold for Pi. Notice that
we assume decided processes do not stop in the snapshots model, and we simulate
them as if they never fail.

Lemma 1 (simultaneity). All processes that complete an operation in an it-
eration r, do so with the same vector c, |c| = r. If an undecided process does not
complete an operation in that iteration, then its vector c′ satisfies c′ > c.

Proof. Consider an iteration r, and the snapshots returned by the ISi(c, r) oper-
ations (of undecided processes). These snapshots can be ordered by containment,
S1 ⊂ S2 ⊂ · · · ⊂ Sk. The processes that get back snapshot Si get back the same
same value for c in line 4, and hence they all update their c variables in line 5
identically. It follows that the value |c| for each process that returns Si is the
same, let’s denote it by |Si|. Thus, |Si| ≤ |Si+1|. By invariant (1), r ≤ |Si| (for
undecided processes). Also, by the snapshot ordering of operations, if c is the
value for some snapshot Si, and c′ for some later one Si+1, then c ≤ c′.

The simulated run is fair for A.

Lemma 2 (fair progress). If a process Pi completes an operation in iteration
r with a vector c, and the next iteration it completes an operation is at iteration
r + k, with vector c′, then there are at least |S| entries j, for some survivor set
S, such that either c[j].clock < c′[j].clock or Pj is decided.

Proof. By Lemma 1, every process that completes an operation in iteration r
does so with the same vector c of clock values, |c| = r. And (undecided) processes
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Protocol Simulation(input);
(1) init r ← 0; c[j].clock ← 0 for j 
= i; c[i].clock ← 1; c[i].val ← input;
(2) loop forever
(3) r ← r + 1;
(4) view ← ISi(c, r); {write c, snapshot (including survivor set) row r}
(5) c ← top(view);
(6) if |c| = r then
(7) {k-th snap by pi completed: read(k, i) ← c.val, k = c[i].clock }
(8) if undecided(c.val) then { invoke c[i].clock + 1-th write }
(9) { k-th write of pi is write(k, i) ← c.val, k = c[i].clock + 1}
(10) c[i].val ← c.val; c[i].clock ← c[i].clock + 1;
(11) else decide δ(c.val) once; { c[i].clock fixed from now on }
(12) end loop.

Fig. 3. The iterated simulation for adversary A (code for Pi)

that do not complete an operation have vectors larger than c. Thus, all these
processes, they enter iteration r+1 with vectors c, |c| ≥ r+1, each one invoking
a write operation that has not been executed, i.e., with a new clock value in its
c entry. As process Pi completes an operation in iteration r, and waits until it
sees writes by a survivor set in iteration r+1, its value for |c| in iteration r +1,
at line 5, will be incremented by at least |S| (minus the number of processes that
have decided).

The value of r is incremented in every iteration. Hence invariant (1) implies
the following.

Lemma 3 (non-blocking progress). A correct undecided process eventually
completes an operation.

Proof. First notice that an IS operation (line 4) always completes, because ad-
versary A guarantees that some survivor set will eventually write values to the
r-th row. For undecided processes, invariant (1) says that the smallest value of
|c| in an iteration is lower bounded by r, as r increases every iteration, as long as
there are correct undecided processes, eventually one will complete an operation.

To complete the proof of Theorem 1, we need to show that the simulated run
is a valid run of the snapshot model. A snapshot is linearized when a process
completes an operation, and a write is linearized just before the first snapshot
that includes it. And it is fair for A, by Lemma 2. Thus, a correct simulated
process pi eventually decides, and then Pi stops incrementing its clock.

More precisely, by Lemma 1, we can consider the sequence of vectors obtained
each time an operation is completed, c0, c1, . . . , cN , where c0 is the all 0’s vector,
and for i > 0, ci is the vector corresponding to the i-th completed operation;
namely, the operation completed in iteration |ci|. Also, the lemma implies ci <
ci+1. Let r-proc(ci) be the set of processes that complete an operation in iteration
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|ci|, and w-proc(ci) be the set of processes j, such that ci−1[j] < ci[j]. Then, a
snapshot by each processes in r-proc(ci) is linearized in iteration |ci| (in arbitrary
order), with ci.val as snapshot value. And just before these snapshots, a write
by each process in w-proc(ci) is linearized (in arbitrary order); namely the ci[j]-
th write operation by pj . The wait-free termination then follows from Lemma
3. Thus, we have the following lemma, where, abusing notation, r-proc(ci), and
w-proc(ci) include which value a process wrote and which value it read.

Lemma 4 (Linearization). For a A run of the IS model simulating protocol
A with input I, consider the sequence of vectors obtained each time an operation
is completed, c0, c1, . . . , cN . Then,

w-proc(c1), r-proc(c1),w-proc(c2), r-proc(c2), . . . ,w-proc(cN ), r-proc(cN ),

is an A run of A with input I in the snapshots model.

Thus, the simulated run is a valid run of the snapshots model, and it is fair
for A. The correctness of the protocol in the snapshots model implies that a
correct simulated process pi eventually decides, and then Pi stops incrementing
its clock.

Lemma 5 (Termination). Every correct process eventually decides.

Proof. By Lemma 3, as long as there are correct undecided processes, eventually
one will complete an operation, and by Lemma 4 the reads and writes are correct
for an A simulated run. As r increments by 1 every iteration of the loop, there
must be one process, say p1, that eventually simulates enough operations for line
8, and decides. (because the read and write operations are valid for an A simu-
lated run) Each time such a process decides, the entry 1 stops increasing in all
vectors c of other processes. Hence, invariant (1) implies that some other process
will eventually decide (by Lemma 4), say p2, with c[2].val = dec2. Repeating this
argument each time a process decides, we have that all must eventually decide.

4 Extended Protocol for 01-Exclusion Tasks

We are now ready to extend the read/write simulation protocol of Section 3
with additional tasks. Consider a protocol A for the snapshots model, extended
with 01-exclusion tasks. That is, the local algorithm Ai for each process pi, in
addition to executing write and snapshot operations, it can invoke 01-exclusion
tasks. Similarly, in the IS model, when executing iteration r, process Pi writes
to m[r, i], may invoke a 01-exclusion task T , and then takes snapshots of m[r, ·].
The algorithm specifies which task T to invoke, provided it invokes the same 01-
exclusion task at most once. For the simulation, it is convenient to assume that
we insert in the algorithm an additional write and snapshot operation before
each task invocation. In this write pi announces which task is going to invoke,
say T , and in the snapshot it reads how many processes, q, plan to invoke the
same task T at this moment, and it also finds out if processes have executed



214 E. Gafni and S. Rajsbaum

T earlier. Lets call q′ be the total number of processes that invoke T (now or
earlier) as known by c. Also, let b a value known to have been obtained from T ,
or 0 if no such value exists. Recall that there is a write and snapshot operation
around T ’s invocation; as if pi writes “in the process of invoking T ”.

For a 01-exclusion task T , specified by a vector bT
1 , . . . , bT

n−1, the dual task
D(T ) is the 01-exclusion task with vector b

D(T )
1 , . . . , b

D(T )
n−1 , where b

D(T )
k = 1 −

bT
n−k. Obviously, D(D(T )) = T . The correctness of our simulation is based on
the following properties of a 01-task [21].

Lemma 6. Let T be a member of the 01-exclusion family of tasks.

1. An n-vector is an output vector for T if and only if it is an output vector for
D(T ).

2. T and D(T ) are wait-free equivalent.
3. Let R, NR be a partition of the n processes into two non-empty sets. Let

OR be an output vector from T when processes R participate, and ONR an
output vector from D(T ) when processes NR participate. The vector obtained
by combining OR and ONR is an output vector for T .

Property (1) means that when all n processes participate, any output vector is
valid for both T and D(T ). This is obvious: when all participate, not all should
decide 0 and not all should decide 1, in either T or D(T ). Property (2) says
that given a black box for T , there is a wait-free protocol that solves D(T ), and
vice-versa. Thus, for our simulation, we may assume that instead of T , processes
can invoke a solution for D(T ) (as we already know how to simulate a wait-free
protocol in the IS model). Property (3) implies that some processes can produce
outputs for T in one iteration, and others for D(T ) in another, and the combined
outputs are valid for T .

The algorithm Ai is simulated in the IS with 01-exclusion tasks with a simple
modification of the simulation protocol of Figure 3 as follows. Each time a write
or snapshot operation is to be executed as specified by Ai, these operations are
simulated as explained in Section 3. Consider the moment a task T is to be
invoked, as specified by Ai. In the previous iteration of Ai, pi announced it will
invoke T (with a write operation). Assume pi completes this snapshot operation
with value c, in iteration r. So, pi last written value to the shared memory (and
hence appears in c[i]), specifies that it is about to invoke T . We denote this
fact by task(c[i]) = T . If a process pj does not want to invoke a task at this
moment (according to Aj), then task(c[j]) = ⊥. Notice that is possible that
task(c[j]) = T ′, for T 	= T ′. Then, Pi computes an output value for T according
to three cases, by executing the following code once |c| = r is detected in line 3.
That is, process Pi checks which of the following three cases hold for c, assuming
Pi wants to invoke T in c.

Invokei(T, c):

1. Pi sees in c that already some process returned from T some value, b; in this
case, it returns 1 − b as the output of its invocation to T .
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2. Pi sees that all processes want to invoke the same task T in c, ie q = n; in
this case it invokes D(T ), and returns as simulated output for the invocation,
the value it gets back from D(T ).

3. Otherwise, it returns as the simulated output for the invocation 1−bT
k , where

k = q′ is the number of processes that want to invoke T , in c or earlier (as
seen in c).

Once this code is executed, an output for T is obtained, that should be appended
to c[i].val in line 10 of the Simulation code in Figure 3, so that the next
simulated write of pi will include it.

Notice that the only case when Pi actually invokes a 01-exclusion task is case
(2) of the previous lemma, and the task invoked is actually D(T ). As mentioned
above, we can assume D(T ) is available to the processes of the IS model, by
Lemma 6(2).

Lemma 7. If all n processes invoke the same 01-task D(T ), they invoke it in
the same iteration.

Proof. Consider the first iteration, r, that a process Pi invokes D(T ). Assume
Pi sees some vector c when it completes an operation, with |c| = r. Then, any
other process Pj that does not complete and operation in r, sees a vector c′, with
c′ > c, by Lemma 1. Thus, when Pj completes an operation in a later iteration,
it will be with a vector different from c, in particular where more operations have
been completed, and not all processes want to invoke the task T , and hence Pj

with not invoke D(T ) in an iteration after r.

Lemma 8. The simulation of each task T is correct.

Proof. The code Invokei(T, c) has three cases. Case (1) is easy: when Pi sees in
c that already some process returned from T some value, b. In this case it is clear
that Pi can return 1− b as the output of its invocation to T , because any output
vector that contains two different values is a valid output vector for T . Case (2)
is taken care of by Lemma 7, because if all invoke D(T ) in the same iteration, the
invocation is to the same instance of the task. And by Lemma 6(1), the output
vector returned by D(T ) is valid for T . Finally, case (3) is when Pi observes in c
that a set of processes R, with |R| less than n, want to invoke T . Then Pi returns
as the simulated output for the invocation 1− bT

k , where k = q′ is the number of
processes that want to invoke T , in c or earlier. In this case it is safe to return
1−bT

k , because it is possible that these are the only processes that will invoke T .
And in case the other processes, NR want to invoke T in a later iteration, and
they are not aware that some processes R already produced output values for
T , and invoke D(T ) (as in the previous case), then the combined output vector
of R and NR is valid for T , by Lemma 6(3).

Finally, using Lemma 8, together with the correctness properties for protocol
Simulation in Figure 3, we get the main theorem.

Theorem 2. If a task is wait-free solvable in the standard model with 01-tasks,
then it is wait-free solvable in the EIS model with the same 01-tasks.
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5 Conclusion

We have considered two asynchronous shared memory models of distributed
computing. The snapshots model, which is equivalent to the usual single-writer,
multi-reader shared memory model, and the iterated snapshots (IS) model, where
processes access a sequence of snapshots objects, each one only once and in the
same order. We have shown that both models are equivalent with respect to
task solvability, both in the wait-free case, and in the case where processes can
fail, perhaps in a non-uniform way, as modeled by an adversary in the style of
[34]. Such an adversary includes the t-resilient model, where at most t processes
can fail. Our main result is that if processes have access to 01-exclusion tasks,
again the snapshots model and the IS model are equivalent. This shows that the
renaming task is strictly weaker than the set agreement task, in the snapshots
model, something that was known to hold only in the IS model. Our results are
based on a new, elegant simulation from the snapshots model to the IS model.

Iterated models are central to the theory of distributed computing [38]. They
have proved very useful for lower bound and impossibility results. Many protocols
are designed with a round-by-round structure. This paper takes another step in
the quest of showing that an iterated model and its non-iterated version are
equivalent under a wide variety of circumstances. We believe that we have laid
a good foundation to prove that similar equivalences can be proved, when we
allow processes to communicate with any task solvable by set agreement. The
main difficulty is to define the dual of any such task, and then generalize the
properties about 01-exclusion tasks we used in our simulation.

Acknowledgments. We thank Michel Raynal and the anonymous referees for
their comments on an earlier version of this paper.
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Abstract. Distributed Hash Tables (DHTs) enable fully distributed
Peer-to-Peer network construction and maintenance with name-driven
routing. There exist very few DHT approaches that consider heterogene-
ity of nodes inside the construction process or properly serve data of
different load. To our best knowledge, there is no construction which
smoothly addresses both these issues.

We propose a Peer-to-Peer construction that explicitly uses hetero-
geneity to simplify the routing and maintenance process even in the
presence of an adaptive adversary. Using a hypercube and cube con-
nected cycles networks as a backbone, we show how to cope with two
types of heterogeneity: one for nodes and one for data.

1 Introduction

Peer-to-peer (P2P) networks are successfully used to store and retrieve data in
scale-out environments like the Internet. Structured P2P networks are typically
based on distributed hash tables (DHTs)[15,22], in which data items are mapped
to a key space (e.g., a [0, 1) interval), whereas network nodes (called peers)
are mapped to disjoint subsets of this space. The mapping is performed by
a hash function known by all nodes. Peers are responsible for storing information
about the data items that are mapped to their subsets. The (logical) network
connections between peers are also created on the basis of this mapping: for
example, nodes responsible for adjacent subsets are usually directly connected.
Such constructions allow for a fully distributed network maintenance and provide
a distributed lookup service. Hence, the performance of the DHT depends on
two key factors. The first one is the ability to evenly balance the load: each node
should be responsible for approximately the same number of data items, which
— provided the even distribution of data items in the key space — means that
each node should be mapped to a space subset of approximately the same size.
The second factor covers the routing parameters of the induced network, such
as dilation or congestion.
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In most previously proposed P2P models, peers are originally treated as be-
ing homogeneous, neglecting their different capabilities. Heterogeneity is then
added as an additional layer of abstraction, by simply representing each peer
by several independent virtual peers and without exploiting the fact that they
constitute one entity. There are a few approaches which consider heterogene-
ity of nodes in the construction process. However, these approaches divide the
P2P network into different layers and assign peers to layers according to their
strength. Furthermore, to our best knowledge, no previous work handles two as-
pects of heterogeneity simultaneously, namely the heterogeneous peers and data
items of different sizes.

1.1 Our Contribution

The main idea and contribution of this paper is a construction of a P2P network,
where heterogeneity of nodes not only does not hinder the network maintenance,
but allows the network to be more efficient. We base our network, SkewCCC+,
on our previous solution, SkewCCC [8]. Heterogeneity of nodes is respected from
the very beginning: when joining our network, a peer declares its strength (which
affects its parameters such as the desired node degree), and the network is con-
structed to meet this requirement. We show how to effectively maintain even load
of the nodes. We provide two alternative solutions for checking the imbalance:
the first one is based on local information, the second one on global sampling.
Moreover, our approach works well even in the presence of an adaptive adversary.
We note that the previous solution neither handles heterogeneity nor is it able
to cope with an adaptive adversary [8].

Used techniques. From the perspective of mapping peers to the DHT key
space, our approach is based on a classic approach of partitioning trees, which
directly map nodes to subsets of the key space. However, in our network, this
embedding is not static as for example in the CAN network [21]. Instead, to en-
able quick and cheap reconfigurations (e.g., due to rebalancing after adversarial
changes to the network), our embedding can be dynamically adapted.

The topology of our network resembles a distorted variant of the cube con-
nected cycles (CCC) network, i.e., roughly speaking it is similar to a hypercubic
network. Due to its distributed nature, an exact hypercubic topology would be
too expensive to maintain and therefore the assumed hypercube dimension is
not the same for all the nodes. We model stronger peers as complete hypercubic
networks, which are inserted as sub-hypercubes of the main hypercube. This pre-
serves the locality, as opposed to solutions in which such peers are represented
by several virtual nodes acting independently in random parts of the network.
We avoid the introduction of super-peers, so stronger peers can execute the same
algorithms as regular peers.

Finally, we show that our solution allows for data items of different size with-
out hindering the parameters of our construction. We use a second partitioning
tree, which spans the same address space to distribute heterogeneous data items.
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Parameters of our network. In the description below, n denotes the number
of nodes in the system and m is the sum of their strengths, i.e., m = n for
homogeneous nodes. The parameters below are obtained with high probability.

First, we address network efficiency. The degree of regular peers (those of
strength 1) is constant. Inserting or removing a peer of an arbitrary strength
takes time and amortized communication cost of O(log2 m). Note that bounding
the costs in a single step is not feasible as the adversary is able to induce changes
in a substantial part of the network. Searching and routing in a stable network
takes O(logm) time and communication cost for nodes of constant strength,
O(log n) for nodes of average strength and O(1) for nodes of strength Θ(m).

One of our goals is to achieve even load balance among the nodes, which is
defined as the maximum deviation from the average key-space size, for which
a single node is responsible. We provide two approaches: a version that is based
on locally available information achieves a load balance of O(

√
m), whereas the

approach using global sampling achieves a load balance of O(1).
Finally, to protect against peer failures, we present a simple algorithm to store

Θ(logm) copies of each data item in Θ(logm) different physical peers.

1.2 Related Work

There are many DHT-based P2P solutions suitable for building overlay net-
works consisting of homogeneous peers; examples are Chord [22], SkipNets [14],
Skip-Graphs [3], Hyperrings [5], Viceroy [19], and Distance Halving [20]. They
usually require nodes of constant or logarithmic degree and have a logarithmic
dilation and induce logarithmic costs for join and leave operations. The P2P net-
works mentioned above assume that each peer inside the network has the same
properties concerning bandwidth or storage capacity. Different peers’ capabili-
ties are modeled by introducing virtual peers, where each big peer of strength
k is responsible for k virtual peers of strength 1. Each of these virtual peers
acts independently of its relatives. This concept hinders the usage of synergies
between virtual peers of the same physical peer and even enables intruders to
be more effective.

The Y0 approach from Godfrey and Stoica clusters the virtual peers in a re-
stricted range of the Chord network to reduce the out-degree of each peer [12].
The construction of their approach is similar to the Share strategy, which divides
the ID space fairly among a set of nodes [9].

Another approach to integrate heterogeneous nodes is the simple distinction
between strong and weak nodes, where strong nodes act as super-peers in a super-
layer and weak nodes simply connect to these stronger nodes as leaf-layer nodes
(see, e.g., [18,24]). Message flooding is only conducted within super-layer and
all leaf peers are represented by their corresponding super peers [23]. Of course,
this distinction is very coarse grained and the potential of each node can only
be again exploited by using virtual nodes.

The Pagoda network is the first P2P network that explicitly uses the strength
of a peer inside the join process [7]. The Pagoda network has a constant degree,
a logarithmic diameter, and a 1/logarithmic expansion, while its construction is
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completely deterministic. Pagoda is a leveled network, where every peer is just
associated with a single node, and every parent of a peer must have a bandwidth
that is at least as large as the bandwidth of that peer. The lowest degree of a peer
in Pagoda is constant but not the minimum possible 3 as in our construction.
Also, Pagoda is not designed to work against an adaptive adversary ruling the
dynamics of the system.

Our approach and analysis is based on a partitioning tree, which has been in-
troduced for P2P networks by Ratnasamy et al. [21] (see Section 2.1 for details
on the partitioning tree). The maximum height difference between two leaves
inside the partitioning tree can be used to characterize the load imbalance of the
P2P network. Adler et al. [2] built a hypercubic network on the top of such tree
and showed that it is possible to keep the height difference constant for homo-
geneous nodes if no nodes may be removed from the network. Our construction
works for heterogeneous nodes and serves both insertion and removal operations
in an adversarial setting.

Dynamics of the system (so called churn) are specific to Peer-to-Peer designs,
however a fully adversarial model is practically never assumed. One exception
is a paper by Kuhn et. al [16], where a hyper-cube based network is constructed
for adversarial joins and leaves of peers. A somehow perpendicular approach is
considered by Awerbuch and Scheideler in [4] where an adversary has full control
(not only dynamics of joins and leaves but also other behavior) over a small
fraction of all peers. Neither of these approaches consideres heterogeneous peers.

Also more practically oriented results are known for treating with dynamics
of the system. An important result is by Guerraoui et. al [13] which shows a dis-
tributed overlay construction based on gossiping especially designed to cope with
dynamics. This result is experimentally evaluated in both static and dynamic
scenarios using traces of a real Peer-to-Peer system.

Some data-oriented P2P networks try to keep semantic relationships between
the keys stored in the network and to support multi-attribute queries. Mercury
uses the concept of hubs, where each hub is organized as a ring and is responsible
for one attribute [6]. The P2P network Oscar tries to improve the routing perfor-
mance compared to Mercury for skewed key spaces by learning certain regions
of the distribution [11]. The approach of P-Grid of building a trie to keep a lex-
icographic ordering is in some sense similar to the approach presented in this
paper [1]. Nevertheless, our approach is based on a random hash-function inside
each node of our search tree, which strongly reduces update costs in adversarial
(and realistic) environments. In general it is difficult to compare approaches that
keep lexicographic orders with our unstructured approach, as keeping this order
is always costly.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we define the desired
properties of our network. In Section 3, we show how to achieve these properties,
i.e., we show algorithms used for searching in the network, joining and leaving
it and balancing operations performed on it. In Section 4, we formally analyze



SkewCCC+: A Heterogeneous Distributed Hash Table 223

our construction (due to space limitations formal proofs can be found in the full
version of this paper). In Section 5, we explain how to treat data of different
sizes and we conclude in Section 6.

2 Construction

In our description inside this section, we concentrate on network construction
for heterogeneous peers and unit-sized data items. We show how to extend the
given algorithms to storing data of different sizes in Section 5.

We call participants of the network peers. Each peer u has a parameter c(u),
called its strength and reflecting its capabilities (i.e., bandwidth); we assume that
each peer of strength c(u) is able to communicate with 3 · c(u) neighbors. For
simplicity, we assume that the strength is a power of 2 and equals at least 4.
We also define the dimension of each peer u as dim(u) = log(c(u)). Peers whose
strength is not a power of two, can be treated in two ways. Either we cut their
strength to the highest possible power of 2, thus losing at most a constant fraction
of network bandwidth, or we decompose them into independent peers whose
strengths are powers of 2, thus adding another logarithmic factor to the cost
of basic operations. A trade-off between these two approaches is also possible.
Except the total number of peers n, we also use the parameter m =

∑
u c(u),

called network capacity. Naturally, both n and m may change over time and are
unknown locally by any peer.

Each peer has a name, name(u), which can be for example its IP address.
For simplicity of the description, we assume that each real peer is represented in
the network by c(u) virtual peers (called v-peers for short), each with the same
name as the original one. Later, we show how to use the fact that in reality they
constitute one entity.

We describe our network design in three levels of abstraction. In the first
one, we partition v-peers into groups using a tree (Section 2.1). In the second
one, we show which virtual connections are established between these groups
(Section 2.2). In the third one, we describe how and by which v-peers these
virtual connections are realized (Section 2.3).

2.1 Partitioning Tree

A partitioning tree (see Fig. 1a) represents a hierarchical partitioning of the set
of all v-peers. We emphasize that this tree is a purely virtual construct, which is
used to map the names of virtual peers to addresses in the SkewCCC+ network.
Furthermore, it is used for labeling groups of v-peers, and therefore to simplify
peers’ address management.

Definition 1 (Partitioning tree). A partitioning tree is a proper binary tree.
Each v-peer is mapped to a single leaf. We say that a leaf contains all v-peers
mapped to it. Moreover, an internal node s contains all peers mapped to leaves
from the subtree rooted in s. Thus, the root contains all v-peers.
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Fig. 1. SkewCCC+ construction. Parts a), b), and c) represent the partitioning tree,
virtual hypercubic connections and the real SkewCCC+ network. Large dots represent
groups of v-peers, small ones v-peers themselves. Only core v-peers are depicted.

Definition 2 (Edge and node labeling). In a partitioning tree: (i) Each
internal node has one child connected by an edge labeled 0 and one connected
by an edge labeled 1. (ii) Each node is labeled by the path used to reach it from
the root. The root is labeled by an empty string ε. (iii) The level of a node is its
distance from the root node. The root node is on level 0. (iv) For any node s,
s-subtree denotes the subtree rooted at s. (v) At any moment, a hash function hs,
mapping names of peers to {0, 1}, is assigned to each internal node s; these
functions can change over time. The function hs is known within the whole
s-subtree (by all v-peers belonging to this subtree).

Hash functions. In the analysis of the protocol we treat a hash function as
a random oracle, i.e., if we compute the value of a hash function y = hs(u) for
the first time for u, the result y is a random bit-string that is stochastically
independent of all previously computed values. In practice, the function hs(x)
can be implemented as hs(u) = Hash(s‖u), where Hash is a standard hash
function like SHA256.

Note that some subprotocols described below need a family of independent hash
functions for any fixed s. This can be realized by setting hs(u)=Hash(s‖u‖t),
where t is an integer. Every time the function is required to be changed, t is
chosen uniformly at random in some range of integers. This range has to be
sufficiently large for t to never occur twice in independent choices and sufficiently
small to allow broadcasting of t in a part of the network. In practice, we propose
t to be a 160-bit number. For the sake of clarity, we skip t in further notation
and we talk about the “current” values of hash functions.

Choosing peer’s position. Any peer u is mapped to a node of the tree, not
necessarily a leaf. First, we describe this mapping in a case when c(u) = 1, i.e.,
u is a single v-peer. In this case u is mapped to a leaf s, which is chosen on the
basis of name(u) and the current hash functions for the nodes of the tree. The
label of s is fixed bit by bit starting in the root of the tree and proceeding to
a leaf: s1 = hε(name(u)), s2 = h(s1)(name(u)), . . . , s� = h(s1,s2,...,s�−1)(name(u)).

Choosing a position of a real peer u of strength greater than 1 is performed
analogously, but the bit fixing procedure described above may stop in an internal
node s of the tree. We first calculate a level � on which u is going to be inserted.
Starting from the root of the virtual tree, we fix the label of a node on level
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� bit by bit in the same way as above until level � is reached. All v-peers of u
are inserted in the s-subtree and they are distributed evenly in this subtree, i.e.,
c(u)/2 v-peers are mapped to the left subtree of s and c(u)/2 to the right one.
This division proceeds recursively to the leaves. We require that the level of s is
chosen so that each leaf of the s-subtree contains at least 1 of these v-peers and
at most 4. For this to be possible, the leaves of the s-subtree have to be on levels
�+dim(u), �+dim(u)−1 or �+dim(u)−2; later we describe how this condition
is ensured. Finally, for any strength of the peer u, we say that its label, denoted
label(u), is the label of the node s = (s1, . . . , s�), to which it is mapped.

2.2 Virtual Connections

We now describe, which leaves of the partitioning tree are (virtually) connected.
These connections are also depicted in Fig. 1b. Virtual connections create a hy-
percubic structure. Assume first that the tree is completely balanced, i.e., all
leaves are on the same level �. This means that the labels of all leaves are binary
strings of length �. Then, there are 2� leaves and there is a connection between
two of them if the Hamming distance of their labels is exactly 1, i.e., their labels
differ on exactly 1 bit.

As it is too costly to keep the tree perfectly balanced, we need to relax this
condition, in a way similar to that of [8]. Choose any two virtual tree nodes u
and u′, both on level �, with Hamming distance 1, such that at least one of them,
say u, is a leaf. Then we require that either u′ is a leaf as well, or u′ has height 1,
i.e., its both sons are leaves. In the former case, u is connected with u′, in the
latter one u is connected to both sons of u′. We call these virtual connections
hypercubic links across dimension k, where k is the bit on which the labels of u
and u′ differ.

2.3 SkewCCC+

In order to show how virtual connections between tree leaves are actually realized
by v-peers, we use the following variation of the hypercubic network. Recall
that a standard d-dimensional CCC (Cube Connected Cycles) network can be
created out of a hypercube [17], where each corner of the hypercube is replaced
by a d-node ring, and each node becomes responsible for one of the corner’s d
links. Moreover, d nodes on a ring are sorted by dimension of the hypercubic link
they are responsible for (which bit they change in corner label). This way the
network remains regular and its degree is reduced from d to 3, whereas almost all
of the network properties are only slightly changed. In particular, it is possible
to route a packet between any two nodes in 2d steps.

In our network, called SkewCCC+, we make a similar trick of replacing corners
by rings, but we start from the hypercubic structure described in the previous
subsection. Assume first that a leaf having r hypercubic connections contains
exactly r v-peers. Then, they are connected into a ring in the same sorted manner
as described above. In particular, if a leaf has two hypercubic links across the
same dimension, then the respective v-peers are adjacent in the ring. Those v-
peers which are responsible for hypercubic connections are called core; a core



226 M. Bienkowski et al.

v-peer has number i if it is responsible for a hypercubic link across dimension i;
for each i there are either 1 or 2 v-peers responsible for it. This assignment is
depicted in Fig. 1c.

If a leaf contains more than r v-peers, the excessing ones are called spare.
Spare v-peers are inserted into the ring evenly between core peers (if there are
r′ v-peers at this leaf, the path between two consecutive core peers should be
of length �r′/r� or $r′/r%). Recall that a leaf at level d has between d and 2d
virtual connections to other leaves. To ensure that each hypercubic link can be
handled by a v-peer, we require that such a leaf contains at least 2d v-peers. As
routing is slowed down by the number of spare v-peers between any two core
v-peers, we also require that a ring contains O(d) v-peers.

3 Algorithms

In this section, we show how basic operations such as searching, joining, and
leaving the network are implemented. We also describe two rebalancing opera-
tions and define what triggers them. The algorithms described below preserve
the network structure described in Section 2. Our algorithms use parameters α
and β, meaning that in a ring on level � there should be at least α ·� and at most
β · � v-peers. Specific constraints on these parameters are given in Section 4.

3.1 Searching

Searching (look-up) in our structure is performed as searching in a CCC network
and inherits its properties; we describe it very shortly for completeness. Assume
that a v-peer belonging to a ring s wants to search for a resource with label
k = (k1, k2, . . .). For simplicity of the description, we assume that this label is of
infinite length. In practice, 160-bit labels are sufficient. The resource associated
with label k is stored in the ring t = (t1, t2, ..., td′), such that t1 = k1, ..., td′ = kd′ .
If the sending v-peer belongs to a peer of dimension d, the latter is represented
not only in s but also in at least 2d−2 rings and we can start from any of them.
We choose the one whose label agrees with k on the maximal number of bits.
We proceed in d′ − (d − 2) iterations; in iteration i, we find a ring whose name
prefix label agrees with k on the first i positions. In one iteration, a request is
passed to the next core v-peer on the ring and along a hypercubic link.

3.2 Joining and Leaving

When a peer u of strength 1 (i.e., dim(u) = 0) joins the network, it first resolves
its corresponding address based on the partitioning tree described in Section 2.1.
It finds the ring to which it shall belong, i.e., it looks up its own name in the
network using the search operation. Then it joins this ring as a spare v-peer,
the ring is split into two rings, if necessary and possible, and it is checked if
a rebalancing operation is needed. We treat peers of strength smaller than 4 as
if they had strength 1. When c(u) ≥ 4, i.e., dim(u) ≥ 2, the situation is more
complicated. The peer checks to which internal node s of the tree it should be



SkewCCC+: A Heterogeneous Distributed Hash Table 227

mapped in the following manner. First, it searches the tree, behaving as a peer
of strength 1 and finds a leaf at level h. Let s be the ancestor of this leaf at
level � = max{h − dim(u) + 1, 0}. Then, u inserts its v-peers in all leaves of the
subtree rooted at s, distributed as described in Section 2.1. Thus, u should be
represented by 1, 2, or 4 v-peers in the leaves of the s-subtree. If this is not the
case, rebalancing procedures are called as described in Section 3.3.

If the ring that u joins is on level l and already has β · l v-peers, a split
operation is necessary. If all neighboring rings are of dimension l or l+1 the ring
splits into two level l + 1 rings. If there exists a neighboring ring of dimension
l − 1, a rebalancing operation is needed.

There is one special situation to be considered. If u is rooted in the root of
the virtual tree, it means its dimension (and strength) differs only by a constant
factor from the dimension (or total strength) of the whole network. In such case,
for robustness, we limit the dimension of u so that it is represented in the initially
found ring by 2 v-peers.

A leave operation is performed in a manner mirroring the join operation.
Before a peer leaves the network, it removes all its v-peers after which some
merge and rebalance operations might be necessary. If a ring at level l, from
which a v-peer is to be removed, has α · l v-peers, it needs to merge with its
brother in the virtual tree. If it still has neighbors at level l+1, a rebalancing is
needed.

3.3 Rebalancing

We use two procedures for rebalancing. The first one, Rebalance(s), is called
with a tree node s at level l as an argument and its purpose is to rebuild the
whole s-subtree. We assume that a concrete v-peer from the s-subtree initializes
Rebalance(s). First, we estimate the number of v-peers in the s-subtree by
using a procedure for approximating (with a constant factor error) the number
of nodes in a peer-to-peer network. The method shown in [10] can be directly used
or methods from [4] can be adapted. Based on the returned lower bound m′

s on
the number ms of v-peers in the s-subtree, we calculate its new height h, so that
if we inserted m′

s v-peers to an initially empty network, and they had perfectly
balanced labels, we would get a tree with height h+1. Then we construct a tree
of height h. Information about h is broadcasted to all peers in s-subtree and
each peer of dimension d ≥ 2 calculates its new rooting level of l + h − (d − 1),
i.e., such that it is represented by 2 v-peers in each node on level l + h.

First, new hash functions are chosen in all nodes in the s-subtree. This opera-
tion is initiated by the peer which started the rebalancing operation. It chooses
a random number t which is used as one of the parameters (next to the name of
a peer and the address of a virtual tree node) for hash functions in nodes of the
virtual tree. Then the chosen t is broadcasted to the whole s-subtree and the
new hash functions are chosen in this subtree. Then all v-peers in the subtree
change their position according to these new hash functions. This change is not
immediate. First, the spare v-peers migrate, while the core v-peers still provide
an h-dimensional hypercubic structure during rebalancing. They are allowed to



228 M. Bienkowski et al.

migrate, when sufficiently many spare peers join a ring according to the new
hash functions and can at least temporarily overtake their job. Rings with cur-
rent heights larger than h are merged to height h and rings with heights smaller
than h wait for sufficiently many migrating v-peers to split to dimension h as
soon as possible. This is possible, if only the number of v-peers in each ring is
large enough, i.e., for sufficiently large constant α.

As shall be proven in Section 4, all leaves in the resulting s-subtree are on
level h, with high probability. We can employ another broadcast to check if
this procedure was successful and repeat rebalancing if necessary, thus changing
a Monte Carlo randomized algorithm into a Las Vegas one.

The second rebalancing procedure, RecursiveRebalance(s, s′), balances
the subtrees s and s′, so that their heights differ by no more than one after the
procedure. It goes up the tree and finishes at latest in their least common ances-
tor. From s and s′ the one on higher level, say s, is chosen. Then Rebalance(s)
is called and if after this operation leaves of the subtree rooted in s are on a level
differing by at most 1 from the level of leaves of s′, the procedure successfully
finishes. Otherwise, the parent of s takes the role of s and the procedure is called
anew.

In the following, we describe when rebalancing operations are necessary and
at which nodes of the virtual tree they have to be performed. Recall that one
of our goals is to keep a difference of at most 1 between levels of any two rings
in the network. If we detect two rings which differ in levels by more than 1, we
start a rebalancing procedure in which these two rings are parameters. Another
goal is for heterogeneous peers to be represented by 1, 2, or 4 v-peers in a ring.
If we detect a peer which violates it, we repair it. These two basic conditions
are checked formally in a set of rules given in the full version of this paper. Also
local and global methods for checking imbalance are described shortly in the full
version.

4 Analysis

In this section, we provide an analysis for the given model and algorithms. In the
analysis, we assume that the situation is stable, i.e., that there are no pending
RecursiveRebalance or Rebalance operations. We divide the analysis in
the following blocks. First, we prove that if neither any RecursiveRebalance

or any Rebalance is needed anywhere in the network, then the network is glob-
ally balanced. Second, we show that rebalancing procedures have linear times
polylogarithmic cost and take polylogarithmic time in a subtree in which they
are called. Then, we prove that they are called only every linear number of in-
sert/remove operations, so their amortized cost is polylogarithmic. Lastly, we
show that the imbalance detection subroutines detect any imbalance in the net-
work in a deterministic way in case of the local mode and with high probability
in case of the global mode. Due to space constraints, proofs have been moved to
the full version of this paper.
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4.1 The Adversary

Before analyzing our construction we firstly define what we mean by an adaptive
adversary. At any moment, the adaptive adversary has full information about
all peers present in the network, about all current hash functions for all nodes
of the virtual tree, and about all possible values of these hash functions for all
peers. As long as no Rebalance operations are needed, all hash functions are
fixed and the adversary can insert peers whose names are chosen by her, and
thus she can insert these peers into any node of the virtual tree. She also has
the power of removing any peer, basing on her current knowledge.

The only weakness of the adversary lies in the replacement of hash functions.
If the current hash function hs,t for a virtual tree node s was changed in a de-
terministic way during the rebalancing process (e.g. always to hs,t+1), then the
adversary would be able to insert peers with such names that their hashes for
some number of next steps would be actually chosen by her. In contrast, our con-
struction ensures that the space of possible replacements of hs,t is sufficiently
large; this makes it impossible to tamper with by the adversary, and thus the
newly chosen hash functions can indeed be treated as random functions for the
set of currently present peers.

We stress that our model differs from models sometimes assumed in security
analysis (for example in [4]). In such context, it is assumed that the adversary
has total control over some fraction of peers. Our model is somehow perpendic-
ular: the adversary has full information about all peers, and fully controls their
dynamics but not other behavior. Notice that if she controlled some peers, she
would be able to choose future hash functions as in our construction a single
peer decides about new hash functions for a whole rebalanced subtree of the
virtual tree.

4.2 Imbalance in a Correct Stable State

First, we show that the number of levels on which rings (i.e., leaves in the
virtual tree) appear is bounded even if our algorithm is only allowed to commu-
nicate locally (any imbalance conditions are checked only between neighboring
rings).

Lemma 1. The maximal dimension in the network is
⌈

3
2 · d

⌉
if the minimal

is d.

We use the above lemma to strictly bound the number of levels at which rings
appear by 1

2 logm, which yields a worst-case imbalance (the maximal ratio of
key-space parts assigned to rings) of β

α · 2 log m
2 = O(

√
m).

Lemma 2. The level of each ring is between 2
3 logm−O(log logm) and 3

2 logm.
The difference in levels between the highest- and the lowest-dimensional ring is
at most 1

2 logm.
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4.3 Correctness and Cost of Balancing

Below we prove the quality of our rebalancing procedures, assuming that the
applied approximation procedure (taken e.g. from any of [10,4]) lower bounds
the number of v-peers in a s-subtree and overestimates it by at most a constant
factor γ. Note that by using an additional maximum computation through rumor
spreading, it is possible to have the same approximation m′

s in each participating
peer. We use the following formulation.

Theorem 1 (based on [10]). For a s-subtree containing ms v-peers it is pos-
sible to calculate m′

s in a distributed fashion in time O(logms), so that, with
high probability, ms ≤ m′

s ≤ γ · ms, where γ is constant.

We assume that the approximation guarantee is γ = 5/4. If we prefer a weaker
approximation procedure (better due to other costs), our construction is still
possible, but we have to weaken imbalance conditions: leaves have to be allowed
to differ in levels by more than 1. We take γ = 5/4 for simplicity of description.

Lemma 3. Assume that the chosen height of an s-subtree is h after a rebal-
ancing operation Rebalance(s) for node s on level k. Then each leaf in the
s-subtree receives an expected number EX of v-peers, where 2α(k + h) ≤ EX ≤
5α(k + h).

At this point we fix β = 10 · α, as this yields that a ring wants to change its
dimension after a linear (in the size of the ring) number of joins and/or leaves
in this ring.

Lemma 4. Assume that the chosen height of an s-subtree is h after a rebalanc-
ing operation Rebalance(s) for node s on level k. Then with high probability
the number X of v-peers in each leaf satisfies |X − EX | ≤ 1

4α(k + h).

Lemma 5. For a subtree rooted in an internal node s, containing ms v-peers,
Rebalance(s) takes time O(logm) and its communication cost is O(ms ·logm).

4.4 Amortizing the Cost of Balancing

In order to bound how often the Rebalance procedure is called in different
nodes in the virtual tree, we use Lemma 6 stated below. Together with Lemma 3
(which shows that the tree should be balanced on expectation after performing
a Rebalance procedure), Lemma 4 (which proves that with high probability
the tree is indeed balanced), and Lemma 5 (which shows how expensive a single
rebalancing is), we will be able to state the total amortized cost of balancing.

Lemma 6. Let s be the last node for which Rebalance(s) was called before
reaching a stable situation and ms the number of v-peers in the s-subtree at that
time. Then the total number of v-peers inserted or removed from the s-subtree
since the previous Rebalance(s) is Ω(ms).

In the following theorem we gather the above results. Assuming that after each
Rebalance operation, the tree on which it was performed is indeed
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balanced, which Lemma 4 guarantees with high probability, we multiply the cost
of rebalancing obtained from Lemma 5 together with its frequency obtained from
Lemma 6.

Theorem 2. The expected and holding with high probability amortized cost of
inserting or removing a v-peer is O(log2 m). Each operation takes time O(logm).

4.5 Detecting Imbalance

In this section we consider the setting where imbalance is checked in a global
fashion, i.e., through sampling random locations whenever a peer is inserted
or removed. We initiate a rebalancing procedures if we find a ring differing
in dimension by more than 1 from the one that started the sampling. In the
sampling process, we are not interested in the chosen rings themselves but rather
in their current heights in the virtual tree.

Lemma 7. Let d be the height in the virtual tree which has the highest probability
of being chosen in the sampling process. If we choose a random place, then the
chosen ring has dimension d with probability Ω( 1

log m ).

Using the above lemma, we prove that our network is balanced with high prob-
ability. This time we allow the global difference in levels of leaves to be 2, as
we only prove that rings lie on levels differing from the most popular one by
at most 1. In the time a ring has to change its dimension twice, Ω(logm) v-
peers are inserted into it (or removed from it) and it checks Ω(log2 m) random
places, so the probability that it never hits the most popular level is bounded by
(1− 1/(logm))c·log

2 m ≤ e−c log m. If the scheme is run for polynomial number of
steps, we get the following corollary.

Corollary 1. If the lifetime of the network is bounded by a polynomial in m and
the global checking scheme is used to detect imbalance, then with high probability
the maximum difference in levels in the network is 2 during the whole runtime.
Thus, the imbalance is at most 4·β

α at all times.

4.6 The Cost of Routing

Finally, we prove that from the point of view of an average peer the cost of
routing a single message depends logarithmically on the number of peers rather
than v-peers. This is important for at least two reasons: (i) we do not want strong
peers to be slowed down by weak peers, (ii) if we make a mistake in setting the
granularity of the network and the dimension of all peers is lower-bounded by
some d, we do not want d to be added to the routing time.

Lemma 8. For a d-dimensional peer the cost of routing a message from this
peer to any destination in a balanced network is at most 2 · (logm− (d−2)). For
an average (of strength m/n) or stronger peer, this cost is at most logn.
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5 Storing Data

In this section, we describe how data is stored in SkewCCC+ and extend our
construction to storing data items of different sizes, and thus respecting different
needs for storage space and possibly network capacity.

If the set of data items is static (not ruled by the adversary) and only standard
items of unit size are to be used, i.e., the network is to be homogeneous with
respect to item sizes, we use a fixed and global hash function g which takes the
name of an item and a positive integer and returns one bit. Using g it is possible
to generate an infinite pseudo-random sequence of bits for any item; we will use
it to fix its place in the network, or actually on the virtual tree.

For an item u, the function g taken on bit 0, 1, 2, ... fixes an infinite path in a
binary tree. Using this path we fix a leaf in the virtual tree and store u in the
ring representing this leaf in the current SkewCCC+. Using standard routing
described in Section 3.1, it is possible to find u in O(logm − d) steps starting
from any d-dimensional peer.

We do not fix any concrete strategy to choose on which v-peer in its ring
the item should be placed. It can be stored on any v-peer in the ring with
employment of any in-ring load balancing procedure or (to support redundancy)
it can be stored on all v-peers in its ring. In the latter case we get the following
redundancy and robustness properties: each item is stored on Θ(logm) v-peers
belonging to Θ(logm) distinct peers.

When also the set of data items is ruled by an adaptive adversary or items
are of different sizes, we propose to employ the same techniques for balancing
the data set as we did for balancing the peer set. Two virtual trees spanning
the same virtual space are used: one for v-peers and one for data, both serv-
ing heterogeneous items, where a larger (more dimensional) data item denotes
a data item demanding larger storage space. In this case, instead of using the
above hash function g, we use a family of changing hash functions similar to
the hash functions used in the network construction. Large data items are par-
titioned into chunks similarly as peers were partitioned into sets of v-peers.
Concerning peers, we assume that each of them has storage space proportional
to its network bandwidth, i.e., to what we have defined as the strength of a
peer.

We assume that both virtual trees are balanced at each moment and that the
nodes-tree is lower than the data-tree. Otherwise, it would mean that there are
more v-peers than data and not much optimization would be needed. A ring
being a leaf s in the nodes-tree serves all data in the subtree rooted in s in the
data-tree. We achieve the following properties: (i) each ring in the SkewCCC+
network takes care of the same total size of data up to a constant factor (it comes
from both trees being balanced), (ii) inserting and removing of peers and data
takes square logarithmic time and square-logarithmic amortized costs, (iii) if
each chunk is copied to all v-peers in its ring, it is stored on Θ(logm) distinct
peers.
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6 Conclusion

We have presented a Peer-to-Peer network construction which has two main
qualities: (i) it allows for smooth serving of heterogeneous peers, and (ii) it
maintains balance in the presence of an adaptive adversary. Costs of constructing
and maintaining the network are polylogarithmic per operation (in the total
capacity of the network). The costs for routing are logarithmic in the number of
peers for peers of at least average strength.

For the balance feature, if we opt for the local balance checking algorithm, it
achieves polynomial imbalance of O(

√
m) (we may reduce it to O( k

√
m) for any

constant k if we look further than direct neighbors) and if we allow the global
sampling routine, we achieve constant imbalance, with high probability. We
stress that the analysis assumes to compete against an adaptive adversary and
that in previous constructions the adversary was always an oblivious one, which
made the analysis much simpler.

Last but not least, our network construction has nice properties concerning
data management. First, essentially the same strategies can be used to distribute
heterogeneous data. Second, if we require robustness (i.e., we want to store data
in multiple places), we may just replicate a data item within the whole ring to
which it is mapped. Since any peer has at most four of its v-peers in a single ring,
through such replication the data item is stored on Ω(logm) different physical
peers.
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Abstract. Paxos is a well known algorithm for achieving consensus in distributed
environments with uncertain processing and communication timing. Implemen-
tations of its variants have been successfully used in the industry (eg., Chubby by
Google, Autopilot cluster management in Bing by Microsoft, and many others).
This paper addresses the challenge of the manual coding of complex distributed
algorithms, such as Paxos, where this is an error prone process. Our approach in
ensuring correct implementation is to use a verified automated translator to com-
pile a source specification that has been proven to be itself correct. We use speci-
fication of the Paxos algorithm in the General Timed Automata (GTA) model, an
extension of I/O Automata, as input to an augmented compiler for the Input/Out-
put Automata notation (a.k.a., the IOA compiler) in order to generate executable
Java code. The resulting code is interfaced with MPI for communication needs.
We have extended the IOA compiler to support a version of the GTA model,
which uses time-passage actions such as ν(t), to model the passage of time by t
time units. A time-based version of Paxos is used to demonstrate the capabilities
of our extension. In this paper we describe the process to be followed in order to
compile time-based Paxos, or similar algorithms. The utility of our approach is
supported by an experimental evaluation of our Paxos implementation on a col-
lection of workstations. To the best of our knowledge, our case study constitutes
the first example of a time-dependent distributed algorithm that has been spec-
ified, verified and implemented in an automated way, using a common formal
methodology.

1 Introduction

Reasoning about the behavior of complex distributed systems and algorithms is a chal-
lenging task. Over the years, several formal methodologies for specifying distributed
systems have been proposed and associated techniques and tools have been developed
for verifying such systems (e.g., [3,17,20,27,22,28]). However, the benefits of using
formal methods has not reached its full potential due to the remaining challenge of
implementing such systems; usually the programmer has to manually map the func-
tionality of the abstract specification to detailed programs in order to be executed on
target distributed platforms. This raises the question whether the correctness of the ab-
stract specification is maintained during the coding process. To this respect, some tools
have been developed in an attempt to provide automated simulation or implementation
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of formally specified code (e.g., [2,6,7,1,24]). To the best of our knowledge, the IOA
Toolkit [1] is the only system to date that combines a language with formally specified
semantics (IOA language and checker), automated proof assistants (IOAtoLR theorem
prover), simulator (IOA simulator) and compiler (IOAtoJava code generator). A num-
ber of asynchronous algorithms, specified and proved correct using the IOA framework,
have been successfully implemented in an automated way using the IOA code generator
(see [14,30,15]); the generator translates the IOA specification of a given algorithm to
Java code which then can be executed on a network of workstations, where communica-
tion is established using MPI [10]. However, before our work, the IOA code generator
did not support timing issues.

Existing distributed systems can be viewed as partially synchronous systems in the
sense that some bounds on processes computation time and messages delays can be
estimated and be assumed, but cannot be guaranteed to hold at all times; that is, these
bounds might be violated, leading to timing failures. Moreover, implementations of al-
gorithms and programs on such systems usually make use of timeouts in order to render
some progress of the computation (that is, to provide some liveness guarantees) and to
detect component failures. Being able to specify, prove correct and automatically imple-
ment such algorithms on a real distributed system using a common formal methodology
is the focus of this work.

We have extended the IOAtoJava code generator (or simply IOA compiler) to handle
actions modeling passage of time. More specifically, we have extended the IOA com-
piler (including the IOA syntax checker and IOA composer) to support a version of
the General Timed Automata (GTA) model, a timed I/O Automaton model introduced
by Lynch and Vaandrager [26]. To demonstrate the functionality of this extension, we
used a timed specification of Paxos algorithm [21] as an input to the augmented com-
piler. The GTA model provides a systematic way of describing the timing behaviors
of partially synchronous distributed systems subject to timing failures. The model (and
variations of it) can be used for the study of the performance and fault-tolerance analy-
sis (i.e., the liveness) of practical distributed systems under stabilization conditions (see
for example the work in [8]). Lynch and Shvartsman [25] produced a GTA-based spec-
ification of a timed version of the Paxos algorithm, they proved its correctness (safety)
and performed a latency analysis conditioned on certain timing and failure assumptions.
The proof presented in [25] was checked to be correct using the interactive IOAtoLR
theorem prover by Win and Immorlica in [18] (see also [31]). The specification we
used to produce an automated implementation of Paxos using our extended version of
the IOA compiler was based on the one in [25].

The rest of the paper is organized as follows. Section 2 overviews the I/O Automata
and GTA models as well as the IOA notation and compiler. Also the Paxos algorithm
is discussed. In Section 3 we present an in-depth analysis of the procedure for compil-
ing and executing Paxos. Experimental results obtained by implementing Paxos on a
network of workstations are presented in Section 4. We conclude in Section 5.

2 Background

In this section we provide the necessary background required in the remainder sections.
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2.1 I/O Automata and the GTA Models

The I/O Automata framework was introduced by Lynch and Tuttle in [27]. A detailed
description of this model can be obtained there and in [23, Chapter 8]. An I/O Au-
tomaton is a labeled state machine in which a set of transitions connects the actions
with the states. It entails a set of states (not necessarily finite) with a nonempty subset
of start states, a transition relation, and a set of actions. These actions are classified
as input, output and internal. The utilization of input and output actions enables the
communication of an automaton with its environment. Input actions are controlled by
the external environment, whereas internal and output transitions are controlled by the
automaton. Actions are given in a precondition-effect style. An action is said to be en-
abled if its preconditions are satisfied. Input actions are always enabled. A transition
(also called a step) is given in the form (s,π,s’) where s, s′ are states and π an action.
I/O Automata support the operation of (parallel) composition where automata can be
combined to form a larger, multifunctional automaton representing a complicated dis-
tributed system. The I/O Automata model is nondeterministic since in any given state
any number of actions may be enabled and there are no restrictions on when an enabled
action should be performed.

The GTA model of Lynch and Vaandrager [26] (see also [23, Chapter 23]) is a vari-
ant of the I/O Automata model that enables the modeling of timing restrictions. These
restrictions can be encoded directly into the states and transitions of the automaton. In
addition to input, output and internal actions, a GTA uses time-passage actions to model
the passage of time. In particular, an action ν(t) of type time-passage specifies the pas-
sage of time by t time-units, t ∈ �+. Like internal and output actions, time-passage
actions are also controlled by the automaton. Unlike I/O automata, GTAs do not have
tasks components. Hence, a GTA is composed of four components: (i) the signature
which contains the input, output, internal and time-passage actions, (ii) a set of states,
(iii) a set of initial states, and (iv) the state-transition relation (steps). The GTA model
supports the composition of automata similarly to the I/O automaton model. Particu-
larly, a composition of (compatible) GTA automata yields a GTA automaton.

For the purposes of this work, we consider a free version of GTA [25] which is
similar to the concept of Clock GTA as introduced by De Prisco [8]. In particular, if
an automaton A is a GTA, then the free version of A (denoted by free(A) in [25]) is a
variant of A that behaves like A, except that it relaxes time constraints by allowing any
amount of time to pass in situations where A specifies that a particular amount of time
should pass. This enables our extended version of the IOA compiler to handle situations
in which the exact time constraints are not met by the program (e.g., due to unexpected
processing and communication delays).

2.2 The IOA Language and the IOA Compiler

The IOA notation is a language used to describe I/O Automata, and can be used both
as a formal specification language and a programming language [11]. States are de-
scribed by the means of the values of variables and transitions in precondition-effect
style, instead of state-action-state triples. Preconditions and parameters of the transition
must hold whenever this action is executed. The IOA language supports axiomatic and
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operational descriptions of programing implementations. The language inherits the non-
deterministic nature of the I/O Automata model. The IOA notation is supported by the
IOA Toolkit [1] via a sequence of tools, such as the checker, the simulator, the theorem
prover, and also the compiler. The compiler translates IOA code into Java code.

It was proven that a restricted set of source IOA specifications [30] can be compiled
to executable Java code while preserving the safety properties of the source specifica-
tion. To name few such restrictions, specifications must be presented in a node-channel
form (discussed next), and specifications must be input delay insensitive. As noted
in [14] and [30], a challenging problem (which remains open) is to enable the code
generator to also provide some kind of liveness guarantees.

Let us now turn our attention to Paxos. To be suitable for compilation, the Paxos
specification must be in the node-channel form. Meaning, the algorithm will have two
components: First, modeling algorithm code being executed on each network location
(or algorithm automaton), such as ballot preparation, voting, and reaching the consen-
sus decision. Second, modeling communication channels (or channel automata) be-
tween different network locations. During the specification phase such channels will
be abstract, but with specific safety properties (ex., lossy, reliable, secure, etc.). For the
moment let us assume that a node-channel representation of Paxos exists.

Unfolded below is a high level description of the procedure required for the compi-
lation and execution of Paxos. A detailed, algorithm-independent, step-by-step descrip-
tion of the compilation procedure can be found in [14]. We start with the syntactically
correct IOA specification of Paxos (described in detail in the next section) in the node-
channel form, which can be verified using the IOA checker.

Next step is to replace the abstract communication channel with a specific implemen-
tation. In our case communication is implemented using the Message Passing Interface
(MPI) [10], which is supported by the IOA compiler. The MPI channel is modeled
as a channel automaton that is a composition of SendMediator and ReceiveMediator
automata. These automata provide the linking to the MPI native libraries and an ap-
pearance of interfacing with the abstract channel. All communication between nodes
in Paxos is modeled as point-to-point connections. Note that the use of MPI with the
Paxos specification does not affect the safety properties of the specification. Preserving
the liveness properties, as mentioned above, remains an open challenge. However, our
experiments do suggest that under the scenarios considered, the use of MPI does not
fault executions of Paxos.

Before the specification is fed to the compiler, additional annotations must be given
to resolve nondeterminism. The nondeterminism, inherent from the IOA model, is re-
solved by requiring the programmer to write a schedule. A schedule is a function of
the state of the local node that picks the next action to execute at the node. That is,
the schedule function selects the next enabled transition as well as the values of its pa-
rameters and operates the effects of that transition. In format, a schedule is written at
the IOA level in an auxiliary non-determinism resolution language (NDR) consisting of
imperative programming constructs similar to those used in IOA effects clauses. There-
fore, we developed a (non-trivial) schedule appropriate for Paxos which is contained in
Figure 9.
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The following steps are independent of input specification. The composite node au-
tomaton is described as the composition of the algorithm automaton with the channel
mediator automata. A composer expands this composition into a new, equivalent IOA
program in primitive where each piece of the automaton is explicitly instantiated. The
resulting automaton is annotated with the schedule that describes sequence of computa-
tions per each node. The automaton along with its schedule is the final input program to
the compiler. The composite node automaton augmented with a schedule is now ready
for compilation. All the nodes in the system differ in parameterization and input. A
common information can be provided to the nodes through the automaton parameters
just before the execution of the system. The rank of each node MPIrank, described as a
unique non-negative integer, is provided by MPI. Another operator supported by MPI is
the MPIsize which records the number of nodes in the system. The compiler translates
each scheduled node automaton into its own Java program suitable to run on the target
host.

2.3 The Paxos Algorithm

Reaching consensus is a fundamental problem in distributed systems. The consensus
problem addresses the situation in which there is a set of n processes; each process can
propose a value, but in order for the system to reach a consensus state, every process
must decide on the same value. In particular three conditions must hold: (a) Agreement,
all (correct) processes agree on the same value. (b) Validity, the agreed value was among
the ones proposed by the processes. (c) Termination, eventually each (correct) process
decides. The first two conditions are safety conditions, that is, they must hold at all
times. The third one is a liveness condition and it can only be met under certain con-
straints (e.g., it is well known that consensus cannot be solved in a purely asynchronous
systems in the presence of a single process crash failure [9]). Distributed consensus has
been extensively studied under various system and failure models, see e.g., [23,4].

Paxos is an algorithm designed to solve the consensus problem. It was presented
by Lamport in 1990 and was published in 1998 [21]. A considerable advantage of this
popular algorithm is that it tolerates processes crashes (and recoveries), message loss,
duplication and reordering as well as timing failures. Paxos is guaranteed to work safely
(that is, it satisfies agreement and validity) regardless of process, channel and timing
failures. When the distributed system stabilizes (that is, there are no failures and a ma-
jority of the processes are not crashed, for a long period of time), termination is also
achieved [8].

Description of Paxos. In brief, Paxos works as follows: a leader starts ballots, tries
to associate a value to each ballot, and tries to collect enough approval for each ballot to
use the value of that ballot as the decision value. The leader bases its choice of a value to
associate with a ballot on the information returned by a quorum of processes1. Once the
value is associated with the ballot, the leader tries to collect approval from a quorum of
processes: if it succeeds, the ballot’s value becomes the final consensus decision value.
In general, several leaders may operate at the same time and may interfere with each

1 Quorums are sets of processes such that each quorum has a pairwise intersection with any
other quorum. Majorities are special cases of quorums.
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other’s work. However, under a stable state only one leader operates and ensures that a
ballot completes. We now outline the main phases of Paxos.
(1) The leader starts a new ballot and informs the others about it.
(2) A process that learns about the new ballot abstains from any earlier ballot for which
it has not voted for. In response, a process replies to the leader with the value of the
ballot for which it last voted for.
(3) Once the leader receives responses from a quorum, it chooses a value for the ballot
that is based on the received values and announces that value to others.
(4) A process that learns about a new value may vote for the ballot, if it has not already
abstained. If the process votes, then it informs the leader and others about its vote.
(5) The leader decides on the ballot’s value once it receives messages from a quorum
with a vote for that value. In case that the leader has failed, a separate leader election
service is used to elect a new one. Timeouts are used to determine which processes are
operational, and among these, the one with the highest id is elected as the leader. After
the election, the new leader starts a new ballot.
(6) Timeouts are also used for the leader to decide when it should start new ballots (that
is, there is a limit on how long it takes for a given ballot to be accepted by a quorum of
processes).

Based on the above description, there are two timing-dependent components: the
leader-election service that determines when a new election should be triggered, and
the mechanism that determines when a leader should trigger a new ballot.

Specification and Correctness of Paxos. A manuscript by Lynch and Shvartsman [25]
provides a formal presentation of the Paxos algorithm. The presentation includes a Gen-
eral Timed Automata specification of the algorithm, a correctness proof (safety) and a
performance analysis. The correctness proof, which ensures the agreement and valid-
ity properties, was done by hand and it is based on a mapping to an abstract state ma-
chine representing a non-distributed version of the algorithm. The performance analysis
proves latency bounds, conditioned on certain timing and failure assumptions.

In [18,31] using a time-free version of the Paxos specification of [25] (essentially
the last two timing-dependent phases were not considered), and using the IOA2LSL
translation tool of the IOA toolkit, the safety of Paxos was mechanically checked. More
precisely, it has been shown that every possible externally observable outcome of the
Paxos algorithm is also an externally outcome of a general consensus specification. That
is, a forward simulation relation from the Paxos automaton to the consensus automaton
was defined. Furthermore, the automata and forward simulation conjecture were trans-
lated into a readable form by the Larch Prover [12] using an automated translation by
the IOA2LSL Tool of the IOA toolkit.

It is worth mentioning that Musial [29] has also translated a version of the Paxos
specification of [25] to Java code. The communication medium used was Java Sockets
with TCP (instead of MPI) but the translation was done in a manual manner (as opposed
to the automated translation offered by the IOA Toolkit). It is also worth mentioning that
work is underway in enabling the IOA compiler to also use Java Sockets and TCP [16].

In [5] a deconstruction of (untimed) Paxos into two main abstractions, register and
leader, is presented. The eventual register abstraction encapsulates the safety proper-
ties of Paxos whereas the eventual leader election abstraction encapsulates its liveness.
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The IOA Paxos specification presented in this paper (see next section) makes a similar
deconstruction of (timed) Paxos: safety is encapsulated via a Paxos Process automaton
and liveness via a Ballot Trigger automaton (which includes a leader election module).

3 Implementation of the Paxos Algorithm

3.1 Extending the IOA Compiler

In order to implement Paxos, we had to extend the IOA toolkit to support timing issues.
In particular, we had to enable the checker, composer and compiler to support the free
variant of the GTA model (discussed in Section 2.1). Recall that GTA, besides the action
types input, output and internal of IOA, also requires a fourth action type, that of time-
passage (that specifies the passage of time). Introducing this new action type was a non-
trivial task which involved making several changes and adjustments to various parts of
the checker, composer and compiler code.

In addition, for the successful implementation of the time-based Paxos we imple-
mented a set of operators and data types. Each IOA data type is implemented by a
hand-coded Java class. A library of such classes for the standard IOA data types is in-
cluded in the compiler. Each IOA data type (e.g., Set[]) and operator (e.g., Set[]→
Nat) is matched with its Java implementation class using a data type registry [30],
which we extended in this work. Examples of operators that we have developed and in-
cluded in the compiler to support the implementation of Paxos are (their usage is shown
in later sections): maxElement, maxBallot, getprocid, getseqno, setBallot, allessdead,
ifProposed,existVal, valProposed, notnil, internalDecideOp, timePsg, ifmajv and voted-
Ballot. Examples of developed data types are Ballot and Last (their Java code can be
found in the full paper [13]).

Recall that in [30] it was shown that the IOA compiler preserves the safety prop-
erties of the source IOA code (the specification of the algorithm to be implemented).
As the safety properties are not affected by timing issues, it follows that the Java code
generated by our extended version of the compiler for Paxos preserves the safety prop-
erties of the source GTA specification. As already mentioned, preserving some liveness
guarantees in an automated manner is an open research question [14,30].

Although in this work we have focused on Paxos, we believe that our extended ver-
sion of the IOA compiler (including checker and composer) can be used for the au-
tomated implementation of other timing-dependent distributed algorithms where their
computational progress relies on timeouts, and which adhere to the aforementioned re-
strictions imposed by the IOA compiler.

3.2 Procedure

The compilation steps of the time-based Paxos specification are as outlined in Sec-
tion 2.2, where instead of using the IOA compiler we used our developed extended
version (that supports the free variant of the GTA model).

Paxos Specification. Our Paxos specification is based on the one given in [25], but it
had to be expressed in the IOA notation suitable for compilation. In addition we had to
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Si g na t ure
Input:
init ( co nst MPIrank:Int, vInit:Int)
fail ( co nst MPIrank:Int)
newBallot(co nst MPIrank:Int)
RECEIVE(m:Message,co nst MPIrank:Int,u:Int)

Output:
decide( co nst MPIrank: Int, vDecide:Int)
SEND(m:Message , co nst MPIrank:Int ,u:Int)
assignVal(co nst MPIrank:Int,

bAssignVal:Ballot, vAssignVal:Int)
makeBallot(co nst MPIrank: Int,bMakeBallot:Ballot)

I n t e r n a l:
abstain ( co nst MPIrank:Int, BAbstain:Set[Ballot])
vote (co nst MPIrank:Int, bVote:Ballot)
internalDecide(co nst MPIrank:Int,

bInternDecide:Ballot)
valueDecision(co nst MPIrank:Int, You:Int,

LatestVal:Int, ballot:Ballot)
gossip(co nst MPIrank:Int)

TimePassage:
v(T)

S t a t e s:
mode:ModeType := idle
proposed:Array[Int,Set[Int]]:=constant({})
failed:Bool := false
ballots:Set[Ballot]:={}
val:Array[Int,Array[Ballot,Null[Int]]] :=

constant(constant(nil))
voted:Array[Int,Array[Int,Set[Ballot]]] :=

constant(constant({}))
abstained:Array[Int,Array[Int,Set[Ballot]]] :=

constant(constant({}))
doMakeBallot:Array[Int,Bool]:=constant(false)
succeeded:Array[Int,Set[Ballot]]:=constant({})
done:Array[Int,Bool] := constant(false)
neighbours:Set[Int] := {}
tempnghbrs:Array[Ballot,Set[Int]] := constant({})
rcvBallots:Set[Ballot] := {}
sendVote:Bool := false
readyAssign:Bool := false
ballotsucceeded:Ballot := setBallot(-1,-1)
queueOut:Map[Link,Seq[Message]]
queueIn:Map[Link,Seq[Message]]
lnks:Set[Link] := {}

seqNo:Int := 0
lastProposedBallot:Ballot := setBallot(-1,-1)
lastvotedvalue:Int := -1
lastValue:Array[Ballot,Set[Last]]
leader:Int := -1
assignvalue:Int := -1
tempLast:Last
tempVal:Int
tempballot:Ballot
tempbalDecide:Ballot
nodes:Set[Int]
countVote:Int := 0
balvalsucc:Int := -1
Clock:Real := 0
nextGossipTime:Real := 0
period:Real
T:Real
mProposed:Int := -1
mBallots:Ballot := setBallot(-1,-1)
mVal:Int := -1
mVoted:Ballot := setBallot(-1,-1)
mAbstained:Set[Ballot] := {}

Fig. 1. PaxosProcess(i): Signature and State variables

develop several auxiliary operators and data structures. The specification includes two
automata: the PaxosProcess and BallotTrigger. The former implements the first four
main phases of Paxos as outlined in Section 2.3 whilst the two last (timing-dependent)
phases are implemented by the latter. Note that for simplicity of presentation we used
majorities instead of quorums. We present the specification of each automaton along
with the new operators and data structures we have developed. Each automaton specifi-
cation was syntactically checked using our updated version of the IOA checker.

PaxosProcess Automaton. Figure 1 shows the signature and the state variables of the
PaxosProcess(i) automaton. The analysis of the new data types and operators follows in
this section. Figure 2 shows the transitions of actions init, newBallot and makeBallot.

The init action proposes and records the submitted value. It also changes the mode
to active and sends the value vProposed to the other processes. The newBallot input
action notifies the PaxosProcess(i) to originate a new ballot. The makeBallot action is
triggered once a request for a new ballot has arrived. In this action a new sequence
number that is bigger than any previously known sequence number is selected, and then
the leader sends the new ballot b. The new ballot identifier is a two field record of the
sequence number and the identifier of the new ballot’s originator. At this point no value
is associated with the ballot. The maxBallot operator that is imported in the makeBallot
action, identifies and returns the largest ballot that has been witnessed so far. In case
a process has crashed, the fail action is executed (variable failed is set to true). It is
important to highlight that only a leader process can start a new ballot.

Figure 3 contains the transitions of actions abstain, valueDecision and assignVal.
The PaxosProcess(i) automaton uses the abstain action to abstain from all the ballots
of a set B. This is allowed when the known identifier of a ballot is larger than any other
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i nput init(i,vInit)
e f f

i f ¬failed then
i f(mode=idle) then
mode := active;
Clock := clock;
proposed[i] := proposed[i] ∪ {vInit};
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] := queueOut[[i,k]] 	

sProposed([PROPOSED,[i,k],vInit]);
od;
mProposed:=vInit;

f i ; f i;

i nput newBallot(i)
e f f

i f ¬failed then
i f mode= active then
doMakeBallot[i] := true;

f i ; f i;

o utput makeBallot(i,MakeBallot)
pre ¬failed;
mode=active;
doMakeBallot[i];
(getprocid(maxBallot(ballots))<

getprocid(MakeBallot))∨
((getseqno(maxBallot(ballots))<

getseqno(MakeBallot)));
getprocid(MakeBallot) = i;

e f f
seqNo := seqNo + 1;
ballots := insert(MakeBallot, ballots);
lastProposedBallot := MakeBallot;
doMakeBallot[i] := false;
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] := queueOut[[i,k]] 	

sBallot([BALLOT,[i,k],MakeBallot]);
od;
rcvBallots := {};
rcvBallots := insert(MakeBallot, rcvBallots);
mBallots:=MakeBallot;

Fig. 2. PaxosProcess(i): Transitions of actions init, newBallot, makeBallot

i n t e r n a l abstain(i,BalAbstain)
pre
mode=active;
¬failed;
getseqno(maxBallot(BalAbstain))<
getseqno(maxBallot(ballots))∨
getprocid(maxBallot(BalAbstain))<
getprocid(maxBallot(ballots));
(voted[i][i] ∪ abstained[i][i]) ∩ BalAbstain={};

e f f
abstained[i][i] := abstained[i][i] ∪ BalAbstain;
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] := queueOut[[i,k]] 	
sAbstain([ABSTAIN,[i,k],BalAbstain,
getprocid(maxBallot(BalAbstain))]);

od;
f o r j:Ballot i n BalAbstain do
rcvBallots := delete(j,rcvBallots);

od;
mAbstained := BalAbstain;

i n t e r n a l valueDecision(i, u,latestVal,ballot)
pre mode�=idle;
head(queueIn[[i,u]])=sLatestValue([LATESTVAL,
[u,i],latestVal,ballot]);

e f f
queueIn[[i,u]] := tail(queueIn[[i,u]]);
tempnghbrs[ballot]:=insert(u,tempnghbrs[ballot]);
i f ¬(ballot ∈ abstained[i][i]) then

i f ((size(tempnghbrs[ballot]))<
(div(size(neighbours),2))) then

i f (lastValue(lastValue[ballot],latestVal))then
f o r k:Last i n lastValue[ballot] do

i f getvalue(k)=latestVal then
lastValue[ballot] := delete(k,

lastValue[ballot]);
tempLast := setLast(getnodeNum(k)+1,

getvalue(k));
lastValue[ballot] := insert(tempLast,
lastValue[ballot]);

f i

od;
e l s e
tempLast:=setLast(1,latestVal);
lastValue[ballot]:= insert(tempLast,

lastValue[ballot]);
f i

e l s e
tempVal:=0;
f o r k:Last i n lastValue[ballot] do

i f getnodeNum(k)>tempVal then
tempVal := getnodeNum(k);
assignvalue := getvalue(k);

f i
od;
i f assignvalue=(-1) then
assignvalue := chooseRandom(proposed[i]);

f i
readyAssign := true;

f i ; f i ;

o utput assignVal (i,balAssignVal,valAssignVal)
pre
¬failed;
mode=active;
readyAssign;
balAssignVal ∈ ballots;
getprocid(balAssignVal)=i;
val[i][balAssignVal]=nil;
ifProposed(proposed,valAssignVal);
(allessdead(ballots,balAssignVal,abstained[i],nodes)∨
existval(val,valAssignVal,abstained[i],ballots,nodes))

e f f
val[i][balAssignVal]:=embed(valAssignVal);
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] := queueOut[[i,k]] 	

sValue([VALUE,[i,k],balAssignVal,valAssignVal]);
od;
readyAssign:=false;
mVal:=valAssignVal;

Fig. 3. PaxosProcess(i): Transitions of actions abstain, valueDecision and assignVal

ballot in B, and provided that it has not already voted for any of the ballots of the set
B in an earlier state. After the initiation of a ballot process, a value for the ballot has
to be chosen. The internal action ValueDecision is used to choose a value for the ballot
b. The specified transition is being executed only by the leader. All processes have to
send the value of the latest ballot that they have voted for (if voted) to the leader. When
the leader receives the values from a majority of the processes it chooses a the value for
ballot b. The leader ignores all values equal to −1 (indicating that the sender has not
voted for any ballot yet). The prevailed value will be assigned to ballot b.
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i n t e r n a l vote(i,balVote)
pre
mode=active;
¬failed;
valproposed( ballots,balVote);
notnil(val,balVote);
¬(balVote ∈ abstained[i][i]);
¬(balVote ∈ voted[i][i]);

e f f
voted[i][i]:=voted[i][i] ∪ {balVote};
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] := queueOut[[i,k]] 	 sVote([
VOTE,[i,k],balVote,getprocid(balVote)]);
countVote:=countVote+1;

od;
sendVote:=false;
rcvBallots:=delete(balVote,rcvBallots);
lastvotedvalue:=val[getprocid(balVote)]

[balVote].val;
mVoted:=balVote

i n t e r n a l internalDecide(i,balInternDecide)
pre
¬failed;
mode=active;
internalDecideOp(nodes,balInternDecide,voted[i])

e f f
succeeded[i]:= succeeded[i] ∪ {balInternDecide};
i f (val[getprocid(balInternDecide)]

[balInternDecide]�=nil)then
balvalsucc:=val[getprocid(balInternDecide)]

[balInternDecide].val f i ;
ballotsucceeded:=balInternDecide;

o utput decide(i, valDecide)
pre
¬failed;
¬done[i];
mode = active;
ballotsucceeded ∈ succeeded[i];
embed(valDecide) = val[getprocid(ballotsucceeded)]

[ballotsucceeded];
e f f
done[i] := true;

Fig. 4. PaxosProcess(i): Transitions of actions vote, internalDecide and decide

PaxosProcess(i) uses the internal action assignValue to assign the value v to ballot b.
The possibility to assign a value v to a ballot is based on an important consistency check
with smaller ballots. Specifically, PaxosProcess(i) checks whether b is a known ballot
and that i is the originator of ballot b. So far, no value has yet been assigned to b, as far
as i knows. But since i is the process that originally started ballot b, i is the one that
has the ability to assign the value v to b. Value v must be known to be the initial value
of a process. Besides, all smaller ballots either must have the value v, or are known as
“dead”. The specified transition uses the operators ifProposed, allessdead, existval and
dead. The ifProposed operator examines whether value v is one of the values that had
been proposed by processes. The allessdead operator checks if all the ballots that are
smaller than b are dead. Also, existval checks if v has been assigned to all the smaller
non-dead ballots. Once the value has been assigned to the ballot, the leader notifies the
other processes about the new value.

Figure 4 depicts the transitions of actions vote, internalDecide and decide. For the
system to reach a consensus state, processes have to accept the value of the ballot by
voting the ballot. PaxossProcess(i) may vote for a ballot b if it is known that a value
has been assigned to b, and if i has not yet abstained from b. The responsibility of
action vote(i, b) is for process i to vote for ballot b and to inform the environment
about its participation, by sending a Vote message. This action consists of the operators
valproposed and notnil; valproposed checks whether ballot b has been proposed by a
process, whereas the notnil operator examines if a value has been given to b.

Once it is known that a majority of processes have approved the ballot b with value
v, PaxosProcess(i) may decide that the system has reached consensus by executing the
internal action internalDecide(i,b). This action, using the internalDecideOp operator,
checks whether a majority of processes have accepted b.

Finally, PaxosProcess(i) announces the decision to the external environment with the
decide(i) action. The SEND and RECEIVE actions are used to propagate information
among processes reaching consensus. The information includes the proposed and sets
of ballots, and the value, voted and abstained maps. The transitions of actions SEND
and RECEIVE can be found in the full paper [13].
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For the best manipulation of messages, we created two queue-type data structures
queueOut and queueIn, in which we record the out and in bound messages respectively.
In action SEND(m,i,u), process i sends the message that is at the top of queueOut to
receiver u. Once the message is sent, it is removed from the queue. A process can
decide and terminate when it sends all the voted messages that exist in queueOut.

In RECEIVE(m,i,u), the received messages are stored in the queue named queueIn
for further utilization. Paxos restricts the communications among processes so as only
important information to be sent, thus sending periodically gossip messages at interval
of period. This message restriction is achieved through the v(T) and gossip(i) actions
of the PaxosProcess(i) automaton described in Figure 5.

t i m ePa ssa g e v(T)
pre ¬failed;

isEmptyQue(queueOut);
e f f Clock := Clock + T;

i n t e r n a l gossip(i)
pre ¬failed;

Clock ≥ nextGossipTime;

e f f
f o r k:Int i n nodes-{i} do

queueOut[[i,k]] := queueOut[[i,k]] 	
sState([[i,k],mProposed,mBallots,
mVal,mVoted,mAbstained]);

od;
nextGossipTime := nextGossipTime + period;

Fig. 5. PaxosProcess(i): v(T) and gossip

In particular, the v(T) action models the passage of time. The Clock variable (initial-
ized to zero) is increased by T units, T being a predefined quantity and specifies the
(worst-case) time needed for all the abovementioned transitions to take place; as we
explain later, both T and period are system-dependent and therefore these parameters
must be computed based on timing properties of the target deployment platform.

BallotTrigger Automaton. The BallotTrigger automaton is the one to specify how a
new leader is elected and when a leader generates a new ballot. That is, this automaton
is the one to specify the main timing issues of time-based Paxos. The BallotTrigger(i)
signature and state variables are presented in Figure 6. Figure 7 presents the transitions
of BallotTrigger(i).

Si g na t ure
Input:
init( co nst MPIrank: Int,vInit: Int)
fail( co nst MPIrank: Int)
decide(co nst MPIrank: Int,vDecide:Int)
assignVal(co nst MPIrank: Int,

bAssignVal:Ballot,vAssignVal:Int)
RECEIVE(m:Message, co nst MPIrank: Int, u:Int)

Output:
newBallot( co nst MPIrank: Int)
sendAlive( co nst MPIrank:Int,u:Int)
SEND(m:Message,co nst MPIrank: Int,u:Int)

I n t e r n a l:
nodeTimeout(co nst MPIrank:Int,u:Int)

TimePassage:
v(T)

S t a t e s
mode:Mode := idle
suspected:Set[Int] := {}
timeout:Array[Int,Real]
nextBallotTime:Real := -1
nextSendTime:Array[Int,Real]
leader:Int := -1
Clock:Real := 0
failed: Bool := false

delay:Real
period:Real
T:Real
nodes:Set[Int]
done:Bool := false
queueOut:Map[Link, Seq[Message]]
queueIn:Map[Link, Seq[Message]]

Fig. 6. BallotTrigger(i): Signature and State variables

The BallotTrigger(i) automaton handles the event of the ballot voting timeout as
follows. If a ballot voting does not complete within a predefined time interval, it is ter-
minated by having the leader initiate a new ballot voting. (Assume that i is the current
leader.) Particularly, the leader measures the time starting from the execution of action
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Transitions

input RECEIVE(m,i,u)
e f f

i f ¬failed then
i f mode= active ∧ tag(m)=sAlive then
queueIn[[i,u]] := queueIn[[i,u]] � m;
i f head(queueIn[[i,u]]) = sAlive([ALIVE,[u,i]]) then
queueIn[[i,u]] := tail(queueIn[[i,u]]);
timeout[u]:= Clock+delay;
i f u ∈ suspected then
nextSendTime[u] := Clock;
suspected := suspected - {u};
i f u>leader then
leader:=u;

f i ; f i ;
i f u�=leader then
nextBallotTime := -1;

f i ; f i ; f i ; f i ;

input init(i,v)
e f f

i f ¬failed then
i f (mode=idle) then
mode := active;
Clock := clock;
leader := maxElement(nodes);
f o r k:Int in (nodes - {i}) do
nextSendTime[k] := Clock;
timeout[k] := Clock+delay;

od;
i f i=leader then
nextBallotTime := Clock;

f i ; f i ; f i ;

i n t e r n a l nodeTimeout(i,u)
pre ¬failed;
mode=active;
Clock ≥ timeout[u]∧ ¬(timeout[u]=(-1));

e f f
suspected:=suspected ∪ {u};
timeout[u]:=-1;
nextSendTime[u]:=-1;
i f leader=u then
leader := maxElement((nodes-suspected));

f i
i f i=leader ∧ i<u ∧ ¬done then
nextBallotTime := Clock;

f i

input assignVal(i,b, v)
e f f

i f ¬failed then
i f mode=active then
nextBallotTime:=Clock+delay;

f i ; f i ;

input decide(i,v)
e f f i f ¬failed then

i f mode=active then
done:=true;
nextBallotTime:=-1;

f i
f i ;

output newBallot(i)
pre ¬failed;
mode=active;
Clock ≥nextBallotTime∧ ¬(nextBallotTime=(-1));
¬done;

e f f nextBallotTime:=Clock+delay;

t imePassage v(T)
pre ¬failed;

(Clock+T)≤(nextBallotTime)∨ nextBallotTime=(-1);
timePsg(Clock,T, timeout);
timePsg(Clock,T,nextSendTime);

e f f Clock:=Clock+T;

input fail(i)
e f f mode:=failed;

output sendAlive(i,u)
pre ¬failed;
mode= active;
¬ (u ∈ suspected);
nextSendTime[u] ≤ (Clock +T);

e f f
queueOut[[i,u]]:=queueOut[[i,u]] � sAlive([ALIVE,[i,u]]);
nextSendTime[u]:= Clock + delay;

output SEND (m,i,u)
pre ¬failed;

mode= active;
queueOut[[i, u]] �= ({});
m =head(queueOut[[i,u]]);

e f f
i f m =head(queueOut[[i,u]]) then
queueOut[[i,u]] := tail(queueOut[[i,u]]);

f i

Fig. 7. BallotTrigger(i):Transitions

newBallot(i) and checks whether the decide(*,i) action is executed within the predefined
time period. If the execution has not been completed and i is still the leader, then the
newBallot(i) action is triggered for the initiation of a new ballot voting. The next Bal-
lotTime variable determines the time when the leader should create a new ballot, whilst
the nextSendTime defines the time that the acknowledgment message will be sent.

Another responsibility of the BallotTrigger automaton is to execute a failure detec-
tion mechanism in order for a new leader to be elected, when the current one seems
to have crashed. In particular, the automaton implements process crash detection by
having the processes interchanging “alive” messages at regular time intervals. When a
process i does not receive the alive message of process u within a predetermined time
interval, then i inserts u into a set of “suspected” processes (this is implemented by the
nodeTimeout(i,u) action). The sendAlive(i,u) action allows process i to send an alive
message to process u after the passage of time and when u is not a suspected process.
The receipt of alive messages is implemented using the recvAlive(i,u) action. So, when
process i receives a message from process u, the timeout variable (Clock + delay) is
renewed for process u. The variable delay is system-dependent and hence, as with T ,
its value was computed based on empirical performance measurements of our deploy-
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ment platform (more details are provided in Section 4). Due to the fact that the system is
partially synchronized (and hence, it exhibits timing failures) it is possible that i might
not receive u’s alive message within the predetermined period and place u in the sus-
pected set, although u is in fact still operational. However, when i receives the delayed
message, it removes u from the suspected set. When the leader is included in the set of
suspected processes of some process, a new leader election operation is triggered.

The BallotTrigger(i) automaton contains the input actions init and decide for the
processes to reach consensus. As an effect of the init action, the automaton’s state tog-
gles from idle to active, and the current timing value is assigned to the Clock value of
the automaton. Initially, each process is assigned as a leader. However, when process
i receives an alive message from process u that has greater id, then i grants its lead-
ership to u. In the end, after correct processes exchange alive messages, the leader is
the one with the highest id. The input action decide(i,u) is activated when consensus is
achieved. Consequently, the decide variable is toggled to true, and the value −1 (cod-
ing infinity) is assigned to nextBallotTime. It is important to mention that the action
decide(i,u) of the PaxosProcess(i) automaton activates the corresponding action of the
BallotTrigger automaton when the two automata are composed (the two automata have
been specified in such a way that are composition compatible [23]).

The passage of time is specified via the v(T) action. The Clock variable is increased
by T units, T being a predefined quantity and specifies the (worst-case) time needed for
all the above mentioned transitions to take place. Finally, the action fail(i) specifies the
crash of process i (the process state changes from active to failed, and hence no further
actions can be triggered from i).

Obtaining the PaxosNode Automaton and Resolving Nondeterminism. As men-
tioned in Section 2.2 after the description of the system into IOA language the pro-
grammer must combine the algorithm automaton with auxiliary, channel automata. The
developed automaton named PaxosNodeCom (Figure 8), composes the algorithm au-
tomata (PaxosProcess and BallotTrigger) with the mediator automata responsible for
the establishment of the communication (via MPI) among processes. The SendMediator
automaton consists of the actions Isend, resp Isend and resp test, while the ReceiveMe-
diator consists of the actions Iprobe, resp Iprobe, receive and resp receive (which spec-
ify standard MPI constructs). More on these mediator automata can be found in [14,30].
The PaxosNodeCom automaton is fed to the composer which generates the PaxosNode
automaton (it includes all states and transitions of the composed automata).

automaton PaxosNode(MPIrank:Int,MPIsize:Int)
components
P: PaxosProcess(MPIrank,MPIsize);
B:BallotTrigger(MPIrank,MPIsize);
RM[j: Int]: ReceiveMediator(Message, Int,

MPIrank,j);
SM[j: Int]: SendMediator(Message, Int,
MPIrank, j)

Fig. 8. PaxosNodeCom: Composition Automaton

After the composition, and before compilation, we included a schedule, presented in
Figure 9, to resolve nondeterminism. The schedule consists of the operators ifmajv and
votedBallot. The first checks whether a majority of processes have approved a proposed
ballot, whereas the latter operator returns the approved ballot.
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s c h e d u l e
s t a t e s

links:Set[Link],
lnk:Link,
newBallot:Ballot,
tmpBallots:Set[Ballot]:={},
tempVal:Int:=-1,
temprcvBallot:Ballot,
setTemp:Set[Ballot]:={},
flag:Int:=0

do
f i r e input init(MPIrank,valInit);
whi le(P.done[MPIrank]�=true ∧ P.failed=false ∧

¬(B.failed) ∧ B.mode=active) do
links:=P.lnks;
whi le(¬isEmpty(links) ∧ P.done[MPIrank]�=true ∧

P.failed=false) do
lnk := chooseRandom(links);
links := delete(lnk, links);
i f ¬P.failed ∧ P.mode=active ∧ B.mode=active ∧

B.Clock≥B.nextBallotTime ∧ ¬(B.nextBallotTime=(-1))
∧ ¬B.done then
f i r e output newBallot(MPIrank);
i f P.doMakeBallot[MPIrank] then
newBallot:=setBallot(P.seqNo+1, MPIrank);
f i r e output makeBallot(MPIrank, newBallot);
setTemp:=((P.ballots-{maxBallot(P.ballots)}) -
P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];

i f setTemp �= {} then
f i r e i n t e r n a l abstain(lnk.i,setTemp);

f i ; f i ; f i ;
setTemp := ((P.ballots-{maxBallot(P.ballots)}) -

P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];

i f (setTemp�={}) then
f i r e i n t e r n a l abstain(lnk.i,setTemp); f i ;

i f flag=0 then
i f P.queueOut[lnk]�={} then

f i r e output SEND(head(P.queueOut[lnk]),MPIrank,lnk.u);
e l s e i f B.queueOut[lnk]�={} then

f i r e output SEND(head(B.queueOut[lnk]),MPIrank,lnk.u);
flag:=1;

f i
e l s e i f flag=1 then

i f B.queueOut[lnk]�={} then
f i r e output SEND(head(B.queueOut[lnk]),MPIrank,lnk.u);

e l s e i f P.queueOut[lnk] �= {} then
f i r e output SEND(head(P.queueOut[lnk]),MPIrank,lnk.u);
flag:=0;

f i ; f i ;
i f SM[lnk.u].status=idle ∧ SM[lnk.u].toSend�={} then

f i r e output Isend(head(SM[lnk.u].toSend),MPIrank,lnk.u);
f i
i f SM[lnk.u].status=idle ∧ SM[lnk.u].handles�={} then

f i r e output test(head(SM[lnk.u].handles),MPIrank,lnk.u);
f i
i f RM[lnk.u].status=idle ∧ RM[lnk.u].ready=false then

f i r e output Iprobe(MPIrank, lnk.u); f i ;
i f RM[lnk.u].status=idle ∧ RM[lnk.u].ready=true then

f i r e output receive(MPIrank, lnk.u); f i ;
i f RM[lnk.u].toRecv �= {} then

f i r e output RECEIVE(head(RM[lnk.u].toRecv), MPIrank,

lnk.u);
f i
i f P.queueIn[[lnk.i,lnk.u]]�={} ∧ P.mode=active
∧ B.mode=active
∧ tag(head(P.queueIn[[lnk.i,lnk.u]]))=sLatestValue

then
f i r e i n t e r n a l valueDecision(lnk.i,lnk.u,(head(
P.queueIn[[lnk.i,lnk.u]])).sLatestValue.latestvalue,
(head(P.queueIn[[lnk.i,lnk.u]])).sLatestValue.ballot);

f i
i f P.mode=active ∧ B.mode=active ∧ P.readyAssign=true
∧ P.val[MPIrank][P.lastProposedBallot]=nil
∧ ifProposed(P.proposed,P.assignvalue)
∧ (allessdead(P.ballots,P.lastProposedBallot,
P.abstained[MPIrank],P.quorum) ∨ existval(P.val,
P.assignvalue,P.abstained[MPIrank],P.ballots,P.quorum))

then
tempVal:=P.assignvalue;
f i r e output assignVal(MPIrank,P.lastProposedBallot,
tempVal);

f i
i f P.rcvBallots�={} then
temprcvBallot:=chooseRandom(P.rcvBallots);
i f notnil(P.val,temprcvBallot) ∧ B.mode=active ∧

P.mode=active ∧ ¬(P.failed) ∧ valproposed(
P.ballots,temprcvBallot) ∧ ¬(temprcvBallot ∈

(P.abstained[MPIrank])[MPIrank]) ∧ ¬(temprcvBallot
∈(P.voted[MPIrank])[MPIrank]) then
f i r e i n t e r n a l vote(MPIrank, temprcvBallot);

f i ; f i ;
i f ifquorumv(P.voted[MPIrank],P.quorum) ∧

P.mode=active∧B.mode=active∧P.balvalsucc=(-1) then
f i r e i n t e r n a l internalDecide(MPIrank,
votedBallot(P.voted[MPIrank], P.quorum));

f i
i f P.ballotsucceeded ∈ P.succeeded[MPIrank]∧
P.balvalsucc�=(-1) ∧ P.countVote=0 ∧ P.mode=active
∧ B.mode=active ∧ embed(P.balvalsucc)=
P.val[MPIrank][P.ballotsucceeded] then
f i r e output decide(MPIrank, P.balvalsucc);

f i
i f B.mode= active ∧ P.mode=active
∧ ¬lnk.u ∈ B.suspected
∧ B.nextSendTime[lnk.u]≤B.Clock then
f i r e output sendAlive(lnk.i,lnk.u);

f i
i f B.mode=active ∧ P.mode=active
∧ B.Clock≥B.timeout[lnk.u]
∧ ¬(B.timeout[lnk.u]=(-1)) then
f i r e i n t e r n a l nodeTimeout(lnk.i,lnk.u);

f i
i f (¬P.failed ∧ isEmptyQue(P.queueOut))
∨ (¬B.failed ∧ (B.Clock+B.T≤B.nextBallotTime
∨ B.nextBallotTime=-1)
∧ timePsg(B.Clock,B.T,B.timeout)
∧ timePsg(B.Clock,B.T,B.nextSendTime))
∧ P.mode=active ∧ B.mode=active then
f i r e t imePassage v(P.T);

f i
i f (¬(P.failed) ∧ P.Clock ≥ P.nextGossipTime) then

f i r e i n t e r n a l gossip(MPIrank);
f i

od; od; od;

Fig. 9. Paxos Schedule

Finally, the scheduled PaxosNode automaton (which includes the schedule) was fed
to our updated version of the IOA compiler (which can handle time-passage action
types and includes the developed operators and data structures) and we obtained the
Paxos.java file which was then compiled into a class file (a JVM executable).

4 Experimentation

To demonstrate the functionality of the augmented compiler, we have run the derived
Java code (which implements Paxos) on a network of workstations and obtained some
experimental data.
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Platform and Preparation. Our experimentation platform consists of a cluster of 17
local machines. Each machine is powered by an Intel Pentium V 1.5 GHz CPU and is
running Linux (Fedora Core v5 OS).

As aforementioned in the previous section, the time-related parameters T , delay,
and period used abstractly in the specification are system-dependent. In particular, T
is the (worst-case) time needed for a node to perform a certain sequence of actions (as
specified in the previous section). This time may vary on different platforms. Parameter
delay includes the (worst-case) time for a message round-trip, local computation and
other Java-related delays. Clearly, this depends on the implementation platform. Pa-
rameter period may be thought as programmer-defined, in the sense that it is up to the
programmer to decide on how often the nodes should gossip. Of course, this decision
also depends on the deployment platform, as the period should depend on the message
round-trip time, the network topology, and the system load.

Therefore, in order to identify sensible values for these parameters for our deploy-
ment platform, we performed some initial experiments with simple executions of the
code, taking into consideration the system’s ping times and the performance analysis
presented in [25]. From this preprocessing phase the following values (in msecs) were
finally chosen: T = 22, delay = 8822, and period = 24.

Scenarios and Results. It is noteworthy that Paxos is capable of dealing with small
transient failures which are concealed by the use of majority voting. MPI is not fault
tolerant and when nodes fail the system can suffer a failure as a whole – due to resource
depletion. Removing this limitation is subject of future work where the MPI mediator
automata can be replaced with Java mediator automata (as proposed in [16]) that allow
more dynamic behaviors.

Despite the above note, a practical evaluation of our automatically generated code
is still meaningful: first, it demonstrates that indeed the generated code is executable,
second that the resulting program behaves as expected, and finally that we obtain a
reasonable performance. To this end we present three scenarios.

The first scenario aims to identify the average execution time and number of sent
messages for achieving consensus on a single ballot voting, while the number of par-
ticipants increases gradually from 2 to 17. The objective of the second scenario is to
test the resilience of Paxos to message loss. Since MPI is not fault-tolerant, we intro-
duce code on the sender side that randomly chooses messages to be dropped before the
MPI send primitive is invoked. Scenarios 2A and 2B drop 10% and 20% of messages
respectively. The third scenario seeks to measure the performance of our Paxos imple-
mentation in the presence of leader crashes. In particular, in this scenario we simulate
the leader crash (by setting the status of the leader as failed in the schedule block) and
hence we force the algorithm to initiate the leader election and new ballot mechanisms.

Each scenario was run 10 times and thus each plot point depicts the average of the
runs. Figures 10(a) to 10(d) illustrate the average execution time and sent messages
respectively for each scenario. The first scenario is used as baseline against the other
two scenarios.

The experimental data in Figures 10(a) and 10(b) demonstrate, as expected, that
Paxos is able to cope well with message omission. The difference in message count
in Figure 10(b) is negligible between the scenarios, which is to be expected, since
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(a) (b)

(c) (d)

Fig. 10. Experimental results: (a) Avg. execution time for scenarios 1, 2A, & 2B, (b) Avg. number
of sent messages for scenarios 1, 2A, & 2B, (c) Avg. execution time for scenarios 1 & 3, and (d)
Ave. of sent messages for scenarios 1 & 3.

non-leader node message loss is amortized by the use of majority voting, whereas,
leader message loss contributes only to a few additional messages; it does, however,
contribute to timeouts and hence the increased operation latency as depicted in Fig-
ure 10(a).

The timing in Figure 10(c) predictably favors the case when the leader is stable. It
is important to point out that the performance in scenarios 1 and 3 is parallel where
the difference reflects the timeout until a new leader election is triggered. We also ob-
serve a linear decay in performance as the number of nodes increases, which is to be
expected. However, we do not expect this behavior to last indefinitely, especially when
the network becomes saturated.

5 Conclusions

In this paper we have described our experience in specifying, compiling and running
a time-based version of the popular Paxos consensus algorithm. In particular, by using
a GTA specification of Paxos (which was proved to be correct in [25] and machine-
checked in [18,31]) and by extending the IOA checker, composer and compiler (of
the IOA Toolkit) in supporting a variant of the GTA framework, we have managed to
develop an automated implementation of time-based Paxos. To the best of our knowl-
edge, our work constitutes the first example of a time-dependent complex distributed
algorithm that has been specified, verified and implemented in an automated way, using
a common formal methodology (IOA in our case).

Several future research directions emanate from our work. First, it would be interest-
ing to assess the efficiency of the automated implementation produced by the compiler.
One way is to compare our implementation of Paxos with the one of Musial [29] which
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was done in a manual way. However, at this point such a comparison would not be fair,
as the implementation of Musial uses Java Sockets and TCP, and not MPI for commu-
nication. This brings us to a second future objective. Currently the compiler is limited
to static participation and use in LANs due to the use of MPI. The compiler design is
general enough to enable the use of other communication paradigms. In [16] an alter-
native communication paradigm is suggested (Java Sockets with TCP) that enables the
automated implementation of algorithms that have dynamic participation (nodes may
join and leave the computation at any time). Ongoing work is attempting to incorporate
this alternative paradigm into (our version of) the IOA compiler.

The TIOA framework (an extension of the IOA framework) models distributed sys-
tems with timing constraints as collections of interacting state machines, called Timed
Input/Output Automata (an extension of Input/Output Automata) [19]. This framework
can be considered more general than GTA, since a state in TIOA not only can be
changed by discrete transitions but also by trajectories. A trajectory is a (continuous
or discontinuous) function that describes the evolution of the state variables over inter-
vals of time. Therefore, it seems that TIOA can be used to specify a wider family of
time-based algorithms (and not just the ones that their computational progress depends
on timeouts – like Paxos). A TIOA toolkit is underway [24] which currently includes
a TIOA checker, a theorem prover and a TIOA simulator with limited functionality. A
very challenging research direction is to develop a TIOA code generator. Our work can
be considered an important step towards that direction.
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Abstract. In this paper we propose a blocking-aware partitioning algorithm
which allocates a task set on a multiprocessor (multi-core) platform in a way that
the overall amount of blocking times of tasks are decreased. The algorithm re-
duces the total utilization which, in turn, has the potential to decrease the
total number of required processors (cores). In this paper we evaluate our al-
gorithm and compare it with an existing similar algorithm. The comparison cri-
teria includes both number of schedulable systems as well as processor reduction
performance.

1 Introduction

Two main approaches for scheduling real-time systems on multiprocessors exist; global
and partitioned scheduling [1–4]. Under global scheduling, e.g., Global Earliest Dead-
line First (G-EDF), tasks are scheduled by a single scheduler and each task can be
executed on any processor. A single global queue is used for storing jobs. A job can
be preempted on a processor and resumed on another processor, i.e., migration of tasks
among processors is permitted. Under a partitioned scheduling, tasks are statically as-
signed to processors and tasks within each processor are scheduled by a uniprocessor
scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is associated
with a separate ready queue for scheduling task jobs.

Partitioned scheduling protocols have been used more often and are supported (with
fixed priority scheduling) widely by commercial real-time operating systems [5], inher-
ent in their simplicity, efficiency and predictability. Besides, the well studied unipro-
cessor scheduling and synchronization methods can be reused for multiprocessors with
fewer changes (or no changes). However, partitioning (allocating tasks to processors)
is known to be a bin-packing problem which is a NP-hard problem in the strong sense;
hence finding an optimal solution in polynomial time is not realistic in the general case.
Thus, to take advantage of the performance offered by multi-cores, scheduling protocols
should be coordinated with appropriate partitioning algorithms. Heuristic approaches
and sufficient feasibility tests for bin-packing algorithms have been developed to find a
near-optimal partitioning [1, 3]. However, the scheduling protocols and existing parti-
tioning algorithms for multiprocessors (multi-cores) mostly assume independent tasks
while in real applications, tasks often share resources.
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We have developed a heuristic partitioning algorithm [6], under which our system
assumptions include presence of mutually exclusive shared resources. The heuristic
partitions a system (task set) on an identical shared memory single-chip multiprocessor
platform. The objective of the algorithm is to decrease blocking overheads by assigning
tasks to appropriate processors (partitions). This consequently increases the schedula-
bility of the system and may reduce the number of processors. Our heuristic identifies
task constraints, e.g., dependencies between tasks, timing attributes, and resource shar-
ing, and extends the best-fit decreasing (BFD) bin-packing algorithm with blocking
time parameters. In practice, industrial systems mostly use Fixed Priority Scheduling
(FPS) protocols. The Multiprocessor Priority Ceiling Protocol (MPCP) which was pro-
posed by Rajkumar in [7], for many years, has been a standard multiprocessor synchro-
nization protocol under fixed priority partitioned scheduling. Thus, both our algorithm
and an existing similar algorithm proposed in [5] assume that MPCP is used for lock-
based synchronization. We have investigated MPCP in more details in [6]. Our algorith,
however, can be easily extended to other synchronization protocols under partitioned
scheduling policies. The algorithm proposed in [5] is named the Synchronization-Aware
Partitioning Algorithm (SPA), and our algorithm is named the Blocking-Aware Parti-
tioning Algorithm (BPA). From now on we refer them as SPA and BPA respectively.

1.1 Contributions

The contributions of this paper are threefold:
(1) We propose a blocking-aware heuristic algorithm to allocate tasks onto the pro-
cessors of a single chip multiprocessor (multi-core) platform. The algorithm extends a
bin-packing algorithm with synchronization parameters.
(2) We implement our algorithm together with the best known existing similar heuris-
tic [5]. The implementation is modular in which any new partitioned scheduling and
synchronization protocol as well as any new partitioning heuristic can easily be in-
serted.
(3) We evaluate our algorithm together with the existing heuristic and compare the two
approaches to each other as well as to an blocking-agnostic bin-packing partitioning
algorithm, used as reference. The blocking-agnostic algorithm, in the context of this
paper, refers to a bin-packing algorithm that does not consider blocking parameters to
increase the performance of partitioning, although blocking times are included in the
schedulability test.

The rest of the paper is as follows: we present the task and platform model in Sec-
tion 2. We explain the existing algorithm (SPA) and present our partitioning algorithms
(BPA) in Section 3. In Section 4 the experimental results of both algorithms are pre-
sented and the results are compared to each other as well as to the blocking-agnostic
algorithm.

1.2 Related Work

A significant amount of work has been done in the domain of task allocation on mul-
tiprocessors and distributed systems. The emerging of multi-core architectures has in-
creased the interest in the multiprocessor methods. However, in this paper we present
the most related works to our approach.
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Tindell et al. [8] describe a method called simulated annealing for partitioning a
task set on a distributed system. The simulated annealing technique is not a heuristic
solution but a global optimization method which is used to find a near-optimal solution.
The important factor in simulated annealing is that it includes jumps to new solutions to
be able to get a better one. The simulated annealing techniques do not include heuristics
and it is usually difficult to find a good or even any feasible partitioning [9].

The Slack Method presented in [9] is a partitioning heuristic in which the first step
is to divide the tasks into sets of communicating tasks (precedence constraint). The size
of each set then is reduced based on the concept of task slack which is the delay a task
can tolerate without missing its deadline. The second step is to map the sets of tasks
onto the processors in a way to reduce the communication among processors.

A study of bin-packing algorithms for designing distributed real-time systems is pre-
sented in [10]. The method partitions software into modules to be allocated on hardware
nodes. In their approach they use two graphs; a graph which models software mod-
ules and a graph that represents the hardware architecture. The authors extend the bin-
packing algorithm with heuristics to minimize the number of bins (processors) needed
and the bandwidth required for the communication between nodes. However, their par-
titioning method assumes independent tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm (first-fit de-
creasing (FFD) algorithm) in [11] for a set of sporadic tasks on multiprocessors. The
tasks are indexed in non-decreasing order based on their relative deadlines and the al-
gorithm assigns the tasks to the processors in first-fit order. The algorithm, however,
assumes independent tasks. On the other hand their algorithm has been developed under
the EDF scheduling protocol while most existing real-time systems use fixed priority
scheduling policies. The focus of our proposed heuristic, in this paper, is fixed priority
scheduling protocols, although it can easily be extended to other policies.

Of great relevance to our work presented in this paper is the work presented by
Lakshmanan et al. in [5]. In the paper they investigate and analyze two alternatives
of execution control policies (suspend-based and spin-based remote blocking) under
MPCP. They have developed a blocking-aware task allocation algorithm (an extension
to BFD) and evaluated it under both execution control policies.

In their partitioning algorithm, the tasks that directly or indirectly share resources are
put into what they call bundles (in this paper we call them macrotasks) and each bundle
is tried to be allocated onto a processor. The bundles that cannot fit into any existing pro-
cessors are ordered by their cost, which is the blocking overhead that they introduce into
the system. Then the bundle with minimum cost is broken and the algorithm is run from
the beginning. However, their algorithm does not consider blocking parameters when
it allocates the current task to a processor, but only its size (utilization). Furthermore,
no relationship (e.g., as a cost based on blocking parameters) among individual tasks
within a bundle is considered which could help to allocate tasks from a broken bundle
to appropriate processors to decrease the blocking times. However, their experimental
results show that a blocking-aware bin-packing algorithm for suspend-based execution
control policy does not have significant benefits compared to a blocking-agnostic bin-
packing algorithm. Firstly, for the comparison, they have only focused on the processor
reduction issue; they suppose that the algorithm is better if it reduces the number of
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processors. They have not considered the worst case as it could be the case that an al-
gorithm fails to schedule a task set. In our experimental evaluation, besides processor
reduction, we have considered this issue as well. If an algorithm can schedule some task
sets while others fail, we consider it as a benefit. Secondly, in their experiments they
have not investigated the effect of some parameters such as the different number of re-
sources, variation in the number and length of critical sections of tasks. By considering
these parameters, our experimental results show that in most cases our blocking-aware
algorithm has significantly better results than blocking-agnostic algorithms. However,
according to our experimental results, their heuristic performs slightly better than the
blocking-agnostic algorithm, and our algorithm performs significantly better than both.

In the context of multiprocessor synchronization, Rajkumar et al. for the first time
proposed a synchronization protocol in [12] which later [7] was called Distributed Pri-
ority Ceiling Protocol (DPCP). DPCP extends PCP to distributed systems and it can
be used with shared memory multiprocessors. However, a major motivation of increas-
ing interest in the multiprocessor methods is the emerging of multi-core platforms for
which DPCP is not an appropriate synchronization protocol. Rajkumar in [7] presented
MPCP, which extends PCP to multiprocessors hence allowing for synchronization of
tasks sharing mutually exclusive resources using partitioned FPS. Considering that
MPCP has been a standard multiprocessor synchronization protocol, our partitioning
algorithm attempts to decrease blocking times under MPCP and consequently decrease
worst case response times which in turn may reduce the number of needed processors.
Gai et al. [13, 14] present MSRP (Multiprocessor SRP), which is a P-EDF (Partitioned
EDF) based synchronization protocol for multiprocessors. The shared resources are
classified as either (i) local resources that are shared among tasks assigned to the same
processor, or (ii) global resources that are shared by tasks assigned to different proces-
sors. In MSRP, tasks synchronize local resources using SRP [2], and access to global
resources is guaranteed a bounded blocking time. Lopez et al. [15] present an imple-
mentation of SRP under P-EDF. Devi et al. [16] present a synchronization technique
under G-EDF. The work is restricted to synchronization of non-nested accesses to short
and simple objects, e.g., stacks, linked lists, and queues. In addition, the main focus of
the method is soft real-time systems.

Block et al. [17] present Flexible Multiprocessor Locking Protocol (FMLP) , which
is the first synchronization protocol for multiprocessors that can be applied to both par-
titioned and global scheduling algorithms, i.e., P-EDF and G-EDF. An implementation
of FMLP has been described in [18]. However, although in a longer version of [17]1, the
blocking times have been calculated, but to our knowledge there is no concrete schedu-
lability test for FMLP under global scheduling protocols. However, Brandenburg and
Anderson in [19] have extended partitioned FMLP to fixed priority scheduling policy
and derived a schedulability test for it. In a later work [20], the same authors have
compared DPCP, MPCP and FMLP. However, as the partitioned scheduling approaches
suffer from bin-packing problem, we believe to achieve a better and fair comparison of
the approaches, they should be coordinated with task allocation algorithms.

Recently, Easwaran and Andersson have proposed a synchronization protocol [21]
under global fixed priority scheduling protocol. In this paper, for the first time, the

1 Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf
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authors have derived schedulability analysis of the priority inheritance protocol under
global scheduling algorithms.

2 Task and Platform Model

In this paper we assume a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi, {ci,p,q})
where Ti denotes the minimum inter-arrival time between two successive jobs of task
τi with worst-case execution time Ci and ρi as its priority. The tasks share a set of re-
sources, R, which are protected using semaphores. The set of critical sections, in which
task τi requests resources in R is denoted by {ci,p,q}, where ci,p,q indicates the maxi-
mum execution time of the pth critical section of task τi in which the task locks resource
Rq ∈ R. Critical sections of tasks should be sequential or properly nested. The deadline
of each job is equal to Ti. A job of task τi, is specified by Ji. The utilization factor of
task τi is denoted by ui where ui = Ci/Ti.

We also assume that the multiprocessor (multi-core) platform is composed of iden-
tical, unit-capacity processors (cores) with shared memory. The task set is partitioned
into partitions {P1, . . . , Pm}, and each partition is allocated onto one processor (core),
thus m represent the minimum number of processors needed.

3 The Blocking Aware Partitioning Algorithms

3.1 Blocking-Aware Partitioning Algorithm (BPA)

In this section we propose a partitioning algorithm that groups tasks into partitions so
that each partition can be allocated and scheduled on one processor. The objective of
the algorithm is to decrease the overall blocking times of tasks. This generally increases
the schedulability of a task set which may reduce the number of required partitions
(processors).

Considering the blocking factors of tasks under MPCP, tasks with more and longer
global critical sections lead to more blocking times. This is also shown by experiments
presented in [14]. Our goal is to (i) decrease the number of global critical sections by
assigning the tasks sharing resources to the same partition as far as possible, (ii) de-
crease the ratio and time of holding global resources by assigning the tasks that request
the resources more often and hold them longer to the same partition as long as possible.

In our previous work [22] we have presented a partitioning framework in which
tasks are grouped together based on task preferences and constraints. The framework
partitions tasks based on a cost function which is derived from task preferences and
constraints. The framework attempts to allocate the tasks that directly or indirectly share
resources onto the same processor. Tasks that directly or indirectly share resources are
called macrotasks, e.g., if tasks τi and τj share resource Rp and tasks τj and τk share
resource Rq , all three tasks belong to the same macrotask. However, there are cases that
a macrotask cannot fit in one processor (i.e., assuming that the tasks in the macrotask are
the only tasks allocated on a processor, still it can not be scheduled by the processor). In
this case tasks belonging to the same macrotask can be allocated to different partitions
(processors).
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The goal of the framework presented in [22] is to put the tasks into appropriate par-
titions so that the costs are minimized. The framework may have different partitioning
strategies, e.g., increasing cache hits, decreasing blocking times, etc. The strategy of
partitioning may differ, depending on the nature of a system, and result in different par-
titions. The framework is a general partitioning approach without deeply focusing on
any specific strategy and thus we have not presented any evaluation except one example.
Obviously, for different partitioning strategies (e.g., increasing cache hits) the guiding
heuristics as well as the implementation of the algorithm will be completely different.
In current work, however, we specifically focus on a partitioning strategy for decreas-
ing remote blocking overheads of tasks which leads to increasing the schedulability of
a task set and possibly will reduce the number of processors required for scheduling the
task set. We derive heuristics to specifically guide the partitioning algorithm to reduce
the remote blocking times. We have also performed detailed experimental evaluation
according to different resource sharing parameters.

We have developed a blocking-aware algorithm that is an extension to the BFD al-
gorithm. In a blocking-agnostic BFD algorithm, bins (processors) are ordered in non-
increasing order of their utilization and tasks are ordered in non-increasing order of
their size (utilization). The algorithm attempts to allocate the task from the top of the
ordered task set onto the first processor that fits it (i.e., the first processor on which the
task can be allocated while all processors are schedulable), beginning from the top of
the ordered processor list. If none of the processors can fit the task, a new processor is
added to the processor list. At each step the schedulability of all processors should be
tested, because allocating a task to a processor can increase the remote blocking time
of tasks previously allocated to other processors and may make the other processors
unschedulable. This means, it is possible that some of the previous processors become
unschedulable even if a task is allocated to a new processor, which makes the algorithm
fail.

The Algorithm: The algorithm performs partitioning of a task set in two rounds and
the result will be the output of the round with better partitioning results. However, the
algorithm performs a few common steps before starting to perform the rounds. Each
round allocates tasks to the processors (partitions) in a different strategy. When a BFD
algorithm allocates an object (task) to a bin (processor), it usually puts the object in a bin
that fits it better, and it does not consider the unallocated objects that will be allocated
after the current object. The rationale behind the two rounds is that the heuristic tries
to consider both past and future by looking at tasks allocated in the past and those that
are not allocated yet. In the first round the algorithm considers the tasks that are not
allocated to any processor yet; and tries to take as many as possible of the best related
tasks (based on remote blocking parameters) with the current task. On the other hand, in
the second round it considers the already allocated tasks and tries to allocate the current
task onto the processor that contains best related tasks to the current task. In the second
round, the algorithm performs more like the usual bin packing algorithms (i.e., tries
to find the best bin for the current object), although it considers the remote blocking
parameters while allocating a task to a processor. Any time the algorithm performs
schedulability test, for more precise schedulability analysis, it always performs response
time analysis [23].
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The common steps of the algorithm before the two rounds are performed are as follow:

1. Each task is assigned a weight. The weight of each task, besides its utilization, should
depend on parameters that lead to potential remote blocking time caused by other tasks:

wi = ui+

�(
∑

ρi<ρk

NCi,kβi,k�
Ti

Tk
�+ NCi max

ρi≥ρk

βi,k)/Ti� (1)

where, NCi,k is the number of critical sections of task τk in which it shares a resource
with τi, among these critical sections βi,k is the longest one, and NCi is the total number
of critical sections of τi.

Considering the remote blocking terms of MPCP [6], the rationale behind the defi-
nition of weight is that the tasks that can be punished more by remote blocking become
heavier. Thus, they can be allocated earlier and attract as many as possible of the tasks
with which they share resources.

2. Macrotasks are generated, i.e., the tasks that directly or indirectly share resources
are put into the same macrotask. A macrotask has two alternatives; it can either be
broken or unbroken. If a macrotask cannot fit in one processor, (i.e., it is not possible
to schedule the macrotask on a single processor even if there is no any other tasks), it is
set as broken, otherwise it is denoted as unbroken. Please observe that the test of fitting
a macrotask in a single processor (to set it as broken or unbroken) is only done at the
beginning. Later on at any time the algorithm tests fitting an unbroken macrotask in a
processor, the macrotask may co-exist with other tasks and/or macrotasks on the same
processor.

If a macrotask is unbroken, the partitioning algorithm always allocates all tasks in
the macrotask to the same partition (processor). This means that all tasks in the macro-
task will share resources locally relieving tasks from remote blocking. However, tasks
within a broken macrotask will be distributed into more than one partition. Similar to
tasks, a weight is assigned to each unbroken macrotask, which equals to the sum of the
utilizations (not weights) of its tasks . This is because all the tasks within an unbroken
macrotask will always be allocated on the same processor and the tasks will not suffer
from any remote blocking, hence there is no need to consider blocking parameters in
the weight of an unbroken macrotask.

3. The unbroken macrotasks together with the tasks that do not belong to any unbroken
macrotasks are ordered in a single list in non-increasing order of their weights. We de-
note this list the mixed list.

The strategy of allocation of tasks in both rounds depends on attraction between tasks.
The attraction function of task τk to a task τi is defined based on the potential remote
blocking overhead that task τk can introduce to task τi if they are allocated onto different
processors. We represent the attraction of task τk to task τi as vi,k which is defined as
follows:

vi,k =
{

NCi,kβi,k� Ti

Tk
� ρi < ρk;

NCiβi,k ρi ≥ ρk
(2)
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The rationale of the attraction function is to allocate the tasks that may remotely
block a task, τi, to the same processor as of τi (in order of the amount of remote blocking
overhead) as far as possible. Please notice, the definition of weight (Equation 1) and
attraction function (Equation 2) are heuristics that guide the algorithm under MPCP.
However, these functions may differ under other synchronization protocols, e.g., MSRP
and partitioned FMLP, which have different remote blocking terms.

There can be the case in which all tasks sharing resources end up in one macrotask.
In this case if the macrotask can fit in one processor, there is no need to use MPCP
or any other multiprocessor synchronization protocol, because there will not be any
global resources in the system. On the other hand, if the macrotask does not fit in one
processor (i.e., should be broken) the algorithm attempts, by using weight (Equation 1)
and attraction (Equation 2) functions to put attracted tasks on the same processor as far
as possible which leads to reducing the remote blocking overhead.

Now we present the continuation of the algorithm in two rounds:

First Round: After the common steps the following steps are repeated within the
first round until all tasks are allocated to processors (partitions):
1. All processors are ordered in their non-increasing order of utilization.
2. The object at the top of the mixed list is picked. (i) If the object is a task, τi, and it
does not belong to a broken macrotask (τi does not share any resource) τi will be allo-
cated onto the first processor that fits it (all tasks on the processor are still schedulable),
beginning from the top of the ordered processor list (similar to blocking-agnostic BFD).
If none of the processors can fit τi a new processor is added to the list and τi is allocated
onto it. (ii) If the object is an unbroken macrotask, all its tasks will be allocated onto
the first processor that fits all of them. If none of the processors can fit the macrotask,
it (all its tasks) will be allocated onto a new processor.(iii) If the object is a task, τi,
that belongs to a broken macrotask, the algorithm orders the tasks (those that are not
allocated yet) within the macrotask in non-increasing order of attraction to τi based on
equation 2. We call this list the attraction list of τi. Task τi itself will be on the top of its
attraction list. The best processor for allocation is selected, which is the processor that
fits the most tasks from the attraction list, beginning from the top of the list. As many
as possible of the tasks from the attraction list are then allocated to the processor. If
none of the existing processors can fit any of the tasks, a new processor is added and as
many tasks as possible from the attraction list are allocated to the processor. However,
if the new processor cannot fit any task from the attraction list, i.e., at least one of the
processors become unschedulable, the first round fails and the algorithm moves to the
second round and restarts.

Second Round: The following steps are repeated until all tasks are allocated to pro-
cessors:
1. The object at the top of the mixed list is picked. (i) If the object is a task and it does not
belong to a broken macrotask, this step is performed the same way as in the first round.
(ii) If the object is an unbroken macrotask, in this the algorithm performs the same way
as in the first round. (iii) If the object is a task, τi, that belongs to a broken macrotask,
the processors are put in a ordered list, denoted as Plist. However the processors are put
in Plist in two steps. First, the processors that include some tasks from τi’s macrotask
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are added to Plist in non-increasing order of processors’ attraction to τi (according to
equation 2), i.e., the processor which has the greatest sum of attractions of its tasks
to the picked task (τi) is the most attracted processor to τi and is added to Plist first.
Second, the processors that do not contain any task from τi’s macrotask are added to
Plist in non-increasing order of their utilization. After the two steps, the processors
which contain at least one task from τi’s macrotask will be located at the top of the
ordered list, Plist, followed by the processors not containing any task from τi’s macro
task. The rationale behind this is that the algorithm first attempts to allocate τi on a
processor containing some tasks from τi’s macro task and if not succeeded then it tries
other processors. The picked task (τi) will be allocated onto the first processor from the
processor list (Plist) that will fit τi. Task τi will be allocated to a new processor if none
of the existing ones can fit it. And the second round of the algorithm fails if allocating
the task to the new processor makes some of the processors unschedulable.

If both rounds fail to schedule a task set the algorithm fails. If one of the rounds fails
the result will be the output of the other one. If both rounds succeed to schedule the task
set, the one with fewer partitions (processors) will be the output of the algorithm.

3.2 Synchronization-Aware Partitioning Algorithm (SPA)

We have implemented the best known existing partitioning algorithm proposed in [5]
in our experimental evaluation framework. The implementation of the algorithm re-
quired details of the algorithm which were not presented in [5], hence, in this section
we present the algorithm in more details.

1. First, the macrotasks are generated. In [5], macrotasks are denoted as bundles. A
number of processors (enough processors that fit the total utilization of the task set) are
added.

2. The macrotasks together with other tasks are ordered in a list in non-increasing order
of their utilization. The algorithm attempts to allocate each macrotask (i.e., allocate
all tasks within the macrotask) onto a processor. Without adding any new processor,
all macrotasks and tasks that fit are allocated onto the processors. The macrotasks that
can not fit are put aside. After any allocation, the processors are ordered in their non-
increasing order of utilization.

3. The remaining macrotasks are ordered in the order of the cost of breaking them. The
cost of breaking a macrotask is defined based on the estimated cost (blocking overhead)
introduced into the tasks by transforming a local resource into a global resource (i.e.,
the tasks sharing the resource are allocated to different processors). The estimated cost
of transforming a local resource Rq into a global resource is calculated as follows:

Cost(Rq) = Global Overhead − Local Discount (3)

The Global Overhead is calculated as follows:

Global Overhead = max(|Csq|)/ min
∀τi

{ρi} (4)

where max(|Csq|) is the length of longest critical section accessing Rq.



262 F. Nemati, T. Nolte, and M. Behnam

The Local Discount is defined as follows:

Local Discount = max
∀τi accessing Rq

(max(|Csi,q |)/ρi) (5)

where max(|Csi,q|) is the length of longest critical section of τi accessing Rq .
The cost of breaking any macrotask, mTaskk, is calculated as the summation of

blocking overhead caused by transforming its accessed resources into global resources.

Cost(mTaskk) =∑
∀Rq accessed by mTaskk

Cost(Rq) (6)

4. The macrotask with minimum breaking cost is picked and is broken in two pieces
such that the size of one piece is as close as the largest utilization available among
processors. This means, tasks within the selected macrotask are ordered in decreasing
order of their size (utilization) and the tasks from the ordered list are added to the pro-
cessor with the largest available utilization as far as possible. In this way, the macrotask
has been broken in two pieces; (i) the one including the tasks allocated to the processor
and (ii) the tasks that could not fit in the processor. If the fitting is not possible a new
processor is added and the whole algorithm is repeated again.

Firstly, as one can see, the SPA algorithm does not consider blocking parameters
when it allocates the current task to a processor, but only its utilization, i.e. the tasks
are ordered in order of their utilization only. However, our algorithm assigns a weight
(Equation 1) which besides the utilization includes the blocking terms as well. Sec-
ondly, no relationship (e.g., as a cost based on blocking parameters) among individual
tasks within a bundle (macrotask) is considered which could help to allocate tasks from
a broken bundle to appropriate processors to decreases the blocking times. In our heuris-
tic, we have defined an attraction function (Equation 2), which attempts to allocate the
most attracted tasks from the current task’s broken macrotask, on a processor. As the
experimental evaluation in Section 4 shows, considering these issues can improve the
partitioning significantly.

4 Experimental Evaluation and Comparison of Algorithms

In this section we present our experimental results of our blocking-aware bin-packing
algorithm (BPA) together with the blocking-aware algorithm recently proposed in [5]
(SPA), as well as the reference blocking-agnostic algorithm. For a number of systems
(task sets), we have compared the performance of the algorithms in two different as-
pects; (1) Given a number of systems, the total number of systems that each of the
algorithms can schedule, (2) The processor reduction aspect of algorithms.

4.1 Experiment Setup

We generated systems (task sets) for different workloads; we denote workload as a
defined number of fully utilized processors, e.g., the workload equal to 3 fully utilized
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(a) Workload: 3 processors, 3 tasks per proces-
sor
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(c) Workload: 3 processors, 9 tasks per proces-
sor
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(d) Workload: 6 processors, 6 tasks per proces-
sor

Fig. 1. Total number of task sets each algorithm schedules

processors means the summation of utilizations of all tasks in the system equals to
3. Please notice that the definition of the workload as a number of processors is only
to show the total utilization of the task set and it is not the same as the number of
required processors (which may be more than the workload) to schedule the task set.
Given a workload, the full capacity of each processor (utilization of 1) is randomly
divided among a defined number of tasks. Usually for generating systems, utilization
and periods are randomly assigned to tasks, and worst case execution times of tasks are
calculated based on them. However, in our system generation, the worst case execution
times (WCET) of tasks are randomly assigned and the period of each task is calculated
based on its utilization and WCET. The reason is that we had to restrict that the WCET
of a task not to be less than the total length of its critical sections. Since we have limited
the maximum number of critical sections to 6 and the maximum length of any critical
section to 6 time units, hence the WCET of each task is greater than 36 (6 × 6) time
units. The WCET of each task was randomly chosen between 36 and 150 time units.
The system generation was based on different settings; the input parameters for settings
are as follows:
1. Workload (3, 4, 6, or 8 fully utilized processors).

2. The number of tasks per processor (3, 6 or 9 tasks per processor), e.g., 3 tasks per

processor means that the utilization of one processor (utilization = 1) is randomly
distributed among 3 tasks.
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3. The number of resources (2, 4, 6, or 8). For each alternative, the resource accessed by
each critical section is randomly chosen among the resources, e.g, given the alternative
with 2 resources (R1 and R2), the resource accessed by any critical section is randomly
chosen from {R1, R2}.
4. The range of the number of critical sections per task (1 to 2, 3 to 4 or 5 to 6 critical

sections per task). For an alternative (e.g., 1 to 2 critical sections per task), the number
of critical sections of any task τi is randomly chosen from {1, 2}.
5. The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6). The length of each

critical section is chosen the same way as the number of critical sections per task.

For each setting, we generated 100.000 systems, and combining the parameters
of settings, i.e., (workloads)×(tasks per processor)×(resources)×(critical sections per
task)×(critical section lengths)= 4×3×4×3×3 = 432 different settings, total number
of systems generated for the experiment were 43.200.000.

With the generated systems we were able to evaluate the partitioning algorithms with
respect to different factors, i.e., various workloads (number of fully utilized processors),
number of tasks per processor, number of shared resources, number of critical sections
per task, and length of critical sections.

4.2 Results

In this section we present the evaluation results of our proposed blocking-aware algo-
rithm (BPA), an existing blocking-aware algorithm [5] (SPA) and the blocking-agnostic
algorithm.

The first aspect of comparison of the results from the algorithms is, given a number of
systems, the total number of systems each algorithm successfully schedules (Figure 1).
Figures 1(a), 1(b) and 1(c) represent the results for 3, 6 and 9 tasks per processor re-
spectively. The vertical axis shows the total number of systems that the algorithms could
schedule successfully. The horizontal axis shows three factors in three different lines;
the bottom line shows the number of shared resources within systems (Res. Num.), the
second line shows the number of critical sections per task (Cs. Num.), and the top line
represents the length of critical sections within each task (Cs. Len.), e.g., Res. Num.=4,
Cs. Num.=1-2, and Cs. Len.=1-2 represents the systems that share 4 resources, the num-
ber of critical sections per each task are between 1 and 2, and the length of these critical
sections are between 1 and 2 time units. For some settings the number of schedulable
systems were too few to be shown on the graphs, thus we omitted these settings from
the graphs, e.g., The results for the combination of the number of critical sections = 3-4
and the length of critical sections = 5-6 are not shown in Figure 1.

As depicted in Figure 1, considering the total number of systems that each algorithm
succeeds to schedule, our blocking-aware algorithm (BPA) performs better (can sched-
ule more systems) compared to the SPA and the blocking-agnostic algorithm. However
the SPA performs better than the blocking-agnostic algorithm. As shown in the figure,
by increasing the number of resources, the number of successfully scheduled systems
in all algorithms is increased. The reason for this behavior is that with fewer resources,
more tasks share the same resource introducing more blocking overheads which leads
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to fewer schedulable systems. However, it is illustrated that the blocking-aware algo-
rithms perform better as the number of resources is increased. It is also shown that in-
creasing the number and/or the length of critical sections generally reduces the number
of schedulable systems significantly. The reason is that more and longer critical sections
introduce greater blocking overhead into the tasks making fewer systems schedulable.

As the number of tasks per processor is increased from 3 (Figures 1(a)) to 6 (Fig-
ures 1(b)) and to 9 (Figures 1(c)), the BPA performs significantly better (i.e., schedules
significantly more systems) than the SPA and blocking-agnostic bin-packing. However,
as one can see, the SPA does not perform significantly better than the blocking-agnostic
algorithm as the number of tasks per processor are increased. Increasing the number
of tasks per processor lead to smaller tasks (tasks with smaller ui). The BPA allocates
tasks from a broken macrotask based on Equations 1 and 2, which are functions of
the blocking parameters (the number and length of critical sections) as well as the size
of the tasks. On the other hand, with the smaller size of tasks, the blocking parame-
ters have a bigger role in these functions, hence more dependent tasks are allocated to
the same processor. This leads to less blocking overhead and increased schedulability,
hence more systems are scheduled by BPA as the tasks per processor are increased. On
the other hand, in SPA, allocation of tasks from a broken macrotask is only based on
their utilization, and this does not necessarily allocates highly dependent tasks to the
same processor.

As the workload (the number of fully utilized processors) is increased, although the
BPA still performs better than the SPA and the blocking-agnostic algorithm, gener-
ally the number of schedulable systems by all algorithms is significantly reduced (Fig-
ure 1(d)). The reason for this behavior is that the number of tasks within systems are
relatively many (36 tasks per each system in Figure 1(d)) and the workload is high (6
fully utilized processors), and all the tasks within systems share resources. On the other
hand, the MPCP is pessimistic. This introduces a lot of interdependencies among tasks
and consequently a huge amount of blocking overheads, making fewer systems schedu-
lable. In practice in big systems with many tasks, not all of the tasks share resources,
which leads to fewer interdependencies among tasks and less blocking times. However,
we continued the experiment with higher workload in the same way as the other experi-
ments (that all tasks share resources) to be able to compare the results with the previous
results. We believe that realistic systems, even with high workload and many tasks can
benefit from our partitioning algorithm to increase the performance.

The second aspect for comparison of performance of the algorithms is the processor
reduction aspect. To show this, for each algorithm, we ordered the total schedulable
systems in order of the number of required processors. Figure 2 illustrates the results
for the workload of 3 fully packed processors and different number of tasks (3, 6 and
9) per processor. For each algorithm, the schedulable systems by each number of pro-
cessors are shown as percentage of the total scheduled systems by that algorithm. As
the results show, for 3 tasks per processor all three algorithms perform almost the same
(Figure 2(a)), i.e., each algorithm schedules around 80% of its schedulable systems by
4 processors, 15% to 18% by 5 processors and less than 3% by 6 processors, etc. The
reason is that the tasks are large (the utilization of a processor is distributed among 3
task), thus the blocking-aware algorithms do not have much possibility to increase the
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(b) 6 tasks per processor
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(c) 9 tasks per processor

Fig. 2. Percentage of systems each algorithm schedules, ordered by required number of processors

performance. However as the number of tasks per processor is increased (Figures 2(b)
and 2(c) for 6 and 9 tasks per processor respectively), the blocking-aware algorithms,
generally, perform better in processor reduction aspect. Especially the BPA, performs
significantly better than the the SPA and the blocking-agnostic algorithm. This means
that BPA reduces the required number of processors compared to SPA and the blocking-
agnostic algorithm, e.g., as shown in Figure 2(c), 68% and 28% of the systems sched-
uled by BPA require 4 and 5 processors respectively, while 54% and 37% of systems
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scheduled by SPA can be scheduled by 4 and 5 processors respectively. This means a
bigger part (68%) of systems scheduled by BPA require only 4 processors while with
SPA this number is smaller (54%).

5 Conclusion

In this paper we have proposed a heuristic blocking-aware algorithm, for identical
unit-capacity multiprocessor systems, which extends a bin-packing algorithm with syn-
chronization parameters. The algorithm allocates a task set onto the processors of a
single-chip multiprocessor (multi-core) with shared memory. The objective of the al-
gorithm is to decrease blocking times of tasks by means of allocating the tasks that
directly or indirectly share resources onto appropriate processors. This generally in-
creases schedulability of a task set and may lead to fewer required processors compared
to blocking-agnostic bin-packing algorithms. We have also presented and implemented
an existing similar blocking-aware algorithm originally proposed in [5].

Since in practice most systems use fixed priority scheduling protocols, we have de-
veloped our algorithm under MPCP, a standard synchronization protocol for multipro-
cessors (multi-cores) which works under fixed priority scheduling. Another reason to
implement our algorithm under MPCP was to be able to compare our approach to the
existing similar approach [5] which has also been developed under MPCP. However, our
approach is not limited to MPCP and it can easily be extended to other synchronization
protocols such as MSRP and partitioned FMLP.

Our experimental results confirm that our algorithm mostly performs significantly
better than the blocking-agnostic as well as the existing heuristic with respect to the
number of schedulable systems and the number of required processors. However, given
a NP-hard problem, a bin-packing algorithm may not achieve the optimal solution, i.e,
there can exist systems that only one of the algorithms can schedule. Thus using a com-
bination of heuristics improves the results with respect to the total number of schedula-
ble systems and processor reduction.

A future work will be extending our partitioning algorithm to other synchroniza-
tion protocols, e.g., MSRP and FMLP for partitioned scheduling. A very interesting
future work is to apply our approach to different synchronization protocols and investi-
gate the effect of bin-packing on those protocols and compare the improvement in their
performance. Another interesting future work is to apply our approach to real systems
and study the performance gained by the algorithm on these systems. In the domain
of multiprocessor scheduling and synchronization our future work also includes inves-
tigating global and hierarchical scheduling protocols and appropriate synchronization
protocols.
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Abstract. We consider the problem of scheduling dependent real-time
tasks for overloads on a multiprocessor system, yielding best-effort tim-
ing assurance. The application/scheduling model includes tasks with
time/utility function time constraints, mutual exclusion constraints, and
arbitrary arrival, execution-time and resource access behaviors, with
timeliness optimization objective of maximizing total accrued utility
while ensuring mutual exclusion constraints and deadlock-freedom. Since
this problem is NP-hard, we develop a class of polynomial-time heuristic
algorithms, called the Global Utility Accrual (GUA), and present two
algorithm instances, namely, Non-Greedy Global Utility Accrual (NG-
GUA) and Greedy Global Utility Accrual (G-GUA). We establish several
properties of the algorithms including conditions under which optimal
total utility is accrued, mutual exclusion constraints are satisfied, and
deadlock-freedom is achieved. We develop a Linux-based real-time kernel
called ChronOS, extended from PREEMPT RT real-time patch. ChronOS
provides a framework for implementation of a variety of multiprocessor
schedulers. Our experimental studies with ChronOS reveal the effective-
ness of GUA algorithms under a broad range of workloads.

Keywords: real-time, multiprocessors, scheduling, time/utility functions.

1 Introduction

Recently, there has been a shift in the computer industry from increasing clock
rates to designing multi-core and hyper-threading architectures in a quest to
produce faster computers [29]. Motivated by heat/power issues, most chip man-
ufacturers have chosen the route of increasing system- and chip-level parallelism,
as opposed to increasing clock rates, to improve performance. Consequently, the
design of multiprocessor real-time scheduling algorithms has become important
so that real-time applications can take advantage of these emerging architectures.

One unique aspect of multiprocessor real-time scheduling is the degree of run-
time migration allowed for job instances of a task across processors (at scheduling
events). Example migration models include: (1) full migration, where jobs are
allowed to arbitrarily migrate across processors during their execution. This
usually implies a global scheduling strategy, where a single shared scheduling
queue is maintained for all processors and a processor-wide scheduling decision
is made by a single (global) scheduling algorithm; (2) no migration, where tasks
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are statically (off-line) partitioned and allocated to processors. At run-time, job
instances of tasks are scheduled on their respective processors by processors’
local scheduling algorithm, such as single processor scheduling; and (3) restricted
migration, where some form of migration is allowed—e.g., at job boundaries.

The Pfair class of algorithms [8] that allow full migration and fully dy-
namic priorities have been shown to be theoretically optimal—i.e., they achieve
a schedulability utilization bound, U , below which all tasks meet their dead-
lines, that equals the total capacity of all m processors i.e., U = m. Under
Pfair, tasks are decomposed into several small uniform segments, which are then
quantum-scheduled and may cause frequent scheduling and migration. Thus,
algorithms other than Pfair have also been intensively studied though their uti-
lization bounds are lower. Examples of global algorithms include global-EDF [9],
global-non-preemptive-EDF [7] with a bound at most U ≈ m/2, LLREF [12],
LRE-TL [16], PG/PCG [10], NVNLF [15] with a bound U = m, and global-
RM-US with a bound U ≈ m/3 [4]. In the partitioned space, examples include
partitioned dynamic priority algorithms, such as partitioned-EDF [3] with a
bound U ≈ m/2, and fixed priority algorithms such as partitioned-DMS with a
bound U ≈ m/2 [5] and PDMS-HPTS-DS with a bound of 65% [23].

Majority of these scheduling efforts focus on application contexts where key
aspects of application behavior—e.g., task arrivals, execution times, resource
accesses—are deterministically bounded or known. Although this is an extremely
important subspace of the real-time problem space, there also exist some real-
time applications with behaviors outside this envelope—e.g., unpredictable task
arrival and execution-time behaviors, caused due to data- and context-dependent
executions, resulting in transient and permanent overloads (i.e., U > m) [14,2].
During overloads, applications such as [14] desire graceful timeliness degradation
and “best-effort” timing assurance in the sense that as many processor cycles as
needed are assured to be allocated to the most important task, less so are allo-
cated to the least important task, and so on [26,20]. (Note that task importance
may be orthogonal to task urgency.) An interesting feature of these applications
is that their task execution-time magnitudes are relatively longer—e.g., millisec-
onds to minutes. This allows relatively time-expensive real-time scheduling.

Past works on overload-scheduling with best-effort timing assurances (e.g.,
LBESA [26], DASA [13], GUS [24,25], Dover [21]) have focused on single proces-
sor systems, with a few exceptions.1 The only efforts in this space that consider
multiprocessors include MOCA [22] and gMUA [11]. Both these algorithms, how-
ever, exclude task dependencies that arise due to synchronization constraints.

In this paper, we focus on this multiprocessor problem space, directly moti-
vated by applications such as [14,2]. We consider tasks with time/utility function
(TUF) time constraints [19] that subsume deadlines and allow task urgency to be
expressed independent of task importance. Tasks have unknown arrival behav-
iors and are subject to execution overruns, causing overloads. In addition, tasks

1 LBESA’s and DASA’s design were directly motivated by the “best-effort” real-time
notion, and have been transferred to the application in [14] due to its matching
operational requirements.
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have mutual exclusion constraints; they use lock-based concurrency control, with
unknown lock-access and release behaviors. We consider the timeliness objective
of maximizing the total accrued timeliness utility, while satisfying mutual ex-
clusion constraints and freedom from deadlocks. This problem is NP-hard. We
develop a class of polynomial-time heuristic algorithms called the GUA class
of algorithms, and present two algorithm instances, namely, NG-GUA and G-
GUA. We establish several properties of the algorithms including conditions
under which optimal total utility is obtained, mutual exclusion constraints are
satisfied, and deadlock-freedom is achieved.

We develop a Linux-based real-time OS kernel called ChronOS, extended from
the PREEMPT RT real-time Linux patch, which provides optimized interrupt ser-
vice latencies and real-time locking primitives. ChronOS provides a scheduling
framework for the implementation of a broad range of scheduling algorithms
as scheduler plugins. We implement the GUA algorithms and their competitors
(e.g., G-EDF, G-NP-EDF, gMUA, P-EDF, P-DASA) in ChronOS and conduct
experimental studies. Our results reveal the effectiveness of the GUA algorithms
under a broad range of workloads.

Thus, the paper’s contribution is the GUA class of algorithms that allow
tasks to be subject to run-time uncertainties, overloads and dependencies, and
yield optimal total utility (when possible) and best-effort timeliness behavior
otherwise — the first such multiprocessor real-time scheduling algorithms.

The rest of the paper is organized as follows: Section 2 describes our models
and objective. Section 3 presents the GUA class of algorithms. The algorithms’
rationale, design, and properties are described in this section. We report our
experimental studies in Section 4. Finally, we conclude in Section 5.

2 Models and Objective

We consider Clark’s phase abstraction [13] as the unit of scheduling. A phase
describes a single flow of execution. Phases arrive arbitrarily and may be pre-
empted arbitrarily.

Phases have time constraints. A time constraint has a “scope”—a segment
of the phase control flow that is associated with the time constraint [28]. Such
a scope is called a “scheduling segment”. Each phase has a single scheduling
segment. A phase i’s scheduling segment’s time constraint is specified using
a TUF. TUFs can only be downward step-shaped—i.e., a constant maximum
utility ui is accrued if the segment completes before a deadline time di; zero
utility otherwise.

A good-faith estimate of a phase i’s scheduling segment’s execution time, ei,
is available (through off-line measurements). This time estimate is not the worst-
case; it can be violated at run-time (e.g., due to context dependence) and can
cause processor overloads.

A phase enters and exits a scheduling segment by invoking scheduler APIs—
e.g., Real-Time CORBA’s [28] begin scheduling segment and end scheduling
segmentAPIs. When a scheduling segment is entered, a phase passes its schedul-
ing parameters (e.g., di,ui,ei) to the API.
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Phases may access non-CPU resources, which are serially reusable. Resources
can be shared and be subject to mutual exclusion constraints. A phase may
request multiple shared resources during its lifetime. The requested time intervals
for holding resources may be nested, overlapped, or disjoint. Phases may request
and release resources arbitrarily—i.e., which phase needs which resource and in
what order is unknown. A phase can only be blocked on one resource.

An abort handler is associated with each phase scheduling segment. We
consider a termination model for all failures encountered during phase executions
including time-constraint violations and logical errors, which raises an exception
that is handled by the phase. The handler performs compensating actions that
are necessary to avoid inconsistencies and ensure the safety of the external state.

Scheduling Objective. Our objective is to schedule the phases on an m-processor
system such that the sum of the utility accrued by the completion of the phases
is maximized, as much as possible, while satisfying phase mutual exclusion con-
straints and ensuring deadlock-freedom. Additionally, the number of phase dead-
lines missed must be minimized as much as possible.

This problem of selecting tasks to execute at a specific instant during overloads
is NP-hard because its one-processor version is NP-hard [13]. Thus, the GUA
algorithms presented here are polynomial-time heuristic algorithms.

3 GUA Class of Algorithms

3.1 Basic Rationale

Since the phase model is dynamic—i.e., when phases will arrive, how long they
will execute, which set of resources will be needed by which phases, the length of
time for which those resources will be needed, the order of accessing the resources
are all statically unknown—future scheduling events such as new phase arrivals
and new resource requests cannot be considered at a scheduling event. Thus, a
schedule must be constructed solely exploiting the current system knowledge.

Since the primary scheduling objective is to maximize the total utility, a
reasonable heuristic is a “greedy” strategy: Favor “high return” phases over low
return ones, and complete as many of them as possible before phases’ termination
times and also as early as possible.

The potential utility that can be accrued by executing a phase is an indication
of its “return on investment”. We measure this using a metric called the Potential
Utility Density (or PUD) pioneered in [13]. A phase’s PUD measures the utility
that can be accrued per unit time by immediately executing the phase and those
phase(s) that it (directly or transitively) depends upon for locked resources.

Ensuring Mutual Exclusion: The presence of phase dependencies can result
in many phase dependency chains, similar to single-processor case. But unlike
single-processors, as there are m > 1 processors for multiprocessors, up to m
of these chains (or phases at the head of those chains) can be potentially exe-
cuted. In [13], dependency chains are computed at per phase level which works
well for single-processors as only one phase needs to be selected. However, this
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(a) (b)

Fig. 1. (a) A phase and resource dependency chain (b) DAG representation showing
the zero in-degree phases

method cannot be applied to multiprocessors. In order to ensure mutual exclu-
sion, two phases that are dependent on each other should not be allowed to
be executed on processors concurrently. Hence, there is a need to find the de-
pendency relationship of all phases in an effective way. We solve this problem
by constructing a directed acyclic graph (DAG) to represent dependency rela-
tionships between phases. Fig 1(a) shows the dependency relationship between
phases and resources—e.g., phase J1 requires a resource that is owned by phase
J4. Note that a phase cannot be blocked on multiple resources. In Fig 1(b), we
represent the dependency relationship using DAG (the node represents the phase
and the edge represents resource relationship). Thus, at the end of graph cre-
ation, we consider the zero in-degree (ZID) phases, which have zero input edges
and hence are not dependent on other phases, as eligible for the final schedule.

Maximizing Accrued Utility: Once the ZID phases are found, we need to
determine m ZID phases that have highest execution eligibility. PUD metric [13]
has been shown to be highly effective in determining phase execution eligibility
for single-processors as a single phase needs to be selected at end of the schedule.
On multiprocessors, unlike single-processors, many non-dependent phases can
be concurrently dispatched for execution. However, PUD metric alone cannot be
used to pick one phase over another, as there could be a ZID phase that currently
owns a resource, blocking other phases in the system, but has a lower PUD. As
a result, the phase could be pushed to the back of the queue preventing other
eligible phases that are currently blocked on it, from executing. The challenge is
to find a metric that provides a way to represent overall benefit the system can
accrue if a particular phase is selected for execution. To solve this, we define two
metrics—Local Value Density (LVD), which is equivalent to PUD of a phase,
and Global Value Density (GVD), which is defined as the sum of the LVDs
of individual phases that are in a dependency relation with a ZID phase. For
example, in Fig 1(b), GVD(J6) = LVD(J6) + LVD(J4) + LVD(J5) + LVD(J1) +
LVD(J2). The GVD for a ZID phase J represents the aggregate value density for
entire dependency chain of J . This gives a fair representation of the dependency
relationship for that phase, and provides the highest execution eligibility for a
phase that is currently blocking other phases.
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Deadlock Detection and Resolution: A deadlock can occur when a phase
Ja, which owns resource Ra, makes a request for another resource Rb, owned by
a phase Jb, wherein phase Jb directly or through its dependency chain requests
for the resource Ra (owned by Ja). Thus, a deadlock represents a cycle in the
dependency chain of a phase which can be detected using a cycle detection
algorithm. In [13], deadlocks are detected at the phase level when the individual
phase dependency chains are being computed. However, as we construct a DAG
to represent the dependency relationship of all the phases, deadlock detection
and resolution can be integrated with DAG construction. A DAG can be created
for a phase and all its dependencies in a single pass. During each step, phases in
the dependency chain can be maintained in a list such that if a dependent phase
is again added to the list, a deadlock is detected. In order to resolve the deadlock,
one of the phases needs to be rejected. In the design of GUA algorithms, we select
the least LVD phase as it contributes the least utility to the total accrued utility.

3.2 Overview

GUA’s scheduling events include the arrival of a phase, completion of a phase,
a resource request and a resource release. To describe the algorithms we define
the variables and auxiliary functions. For a phase J, J.RemExec is the estimated
remaining execution cost of the phase and J.Utility denotes the TUF at the
time of the scheduling event. The following auxiliary functions are used:

InsertEdge(J, DepJ) inserts an edge between phases J and DepJ.
RemoveEdge(J) removes all in-degree and out-degree edges of phase J.
InsertList(J, σ) inserts the phase J in the list σ.
InsDeadLnPos(J, σ) inserts phase J in the list σ at its deadline position.
FindZIDPhases(σ) returns the ZID phases from the list σ.
RemoveLeastLVD(σ) removes the phase with the least LVD from the list σ.
RemoveLeastGVD(σ) removes the phase with the least GVD from the list σ.
FindPIPDeadLn(σ) finds the earliest deadline amongst the dependents of the

ZID phases in list σ to ensure Priority Inheritance Protocol (PIP) behavior.
ComputeGVD(σ) computes the GVD for the ZID phases in the list σ.
SortByGVD(σ) sorts the list σ by the decreasing value of GVD.
IsPresent(J, σ) returns true if the phase J is present in the list σ.
IsFeasible(σ) returns true if schedule in σ is feasible, i.e., the predicted com-

pletion time of each phase in σ must never exceed its deadline.
Owner(R) returns the phase that holds resource R.
ResRequested(J) returns the resource requested by phase J.
FindProcessor() returns the ID of the processor on which the currently as-

signed phases have the shortest sum of allocated execution times.
FindProcessor(cpu mask) is an extended version of FindProcessor() that

takes a cpu mask (mask of processors that have been checked earlier and
should be avoided). If all the processors are in the mask, it returns NULL.

AddCpuToMask(p, cpu mask) adds processor p to the cpu mask.
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Algorithm 1. Creation of DAG with detection/resolution of deadlocks

Procedure: CreateDAGwithDRD (σT )1:

Input: σT // List of released phases2:

Vars: J, V, next // Phase pointers3:

Vars: σJ // Phase J ’s list of dependents4:

for each phase J in σT do5:
σJ = φ ;6:

J.Lvd = J.Utility
J.RemExec

;7:

InsertList(J, σJ);8:

next = Owner(ResRequested(J));9:

while next 
= φ do10:
if IsPhaseAborted(next) then11:

break;12:

if IsPresent(next, σJ ) == false then13:

InsertEdge(J, next) ;14:

InsertList(next, σJ);15:

J = next;16:

next = Owner(ResRequested(next));17:

else18:

V = FindLeastLVD(σJ );19:

AbortPhase(V );20:

RemoveEdge(V );21:
break;22:

FindLeastLVD(J) finds the phase with the least LVD in dependency chain of J.
UpdateCpuEC(p, J, b) adds J.RemExec to the sum of remaining execution

times for phases allocated on processor p if b is true, subtracts otherwise.
AbortPhase(J) sends an aborting signal to the phase J.
IsPhaseAborted(J) returns true if phase J has been marked for abortion.
HeadOf(σ) returns the phase J which is at the head of the list σ.

Algorithm 1 describes the pseudo-code for CreateDAGwithDRD(σT) that uses
the list of phases, σT , and creates a DAG representation along with deadlock
detection and resolution. We refer to the phase that has requested a resource as
a child while the phase that owns the resource being requested as a parent. In
lines 5-22, the algorithm iterates over the list, σT , and for each phase, J , checks
if a parent node exists and adds an edge from the parent to the child (line 14).
In lines 16-17, the algorithm sets the current parent node as the new child and
checks if it has requested a resource. The steps are repeated for all the phases
in the dependency chain of J .

In order to detect deadlocks we use list σJ (line 6) to which we add all the
dependencies for phase J (line 15). Before adding an edge between a child and a
parent, we check if the phase exists in σJ (line 13). The existence of the phase in
σJ indicates that the phase has already been added to the graph, thus detecting
a deadlock. To resolve the deadlock, we find the least LVD phase in σJ , abort
the phase and remove it from the graph (lines 19-21).
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3.3 Non-Greedy Global Utility Accrual (NG-GUA)

Algorithm 2 describes the NG-GUA scheduling algorithm. For a given list of
phases σT , the DAG is created (line 4) using ComputeDAGwithDRD(). To ensure
mutual exclusion we find the ZID phases and compute their GVD (lines 5-6).
In the presence of dependencies, NG-GUA defaults to G-EDF with PIP. We
compute the PIP deadlines for each of the ZID phases (line 7). The PIP deadline
of a ZID phase Jz is the earliest deadline of a phase Ji which is dependent on
Jz. In line 8, we sort the ZID phases by their PIP deadlines. The key idea here
is to sort the ZID phases by the deadlines of the phases which have an earlier
deadline but are currently blocked on a resource that is being held by the ZID
phases, thus ensuring a PIP behavior2.

In lines 9-11, we use FindProcessor() to assign phases to individual processor
lists σp. The processor that yields the shortest sum of allocated execution times
of all jobs in its local schedule is selected for assignment. The rationale for this
choice is that the shortest summed execution time processor results in the nearest
scheduling event for completing a job after assigning each job.

In lines 12-14, we check each of σp lists for schedule feasibility using the
IsFeasible() method. During overloads, the schedule might not be feasible.
Hence, NG-GUA attempts to maximize the total utility by allowing phases that
have a higher value density to be executed. In line 14, we remove the phase in
σp that has the least GVD and check the schedule for feasibility. Lines 12-14 are
repeated until a feasible schedule is found. Finally, the head of the final feasible
schedule, σp, for each processor p is dispatched (lines 15-17). In the absence of
dependencies, all the phases are treated as ZID phases and the PIP deadlines
for each phase is equivalent to the phase’s deadline. Hence, after the sort (line
8), NG-GUA defaults to a G-EDF order.

Algorithm 2 is referred to as non-greedy because it defaults to a deadline order
rather than a value density order along with support for priority inheritance
protocol, thus following a G-EDF with PIP behavior during underloads and
maximizing total accrued utility during overloads. A sample schedule for NG-
GUA is presented in [17].

3.4 Greedy Global Utility Accrual (G-GUA)

Algorithm 3 describes the G-GUA scheduling algorithm. Lines 6-8 are similar to
the NG-GUA algorithm, described in Section 3.3. We create the DAG, find the
ZID phases and compute their GVD. G-GUA does not default to G-EDF with
PIP. Hence, we do not need to find the PIP deadlines.

G-GUA differs from NG-GUA in two ways— (i) the ZID phases are sorted by
GVD instead of the PIP deadlines (line 9); and (ii) instead of assigning phases to
all the processors and then running the feasibility check, G-GUA follows a greed-
ier approach to accrue total utility. For all individual GVD-sorted ZID phases in
σd (lines 10-24), G-GUA assigns the phase to a processor which has the smallest
2 In the absence of dependencies, the PIP deadline of a ZID phase Jz can be considered

equal to the deadline of Jz.



278 P. Garyali, M. Dellinger, and B. Ravindran

Algorithm 2. NG-GUA: Non-greedy Global Utility Accrual

Input: σT // List of released phases1:

Vars: σ1 · · ·σm // Per processor ready queues for m processors2:

Vars: σz // Zero in-degree phase list3:

ComputeDAGwithDRD(σT );4:

σz ← FindZIDPhases(σT );5:

ComputeGVD(σz);6:

σz ← FindPIPDeadLn(σz);7:

σd ← SortByPIPDeadLn(σz);8:

for each phase J in σd do9:

p ← FindProcessor();10:

InsertList(J, σp);11:

for each processor p do12:
while IsFeasible(σp) == false do13:

RemoveLeastGVD(σp);14:

for each p processor’s schedule σp in m do15:
Jobp ← HeadOf(σp) ;16:

return { Job1, · · · , Jobm };17:

sum of total phase remaining execution cost and checks for feasibility of schedule
on that processor. If the schedule is feasible, G-GUA moves to the next phase in
σd. However, during overloads, if the schedule is not feasible (after the phase was
added to the first processor it was assigned to), G-GUA removes it from that
processor’s list and tries the same phase on all the other available processors
(using cpu mask, lines 18-22). The key idea is to ensure that a high GVD phase
is checked on all processors before being rejected. In lines 25-27, the head of
the final feasible schedule (σp) for each processor p is taken and dispatched to
the individual processor for scheduling. In the absence of dependencies, all the
phases are treated as ZID phases. Thus, GVD for each phase is equivalent to the
phase’s LVD.

G-GUA is greedier than NG-GUA for accrued utility during overloads. It does
not default to any deadline-based scheduling algorithm and attempts to maxi-
mize accrued utility both during underloads and overloads. A sample schedule
is presented in [17].

3.5 Algorithm Properties

The properties of NG-GUA and G-GUA are summarized in this section. For
brevity, the proofs have been omitted and provided in [17].

Theorem 1. During underloads NG-GUA without dependencies defaults G-EDF.

Theorem 2. During underloads NG-GUA with dependencies defaults G-EDF-
PIP.

Theorem 3. gMUA is a special case of NG-GUA without dependencies.

Theorem 4. Both NG-GUA and G-GUA ensure mutual exclusion.

Theorem 5. For both algorithms, an application always makes progress if there
is work offered and the application is not deadlocked.
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Algorithm 3. G-GUA: Greedy Global Utility Accrual

Input: σT // List of released phases1:

Vars: σ1 · · ·σm // Per processor ready queues for m processors2:

Vars: σz // Zero in-degree phase list3:

Vars: cpu mask4:

Vars: not fes5:

ComputeDAGwithDRD(σT );6:

σz ← FindZIDPhases(σT );7:

ComputeGVD(σz);8:

σd ← SortByGVD(σz);9:

for each phase J in σd do10:
cpu mask = 0; not fes = true;11:

while not fes == true do12:
p ← FindProcessor();13:

if p == φ then14:
break;15:

InsDeadLnPos(J, σp);16:

UpdateCpuEC(p, J, true);17:

if IsFeasible(σp) == false then18:

RemoveList(J, σp);19:

UpdateCpuEC(p, J, false);20:

AddCpuToMask(p, cpu mask);21:
not fes = true;22:

else23:
not fes = false;24:

for each p processor’s schedule σp in m do25:
Jobp ← HeadOf(σp) ;26:

return { Job1, · · · , Jobm };27:

Property 1. In [18], Theorem 16.3.1 shows that when the schedule length is
used as a criteria, a greedy algorithm that schedules the ZID nodes in a DAG
produces a schedule that is within a factor of two from being optimal. Further,
for a multi-threaded application with P threads, work T1 and critical path length
T∞, the length of the schedule is bounded by T1

PA
+ T∞(P−1)

PA
, where PA is defined

as the average number of threads executed at each scheduling interval.

Theorem 6. Property 1 applies for both NG-GUA and G-GUA.

Theorem 7. For m processors and n phases, the asymptotic cost for both NG-
GUA and G-GUA is O(mn log n).

4 Experimental Evaluation

4.1 ChronOS Real-Time Linux

In order to implement and evaluate the performance of NG-GUA and G-GUA
with other state-of-the-art scheduling algorithms, we created a real-time Linux
kernel, called ChronOS [1], based on the PREEMPT RT patch [27]. The key mo-
tivation was to take advantage of the PREEMPT RT real-time patch which en-
ables complete preemption in Linux and improves interrupt latencies. ChronOS
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provides a set of APIs and a scheduler plugin infrastructure using which various
single-processor and multiprocessor (including utility accrual and non-utility ac-
crual) scheduling algorithms can be implemented. ChronOS is the first academic
real-time Linux kernel based on the PREEMPT RT patch. The architectural details
of ChronOS are discussed in [1,17].

4.2 Experimental Setup

Both NG-GUA and G-GUA do not assume any specific task arrival model (e.g.,
periodic, aperiodic, sporadic). Tasks can arrive at any time in the system and
generate scheduling events. However, in order to evaluate NG-GUA/G-GUA
against other state-of-the-art algorithms, we use a periodic model which helps
quantify the schedulability criteria of the algorithms and allows us to com-
pare the performance with other scheduling algorithms. We create a synthetic
real-time test application in ChronOS which enables evaluation using a wide
range of workloads. Tasks are represented as threads and the application pe-
riodically fires threads with specified time-constraints. For each task, we use a
burn cpu(exec cost) method, which takes the execution cost of the task as an
input and burns processor cycles for that amount of time.

We conduct the experiments on a quad-core platform based on AMD Phenom
9650 processor with 2.3 GHz frequency and 2 MB L3 cache, and measure the
Deadline Satisfaction Ratio (DSR) and the Accrued Utility Ratio (AUR). At a
given utilization load U , the DSR is measured as the ratio of the tasks that met
their deadlines to the total number of tasks released in the system. In a similar
fashion, the AUR is measured as the total accrued utility of the tasks that met
their deadlines to the total possible accrued utility in the system.

We consider two types of task-sets in this paper—12 tasks (12T) with periods
in the range [300ms− 20000ms] and 27 tasks (27T) with periods in the range
[50ms − 7500ms]. The utilization load per task are in the range [0.01 − 0.5].
Note that this utilization range favors G-EDF. We use a downward “step” TUF
and consider three models: (i) Increasing Utility (IU), utilities assigned to the
tasks are proportional to their deadlines. The task with the earliest deadline has
the least utility and vice-versa; (ii) Decreasing Utility (DU), utilities assigned to
a task are inversely proportional to their deadlines. The task with the earliest
deadline has the highest utility and vice-versa; and (iii) Random Utility (RU),
tasks are assigned random utilities with no two tasks having the same utility.
These models are used to ascertain whether, irrespective of the TUF ordering,
our algorithms perform comparable to the competitors and to ensure that we
do not create a bias based on the TUF assignment against the deadline-based
algorithms. The data points on all results are shown as an average of ten samples
along with the standard deviation.

We have additional extensive results using a wide range of task-sets on two,
four, and eight processor platforms and those have been excluded here due to
space limitation. We present those results in [17].
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Fig. 2. Experimental results without dependencies against (a-b) global scheduling and
(c-d) partitioned scheduling algorithms

4.3 Results without Dependencies

Comparison with global scheduling algorithms. We compare against G-
EDF, G-NP-EDF and G-FIFO. These are selected as baseline competitors.
Fig 2(a) and Fig 2(b) show the AUR and DSR results, respectively, for 27T
using RU on a 4-core platform. No locks have been used. We observe that both
NG-GUA and G-GUA are able to accrue higher utility during overload con-
ditions as compared to the deadline-based scheduling algorithms. As a conse-
quence, the algorithms are able to satisfy more task deadlines during overloads
when compared to the deadline-based scheduling algorithms. On a 4-core plat-
form, G-EDF is able to meet all deadlines upto ≈ 380% CPU utilization load,
after which it suffers from a domino effect. G-NP-EDF starts missing deadlines
earlier than G-EDF. On the other hand, NG-GUA not only defaults to G-EDF
during underloads, it is able to sustain higher DSR during overloads. As NG-
GUA defaults to a deadline-based order, we observe that it is able to meet more
deadlines than G-GUA in Fig 2(b). The performance improvement for AUR is
manifold. We observe ≈ 900% improvement in AUR during overloads for both
G-GUA and NG-GUA over the deadline-based algorithms.
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Fig. 3. Experimental results with dependencies by (a-b) varying utilization load (c)
varying critical section length (d) varying number of locks

Comparison with partitioned scheduling algorithms. Fig 2(c) and Fig 2(d)
show the AUR and DSR results, respectively, for 27T using RU on a 4-core
platform with the task-set partitioned using Baruah’s optimized first-fit (BF)
heuristic [6]. The task-set was partitioned off-line and assigned to the individual
processors using ChronOS APIs. We compare our algorithms against P-EDF
and P-DASA. In Fig 2(d), we observe that P-EDF is able to meet all dead-
lines upto ≈ 390% CPU utilization, after which it suffers from a domino effect.
P-DASA uses the single-processor utility accrual scheduling algorithm, DASA,
on individual processors. DASA defaults to EDF during underloads and maxi-
mizes accrued utility during overloads. We observe a similar behavior in Fig 2(c).
However, both NG-GUA and G-GUA perform better than P-EDF and P-DASA
during overloads by yielding a “best-effort” utility accrual behavior, with an
improvement of ≈ 50% in AUR over P-DASA.

4.4 Results with Dependencies

To compare the performance of G-GUA and NG-GUA in the presence of depen-
dencies against global scheduling algorithms, we consider three models: (i) vary-
ing utilization load, keeping the number of locks and critical section length fixed;
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Fig. 4. Scheduling overheads under variable CPU utilization loads and various task-
sets for (a) G-GUA (b) NG-GUA

(ii) varying critical section length, keeping the utilization load and the number of
locks fixed; and (iii) varying number of locks, keeping the utilization load and the
critical section length fixed. We implement locks using futexes, which allow us
to share a context between kernel-space and user-space. We consider the critical
section length as a percentage of the total execution cost of the task. The tasks
request the locks sequentially.

Fig 3(a) and Fig 3(b) show the AUR and DSR results for 12T with 4 locks per
task, using RU on a 4-core platform. The tasks use locks sequentially. Locks have
a fixed critical section length of 5% of total task execution cost. In the presence
of locks, none of the scheduling algorithms are able to meet all deadlines during
underloads. We observe that both G-GUA and NG-GUA provide better accrued
utility as well as deadline satisfaction during overloads. In Fig 3(a), G-GUA and
NG-GUA provide a consistent 80% accrued utility benefit when compared with
deadline-based algorithms. Fig 3(c) provides AUR results for a fixed utilization
load of 800% and 4-locks by varying critical section length. With an increase
in critical section length, the overall AUR decreases. G-GUA is able to provide
an improvement of ≈ 5% over NG-GUA. Fig 3(d) shows AUR results for fixed
utilization load of 800% and critical section length of 5% while varying number
of locks. We observe that both NG-GUA and G-GUA consistently accrue higher
utility when compared to deadline-based algorithms.

4.5 Scheduling Overheads

As mentioned earlier, both NG-GUA and G-GUA have a worst-case asymptotic
cost of O(mn log n). Fig 4(a) and Fig 4(b) show the scheduling overheads for
G-GUA and NG-GUA on ChronOS. We observe that with an increase in the
number of tasks and also the task utilization load, the scheduling overhead of
both algorithms increase. In particular, G-GUA is seen to have a higher overhead
compared to NG-GUA. This is primarily because G-GUA is more greedy for
accruing overall utility as compared to NG-GUA. For a 27T task-set, we observe
≈ 30μs overhead for G-GUA and ≈ 15μs overhead for NG-GUA.
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5 Conclusions

This paper focuses on the dynamic, multiprocessor real-time scheduling prob-
lem space—i.e., those characterized by execution overruns, unpredictable task
arrivals, causing transient and permanent overloads. The paper demonstrates
that it is possible to design scheduling algorithms for this problem space, such
that they yield an optimal timeliness behavior (e.g., meeting all deadlines; ob-
taining maximum total utility), when total utilization demand does not exceed
the algorithms’ utilization bound, and a best-effort timeliness behavior at all
other times. This approach was pioneered in the Alpha OS kernel [20], which
included two generations of TUF scheduling algorithms for scheduling single-
processor systems [26,13]. At its core, the paper’s algorithms demonstrate that a
similar approach can also be successfully extended for multiprocessors. Addition-
ally, the ChronOS real-time Linux kernel, provides a framework for implementing
a broad range of multiprocessor real-time schedulers, while taking advantage of
PREEMPT RT patch’s optimized interrupt service latencies and real-time locking
primitives. Ongoing work is transitioning the GUA algorithms and ChronOS
kernel to a US Department of Defense system.

There are several directions for future work. Immediate directions include
improving the utilization bound from≈ m/2 and reducing time overheads. Other
directions include developing scalable and approximate algorithms for GUA’s
problem space with lower bounds on accrued utility and satisfied deadlines.
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Abstract. The Earliest Deadline First (EDF) scheduling algorithm is
known to be suboptimal for meeting all deadlines under global scheduling
on multiprocessor platforms. However, EDF is an attractive choice for
scheduling soft-real-time systems on multiprocessors. Previous work has
demonstrated that the maximum tardiness is bounded, and has derived
formulas for computing tardiness bounds, in EDF-scheduled real-time
systems that can be modeled as collections of recurrent tasks modeled
using the well-known implicit-deadline (Liu and Layland) task model.
This research extends the applicability of previous techniques to systems
that are modeled using the more general arbitrary sporadic task model.
It also improves on prior work even for implicit-deadline systems. An
algorithm is derived here that computes tardiness bounds in polynomial
time. Previously, these bounds could only have been approximated in
sub-exponential time.

1 Introduction

In recent years, multiprocessors have become increasingly used for diverse
types of applications. For example, even most consumer laptops and desktops
are sold today with multicore processors. Furthermore, soft timing guarantees
are sufficient for many real-time applications, such as network servers, virtual-
reality systems, and multimedia systems. Due to these trends, the ability to
run soft real-time workloads on multiprocessor systems is becoming increasingly
important.

Motivation and Previous Work. Much previous work on soft real-time systems
(e.g. [1]) considers implicit-deadline sporadic task systems on identical mul-
tiprocessors. Under this model, each task τi is characterized by a worst-case
execution time (WCET) Ci and a period or inter-arrival separation parameter
Ti. The relative deadline of each task —the duration between the arrival of a job
generated by the task and its deadline— is assumed to also be Ti (i.e., relative
deadlines are equal to periods). The ratio Ci/Ti is denoted as a task’s utilization,
and the sum of utilizations over all tasks is denoted as the system’s utilization.

It is known that global Earliest Deadline First (EDF) scheduling, to meet all
deadlines, generally requires the system utilization to be less than the platform

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 286–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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computing capacity. Often, significant capacity is lost. In the case of soft real-time
systems where it is acceptable to not always meet all deadlines, we may be able to
achieve greater platform utilization by tolerating some failure to meet deadlines.

To our knowledge, the first work analyzing this aspect of the behavior of global
EDF for soft real-time scheduling was that of Devi and Anderson [1]. Their
analysis was restricted to implicit-deadline systems. They derived a technique
for computing a value x such that no job of task τi misses its deadline by more
than x + Ci time units, where Ci is the WCET for τi. In the terminology that
they introduced, x + Ci is a tardiness bound on τi. They demonstrated that
finite tardiness bounds can be derived as long as no task’s utilization exceeds 1,
and the total utilization of the system does not exceed the number of processors.
These conditions are both necessary and sufficient for tardiness to be bounded.

This result was improved in [2], by exploiting the observation that rather than
computing a single value x for all tasks, we can compute a separate xi for each
task τi. Thus, the tardiness bounds are of the form xi + Ci. While these bounds
are tighter than those provided in [1], this technique is still restricted to the case
of implicit-deadline systems.

It is possible to trivially extend the results in [1,2] to arbitrary sporadic
task systems (i.e., task systems in which the relative deadline of a task may be
smaller than, equal to, or greater than its period parameter) by analyzing the
ratio of execution to the minimum of deadline and period (or density) rather
than utilization. However, doing so introduces excessive pessimism in both the
condition for bounded tardiness and the actual tardiness bound.

A more general analysis of tardiness in multiprocessor scheduling of soft-real-
time systems is provided in [3,4]. Rather than analyzing any particular scheduling
algorithm, the analysis is expanded to a broader class of global scheduling algo-
rithms called window-constrained. It can be shown that global EDF of arbitrary
sporadic task systems is window-constrained; hence [3,4] demonstrates that the
conditions for bounded tardiness discussed above continue to hold when dead-
lines differ from periods. However, due to the generality of the analysis in [3,4],
using these results to provide a specific bound for global EDF which is less
pessimistic than the general window-constrained case is difficult, except in the
implicit deadline case where the bound is equivalent to that provided in [1] (and
hence inferior to the one in [2]).

Contributions. There are two major contributions of this paper. First , we extend
the technique introduced in [2] from implicit-deadline to arbitrary sporadic task
systems. We characterize the tardiness bound for each task in any arbitrary
sporadic task system satisfying the properties that (i) no task has utilization
exceeding 1 and (ii) system utilization does not exceed the number of processors
(these are precisely the conditions necessary and sufficient for bounded tardiness
provided in [3,4]). Our bounds are far tighter than the general bound provided
in [3,4]. Second , we derive a polynomial-time algorithm for computing these
tardiness bounds exactly. This represents an improvement over the iterative
algorithm, of unknown computational complexity that was presented in [2] for
implicit-deadline task systems.
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In addition, we have produced a technical report [5] which demonstrates a
method for altering the analysis to allow yet tighter bounds in some cases when
constrained-deadline tasks are present. This method was not included in this
paper for space reasons.

Significance of this research. The seminal works of Anderson, Devi, and Leon-
tyev [1,3,4] have established that global EDF exhibits bounded tardiness, and is
therefore suitable for the scheduling of a certain class of soft-real-time systems.
This having been established, it is important that we be able to determine, dur-
ing system design time itself, guarantees on the maximum tardiness that the
system may experience during run-time. The tighter the guarantees, the more
useful they are for the system design process. In prior work [2], we have im-
proved on the tightest previously-known tardiness bounds for implicit-deadline
sporadic system, and have designed an algorithm for computing these bounds.
The significance of the current research lies both in the extension of our bounds
to arbitrary sporadic systems, and in the fact that we are now able to com-
pute these bounds more efficiently (in time polynomial in the number of tasks
in the system). Hence, tardiness bounds can now be used during the system
design process for a wider class of systems, and they may be computed with less
computational effort.

Organization. In Section 2 we derive a tardiness bound for arbitrary sporadic
task systems that are scheduled on a multiprocessor platform using global EDF.
In Section 3 we examine the problem of computing the best bounds which can be
demonstrated with our method: in Subsection 3.1 we demonstrate that a unique
optimal (relative to our technique) bound exists for any system with bounded
tardiness, and in Subsection 3.2 we present a polynomial-time algorithm for
computing these bounds exactly.

2 A Characterization of Tardiness

We are concerned with the scheduling of a system τ of n sporadic tasks τ1, τ2, . . . , τn

upon a platform comprised of m identical unit-capacity processors, using the pre-
emptive global EDF scheduling algorithm. Each sporadic task τi = (Ti, Ci, Di)
releases jobs and is characterized by its minimum inter-arrival separation Ti,
WCET Ci, and relative deadline Di. We make no assumptions about Di other
than non-negativity; it may be greater than, equal to, or less than Ti for any
particular task. We also refer to a task’s utilization Ci

Ti
as Ui. Let U(τ) denote∑n

i=1 Ui, and m0
def= �U(τ)�. It is evident that U(τ) ≤ m (and thus m0 ≤ m),

combined with ∀i, Ui ≤ 1, is a necessary condition for bounded tardiness [3]. As
discussed above, [3,4] demonstrates that this is sufficient for bounded tardiness
as well. We provide an alternate proof for bounded tardiness under these same
conditions, which allows us to derive tighter tardiness bounds.
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We exploit the property that over any interval of length t, the total amount
of work that may be required by an arbitrary sporadic task τi is bounded. This
bound is called the demand bound function, or dbf(τi, t). As shown in [6],

dbf(τi, t) = Ci × max

{
0,

⌊
t − Di

Ti

⌋
+ 1

}
(1)

In [2], dbf(τi, t) for implicit-deadline sporadic task τi is upper-bounded by Uit.
This bound does not hold for arbitrary sporadic tasks; in Lemma 1 below, we
derive a constant Si such that demand is upper bounded by Uit+Si. In essence,
Si can be viewed as a constant showing the result of a task having higher demand
over a short interval than expected by utilization alone.

Lemma 1. For all τi ∈ τ and t ≥ 0,

dbf(τi, t) ≤ Uit + Si

where Si is defined as follows:

Si
def
= Ci × max {0, 1 − Di/Ti} (2)

Proof. By (1) dbf increases only at each point where t−Di is an integer multiple
of Ti, i.e., where there exists an integer k ≥ 0 such that t − Di = Tik or
t = Tik + Di.

We first consider t ∈ [0, Di). t−Di < 0, so
⌊

t−Di

Ti

⌋
+1 ≤ 0. Therefore, by (1),

dbf(τi, t) = 0 ≤ Uit + Si.
Alternatively, suppose t ≥ Di. Let k =

⌊
t−Di

Ti

⌋
. Then t ∈ [Tik + Di, Ti(k +

1) + Di). Therefore:

Uit + Si

≥ Uit + Ci

(
1− Di

Ti

)

≥ Ui(Tik + Di) + Ci

(
1− Di

Ti

)

= Cik +
CiDi

Ti
+ Ci −

CiDi

Ti

= Ci(k + 1)

= Ci

(⌊
t−Di

Ti

⌋
+ 1
)

= dbf(τi, t)

Thus, the lemma is true for all t > 0.

For the n-task system τ , we wish to compute non-negative real numbers
x1, x2, . . . , xn such that it can be guaranteed that no job of τi has a tardi-
ness greater than Ci + xi, 1 ≤ i ≤ n when τ is EDF-scheduled on m unit-speed
processors. In order to derive such xi’s we use the notion of compliant vectors,
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first defined in [2]. Our definition here generalizes the one in [2] by using the Si

terms to account for deadlines which may differ from periods. As is the case in
[2], these definitions are each with respect to a particular task system τ and a
specified number of processors m.

Definition 1 (compliant vectors). For any x = 〈x1, x2, . . . , xn〉 an ordered
list of n non-negative real numbers, let L(x) denote the sum of the (m0 − 1)
largest (xiUi + Ci)’s:

L(x)
def
=

∑
(m0−1) largest

(
xiUi + Ci

)
(3)

Also denote (using (2))
S(τ )

def
=
∑
τi∈τ

Si (4)

We say that x is a compliant vector if

L(x) + S(τ ) − Ci

m
≤ xi (5)

is satisfied for all i, 1 ≤ i ≤ n, and a non-compliant vector otherwise.

We consider a compliant vector x = 〈x1, x2, . . . , xn〉 and an arbitrary collection
Io of jobs generated by τ . Without loss of generality, we assume that the earliest
arrival of a job in Io occurs at time 0. We analyze an arbitrary job jk with
deadline dk, under the assumption that no job with deadline before dk completes
later than (Ci+xi) time units after its deadline. This assumption will be justified
in the proof of Theorem 1. We denote by I the set of jobs in Io with deadlines
≤ dk. By the definition of EDF priority, only jobs in I can affect the scheduling
of jk.

For each τj and all 0 ≤ t ≤ dk, let Wj(t) denote the amount of remaining
execution of jobs of τj in I, at time instant t. Denote W (t) =

∑
τj∈τ Wj(t).

Alternatively, W (t) can be viewed as the total amount of execution required by
jobs in I minus the amount of work completed in [0, t). Lemma 2 below provides
an upper bound on W (t).

Lemma 2. If ∀i, each job of τi with a deadline before dk experiences tardiness
no greater than xi + Ci,

W (dk) ≤ L(x) + S(τ )

Proof. We define a time interval as being busy if throughout the interval at least
m0 processors are executing, and non-busy otherwise. Let t0 = 0, t1, t2, . . . , dk be
an arbitrary set of time instants over [0, dk) such that each [ti, ti+1) is either all
busy or all non-busy. We prove the lemma by demonstrating that the following
more general statement is true for t ∈ {t0, t1, . . . , dk}:

W (t) ≤ U(τ)× (dk − t) + L(x) + S(τ). (6)

We proceed by induction on the time instants t0, t1, . . . , dk.
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Base case (t = 0) W (t0) denotes the cumulative execution requirement of all
jobs arriving in, and having deadlines in, the interval [0, dk]. Thus,

W (t0) ≤
∑
τi∈τ

dbf(τi, dk)

≤
∑
τi∈τ

Uidk + Si (By Lemma 1)

= U(τ )dk + S(τ )

Induction step. We begin by assuming (6) is true for t = ti. We will show that
it is true at ti+1 as well. We must consider two cases:

Case A. Suppose [ti, ti+1) is a busy interval. In this case, the amount of work
performed in the interval is at least m0(ti+1 − ti). Thus, by the inductive hy-
pothesis,

W (ti+1) = W (ti) − m0(ti+1 − ti)

≤ U(τ )(dk − ti) + L(x) + S(τ ) − m0(ti+1 − ti)

≤ U(τ )(dk − ti) + L(x) + S(τ ) − U(τ )(ti+1 − ti)

(Because U(τ ) ≤ m0)

= U(τ )(dk − ti+1) + L(x) + S(τ ),

and thus (6) also holds at ti+1.

Case B. Alternatively, suppose [ti, ti+1) is non-busy. We say that a task τj is
“executing at time instant t−i+1” if and only if ∃ε > 0 such that τj is executing
throughout [ti+1− ε, ti+1). At most m0− 1 processors may be executing at time
instant t−i+1 or the CPU would be busy before ti+1. We consider tasks that:

Case B.1: Do not execute at time instant t−i+1;
Case B.2: Execute at t−i+1, but not throughout the interval [ti, ti+1); and
Case B.3: Execute throughout the interval [ti, ti+1).

Case B.1. Suppose task τj is not executing at t−i+1. In this case, it must have
no active work remaining, or it would have executed. Thus, all remaining work
comes from jobs that are released in, and have deadlines within, [ti+1, dk]. Thus,

Wj(ti+1) ≤ dbf(τj , dk − ti+1)
≤ Uj(dk − ti+1) + Sj (By Lemma 1)

Case B.2. Suppose task τj is executing at t−i+1 but at some point in [ti, ti+1)
is not executing. Let t′ denote the latest time during this interval in which
it is idle. Because it is idle but at least one processor is available, no jobs of
tj are active at this instant. Thus, all remaining work comes from jobs that are
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released in, and have deadlines within, [t′, dk]. Of this remaining work, ti+1 − t′

units of execution are completed within (t′, ti+1). Thus,

Wj(ti+1) ≤ dbf(dk − t′) − (ti+1 − t′)

≤ Uj(dk − t′) + Sj − (ti+1 − t′) (By Lemma 1)

≤ Uj(dk − t′) + Sj − Uj(ti+1 − t′)

(Because Uj ≤ 1)

= Uj(dk − ti+1) + Sj

Case B.3. Suppose task τj executes throughout [ti, ti+1). Let J denote the job of
τj that is executing at time instant ti, and let δ denote the sum of the execution
of J completed before ti and the amount by which it finishes early. This is so
that Cj − δ is the exact remaining amount of execution of J . Let d denote the
deadline of J . We will consider two subcases, depending on whether d ≥ ti (i.e.,
J is not tardy at ti) or d < ti (i.e., J is tardy at ti).

Case B.3.1. Suppose J is not tardy at time instant ti. Then, all jobs of τj

that contribute to Wj(ti) arrive at or after ti, because they must arrive after d.
Therefore,

Wj(ti) ≤ dbf(τj , dk − ti) + Cj − δ

≤ Uj(dk − ti) + Sj + Cj − δ (Lemma 1)

≤ Uj(dk − ti) + Sj + Cj (Because δ ≥ 0) (7)

Because τj executes throughout [ti, ti+1),

Wj(ti+1) = Wj(ti) − (ti+1 − ti)

≤ Uj(dk − ti) + Sj + Cj − (ti+1 − ti) (By (7))

≤ Uj(dk − ti) + Sj + Cj − Uj(ti+1 − ti)

(Because Uj ≤ 1)

= Uj(dk − ti+1) + Sj + Cj

Case B.3.2. Suppose j is tardy at ti. Then, it will complete execution at ti +
Cj − δ, because it cannot be preempted (it is already tardy). We assumed that
no job of τj with deadline < dk experiences a tardiness greater than xj + Cj .
Therefore,

ti + Cj − δ ≤ d + Cj + xj

and thus
d ≥ ti − (δ + xj) (8)

Wj(ti) is composed of all jobs released after d, in addition to the remaining
execution Cj − δ. Thus:

Wj(ti) ≤ dbf(τj , dk − d) + Cj − δ

≤ Uj(dk − d) + Sj + Cj − δ (By Lemma 1)
≤ Uj(dk − ti + (δ + xj)) + Sj + Cj − δ (9)

(By (8))
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τj executes over the entire interval [ti, ti+1), so:

Wj(ti+1) = Wj(ti) − (ti+1 − ti)

≤ Uj(dk − ti + (δ + xj)) + Sj + Cj − δ − (ti+1 − ti)

(By (9))

≤ Uj(dk − ti + (δ + xj)) + Sj + Cj − Ui(δ + (ti+1 − ti))

(Because Uj ≤ 1)

= Uj(dk − ti + (δ + xj) − δ − ti+1 + ti) + Sj + Cj

= Uj(dk − ti+1) + Ujxj + Sj + Cj

Summing the Wj(ti+1) upper-bounding values for all tasks over all cases, we see
the following contributions to the upper bound on W (ti+1):

– Uj(dk − ti+1) from each task, summing to U(τ )(dk − ti+1).

– Sj from each task, summing to S(τ ).

– At most m0 − 1 values of Cj or Cj + Ujxj , leading to a sum of L(x).

Thus, we see that (6) applies for ti+1. By mathematical induction, (6) is true for
all t ∈ {t0, t1, t2, . . . dk}, which demonstrates that the lemma is true.

Our next lemma uses this result to bound the completion time of a job under
the same assumptions.

Lemma 3. If ∀i, each job of τi with a deadline before dk experiences tardiness
no greater than xi + Ci, the job of τk with a deadline of dk will complete by
dk + xk + Ck.

Proof. By Lemma 2, we see that the total amount of work remaining at the
deadline dk of the last task in I is at most L(x) + S(τ).

Let J denote the job of τk with a deadline at dk. If J has completed execution
by dk it is not tardy, so we assume it has not. Denote tf ≥ dk as the first
time instant after dk at which some processor is idle. We consider two cases,
depending on whether J has completed by tf or not.

Case 1. Suppose J has completed by tf . In this case, tardiness is bounded from
above by tf − dk. Since the amount of work remaining is upper-bounded by
L(x) + S(τ), we can conclude:

tf ≤ dk +
L(x) + S(τ )

m

= dk +
L(x) + S(τ ) − Ck

m
+

Ck

m

≤ dk + xk +
Ck

m
(Inequality (5))

≤ dk + xk + Ck
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Case 2. Suppose J has not completed by tf . Let γ denote the amount of exe-
cution remaining for J at tf . Since the total amount of remaining work at dk

is at most L(x) + S(τ) and at least γ units of this remain to be completed, we
conclude that tf ≤ dk + L(x)+S(τ)−γ

m . The presence of an idled processor implies
that either J or a predecessor job also of task τj is executing at tf , and τj will
continue to execute until J completes.

If J is running at tf , then its tardiness guarantees that under EDF it will not
be preempted. Thus it completes its execution by time instant

dk +

(
L(x) + S(τ ) − γ

m
+ γ

)

= dk +

(
L(x) + S(τ ) − Ck

m

)
+ Ck − (Ck − γ)

(
1 − 1

m

)

≤ dk +

(
L(x) + S(τ ) − Ck

m

)
+ Ck

≤ dk + xk + Ck (Inequality (5))

Alternatively, if J is not running at tf , then one of its predecessors is running,
so γ = Ck. Therefore, tf ≤ dk + (L(x) + S(τ) − Ck)/m ≤ dk + xk holds. Let J ′

denote the immediate predecessor of J . The deadline of J ′ must be at or before
dk − Tk, so by the inductive hypothesis, tardiness for J ′ is at most xk + Ck.
Thus, J ′ completes by time dk − Tk + xk + Ck ≤ dk + xk. Therefore, J begins
executing by dk +xk and cannot be preempted, so is completed by dk +xk +Ck.

Thus, in any case, J must complete by dk + xk + Ck and the lemma stands
proved.

Theorem 1. Let x = 〈x1, x2, . . . , xn〉 denote any compliant vector. For each
τi ∈ τ , each job generated by task τi completes no later than (Ci +xi) time units
after its deadline.

Proof. We will use induction to prove the desired result. We consider the jobs
in Io in order of non-decreasing deadlines; when considering a particular job, we
assume that no previous job experienced tardiness greater than claimed by the
theorem. The earliest deadline will serve as the base case, because the assumption
is vacuous.

The assumption used in Lemma 2 and thus in Lemma 3 as well is implied by
the inductive hypothesis1. Therefore, by mathematical induction, Theorem 1 is
true.

3 The Minimum Compliant Vector

Theorem 1 expresses tardiness bounds in terms of compliant vectors: given a
compliant vector x, we are guaranteed that no job of task τi experiences a
1 It is not precisely the same only in that our inductive hypothesis may apply to some

jobs which share a deadline with the job under consideration. Only the tardiness of
jobs with earlier deadlines must be bounded by xi +Ci in order to prove the lemmas.
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tardiness greater than Ci + xi, for all i, 1 ≤ i ≤ n. Since our objective is to
compute small tardiness bounds — the smaller the better — we seek to compute
a compliant vector in which the components (the xi’s) are as small as possible.
The notion of a minimal compliant vector was introduced in [2] to formalize this
desideratum: a minimal compliant vector is a compliant vector satisfying the
additional property that decreasing the value of any component of the vector by
an arbitrarily small amount will result in a non-compliant vector.

It was pointed out in [2] that it is not clear how we would compare two different
minimal compliant vectors if the i’th component is smaller in one, and the j’th
component is smaller in the other — presumably, semantic considerations would
need to be taken into account in determining which task is more resilient to
tardiness. We now prove that such a situation cannot in fact arise: in Section
3.1 below we show that for any arbitrary-sporadic task system τ there is a
unique minimal compliant vector – a minimum compliant vector. In Section
3.2 we will demonstrate an improved algorithm for determining this minimum
compliant vector (and thereby computing minimum tardiness bounds) which is
much more efficient than that published in [2]. In fact, our algorithm runs in
polynomial time and determines the exact minimum compliant vector (whereas
the algorithm in [2] is an iterative algorithm that generates an approximation
to the minimal complaint vector: the greater the number of iterations of the
algorithm, the more accurate the approximation).

3.1 Existence and Uniqueness

We first demonstrate a lemma that characterizes the behavior of L(x)

Lemma 4. Suppose length n vectors x and y differ at exactly k values, and for
these values, yi = xi +δ, where δ is a positive constant. Denote u = min{k, m0−
1}. Then the following inequality holds:

L(x) ≤ L(y) ≤ L(x) + δ · u (10)

Furthermore, if k = n, the first inequality is strict.

Proof. We will define a candidate sum for x, as any sum of m0 − 1 values of
distinct xiUi + Ci. L(x) can trivially be seen to be the largest candidate sum
for x.

First, we prove L(x) ≤ L(y). Consider the candidate sum S for y computed
by selecting the same indices for the terms as in L(x). Because ∀i, xi ≤ yi,
L(x) ≤ S. Because L(y) is the largest candidate sum for y, S ≤ L(y). Thus,
L(x) ≤ L(y). If k = n, then all terms in S must actually be greater than the
corresponding terms in L(y), so the inequality is strict in this case.

Next, we prove L(y) ≤ L(x) + δ · u. We will use proof by contradiction.
Suppose L(y) > L(x) + δ · u. Consider the candidate sum T for x computed
by selecting the same indices for the terms as in L(y). Observe that at most u
terms contribute to the difference between L(y) and T . This holds because we
assumed only k terms differ between the two vectors, and at most m0− 1 terms
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of the sum utilize xi values. Because ∀i, xi ≥ yi − δ, T ≥ L(y) − δ · u. Thus,
T > L(x), which is a contradiction because L(x) must be a maximal candidate
sum for x.

Thus, the lemma stands proved.

We next use Lemma 4 to characterize any minimal compliant vector which
could possibly exist.

Lemma 5. If y is a minimal compliant vector, then ∀i, yi = L(y)+S(τ)−Ci

m .

Proof. We will use proof by contradiction. Observe that by definition, ∀i,

yi ≥
L(y) + S(τ) − Ci

m
(11)

Thus we need only consider the case in which y is a minimal compliant vector,
but ∃j such that

yj >
L(y) + S(τ) − Ci

m
(12)

Consider a x such that xi = yi whenever i �= j and

xj =
L(y) + Sτ − Ci

m
(13)

Note that x and y are of the form of Lemma 4 with k = 1. (The value of δ is
irrelevant in this case.) Thus, L(x) ≤ L(y).

Because y is compliant, ∀i �= j,

L(x) + S(τ) − Ci

m

≤ L(y) + S(τ) − Ci

m
≤ yi

= xi

Also, by construction,

L(x) + S(τ) − Cj

m

≤ L(y) + S(τ)− Cj

m
= xj

Thus, x is compliant, which contradicts the minimality of y.

With these lemmas in place, we are now ready to prove the main result of
this section:

Theorem 2. For any given task set τ , there exists a unique minimal compliant
vector (which we refer to as the minimum compliant vector).
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Proof. We begin the proof by defining some notation we will use throughout the
proof.

– v(s) is defined as v where vi = s + S(τ)−Ci

m .
– L(s) for real s is defined as L(v(s)).
– M(s) for real s is defined as L(s)−ms.

The purpose of these notations is that by Lemma 5, any vector is a minimal
compliant vector if and only if it is v(s) for some s and M(s) = 0. This is true
because L(v) does not depend on i and thus can be viewed as a constant. Here
we intend s = L(v)

m . We will use the Intermediate Value Theorem from calculus
to demonstrate that exactly one such s exists.

Lemma 2.1. L(s) is continuous over R.

Proof. Let ε > 0. Let δc = ε
m0−1 . Suppose |x − x0| < δc. Without loss of

generality, assume x < x0 (otherwise we can swap them.) Then v(x) and v(x0)
are of the form of x and y, respectively, in Lemma 4, with k = n. Thus,

L(v(x)) < L(v(x0))

≤ L(v(x)) + δc(m0 − 1)

= L(v(x)) + ε

Thus, |L(x)− L(x0)| < ε. This proves that L(s) is continuous.

It follows immediately from Lemma 2.1 that M(s) is also continuous over R,
because M(s) is the difference of two continuous functions.

Lemma 2.2. M(s) is strictly decreasing over R.

Proof. Suppose x < y. Then v(x) and v(y) are of the form of x and y in Lemma
4, with k = n and δ = y − x. Thus, L(x) < L(y) ≤ L(x) + (m0 − 1)(y − x).
Therefore,

M(y) − M(x)

= L(y) − L(x) − my − mx

≤ (m0 − 1)(y − x) − m(y − x)

≤ −(y − x)

< 0

Lemma 2.3. M(0) > 0.

Proof. Observe ∀i
xi =

S(τ ) − Ci

m
≥ −Ci

m
.

Therefore, because Ci > 0, m > 1, and Ui ≤ 1,

xiUi + Ci ≥ −UiCi

m
+ Ci > 0.

Therefore, L(0) > 0, because it is a sum of positive numbers. Thus, M(0) =
L(0)− 0 > 0.
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Lemma 2.4. M(Csum +S(τ)) < 0, where Csum is the sum of the m0−1 largest
Ci values.

Proof. We first compute an upper bound on L(Csum + S(τ)). By definition,
L(Csum + S(τ)) is the sum of the largest m0 − 1 components of the form

xiUi + Ci =

(
Csum + S(τ ) +

S(τ ) − Ci

m

)
Ui + Ci.

Because Ui ≤ 1, this is upper bounded by

Csum + S(τ ) +
S(τ ) − Ci

m
+ Ci

= Csum +
m + 1

m
S(τ ) +

m − 1

m
Ci

The sum of m0 − 1 such terms is upper bounded by

(m0 − 1)Csum + (m0 − 1)
(m + 1)

m
S(τ ) +

m − 1

m
Csum

≤ m2 − m

m
Csum +

m − 1

m
Csum +

(m − 1)(m + 1)

m
S(τ )

=
m2 − 1

m
(Csum + S(τ ))

Thus,

M(Csum + S(τ ))

≤ m2 − 1

m
(Csum + S(τ )) − m(Csum + S(τ ))

< 0.

We are now ready to prove that the minimal compliant vector is unique. By
Lemma 2.1, Lemma 2.3, Lemma 2.4, and the Intermediate Value Theorem, ∃s
between 0 and Csum + S(τ) such that M(s) = 0. By Lemma 2.2, t < s implies
M(t) > 0 and t > s implies M(t) < 0. Thus, the solution is unique, so v(s) is
the unique minimal (i.e., minimum) compliant vector.

3.2 Improved Computation Algorithm

The algorithm presented in [2] for computing a minimal compliant vector is
iterative: it starts out with the (non-compliant) vector of all zeros and increases
some xi during each iteration, terminating when the resulting vector becomes
compliant. However, [2] was unable to provide a bound on the number of such
iterations that may be needed; instead, heuristics were proposed for fixing the
minimum amount by which some xi is increased during each iteration, in order to
bound the total number of steps. As a consequence, the value of xi so computed
may exceed the actual value by up to this step-size. An alternative iterative
formulation that uses unbounded binary search is also possible, the inaccuracy
in the values of the xi’s decreasing exponentially with the number of iterations
of the binary search algorithm.
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In this section, we significantly improve on either of these 2 approaches from [2],
by deriving an algorithm that computes the exact minimum compliant vector in
time that is polynomial in the number of tasks in the task system.

By Lemma 5 above, we know the minimum compliant vector can be obtained
by solving the following system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 = L(x)+S(τ)−C1

m

x2 = L(x)+S(τ)−C2
m

......

xn = L(x)+S(τ)−Cn

m

Defining z as follows:

z =
L(x) + S(τ )

m
(14)

our system of equations becomes⎧⎪⎪⎨
⎪⎪⎩

x1 = z − (C1/m)
x2 = z − (C2/m)
......
xn = z − (Cn/m)

(15)

Applying this to the definition of L(x), we get

L(x)
def
=

∑
(m0−1) largest

(
Ui

(
z − Ci

m

)
+ Ci

)
(16)

By (14) and (16), we get the following equation in a single unknown z

z =
( ∑

(m0−1) largest

(
Ui

(
z − Ci

m

)
+ Ci

)
− S(τ )

)
/m (17)

Solving z in the above equation and using (15) above, we can get the desired
minimum compliant vector.

In the following we will show how to solve Equation (17). We observe that
the RHS of (17) is a piece-wise linear function with respect to z, and its slope
changes only at the points where the tasks involved in the summation (the
(m0 − 1) largest sum term) change. To find out these points, we establish an
equation for each pair of (i, j), i �= j,

Ui

(
z − Ci

m

)
+ Ci = Uj

(
z − Cj

m

)
+ Cj (18)

and the solution of the above equation, if it has one, is a potential point where the
RHS of (17) may change its slope. For each solution, we use a tuple {zij , i, j} to
record the solution zij and the index of the two tasks involved. Let Points denote
the set of all these tuples, sorted in non-decreasing order of zij . It could be the
case that more than two functions intersect with each other at the same point.
For example, with task τi, τj and τk we got three tuples {zij , i, j}, {zjk, j, k} and
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{zki, k, i}, where zij = zjk = zki. In this case, zij , zjk and zki are kept as three
distinguished points, and sorted in an arbitrary order in Points .

The algorithm to solve Equation (17) is shown in Algorithm 1. We use z0 and
z1 to keep track of the two endpoints of current segment; at the beginning they
are initialized as 0 and the first slope-changing point in Points respectively (line
1 and 2). Then we find out the m0 − 1 tasks involved in the sum item in (17)
in the first segment, recorded in Θ (line 3). Then we solve the equation with Θ,
i.e., assuming the solution falls in the segment [z0, z1], and get the solution z∗

(line 5). We examine whether z∗ ∈ [z0, z1], if so, we have found the solution; if
not, the assumption that the solution falls in the segment [z0, z1] is incorrect, so
we move to the next segment. We check whether we should replace τi by τj (or
the other way around) in the next segment (line 9). A task τi is replaced by τj

if it satisfies:
τi ∈ Θ ∧ τj /∈ Θ ∧ Uj > Ui (19)

Then we get the end point of the next segment (line 14), and repeat the above
procedure with the next segment, until we find the solution. Note that by The-
orem 2 the algorithm is guaranteed to terminate.

Now we discuss the complexity of Algorithm 1. The number of points in Points
is at most n2, and to sort them the complexity is O(n2 log(n)). The complexity
to find out tasks in Θ is O(n log n). In each iteration of the while loop, the
complexity of solving the equation with Θ is O(m0), which is bounded by O(m).
All other operations in the while loop are of constant complexity. So the overall
complexity of the algorithm is O(n2 log(n) + n2m).

1: z0 := 0
2: {z1, i, j} := the first element in Points
3: Θ := the set of tasks involved in the m0 − 1 largest sum item

with z = 0
4: while (1) do
5: z∗ := the solution of

z =
( ∑

τi∈Θ

(
Ui(z − Ci

m
) + Ci

)
− S(τ )

)
/m

6: if z∗ ∈ [z0, z1] then
7: return z∗

8: else
9: if (ShouldReplace(i, j) == true) then

10: Update Θ
11: end if
12: end if
13: z0 := z1

14: {z1, i, j} := the next element in Points
(z1 := +∞ if no more element in Points).

15: end while

Algorithm 1. An algorithm for solving Equation (17)



Tardiness Bounds for Global EDF with Deadlines Different from Periods 301

4 Conclusion

The bounded tardiness property of EDF [1] makes it an attractive choice of al-
gorithm for systems which can tolerate bounded amounts of tardiness. However,
previous work has either analyzed only implicit deadline systems (e.g. [1], [2]) or
provided a highly general analysis ([4]). We have extended the result provided
in [2] to the case in which deadlines do not need to equal periods. We have also
proposed an improved algorithm for computing the tardiness bounds that can
run in polynomial-time. These bounds provide the tightest known bounds for
global EDF in the case in which deadlines need not equal periods. As in [2], we
allow the tardiness for each task to be bounded individually.
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Abstract. A lock-free FIFO queue data structure is presented in this paper. The
algorithm supports multiple producers and multiple consumers and weak mem-
ory models. It has been designed to be cache-aware and work directly on weak
memory models. It utilizes the cache behavior in concert with lazy updates of
shared data, and a dynamic lock-free memory management scheme to decrease
unnecessary synchronization and increase performance. Experiments on an 8-
way multi-core platform show significantly better performance for the new algo-
rithm compared to previous fast lock-free algorithms.

1 Introduction

Lock-free implementation of data structures is a scalable approach for designing con-
current data structures. Lock-free data structures offer high concurrency but also immu-
nity to deadlocks and convoying, in contrast to their blocking counterparts. Concurrent
FIFO queue data structures are fundamental data structures that are key components in
applications, algorithms, run-time and operating systems. This paper presents an effi-
cient lock-free queue data structure for multiple producers and consumers. The algo-
rithm is cache-aware in order to minimize its communication overhead. It works also
on weak memory consistency models (due to out-of-order execution) without need for
additional fence [4] instructions for reads and writes done in the algorithm towards the
shared memory.

With the strongly emerging multi-core architectures for main-stream as well as high-
performance computing, there is an increasing interest for efficient concurrent data
structures that allow maximal exploitation of the available parallelism. With the evolv-
ing more complex multithreaded architectures of applications and systems, there is also
likely to be an increasing need for stronger progress and safety guarantees of compo-
nents in supporting frameworks, and consequently non-blocking synchronization would
fit very well thanks to both its possible advantages in performance and its progress prop-
erties.

Two basic non-blocking methods have been proposed in the literature, lock-free and
wait-free [3]. Lock-free implementations of shared data structures guarantee that at any
point in time in any possible execution some operation will complete in a finite num-
ber of steps. In cases with overlapping accesses, some of them might have to repeat
the operation in order to correctly complete it. However, real-time systems might have
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stronger requirements on progress, and thus in wait-free implementations each task is
guaranteed to correctly complete any operation in a bounded number of its own steps,
regardless of overlaps of the individual steps and the execution speed of other processes;
i.e., while the lock-free approach might allow (under very bad timing) individual pro-
cesses to starve, wait-freedom strengthens the lock-free condition to ensure individual
progress for every task in the system.

Large efforts have been made on designing efficient concurrent queue data structures
and blocking (or mixed with non-blocking techniques) implementations are available in
most contemporary programming language frameworks supporting multithreading. In
this paper, we focus only on strictly non-blocking queue algorithms as implementations
being just “concurrent” (and possibly efficient as e.g. “lock-less”) are still prune to
problems as e.g. deadlocks. Absence of explicit locks does not imply any non-blocking
properties, unless the latter are proven to be fulfilled. A large number of lock-free (and
wait-free) queue implementations have appeared in the literature, e.g. [6][1][11][8][9][5]
being the most influential or recent and most efficient results. These results all have a
number of specialties or drawbacks as e.g. limitations in allowed concurrency, static
in size, requiring atomic primitives not available on contemporary architectures, and
scalable in performance but having a high overhead. This paper improves on previ-
ous results by combining the underlying approaches and designing the new algorithm
cache-aware and tolerant to weak memory consistency models in order to maximize
efficiency on contemporary multi-core platforms. The new lock-free algorithm has no
limitations on concurrency, is fully dynamic in size, and only requires atomic primi-
tives available on contemporary platforms. Experiments on an 8-way multi-core plat-
form show significantly better performance for the new algorithm compared to previous
lock-free implementations.

The rest of the paper is organized as follows. In Section 2, related work is discussed.
Section 3 presents the new algorithm. The corresponding proofs and analysis are out-
lined in Section 4. In Section 5, some benchmark experiments are described. Finally,
Section 6 concludes this paper.

2 Related Work

Lamport [6] presented a lock-free (actually wait-free) implementation of a queue based
on a static array, with a limited concurrency supporting only one producer and one
consumer. In this algorithm, synchronization is done via shared indices indicating the
current head and tail array element. Giacomoni et al. [1] presented a cache-aware mod-
ification which instead synchronize directly on the array elements. Tsigas and Zhang
[11] presented a lock-free extension of [6] where synchronization is done both directly
on the array elements and the shared head and tail indices using CAS1, thus supporting
multiple producers and consumers. In order to avoid the ABA problem when updating
the array elements, the algorithm exploits using two (or more) null values; the ABA

1 The Compare-And-Swap (CAS) atomic primitive will update a given memory word, if and
only if the word still matches a given value (e.g. the one previously read). CAS is generally
available in contemporary systems with shared memory, supported mostly directly by hard-
ware and in other cases in combination with system software.
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Enqueue()T1

T2 Dequeue()T3 Dequeue()

Removed (NULL2)

Enqueued items

Empty (NULL)

globalTailBlock globalHeadBlock

Fig. 1. A lock-free queue implemented using a linked list of arrays, where each thread is avoiding
accesses to global pointers in order to reduce number of cache misses

problem is due to the inability of CAS to detect concurrent changes of a memory word
from a value (A) to something else (B) and then again back to the first value (A). More-
over, for lowering the memory contention the algorithm alternates every other operation
between scanning and updating the shared head and tail indices.

In resemblance to [6][1][11] the new algorithm uses arrays to store (pointers to) the
items, and in resemblance to [11] it uses CAS and two null values. Moreover, shared
indices [1] are avoided and scanning [11] is preferred as much as possible. In contrast
to [6][1][11] the array is not static or cyclic, but instead more arrays are dynamically
allocated as needed when new items are added, making our queue fully dynamic.

Michael and Scott [8] presented a lock-free queue based on a linked list, supporting
multiple producers and consumers. Synchronization is done via shared pointers indi-
cating the current head and tail node as well via the next pointer of the last node, all
updated using CAS. The queue is fully dynamic as more nodes are allocated as needed
when new items are added. The original presentation used unbounded version counters,
and therefore required double-width CAS which is not supported on all contemporary
platforms. The problem with the version counters can easily be avoided by using some
memory management scheme as e.g. [7]. Moir et al. [9] presented an extension where
elimination is used as a back-off strategy and increasing scalability when contention
on the queue’s head or tail is noticed via failed CAS attempts. However, elimination is
only possible when the queue is close to be empty during the operation’s invocation.
Hoffman et al. [5] takes another approach to increase scalability by allowing concur-
rent Enqueue operations to insert the new node at adjacent positions in the linked list
if contention is noticed during the attempted insert at the very end of the linked list.
To enable these “baskets” of concurrently inserted nodes, removed nodes are logically
deleted before the actual removal from the linked list, and as the algorithm traverses
through the linked list it requires stronger memory management than [7] and a strategy
to avoid long chains of logically deleted nodes.

In resemblance to [8][9][5] the new algorithm is dynamic, and in resemblance to [5]
removed blocks are logically deleted, blocks are being traversed and creation of long
chains are avoided. In contrast to [9][5] the new algorithm employs no special strategy
for increasing scalability besides allowing disjoint Enqueue and Dequeue operations to
execute in parallel.
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Program 1. The functionality supported by the memory management scheme

1 node_t * NewNode(int size);
2 void DeleteNode(node_t *node);
3 node_t * DeRefLink(node_t **link);
4 void ReleaseRef(node_t *node);
5 bool CASRef(node_t **link, node_t *old, node_t *_new);
6 void StoreRef(node_t **link, node_t *node);

Program 2. Callback procedures for the memory management

1 void TerminateNode(block_t *node) {
2 StoreRef(&node->next,NULL);
3 }
4 void CleanUpNode(block_t *node) {
5 block_t *next = DeRefLink(&node->next);
6 block_t *next2 = DeRefLink(&globalTailBlock);
7 CASRef(&node->next, next, next2);
8 }

3 The New Algorithm

The underlying data structure that our algorithmic design uses is a linked list of arrays,
and is depicted in Figure 1. In the data structure every array element contains a pointer to
some arbitrary value. Both the Enqueue and Dequeue operations are using increasing
array indices as each array element gets occupied versus removed. To ensure consis-
tency, items are inserted or removed into each array element by using the CAS atomic
synchronization primitive. To ensure that a Enqueue operation will not succeed with a
CAS at a lower array index than where the concurrent Dequeue operations are operat-
ing, we need to enable the CAS primitive to distinguish (i.e., avoid the ABA problem)
between “used” and “unused” array indices. For this purpose two null pointer values
[11] are used; one (NULL) for the empty indices and another (NULL2) for the removed
indices. As each array gets fully occupied (or removed), new array blocks are added to
(or removed from) the linked list data structure. Two shared pointers, globalHeadBlock
and globalTailBlock, are globally indicating the first and last active blocks respectively.
These shared pointers are also concurrently updated using CAS operations as the linked
list data structure changes. However, as these updates are done lazily (not atomically
together with the addition of a new array block), the actually first or last active block
might be found by following the next pointers of the linked list.

As a successful update of a shared pointer will cause a cache miss to the other threads
that concurrently access that pointer, the overall strategy for improving performance and
scalability of the new algorithm is to avoid accessing pointers that can be concurrently
updated [5]. Moreover, our algorithm achieves fewer updates by not having shared vari-
ables with explicit information regarding which array index currently being the next
active for the Enqueue or Dequeue. Instead each thread is storing its own2 pointers
indicating the last known (by this thread) first and active block as well as active indices

2 Each thread have their own set of variables stored in separate memory using thread-local stor-
age (TLS).
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Program 3. The block structure and auxiliary functions

1 struct block_t : public node_t {
2 void * nodes[BLOCK_SIZE];
3 int head;
4 int tail;
5 bool deleted;
6 block_t * next;
7 };
8 block_t * NewBlock() {
9 block_t * block = NewNode(sizeof(block_t));

10 block->next = NULL;
11 block->head = 0;
12 block->tail = 0;
13 block->deleted = false;
14 for(int i=0;i<BLOCK_SIZE;i++) block->nodes[i]=NULL;
15 return block;
16 }
17 void InitQueue() {
18 block_t * block = NewBlock();
19 StoreRef(&globalHeadBlock,block);
20 StoreRef(&globalTailBlock,block);
21 }
22 void InitThread() {
23 threadHeadBlock = DeRefLink(&globalHeadBlock);
24 threadTailBlock = DeRefLink(&globalTailBlock);
25 threadHead = threadHeadBlock->head;
26 threadTail = threadTailBlock->tail;
27 }
28 // Shared variables
29 block_t * globalHeadBlock, globalTailBlock;
30 // Thread-local storage
31 block_t * threadHeadBlock, threadTailBlock;
32 int threadHead, threadTail;

for inserting and removing items. When a thread recognizes its own pointers to be inac-
curate and stale, it performs a scan of the array elements and array blocks towards the
right, and only resorts to reading the global pointers when it’s beneficial compared to
scanning. The Dequeue operation to be performed by thread T3 in Figure 1 illustrates
a thread that has a stale view of the status of the data structure and thus needs to scan.
As array elements are placed next to each other in memory, the scan can normally be
done without any extra cache misses (besides the ones caused by concurrent successful
Enqueue and Dequeue operations) and also without any constraint on in which order
memory updates are propagated through the shared memory, thus allowing weak mem-
ory consistency models without the need for additional memory fence instructions.

For our implementation of the new lock-free queue algorithm, we have selected the
lock-free memory management scheme proposed by Gidenstam et al. [2] which makes
use of the CAS and FAA atomic synchronization primitives. The interface defined by
the memory management scheme is listed in Program 1 and are fully described in [2].
Using this scheme we can assure that an array block can only be reclaimed when there
is no next pointer in the linked list pointing to it and that there are no local references
to it from pending concurrent operations or from pointers in thread-local storage. By
supplying the scheme with appropriate callback functions, the scheme automatically
reduces the length of possible chains of deleted nodes (held from reclamation by late
threads holding a reference to an old array block), and thus enables an upper bound on
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Program 4. The new Enqueue operation.

1 void Enqueue(void *item) {
2 int head = threadHead;
3 block_t *block = threadHeadBlock;
4 for(;;) {
5 if(head==BLOCK_SIZE) {
6 block_t *oldBlock = block;
7 block->head = head;
8 block = DeRefLink(&block->next);
9 if(block == NULL) {

10 block = (queueblock_t *) NewBlock();
11 while(globalHeadBlock != oldBlock && oldBlock->next==NULL) {
12 queueblock_t *headBlock = DeRefLink(&globalHeadBlock);
13 if(headBlock->next != oldBlock) break;
14 if(CASRef(&globalHeadBlock,headBlock,oldBlock)) break;
15 }
16 if(CASRef(&oldBlock->next,NULL,block))
17 CASRef(&globalHeadBlock,oldBlock,block);
18 else {
19 DeleteNode(block);
20 block = DeRefLink(&oldBlock->next);
21 }
22 }
23 else if(block->head==BLOCK_SIZE && block->next!=NULL)
24 block = DeRefLink(&globalHeadBlock);
25 threadHeadBlock = block;
26 head = block->head;
27 }
28 else if(block->nodes[head]==NULL) {
29 if(CAS(&block->nodes[head],NULL,item)) {
30 threadHead = head+1;
31 return;
32 }
33 }
34 else head++;
35 }
36 }

the maximum memory usage for the data structure. The task of the callback function
for breaking cycles, see the CleanUpNode procedure in Program 2, is to update the
next pointer of a deleted array block such that it points to an active array block, in
a way that is consistent with the semantics of the Enqueue and Dequeue operations.
The TerminateNode procedure is called by the memory management scheme when the
memory of an array block is possible to reclaim.

The specific fields of each array block are described in Program 3 as it is used in
this implementation. Note that the linked list data structure always contains at least one
array block. Note also that the additional fields head and tail in the array block are
only used for indicating either fullness or emptiness of the whole array, and not any
intermediate status. In order to simplify the description of our new algorithm, we have
omitted some of the details of applying the operations of the memory management [2].
In actual implementations, ReleaseRef calls should be inserted at appropriate places
whenever a variable holding a safe pointer goes out of scope or is reassigned.

The Enqueue operation is described in Program 4. After scanning for the first empty
(i.e., an array element containing NULL) array index, it tries to insert the new item
by updating the array element with CAS. If this fails (due to a concurrent successful
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Program 5. The new Dequeue operation.

1 void * Dequeue() {
2 int tail = threadTail;
3 block_t *block = threadTailBlock;
4 for(;;) {
5 if(tail==BLOCK_SIZE) {
6 block_t *oldBlock = block;
7 block->tail = tail;
8 block=DeRefLink(&block->next);
9 if(block == NULL)

10 return NULL;
11 else {
12 if(!oldBlock->deleted) {
13 while(globalTailBlock != oldBlock && !oldBlock->deleted) {
14 block_t *tailBlock= DeRefLink(&globalTailBlock);
15 if(tailBlock->next != oldBlock) continue;
16 if(CASRef(&globalTailBlock,tailBlock,oldBlock))
17 DeleteNode(tailBlock);
18 }
19 if(CAS(&oldBlock->deleted,false,true)) {
20 if(CASRef(&globalTailBlock,oldBlock,block))
21 DeleteNode(oldBlock);
22 }
23 }
24 if(block->deleted)
25 block=DeRefLink(&globalTailBlock);
26 }
27 threadTailBlock = block;
28 tail = block->tail;
29 }
30 else {
31 void *data = block->nodes[tail];
32 if(data==NULL2)
33 tail++;
34 else if(data==NULL && CAS(&block->nodes[tail],NULL,NULL)) {
35 threadTail = tail;
36 return NULL;
37 }
38 else if(CAS(&block->nodes[tail],data,NULL2)) {
39 threadTail = tail+1;
40 return data;
41 }
42 }
43 }
44 }

Enqueue), it continues scanning until the end of the array. If the end of the array is
reached, it first assures lock-freedom and accuracy of the global head pointer:

1. If the global head pointer is not pointing to the current block, the operation (after it
verifies that the global head pointer is pointing to the previous block) updates the
head pointer to do so by using a CAS operation.

2. If the global head pointer is pointing to the current array block, the algorithm tries to
insert a new array block by updating the next pointer using a CAS. If this fails, this
is due to some concurrent Enqueue operation having already added a new block,
henceforth the operation continues scanning for an empty array index in that block.

The Dequeue operation is described in Program 5. After scanning for the first non-
empty (i.e., an array element with neither NULL or NULL2) array index, it tries to



Cache-Aware Lock-Free Queues 309

remove the found item by updating the array element with a CAS. If this fails (due to
a concurrent successful Dequeue), it continues scanning until the end of the array. If
NULL is found during scanning, the queue is (after also ensuring the NULL value to be
globally consistent using CAS3 ) recognized to be empty and the operation returns an
empty value. If the end of the array is reached, the algorithm first assures lock-freedom
and accuracy of the global tail pointer:

1. If the global tail pointer is pointing to the current array block, it tries to logically
mark the block as deleted using a CAS.

2. If the global tail pointer was not pointing to the current block, it is (after verified that
it is pointing to the previous block) updated to do so using a CAS. Whenever the
global tail pointer is successfully updated (either when helping or after a successful
logical deletion), the previously global tail-block is sent for memory reclamation.

Whenever an array element is successfully updated with NULL2 using CAS, the found
item is returned by the Dequeue operation.

4 Correctness and Analysis

In this section we show that the new queue algorithm is linearizable and lock-free.
Line numbers given for actions in Enqueue operations refer to Program 4, while line
numbers for actions in Dequeue operations refer to Program 5. Due to space limitations
some of the detailed proofs have been omitted in this version of the paper.

Assumption 1 (Memory order) . All CAS operations are atomic.
A CAS operation behaves as a memory barrier for a thread’s memory reads and

writes. All reads and writes done before the CAS in program order are committed to
memory before the CAS takes effect and none of the reads and writes following a CAS
are visible in memory before the CAS takes effect.

Definition 1. The linearization point of an Enqueue operation is the successful CAS at
line 29 in Enqueue.

Definition 2. The linearization point of a Dequeue operation is either:
i) the CAS at line 34 in Dequeue (Program 5) iff NULL is returned; or
ii) the successful CAS at line 38 in Dequeue otherwise.

4.1 Properties of an Array Block

Definition 3. A full array block is a block where all array elements have been changed
from NULL to another value (i.e., there is no array element with value NULL). An array
block is marked full when its head field is set to BLOCK SIZE.

Definition 4. An emptied array block is a block where all array elements have been
changed to NULL2. An array block is marked emptied when its block.tail field is set to
BLOCK SIZE.

3 On the platform we used for our experimental evaluation, CAS is faster than memory barriers
for this purpose. On platforms with suitable memory barriers, these could be used instead.
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Lemma 1 (Block array element life cycle). An array element in a block can change
value at most two times during the life time of the block in the following order:
i) first from the initial value NULL to an item; and subsequently
ii) from an item to NULL2.

Lemma 2 (Thread-local head lag). The thread-local static variable threadHead is
never ahead of the true head index (i.e., the index of the first NULL value in the block)
of the block at the starting point of an Enqueue operation.

Lemma 3 (Thread-local tail lag). The thread-local static variable threadTail is never
ahead of the true tail position (i.e., the index after the last NULL2 in the block) of the
block at the starting point of a Dequeue operation.

4.2 Properties of the Chain of Array Blocks

Definition 5. An active array block is a block that has been created, has been published
in a shared variable (i.e., in globalHeadBlock, globalTailBlock or a next pointer) and not
yet been marked as deleted by setting the block’s deleted flag.

Definition 6. A valid array block is a block that has been created and has not (yet)
become reclaimable.

Lemma 4 (Block next pointer). The next pointer in an active block initially contains
NULL and can change at most once while the block is active, from NULL to a pointer to
a new block.

Lemma 5 (Unique head block). At any time there is exactly one valid block that has
a next pointer with the value NULL.

Lemma 6 (At least one active block). There is always at least one active block in the
queue.

Lemma 7 (globalHeadBlock). The global variable globalHeadBlock always points to
either:
i) the block at the head of the chain of blocks; or
ii) the block immediately before the head of the chain of blocks.

Lemma 8 (globalTailBlock). The global variable globalTailBlock always points to ei-
ther:
i) the first active block in the chain of blocks; or
ii) the block immediately before the first active block in the chain of blocks.

4.3 Linearizability

Lemma 9 (Linearizability I). The operation Enqueue is linearizable with respect to
other Enqueue and Dequeue operations with linearization points according to Defini-
tion 1 and Definition 2.

Proof. First observe that from Lemma 5 and Lemma 6 there is always a well defined
array block at the head of the chain of array blocks.
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Consider two concurrent Enqueue operations Enq1(A) and Enq2(B), enqueuing
the elements A and B respectively. According to Lemma 2 we can, without loss of
generality, assume that both operations start with their threadHead variables set to 0.
Both operations do a linear search for the first array element in the block at the head of
the chain of blocks that contains NULL and will try to update that array element using
CAS (line 29 in Program 4). Only one can succeed and that Enqueue will be linearized
at that point. The other will retry from line 4.

Consider an Enqueue operation Enq(A) and a concurrent Dequeue operation Deq.
The critical case is when the queue is initially empty. According to Lemma 2 and
Lemma 3 we can, without loss of generality, assume that the operations start with their
threadHead and respectively threadTail variables set to 0. Assume towards a contradic-
tion that Deq returns A despite being linearized before Enq(A). The contradiction is
obvious since there is no way that Deq can return A before A is written into the array
block, which occurs at the linearization point of Enq(A) (line 29 in Program 4).

For the opposit case assume towards a contradiction that Deq returns NULL despite
being linearized after Enq(A). To return NULLDeq must traverse the array block until
it finds NULL. In particular, it must have read the first index that contained NULL,
which is where Enq(A) will write A using CAS (Enqueue line 29). Since CAS is
atomic according to our assumption on memory order a read returning NULL must have
occured before the CAS. Since this read is the linearization point of Deq we have a
contradiction with the assumption that Deq was linearized after Enq(A). ��

Lemma 10 (Linearizability II). The operation Dequeue is linearizable with respect
to other Dequeue and Enqueue operations with linearization points according to Defi-
nition 1 and Definition 2.

Proof. Consider two Dequeue operations, Deq1 and Deq2 on a non-empty queue. The
operations will first search the first active block, via their threadTailBlock variables and
globalTailBlock, where the latter is guaranteed to point to the first active block or the
block immediately before it by Lemma 8. Once a Dequeue has reached the first ac-
tive block it will scan it, looking for an array element that is not NULL2. If such an
array element is found the Deq operation tries to change that element to NULL2 using
CAS (line 38). Assume towards a contradiction that the Deq1 returning B is linearized
before Deq2 returning A where A was enqueued before B (in the same array block).
From Lemma 9 we know that A is in an array element with lower index than B. Since
Dequeue only scans past NULL2 values (line 32), Deq1, which must have scanned past
the index of A to reach B, must have read NULL2 from A’s array element. According
to our memory order assumption all local memory reads that precede a CAS must have
occured before the CAS. Hence, Deq1 read NULL2 from the array element of A before
its linearization point. From Lemma 1 we know that an array element can only change
to NULL2 once which contradicts our assumption that Deq2 which is linearized after
Deq1 returns A.

Consider two Dequeue operations, Deq1 and Deq2 on a queue containing exactly
one item A. Assume towards a contradiction that Deq1 returns NULL despite being
linearized before Deq2 returning A. As above by Lemma 1 NULL can only occur at a
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higher array element index than that of A and consequently Deq1 have to read NULL2
from that location before its CAS operation from NULL to NULL at line 34 succeeds
giving a contradiction.

That Dequeue is linearizable with respect to concurrent Enqueue operations is shown
in the proof of Lemma 9 above.

Note that the scan procedure in Dequeue is performing speculative reads that might
have taken effect out of program order. If the scan was performing at least one search
step, the preceding speculative reads in the steps before the last step must have read the
NULL2 value (as line 34 must have been executed). These speculative NULL2 reads
must have taken effect before the last atomic NULL read during the CAS at line 34,
as the CAS implies a memory barrier and must have taken effect after the previous
speculative reads. ��

4.4 Lock-Freedom

Lemma 11 (Lock-free I). The operation Enqueue is lock-free.

Proof. The Enqueue operation contains two nested loops. There are three cases to con-
sider:

First consider the case where threadHeadBlock points to a block that is not marked
full. According to Lemma 2 the value of the threadHead variable will be smaller or
equal to the index of the first NULL value in the block when the Enqueue operation
starts. The operation will finish if it finds an array element in the block containing
NULL and successfully puts its item there using a CAS.The index it looks at increases
in each iteration, except when an unsuccessful CAS occurs, something that according
to Lemma 1 can only happen once per array element. Thus the search index will reach
the end of the block after at most 2*BLOCK SIZE iterations and would find a free array
element if there is any left. That is, progress is made unless concurrent operations fill
the block first. If the block is found to be full the next iteration will mark the block full
(line 7) and continue in one of the cases below.

Second, consider the case where threadHeadBlock points to a block that is marked
full and has a next pointer that isn’t NULL. Finding out that the block is full takes at most
BLOCK SIZE iterations. After that Enqueue will read the full block’s next pointer into
block (line 8). Since block isn’t NULL the Enqueue operation tests if the new block is
marked as full (line 23). If it is full and isn’t the last block (i.e., block.next is not NULL)
the Enqueue operation moves to the block that globalHeadBlock points to. According
to Lemma 7 this is either the last or second last block of the chain. If block is full and is
the last block the next iteration will enter case three below.

Third, consider the case where threadHeadBlock points to a block that is full
(oldBlock) and has a next pointer that is NULL. This case proceeds as the second case
until the Enqueue reads the oldBlock.next pointer to be NULL at line 8. When it does
that, it enters the inner loop at line 11. To remain in the loop globalHeadBlock must
not be equal to oldBlock and oldBlock must remain the last block in the chain. Further
globalHeadBlock must point to the block before oldBlock at line 13 and not at line 14
since the CAS would succeed and exit the loop otherwise. With Lemma 7 in mind this
can clearly only occur once since in the next iteration either globalHeadBlock is equal



Cache-Aware Lock-Free Queues 313

to oldBlock or, if globalHeadBlock has moved further, oldBlock.next is not NULL any-
more. Past the inner loop the Enqueue tries to add a new block. Regardless of whether
it succeeds or not the next iteration of the outer loop will be done on a new block. ��

Lemma 12 (Lock-free II). The operation Dequeue is lock-free.

Proof. The Dequeue operation contains two nested loops. There are three cases to con-
sider:

First consider the case where threadTailBlock points to a block that has not been
marked emptied. According to Lemma 3 the value of the threadTail will be smaller or
equal to the index of the first value not equal to NULL2 in the block when the Dequeue
operation starts. At worst the operation has to search from the beginning of the block
(i.e., threadTail was 0). Each array element in the block is read (line 31 in Dequeue) and
depending on the value found at the current array element the operation either moves
to the next array element if the value was NULL2 (line 33), returns NULL (line 36) if
the value was NULL and then verified to be NULL by the CAS at line 34, or attempts to
change the value of the location to NULL2 using a CAS (line 38). If the CAS succeeds
the removed item is returned, otherwise the Dequeue operation will do another iteration
in which it will move to the next array element in the block (since according to Lemma 1
the only possible reason for the CAS to fail is that a concurrent Dequeue operation
changed the value to NULL2). In all at most 2*BLOCK SIZE iterations of the outer loop
is required to either find and successfully dequeue an item or find the block emptied. If
the block is found to be emptied the next iteration will mark the block emptied (line 7)
and continue in one of the cases below.

Second, consider the case where threadTailBlock points to a block that has been
marked emptied and has a next pointer that is NULL. In this case the queue is empty
and NULL is returned (line 10).

Third, consider the case where threadTailBlock points to a block that has been marked
emptied and has a next pointer that is not NULL. In this case the current block is refer-
enced by oldBlock (line 6) and its next pointer is read into block (line 8). There are two
cases depending on whether oldBlock is marked deleted or not (line 12). If oldBlock is
marked deleted the Dequeue operation checks if the next block is also marked deleted
(line 24) in which case it moves directly to the block that globalTailBlock points to,
which according to Lemma 8 is the first active block of the queue or the block immedi-
ately before it. Otherwise the Dequeue moves the next block (which at least was active
at line 24). If oldBlock is not marked deleted the Dequeue will enter the inner loop
(line 13). To remain in this loop, the variable globalTailBlock has to be different from
oldBlock and oldBlock must not be marked deleted. From Lemma 8 we know that glob-
alTailBlock points to the first active block or the block immediately before that. At the
time the inner loop is entered oldBlock is the first active block so globalTailBlock is the
block immediately before oldBlock or else the loop would not be entered (since global-
TailBlock would be equal to oldBlock). In this case the CAS at line 16 in this or a concur-
rent Dequeue can advance globalTailBlock to oldBlock and terminate the loop. Further,
Lemma 8 shows that it is impossible to advance globalTailBlock past oldBlock with-
out marking oldBlock deleted and thereby making sure the inner loop cannot continue.
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Once clear of the inner loop the Dequeue tests if the next block is marked deleted (line
24) and acts as described above, continuing with either the next block or the block
pointed to by globalTailBlock. ��

4.5 Concurrent FIFO Queue

Theorem 1. The algorithm implements a lock-free and linearizable FIFO queue data
structure.

Proof. The minimal set of operations4 necessary for implementing a FIFO queue is
consisting of the Enqueue and Dequeue operations. Correspondingly, given by Lem-
mas 11 and 12 our implementation is lock-free, and given by Lemmas 9 and 10 our
implementation is linearizable.

5 Experiments

We have evaluated the performance of our lock-free queue algorithm by the means of
some custom micro-benchmarks. The purpose of these experiments is to help estimate
how well the new algorithm compares with other known lock-free queues under high
contention and increasing concurrency. The benchmarks are the following:

1. Random 50%/50%. Each thread is randomly (the sequence is decided in forehand)
executing either an Enqueue or a Dequeue operation.

2. Random 50%/50% Bias 1000. Performed as the previous benchmark, besides that
the queue is initialized with 1000 items.

3. 1 Producer / N-1 Consumers. Each thread (out of N) is either a producer or con-
sumer, throughout the whole experiment. The producer is repeatedly executing En-
queue operations, whereas the consumers are executing Dequeue.

4. N-1 Producers / 1 Consumer. Same as the previous benchmark, with the producer
and consumer distributions interchanged.

For comparison we have also implemented the dynamic lock-free queues by Michael
and Scott [8], ditto with elimination [9], the baskets queue [5], and the static cyclic array
lock-free queue presented in [11]. All dynamic queues (including the new algorithm)
have been implemented to support queue sizes only limited by the system’s memory,
i.e., using lock-free management schemes [7] or [2] and lock-free free-lists where ap-
propriate. For the new implementation, the size of the array block (BLOCK SIZE) is
chosen to fit within one cache line. All implementations are written in C and com-
piled with the highest optimization level. In our experiments, each concurrent thread
is started at the very same time and each benchmark runs for one second for each im-
plementation. Exactly the same sequence of operations was performed for all different
implementations compared. A clean-cache operation was also performed just before
each run.

4 If required, operations as Peek and IsEmpty can be derived straight-forwardly out of the
Dequeue algorithm by omitting the update part of the CAS operation in line 38 combined
with other minor changes.
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Fig. 2. Experiments on a 8-way Intel Core i7 processor system
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The results from the experiments with up to 8 threads are shown in Figure 2. The
benchmarks have been executed on an Intel Core i7 920 2.67 GHz with 6 GB DDR3
1333 MHz system running Windows 7 64-bit. This processor has 4 cores, capable of
executing 2 threads each. The results of benchmarks 1-2 show the number of successful
(failed Dequeues are not counted) operations executed per second in the system in total.
The results of benchmarks 3-4 show the number of items per second that have passed
through the queue (i.e., the number of successful Dequeue operations). In all of the
benchmarks, the two array-based implementations perform significantly better than the
other implementations. The worse performance of the other implementations compared
to the static array-based implementation can be explained to be mainly due to the costs
of having dynamic allocation of nodes. Interestingly, the new dynamic implementation
performs significantly better than the implementation with a static array. This can be
explained by the benefits of the cache-awareness (also causing fewer shared updates)
apparently being significantly higher than the corresponding costs of having dynamic
allocation of arrays.

6 Conclusions

We have presented a new algorithm for implementing a lock-free queue data structure.
To the best of our knowledge, this is the first lock-free queue algorithm with all of the
following properties:

– Cache-aware algorithmic handling of shared pointers including lazy updates to de-
crease communication overhead.

– Linked-list of arrays as underlying structure for efficient dynamic algorithmic de-
sign.

– Exploitation of thread-local static storage for efficient communication.
– Fully dynamic in size via lock-free memory management.
– Lock-free design for supporting concurrency.
– Algorithmic support for weak memory consistency models, resulting in more effi-

cient implementation on contemporary hardware.

The algorithm has been shown to be lock-free and linearizable. Experiments on a con-
temporary multi-core platform show significantly better performance for the new algo-
rithm compared to previous state-of-the-art lock-free implementations. We believe that
our implementation should be of highly practical interest to contemporary and emerging
multi-core and multi-processor system thanks to both its high performance, its strong
progress guarantees, and its support to weak memory consistency models. We are cur-
rently incorporating it into the NOBLE [10] library.
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Abstract. Shared counters are the key to solving a variety of coordina-
tion problems on multiprocessor machines, such as barrier synchroniza-
tion and index distribution. It is desired that they, like shared objects in
general, be robust, linearizable and scalable.

We present the first linearizable and wait-free shared counter algo-
rithm that achieves high throughput without a-priori knowledge about
the system’s level of asynchrony. Our algorithm can be easily adapted to
any other combinable objects as well, such as stacks and queues.

In particular, in an N-process execution E, our algorithm achieves
high throughput of Ω( N

φ2
E

log2 φE log N
), where φE is E’s level of asyn-

chrony. Moreover, our algorithm stands any constant number of faults. If
E contains a constant number of faults, then our algorithm still achieves
high throughput of Ω( N

φ′2
E

log2 φ′
E

log N
), where φ′

E bounds the relative

speeds of any two processes, at a time that both of them participated in
E and none of them failed.

Our algorithm can be viewed as an adaptive version of the Bounded-
Wait-Combining (BWC) prior art algorithm. BWC receives as an input
an argument φ as a (supposed) upper bound of φE, and achieves optimal
throughput if φ = φE. However, if the given φ happens to be lower than
the actual φE , or much greater than φE, then the throughput of BWC
degraded significantly. Moreover, whereas BWC is only lock-free, our
algorithm is more robust, since it is wait-free.

To achieve high throughput and wait-freedom, we present a method
that guarantees (for some common kind of procedures) the procedure’s
successful termination in a bounded time, regardless of shared memory
contention. This method may prove useful by itself, for other problems.

1 Introduction

A shared counter is a shared object that holds an integer and supports the
fetch&increment (FAI) operation for atomically incrementing the counter and
returning its previous value. It is desirable that algorithms for shared counters be
linearizable, robust, and scalable. Linearizability [17] is the most widely-used cor-
rectness condition for shared objects. Intuitively, it requires that each operation
appears to take effect instantaneously at some moment between its invocation
and response. Regarding robustness - Lock-freedom is a global progress guar-
antee. It requires that some operation must be completed in a finite number
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of processes’ steps. Wait-freedom [15] is a stronger guarantee - a process com-
pletes its own operation in a finite number of its own steps. Wait-freedom pro-
vides strong fault-tolerance [15]: no process can be prevented from completing
an operation by undetected failures of other processes, or by arbitrary speed
variations. We measure scalability in terms of shared objects throughput [12].
Intuitively, the throughput of a non-empty execution E is the ratio between E’s
duration and the number of completed FAI instances in E. For example, suppose
the hardware supports a primitive of FAI. A counter implementation in which
every process simply performs the FAI primitive on a shared base object is both
linearizable and wait-free. However, this implementation is not scalable, since
its throughput does not grow with N .

This paper presents the first linearizable and wait-free shared counter algo-
rithm that achieves high throughput without any a-priori knowledge of the ex-
ecution. Our algorithm can be easily adapted to work for any other combinable
operation as well.

1.1 Related Work

To allow parallelism, researchers proposed highly-distributed coordination struc-
tures such as counting networks [1]. Though they are wait-free and scalable,
the counting networks of [1] are not linearizable. Herlihy, Shavit, and Waarts
demonstrated that counting networks can be adapted to implement linearizable
counters [16]. However, the first counting network they present is not lock-free,
while the others are not scalable, since each operation has to access Ω(N) base
objects.

Combining is a well-established technique for highly parallel shared objects.
Combining was introduced by Gottlieb et al. to be used in switches of a processor-
to-memory network [8]. It reduces contention by merging several messages with
the same destination. When a switch discovers several memory requests directed
to the same memory location, a combined request is created to represent these
requests. Separate responses to the original requests are created later from the
reply to the combined request. Goodman et al. [7] introduced Combining Tree
(CT), that was used to implement a linearizable and scalable counter, but their
implementation is not lock-free. Shavit and Zemach [19] introduced diffracting
trees to replace the static CT with a collection of randomly created dynamic
trees. Diffracting trees were used to implement wait-free and scalable shared
counters but they are not linearizable. Hoai Ha, Papatriantafilou, and Tsigas
introduced another version of adaptive CT [11], but it is not linearizable either.

Chandra, Jayanti, and Tan [2] introduced a construction that implements a
large class of objects they call closed objects. An object contains a set of opera-
tions, such that every operation in the set causes the object a state transition.
The object is closed, if any two consecutive state transitions can be replaced
with a single state transition that brings the object to the same state. A closed
object may support the FAI operation. In their construction, processes com-
bine operations over dynamically created trees. Their algorithm is wait-free and
linearizable, but its throughput does not grow with N .
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Ellen, Lev, Luchangco, and Moir ([6]) introduced Scalable Non-Zero Indicator
(SNZI), a shared object that is related to a shared counter, but has weaker
semantics. SNZI can replace a shared counter for some applications. They present
a linearizable implementation that is scalable and lock-free, and can be fast in
the absence of contention. However, their approach does not seem suitable for a
full fledged shared counter.

Achieving fault-tolerance using bounded-time locking was proposed by Gray
and Cheriton in [9], in the context of caching. They presented the lease, that
grants its holder control over writes to a covered datum (during the term of the
lease). Another fault-tolerance tool is Greenwald’s two-handed-emulation [10],
which uses the double-compare-and-swap (DCAS) primitive to construct lock-
free implementations of shared objects. When some process p calls the emulation
to execute an operation o of the object, p tries to register a new instance of o to
the emulation. Only one operation instance may be registered to the emulation
at any moment. Hence, first, p has to assist executing the steps of the currently
registered instance o′ (if such exists). When o′ is completed, the call of its creator
process completes, and other process (possibly p) registers its operation instance.
DCAS is used to ensure that exactly one process executes successfully the current
step of the currently registered operation instance, while the other simultaneous
writes have no effect.

Hendler and Kutten integrated combining, bounded waiting and two-handed-
emulation, and proposed BWC, a linearizable and lock-free counter implemen-
tation [12]. Their algorithm receives as an input an argument φ and guarantees
a high throughput of Ω( N

log N ) in an N -process execution E in which φ is an
asymptotically tight upper bound on E’s level of asynchrony. Intuitively, BWC
is a lock-free variation of CT, in which processes wait for each other, but only up
to some bounded number of steps (determined using φ). However, in an execu-
tion E in which φ < φE , BWC achieves low throughput. When φ >> φE , BWC’s
throughput decreases by a factor of at least φ/φE compared to the optimum.

The difficulty arising from an unknown level of asynchrony received a lot
of attention. Dolev, Dwork and Stockmeyer presented consensus algorithms for
a number of partial synchrony models with different timing requirements and
failure assumptions [3]. In some of their models, a fixed upper bound on the
relative processor speed (denoted by φ) is not known in advance, and their
protocols overcome this difficulty. However, their approach does not seem to
provide a robust solution in our model, since a fixed φ may not exists. Even if
it did, it is unclear how to broadcast it to all processes without high contention.

Dwork, Lynch and Stockmeyer suggested distributed consensus protocols that
are tolerant to some number of failures in various models with different synchrony
conditions [5]. They deal with point-to-point models and with models that allow
multicasting to some of the processors in an atomic step. However, in their
solutions, the level of asynchrony is known in advance.

Like in the case for counters, we are not aware of any linearizable and wait-free
deterministic stack or queue algorithm that is also scalable. Hendler, Shavit, and
Yerushalmi [14] presented an elimination-based randomized linearizable stack
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algorithm that is both lock-free and scalable in practice. Moir et al. [18] used ideas
similar to [14] to obtain a queue algorithm that possesses the same properties.

The new algorithm presented in this paper can be viewed as an adaptive
version of BWC, that gracefully adapts to the asynchrony bound. Unfortunately,
we have not found a way to use BWC in a modular manner, and our algorithm
is therefore rather involved (see Sect. 3.3).

The rest of the paper is organized as follows. Section 2 provides the model of
the shared system we use. Section 3 explains some key concepts in the new algo-
rithm, by outlining some previous combining techniques. Section 4 describes the
new algorithm. Section 5 presents a new technique we use to execute concurrent
procedures, that may be useful by itself, for other problems. Section 6 outlines
the analysis of the new algorithm. In Sect. 7, we conclude and present directions
for future work.

2 Model

We consider a shared-memory system, in which a set of N asynchronous pro-
cesses communicate by applying to shared variables read, write, or read-modify-
write primitives - compare-and-swap (CAS) and DCAS. To execute a primitive,
a process performs an invocation of the operation, 0 or more stall steps and
a response step. From the invocation step and until the response step, the op-
eration is considered to be pending. If two or more processes have a pending
write/read-modify-write operation on a shared variable v, then exactly one of
them receives a response, and the rest are stalled. Similarly to [4], we assume
that if a process p has a pending operation on a shared variable v, then p incurs
a stall only if another process with a pending operation on v receives a response.
Pending operations receive their responses in the order of their invocations.

A configuration specifies the value of each shared variable and the state of
each process. An initial configuration is a configuration in which all the shared
variables have their initial values and all the processes are in their initial states.
An execution fragment is a sequence of steps, in which processes take steps and
change states according to their algorithm. A process’ state may change based
on the response it receives in a response step only. An execution is an execution
fragment that starts from the initial configuration. We assign times to execution
steps as follows. Assigned times constitute a non-decreasing sequence of integers
starting from 0. Let s be a step performed by process q, let E = E1sE2, and
let s′ denote q’s last step in E1 (if any). The time assigned to s in E is denoted
time(E,s). If s is a response step, then time(E,s) is set to time(E,s’). If s is a stall
step, then time(E,s) is set to time(E,s’)+1. If s is an invocation step, time(E,s)
is set to the maximum between 0 and (if exists): (1) the time of the last step in
E1; (2) time(E,s’) plus 1; (3) the time of the last step in E1 that accesses the
same variable as s plus 1.

The duration of an execution E is the time of the last step of E. The through-
put of an execution E is the ratio between the number of FAI operations that
complete in E and E’s duration.
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Let E be an execution fragment. E is φ-synchronous if, for any E0, E1, E2

such that E = E0E1E2, and for any two distinct processes p and q, if p has to
invoke some primitive at the end of E0 and E1 contains φ + 1 invocation steps
by q, then E1 contains at least one invocation step by p.

An integer φ is a correct asynchrony bound for an execution E if it is an
upper bound of the speed ratio between any two processes in E. E’s level of
asynchrony, denoted by φE , is the minimal corret asynchrony bound (or infinity
if no finite bound exists). The contention level of an execution E is the maximum
number of consecutive stalls that are incurred by a process in E.

For simplicity of presentation, we assume in the following that N is an integral
power of 2. This assumption does not change our results: the solution for a set of
N processes is equivalent to the solution for a set of 2�log N� processes (in which
only N processes actually make requests).

3 Prior Art Combining Techniques

3.1 Combining Tree [7]

The CT algorithm [7] uses a full binary tree, in which each process owns one of
the leaves and a unique color. A process p stores a new request in p’s leaf, and
climbs the tree towards the root. To climb to a new node n, n must be uncolored
and p has to color n with p’s own color. If p succeeds in coloring n, then p stays
at n for some ε steps.

Some other process q may reach n during that time and has to wait at n (since
n is colored by p). We say that p and q are buddies, such that p is the climbing
buddy, q is the waiting buddy and n is their meeting point. The climbing buddy
combines the requests of both buddies (stores at n a union of the requests that
are stored in both child nodes of n) and climbs to bring corresponding responses
for both buddies. The waiting buddy waits at the meeting point for the responses.

Process p may reach a node n1 colored by some process q1, but after q1 had
already finished forwarding requests into n1. In that case, we say that p suffers,
since it has to wait at n1 until q1 returns and uncolors n1 (as described later).
Only then p can color n1 and proceed.

Eventually (assuming no faults occur), a union of requests that includes p’s
request is stored at the root by some process r, who produces corresponding
responses. For example, responses for x FAI requests are an interval of x con-
secutive numbers starting with the current value of a counter at the root (the
counter is increased accordingly by x).

Then, r descends towards its own leaf, uncoloring the nodes along the way.
At every node n2 which is a meeting point of r with some waiting buddy q2

who gave y requests, r gives y responses to q2. Both buddies then descend in the
same manner, propagating responses to the rest of the waiting processes. When
returning to the leaf with a response, a process returns that response.
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Fig. 1. Combining Tree

Figure 1 depicts an illustration of a CT example. In this example, three pro-
cesses wait for responses at non-root nodes, and one process is at the root with
a combination of four requests, propagating four responses (responses 0 and 1
to the left child; responses 2 and 3 to the right child).

3.2 Bounded Wait Combining [12]

CT is linearizable but not lock-free, and does not guarantee high through-
put. BWC is a lock-free version of CT that guarantees high throughput in φ-
synchronous executions (assuming φ is known).

In CT, a deadlock can happen if a buddy p waits for one of its buddies
indefinitely. In BWC, waiting times are bounded as a function of φ. Only if the ex-
ecution is not φ-synchronous, p’s bounded wait may expire, and then p proceeds
in an asynchronous mode of operation (continues independently, without any
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waiting for other processes, to forward requests to the root and get responses).
Greenwald’s two-handed-emulation [10] is used to synchronize multiple processes
who operate simultaneously at the same nodes without locks. This makes BWC
lock-free but sequential in executions that are not φ-synchronous.

Another drawback of CT, is high latency when a process suffers many times
in its way towards the root. If the execution is φ-synchronous, BWC guarantees
that a process suffers at most once (per call). For that, BWC arranges the calling
processes in bunches of buddies, in the following way: First, processes just try to
color their way up towards the root (without storing or forwarding requests yet,
or waiting ε time for buddies). A process r who colors the root becomes a leader
of a new bunch (that contains only r at that moment). In the root, r waits a root
wait, long enough as a function of φ to guarantee that every process that suffered
(if such exists) catches a meeting point in the current bunch (waits on a node
colored by a process who is in r’s bunch, or going to be). Then, r descends back
towards the leaf, and signals processes (who wait on r’s meeting points) to join
r’s bunch. Similarly, these buddies of r descend back towards their own leaves
and signals other processes to join r’s bunch. From the leaves, the processes of
the bunch start to forward requests like in CT, such that a union of the requests
of all the processes in the bunch will be stored at the root, and corresponding
responses will be produced and propagated.

3.3 Difficulties in Adapting to the Unknown Asynchrony Bound φE

Recall that BWC assumes a known bound on the ratio of the speeds of different
processes. A first, trivial (but probably incorrect) idea towards getting rid of
this assumption seems to be (1) to make multiple guesses of that bound and (2)
run multiple copies of BWC modularly, one per guess. We tried that direction,
but, unfortunately, did not manage to make it work. Intuitively, this would have
violated the linearizability or the counter semantics. In BWC, a process gives
its request (for a counter value) to be combined with other requests. When the
request is combined, it is not easy to locate it and cancel it. Hence, assume the
process gives the request to one copy of BWC. Then other copies cannot handle
the same request, otherwise the counter would have been increased several times.
Moreover, if those hypothetical copies of BWC communicate with each other,
the modularity is lost. We did use multiple guesses of the bound, but we had
to do that in a less modular way. Moreover, we had to overcome difficulties in
coordinating processes working on different guesses.

For example, we could not use two-handed-emulation as is done by BWC.
As long as BWC worked in its synchronous modes, only one process can move
requests into each node. In the new algorithm, various processes may access
the same node, each working on a different guess. This could have caused star-
vation, had we stayed with the original two-handed-emulation. The communal
procedures technique we developed to solve this problem (see Sect. 5) may be
useful for future studies and is an independent contribution of this paper.
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4 The New Algorithm

We describe our algorithm in two levels. First, we provide a high level description
of the algorithm (Sect. 4.1). Then, we provide a more detailed description of the
algorithm’s modes and transitions (Sect. 4.2). For lack of space, detailed pseudo-
code is provided in [13].

4.1 High Level Overview

In the new algorithm, a process p holds a guess of φE , according to which p
attempts to perform an algorithm that resembles BWC. If p finds its guess in-
sufficient, then p restarts (doubles its guess and tries again). We call the progress
of p with a certain guess a guess iteration.

In the initial configuration, every node is uncolored and holds the dummy
guess 1, while every process starts the algorithm with the minimum guess 2.
When p colors a node n, it updates n’s guess to p’s guess. To color a node n,
a process p must have a higher guess than n (even if n is already colored, p
paints over with its own color). As soon as a process p1 detects that its color
was removed from a node n1, it restarts. As a result, requests or responses that
belong to other buddies in p1’s bunch are being left at n1. We say that p1’s
bunch was interrupted.

First, a process injects a request to its leaf and begins the first guess iteration
with a guess 2. Let p be a process that begins a new guess iteration with a guess
φ. Denote p’s leaf by Lp and p’s guess by Gp. First, p checks whether a response
for p’s request resides already at Lp (as a result of a former guess iteration, if
such exists). If so, then p returns with that response. Otherwise, if Gp is above
our defined guess threshold, then p shifts to an asynchronous mode of operation.
In that mode, p round trips from Lp to the root and back (promoting requests
and responses in its way towards their destination), until p finds its response in
Lp, and returns. Assume there is no response in Lp and φ is lower than the guess
threshold. Then, during the guess iteration, p aims to join a bunch of buddies,
who later combine together requests and propagate responses. If φ is an incorrect
guess, then at some point, this bunch may be interrupted by some process with
a higher guess. If p detects such interruption, p restarts. Additionally, p bounds
the number of steps it spends during the guess iteration with guess φ. If φ is
smaller than the actual φE , then p may reach the bound and restart. If p restarts
while some buddies wait for it, at some point they will restart too (either their
bounded wait will expire or they will detect an interruption).

Let us describe the guess iteration progress, as long as p does not restart from
reasons mentioned above. To color nodes (see Sect. 3), p climbs from Lp towards
the root. Here (unlike CT and BWC), p succeeds to color a node n only if n’s
guess is lower than Gp. If so, p stores its color and guess into n. Eventually, some
process r who guesses φ (either p or some other process) colors the root with the
guess φ, becomes a bunch leader and begins a root wait (see Sect. 3.2). After the
root wait, r descends to recruit to r’s bunch processes who guess φ and wait on
r’s colored nodes. The bunch is constructed recursively (every recruited process
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descends and recruits processes who guess φ and wait on its colored nodes). At
every node m in which a process q1 recruited a process q2, we call m a meeting
point, q1 a climbing buddy and q2 a waiting buddy.

Both in the case that p is the bunch leader itself, and the case that p was
recruited by some other process, p descends back to Lp. From its leaf, p climbs
up its colored nodes. At every non-leaf node n along its way, p forwards new
requests from the children of n in p’s bunch. If n is a meeting point of p with
a waiting buddy q, and p reaches n before q, then p waits until q completes
forwarding requests to their meeting point. Then, q waits at n for responses to
all of its pending requests.

Eventually, the bunch leader r reaches the root again and forwards y new
combined requests. The counter is increased from (say) z to z+y, and y responses
(from z to z + y − 1) are produced.

Then, r descends towards Lr. At every non-leaf node n along its way, r prop-
agates new responses to n’s children. In addition, r uncolors n and decrements
n’s guess, to allow recoloring of n later with the guess φ. Recursively, every wait-
ing buddy in r’s bunch (including p if p �= r) gets responses for all the pending
requests in its meeting point, and proceeds similarly towards its leaf. Finally,
every process in r’s bunch reaches its leaf and returns with the single response
that resides there.

4.2 A More Detailed Description of the Algorithm

The algorithm is composed of modes. Below, we describe each mode of the al-
gorithm and specify the transition between modes. Figure 2 depicts the mode
transitions diagram of our algorithm.

– START - Process p injects a new request to Lp, sets its own guess Gp to 2
and colors Lp. Then, p enters the first guess iteration, at the INIT RANK
mode.

– INIT RANK - First, p updates Lp’s guess to Gp. Second, p remembers Lp

as its top colored node (the highest node p has colored in p’s current guess
iteration).
If there is already a response for p’s request in Lp, p switches to
PROP RESPONSES to return with the response. Else, if p’s guess surpasses
the guess threshold, p shifts to an asynchronous mode of operation (switches
to ASYNC UP).
Otherwise, p switches to SLOCK UP, to join (or lead) a bunch with the
guess Gp.

– SLOCK UP - In switching to this mode, p sets its timer. At the beginning
of every SLOCK UP iteration, p decreases its timer and performs two tests:
A timer verification (that p’s timer has not expired) and a color verification
(that p’s current node is still colored by p). If a test fails, p restarts (doubles
its guess and switches back to INIT RANK ).
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Fig. 2. Mode Transitions; Dashed arrows reflect a restart for a new guess iteration

Starting from Lp, at each non-root node n that p manages to color, p stores
two indications: First, that n is ready to join a bunch with guess Gp. Second,
that p has not forwarded yet requests to n. Note, that even though p has
colored n successfully, some other process (with a guess higher than Gp) may
recolor n at any time. Thus, p updates n only if n is colored by p. Using
DCAS, p can detect an interruption (and restart if it finds any).
If n’s parent (say np) has a guess that is lower than Gp, then p colors np with
Gp, updates p’s top colored node to be np and ascends to np. Otherwise, if a
signal (an indication that p may join a bunch that is currently being formed)
is written at n, then p (a waiting buddy at the meeting point n) switches to
PHASE FREEZE.
If p colors the root, p becomes a new bunch leader. To give other processes
(who guess Gp too) time to climb up to a node that will be recruited to that
bunch, p switches to ROOT WAIT.
If it did not switch to any other mode, p stays for another SLOCK UP
iteration.
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– ROOT WAIT - In switching to this mode, p sets its timer. At every
ROOT WAIT iteration, p ensures that the root has not been recolored (if
it is, then p restarts). The root wait is completed when p’s timer expires,
and p switches to PHASE FREEZE.

– PHASE FREEZE - In switching to this mode, p sets its timer. At every
iteration, p decreases its timer and performs color and timer verifications
(like in the SLOCK UP mode).
Descending down from p’s top colored node towards Lp, at each non-leaf
node n along the way, p signals each child c of n that is waiting for a
signal to join a bunch with guess Gp. When p reaches Lp, it switches to
FORWARD REQUESTS.

– FORWARD REQUESTS - At every iteration, p decrements its timer and
performs color and timer verifications.
At each non-leaf node n along p’s way from Lp to p’s top colored node, p
forwards requests up to n from every child c of n who got a signal of p’s
current bunch. If c is colored by a waiting buddy q of p, then p waits at n
until q indicates at c the completion of requests forwarding to c. Similarly,
p indicates at n when it completes forwarding requests to n.
To handle simultaneous writes of different processes, this critical part is
executed using a new technique (see Sect. 5). This technique, called commu-
nal procedures, guarantees successful completion after some known constant
number of steps.
At p’s top colored node, there may be two cases: (1) p is at the root with
responses for its bunch, and switches to PROP RESPONSES ; (2) p is not
at the root and switches to AWAIT RESPONSES (to wait for responses
from p’s climbing buddy).

– AWAIT RESPONSES - In switching to this mode, p sets its timer. At every
iteration, p decrements its timer and performs color and timer verifications.
If p gets all the required responses at its top colored node, p switches to
PROP RESPONSES.

– PROP RESPONSES - In switching to this mode, p sets its timer. At every
iteration, p decrements its timer and performs color and timer verifications.
Starting from its top colored node, at each non-leaf node n in p’s way to Lp,
p propagates from n to n’s children all the responses for the requests (again,
using a communal procedure). In addition, p uncolors n and decrements n’s
guess.
Finally, p reaches Lp and returns with the single response that resides in it.

The asynchronous mode of operation consists of the following two modes:
– ASYNC UP - p forwards requests in the path from Lp towards the root

without waiting for any other process. At each non-leaf node n along the way,
p forwards the requests of both n’s children (using a communal procedure).
At the root, p switches to ASYNC DOWN.
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– ASYNC DOWN - p propagates responses down the path from the root to
Lp. Additionally, p uncolors and resets the guess of the nodes along the way,
thus enabling future operations to avoid using high guesses (to stabilize the
system, if it becomes more synchronous later on).
During the asynchronous mode of operation new pending requests may arrive
to a node at each moment. Therefore, unlike in PROP RESPONSES, p does
not wait for responses to all of the pending requests at the node. Instead,
p descends from a node after responding to up to two pending requests
elements. When p reaches Lp, if a response resides at Lp, p returns with that
response. Otherwise, p switches back to ASYNC UP.

5 Communal Procedures

Different processes who call a procedure to forward requests to (or propagate
responses from) the same node may try to write to the same variables simulta-
neously. Unlike in BWC, this may happen in the new algorithm not only when
some process switches to an asynchronous mode of operation. Had we used two-
handed-emulation as in BWC (see Sect. 3.2), starvation could happen and we
could not guarantee wait-freedom and high throughput. The new algorithm re-
quires that each call to such procedures is completed successfully after some
finite number of steps (bounded by a known-in-advance constant). We present a
technique that achieves all that, for some common kind of concurrent procedures
we call communal procedures.

A procedure f is communal if when called by multiple processes simulta-
neously, a single complete instance of f yields the desired output for all the
simultaneous calls. For example, a procedure to forward requests into a node
from its children can be implemented as a communal procedure, since a single
instance of this procedure can forward requests for all of the simultaneous calls.

A process executes a communal procedure f according to f ’s state object,
that simply holds a step number variable (initialized to 0). The statements of f
are translated into numbered steps (starting from step 1). The state object of f
indicates the last step that was executed in the current instance of f . DCAS is
used to execute the following step: one DCAS ”hand” promotes the step number
variable and the other ”hand” performs the corresponding step. The DCAS
ensures that only one of the simultaneous callers succeeds. When f ’s instance
reaches its last step, to start a new instance, a process allocates a fresh state
object (with a step number 0), and tries to update f ’s reference at the node to
point to the new object (using DCAS that promotes the step number, such that
only one update succeeds). Garbage collection (or equivalent techniques such as
lock-free reference counting or dynamic lock-free objects, see [10]) guarantees
that this object will not be recycled while any reference to it exists, and hence
will be a unique token describing the particular procedure instance.

Many processes may wish to execute f at the same time. Every process helps
executing f ’s instances only until it guarantees a full execution of at least one
instance of f . For example, assume process p calls f at a node n, and finds
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f ’s instance at n at step number j. If j = 0, then p helps to execute f only
until p detects a new instance of f at n. Otherwise (j > 0), p stays for another
round to execute the steps of the new instance too, but only until p detects a
third instance of f at n (because this ensures that the second instance was fully
executed during p’s call). Note, that the total number of primitives executed by
p is bounded by twice the number of steps in f .

We use two communal procedures at every node (detailed pseudo-code appears
in [13]): (1) ForwardRequestsFromChildren() - specifically for the FAI operation,
a process p forwards requests to some node n from n’s child c, by computing
the number of additional requests to forward, and adding this number to n’s
counter. Later, the propagation of the responses for the requests must be in the
order of requests arrivals (to preserve linearizability). Therefore, p enqueues an
appropriate pending requests element to n’s pending requests queue to record
this order. If n is the root, then p also enqueues a responses element to n’s re-
sponses queue. Specifically for the FAI operation, the responses element consists
of the range of responses for the new requests (starting with the previous value
of the root’s requests counter). (2) PropagateResponsesToChildren() - a process
p propagates responses from some node n to n’s child c, according to a pending
requests element from n’s pending requests queue. Assume that such element
requires x responses to be propagated down to c. Process p slices a range of x
responses from n’s responses queue and enqueues that range into c’s responses
queue.

6 Algorithm Analysis Outline

For lack of space, the complete analysis is provided in [13]. First, let us define
some additional terms. An E-interval is a sub-sequence of E. We say that [t0, t1]
is a FAI-segment of p, if it is an E-interval such that p starts a FAI operation
at t0 and returns at t1. Let m be a mode of the algorithm. We say that [t0, t1] is
an m-segment of p, if p switches into mode m at t0 and stays in this mode until
it switches out of m at t1 (or returns with a response). An ASYNC-segment of
p starts when p switches from INIT RANK to ASYNC UP and ends when p
returns with a response (or infinite if p does not return - though we prove this
cannot happen). The outline of the analysis follows.

– Linearizability - First, we prove (Lemma 1) by induction that there are
no overflows in the requests/responses queues in the nodes. This ensures
that there are no interfering writes between a communal procedure who
enqueues into such a queue and a communal procedure who dequeues from
it. With that, we prove (Lemma 2) that no field changes its value between the
moments a communal procedure reads from it and writes into it. Then, we
prove (Lemma 3) that the critical procedures forward requests and propagate
responses as expected. With that, we prove (Lemma 4) that if a process ends
the algorithm, it returns with a response. Finally, we prove (Theorem 1) the
linearizability of our algorithm, and that it preserves the counter semantics.
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– Wait-freedom - First, we bound (Lemma 5) the number of steps performed by
a process during a single iteration at any mode. Second, we prove (Lemmas
6-9) that an ASYNC -segment of execution of a process is finite and its length
is a function of N . Finally, we prove (Theorem 2) the wait-freedom of our
algorithm, by proving that a process p either completes in a finite time or
switches to the asynchronous mode of operation (for which, Lemma 6 proved
the execution is finite).

– Scalability - Specifically, we prove that in an N -process execution E, our
algorithm achieves the throughput of Ω(N/((φE log φE)2 log N)). If φE is
greater or equal to the guess threshold, the proof is relatively straightfor-
ward. Otherwise (Assumption 1: φE is lower than the guess threshold), we
prove that a process returns with a response after at most �log2 φE� guess
iterations. For that, we prove (Lemma 23) that a process p with a correct
guess G does not restart. Specifically, p succeeds in every color and timer
verification during that guess iteration, until it returns with a response. A
color verification may fail only if some other process has a guess higher than
G. Thus, we prove (Lemmas 10-21) p’s success at every timer verification,
assuming no process guessed higher than G (Invariant 1), and with that we
prove (Lemma 22) that no process can be the first to guess higher than G (i.e.
Invariant 1 holds under Assumption 1). We bound the number of primitives
p applies during a FAI-segment (Lemma 24), and finally, prove (Theorem 3)
the above throughput whether or not Assumption 1 holds.

– Additional properties - We prove (Theorem 4) that our algorithm achieves
high throughput even after a constant number of process failures. When some
process p who guessed G fails, it has no effect on processes who guessed higher
than G (because they don’t wait on p’s colored nodes, and are not p’s bunch
buddies). At the worst case, if G is a correct guess, then processes who guessed
G would have to restart with guess G + 1, which is also a correct rank.

7 Conclusions

In this paper we presented the first linearizable and wait-free shared counter
algorithm that achieves high throughput without any a-priori knowledge of the
system’s asynchony level.

A communal procedure is a procedure that can be executed concurrently by
multiple processes, such that a single complete execution of the procedure is suffi-
cient for each participating process. Another contribution of our paper, which we
believe is of independent interest, is the definition and efficient implementation
of communal procedures.

The algorithm as described does not adapt when the level of asynchrony
decreases during the execution. Such an adaptive version was developed, but
is not presented here because of its considerable additional complication. One
direction for future research, is to make the throughput of the algorithm adaptive
to the number of participating processes. Another interesting research direction
is to establish corresponding lower bounds on the throughput of algorithms with
similar properties.
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Abstract. Working on shared mutable data requires synchronization
through barriers, locks or transactional memory mechanisms. To avoid
this overhead a thread may privatize part of the data and work on it lo-
cally. By privatizing a data item a thread is guaranteed that it is the only
one accessing this data, i.e., that it accesses the data item in exclusion.

The most robust and yet lock-free privatization algorithms, are lock-
free reference counting (LFRC). These algorithms attach a counter to
each node, which counts the number of references to the node. However,
these counters are shared by all threads in the system and thus are
contention prone, and must be updated with expensive atomic operations
such as CAS.

We present a new privatization algorithm, Public Guard (PG); an al-
gorithm which eliminates most of the contention of LFRC algorithms,
while maintaining their robustness and non blocking nature. Our evalu-
ation shows that PG improves performance by up to 50% in many work
loads.

Another problematic issue with LFRC, that we address in this paper,
is that a counter of a private node, may be accessed by a slow thread.
This may prevent LFRC from freeing memory to the system. In another
contribution of this paper we suggest a method with minimal overhead
to allow LFRC to reclaim memory.

1 Introduction and Related Work

A privatization algorithm is a technique that allows the thread to make part
of the data it accesses private, guaranteeing that no other thread can access
it. In the literature, privatization is usually part of the memory management
algorithm: threads privatize buffers before freeing them back into the allocatable
memory pool.

However, in many situations it is important to provide privatization that is
unrelated to memory management. For example, to allow threads to operate
on chucks of data without the overhead of synchronization, or to allow them to
move records between data structures. Thus, in its general form, we will say that

Definition 1. Privatization is the process of thread π verifying that the data of
an object O is not accessed nor accessible by any thread in the system except ξ.

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 333–347, 2010.
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Meta data that is related to a private node may be accessed by the system.
This meta data may reside inside or outside the private node.

We identify three privatization algorithms:

1. Guards: In this group each thread has a set of designated pointers (guards)
that are pointing to all the nodes it is about to access. In privatization the
algorithm scans all the guards to verify that no thread accesses the privatized
node. Examples are Herlihy et al. PTB [1] and Michael hazard pointers [2].

2. Epoch: Here when a thread wants to privatize a node it deposits it in a to-
be private group of nodes. Then the algorithm verifies that all the threads
in the system passed through a code segment where they are guaranteed not
to access any shared data. Then it frees all the nodes in the group. Hart
EBR and QSBR [3] are members of this group. Dice et al. [4] created a
transactional memory flavor of it.

3. LFRC: Count all references to each node. Both global, from the heap, and
local from thread local stacks. When the count drops to zero, the node may
be privatized. Representatives are Valois [5] and Detlef [6].

There are also hybrids of the above. Herlihy et al. [1] introduces SLFRC which
combines guards with LFRC, and Gidenstam [7] mixes LFRC for global refer-
ences with guards for local ones. Our new PG merges the robustness of LFRC
with the thread designation of guards.

Privatization serves for two purposes; a thread which ends up privatizing a
node n, can either free the node, or work on it exclusively, i.e., it serves both for
privatization and for memory management.

Before we continue to the pros and cons of the above types, we make the
following definition:

Definition 2. Privatization is lock-free if a thread which does not accesses node
n can not stop other threads from privatizing n.

All epoch-based algorithms we encountered (e.g., [4,3]) are blocking. I.e a thread
that never exits its critical section prevents privatization across the system. So,
while having extremely low overhead in the optimistic case, epoch-based may
hang the system in the general case.

Guards are not scalable to arbitrary data structures, due to two reasons. First,
there might be a lot of guards in the system making the process of privatizing
awkward. The second is that in real applications it is very tricky to tell what
guards are necessary.

LFRC algorithms are both lock-free and scalable. If a node is not used by a
thread, that thread can not prevent the node privatization, which makes LFRC
lock-free. It is scalable because no matter how many references exist in the
system, the process of privatizing an item has the same overhead.

However, LFRC comes with a price:

1. It has memory overhead as a reference count is appended to each data item.
2. Updating the reference count requires a CAS, which is an expensive opera-

tion, that may fail in the presence of contention.
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3. Unlike epoch-based and guard types, the meta data in LFRC is embedded in
the node. Thus there is always a point where a thread must touch the node,
through touching its meta data, before it knows that the node is private.

Our PG is an LFRC algorithm, but it replaces the simple integer reference
counter with a structure of combined counters. The structure has an integer
counter for global references, an array of local integer counters for local refer-
ences, and a seqlock to facilitate the privatization process.

PG reduces the overhead of updating the reference count, for local references,
by each thread counting independently in its own local counter. This reduc-
tion improves the performance as it prevents retries and eliminates slow atomic
operations like CAS and F&A.

As mentioned above, privatization is used frequently in the context of memory
management. There LFRC has a big advantage: it is automatic. A thread does
not need to free a node explicitly, and when the total reference count is zero
the node is freed. In real software, it can be difficult to tell from the application
when a node can be freed, thus requirement of explicit freeing is likely to create
both memory leaks and other bugs.

When we talk about memory management we actually talk about two different
things:

1. Recycling: Maintain a group of nodes, with the same size and same struc-
ture that can be used and reused but not freed to the OS.

2. Reclamation: Free memory to the OS so it can be used for any purpose.

When using LFRC privatization the application can recycle nodes but is not
allowed to reclaim them. The reason is, that in a reclaimed node the reference
count too may be reused for other purposes. When a thread reads it, not knowing
that the node was privatized, it gets meaningless result or even a segmentation
fault. One way to solve this problem is Herlihy [1] SLFRC, where they protect
accesses to meta data with a guard. However, this method has a price per node
that grows with the number of threads. In this paper we introduce an algorithm
to reclaim nodes that are privatized with LFRC, with overhead that is amortized
over multiple nodes. Although this algorithm uses epoch-based construction, we
show the amount of unreclaimed memory is bounded, unlike all other pure epoch-
based algorithms.

2 PG in a Nutshell

Here is the idea of the PG algorithm. In PG each node has three fields that are
used for privatization:

1. g cnt is used to count references from the heap to the node.
2. l cnt is an array of integers with an entry for each thread in the system.

Each thread uses its entry in the array to count references from its local
stack to the node.

3. inc is a seqlock [8], which is locked when the node is private.
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PG has a separate method and API for updating global and local references.
When a reference from the heap is added, a thread must use CAS to update
g cnt. However, in the much more common case, when a thread updates a local
reference count, it just uses regular reads and writes on its entry in l cnt, without
any possible contention.

The l cnt access pattern is similar to TLRW-bytelock’s [9], and reuses its
slot allocation algorithm (though we did not find it beneficial to use byte size
counters).

If, upon decrementing any counter, a thread finds that the global count equals
zero, it automatically tries to privatize the node (either because it tries to pri-
vatize the node or for memory management).

Privatization has the following steps after finding the global count equals zero:

1. inc is sampled and, if locked, the node is already private, so done.
2. if g cnt �= 0, done.
3. l cnt is scanned and, if any entry is �= 0, done.
4. Try to lock inc by incrementing it with a CAS from sampled value, if failed

done.
5. Privatization has succeeded.

Upon completing the above sequence, exactly one thread succeeds in privatizing
the node, which makes the node actually private (assuming all thread well behave
and follow the rules as below).

PG works under the assumption that threads are well behaved. This implies
three rules that all threads must follow:

1. Before accessing any node, protect it by incrementing its associated local
reference count, and when done decrement that counter.

2. When adding or removing a global reference, update the global counter with
the corresponding API.

3. Global count in PG serves also as a flag. If a thread does not want to privatize
a node, nor to release it then it should verify that global counter �= 0.

If a thread wants to delete a node n from a data structure and then work on it
not in private, or insert it to another structure, it must verify g cnt �= 0. This
can be done by calling PgInc(n) before deletion and PgDec(n) after insertion.

Figure 1 demonstrates a situation where two processors want to access the
same object at the same time. In LFRC both need to update the same ad-
dress, i.e. the reference count, before and after the access, thus they need to use
CAS, which is resource consuming and may fail. In PG, each processor updates
its relative l cnt entry with a simple write, an operation that is cheaper and
uninterrupted.

In summary, accessing an object for read or write is generally far more common
than handling it for memory management. LFRC involves a CAS operation for
each such access, which PG manages to avoid. This is the root of PG better
performance.
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Fig. 1. PG vs. LFRC behavior for simple access

3 PG Privatization Algorithm

In this section we call Valois [5] algorithm simply LFRC, and let it represent
all previous LFRC algorithms. To let the reader see where PG is better than
LFRC, we explain LFRC and PG together.

Then we show how to let both LFRC and PG reclaim memory which they
privatized, with minimal and amortizable overhead.

3.1 Overview of PG and LFRC

In Figure 2 we see the mandatory fields of a node which is used with LFRC or
PG. LFRC has one field which holds both the total reference count and a claim
bit, which is an indication to the status of the node, i.e., whether it is private.
In PG this field is broken into three separate fields. Local counter (l cnt) per
thread for local references, a global counter (g cnt) for global references and
incarnation (inc). Incarnation is a seqlock, i.e., a combination of a counter and a
lock. When incarnation is locked (= odd value), the node is private. When a node
is shared again, incarnation field is unlocked (= even value) and incremented in
one operation.

Field LFRC PG Description

data V V Application dependant.

links V V References to other nodes.

p cnt V X Counts references and includes an indication the node is private.

l cnt X V An array of local reference counters per thread.

g cnt X V A counter of global references.

inc X V Incarnation: a seqlock, that is used in the privatization process.

Fig. 2. LFRC and PG node structures
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int LfrcDecrementAndTAS(int *cnt)

LD01: repeat

LD02: old = *cnt

LD03: new = old - 2

LD04: if(new == 0)

LD05: new = 1

LD06: until (CAS(cnt, old,new) == TRUE)

LD07: return ((old - new) & 1)

Fig. 3. LFRC decrement reference count of a node

void LfrcRelease(node *n)

LR01: if(n==NULL)

LR02: return

LR03: if (LfrcDecrementAndTAS(&n->p_cnt)==0)

LR04: return

LR05: foreach (L in n.links)

LR06: LfrcRelease(L)

LR07: Privatize (n)

Fig. 4. LfrcRelease privatizes a node and decrements all its links reference counts

Decrement Reference Count and Free. When LFRC or PG remove a local
or global reference, they decrement the reference count. LFRC has one reference
count and PG maintains one for global references and an array of reference
counters per thread in each node for local references. When reference count, or
in PG, when global reference count, drops to zero the algorithm tries to privatize
the node. That is why this section explains decrement and privatization together.

Figure 3 shows the actual decrement of the reference count of a node in LFRC.
If the reference count drops to zero the LFRC tries to privatize it by setting the
claim bit. Both decrementing and privatizing are done with a CAS in line LD06
of LfrcDecrementAndTAS. LfrcDecrementAndTAS is called from LfrcRelease
in Figure 4.

PG uses two functions to perform reference count decrement. PgDoneAccess
in Figure 5 decrements the local counter by a simple write. As most reference
are local, and as LFRC uses CAS to decrement local count, this is a place where
PG avoids many CAS. In Figure 6 PgDec uses CAS to decrement the global
reference count of a node.

void PgDoneAccess(node *n)

PD01: If(n==NULL)

PD02: return

PD03: decrement(n->l_cnt[SELF_ID])

PD04: PgTryPrivatize(n)

Fig. 5. PG remove a local reference
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void PgDec(node *n)

PC01: if(n==NULL)

PC02: return

PC03: while (!CAS(n->g_cnt, n->g_cnt, (n->g_cnt-1)))

PC04: PgTryPrivatize(n)

Fig. 6. PG PgDec removes a global reference and then tries to privatize the node

void PgTryPrivatize(node *n)

PT01: retry:

PT02: cur = n->inc

PT03: if locked(cur)

PT04: return

PT05: if (n->g_cnt == 0)

PT06: for(id = 1...MAXID)

PT07: if(n->l_cnt[id])

PT08: return

PT09: if(CAS(&n->inc, cur, cur + 1))

PT10: tmp = n

PT11: Privatize n

PT12: foreach l in tmp->links

PT13: PgDec(l)

Fig. 7. PG Try to privatize the node

Both functions are calling PgTryPrivatize from Figure 7 which checks (PT05
and LD04) that global count and local count (PT06-PT08) are zero and only
than tries to privatize by locking the incarnation field of the node with a CAS
(PT09). Thus privatizing a node both in LFRC and PG involves a CAS, and
incurs similar overheads.

Safe Read. An application that wants to access a node, must read its pointer
with a safe read. This operation increments the reference count of the node and
then verifies the node is still pointed from where it was pointed before.

In line LS05 of Figure 8, LfrcSafeRead uses AtomicAdd to increment a node
reference count.

node *LfrcSafeRead(node **n)

LS01: forever

LS02: q = *n

LS03: if (q == NULL)

LS04: return NULL

LS05: AtomicAdd(q->p_cnt, 2)

LS06: if(q == *n)

LS07: return q

LS08: LfrcRelease(q)

Fig. 8. LFRC Safe read function
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node *PgSafeRead(node **n)

PS01: forever

PS02: q = *n

PS03: if (q == NULL)

PS04: return NULL

PS05: (q->l_cnt[ID])++

PS06: if(q == *n)

PS07: return q

PS08: PgDoneAccess(q)

Fig. 9. PG Safe read function

PgSafeRead from Figure 9 uses a simple increment function (PS05) to add a
local reference. As safe read is a very frequent operation this simpler command
saves work for PgSafeRead.

New Node Allocation. The allocation operation returns a node from a free
nodes pool, which might be global or local and hands it to the application. If
the pool is global the algorithms must be aware of ABA risks, which makes the
function less trivial. In this section we focus only on allocating from a global
pool.

node *LfrcNew()

LN01: forever

LN02: p = SafeRead(&free_list)

LN03: if (p == NULL)

LN04: Assert(Out of memory)

LN05: if(CAS(&free_list, p, p->next) == TRUE)

LN06: ClearLowestBit(&p->p_cnt)

LN07: return p

LN08: LfrcRelease(p)

Fig. 10. LFRC allocation from a global pool

In line LN02 in Figure 10, LfrcNew reads the first object in the free list with
a SafeRead. The reason is that after p was acquired with a SafeRead, p→next
can not change as long as it is in the free pool, and p can not be freed again
after it was allocated. If p was read without LfrcSafeRead / PgSafeRead, it
could have been allocated and freed again and have a new p→next and now the
old p→next might be pointing to a currently allocated node. This would cause
a double allocation which is erroneous.

Here is the scenario, in a more formal way, how threads T1 and T2 allocate a
node twice if not using SafeRead:

1. T1 reads p from freelist and pT1=p→next.
2. T2 allocates p .
3. T2 allocates pT1 .
4. T2 frees p again with a new pT2=p→next.
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5. T1 arrives at line LN05 of LfrcNew and replaces freelist with pT1 which has
been allocated already by T2.

6. T2 allocates pT1 again.

In line LR07 of LfrcRelease function and line PT11 of PgTryPrivatize a node
may be recycled into a global shared pool or privatized, i.e., accessed without
synchronization by the thread who holds a reference to it. As we recall in LFRC
New had to call SafeRead so the node will not be freed again during a critical
part of the function. In PG this is more complicated as a thread checks both
g cnt and l cnt and incarnation before freeing a buffer so when extracting n from
a free pool n→inc must be locked, at least one of n→l cnt entries and n→g cnt
must be non zero.

Figure 11 is the PgNew which allocates from a global shared pool.

node *PgNew()

PN01: forever

PN02: q = PgSafeRead(&free_list)

PN03: PgInc(q)

PN04: if(p == NULL)

PN05: Assert(Out of memory)

PN06: if(CAS(&free_list, p, p->next) == TRUE)

PN07: increment(p->inc)

PN08: PgDoneAccess(p)

PN09: return p

PN10: PgDoneAccess(p)

PN11: PgDec(p)

Fig. 11. PG allocation from a global pool

The function is using PgSafeRead in line PN02 to read from the free list. Then,
in line PN03 it increments the global count as well. If it manages to extract the
node in PN06 it returns it decrements the local count in PN08 and returns the
new node in PN09. Otherwise it decrements the node counters in PN10-PN11
and retries.

3.2 PG and LFRC Usage for Reclamation

As explained in section 1 LFRC and PG can be used to recycle memory but not
for reclamation (i.e., recycling but not reclamation). The following algorithm
maintain the lock-free property of PG and LFRC, but gives them the ability
to reclaim memory. To reclaim memory we need to know if there is a sleeping
thread that is about to access a reference count of a free node. This can happen
only in the SafeRead function, before checking if a node is still pointed from
the same place. In order to reclaim, the system must know there is no thread in
that section, so we make it as swift as possible and wrap it with a local seqlock
(rec epo]) which is incremented when we enter or exit that section. We also add
the field rec epo, as shown in Figure 12, in LFRC and PG nodes.
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Field LFRC PG Description

rec epo V V Reclamation epoch: a seqlock, that is used for reclamation.

Fig. 12. LFRC and PG with reclamation

When a thread has too many nodes in its local pool it scans all the seqlocks
and waits for all threads to get out of that section. For this solution we mod-
ify SafeRead as depicted in Figure 13. In SR05, just before incrementing the
reference count, the local rec epo seqlock is incremented to locked state. After
increment completion (SR10) or failure (SR08), rec epo is incremented locally to
unlocked state. Our tests show this method has literally the same performance
as SafeRead that does not allow reclamation.

node *SafeRead(node **n)

SR01: forever

SR02: q = *n

SR03: if (q == NULL)

SR04: return NULL

SR05: Lock rec_epo

SR06: increment reference_count

SR07: if(q == *n)

SR08: Unlock rec_epo

SR09: return q

SR10: Unlock rec_epo

SR11: decrement reference count

Fig. 13. Generic safe read function with reclamation for LFRC and PG

The spirit of this technique is like Herlihy’s which uses a guard for that critical
section, but the same absolute overhead which they have per node is here per
all freed nodes.

In order to verify memory consumption is limited the free function counts the
number, N, of nodes it freed locally. If N equals a threshold H, the thread takes
a snapshot S1 of all critical counts. If N>H the node is freed to a global pool and
another snapshot S2 is taken. If all threads which were in the critical section in
S1 made progress in S2, all the local pool is reclaimed. S2 is created only once,
and if there is a thread which made no progress the scan stops and continues
from where it stopped in the next free operation.

Lemma 1. Assume J is the number of threads in the system, H is the threshold
and M is maximal number of simultaneous used nodes, maximal unreclaimed
nodes is less than M+((H+1)*(J-1))

Proof. T allocates a node if its local pool and the global pool are empty. So the
maximal number each other thread may hold is H+1, i.e., threshold and another
one it privatized but did not free into global pool. So we have J-1 threads which
hold H+1 nodes each and one which holds 0 nodes.
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Fig. 14. Average time vs. average CAS on various threads number

4 Evaluation

We tested our algorithms on 8 processors Intel Core i7 Processor I7-920, running
64-bit RedHat Linux.

The graphs demonstrate the performance of two algorithms, PG and LFRC
[5]. Both algorithms are run with local buffer pools (PGL and LFRCL) and with
global buffer pool (PGG and LFRCG).

For each configuration/test (each in a separate figure) we generate three
graphs. The first is the average time in nano-seconds taken per one operation,
over 5 runs. The second is the average number of CAS operations during that
time, which explains the overhead of LFRC. The third is the average number
of times in the operation that it tries to privatize the node i.e., the number of
times PG was in line PT09 of PgTryPrivatize or the number of times LFRC



344 Y. Afek et al.

 24000

 25000

 26000

 27000

 28000

 29000

 30000

 31000

 32000

 33000

 34000

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 ll

c_
m

is
s

Number of Threads

CR List - 1000 Elements - 10% Updates

LFRCL
PGL

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 o

th
er

_c
or

e_
l2

_h
itm

Number of Threads

CR List - 1000 Elements - 10% Updates

LFRCL
PGL

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 ll

c_
un

sh
ar

ed
_h

it

Number of Threads

CR List - 1000 Elements - 10% Updates

LFRCL
PGL

Fig. 15. Number of cache misses various threads number

was in line LD06 of LfrcDecrementAndTAS. This graph is the overhead created
by PG. PG tries to free a node when the global references drop to zero, but it is
not aware of local references. Thus it does more retries than LFRC which slows
its operation.

The operations are on a list where insert and delete operations take a lock,
while search operations are lock-free. In this test a lock-free search manipulates
local references proportionally to the length of the list, but an insert or delete
do exactly one local and one global reference. We show three tests:

1. Figure 14 demonstrates various thread numbers with 1K elements and 10%
updates. Here, the amount of CAS is proportional to the number of oper-
ations and thus PG is better by a constant coefficient. The number of free
retries is higher in PG but its absolute number is too small too make a
difference.
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Fig. 16. Average time vs. average CAS on various update rates

For this test we added, in figure 15 cache misses as counted by VTuneTM

Performance Analyzer 9.1 for Linux. Although PG is better than LFRC for
this work load on all thread counts, it has either equal or slightly more cache
misses. This makes sense as everywhere LFRC gets a miss PG suffers one as
well, while PG touches more memory locations.

2. In figure 16 there are 8 threads with 10 elements and various update rates.
Up to about 80% updates we can see PG with local pools is best, and there
LFRC with local pools passes it. The reason is that as the number of PG
freeing tries grows and overshadows LFRC CAS number, which drops as the
number of searches goes down.

3. Figure 17 shows 8 threads with 10% updates and various elements number.
We see in 10% updates, the number of CAS, which in LFRC is proportional
to the duration of the transaction, makes PG always better. The number of
free tries is very small except in very small lists where PG is not better than
LFRC.
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Fig. 17. Average time vs. average CAS on various elements number

5 Conclusion

In this paper we introduced PG, the first LFRC which does not use CAS [5]
nor HP [7] for local references. We showed it has superior performance com-
pared with previous LFRC although it has slightly more cache misses. This fact
emphasizes that PG advantage is in the algorithmic reduction in the number of
CAS operations. PG outperforms LFRC in all workloads that are not dominated
by allocation and free operations.

Another contribution is a method to allow LFRC and PG free memory to the
system, and bound the maximal amount of allocated memory. This is the first
time LFRC can free memory without HP[7,1] that has significant overhead or
DCAS [6] which is not common in today hardware.
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Abstract. We consider transactional memory contention management
in the context of balanced workloads, where if a transaction is writing,
the number of write operations it performs is a constant fraction of its
total reads and writes. We explore the theoretical performance bound-
aries of contention management in balanced workloads from the worst-
case perspective by presenting and analyzing two new polynomial time
contention management algorithms. The first algorithm Clairvoyant is
O(

√
s)-competitive, where s is the number of shared resources. This al-

gorithm depends on explicitly knowing the conflict graph. The second
algorithm Non-Clairvoyant is O(

√
s · log n)-competitive, with high proba-

bility, which is only a O(log n) factor worse, but does not require knowl-
edge of the conflict graph, where n is the number of transactions. Both
of these algorithms are greedy. We also prove that the performance of
Clairvoyant is tight, since there is no polynomial time contention man-
agement algorithm that is better than O((

√
s)1−ε)-competitive for any

constant ε > 0, unless NP⊆ZPP. To our knowledge, these results are sig-
nificant improvements over the best previously known O(s) competitive
ratio bound.

1 Introduction

The ability of multi-core architectures to increase application performance de-
pends on maximizing the utilization of the computing resources provided by
them and using multiple threads within applications. These architectures present
both an opportunity and challenge for multi-threaded software. The opportunity
is that threads will be available to an unprecedented degree, and the challenge
is that more programmers will be exposed to concurrency related synchroniza-
tion problems that until now were of concern only to a selected few. Writing
concurrent programs is a non-trivial task because of the complexity of ensuring
proper synchronization. Conventional lock based synchronization (i.e., mutual
exclusion) suffers from well known limitations, so researchers considered non-
blocking transactions as an alternative. Herlihy and Moss [16] proposed Trans-
actional Memory (TM), as an alternative implementation of mutual exclusion,
which avoids many of the drawbacks of locks, e.g., deadlock, reliance on the
programmer to associate shared data with locks, priority inversion, and fail-
ures of threads while holding locks. Shavit and Touitou [24] extended this idea
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to Software-only Transactional Memory (STM) by proposing a novel software
method for supporting flexible transactional programming of synchronization
operations [15,12,13].

A transaction consists of a sequence of read and write operations to a set of
shared system resources (e.g. shared memory locations). Transactions may con-
flict when they access the same shared resources. If a transaction T discovers that
it conflicts with another transaction T ′ (because they share a common resource),
it has two choices, it can give T ′ a chance to commit by aborting itself, or it can
proceed and commit by forcing T ′ to abort; the aborted transaction then retries
again until it eventually commits. To solve the transaction scheduling problem
efficiently, each transaction consults with the contention manager module for
which choice to make. Dynamic STM (DSTM) [15], proposed for dynamic-sized
data structures, is the first STM implementation that uses a contention man-
ager as an independent module to resolve conflicts between two transactions and
ensure progress. Of particular interest are greedy contention managers where a
transaction restarts immediately after every abort. As TM has been gaining
attention, several (greedy) contention managers have been proposed in the lit-
erature [2,11,10,5,21,19]. which have been assessed formally and experimentally
by specific benchmarks [20].

A major challenge in guaranteeing progress through transactional contention
managers is to devise a policy which ensures that all transactions commit in the
shortest possible time. The goal is to minimize the makespan which is defined as
the duration from the start of the schedule, i.e., the time when the first transac-
tion is issued, until all transactions commit. The makespan of the transactional
scheduling algorithm can be compared to the makespan of an optimal off-line
scheduling algorithm to provide a competitive ratio. The makespan and competi-
tive ratio primarily depend on the workload − the set of transactions, along with
their arrival times, duration, and resources they read and modify [3].

The performance of some of the contention managers has been analyzed for-
mally in [3,2,11,10,21,23] (the detailed description is given in Section 1.2). The
best known formal bound is provided in [2] where the authors give an O(s)
competitive ratio bound, where s is the number of shared resources. When the
number of resources s increases, the performance degrades linearly. A difficulty
in obtaining better competitive ratios is that the scheduling problem of n con-
current transactions is directly related to the vertex coloring problem which is a
hard problem to approximate [17]. A natural question which we address here is
whether it is possible to obtain better competitive ratios. As we show below, it is
indeed possible to obtain sub-linear competitive ratios for balanced transaction
workloads.

1.1 Contributions

In this paper, we study contention management in the context of balanced work-
loads which have better performance potential for transactional memory. A bal-
anced workload consists of a set of transactions in which each transaction has
the following property: if the transaction performs write operations, then the
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number of writes it performs is a constant fraction of the total number of oper-
ations (read and writes) of the transaction. The balancing ratio β expresses the
ratio of write operations of a transaction to the overall operations of the trans-
action. The balancing ratio is bounded as 1

s ≤ β ≤ 1, since a writing transaction
writes to at least one resource. In balanced workloads β = Θ(1) for all the trans-
actions which perform writes. Balanced workloads can also include read-only
transactions, but we assume that there is at least one transaction that performs
writes, since otherwise the scheduling problem is trivial (no conflicts).

Balanced transaction workloads represent interesting and practical transac-
tion memory scheduling problems. For example balanced workloads represent
the case where we have small sized transactions each accessing a small (con-
stant) number of resources, where trivially β = Θ(1). Other interesting sce-
narios are transaction workloads which are write intensive, where transactions
perform many writes, as for example in scientific computing applications where
transactions have to update large arrays.

We present two new polynomial time contention management algorithms
which are especially tailored for balanced workloads and analyze their theoreti-
cal performance boundaries from the worst-case perspective. The first algorithm,
called Clairvoyant, is O

(
� ·
√

s
β

)
-competitive where s is the number of shared

resources, and � expresses the logarithm ratio of the longest to shortest execution
times of the transactions. (The transaction execution time is the time it needs
to commit uninterrupted from the moment it starts.) For balanced transaction
workloads where β = Θ(1), and when transaction execution times are close
to each other, i.e. � = O(1), Algorithm Clairvoyant is O(

√
s)-competitive. This

algorithm is greedy and has the pending commit property (where at least one
transaction executes uninterrupted each time). However, it depends on assigning
priorities to the transactions based on the explicit knowledge of the transaction
conflict graph which evolves while the execution of the transactions progresses.
It also assumes that each transaction knows how long is its execution time and
how many resources it accesses.

The second algorithm, called Non-Clairvoyant, is O
(
� ·
√

s
β · log n

)
-

competitive, with high probability (at least 1 − 1
n ), where n is the number

of transactions concurrently executing in n threads. For balanced transaction
workloads, where β = Θ(1), and when transaction execution times are close to
each other, i.e. � = O(1), Algorithm Non-Clairvoyant is O(

√
s · log n)-competitive.

This is only a O(log n) factor worse than Clairvoyant, but does not require explicit
knowledge of the conflict graph. The algorithm is also greedy. This algorithm
uses as a subroutine a variation of the RandomizedRounds scheduling algorithm
by Schneider and Wattenhofer [21] which uses randomized priorities and doesn’t
require knowledge of the conflict graph.

The O(
√

s) bound of Algorithm Clairvoyant is actually tight. Through a reduc-
tion from the graph coloring problem, we show that it is impossible to approxi-
mate in polynomial time any transactional scheduling problem with β = 1 and
� = 1 with a competitive ratio smaller than O((

√
s)1−ε) for any constant ε > 0,
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unless NP⊆ZPP. To our knowledge, these results are significant improvements
over the best previously known bound of O(s) for transactional memory con-
tention managers. For general workloads (including non-balanced workloads),
where transactions are equi-length (� = O(1)), our analysis gives O(s) compet-
itive worst case bound, since β ≥ 1/s. This bound matches the best previously
known bound of O(s) for general workloads. The parametrization of β that we
provide gives more tradeoffs and flexibility for better scheduling performance, as
depicted by the performance of our algorithms in balanced workloads.

1.2 Related Work

Almost 10 year after publishing the seminal paper [16] to introduce the new
research area of transactional memory, Herlihy et al. [15] proposed Dynamic
STM (DSTM) for dynamic-sized data structures. Later on, several other STM
implementations have been proposed, such as TL2 [4], TinySTM [8], and RSTM
[18] to name a few. Among them, DSTM is the first practical obstruction-free1

implementation that seeks advice from the contention manager module to either
wait or abort a transaction at the time of conflict.

Several contention managers have been proposed in STM and the performance
of some of them has been analyzed formally in [3,2,11,10,21,23]. The first formal
analysis of the performance of a contention manager is given by Guerraoui et
al. [11] where they present the Greedy contention manager which decides in fa-
vor of older transactions using timestamps and achieves O(s2) competitive ratio.
This bound holds for any algorithm which ensures the pending commit property
(see Definition 1). Attiya et al. [2] improve the competitive ratio to O(s), and
prove a matching lower bound of Ω(s) for any deterministic work-conserving
algorithm which schedules as many transactions as possible (by choosing a max-
imal independent set of transactions). The model in [2] is non-clairvoyant in the
sense that it requires no prior knowledge about the transactions while they are
executed.

Schneider and Wattenhofer [21] present a deterministic algorithm Commit-
Bounds with competitive ratio Θ(s) and a randomized algorithm Randomize-
dRounds with makespan O(C log n) with high probability, for a set of n trans-
actions, where C denotes the maximum number of conflicts among transactions
(assuming unit execution time durations for transactions). Sharma et al. [23]
study greedy contention managers for M × N execution windows of transac-
tions with M threads and N transactions per thread and present and analyze
two new randomized greedy contention management algorithms. Their first al-
gorithm Offline-Greedy produces a schedule of length O(τmax · (C +N log(MN)))
with high probability, where τmax is the execution time duration of the longest
transaction in the system, and the second algorithm Online-Greedy produces a
schedule of length O(τmax ·(C log(MN)+N log2(MN))). The competitiveness of
both of the algorithms is within a poly-log factor of O(s). Another recent work

1 A synchronization mechanism is obstruction-free if any thread that runs for a long
time it eventually makes progress [14].
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is Serializer [5] which resolves a conflict by removing a conflicting transaction T
from the processor core where it was running, and scheduling it on the processor
core of the other transaction to which it conflicted with. It is O(n)-competitive
and in fact, it ensures that two transactions never conflict more than once.

TM schedulers [3,6,25,1] offer an alternative approach to boost the TM per-
formance. A TM scheduler is a software component which decides when a partic-
ular transaction executes. One proposal in this approach is Adaptive Transaction
Scheduling (ATS) [25] which measures adaptively the contention intensity of a
thread, and when the contention intensity increases beyond a threshold it serial-
izes the transactions. The Restart and Shrink schedulers, proposed by Dragojević
et al. [6], depend on the prediction of future conflicts and dynamically serialize
transactions based on the prediction to avoid conflicts. The ATS, Restart, and
Shrink schedulers are O(n)-competitive. Steal-On-Abort [1] is yet another pro-
posal where the aborted transaction is given to the opponent transaction and
queued behind it, preventing the two transactions from conflicting again.

Recently, Attiya et al. [3] proposed the BIMODAL scheduler which alternates
between writing epochs where it gives priority to writing transactions and read-
ing epochs where it gives priority to transactions that have issued only reads so
far. It achieves O(s) competitive ratio on bimodal workloads with equi-length
transactions. A bimodal workload contains only early-write and read-only trans-
actions.

Outline of Paper. The rest of the paper is organized as follows. We present our
TM model and definitions in Section 2. We present and formally analyze two
new randomized algorithms, Clairvoyant and Non-Clairvoyant, in Sections 3 and
4, respectively. The hardness result of balanced workload scheduling is presented
in Section 5. Section 6 concludes the paper.

2 Model and Definitions

Consider a system of n ≥ 1 threads P = {P1, · · · , Pn} with a finite set of s shared
resources R = {R1, . . . , Rs}. We consider batch execution problems, where the
system issues a set of n transactions T = {T1, · · · , Tn} (transaction workload),
one transaction Ti per thread Pi. Each transaction is a sequence of actions
(operations) each of which is either a read or write to some shared resource.
The sequence of operations in a transaction must be atomic: all operations of a
transaction are guaranteed to either completely occur, or have no effects at all.
A transaction that only reads shared resources is called read-only; otherwise it
is called a writing transaction. We consider transaction workloads where at least
one transaction is writing.

After a transaction is issued and starts execution it either commits or aborts.
A transaction that has been issued but not committed yet is said to be pending.
A pending transaction can restart multiple times until it eventually commits.
Concurrent write-write actions or read-write actions to shared objects by two or
more transactions cause conflicts between transactions. If a transaction conflicts
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then it either aborts, or it may commit and force to abort all other conflicting
transactions. In a greedy schedule, if a transaction aborts due to conflicts it
then immediately restarts and attempts to commit again. We assume that the
execution time advances synchronously for all threads and a preemption and
abort require negligible time. We also assume that all transactions in the system
are correct, i.e., there are no faulty transactions.2

Definition 1 (Pending Commit Property [11]). A contention manager
obeys the pending commit property if, whenever there are pending transactions,
some running transaction T will execute uninterrupted until it commits.

Let R(Ti) denote the set of resources used by a transaction Ti. We can write
R(Ti) = Rw(Ti) ∪ Rr(Ti), where Rw(Ti) are the resources which are to be
written by Ti, and Rr(Ti) are the resources to be read by Ti.

Definition 2 (Transaction Conflict). Two transactions Ti and Tj conflict if
at least one of them writes on a common resource, that is, there is a resource R
such that R ∈ (Rw(Ti) ∩R(Tj)) ∪ (R(Ti) ∩Rw(Tj)) (we also say that R causes
the conflict).

From the definition of transaction conflicts we can define the conflict graph for a
set of transactions. In the conflict graph, each node corresponds to a transaction
and each edge represents a conflict between the adjacent transactions.

Definition 3 (Conflict Graph). For a set of transactions T , the conflict
graph G(T ) = (V, E) has as nodes the transactions, V = T , and (Ti, Tj) ∈ E
for any two transactions Ti, Tj that conflict.

Let γ(Rj) denote the number of transactions that write resource Rj . Let γmax =
maxj γ(Rj). Denote λw(Ti) = |Rw(Ti)|, λr(Ti) = |Rr(Ti)|, and λ(Ti) = |R(Ti)|,
the number of resources which are being accessed by transaction Ti for write,
read, and both read and write. Let λmax = maxi λ(Ti). Note that in the conflict
graph G the maximum node degree is bounded by λmax · γmax, and also there is
a node whose degree is at least γmax.

For any transaction Ti we define the balancing ratio β(Ti) = |Rw(Ti)|
|R(Ti)| as the

ratio of number of writes versus the total number of resources it accesses. For a
read-only transaction β(Ti) = 0. For a writing transaction it holds 1

s ≤ β(Ti) ≤
1, since there will be at least one write performed by Ti to one of the s resources.
We define the global balancing ratio as the minimum of the individual writing
transaction balancing ratios: β = min(Ti∈T )∧(λw(Ti)>0) β(Ti). We define balanced
transaction workloads as follows (recall that we consider workloads with at least
one writing transaction):

Definition 4 (Balanced Workloads). We say that a workload (set of trans-
actions) T is balanced if β = Θ(1).
2 A transaction is called faulty when it encounters an illegal instruction producing a

segmentation fault or experiences a page fault resulting to wait for a long time for
the page to be available [10].



354 G. Sharma and C. Busch

In other words, in balanced transaction workloads the number of writes that
each writing transaction performs is a constant fraction of the total number of
resource accesses (for read or write) that the transaction performs.

Each transaction Ti has execution time duration τi > 0. The execution time is
the total number of discrete time steps that the transaction requires to commit
uninterrupted from the moment it starts. In our model we assume that the
execution time of each transaction is fixed. Let τmax = maxi τi be the execution
time of the longest transaction, and τmin = mini τi be the execution time of the
shortest transaction. We denote � =

⌈
log
(

τmax

τmin

)⌉
+ 1. We finish this section

with the basic definitions of makespan and competitive ratio.

Definition 5 (Makespan and Competitive Ratio). Given a contention
manager A and a workload T , makespanA(T ) is the total time A needs
to commit all the transactions in T . The competitive ratio is CRA(T ) =
makespanA(T )
makespanopt(T ) , where opt is the optimal off-line scheduler.

3 Clairvoyant Algorithm

We describe and analyze Algorithm Clairvoyant (see Algorithm 1). The writ-
ing transactions are divided into � groups A0, A1, . . . , A�−1, where � =⌈
log
(

τmax
τmin

)⌉
+ 1, in such a way that Ai contains transactions with execution

time duration in range [2i ·τmin, (2i+1 ·τmin−1)], for 0 ≤ i ≤ �−1. Each group of
transactions Ai is then again divided into κ subgroups A0

i , A
1
i , . . . , A

κ−1
i , where

κ = �log s�+ 1, such that each transaction T ∈ Aj
i accesses (for read and write)

a number of resources in range λ(T ) ∈ [2j , 2j+1−1], for 0 ≤ j ≤ κ−1. We assign
an order to the subgroups in such a way that Aj

i < Al
k if i < k or i = k ∧ j < l.

Note that some of the subgroups may be empty. The read-only transactions are
placed into a special group B which has the highest order.

At any time t the pending transactions are assigned a priority level which de-
termines which transactions commit or abort. A transaction is assigned a priority
which is one of: high or low. Let Πh

t and Π l
t denote the set of transactions which

will be assigned high and low priority, respectively, at time t. In conflicts, high
priority transactions abort low priority transactions. Conflicts between trans-
actions of the same priority level are resolved arbitrarily. Suppose that Ât is
the lowest order subgroup that contains pending transactions at time t. Only
transactions from Ât can be given high priority, that is Πh

t ⊆ Ât.
The priorities are determined according to the conflict graph for the trans-

actions. Let Tt denote the set of all transactions which are pending at time t.
(Initially, T0 = T .) Let T̂t denote the pending transactions of Ât at time t. (Ini-
tially, T̂0 = Â0.) Let Ŝt denote the set of transactions in T̂t which are pending
and have started executing before t but have not yet committed or aborted. Let
Ŝ′

t denote the set of transactions in Tt which conflict with Ŝt. Let Ît be a maximal
independent set in the conflict graph G(T̂t \ Ŝ′

t). Then, the set of high priority
transactions at time t is set to be Πh

t = Ît ∪ Ŝt. The remaining transactions are
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Algorithm 1. Clairvoyant

Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

- Divide writing transactions into � = �log( τmax
τmin

)� + 1 groups A0, A1, · · · , A�−1 in
such a way that Ai contains transactions with execution time duration in range
[2i · τmin, (2i+1 · τmin − 1)]; Read-only transactions are placed in special group B;

- Divide Ai again into κ = �log s� + 1 subgroups A0
i , A

1
i , · · · , Aκ−1

i in a way that

each subgroup Aj
i contains transactions that access a number of resource in the

range [2j , 2j+1 − 1];

- Order the groups and subgroups such that Aj
i < Al

k if i < k or i = k ∧ j < l;
special group B has highest order;

foreach time step t = 0, 1, 2, 3, . . . do
Set Definitions:

Tt: set of transactions that are pending; // T0 ← T
Ât: lowest order group that contains pending transactions;

T̂t: set of transactions in Ât which are pending; // T̂0 ← Â0

Ŝt: set of transactions in T̂t which were started before t;

Ŝ′
t: set of conflicting transactions in Tt which conflict with Ŝt;

Ît : maximal independent set in the conflict graph G(T̂t \ Ŝ′
t);

Priority Assignment:
High priority transactions: Πh

t ← Ît ∪ Ŝt;

Low priority transactions: Π l
t ← Tt \ Πh

t ;
Conflict Resolution:

Execute all pending transactions;
On conflict of transaction Tu with transaction Tv:

if (Tu ∈ Πh
t ) ∧ (Tv ∈ Π l

t) then abort(Tu, Tv); else abort(Tv, Tu);
// abort(Tu, Tv) aborts transaction Tv

given low priority, that is, Π l
t = Tt \Πh

t . Note that the transactions in Πh
t do

not conflict with each other. The transactions Πh
t will remain in high priority

in subsequent time steps t′ > t until they commit, since the transactions in Ŝt′

are included in Πh
t′ .

This algorithm is clairvoyant in the sense that it requires explicit knowledge
of the various conflict relations at each time t. The algorithm is greedy, since at
each time step each pending transaction is not idle. The algorithm also satisfies
the pending commit property since at any time step t at least one transaction
from Ât will execute uninterrupted until it commits. We have assumed above
that each transaction knows its execution length and the number of resources it
accesses. Clearly, the algorithm computes the schedule in polynomial time.

3.1 Analysis of Clairvoyant Algorithm

We now give a competitive analysis of Algorithm Clairvoyant. Define τ j
min =

2i · τmin and τ j
max = (2i+1 · τmin − 1). Note that the duration of each transaction
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T ∈ Aj
i is in range [τ j

min, τ j
max], and also τ j

max ≤ 2τ j
min. Define λj

min = 2j and
λj

max = 2j+1 − 1. Note that for each transaction T ∈ Aj
i , λ(T ) ∈ [λj

min, λj
max],

and λj
max ≤ 2λj

min.
In the next results we will first focus on a subgroup Aj

i and we will assume that
there are no other transactions in the system. We give bounds for the competitive
ratio for Aj

i which will be useful when we later analyze the performance for all
the transactions in T .

Lemma 1. If we only consider transactions in subgroup Aj
i , then the competitive

ratio is bounded by CRClairvoyant(A
j
i ) ≤ 2 · λj

max + 2.

Proof. Let γj
i (Rv) denote the number of transactions in a subgroup Aj

i that
write Rv, 1 ≤ v ≤ s. Let γ′ = maxv∈[1,s]γ

j
i (Rv). Since there is only one subgroup,

Ât = Aj
i . A transaction T ∈ Aj

i conflicts with at most λj
max ·γ′ other transactions

in the same subgroup. If transaction T is in low priority it is only because some
other conflicting transaction in Aj

i is in high priority. If no conflicting transaction
is in high priority then T becomes high priority immediately. Since a high priority
transaction executes uninterrupted until it commits, it will take at most λj

max ·γ′

time steps until all conflicting transactions with T have committed. Thus, it is
guaranteed that in at most λj

max · γ′ · τ j
max time steps T becomes high priority.

Therefore, T commits by time (λj
max · γ′ + 1) · τ j

max. Since T is an arbitrary
transaction in Aj

i , the makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i ) ≤ (λj

max · γ′ + 1) · τ j
max.

There is a resource that is accessed by at least γ′ transactions of Aj
i for write.

All these transactions have to serialize because they all conflict with each other
in the common resource. Therefore, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥ γ′ · τ j

min.

When we combine the upper and lower bounds we obtain a bound on the
competitive ratio of the algorithm:

CRClairv.(A
j
i ) =

makespanClairv.(A
j
i )

makespanopt(A
j
i )

≤ (λj
max · γ′ + 1) · τ j

max

γ′ · τ j
min

≤ 2 · λj
max + 2.

Lemma 2. If we only consider transactions in subgroup Aj
i , then the competitive

ratio is bounded by CRClairvoyant(A
j
i ) ≤ 4 · s/β

λj
max

.

Proof. Since the algorithm satisfies the pending-commit property, if a transac-
tion T ∈ Aj

i does not commit, then some conflicting transaction T ′ ∈ Aj
i must

commit. Therefore, the makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i ) ≤ |A

j
i | · τ j

max.

Each transaction in T ∈ Aj
i accesses at least λw(T ) resources for write. Since

we only consider transactions in Aj
i , λw(T ) ≥ β ·λj

min ≥ β ·λj
max/2. Consequently,
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by the pigeonhole principle, there will be a resource R ∈ R which is accessed by
at least

∑
T∈Aj

i
λw(T )/s ≥ |Aj

i | · β · λj
max/(2s) transactions for write. All these

transactions accessing R have to serialize because they conflict with each other.
Therefore, the optimal makespan is bounded by:

makespanopt(A
j
i ) ≥

|Aj
i | · β · λj

max

2s
· τ j

min.

When we combine the above bounds of the makespan we obtain the following
bound on the competitive ratio of the algorithm:

CRClairvoyant(A
j
i ) =

makespanClairvoyant(A
j
i )

makespanopt(A
j
i )

≤ |Aj
i | · τ j

max

|Aj
i |·β·λ

j
max

2s · τ j
min

≤ 4 · s/β

λj
max

.

From Lemmas 1 and 2, we obtain:

Corollary 1. If we only consider transactions in subgroup Aj
i , then the

competitive ratio of the algorithm is bounded by CRClairvoyant(A
j
i ) ≤ 4 ·

min
{
λj

max,
s/β

λj
max

}
.

We now continue to provide a bound for the performance of individual groups.
This will help to provide bounds for all the transactions.

Lemma 3. If we only consider transactions in group Ai, then the competitive
ratio of the algorithm is bounded by CRClairvoyant(Ai) ≤ 32 ·

√
s
β .

Proof. Since λj
max = (2j+1− 1), Corollary 1 gives for each subgroup Aj

i compet-
itive ratio

CRClairvoyant(A
j
i ) ≤ 4 ·min

{
2j+1 − 1,

s/β

2j+1 − 1

}
≤ 8 ·min

{
2j ,

s/β

2j

}
.

Let ψ = log(s/β)
2 . Note that min

{
2j, s/β

2j

}
≤ 2j , ∀j ∈ [0, �ψ�]; and

min
{
2j , s/β

2j

}
≤ s/β

2j = 22ψ−j , ∀j ∈ [�ψ� + 1, κ − 1]. Group Ai contains κ

subgroups of transactions. In the worst case, Algorithm Clairvoyant will commit
the transactions in each subgroup according to their order starting from the low-
est order subgroup and ending at the highest order subgroup, since that’s the
order that the transactions are assigned a high priority. Therefore,

CRClairv.(Ai) ≤
κ−1∑
j=0

CRClairv.(A
j
i )

=
�ψ�∑
j=0

CRClairv.(A
j
i ) +

κ−1∑
j=�ψ�+1

CRClairv.(A
j
i )

≤ 8 ·

⎛
⎝�ψ�∑

j=0

2j +
k−1∑

j=�ψ�+1

22ψ−j

⎞
⎠ ≤ 8 ·

(
2 · 2ψ + 2 · 2ψ

)
= 32 ·

√
s

β
.
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Theorem 1 (Competitive Ratio of Clairvoyant). For set of transactions T ,
Algorithm Clairvoyant has competitive ratio CRClairvoyant(T ) = O

(
� ·
√

s
β

)
.

Proof. As there are � groups of transactions Ai, and one group B, in the worst
case, Algorithm Clairvoyant will commit the transactions in each group according
to their order starting from the lowest order group and ending at the highest
order group. Clearly, the algorithm will execute the read-only transactions in
group B in optimal time. Therefore, using Lemma 3, we obtain:

CRClairvoyant(T ) ≤
�−1∑
i=0

CRClairvoyant(Ai) + CRClairvoyant(B)

≤
�−1∑
i=0

32 ·
√

s

β
+ 1 = 32 · � ·

√
s

β
+ 1.

The corollary below follows immediately from Theorem 1.

Corollary 2 (Balanced Workload). For balanced workload T (β = Θ(1)) and
when � = O(1), Algorithm Clairvoyant has competitive ratio CRClairvoyant(T ) =
O(
√

s).

4 Non-clairvoyant Algorithm

We present and analyze Algorithm Non-Clairvoyant (see Algorithm 2). This al-
gorithm is similar to Clairvoyant given at Section 3 with the difference that the
conflicts are resolved using priorities which are determined without the explicit
knowledge of the conflict graph.

Similar to Algorithm Clairvoyant, the transactions are organized into groups
and subgroups. Lower order subgroups have always higher priority than higher
order subgroups. At each time step t, let Ât denote the lowest order subgroup.
Clearly, the transactions in Ât have higher priority than the transactions in all
other subgroups, and in case of conflicts only the transactions in Ât win. When
transactions in the same subgroup conflict, the conflicts are resolved according
to random priority numbers. When a transaction starts execution it chooses
uniformly at random a discrete number r(T ) ∈ [1, n]. In case of a conflict of
transaction Tw with another transaction Tx in the same subgroup with r(Tx) <
r(Tw), then Tx aborts Tw, and otherwise Tw aborts Tx. When transaction Tw

restarts, it cannot abort Tx until Tx has been committed or aborted. After
every abort, the newly started transaction chooses again a new discrete number
uniformly at random in the interval [1, n]. The idea of randomized priorities has
been introduced originally by Schneider and Wattenhofer [21] in their Algorithm
RandomizedRounds.

This algorithm is non-clairvoyant in the sense that it does not depend on
knowing explicitly the conflict graph to resolve conflicts. The algorithm is greedy
but does have the pending commit property. The groups and subgroups can be
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Algorithm 2. Non-Clairvoyant

Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

- Divide transactions into � = �log( τmax
τmin

)� + 1 groups A0, A1, · · · , A�−1 in such a
way that Ai contains transactions with execution time duration in range
[2i · τmin, (2i+1 · τmin − 1)]; Read-only transactions are placed in special group B;

- Divide Ai again into κ = �log s� + 1 subgroups A0
i , A

1
i , · · · , Aκ−1

i in a way that

each subgroup Aj
i contains transactions that access a number of resource in the

range [2j , 2j+1 − 1];

- Order the groups and subgroups such that Aj
i < Al

k if i < k or i = k ∧ j < l;
special group B has highest order;

foreach time step t = 0, 1, 2, 3, . . . do
Execute all pending transactions; // at t = 0 issue all transactions

On (re)start of transaction T :
r(T ) ← random integer in [1, n];

On conflict of transaction Tu ∈ Aj
i with transaction Tv ∈ Al

k:
if Aj

i < Al
k then abort(Tu, Tv);

else if Aj
i > Al

k then abort(Tv, Tu);

else if r(Tu) < r(Tv) then abort(Tu, Tv) ; // The case Aj
i = Al

k

else abort(Tv, Tu);
// In case a transaction Tu aborts Tv because r(Tu) < r(Tv),

then when Tv restarts it cannot abort Tu until Tu

commits or aborts

implemented in the algorithm since we assume that each transaction knows
its execution time and the number of resources that it accesses. Clearly, the
algorithm computes the schedule in polynomial time.

4.1 Analysis of Non-clairvoyant Algorithm

In the analysis given below, we study the properties of Algorithm Non-Clairvoyant
and give its competitive ratios. We use the following adaptation of the response
time analysis of Algorithm RandomizedRounds given in [21]. It uses the following
Chernoff bound:

Lemma 4 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Poisson tri-
als such that, for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for
X =

∑n
i=1 Xi, μ = E[X ] =

∑n
i=1 pri, and any 0 < δ ≤ 1,Pr(X < (1 − δ)μ) <

e−δ2μ/2.

Lemma 5 (Adaptation from Schneider and Wattenhofer [21]). Given
a transaction scheduling problem with n concurrent transactions, where each
transaction has execution time at most τ , the time span a transaction T needs
from the moment it is issued until commit is 16·e·(dT +1)·τ ·ln n with probability
at least 1− 1

n2 , where dT is the number of transactions conflicting with T .
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Proof. Consider the respective conflict graph G of the problem with the n trans-
action. Let NT denote the set of conflicting transactions for T (these are the
neighbors of T in G). Let r(T ) denote the random priority number choice of T
in range [1, n]. The probability that for transaction T no transaction T ′ ∈ NT

has the same random number is:

Pr(�T ′ ∈ NT |r(T ) = r(T ′)) =
(

1− 1
n

)dT

≥
(

1− 1
n

)n

≥ 1
e
.

The probability that r(T ) is at least as small as r(T ′) for any transaction T ′ ∈
NT is 1

dT +1 . Thus, the chance that r(T ) is smallest and different among all its
neighbors in NT is at least 1

e·(dT +1) . If we conduct 16 · e · (dT + 1) · ln n trials,
each having success probability 1

e·(dT +1) , then the probability that the number
of successes Z is less than 8 lnn becomes: Pr(Z < 8 · ln n) < e−2·lnn = 1/n2,
using the Chernoff bound of Lemma 4. Since every transaction has execution
time at most τ , the total time spent until a transaction commits is at most
16 · e · (dT + 1) · τ · ln n, with probability at least 1− 1/n2.

We now give competitive bounds for some subgroup Aj
i and later extend the

results to all the transactions in T . The proofs are similar as in the analysis of
Algorithm Clairvoyant and can be found in the full version of paper (See [22]).

Lemma 6. If we only consider transactions in subgroup Aj
i , then the competitive

ratio is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e · λj

max · ln n with probability

at least 1− |Aj
i |

n2 .

Lemma 7. If we only consider transactions in subgroup Aj
i , then the competitive

ratio is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e · s/β

λj
max

· ln n with probability

at least 1− |Aj
i |

n2 .

From Lemmas 6 and 7, we obtain:

Corollary 3. If we only consider transactions in subgroup Aj
i , then the com-

petitive ratio of the algorithm is bounded by CRNon−Clairvoyant(A
j
i ) ≤ 64 · e ·

min
{
λj

max,
s/β

λj
max

}
· ln n with probability at least 1− |Aj

i |
n2 .

We now provide a bound for the performance of individual groups which will
help to provide bounds for all the transactions.

Lemma 8. If we only consider transactions in group Ai, then the competitive
ratio of the algorithm is bounded by CRNon−Clairvoyant(Ai) ≤ 512 · e ·

√
s
β · ln n

with probability at least 1− |Ai|
n2 .

Theorem 2 (Competitive Ratio of Non-Clairvoyant). For a set
of transactions T , Algorithm Non-Clairvoyant has competitive ratio
CRNon−Clairvoyant(T ) = O

(
� ·
√

s
β · log n

)
with probability at least 1− 1

n .
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The corollary below follows immediately from Theorem 2.

Corollary 4 (Balanced Workload). For balanced workload T (β = Θ(1))
and when � = O(1), Algorithm Non-Clairvoyant has competitive ratio
CRNon−Clairvoyant(T ) = O(

√
s · log n) with probability at least 1− 1

n .

5 Hardness of Balanced Transaction Scheduling

In this section, we show that the performance of Clairvoyant is tight by reducing
the graph coloring problem to the transaction scheduling problem.

A Vertex Coloring problem instance asks whether a given graph G is k-
colorable [9]. A valid k-coloring is an assignment of integers {1, 2, · · · , k} (the
colors) to the vertices of G so that neighbors receive different integers. The
chromatic number, χ(G) is the smallest k such that G has a valid k-coloring.
We say that an algorithm approximates χ(G) with approximation ratio q(G)
if it outputs u(G) such that χ(G) ≤ u(G) and u(G)/χ(G) ≤ q(G). Typically,
q(G) is expressed only as a function of n, the number of vertices in G. It is
well known that known Vertex Coloring is NP-complete. It is also shown
in [7] that unless NP⊆ZPP, there does not exist a polynomial time algorithm
to approximate χ(G) with approximation ratio O(n1−ε) for any constant ε > 0,
where n denotes the number of vertices in graph G.

A Transaction Scheduling problem instance asks whether a set of trans-
actions T with a set of resources R has makespan k time steps. We give a poly-
nomial time reduction of the Vertex Coloring problem to the Transaction

Scheduling problem. Consider an input graph G = (V, E) of the Vertex Col-

oring problem, where |V | = n and |E| = s. We construct a set of transactions
T such that for each v ∈ V there is a respective transaction Tv ∈ T ; clearly,
|T | = |V | = n. We also use a set of resources R such that for each edge e ∈ V
there is a respective resource Re ∈ R; clearly, |R| = |E| = s. If e = (u, v) ∈ E,
then both the respective transactions Tu and Tv use the resource Re for write.
Since all transaction operations are writes, we have that β = 1. We take all the
transactions to have the same execution length equal to one time step, that is,
τmax = τmin = 1, and � = 1.

Let G′ be the conflict graph for the transactions T . Note that G′ is isomorphic
to G. Node colors in G correspond to time steps in which transactions in G′ are
issued. Suppose that G has a valid k-coloring. If a node v ∈ G has a color x, then
the respective transaction Tv ∈ G′ can be issued and commit at time step x,
since no conflicting transaction (neighbor in G′) has the same time assignment
(color) as Tv. Thus, a valid k-coloring in G implies a schedule with makespan
k for the transactions in T . Symmetrically, a schedule with makespan k for T
implies a valid k-coloring in G.

It is easy to see that the problem Transaction Scheduling is in NP .
From the reduction of the Vertex Coloring problem, we also obtain that
Transaction Scheduling is NP -complete.

From the above reduction, we have that an approximation ratio q(G) of the
Vertex Coloring problem implies the existence of a scheduling algorithm
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A with competitive ratio CRA(T ) = q(G) of the respective Transaction

Scheduling problem instance, and vice-versa. Since s = |R| = |E| ≤ n2, an
(
√

s)1−ε competitive ratio of A implies at most an n1−ε approximation ratio of
Vertex Coloring. Since, we know that unless NP⊆ZPP, there does not ex-
ist a polynomial time algorithm to approximate χ(G) with approximation ratio
O(n1−ε) for any constant ε > 0, we obtain a symmetric result for the Trans-

action Scheduling problem:

Theorem 3 (Approximation Hardness of Transaction Scheduling). Un-
lessNP⊆ZPP, we cannot obtain a polynomial time transaction scheduling algorithm
such that for every input instance with β = 1 and � = 1 of the Transaction

Scheduling problem the algorithm achieves competitive ratio smaller than
O((
√

s)1−ε) for any constant ε > 0.

Theorem 3 implies that the O(
√

s) bound of Algorithm Clairvoyant, given in
Corollary 2 for β = Θ(1) and � = O(1), is tight.

6 Conclusions

We have studied the competitive ratios achieved by transactional contention
managers on balanced workloads. The randomized algorithms presented in this
paper allow to achieve best competitive bound on balanced workloads. We also
establish hardness results on the competitive ratios in our balanced workload
model by reducing the well known NP-complete vertex coloring problem to the
transactional scheduling problem.

There are several interesting directions for future work. As advocated in [15],
our algorithms are conservative − abort at least one transaction involved in
a conflict − as it reduces the cost to track conflicts and dependencies. It is
interesting to look whether the other schedulers which are less conservative can
give improved competitive ratios by reducing the overall makespan. First, our
study can be complemented by studying other performance measures, such as
the average response time of transactions under balanced workloads. Second,
while we have theoretically analyzed the behavior of balanced workloads, it is
interesting to see how our contention managers compare experimentally with
prior transactional contention managers, e.g., [5,25,11,1].

References

1. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

2. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. Algorithmica 57(1), 44–61 (2010)

3. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In:
OPODIS 2009, pp. 3–17. Springer, Heidelberg (2009)



A Competitive Analysis for Balanced Transactional Memory Workloads 363

4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

5. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoidance
and resolution for software transactional memory. In: PODC 2008, pp. 125–134
(2008)
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Abstract. Abortable mutual exclusion is a variant of mutual exclusion,
where processes are allowed to abort their invocations while waiting to
enter the critical section. In this paper, we present an FCFS abortable
mutual exclusion algorithm with bounded time and space, in which each
invocation performs O(k2) RMAs if at most k processes abort. We define
an object type, S-HAD, from which it is easy to construct local-spin
abortable mutual exclusion algorithms. Our main contribution is a wait-
free implementation of an S-HAD object. We also develop a new, wait-
free memory reclamation method, which generalizes reference counting,
to achieve bounded space. The resulting algorithm uses O(N2) shared
variables, each with O(log N) bits, where N is the number of processes.

1 Introduction

Abortable mutual exclusion [13] is a variant of classical mutual exclusion [5],
in which a process performing a trying protocol to enter the critical section is
allowed to stop waiting for the critical section to become available by performing
an abort protocol, which returns the process to the remainder section within a
bounded number of steps. Abortable mutual exclusion can be useful in real-time
applications or in parallel database systems because, in these systems, users may
want to abort any operation that takes too long [13].

In shared memory models, processes communicate with each other only via
shared variables, so waiting processes must keep accessing shared variables until
they stop waiting. Such busy-waiting may cause processes to perform an un-
bounded number of steps during the trying protocol. In the distributed shared
memory (DSM) and cache-coherent (CC) models, the cost for a process to access
its own local shared memory or cache is considered to be much less than the cost
to access memory located remotely. Hence, in these models, counting only remote
memory accesses (RMAs, also known as remote memory references) is a good
measure of the time complexity of an algorithm. To achieve a bounded num-
ber of RMAs, many papers about mutual exclusion have considered local-spin
algorithms. In such algorithms, each process accesses only a bounded number
of RMAs while busy-waiting. In this paper, we restrict attention to local-spin
algorithms.
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In some classical mutual exclusion algorithms, such as the Bakery algorithm
[10], which are not local-spin, all waiting processes wait for the same shared
variable to change. Then a process can abort by simply announcing that it is no
longer trying. Scott and Scherer [13] proposed two first-come-first-served (FCFS)
local-spin mutual exclusion algorithms that allow waiting processes to abort. In
their first algorithm, each process waits for a change in a certain shared variable
associated with its predecessor (the last process that was enqueued before it).
This algorithm is local-spin in the CC model. In their second algorithm, each
waiting process first announces itself to its predecessor and then waits for a
certain locally stored variable to change value. This algorithm is local-spin in
the DSM model. In these algorithms, processes in the trying protocol form a
queue and each waits for a signal from its predecessor. In Scott and Scherer’s
algorithms, each process enters the critical section within O(1) RMAs when no
process aborts. However, their abort protocol contains a waiting period in which
an aborting process performs handshakes with its predecessor and successor in
the queue, so it may not terminate the abort protocol within a bounded number
of steps.

Later, Scott [12] eliminated this waiting period in the abort protocol: He pre-
sented two FCFS local-spin abortable mutual exclusion algorithms in which a
process aborts within a bounded number of its own steps. When no processes
abort, each invocation performs only a constant number of RMAs in the try-
ing protocol. However, when two or more processes repeatedly abort without
removing themselves from the queue of waiting processes and then re-enter the
trying protocol, the length of the queue may become unbounded. Hence, these
algorithms use unbounded space. The number of RMAs a process performs in
the trying protocol can be as large as the number of consecutive times processes
began the trying protocol immediately beforehand and subsequently aborted
[12,9]. This can be arbitrarily large, since a process can repeatedly enter the try-
ing protocol and abort. However, the bad situation is only achieved when each
invocation that aborts decides to do so before its predecessor begins the abort
protocol.

In Section 2.4 of [12], Scott described a simple abortable mutual exclusion
algorithm with Θ(N) space. This algorithm also uses a queue. When a process
starts its trying protocol, it enqueues an element, and waits for the value of its
predecessor in the queue to change. When a process aborts, it changes the value
of the element it last enqueued. If this process re-enters the trying protocol, then
it checks whether the element it last enqueued has been accessed and, if not, it
reclaims this element, instead of enqueuing a new element. However, in this
algorithm, a process can perform an unbounded number of RMAs in the trying
protocol. For example, suppose process p is the predecessor of another process
q in the queue, and q is waiting for the value of p’s element to be changed.
When p aborts, it changes the value of its element. If it re-enters the trying
protocol and reclaims the same element, it changes the value of the element
back to its previous value. Even if q did not notice p’s abort, q’s next read of
p’s element generates a cache miss. Thus, if p aborts and re-enters the trying
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protocol, reclaiming the same element an unbounded number of times, q may
perform an unbounded number of RMAs while waiting. Thus this algorithm is
not local-spin or FCFS.

There are two previously known FCFS local-spin abortable mutual exclusion
algorithms with bounded space in which each process performs a bounded num-
ber of RMAs for each entry to the critical section: Jayanti [9] uses registers and
LoadLinked/StoreConditional (ll/sc), and Danek and Lee [3] use only registers.
Jayanti’s algorithm performs Θ(min(k, log N)) and Danek and Lee’s algorithm
performs Θ(N) RMAs for each entry to the critical section, where N is the num-
ber of processes and k is the contention, i.e., the number of processes that are
trying to enter the critical section at the same time. Danek and Lee also pre-
sented a local-spin abortable mutual exclusion algorithm with Θ(log N) RMAs
that does not satisfy FCFS. Since any mutual exclusion algorithm using only
registers and comparison primitives, such as compare and swap or ll/sc, re-
quires Ω(log N) RMAs in the worst case for each entry to the critical section [2]
and, since mutual exclusion is a special case of abortable mutual exclusion, both
Jayanti’s algorithm and Danek and Lee’s Θ(log N) algorithm are optimal.

In the worst case, each process performs fewer RMAs in Jayanti’s algorithm
than in Scott’s local-spin algorithms. However, if the number of consecutive
aborts is o(log N), then Scott’s algorithms are better in terms of the number of
RMAs. A natural question is whether there exists a local-spin abortable mutual
exclusion algorithm that preserves all of the merits of Scott’s algorithms, but
uses only bounded space and performs a bounded number of RMAs in the worst
case.

In this paper, we present a new FCFS local-spin abortable mutual exclusion
algorithm for the CC model. It uses O(N2) space and a process performs O(k2)
RMAs to enter the critical section, where k is the number of processes that
began the trying protocol immediately beforehand and subsequently aborted.
The worst case is only achieved when each invocation returns to the remainder
section and re-enters the trying protocol before its predecessor begins the abort
protocol.

For modularity, we first define an object type, S-HAD, from which it is easy
to construct a local-spin abortable mutual exclusion algorithm. S-HAD is a se-
quence that supports Head, Append, and Delete, but with two restrictions: Each
process can own at most one element in the sequence at a time and only the
owner of an element can perform these three operations on it.

We give two wait-free implementations of an S-HAD object. Our first imple-
mentation has O(N2) RMA complexity but uses unbounded space. Then, we
extend it, using a generalization of reference counts, to achieve O(N2) space
complexity as well. Our new memory reclamation method is wait-free and very
efficient in terms of RMAs. It uses only standard operations (test and set,
fetch and add, fetch and store, read and write) on O(log N) bit words,
and each process performs O(1) RMAs for recycling a record. In contrast, Detlefs
et al.’s reference counting method [4] uses double compare and swap, which
is not available in most systems, and Valois’s reference counting method [14]
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allows processes to access a freed record or a recycled record, which would cause
a significant increase in the RMA complexity of our algorithm. With hazard
pointers [11], to reuse a record, a process must read the hazard pointers of all
other processes, which takes Θ(N) RMAs. Herlihy et al. [7] proposed a refer-
ence counting method similar to hazard pointers. Their method also takes Θ(N)
RMAs. Since we want each process to perform a small number of RMAs if aborts
are rare, we needed to develop a new memory reclamation method.

Section 2 formally defines abortable mutual exclusion and describes the system
model. Section 3 defines S-HAD, gives an abortable mutual exclusion algorithm
based on S-HAD, and proves the correctness of the algorithm. Section 4 presents
our unbounded space implementation of S-HAD, and Section 5 presents our
bounded space implementation of S-HAD. Complete proofs of correctness of the
algorithms in Sections 4 and 5 appear in the full paper.

2 Preliminaries

In an abortable mutual exclusion algorithm, processes that want to access the
critical section first execute the trying protocol. After completing the trying
protocol, a process enters the critical section. When it finishes the critical section,
it then performs the exit protocol, and finally returns to the remainder section.
If a process must wait in the trying protocol and wants to abort, it performs
the abort protocol, and then returns to the remainder section. We assume no
process failures.

An algorithm solves the abortable mutual exclusion problem, if it satisfies the
following properties:

Mutual Exclusion: At most one process is in the critical section at any time.
Lockout Freedom: If a process p starts executing the trying protocol and keeps
taking steps in the trying protocol without aborting, then it will eventually enter
the critical section.
Bounded Exit: If a process starts executing the exit protocol, then it returns
to the remainder section within a bounded number of its own steps.
Bounded Abort: If a process starts executing the abort protocol, then it re-
turns to the remainder section within a bounded number of its own steps.

The First-Come-First-Served (FCFS) property [10] is a strong fairness condi-
tion in which processes enter the critical section in roughly the same order they
enter the trying protocol. Although it is not a requirement of abortable mutual
exclusion, most mutual exclusion algorithms in which each process performs O(1)
RMAs to enter the critical section satisfy this property.
FCFS: The doorway is a bounded section of code that begins the trying protocol.
If a process p finishes executing the doorway before a process q begins executing
the doorway, and p does not abort, then p enters the critical section before q
does.

In this paper, we consider the asynchronous cache-coherent (CC) model with
N processes [1]. The CC model is a shared memory model in which each process
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has its own local cache. In this model, processes perform atomic operations
on shared variables. We divide all atomic operations into two classes: trivial
operations, which cannot change the value of a shared variable, and non-trivial
operations, which may change the value of a shared variable. read is an example
of a trivial operation. write, fetch and store and compare and swap are
examples of non-trivial operations.

When a process p performs a trivial operation on a shared variable, it first
checks its own cache. If p has a valid cached copy of the shared variable (i.e.
no other process has performed a non-trivial operation on the shared variable
since p last accessed the shared variable and copied it to its cache), the trivial
operation does not generate an RMA. If p does not have a valid cached copy of
the shared variable (either because p has not accessed the shared variable before
or because another process has performed a non-trivial operation on the shared
variable after p’s last access of the shared variable), then p accesses the shared
variable from remotely located shared memory and copies the variable to its own
cache. This generates an RMA. When p performs a non-trivial operation on a
shared variable, even if the value of the variable does not change, the system
invalidates all other cached copies of the variable, which generates an RMA.

A passage is the sequence of steps performed by a process from when it begins
the trying protocol until it next returns to the remainder section by finishing
the exit or abort protocol. Our complexity measure is the worst case number of
RMAs performed in the trying, exit, and abort protocols in any passage.

3 S-HAD and Abortable Mutual Exclusion

An S-HAD is a sequence of elements, each owned by a different process. A process
can perform the following operations on an element that it owns:

Head(R): returns TRUE if element R is at the beginning of the sequence.
Append(R): appends element R to the end of the sequence.
Delete(R): deletes element R from the sequence.

Append(R) may be called only when R is not in the sequence, and Delete(R)
may be called only when R is in the sequence. Thus, element R occurs in the
sequence if and only if Delete(R) has not been performed since Append(R) was
last performed. Head(R) is TRUE if and only if R occurs in the sequence and
each element X that was appended before R has been deleted from the sequence.

We can easily build an abortable mutual exclusion algorithm using a lineariz-
able implementation of an S-HAD object. When a process tries to enter the
critical section, it appends a new element to the S-HAD object. Then the pro-
cess keeps performing Head until its element is at the head of the S-HAD object.
When Head returns TRUE, the process enters the critical section. When the
process finishes the critical section or wants to abort, it deletes the appended
element from the S-HAD object. The detailed algorithms TryingProtocol, Exit-
Protocol and AbortProtocol appear in Figure 1. GetNewElement is a function
that returns a new element. This may be a system call that allocates a memory
location for an element or a function that returns an element from a free list.
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TryingProtocol()

T1: R := GetNewElement()
T2: Append(R)
T3: while ¬ Head(R) do
T4: if the process wants to abort, perform AbortProtocol()

end while

ExitProtocol() / AbortProtocol()

E1: Delete(R)

Fig. 1. Abortable Mutual Exclusion Algorithm

To prove the correctness of this abortable mutual exclusion algorithm, we
show that only the process whose element is at the head of the sequence enters
the critical section. We also show that any appended element eventually becomes
the head of the sequence if it is not deleted. If process p gets an element R on
line T1, we say owner(R) = p.

Observation 1. If a process p is in the critical section, then the element R at
the head of the sequence is owned by p.

An operation is wait-free if a process performs the operation within a bounded
number of its own steps. Since any abortable mutual exclusion algorithm must
satisfy the bounded exit and bounded abort properties, Delete must be wait-
free. If GetNewElement, Append and Head are also wait-free, then the while
loop starting on line T3 is the only waiting period. In this case, the algorithm
in Figure 1 is an FCFS abortable mutual exclusion algorithm.

Theorem 1. Given wait-free implementations of an S-HAD object and Get-
NewElement, the algorithm in Figure 1 is an FCFS abortable mutual exclusion
algorithm.

Proof. The mutual exclusion property follows from Observation 1. Since Delete is
wait-free, the algorithm satisfies the bounded abort and bounded exit properties.
To prove lockout freedom, suppose that there exists an infinite execution E in
which some set of processes, P , keep performing TryingProtocol without entering
the critical section or performing AbortProtocol.

Since GetNewElement and Append are wait-free, each process p in P eventu-
ally gets a new element, Rp, on line T1 of its last invocation of TryingProtocol,
and finishes performing Append(Rp) on line T2. Since p does not perform Exit-
Protocol or AbortProtocol after its last invocation of TryingProtocol, p does not
subsequently perform Delete(Rp). Let R = {Rp|p ∈ P}. Let X be the element in
R appended earliest, and let p ∈ P be the process that performed Append(X).

By definition, any invocation that last appended an element S before X either
eventually enters the critical section and performs ExitProtocol, or eventually
performs AbortProtocol. Hence, the invocation eventually performs Delete(S).
Thus, eventually, X becomes the head of the sequence and Head(X) returns
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TRUE. Since p keeps performing TryingProtocol without performing Abort-
Protocol, it performs Head(X) infinitely many times. Thus, p will eventually
enter the critical section. This contradicts the assumption that p ∈ P , so the
algorithm satisfies lockout freedom.

Since GetNewElement and Append are wait-free, each process performs lines
T1 and T2 within a bounded number of its own steps. Let the doorway be lines
T1 and T2. If process p finishes Append(R) before process q starts an invocation
of GetNewElement that returns R′, then R is appended before R′. Thus, if p does
not abort, R reaches the head of the sequence before R′. Then, by Observation
1, p enters the critical section before q. Hence, the resulting abortable mutual
exclusion algorithm satisfies the FCFS property. ��

In some systems, allocating a memory location may not be wait-free. However,
the algorithm in Figure 1 still solves abortable mutual exclusion if GetNewEle-
ment satisfies the following properties: a process that invokes GetNewElement
eventually completes GetNewElement and a process that invokes GetNewEle-
ment but wants to return to the remainder section before it completes can do
so within a bounded number of its own steps. These properties are required for
lockout freedom and bounded abort, respectively.

For this algorithm to be local-spin, Head must be implemented carefully. The
RMA complexity of one passage is the sum of the RMAs performed during one
execution of each of GetNewElement, Append and Delete, and an unbounded
number of executions of Head. Thus, in the DSM model, if Head contains even
a single RMA, then the resulting algorithm is not local-spin. However, in the
CC model, when a process reads a shared variable, it copies its value to its local
cache. Hence, even if Head contains remote memory reads, subsequent calls of
Head by process p do not generate RMAs unless another process performs a
non-trivial operation on a shared variable p reads in Head.

In the next two sections, we present wait-free, linearizable implementations
of an S-HAD object shared by N processes such that any number of calls of
Head(R) between a call of Append(R) and the subsequent call of Delete(R)
generate only a bounded number of RMAs in the CC model. Moreover, if each
element is deleted only when it is at the head of the sequence, this number of
RMAs is bounded above by a small constant. Our first implementation is simpler
but uses unbounded space, and our second implementation uses bounded space.

4 A Simple Implementation of S-HAD

In this section, we present a simple implementation of an S-HAD object. De-
tailed pseudo-code is given in Figure 2. Note that the lines are not consecutively
numbered. This is so each line has the same number as in the bounded space
implementation in Section 5.

We begin by explaining the overall structure of the implementation. An S-
HAD object is represented by an intree of records, one per element, each with
a pointer, pred, which is either NIL or points to another record, and a flag, del.
The root of the tree is a dummy record, which is never deleted, whose del field is
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always ‘head’ and whose pred field is always NIL. For every other record R, the
field R.del indicates whether the element it represents is in the S-HAD sequence
or has been logically deleted. The initial value of R.del is FALSE, and it becomes
TRUE when the owner of R performs line D1 of Delete(R). The field R.pred
points to another record that was appended before R. Thus, the records form
an acyclic graph rooted at the dummy record. There is a fetch and store (or
swap) object, Tail, that initially points to the root. To perform Append(R),
a process atomically reads Tail and updates Tail to point to R on line A2 of
Append(R). Hence, Tail always points to the record that was appended most
recently.

When a process wants to know whether the element represented by its record
R is at the head of the sequence, it repeatedly updates R.pred until it points
to a record that has not been deleted. This is done by Update(R). Then, the
element represented by R is at the head of the sequence if and only if R.pred
points to the dummy record.

A process logically deletes its record R by setting R.del to TRUE. Then it
calls Update(R) one more time to ensure that R does not point to another log-
ically deleted record. This is necessary because, otherwise, a sequence with two
records that are preceded by arbitrarily many logically deleted records between
them and the dummy record can be created by repeatedly deleting the second
last record and then appending a new record.

At any point during an execution, the state of the S-HAD object is the se-
quence of records R for which line A2 of Append(R) has been performed and
R.del = FALSE. This sequence is ordered by the time at which line A2 of
Append(R) was performed. All records that represent elements in the S-HAD
sequence are on the same path to the root and the one that is closest to the root
is at the head of the sequence.

We define the linearization point of Append(R) to be when line A2 is per-
formed. Immediately afterwards, R.del = FALSE. Hence, by performing line A2
of Append(R), the element represented by R is appended to the end of the se-
quence. The element represented by R is removed from the sequence when R.del
is set to TRUE on line D1. We define this to be the linearization point of Delete.
We define the linearization point of Head(R) to be when Update(R) returns on
line H1, which is when line U2 of Update(R) is performed with (*mypred).del �=
TRUE. The correctness of the implementation in Figure 2 follows from the next
two results.

Observation 2. At the linearization point of Head(R), let S be the record pointed
to by R.pred and let d = S.del. Then Head(R) returns TRUE if and only if S is
the dummy record. If Head(R) returns FALSE, then d = FALSE.

Lemma 3. Head(R) returns TRUE if and only if the element represented by
R is at the head of the sequence at the linearization point of Head(R).

Append(R) is wait-free, since it consists of only two atomic operations. Similarly,
Head(R) and Delete(R) are wait-free if Update(R) is wait-free. The following
lemma shows that Update is wait-free.
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shared variables:
type Record ( pred: pointer to a record ∪ { NIL }, initially NIL

del: { TRUE, FALSE, ‘head’ }, initially FALSE)
Record Dummy = (NIL, ‘head’)
Tail: pointer to a record, initially points to Dummy

private variables:
mypred, ppred: pointer to a record

Head(R :Record) % Precondition: R.del = FALSE, R.pred 
= NIL
% Postcondition: returns TRUE, if R is the head of the list; otherwise, returns FALSE

H1: Update(R)
H2: mypred := R.pred
H3: return ((*mypred).del = ‘head’)

Append(R :Record) % Precondition: R.del = FALSE, R.pred = NIL

A2: mypred := fetch and store(Tail, &R)
A3: R.pred := mypred

Delete(R :Record) % Precondition: R.del = FALSE, R.pred 
= NIL

D1: R.del := TRUE

D2: Update(R)

Update(R :Record) % Precondition: R.pred 
= NIL

U1: mypred := R.pred
U2: while (*mypred).del = TRUE do
U3: ppred := (*mypred).pred
U5: R.pred := ppred
U9: mypred := ppred

end while

Fig. 2. An Implementation of S-HAD

Lemma 4. If no record is appended more than once, then the while loop of
Update(R) is not performed forever.

Proof sketch. In each execution of the while loop in Update(R), R.pred is up-
dated. Each time R.pred is updated, R.pred points to a record that was appended
earlier than the record it previously pointed to. Since the number of records that
were appended earlier than R is bounded, R.pred is updated a bounded number
of times. ��

Hence, the implementation in Figure 2 is wait-free. If GetNewElement is a wait-
free system call that always returns a new record, then, by Theorem 1, the
algorithm in Figure 1 using the implementation in Figure 2 is a correct FCFS
abortable mutual exclusion algorithm.

While R.pred does not change, any sequence of calls to Head(R) generates
at most three RMAs in the CC model: the first time owner(R) reads R.pred
and (*R.pred).del, and when (*R.pred).del changes from FALSE to TRUE. If
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all records are deleted in the same order as they are appended, which is the
case for our abortable mutual exclusion when no aborts occur, then R.pred
changes only once. Hence, in the abortable mutual exclusion algorithm using
this implementation of S-HAD, each process performs O(1) RMAs if no aborts
occur.

We say that a record R was deleted prematurely if R.pred did not point to
the dummy record when line D1 of Delete(R) was performed. In the abortable
mutual exclusion algorithm in Figure 1, each invocation that is aborted corre-
sponds to a prematurely deleted record. If k is the number of processes that
delete records prematurely, then we prove that the pred pointer of every record
changes O(k2) times.

Lemma 5. Let R′ be the last record that was appended prior to element R,
but was not prematurely deleted. If k′ is the number of different processes that
appended records between R′ and R inclusive, then the while loop of Update(R)
was performed at most k′(k′ + 3)/2 times between beginning Append(R) and
completing Delete(R).

Proof sketch. A record X is active if and only if the first line of Append(X) has
been performed, but the last line of Delete(X) has not yet been performed. Note
that, if the element represented by X is in the sequence, then X is also active,
but the converse may not hold after line D1 of Delete(X) has been performed.
After record X becomes inactive, X.pred does not change.

Suppose there is a sequence of records, W1, W2, . . . , Wj−1, Wj such that
Wi+1.pred points to Wi for 1 ≤ i < j. In this case, we say that there is a path from
Wj to W1. If all of W1, . . . , Wj are inactive, then Wi was active when Wi+1 be-
came inactive. Hence, Delete(Wi+1) was completed before Delete(Wi). In partic-
ular, Delete(Wj) was completed before Delete(W1). If owner(W1) = owner(Wj),
then Delete(W1) was completed before Wj was appended and hence, before
Delete(Wj) was completed. Thus, in this case, at least one of W1, . . . , Wj−1 is
active.

Since there are k′ different processes that appended an element between R′

and R inclusive during Update(R), the path from R to R′ contains � ≤ k′

active records, the first of which is R. If Yi is the ith active record between R′

and R, for i = 1, . . . , �, then the records between Yi and Yi+1 are all inactive.
It follows from the previous paragraph that each inactive record on the path
from Yi+1 to Yi has a different owner. Hence, the path from Yi+1 to Yi contains
at most k′ − i records. Also, the subpath from Y1 to R′ contains at most k′

records. Thus, the number of records on any path from R to R′ is at most
(k′− �+1)+(k′− �+2)+ . . .+(k′−1)+k′ + � = �(2k′− �+3)/2 ≤ k′(k′ +3)/2.
Since R′ was not prematurely deleted, R′.pred pointed to the dummy record
when R′.del was set to TRUE. Hence, immediately after R′ was logically deleted,
the path from R to the dummy record contained at most k′(k′+3)/2+1 records.
Therefore, R.pred was updated at most k′(k′ + 3)/2 times. ��
Excluding Update, each process performs O(1) RMAs during Append, Head,
and Delete. Lemma 5 implies that a process performs O(k2) RMAs between
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beginning Append(R) and completing Delete(R). Thus, if GetNewElement takes
O(1) RMAs, the algorithm in Figure 1 using the implementation in Figure 2 has
O(k2) RMA complexity.

Theorem 2. Suppose GetNewElement takes O(1) RMAs. In the algorithm in
Figure 1 using the implementation in Figure 2, each process performs O(k2)
RMAs per passage, where k is the number of processes that began the trying
protocol immediately beforehand and subsequently aborted.

Since k is bounded by N , the worst case RMA complexity is O(N2). This worst
case can occur, but only if Θ(N) processes perform particular sequences of Ap-
pends and Deletes. A specific execution that generates the worst case is described
in the full paper.

5 An Implementation of S-HAD with Bounded Space

In the previous algorithm, even though records have been logically deleted from
the S-HAD object, processes can still access them to find out that they have
been deleted. Also, each time a process performs Append, it uses a new record.
Because logically deleted records are not deallocated, that algorithm uses un-
bounded space. However, eventually, a logically deleted record is no longer ac-
cessed, and we can safely reclaim the memory used by that record. To determine
when a logically deleted record is no longer accessed, we use a generalization of
reference counts. If the generalized reference count for a record becomes zero,
then the record can be physically deleted, since no process will subsequently
access the information in the record.

In simple reference counting, each record contains a counter and a record
can be physically deleted when its counter is zero. If record R points to record
X , record S points to Y , and a process wants to change R to point to the
same place as S, then it reads &Y from S, increments Y ’s counter, sets R
to &Y , and finally decrements X ’s counter. However, if Y ’s counter becomes
zero and Y is physically deleted between the first two steps, then the owner of
R will not notice this and may access the location in memory from which Y
was deleted. One way to prevent this is to perform the first two steps atom-
ically using double compare and swap (Detlefs et al. [4]). Unfortunately,
double compare and swap is not available in most systems.

Another approach is for the process to read S after it increments Y ’s counter
and, if S’s pointer has been changed, it decrements Y ’s counter instead of
changing R [14]. In this case, no other information in Y is accessed. However,
this method still allows access to the counter of a physically deleted record, so
the memory it occupies cannot be reclaimed by the system. Physically deleted
records can be put into a free list and reused in the future. However, when pro-
cesses access the counter of a free or recycled record, extra RMAs are generated.
Using this method in our algorithm increases the worst case RMA complexity
from Θ(N2) to Θ(N4).
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shared variables:
type Record ( rc: a pair of integers (orc, drc), where 0 ≤ orc < N and

−N < drc < N , initially (0, 0)
pred: a pair (predptr, prc), where predptr is NIL or a pointer to

a record and 0 ≤ prc < N is an integer, initially (NIL, 0)
del: { TRUE, FALSE, ‘head’ }, initially FALSE

done: { TRUE, FALSE}, initially FALSE)
Record Dummy = ((0,0), (NIL, 0), ‘head’, 0)
Tail: pointer to a record, initially points to Dummy

private variables:
mypred, ppred: pointer to a record
myprc, x, y: integer

Head(R :Record) % Precondition: R.del = FALSE, R.pred 
= (NIL, −)
% Postcondition: returns TRUE, if R is the head of the list; otherwise, returns FALSE

H1: Update(R)
H2: (mypred,−) := R.pred

H3: return ((*mypred).del = ‘head’)

Append(R :Record) % Precondition: R.del = FALSE, R.pred = (NIL, 0)

A1: R.rc := (1, 1)
A2: mypred := fetch and store(Tail, &R)
A3: R.pred := (mypred, 0)

Delete(R :Record) % Precondition: R.del = FALSE, R.pred 
= (NIL, −)

D1: R.del := TRUE

D2: Update(R)

D3: Remove(R)

Update(R :Record) % Precondition: R.pred 
= (NIL, −)

U1: (mypred, −) := R.pred
U2: while (*mypred).del = TRUE do
U3: (ppred, −) := fetch and add((*mypred).pred, (0, 1))
U4: fetch and add((*ppred).rc, (1, 0))
U5: (−, myprc) := fetch and store(R.pred, (ppred, 0))
U6: (x, y) := fetch and add((*mypred).rc, (−1, myprc − 1))
U7: if (x, y) = (1, 1 − myprc) then

% Note that (*mypred).rc = (0, 0)
U8: Remove(*mypred)

end if
U9: mypred := ppred

end while

Remove(R :Record)

R1: if test and set(R.done) = TRUE then
R2: (mypred, myprc) := fetch and store(R.pred, (NIL, 0))

R3: (x, y) := fetch and add((*mypred).rc, (−1, myprc − 1))
R4: recycle(R)
R5: if (x, y) = (1, 1 − myprc) then

% Note that (*mypred).rc = (0, 0)
R6: Remove(*mypred)

end if

end if

Fig. 3. An Implementation of S-HAD with bounded space



376 H. Lee

Due to their weaknesses, instead of adopting previous methods, we devise a
new reference counting method for our algorithm. In our new memory reclama-
tion method, each record has a pointer predptr, and an original reference counter
(orc), which stores an upper bound on the number of pointers in shared memory
that point to it. In addition to orc, each record also has two more counters, a
proactive reference counter (prc) and a distributed reference counter (drc). Both
prc and drc are used to keep track of pointers that have been read and may be
written to shared memory in the future.

R.prc stores the number of times R.predptr has been read since R.predptr
was last updated. This value is transferred to S.drc when R.predptr is changed
from pointing to S to pointing to another record. In general, for any record S,
the sum of the prc’s of all records that point to S plus S.drc is bounded above
by the number of times a pointer to S has been read minus the number of times
a pointer to S has been overwritten.

R.drc is stored together with R.orc in a single variable R.rc, so that they can
be accessed together. The range of orc is from 0 to N −1 and the range of drc is
from 1−N to N − 1. Hence, rc = (drc,orc) can be represented using O(log N)
bits in a single word of memory. fetch and add(rc, (m, n)) can be simulated
by fetch and add(rc, m · 2�log2 N� + n).

R.prc is stored together with R.predptr in a single variable R.pred. Associ-
ating a pointer with a counter was also done in [6] and [8]. In [8], a wait-free
implementation of a pointer requires a complicated atomic operation. However,
in our algorithm, processes perform only read, write, fetch and add and
fetch and store operations on pointers. Pointers in [6] are similar to ours,
but are stored together with two integers.

Since the range of prc is from 0 to N − 1, pred can be represented using
�log2 N� bits in addition to the bits used for the pointer, all stored in one word.
Since we use only O(N2) records, a pointer can be represented using O(log N)
bits. fetch and add(pred, k) adds k to prc. In our algorithm, whenever predptr
is set to point to a record X , prc becomes zero, which can be accomplished by
fetch and store(pred, (&X, 0)).

Pseudo-code for the algorithm is presented in Figure 3. Head(R) is essentially
the same as in the previous algorithm. In Append(R), the owner of R sets R.rc
to (1,1) before appending R to the end of the sequence. Most of the differences
are inside the while loop of Update(R). Unlike the previous algorithm, R.pred
can now be changed by processes other than the owner of R, on lines U3 and
R2, but only after R has been logically deleted. This does not affect the RMA
complexity of Head(R), which is only performed while R is in the sequence.

To see how Update(R) was modified, consider the situation when process p,
which owns record R, wants to update R’s predecessor pointer to point to the pre-
decessor of its predecessor, i.e. R.predptr := (*R.predptr).predptr. Suppose X is
R’s predecessor, Y is X ’s predecessor, and p’s local variable mypred points to X .
To change R to point from X to Y , process p performs line U3, in which p atom-
ically reads X.predptr and increments X.prc using fetch and add. This indi-
cates that R will reference Y and it learned about Y from X . Next, p increments
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Y.orc on line U4. On line U5, p atomically changes R.predptr to Y , reads R.prc
into its local variable myprc, and resets R.prc to 0, using fetch and store.
Hence, myprc stores the number of processes that have accessed R.predptr
between the last two updates of R.predptr. Finally, on line U6, p atomically
decrements X.orc and adds myprc − 1 to X.drc, using fetch and add. The
distributed reference count is decremented, since R is no longer pointing to X .
The value that had been stored in R.prc before it was reset is transferred to
X.drc. Both of these are accomplished by adding myprc− 1 to X.drc.

When a process tries to physically delete a record R, it calls function
Remove(R). R can be physically deleted only when no record points to R, no
records will point to R, and lines D1 and D2 of Delete(R) have been completed.
R.orc = 0 indicates that no record currently points to R, and R.drc = 0 indi-
cates that no record will point to R. Hence, when R.rc = (0, 0) and Delete(R) is
completed, R can be physically deleted. To ensure that both conditions are met,
Remove(R) is called twice: one by the owner of R at the end of Delete(R) (line
D3) and the other by a process who finds that R.rc = (0, 0) during Update (line
U8) or Remove (line R6). Only the later of these two calls physically deletes
R by calling recycle(R) on line R4. recycle(R) can be either a system call that
deallocates R from memory or some function that moves R into a free list.

Remove(R) is called from exactly one of line U8 or line R6, so Remove(R) is
called exactly twice. To ensure that only the later call physically deletes R, we
use a test and set object, R.done, and only perform the rest of Remove if it
returns TRUE. Note that a record R can be physically deleted by any process,
although Delete(R) can be called only by the owner of R.

Remove is called recursively if physically deleting a record causes another
record’s reference counts to become (0, 0). When a process physically deletes a
record R, it also removes its pointer, R.predptr. If R.predptr pointed to another
record S, then S’s reference counts must be updated. This may cause S.rc to
become (0, 0) and, if it is, Remove(S) is called recursively on line R6. These
recursive calls add only O(k2) RMAs in total, if k is the number of processes
that appended a record before R and deleted it prematurely. Hence, it does not
affect the overall asymptotic RMA complexity of the algorithm.

Unlike the reference counting in [14], our algorithm allows each record to be
reclaimed by the system, provided the system calls for memory allocation and
deallocation each take O(1) RMAs. In this case, GetNewRecord in Figure 1 is
a system call for memory allocation and recycle(R) on line R4 of Figure 3 is a
system call for memory deallocation.

Alternatively, we can use a free list of length at most 3N for each process.
The reason 3N records per process suffice is discussed in the full paper. Each
process, p, maintains a Boolean array of size 3N , which indicates which records
are available. To get a new record, process p keeps checking each element of the
array until it finds a true bit. If the ith bit in the array is TRUE, p sets it to
FALSE and uses its ith record. When some process recycles the ith record of p,
it sets the ith element of p’s array to TRUE. Since p is the only process that sets
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Table 1. Local-spin abortable mutual exclusion algorithms

Scott [12] Jayanti [9] Danek and New Algorithm
Lee [3]

Atomic operations fetch and store, test and set,
used besides compare and swap ll/sc - fetch and add,

read and write fetch and store

Local-spin on CC Yes Yes Yes Yes

Local-spin on DSM Yes Yes Yes No

RMAs / passage O(1) Θ(log N) Θ(log N) O(1)
if no aborts ; Θ(N)

RMAs / passage unbounded Θ(log N) Θ(log N) O(N2)
; Θ(N)

space unbounded Θ(N) Θ(N) Θ(N2)

FCFS Yes Yes No ; Yes Yes

elements of its array to FALSE, no RMA is generated when p reads FALSE.
Therefore, both GetNewRecord in Figure 1 and recycle(R) on line R4 of Figure
3 generate only O(1) RMAs.

The resulting algorithm uses only O(N2) space. It also has the same RMA
complexity, O(N2), as the previous algorithm. Therefore, the abortable mutual
exclusion algorithm in Figure 1 using this implementation of S-HAD is local-
spin, uses O(N2) space, has O(N2) RMA complexity, and each process performs
O(k2) RMAs per passage, where k is the number of processes that began the
trying protocol immediately beforehand and subsequently aborted.

6 Conclusions

We presented a local-spin abortable mutual exclusion algorithm with O(N2)
space, in which each process performs O(1) RMAs for each entry to the crit-
ical section when no processes abort, and each process performs O(k2) RMAs
when aborts occur in the CC model, where k is the number of processes that
abort. Table 1 compares our algorithm with previous abortable mutual exclusion
algorithms.

Our algorithm performs more RMAs per passage than Jayanti’s and Danek
and Lee’s in the worst case, but fewer when no aborts occur. If k = o(

√
log N)

processes began the trying protocol immediately before process p and subse-
quently aborted, then p performs o(log N) RMAs per passage in our algorithm,
which is better than Jayanti’s or Danek and Lee’s algorithms. It would be inter-
esting to compare the experimental performance of our algorithm with the other
algorithms.

It is open whether Ω(N2) space and RMAs are necessary in the CC model, if
each process performs a constant number of RMAs when no processes abort. It
is also open whether there exists a local-spin abortable mutual exclusion algo-
rithm in the DSM model with bounded space and RMAs, in which each process
performs a constant number of RMAs when no processes abort.
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Abstract. A liveness contract is an agreement between the specifier
of a system and a task to solve, and the programmer who makes her
living by delivering protocols. In a shared-memory system, a liveness
contract specifies infinite suffixes of executions in which the programmer
is required to solve a distributed task. If the behavior of the system does
not comply with the specification, no output is required. A convenient
way to describe a large class of liveness contracts was recently proposed
by Delporte et al. For a system Π of n processes, an adversary is a
set A of subsets of Π . The system is required to make progress only in
executions in which the set of correct processes is in A.

Given an adversary A and a task T , should the programmer sign the
contract? Can she deliver?

In this paper, we give a very simple resolution of this question for col-
orless tasks that contrasts with more involved arguments of the original
paper of Delpote et al. More importantly, our resolution is constructive
— it tells the programmer how to use A to solve T , when it is solvable.

Our framework naturally generalizes to systems enriched with more
powerful objects than read-write registers. We determine necessary and
sufficient conditions for an adversary A to solve consensus using j-process
consensus objects and read-write registers, which resolves an open ques-
tion raised recently by Taubenfeld.

1 Introduction

Distributed computing is about overcoming asynchrony and failures. Wait-free
system, a system where we make no assumptions about some synchrony or cor-
rectness of some processes, can solve only few interesting tasks. To solve more
interesting tasks, we should make more assumptions about the system behavior.

Recently [7], Delporte et al. proposed a class of assumptions that they called
adversaries. In their view, an adversary controls sets of processes that may fail
in a given execution, regardless of the time when they fail. Put differently, an
adversary is defined as a collection A of sets of processes, and they only consider
executions where some element in A is exactly the set of correct processes.
Following [7], in this paper, we explore the ability of such adversaries to enhance
solvability of distributed tasks, defined in terms of inputs the processes receive,
outputs the processes produce, and a binary relation that maps inputs to the
sets of possible outputs.
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Why are adversaries interesting to look at? In a shared-memory system, it
is straightforward to ensure that the outputs a protocol solving a task provides
are always correct [10,22]. However, ensuring that the outputs can indeed be
eventually produced is sometimes tricky. Therefore, an adversary can be viewed
as a liveness property, that specifies under which condition the correct processes
are expected to produce outputs.

Given a task T and an adversary A, can the task be solved? It is known that
this question is in general undecidable [12,16], and Delporte et al. [7] reduced it
to the question of k-resilient solvability, i.e., assuming an adversary that consists
of all sets of n − k or more processes, restricted to colorless tasks (also called
convergence tasks [4]). The resolution proposed in [7] is not easy to follow, and
moreover, it is not constructive — it does not tell the programmer of the protocol
how to use the adversary A to solve a colorless task T , when T is solvable.

In this paper, we give a simpler constructive resolution of the question.
How to use such a condition A is shown below on a “back of an envelope”

example. The paper is just a detailed elaboration of the envelope.
Consider a system of four processes, p, q, r, and s, and consider the obstruction-

free adversaryAOF defined as the set of all singletons {{p}, {q}, {r}, {s}}.1 Thus,
AOF stipulates that an algorithm solving a task is only required to make progress
if some process is eventually forever running solo. It is immediate that AOF al-
lows for solving consensus [8]: a sequence of commit-adopt [10] instances, where
the first instance is called with the input value, every next instance is called
with the value returned by the previous instance, and the first committed value
is returned. Thus, the set consensus power [13] of AOF , i.e., the smallest k such
that k-set agreement can be solved in the presence of AOF , is 1.

In general, under which condition an adversaryA allows for solving consensus?
In this paper, we show that A provides consensus if for all S ∈ A all subsets of
S that belong to A have a non-empty intersection. Intuitively, a correct process
in the intersection acts as a leader in a classical eventual leader-based consensus
protocol [6].

What if we weaken AOF by adding one more allowed set of correct processes:
A′

OF = {p, q, r, s, pqrs}: either some process eventually runs solo, or no process
fails? What is the set consensus power of A′

OF ? It is easy to observe that A′
OF

allows for solving 2-set agreement: As {p, q, r, s} can do consensus and {pqrs}
can do consensus, run both in parallel.

But can we solve consensus with A′
OF ? The answer is “no”. Indeed, by as-

suming the converse, that there exists a read-write protocol P that, under A′
OF ,

solves consensus, we can derive a read-write consensus protocol for 2 processes
violating [9,20], as follows.

We take 2 simulators s0 and s1 that mimic a run of P in A′
OF using BG-

agreement [3,4] to make sure that every step in P is simulated consistently
across the simulators. Initially, s0 tries to start P with all 0s and s1 with all 1s
as input values of p, q, r, and s. Recall that BG-agreement is allowed to block
forever if one of the simulators fails in the middle of it. Steps of P are simulated

1 For brevity, we simply write {p, q, r, s} in the following.
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in a round-robin fashion on the codes of p, q, r, s until a decision value is output
in the simulated run or one code blocks because of an unresolved BG-agreement.
This unresolved agreement may block the code of either p or q but not both (we
do not need other singleton sets in A′

OF for the simulation). Say the code of p is
blocked. Thus, a live simulator, say s0, picks q and simulates just it, as long as
the unresolved BG-agreement on the code of p stays unresolved. In case it does
resolve, s0 resumes again to continue round-robin on the codes of p, q, r and s.
Thus, if no BG-agreement remains unresolved forever, the codes of all processes
p, q, r, s accept infinitely many simulated steps. Otherwise, an eventually solo
execution of p or q is simulated. Thus, the correct processes in the simulated
execution of P are {pqrs} and P should output, else, p or q continue forever
solo, and P again should output. Thus, set consensus number of A′

OF is 2.
Further, imagine that we want to boost the power of A′

OF = {pqrs, p, q, r, s}
using objects that solve consensus among two or more processes [18]. A simple
extension of the argumentation above shows that j-process consensus objects are
necessary and sufficient for solving consensus withA′

OF , where j is the maximum
of the hitting set size of S in A′

OF , over all S ∈ A′
OF .2 In our case, the hitting

set size of {pqrs} in A′
OF is 4 and, thus, we need 4-process consensus. But if we

restrict ourselves to the adversary A′′
OF = {pqrs, p, q}, then we would need only

2-process consensus.
In this paper, we generalize the observations made above for the special case

of A′
OF , to any adversary of [7]. We introduce an alternative definition of the

set consensus power of an adversary A, a positive one as we view adversaries as
helpful entities: The smallest k such that k-set agreement can be solved in the
presence of A.3 Then we provide a simple characterization of the set consensus
power of an adversary. Our characterization is self-consistent and, unlike the
definition given in [7] does not involve reductions to k-resilience.

Our simulations allow us to derive a more general result: every two adversaries
that have the same set consensus power k agree on the set of colorless tasks they
are able to solve. Informally, colorless tasks allow every process to adopt an input
or output value from any other participating process. Thus, every colorless task
is equivalent to some level of set agreement. Our technique is based on simple
direct simulations and it does not employ failure detector-based reductions of [7].

Recently, following [7], Herlihy and Rajsbaum [17], and a concurrent paper
[14], considered a restricted set of adversaries that are closed under superset: for
every S ∈ A, every its superset S′ ⊆ Π is also in A. Informally, such adversaries
say what sets of processes are expected to be live, but do not say which sets
of processes are supposed to fail. By employing elements of modern combinato-
rial topology, [17] derives the characterization of colorless tasks with respect to
superset-closed adversaries. In [14], we derive this result employing a very simple

2 The hitting set size of S in A is the size of the minimum-cardinality subset of S that
meets every element of A subset of S.

3 More precisely, [7] talks about the disagreement power of A which is the largest d
such that d-set agreement cannot be solved in the presence of A. The disagreement
power of A is the set consensus power of A minus one.
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simulation algorithm, a precursor to the one in this paper. Indeed, our paper [14]
generalizes naturally to unrestricted adversaries. We suspect that doing the same
with [17] is a major undertaking.

Imbs et al. [18] and Taubenfeld [21] considered special classes of progress con-
ditions in the context of shared-memory systems enriched with consensus objects
shared by subsets of j < n processes. We observe that, with respect to colorless
tasks, progress conditions of [18,21] are in fact special cases of adversaries [7].
Then we reconstruct the characterization of the power of leveled adversaries [21]
to solve consensus using j-process consensus objects and extend the result to
general adversaries, closing a question left open in [21].

This paper provides therefore a purely algorithmic characterization of adver-
saries that neither involves “esoteric” (for the distributed community) topolog-
ical arguments, as [17], nor does it rely upon weakest failure detector results,
as [7]. Neither it is stuck in the 80’s resorting at these days and age to bivalency
arguments [18,21]. Overall, this supports the contention that beyond dealing
with sub-consensus tasks [15], topology is the analogue of plowing your field
with an F16 fighter rather than a simple tractor — the F16 may do the job
faster, but it takes years to master and you are liable to crash because of the low
altitude flying and sharp turns plowing requires. Bivalency is the Ox. You can
go with it so far but no more. The golden path, between bivalency and topology,
is the BG simulation [3,4]. A tractor - simple, yet powerful and exactly suitable
for the job.

The rest of the paper is organized as follows. Section 2 briefly describes our
system model. Section 3 defines the notion of the power of a general adversary.
Section 4 presents our characterization of adversaries with respect to colorless
tasks. Section 5 extends our characterization to other computing models. Sec-
tion 6 overviews the related work and concludes the paper.

2 Model

We adopt the conventional read-write shared memory model and only describe
necessary details.

Processes and objects. We consider a distributed system composed of a set Π
of n processes {p1, . . . , pn} (n ≥ 2). Processes communicate by applying atomic
operations on a collection of shared objects. In the most of this paper, we assume
that the shared objects are registers that export only atomic read-write opera-
tions. The shared memory can be accessed using atomic snapshot operations [1].
An execution is a pair (I, σ) where I is an initial state and σ is a sequence of
process ids. A process that takes at least one step in an execution is called par-
ticipating. A process that takes infinitely many steps in an execution is said to
be correct, otherwise, the process is faulty.

Distributed tasks. A task is defined through a set I of input n-vectors (one input
value for each process, where the value is ⊥ for a non-participating process), a set
O of output n-vectors (one output value for each process, ⊥ for non-terminated
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processes) and a total relation Δ that associates each input vector with a set of
possible output vectors. A protocol wait-free solves a task T if in every execution,
every correct process eventually outputs, and all outputs respect the specification
of T .

Correct sets and adversaries. The correct set of an execution e, denoted correct(e)
is the set of processes that appear infinitely often in e. An adversary [7] is a collec-
tion of subsets of Π . We say that an execution e is A-compliant if correct(e) ∈ A.

Hitting sets. Given a set system (Π,A) where A is a set of subsets of Π , a
set H ⊆ Π is a minimum cardinality hitting set of (Π,A) if it is a minimum
cardinality subset of Π that meets every set in A. The hitting set size of (Π,A),
i.e., the size of a minimum cardinality hitting set of (Π,A), is denoted by h(A).
Obviously, if h(A) = 1, then ∀A′ ⊆ A, A �= ∅, h(A′) = 1. Finding the hitting
set size is NP-complete [19].

Colorless tasks. In colorless task (also called convergence tasks [4]) processes
are free to use each others’ input and output values, so the task can be defined
in terms of input and output sets instead of vectors.

Formally, let val(U) denote the set of non-⊥ values in a vector U . In a colorless
task, for all input vectors I and I ′ and all output vectors O and O′, such that
(I, O) ∈ Δ, val(I ′) ⊆ val(I), val(O′) ⊆ val(O), we have (I ′, O) ∈ Δ and (I, O′) ∈
Δ.

The Commit-Adopt protocol. The commit-adopt abstraction (CA) [10] exports
one operation propose(v) that returns (commit , v′) or (adopt , v′), for v′, v ∈ V ,
and guarantees that (a) every returend value is a proposed value, (b) if only one
value is proposed then this value must be committed, (c) if a process commits
on a value v, then every process that returns adopts v or commits v, and (d)
every correct process returns. The commit-adopt abstraction can be implemented
wait-free.

The BG-simulation technique. BG-simulation is a technique by which k + 1
processes s1, . . . , sk+1, called simulators, can wait-free simulate a k-resilient exe-
cution of any asynchronous n-process protocol A [3,4]. The simulation guarantees
that each simulated step of every process pj is either agreed on by all simulators,
or one less simulator participates further in the simulation for each step which
is not agreed on.

The central building block of the simulation is the BG-agreement protocol.
The protocol is safe—every decided value was previously proposed, and no two
different values are decided— but not necessarily live. If a simulator slows down
in the middle of BG-agreement, the protocol’s execution at other correct simula-
tors may “block” until the slow simulator finishes the protocol. If the simulator
is faulty, no simulator is guaranteed to decide.

Suppose the simulation tries to promote m > k codes in a fair (e.g., round-
robin) way. As long there is a live simulator, at least m− k simulated processes
accept infinitely many steps of A in the simulated execution.
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3 Set Consensus Power of A
Let A be an adversary and take any set S ⊆ P . AS denotes the adversary
that consists of S and all elements of A that are subsets of S. E.g., for A =
{pq, qr, q, r} and S = qr, AS = {qr, q, r}.

Let S ∈ A and take a ∈ S. Then AS,a denotes the adversary that consists of
all elements of AS that do not include a. E.g., for A = {pq, qr, q, r}, S = qr,
and a = q, AS,a = {r}. Note that if the hitting set size of (Π,AS) is 1, then for
every a ∈ S that meets every set in AS , we have AS,a = ∅. Thus:

Lemma 1. h(AS) > 1 if and only if ∀a ∈ S : AS,a �= ∅.

Definition 1. The quantity denoted setcon(A), which will later be shown to be
the set consensus power of A, is defined as follows:

– If A = ∅, then setcon(A) = 0
– Otherwise, setcon(A) = maxS∈A mina∈S setcon(AS,a) + 1

Thus, setcon(A), for a non-empty adversary A, is determined as setcon(AS̄,ā)+
1 where S̄ is an element of A and ā is a process in S̄ that “max-minimize”
setcon(AS,a). Note that for A �= ∅, setcon(A) ≥ 1.

We say that S ∈ A is proper if it is not a subset of any other element in A.
Let proper (A) denote the set of proper elements in A. Note that since for all
S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a), we can replace S ∈ A
with S ∈ proper (A) in Definition 1.

For example, for A = {pqr, pq, pr, p, q, r}, we have setcon(A) = 2: for S = pqr
and a = p, we have AS,a = {q, r} and setcon(AS,a) = 1. Intuitively, in an
execution where the correct set belongs to A−AS,a = {pqr, pq, pr, p}, process p
can act as a leader for solving consensus. If the execution’s correct set belongs
to AS,a = {q, r} (either q or r eventually runs solo) then q and r can solve
consensus using an obstruction-free algorithm. Running the two algorithms in
parallel, we obtain a solution to 2-set agreement. The reader can easily verify
that any other choice of a ∈ pqr results in larger values of setcon(AS,a).

As another example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥
n − t}. It is easy to verify recursively that setcon(At-res) = t + 1: at each level
1 ≤ j ≤ t + 1 of recursion we consider a set S of n− j + 1 elements, pick up a
process p ∈ S and delegate the set of n−j processes that do not include p to level
j+1. At level t+1 we get a set of size n−t and stop. Thus, setcon(At-res) = t+1.

More generally, consider superset-closed adversaries A [14]: for every S ∈ A,
every its set S′ such that S ⊆ S′ ⊆ Π is also in A.

Theorem 1. For all superset-closed adversaries A, setcon(A) = h(A).

Proof. By definition, for A = ∅, setcon(A) = h(A) = 0. By induction, suppose
that for all 0 ≤ j < k and all superset-closed adversaries A′ with h(A′) = j, we
have setcon(A′) = j.

Consider a superset-closed adversary A such that h(A) = k. The only proper
element of A is the whole set of processes Π . Thus, setcon(A) = mina∈Π
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Initially:
∀j, Aj = ∅

PartitionAdv(A)
1 partition(A, 1)

partition(B, j)
2 while B 
= ∅ do
3 (B, b) := args maxS∈proper(B) mina∈S setcon(BS,a)
4 Aj := Aj ∪ (BB − BB,b)
5 partition(BB,b, j + 1)
6 B := B − BB

Fig. 1. Partitioning an adversary with setcon = k

setcon(AΠ,a) + 1. Since h(A) = k, by removing all elements that include a
we obtain an adversary AΠ,a such that h(AΠ,a) ≥ k − 1. (Otherwise, there is a
hitting set of A of size less than k.) By picking up a in a hitting set of A of size
k we obtain, by the induction hypothesis, h(AΠ,a) = setcon(AΠ,a) = k− 1 and,
thus, setcon(A) = k.

For general adversaries, for convenience, we first consider the special case of set
consensus power 1. Definition 1 and Lemma 1 imply:

Lemma 2. setcon(A) = 1 if and only if ∀S ∈ A, h(AS) = 1

We show below that the elements of every adversary A with setcon(A) = k can
be split into k sub-adversaries such that setcon of every sub-adversary is 1.

Theorem 2. Let A be an adversary, and let setcon(A) = k. Then there exists
A1, . . . ,Ak, a partitioning of A, such that, for all 1 ≤ j ≤ k, setcon(Aj) = 1.

Proof. Let A be an adversary such that setcon(k). Our goal is to partition A
into k sub-adversaries A1, . . . ,Ak such that ∀j = 1, . . . , k, ∀S ∈ Aj , h(Aj

S) = 1.
We construct the desired partitioning of A using procedure PartitionAdv (A)
described in Figure 1.

Suppose that at a level j ∈ {1 . . . , k}, we have B ⊆ A, a set of elements of
A which were not yet assigned a level. We recursively assign elements of B to
levels j or more using procedure partition(B, j).

Let B and b ∈ B max-minimize setcon(BS,a) over all S ∈ B and a ∈ S (ties
broken deterministically). Then we assign BB − BB,b to level j and recursively
partition BB,b on level j + 1 by calling partition(B, j + 1). When we are done,
i.e., all elements of BB are assigned to levels j or more, we proceed to assigning
the remaining elements of B − BB to level j or more, and we repeat this until
we exhaust B.

We observe first that this procedure recursively explores all elements in A,
i.e., every element S ∈ A is assigned to some level j ≥ 1. By construction, each
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Aj only contains sets S with the hitting set size 1, namely, all S′ ∈ AB that
contain b (chosen in line 3). All other elements of AS are delegated to levels j+1
or more.

By Definition 1 and Lemma 1, if we start from the whole set A at level 1
(line 1), and setcon(A) = k, exactly levels 1, . . . , k are populated.

Finally, by construction, for all j and all S ∈ proper (Aj), h(Aj
S) = 1. By

Lemma 2, for all j, setcon(Aj) = 1.

Before we characterize the ability of adversaries to solve generic colorless tasks,
we consider the special case of adversaries of setcon = 1.

Theorem 3. If setcon(A) = 1, then A solves consensus.

Proof. Recall that if setcon(A) = 1, then, by Lemma 2, ∀S ∈ A, h(AS) = 1. The
consensus algorithm is presented in Figure 2. This is a rotating coordinator-based
algorithm inspired by the consensus algorithm by Chandra and Toueg [6].

The algorithm proceeds in rounds. In each round r, every process pi first
tries to commit its proposal in a new instance of commit-adopt. If pi succeeds,
then the committed value is written in the “decision” register D and returned.
Otherwise, pi adopts the returned value as its current estimate and writes it
in Ri equipped with the current round number r. Then pi takes snapshots of
{R1, . . . , Rn} until either a set S ∈ A reaches round r or a decision value is
written in D (in which case the process returns the value from D). If no decision
is taken yet, then pi checks if the coordinator of this round, pr mod n, is in S. If
so, pi adopts the value written in Rr mod n and proceeds to the next round.

Safety of the algorithm follows from the properties of commit-adopt. Indeed,
the first round in which some process commits on some value v in line 14 locks
the value for all subsequent rounds.

For liveness, suppose, by contradiction, that the algorithm never terminates in
some A-compliant execution e. Recall that we only consider executions in which
some set in A is exactly the set of correct processes. Therefore, every correct
process goes through infinitely many rounds.

Let S̄ ∈ A be the set of correct processes in e. After a round r′ when all
processes outside S̄ have failed, every element ofA evaluated by a correct process
in line 16 is a subset of S̄. Finally, since the hitting set size of AS̄ is 1, all these
elements of A overlap on some correct process pj .

Consider round r = mn + j ≥ r′. In this round, pj not only belongs to all
sets evaluated by the correct processes, but it is also the coordinator (j = r
mod n). Thus, the only value that a process can propose to commit-adopt in
round r +1 is the value previously written by pj in Rj . Thus, every process that
returns from commit-adopt in round r + 1 commits—a contradiction. Hence, no
read-write protocol can solve T ′ in the presence of A.

Theorems 2 and 3 imply the following:

Corollary 1. Let A be an adversary such that setcon(A) = k. Then the adver-
sary can solve k-set agreement.
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Shared variables:
D, initially ⊥
R1, . . . , Rn, initially ⊥

propose(v)
7 est := v
8 r := 0
9 S := P
10 repeat
11 r := r + 1
12 (flag, est) := CAr.propose(v)
13 if flag = commit then
14 D := est ; return(est ) {Return the committed value}
15 Ri := (est , r)
16 wait until ∃S ∈ A, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D 
= ⊥

{Wait until a set in A moves}
17 if pr mod n+1 ∈ S then
18 est := vr mod n+1 {Adopt the estimate of the current leader}
19 until D 
= ⊥
20 return(D)

Fig. 2. Consensus with a “one-level” adversary A, setcon(A) = 1

Proof. First we apply Theorem 2 to partition A into k classes A1, . . . ,Ak such
that, for all j = 1, . . . , k, setcon(Aj) = 1. Then every process runs k parallel
consensus algorithms established by Theorem 3, one for each Aj , proposing its
input value in each of these consensus instances (the idea originally appeared
in [2]). Since the set of correct processes in every A-compliant execution belongs
to some Aj , at least one consensus instance returns. The process decides on the
first such returned value. Moreover, at most k different values are decided and
each returned value was previously proposed.

The next section shows that no read-write protocol can solve (k−1)-set agree-
ment under an adversary A such that setcon(A) = k.

4 Characterizing Colorless Tasks

In this section, we show a more general result: the set of colorless tasks that can
be solved with an adversary A with setcon(A) = k is exactly the set of colorless
tasks that can be solved (k − 1)-resiliently, but not k-resiliently. The proof is
based on two simple applications of BG simulation [3,4].

First, we show that A solves every (k − 1)-resiliently solvable colorless task
T by presenting an algorithm that, in every A-compliant execution, simulates a
(k − 1)-resilient execution of a protocol solving T .

Second, we show that A cannot solve a colorless task T ′ that is not (k − 1)-
resiliently solvable by presenting an algorithm that (k − 1)-resiliently simulates
any protocol that solves T ′ in every A-compliant execution.
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Local variables:
B1, . . . , Bk, initially ⊥ {Set of currently simulated elements of A}
b1, . . . , bk, initially ⊥ {Set of currently blocked processes}
L, initially 1 {The current level of simulation}

Code for every simulator si, i = 1, . . . , n
21 B1 := the first element S ∈ proper (A) such that setcon(AS) = k

{In some deterministic order}
22 L := 1
23 repeat forever
24 � := 1
25 while � < L and the current step of b� is still blocked do � = � + 1
26 if � < L then L := � {Return to level � if the step of b� is resolved}
27 let pj ∈ BL be the process with the least number of simulated steps
28 run BG-agreement for the next step of pj

29 if the step of pj is blocked and L < k then
30 bL := pj

31 BL+1 := the first set in proper(ABL,bL) with power ≥ k − L
{Such a set exists, since setcon(ABL) ≥ k − L + 1}

32 L := L + 1

Fig. 3. Simulating an A-compliant execution

Theorem 4. Let A be an adversary such that setcon(A) = k and T be a color-
less task. A solves T if and only if T is (k − 1)-resiliently solvable.

Proof. Let A be an adversary such that setcon(A) = k.
Let T be a colorless (k − 1)-resiliently solvable task. By Corollary 1, A can

implement k-set agreement. Then we apply the generic algorithm of [11] that
solves every (k − 1)-resilient colorless task using a solution to k-set agreement
as a black box. Thus, A solves T .

For the other direction, suppose that A solves a colorless task T ′ that is not
solvable (k − 1)-resiliently, and let Alg be the corresponding algorithm.

We describe below a simulation protocol (summarized in Figure 3) that allows
n simulators, s1, . . . , sn, to (k−1)-resiliently simulate an A-compliant execution
of Alg.

Essentially, the protocol builds upon BG-simulation, except that the order
in which steps of Alg is not fixed in advance. Instead, the order is determined
online, based on the currently observed set of participating processes.

Let B1 be an element of proper (A) such that setcon(AB1) = k (by the
definition of setcon such a set exists). Initially, every simulator proceeds by
simulating steps of processes in B1 in a round-robin fashion. If simulating a
step blocks—some other simulator stopped in the middle of the BG agreement
protocol of some process b1 ∈ B1—the simulator proceeds to simulating steps
of the processes in B2, the “next” not yet blocked element of AB1 such that
setcon(AB2) ≥ k − 1. Indeed, by Definition 1, for all b ∈ B, setcon(AB1,b) ≥
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setcon(AB1)− 1 = k − 1. Thus, such a set B2 ∈ AB1,b1 exists. The procedure is
then repeated for B2: steps of processes in B2 are simulated as long as no pro-
cess in B2 is blocked. As soon as a blocked process b2 is observed, the simulator
proceeds to simulating B3, an element of AB2,b2 that has consensus power at
least k − 2, etc. Inductively, since setcon(A) = k, if the simulation reaches level
k, then Bk �= ∅.

Every simulator periodically checks if some of the previously blocked agree-
ments are resolved (line 25). If so, the simulator jumps back to the smallest level
with a resolved agreement (line 26).

Note that, since every step of Alg is agreed upon using the BG-agreement
protocol, the simulation constructs a correct execution of Alg [3,4]. Now we
show that the produced execution is indeed A-compliant, and thus Alg must
terminate.

First, we observe that no line in the pseudo-code presented in Figure 3 is
blocking. Thus, every correct simulator proceeds through infinitely many rounds
in lines 24-29. Consider level � and suppose that some correct process never
observed the currently simulated step of b� being resolved (it is blocked forever by
a faulty simulator). Since simulators explore the simulated sets in a deterministic
order starting from level 1, every correct process eventually blocks on the same
step of b�.

Now let � be the lowest level in which no step in B� is observed blocked forever.
Since there are at most k − 1 faulty simulators, and a faulty simulator cannot
block more than one simulated process, � ≤ k. Thus, every correct process sim-
ulates infinitely many steps of B�, and, eventually, every simulated step belongs
to a process in B�. By construction, B� ∈ A and, thus, the simulated run of Alg
is A-compliant. Therefore, Alg must terminate in the simulated execution and
we obtain a (k − 1)-resilient solution to T ′ — a contradiction.

The set consensus power of an adversary A is the smallest k such that A can
solve k-set agreement. Theorem 4 implies:

Corollary 2. The set consensus power of A is setcon(A).

By Theorem 1, determining setcon(A) may boil down to determining the hitting
set size of (Π,A), and thus, by [19]:

Corollary 3. Determining the set consensus power of an adversary is NP-
complete.

The disagreement power of an adversary A [7], denoted d(A), is the largest d
such that d-set agreement cannot be solved in the presence of A. By Corollary 2,
d(A) = setcon(A)− 1.

5 Extension to Other Models

In a recent paper [18], Imbs et al. considered asymmetric progress conditions
that allow for modeling different progress guarantees for different processes. An
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asymmetric progress condition associates each process pi with a set Pi of process
subsets that contain pi. Process pi is expected to make progress (e.g., output a
value in a task solution) only if the current set of correct processes is in Pi.

It is easy to see that with respect to the solvability of colorless tasks, the
asymmetric progress conditions of [18] can be modeled as adversaries of [7].
Indeed, for each progress condition P = {P1, . . . ,Pn}, we can construct an
adversary AP = ∪iPi. Since to solve a colorless task, it is sufficient to make sure
that at least one process decides, every P-resilient solution to a colorless task
implies an AP -resilient solution, and vice versa.

Observation 5. A colorless task T is solvable with a progress condition P if
and only if it is solvable with the adversary AP .

In an even more recent paper [21], Taubenfeld focused on a special case of leveled
adversaries that only specify the sizes of correct sets. Such an adversary L can
be specified as a sequence of number in {1, . . . , n}: for each j ∈ L, the adversary
contains all process sets of size j. The paper shows, among other things, that
consensus can be solved with L using j-process consensus objects (i.e., objects
that can solve consensus among up to j processes) if and only if j ≥ width(L),
where width(L) = max(L)−min(L) + 1.

Note that width(L) is exactly h(LS) for any S ∈ proper (L). Indeed, we need
exactly width(L) processes to meet every set of min(L) processes that is subset
of an element of proper (L) (a set of max(L) processes).

Theorem 6. A leveled adversary L such that width(L) = k can wait-free solve
consensus using j-process consensus objects if and only if j ≥ k.

Proof. (Sketch) L can solve consensus using k-process consensus and read-write
registers as follows. As in the consensus algorithm in Figure 2, every process
alternates between instances of commit-adopt and a leader-based reconciliation
protocol. The first committed value is written in a decision register and returned.
Instead of a single coordinator in a hitting set of size 1, we now select a “coor-
dinator group” of size k. Thus, there are n choose k coordinator groups, and we
place them in a deterministic order: C0, . . . , C(n

k)−1. Now process pi considers
itself a coordinator of a round r if pi ∈ Cr mod (n

k). Furthermore, every round r

is associated with a k-process consensus object consr that can only be accessed
by processes in Cr mod (n

k).
In Figure 4, we give an update of lines 15-18 of the consensus algorithm

in Figure 2, the rest of the algorithm remains unchanged. As in the proof of
Theorem 3, eventually, there will be a round r′ when only a subset of processes
of some S ∈ L of size max(L) take steps and Cr′ mod (n

k) is a hitting set of
LS (the adversary that consists of S and all its subsets in L). Thus, in round
r′, every correct process pi will adopt the estimate value agreed upon by the
processes in Cr′ mod (n

k): every element of L evaluated by pi in line 35 should
include at least one process in Cr′ mod (n

k). Thus, every correct process accesses
the instance of commit-adopt in round r′ + 1 with the same value and decides.
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33 if pi ∈ Cr mod (n
k)

then est := consr.propose(est)

34 Ri := (est , r)
35 wait until ∃S ∈ L, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D 
= ⊥

{Wait until a set in L moves}
36 if ∃pj ∈ C

r mod (n
k)

∩ S then

37 est := vj {Adopt the estimate of the current coordinator group}

Fig. 4. Solving consensus with L and k-process consensus objects: replacing lines 15–18
in Figure 2

Now, by contradiction, suppose that we can solve consensus with L using
(k−1)-process consensus objects, and let Alg be the corresponding algorithm. We
establish a contradiction by presenting a wait-free 2-process consensus algorithm.

It is straightforward to extend our simulation in Figure 3 to simulate a pro-
tocol that, in addition to read-write registers, uses (k − 1)-process consensus
objects. Indeed, let two simulators simulate steps of Alg of a set B1 ∈ L of
max(L) processes in a round-robin fashion. A simulator that fails while simu-
lating a step that accesses a (k − 1)-process consensus object can block a set S
of up to k − 1 simulated codes that are in process of accessing this object. But
since h(LB1 ) = k, we still have at least one set B2 of min(L) processes that are
not blocked. By applying the logic used in the proof of Theorem 4, we obtain an
L-compliant execution of Alg. The simulated execution of Alg must terminate
— a contradiction.

Theorem 6 is mildly surprising in the sense that the ability of j-consensus
objects to boost the power of L to solve consensus has nothing to do with the
exact structure of L, but depends only on the size of the hitting set of LS for
some S ∈ L of the maximal size. Indeed, notice that our argumentation has
nothing to do with “sequences” or “width,” it only uses the hitting set size of
LS for S ∈ proper (L). A straightforward extension of Theorem 6 resolves an
open question raised in [21].

Theorem 7. An adversary A can wait-free solve consensus using j-process con-
sensus objects if and only if j ≥ maxS∈A(h(AS)).

6 Concluding Remarks

An adversary, as defined by Delporte et al. [7], is in fact a special case of an
environment of [5] that determines which sets of processes are allowed to fail
without specifying the timing of failures. Thus, we can rephrase the statement
“task T can be solved with adversaryA”, as “task T can be solved in environment
A using the dummy failure detector”. (The output of the dummy failure detector
does not depend on the failure pattern.) It is shown in [13] that, with respect
to colorless tasks, failure detectors can be split into n equivalence classes, and
each class j agrees on the set of tasks it can solve: namely, tasks that can be
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solved (j − 1)-resiliently and not j-resiliently. Therefore, by applying [13], we
conclude that each adversary belongs to one of such equivalence class. This
characterization is however a brute-force solution and it does not give us an
explicit algorithm to compute the class to which a given adversary belongs.

The approach taken in [7] is based on a three-stage simulation. First, it is
shown how an adversary can simulate any dominating adversary, where the
domination is defined through involved recursive inclusion properties. Second, it
is shown that every adversary that does not dominate the k-resilient adversary
is strong enough to implement the anti-Ωk failure detector that, in turn, can be
used to solve k-set agreement [23]. Finally, it is shown that anti-Ωk can be used
to solve any colorless task that can be solved k-resiliently.

Instead, this paper proposes a self-consistent, constructive and simple char-
acterization of general adversaries of [7], and sketches an extension of the char-
acterization to models that use j-process consensus objects [18,21].

Acknowledgment. The first author is grateful to Gadi Taubenfeld for a few
nights of pillow talk about [18,21].

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus
tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331–341.
Springer, Heidelberg (2006)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press, New York (May 1993)

4. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
8–21. Springer, Heidelberg (2009)

8. Fich, F.E., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free algorithms can
be practically wait-free. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp.
493–494. Springer, Heidelberg (2005)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

10. Gafni, E.: Round-by-round fault detectors (extended abstract): Unifying synchrony
and asynchrony. In: Proceedings of the 17th Symposium on Principles of Dis-
tributed Computing (1998)

11. Gafni, E., Guerraoui, R.: Generalizing state machine replication. Technical report,
EPFL (2010), http://infoscience.epfl.ch/record/150307

http://infoscience.epfl.ch/record/150307


394 E. Gafni and P. Kuznetsov

12. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

13. Gafni, E., Kuznetsov, P.: On set consensus numbers. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 35–47. Springer, Heidelberg (2009)

14. Gafni, E., Kuznetsov, P.: L-resilient adversaries and hitting sets. CoRR,
abs/1004.4701 (2010) (to appear in ICDCN 2011), http://arxiv.org/abs/1004.
4701

15. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus tasks: Renaming is weaker
than set agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

16. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended
abstract). In: STOC, pp. 589–598 (1997)

17. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC
(2010)

18. Imbs, D., Raynal, M., Taubenfeld, G.: On asymmetric progress conditions. In:
PODC (2010)

19. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103 (1972)

20. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreli-
able asynchronous processes. Advances in Computing Research 4, 163–183 (1987)

21. Taubenfeld, G.: The computational structure of progress conditions. In: Lynch,
N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 221–235. Springer,
Heidelberg (2010)

22. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for
failure detectors. In: Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing, pp. 297–306 (1998)
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Abstract. Linearizability, the key correctness condition that most op-
timized concurrent object implementations comply with, imposes tight
synchronization between the object concurrent operations. This tight
synchronization usually comes with a performance and scalability price.
Yet, these implementations are often employed in an environment where
a more relaxed linearizability condition suffices, where strict linearizabil-
ity is not a must.

Here we provide a quantitative definition of limited non-determinism,
a notion we call Quasi Linearizability. Roughly speaking an implementa-
tion of an object is quasi linearizable if each run of the implementation
is at a bounded “distance” away from some linear run of the object.
However, as we show the limited distance has to be relative to some
operations but not all.

Following the definition we provide examples of quasi concurrent im-
plementations that out perform state of the art standard implementa-
tions due to the relaxed requirement. Finally we show that the Bitonic
Counting Network non-deterministic behavior can be quantified using
our Quasi Linearizable notion.

1 Introduction

Linearizability[5] is a useful and intuitive consistency correctness condition that
is widely used to reason and prove common data structures implementations.
Intuitively it requires each run to be equivalent in some sense to a serial run
of the algorithm. This equivalence to some serial run imposes strong synchro-
nization requirements that in many cases results in limited scalability and syn-
chronization bottlenecks. In order to overcome this limitation, more relaxed
consistency conditions have been introduced. Such alternative consistency con-
ditions for concurrency programming include Sequential consistency[7], Qui-
escent consistency[6], Causal consistency[2], Release consistency[3], Eventual
consistency[10] and Timed consistency[9]. But, the semantics of these relaxed
conditions is less intuitive and the results are usually unexpected from a lay-
man point of view. In this paper we offer a relaxed version of linearizability
that preserves some of the intuition, provides a flexible way to control the level
of relaxation and supports the implementation of more concurrent and scalable
data structures.
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For example, SEDA[11], the motivating and initiating reason for the current
research is a common design pattern for highly concurrent servers, which heavily
relies on thread pools. Such thread pools are composed from two elements (i) a
set of threads ready to serve tasks and (ii) a task queue from which the threads
consume their tasks. For the task queue, state of the art concurrent queue of
Michael and Scott[8] is usually used. It is based on the fact that enqueue and
dequeue may happen concurrently while threads trying to enqueue should race.
Meaning such queue, which is not part of the server logic in a highly concurrent
system, can become by itself a bottleneck limiting the overall SEDA system
utilization. One can claim however, that more than often a thread pool does not
need a strict FIFO queue, what is required is a queue with relaxed linearizability,
i.e., that does not allow one task to starve, meaning bypassed by more than a
certain number of tasks.

Another common pattern is the shared counter, which in many applications
may become a bottleneck by itself. In order to trim down this contention point
Aspnes et al.[6] offered a counting network which reduces the contention while
maintaining a relaxed consistency condition called quiescent consistency. Such a
relaxed counter can be used for example as an id generator, the output of this
algorithm is a unique id for each requesting thread while a strict order is not
required. This counter may also match other design patterns for example a “Sta-
tistical Counter”. Modern servers expose many statistical counters, mainly for
administration and monitoring. These counters count “online” every operation
done on the server. Due to their run time nature these counters by themselves
may easily become a contention point. However, sometimes there is no real need
for accurate numbers but to capture the general trend. On the other hand the
main drawback of the counting network algorithm is also its relaxed consistency,
such relaxation does not provide any upper bound for the “inconsistency”. We
show in Section 6 that the upper bound is N ∗W where N is the number of
working threads, and W is the width of the counting network.

Two more common examples for widely used data structures are the Hash
Table and the Stack. While there is a broad range of highly concurrent im-
plementations for a Hash Table as with the former examples the need for a
linearizable implementation is often too strict. A very common use case for a
Hash Table is a Web Cache. In this case a cache miss while the data is in the
Cache might not be a desirable behavior but can be sacrificed for a better scala-
bility. More than that, even getting a stale data for a short while might not be a
problem. A similar thing commonly happens with a Stack, a linearizable LIFO
implementation can ordinarily be replaced with an almost LIFO implementation
for a better scalability.

The above examples have motivated us to provide a quantitative definition of
the limited non-determinism that the application requirements might allow. We
define a consistency condition which is a relaxed linearizability condition with
an upper bound on the non-determinism. Each operation must be linearizable at
most at some bounded distance from its strict linearization point. For example,
tasks may be dequeued from a queue not in strict FIFO order. That is, a task
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t may be dequeued if no task that has been enqueued k tasks or more before
t in a linearization order, has not yet been dequeued. Our definition is strong
and flexible enough to define at the same time (continuing the above example)
that a dequeue that returns empty may not be reordered, i.e., it has to be in its
strict linearizable order. In this paper we introduce a formal definition of quasi-
linearizability condition which captures this condition. This condition introduces
some degree of non-determinism, but is useful to prove the quasi-linearizability
of different implementations as exemplified in later sections.

1.1 Other Relaxed Consistency Conditions

Many models were offered as weaker alternatives to Linearizability two of them
are Quiescent consistency [6] and Eventual consistency[10].

Quiescent consistency provides high-performance at the expense of weaker
constraints satisfied by the system. This property has two conditions:

1. Operations should appear in some sequential order (legal for each object).
2. Operations whose occurrence is separated by a quiescent state should appear

in the order of their occurrence. An object is in a quiescent state if currently
there is no pending or executing operation on that object.

Eventual consistency this is a specific form of weak consistency; e.g. a storage
system guarantees that if no new updates are made to the object, eventually
all accesses will return the last updated value. The most popular system that
implements eventual consistency is the Internet DNS (Domain Name System).
Updates to a name are distributed according to a configured pattern and in
combination with time-controlled caches; eventually, all clients will see the last
update.

Both models, in most cases, allows better concurrency but on the other hand
do not provide any strict upper bound or an adaptive way to determine the
“inconsistency” gap when compared to Linearizability.

The contributions of this paper are, first a formal definition of Quasi Lineariz-
ability, second, two implementations of a FIFO queue that utilize this definition.
Third, we empirically evaluate these implementations showing much better scal-
ability relative to the state of the art implementations. Finally we show that
a Bitonic[W ] Counting Network is in fact quasi-linearizable such that its count
operation quasi factor is bounded by N ∗W , where N is the number of working
threads, and W is the width of the counting network.

2 Quasi Linearizable, Definition

2.1 Lineariazablity Review

Definition 1. History: Following [5] a history is a list of events which are
ordered according to the time line in which they occurred, each event represents
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either a method invocation or a method response, a method invocation event
is represented by the tuple < O.method(args), T >, where O is the object the
invocation operates on, method is the invoked method, args are the invocation
arguments and T is the thread that started this invocation. Method invocation
response is represented by the tuple < O : t(results), T >, where t is either
OK or an exception name and results are the invocation result set. A response
matches a prior invocation if it has the same object and thread, and no other
events of T on object O appear between them.

History H is called sequential if the first event of H is an invocation, and each
invocation, except possibly the last, is immediately followed by a matching re-
sponse.

An invocation is pending in H if no matching response follows the invoca-
tion. An extension of history H is a history constructed by appending zero
or more responses matching the pending invocation of H . Complete(H) is the
sub-sequence of H consisting of all matching invocation and responses, thus,
removing all pending invocations from H . H |T is a history consisting of all and
only the events of thread T in history H , two histories H and H ′ are equivalent
if for each thread T , H |T = H ′|T .

Definition 2. Linearizability A history H is linearizable if it has an extension
H ′ and there is a legal sequential history S such that:

1. Complete(H ′) is equivalent to S.
2. If method invocation m0 precedes method invocation m1 in H, then the same

is true in S.

We first define quasi-sequential specification and then define what a quasi-
linearizable history is and finally define a quasi-linearizable data structure. The
definition follows the notations and standard model as in ”The Art of multipro-
cessor programming” [4].

For example, consider the following sequential history of a queue: H = enq(1),
enq(2), deq()=2, enq(3), deq()=1, deq()=3. This sequential history is not legal
for a queue, however, it is not “far” from being legal, by exchanging enq()=2
with enq()=1, one can get a legal sequential history. To formally define this
reordering of H and to express how “far” is H from a legal sequential history,
we introduce the quasi-linearizable concept.

A sequential history is an alternating sequence of invocations and responses,
starting with an invocation, and each response matches the preceding invocation.
We substitute these two matching events by a single event:
< O.method(args), t(results) > (We ignore the thread executing this method
call since it is redundant in a sequential history).

Unless specified otherwise all the sequential histories in the sequel are con-
densed in that way. Each event in such a history represents the tuple corre-
sponding to both the invocation and the matching response.

A sequential specification is the set of all possible sequential runs of an object,
each of these runs can be represented as a sequential history. The term legal



Quasi-Linearizability: Relaxed Consistency for Improved Concurrency 399

sequential history specifies that a sequential history is part of the sequential
specification of the object that generated that history.

Definition 3. – For each event e in a sequential history H, we define H [e] to
be its index in the history, clearly for two events, e and e′, H [e′] < H [e] iff
e′ is before e in H.

– Hi is the ith element in H. I.e., HH[e] = e.
– Events(H) is the set of all the events in H.
– Distance(H ′, H) the distance between two histories H and H ′, such that H ′

is a permutation of H, is maxe∈Events(H){|H ′[e]−H [e]|}. .

Notice that by definition, the distance is defined only for histories which are a
permutation of each other.

Definition 4. Object domain: The set of all possible operations that are ap-
plicable to an object. We distinguish between operations that have different argu-
ments or different returned values. For example, for O =stack, Domain(O) =
{< O.push(x), void >, < O.pop() x > |x ∈ X} ∪{< O.pop(), φ >}, where X is
the set of all the possible elements in the stack.

A sequential history H |D, is the projection of history H on a subset D of the
events, i.e., H after removing from it all the events which are not in D. H |O =
H |Domain(O).

We extend the sequential specification of an object O to a larger set that
contains sequential histories which are not legal but are at a bounded “distance”
from a legal sequential history. In other words, a sequential history H is in this
set if there is some legal sequential history that its “distance” from H is bounded
by some specified bound. We define that bound using a function that we name
the Quasi-linearization factor. It is a function that operates on subsets of the
object domain, mapping each subset to its “quasi factor”, which is the upper
bound on the relative movement among the operations in the subset that turn
it into a legal sequential history. Formally,

Definition 5. Quasi-linearization factor: A function QO of an object O de-
fined as QO : D → N1. D is the set containing subsets of the object’s domain,
formally D = {d1, d2, . . .} ⊂ Powerset(Domain(O))2

Definition 6. QO-Quasi-Sequential specification: is a set of all sequential
histories that satisfy the “distance” bound implied by the quasi-linearization fac-
tor QO of an object O. Formally, for each sequential history H in the set, there is
a legal sequential history S of O such that H is a prefix of some history H ′ which
is a permutation of S and ∀ subset di ∈ D: Distance(H ′|di, S|di) ≤ QO(di)

Definition 7. Let Objects(H) be the set of all the objects that H involves with.

1 The quasi-linearization factor range N is extended to a more robust set in the sequel.
2 d1, d2, . . . are not necessarily disjoint sets, The quasi factor for operations that do

appear in D is unbounded.
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Definition 8. Q-Quasi-Linearizable history: A history H is
Q-Quasi-Linearizable if it has an extension H ′ and there is a sequential history
S′ such that:

1. Q =
⋃

O∈Objects(H) QO.3

2. Complete(H ′) is equivalent to S′.
3. If method invocation m0 precedes method invocation m1 in H, then the same

is true in S′.
4. ∀O ∈ Objects(H) : S′|O is member of the QO-Quasi-Sequential specification.

We notice that a linearizable history H has Q-quasi-linearizable factor 0 for all
of the domains of the objects that appear in it, i.e., for each object O in H,
Q(Domain(O)) = 0.

Definition 9. Q-quasi-linearizable object: An object implementation A is
Quasi-Linearizable with Q if for every history H of A (not necessarily sequen-
tial), H is Q-Quasi-Linearizable history of that object.

For example, consider the following quasi-linearization factor for a blocking
queue implementation which is Qqueue-Quasi-Linearizable:
Denq = {< O.enq(x), void > |x ∈ X}, Ddeq = {< O.deq(), x > |x ∈ X}
Domain(Queue)=Denq ∪Ddeq

– Qqueue(Denq) = k
– Qqueue(Ddeq) = 0

Practically it means that an enqueue operation can bypass at most k preceding
enqueue operations (and an arbitrary number of dequeue operations occurring
in between). This quasi-linearizable queue specifications may be used as the task
queue in the SEDA[11] system described in the Introduction.

H is a prefix of some history? Consider the following history for a concur-
rent counter:
H =< getAndInc(), 3 >, < getAndInc(), 1 > This history can never be re-
ordered to a legal sequential history since the event < getAndInc(), 2 > is
missing. However, it is reasonable for an execution of a quasi-linearizable im-
plementation of a counter to create such a history because the execution can
be stopped at any time. By appending the missing response and invocation
< getAndInc(), 2 > at the end of H we can reorder this history to a legal
sequential history. This addition of unseen future events is described in the def-
inition by adding a sequential history H to the quasi-sequential specification of
the counter object if it is a prefix of some history which that history is equiv-
alent to a legal sequential history, the some history is H ∪< getAndInc(), 2 >.
If we do not allow completion of unseen events, hence do not place H in the
quasi-sequential specification of the counter, we reduce the definition strength

3 Q is a union of all the different object quasi-linearizable factors, each object has its
own separate domain even for objects of the same type.
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since any implementation would have been forced to return the entire range
of getAndInc() results for not yet terminated operations (without skipping any
numbers as the return value) in order to be quasi-linearizable, which in fact
makes it similar to quiescent consistent, for instance, a single thread operating
on the object has to get a fully linearizable contract from the implementation.
It is important to notice that by adding non existing future events, it is not pos-
sible to make any history quasi-linearizable. For instance, if the quasi factor for
the getAndInc() operation is 5, the following history H =< getAndInc(), 8 >
can never be transformed to a legal sequential history only by adding any future
events, that is because no matter what unseen future events are added, the first
event will need to be moved at least by distance 7 in a legal sequential history
(because there are 7 events that must occur before it in any legal sequential
history).

Distance measured on each subset of the domain separately. The dis-
tance is measured only on the projection of the entire history on a subset of the
domain, this is done intentionally since some operations may have no effect on
others and we do not want to take them into account when we calculate the
distance, For instance:
H = enq(1), size()=1, size()=1,. . . , size()=1, enq(2), deq()=2, deq()=1.
If we measure the distance on the enqueue operation and consider the size()=1
operations between enq(1) and enq(2), then the distance is unbounded, since an
unbounded number of size operations may be executed (in this case one should
consider a subset containing all possible enq operations separately). Another no-
tion is that the subsets of the domain that has a quasi factor are not necessarily
disjoint, which can be used to define a more generic quasi state. For instance it
may be interesting to disallow reordering between size and enqueue operations,
but to allow a reorder between enqueue and dequeue operations.

Extend Quasi Linearizable factor bound. In the definition we have spec-
ified that the bound for each domain subset is a constant number, however, in
some cases (as shown later on the Bitonic Counting Network), the bound can
vary depending on different parameters such as configurable implementation pa-
rameters or different use cases (i.e., the number of threads accessing the object
concurrently or different system properties). This is addressed by providing the
ability to specify a custom function as the bound instead of a constant bound,
and that function arguments take the parameters mentioned above. Formally,
instead of having QO : D → N we change the function as follows: QO : D → FN

where FN is the set of all functions into N4. This way, a function f that represents
a bound of a domain subset can receive the above variables as its parameters.

Predicting the future? Consider the following history for a concurrent queue:
H = enq(1), enq(2), deq()=3, enq(3), deq()=1, deq()=2.

By the definition of quasi-linearizability, this history is quasi-linearizable for
Q(Denq) ≤ 2, however, it may seem weird that we consider this history legal

4 F N={f—f is a function and Range(f) = N}.
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because the first dequeue operation returns an element which has not yet been
enqueued. However, practically speaking, if there was an implementation of a
concurrent queue that this history represents an execution of it, it would mean
that the implementation is predicting the future, which obviously is not feasible.
The only type of such implementation would be one that returns a random
value on its dequeue operation. However, for a data structure implementation to
satisfy quasi-linearizability, all of its possible execution histories must be quasi-
linearizable and given an implementation that returns a random result, we can
easily schedule one execution example which may never be transformed to a legal
sequential history while keeping the quasi distance boundaries.

Locality (Composition). Following [5], a property P of a concurrent system
is said to be local if the system as a whole satisfies P whenever each individual
object satisfies P. As shown in [5], linearizability is a local property, that is a
history H is linearizable if and only if, ∀O ∈ Objects(H) : H |O is linearizable.

Theorem 1. H is Q-Quasi-Linearizable if and only if, ∀O ∈ Objects(H) : H |O
is QO-quasi linearizable.

Sketch of Proof: It is easy to see that if the entire history H is quasi linearizable,
then the projection of it on each object is quasi-linearizable by definition. In
order to prove the other direction we need to show that given a history H , such
that ∀O ∈ Objects(H) : H |O is QO-quasi-linearizable, H is Q-quasi-linearizable.
For each object O, we denote H ′

O as the extension of H |O implied by the quasi-
linearizable definition of H |O and S′

O as the sequential history that it is part of
the QO-Quasi-sequential specification of O such that Complete(H ′

O) is equiva-
lent to S′

O. By definition, S′
O is a prefix of some history which is a permutation

of a legal sequential history, we denote that legal sequential history by SO. We
define H ′ = H

⋃
O∈Objects(H) H ′

O, clearly H ′ is an extension of H . We construct
S by replacing all of the objects sub-histories Complete(H ′|O) with S′

O, clearly
S is equivalent to Complete(H ′) and the order of method invocations is kept
between the two histories. We need to show that ∀O ∈ Objects(H) : S|O is part
of the QO-Quasi-Sequential specification of O, we get the above since S|O = S′

O

by construction. ��
Composition is important in order to be able to use Quasi-Linearizable objects
in a bigger system while keeping the Quasi-Linearizable property of the entire
system. For instance, consider a system that keeps track of some internal com-
ponents and operations and at some point needs to calculate the total number of
operations executed on the system. Normally, such a system uses a linearizable
shared counter that counts each of the operations occurrences, and a combined
display counter that represents the total number of operations that is calculated
by summing up all operation counters. Assume we have 2 counters for 2 different
operations, we get the total number of operations by adding this two counters,
assume this counters have a k1, and k2 respectively constant quasi-linearizable
bounds for their add method. From the composition derives that the quasi bound
for the combined counter is k1+k2 since the bound is kept for each counter upon
composition. (If k1 = k2 = 0 we get a fully linearizable combined counter).
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Operations that are invisible. The definition treats all operation as equal,
however, operations that are invisible (i.e, do not change the state of the object)
can pose difficulties on actual implementations if they affect the distance equally
as visible operation since the implementation will probably need to update some
internal state for each of these operation in order to comply with the distance
bounds. For instance, consider a queue that supports 3 operations: enqueue, de-
queue and size, size in this case is considered as an invisible operation. There
are a few natural ways to define such a quasi-linearizable queue, one would be
to put the enqueue and size operations in the same domain subset in the quasi-
linearization factor specification, as well as the dequeue and size operations,
thus disabling the queue to return the wrong size value at any stage. However,
this boundaries take size operations into consideration when calculating the dis-
tance of reordered enqueue operations. An alternative would be to put size in
a separate domain subset, however, this will result in legal quasi-linearizable
implementations that return size that was legal at some state. Intuitively, the
distance between two visible operations should not be affected by invisible op-
eration executed between the two. On the hand, there is still a need for a bound
on the reordering distance of invisible operation, otherwise one cannot pose any
limitations for this type of operations in a quasi-linearizable object. In order
to address this, we can extend the Distance of two histories H and H ′ in the
following way:

– Let V Event(H) be all the events that appear in H that are visible.
– Let IEvent(H) be all the events that appear in H that are invisible.
– Event(H) = V Event(H) ∪ IEvent(H)
– V Distance(H, H ′) = maxe∈V Events(H){|H ′|V Events(H)[e]−

H |V Events(H)[e]|}.
– NDistance(H, H ′) = maxe∈IEvents(H){|H ′[e]−H [e]|}.
– Distance(H, H ′) = max{NDistance(H, H ′), V Distance(H, H ′)}.

Using this upgraded distance definition, the enqueue and size operations can be
placed together in the same subset and also the dequeue and size operations,
while we consider size to be an invisible operation.

Timed consistency comparison. Timed consistency[9] adds the notion of
time to the occurrences of events and not just order, roughly speaking, timed
consistency models require that if a write operation is executed at time t, it must
be visible to all processes by time t + Δ. In that sense it has some similarity
to the quasi-linearizable model, however, the concept of time is not equivalent
to the concept of distance in the quasi-linearizable model. Specifically the timed
consistency model does allow reordering of events. For example, consider the
quasi-linearizable queue mentioned before, in a scenario where each enqueue
and dequeue operations are invoked with a time interval of Δ in between (no
concurrent invocations), in order for an implementation to be timed consistent,
it will have to return the serial order of events like a regular linearizable im-
plementation. On the other hand, a quasi linearizable implementation does not,
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since the distance is not affected by time. In the sequel we show implementations
which are quasi-linearizable but not timed consistent. Another difference is that
timed consistency split operations into two groups, write or read. While quasi-
linearizable separates operations according to their logical meaning.

3 Random Dequeued Queue

We offer a simple quasi linearizable non blocking queue implementation, illus-
trated in Figure 1, that behaves as follows: dequeue operation may return results
not in the precise order they were enqueued (up to a constant bound) but when
an empty (null) dequeue result is returned, there are no enqueued items in the
queue. Formally, we describe this behavior with the following quasi-linearizable
factor:

– Qnb−queue(Ddeq∪{< deq(), null >} = 0 (no reordering of dequeue operations
is allowed).

– Qnb−queue(Denq) = k (we reorder enqueue operations up to distance k, which
dictates the actual dequeue order).

– ∀x ∈ X : Q({< enq(x), void >, < deq(), null >}) = 0 (enqueue operation
can not be reordered over an empty dequeue operation)

Fig. 1. Random Dequeue Queue

The idea is to spread the contention of the dequeue method by allowing to
dequeue an element which is not at the head of the queue, but not more than
k places away from the head. We base our quasi queue implementation on [8]
which is based on a linked list, in fact our enqueue operation is exactly the same.
We change the dequeue operation to pick a random index between 0 and k (the
quasi factor), if the picked index is larger than 0 it iterates over the list from
the head to the item at the specified index, it attempts to dequeue it by doing
a single CAS(compare and set) which attempts to mark it as deleted. If failed
it retries a few times and eventually falls back to the scenario as if index 0 is
picked. If it succeeds, this is the dequeued item. If the selected number is 0, the
operation iterates over the list from the head until it finds a node which has
not yet been dequeued. While iterating it attempts to remove all encountered
dequeued nodes by attempting to advance the head of the list using a CAS each
step. The implementation’s code and proof of its quasi-lineariazbility property
is omitted due to space limitations, for the code and a sketch of proof see [1] for
online version of this paper.
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4 Segmented Queue

The previous implementation of a quasi linearizable queue only reduces con-
tention on the dequeue operation while the enqueuer threads still compete over
the tail reference trying to enqueue new elements. Additionally, a dequeue oper-
ation iterates over its randomly selected number of nodes, while it may traverse
over a node that it can dequeue along the way. In the following section we present
an algorithm, illustrated in Figure 2, that scatters the contention both for de-
queue and enqueue operations and in the normal case, iterates over less nodes
while still keeping a constant quasi factor.

Fig. 2. Segmented Queue

The general idea is that the queue maintains a linked list of segments, each
segment is an array of nodes in the size of the quasi factor (specified by quasi-
Factor+1 in the implementation details), and each node has a deleted Boolean
marker, which indicates if it has been dequeued. Each enqueuer iterates over the
last segment in the linked list in some random permutation order; When it finds
an empty cell it performs a CAS operation attempting to enqueue its new ele-
ment. In case the entire segment has been scanned and no available cell is found
(implying that the segment is full), then it attempts to add a new segment to
the list.

The dequeue operation is similar, the dequeuer iterates over the first segment
in the linked list in some random permutation order. When it finds an item
which has not yet been dequeued, it performs a CAS on its deleted marker
in order to “delete” it, if succeeded this item is considered dequeued. In case
the entire segment was scanned and all the nodes have already been dequeued
(implying that the segment is empty), then it attempts to remove this segment
from the linked list and repeats the process on the next segment. If there’s no
next segment, the queue is considered empty.

Based on the fact that most of the time threads do not add or remove seg-
ments, most of the work is done in parallel on different cells in the segments.
This ensures a controlled contention depending on the segment size, which is the
quasi factor.
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public void enq(Object value){
AtomicReference<Node>[] lastSegment = getLast();
Node newNode = new Node(value);
if (lastSegment == null){
//Queue has no segments, create a new segment
lastSegment = createLast(null);

}
while(true){
int[] permutation = getRandomPermutation();
for(int i = 0; i <= quasiFactor; ++i){
final int index = permutation[i];
//Cell is not empty, continue
if (lastSegment[index].get() != null)

continue;
//Found empty cell, try to enqueue here
if (lastSegment[index].compareAndSet(null, newNode))

return;
}

//If reached here, no available position, create a new segment
lastSegment = createLast(lastSegment);

}
}

The method createLast(lastSegment) creates and adds a new last segment only
if the current last segment is the provided method argument (lastSegment). The
result of the method will be the current last segment which was either created
by this invocation or another invocation if the current last segment is different
than the method argument.

public Object deq(){
AtomicReference<Node>[] firstSegment = getFirst();
while(true){
boolean hadNullValue = false;
if (firstSegment == null)
//Queue is empty
return null;

int[] permutation = getRandomPermutation();
for(int i = 0; i <= quasiFactor; ++i){
Node node = firstSegment[permutation[i]].get();
//Check if this cell is empty, which means
//an element can be enqueued to this cell in the future
if (node == null) {

hadNullValue = true;
continue;

}
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//Check if can dequeue node at index
if (node.deleted.compareAndSet(false, true))

return node.value;
}
//scanned the entire segment without finding a candidate
//to dequeue

//If there was an empty cell, the queue is considered empty
if (hadNullValue)
return null;

//All nodes have been dequeued, we can safely remove the
//first segment
firstSegment = removeFirst(firstSegment);

}
}

The method removeFirst(firstSegment) removes the first segment only if the
current first segment is the provided method argument (firstSegment). The result
of the method will be the current first segment.

The proof of the quasi-lineariazbility property of the implementation is omit-
ted due to space limitations, for a sketch of proof see [1] for online version of
this paper.

4.1 Segmented Stack

The above algorithm can be adapted in order to implement a stack. The differ-
ence is that when a push operation needs to add a new segment, it is added to
the head of the list instead of the tail and a pop operation is similar to a dequeue
operation.

5 Performance Evaluation

We evaluated the performance of our new algorithms on a Sun UltraSPARC T2
Plus multicore machine. This machine has 2 chips, each with 8 cores running at
1.2 GHz, each core with 8 hardware threads, so 64 way parallelism on a processor
and 128 way parallelism across the machine. There is obviously a higher latency
when going to memory across the machine (a two fold slowdown).

We can see from Figure 3 that the Segmented queue implementation out
perform both Michael and Scott[8] and Random Dequeue when the number of
threads increases, which is reasonable since it spreads both enqueue and dequeue
contention. However as we increase the quasi factor, the overhead of scanning an
entire segment just to realize the enqueuer needs to create a new segment or the
dequeuer needs to remove the first segment, is increasing. On the other hand the
Random Dequeue behaves very similar to the Michael and Scott algorithm when
the quasi factor is low, but on high number of threads it improves if we increase
the quasi factor, which is because the contention is reduced on the dequeue
operation.
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Fig. 3. Concurrent queue benchmark results

6 Bitonic[W] Counting Network

Next we show that the Bitonic[W] Counting Network (W the network width)
is Q-quasi-linearizable, Q(Dinc = {< O.getAndInc(), n > |n ∈ N}) ≤ N ∗W
(where N is the number of working threads). For example for the Bitonic[4]
Counting Network showed in Figure 4 with N = 4 we show that Q(Dinc) ≤ 16.

Fig. 4. Bitonic[4] Counting Network

For the Bitonic Counting Network we choose the quasi linearization points
when a thread is increasing the counter at the exit from the network, we denote
this history as S′.
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Lemma 1. For any n, in S′ all the operations {< O.getAndInc(), m > |m ≤
n− (N ∗W )} precede < O.getAndInc(), n >.
Proof: Assume in contradiction that the lemma does not hold, denote by <
O.getAndInc(), m >, m < n − (N ∗ W ) as the missing operation. From the
quiescent consistency property of Bitonic network, we know that if we will now
schedule an execution that lets all the threads that are currently traversing the
network (executing getAndInc operation) to finish their current operation, and
prevent new threads or the same threads to reenter the network, the network must
be at a legal state, that is, all the values up to n have been returned. From the
algorithm of the network, we know that if < O.getAndInc(), m > has not been ex-
ecuted yet, so does ∀i > 0 :< O.getAndInc(), m+W ∗i > (because this operations
are diverted to the same counter). From that we get that < O.getAndInc(), m >,
< O.getAndInc(), m + W >,. . .,< O.getAndInc(), m + W ∗ (N − 1) > have not
happened by the time that < O.getAndInc(), n > occurred. Since there are at
most N − 1 threads that are pending execution completion, they can never fill
in the missing N operations to close the gap, in contradiction to the quiescent
consistency property of the Bitonic network.

From the lemma we know that each getAndInc() operation had bypassed at
most N ∗W other getAndInc() operation, therefore we can find a legal sequential
history S which satisfies Distance(S′|Dinc, S|Dinc) ≤ N ∗W . In this part we
have shown an upper bound of N ∗W for getAndInc operation, but this is not
necessarily a tight bound.

7 Conclusions

In this paper we have shown a more relaxed concurrent model for linearizability
and a few actual implementations which take advantage of the new model and
are more concurrent than the equivalent linearizable implementation. We have
demonstrated this with a queue that supports enqueue and dequeue operations,
we can see how this definition can be adapted to a queue that also supports a peek
operation. One way to define its quasi-linearizablity, is by specifying the quasi
factor parameters as follows: Q(Denq ∪ Dpeek) = k and ∀x : Q({< deq(), x >
, < peek(), x >})=0, meaning that a dequeue and peek operations may return
an item at distance k from the head of the queue, but a peek can not return
an item which has been already dequeued. Additionally we have shown that the
already known Bitonic counting network implementation is quasi linearizable.
This model can be applied to specify other quasi linearizable objects, such as,
stack, heap etc., and thus allows a more concurrent implementation of these
objects.

Acknowledgements. We would like to thank Adam Morrison, Nir Shavit and
Maria Natanzon for very productive and helpful discussions. This paper was
supported in part by grants from Sun Microsystems, Intel Corporation, as well
as a grant 06/1344 from the Israeli Science Foundation and European Union
grant FP7-ICT-2007-1 (project VELOX).



410 Y. Afek, G. Korland, and E. Yanovsky

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for
improved concurrency, http://sites.google.com/site/gkorland/research

2. Ahamad, M., Hutto, P.W., Neiger, G., Burns, J.E., Kohli, P.: Causal memory:
Definitions, implementation and programming. Technical Report GIT-CC-93/55,
Georgia Institute of Technology (1994)

3. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: Proceedings of the 17th Annual International Symposium on Computer
Architecture, ISCA 1990, pp. 15–26. ACM, New York (1990)

4. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann,
San Francisco (2008)

5. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

6. Aspnes, M.H.J., Shavit, N.: Counting networks. Journal of the ACM 41(5), 1020–
1048 (1994)

7. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

8. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 1996, pp. 267–275. ACM,
New York (1996)

9. Torres-Rojas, F.J., Ahamad, M., Raynal, M.: Timed consistency for shared dis-
tributed objects. In: Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1999, pp. 163–172. ACM, New York
(1999)

10. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44
(2009)

11. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. SIGOPS Oper. Syst. Rev. 35(5), 230–243 (2001)

http://sites.google.com/site/gkorland/research


A Token-Based Distributed Algorithm

for the Generalized Resource Allocation Problem

Hirotsugu Kakugawa1, and Sayaka Kamei2,

1 Osaka University, Suita, Osaka, Japan
2 Hiroshima University, Higashihiroshima, Hiroshima, Japan

Abstract. The resource allocation problem is one of the fundamental
problems for conflict resolution in distributed systems. In this paper,
we consider the (n, m, k, d)-resource allocation problem, proposed by
Joung [Joung, Distributed Computing (2010)], which is a generaliza-
tion of the k-mutual exclusion problem and the group mutual exclusion
problem. We propose a fully distributed solution based on tokens for the
(n, m, k, d)-resource allocation problem for asynchronous message pass-
ing distributed systems. Previous works allow a process to request only
one resource at a time. In our algorithm, the amount of resources that
a process may request is arbitrary. The algorithm is designed based on
leader-follower scheme, and permission to access resources is granted by
tokens. The first process that requests resources becomes the leader, and
then, other processes become followers and they are granted their re-
quests by the leader. The message complexity of the proposed algorithm
is bounded by O(|Q|) in the worst case and O(1) in the best case, where
|Q| is the size of quorums of a coterie that the algorithm uses.

1 Introduction

The resource allocation problem is one of fundamental problems for conflict res-
olution in distributed systems. The mutual exclusion problem, which has been
studied extensively, is an example of such a problem. A process wishing to exclu-
sively access a shared resource must obtain permission before its access. Mutual
exclusion is necessary for consistent update of a shared resource for example.
The resource allocation problem arises when processes in a distributed system
require shared resources so they need to cooperate and compete with each other
for their activities.

Because recent distributed systems grow huge and become complex, resource
allocations of various types are necessary for various kind of network applica-
tions. Below, we use a term “critical section” in which each process accesses
a shared resource in its program. The restriction of entry to critical section is
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considered as a problem of resource allocation because an entry to a critical
section at a process can be considered as an allocation of resources to the pro-
cess. Hence, we use terms “entry to critical section” and “allocation of resource”
interchangeably in this paper.

Various generalizations of the mutual exclusion problem have been proposed
so far. The k-mutual exclusion problem is a problem such that at most k pro-
cesses can enter critical section at the same time [1]. The distributed k-mutual
exclusion problem is a generalization on the axis of the amount of resources that
is accessed by processes at the same time. The group mutual exclusion problem
is a problem such that any number of processes in the same group can enter crit-
ical section, but no two processes in different groups can enter critical section
at the same time [2]. Hence, the distributed group mutual exclusion problem is
a generalization on the axis of the type of resource (specified by group) that is
accessed by processes at the same time. Therefore these two generalizations are
orthogonal.

The (n, m, k, d)-resource allocation problem is a generalization of the k-mutual
exclusion problem and the group mutual exclusion problem proposed in [3]. The
access to shared resources is restricted as follows. The number of processes is
n and the number of groups (resource types) is m. The number of groups that
can be accessed simultaneously is at most k, and, for each group, at most d
processes can enter critical section. The problem setting of [3] allows each pro-
cess to request only one unit of resource. Hence, the (n, 1, 1, 1)-resource alloca-
tion problem is coincident with the mutual exclusion, the (n, 1, 1, k)- and the
(n, n, k, 1)-resource allocation problems are coincident with k-mutual exclusion,
and the (n, m, 1, n)-resource allocation problem is coincident with group mutual
exclusion.

An application of the (n, m, k, d)-resource allocation problem is the following.
Consider a peer-to-peer video streaming service over the Internet. There are n
nodes and m possible channels. However, by limitation of bandwidth, at most
k channel can be served simultaneously and at most d users can view each
channel simultaneously. The (n, m, k, d)-resource allocation problem models such
an access control in a distributed system.

The distributed algorithm mentioned in [3] adopts a communication struc-
ture called quorums, specifically, it adopts (m, k, d)-coterie which is a quorum
structure specially designed to solve the problem, and it is a permission-based al-
gorithm. Generally speaking, a quorum is a subset of processes in a distributed
system. The quorums have some intersection relation with each other that is
specified by the problem to be solved. A permission-based distributed resource
allocation (mutual exclusion) algorithm that uses quorums follows the following
scheme. A process that requests a resource selects a quorum and sends a request
message to each process in a quorum for permission. When a process receives
a request message, it grants the request under the constraint that it does not
grant more than one requesting process at a time. When the requesting process
obtains a grant (permission) from each process in a quorum, it may access a
resource.
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In this paper, we propose a new distributed algorithm for the (n, m, k, d)-
resource allocation problem in asynchronous message passing environment. Con-
tribution of our work is threefold: (1) full concurrency in resource access, (2) low
message complexity, and (3) each process may specify an amount of resources it
requests. Let us explain these points below.

Firstly, our algorithm achieves full concurrency in resource access. Because
the (n, m, k, d)-resource allocation problem allows several processes to access
shared resources simultaneously, increasing concurrency of resource access is an
important issue. The existing algorithm proposed in [3], unfortunately, may not
achieve full concurrency allowed by the (n, m, k, d)-resource allocation problem
depending on timing of resource requests and on quorum selections. Our algo-
rithm proposed in this paper solves this problem and it allows full concurrency,
that is, as long as a request does not deviate the constraint of the (n, m, k, d)-
resource allocation problem, the request is granted.

Secondly, our algorithm achieves a low message complexity. Although the
existing algorithm proposed in [3] uses quorums for communication structure, a
quorum selected by a requesting process may be used by other processes already.
When this is the case, the requesting process must retry to find a free quorum
to obtain permission; otherwise, it must wait other processes release a quorum.
Retrying to find a free quorum may increase concurrency of resource access,
however, it increases message complexity unfortunately. Our algorithm proposed
in this paper solves this problem, and it does not require retry to find a quorum.
Hence it achieves a low message complexity with full concurrency in resource
access.

Lastly, in our algorithm, a requesting process can specify an amount of re-
sources (of the same type) it requests. In our problem setting, the (n, m, k, d)-
resource allocation problem is generalized in such a way that the total number
of allocated resources is at most d for each group. In the existing algorithm
proposed in [3], an amount of resources that a requesting process can request is
limited only one. Hence, our algorithm further generalizes allocation of resources.

To achieve the three points listed above, our algorithm is token-based for ob-
taining the privilege to access a shared resource. That is, a process that holds
a token can access a shared resource. Our observation is that the drawback of
the algorithm in [3] is the usage of a (m, k, d)-coterie which is a quorum struc-
ture specially designed to solve the (n, m, k, d)-resource allocation problem. The
combinatorial structure of a (m, k, d)-coterie is theoretically interesting, however,
algorithms based on it do not perform well. By using tokens, the drawbacks are
resolved. On the other hand, our algorithm uses quorums for propagating a re-
source request between processes to reduce message complexity. Quorums used
by our algorithm is called an ordinary coterie which is a simple quorum structure
well studied [4–9].

Organization of this paper is as follows. In section 2, we review related works.
In section 3, we present the computational model we assume and the prob-
lem statement. In section 4, we propose our resource allocation algorithm. In
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section 5, we show proof of correctness and performance analysis of the pro-
posed algorithm. In section 6, we give concluding remarks.

2 Related Works

There are many papers on distributed mutual exclusion and its extension for
asynchronous message passing distributed systems. There are two paradigms
for distributed mutual exclusion and resource allocation algorithms: permission-
based algorithm and token-based algorithm [10]. In a permission-based algorithm,
a process obtains permission from processes for access to resources, whereas in
a token-based algorithm, a process accesses resources only when it obtains a
privilege token.

The distributed mutual exclusion problem is a problem to control accesses to
shared resources in such a way that at most one process can access a shared
resource at a time. In [11, 12], permission-based mutual exclusion algorithms
are proposed with O(n) message complexity. In [4], permission-based mutual
exclusion algorithm is proposed. To reduce the message complexity, a coterie is
adopted for communication. The message complexity of the algorithm is O(|Q|),
where |Q| is the (maximum) size of quorum of a coterie used by the algorithm.
|Q| is typically O(

√
n) where n is the total number of processes in a distributed

system, by adopting a coterie based on the finite-projective plane. When a pro-
cess makes a request, it contacts with only |Q| processes, and hence its message
complexity is reduced. In [13], a token-based algorithm is proposed with message
complexity O(n).

A coterie is a communication structure for distributed systems that reduces
message complexity and improves availability. Intuitively, a coterie C is a set of
quorums Q1, Q2, ..., where Qi ⊆ V and V is the set of processes in a distributed
system, such that any two quorums have at least one common process. The
idea of a permission-based mutual exclusion algorithm with a coterie is that a
process must obtain permission from each process in a quorum to enter critical
section and each process in a quorum givens permission at most the one process
at a time. Because any two quorums have at least one common process, no two
processes can enter critical section at a time. Since a coterie is an important
communication structure for reducing message complexity and improvement of
availability, there are many results, e.g., [4–9, 14].

The distributed k-mutual exclusion problem requires to control access to
shared resources in such a way that (1) each process can request a unit of shared
resource, and (2) at most k units of shared resource is allocated to processes. i.e.,
at most k processes can access shared resources at a time. This problem limits
total number of processes that access shared resource. In [1], a permission-based
distributed k-mutual exclusion problem is proposed that uses a k-coterie, which
is an extension of a coterie, for communication structure.

The h-out of-k mutual exclusion problem requires to control access to shared
resources in such a way that (1) each process requests h (1 ≤ h ≤ k) units
of shared resource, and (2) at most k units of shared resource is allocated to
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processes at a time. This problem is a generalization of k-mutual exclusion. In
[15], k-arbiter is proposed as a generalization of a coterie, and a permission-based
distributed algorithm for the h-out of-k resource allocation problem is proposed
that adopts k-arbiter as a communication structure.

The group mutual exclusion problem requires to control access to shared re-
sources in such a way that (1) each process selects its group (resource type),
and (2) no two processes in different groups access shared resource. Hence, any
number of processes can access a shared resource as long as they are in the same
group. This problem limits type of shared resource accessed by processes. In [16],
a permission-based distributed algorithm is proposed with message complexity
O(|Q|), where |Q| is the size of quorum of a coterie used by the algorithm.
In [17], a token-based distributed algorithm with message complexity O(n) is
proposed. In [18], a distributed algorithm is proposed with message complexity
O(|Q|), where |Q| is the size of quorum used by the algorithm. Their algorithm
is based on the leader-follower scheme which is a hybrid of permission-based
and token-based schemes. The first process that allocates a resource becomes
the leader, and other processes, called followers, are allocated resources by the
leader process. In [19], a token-based distributed algorithm with message com-
plexity O(|Q|) is proposed. This algorithm also takes the leader-follower scheme,
and a coterie is used to propagate resource requests for reducing message com-
plexity. It is shown in [19] that it performs better in message complexity and
concurrency than the algorithm proposed in [18] by simulation.

In [3], further generalization to the distributed mutual exclusion, called the
(n, m, k, d)-resource allocation problem, is proposed. In [3], a (m, 1, d)-coterie
and a (m, k, d)-coterie are proposed as extensions of a coterie. The distributed
algorithm proposed in [4] solves the (n, m, 1, d)-resource allocation problem if the
algorithm uses a (m, 1, d)-coterie instead of a coterie for communication struc-
ture. Further generalization a (m, k, d)-coterie is for the (n, m, k, d)-resource al-
location problem, and construction of a (m, k, d)-coterie from a (m, 1, d)-coterie
is proposed. Unfortunately, simple combination of the distributed algorithm pro-
posed in [4] with a (m, k, d)-coterie does not solve the (n, m, k, d)-resource allo-
cation problem fully. Specifically, as we mentioned in the previous section, there
is a case in which concurrent access to shared resources is impossible even if
allocation is allowed by definition of the (n, m, k, d)-resource allocation problem.

3 Preliminary

3.1 The Computational Model

In this paper, we assume that a distributed system consists of a set of n pro-
cesses V = {P0, P1, ..., Pn−1}. We assume that the network is fully connected.
Each process has a unique identifier selected from a set of integers {0, 1, ..., n−1}.
A distributed system is asynchronous, i.e., there is no common global clock. In-
formation exchange between processes is done by asynchronous message passing.
Each communication channel is FIFO, and each message sent is delivered within
finite time. We assume that there is no upper bound on message delivery time.
We assume that the system is error-free.
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3.2 The Generalized Resource Allocation Problem

There are m groups (types) of resources, and let G = {0, 1, ...., m− 1} be a set
of groups (resource types). Each process selects a group g ∈ G, and makes a
request for critical section entries. We model such a behavior of each process Pi

as follows.

while (true) do {
Select a group g ∈ G and amount of resources r ∈ {1, ..., d};
Request(g, r); – Entry protocol.

Critical Section
Release; – Exit protocol.

}

Formally, the (generalized) problem of (n, m, k, d)-resource allocation is de-
fined as follows, which is a generalization of [3].

Definition 1. The (n, m, k, d)-resource allocation problem is a problem to con-
trol execution of processes to satisfy the following three conditions.

– Safety (total group number) : At most k different group of processes are in
critical section simultaneously.

– Safety (group size) : For each group, the total amount of allocated resources
is at most d at any time.

– Liveness: Any requesting process eventually enters its critical section. ��

3.3 Coterie

In this paper, we use a coterie for communication between processes. It is defined
formally as follows.

Definition 2. (Coterie [14]) Let U = {P0, P1, ..., Pn−1} be a set. A set C of
subsets of U is a coterie under U if and only if the following three conditions
are satisfied.

1. Non-emptiness: For each Q ∈ C, Q is not empty and Q ⊆ U ,
2. Intersection property: For any Q, Q′ ∈ C, Q ∩Q′ is not empty, and
3. Minimality: For any Q, Q′ ∈ C, Q is not a proper subset of Q′.

An element of C is called a quorum. ��

3.4 Performance Measures

We define performance measures of distributed resource allocation algorithms.

Definition 3. Message complexity is the number of messages exchanged per
request for critical section. Maximum concurrency is the maximum number of
processes that can enter critical section simultaneously. ��
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4 The Proposed Algorithm

In this section, we describe the proposed algorithm for the (n, m, k, d)-resource
allocation problem. The proposed algorithm here is based on the algorithm pro-
posed in [19] for the group mutual exclusion algorithm. To solve the (n, m, k, d)-
resource allocation problem, we introduced a new resource management scheme.

The main idea of the proposed algorithm TQGRA is as follows. Our algorithm
TQGRA uses two types of tokens, the main-token and sub-tokens. Initially, pro-
cess P0 holds the main-token. The number of the main-token is exactly one in
the network at any time, while the number of sub-tokens varies. A sub-token is
generated by the holder of the main-token on request of other process. When no
process is in critical section, i.e., no process is accessing any resource, a process
must obtain the main-token to enter critical section. In this case, the holder of
the main-token changes. When there is a process in a critical section, a process
obtains a sub-token to enter critical section. The constraint of the resource allo-
cation is managed by the holder of the main-token. The holder of the main-token
issues a sub-token only when the constraint is not violated.

Outline of behavior of each process is described as follows.

– When a process Pi makes a request some resources:
• In case Pi knows the holder of the main-token, it sends a request message

directly sent to the holder.
• Otherwise, it selects a quorum q ∈ C, and it sends a request message to

each process Pj ∈ q. At least one process Pj ∈ q knows the holder of the
main-token, whose mechanism is described later, and such Pj transfers
the request message to the holder of the main-token.

– When the holder of the main-token receives a request message, it takes the
following actions.
1. If no process uses any resource (i.e., there is no process is in critical

section), the holder transfers the main-token to Pi by a token message.
2. If some processes are accessing resources, the holder issues a sub-token

and sends it to Pi by a subtoken message.
– When Pi receives a token or subtoken message, it can access the resource.

• If it receives a token message, it selects a quorum q ∈ C and sends an
acquired message to each process in q. By this message, at least one
process in any quorum q′ ∈ C knows the holder of the main-token.

– When Pi releases resource:
• If Pi is granted by token message, it decrements the amount of resources

currently in use that is maintained by a token object.
• If Pi is granted by subtoken message, it sends a release to the holder of

the main-token.

The major change of the proposed algorithm from the one in [19] is resource
management scheme. The algorithm in [19] issues a sub-token if the type of
requested resource is the same as the resource type currently accessed. The
proposed algorithm modifies this resource management scheme as follows. The
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main-token maintains the amount of resources currently allocated for each type
of resource. The holder of the main-token issues a sub-token only when a request
does not violate the constraint of the (n, m, k, d)-resource allocation problem,
that is, the number of active resource type does not exceed k, and the total
amount of allocated resources does not exceed d for each resource type.

4.1 Local Variables at Each Process

Important variables maintained at each process Pi are as follows.

– modei ∈ {Idle,Trying, InCS} — Current status of process Pi.
– tsi — Timestamp for each request, which is incremented by one when Pi

makes a new request. We assume that this variable is implicitly maintained
by the well-known protocol by Lamport [11]; hence we do now explicitly
show its update protocol in our algorithm description.

– grpi — Group name of resource for the current request.
– nresi — The amount of resources for the current request.
– typei ∈ {⊥,Main,Sub} — The type of token that Pi is holding.
– holderi ∈ {P0, ..., Pn,⊥} — Process name that holds the main-token to the

best knowledge of Pi. Its value is ⊥ if Pi does not know.
– homei ∈ {P0, ..., Pn,⊥} — The process name to which Pi should return a

sub-token when its has a sub-token.
– tmpQi — A temporary queue for requests that Pi receives to forward to the

holder of the main-token. A request is queued only when Pi does not know
the holder of the main-token. When Pi knows the holder of the main-token
by a token message, it forwards all the requests in the queue to the holder.

– tokeni — The token object that corresponds to the main-token. Pi holds a
token object only when it is the holder of the main-token.

4.2 Structure of the Token Object

The holder of the main-token manages allocation of the resources, and the token
object maintains enough information to manage resource allocation. The token
object tok contains the following items.

– tok.actGrp[g] — The amount of resources allocated to group g. The protocol
maintains the following two conditions.
• 0 ≤ tok.actGrp[g] ≤ d for each g, and
• |{g : tok.actGrp[g] > 0}| ≤ k.

The first condition is the constraint that there are d instance for each resource
type. The second condition is the constraint that the number of allocated
resource types is at most k.

– tok.reqQ — A queue of requests currently pending.
– tok.tsReq[j] — Timestamp value for the latest request from Pj . Because

requests are forwarded by processes in a quorum, the holder of the main-
token may receive the same request more than once. This value is used to
ignore duplicate requests.
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on initialization;
1.1 modei := Idle;
1.2 tsi := 0; grpi := ⊥; nresi := 0;
1.3 typei := ⊥; holderi := ⊥;
1.4 homei := ⊥; leavingi := false;
1.5 acqsi := ∅; acksi := ∅;
1.6 tmpQi := new(Queue);
1.7 if (Pi = P0) { – P0 is the initial holder of the main-token.
1.8 toki := new(Token);
1.9 toki.actGrp[g] := 0 for each group g;
1.10 toki.reqQ := new(Queue);
1.11 toki.tsReq[j] := 0 for each j = 0..n − 1;
1.12 qi := select a quorum in coterie C;
1.13 acqsi := qi − {Pi};
1.14 send 〈acquired〉 to each Pj ∈ acqsi;
1.15 } else {
1.16 toki := ⊥;
1.17 }

on event requestEvent(gi, ri); // Request for CS
2.1 modei := Trying;
2.2 tsi := tsi + 1; grpi := gi; nresi := ri

2.3 if (toki 
= ⊥) then { – case A1 (Pi is the holder of the main-token.)
2.4 toki.tsReq[i] := tsi;
2.5 enqueue(toki.reqQ, 〈Pi, tsi, grpi,nresi〉);
2.6 call handlePendingRequests;
2.7 } else if (holderi 
= ⊥) { – case A2 (Pi knows the holder of the main-token.)
2.8 send 〈request, Pi, tsi, grpi,nresi〉 to holderi;
2.9 } else { – case A3 (Otherwise, send requests to quorum members.)
2.10 qi := select a quorum in coterie C;
2.11 send 〈request, Pi, tsi, grpi,nresi〉

to each P ∈ (qi − {Pi});
2.12 if (Pi ∈ qi) {
2.13 delete 〈Pi, ∗, ∗, ∗〉 from tmpQi;
2.14 enqueue(tmpQi, 〈Pi, tsi, grpi,nresi〉);
2.15 }
2.16 }

on event releaseEvent ; // Exit from CS
3.1 if (typei = Main) then { – case B1 (Pi holds the main-token.)
3.2 toki.actGrp[grpi] := toki.actGrp[grpi] − nresi;
3.3 typei := ⊥; modei := Idle;
3.4 grpi := ⊥; nresi := 0;
3.5 call handlePendingRequests;
3.6 } else { – case B2 (Pi holds a sub-token)
3.7 send 〈release, grpi,nresi〉 to homei;
3.8 typei := ⊥; modei := Idle;
3.9 grpi := ⊥; nresi := 0;
3.10 homei = ⊥;
3.11 }
3.12 trigger event releaseDonei // Exit done

Fig. 1. Description of TQGRA for Pi (1/3)
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procedure handlePendingRequests
4.1 if ¬leavingi ∧ (toki 
= ⊥) ∧ ¬empty(toki.reqQ)

∧(∀g′ : toki.actGrp[g′] = 0) { – No resource is in use.
4.2 〈Pj , t, g, r〉 := peek(toki.reqQ); // peek the top item
4.3 if (Pj = Pi) { – Pi has a priority to use the main-token.
4.4 dequeue(toki.reqQ); // discard the top item
4.5 toki.actGrp[grpi] := nresi;
4.6 typei := Main; modei := InCS;
4.7 trigger event requestDonei; // Enter CS
4.8 } else { – Pj 
= (Pi) has a priority to use the main-token.
4.9 if (acqsi 
= ∅) { – If this is the case, holderj must be reset.
4.10 call beginTokenTransfer ; – Start preparation to transfer the main-token.
4.11 } else { – Otherwise, the main-token is transferred immediately.
4.12 dequeue(toki.reqQ); // discard the top item
4.13 send 〈token, toki〉 to Pj ; toki := ⊥;
4.14 }
4.15 }
4.16 }
4.17 while ¬leavingi ∧ (toki 
= ⊥) ∧ ¬empty(toki.reqQ) {

– Grant a request in the queue if the resource constraint is not violated.
4.18 〈Pj , t, g, r〉 := peek(toki.reqQ);
4.19 if (toki.actGrp[g] = 0) ∧ (|{h : toki.actGrp[h] > 0}| ≥ k)
4.20 break; – Cannot allocate new group.
4.21 if (toki.actGrp[g] + nresi > d)
4.22 break; – The requested group is full.
4.23 dequeue(toki.reqQ);
4.24 toki.actGrp[g] := toki.actGrp[g] + nresi;
4.25 send 〈subtoken〉 to Pj ;
4.26 }

on receipt of 〈token, tok〉;
5.1 toki := tok;
5.2 qi := select a quorum in coterie C;
5.3 acqsi := qi − {Pi};
5.4 send 〈acquired〉 to each Pj ∈ acqsi;
5.5 typei := Main; modei := InCS;
5.6 toki.actGrp[grpi] := nresi;
5.7 trigger event requestDonei; // Enter CS
5.8 while ¬ empty(tmpQi) {

– Enqueue pending requets into the queue of the main-token.
5.9 〈Pj , t, g, r〉 := dequeue(tmpQi);
5.10 if (toki.tsReq[j] < t) {
5.11 toki.tsReq[j] := t;
5.12 enqueue(toki.reqQ, 〈Pj , t, g, r〉);
5.13 }
5.14 }
5.15 call handlePendingRequests;

on receipt of 〈subtoken〉 from P�

6.1 typei := Sub; modei := InCS; homei := P�;
6.2 trigger event requestDonei; // Enter CS

Fig. 2. Description of TQGRA for Pi (2/3)
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on receipt of 〈acquired〉 from P�;
7.1 holderi := P�; – Pi is notified the holder of the main-token.
7.2 while ¬ empty(tmpQi) { – Forward temporarily enqueued requests.
7.3 〈Pj , t, g, r〉 := dequeue(tmpQi);
7.4 send 〈request,Pj , t, g, r〉 to holderi;
7.5 }

on receipt of 〈request,P�, t, g, r〉;
8.1 if (toki 
= ⊥) { – case C1 (Pi is the holder of the main-token.)
8.2 if (toki.tsReq[�] < t) {
8.3 toki.tsReq[�] := t;
8.4 enqueue(toki.reqQ, 〈P�, t, g, r〉);
8.5 call handlePendingRequests;
8.6 }
8.7 } else if (holderi 
= ⊥) { – case C2 (Pi knows the holder of the main-token.)
8.8 send 〈request,P�, t, g, r〉 to holderi;

– Forward the request to the holder of the main-token.
8.9 } else { – case C3 (Otherwise, enqueue the request temporarily.)
8.10 delete 〈P�, ∗, ∗〉 from tmpQi;
8.11 enqueue(tmpQi, 〈P�, t, g, r〉);
8.12 }

on receipt of 〈release, g, r〉;
9.1 toki.actGrp[g] := toki.actGrp[g] − r;
9.2 call handlePendingRequests;

procedure beginTokenTransfer ;
10.1 leavingi := true; – The main-token is going to leave Pi.
10.2 send 〈leave〉 to each Pj ∈ acqsi (= qi − {Pi});
10.3 acqsi := ∅; acksi := qi − {Pi}; – Wait for ack for each leave.

on receipt of 〈leave〉 from P�;
11.1 holderi := ⊥; – Holder of the main-token is unknown.
11.2 send 〈ack〉 to P�;

on receipt of 〈ack〉 from P�;
12.1 acksi := acksi − {P�};
12.2 if (acksi = ∅) { – ack is received for each leave.

– Preparation to transfer the main-token is done.
12.3 leavingi := false;
12.4 〈Pj , t, g〉 := dequeue(toki.reqQ);
12.5 if (Pj = Pi) { – Priority of Pi is the highest.

– Transfer of the main-token is not necessary. Pi keeps it.
12.6 qi := select a quorum in coterie C;
12.7 acqsi := qi − {Pi};
12.8 send 〈acquired〉 to each Pj ∈ acqsi;
12.9 typei := Main; modei := InCS;
12.10 toki.actGrp[grpi] := 1;
12.11 call handlePendingRequests;
12.12 trigger event requestDonei; // Enter CS
12.13 } else { – Priority of Pj( 
= Pi) is higher.
12.14 send 〈token, toki〉 to Pj ; toki := ⊥;
12.15 }
12.16 }

Fig. 3. Description of TQGRA for Pi (3/3)
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4.3 Description of the Proposed Algorithm

Let us explain the proposed algorithm TQGRA. A formal description of the action
of each process Pi is shown in Figures 1, 2 and 3.

– Initialization (Figure 1). First, Pi initializes each local variable accordingly.
Initially, P0 is the holder of the main-token, and it creates and initializes the
main-token.

– When Pi makes a request for ri resources of group gi (Figure 1).
• Case A1. If Pi does not have the main-token, it first enqueues the request

in tok.reqQ and then it handles the request by procedure handlePendin-
gRequests.

• Case A2. If Pi knows the current holder of the main-token, it sends a
request message directly to the holder.

• Case A3. Otherwise, Pi selects a quorum, and it sends a request message
to each process in the quorum. The request is eventually enqueued in
tmpQ of each process in the quorum.

– When Pi releases resource (Figure 1).
• Case B1. If Pi holds the main-token, it decrements the amount of re-

sources in use.
• Case B2. Otherwise, it sends a release message to the holder of the main-

token.
– Procedure handlePendingRequests (Figure 2). This procedure is called when

Pi receives a new request. First, we consider a case when Pi is the holder of
the main-token and no process is accessing any resource (line 4.1). If Pi has
the priority among pending requests, it allocates the requested resource and
immediately accesses it (lines 4.5–4.7). Otherwise, the main-token is trans-
ferred to the process with the highest priority (lines 4.9–4.13). Procedure
beginTokenTransfer, which will be explained shortly, is responsible for the
transfer of the main-token without losing any request. Next, if Pi holds the
main-token, each request is granted, in the order of the priority defined by
timestamp, as long as the constraint of the resource allocation is not violated
(lines 4.18–4.25). Pi sends a subtoken to grant a request. In other words, re-
source is allocated only when the amount of resource for each group does
not exceed the limit d, and the number of active groups does not exceed the
limit k.

– When Pi receives a token message (Figure 2). By this message, the main-
token is transferred to Pi. Pi notifies, by an acquired message, that it is
the holder of the main-token to each process in a quorum. Then, it allo-
cates requesting resource and immediately accesses it. Pending requests are
enqueued in the queue of the main-token, and procedure handlePendingRe-
quests is called to handle them.

– When Pi receives a subtoken message (Figure 2). Pi is granted to access
requesting resource. It sets local variable homei to which a release message
should be sent when Pi releases resource.
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– When Pi receives an acquired message (Figure 3). Pi knows the holder of the
main-token by this message. If there are pending requests, they are forwarded
to the holder of the main-token.

– When Pi receives a request message (Figure 3).
• Case C1. If Pi is the holder of the main-token, the request is handled by

procedure handlePendingRequests.
• Case C2. If Pi does not hold the main-token but it knows the holder, it

forwards the request message to the holder.
• Case C3. Otherwise, an older request from the same process is discarded,

and Pi temporarily enqueues the request in its local queue.
– When Pi receives a release message (Figure 3). Pi receives this message when

it is the holder of the main-token. It decrements the amount of resources in
use, and then, calls procedure handlePendingRequests to handle pending
requests.

– Procedure beginTokenTransfer (Figure 3). This procedure is called when Pi

is the holder of the main-token and the main-token is going to transfer to
other process. Before the main-token is transferred, holder variable at each
process Pj in a quorum is cleared to defer forwarding request messages at
Pj . This is achieved by a protocol with leave and ack messages.

– When Pj receives a leave message (Figure 3). Pj receives this message from
the holder Pi of the main-token. Local variable holderj becomes ⊥ and while
this is the case, request messages are kept in local queue tmpQj and for-
warding them is deferred until new holder of the main-token is informed.

– When Pi receives an ack message (Figure 3). The holder Pi of the main-token
receives this message as a response to a leave message. If Pi receives an ack
message from each process in a quorum, it can transfer the main-token to
other process without losing any request messages. When Pi has the priority
for the next holder (lines 12.4 and 12.5), it holds the main-token again and
allocates resource for itself. Otherwise, the main-token is transferred by token
message.

5 Proof of Correctness and Performance Analysis

Lemma 1. The number of the main-token is one at any time.

Proof. When the system is initialized, only P0 creates the main-token. The main-
token is sent by lines 4.13 and 12.14, however, the sender erases the copy at the
same time (toki := ⊥). Hence the number of the main-token is one at any time.

��

Lemma 2. For any execution, the safety of resource allocation is maintained.

Proof. The holder, say Pi, of the main-token maintains the amount of resources
allocated to processes. Pi grants a resource allocation request only when the
safety is not violated at line 4.18–4.25, that is, resource is allocated only when
the following two conditions are not violated.
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– 0 ≤ tok.actGrp[g] ≤ d for each g, and
– |{g : tok.actGrp[g] > 0}| ≤ k.

That is, resource is allocated only when the amount of resources for each group
does not exceed the limit d, and the number of active groups does not exceed
the limit k. By lemma 1, only Pi issues subtoken message. Hence the safety of
resource allocation is globally maintained. ��
Lemma 3. Each request is eventually granted.

Proof. Suppose that there exists an execution in which there exists a process,
say Pi, for which request is never granted. If the request of Pi is enqueued in
tok.reqQ, it is eventually granted. Hence we assume that the request is never
enqueued in tok.reqQ. In addition, we can assume that Pi never holds the main-
token forever.

– If holderi �= ⊥ holds, the request is forwarded to the holder of the main-
token. If the holder of the main-token does not change, the request of Pi is
eventually enqueued in tok.reqQ. If the holder of the main-token changes, by
messages leave and ack, the request of Pi is eventually enqueued in tok.reqQ
before the main-token is transferred. Hence, the request is forwarded to the
holder of the main-token.

– Otherwise, i.e., if holderi = ⊥ holds, Pi sends a request message to each
process in a quorum. By the intersection property of quorums (a coterie),
there is a process, say Pj , in a quorum that (eventually) knows the holder
of the main-token. If holderj �= ⊥ holds when Pj receives the request, the
discussion of the above case applies for Pj , and the request is forwarded
to the holder of the main-token. Otherwise, i.e., if holderj = ⊥ holds, the
request is enqueued in tmpQj and, when Pj is notified a new holder of
the main-token, the request is forwarded to the holder. Also in this case,
the discussion of the above case applies for Pj , and the request is forwarded
to the holder of the main-token. ��

Theorem 1. The proposed distributed algorithm TQGRA solves the (n, m, k, d)-
resource allocation problem. ��
Theorem 2. The message complexity of TQGRA is O(5|Q|+ 1), and the max-
imum concurrency is n.

Proof. The worst case scenario for the message complexity is as follows. A re-
questing process, say Pi, sends a request message to each process in a quorum,
and each process forwards the request message to the holder, say Pj , of the main-
token. Pj sends leave message to each process in a quorum, and an ack message
is replied by each process in a quorum. Then, a token message is sent from Pj

to Pi, and Pi sends an acquired message to each process in a quorum.
Since the holder of the main-token keeps track of the amount of resources cur-

rently in use, any request is granted as long as the constraint of the (n, m, k, d)-
resource allocation problem is not maintained. Hence, at most n process can
access resource at the same time. In addition, all the resource can be accessed
at the same time. ��
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Note that, in the best case, no message is exchanged. This case occurs when
a requesting process is the holder of the main-token.

6 Conclusion

In this paper, we proposed a distributed algorithm for the (n, m, k, d)-resource
allocation problem. Our solution is fully distributed, and it is the first distributed
algorithm that achieves full concurrency to resource access. It is based on the
idea of privilege tokens and the leader-follower scheme. To reduce the message
complexity, a coterie is used as a communication structure. Although our algo-
rithm is designed for the (n, m, k, d)-resource allocation problem, we believe that
it can be extended for further generalized distributed resource allocation prob-
lems. Study of further generalization is an interesting problem. Open problem
is to device a distributed algorithm based only on quorums, not on tokens, that
achieves full concurrency to resource access.
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Abstract. It is well known that, for most non-trivial problems (such
as Election, Spanning-Tree Construction, Traversal, Broadcast, etc.), any
generic solution requires at least Ω(m) messages in the worst case, where
m is the number of links among the n entities. However, all the existing
proofs of this fact assume that the network size (i.e., the parameters n
and m) are not known to the protocol.

A natural question arises whether this rather strong assumption, which
is crucial for the proofs, is truly necessary for establishing a lower bound
to these problems.

In this paper we answer this question and prove that the Ω(m) bound
is inherent for all these problems, as well as many more. In fact, we con-
sider the class of global problems, that is those whose solution requires
the involvement of every entity in the communication (sending or receiv-
ing messages). The relationship between n and m plays an important
role in establishing the lower bound. We show that for most networks
(where m ≤ 1

2
(n−2)(n−3)+1) a generic solution for any problem in this

class requires at least m messages even if n, m, and the degree of each
node are known. This result holds for almost all values of m (e.g., when
1
2
(n − 2)(n − 3) + 1 < m ≤ 1

2
(n − 1)(n − 2) + 1 the number of required

messages is m−1), even if there is a single initiator and the entities have
distinct identifiers, and both these facts are known. Moreover, the results
hold even if the protocol can maintain a global view of the network.

As the networks become more dense, namely the network approaches
a complete graph, the number of required messages is gradually reduced.
For extreme values of m ( i.e., m = 1

2
n(n−1)− c > 1

2
(n−1)(n−2)+1),

where c ≥ 0 is constant, the lower bound gradually approaches Ω(n);
this is understandable since we establish it for the single initiator sce-
nario. However, we prove that in networks of such a size, single initiators
problems such as Broadcast and Traversal can be solved with precisely
that order of magnitude. This means that for those problems the knowl-
edge of n and m generates a significant and sudden complexity drop from
Θ(n2) to Θ(n).
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1 Introduction

In this paper we are interested in the communication complexity of problems
in message-passing systems. In particular, we are concerned with the amount
of communication (i.e., message transmissions) required in the worst case for
a problem P to be solved by a collection of computational entities connected
through a network G and communicating by exchanging messages with their
neighbours in G. As usual, we model G as an undirected edge-labelled graph
(G, λ) where G = (V, E) describes the communication topology of G and λ
describes the port labelling. We make no temporal assumptions on computational
or communication delays, other than they are finite; in other words, the systems
we consider are asynchronous.

The message complexity of a problem P obviously depends on many different
factors: not only on the nature of P but also on the properties of the system G
in which it is being solved, as well as (and perhaps more importantly) on the
amount and type of knowledge about G held by the entities.

Rather than in topology-specific solutions, we are interested, in this paper, in
solution protocols that are generic, that is that can be employed in any system
G, provided the network (G, λ) satisfies some predefined solvability assumptions
(e.g., G is bi-connected). Notice that a generic solution, while not requiring (even
an unlabelled) map of G, might still need and use metric information about G
(e.g., the number n of nodes, the number m of links, etc.). Furthermore, we
assume that the task must be explicitly performed within finite time; that is,
within finite time, the system must reach a configuration where every entity is in
a terminal state (in which no further action will be performed) and the problem
is solved. Notice that this is the case of most tasks; e.g., in Election, one node
must become leader and all others must become defeated; in Wake-Up, all nodes
must become awake. It corresponds to a local termination requirement: each node
knows when its own part in the execution has terminated, but not necessarily
the status of the computation at the other nodes. Thus, in the following, the
message complexity of a problem P will be measured only over generic solutions
that explicitly terminate.

In general, different problems have different complexities, and the methods
and tools to determine their complexity are usually specific for that problem.
However, sometimes, even very different problems share some commonality that
can be used to determine a common bound for all of them (e.g. [6, 8–10, 12]),
Broadcast (e.g. [2, 16], Traversal (e.g., [1, 3–5]), and Wake-Up (e.g., [11]). These
problems are very different from each other. For example, Broadcast and Traver-
sal are single initiator problems: by definition their resolution is started by a
single entity; on the other hand, the resolution of Election and Wake-Up is
started by an arbitrary (a priori unknown) number of entities, making them
multiple initiators problems. Election requires for its solvability that to each en-
tities is associated a distinct value from a totally ordered set; the other three
problems can instead be solved in totally anonymous systems. They have how-
ever something in common: any generic solution for any of them requires the
active participation of all computational entities of the system; more precisely,
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they require each entity to be involved in communication during the execution
of the solution. Let us properly characterize this commonality

We call global a distributed computation C if every entity sends or receives
at least one message during the computation. A protocol P is global if every
execution is a global computation, and a problem P is global if its solution is
necessarily global. Clearly, the four problems above are global. Interestingly, the
generic solution of almost all non-trivial problems and tasks requires a global
computation. In other words, all these problems are necessarily global. This
implies the existence of a common lower bound on the message complexity of all
these problems in spite of their apparent differences.

1.1 Lower Bounds

By definition, any global computation C requires Ω(n) messages, where n is the
number of entities in the system (i.e., the number of nodes in G); this trivial
lower bound is however too low. It is commonly known that for the class of
problems considered here, (i.e. those whose generic solution is global and must
terminate within finite time) indeed Ω(m) are needed, where m = |E| is the
number of communication links in the systems (i.e., the number of edges in G).
For example, the Ω(m+n log n) lower bound for generic election and (min-cost)
spanning tree construction is just the addition of the Ω(n log n) lower bound
for rings to the above mentioned Ω(m) lower bound (e.g. see [13, 14]). Some
explicit proofs for specific problems (e.g. Election or Broadcast) can also be
found in textbooks on distributed algorithms (e.g. see [15, 17]).

However, the existing (problem-specific) Ω(m) lower-bounds are derived under
the strong assumption that neither n nor m is known to the entities (and thus to
the solution protocol). In fact, the adversary-based proofs use precisely this lack
of knowledge to generate a contradiction: the adversary substitutes the original
graph G with another graph G′ that has more nodes and edges and in which the
supposedly correct protocol is shown to fail. For example, the proof of [15] that
m messages are needed for broadcasting uses a new graph G′ with n + 1 nodes
and m + 1 edges; the proof of [17] that m messages are needed for election uses
a new graph with 2n nodes and 2m edges.

This immediately raises several important questions: is this lack of knowledge
determinant for the complexity of these problems? Namely, if n and m are known,
can these problems be solved with (order of magnitude) fewer messages? Or is
it irrelevant, in the sense that the complexity of these problems is the same
regardless of additional metric information? In other words, what is the real
impact of this (lack of) metric information on the message complexity of a global
problem?

To answer these questions, it is necessary to study what happens to global prob-
lems if both n and m are indeed known. This is precisely what we do in this paper.

1.2 Our Results

We prove that, for all but very large values of m, every global problem requires
in the worst case the transmission of at least m messages for its solution. This
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result holds even if both n and m are known, the network is not anonymous
(that is even if the entities have unique identifiers), there is a single-initiator
and this fact is known. In other words we prove that the lower bound on the
message complexity of global problems is unaffected by the additional knowledge
of n and m.

We summarize our results for general graphs in Table 1. For most graphs the
lower bound of Ω(m) holds. More over in many configurations of m and n at
least m messages are required.

Regular graphs are special instance and we show that for most regular graphs
the Ω(m) also holds. We summarize our results for regular graphs in Table 2.

In the case of very large values of m (i.e., when G is almost a complete graph
where m > 1

2 (n−1)(n−2)+1, the lower bound is slowly approaching Ω(n). This is
understandable since we establish it for the single initiator scenario. Interestingly,
in networks of such a size, single initiators problems such as Broadcast and
Traversal can be solved with precisely that order of magnitude. This means that
for those problems the knowledge of n and m generates a significant and sudden
complexity gap, actually a drop from Θ(n2) to Θ(n).

Table 1. Summary of results when n and m are known

Network Size Lower Bound

m ≤ 1
2
(n − 2)(n − 3) + 1 m

1
2
(n − 2)(n − 3) + 1 < m ≤ 1

2
(n − 1)(n − 2) + 1 m − 1

1
2
(n − 1)(n − 2) + 1 < m = 1

2
(n − 1)(n − 2) + k 1

2
(n − 2k)(n + 2k − 3)

where 2 ≤ k < 1
2
(n − 1)

1
2
(n − 1)(n − 2) + k = m < 1

2
(n)(n − 1), 2n − k − 2

where 1
2
(n − 1) ≤ k < n − 1

m = 1
2
n(n − 1), n − 1

Table 2. Summary of results for regular graphs when n and d = deg(u) are known

Network Degree Lower Bound

2 ≤ deg(u) < 1
2
n m − d2−d

2
1
2
n ≤ deg(u) ≤ n − 1 1

2
(n − d)(3d − n + 1)

1.3 Paper Organization

The paper is organized as follows: In Section 2 we present the distributed model
used in the paper. In Section 3 we present lower bounds for general networks
followed by lower bounds for regular graphs in Section 4. We conclude and discuss
future work in Section 5.
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2 Model and Strategy

In this section we present the overall strategy in proving the lower bounds for
the communication complexity. Our strategy is to employ an adversary in order
to prove the lower bounds on the number of messages that a global protocol
operating on a generic network requires to send to achieve global computation.
In Section 2.1 we present the network model and in Section 2.2 we present the
adversary schema.

As stated earlier the protocol P is global and generic. Namely, when P com-
pletes its work each node in the network must send or receive at least one mes-
sage. Moreover,P is a generic protocol and as such it must operate on any network
where its decisions are only based on knowledge acquired during its execution.

2.1 Network Model

The networks we consider are edge-labelled connected graphs (G, λ) where G =
(V, E) is a simple graph and λ is the local orientation, i.e. the labeling that
locally assigns a distinct label to all edges incident on the same node. Without
loss of generality, we assume that the edges incident on x ∈ V are locally labeled
with the integers 1, 2, ...d(x), where deg(x) denotes the degree of x. We used the
term port to define the local labelling of edges at a give node (a node has x ports
if deg(v) = x). We denote by λ(v, i), 1 ≤ i ≤ deg(v) the neighbour of v accessible
through port i. For example, given two nodes u, v ∈ V where (u, v) ∈ E then
λ(u, i) = v and λ(v, j) = u means that edge (u, v) is connected in the network
via ports i and j at u and v respectively.

In our network model we relax the often used restriction of anonymity. Namely,
the network nodes are not anonymous and each node is assigned an id from v0

to vn−1.

2.2 Adversary Model

Next we show the relationship between the state of the network during the
execution of a global protocol P .

The lower bound proofs on the minimum number of messages, which P must
send to achieve invocation of all the nodes, are based on the ability to construct
a network (graph) for which any given global protocol that attempts to use less
messages will fail. The global protocol P has almost complete knowledge about
the network with the exception of the network connectivity topology. Namely,
P knows, prior to starting its execution, the total number of nodes, the total
number of edges, the starting node/vertex, the target vertex or vertices, and the
degree of each node in the network. The network connectivity is determined by
an adversary program A that executes in parallel to the protocol. The adversary
attempts to prevent the execution of protocol P from reaching one or more nodes
until a certain threshold number of messages, denoted by M , were sent.

Initially, ∀v ∈ V, λ(v, i) = ∞, where 1 ≤ i ≤ deg(v). During the execution of
the protocol P the adversary determines the connectivity and assigns the values
of λ(v, i), 1 ≤ i ≤ deg(v). For example, if λ(v, i) = u then node v is connected
to node u via port i.
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In general forcing the global protocol P to send at least M messages during
its execution is done as follows: the adversary A chooses a vertex v ∈ E as the
initiator and one or more vertices ,e.g., u ∈ V , that will receive a message for the
first time only if at least M message were sent. Since the system is asynchronous,
A adjusts the transmission delays provided that every transmitted message is
delivered within finite time; it does so to ensure that, during the execution, at
most one message being transmitted at any time instant t. Let t0 be the time
when the execution starts, and let t1, t2, . . . be the time instants when a message
transmission operation is performed; let us denote by T the (possibly infinite)
ordered set of all these time units.

Once the number of nodes n and the number of edges m is given, the ad-
versary constructs a graph G = (V, E) on which P will execute. The adversary
determines a starting vertex, e.g., v, and the target vertex or vertices, e.g., u.
Once the graph construction is completed the adversary provides P with infor-
mation about the size of the graph, n and m, the starting vertex v, the target
vertex u, and the degree of each vertex in the graph.

Since P is global, during its execution the initiator must send at least a mes-
sage, and every other node must receive at least a message. The only interactions
between P and A during the execution of P occur when a message transmission
is performed: at that time, P specifies the sender node and the port number,
and A reveals which vertex receives the message and in particular whether or
not this message will reach u.

3 Complexity Lower Bound in General Networks

In this section we prove our main result, that for almost all m, there are graphs
where any global protocol must send at least m messages, even if both n and
m (and much more) are known to the protocol. This result holds even if there
is a sole initiator, the nodes have unique identifiers, and both these facts are
common knowledge.

The adversary strategy depends on the size of the network (on n and m).
Namely, depending on the relationships between n and m, the adversary deter-
mines the number of target nodes and constructs a network on which P executes.
In order to establish the lower bounds we use the following relationships between
n and m.

1. m = n− 1 - tree
2. (n− 1) < m ≤ 1

2 (n− 2)(n− 3) + 1 - not-dense network
3. 1

2 (n− 2)(n− 3) + 1 < m ≤ 1
2 (n− 1)(n− 2) + 1 - dense network

4. 1
2 (n − 1)(n − 2) + 1 < m ≤ 1

2 (n − 1)(n − 2) + k where 2 ≤ k < 1
2 (n − 1) -

extremely dense network
5. m = 1

2n(n− 1) - complete graph

Cases 1 and 5 above are special cases of the network and represent opposite end
of the classification spectrum. In each of these case any invocation algorithm
would require n− 1 messages and therefore these cases are omitted due to their
simplicity.



On the Message Complexity of Global Computations 433

3.1 Not-Dense Network

In this section we look at communication lower bound when the network is a
typical network. Given a connected network with n nodes and m edges we term
the network a typical network if (n − 1) < m ≤ 1

2 (n − 2)(n − 3) + 1. Here we
show that P must send at least m messages before reaching all the n nodes in
the network. Figure 1 illustrates the proof of Theorem 1.

Algorithm 1. Adversary strategy for typical networks at time tu for a given
node x and port k

1: if λ(x, k) 
= ∞ then
2: the message will reach y = λ(x, k)
3: else {λ(x, k) = ∞}
4: if |H| > 1 then
5: select an Hi,j from H where vi = x
6: λ(x, k) = vj

7: find l such that λ(vj , l) = ∞
8: λ(vj , l) = x
9: H = H \ {Hi,j} {delete Hi,j from H }

10: the message will reach vj

11: else {H only contains Hi,j (|H| = 1)}
12: if (x, v0) ∈ Ei,j then
13: λ(x, k) = v0

14: λ(v0, 1) = x
15: the message will reach v0

16: else {(x, v1) ∈ Ei,j}
17: λ(x, k) = v1

18: λ(v1, 1) = x
19: the message will reach v1

20: end if
21: end if
22: end if

Theorem 1. Given n and (n − 1) < m ≤ 1
2 (n − 2)(n − 3) + 1 there exists a

typical network with n nodes and m edges upon which every global protocol P
requires to send at least m messages in order to invoke all the nodes in the graph.
Proof. Given n and m the adversary A constructs a set of typical graphs H
as follows: First A constructs a graph G′ = (V ′, E′) where V ′ = V − {v0, v1}
and |E′| = m− 1. The edges are constructed as follows: A adds n− 2 edges to
form a ring {(vi, vi+1), 2 ≤ i < n− 1} ∪ {(v2, vn−1)}. The remaining m− n + 1
edges are added as follows: A arbitrarily chooses m − n + 1 distinct pairs of
vertices from V ′ and insert an edge between each pair of nodes. Next, using
G′, A creates a set H of typical graphs, where |H| = m − 1 as follows: for each
edge (vi, vj) ∈ E′ (note 2 ≤ i, j ≤ n− 1) create a graph Hi,j = (Vi,j , Ei,j) ∈ H
where Vi,j = V and Ei,j = [E′\(vi, vj)]∪[{(v0, vi), (v1, vj)}]. In this construction
(deg(v0) = deg(v1) = 1 and deg(vi) ≥ 2, 2 ≤ i ≤ n− 1). It then provides P with
the following data: a. starting vertex is v2, b. target vertices are v0 and v1, c.
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Fig. 1. Illustration of the proof of Theorem 1 using a graph with 10 vertices. The graph
on the left shows the last graph in H (when |H| = 1). The edge (v5, v8), which is in
bold, is the edge that was not used yet. The graph on the right shows how v0 and v1

are connected to create the required graph G.

n, d. m, e. degree of each node and f. that the graph G in which the execution
takes place is an element of H.
P is global, and therefore, during its execution v2 must send at least one

message and every node must receive at least one message. In particular v0 and
v1 must receive a message. When P wants to send a message at time tu from
node x ∈ V along port k it asks A for the destination node. A uses Algorithm
1 to determine the destination node. The strategy of A is simple. If the port k
was used before then the A provides the previous destination port (Line 2). If
the port was not used then A uses the set H , which consists of choices for a
graph G left to the adversary at time tu. A message will be received by either
v0 or v1 only if |H| = 1 (Lines 11-21). Initially, |H| = m− 1 and each time that
P wants to send a message from a node x along a port k that was never used
before and |H| > 1, A provides a destination node and reduces the size of H by
one (Lines 3-11). Therefore, before a message can either reach v0 or v1 at least
|H|−1 = m−2 messages must be sent. Adding to them two more messages (one
to v0 and one to v1) we obtain that m messages must be sent. ��

3.2 Dense Network

In this section we look at the communication lower bound when the network is
a dense network. Given a connected network with n nodes and m edges we term
the network a dense network if 1

2 (n− 2)(n− 3) + 1 < m ≤ 1
2 (n− 1)(n− 2) + 1.

Here we show that P must send at least m− 1 messages before reaching all the
n nodes in the network.
Theorem 2. Given n and 1

2 (n − 2)(n − 3) + 1 < m ≤ 1
2 (n − 1)(n − 2) + 1

there exists a dense network with n nodes and m edges upon which every global
protocol P requires to send at least m messages in order to invoke all the nodes
in the graph.

3.3 Extremely Dense Network

In this section we look at the communication lower bound when the network is
an extremely dense network. Given a connected network with n nodes and m
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Algorithm 2. Adversary strategy for dense networks at time tu for a given node
x and port k

1: if λ(x, k) 
= ∞ then
2: the message will reach y = λ(x, k)
3: else {λ(x, k) = ∞}
4: if |H| > 1 then
5: select an Hi,j from H where vi = x
6: λ(x, k) = vj

7: find l such that λ(vj , l) = ∞
8: λ(vj , l) = x
9: H = H \ {Hi,j} {delete Hi,j from H }

10: the message will reach vj

11: else {H only contains Hi,j (|H| = 1)}
12: λ(x, k) = v0

13: if λ(v0, 1) 
= ∞ then
14: λ(v0, 1) = x
15: else
16: λ(v0, 2) = x
17: end if
18: the message will reach v0

19: end if
20: end if

edges we term the network an extremely dense network if 1
2 (n− 1)(n− 2) + 1 <

m = 1
2 (n − 1)(n − 2) + k where 2 ≤ k < 1

2 (n − 1). Note, that in this case we
assume that deg(vi) < (n− 1), 0 ≤ i ≤ n− 1.

In this case we show how A determines a graph G that require P to send at
least M = 1

2 (n−2k)(n+2k−3) messages during its execution on G. In this case
the strategy is somewhat similar to that given in Section 3.2. First A constructs
a graph G′ = (V ′, E′) where V ′ = V − {v0} and |E′| = 1

2 (n − 1)(n − 2) edges.
The graph G′ is a complete network.

In this case (deg(v0) = 2k and deg(vi) = n− 2, 1 ≤ i ≤ n− 1. The adversary
A provides P with the following data: a. starting vertex v1, b. target vertex v0,
c. n, d. m, e. degree of each node.

We say that a node x ∈ V is exhausted during the execution of a global
protocol P if each of its incident edges was used for communication (either to
send or to receive a message). We denote by E∗ the set of edges that were used by
P during its execution and by V E the set of vertices of G′ that were exhausted
by P . We also denote by deg∗(v) the number of edges incident to v that were
used to send or receive a message from or to v respectively. Note, throughout
the algorithm deg∗(v) ≤ deg(v).

Theorem 3. Given n and 1
2 (n−1)(n−2)+1 < m = 1

2 (n−1)(n−2)+k where 2 ≤
k < 1

2 (n− 1) there exists an extremely dense network with n nodes and m edges
upon which every global protocol P requires to send at least 1

2 (n−2k)(n+2k−3)
messages in order to invoke all the nodes in the graph.
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Algorithm 3. Adversary strategy for extremely dense networks at time tu for a
given node x and port k

1: if λ(x, k) 
= ∞ then
2: the message will reach y = λ(x, k)
3: else {λ(x, k) = ∞}
4: if |E∗| < 1

2
(n − 2k)(n + 2k − 3) − 1 then

5: find a vertex vj 
∈ V E such that λ(vj , l)1≤l≤n−2 
= x and
deg∗(vj) = min1≤i≤n−2{deg∗(vi)}

6: λ(x, k) = vj

7: find l such that λ(vj , l) = ∞
8: λ(vj , l) = x
9: else {|E∗| = 1

2
(n − 2k)(n + 2k − 3)}

10: λ(x, k) = v0

11: the message will reach v0

12: end if
13: end if

Proof. Given n and m the adversary A constructs the extremely dense graph
during run time. The strategy of the adversary is somewhat similar to that given
in Section 3.2. First A constructs a complete graph G′ = (V ′, E′) where V ′ =
V −{v0} and |E′| = 1

2 (n− 1)(n− 2) edges. The graph G′ is a complete network
where deg(vi) = n − 2, 1 ≤ i ≤ n − 1. In this case the adversary will construct
during run time a graph G where (deg(v0) = 2k and deg(vi) = n−2, 1 ≤ i ≤ n−1.
The adversary A provides P with the following data: a. starting vertex v1, b.
target vertex v0, c. n, d. m, e. degree of each node. Since P is global then during
its execution v1 must send at least one message and every node must receive
at least one message. In particular v0 must receive a message. When P wants
to send a message at time tu from node x ∈ V along port k it asks A for the
destination node. A uses Algorithm 3 to determine the destination node. The
strategy of A is simple. If the port k was used before then the A provides the
previous destination port (Line 2). Otherwise A counts how many edges were
used to send or received messages. If this number has reached 1

2 (n−2k)(n+2k−3)
then it sends a message to v0 (Line 4). If less than 1

2 (n − 2k)(n + 2k − 3) were
used to send or receive a message then A sends the message to a node with a
minimum assigned connectivity so far.

What is left to show is that v0 can be connected to the remaining vertices
to form graph G. The maximum number of messages that can be sent before a
message reaches v0 is 1

2 (n− 2k)(n + 2k− 3). Thus at any time, prior to sending
1
2 (n−2k)(n+2k−3) messages there are at most n−2k exhausted nodes. When
A routes the message to v0 (Line 9 there are at most n − 2k + 1 exhausted
nodes. It is sufficient to show that an edge matching of size k − 1 can be found
among the remaining non exhausted nodes (the number of un exhausted nodes
is greater than 2k − 1). The number of edges that were not used is

|E| − |E∗| = [
1
2
(n− 1)(n− 2)]− [

1
2
(n− 2k)(n + 2k − 3)]

|E| − |E∗| = 2k2 − 3k + 1.
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Assuming that a matching of size k − 1 cannot be found then the maximum
edge matching in the remaining non exhausted edges and unused edges is of size
k − 2. According to Erdös and Gallai [7], the maximum number of edges ν that
a graph with n vertices whose maximum edges matching is ρ is bounded by

ν = max{
(

2ρ + 1
2

)
, ρ(n− ρ) +

(
ρ

2

)
}.

Using Erdös’ formula we obtain that the maxim number of edges in a graph
with k − 2 maximal edge matching is

ν = max{
(

2(k − 2) + 1
2

)
, (k − 2)(n− (k − 2)) +

(
k − 2

2

)
}.

Note that
(
2(k−2)+1

2

)
< 2k2−3k+1 for k > 1, therefore we are only concerned

with the second term (k−2)(n− (k−2))+
(
k−2
2

)
, which depends on the number

of nodes in the graph. In order to avoid a matching of size k − 1 the number of
un-exhausted nodes must be |V | − |V x| ≥ 5k2−9k+4

2k−4 , where V x ⊆ V is the set
of exhausted nodes. A construction that yields an edge matching of size k − 2
consists of two subsets of vertices: (i) a set S1 with at most k − 2 nodes, which
form a complete graph; and (ii) a set S2 with the remaining 5k2−9k+4

2k−4 −(k−2) =
3k2−k−4

2k−4 nodes. The nodes in S2 are only connected to nodes in S1. This implies
that the deg∗ of k − 2 nodes is much smaller than the remaining nodes in the
graph (about a factor k). This cannot occur because in Line 5, A chooses a node
with a minimum deg∗. ��

When the number of edges exceeds 1
2 (n − 1)(n − 1) then at least one node in

the network is connected to all other nodes. Therefore the adversary will try to
prevent the P from reaching such a node.

Before we present the lower bound in this case we first prove several properties
related to the state of the network when all nodes in the network received at
least one message. We start by addressing the state of a single vertex that was
used to send a message to a designated vertex. We say that a node x ∈ V is
exhausted during the execution of a global protocol P if all its incident edges
were used for communication (to send or receive a message). Let H = {H1, ...}
be a set of all possible labeling of G.

Lemma 1. Consider a graph G = (V, E) and let (u, v) ∈ E. Let P be a generic
protocol that requires in its execution that u sends a message directly to v through
(u, v), Then there exists an execution of P in H ∈ H where u becomes exhausted.
This result holds even if P knows G.

Proof. Consider an execution of P in H = (G, λ) ∈ H. Let nu(H) ≤ deg(u) be
the number of unused edges incident on u when P decides to send a message
from u to v. The lemma trivially holds if nu(H) = 1. If nu(H) = k > 1, it
is suffices to show that, for any 1 < k ≤ deg(u) there exist a H ′ ∈ H such
that nu(H ′) = k − 1. Let nu(H) = k > 1; then there is at least one edge
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(u, w), w �= v, on which no message was sent. Let λ(u, i) = v, λ(u, j) = w and
let H ′ = (G, λ′) ∈ H, be the network obtained from (G, λ) by simply setting
λ′(u, i) = w, λ′(u, j) = v. The same execution of P is possible in H ′; however in
this case, the message will arrive at w and not at v resulting in nu(H ′) = k − 1
in this execution. ��

Corollary 1. Consider a graph G = (V, E) and let v1, . . . , vk ∈ V, k ≥ 2 be
neighbouring vertices of u ((u, vi) ∈ E, 1 ≤ i ≤ k where l < k vertices have a
special property z. Let P be a generic protocol that requires in its execution that
u sends a message directly to v ∈ v1, . . . , vk ∈ V, k ≥ 2 through (u, v), where v
has the property z. Then there exists an execution of P in H ∈ H where u must
send k − l + 1 messages in order to guarantee that a vertex with property z will
receive the message. This result holds even if P knows G which vertices have the
property z but not the topology of G.

Using this properties we can now prove our result for cases where the number
of edges exceeds 1

2 (n− 1)2.

Theorem 4. Given n and 1
2 (n − 1)(n − 2) + k = m < 1

2 (n)(n − 1) where
1
2 (n−1) ≤ k < (n−1) there exists an extremely dense network with n nodes and
m edges upon which every global protocol P requires to send at least 2n− k − 2
messages in order to invoke all the nodes in the graph.

3.4 Tightness

We have seen that, for high values of m (i.e., when m = 1
2n(n − 1) − k, where

1 < k < n), the lower bound we established on the message complexity of global
computations is only Ω(n). This is not surprising because we are only focusing on
computations started by a single initiator. However, for several single-initiator
problems, including Broadcast and Traversal, this lower bound in actually tight
in order of magnitude, as we will now show.

Let τ(n) = 1
2n(n− 2)

Theorem 5. For any n > 1 and m > τ(n), if n and m are known then Broad-
cast can be performed using at most 3n − 6 messages, and Traversal can be
performed using at most 4n− 7 messages

Proof. If m > τ(n) then, by the pigeon principle, there is at least one node of
degree n− 1. Let u be the initiator.

In case of Broadcast, if deg(u) = n− 1, u just sends a message to each of its
neighbours. Otherwise, it sequentially searches for a neighbour of degree n− 1;
once located, that neighbour v will forward the broadcast message to all its
neighbours. This approach uses at most 2 deg(u)− 1+ n− 1 ≤ 3n− 6 messages.

Similarly, if deg(u) = n − 1 Traversal can be performed in just 2(n − 1)
messages; otherwise, a neighbour v of degree n− 1 must first be found; the cost
would then be at most 2 deg(u)− 1 + 2(n− 1) ≤ 4n− 7 messages. ��
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Algorithm 4. Adversary strategy for typical regular networks at time tu for a
given node x and port k

1: if λ(x, k) 
= ∞ then
2: the message will reach y = λ(x, k)
3: else {λ(x, k) = ∞}
4: if |H| > 1 then
5: select an Hi,j from H where vi = x
6: λ(x, k) = vj

7: find l such that λ(vj , l) = ∞
8: λ(vj , l) = x
9: H = H \ {Hi,j} {delete Hi,j from H }

10: the message will reach vj

11: else {H only contains Hi,j (|H| = 1)}
12: Allow P to reach all vertices of V ′′ using |V ′′| messages
13: end if
14: end if

The tight Θ(n) complexity bound for very large m applies not only to Broad-
cast and Traversal. In fact, let LT denote the set of global single-initiator prob-
lems that can be solved with a linear number of messages in tree networks. Then,
Theorem 5 can be generalized as follows:

Theorem 6. Let G be an arbitrary connected network with n > 1 nodes and
m > τ(n) edges. Every problem P ∈ LT can be solved in G with Θ(n) messages
provided n and m are known..

4 Complexity Lower Bound in Regular Networks

In the previous sections, the graphs, which were considered, were arbitrary in
topology. Clearly, for restricted classes of graphs, better bounds can be hoped
if the protocol is aware of the restrictions and properties of the class. In this
section we consider the class of regular graphs, that is where every node has
the same degree deg. We show that perhaps surprisingly, global computations
require a large number of messages for a large number of graphs in this class,
even if the protocol is aware of the regularity and of the size of the graph, and
there is a single initiator.

Here we provide the algorithm InvokeNW with the degree of each vertex.
Namely, here we are looking at uniform graph where the ∀v ∈ V, deg(v) = d.
Since the graphs are regular graphs the relationship between n and m cannot be
set arbitrarily. Rather, one must ensure that a graph can be legally constructed
from the given n and d by obeying nd

2 = �nd
2 �.

There are two cases to consider:

1. 2 < d < n
2 - in this case the network connectivity level if typical.

2. d ≥ n
2 - in the case the network has a very high level of connectivity (the

network is a dense).
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Algorithm 5. Adversary strategy for regular dense networks at time tu for a
given node x and port k

1: if λ(x, k) 
= ∞ then
2: the message will reach y = λ(x, k)
3: else {λ(x, k) = ∞}
4: if |V e| = n − d − 1 and x is connected to d − 1 vertices in G then {x is the

n − d vertex to become exhausted}
5: λ(x, k) = v0

6: λ(v0, 1) = x
7: the message will reach v0

8: else {after this processing |V e| < n − d − 1}
9: if x ∈ V R then

10: if ∃vj ∈ V R and (x, vj) 
∈ E then
11: let vj = v ∈ V R where (x, vj) 
∈ E
12: else
13: let vj = v ∈ V B ∪ V G where (x, v) 
∈ E and vc = minu∈V B∪V G(uc)
14: end if
15: else
16: if x ∈ V B then
17: if ∃vj ∈ V B and (x, vj) 
∈ E then
18: let vj = v ∈ V B where (x, vj) 
∈ E
19: else
20: let vj = v ∈ V R ∪ V G where (x, v) 
∈ E and vc = minu∈V R∪V G(uc)
21: end if
22: else {x ∈ V G}
23: let vj = v ∈ V B ∪ V R where (x, v) 
∈ E and vc = minu∈V B∪V R(uc)
24: end if
25: end if
26: λ(x, k) = vj

27: find l such that λ(vj , l) = ∞
28: λ(vj , l) = x
29: E = E ∪ {(x, vj)} {add the new edge to E}
30: the message will reach vj

31: if x is exhausted then
32: V e = V e ∪ {x}
33: end if
34: end if
35: end if

4.1 Regular Typical Networks

In this section we present a communication lower bound when the graph is
typical regular graph. A graph G = (V, E) is a typical regular graph when
∀v ∈ V, 2 < deg(v) < n

2 .

Theorem 7. Given n and m = nd
2 , 2 < d < n

2 there exists a typical regular
network with n nodes and m edges upon which every global protocol P requires
to send at least m− d2−d

2 messages in order to invoke all the nodes in the graph.
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4.2 Regular Dense Network

In this section we look at communication lower bound when the network is a
dense regular network. Given a connected network with n nodes and m = nd

2
edges we term the network a dense regular network if n

2 < d ≤ n− 1.

Theorem 8. Given n and m = nd
2 , n

2 < d < n− 1 there exists a dense regular
network with n nodes and m edges upon which every global protocol P requires
to send at least (n−d)d− (n−d)(n−d−1)

2 messages in order to invoke all the nodes
in the graph.

5 Conclusions

Global distributed computation in a network with n nodes and m communication
links between the nodes (edges) requires that all nodes participate in the compu-
tation (namely, each node in the network must send or receive at least one mes-
sage). An Ω(m) lower bound on the number of messages that must be send and
receive during any global distributed computation was weak because it assumes
no knowledge about the network. In this paper we provide a strong lower answer
and prove that Ω(m) bound is inherent for all these problems, as well as many
more. We show that there exist networks where any generic global distributed
solution is requiring to send Ω(m) messages even if the size of the network (n,
and m) and the degree of each node are known in advance. The relationship
between n and m plays an important role in establishing the lower bound. We
showed that for most networks (where m ≤ 1

2 (n−2)(n−3)+1) a generic solution
for any problem in this class requires at least m messages. This result holds for
almost all values of m (e.g., when 1

2 (n− 2)(n− 3)+1 < m ≤ 1
2 (n− 1)(n− 2)+1

the number of required messages is m− 1), even if there is a single initiator and
the entities have distinct identifiers, and both these facts are known. Moreover,
the results hold even if the protocol can maintain a global view of the network.

As the networks become more dense, namely the network approaches a com-
plete graph, the number of required messages is gradually reduced. For extreme
values of m ( i.e., m = 1

2n(n − 1) − c > 1
2 (n − 1)(n − 2) + 1), where c ≥ 0

is constant, the lower bound gradually approaches Ω(n); this is understandable
since we establish it for the single initiator scenario. However, we prove that in
networks of such a size, single initiators problems such as Broadcast and Traver-
sal can be solved with precisely that order of magnitude. This means that for
those problems the knowledge of n and m generates a significant and sudden
complexity drop from Θ(n2) to Θ(n).
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3 Dipartmento di Scienze, Università degli Studi di Chieti-Pescara, Pescara, Italy
moscardelli@sci.unich.it

4 Tel Hai Academic College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

5 Department of Computer Science, Technion, Haifa, Israel
zaks@cs.technion.ac.il

Abstract. In optical networks regenerators have to be placed on light-
paths in order to regenerate the signal. In addition, grooming enables
the use of the same regenerator by several lightpaths. In this work we
consider the problem of minimizing the number of regenerators used in
traffic grooming in optical networks. We deal with the case in which a re-
generator has to be placed at every internal node of each lightpath. Up to
g (the grooming factor) lightpaths can use the same regenerator. Starting
from the 4-approximation algorithm of [7] that solves this problem for
a path topology, we provide an approximation algorithm with the same
approximation ratio for the ring and tree topologies. We present also a
technique based on matching that leads to the same approximation ratio
in tree topology and can be used to obtain approximation algorithms
in other topologies. We provide an approximation algorithm for general
topology that uses this technique.
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hundred wavelengths per fiber are being used in testbeds. The decrease in the
energy of the signal with the traveled distance raises the requirement of optical
amplifiers at every (almost) fixed distance. However, optical amplifiers introduce
noise into the signal, thus after a certain number of amplifications, the optical
signal needs to be regenerated. In the current technology, the signal is regener-
ated by first using a ROADM (Reconfigurable Optical Add-Drop Multiplexer)
to extract a set of wavelengths from the optical fiber. Then, for each extracted
wavelength, an optical regenerator is needed to regenerate the signal carried by
that wavelength. That is, at a given optical node, one needs as many regenerators
as wavelengths one wants to regenerate.

Nowadays the cost of a regenerator is considerably higher than the cost of an
ROADM. Moreover, as described above, the regenerator cost is per wavelength,
as opposed to ROADM cost that is paid once per several wavelengths. Therefore
the total number of regenerators is an important cost parameter to be minimized.
Another possible criterion is to minimize the number of locations (that is, the
number of nodes) in which optical regenerators are placed. This measure is the
one assumed in [6], which makes sense when the dominant part of the cost is
the set-up of new optical nodes, or when the equipment to be placed at each
node is the same for all nodes. In this work we consider the total number of
regenerators as the cost function.

A logical path formed by a signal travelling from its source to its destination
using a unique wavelength is termed a lightpath. Let d be the maximum number
of hops a lightpath can make without meeting a regenerator. Then, for each
lightpath �, we need to place one regenerator every d consecutive vertices in �,
to get an optimal solution. However the problem becomes harder when the traffic
grooming comes into the picture.

Traffic grooming: The network usually supports traffic that is at rates which
are lower than the full wavelength capacity, and therefore the network operator
has to be able to put together (= groom) low-capacity connections into the high
capacity lightpaths. In graph-theoretic terms, we associate a path in the graph
with each connection, and the problem can viewed as assigning wavelengths to
these paths so that at most g of them using the same wavelength (g being the
grooming factor) can share one edge. Thus, all paths (i.e. connections) that get
the same color and form a connected subgraph correspond to grooming of these
connections into one lightpath.

In this work we concentrate on the special case d = 1 and general g. It is
expected that the techniques presented in our work will be carried out to similar
studies for higher values of d.

1.1 Related Work

Various variants of regenerator placement problems were studied in [1, 4, 5, 10,
12,13,15,16]. Most of these results concentrate in heuristics and simulations and
do not consider traffic grooming.

In [6] theoretical results (upper bounds and lower bounds) are presented for
some variants of this problem. This work considers the number of regenerator
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locations (as opposed to the total number of regenerators) as the cost measure,
and does not consider traffic grooming. On the other hand [11] uses the same
cost measure but still does not consider traffic grooming.

The problem is shown to be NP-hard in other contexts such as fiber mini-
mization in [14] and is also implied by the proof of a similar result in [8].

When the underlying graph is a path the problem is equivalent to a ma-
chine scheduling problem studied in [7]. Several approximation algorithms are
presented in this work for this scheduling problem and its special cases.

1.2 Our Contribution

In this work we consider the traffic grooming problem to minimize the number
of regenerators used. We consider only the case d = 1, i.e. the case that a regen-
erator has to be placed at every internal node of every lightpath. Our starting
point is a 4-approximation algorithm of [7] that solves a closely related prob-
lem for a path topology. We prove that the same algorithm can be used for our
problem and show that it has the same approximation ratio not only for path
topology, but also for ring topology. We present a greedy 4-approximation algo-
rithm for tree networks. We also show a general technique using matchings that
can lead to approximation algorithms in other topologies. We use this technique
and show an �L+7

2 �-approximation algorithm for general topology, where L is the
maximum load (i.e. number of paths that share a common edge) in the input.

In Section 2 we present preliminary results and definitions, including the above
mentioned algorithm for path networks and extension of its analysis to the case
of ring topology. In Section 3 we present an algorithm with the same performance
for tree topology. In Section 4 we present the matching technique and its use for
general toplogies. We summarize the results and suggest open research directions
in Section 5. Due to the lack of space, some proofs and figures have been removed.
For a full version of the paper see [9].

2 Preliminaries

2.1 Definitions and Problem Statement

An instance of the Regenerators Grooming Problem is a triple (G,P , g) where
G = (V, E) is a graph modeling the optical network, P is a set of simple paths
in G and g is a positive integer, namely the grooming factor.

A coloring (or wavelength assignment) of (G,P) is a function w : P �→ N. For
a coloring w and color λ, Pw

λ is the subset of paths from P colored λ by w, i.e.

Pw
λ

def
= {P ∈ P|w(P ) = λ}. When there is no ambiguity on the coloring w under

consideration, we omit the superscript w and use Pλ.
For an edge e, Pe denotes the subset of paths of P using the edge e. For every

e ∈ E we define load(P , e)
def
= |Pe| and load(P)

def
= maxe∈E load(P , e). A valid

coloring (or wavelength assignment) w of (G,P , g) is a coloring of P in which
for any edge e at most g paths using e are colored with the same color, i.e. for
every color λ we have load(Pw

λ ) ≤ g.
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We denote by INT (P ) the set of intermediate nodes, i.e. of all the nodes not

being endpoints, of a path P in G, and int(P )
def
= |INT (P )|. For a set P of

paths we define

SPAN(P)
def
=
⋃

P∈P
INT (P ),

span(P)
def
= |SPAN(P)| ,

len(P)
def
=
∑
P∈P

int(P ).

A set of paths is called a no-split instance or shortly an NSI if the union
of its paths (as sets of edges) induces a graph of maximum degree 2. Due to
technological constraints, paths using a same wavelength and going through
a same edge of the network can be routed only to another unique edge, and
therefore every set of paths with the same color has to be an NSI.

The number of regenerators operating at wavelength λ is span(Pw
λ ); in fact,

at each node being an intermediate node of some path in Pw
λ a regenerator

operating at this wavelength is needed.
We are now ready to give a formal definition of our problem.
Input: An instance (G,P , g), where G = (V, E) is a network, P =

{P1, P2, ..., Pn} is a set of simple paths in G, and g is the grooming factor.
Output: A valid coloring w : P �→ N of the paths such that, for every λ, Pλ

is an NSI (no splitting condition).
Measure: The cost of a solution is given by the total number of regenerators

REGw def
=
∑

λ span(Pw
λ ).

Objective: The goal is to minimize the total number of regenerators REGw.
OPT (G,P , g) denotes the cost of any optimal coloring and ALG(G,P , g)

denotes the cost of the coloring returned by some algorithm ALG on instance
(G,P , g). As the cost function depends only on the partition of the paths induced
by the coloring, with some abuse of notation, a coloring w denotes also the
equivalence class of colorings that induce the same partition as w.

2.2 Lower Bounds

We have the following trivial lower bounds for the cost of any coloring w, in
particular for an optimal coloring.

– The grooming bound:

REGw ≥ len(P)
g

.

– The span bound:
REGw ≥ span(P).

The grooming bound holds because a regenerator can be used by a maximum
of g intermediate nodes of paths. The span bound holds because at least one
regenerator is needed on any node that is an intermediate node of some path.
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2.3 Path and Ring Networks

Now we focus on ring and path networks. We adapt Theorem 2.1 in [7] to our
problem and generalize it to the case of ring networks. Specifically, we show
that the FirstF it algorithm presented in [7] is a 4-approximation algorithm
for our problem. The proof goes along the same lines, and we bring it here for
sake of completeness; the main difference is in Lemma 2, whose proof required
modifications of the proof of the corresponding claim in [7] in order to assure
correctness for the case of ring topology.

Notice that when G is a ring or a path, all subsets of P constitute an NSI.
Algorithm FirstF it colors the paths greedily by considering them one after

the other, from longest to shortest. Each path is assigned the lowest possible
color for it.

Algorithm 1. FirstF it(G,P , g) with G being a path or a ring
1: Sort the paths in non-increasing order of length, i.e., int(P1) ≥ int(P2) ≥ . . . ≥

int(Pn).
2: Consider the paths by the above order: assign to the next path, Pj , the first possible

color λ that will not violate the load condition. Namely, find the minimum value
λ ≥ 1 such that, for every edge e of Pj , load(Pλ, e) ≤ g − 1 and w(Pj) ← λ.

The upper bound proof is based on the observation stated in the following
lemma, and depicted in Figure 1.

|P ′
λ ∩ Pe| = g

Color λ

Color λ′

Path P

≥ int(P )
≥ int(P )

≥ int(P )

≥ int(P )

e

Fig. 1. Basic observation

Lemma 1. Let w be the coloring returned by FirstF it. Let P be a path colored
λ, i.e. P ∈ Pw

λ , for some λ ≥ 2. Then for any λ′ < λ, (a) there is an edge e ∈ P
such that load(Pw

λ′ , e) = g, (b) each path P ′ ∈ Pλ′ ∩ Pe is no shorter than P .

We use the above properties stated in Lemma 1 in order to show the following
claim, which will be crucial in order to prove the desired result.

Lemma 2. For any λ > 1, len(Pλ−1) ≥ g
3span(Pλ).

Proof. For every path P ∈ Pλ, we choose arbitrarily an edge e of P among the
edges whose existence is guaranteed by Lemma 1. Let b(P )

def
= Pλ−1 ∩Pe be the
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blocking paths of P . By Lemma 1, |b(P )| = g and len(b(P )) ≥ g · int(P ). Let P
be the set of all blocking paths defined as above, i.e. P def

= ∪P∈Pλ
b(P ). Clearly

P ⊆ Pλ−1.
Now, we consider a blocking path P ′ ∈ P (see Figure 3 in [9]). Consider the set

of all paths in Pλ blocked by P ′. With a little abuse of notation we denote them
by b−1(P ). Consider a node v ∈ SPAN(b−1(P ′)). It is in some path P ′′ ∈ Pλ

which is no longer than P ′ and intersects with P ′, therefore there exists an
intermediate node of P ′ which is at distance to v at most int(P ′′) ≤ int(P ′).
As G is a path or a cycle the number of such nodes v is at most 3 · int(P ′). We
conclude that span(b−1(P ′)) ≤ 3 · int(P ′). Summing up for all the paths in P
we get ∑

P ′∈P

span(b−1(P ′)) ≤ 3
∑

P ′∈P

int(P ′) = 3 · len(P).

Consider a node v ∈ SPAN(Pλ). It is an intermediate node of at least one
path P ∈ Pλ, which in turn is blocked by at least g paths of P . Therefore v ∈
SPAN(b−1(P ′)) for at least g paths P ′ of P, in other words v contributes at least
g to the sum in the left hand side above. Thus we have

∑
P ′∈P span(b−1(P ′)) ≥

g · span(Pλ). Therefore,

3 · len(Pλ−1) ≥ 3 · len(P) ≥
∑

P ′∈P

span(b−1(P ′)) ≥ g · span(Pλ). ��

We are now ready to prove the following theorem providing an upper bound to
the approximation ratio of the FirstF it algorithm. The proof exploits arguments
similar of the one of the corresponding theorem in [7].

Theorem 1. If G is a path or a ring, then for any instance (G,P , g),
FirstF it(G,P , g) ≤ 4 ·OPT (G,P , g).

The following lemma and its proof follow from a similar claim in [7].

Lemma 3. For any ε > 0, there are infinitely many instances (G,P , g) having
infinitely many input sizes, such that FirstF it(G,P , g) > (3−ε) ·OPT (G,P , g).

Combining Theorem 1 and Lemma 3, we finally get the following theorem.

Theorem 2. The approximation ratio of FirstF it is between 3 and 4 in ring
and path networks.

3 Tree Networks

In this section we present an optimal algorithm GreedyMatch for the case where
the graph G is a tree and g = ∞. Combining this algorithm and algorithm
FirstF it described in the previous section we obtain a 4-approximation algo-
rithm for tree networks and any value of g.
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3.1 G, P, ∞ Instances

We first consider the special case of g = ∞, that will be useful in order to
provide an approximation algorithm for general g. When g = ∞, any solution is
a valid coloring. It remains to satisfy the no splitting condition. Therefore the
problem becomes to partition P into no-split instances NSI1, NSI2, ... such that∑

λ span(NSIλ) is minimized.
Note that the span (lower) bound holds in this special case, i.e.

OPT (G,P ,∞) ≥ span(P).
Since g = ∞, we can assume that there is no path P ∈ P completely included

in another path P ′ ∈ P , because in this case we could remove P from the input.
In any solution of the remaining instance P can be added to the NSI containing
P ′ without increasing the cost.

We introduce some additional notation.

– Two NSIs NSI and NSI ′ are said to be compatible if their union is also an
NSI. We denote this fact as NSI ∼ NSI ′. Otherwise they are said to be
incompatible and denoted as NSI � NSI ′.

– The overlap of two NSIs NSI and NSI ′ is OV (NSI, NSI ′)
def
=

SPAN(NSI) ∩ SPAN(NSI ′) and ov(NSI, NSI ′)
def
= |OV (NSI, NSI ′)|.

– Two NSIs NSI and NSI ′ are overlapping if ov(NSI, NSI ′) > 0.
– An NSI is said to be connected if the union of its paths (as sets of edges)

induces a connected graph.
– We say that NSI � NSI ′ if ∪P∈NSIP ⊆ ∪P∈NSI′P

Consider algorithm GreedyMatch; the following lemmata are needed for prov-
ing Theorem 3, in which it is shown that such an algorithm is optimal.

Lemma 4. Every two NSIs in an optimal solution of (G,P ,∞) are either non-
overlapping or incompatible.

Proof. Assume, by contradiction that there are two NSIs that are both compat-
ible and overlapping. Then they can be joined to form one NSI, and decrease
the cost of the solution by the size of their overlap. ��

Lemma 5. At any given point of the execution of Algorithm GreedyMatch the
sets NSIi are connected NSIs.

Proof. The sets NSIi are trivially connected at the beginning of the algorithm.
Moreover, since a new NSI is constructed by unifying two compatible and over-
lapping NSIs, they are connected also at any point of the execution of Algorithm
GreedyMatch. ��

Lemma 6. At any given point of the execution of Algorithm GreedyMatch, af-
ter step 1, consider the partition {NSI1, NSI2, ...}. There is an optimal solution
{NSI∗1 , NSI∗2 , ...} such that every NSIi is a subset of some NSI∗i , or in other
words the partition given by the algorithm is a refinement of the partition given
by some optimal solution.
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Algorithm 2. GreedyMatch(G,P ,∞), G being a tree
1: ∀Pi ∈ P , NSIi ← {Pi} � Every path constitutes a connected NSI.
2: while there exist NSIi, NSIj such that NSIi � NSIj do � Eliminate inclusions
3: NSIj ← NSIj ∪ NSIi

4: NSIi ← ∅
5: end while
6: while there exist two compatible NSIi, NSIj such that ov(NSIi, NSIj) > 0 do
7: Find two compatible NSIs NSIi, NSIj maximizing ov(NSIi, NSIj)
8: NSIj ← NSIj ∪ NSIi

9: NSIi ← ∅
10: Eliminate inclusions (as in Steps 3-6) � We will prove in Lemma 7 that this is

unnecessary
11: end while

Proof. Without loss of generality we can assume that all the NSIs in an optimal
solution of (G,P ,∞) are connected, because if we have a disconnected NSI NSI
we can replace NSI with a connected NSI for each connected component of NSI.
The claim is obviously true immediately after step 1 of the algorithm. Assume
by contradiction that the claim is false and consider the first time during the
execution of the algorithm that it becomes false. This can happen only after
execution of step 8. NSIi and NSIj are overlapping and compatible, because
they are chosen by the algorithm in step 7. They are also connected by Lemma 5.
As the condition was true prior to the execution of step 8, there is some optimal
solution S∗ = {NSI∗1 , NSI∗2 , . . .} such that NSIi ⊆ NSI∗i and NSIj ⊆ NSI∗j .
Therefore NSI∗i ⊃ NSIi and NSI∗j ⊃ NSIj are overlapping. Also, by Lemma
4, NSI∗i � NSI∗j .

As there are no inclusions, the OV (NSIi, NSIj) is a proper subset of both
SPAN(NSIi) and SPAN(NSIj) (see Figure 4 in [9]). Let a, b, c, d ∈ V be four
distinct nodes of the tree such that SPAN(NSIi) (resp. SPAN(NSIj)) is the
path between b and d (resp. a and c). Then OV (NSIi, NSIj) is the path between
b and c. The partition {NSI1, . . .} is a refinement of the partition {NSI∗1 , . . .}.
Let NSI∗i = NSIi ! NSIi1 ! NSIi2 ! . . .. We observe that for none of these
sets SPAN(NSIik

) can intersect with both a− b and c− d, because this would
imply that OV (NSIi, NSIj) � OV (NSIi, NSIik

), a contradiction to the way
NSIi and NSIj are chosen by the algorithm. Given this observation we partition
the set NSI∗i into three sets NSIi, NSIii and NSIij such that the sets NSIik

spanning at least one edge of c− d (resp. a− b) are in NSIii (resp. NSIij), the
rest are divided arbitrarily. We do the same for NSI∗j .

NSIi, NSIii, NSIij are pairwise compatible, because they make part of
NSI∗i , and so are NSIj , NSIjj , and NSIji. Moreover NSIij ∼ NSIji and
NSIii ∼ NSIjj , because the underlying graph is a tree and thus they can over-
lap only in the path b−c in which there can not exist nodes with induced degree
3 or more.
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We conclude the proof by case analysis. For each case we show how an optimal
solution S′∗ can be built from S∗ such that NSIi and NSIj are contained in the
same set of S′∗, a contradiction to the assumption that the condition became
false.

Assume NSIji ∼ NSIi:

– NSIji ∼ NSIii: In this case we can move NSIii and NSIi into NSI∗j
without increasing the cost of the solution.

– NSIji � NSIii: In this case the node with induced degree more than 2 is
necessarily beyond (in Figure 4 in [9], at the right of) the node d, proving
that SPAN(NSIji) contains the path c − d. Therefore we can move NSIi

into NSI∗j without increasing the cost of the solution.

After handling the case NSIij ∼ NSIj symmetrically, it remains to solve the
case NSIji � NSIi and NSIij � NSIj . If NSIji and NSIij are overlapping
than we can repartition these six sets into two sets NSIij ∪NSIji and NSIi ∪
NSIj ∪ NSIii ∪ NSIjj without increasing the cost. Otherwise we build three
sets NSIij , NSIji and NSIi ∪ NSIj ∪ NSIii ∪ NSIjj without increasing the
cost. ��
We are now able to prove that Algorithm GreedyMatch is optimal.

Theorem 3.When Algorithm GreedyMatch ends, the solution {NSI1,NSI2, ...}
is optimal.

The following lemma shows that step 10 is redundant, and therefore can be
removed from algorithm GreedyMatch.

Lemma 7. When the Algorithm GreedyMatch reaches step 10, there are no
inclusions.

3.2 An Approximation Algorithm Scheme for Any Graph G and
Any Value of g

We propose the algorithm scheme Combined(A, (G,P , g)) for general graphs
and any value of g, depending on Algorithm A working for the specific case in
which g = ∞.

Algorithm 3. Combined(A, (G,P , g))
1: Partition P into NSIs NSI1, NSI2, ... using algorithm A computed on the corre-

sponding (G,P ,∞) instance.
2: For each i, let G(NSIi) be the graph induced by the paths of NSIi. Split NSIi

into sets Pi,1,Pi,2, ... by solving the instance FirstFit(G(NSIi), NSIi, g).
3: Assign each one of the sets Pi,j a distinct color λi,j .

Lemma 8. Given any g ≥ 1, if Algorithm A is a ρ-approximation algorithm
for instance (G,P ,∞), then Algorithm Combined(A, (G,P , g)) is a (ρ + 3)-
approximation algorithm for instance (G,P , g).
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Proof. In order to prove the correctness of the algorithm, it is sufficient to notice
that every NSIi is a no-split instance, thus satisfies the no splitting condition.
Therefore any subset Pi,j of it also satisfies the no splitting condition. Moreover,
by the correctness of FirstF it the output is a valid coloring.

By Lemma 2, for any instance (SPAN(NSIi), NSIi, g) and any color λi,j we
have span(Pi,j+1) ≤ 3

g len(Pi,j).
Therefore∑
i≥1,j≥2

span(Pi,j) ≤
3
g

∑
i,j≥1

len(Pi,j)

=
3
g

∑
i≥1

len(NSIi) =
3
g

∑
len(P) ≤ 3 ·OPT (G,P , g).

On the other hand∑
i≥1

span(Pi,1) ≤
∑
i≥1

span(NSIi) ≤ ρ ·OPT (G,P ,∞) ≤ ρ ·OPT (G,P , g).

Combining we get

Combined(A, (G,P , g)) =
∑

i,j≥1

span(pi,j) ≤ (ρ + 3) ·OPT (G,P , g).

��

3.3 The Approximation Algorithm for Tree Networks

By combining Theorem 3 with Lemma 8, we get the following theorem.

Theorem 4. Given any g ≥ 1, Algorithm Combined(GreedyMatch, (G,P , g))
is a 4-approximation algorithm for instance (G,P , g), where G is a tree network.

The following lemma and its proof exploit arguments similar to the ones used in
lemma 3.

Lemma 9. For any ε > 0, there are infinitely many instances (G,P , g) having
infinitely many input sizes, such that Combined(GreedyMatch, (G,P , g)) > (3−
ε) ·OPT (G,P , g), where G is a tree network.

By combining Theorem 4 with Lemma 9 we get the following theorem.

Theorem 5. The approximation ratio of Combined(GreedyMatch) is between
3 and 4 in tree networks.

4 Beyond Tree Networks: A Matching Technique

In this section we present a new technique to approximate (G,P ,∞) instances
in any topology. In particular, we show a general technique able to reduce an in-
stance of the general network to instances of ring and path networks. Using such
a technique, and exploiting a reduction of the problem to an instance of the Max-
imum Weighted Matching on an auxiliary graph, we present an approximation
algorithm for general topology.
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4.1 The Endpoint Intersection Graph

In order to describe the matching technique, we need to define the edge-weighted
endpoint intersection graph EIG(G,P) = (V ′, E′) of G and P . V ′ contains 2 |P|
nodes v1,1, v1,2, v2,1, v2,2, ..., vi,1, vi,2, ..., one for each endpoint of a path Pi ∈ P .
There is an edge between two nodes vi,k, vj,k′(k, k′ ∈ {1, 2}) if Pi ∪ Pj is either
a path or a ring and Pi ∩ Pj contains a path in G with endpoints vi,k and vj,k′ .

The weight function f : E′ → N is defined as follows: f(vi,k, vj,k′) is the length
of the path between vi,k and vj,k′ in the intersection, minus one. As usual, the
weight of a set of edges is defined as the sum of the weights of the edges belonging
to it.

Lemma 10. For every solution w of (G,P ,∞) in any graph, there is a matching
M(w) of EIG(G,P).

Proof. Consider an NSI of a solution w. By definition, all the nodes of its paths,
in particular their endpoints are in some subgraph of G with maximum degree
2. This subgraph is the union of some paths and cycles of G.

Let us first consider a path Q of this graph. We choose some arbitrary di-
rection of Q, and number the paths of the NSI as P1, P2, ..., Pl according to the
order, in the chosen direction of their starting nodes. Let w.l.o.g. these nodes be
v1,1, v2,1, .... As the paths are inclusion-free, the order of the ending nodes in this
direction is the same, namely v1,2, v2,2, ... (upper part of Figure 2). For every two
consecutive paths Pi, Pi+1, their intersection is the segment of the path between
vi,2 and vi+1,1. Therefore (vi,2, vi+1,1) is an edge of EIG(G,P), and the edges
(v1,2, v2,1), (v2,2, v3,1), ..., (vl−1,2, vl,1) constitute a matching of EIG(G,P) with
l − 1 edges.

Now we consider a cycle C of this graph. This case is similar to the previous
case (consult the lower part of the figure), except that in this case (vl,2, v1,1) is
also an edge of EIG(G,P), and (v1,2, v2,1), (v2,2, v3,1), ..., (vl−1,2, vl,1), (vl,2, v1,1)
constitute a matching of EIG(G,P) with l edges. ��

Lemma 11. REGw = len(P)− f(M(w)).

Proof. As in the proof of the previous lemma, consider an NSI that induces a
path of G. Let without loss of generality this NSI be {P1, P2, ..., Pl} in the chosen
direction of the path, and assume that the endpoints of each path are indexed 1
and 2 in this direction. Then

span(NSI) = int(P1) + (int(P2)− f((v1,2, v2,1))) + . . .

+(int(Pl)− f((vl−1,2, vl,1))) = len(NSI)− f(M(w) ∩NSI).

The same result holds, similarly, for an NSI that induces a cycle. Summing up
over all the NSIs, we get

REGw =
∑

λ

span(NSIλ) =
∑

λ

len(NSIλ)−
∑

λ

f(M(w) ∩NSIλ)

= len(P)− f(M(w)).

��
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Fig. 2. Correspondence between feasible solutions of (G,P ,∞) and the matchings of
EIG(G,P)

Lemma 12. If G is a ring or tree, then to every matching M of EIG(G,P)
corresponds a solution w(M) of the (G,P ,∞) instance.

Proof. Consider a matching M of EIG(G,P). Consider also the auxiliary edges
(not belonging to the edges of EIG(G,P)) M ′ = {(vi,1, vi,2)} of EIG(G,P).
Every node has degree at most 1 with respect to the edges in M , and degree
exactly 1 with respect to the edges in M ′, thus degree at most 2 with respect to
the edges in M ∪M ′. Therefore M ∪M ′ can be partitioned into (alternating)
paths and cycles. Note that a path ends with an auxiliary edge in M ′ (because
a node with degree 1 has its only incident edge in M ′), thus has odd length; the
cycles have even length.

We first consider a path of M ∪M ′. It is of the form vi1,k1 − vi1,k′
1
− vi2,k2 −

vi2,k′
2
− ... − vil,kl

, vil,k′
l
, where ki �= k′

i for all i = 1, . . . , l. This corresponds
to the sequence of paths Pi1 , ..., Pil

of P . Since P is inclusion-free, these paths
constitute an NSI of P . The case of the cycle is similar.

By coloring the paths of each such component with a different color, we get
the desired coloring w(M). ��
It is worth noticing that as an immediate consequence of lemmata 10, 11 and 12
the following lemma, providing another optimal algorithm for the case in which
G is a tree and g =∞, holds.

The following lemma is an immediate consequence of lemmata 10, 11 and 12.

Lemma 13. If G is a tree, then algorithm MaxMatch runs in polynomial time
and provides an optimal solution for any instance (G,P ,∞).
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Algorithm 4. MaxMatch(G,P ,∞)
1: Construct the weighted endpoint intersection graph EIG(G,P) of G and P with

the weight function f .
2: Calculate the maximum weighted matching MM of EIG(G,P) with weights f .
3: Return w(MM).

4.2 Algorithm for General Networks

Unfortunately, as shown in the following theorem, the problem for (G,P ,∞)
instances, with G being a general network, is NP -hard. Therefore, approximation
algorithm for solving it has to be provided.

Theorem 6. The problem for (G,P ,∞) instances, with G being a general net-
work, is NP-hard.

Proof. In order to prove the NP -hardness, we provide a polynomial reduction
from the TRIPART problem, known to be NP -complete (see [2]).

An instance of the TRIPART problem is a simple graph G′ = (V ′
G′ , E′

G′).
The question is whether or not there is a partition of E′

G′ into triangles. Let
V ′

G′ = {v′1G′ , v′2G′ , . . . , v′n
′

G′ } and E′
G′ = {e′1G′ , e′2G′ , . . . , e

′3q
G′ } (note that if |E′

G′ | is
not a multiple of 3, a partition does not exist and the answer is obviously NO).

From the above instance G′ = (V ′
G′ , E′

G′) of TRIPART we build the
following instance (G,P ,∞) of the Regenerators Grooming Problem. G =
(V1 ∪ V2, E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5), where V1 = {ai, bi, ci|i = 1, . . . , n′},
V2 = {dj,k, ej,k, fj,k|j = 1, . . . , 3q∧k = 1, . . . , 3q+1} and the edge sets are defined
as follows. E1 = {(ai, bi), (bi, ci)|i = 1, . . . , n′}, E2 = {(dj,k, ej,k), (ej,k, fj,k)|j =
1, . . . , 3q ∧ k = 1, . . . , 3q + 1} and E3 = {(fj,k, dj,k+1)|j, k = 1, . . . , 3q};
moreover, for each edge e′j ∈ E′

G′ , connecting nodes v′iG′ and v′i
′

G′ (i < i′)
we add to E4 edges (ai, dj,1), (ci, dj,1), (ai′ , fj,3q+1) and (ci′ , fj,3q+1). Finally,
E5 = {(dj,k, ej′,k), (fj′,k, dj,k+1)|j, k = 1, . . . , 3q ∧ 1 ≤ j′ < j}.

Now we are ready to define the paths of the instance. For each
edge e′j ∈ E′

G′ , connecting nodes v′iG′ and v′i
′

G′ (i < i′), we add
the following couple of paths (see Figure 5 in [9]): the top path
[ai, bi, ci, dj,1, eg(j,1),1, fg(j,1),1, dj,2, eg(j,2),2, fg(j,2),2, . . . , dj,3q,eg(j,3q),3q,fg(j,3q),3q,
dj,3q+1, ej,3q+1, fj,3q+1, ai′ , bi′ , ci′ ] and the bottom path [ci, bi, ai, dj,1,
eg(j,1),1, fg(j,1),1, dj,2, eg(j,2),2, fg(j,2),2, . . . , dj,3q, eg(j,3q),3q , fg(j,3q),3q,

dj,3q+1, ej,3q+1, fj,3q+1, ci′ , bi′ , ai′ ], where g(j, k) is j if edges e′j and e′k

are not consecutive in G′, and is the minimum between j and k otherwise.
Notice that the top path and the bottom path relative to each edge e′j ∈ E′

G′

cannot be put in a same NSI since otherwise nodes dj,1 and fj,3q+1 would have
degree 3 (Property 1).

Moreover, any two (bottom or top) paths relative to non-consecutive edges
e′j and e′k (j < k) of G′ (overlapping on edge (ej,k, fj,k)), cannot be put in a
same NSI since otherwise nodes ej,k and fj,k would have degree 3 (Property 2).

Finally, it can be easily verified that the only nodes in which it is possible to
save regenerators are the b nodes of V1 (Property 3).
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In order to prove the claim, it is sufficient to prove (i) that if the answer to
the TRIPART problem is YES, then there exists a solution of the constructed
(G,P ,∞) instance in which it is possible to save 6q regenerators and, conversely,
(ii) that if it is possible to save 6q regenerators in the constructed (G,P ,∞)
instance, then the answer to the TRIPART problem is YES.

In order to prove (i), it is sufficient to notice that a triangle in G′ with vertices
v′iG′ , v′i

′
G′ and v′i

′′
G′ (i < i′ < i′′) induces 6 paths in P that can be rearranged in

2 NSIs as follows (see Figure 6 in [9]): the top paths corresponding to edges
(v′iG′ , v′i

′
G′) and (v′i

′
G′ , v′i

′′
G′ ) and the bottom path corresponding to edge (v′iG′ , v′i

′′
G′ )

belong to an NSI, while the the bottom paths corresponding to edges (v′iG′ , v′i
′

G′)
and (v′i

′
G′ , v′i

′′
G′ ) and the top path corresponding to edge (v′iG′ , v′i

′′
G′ ) belong to the

other NSI. Therefore, in such paths 6 regenerators (one per path, at nodes bi, bi′ ,
bi′′) are saved. Since when the TRIPART problem is YES E′ can be partitioned
in q triangles, 6q regenerators are saved in total.

It remains to prove (ii). First of all, Property 3 ensures that regenerators can
be only saved at b nodes. By Property 2, only paths corresponding to edges
of G′ sharing a node can be put in a same NSI, and moreover, by Property
1, the two paths corresponding to a same edge cannot be put in a same NSI.
Therefore, regenerators can be saved only by putting in a same NSI the 2 paths
corresponding to consecutive edges of G′ or the 3 paths corresponding to a
triangle in G′. In the first case, a regenerator is saved (1

2 regenerator per path),
whereas in the second case 3 regenerators are saved (1 regenerator per path).
Since in P there are 6q paths, if it is possible to save 6q regenerators, then all
the savings have to be due to 2q NSIs each containing 3 paths and in which 1
regenerator per path is saved; therefore, since at most 2 different NSIs correspond
to a same triangle of G′, q triangles have to be in G′ and the claim follows. ��

The following lemma provides an approximation algorithm for the (G,P ,∞)
problem in general networks.

Lemma 14. For every matching M of EIG(G,P) we can find in polynomial
time a matching M ⊆ M such that f(M) ≥ f(M)/2 and there is a solution
w(M) of the (G,P ,∞) instance.

Proof. We start as in the proof of Lemma 12. Consider a path or cycle of M∪M ′.
Let {e1, e2, ...} be the edges of M in this path. We obtain a matching Mo ⊆ M
(resp. Me) by removing the edges with odd (resp. even) indices in this paths.
This breaks the paths into sub-paths of length three, in other words into paths
containing exactly one edge of Mo (resp. Me), which in turn corresponds to a
sequence of two paths Pi1 , Pi2 of P . These paths constitute an NSI of P . Clearly
max {f(Mo), f(Me)} ≥ f(M)/2, thus either Mo or Me is the claimed matching
M . ��

The following lemma, relates the approximation ratio of a solution with re-
spect to the maximum matching problem to the one of the corresponding solution
for our problem.
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Algorithm 5. MatchAndCut(G,P ,∞)
1: Construct the weighted endpoint intersection graph EIG(G,P) of G and P with

the weight function f .
2: Calculate the maximum weighted matching MM of EIG(G,P) with weights f .
3: Calculate the matching MM of EIG(G,P) as described in proof of Lemma 14.
4: Return w(MM).

Lemma 15. If a matching M is a ρ-approximation to the maximum matching of
EIG(G,P) for some ρ ≥ 1 and w(M) exists, then w(M) is a (1/ρ + (1− 1/ρ) g)-
approximation for the (G,P , g) instance.

Lemma 16. Algorithm MatchAndCut runs in polynomial time and constitutes
a
(

1+load(P)
2

)
-approximation for any (G,P ,∞) instance.

Proof. Clearly g = ∞ is equivalent to g = load(P). By Lemma 14 MM is a
2-approximation to the maximum matching of EIG(G,P). Substituting ρ = 2
and g = load(P) in Lemma 15 we get ρ′ = (1+ load(P))/2 as the approximation
ratio of MatchAndCut. ��
Combining Lemma 16 with Lemma 8, we finally obtain the following theorem.

Theorem 7. Combined(MatchAndCut, (G,P , g)) is a
(

7+load(P)
2

)
-

approximation algorithm for any (G,P , g) instance.

5 Conclusion and Future Work

In this paper we have studied an optimization problem in Optical Networks, that
minimizes the use of regenerators when traffic grooming is exploited. We have
considered the case in which a regenerator has to be placed at every internal
node of every lightpath, and at most g lightpaths can use the same regenerator.
Starting from the 4-approximation algorithm of [7] that solves a closely related
problem for a path topology, we have shown that it has the same approximation
ratio for the ring topology. We have presented a greedy 4-approximation algo-
rithm for tree networks that uses the mentioned algorithm as a subroutine. We
have also introduced a new technique using matchings that can be used to obtain
approximation algorithms for other topologies, and have used this technique for
general topology to get an

(
7+load(P)

2

)
-approximation.

A natural open problem is to discover the exact approximability of the prob-
lem. The problem is NP-complete already for g = 2 and networks with path
topology. In this paper we have shown that the problem is in APX in tree net-
works. Determining whether the problem is in PTAS for these topologies and
for particular cases is an open problem.

It would be also interesting to extend our result by considering d > 1, i.e. the
case that regenerators do not have to be present at every node, or more involved
cost functions taking into account other switching parameters (e.g., the ADMs -
Add-Drop-Multiplexers - used at the endpoints of the lightpath). Finally, studying
the on-line version of the problem is an intriguing future research direction.
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Abstract. In this paper, we devise a streaming scheme, called iStream,
to achieve the minimum average end-to-end P2P streaming delay by op-
timally allocating the bandwidth resource among peers. We first develop
a generic analytical framework to model the minimum average delay
P2P streaming problem, called the MADPS problem. We then present
iStream to solve the MADPS problem. The core part of iStream is a
fast approximation algorithm, called iStream-APX, based on primal-dual
schema. We prove that the performance of iStream-APX is bounded by
a ratio of 1 + ω, where ω is an adjustable input parameter. Further-
more, we show that the flexibility of ω provides a trade-off between the
approximation factor and the running time of iStream.

1 Introduction

In the recent decade, P2P live media streaming applications have exhibited grow-
ing popularity, such as IPTV, VOIP, and video conferencing. By enabling effi-
cient cooperation among end-users, P2P live streaming can distribute thousands
of channels to millions of viewers simultaneously [1]. In these classes of appli-
cations, the delivery of real-time video content imposes rigorous constraints on
the end-to-end delay. Obtaining assurances on meeting such delay constraints
is a challenging problem, especially in highly dynamic and heterogeneous P2P
network environments. The long playback latency has negatively affected the
extensive commercial deployment of P2P systems. For example, IPTV deploy-
ment from commercial service providers is far below the industry expectation [2].
Motivated by these, in this paper, we focus on minimizing average end-to-end
streaming delay in P2P networks.

Recently, layered coding has emerged as a viable solution for delivering real-
time streaming content [3]. This technique not only provides an adaptive sup-
port for different downloading capacities on peers, but also allows IPTV service
providers to deliver live content at diverse video definitions from the same cod-
ing process. For example, viewers may pay general fees for a standard service, or
extra fees for 1080HD video or even 3D video. Unlike traditional IPTV service
where viewers only download the multimedia content, under the P2P paradigm,
substantial bandwidth may exist in viewers who pays only for a standard service,

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 459–474, 2010.
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while HD viewers may instead suffer bad streaming service due to the bandwidth
deficit among them. To maximize the bandwidth utilization, we should enable
peer cooperation among viewers of different service qualities. Toward that, the
HD content can be forwarded through peers with standard service, but only the
HD viewers receive the authorization key for viewing HD content. This raises a
fundamental question: how to optimally distribute the video content and con-
duct sub-stream scheduling among peers with diverse service qualities, while
achieving the minimum average end-to-end P2P streaming (or MADPS) delay.
We call this problem, the MADPS problem.

Minimizing streaming delays for P2P live systems is not a trivial problem.
This is due to the heterogeneous bandwidth requirements and network dynam-
ics of P2P systems. Previous theoretical works on designing P2P live streaming
usually assume a homogeneous service quality [4, 5]. Thus, obtaining optimal
solutions to this problem for large-scale networks is expensive in terms of algo-
rithmic computational costs [6]. Approximate or heuristic solutions with scalable
costs are therefore highly desirable. In this paper, we focus on approximate algo-
rithms because we target time-critical P2P applications (e.g., video conferencing,
or cloud computing), for which assured bounds on end-to-end delays are more de-
sirable than heuristic (or empirically-established) gains in end-to-end delays. In
addition, the analytical foundation that is necessary for developing approximate
algorithms can contribute to a greater understanding of the problem and can
provide deeper insights on designing efficient algorithms, be they approximate or
heuristic. We take the first such steps toward this. The paper is theory-oriented.

For a feasible solution, we start with the assumption of a static network—
i.e., no churn. In this way, we can devise a framework which is analytically
achievable. The method will be most suitable for the scenario where a service
provider deploys a set-top box at viewers’ homes. In that case, even when a viewer
turns off the TV, the set-top box can still contribute its bandwidth to other
viewers. For this scenario, we first develop an analytical model that formulates
the MADPS problem as an optimization problem. Then we propose an algorithm
called iStream to solve MADPS problem. Inspired by the primal-dual schema, we
develop an approximation algorithm as the core of iStream, called iStream-APX
for optimally utilizing the bandwidth among peers subscribing to different video
qualities, while achieving the minimum average streaming delay. We show that
iStream-APX’s performance in terms of delay is bounded by a factor of 1 + ω,
where ω is an input parameter. iStream’s running time is also bounded. We show
that there exists a trade-off between iStream-APX’s approximation factor ω and
its running time. The approximation factor is adjustable in the range of (1, n],
where n is the number of peers in the network. This trade-off allows users to
flexibly tune the performance bound according to running time requirements.

Thus, the paper’s contribution is an approximation algorithm for the MADPS
problem with bounded performance and running time (which can be traded-off,
one for gains in the other), and its adaptive distributed version to operate in
high-churn networks. iStream is the first approximation-based solution for the



On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 461

MADPS problem, and we are not aware of any other past efforts on approxi-
mating the MADPS problem.

The rest of the paper is organized as follows. Section 2 overviews past and
related works. In Section 3, we describe our network model and formulate the
MADPS problem. Section 4 presents our proposed approximation algorithm and
derives its performance. Section 5 concludes the paper.

2 Related Work

Theoretical works on the minimum delay P2P streaming problem are limited,
though recently a growing number of studies have focused on P2P live stream-
ing [4–9]. Due to the lack of formal theoretical bounds, intuitions and heuristics
have driven the design of P2P schemes so far [4, 7]. For example, Ren et al. [4]
propose a heuristic to reduce the delay on mesh topology, where peers select
their parents based on the metric of link capacity divided by communication
delay. In this algorithm, peers located at the edge of mesh may only download
the data without uploading, which may lead to low bandwidth utilization in P2P
networks. Thus, when the total uploading capacity is close to the downloading
capacity in the P2P community, some peers may not be able to receive a live
streaming.

In our previous work [5], we developed an approximation algorithm to mini-
mize the maximum P2P streaming delay by clustering and filtering methods with
an approximation bound of O(

√
log n). The minimum delay P2P streaming prob-

lem (or MDPS) presented in [5] focuses on minimizing the maximum end-to-end
streaming delay. The MDPS problem is significantly different from the problem
of minimizing the average end-to-end delay problem which we focus here. For
example, the simulation results in [5] show that minimizing the maximum delay
does not necessarily minimize the average end-to-end delay. Furthermore, the
work in [5] assumes a network model with a symmetric graph and satisfying the
triangle inequality. In contrast, in this paper, we remove those assumptions in
modeling the minimum average delay P2P streaming problem.

The MADPS problem that we focus has some similarity with the minimum-
cost multi-commodity flow problem (or MCMF) [10, 11]. iStream is inspired
by the primal-dual schema from Garg and Konemann [10]. However, previous
approximation solutions to the MCMF problem generally assume flow conserva-
tion on nodes—i.e., incoming commodities and outgoing commodities are exactly
equal in amount. This is not true in P2P streaming, where peers can reproduce
whatever commodities they receive—i.e., flow conservation does not hold. In
addition, the MCMF problem considers only the capacities on edges, whereas
in P2P streaming, the capacities actually exist on nodes instead of edges. This
distinction (for the MADPS problem) further requires optimal flow schedul-
ing among edges departing from the same node. All these differences make the
MADPS problem more complex than the MCMF problem. Our work tackles
these complexities and achieves a solution with near-optimal performance bound.
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3 Problem Formulation

In this section, we formally state the minimum average end-to-end delay P2P
streaming (MADPS) problem and present the problem in linear programming
(LP) framework.

3.1 Preliminaries and Modeling

We model an overlay network as a directed graph G = (V, E), where V is the set
of vertices representing peer nodes, and E is the set of overlay edges representing
directed overlay links. Let n represent the number of peers in the network, i.e.
n = |V |. Each overlay link (i, j) ∈ E is associated with a communication delay
lij . In the rest of this paper, we define the length of edge (i, j) as lij , ∀(i, j) ∈ E.
For every peer i ∈ V , we define an upload capacity of Ci units/second and a
download capacity of Ii units/second. For ease of presentation, we define unit
as the minimum flow size in P2P streaming, which may vary in different appli-
cations [12, 13].

We consider a peer-to-peer streaming session to originate from a single source
node S to a set of receivers R, where V = {S}∪R. Peers may receive the stream-
ing data from the source node directly or indirectly from multiple P2P paths.
In practical applications, receivers may pay for services of different streaming
qualities, e.g., 720i/p and 1080i/p, which leads to different streaming rates cor-
respondingly. Suppose peer j selects a service that has a constant streaming rate
of dj units/second. We denote fij as the rate at which peer i streams to peer j.
If peer j receives the aggregated non-identical streams at dj units/second from
its parents, we call peer j as fully served [4]. Mathematically, the fully served
requirement of peer j can be expressed as

∑
i:i∈Lj

fij = dj , where Lj is the set
of parents of peer j. We assume that a fully served peer can smoothly play back
the streaming content at its original rate of dj units/second [4].

We call the stream from the source to one receiver j as the P2P unicast flow
to j. Each P2P unicast flow Uj may consist of streams from multiple P2P paths,
called fractional flows [6]. Each fractional flow p ∈ Uj has the arrival latency
l(p) from the source to receiver, i.e., end-to-end delay, where l(p) =

∑
(i,j)∈p lij .

We define the average end-to-end delay of the unicast flow Uj as the weighted
average of end-to-end latencies of all its fractional flows, where the weight is
the portion of fractional flow rate to the total streaming rate. Denote f(p) as
the streaming rate of fractional flow p. For viewer j, the weighted average of
end-to-end latencies can be expressed by

1
dj

∑
p∈Uj

l(p)f(p).

To stream multimedia content to multiple receivers, we can envision multiple
unicast flows from the source to receivers. Thus, the average end-to-end delay in



On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 463

P2P streaming is defined as the weighted average latency of all fractional flows
to all receivers, which can be described by

1∑
j∈R dj

∑
p∈P

l(p)f(p), (1)

where P =
⋃

j∈R Uj . Since the term
∑

j∈R dj has no effect on the optimal
solution, i.e., the solution that minimizes (1) also minimizes

∑
p∈P l(p)f(p), we

will focus on minimizing
∑

p∈P l(p)f(p). It is easy see that removal of the term∑
j∈R dj also preserves the approximation factor. For ease of presentation, we

simply refer to
∑

p∈P l(p)f(p) as the cumulative delay in the later sections.
To help understand the concept of average end-to-end delay, we use the

term: “envision” in the above paragraph. In reality, there exists only one stream
through each edge (i, j) instead of multiple fractional flows and peer j can re-
produce any part of the stream content it receives and send it to other peers.
Therefore, the actual data rate on an edge (i, j) is maxt∈R

∑
p∈P t

ij
f(p), where

P t
ij is the set of fractional flows through edge (i, j) to receiver t.
Next we provide a formal description of the problem.

3.2 MADPS Problem

Definition 1. Minimum Average End-to-End Delay P2P Streaming
Problem (MADPS problem): Given the capacity and data rate constraints
that are mentioned in this section, the MADPS problem is to devise a streaming
scheme which minimizes the maximum average end-to-end streaming delay with
all receivers fully served.

There is no known efficient algorithm with a practically-feasible running time
to solve this problem optimally. Therefore, we are motivated to develop a near-
optimal approximation algorithm with significantly smaller running time.

To ensure a solution exists to the MADPS problem, it is reasonable to assume
the total bandwidth resources in P2P networks is sufficient to support the full
services on all the viewers. Hence, we deduct the bandwidth requirement in
Corollary 1.

Corollary 1. If the instance of MADPS problem has a solution, then the sum
of the upload capacities, including source and receivers, must be no less than the
sum of fully served streaming rates at all receivers, i.e.,∑

i∈V

Ci ≥
∑
j∈R

dj . (2)

In addition, we presume that the download capacity Ii ≥ di, ∀i ∈ V for a smooth
playback at the receiver.

4 Approximation Algorithm

In this section we devise an approximation algorithm to find the near-optimal
solution with provable bounds on the worst-case performance and running time.
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4.1 Overview of Techniques

There are two fundamental techniques used in this work, including primal-dual
schema and binary search based on the result of primal-dual schema.

First, we describe primal-dual schema [10, 14]. Given a linear programming
problem, also referred to as a primal problem, we can convert it to a dual prob-
lem. Due to space limitation, we do not present the detailed mechanics of this
conversion here, which can be found at [14]. Primal and dual problems are in a
“mirror” relation. If one problem is a maximization problem, the other problem
is a minimization problem, and vise versa. Suppose we have a primal problem:
max cTx, and the corresponding dual problem:minbTy. According to the weak
duality theorem, if X and Y are feasible solutions for the primal and dual prob-
lems respectively, it follows that cTX ≤ bTY. Moreover, the primal and dual
problems share the same optimum, denoted by OPT. Given an approximation
factor ρ, ρ bounds OPT

cTx . Since any feasible solution to the dual also provides an
upper bound on OPT, the approximation factor can be established by comparing
the primal and dual solutions. In light of this, the primal-dual schema starts with
a feasible solution for dual problem and relax the conditions for primal problem.
Then, iStream iteratively improves the feasibility of primal conditions and the
optimality of the dual solution. iStream winds up with feasible solutions for both
primal and dual problems. So, the gap between them makes the approximation
factor.

In detail, iStream employs the primal-dual schema to solve the delay-bounded
maximum streaming rate problem (DBMSR problem) defined as follows.

Definition 2. Delay-bounded Maximum Streaming Rate problem
(DBMSR problem): Given a bound L on the average delay, i.e.,

∑
p∈P

l(p)f(p) ≤ L, the DBMSR problem is to devise a streaming scheme which max-
imizes λ, where

∑
p∈P t f(p) ≥ λdt, ∀t ∈ R.

In the next step, we can do a binary search on L to find the smallest λ that
satisfies λ ≥ 1. Towards that purpose, a reasonable initial value of L should be
set in the range of [

∑
j∈R dj ·minp∈P l(p),

∑
j∈R dj ·maxp∈P l(p)]. The result of

this procedure leads to a near-optimal solution for MADPS problem.
In the rest of this section, we formulate the DBMSR problem by primal-dual

schema. Then, we discuss the details of iStream and derive its performance bound.

4.2 Formulation about Primal and Dual

We refer to DBMSR problem as the primal problem here, or simply called primal.
According to its definition, we formulate the primal as following.

Primal:
max λ (3)

subject to ∑
p∈P t

ij

f(p) ≤
∑

p∈P j
ij

f(p), ∀(i, j) ∈ E, ∀t ∈ R (4)
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∑
j:(i,j)∈E

∑
p∈P j

ij

f(p) ≤ Ci, ∀i ∈ V (5)

∑
p∈P t

f(p) ≥ λdt, ∀t ∈ R (6)

∑
p∈P

l(p)f(p) ≤ L, (7)

f(p) ≥ 0, λ ≥ 0. (8)

Equation (4) presents the fact that the amount of fractional flow through edge
(i, j) to any viewer will always be bounded by the total fractional flow sent to
node j, i.e.

∑
p∈P j

ij
f(p) = maxt∈R

∑
p∈P t

ij
f(p). Because we attempt to utilize

the bandwidth from peers scribing to the standard video quality, it is possible
to see the amount of fractional flow to j from all incoming edges of j exceeds
viewer j’s demand, i.e.,

∑
i:(i,j)∈E

∑
p∈P j

ij
f(p) ≥ dj . Equation (5) ensures no

conflicts in terms of the uploading capacities. In terms of the downloading ca-
pacities, which can be written as

∑
j:(j,i)∈E

∑
p∈P i

ji
f(p) ≤ Ii, ∀i ∈ V , we assume

Ii ≥ maxj∈R dj , which is practical with the wide deployment of high-speed in-
ternet. Since the actual flow sent to or relayed by node i cannot be larger than
the maximum service demand, expressed by maxj∈R dj , it is reasonable to re-
move the constraints on the downloading capacities in the LP expression without
affecting the optimal solutions. Equation (6) means the objective of DBMSR
problem is to maximize the minimum demand on nodes. Equation (7) puts a
bound L on the cumulative delay. As stated in Section 4.1, we can conduct a
binary search on L until λ is very close to 1 to achieve a solution to the MADPS
problem.

Next, we convert the primal to its dual problem, or simply called dual.

Dual:
min
∑
i∈V

Ciwi + ϕL (9)

subject to∑
t

dtzt ≥ 1, ∀t ∈ R (10)

∑
(i,j)∈p,i�=i′

st
ij + wi′ + ϕl(p) ≥ zt, (i′, t) ∈ p, ∀t ∈ R,

∀p ∈ P t (11)

st
ij ≥ 0, wi ≥ 0, zt ≥ 0, ϕ ≥ 0, (12)

where i′ is the peer one hop away from the viewer t on routed path.
Generally, there is no direct physical meaning to the dual problem because it

comes from a mechanical conversion of the primal problem. To help the anal-
ysis on iStream, we hereby assign a logical explanation to the dual after in-
vestigating its formulation. We envision each edge (i, j) has multiple copies
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(i, j)1, (i, j)2, · · · , (i, j)|R|, where any copy (i, j)t exclusively represents to the
usage of edge (i, j) for flows to viewer t. Each edge (i, j)t is associated with a
length metric st

ij , and each node i is associated with a length metric wi. Thus,
we view

∑
(i,j)∈p,i�=i′ st

ij +wi′ +ϕl(p) as the length function associated with flow
path p, where ϕ is the weight associated with the delay metric l(p). According
to Equation (11), zt can be comprehended as the shortest length to node t based
on the length function.

4.3 Approximation Algorithm

iStream-APX is the core part of iStream, which is built with approximation
algorithm. iStream-APX proceeds in phases. Each phase is completed by |R|
iterations with each iteration satisfy the demand of one viewer. Due to the
constraints from LP conditions, each iteration may be completed by multiple
steps. Inside each step, we route such amount of fractional flows that can ensure
the constraints are not violated. At the end of all phases, iStream-APX will re-
scale all the flows to ensure a feasible solution to the primal. We express the kth

step in the tth iteration of mth phase by (m, t, k). The initial status is marked
by (0, 0, 0), or simply (0).

We start the algorithm with the following initial settings on length metrics.

wi(0) = δ/Ci, ∀i ∈ V (13)

st
ij(0) = wi, ∀(i, j) ∈ E, ∀t ∈ R (14)

ϕ(0) = δ/L, (15)

where δ is an input parameter. The proper assignment of it will be discussed in
Section 4.4.

Throughout the execution of algorithm iStream-APX, it dynamically updates
the length metrics, which are used to built the flowing path. Let wi(m, t, k),
st

ij(m, t, k), ϕ(m, t, k) be the length metrics at the end of step (m, t, k). At step
(m, t, k), iStream-APX first computes the shortest path p∗ from S to viewer
t in terms of the length function

∑
(i,j)∈p,i�=i′ st

ij(m, t, k − 1) + wi′(m, t, k −
1) + ϕ(m, t, k − 1)l(p), where (i′, t) ∈ p, p ∈ P t. Then, it finds the minimum
capacity Cmin on nodes along the shortest path, which can be expressed by
Cmin = mini∈p∗{Ci}. Since the previous steps may already route some flows
to the viewer, let γt be the residual amount of demands unsatisfied on node t,
and x(p) = min{γt, Cmin}. Next, we route x(p)/η amount of flow to t, where
η = l(p)x(p)/L if l(p)x(p) > L; otherwise, η = 1. So the length bound L and
the capacities on the path are not violated in each step. At the end of this
step, we update the length metrics as well as the residual demands according to
Equations (16)-(19).

wi(m, t, k) = wi(m, t, k − 1) · [1 + ε · f(m, t, k)/Ci] ,
∀i ∈ p∗ \ {t} (16)

st
ij(m, t, k) = wi(m, t, k), ∀i ∈ p∗ \ {t}, ∀(i, j) ∈ E, ∀t ∈ R (17)
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ϕ(m, t, k) = ϕ(m, t, k − 1) ·
∏

j∈p∗∩R

[1 + ε · Lj(m, t, k)/L] , (18)

γi(m, t, k) = γi(m, t, k − 1)− f(m, t, k), ∀i ∈ p∗ \ {t} (19)

where f(m, t, k) is the amount of flow routed in current procedure (m, t, k)
and Lj(m, t, k) means the cumulative delay of the routed flow through node
j which is on the path p∗ at step (m, t, k). Mathematically, it can be expressed
by Lj(m, t, k) = l(p∗j )x(p∗j ), where p∗j is the segmental path from S to j on path
p∗. We can observe in each step for every capacity-saturated node i on the rout-
ing path, all the length metrics regarding i increase by a factor of 1+ε. Since the
assignments of st

ij are identical in Equation (17), we simply use si to represent
all st

ij .
We repeat the steps until the demand of viewer t is fully satisfied. Then we

call the end of iteration t, and start the iteration for next viewers which has
positive residual demand in the current phase. After the last step of a phase,
all viewers have no residual demands, i.e., γt = 0, ∀t ∈ R. Then, we start a
new round of phase m+1 after resetting the residual demands equal to viewer’s
actual demands, i.e., γt = dt, ∀t ∈ R. The whole procedure completes as soon as
W (m, t, k) ≥ 1. Obviously, the cumulative flows routed in all phases may strongly
violate the capacity and average delay constraints. Define F (p) as the cumulative
flows routed in all phases through path p. To obtain a feasible solution to the
primal problem, we need to scale down each F (p) by a factor of log1+ε 1/δ. We
will justify the correctness of this scaling down factor in Section 4.4.

We continue a binary search on L by repeating iStream-APX until λ tends to
1, denoted as λ→ 1. The result of the binary search will provide a near-optimal
solution to MADPS problem. The detailed procedures about the approximation
algorithm are presented in [15].

4.4 Algorithm Analysis

In this section, we formally analyze the algorithm and prove the approxima-
tion factor. To facilitate the analysis, we make some definitions. Let W =∑

i∈V Ciwi + ϕL be the metric minimized by the dual. Let ζt be the shortest
length from S to t, i.e.,

ζt = min
p∈P t

∑
(i,j)∈p,i�=i′

st
ij + wi′ + ϕl(p). (20)

Here ζt actually represents and interprets the meaning of zt. Besides, we define

α =
∑

t

(
dtζt

)
. (21)

Lemma 1. Denote the optimal solution to the dual by OPT(W ). When OPT(W )
is obtained, α is 1.

Proof. We prove this lemma by contradiction. As we know, α represents
∑

t dtzt

in the dual. Let W = W ′ when α = 1. For the sake of contradiction, we assume
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W ′ > OPT(W ), where OPT(W ) is achieved when α = α∗ > 1. Then, we scale
down α∗ to 1. Towards that, we can divide all the st

ij and ϕ by a factor of
∑

t dtzt.
As a result, wi will proportionally scale down the same factor. Consequently, it
leads to an update on W with a new value W ′, where W ′ = OPT(W )/

∑
t dtzt.

According to the assumption, W ′ should be larger than OPT(W ). However,
because

∑
t dtzt > 1, we have W ′ = OPT(W )/

∑
t dtzt < OPT(W ), which

contradicts the assumption. Thus, the lemma follows.

Define β as the minimum value of W/α, i.e., β = min W/α. We conclude the
following theorem.

Theorem 1. The optimal solution to the dual, denoted as OPT(W ), is equiva-
lently to the optimal solution β under the same constraints in the dual.

Proof. From the definition of β,we know that β = min W/α. Suppose β is
achieved when α = α∗ > 1. We can always proportionally scale down all the
st

ij and ϕ by multiplying a factor of 1/α∗. As a result, α = 1. Since W will scale
down with the same factor, W/α will keep the optimal value β. That is to say
we can always find the optimal solution β with α = 1.

According to Lemma 1, it follows that α = 1 when OPT(W ) is achieved.
Therefore, we can conclude the problem of finding OPT(W ) for the dual is
equivalently to solving the optimization problem for W/α. This completes the
proof.

In iStream-APX, we update the length metrics si, wi, ϕ on the routing path.
In terms of that, we can conclude the following.

Lemma 2. wi increases at least by a factor of 1 + ε for every Ci units of flow
through node i, ∀i ∈ V .

Proof. Due to space limitation, we do not prove this lemma here. The detailed
proof can be found at [15].

Corollary 2. si increases at least by a factor of 1+ ε for every Ci units of flow
through node i, ∀i ∈ V .

Corollary 3.

log1+ε

ϕ(m)
ϕ(0)

≥
∑

p inP

l(p)f(p)/L,

where f(p) represents the cumulative amount of flows through path p at the end
of phase m.

Given the assumption that the total bandwidth resources in P2P networks is
sufficient to support the full services on all the viewers, we can do a binary
search on L so as to find the smallest λ that satisfies λ ≥ 1. According to the
weak-duality theorem, it follows that β ≥ λ ≥ 1.
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Lemma 3. Given β ≥ 1, we have

β ≤ ε(M − 1)
(1− ε) ln 1−ε

(|V |+1)δ

.

Proof. We start the proof by analyzing the change on W on each step. At the
end of this analysis, we will carry out the cumulative increment on W when
algorithms stops.

Let p(m, t, k) be the shortest path found at procedure (m, t, k), and f(m, t, k)
be the quantity of flow routed through path p(m, t, k). Because in our algorithm
we assign si = wi for any procedure (m, t, k), we can simplify the length function
as ∑

(i,j)∈p,i�=i′
st

i + wi′ + ϕl(p) =
∑

(i,j)∈p

(wi + ϕlij), (22)

where (i′, t) ∈ p. Consequently, we can carry out the following.
Since the objective is to find the cumulative increment, we can think of the

change on length metrics wi and ϕ regarding node i at procedure (m, t, k), where
i �= t, will hold until procedure (m, i, 0) without loss on the final cumulative
increment on W .

W (m, t, k)−W (m, t, k − 1)

=Ci′ ·
(
wi′ (m, t, k)− wi′ (m, t, k − 1)

)
+

+
(
ϕ(m, t, k)− ϕ(m, t, k − 1)

)
· L

≤
∑

i∈p(m,t,k)\{t}

(
Ci · wi(m, t, k − 1)εf(m, t, k)/Ci

)
+

+
(
ϕ(m, t, k − 1)εL(m, t, k)/L

)
· L

=ε ·
[ ∑

i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)f(m, t, k)

)
+

+ ϕ(m, t, k − 1)L(m, t, k)
]
.

Let Kmt be the number of steps in a given iteration t of phase m, ζt(m, t, k)
be the shortest path at the end of procedure (m, t, k), and l(m, t, k) be the
cumulative latency on path p(m, t, k). We have

W (m, t + 1, 0)−W (m, t, 0)

≤ε ·
Kmt∑
k=1

[ ∑
i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)f(m, t, k)

)
+

+ ϕ(m, t, k − 1)L(m, t, k)
]
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=ε ·
Kmt∑
k=1

[
f(m, t, k) ·

∑
i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)

)
+

+ ϕ(m, t, k − 1)l(m, t, k)
]

=ε ·
Kmt∑
k=1

[
f(m, t, k) ·

∑
(i,j)∈p(m,t,k)

(
wi(m, t, k − 1)+

+ ϕ(m, t, k − 1)lij
)]

=ε ·
Kmt∑
k=1

f(m, t, k) · ζt(m, t, k − 1)

≤ε · dtζt(m, t, k).

For brevity on notations, we define W (m) as the value of W at the end of
phase m, and make a similar definition for α(m). Then, it follows that

W (m)−W (m− 1)
=W (m, |R|, Km|R|)−W (m, 0, 0)

≤ε ·
|R|∑
t=1

(
dtζt(m, t, Km|R|)

)
≤εα(m). (23)

Combining the property of W (m)/α(m) ≥ β with Equation (23), we can carry
out

W (m) ≤ W (m− 1)
1− ε/β

.

In light of the initial settings, wi(0) = δ/Ci and ϕ(0) = δ/L. Thus, we obtain
W (0) = (|V |+ 1)δ.

Given m ≥ 1 and β ≥ 1, it follows that

W (m) ≤ (|V |+ 1)δ
(1− ε/β)m

=
(|V |+ 1)δ
1− ε/β

(1 +
ε

β − ε
)m−1

≤ (|V |+ 1)δ
1− ε/β

e
ε(m−1)

β−ε

≤ (|V |+ 1)δ
1− ε

e
ε(m−1)
(1−ε)β .

Let the last phase in the algorithm be numbered by M . It follows that 1 ≤
W (M) ≤ (|V |+1)δ

1−ε e
ε(M−1)
(1−ε)β . Hence, we carry out

β ≤ ε(M − 1)
(1− ε) ln 1−ε

(|V |+1)δ

.
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Thus, the lemma follows.

Lemma 4. iStream-APX generates a feasible streaming solution that makes λ ≥
M−1

log1+ε 1/δ .

Proof. At the end of the (M − 1)th phase, W (M − 1) ≤ 1 for all node i. Thus,
we deduct si(M − 1) = wi(M − 1) ≤ 1/Ci.

From Lemma 2 and Corollary 2, we know wi and si increase at least by a
factor of 1 + ε for every Ci units of flow through node i. Denoting the total flow
through node i as Fi, we can carry out

Fi ≤ Ci log1+ε

wi(M − 1)
wi(0)

≤ Ci log1+ε

1/Ci

δ/Ci

= Ci log1+ε

1
δ
.

Therefore, dividing all the flows through node i by a scaling factor of log1+ε
1
δ ,

we obtain feasible flows through i without violating its uploading capacity Ci.
Applying the scaling factor, we can get feasible flows received by t of a total

value (M − 1)dt/ log1+ε
1
δ units. Accordingly, a feasible λ will follow

λ ≥
(M − 1)dt/ log1+ε

1
δ

dt

=
(M − 1)
log1+ε

1
δ

.

Theorem 2. The result of iStream-APX follows the property of
∑

p∈P l(p)f(p)≤
L.

Proof. According to Corollary 3, in our procedure every time we route every
flow with a cumulative delay of L, we increase ϕ by at least a factor of 1 + ε.

Because W (M − 1) < 1, we deduct that ϕ(M − 1) < 1/L. Thus, in the first
M − 1 phases, the cumulative delay is at most L · log1+ε

ϕ(M−1)
ϕ(0) = L · log1+ε

1
δ ,

i.e.,
∑

p∈P l(p)f(p) ≤ L · log1+ε
1
δ .

In the final procedure of the algorithm, we scale down all the flows propor-
tionally by a scaling factor. Thus, applying the scaling factor of log1+ε

1
δ , we

have

∑
p∈P

l(p)f(p) ≤
L log1+ε

1
δ

log1+ε
1
δ

= L.
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The theorem follows.

Theorem 3. The approximation factor, denoted as ρ, is 1 + ω.

Proof. From Lemma 4, we have a feasible solution λ = M−1
log1+ε

1
δ

. It follows that

β

λ
=

β log1+ε
1
δ

(M − 1)

=
ε ln 1

δ

(1− ε) ln(1 + ε) ln 1−ε
(|V |+1)δ

.

Let δ =
(

1−ε
|V |+1

)1/ε

. We have

β

λ
≤

ε ln 1
δ

(1− ε) ln(1 + ε) ln 1−ε
(|V |+1)δ

=
ε

(1− ε)2 ln(1 + ε)

≤ ε

(1− ε)2(ε− ε2/2)
≤ (1− ε)−3.

According to the strong duality theorem, if the dual has the optimal solution β,
the primal also has an optimal value, denoted as OPT(λ), such that OPT(λ) = β.
Therefore, the approximation factor ρ can be obtained by

ρ = max
OPT(λ)

λ

= max
β

λ
.

Now, we make an assignment of ω = (1− ε)−3 − 1. We have ρ = 1 + ω.
Thus, the proof is complete.

4.5 Running Time

In this section, we analyze the bound on running time. We define maximum
binary search bound on L as Γ =

∑
j∈R dj ·maxp∈P l(p).

Theorem 4. Suppose the shortest path algorithm employed will consume a run-
ning time of Ψ . The running time of iStream is O(ε−2Ψ |V | log |V | log Γ ).

Proof. According to weak duality theorem, we have β
λ ≥ 1, which deduces

β

M − 1
log1+ε

1
δ

> 1.
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So the number of phases M < 1 + β log1+ε
1
δ . Because δ =

(
1−ε

|V |+1

)1/ε

, it
follows that

M = �β
ε

log1+ε

|V |+ 1
1− ε

�

If iStream-APX does not stop within 2� 1
ε log1+ε

|V |+1
1−ε � phases, we must have

β ≥ 2. We know OPT(λ) = β and we are pursuing OPT(λ) = 1. In the case of
β ≥ 2, we break the current call for iStream-APX, and continue the binary search
on L. So each call for iStream-APX will have 2� 1

ε log1+ε
|V |+1
1−ε � = O(ε−2 log |V |)

phases.
In order to compute the total running time, we need to calculate the number

of steps in each call for iStream-APX. It is easy to see at every step except the
the last step in an iteration, we increase either wi of some node or ϕ by a factor
at least 1 + ε. So the number of steps exceeds the number of iterations by at
most

|V | log1+ε

wi(M − 1)
wi(0)

= |V | log1+ε

1
δ

= O(ε−2|V | log |V |). (24)

Also, the maximum number of iterations in all phases is |R| · O(ε−2 log |V |) =
O(ε−2|R| log |V |). Combining this with Equation (24), we have the total number
of steps in each call for iStream-APX is O(ε−2(|V |+|R|)log |V |)=O(ε−2|V | log |V |).

Considering the number of calls for iStream-APX in binary search is bounded
by log Γ . Consequently, we can carry out the running time of iStream is bounded
by O(ε−2Ψ |V | log |V | log Γ ). The theorem follows.

5 Conclusion

We present the design of iStream and derive a near-optimal approximation bound
for its core component iStream-APX. To achieve a tractable theoretical analysis,
we assume no network dynamics in the first stage of algorithm design. Although
the assumption is strong in practical P2P applications, the value of this paper
lies in the theoretical framework and analysis, which sheds light on the practical
design. To reduce the complexity of the problem, we focus only on minimizing
the communication delay. For packet scheduling, there exists a vast array of
solutions. The mesh built from our algorithm can adopt any of these scheduling
algorithms to yield low-delay streaming.
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Abstract. Self-stabilization guarantees convergence to a legitimate
configuration in every execution starting from any initial configuration.
However, during convergence, most self-stabilizing protocols make un-
necessary output changes that do not directly contribute to the progress
of convergence.

We define and study monotonic stabilization, where every output
change is a step toward convergence. That is, any output change at a
process p gives the final output of p in the legitimate configuration to
be reached. It turns out that monotonic stabilization requires additional
information exchange between processes, and we present task dependent
tradeoff results with respect to the locality of exchanged information.

Keywords: Distributed system, fault-tolerance, self-stabilization, fault-
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1 Introduction

One of the most versatile techniques to ensure forward recovery of distributed
systems and networks is that of self-stabilization [1–3]. A distributed algorithm
is self-stabilizing if after faults and attacks hit the system and place it in some
arbitrary global state, the system recovers from this catastrophic situation with-
out external (e.g. human) intervention in finite time. As self-stabilization makes
no hypothesis about the nature or the extent of the faults (self-stabilization only
deals with the effect of the faults), it can also be used to deal with other tran-
sient changes while the network is being operated (topology change, message
loss, spontaneous resets, etc.).

There exist self-stabilizing protocols for many usual tasks in distributed com-
puting, such as leader election, center finding, vertex coloring, maximal match-
ing, or tree construction. Nevertheless, in many cases, processes may change their
output several times during the stabilization (a.k.a. convergence) phase, which
induces unnecessary state changes and information exchange. For example, in
the well known min+1 protocol for self-stabilizing BFS tree construction [4], the
corruption of a single process that is close to the tree root may lead to unnec-
essary changes in all its subtrees, inducing large waste of system resources, lack
of fault containment, etc.
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The classical performance metrics for distributed protocols are the time com-
plexity and the message complexity. However, those metrics relate to the im-
plementation of a particular protocol, not to the problem that the protocol is
supposed to solve. The amount of information a process needs to take a cor-
rect local state defines the locality of the problem (i.e., the specification), and
is independent of the implementations (i.e., the protocols) of the solutions to
the problem. Of course, the intrinsic cost of solving a problem in a distributed
system relates to the locality of the problem. Locality of problems has been dis-
cussed in many papers since Linial first proposed the locality of graph problems
in distributed systems [5].

Related work. In the context of self-stabilization, Awerbuch, Patt-Shamir,
and Varghese proposed the notion of locally checkable and locally correctable
property of problems and proposed to transform a locally checkable and lo-
cally correctable problem to equivalent self-stabilizing protocols [6]. Awerbuch,
Patt-Shamir, Varghese, and Dolev extended the transformer that is applicable
for locally checkable problems by using global reset [7]. Based on these studies,
Beauquier and Delaët proposed a classification of problems using locality for
checking and locality for correction [8]. Beauquier, Delaët, Dolev and Tixeuil
proposed transient fault detector that detects inconsistencies of the system con-
figuration [9]. They defined locality with the history and the view that are nec-
essary at each process so that at least one process finds inconsistency in the
current configuration. However, the cost for recovery against transient faults are
not addressed, since a process that finds inconsistency is not always the process
that should change its state to optimally regain consistency of the system.

Another related approach is fault-containment of self-stabilizing protocols
[10]. A fault-containing protocol contains the effect of the fault in a limited
number of processes and/or limited time after corruption. A configuration that
is obtained after a transient fault corrupting f processes in a legitimate configu-
ration is called f -faulty configuration. Then, the number of processes that change
their states during recovery and/or the recovery time depends on just f , not the
number of the entire processes in the system. The design of fault-containment is
also based on local checking at each process. Because the number of faulty pro-
cesses is limited, inconsistency is detected in an f -faulty configuration. Then,
the faulty processes (and possibly, their neighbors) change their states to re-
gain consistency in a local correction manner. However, most of the existing
fault-containing self-stabilizing protocols are designed for 1-faulty configuration
[11–14].

To the best of our knowledge, the optimality of recovery in self-stabilization
was never discussed before. Optimal recovery can be defined in two ways: progress
optimality and goal optimality. When every move during recovery makes the
system progress towards a legitimate configuration, the recovery is progress op-
timal. When the legitimate configuration that is eventually reached is actually
(one of) the nearest legitimate configuration(s) from the initial configuration,
the recovery is goal optimal. Progress optimality guarantees no oscillation dur-
ing the recovery phase since unnecessary and/or repeated moves are not allowed.
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The addition of goal optimality to progress optimality brings optimal transient
fault-containment by promising recovery without perturbation. Obviously, im-
plementing optimal recovery (be it progress optimal and/or goal optimal) in
self-stabilizing distributed systems entails information exchange among distant
processes. However, no appropriate metrics exists for measuring this trade-off.

Our contribution. In this paper, we define and study monotonic stabilization,
where every output change is a step toward convergence. That is, any output
change by a process p is the final output of p in the legitimate configuration
to be reached. Monotonic stabilization guarantees progress optimality, and we
also define the optimal variant of monotonic stabilization to consider the case
where goal optimality is also required (e.g. for fault containment purposes). To
achieve (optimal) monotonic stabilization, each process should collect informa-
tion about distant processes and previous state changes at other processes. We
formalize those notions as history locality and view locality and examine these
two localities in several problems. The obtained results and classification are
useful when designing and evaluating fault-tolerant distributed protocols with
respect to stabilization and fault-containment.

2 Preliminaries

System model. A system is a collection of processes connected by communication
links which is represented by an undirected graph G = (V, E) where the vertex
set V is a set of processes and the edge set E is a set of bidirectional communica-
tion links. Each process has a unique identity. Process p is a neighbor of process
q if there is a communication link (p, q) ∈ E. A set of direct neighbors of p is
denoted by Np. Let N1

p be Np and for each i ≥ 2, N i
p = N i−1

p ∪
⋃

q∈Ni−1
p

Nq \{p}.
The set of processes in N i

p is called i-neighbors of p. The distance between p and
q (p �= q), denoted by dist(p, q), is i if and only if q �∈ N i−1

p and q ∈ N i
p. The

i-neighbor of p is the set of processes whose distances from p is smaller or equals
to i excluding p. The eccentricity of process p is maxq∈V dist(p, q). The diameter,
denoted by d, is the maximum value of eccentricity of a process in the system.
The radius, denoted by r, is the minimum value of eccentricity of a process in
the system. A center is the process(es) with the eccentricity which equals to the
radius.

Each process maintains local variables and each local variable has its own
domain. A state of a process is defined by the values of its local variables. Lo-
cal variables consist of output variables and inner variables. For simplicity and
without loss of generality, we assume each process p maintains a single output
variable denoted by vp. A configuration of a system is a tuple of local states of
all processes. We denote the value of vp in configuration C by vp|C and the set
of values of vp in configurations C, C′, · · · by dom(vp|{C,C′,··· }). The distance be-
tween two configurations C and C′ is defined by the number of processes whose
output values are different, i.e., D(C, C′) = |{p ∈ V : vp|C �= vp|C′}|.

We use the same definition of view and history as in [9].
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Definition 1 (View)
The viewk

p at process p contains (i) the subgraph induced by Nk
p ∪{p} on G, and

(ii) the values of output variables at each q in Nk
p .

Definition 2 (History)
The historyk

p [0..�] at process p is a sequence of � + 1 consecutive k-views at p.
Given an execution E = C0, C1, · · · , in Ci, historyk

p [0] is the current viewk
p (in

Ci) and historyk
p [j] is viewk

p in Ci−j. When i < j, historyk
p [j] is undefined and

denoted by ⊥.

We call viewk
p k-view at p and historyk

p [0..�] (k, �)-history at p.
A protocol is a function f that returns a value for vp and other inner variables

when given historyk
p [0..�] for some k and �1. We assume that f is uniform in the

sense that f at each process is identical. We also assume that f is deterministic
in the sense that when given an identical history, f returns the identical output.
We consider the following execution model: In a computation step, the daemon
selects process(es) and the selected process(es) changes its state according to
the result of f . The distributed daemon selects non-empty subset of processes
at a time. Whenever process p is selected by the scheduler, historyk

p [0..�] is
given to p and p changes the value of vp and its internal variables according to
f(historyk

p [0..�]). Even when f does not change the value of the output variable,
we consider that the output variable takes a new value and the move changed
the values of some internal variables. We say a process takes a move when it
updates its state with f(historyk

p [0..�]). An execution is an infinite sequence
of configurations E = C0, C1, · · · such that Ci+1 is obtained by applying one
computation step to Ci.

A problem (task) is defined by a set of legitimate configurations. The set of
legitimate configuration for G are denoted by CL(G). When G is clear, we omit
G.

Definition 3 (Self-stabilization)
A protocol A is self-stabilizing if and only if for any execution E = C0, C1, · · · of
A, the following two properties are satisfied: (i) convergence: there exists i ≥ 0
such that Ci ∈ CL, and (ii) closure: for any j ≥ i, Cj ∈ CL.

Definition 4 (Monotonic Convergence)
A self-stabilizing protocol A is monotonically converging if and only if for any
execution E = C0, C1, · · · , C�, · · · , where � = min{j|Cj ∈ CL}, when process p
is selected by the daemon in C0, · · · , C�−1, it changes vp to vp|C�

.

Monotonicity guarantees that each transition (Ci, Ci+1) satisfies D(Ci+1, C�)
≤ D(Ci, C�), in other words, each transition makes the system to approach to
a legitimate configuration. Additionally, during a convergence, each process up-
dates its output at most once. Monotonically converging self-stabilizing protocols
1 The history historyk

p [0..�] is not the part of the local state of p but the information
given by the oracle. The goal of this paper is not to show the implementation for
providing historyk

p [0..�] to each process p, but to show the size of k and �.
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is called monotonically self-stabilizing protocol for short. We say an execution is
monotonic if it satisfies the condition in Definition 4. A move is said to be mono-
tonic if it decreases or keeps the distance to the target legitimate configuration.

Given a monotonic execution E = C0, C1, · · · , Ci, a configuration C is mono-
tonically reachable from Ci if and only if C appears in a monotonically converging
execution whose prefix is E. We denote the set of monotonically reachable legit-
imate configurations for E by CMRL(E). The set of CMRL(E) for E depends on
not only Ci but the entire prefix of C0, C1, · · · , Ci because the states of the pro-
cesses selected by the daemon in this prefix are the states of these processes in
each C ∈ CMRL(E). Given a configuration C0, a legitimate configuration COpt ∈
CL is optimal for C0 if COpt satisfies D(C0, COpt) = minC′∈CL{D(C0, C

′)}. Note
that COpt ∈ CMRL(C0) and COpt is not necessarily uniquely defined by C0.

Definition 5 (Optimal monotonic convergence)
A monotonically converging self-stabilizing protocol is optimal if and only if
for any execution E = C0, C1, · · · , it monotonically converges to an optimal
legitimate configuration for C0.

The goal of this paper is to show the size of history that is necessary at each
process to provide (optimal) monotonic convergence.

We now define our complexity metrics for monotonic stabilization variants.

Definition 6 (Locality)
Problem P is (k, �)-local for optimal monotonic (monotonic, respectively) stabi-
lization if and only if we have fP with (k, �)-history at each process that satisfies
optimal monotonically (monotonically, respectively) self-stabilization property,
while we do not have any f ′

P with views at distance at most k − 1 or at most
� consecutive views at each process that satisfies optimal monotonically (mono-
tonically, respectively) self-stabilization property.

Problem statements. In this paper, we determine the locality of the following
seven problems. The definitions consist of the values of output variables at pro-
cesses in a legitimate configuration.

1. Leader election: Each process p maintains a local output Boolean variable
lp that takes true if p is elected and false otherwise. There is exactly one
process p which is elected (lp = true).

2. Center finding: Each process p maintains a local output Boolean variable cp

that takes true if and only if p is the center of G. If there are multiple center
processes, all center processes outputs true.

3. Majority consensus: Each process p maintains a Boolean local output vari-
able vp. All output variables are equal and the value is the majority value in
the initial configuration. If there is no majority in the initial configuration,
all output variables are equal to a value that is held at some process in the
initial configuration.

4. Vertex coloring: Each process p maintains a local output variable colp that
takes an integer as its color. No two neighboring processes have the same
color.
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5. Maximal matching: Each process p maintains a local output variable mp

which is a pointer to one of its neighbors chosen as its matching process. A
matching of a graph is a subset of edges in which no two edges are adjacent.
A matching M is is said to be maximal if and only if no proper subset of M
is also a matching. Hence, if and only if all neighbors form matchings with
other processes, mp takes ⊥.

6. Rooted tree construction: Each process p maintains a local output variable
parp which is a pointer to one of its neighbors chosen as its parent on the
tree. A single process r in the system which is called the root has parr = ⊥,
while the values of pointers at other processes define a tree rooted at r.

7. Shortest path tree construction: Each process p maintains a local output
variable parp that satisfies the definition of the rooted tree construction
problem. Additionally, the distance between each process p and the root
process r on the rooted tree is same as the one in the original topology G.

3 Optimal Monotonic Convergence

In this section, we show the locality of problems defined in Section 2 for optimal
monotonic convergence. We first show Theorem 1 that gives a basic approach to
determine the locality of these problems.

Lemma 1. Given a monotonic execution C0, C1, · · · , for any i, j (0 < i < j)

CMRL(Ci−1, · · · , Cj) ⊆ CMRL(Ci, · · · , Cj).

Proof. We show the remark by contradiction. Assume CMRL(Ci, · · · , Cj) ⊂
CMRL(Ci−1, · · · , Cj). If the transition from Ci−1 to Ci does not change an output
of any process, CMRL(Ci, · · · , Cj) = CMRL(Ci−1, · · · , Cj). Hence, the transition
changes some process’s output. Let this process be p.

During the execution Ci, · · · , Cj , some processes fix its output value or no
process changes its output value. Let the number of these processes be n′(≥ 0).
Consequently, we have the following statements:

1. With the monotonic execution Ci, · · · , Cj , the output of n′ processes are
fixed. Hence, in each legitimate configuration C ∈ CMRL(Ci, · · · , Cj), these
n′ processes takes the value in C.

2. With the monotonic execution Ci−1, Ci, · · · , Cj , the output of n′+1 processes
are fixed. Hence, in each legitimate configuration C ∈ CMRL(Ci−1, · · · , Cj),
these n′ + 1 processes takes the value in C.

Clearly, there exists no configuration C′ such that

C′ ∈ CMRL(Ci−1, · · · , Cj) \ C ∈ CMRL(Ci, · · · , Cj).

This is the contradiction and we have the lemma. ��

Let COpt(C0) be the set of optimal legitimate configurations for an initial con-
figuration C0.
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For distributed problems, the synchronization among processes is the key to
achieve monotonicity. From Definition 4, each process updates its state at most
once during the convergence. Hence, each transition defines the set of monoton-
ically reachable legitimate configurations. When the number of such legitimate
configurations is decreased by a process move, synchronization among some pro-
cesses is necessary.

The following theorem defines the worst case of the history locality and view
locality of problems for optimal monotonic convergence.

Theorem 1. There exists no optimal monotonic self-stabilizing protocol by giv-
ing each process views at distance k or � consecutive views if at least one of the
following conditions hold:

Condition 1 (view). There exists a monotonic execution E = C0, C1, · · · on
G and a monotonic execution E′ = C′

0, C
′
1, · · · on G′ such that there exists

Ci in E and C′
j in E′ that satisfies historyk

p|Ci
[0..i] = historyk

q|C′
j
[0..i] and

vp|Copt �= vp|C′
opt

for some Copt ∈ COpt(C0) ∩ CMRL(C0, · · · , Ci) and C′
opt ∈

COpt(C′
0) ∩ CMRL(C′

0, · · · , C′
j).

Condition 2 (history). There exists an optimal monotonic execution Ei =
C0, C1, · · · , Ci and a process p such that

dom(vp|COpt(C0)∩CMRL(Ci−�,··· ,Ci)) �= dom(vp|COpt(C0)∩CMRL(Ci−�−1,···Ci)).

Proof. Starting from an initial configuration C0, in an optimal monotonic conver-
gence, each process p takes vp|Copt

for a legitimate configuration Copt ∈ COpt(C0)
when it is selected by the scheduler.

First, we show the proof for Condition 1. Consider the case where Condi-
tion 1 holds at process p in Ci. In Ci, f cannot determine with (k, �)-history
whether it is called at p in Ci or at q in C′

j because historyk
p|Ci

[0..�] is identical
to historyk

q|C′
j
[0..�]. Hence, though the values that p takes in possible goal con-

figurations (COpt(C0) ∩ CMRL(C0, · · · , Ci)) are different from those that q takes
(COpt(C′

0)∩CMRL(C′
0, · · · , C′

j)), f returns the same value at p and q. This value
violates the monotonicity of one of the two executions.

Consequently, when Condition 1 holds, there is no possibility to construct a
monotonic self-stabilizing protocol with views at distance k.

Next, we show the proof for Condition 2. Condition 2 addresses the fol-
lowing case: the set of monotonically reachable legitimate configuration with
� consecutive views is different from that with � − 1 consecutive views and the
sets of values that vp takes are different (dom(vp|COpt(C0)∩CMRL(Ci−�,··· ,Ci)) �=
dom(vp|COpt(C0)∩CMRL(Ci−�−1,···Ci))).

From Lemma 1, when Condition 2 holds, CMRL(Ci−�−1, · · · , Ci) is a subset
of CMRL(Ci−�, · · · , Ci). When Condition 2 holds, there exists a configuration
C′ ∈ COpt(C0)∩ CMRL(Ci−�, · · · , Ci) \ COpt(C0)∩CMRL(Ci−�−1, · · · , Ci). With
� consecutive views, the set of goal legitimate configuration at p is COpt(C0) ∩
CMRL(Ci−�, · · · , Ci) and this results in f may returns vp|C′ . Then the execution
is no more monotonic.
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Consequently, when Condition 2 holds, there is no possibility to construct a
monotonic self-stabilizing protocol with � consecutive views. ��

Remark 1. Condition 1 of Theorem 1 is degenerated as follows: There exists
an initial configuration C0 on G such that there exists an initial configuration
C′

0 on G′ such that there exists a process p ∈ G and a process q ∈ G where
viewk

p|C0
= viewk

q|C′
0
, and vp|COpt

�= vq|C′
Opt

hold. (COpt (C′
Opt, respectively) is

the optimal legitimate configuration for C0 (C′
0).)

Note that Remark 1 is the case where i = j = 0 in Condition 1 (i). For some
graph problems, we can easily find a specific topology that defines the optimal
legitimate configuration for a specific initial configuration. This means that a
process cannot take an optimal move without global information and that the
optimal monotonic solution is impossible on an arbitrary graph for these prob-
lems.

The following remark shows the trivial upper bound of locality for a complete
graph.

Remark 2. On a complete graph, any problem is (1,∞) local for optimal mono-
tonic convergence.

On a complete graph, each process can check the states of all other processes
with direct links. Note that Theorem 1 is the necessary condition and Remark
2 is the sufficient condition for a problem of locality (d,∞).

In the following, we determine the history locality and view locality of prob-
lems based on Theorem 1.

We first show the locality of the leader election problem which is one of the
global problems.

Lemma 2. The leader election problem is (d,∞)-local for optimal monotonic
convergence.

Proof. We call a process is leader if its output is true. In an optimal monotonic
convergence, if there is a leader process, no process is allowed to change its output
from false to true because it increases the distance to the optimal legitimate
configuration defined by the initial configuration. On the topology shown in
Figure 1, with (d − 1)-view, the leftmost process cannot check the existence of
the leader (the rightmost process) and may change its output from false to true.
Hence, distance d view is necessary for the leader election problem.

Next, we show the history locality of the leader election problem. Consider an
monotonic execution C0, C1, · · · and a configuration Ci where there are mul-
tiple leader processes. Let p be a leader process in Ci and the daemon se-
lects p in Ci. Then, dom(lp|Ci

) is {true, false}. However, if another leader pro-
cesses q was selected by the daemon and kept its output true in the execution
C0, C1, · · · , Ci−1, then, p cannot take true because it causes q to change its state
again. (Note that this q’s move is allowed under optimal monotonic convergence
assuming that no other leader process keeps its output before this move.) Hence,
dom(lp|C0,C1,··· ,Ci

) ⊂ dom(lp|Ci
).



Monotonic Stabilization 483

Fig. 1. Optimal Monotonic Convergence: Leader election

Consider a configuration where there is no leader process. In this configura-
tion, (d,∞)-history is necessary for each process. Because if all the other pro-
cesses decided to not to change its output before, then a selected process has to
take true. The monotonicity does not force a selected process to change its state
even when the state change reduces the distance to a legitimate configuration.

Consequently,∞ consecutive view is necessary for the leader election problem.
��

Lemma 3. The center finding problem is (r + 1, 0)-local for optimal monotonic
convergence.

Proof. For the center finding problem the legitimate configuration is defined by
the topology. A center process finds that there are two processes such that the
distance between them is 2r but there are no two processes such that the distance
between them is greater than 2r. On the other hand, other processes should check
if they have a process at distance (r + 1). With r-view, these processes cannot
check the existence of such processes.

The set dom(cp) at process p is fixed by the topology and not by the execution.
Hence, the current view is sufficient for the center finding problem. ��

Lemma 4. The majority consensus problem is (d, 1)-local for optimal mono-
tonic stabilization.

Proof. The optimal legitimate configuration is determined by the majority of
output values in the initial configuration. In the initial configuration C0 shown
in Figure 2(a), the leftmost process cannot find the difference between a config-
uration C′

0 shown in Figure 2(c) with distance 2k view. The optimal legitimate
configurations for C′

0 are the one where all output variables are 0 or the one
where all output values are 1. Hence, f may return 0 and 1. While the correct
output value for the leftmost process in C0 is 0, f may return 0 and 1 in C0.
With distance d view, f differentiate these two configurations. Hence, distance
d view is necessary.

Next, we show the history locality. For the majority consensus problem, the
first transition determines the goal legitimate configuration in a monotonic con-
vergence. For example, if the set of processes enabled in the initial configuration
change their outputs to 1 (or keep their outputs 1), then all the following tran-
sitions do not allow a process to change (or keep) its output to 0. Consequently,
by checking the previous transition, each process recognizes the allowed state
changes. Hence, the 1 consecutive view is necessary.

Note that if there is a majority of output values in an initial configuration,
the history locality is (d, 0). This is because the optimality does not allow any
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0 1 0 1 0

2k+1

0 0 0 0 0 0 1 0 1

2k

(a) Initial configuration C0 (b) COpt for C0 (c) Initial configuration C′
0

Fig. 2. Optimal Monotonic Convergence: Majority consensus

process to change its state from a majority value to a minority value. The ma-
jority of output values does not change during the convergence and each process
determines it by (d, 0)-history. ��

Next, we show the locality of the rooted tree construction problem and the
shortest path tree construction problem that shows a significant difference in
history locality.

Lemma 5. Spanning tree construction is (d,∞)-local and shortest path tree con-
struction is (d, 0)-local for optimal monotonic stabilization.

Proof. We first show the view locality of rooted tree construction. Consider the
two initial configurations C0 (Figure 3 (a)) and C′

0 (Figure 3 (c)). The optimal
legitimate configuration for C0 is shown in Figure 3 (b) and the optimal legitimate
configuration for C′

0 is the configuration where all process point to the other
neighbor than in Figure 3 (b). However, in C0, process p cannot determine the
optimal legitimate configuration without d view. Consequently, the view locality
for the rooted tree construction problem is d.

Next, we show the history locality of the rooted tree construction problem.
Consider a configuration Ci shown in Figure 3 (d) that appears in an execution
C0, C1, · · · . During the execution C0, C1, · · · , Ci−1, it is possible that some pro-
cesses except p and the root has decided not to change its state in configuration
Cj where t is selected by the daemon. Let this process t. In this case, p cannot
point to the upper side because it then makes t to change its pointer again during
the convergence. Consequently, dom(parp|Cj ,Cj+1,··· ,Ci

) �= dom(parp|Ci
). Hence,

(d,∞)-history is necessary for process p.
We show the locality of shortest path tree construction. Each process p should

find a neighbor that is on a shortest path from p to the root. With d − 1-view,
p cannot find the shortest path to the root. Hence, distance d view is necessary.

In a legitimate configuration, it is guaranteed that each process points to a
neighbor on a shortest path tree to the root. In other words, for process p, each
neighbor process q points to a neighbor on a shortest path tree from q to the
root. During a monotonic convergence, each process changes its pointer to point
such a neighbor. Hence, the dom(parp) is not changed by any state change.
Consequently, the history locality is 0. ��

For problems that are considered to have some local property, global information
is necessary to achieve optimal monotonic convergence.
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Fig. 3. Optimal Monotonic Convergence: Rooted tree construction
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Fig. 4. Optimal Monotonic Convergence: Vertex coloring

Lemma 6. The vertex coloring problem and the maximal matching problem are
(d,∞)-local for optimal monotonic convergence.

Proof. We prove the view locality by showing the topology where each process
cannot make a optimal monotonically converging move without d-view.

Figure 4 shows an example for the vertex coloring problem. The processes
that change their output values depends on the length of the line. With distance
d view, the leftmost process cannot find the difference between the configuration
C0 (Figure 4(a)) and C′

0 (Figure 4(c)) while it can take 0 and 1 in optimal
legitimate configurations for C′

0 (Figure 4(d) and (e)). In vertex coloring, these
processes take an arbitrary color that is different from 0.

Figure 5 shows an example for the maximal matching problem. In this case
also, the leftmost process cannot determine its output value with distance d
view. In an initial configuration C0 (Figure 5 (a)), the leftmost process cannot
find the difference between C0 and C′

0 (Figure 5 (c)) with distance 3k view.
Next, we show the history locality of the two problems. In the vertex coloring

problem, the history of all previous moves is necessary when given a configuration
where two processes takes the same color. If one of them has decided to keep
its color before, the other process should change its color during a monotonic
convergence.
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3k+1

(a) Initial configuration C0 (b) COpt for C0

3k

(c) Initial configuration C′
0 (d) One COpt for C′

0

Fig. 5. Optimal Monotonic Convergence: Maximal Matching

In the maximal matching problem, the history of all previous moves is nec-
essary. Consider a line of three processes p, q, r. Given a configuration where
ISp = ISr = q and ISq = ⊥, to reach a legitimate configuration, q has to point
one of its neighbors. However, as in the same discussion before, dom(ISq) de-
pends on the former state change at p and r. If p did not change its pointer in
the previous step, then q has to point to r. (In this case, this history is necessary
for r to determine its output value since during a monotonic convergence, r is
not allowed to point to p after this step.) Hence, (d,∞)-history is necessary and
sufficient for the maximal matching problem. ��

4 Monotonic Convergence

In this section, we show the locality of problems for monotonic convergence. We
first show Theorem 2 that refers to the problems whose locality for monotonic
convergence is identical to that for optimal monotonic convergence.

Theorem 2. For a problem P that is (k, �)-local for monotonic convergence, if
the legitimate configuration is uniquely defined by G and the initial configuration,
then P is (k, �)-local for optimally monotonic convergence.

Proof. For the problems that satisfy the condition of Theorem 2, finding a le-
gitimate configuration is finding the optimal legitimate configuration. ��

From Theorem 2, the center finding problem is (r + 1, 0) local for monotonic
self-stabilization. The rooted tree construction problem and the shortest path
tree construction problem also fall in this category, because for some topology,
these trees are uniquely defined by the topology.

The remaining is the problems that have multiple legitimate configurations
for some initial configurations, i.e., the majority consensus problem, the leader
election problem, the vertex coloring, and the maximal matching problem.

The majority consensus problem has only two legitimate configurations for
any topology. During a monotonic convergence, if a process changes its output
variable from 1 to 0, it means all the succeeding state changes should not change
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the values of output variables of other processes from 0 to 1. In this paper,
we do not restrict the strategy of f : it is not the majority computation, nor
one-way resetting. Additionally, because the goal is not an optimal legitimate
configuration, a process cannot determine a new state by the majority of output
values. Hence, only with the current view, a process cannot find the process that
has taken a move.

Next, we show Theorem 3 that is the counterpart for Theorem 1.

Theorem 3. There exists no monotonic self-stabilizing protocol by giving each
process views at distance k or � consecutive views if one of the following condi-
tions hold:

Condition 1 (view). There exists a monotonic execution Ei = C0, C1, · · · , Ci

such that there exists a monotonic move at process p in Ci that changes the
configuration to Ci+1 that satisfies at process q ∈ V \ (Nk

p ∪ {p})

dom(vq|CMRL(Ei+1)) ⊂ dom(vq|CMRL(Ei))

Condition 2 (history). There exists a monotonic execution Ei = C0, C1, · · · ,
Ci and a process p such that

dom(vp|CMRL(Ci−�,··· ,Ci)) �= dom(vp|CMRL(Ci−�−1,···Ci)).

Proof. To monotonically converge to a legitimate configuration, each transition
make an enabled process to choose a new state that is consistent with former
transitions.

We first show the proof for Condition 1. Let p and q be two processes at
distance k. Condition 1 addresses about the following case: A state change at
process p excludes some entry in dom(vq|CMRL(Ei)) at process q. Let one of these
excluded value be v′. Suppose that immediately after p’s state change q is en-
abled. The k-view at q is same as Ci because there is no transition after Ci+1.
With k-view, q cannot find the difference between Ci and Ci+1, and this can
results in p taking v′ as its output value. Then the execution is no more mono-
tonic.

Consequently, when Condition 1 holds, there is no possibility to construct a
monotonic self-stabilizing protocol with views at distance k.

We omit the proof for Condition 2 because it is the same as the proof for
Condition 2 of Theorem 1. ��

Both the Condition 1 of Theorem 1 and the Condition 1 of Theorem 3 refer to
the domain of possible output at processes. While Condition 1 of Theorem 1 is
based on the difference between optimal legitimate configurations, Condition 1
of Theorem 3 is based on the difference between any legitimate configurations.

From Theorem 3, we derive the locality of the problems.

Lemma 7. The majority consensus problem is (d, 1)-local for monotonic stabi-
lization.
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Proof. Consider a line of n processes. Let the leftmost process be p and the
rightmost process be q. In an initial configuration C0, dom(vr|CMRL

) = {0, 1} for
any process r in V . If the central daemon first selects p and vp takes f(viewk

p|C0
),

dom(vq|CMRL
) is restricted to {f(viewk

p|C0
)} for each process q in V \ {p}.

For the majority consensus problem, the first transition determines the goal
legitimate configuration. During the convergence, CMRL is unique, i.e., a con-
figuration where each process r takes {f(viewk

p|C0
)}. Hence, for any i and any

process p, we have

dom(vp|CMRL(Ci−1,Ci)) = dom(vp|CMRL(Ci−2,Ci−1,Ci))
dom(vp|CMRL(Ci)) �= dom(vp|CMRL(Ci−1,Ci)).

As a result, the majority consensus problem is (d, 1)-local for monotonic con-
vergence. ��

Lemma 8. The leader election problem is (d,∞)-local for monotonic stabiliza-
tion.

Proof. Consider a line of n processes where lp = false holds at each process p in
V . Let the leftmost process be p and the rightmost process be q. In an initial
configuration, dom(vr|CMRL) = {false, true} for any process r in V . If the central
daemon first selects p and lp takes true, dom(vq|CMRL) is restricted to {false} for
each process q in V \ {p}. Hence, the view locality of the leader election problem
is d.

Consider another configuration C0 of a line of n processes where lp = lq = true
holds at the two endpoint processes p and q and all other processes output false.
Let p kept lp = true when it is first selected by the scheduler. Hence, the goal
legitimate configuration is a configuration where only p outputs true. However,
after this, with constant number of consecutive views, q cannot find that q should
change lq to false because the scheduler does not select q for an arbitrary long
time. Consequently, the leader election problem is (d,∞) local for monotonic
stabilization. ��

We omit the detailed proofs for Lemma 9 and Lemma 10 due to page restriction.
The view locality of these two problems are derived from the fact that on a
line topology, a state change of a process shrinks the domain of the output
value at other processes at distance smaller than or equals to 1 in the vertex
coloring problem and 3 in the maximal matching problem, respectively. The
history localities are derived from the fact that each process cannot recognize
whether other processes have changed their outputs without the entire history.

Lemma 9. The vertex coloring problem is (1,∞)-local for monotonic stabiliza-
tion.

Lemma 10. The maximal matching problem is (3,∞)-local for monotonic sta-
bilization.

We note that Hedetniemi’s self-stabilizing vertex coloring protocol in [15] is
monotonically self-stabilizing under centralized daemon and (1, 0) local. In that



Monotonic Stabilization 489

protocol, if a process finds a conflict of colors with its neighboring processes,
then the process takes a new color that is not used by its neighboring processes.
This protocol proposes a simple strategy to reduce the history locality for the
vertex coloring problem.

5 Concluding Remarks

We proposed new metrics for optimality of convergence of self-stabilizing proto-
cols. We showed the locality of problems for optimal monotonic convergence and
monotonic convergence. Table 1 presents our results together with the locality
of fault detectors from [9].

Table 1. Localities of problems

Problem Optimal monotonicity Monotonicity Fault detector [9]

Leader election (d,∞) (d,∞) (r, 0)
Center finding (r + 1, 0) (r + 1, 0) (r, 0)
Majority consensus (d, 1) (d, 1) -
Rooted tree (d,∞) (d,∞) (�n/4�, 0)
Shortest path tree (d, 0) (d, 0) -
Vertex coloring (d,∞) (1,∞) (1, 0)
Maximal matching (d,∞) (3,∞) (1, 0)

It turns out that the localities of the majority of problems are (d,∞). How-
ever, the view localities of the vertex coloring problem and the maximal match-
ing problem are reduced to a constant for (simple) monotonicity compared to
optimal monotonicity. This result shows that the requirement of optimality of-
ten translates a (supposedly) local problem into a global task. We observe that
the history localities of the vertex coloring problem and the maximal matching
problem are ∞.

Another interesting result is shown by the locality of the rooted tree con-
struction problem and the shortest path tree construction problem. Though a
shortest path tree is an instance of a rooted tree, the history locality becomes
constant. So, a more constrained problem may lead to a less costly optimally
converging solution. This has some intuitive explanation, since more constrained
solutions tend to reduce the number of possible legitimate configurations, it is
then easier to coordinate processes to reach a single one of them.

Finally, the locality results of this paper show a significant difference between
the locality results of transient fault detectors [9]. Our results confirm that the
resources necessary for optimal convergence are much more significant than for
simply detecting some inconsistency.

An interesting open question raised by our work is the definition of a suitable
notion of monotonic convergence for reactive tasks (such as token passing or
propagation of information with feedback).
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Abstract. This paper investigates the space complexity of a self stabi-
lizing leader election in a mediated population protocol (SS-LE MPP).
Cai, Izumi and Wada (2009) showed that SS-LE in a population proto-
col (SS-LE PP) for n agents requires at least n agent-states, and gave
a SS-LE PP with n agent-states for n agents. MPP is a model of dis-
tributed computation, introduced by Chatzigiannakis, Michail and Spi-
rakis (2009) as an extension of PP allowing an extra memory on every
agents pair. While they showed that MPP is stronger than PP in gen-
eral, it was not known if a MPP can really reduce the space complexity
of SS-LE with respect to agent-states. We in this paper give a SS-LE
MPP with (2/3)n agent-states and a single bit memory on every agents
pair for n agents. We also show that there is no SS-LE MPP with any
constant agent-states and any constant size memory on each agents-pair
for general n agents.

Keywords: Mobile agents, anonymous, population protocols, self-
stabilization, leader election.

1 Introduction

Population Protcol (PP), proposed by Angluin et al. [1], is a model of distributed
computation consisting of agents and communication links among them, and
Mediated Population Protocol (MPP) proposed by Chatzigiannakis et al. [7],
is an extended model of PP allowing memories on communication links. PP
and MPP are models of sensor networks consisting of passively mobile agents
with limited computational resources, motivated by practical networks such as
networks of smart sensors attached to cars or animals, synthesis of chemical
materials, complex biosystems, and so on (cf. [1,7]).

In MPP, every agent is identically programmed as a finite state machine, and
every communication link is equipped with a (finite) buffer. The agents sequen-
tially interact with each other updating their states; a pair of agents chosen
by a scheduler updates their own agent-states and edge-states between them in
an interaction. The order of interactions of agent-pairs is unpredictable, and is
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scheduled by an adversarial scheduler satisfying a fairness condition; the sched-
uler must accept any possible interaction within a finite time if a configuration
in which the interaction can arise should appear infinitely many times.

Angluin et al. [3] discussed the leader election in a population protocol, which
is a fundamental problem in distributed computing, and introduced the problem
of self stabilizing leader election in a population protocol (SS-LE PP, for short).
In a SS-LE PP, any initial configuration of agent-states eventually have to reach
at a configuration whose successive configurations contain exactly one leader.
Thus a SS-LE PP should be equipped with seemingly conflicting functions; the
protocol has to decrease the number of leaders if a configuration contains two
or more leaders, while the protocol has to appoint an agent to be a leader if a
configuration does not contain a leader. This causes some difficulties on SS-LE,
as it is usual with self-stabilizing distributed problems.

Angluin et al. [2] discussed that no SS-LE PP with any constant number
of agent-states exists for general n agents on some types of interaction graphs.
Fischer and Jiang [9] discussed SS-LE PP assuming a (global) oracle for leader
detector on complete communication graphs. Canepa and Potop-Butucaru [6]
discussed SS-LE PP on any communication graph in the same assumption with [9].
Cai, Izumi and Wada [5] discussed SS-LE on complete interaction graph without
any (global) oracles, and showed that SS-LE for n agents requires at least n
agent-states, and presented a SS-LE PP with n agent-states for n agents.

This paper is concerned with the space complexity of self stabilizing leader
election in a mediated population protocol (SS-LE MPP, for short) for n agents,
where we assume that an interaction graph is complete as did Cai, Izumi and
Wada [5]. We present a SS-LE MPP with roughly (2/3)n agent-states and two
edge-states for n agents. We also show that there is no SS-LE MPP with any
constant agent-states and any constant edge-states for general n agents. As far
as the authors know, this is the first result on SS-LE MPP. One may say it
obvious that the number of agent-stats decreases in MPP comparing with PP
due to extra memories on edges. In fact, it is clear that n is also sufficient for the
number of agent-states in SS-LE MPP for n agents. However, extra memories
on edges in MPP, which are expected to resolve the issue of conflicting functions
in the self-stabilizing setting instead of a certain number of agent-states, may
cause another issue of increasing possible (bad) initial configurations in the self-
stabilizing setting.

This paper is organized as follows; in Section 2, we describe the detail of our
model. To explain our basic idea for reducing agent-states, we in Section 3 give a
SS-LE MPP with n−1 agent-states and 2 edge-states for n agents. In Section 4,
we present a SS-LE MPP with (2/3)n, �(2/3)n�+ 1 in precise, agent-states and
two edge-states for n agents. In Section 5 we give lower bounds of agent-states
of a SS-LE MPP.

2 Model Description — SS-LE MPP

A mediated population protocol is defined by 3-tuple (Q, S, δ), where Q denotes a
finite set of agent-states, S denotes a finite set of edge states, and δ : Q×Q×S →
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Q × Q × S denotes a transition function. Let A denote the set of anonymous
agents and let n = |A|, and let C def= QA × S(A

2) denote all configurations.
A transition from a configuration C ∈ C to the next configuration C′ ∈ C is
defined as follows. An arbitrary pair of agents ai, aj ∈ A(ai �= aj) is chosen by
a scheduler, thus an interaction graph is complete in our model. States of the
agents ai and aj , and a state of an edge {ai, aj} are updated according to a
transition function δ. Let r : (p, q, s) �→ (p′, q′, s′) denote a specified transition
rule of δ, and let C

r;ai,aj−−−−→ C′ denote a transition from C ∈ C to C′ ∈ C in
which agents ai and aj interact and their states p, q and edge-state s between
them are updated to p′, q′, s′ according to the rule r of δ. We simply write
C

r−→ C′ without confusing. An execution of a protocol is represented by an
infinite sequence of configurations and transitions C0, r0, C1, r1, . . . , where C0 is
an initial configuration and Ci

ri−→ Ci+1(i ≥ 0).
We assume that a scheduler in a MPP is adversarial but (globally) fair, as

usual (cf. [5]). Thus we have to think that an adversarial scheduler schedules
the order of interactions in a worst case scenario for us, but it is forced to
satisfy that if a configuration C ∈ C appears infinitely often in an execution, a
configuration C′ ∈ C must also appear infinitely often in an execution, where C′

is a configuration obtained by an arbitrary transition r ∈ δ which arises in C.
We say that C eventually transits to C′, denoted by C

∗−→ C′, if C′ must appear
after C by the adversarial but globally fair scheduler in MPP. In addition, we
describe a sequence of transitions as the trace T .

Leader election in a MPP is to assign a special state, representing a “leader”, in
S to exactly one agent. We say a configuration C ∈ C is legal if C contains exactly
one agent with the leader state, and so does any configuration C′ satisfying
C

∗−→ C′. Let L denote the set of all legal configurations. We say a protocol for
the leader election (for a distributed problem, in general), is self-stabilizing if
C

∗−→ C′, C′ ∈ L hold for any C ∈ C. We simply say SS-LE MPP as a mediated
population protocol for the leader election which is self stabilizing.

Our goal is to give upper and lower bounds of the sizes of the agent-states Q
and edge-states S for SS-LE MPP concerning the number of agents n. Main
results of the paper are to give a SS-LE MPP with |Q| = �(2/3)n� + 1 and
|S| = 2 for n agents in Section 4, and to show that there is no SS-LE MPP with
constant sizes of Q and S for general n agents in Section 5. To describe our basic
idea for reducing the number of agent-states, we in Section 3 give a SS-LE MPP
with |Q| = n− 1 and |S| = 2 for n agents.

3 Simple SS-LE MPP with n − 1 Agent-States

In this section, we show the following.

Theorem 1. There exists a SS-LE MPP with n − 1 agent-states and 2 edge-
states for n(≥ 4) agents.

We give a constructive proof. In particular, we show that Protocol P1, defined
as follows, is a SS-LE MPP.
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Protocol P1

Q ={q0, q1, . . . , qn−2}, where q0 denotes the leader state.
S ={s0, s1},
δ ={

r1 : (q0, q0, s) �→ (q0, qn−2, s0) for s ∈ S,

r2 : (q1, q1, s) �→ (q1, q2, s0) for s ∈ S,

r3 : (q2, q2, s0) �→ (q2, q2, s1),
r4 : (q2, q2, s1) �→ (q2, q1, s0),
r5 : (q2, q1, s1) �→ (q2, q0, s0) ((q1, q2, s1) �→ (q0, q2, s0), symmetrically) ,

r6 : (qi, qi, s) �→ (qi, qi−1, s0) for i ≥ 3, s ∈ S,

r7 : (qj , qk, s) �→ (qj , qk, s0) for j �= k, s ∈ S, except for the case of r5

}.

Remark. Except for Transition r5, the state of an agent can change only when
the agent interacts with another agent in the same state.

Let γk(C) for k ∈ {0, 1, . . . , n− 2} denote the number of agents with state qk

in a configuration C ∈ C. We define a set of configurations L ⊂ C by

L def=
{

C ∈ C
∣∣∣∣γk(C) > 0 for k ∈ {0, 1, . . . , n− 2}, γ1(C) + γ2(C) = 3,
both ends of an edge with state s1 are agents with state q2.

}
.

Note that the number of edges with state s1 in C ∈ L is at most one since γ2(C)
is at most two from the definition of L.

In the following, we claim that L is the set of legal configurations for Protocol
P1. Let H denote a subconfiguration of C ∈ L consisting of three agents with
states q1 or q2 and three edges among them. Then H can be one of three types
of subconfigurations H1, H2, H3 of six possible types H1, H2, H3, H4, H5, H6 in
Fig.1 which satisfy that the number of edges with state s1 is at most one,
γ1(C) > 0 and γ2(C) > 0. First, we show that L is “closed” under the transition
function δ.

Lemma 2. If configurations C and C′ satisfy C ∈ L and C
∗−→ C′, then C′ ∈ L

and C′ ∗−→ C hold.

Proof. Transition r1 cannot arise in a configuration C ∈ L by the condition
γ0(C) = 1 in L. By the condition γ1(C) + γ2(C) = 3 and γk(C) > 0 for
k ∈ {0, 1, . . . , n − 2}, C satisfies γk(C) = 1 for k ∈ {3, 4, . . . , n − 2}. Thus,
Transition r6 cannot arise in C ∈ L.

Now we show that Transition r5 cannot arise in C. Since the edge-state s1

appears only within the subconfiguration H of C ∈ L, it is enough to show that
Transition r5 cannot arise in subconfigurations H1, H2, H3 of C.
Case 1. H = H1: Consider an agent with state q1 as a and agents with state q2

as b, c, and consider every state of every edge among them as state s0. Then
Transitions r3 or r7 can arise in H1, that is H1

r3−→ H2 or H1
r7−→ H1.
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Fig. 1. {H1, H2, H3} is closed

Case 2. H = H2: Consider an agent with state q1 as a and agents with state q2

as b, c, and consider a state of the only one edge between the two agents b, c
as state s1. Then Transitions r4 or r7 can arise in H2, that is H2

r4−→ H3 or
H2

r7−→ H2.
Case 3. H = H3: Consider agents with state q1 as a, b and an agent with state
q2 as c and consider every state of every edge among them as state s0. Then
Transitions r2 or r7 can arise in H3, that is H3

r2−→ H1 or H3
r7−→ H3.

Therefore, if C ∈ L and C′ satisfies C
∗−→ C′, then C′ ∈ L and C′ ∗−→ C hold. �

Next, we show that any configuration C ∈ C eventually transits to a configuration
C′ ∈ L, in Lemma 5. To show Lemma 5, we show Lemmas 3 and 4.

Lemma 3. If a configuration C ∈ C satisfies γk(C) > 0 for k ∈ {0, 2, 3, . . . , n−
2}, and C

∗−→ C′, then the configuration C′ also satisfies γk(C′) > 0.

Proof. After an agent with state qk for k ∈ {0, 2, 3, . . . , n − 2} interacts with
any other agent, γk(C) decreases at most one in any transition. In fact, γk(C)
decreases only when the agent interacts with another agent in the same state qk.
This implies that γk(C) never decreases from one to zero by any transition. �

Lemma 4. If configurations C, C′ ∈ C satisfy γ0(C) = 0, C
∗−→ C′ and γ0(C′) =

0, then the followings hold;

1.
∑k

i=1 γi(C′) ≥
∑k

i=1 γi(C) for any k ∈ {2, 3, . . . , n− 2}.
2. If γi(C) > 0, then γi(C′) > 0.
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Proof. 1. If γ0(C) = 0 and γ0(C′) = 0 hold, Transition r5 cannot have arisen on
C

∗−→ C′. Note that Transition r7 does not change any agent-state. Since n − 2
states are assigned to n agents, there exists a pair of agents and they are in a
common state qi. When i ≥ 3, Transitions r6 or r7 can arise in C and exactly
one of the agents changes its state from qi to qi−1. Thus γi−1(C′) + γi(C′) =
γi−1(C) + γi(C) and γi−1(C′) = γi−1(C) + 1. When i = 1, 2, Transitions r2, r3

or r4 can arise in C except for Transitions r5 and r7 and their transitions does
not change q ∈ {q1, q2} to q′ /∈ {q1, q2}. Therefore, for any r ∈ {r2, r3, r4} a
configuration C′ of C

r−→ C′ satisfies that γ1(C)+γ2(C) = γ1(C′)+γ2(C′). That
indicates

∑k
i=1 γi(C′) ≥

∑k
i=1 γi(C).

2. By Lemma 3, if γ0(C) = 0 and γ0(C′) = 0, Transition r5 cannot have
arisen on C

∗−→ C′. In arbitrary transitions except for r5, γ1(C) decreases at
most one in a transition. γ1(C) decreases only when a pair of agents with same
state q1 interact. This implies that γ1(C) never decreases from one to zero by
any transition. �

Lemma 5. For any configuration C ∈ C, there exists a configuration C′ ∈ L
and C

∗−→ C′.

Proof. Case 1. γ0(C) = 0
We show that for any configuration C ∈ C, there exists a configuration C′ ∈ C
satisfying that C

∗−→ C′ and γ0(C′) > 0.
Case 1.1. γ1(C) + γ2(C) ≤ 3
Since n − 4 states q3, q4, . . . , qn−2 are assigned to at least n − 3 agents, there
exists a pair of agents and their states are common qi. When i ≥ 3, Transitions
r6 or r7 can arise in C and exactly one of the agents changes its state from qi

to qi−1. By Lemma 4, γi(C)(> 0) does not become zero by any transition and∑k
i=1 γi(C) does not decrease by any transition, thus there exists a configuration

C′ ∈ C satisfying that C
∗−→ C′ and γ1(C′) + γ2(C′) > 3.

Case 1.2. γ1(C) + γ2(C) > 3

Suppose Transition r5 cannot have arisen on C
∗−→ C′, then Transitions r2, r3, r4,

or r7 can arise in C except for Transition r5. It implies that C eventually transits
to a configuration C′ ∈ C satisfying γ2(C′) ≥ 3, thus configurations satisfying
γ2(C′) ≥ 3 infinitely often appear. Consider three agents a, b, c with state q2.
A trace (r3; a, b), (r3; b, c), (r4; a, b), (r5; c, b) can infinitely often arise in C′.
Therefore, it contradicts the assumption of the global fairness, the configuration
eventually transits to Case 2.
Case 2. γ0(C) > 0
If γ0(C) > 1, Transition r1 can infinitely often have arisen by fairness condition.
Hence C eventually transits to a configuration C′ ∈ C satisfying γ0(C′) = 1. If∑k

i=0 γi(C) ≥ k+3 for k ≥ 3, in a similar way as Case 1, C eventually transits to
a configuration C′′ ∈ C and γ0(C′′) ≥ 2, and

∑k
i=0 γi(C′′) decreases again after

Transition r1 arises. Since n− 1 states are assigned to n agents and γj(C)(> 0)
except for j = 1 does not become zero by any transitions, C eventually transits
to C′ ∈ C satisfying γ2(C′) = 2 and γj(C′) = 1 except for j = 2. By Lemma 3
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such a configuration C′ infinitely often appears, therefore Transition r7 can have
arisen until no edge with state s1 remain C′. It is clear that such a configuration
is included in L. �

We obtain Theorem 1 by Lemmas 2 and 5.

4 SS-LE MPP with (2/3)n Agent-States for n Agents

In this section, we prove the following theorem.

Theorem 6. There exists a SS-LE MPP with

m =
⌊

2n

3

⌋
+ 1 ≡

⎧⎨
⎩

2n+1
3 (if n ≡ 1 (mod 3))

2n+2
3 (if n ≡ 2 (mod 3))

2n+3
3 (if n ≡ 0 (mod 3))

agent-states and 2 edge-states for n agents.

We give a constructive proof. In particular, we show that Protocol P2, defined
as follows, is a SS-LE MPP. For simplicity of arguments, we first consider the
case n mod 3 = 1.
Protocol P2 for n ≡ 1 (mod 3)

Q ={q0, q1, . . . , qm−1}, where q0 denotes the leader state.
S ={s0, s1}.
δ ={

r1 : (q0, q0, s) �→ (q0, qm−1, s0) for s ∈ S,

r2 : (q2i−1, q2i−1, s) �→ (q2i−1, q2i, s0) for s ∈ S and i ∈ {1, 2, . . . , m−1
2 },

r3 : (q2i, q2i, s0) �→ (q2i, q2i, s1) for i ∈ {1, 2, . . . , m−1
2 },

r4 : (q2i, q2i, s1) �→ (q2i, q2i−1, s0) for i ∈ {1, 2, . . . , m−1
2 },

r5 : (q2i, q2i−1, s1) �→ (q2i, q2i−2, s0),(
(q2i−1, q2i, s1) �→(q2i−2, q2i, s0), symmetrically

)
for i∈{1, 2, . . . , m−1

2 },

r6 : (qj , qk, s) �→ (qj , qk, s0) for j �= k and s ∈ S, except for the case of r5.
}.

Remark. Except for Transition r5, the state of an agent can change only when
the agent interacts with another agent in the same state.

We define a set of configurations L ⊂ C by

L def=

⎧⎨
⎩C ∈ C

∣∣∣∣∣∣
γk(C) > 0 for k ∈ {0, 1, . . . , m− 1},
γ2i−1(C) + γ2i(C) = 3 for i ∈ {1, 2, . . . , m−1

2 },
both ends of an edge with state s1 are agents with state q2i.

⎫⎬
⎭ .

Let H(i) for i ∈ {1, 2, . . . , m−1
2 } denote a subconfiguration of C ∈ L consisting

of three agents with states q2i−1 or q2i and three edges among them. A subcon-
figuration H(i) for i ∈ {1, 2, . . . , m−1

2 } corresponds to H in Section 3, and can
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be one of three types H ′
1, H

′
2, H

′
3 corresponding to H1, H2, H3 in which states

q1, q2 is replaced by q2i−1, q2i respectively. Then, the edge-state s1 can appear
only within H(i) for i ∈ {1, 2, . . . , m−1

2 }, and the number of edges with state s1

in H(i) is at most one.

Lemma 7. If configurations C and C′ satisfy C ∈ L and C
∗−→ C′, then C′ ∈ L

and C′ ∗−→ C hold.

Proof. Transition r1 cannot arise in C ∈ L by the condition γ0(C) = 1 in L. In a
similar way as the proof of Lemma 2, H(i) is closed as H ′

1
r3−→ H ′

2
r4−→ H ′

3
r2−→ H ′

1

under transitions except for r5. From the condition “the both ends of an edge
with state s1 are q2i”, Transition r5 cannot arise in C ∈ L. Thus we obtain the
claim. �

Next, we show that any configuration C ∈ C eventually transits to a configuration
C′ ∈ L, in Lemma 10. To show Lemma 10, we show Lemmas 8 and 9.

Lemma 8. If a configuration C satisfies γ2i−1(C)+γ2i(C) ≥ 4, then Transition
r5 can eventually arise.

Proof. Let C′ be an arbitrary configuration which C eventually transits to, and
suppose Transition r5 cannot have arisen on C

∗−→ C′. Transitions r2, r3, r4 or r6

can arise except for Transitions r1, r5. Note that Transitions r3 and r6 do not
change any agent-states. Exactly one of two agents with a common state changes
its state from q2i−1 to q2i by Transition r2, and also changes its state from q2i to
q2i−1 by Transition r4. This implies that C eventually transits to a configuration
C′ ∈ C satisfying γ2i(C′) ≥ 3. Thus some configurations satisfying γ2i(C′) ≥ 3
infinitely often appear. Consider three agents with state q2i as a, b, c. A trace
(r3; a, b), (r3; b, c), (r4; a, b), (r5; c, b) can infinitely often arise in C′ see also Fig.
2. Dk(i) for k = 1, 2, . . . , 5 denote a subconfiguration of C ∈ C consisting of four
agents whose states are q2i, q2i−1 or q2i−2. Since it contradicts the assumption
of the global fairness, we obtain the claim. �

Lemma 9. If a configuration C ∈ C satisfies γ0(C) = 0 and a configuration
C′ ∈ C which C eventually transits to satisfies γ0(C′) = 0, then

∑2k
i=1 γi(C′) ≥∑2k

i=1 γi(C) for all k ∈ {1, 2, . . . , m−1
2 }.

Proof. If γ0(C) = 0 and γ0(C′) = 0 hold, Transitions r1, r5 cannot have arisen
on C

∗−→ C′. Note that Transition r6 dose not change any agent-state. Since m−1
states are assigned to 3

2 (m− 1) + 1 agents, there exists a subconfiguration H(j)
of the configuration C satisfying γ2j−1(C) + γ2j(C) > 3 for j ∈ {1, 2, . . . , m−1

2 }.
By Lemma 8, an agent in C eventually changes its state from q2j−1 to q2j−2,
and let C′ ∈ C denote the configuration, then

∑2j
i=1 γi(C′) =

∑2j
i=1 γi(C) and

γ2j−2(C′) = γ2j−2(C) + 1 hold. Let C′′ be an arbitrary configuration which
C eventually transits to and suppose Transitions r1, r5 cannot have arisen on
C

∗−→ C′. γ2j−1(C′)+γ2j(C′) = γ2j−1(C)+γ2j(C) holds for C
∗−→ C′′. Therefore,∑2k

i=1 γi(C′) ≥
∑2k

i=1 γi(C) for all k ∈ {1, 2, . . . , m−1
2 }. �
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Fig. 2. A trace of a subconfiguration of C which satisfies γ2i−1(C) + γ2i(C) ≥ 4

Fig. 3. States transition diagram of subconfigurations of C which satisfy γ2i−1(C) +
γ2i(C) ≥ 4
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Lemma 10. For any configuration C ∈ C, there exists a configuration C′ ∈ L
and C

∗−→ C′.

Proof. Case 1. γ0(C) = 0
We show that any configuration C ∈ C eventually transits to a configuration
C′ ∈ C satisfying γ0(C′) > 0. Since m − 1 states are assigned to 3

2 (m − 1) + 1
agents, there exists a subconfiguration H(j) of the configuration C satisfying
γ2j−1(H(j)) + γ2j(H(j)) > 3 for j ∈ {1, 2, . . . , m−1

2 }. By Lemma 9, C eventu-
ally transits to a configuration C′ ∈ C satisfying γ1(C′) + γ2(C′) > 3, and then
eventually transits to a configuration C′′ ∈ C satisfying γ0(C′′) > 0 in a similar
way as the proof of Lemma 5.
Case 2. γ0(C) > 0
If γ0(C) > 0, Transition r1 can infinitely often have arisen under fairness condi-
tion. The configuration C eventually transits to a configuration C′ ∈ C satisfying
γ0(C′) ≥ 2, and γ0(C)+

∑2k
i=1 γi(C) for k ∈ {1, 2, . . . , n−1

2 } decreases again after
Transition r1 arises. Thus, C infinitely often transits to a configuration C′′ ∈ C
satisfying γ0(C′′) = 1 and γ2i−1(C′′)+γ2i(C′′) = 3 for every i ∈ {1, 2, . . . , m−1

2 }.
Since C′′ infinitely often appears, Transition r6 can have arisen until no edge
with state s1 remain C′′. It is clear that such a configuration is included in L. �

By Lemmas 7 and 10, we obtain a SS-LE MPP with m agent-states and 2 edge-
states for n agents in case of n ≡ 1 (mod 3).

Next we give Protocol P2 for n ≡ 2 (mod 3) agents. We define Protocol P2

for n ≡ 2 (mod 3) by adding

r7 : (qm−1, qm−1, s) �→ (qm−1, qm−2, s0)

to the transition function δ of Protocol P2 for n ≡ 1 (mod 3), and appropriately
modify the domain of i as {1, 2, . . . , m−2

2 } in Protocol P2 for n ≡ 1 (mod 3).
We define a set of configurations L ⊂ C by

L def=

⎧⎨
⎩C ∈ C

∣∣∣∣∣∣
γk(C) > 0 for k ∈ {0, 1, . . . , m− 1},
γ2i−1(C) + γ2i(C) = 3 for i ∈ {1, 2, . . . , m−2

2 },
both ends of an edge with state s1 are agents with state q2i.

⎫⎬
⎭ .

Let H(i) for i ∈ {1, 2, . . . , m−2
2 } denote a subconfiguration of C ∈ L consisting

of three agents with states q2i−1 or q2i, and three edges among them.

Lemma 11. If configurations C and C′ satisfy C ∈ L and C
∗−→ C′, then C′ ∈ L

and C′ ∗−→ C hold.

Proof. By the conditions γk(C) > 0 for k ∈ {0, 1, . . . , m − 1} and γ2i−1(C) +
γ2i(C) = 3 for i ∈ {1, 2, . . . , m−2

2 }, γ0(C) = γm−1(C) = 1 and Transitions r1, r7

cannot arise in C. Thus we obtain the claim in a similar way as the proof of
Lemma 7. �

Next, we prove that any configuration C ∈ C eventually transits to a configu-
ration C′ ∈ L (Lemma 12). If γ0(C) = 0, since m − 1 states are assigned to
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3
2 (m − 2) + 2 agents, there exists a subconfiguration H(i) of the configuration
C satisfying γ2i−1(H(i)) + γ2i(H(i)) > 3 for i ∈ {1, 2, . . . , m−2

2 }, or there exists
a pair of agents with the common state qm−1 in C. Transition r7 arises in a
configuration C ∈ C and exactly one of the agents changes its state from qm−1

to qm−2. Using (a type of) Lemmas 8 and 9, we can show the following.

Lemma 12. For any configuration C ∈ C, there exists a configuration C′ ∈ L
and C

∗−→ C′.

Proof. Case 1. γ0(C) = 0
We show that any configuration C ∈ C eventually transits to a configuration
C′ ∈ C satisfying γ0(C′) > 0. Since m − 1 states are assigned to 3

2 (m − 2) + 2
agents, there exists a subconfiguration H(i) of the configuration C satisfying
γ2i−1(H(i)) + γ2i(H(i)) > 3 for i ∈ {1, 2, . . . , m−2

2 } or there exists a pair of
agents and their states are common qm−1. In the former case, C eventually
transits to a configuration C′ ∈ C satisfying γ1(C′) + γ2(C′) > 3 by Lemma 9.
In the latter case, Transition r7 can arise in C and exactly one of two agents
with common qm−1 changes its state to qm−2. Therefore, C eventually transits
to a configuration C′ ∈ C satisfying γ1(C′) + γ2(C′) > 3, and then eventually
transits to a configuration C′′ ∈ C satisfying γ0(C′′) > 0.
Case 2. γ0(C) > 0
Shown in a similar way as Case 2 of the proof of Lemma 10. �

Finally we present our SS-LE MPP for n agents in case of n ≡ 0 (mod 3). We
define Protocol P2 for n ≡ 0 (mod 3) by adding

r8 : (qm−2, qm−2, s) �→ (qm−2, qm−3, s0)

to the transition function δ of Protocol P2 for n ≡ 2 (mod 3) and appropriately
replace the domain of i as {1, 2, . . . , m−3

2 } in Protocol P2 for n ≡ 2 (mod 3).
Let H(i) for i ∈ {1, 2, . . . , m−3

2 } denote a subconfiguration of C ∈ L consisting
of three agents with states q2i−1 or q2i and three edges among them.

It is not difficult to see L, appropriately modifying the domain of i, is the set
of legal configurations of the case, in a similar way as the case of n ≡ 2 (mod 3).
Now we obtain Theorem 6.

5 Lower Bounds for SS-LE MPP

In this section, we give two lower bounds of the number of agent-states.

Theorem 13. For general n agents, any SS-LE MPP with a constant number
of agent-states and a constant number of edge-states does not exist.

Proof. Suppose P (n) is a SS-LE MPP with a constant agent-states and a con-
stant edge-states for n agents. We show that P (n) cannot be a SS-LE MPP for n′

agents where n′ �= n. Without loss of generality we may assume that n > n′. Let
C be a legal configuration of P (n) and let D be a subconfiguration of C where
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D consists of n′ non-leader agents. Then P (n) cannot create leader states by
any interactions within D, since D is a subconfiguration of a legal configuration
C of P (n). This means that P (n) is not a SS-LE MPP for n′ agents, because D
cannot reach at a legal configuration for n′ agents.

When possible agent-states and edge-states are finite, the number of compo-
nents included in the transition function is also finite. In fact, for c agent-states
and d edge-states, the number of possible protocols is (at most) (c2d)c2d. Since
the number of agents n can be fairly larger than them, we obtain the claim. �

Theorem 14. If the number of agent-states is 2, then no SS-LE MPP exists
for n(> 2) agents, even when the number of edge-states is infinitely large.

Proof. With an assumption that a legal configuration exists and we derive a
contradiction. When n > 2, the number of an agent with a leader state q0

included in a legal configuration L is one and the number of agents with non-
leader state q1 is at least two. Therefore it is clear that the state of agents with
state q1 in a configuration C ∈ L does not change. Let C′ ∈ C be a configuration
which is constructed by the 3 tuple of two agents and an edge among them which
are included in C, then C′ cannot transit to a configuration which includes a
agent-state q0. This contradicts any initial configuration eventually transits to a
configuration including a leader state. �

6 Conclusion

We gave a SS-LE MPP with roughly (2/3)n agent-states and two edge-states
for n agents, while we showed that there is no SS-LE MPP with any constant
agent-states and any constant edge-states for general n agents. We conjecture
that our upper bound is almost tight. A future work is to analyze SS-LE MPP
with a constant edge-states. Analyses on other interaction graphs may be another
future work.
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Abstract. We consider a problem on a passively-mobile sensor network with a
base station; the base station counts the number of sensors in the network. In
[6], these passively-mobile sensor networks are modeled by extending the model
of population protocols and self-stabilizing protocols to count the number of ex-
isting sensors, where self-stabilizing counting means from any initial states of
sensors and some initialization of the base station (unless the base station is ini-
tialized, this problem can not be solved in general), the base station eventually
counts the exact number of sensors in the system. In this setting, Beauquier et
al.[6] show several protocols to solve the self-stabilizing counting (See Table 1).
In this paper, we focus on space complexity of the self-stabilizing counting pro-
tocols (that is, the number of states sensors can possess, denoted by �(P), where
P is an upper bound of the number of states) and improve it by showing self-
stabilizing counting protocols using �(P) � 2P and �(P) � 3P�2, respectively.
Since previous best known protocol needs �(P) � 4P and a lower bound of �(P)
is P, we can shrink the gap lying that feasibility.

1 Introduction

Background A passively-mobile system is a collection of agents that move in a certain
region but have no control over how they move. Since the communication range of each
agent is quite small compared to the size of the region, two agents can communicate
only when they are suÆciently close to each other. Passive mobility appears in many
real systems. A representative example is a network of smart sensors attached to cars or
animals. Recently, as a model for such passively-mobile systems, population protocols
are introduced [4]. A population protocol consists of a number of agents, to which some
program (protocol) is deployed. Following the deployed protocol, each agent changes
its state by pairwise interactions to other agents (that is, two agents come closer to each
other in the region and update their states by exchanging information).

In this paper, we are interested in a variant of population protocols in which, given a
base station and a number of mobile sensors, we consider the self-stabilizing counting
problem on that model. The counting problem requires that the base station counts and
outputs the exact number of sensors in the system. The self-stabilizing counting must
achieve the counting from any configuration where only the base station can be initial-
ized. This problem is motivated by the following scenario : A group of birds(petrels in

C. Lu, T. Masuzawa, and M. Mosbah (Eds.): OPODIS 2010, LNCS 6490, pp. 504–515, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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[6]) carries on their body a small sensor and a base station wants to count the remaining
birds alive. When a bird is close enough to the base station, its sensor interacts with the
base station, which can control the memory of bird’s sensor and make some computa-
tion. Also the sensors of birds can interact with each other when two birds approach
close enough. Since each sensor is exposed in wild nature, its state can be corrupted by
its surroundings. This setting of the problem is first introduced by Beauquier et al.[6],
and several protocols, each of which works on slightly di�erent models, are presented.

Our Contribution. In this paper we consider an improvement of previous protocols.
In particular, we focus on space complexity of the self-stabilizing counting protocols
on the symmetric petrels-to-base-station-and-to-petrels (STBTP) model. The STBTP
model is a variation of population protocols with base stations, where sensors have no
mechanism to break symmetry. That is, it allows only interactions between two sensors
such that the two sensors necessarily have the same poststate if their states before in-
teraction are the same. Because of weak capability of sensors, any protocol is required
to be designed with small resource of sensor-side algorithm. Thus, our primary interest
is how we can reduce the memory space of sensor nodes. In the prior work for this
problem [6], a protocol is developed by using 4P states for each sensor, where P is the
known upper bound for the number of sensors. It also shows that there is no protocol
using P � 1 states or less. The feasibility of self-stabilizing counting between P and
4P � 1 still remains open1.

Our contribution is to shrink the gap lying on that feasibility. We present two proto-
cols for self-stabilizing counting on STBTP models. In the first protocol, each sensor
uses 2P states, and its convergence time is O(log n), The second protocol uses 3P�2
states and the convergence time is finite. Table 1 shows the comparison between prior
work and our results. Interestingly, we can find the trade-o� between space and time
complexity.

Table 1. Previous result and our result

Number of states of sensors Number of states of the base station convergence time reference
�(P) � P impossible [6]

�(P) � 3P�2 3 states array of sizeP finite number of rounds this paper
�(P) � 2P 3 states array of size P O(logn) rounds this paper
�(P) � 4P 3 states array of size 2P 3 rounds [6]

Related Work. The population protocol model is originally introduced by Angluin
et al.[1][2]. Those papers focus on the predicates computable of that model, and show
that semilinear predicates are the necessary and suÆcient class of computable predi-
cates. Triggered by those seminal papers, a number of studies about population proto-
cols are now emerging.

The leader election is one of the popular problems considered in several papers [3, 8–
10] since the original study [1] uses the leader election algorithm as a building block
of the predicate computation. All of them include the interest to self-stabilization. The

1 This lower bound holds even if the symmetricity condition is removed from the STBTP model
[6].
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paper by Angluin et al. [3] is the first paper considering the self-stabilizing aspects of
population protocols. The following paper by Fischer and Jiang [9] considers the de-
sign of self-stabilizing leader election protocol on a population protocol model with
restricted communications. Cai et al. [8] investigates the space complexity of self-
stabilizing leader election. A relaxed variant of self-stabilizing leader election is studied
by Sudo et al. [10]. Under a certain kind of synchrony assumption, a generic scheme to
make a population protocol self-stabilizing is introduced by Beauquier et al. [7].

The computation with the base station is first considered by Beauquier et al. [6],
which consider the self-stabilizing counting. The aggregation problem is also consid-
ered in the same model [5].

Roadmap. The paper is organized as follows: Section 2 gives necessary definition and
terminology including the system model and the problem definition. In Section 3, we
provide a self-stabilizing counting protocol using 2P states and its correctness. The
second protocol using 3P�2 states and its correctness are provided in Section 4. We
present the conclusion in Section 5.

2 Preliminaries

2.1 System Model

A mobile sensor network consists of a base station and n undistinguishable mobile
sensors. A mobile sensor is modeled by an anonymous finite state machine (i.e., it has
no identifier and executes the same algorithm), and the base station is a special finite
state machine which executes an algorithm di�erent from mobile sensors. A sensor (or
the base station) changes its own state by pairwise interaction with other sensors or the
base station. The base station always outputs the computation results according to its
internal state. Formally a protocol of passively mobile sensor networks is specified by
a tuple (Qs� QB� A� B� B0� �� Æ). Each entry is defined as follows:

– A � �A1� � � � � An�: A finite set of sensors.
– B: The base station.
– QA: A finite set of states of sensors.
– QB: A finite set of states of the base station.
– B0: An initial state of the base station (the system initiates the state of the base

station by B0 � QB)
– �: The output maps from QB to Y (Y is a set of output values).
– Æ : Q2

A � Q2
A or QA � QB � QA � QB: A state transition function.

In this paper, we adopt the STBTP model [6]. Informally, that model does not allow
any symmetry breaking mechanism between two sensors. It is formally defined as the
following restriction to transition functions:

Definition 1. A protocol can run on STBTP model if its transition function Æ satisfies
that for any x � QA, Æ(x� x) � (y� z) implies y � z.

We assume that the system has the knowledge about the upper bound of the number
of all sensors, say P. In addition, we allow the value of �QA� and �QB� to depend on the
upper bound P. For a given protocol, let �(P) be the number of states of sensors for
upper bound P.
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2.2 Execution

An interaction between two sensors (or a sensor and the base station) which have states
xi and x j respectively is represented by an interaction event (or simply interaction)
e � �xi� x j�. Configuration C of the system consists of the states of the base station and
sensors. That is, C � (b� s1� s2� � � � � sn), where b is the state of the base station and si is
the state of the sensor Ai.

If a configuration C becomes C� by an interaction e it is denoted by C
e
�C�. A

configuration C� is reachable from C if there is a sequence of the configurations C �

Ck�Ck�1� � � � �C� � C� such that Ci
e
�Ci�1(k � i � �). We describe #(p) � x at a

configuration C if the number of sensors with state p is x at C.
An interaction e � �xi� x j� is applicable at configuration C if #(xi) � 0 and #(x j) � 0

at C. An execution of a protocol is an infinite sequence (C0� e0)� (C1� e1)� � � � such that e j

is applicable to C j and C j
ej
�C j�1 holds.

2.3 Fairness

Fairness is an assumption restricting the possible behavior of systems. Formally, it is
defined as a constraint for executions. Throughout this paper, we introduce the global
fairness, which is defined as follows:

Definition 2 (Global fairness). An execution E � (C0� e0)� (C1� e1)� 	 	 	 is globally fair:

for every pair of C and C� such that there exists an interaction e satisfying C
e
�C�, if

C � Ci for infinitely many i, then Ci � C and Ci�1 � C� for infinitely many i.

Intuitively, global fairness guarantees any possible execution from C actually occurs if
C appears infinitely often in the execution. Thus, it prevents the occurrence of livelock
caused by some looped execution.

2.4 Complexity Measure

In this paper, we measure the time complexity by asynchronous rounds (or simply
rounds). A round is defined as the shortest fragment of an execution in which each
sensor interacts with all of other sensors and the base station at least once.

2.5 Self-stabilizing Counting Problem

The counting problem requires that the base station eventually counts and outputs the
exact number of sensors in the system. The self-stabilizing property guarantees that the
configuration eventually converges to and stabilizes at legitimate configurations from
any initial configuration within finite rounds. In this paper, we consider a weaker form
self-stabilization property, which allows the initialization of the base station. This is
because if we allow any initial configuration including the base station and sensors, the
self-stabilizing counting problem cannot be solved [6]. The set of legitimate configura-
tions is defined by the output value of the base station. A configuration C is legitimate
if the output value of the base station is equal to n.
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3 A self-stabilizing Counting Protocol Using 2P States

3.1 Protocol

In this section, we present a self-stabilizing counting protocol with 2P sensor states
(i.e., �(P) � 2P). Throughout this section, we call it 2P-protocol.

Algorithm 1 shows the pseudo-code of our 2P-protocol. The basic principle of the
2P-protocol is that the base station gives a unique name i � [1��P] to each sensor. For
each name i, two di�erent states S i and Di are prepared. Thus, totally the number of
possible sensor states is 2P. Informally, the state S i implies that the sensor with name
i is expected to be unique. It should be noted that we just“expect” the uniqueness of
name i, and actually two or more sensors with that name can exist during executions.
The state Di means that at least two agents have the same name i2. For each name i, the
base station prepares one slot M[i], which has three possible states Free(F), Taken(T ),
and Wait(W). The intuitive meaning of each state can be described as follows:

– Free : The base station does not find the sensor with the corresponding name.
– Taken : The base station takes one sensor with the corresponding name.
– Wait : The base station is willing to take the sensor at next interaction.

Our protocol is designed so that in any legitimate configuration M[i] � T implies that
exactly one sensor has name i and its state is S i. Thus, the base station always outputs
the number of slots with state T as the counted number of sensors.

We explain the behavior of our protocol and the idea behind it. First, all slots of the
base station are initialized by F. When a sensor Ax with name i (whose state is either S i

or Di) interacts with the base station, the base station counts it by setting M[i] � T and
changing the state of Ax to S i. If no other sensor with name i exists, this slot must be
closed. Thus, when a sensor with state S i interacts with the base station of M[i] � T , no
update of states for name i occurs. On the other hand, if two or more sensors with names
i exist, we have to give di�erent names to them except for one. For that mechanism, the
state Di is introduced: If two sensors having state S i interact with each other, their
states are updated to Di. When a sensor Ax with state Di interacts with the base station
of M[i] � T , it is given a di�erent name j, which is selected from all indices such
that the corresponding slot has state F. After giving a di�erent name j, the base station
changes the state of slot M[i] to W, and newly counts the name j by setting M[ j] � T .
Since the state W is set to M[i], the sensor Ay with name i (other than Ax) is counted
again at its next interaction with the base station. Consequently, by the above process,
one agent Ax takes a new name di�erent from i. Repeating this process eventually gives
each agent a unique name.

3.2 Correctness

We prove the correctness of 2P-protocol by showing that the output of the base station
converges to the exact number of the sensors in the network. In the proof, we do not de-
scribe interaction which do not change configuration, for example interaction between
a sensor with state S i and a sensor with state Di.

2 The only exceptional case when exactly one sensor has the name i with state Di initially.
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Algorithm 1. 2P-protocol
variable of sensor :

state � �S 0� � � � � S P�1� D0� � � � � DP�1�

variables of the base station :
M : array of size P (the initial value of each entry F)

When a sensor interacts with the base station :
if state � S i then

M[i] � T
else if state � Di then

if M[i] � T then
Let h be the index such that M[h] � F
M[i] � W
state � S h

M[h] � T
else if M[i] � �W� F� then

state � S i

M[i] � T
end if

end if

When two sensors interact :
if both states are S i then

state � Di

end if

Lemma 1. If M[i] � F and #(S i) � #(Di) � 0 at Ch, the following two properties hold:

1. #(S i) � #(Di) does not increase in any execution from Ch.
2. There exists an execution from Ch where #(S i) � #(Di) decreases by one if #(S i) �

#(Di) � 1.

Proof. (The proof of 1.) Since M[i] � F holds at Ch, this property clearly holds because
the number of #(S i) � #(Di) can increase only if M[i] � F.

(The proof of 2.) We first show that if M[i] � W at Ch, we can obtain the execution
from Ch where the state of the base station eventually satisfies M[i] � T . Since there
exists at least one sensor Ax with state S i or Di, the base station can interact with Ax,
which changes the state of M[i] to T . This interaction is the execution we find.

Since we also have #(S i) � #(Di) � 1, there are two sensors Ay and Az whose states
are S i or Di. If both of them have state S i, we can create the state Di by making them
interact. Consequently, we can have an execution that takes Ch to the configuration C�

with M[i] � T and #(Di) � 0. If the sensor with state Di interacts with the base station
at C�, #(Di) decreases by one. The lemma is proved. 
�

Lemma 2. A configuration satisfying M[i] � T, #(S i) � 0 and #(Di) � 1 for all i is not
reachable from any initial configuration.

Proof. Suppose by contradiction that there is a configuration Ck where #(S i) � 0�
#(Di) � 1 and M[i] � T in some possible execution. Without loss of generality, we
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assume k is the smallest index satisfying those conditions. That is, Ck�1 does not sat-
isfy at least one of them. Let e be the interaction changing Ck�1 to Ck. If e changes the
state of M[i] to T , it also increases the number of sensors with state S i by one , which
contradicts the fact that #(S i) � 0 at Ck. If e does not change the state of M[i]. Then,
M[i] � T also holds at Ck�1 because M[i] � W at Ck�1 implies #(S i) � 0 at Ck. If e
is the interaction with the base station, the only possible situation is a sensor with state
S i interacts at e, which contradicts #(S i) � 0 at Ck. If e is the interaction between two
sensors, #(S i) � #(Di) � 2 must hold at Ck. This is also a contradiction. 
�

Lemma 3. For any configuration reachable from some initial configuration, if M[i] �
�W� T �, #(S i) � #(Di) � 1.

Proof. Suppose by contradiction that #(S i) � #(Di) � 0 at a configuration Ck. We
can assume Ck is the first configuration satisfying that condition. That is, either M[i] �
�T�W� or #(S i)�#(Di) � 1 does not hold at Ck�1. If M[i] � F at Ck�1, #(S i)�#(Di) � 1
at Ck�1 necessarily holds. A contradiction. If #(S i)�#(Di) � 1 holds at Ck�1, one sensor
Ax with state either S i or Di must disappear by interaction ek�1. This implies that Ax

has state Di and interacts with the base station of M[i] � T . However, it follows that
#(S i) � 0, #(Di) � 1, and M[i] � T hold at Ck�1. It contradicts Lemma 2. 
�

Lemma 4. There is an index j such that M[ j] � F when a sensor of state Di interacts
with the base station satisfying M[i] � T.

Proof. We can trivially deduce this lemma from Lemma 3 and the pigeonhole principle.

�

Theorem 1. Any initial configuration is reachable to a legitimate configuration and
any legitimate configuration can reach only legitimate configurations.

Proof. If M[i] � F and #(S i) � #(Di) � 0 at Ch, the system eventually reaches con-
figuration Ck such that M[i] � T because the base station interacts a sensor with state
S i or Di. By Lemma 1 and 3, if M[i] � F holds, the system eventually stabilizes on a
configuration C where #(S i) � #(Di) � 1. Lemma 2 implies that C satisfies #(S i) � 1
and M[i] � T . So the system converges to a legitimate configuration. 
�

3.3 Convergence Time

We can show that the number of sensors with the same name decreases by half in two
rounds and thus it converges to a legitimate configuration in O(log n) rounds, where n
is the number of sensors.

Lemma 5. If the number of sensors is #(S i)�#(Di) � k(k � 1) at the configuration Ch,
then the number of sensors satisfies #(S i) � #(Di) � k �  k

2 � after two rounds.

Proof. Consider two consecutive asynchronous rounds r and r � 1. Let E � e�1� e
�

2� e
�

3�

	 	 	 e�m be the sequence of interactions between a sensor with state Di and the base station
in the order of their occurrences. Since M[i] � W at interaction e�l implies M[i] � T
at interaction e�l�1. Thus, at least m�2� sensors obtain a name di�erent from i. The
remaining part of the proof is to show m � k � 1. Let T1 be the set of sensors such
that it has state Di at the interaction with the base station at round r, and T2 be the set
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of sensors with name i not belonging to T1. If �T2� � 1, we obtain m � �T1� � k � 1.
Thus we assume �T2� � 1. Since any sensor in T2 interacts with some other sensor in
T2 during round r, its state is Di at the beginning of round r � 1. Exceptionally, if �T2�

is odd, one sensor keeps state S i. Consequently, at least �T2� � 1 sensors has state Di

at the beginning of round r � 1. This implies that any sensor in T2 has state Di at the
interaction with the base station during round r � 1. That is, they appear in E, and thus
m � �T1� � �T2� � 1 � k � 1. 
�

The above lemma directly implies the following theorem.

Theorem 2. The convergence time of 2P-protocol is O(log n).

4 A self-stabilizing Counting Protocol Using 3P�2 States

4.1 Protocol

In this section, we improve the self-stabilizing counting 2P-protocol to one with 3P�2
sensor states (i.e., �(P) � 3P�2). Throughout this section, we call it 3P�2-protocol and
without loss of generality, we assume that P is an even number.

In the 2P-protocol, we used 2P sensor states and we prepared two states S i and Di

for each sensor name i. Note that S i and Di show the uniqueness and the duplication of
a sensor name i, respectively. If we reduce the number of sensor states to less than 2P,
such Di’s can not be prepared for each name i. Since we design 3P�2-protocol, for each
sensor name i we prepare Di for S 2i and S 2i�1.

Algorithm 2 shows the pseudo-code of the 3P�2-protocol. Its basic idea is similar to
that of the 2P-protocol but it is more complicated because we do not have a suÆcient
number of sensor states. Like the 2P-protocol, for each name i the base station prepares
one slot M[i], which has three possible states Free(F), Taken(T ), and Lock(L). The
intuitive meanings of F and T are the same as those in the 2P-protocol but that of L is
that the base station waits a sensor with state S 2i, S 2i�1 or Di and locks transition S 2i or
S 2i�1 from other state of a sensor.

In order to explain the behavior of the 3P�2-protocol, we introduce a notion called
block. A block i is defined as the numbers of sensors with S 2i, S 2i�1, and Di and the
values of slots M[2i] and M[2i � 1] in the base station and is denoted by
� #(S 2i)� #(S 2i�1)� #(Di)� M[2i]� M[2i� 1] � and #(S 2i)� #(S 2i�1)� #(Di) is denoted by
	(i). The configuration of our protocol can be denoted by (block0� � � � � blockP�2�1).

special states of blocks: If blocki is � 1� 1� 0� T� T �, blocki is said to be completely-
closed. If blocki is either � 1� 0� 0� T� F � or � 0� 1� 0� F� T �, blocki is said to be semi-
closed. If blocki is � 0� 0� 0� F� F �, it is said to be empty. If blocki is completely-closed,
semi-closed or empty, it is said to be closed.

If blocki is either � 1� 0� 1� T� T � or � 0� 1� 1� T� T �, it is celled error-block.
If all blocks are closed, the base station can count the exact number of sensors in

the network. Thus, legitimate configurations of the 3P�2-protocol are defined to be
configurations such that all blocks are closed.

We explain the behavior of the 3P�2-protocol. Like the 2P-protocol, all slots of the
base station are initialized to F. The behavior of the 3P�2-protocol depends on the
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number of sensors in blocki(that is 	(i)). When the base station interacts with a sensor
with state S 2i(or S 2i�1), the corresponding slot is set to T . The role of the state Di is
similar to the case for the 2P-protocol but in the 3P�2-protocol, for the both cases that
two sensors with state S 2i (and S 2i�1) interact with each other their states are updated
to the same Di. When the base station interacts with a sensor with state Di, it decides
the slots and the state of the sensor based on the slot values of M[2i] and M[2i � 1].

If M[2i] � M[2i � 1] � T , the base station notices that 	(i) � 33 and sets both
M[2i] and M[2i � 1] to Ls meaning that the base station wait a sensor in blocki and
locks transition S 2i and S 2i�1 from other state of a sensor and chooses a next state of the
sensor if there is a free index j such that M[ j] � F. In this case, 	(i) decreases by one.
If there is no free slot, the base station sets M[2i] � F and the state of the interacting
sensor is set to S 2i. In this case, since it will be proved that if M[ j] � T then there is
only one sensor with S j, blocki will become completely-closed.

If M[2i] � M[2i � 1] � L, the base station notices that there are at least two sensors
with S 2i and S 2i�1 and the state of one of them is changed to S j such that M[ j] � F and
it sets M[2i] � T and M[2i � 1] � F. By repeating this case and the above case, 	(i)
will eventually become at most two and thus, blocki will become closed.

Otherwise, the base station notices that 	(i) � 2 for blocki. It can be easily verified
that blocki will eventually become closed.

4.2 Correctness

We prove the correctness of 3P�2-protocol i.e. the output of the base station converges
to the correct number of sensors. Since we can easily verify the closure of the 3P�2-
protocol, that proof is omitted.

Lemma 6. If block i is error-block and there is no interaction e such that 	(i) increases,
it eventually becomes semi-closed.

Proof. We prove the case that the block i is error-block � 1� 0� 1� T� T � in a configura-
tion Ch. Another case that blocki �� 0� 1� 1� T� T � can be treated similarly. Since the
base station is M[2i] � M[2i � 1] � T , 	(i) does not increase and if the base station
interacts with a sensor with state S i, the configuration do not change. By the fairness
assumption, the base station eventually interacts with a sensor with state Di, and the
block i reaches � 1� 0� 0� L� L �. Since M[2i] � M[2i� 1] � L, the number of sensors in
block i does not increase. And the base station eventually interacts with the sensor with
state S i. The block i becomes semi-closed. 
�

Lemma 7. If a configuration Ch has blocki such that 	(i) � 2, Ch eventually reaches a
configuration Ck (k � h) where the base station has M[2i] � T and M[2i � 1] � T.

Proof. We assume that there is more than one sensor in the block i at the configuration
Ch. If two sensors have di�erent states S 2i and S 2i�1, the base station eventually interacts

3 M[2i] � M[2i � 1] � T means the base station has assigned S 2i and S 2i�1 to states of its
interacting sensors. Therefore, since the base station interacts with a sensor with state Di,
which initially exists or is newly created via interaction of two sensors with state S 2i or S 2i�1,
it notices that there is at least a sensor with state Di in addition to those with S 2i and S 2i�1.
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Algorithm 2. 3P�2-Protocol
variable of sensor :

state � �S 0� � � � � S P�1� D0� � � � � DP�2�1�

variables of the base station :
M : array of size P (initial value is F)

Transition when the base station interacts with sensor:
if state � S 2i then

M[2i] � T
if M[2i � 1] � L then

M[2i � 1] � F
end if

else if state � S 2i�1 then
M[2i � 1] � T
if M[2i] � L then

M[2i] � F
end if

else if state � Di then
if M[2i] � T � M[2i � 1] � T then

�� The base station knows �(i) � 3
if there is index h such that M[h] � F then

M[2i] � L
M[2i � 1] � L
state � S h

else
M[2i] � T
M[2i � 1] � F
state � S 2i

end if
else if M[2i] � T then

M[2i] � T
state � S 2i

else
M[2i � 1] � T
state � S 2i�1

end if
end if

Transition when two sensors interact each other :
if both sensors’ state is S i then

state � D
� i

2 �

end if

with these sensors, and hence block i reaches a configuration such that M[2i] � T and
M[2i�1] � T . If there are sensors with the same state S 2i or S 2i�1, these sensors interact
with each other and change their states to Di. Since the base station will interact with
two Di’s, block i reaches a configuration where M[2i] � T � M[2i � 1] � T . 
�
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Lemma 8. Assume that a configuration has blocki such that 	(i) � 3. Then there must
be an interaction e where a sensor with state Di interacts with the base station with
M[2i] � T and M[2i � 1] � T.

Proof. Since the block i has more than one sensors, the system reaches configuration
Ck in which the base station’s state is M[2i] � T and M[2i � 1] � T by Lemma 7.
If there is no sensor with state Di in Ck, then there are more than two sensors with
state S 2i or S 2i�1. These sensors with the same state interact with each other by fairness
assumption. So the system is reachable to the block i having a sensor with state Di and
thus the interaction e occurs. 
�

Lemma 9. If 	(i) � 2 and no an interaction e where a sensor state is changed into
neither S 2i nor S 2i�1 occur. blocki will eventually become closed.

Proof. If	(i) decreases, blocki will become error-block and thus semi-closed by Lemma
6. If 	(i) does not change, we consider three cases. First, when two sensors having dif-
ferent states interact with the base station, there are sensors with states S 2i and S 2i�1

and the base station with state M[2i] � T and M[2i] � T . Second, when there are sen-
sors with a same state, these sensors interact with each other and change their states to
Di. Then the base station interacts with these sensors, and block i becomes completely-
closed. Third, if the state of the base station is M[2i] � T and M[2i � 1] � T , but a
sensor with state Di interacts with the base station and the state of the interacting sensor
is changed to S 2i. If the state of the other sensor is S 2i�1 or Di, the sensor eventually
interacts with the base station and the block i become completely-closed. Otherwise the
state of the other sensor is S 2i, two sensors have same state S 2i. these sensors interact
with each other and two sensors with state Di appear. Thin case can be reduced to the
second case. 
�

Lemma 10. Let Ck be a configuration with k non-closed blocks. If the number of non-
closed blocks does not decrease, a configuration reachable from Ck satisfies that the
number of sensors in non-closed blocks are at most 2k.

Proof. Assume that the number of non-closed blocks will not decrease from Ck. If
the number of sensors in non-closed blocks more than 2k, there is a block where the
number of sensors is more than two and there must be a semi-closed block among the
closed blocks. By Lemma 8, the base station interacts with a sensor with state Di. The
interacting sensor will eventually reach a semi-closed block. 
�

Theorem 3. Any configuration Ci eventually reaches a legitimate configuration C�.

Proof. We prove that the number of non-closed blocks decreases from Ci. We assume
the number of non-closed blocks is k at Ci and the number of non-closed blocks will
not decrease from Ci. When the number of non-closed blocks does not decrease, non-
closed blocks such that 	(i) � 1 must increase the number of sensors because if the
number of sensors does not increase, these blocks become semi-closed. And non-closed
blocks such that 	(i) � 2 must not decrease the number of sensors by Lemma 6 and
must increase the number of sensors because if the number of sensors in block do not
increase, these sensors become completely-closed by Lemma 9. Since Ci will eventually
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reach C� such that �i	(i) � 2. Then C� will eventually reach C�� which the number of
sensors in non-closed blocks are at most 2k and �i	(i) � 2. If all non-closed blocks are
	(i) � 2 in C��, closed block will eventually increase by Lemma 9. If any non-closed
block is 	(i) � 3 in C��, it is a contradiction. 
�

5 Concluding Remarks

We have presented space-eÆcient self-stabilizing counting protocols on a passively-
mobile sensor network with the base station. It is an interesting open problem to obtain
more space-eÆcient protocols on the STBTP model or better lower bounds on STBTP
model. On the ATBTP model allowing symmetry breaking mechanism between two
sensors, that is, a transition function Æ can be Æ(x� x) � (y� z)(y � z), a protocol with
�(P) � P can be constructed and it can attain the lower bound [6]. However, it is not
known on the STBTP model we must use some property about the symmetricity of
transition functions in order to get better lower bounds.
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Busch, Costas 348
Busnel, Yann 64

Chalopin, Jérémie 119
Chatzigiannakis, Ioannis 103
Chen, Jingshu 135
Cornejo, Alejandro 87

Das, Shantanu 119
Dellinger, Matthew 270
Dice, Dave 333
Dolev, Shlomi 16
Dubois, Swan 83

Erickson, Jeremy 286

Fernández Anta, Antonio 32
Flammini, Michele 443
Fujinaga, Nao 1

Gafni, Eli 205, 380
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