

Lecture Notes in Computer Science 6467
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Swee-Huay Heng Rebecca N. Wright
Bok-Min Goi (Eds.)

Cryptology
and Network
Security

9th International Conference, CANS 2010
Kuala Lumpur, Malaysia, December 12-14, 2010
Proceedings

13

Volume Editors

Swee-Huay Heng
Multimedia University
Faculty of Information Science and Technology
Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
E-mail: shheng@mmu.edu.my

Rebecca N. Wright
Rutgers University
Department of Computer Science
96 Frelinghuysen Road, Piscataway, NJ, 08854, USA
E-mail: rebecca.wright@rutgers.edu

Bok-Min Goi
Universiti Tunku Abdul Rahman
Faculty of Engineering and Science
Kuala Lumpur Campus, Jalan Genting Klang, 53300 Kuala Lumpur, Malaysia
E-mail: goibm@utar.edu.my

Library of Congress Control Number: 2010940115

CR Subject Classification (1998): E.3, C.2, K.6.5, D.4.6, G.2.1, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-17618-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17618-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The 9th International Conference on Cryptology and Network Security
(CANS 2010) was held in Kuala Lumpur, Malaysia during December 12–14,
2010. The conference was co-organized by the Multimedia University (MMU),
Malaysia, and Universiti Tunku Abdul Rahman (UTAR), Malaysia.

The conference received 64 submissions from 22 countries, out of which 21
were accepted after a careful and thorough review process. These proceedings
also contain abstracts for two invited talks. All submissions were reviewed by at
least three members of the Program Committee; those authored or co-authored
by Program Committee members were reviewed by at least five reviewers. Pro-
gram Committee members were allowed to use external reviewers to assist with
their reviews, but remained responsible for the contents of the review and rep-
resenting papers during the discussion and decision making. The review phase
was followed by a 10-day discussion phase in which each paper with at least
one supporting review was discussed, additional experts were consulted where
needed, and final decisions were made.

We thank the Program Committee for their hard work in selecting the pro-
gram. We also thank the external reviewers who assisted with reviewing and
the CANS Steering Committee for their help. We thank Shai Halevi for use of
his Web-Submission-and-Review software that was used for the electronic sub-
mission and review of the submitted papers, and we thank the International
Association for Cryptologic Research (IACR) for Web hosting of the software.

The main goal of the conference is to promote research on all aspects of net-
work security, as well as to build a bridge between research on cryptography and
network security. The current edition continues to fulfill this goal with the broad
range of areas covered by the high-quality accepted papers, including both the-
oretical and practical analysis of cryptographic primitives and protocols; secure
systems and mechanisms for networked applications such as cloud computing,
electronic voting, and mobile computing; and advances in anonymous creden-
tials and their use. In addition, the conference featured two invited speakers
to present their cutting-edge research: Kaoru Kurosawa of Ibaraki University,
Japan, on “Cryptography for Unconditionally Secure Message Transmission in
Networks” and Ahmad-Reza Sadeghi of Technical University Darmstadt, Ger-
many, on “Cryptography Meets Hardware: Selected Topics of Hardware-based
Cryptography”; these talks contributed greatly to the conference program.

VI Preface

Finally, we thank the local Organizing Committee for their dedication and
commitment in organizing the conference. We also thank all authors who sub-
mitted papers, whether or not they were accepted, and all conference attendees
for their contribution to a lively and energetic conference.

December 2010 Swee-Huay Heng
Rebecca N. Wright

Bok-Min Goi

CANS 2010

The 9th International Conference on Cryptology and Network Security

Kuala Lumpur, Malaysia
December 12–14, 2010
Jointly organized by

Multimedia University, Malaysia
and

Universiti Tunku Abdul Rahman, Malaysia

General Chair

Bok-Min Goi Universiti Tunku Abdul Rahman, Malaysia

Program Co-chairs

Swee-Huay Heng Multimedia University, Malaysia
Rebecca N. Wright Rutgers University, USA

Program Committee

Michel Abdalla Ecole Normale Superieure, France
William Arbaugh University of Maryland, USA
John Black University of Colorado at Boulder, USA
Carlo Blundo University of Salerno, Italy
Xavier Boyen University of Liege, Belgium
Melissa Chase Microsoft Research, USA
Sherman S.M. Chow New York University, USA
Giovanni Di Crescenzo Telcordia Technologies, USA
Rosario Gennaro IBM Research, USA
Bok-Min Goi Universiti Tunku Abdul Rahman, Malaysia
Matthew Green Johns Hopkins University, USA
Tetsu Iwata Nagoya University, Japan
Aaron D. Jaggard Rutgers University, USA
Trevor Jim AT&T Labs Research, USA
Charanjit Jutla IBM Research, USA
Seny Kamara Microsoft, USA
Jonathan Katz University of Maryland, USA

VIII Organization

Khoongming Khoo DSO National Laboratories, Singapore
Aggelos Kiayias University of Athens, Greece
Kwangjo Kim KAIST, Korea
Vladimir Kolesnikov Bell Labs, Alcatel-Lucent, USA
Lee Kai (Joseph) Liu Institute for Infocomm Research, Singapore
Javier Lopez University of Malaga, Spain
Mark Manulis Technische Universität Darmstadt, Germany
Adam O’Neill University of Texas at Austin, USA
Wakaha Ogata Tokyo Institute of Technology, Japan
Raphael C.-W. Phan Loughborough University, UK
Josef Pieprzyk Macquarie University, Australia
David Pointcheval CNRS & ENS, France
Georgios Portokalidis Columbia University, USA
C. Pandu Rangan Indian Institute of Technology, India
Rei Safavi-Naini University of Calgary, Canada
Tomas Sander Hewlett-Packard Labs, USA
Nitesh Saxena Polytechnic Institute of NYU, USA
William Skeith City College of New York, USA
Jessica Staddon Google, USA
Angelos Stavrou George Mason University, USA
Douglas Stinson University of Waterloo, Canada
Ivan Visconti University of Salerno, Italy
Poorvi Vora George Washington University, USA
Xiaoyun Wang Shandong University, China
Hoeteck Wee Queens College, CUNY, USA
Susanne Wetzel Stevens Institute of Technology, USA
Danfeng Yao Virginia Tech, USA
Sung-Ming Yen National Central University, Taiwan

Steering Committee

Yvo Desmedt University College London, UK
Matthew Franklin University of California at Davis, USA
Juan A. Garay AT&T Labs - Research, USA
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS & ENS, France
Huaxiong Wang National Technological University, Singapore

Organizing Committee

Local Organizing Chair Victor Hock-Kim Tan, UTAR
Secretariat Ji-Jian Chin, MMU
Publicity Yong-Haur Tay, UTAR
Finance Thian-Song Ong, MMU

Organization IX

Webmaster Goh Kah-Ong Michael, MMU
Logistics Tommy Tong-Yuen Chai, UTAR

Zan-Kai Chong, UTAR
Swee-Eng Khor, MMU
Priya a/p Kulampurath Govindan Nair, UTAR
Huo-Chong Ling, MMU
Syh-Yuan Tan, UTAR
Yar-Ling Tan, UTAR
Wei-Chuen Yau, MMU

External Reviewers

Shweta Agrawal
Hadi Ahmadi
Werner Backes
Angelo De Caro
David Cash
Chien-Ning Chen
Ashish Choudhary
Jiali Choy
Cheng-Kang Chu
Dario Fiore
Pierre-Alain Fouque

Jian Guo
Tzipora Halevi
Islam Hegazy
Vincenzo Iovino
Srinivas Krishnan
Virendra Kumar
Wei-Chih Lien
Yasuda Masaya
Marine Minier
Sai Teja Peddinti
Nashad Safav

Alessandra Scafuro
Elaine Shi
Jaechul Sung
Syh-Yuan Tan
Jheng-Hong Tu
Ashraful Tuhin
Jonathan Voris
Douglas Wikstrom
Huihui Yap
Aileen Zhang
Tongjie Zhang

Table of Contents

Block Ciphers

Cryptanalysis of Reduced-Round MIBS Block Cipher 1
Asli Bay, Jorge Nakahara Jr., and Serge Vaudenay

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds . . . 20
Chenghang Du and Jiazhe Chen

An Algorithm Based Concurrent Error Detection Scheme for AES 31
Chang N. Zhang, Qian Yu, and Xiao Wei Liu

Invited Talk I

Cryptography for Unconditionally Secure Message Transmission in
Networks (Abstract) . 43

Kaoru Kurosawa

Wireless Network Security

Performance and Security Aspects of Client-Side SSL/TLS Processing
on Mobile Devices . 44

Johann Großschädl and Ilya Kizhvatov

A Practical Cryptographic Denial of Service Attack against 802.11i
TKIP and CCMP . 62

Martin Eian

User Tracking Based on Behavioral Fingerprints . 76
Günther Lackner, Peter Teufl, and Roman Weinberger

Hash Functions

On the Collision and Preimage Resistance of Certain Two-Call Hash
Functions . 96

Nasour Bagheri, Praveen Gauravaram, Majid Naderi, and
Søren S. Thomsen

Integral Distinguishers of Some SHA-3 Candidates 106
Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse

Near-Collisions on the Reduced-Round Compression Functions of Skein
and BLAKE . 124

Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong

XII Table of Contents

Public Key Cryptography

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 140
Johannes Buchmann, Stanislav Bulygin, Jintai Ding,
Wael Said Abd Elmageed Mohamed, and Fabian Werner

Generating Parameters for Algebraic Torus-Based Cryptosystems 156
Tomoko Yonemura, Yoshikazu Hanatani, Taichi Isogai,
Kenji Ohkuma, and Hirofumi Muratani

Analysis of the MQQ Public Key Cryptosystem . 169
Jean-Charles Faugère, Rune Steinsmo Ødeg̊ard, Ludovic Perret, and
Danilo Gligoroski

Efficient Scalar Multiplications for Elliptic Curve Cryptosystems Using
Mixed Coordinates Strategy and Direct Computations 184

Roghaie Mahdavi and Abolghasem Saiadian

Invited Talk II

Cryptography Meets Hardware: Selected Topics of Hardware-Based
Cryptography (Abstract) . 199

Ahmad-Reza Sadeghi

Secure Mechanisms

Towards a Cryptographic Treatment of Publish/Subscribe Systems 201
Tsz Hon Yuen, Willy Susilo, and Yi Mu

STE3D-CAP: Stereoscopic 3D CAPTCHA . 221
Willy Susilo, Yang-Wai Chow, and Hua-Yu Zhou

TRIOB: A Trusted Virtual Computing Environment Based on Remote
I/O Binding Mechanism . 241

Haifeng Fang, Hui Wang, Yiqiang Zhao, Yuzhong Sun, and
Zhiyong Liu

Cryptographic Protocols

Dynamic Group Key Exchange Revisited . 261
Guomin Yang and Chik How Tan

Towards Practical and Secure Coercion-Resistant Electronic
Elections . 278

Roberto Araújo, Narjes Ben Rajeb, Riadh Robbana,
Jacques Traoré, and Souheib Yousfi

Table of Contents XIII

Anonymous Credentials

Predicate Encryption with Partial Public Keys . 298
Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano

Anonymous Credential Schemes with Encrypted Attributes 314
Jorge Guajardo, Bart Mennink, and Berry Schoenmakers

One Time Anonymous Certificate: X.509 Supporting Anonymity 334
Aymen Abed and Sébastien Canard

Author Index . 355

Cryptanalysis of Reduced-Round MIBS Block
Cipher

Asli Bay, Jorge Nakahara Jr.�, and Serge Vaudenay

EPFL, Switzerland
{asli.bay,jorge.nakahara,serge.vaudenay}@epfl.ch

Abstract. This paper presents the first independent and systematic lin-
ear, differential and impossible-differential (ID) cryptanalyses of MIBS,
a lightweight block cipher aimed at constrained devices such as RFID
tags and sensor networks. Our contributions include linear attacks on
up to 18-round MIBS, and the first ciphertext-only attacks on 13-round
MIBS. Our differential analysis reaches 14 rounds, and our impossible-
differential attack reaches 12 rounds. These attacks do not threaten the
full 32-round MIBS, but significantly reduce its margin of security by
more than 50%. One fact that attracted our attention is the striking
similarity of the round function of MIBS with that of the Camellia block
cipher. We actually used this fact in our ID attacks. We hope further
similarities will help build better attacks for Camellia as well.

Keywords: cryptanalysis, lightweight block ciphers, RFID tags, sensor
networks.

1 Introduction

This paper describes the first independent and systematic linear, differential
and impossible-differential cryptanalyses on reduced-round variants of the MIBS
block cipher. MIBS is a lightweight cipher, with a Feistel structure, aimed at
ubiquitous but constrained environments, such as RFID tags and sensor networks
[6]. MIBS operates on 64-bit blocks, uses keys of 64 or 80 bits and iterates
32 rounds. There is a striking similarity between the round functions of MIBS
and Camellia ciphers [1]. This feature was actually exploited in our impossible-
differential analysis of MIBS in Sect.5. Our results are summarized in Table 6.

Previous cryptanalytic results on MIBS, presented by its designers, concerned
differential and linear relations on up to 4-round MIBS. Nonetheless, no full
attacks were ever detailed. We provide better distinguishers and attacks on up
to 18 rounds, effectively reducing the margin of security of MIBS by more than
50% as originally predicted by its designers.

This paper is organized as follows: Sect. 2 describes the main components
of MIBS relevant for the attacks in this paper; Sect. 3 details linear relations
� This work was supported by the National Competence Center in Research on Mo-

bile Information and Communication Systems (NCCR-MICS), a center of the Swiss
National Science Foundation under grant number 5005-67322.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 1–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Bay, J. Nakahara Jr., and S. Vaudenay

and attacks on reduced-round versions of MIBS; Sect. 4 presents differential
characteristics and attacks; Sect. 5 presents impossible-differential distinguishers
and attacks; Sect. 6 concludes this paper.

2 A Brief Description of MIBS

MIBS is a block cipher following a Feistel Network design [6]. MIBS operates
on 64-bit blocks, uses keys of 64 or 80 bits, and iterates 32 rounds for both key
sizes. All internal operations in MIBS are nibble-wise, that is, on 4-bit words.
The round function F of MIBS has an SPN structure composed of an xor layer
with a round subkey, an S layer of 4×4-bit S-boxes, and a linear transformation
layer (with branch number 5), in this order.

For our attack purposes, the linear transformation (P layer) is most relevant.
Let (y1, y2, y3, y4, y5, y6, y7, y8) denote the input to this layer. Its output, (y′

1, y′
2,

y′
3, y′

4, y′
5, y′

6, y′
7, y′

8), can be described as

y′
1 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8; y′

2 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7;
y′
3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8; y′

4 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8;
y′
5 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8; y′

6 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6;
y′
7 = y1 ⊕ y1 ⊕ y3 ⊕ y6 ⊕ y7; y′

8 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, (1)

where ⊕ denotes exclusive or.
The input text block to the i-th round is denoted (Li−1, Ri−1), with Li, Ri ∈

{0, 1}32, and (Ri−1 ⊕ F (Ki, Li−1), Li−1) denotes the round output. (L0, R0)
denotes a plaintext block.

The key schedule of MIBS is adapted from the key schedule of PRESENT [4].
There are two versions of key schedule of MIBS, both generating 32-bit round
subkeys Ki for 1 ≤ i ≤ 32, from 64-bit and 80-bit user keys, respectively. Let
statei denote the ith round key state; state0 denote the user key. The 80-bit
version of key schedule of MIBS, with bit numbering in right-to-left order from
1 to 80, is as follows:
for i = 1 to i = 32,

statei = statei−1 ≫ 19,
statei = S[statei[80 ∼ 77]]‖S[statei[76 ∼ 73]]‖statei[72 ∼ 1],
statei = statei[80 ∼ 20]‖statei[19 ∼ 15]⊕ Counter ‖statei[14 ∼ 1],
Ki = statei[80 ∼ 49].

where ’≫’ means bitwise right-rotation, ’‖’ means string concatenation, and
’∼’ indicates a sequence of bit positions. We refer to [6] for further details about
MIBS components.

3 Linear Cryptanalysis

In [6], the designers claimed security of MIBS against linear cryptanalysis by
providing a 4-round linear relation with 7 active S-boxes, and overall bias 2−8.

Cryptanalysis of Reduced-Round MIBS Block Cipher 3

Table 1. A 4-round linear relation for MIBS

Round i ΓLi−1 ΓRi−1 Number of active S-boxes Bias
1 00600600x 02202220x 1 2−2

2 02202220x 00660600x 2 2−3

3 00660600x 00202200x 2 2−3

4 00202200x 60666600x 1 2−2

5 60666600x 00002200x - -

They assumed that this relation was iterative (although it was not) and claimed
resistance of the full 32-round MIBS to linear attacks.

Firstly, we derived the linear approximation table (LAT) for1 the 4× 4 S-box
of MIBS. See Table 7 in the appendix. We note that this S-box is linearly 4-
uniform2 (an analogous concept to that used in DC, Sect. 4). Thus, the highest
bias is 2−2. We have found a better 4-round linear relation, described in Table 1,
with only six active S-boxes and bias 2−7. The last pair of bit masks in Table 1
stand for the output masks after the swapping of half blocks in a round.

We denote the input mask to the i-th round as (ΓLi−1, ΓRi−1). The (i+1)-th
round input mask is the i-th round output mask. Values subscripted by ’x’ are
in hexadecimal base.

3.1 Searching for Linear Relations for MIBS

For a systematic linear analysis of MIBS, we automated the search procedure by
creating a program to look for linear relations of MIBS according to the following
criteria:

– focus on iterative linear relations, preferably;
– maximize the overall bias by minimizing the number of active S-boxes;
– use the fact that the S-box is linearly 4-uniform (Table 7);
– use the fact that the branch number of the P permutation in the F function

of MIBS is 5 (which is claimed to be optimal)

Taking into account these criteria, the best result of our search is the 16-round
linear relation with 30 active S-boxes and bias 2−31 in Table 2. From the LAT
of MIBS, Table 7, there are six possible instantiations of this linear relation,
that is, (w, z) ∈ {(2x, 6x), (6x, 2x), (4x, ex), (ex, 4x), (8x, dx), (dx, 8x)}, where we
exploited the symmetry w

S−box→ z and z
S−box→ w (both with the same bias 2−2).

The last line of Table 2 accounts for the swapping between half blocks. The first
15 rounds of this distinguisher corresponds to the best 15-round linear relation
(with 28 active S-boxes, and bias 2−29) that will be used in a key-recovery attack
in Sect. 3.2.
1 The LAT of an S-box stands for a table containing an exhaustive enumeration of all

linear approximations of the given S-box.
2 It means that the largest entry in the LAT has value 4.

4 A. Bay, J. Nakahara Jr., and S. Vaudenay

Table 2. A 16-round linear relation for MIBS

Round i ΓLi−1 ΓRi−1 Number of active S-boxes Bias
1 w000w0w0x 00000000x 0 2−1

2 00000000x w000w0w0x 2 2−3

3 w000w0w0x z0000z00x 3 2−4

4 z0000z00x w000ww0wx 2 2−3

5 w000ww0wx z000zz0zx 2 2−3

6 z000zz0zx w0000w00x 3 2−4

7 w0000w00x z000z0z0x 2 2−3

8 z000z0z0x 00000000x 0 2−1

9 00000000x z000z0z0x 2 2−3

10 z000z0z0x w0000w00x 3 2−4

11 w0000w00x z000zz0zx 2 2−3

12 z000zz0zx w000ww0wx 2 2−3

13 w000ww0wx z0000z00x 3 2−4

14 z0000z00x w000w0w0x 2 2−3

15 w000w0w0x 00000000x 0 2−1

16 00000000x w000w0w0x 2 2−3

17 w000w0w0x z0000z00x - -

3.2 17-Round Multiple Linear Attack

We perform a key-recovery attack on 17-round MIBS by considering the first
fifteen rounds of the linear distinguisher in Table 2, placed between rounds 2
and 16. We recover subkey bits from the first and last rounds.

The main relation for this 17-round attack is

(R0 ⊕ F (K1, L0)) · w000w0w0x⊕ (L17 ⊕ F (K17, R17)) · w000w0w0x = 0, (2)

where w is one of the values indicated in Sect. 3.1. Due to the low branch num-
ber of the P layer (see Sect. 2), only two subkey nibbles need to be guessed
in both F (K1, L0) and F (K17, R0). See Fig. 1. Following [3], we use four vari-
ations of (2) for four values of w that lead to linearly independent relations:
w ∈ {2x, 4x, 8x, dx}. According to [3], the combined bias of these multiple linear
relations is

√
4 · (2−29)2 = 2−28. The data complexity is 4/(2−28)2 = 258 KP.

The attack procedure follows [7]:

– Take 258 known plaintexts and request the corresponding ciphertexts en-
crypted under the unknown secret key K.

– for w ∈ {2x, 4x, 8x, dx} keep independent counters for each possible value of
subkey bits which correspond to active S-boxes: S1 and S6 in both rounds 1
and 17.

– For each possible key, check that (R0 ⊕ F (K1, L0)) · w000w0w0x ⊕ (L17 ⊕
F (K17, R17)) · w000w0w0x = 0 holds, where, for instance, w = 6:

For each key candidate Ki, let T w
i be the number of plaintexts such

that (R0 ⊕ F (K1,1‖K1,6, L0)) · w000w0w0x ⊕ (L17 ⊕ F (K17,1‖K17,6, R17) ⊕
w000w0w0x = 0 for each w. Let T w

max be the maximal value and T w
min be the

minimal value of all T w
i ’s, then

• If |T w
max −N/2| > |T w

min −N/2| then adopt the key candidate corre-
sponding to T w

max

Cryptanalysis of Reduced-Round MIBS Block Cipher 5

• If |T w
min −N/2| > |T w

max −N/2| then adopt the key candidate corre-
sponding to T w

min, where N = 258 in this attack.
– the correct subkey is simultaneously suggested by the counters T w

max or T w
min

corresponding to all four values of w.

According to the key schedule of MIBS, there is no overlapping between the

subkeys K1,1, K1,6, K17,1, K17,6. Thus, the time complexity becomes
216

2 · 17
·258 ≈

269 17-round MIBS encryptions because partial decryption of two nibbles in the
first round and two other nibbles in the 17th round costs about half a round.
The memory complexity is the 258 blocks. The remaining 64 key bits can be
recovered by exhaustive search without affecting the overall attack complexity.
Following [9], the success probability of this attack, pS , is computed assuming
N · |p− 1/2|2 = 4, and a = 8

pS = Φ(2 ·
√

N · |p− 1/2| − Φ−1(1− 2−a−1)) ≈ 0.9794

where Φ is the cumulative distribution function of the standard normal distri-
bution.

3.3 Ciphertext-Only Attack

Assuming the input plaintext is coded as ASCII text, we can perform a ciphertext-
only attack. In this setting though, the codebook size is reduced to 264−8 = 256,
since the most significant bit of every byte is zero. We use the first 13 rounds of (Ta-
ble 2), which imply the following linear relation: L0·80008080x⊕L17·e0000e00x⊕
R17 · 80008080x = 0, with bias 2−27. We perform a distinguish-from-random at-
tack, using 2 · (2−27)−2 = 255 CO, and equivalent number of encryptions. The
memory complexity is negligible. According to [7], assuming Matsui’s algorithm
1, the success probability of this distinguishing attack is about 97.7%.

3.4 18-Round Linear Attack

We can use the full 16-round relation in Table 2 with bias 2−31 for a key-recovery
attack on 18-round MIBS. The attack procedure is similar to the one in Sect. 3.2,
but this time we recover K1,1, K1,6, K18,6, K18,7, K18,8. We found no overlapping
in these subkeys, so we recover 20 subkey bits in total. The linear relations for
this attack is

(R0⊕R18⊕F (K1, L0)) ·w000w0w0x⊕ (L18⊕F (K18, R18)) ·z0000z00x = 0, (3)

For each pair (w, z) in Sect. 3.1 we have an independent linear relation. Following
[3], the combined bias of these multiple linear relations is

√
6 · (2−31)2 = 2−29.7.

The data complexity is 3/(2−29.7)2 = 260.98 KP.
The time complexity is 220 ·260.98 ·5/8 ·1/18 ≈ 276.13 18-round computations,

since partial decryption of two nibble in the first round, and three nibbles in the
18th round costs less than one-round computation. Memory complexity is the
same as data complexity. According to [9], the success probability of this attack
is 72.14%.

6 A. Bay, J. Nakahara Jr., and S. Vaudenay

4 Differential Cryptanalysis

Differential cryptanalysis (DC) was originally proposed by Biham and Shamir
in [2]. In [6], the designers claim security of MIBS against DC by providing a 4-
round characteristic with six active S-boxes, and probability 2−15. They assumed
that this characteristic was iterative (although it is not) and claimed resistance
of the full 32-round MIBS to DC.

4.1 Searching for Differential Characteristics of MIBS

We have computed the difference distribution table (DDT) for3 the 4× 4 S-box
of MIBS. See Table 8 in the appendix. We note that this S-box is differentially
4-uniform4. So, the highest probability for any difference propagation across this
S-box is 2−2.

For a systematic differential analysis of MIBS, we automated the search for
differential characteristics by creating a program to look for differential charac-
teristics for MIBS according to the following criteria:

(a) focus on iterative characteristics, preferably;
(b) maximize the overall probability by minimizing the number of active S-boxes;
(c) use the fact that the S-box is differentially 4-uniform (Table 8) [8];
(d) use the fact that the branch number of the P permutation in the F function

of MIBS is 5

Using these criteria, we have found two 12-round differential characteristics, both
with probability 2−56. These characteristics have 28 active S-boxes in total, and
for each S-box we chose the largest entries in the DDT. One characteristic is
detailed in Table 3. The other characteristic is obtained from Table 3 by turning
it upside-down (due to the symmetry of the Feistel Network scheme).

4.2 13-Round Differential Attack

We perform a key-recovery attack on 13-round MIBS by placing the 12-round
characteristic in Table 3 in rounds 1 up to 12. We recover 24 subkey bits from
the 13th round. The attack procedure is as follows:

(a) take c · 256 pairs of plaintext blocks Pi and Pj which satisfy Pi ⊕ Pj =
(EEE0E0EEx, 50500550x) and obtain their corresponding ciphertexts Ci =
(Li

13, Ri
13) and Cj = (Lj

13, Rj
13);

(b) keep counters for each possible value of six subkey nibbles of K13 corre-
sponding to the six Ex nibble differences in the right half of the ciphertext,
namely K13,1, K13,2, K13,3, K13,5, K13,7 and K13,8;

(c) keep only those text pairs for which the right half of the ciphertext difference
equals EEE0E0EEx;

3 The DDT of an S-box stands for a table containing an exhaustive enumeration of
all pairs of input/output differences for the given S-box.

4 It means that the largest entry in the DDT has value 4.

Cryptanalysis of Reduced-Round MIBS Block Cipher 7

Table 3. A 12-round differential characteristic for MIBS

Round i ΔLi−1 ΔRi−1 Number of active S-boxes Probability
1 EEE0E0EEx 50500550x 6 2−12

2 00000050x EEE0E0EEx 1 2−2

3 00EEE000x 00000050x 3 2−6

4 05005000x 00EEE000x 2 2−4

5 00E000E0x 05005000x 2 2−4

6 55500000x 00E000E0x 3 2−6

7 00000000x 55500000x 0 1
8 55500000x 00000000x 3 2−6

9 00E000E0x 55500000x 2 2−4

10 05005000x 00E000E0x 2 2−4

11 00EEE000x 05005000x 3 2−6

12 00000050x 00EEE000x 1 2−2

13 EEE0E0EEx 00000050x - -

(d) for eachplaintext pairwith indices i, j, compute P−1(Li
13⊕Lj

13⊕ 00000050x),
and compare with the output difference of the S-box layer inside F (K13, R

i
13)

⊕ F (K13, R
j
13); discard the pairs that do not match one of the seven possible

output differences of the S-box, according to the DDT (Table 8) with input
difference Ex; from the input difference to the 13th round, increment coun-
ters corresponding to each suggested 24 subkey bits by the input difference
EEE0E0EEx, and P−1(Li

13 ⊕ Lj
13 ⊕ 00000050x);

Following [2], we estimate the signal-to-noise ratio (SNR), as 224 ·2−56/(1 ·2−32 ·
(7/15)6 · (2−4)2) = 214, since p = 2−56, k = 24, α = 1 (we expect one subkey on
average to be suggested in step (d)), β = 2−32 · (7/15)6 · (2−4)2, since ΔR13 =
EEE0E0EEx gives a 32-bit condition, every output difference to an S-box whose
input difference is Ex can have only seven possible nonzero output differences,
and the two S-boxes with input difference 0 can only have 0 output difference.
We estimate about c = 32 right pairs to uniquely determine the correct subkey
values. This means 261 CP. Step (c) imposes a 32-bit condition on the pairs.
So, about 261/232 = 229 pairs survive. In step (d), the complexity corresponds
to 2 · 229 one-round computations. This corresponds to about 230/13 ≈ 226.3

13-round computations. The memory complexity corresponds to 224 counters.
If the user key has 64 bits, the remaining 40 key bits requires 240 13-round
computations; if the key is 80-bit long, then the remaining 56 key bits requires
256 13-round computations.

According to [9], the success probability pS of this attack, for SNR = 214,
a = 7 (i.e. assuming we expect the correct 24-bit subkey to be ranked among
the 7 highest counters), N = 261 CP, p = 2−56, is

pS = Φ(
√

p ·N · SNR− Φ−1(1 − 2−a)√
SNR + 1

) ≈ 0.9999

8 A. Bay, J. Nakahara Jr., and S. Vaudenay

4.3 14-Round Differential Attack

For 14-round MIBS, we studied a key-recovery attack by placing the 12-round
characteristic in Table 3 between rounds 2 and 13. We recover subkey bits from
K1 and K14 at the same time. The attack procedure is as follows:

(a) consider m structures of plaintexts, such that R0 contains all possible 32-
bit values, but in the L0, half of the text contain arbitrary 32-bit values,
and half of them contain L0 ⊕ 50500550x. Each structure, thus, contain
232 · 232 = 264 pairs with which difference (50500550x, ΔR0), where ΔR0 is
a nonzero 32-bit difference;

(b) keep only those text pairs for which the right half of the ciphertext difference
equals EEE0E0EEx;

(c) prepare counters for each possible value of four subkey nibbles of K1 corre-
sponding to the four 5x nibble differences in the left half of the plaintext,
namely K1,1, K1,3, K1,6 and K1,7, and each of the six nibbles of K14 corre-
sponding to the six Ex nibble differences in the right half of the ciphertext;
this corresponds to 40 subkey bits;

(d) for each pair of plaintext with indices i, j, compute P−1(Ri
0⊕Rj

0⊕EEE0E0EEx),
and compare it with the output difference of the S-box layer inside F (K1, L

i
0)

⊕ F (K1, L
j
0); discard the pairs that do not match one of the seven possible

output differences of the S-box layer, according to the DDT (Table 8) with
input difference 5x; also, the S-boxes with input difference 0 can only have 0
output difference; from the input difference to the 1st round, increment coun-
ters corresponding to each suggested 16 subkey bits by the input difference
50500550x, and P−1(Ri

0 ⊕Rj
0 ⊕ EEE0E0EEx);

(e) analogously, compute P−1(Li
14⊕Lj

14⊕00000050x), and compare it with the
output difference of the S-box layer inside F (K14, R

i
14) ⊕ F (K14, R

j
14); dis-

card the pairs that do not match one of the seven possible output differences
of the S-box, according to the DDT (Table 8) with input difference Ex; also,
the S-boxes with input difference 0 can only have 0 output difference; from
the input difference to the 14th round, increment counters corresponding
to each suggested 24 subkey bits by the input difference EEE0E0EEx, and
P−1(Li

14 ⊕ Lj
14 ⊕ 00000050x);

Following [2], we estimate the signal-to-noise ratio (SNR), as 240 ·2−56/(1 ·2−32 ·
(7/15)4 ·(2−4)4 ·(7/15)6 ·(2−4)2) = 250, since p = 2−56, k = 40, α = 1 (we expect
one subkey on average to be suggested in steps (d) and (e)), β = 2−32 · (7/15)4 ·
(2−4)4 · (7/15)6 · (2−4)2, since ΔR14 = EEE0E0EEx gives a 32-bit condition, every
output difference to an S-box whose input difference is 5x or Ex can have only
seven possible nonzero output differences, and the S-boxes with input difference
0 can only have 0 output difference. We estimate about m = 128 structures
to determine the correct subkey values. This means 27+33 = 240 CP. Step (c)
imposes a 32-bit condition on the pairs. So, about 27+64/232 = 239 pairs survive.
In step (d), the complexity corresponds to 2 · 239 one-round computations. The
same holds in step (e). This corresponds to about 241/14 ≈ 237.2 14-round
computations. The memory complexity corresponds to 240 counters. If the user

Cryptanalysis of Reduced-Round MIBS Block Cipher 9

key has 64 bits, the remaining 24 key bits requires 224 14-round computations;
if the key is 80-bit long, then the remaining 40 key bits requires 240 14-round
computations.

According to [9], the success probability pS of this attack, for SNR = 250,
a = 8 (i.e. assuming we expect the correct 40-bit subkey to be ranked among
the 8 highest counters), N = 240 CP, p = 2−56, is

pS = Φ(
√

p ·N · SNR− Φ−1(1 − 2−a)√
SNR + 1

) ≈ 0.5015

5 Impossible-Differential Cryptanalysis

There is a striking similarity between the round functions of MIBS and Camellia
[1] block ciphers. Therefore, inspired by the impossible differential attack on
Camellia, proposed by Wu et al. in [11], we have constructed a similar 8-round
impossible differential for MIBS, as the one built for Camellia proposed in [10].
Then, we use this 8-round impossible differential to attack 12-round MIBS.

We have found the following 8-round impossible differential for MIBS:

(00000000x, 000000s0x)
8r

→ (0000h000x, 00000000x). (4)

where u and v are nonzero nibble differences, and the broken arrow indicates
that the difference in the left hand side does not cause the difference in the right
hand side.

We have also found another 8-round impossible differential distinguisher for

MIBS: (00000000x, 00s00000x)
8r

→ (0000000hx, 00000000x).

5.1 Some Properties of MIBS for 80-Bit User Key

We have exploited two properties of MIBS to use in the attack:

Property 1. Let Ki = (Ki,1, Ki,2, . . . , Ki,8) denote the i-th round subkey, where
Ki,1 is the most significant nibble. Then, K1 and K2 share 13 bits in common:
K1[1 ∼ 13] = K2[20 ∼ 32] or K1,1‖K1,2‖K1,3‖K1,4[1] = K2,5[4]‖K2,6‖K2,7‖K2,8
where values inside square brackets index bit positions.

Property 2. (similar to [5]) For any 32-bit strings X, X∗, if there exists a
nonzero nibble difference s such that P−1(X ⊕X∗ ⊕ 000000s0x) is of the form
??0?00??x, then s is unique (? denotes any nibble value). The same holds for a
nonzero nibble difference h.

Proof. Suppose there are two nibble differences s and w that satisfy this property.
Then, P is a linear transformation relative to xor, P−1(X ⊕X∗ ⊕ 000000s0x)
⊕ P−1(X ⊕X∗ ⊕ 000000w0x) = P−1(000000s0x) ⊕ P−1(000000w0x) and has
the form ??0?00??x. But, P−1(000000s0x)⊕ P−1(000000w0x) = ss0ss0ssx⊕
ww0ww0wwx. From the fifth nibble position, it follows that s⊕ w = 0, which is a
contradiction.

10 A. Bay, J. Nakahara Jr., and S. Vaudenay

5.2 Construction of 8-Round Impossible Differential Distinguisher

This 8-round impossible differential characteristic (4) is constructed by con-
catenating two 3-round differentials, and putting two connection rounds in be-
tween the two differentials. See Fig. 4. The first 3-round differential, depicted
in Table 4, is built as follows: let the input difference to the first round be
(ΔL0, ΔR0) = (00000000x, 000000s0x) where s is a non-zero nibble differ-
ence and after the first round, the input difference to the second round will be
(ΔL1, ΔR1) = (000000s0x, 00000000x). Then in the second round, the input
difference 000000s0x to the S layer leads to the output difference 000000t0x,
where t is a nonzero nibble difference. After applying the P layer, the out-
put difference of the F-function will be tt0t00ttx. The input difference to the
third round is (ΔL2, ΔR2) = (tt0t00ttx, 000000s0x). Afterwards, the differ-
ence ΔL2 = tt0t00ttx becomes t1t20t400t7t8 after the S layer where t1, t2, t4, t7
and t8 are non-zero nibble differences. Then, it evolves to (c1c2c3c4c5c6c7c8), ci

are nonzero nibble differences, after the application of the P layer, and the output
difference of the third round turns out to be (ΔL3, ΔR3) = (c1c2c3c4c5c6c7c8 ⊕
000000s0x, tt0t00ttx). This completes the first differential.

Table 4. The first 3-round truncated differential for MIBS (in encryption direction)

Round i ΔLi−1 ΔRi−1

1 00000000x 000000s0x

2 000000s0x 00000000x

3 tt0t00ttx 000000s0x

4 c1c2c3c4c5c6c7c8⊕000000s0x tt0t00ttx

The second 3-round differential in Table 5 is constructed as follows: let the
output difference of round 8 be (ΔL8, ΔR8) = (0000h000x, 00000000x) and
if this difference is rolled back through round 8, then the output difference of
round 7 becomes (ΔL7, ΔR7) = (00000000x, 0000h000x). The difference ΔL7 =
0000h000x will be 0000w000x after the application of the S layer in round 7
and the difference evolves to www0ww00x after the P layer where w denotes a
nonzero nibble. Then, the output difference of round six becomes (ΔL6, ΔR6) =
(www0ww00x, 0000h000x) becomes w1w2w30w5w600, where wi are nonzero nibble
differences, after the S layer and we get the input difference of round six as (ΔL5,
ΔR5) = (e1e2e3e4e5e6e7e8⊕0000h000x, www0ww00x). This completes the second
3-round differential.

Concatenating these two 3-round differentials, we obtain an 8-round impos-
sible differential distinguisher. One can see in Fig. 4, the input and output dif-
ferences of the F-function in round 5 are (e1e2e3e4e5e6e7e8) ⊕ 0000h000x and
(c1c2c3c4c5c6c7c8)⊕ 000000s0x ⊕ www0ww00x = (c1 ⊕ w, c2 ⊕ w, c3 ⊕ w, c4, c5 ⊕
w, c6 ⊕w, c7 ⊕ s, c8), respectively. Since the output difference of the S layer has

Cryptanalysis of Reduced-Round MIBS Block Cipher 11

Table 5. The second 3-round truncated differential for MIBS (in decryption direction)

Round i ΔLi−1 ΔRi−1

8 0000h000x 00000000x

7 00000000x 0000h000x

6 0000h000x www0ww00x

5 www0ww00x e1e2e3e4e5e6e7e8⊕0000h000x

to be equal to input difference of the P layer, that is, S[(e1e2e3e4e5e6e7e8) ⊕
0000h000x] = P−1(c1 ⊕w, c2 ⊕w, c3 ⊕w, c4, c5 ⊕w, c6 ⊕w, c7 ⊕ s, c8), we have:
P−1(c1⊕w, c2⊕w, c3⊕w, c4, c5⊕w, c6⊕w, c7⊕s, c8)= P−1(c1c2c3c4c5c6c7c8)⊕
P−1(000000s0x)⊕P−1(www0ww00x)= (t1t20t400t7t8)⊕ss0ss0ssx⊕0000w000x
= (t1 ⊕ s, t2 ⊕ s, 0, t4 ⊕ s, s⊕ w, 0, t7 ⊕ s, t8 ⊕ s).

We can see that the output difference of the third and sixth S-boxes are zero in
round five, which implies the input differences of these S-boxes are zero, too since
they are bijective. Therefore, e3 = e6 = 0 where e3 = w1 ⊕ w2 ⊕ w3 ⊕ w5 ⊕ w6,
e6 = w1 ⊕ w2 ⊕ w5 ⊕ w6. But, if e3 = w1 ⊕ w2 ⊕ w3 ⊕ w5 ⊕ w6 = 0 and
e6 = w1 ⊕ w2 ⊕ w5 ⊕ w6 = 0, then this leads to w3 = 0 which contradicts the
assumption that w3 is nonzero.

5.3 12-Round Impossible Differential Attack on MIBS with 80-Bit
User Key

Fig. 3 depicts our 12-round impossible differential attack. We start in round
1 and end in round 12. But it can be constructed anywhere between rounds
1 and 32 due to the key schedule of MIBS for 80-bit user keys. From Fig. 3,
the required plaintexts for the attack have the form (ΔL0, ΔR0) =(uu0u00uux,
P (??0?00??x) ⊕ 000000?0x) where ’u’ and ’?’ are nonzero nibble differences.

This attack is different from the conventional impossible differential attack in
a way that we exploit the equality of some subkey bits to eliminate wrong key
guesses by using the impossible differential. Instead of eliminating pairs round
by round, we can make a different analysis to reduced the time complexity of
the attack: the ciphertext pairs which satisfy the impossible differential should
have the output difference of round 10: ΔL10 = (0000h000x, 00000000x), where
h is a nonzero nibble. When the S-box of MIBS is analyzed, one can see that
the number of nonzero entries of each row of the DDT is at most 23, that is
each nonzero input difference to the S-box causes at most 23 nonzero output
differences. Therefore, the nonzero nibble h can take 24−1 = 15 different values
and in round 11, the output differences of the S-box, which corresponds to h,
has at most 15 · 23 possible nonzero output differences. Then in Round 12, five
nonzero nibbles at positions (1, 2, 3, 5, 6) have at most (23)5 nonzero output
differences which result in at most 15 ·23 · (23)5 ≈ 222 possible output differences
after the S layer.

12 A. Bay, J. Nakahara Jr., and S. Vaudenay

The attack procedure is as follows:
Data Collection

Choose 2m structures of plaintexts of each structure is of the form:

ΔL0 = (uua3ua5a6uu)
ΔR0 = P (x1x2b3x4b5b6x7x8)⊕ (c1c2c3c4c5c6yc8)

where (ai, bj, cj) are constants and (u, xi, y) takes all possible nonzero values.

So, each structure has (24)7 = 228 plaintexts which constitute
1
2
· 228 · 228 = 255

plaintext pairs. Since we take 2m structures, there are 255+m plaintexts pairs in
total.

Data Filtering and Key Elimination

– The analysis that we made above shows that the probability of a random
pair passes the test is 2−42 = 222 · 2−64, therefore after this filtering step
255+m · 222 · 2−64 = 213+m pairs remain.

– For each remaining pair ((L0, R0), (L12, R12)) and ((L∗
0,R

∗
0), (L∗

12, R∗
12)), do

the following steps:
1. By Property 2, there is only one nibble u which satisfies P−1(L0⊕L∗

0⊕
000000u0x), and it has the form ??0?00??x. Therefore, for each pair of
plaintexts compute P−1(L0 ⊕L∗

0 ⊕ 000000u0x) to find the unique value
of u by trying all possible values of u. It is analogous to find the unique
value of h.

2. Afterwards, in rounds 1 and 12, since the input and output differences
of the S-boxes are known, the subkey nibbles (K1,1, K1,2, K1,4, K1,7,
K1,8) and (K12,1, K12,2, K12,3, K12,5, K12,6) are suggested with the help
of the DDT.

3. Guess further 24 subkey bits (6 nibbles) of rounds 1 and 12, namely,
(K1,3, K1,5, K1,6, K12,4, K12,7, K12,8), then do the followings:
(a) For every remaining pair, encrypt plaintexts through the first round,

and decrypt their corresponding ciphertexts through the last round
to obtain intermediate values (L1, L

∗
1) and (R11, R

∗
11), respectively.

(b) Compute the suggested bits of the subkey nibbles K2,7 and K11,5
using the values L1, L∗

1, u and P−1(L0 ⊕ L∗
0) for round 2 and R11,

R∗
11, h and P−1(R12 ⊕R∗

12) for round 12.

(c) By Property 1, check the subkey nibbles satisfying the following re-
lation K2,7 = K1,2[2 ∼ 4]||K1,3[1]. This equality implies a 4-bit con-
dition on pairs and any pair which satisfies the equality eliminates
one wrong 68-bit subkey value: (K1,1, K1,2, K1,4, K1,7, K1,8, K12,1,
K12,2, K12,3, K12,5, K12,6, K1,3, K1,5, K1,6, K12,4, K12,7, K12,8,
K11,5). Each pair eliminates 2−4 of all subkey guesses, so after the
first pair the number of remaining keys is 268(1−2−4). Since we have
213+m pairs, there are 268(1− 2−4)2

13+m

wrong subkeys. For m = 0,
no wrong subkeys survive.

Cryptanalysis of Reduced-Round MIBS Block Cipher 13

5.4 Complexity Analysis

Data Complexity: We set m = 0, because it is enough to take just one structure
of plaintexts. So, the data complexity the attack is 228 chosen plaintexts (CP).

Memory Access : In data filtering step, we have to have access to all 222 output
differences (ΔL12, ggg0gg00x) stored in a hash table to identify the useful pairs.
Therefore, this step needs 222 · 228 = 250 memory access (MA). We approximate
the cost of one round MIBS encryption to be equivalent to one memory access.
Thus, 250 memory accesses cost about 246.42 12-round MIBS encryptions.

Time complexity:

– Step 1 needs at most two one-round MIBS encryption per remaining pair.

Therefore, the time complexity of this step is at most 213 · 2
12
≈ 210.41 12-

round MIBS encryptions. We do not need to try all possible 15 values of a
and h, since the computation is less than two round encryptions.

– The time complexity of Step 2 is less than 213 · 2
12
≈ 210.41 12-round MIBS

encryptions. Because, for five active S-boxes, we use the DDT to find the
suggested keys, which costs less than one round encryption.

– In Step 3(a), since we guess 24 bits of subkeys; the time complexity of this

step is at most 2 · 213 · 224 · 2
12

≈ 235.42 12-round MIBS encryptions. In

Step 3(b), the time complexity is less than 213 · 2
12
≈ 210.41 12-round MIBS

encryptions. Note that the complexity of checking 4-bit equality in subkeys
is negligible.

Memory Complexity: The storage of all chosen plaintexts and their corresponding
ciphertexts is 228 ·2 = 229 blocks. In step 1, we have to store 222 possible output
differences which need 222 blocks of memory. In the key elimination step, since
we have 268 bits subkey guess, we need 268 · 2−6 = 262 blocks of memory.

To conclude, the time complexity of the attack is dominated by the data
filtering step, which is 246.42 12-round MIBS encryptions. The memory and the
data complexities are 262 blocks and 228 CP, respectively. The attack recovers
68 bits of the 80-bit secret key; the remaining 12-bit of the secret key can be
found by exhaustive search.

6 Conclusions

This paper described the first independent and systematic linear, differential
and impossible-differential analyses of reduced-round versions of the MIBS block
cipher [6]. Actually, we presented the best known-plaintext attack so far on up to
18-round MIBS, and the first ciphertext-only attack on 13-round MIBS. These
attacks do not threaten the full 32-round MIBS, but reduce by more than 50%
its margin of security.

Table 6 summarizes the complexities of all attacks on reduced-round MIBS
described in this paper.

14 A. Bay, J. Nakahara Jr., and S. Vaudenay

Table 6. Attack complexities on reduced-round MIBS block cipher

#Rnds Time Data Memory Key Size Source Comments Success
(bits) Prob.

12 246.42 228 CP 262 80 Sect. 5 ID, key-recovery —
13 240 261 CP 224 64 Sect. 4.2 DC, key-recovery 99.9%
13 255 255 CO — 64 or 80 Sect. 3.3 LC,distinguishing 97.7%
13 256 261 CP 224 80 Sect. 4.2 DC, key-recovery 99.9%
14 237.2 240 CP 240 64 Sect. 4.3 DC, key-recovery 50.15%
14 240 240 CP 240 80 Sect. 4.3 DC, key-recovery 50.15%
17 269 258 KP 258 80 Sect. 3.2 LC, key-recovery 97.94%
18 276.13 260.98 KP 260.98 80 Sect. 3.4 LC, key-recovery 72.14%

time complexity is number of reduced-round encryptions;
LC: Linear Cryptanalysis; DC: Differential Cryptanalysis; ID: Imposs. Differential
CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Biryukov, A., De Canniére, C., Quisquater, M.: On Multiple Linear Approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschman, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced round camellia and MISTY1. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

6. Izadi, M.I., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new
lightweight Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009)

7. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

8. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

9. Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis.
Journal of Cryptology 1(21), 1–19 (2008)

10. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-
round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

11. Wu, W., Zhang, L., Zhang, W.: Improved Impossible-Differential Cryptanalysis of
Reduced-Round Camellia. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

Cryptanalysis of Reduced-Round MIBS Block Cipher 15

A Appendix - Figures and Tables

Table 7. Linear Approximation Table (LAT) of the S-box of MIBS

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x AX Bx Cx Dx Ex Fx

0x 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 -2 0 2 0 -2 -4 -2 2 0 -2 0 2 0 2 -4
2x 0 0 -2 -2 -2 2 -4 0 0 4 2 -2 -2 -2 0 0
3x 0 2 2 0 2 0 0 2 -2 4 0 2 0 2 -2 -4
4x 0 -2 -2 4 -2 0 0 2 0 -2 2 0 -2 0 -4 -2
5x 0 0 -2 2 2 -2 0 0 2 2 0 4 -4 0 2 2
6x 0 -2 4 2 0 -2 0 -2 0 2 4 -2 0 2 0 2
7x 0 4 0 0 0 -4 0 0 -2 -2 2 -2 -2 -2 2 -2
8x 0 2 2 4 0 2 -2 0 -2 0 0 2 2 -4 0 2
9x 0 0 2 -2 -4 -4 -2 2 0 0 -2 2 0 0 -2 2
Ax 0 -2 0 -2 -2 0 2 -4 -2 0 2 4 0 -2 0 -2
Bx 0 0 4 0 -2 2 2 2 4 0 0 0 -2 -2 2 -2
Cx 0 0 0 0 2 -2 2 -2 2 2 -2 -2 0 -4 -4 0
Dx 0 2 0 -2 2 0 -2 0 4 -2 4 2 2 0 -2 0
Ex 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0
Fx 0 2 2 0 0 2 -2 -4 0 -2 -2 0 -4 2 -2 0

Table 8. (xor) Difference Distribution Table (DDT) of the S-box of MIBS

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 0 2 0 0 2 2 2 0 4 2 0 2 0
2x 0 2 0 2 0 0 0 4 0 0 2 2 2 0 0 2
3x 0 0 2 0 0 2 2 2 0 0 0 2 4 2 0 0
4x 0 0 0 2 0 2 2 2 2 4 0 0 0 0 0 2
5x 0 0 2 2 2 0 0 2 0 0 0 0 0 2 4 2
6x 0 0 2 0 0 2 0 0 4 0 2 0 2 0 2 2
7x 0 2 2 2 4 2 0 0 0 2 0 0 2 0 0 0
8x 0 0 0 0 2 0 2 0 0 2 2 0 2 2 0 4
9x 0 4 0 0 2 2 0 0 2 0 0 2 0 2 0 2
Ax 0 2 0 4 0 0 2 0 2 0 0 0 2 2 2 0
Bx 0 0 2 2 2 0 2 0 2 0 4 2 0 0 0 0
Cx 0 2 2 0 0 0 4 0 0 2 0 2 0 0 2 2
Dx 0 2 4 0 0 0 0 2 2 2 2 0 0 2 0 0
Ex 0 2 0 0 2 4 2 2 0 0 2 0 0 0 2 0
Fx 0 0 0 2 0 2 0 0 0 2 2 2 0 4 2 0

16 A. Bay, J. Nakahara Jr., and S. Vaudenay

Fig. 1. Linear attack on 17-round MIBS

Cryptanalysis of Reduced-Round MIBS Block Cipher 17

Fig. 2. Differential attack on 14-round MIBS

18 A. Bay, J. Nakahara Jr., and S. Vaudenay

Fig. 3. Impossible differential attack on 12-round MIBS

Cryptanalysis of Reduced-Round MIBS Block Cipher 19

Fig. 4. 8-round impossible differential of MIBS

Impossible Differential Cryptanalysis of ARIA
Reduced to 7 Rounds

Chenghang Du and Jiazhe Chen

Key Lab of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, 250100, P.R. China

{chenghangdu,jiazhechen}@mail.sdu.edu.cn

Abstract. This paper studies the security of the block cipher ARIA
against impossible differential cryptanalysis. We find a new impossible
differential property of ARIA, and propose an attack against ARIA-256
reduced to 7 rounds based on this property, while previous attacks can
only attack ARIA up to 6 rounds. Our new attack needs 2125 chosen
plaintexts and 2238 7-round encryptions. This is the best result for im-
possible differential cryptanalysis of ARIA known so far.

Keywords: Block cipher, ARIA, Impossible Differential, Data complex-
ity, Time complexity.

1 Introduction

ARIA [12,15] is a block cipher designed by a group of South Korean experts
in 2003. ARIA was established as a Korean Standard block cipher algorithm
(KS X 1213) by the Ministry of Commerce, Industry and Energy in 2004.
ARIA is a general-purpose involution SPN block cipher algorithm, optimized
for lightweight environments and hardware implementation. The interface of
ARIA is the same as AES [7]. ARIA has 128-bit block size with 128/192/256-bit
key, and in the original version the corresponding round numbers are 10/12/14
respectively [12], while in the current one, ARIA v1.0 [15], the round numbers
are altered to 12/14/16 respectively.

The designers, Daesung Kwon et al., gave the initial cryptanalysis of ARIA
[12]. It contained differential and linear cryptanalysis [4,14], truncated differ-
ential cryptanalysis [10], impossible differential cryptanalysis [1], square attack
[3,11], higher order differential cryptanalysis [10], interpolation attack [9], and
so on. Later in 2004, Alex Biryukov et al. performed a security evaluation of
ARIA in which they focused on dedicated linear cryptanalysis and truncated
differential cryptanalysis [5], and found attack on ARIA up to 7 rounds. But
they didn’t evaluate the security against impossible differential cryptanalysis
which is an important attacking method of block cipher. Wenli Wu et al. found
a non-trivial 4-round impossible differential path in the first place, which led to
an attack on 6-round ARIA requiring about 2121 chosen plaintexts and about
2112 encryptions [17]. Then Shenhua Li proposed an improved impossible dif-
ferential attack, which needed 296 6-round encryptions, and reduced the chosen
plaintexts number to 2120 [13].

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 20–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds 21

Impossible differential cryptanalysis is a kind of technique that uses differen-
tials with probability 0 to get rid of the wrong keys, in order to obtain the right
key. These differentials are called impossible differentials. Since its appearance,
researchers discovered that it can be used to analyze many block ciphers, such
as AES, and get some good results [2,3,6,8,16].

In this paper, we propose a new impossible differential path, which leads to
the attack of ARIA-256 reduced to 7 rounds. We use the “early-abort technique”
introduced in [4,17] to reduce the time complexity of our attack. The data com-
plexity is 2125, while the time complexity is less than 2238 in our attack.

We organize our paper as follows. Section 2 gives a description of ARIA. A
4-round impossible differential path of ARIA is described in Section 3. In Section
4 we present our impossible differential attack on 7-round ARIA-256. And we
conclude our paper in Section 5.

2 Description of ARIA

ARIA is a 128-bit SPN structure block cipher. ARIA-256 supports 256-bit key
length, and the corresponding round number is 16. Each round consists of the
following three parts:

Round Key Addition(AK): This is done by XORing the 128-bit round key
ki, 1 ≤ i ≤ 17. The round key is derived from the master key (MK) through the
key schedule. The detail of the key schedule is in [15].

Substitution Layer(SL): Applying the non-linear 8×8-bit S-boxes in parallel
on each byte of the state. ARIA uses 2 S-boxes S1, S2 and their inverses S−1

1 , S−1
2 .

Each S-box is defined to be an affine transformation of the inversion function
over GF (28).

S : GF (28) −→ GF (28), S1 : x −→ Q · x−1 ⊕ q,

where

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

and

22 C. Du and J. Chen

S2 : x −→ T · x247 ⊕ t,

where

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 1 0
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

There are two types of substitution layers to be used so as to make the cipher
involution.

LSo = (S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2),

LSe = (S−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2).

LSo is for the odd rounds, while LSe is for the even rounds.

Diffusion Layer(DL): A 16×16 involution binary matrix with branch number
8 was selected to improve the diffusion effect. It’s a simple linear map in which
the 128-bit plaintexts are treated as byte matrices of size 4× 4.

The 128-bit plaintext includes 16 bytes with every byte numbered as the
following:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

The diffusion layer is given by DL : X → Y, Y = AX
where

X = (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)T ,

Y = (y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15)T ,

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds 23

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

DL is an involution. So we have DL−1 = DL.

3 4-Round Impossible Differentials of ARIA

Several 4-round impossible differentials of the ARIA were presented in [13,17].
In this section, we propose some new impossible differential paths of 4-round
ARIA.

We use XI
m and XO

m to denote the input and output of round m, while XS
m

denotes the intermediate value after the application of SL of round m. Xm,n

denotes the n-th byte of Xm, while Rm denotes the m-th round. We analyze the
4-round impossible differential of R3 to R6.

One new impossible differential path states that, given a pair of XI
3 which

is equal in all bytes except the 3rd byte, then after 4 rounds encryption the
ciphertext differences ΔXO

6 can’t be like this (j, 0, j, 0, 0, 0, 0, 0, j, 0, 0, j, 0, 0, 0, 0),
i.e., the ciphertext pair has nonzero equal difference at bytes (0, 2, 8, 11), and no
difference at the other bytes.

We expressed the property like this:

(0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (j, 0, j, 0, 0, 0, 0, 0, j, 0, 0, j, 0, 0, 0, 0) (1)

where c and j denote any nonzero value.
The path is illustrated in Fig.1.

Proof: To start with the first 2 rounds, suppose the difference of inputs satisfies
the left part of (1). The first 2-round differential is obtained as follows:

The input difference ΔXI
3 = (0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is preserved

through the AK operation of R3. This difference is in a single byte, so the differ-
ence after the SL of R3 is still in a single byte, i.e., ΔXS

3 = (0, 0, d, 0, 0, 0, 0, 0, 0, 0,

24 C. Du and J. Chen

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������������

����������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

d d
d

d d
d d

�
�
�
�
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�

�
�
�

�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����������
��������

����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

����
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

j

j

j

j

j

j

j

j

d d
d

d d
d d

−1

−1

�
�
�
�

c c d

AK SL DL

AK SL DL

Contradiction

SLAK −1

AK SL−1 DL

DL−1

−1

*
*

1e
e

e

4

6

e11

e10

e15

e12 8

f5

f

5

8

g
g

h
h

5

8

i

i11

8

2

0i

i

3R

R5

R4

R6

Fig. 1. 4-round impossible differential path of ARIA

−1
��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
�
�
�
�

j

j

j

j

j

j

j

j

��
��
��
��
�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��
�
�
�

�
�
�

�
�
�
�

4,5

2
2

2

3
3

3

4

4

5

5

54
4,5

2
2

2

3
3

3

4

4

5

5

54AK SL DL

AK SL DL

SLAK −1
AK−1

c
c

c c
c c

c

c

a
a

aA

A
Aa

a
a
a

0

1

10

11A

A
A

? ??
3

4

13

The 4−round impossible differential

R1

R2

R7

b
b

b6

1

4

b10

b11

b12

b15

Fig. 2. Impossible Differential Cryptanalysis of 7-round ARIA

0, 0, 0, 0, 0, 0), where d is an unknown nonzero byte. And the DL of R3 makes
the differential become ΔXO

3 = (0, d, 0, 0, d, 0, d, 0, 0, 0, d, d, d, 0, 0, d).
After AK and SL of R4, the difference is ΔXS

4 = (0, e1, 0, 0, e4, 0, e6, 0, 0, 0,
e10, e11, e12, 0, 0, e15).

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds 25

Finally, after the DL of R4, the difference evolves into ΔXO
4 = (f0, f1, f2, f3, f4,

f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15), where we have f5 = f8 = e1⊕e4⊕ e10⊕
e15. Hence, ΔXI

3 = (0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) evolves with probability
one into ΔXO

4 , which has same value in bytes 5 and 8.
Now, we investigate how the inverse of the last 2 rounds works on the right

part of (1).
The second differential ends after R6 with difference ΔXO

6 = (j, 0, j, 0, 0, 0, 0,
0, j, 0, 0, j, 0, 0, 0, 0).

After rolling back this difference through DL, we get ΔXS
6 = (j, 0, j, 0, 0, 0, 0,

0, j, 0, 0, j, 0, 0, 0, 0). Then after the transformation SL−1 and AK−1, the dif-
ference is evolved into ΔXI

6 = (i0, 0, i2, 0, 0, 0, 0, 0, i8, 0, 0, i11, 0, 0, 0, 0) where
i0, i2, i8, i11 are unknown nonzero byte values.

After DL−1 of R5, the difference is changed to ΔXS
5 = (h0, h1, h2, h3, h4, h5,

h6, h7, h8, h9, h10, h11, h12, h13, h14, h15). Here h5 = i1⊕i3⊕i4⊕i9⊕i10⊕i14⊕i15 =
0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0 = 0, and h8 = i0
= 0.

Therefore, when rolling back this difference through SL and AK of R5, we get
ΔXI

5 = (g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15). And we know
g5 = SL−1(XS

5)⊕SL−1(XS
5 ⊕h5) = 0, and g8 = SL−1(XS

5)⊕SL−1(XS
5 ⊕h8)
= 0.

So we have g5
= g8. And also this property stands with probability one.
This differential contradicts the first differential with probability one, which

has f5 = f8.
This contradiction is emphasized in Fig.1.
Some other impossible differential paths like (1) can also be found either. It’s

just the position has been altered. For instance,

(0, 0, 0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (0, j, 0, 0, j, j, 0, 0, j, 0, 0, 0, 0, 0, 0, 0),
(c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (0, 0, 0, 0, j, 0, 0, 0, 0, 0, j, j, 0, j, 0, 0),
(c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (0, j, 0, 0, j, j, 0, 0, j, 0, 0, 0, 0, 0, 0, 0),
(0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (0, j, 0, j, 0, 0, 0, 0, 0, j, j, 0, 0, 0, 0, 0),
(0, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) � (0, 0, 0, 0, 0, 0, 0, 0, 0, j, j, 0, j, j, 0, 0).

4 7-Round Impossible Differential Attack on ARIA-256

In this section, we present an impossible differential cryptanalysis of ARIA-256
reduced to 7 rounds, using the 4-round impossible differential path, which was
described in previous section, with additional two rounds at the beginning and
one round at the end as shown in Fig.2. Best previous impossible differential
attacks could only apply to ARIA reduced to 6-round. Note that the last round
of ARIA doesn’t have the diffusion layer, but an additional AK.

4.1 Four Equations

We discover some amazing properties of DL transformation, which lead to this
cryptanalysis. As illustrated in Fig.2, 4 significant equations of bytes in ΔXS

1

26 C. Du and J. Chen

are found, which make ΔXS
1 evolve into ΔXI

2 with 9 bytes (0, 2, 3, 5, 7, 8, 9,
13, 14) equaling to zero with probability p = 2−24, while in the random case the
probability is p = 2−72. The four equations are:

ΔXS
1,5 = ΔXS

1,8 = ΔXS
1,15 (2)

ΔXS
1,7 = ΔXS

1,9 = ΔXS
1,12 (3)

ΔXS
1,0 ⊕ΔXS

1,1 ⊕ΔXS
1,10 ⊕ΔXS

1,11 = 0 (4)

ΔXS
1,3 ⊕ΔXS

1,4 ⊕ΔXS
1,10 ⊕ΔXS

1,13 = 0 (5)

In Fig.2, as we can see, in R1 we use a, A, ai, Aj , (i, j ∈ {0, 1, ..., 15}) to present
ΔXS

1,k, (k ∈ {0, 1, ..., 15}), i.e., a1 = ΔXS
1,1, A4 = ΔXS

1,4, a = ΔXS
1,5 = ΔXS

1,8 =
ΔXS

1,15, etc., and each number in the states before and after AK of R1 corre-
sponds with an equation. So the 4 equations become:

ΔXS
1,5 = ΔXS

1,8 = ΔXS
1,15 = a (2)

ΔXS
1,7 = ΔXS

1,9 = ΔXS
1,12 = A (3)

a0 ⊕ a1 ⊕ a10 ⊕ a11 = 0 (4)
A3 ⊕A4 ⊕A10 ⊕A13 = 0 (5)

Now we prove that p = 2−24.

Proof: We use structure here to make our argument much easier and more
explicit. A structure is defined as a set of 256 differential values of plaintexts
which equal to zero in all but 7 bytes (1, 4, 6, 10, 11, 12, 15).

Randomly choose ΔXI
2 from this structure, and through DL−1 transforma-

tion, we get all the values of ΔXS
1,i, 0 ≤ i ≤ 15 as in Fig.2. And we have ΔXS

1,5 =
ΔXI

2,1⊕ΔXI
2,4⊕ΔXI

2,10⊕ΔXI
2,15 , ΔXS

1,8 = ΔXI
2,1⊕ΔXI

2,4⊕ΔXI
2,10⊕ΔXI

2,15

and ΔXS
1,15 = ΔXI

2,1 ⊕ ΔXI
2,4 ⊕ΔXI

2,10 ⊕ΔXI
2,15. Therefore, no matter what

the values of ΔXI
2,1, ΔXI

2,4, ΔXI
2,10, ΔXI

2,15 are, equation (2) stands with prob-
ability one.

Likewise, equation (3) always holds with probability one.
At the same time, we get a0 = ΔXI

2,4 ⊕ΔXI
2,6, a1 = ΔXI

2,4 ⊕ΔXI
2,12, a10 =

ΔXI
2,6⊕ΔXI

2,15, a11 = ΔXI
2,4⊕ΔXI

2,12, A3 = ΔXI
2,10⊕ΔXI

2,11, A4 = ΔXI
2,11⊕

ΔXI
2,15, A13 = ΔXI

2,6 ⊕ΔXI
2,10.

It’s easy to verify that equations (4) and (5) stand with probability one as
well.

It suggests that, if we demand the values of ΔXI
2 are all in the structure

defined above, the corresponding values of ΔXS
1 must fulfill all the equations

(2) − (5). So we can eliminate all the values of ΔXS
1 that can’t satisfy all the

equations without deleting a right one. We use p2, p3, p4, p5 to denote the prob-
ability of equations (2)− (5) respectively. We can easily find out that p2 = 2−16,
p3 = 2−16, p4 = 2−8, p5 = 2−8. So the number of ΔXS

1 is narrowed down to:

N = 2128 ×
5∏

i=2

pi = 280.

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds 27

Since DL is a linear transformation, and there are 256 values of ΔXI
2 in the

structure, the number of corresponding values of ΔXS
1 which make ΔXI

2 be ele-
ments of the structure is also 256. Spontaneously, any ΔXS

1 which satisfies all the
4 equations evolves ΔXI

2 into the structure with probability p = 256

280 = 2−24. �

4.2 The Procedure of 7-Round Attack on ARIA-256

The procedure of this attack is as follows. We use km,n to denote the n-th byte
of km.

Step 1. Randomly select 2125 plaintexts, and such plaintexts proposes 2125 ×
2125 × 1

2 = 2249 pairs.
Step 2. Select pairs whose ciphertext pairs have zero difference at the twelve

bytes (1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15). The expected number of such pairs
is 2249 × 2−96 = 2153.

Step 3. Guess the 4-byte value (k8,0, k8,2, k8,8, k8,11) of the last round key
k8. For each ciphertext pair (C, C′), compute ΔXI

7 = SL−1(C ⊕ k8) ⊕
SL−1(C′ ⊕ k8), and choose pairs whose difference ΔXI

7 are same at the 4
bytes ΔXI

7,0, ΔXI
7,2, ΔXI

7,8, ΔXI
7,11. The expected number of the remaining

pairs is 2153 × 2−24 = 2129.
Step 4. Next guess all 16 bytes of k1. But we don’t guess all the 16 bytes values

at once, we separate them into 5 parts, using the “four equations” presented
in the previous subsection.
Step 4.1 Guess 3-byte value (k1,5, k1,8, k1,15) of the first round key k1, and

for those plaintext pairs (P, P ′) with such ciphertext pairs, compute
ΔXS

1 = SL(P ⊕ k1) ⊕ SL(P ′ ⊕ k1) at the above 3 bytes. Choose pairs
whose difference ΔXS

1 are same at these 3 bytes. The expected number
of such pairs is 2129 × 2−16 = 2113.

Step 4.2 Guess 3-byte value (k1,7, k1,9, k1,12) of k1, and for the remaining
pairs (P, P ′) compute like above, ΔXS

1 = SL(P⊕k1)⊕SL(P ′⊕k1) at the
3 bytes (7, 9, 12). And discard those pairs which have different values at
bytes (7, 9, 12). The number of the remaining pairs is 2113 × 2−16 = 297.

Step 4.3 Guess 4-byte value (k1,0, k1,1, k1,10, k1,11) of k1, and compute ΔXS
1

= SL(P ⊕ k1) ⊕ SL(P ′ ⊕ k1) at the 4 bytes (0, 1, 10, 11). Choose pairs
which satisfy the equation : ΔXS

1,0 ⊕ΔXS
1,1 ⊕ΔXS

1,10 ⊕ΔXS
1,11 = 0. So

there are 297 × 2−8 = 289 pairs left.
Step 4.4 Guess 3-byte value (k1,3, k1,4, k1,13) of k1, and compute ΔXS

1 =
SL(P ⊕k1)⊕SL(P ′⊕k1) at the 3 bytes (3, 4, 13). Get rid of pairs which
don’t satisfy the equation : ΔXS

1,3⊕ΔXS
1,4⊕ΔXS

1,10⊕ΔXS
1,13 = 0. The

number of the remaining pairs is 289 × 2−8 = 281.
Step 4.5 Guess the last 3-byte value (k1,2, k1,6, k1,14) of k1, and compute

ΔXS
1 = SL(P ⊕ k1)⊕ SL(P ′ ⊕ k1) at the those 3 bytes like above.

Step 4.6 For all 16 bytes values of ΔXS
1 , compute ΔXI

2 = DL(ΔXS
1), pick

up pairs whose difference ΔXI
2 are zero at 9 bytes (0, 2, 3, 5, 7, 8, 9, 13, 14).

The probability is p = 2−24. So the number of the remaining pairs is
281 × 2−24 = 257.

28 C. Du and J. Chen

Step 5. Guess 7-byte value at (k2,1, k2,4, k2,6, k2,10, k2,11, k2,12, k2,15) of k2,
and compute ΔXS

2 = SL(XI
2 ⊕ k1) ⊕ SL(X ′I

2 ⊕ k1) at the 7 bytes
(1, 4, 6, 10, 11, 12, 15). Choose pairs whose difference ΔXS

2 are same at the 7
bytes (1, 4, 6, 10, 11, 12, 15). The probability is 2−48.

Step 6. Since such a difference is impossible, every value of k2 which satisfies
the difference is wrong value. After we analyze 257 pairs, there are only
256 × (1 − 2−48)2

57 ≈ 2−662.3 wrong value of k2 left.

Unless the assumptions on k8 and k1 are both correct, it is expected that we can
get rid of the whole 56-bit values of k2 for each 160-bit value of (k8, k1), since
the number of remaining wrong value of (k8, k1, k2) is about 232×2128×2−662 =
2−512 ≈ 0 [2]. Hence if there remains a value of k2, we can assume the value of
(k8, k1, k2) is right.

4.3 Time Complexity

Next we analyze the time complexity of our attack.
In Step 3, if we compute all the values of those 4 bytes at once, the time

complexity of this step will be 2 × (2153 × 232 × 4
16) = 2184. But actually we

only need 3×2168. Because we can first compute ΔXI
7,0 and ΔXI

7,2, and check if
they are equal. And get rid of the pairs which don’t. For the rest pairs, continue
to compute ΔXI

7,8, and compare with the value of ΔXI
7,0. If they are equal,

remain the corresponding pairs, and so on. This is what is called the “early-
abort technique”. Since we only need to compute 4 bytes here. Thus this step
requires 2 × (2153 × 216 + 2145 × 224 + 2137 × 232) × 4

16 = 3 × 2168 one round
operations.

And we also use the “early-abort technique” in all the rest steps.
In Step 4.1, because we just compute 3 bytes of plaintext pairs, and only AK

and SL are operated, so we consider it as 3
16 ×

2
3 one round operations. So just

like Step 3, this step requires 232 × 2× (2129 × 216 + 2121 × 224)× 3
16 ×

2
3 = 2176

one round operations.
Similarly, Step 4.2 needs 232×2×224×(2113×216+2105×224)× 3

16×
2
3 = 2184

one round operations.
In Step 4.3, we encrypt the 4 bytes (0, 1, 10, 11) of plaintext pairs, and also only

AK and SL are operated. So this step demands 232×2×248×(297×232)× 4
16×

2
3 =

1
3 × 2209 one round operations.

Just like Step 4.3, Step 4.4 requires 232× 2× 280× (289× 224)× 3
16 ×

2
3 = 2223

one round operations.
Step 4.5 needs 232×2×2104×(281×224)× 3

16×
2
3 = 2239 one round operations.

In Step 4.6, as we considered in Step 4.1, because only DL is operated, we
consider it as 1

3 one round operations.
So here we require 232 × 2128 × 2× 281 × 1

3 = 1
3 × 2242 one round operations.

And in Step 5, like Step 3, we demand 232 × 2128 × 2 × (257 × 216 + 249 ×
224 + 241 × 232 + 233 × 240 + 225 × 248 + 217 × 256)× 7

16 = 21× 2231 one round
operations.

Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds 29

Therefore, the total time complexity is (3 × 2168 + 2176 + 2184 + 1
3 × 2209 +

2223 + 1
3 × 2242 + 21 × 2231) × 1

7 = 2238 encryptions of ARIA-256 reduced to 7
rounds.

Consequently, our attack requires about 2125 chosen plaintexts and less than
2238 encryptions of 7-round ARIA-256.

5 Conclusion

In this paper, we present a new impossible differential attack against ARIA-
256 reduced to 7 rounds. This attack requires 2125 chosen plaintexts and 2238

encryptions. Our result is the best impossible differential cryptanalysis result on
ARIA as far as we know to date. In Table 1, we compare the new attack with
the previous impossible differential attacks.

Table 1. Comparison of impossible differential cryptanalysis of ARIA variants

Variant Number of Rounds Chosen Plaintexts Time Complexity Source
ARIA-128 6 2121 2112 Ref.[17]
ARIA-128 6 2120 296 Ref.[13]
ARIA-256 7 2125 2238 This paper

Acknowledgments

The authors would like to thank Professor Xiaoyun Wang for her valuable in-
structions and suggestions. The authors also thank Chengliang Tian and Keting
Jia for their useful help. This research is supported by the National 973 Program
of China (Grant No.2007CB807902) and the National Natural Science Founda-
tion of China (Grant No.60910118).

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. In: The
Third AES Candidate Conference (2000)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

5. Biryukov, A., De Canniere, C., Lano, J., Ors, S.B., Preneel, B.: Security and Per-
formance Analysis of Aria. Version 1.2 (Janaury 7, 2004)

30 C. Du and J. Chen

6. Cheon, J.H., Kim, M., Kim, K., et al.: Improved Impossible Differential Crypt-
analysis of Rijndael and Crypton. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288,
pp. 39–49. Springer, Heidelberg (2002)

7. Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and
Cryptography. Springer, Heidelberg (2002)

8. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit key
AES Variants. In: Matsui, M., Zuccherato, R. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

9. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack against Block Ciphers. In:
Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)

10. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

11. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis (extended abstract). In: Dae-
men, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 629–632. Springer,
Heidelberg (2002)

12. Kwon, D., Kim, J., Park, S., et al.: New Block Cipher: ARIA. In: Lim, J.-I., Lee,
D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)

13. Li, S., Song, C.: Improved Impossible Differential Cryptanalysis of ARIA. In: ISA
2008, pp. 129–132. IEEE Computer Society, Los Alamitos (April 2008)

14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. National Security Research Institute: Specification of ARIA, Version 1.0 (January
2005), http://www.nsri.re.kr/ARIA/doc/ARIAspecification-e.pdf

16. Phan, R.C.: Impossible Differential Cryptanalysis of 7-round AES. Inf. Process.
Lett. 91(1), 33–38 (2004)

17. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-
Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

http://www.nsri.re.kr/ARIA/doc/ARIAspecification-e.pdf

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 31–42, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Algorithm Based Concurrent Error Detection
Scheme for AES

Chang N. Zhang, Qian Yu, and Xiao Wei Liu

Department of Computer Science, University of Regina, Canada
{zhang,yu209,liu273}@cs.uregina.ca

Abstract. With the wide-spread practical applications of AES, not only high
performance, but also strong reliability is desirable to all the cryptosystem. In this
paper, a lightweight concurrent AES error detection scheme which is based on
the algorithm based fault tolerant (ABFT) technique is proposed. Two versions
of scheme are presented to satisfy different application requirements. The first
general version scheme can detect single error for the whole AES process with
high efficiency. Another run-time version scheme is used to immediately end the
error round with no time delay and no computation wasted on the rest rounds for
propagating errors. Utilizing the ready-made arithmetic units in AES, single error
can be detected by the sender and prevent the misdirected information from
sending out. The results of the hardware FPGA implementation and simulation
show that the proposed scheme can be integrated both on software and hardware
without making many changes to the original AES implementation.

Keywords: Advanced Encryption Standard, fault tolerance, error detection,
ABFT.

1 Introduction

In 2001, through the evaluation of several essential criteria among candidate algorithm
nominations, National Institute of Standards and Technology (NIST) finally issued
Advanced Encryption Standard (AES) as a replacement for triple DES (3DES), which
is also well know as Rijndael. As a symmetric block cipher, AES is proved to not only
have comparable security strength, but also achieve significant efficiency improvement
for implementation on software or hardware.

However, with the wide-spread of the AES applications, differential types of faults
may be bought in. Several efforts were devoted into fault tolerance of the
transformations and rounds in AES algorithm. Guido Bertoni et al presented a fault
model for AES and analyzed the behavior of the AES algorithm in the presence of
faults [1]. They also proposed a fault detection technique for a hardware
implementation of the AES algorithm which is based on the parity codes [2]. Moreover,
they developed an analytical error model for the parity-based EDC for the AES
encryption algorithm and is capable of locating single-bit transient and permanent
faults [4, 5]. Later, the same group further described the complete error model extended
to include the Key Schedule (KS) part and presented the results of the software

32 C.N. Zhang, Q. Yu, and X.W. Liu

simulations of the model [7]. L. Berveglieri et al proposed an extension to an existing
AES architecture to provide error detection and fault tolerance [3]. Kaijie Wu et al
presented a low-cost concurrent checking method for the AES encryption algorithm by
using parity checking which can detect faults during normal operation and deliberately
injected faults [6]. Mark Karpovsky et al presented a method of protecting a hardware
implementation of the AES against a side-channel attack known as Differential Fault
Analysis attack [8]. Chih-Hsu Yen et al proposed several error-detection schemes for
AES which are based on the (n+1, n) cyclic redundancy check over GF (28) [9]. Luca
Breveglieri et al presented an operation-centered approach to the incorporation of fault
detection into cryptographic device implementation through the use of Error Detection
Codes [10]. Ramesh Karri et al presented a fault-tolerant architecture for symmetric
block ciphers which is based on a hardware pipeline for encryption and decryption [11].
P. Maistri et al presented the results of a validation campaign on an AES core protected
with some error detection mechanisms [15]. Mojtaba Valinataj et al combined and
reinforced the parity prediction scheme with a partially distributed TMR to achieve
more reliability against multiple simultaneous errors [16].

Other efforts focus on relevant fault detection field. L. Berveglieri et al presented
suggestions for providing fault detection capabilities in recent block ciphers and came
to the conclusion that the detection capability of any code depends on the type of the
code, the frequency of checkpoints and the level of redundancy [14]. Ramesh Karri et al
presented a technique to concurrently detect errors in block ciphers as well as a new
encoding strategy [17].

As a summary, the parity bit check coding technique has been introduced and widely
applied to the basic operations of AES. As a result, the parity bit needs to be generated
and checked for every individual AES operation which brings in considerable time and
hardware overhead. The algorithm based tolerant (ABFT) technique is a general
concept for designing efficient fault tolerant schemes based on structures of the
algorithms [18-20]. Compare with other fault tolerant schemes, the ABFT makes use of
the computational nature of the targeted algorithm and poses a conceptual way to better
create a fault tolerant version by altering the algorithm computation so that its output
contains extra information for error detection and correction. It has relatively low
overhead and no additional arithmetical logic unit is required. Due to the essentiality of
the AES computational nature, we believe that the algorithm based fault tolerant
(ABFT) technique can be more suitable for AES computations. By utilizing the basic
arithmetic units in AES, errors can be accurately detected with lighter overheads.

This paper is organized as follows. Section 2 briefly reviews the AES algorithm and
introduces the notations for further discussion. Section 3 presents two proposed fault
detection scheme for rounds and whole process. Section 4 shows the implementation
and simulation results of the general version scheme. The last Section is a conclusion.

2 The AES Algorithm and Relevant Notations

Originally, the Rijndael proposal for the AES algorithm has three alternatives of block
length and key length, which are 128, 192, or 256 bits respectively. For the sake of
simplicity, we only adopt the AES parameters of 128-bit key size, 128-bit plaintext

 An Algorithm Based Concurrent Error Detection Scheme for AES 33

block size, 10 rounds, 128-bit round key size, and 44-word expanded key size, which
are the most commonly-used parameter set. Due to the similarity between encryption
and decryption parts, just encryption is introduced as an illustration of our schemes.
There is one initial round followed by 9 four-step rounds and ended by a tenth final
round.

2.1 The Initial Round

The first initial round only performs the AddRoundKey operation. “m” stands for the
total ordinal number of each round. “e” is the results for every round. “P” and “K” are
defined as plaintext and round key respectively. For the initial round 0, we have

0m = , the plaintext state P and round 0th key state 0K are represented as,

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

P P P P

P P P P
P

P P P P

P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

;

0 0 0 0
00 01 02 03
0 0 0 0

0 10 11 12 13
0 0 0 0
20 21 22 23
0 0 0 0
30 31 32 33

K K K K

K K K K
K

K K K K

K K K K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;

According to the operation, the equation for round 0 can be derived as follows:

0 0
0 0 0
0 0
1 1 1
0 0
2 2 2
0 0
3 3 3

j j j

j j j

j j j

j j j

e P K

e P K

e P K

e P K

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

;

where 0 3j≤ ≤ and 0
ije is the result for round 0, 0 3i≤ ≤ .

2.2 The 9 Rounds

The 9 rounds have the same sub-operations for each round, which are SubBytes,
ShiftRows, MixColumns and AddRoundKey according to the order. For these 9
rounds, 1 9m≤ ≤ , “a” is the input of round m, “b” “r” and “c” stands for the
intermediate results for SubBytes, ShiftRows and MixColumns operations
respectively, and me also represents the results of round m.

34 C.N. Zhang, Q. Yu, and X.W. Liu

Input of Round m:
1m m

ij ija e −= ,

where 1 9m≤ ≤ , 0 3i≤ ≤ , 0 3j≤ ≤ ;

SubBytes Operation:

[]m m
ij ijb S a= ,

where S stands for the substitution by the S-box and1 9m≤ ≤ , 0 3i≤ ≤ , 0 3j≤ ≤ .

ShiftRows Operation:

0 0
0

1 1, 1
0

2 2, 2
0

3 3, 3

m m
j j

m
j j

m
j j

m
j j

r b

r b

r b

r b

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,

where 0 3j≤ ≤ and1 9m≤ ≤ .

MixColumns Operation:

0 0
0

1 1
0

2 2
0

3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

m m
j j

m
j j

m
j j

m
j j

c r

c r

c r

c r

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 in GF (28),

where 0 3j≤ ≤ and1 9m≤ ≤ .

AddRoundKey Operation:

0 0 0

1 1 1

2 2 2

3 3 3

m m m
j j j

m m m
j j j

m m m
j j j

m m m
j j j

e c K

e c K

e c K

e c K

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,

where 0 3j≤ ≤ and1 9m≤ ≤ . Note that m m m m
ij ij ij ijc K c K⊕ = + in GF (28).

As a conclusion, the equation for each round can be represented as:

0 0 0

1 1, 1 1

2 2, 2 2

3 3, 3 3

[]02 03 01 01

[]01 02 03 01

[]01 01 02 03

[]03 01 01 02

m m m
j j j

m m m
j j jm

j m m m
j j j

m m m
j j j

e S e K

e S e K
E

e S K

e S e K

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 in GF (28), (1)

where 0 3j≤ ≤ and1 9m≤ ≤ .

 An Algorithm Based Concurrent Error Detection Scheme for AES 35

2.3 The Final Round

The final round has no MixColumns operation, and the three operations and their
execution order is the same as the previous 9 rounds. In this 10th round, we have

10m = and the following equation:

10 9 10
0 0 0
10 9 10
1 1, 1 1
10 9 10
2 2, 2 2
10 9 10
3 3, 3 3

[]

[]

[]

[]

j j j

j j j

j j j

j j j

e S e K

e S e K

e S K

e S e K

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 in GF (28),

where 0 3j≤ ≤ .

3 The Algorithm Based Error Detection Schemes for AES

For round 0 to 10, let
10

0

[]m
ij ij

m

K K K
=

⎡ ⎤= =⎣ ⎦ ∑ , and
10

0

m
ij ij

m

E e e
=

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ , both in GF

(28), where 0 , 3i j≤ ≤ , we have:
8

0

98
0 0 0

1, 1
1 1 0

8
2 2

2, 2
03 3

8

3, 3
0

[]02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

m
j

m o

j j jm
j

j j m
j

j j m
j

mj j

m
j

m

S e

e P S e
S e

e P S
E

e P
S e

e P

S e

=

+
=

+
=

+
=

⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + ⋅ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑

∑

∑

0

9
11, 1

9
22, 2

9
33, 3

[]

[]

[]

j

jj

jj

jj

K

Ke

KS

KS e

+

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

in GF (28), (2)

where 0 3j≤ ≤ .

Assuming that only a single error may occur during the whole AES process, and the
SubByte operation is implemented by some fault tolerant look-up table (e.g. Hamming
Code) so that it is error-free for the SubByte operation.

Due to the linear computational nature of the equation (2), the algorithm based fault
tolerant (ABFT) technique can be applied to pre-compute some known parameters as
check-sums. By storing certain intermediate results, this equation can be used to detect
error. We propose two versions of the error detection scheme. The general version can
detect an error for the whole total 11 rounds AES process. Another run-time version
can detect error and immediately stop the round in which the error exists so that it can
prevent the error from propagating to the following rounds.

36 C.N. Zhang, Q. Yu, and X.W. Liu

3.1 The General Version of Concurrent Error Detection Scheme

Firstly, the plaintext state and the round key state have to be XORed together,

ijPK PK⎡ ⎤= ⎣ ⎦ , (3)

where
10

0

m
ij ij ij

m

PK K P
=

= ⊕∑ , and 0 , 3i j≤ ≤ ;

Secondly, while the rounds are going, two intermediate results of each rounds need
to be stored, which are the final results of each round and the substitution results after
SubBytes operation of each round. And then they are pre-computed in the following
ways.

ijE e⎡ ⎤= ⎣ ⎦ , where
10

0

m
ij ij

m

e e
=

=∑ , and 0 , 3i j≤ ≤ ;

8

0 0
0

m
j j

m

S S e
=

⎡ ⎤= ⎣ ⎦∑ ,
8

1 1, 1
0

m
j j

m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ ,
8

2 2, 2
0

m
j j

m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ ,
8

3 3, 3
0

m
j j

m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ ,

where 0 3j≤ ≤ .

Thirdly, according to above notations and the equation (2), we can obtain the
following equation:

9
0 00

9
1 11, 1

9
2 22, 2

9
3 33, 3

[]02 03 01 01

[]01 02 03 01

[]01 01 02 03

[]03 01 01 02

j jj

j jj

j jj

j jj

S PKS e

S PKS e
E

S PKS

S PKS e

+

+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

’ in GF (28) (4)

where 0 3j≤ ≤ .

At last, in order to know whether error occurs, the only work is to compare the

results of above equation 'E with the stored values E . If they equal then there is no
error, otherwise, single error occurs in some round. By knowing the existence of errors,
the sender can be informed of the false encryption result at once. In that case, error can
be blocked. The general version of concurrent error detection scheme is shown in
Figure 1.

If we count one round with four basic operations as a time unit, the proposed general
version ABFT scheme requires only the final two basic operations, MixColumns and
AddRoundKey, to perform multiplication and addition. In that case, the overhead is
about 1/20 of the total AES processing time. If the AES is implemented by pipeline,
and each pipeline unit performs one of the four basic operations, then the proposed
ABFT scheme only affects the pipeline latency and needs some extra storage for the
intermediate results, but still maintain the same throughput.

3.2 The Run-Time Concurrent Error Detection Scheme

The goal of the run-time error detection version is to find an error and immediately
stop the process.

 An Algorithm Based Concurrent Error Detection Scheme for AES 37

Fig. 1. The general version of error detection
scheme for AES

Fig. 2. The run-time version of error detection
scheme for AES

Similar to the previous discussion, we can pre-compute the PK according to

equation (3). Then the intermediate results of SubBytes and the results of each round
are stored and organized in the same way as the general version, however, the
computational method varies. The flow chart of the run-time error detection version is
shown in Figure 2.

Let “h” represent the number of round which has just finished and use the
following notation:

h h
ijE e⎡ ⎤= ⎣ ⎦ , where

0

h
h m
ij ij

m

e e
=

=∑ , and 0 , 3i j≤ ≤ ; (5)

0 0
0

h
h m

j j
m

S S e
=

⎡ ⎤= ⎣ ⎦∑ , 1 1, 1
0

h
h m
j j

m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ , 2 2, 2
0

h
h m

j j
m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ , 3 3, 3
0

h
h m

j j
m

S S e +
=

⎡ ⎤= ⎣ ⎦∑ ,

where 0 3j≤ ≤ ;

h

ij
0

h
m

ij ij
m

PK K P
=

= ⊕∑ ,

where 0 , 3i j≤ ≤
Also, there is some modification based on equation (1), that is,

38 C.N. Zhang, Q. Yu, and X.W. Liu

0 0 0

1 1 1'

2 2 2

3 3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

h h h
j j j

h h h
j j j

h h h h
j j j

h h h
j j j

e S PK

e S PK
E

e S PK

e S PK

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 in GF (28), (6)

where 0 3j≤ ≤ .
By using this equation, we can detect the errors in each round by comparing the

value hE given by equation (5) with the value '
hE of the equation (6), 1,2, ,9h = .

An error exists when they do not equal. If the error happened in round 10 (h=10), we
still can use the check equation (4) indicated in the general version to compute the
check value. In order to find errors in real-time during the round, check scheme has to
be performed at the end of every round.

Using the run-time concurrent error detection scheme, error can be found before
the whole AES process finishes. Once error occurs in certain round, there is no need
to do the rest rounds. By performing the run-time check, the work and time spent on
computing useless information can be saved.

As defined above, one round time with four basic operations is considered as a
time unit. So the proposed run-time version ABFT scheme requires the last two basic
operations to do the multiplication and addition in GF (28) for error detection. Hence,
the overhead is about 1/2 of the total AES processing time for each round. In this
way, if sub-operations are implemented by pipeline units, only pipeline latency is
affected.

4 Hardware Implementation and Simulation Results

As a symmetric encryption algorithm standard, AES has become one of the most
important crypto-algorithms implemented on a variety of platforms, such as Field
Programmable Gate Array (FPGA) and Application Specific Integrated Circuit
(ASIC). Among them, there are two most basic and commonly adopted architectures,
which are rolling architecture and unrolling architecture [21]. The rolling architecture
uses a feedback structure where the data are iteratively transformed by the round
functions. This approach has the advantage of small area but the disadvantage of a
low throughput. The unrolling architecture pipelines the eleven rounds and inserts
registers between every two rounds. This kind of architecture achieves a high
throughput, but compromises the area that is approximately 10 times larger than the
rolling architecture.

For each round of the AES encryption and decryption operations, a different round
key is required. In general, two methods exist to generate the round keys for the
eleven rounds [22]. The first way is to pre-compute the round keys and store them
into a register or memory for all the incoming plain texts in one session. However,
this register/ memory based method requires a large memory or register for key
storage. Another way is to generate the round keys is in an on-the-fly fashion, which
allows the key expansion scheduling running concurrently with the data encryption/
decryption rounds even if the initial key is changed.

 An Algorithm Based Concurrent Error Detection Scheme for AES 39

The proposed general version of the algorithm based concurrent error detection
AES scheme has been implemented according to the rolling architecture and shared
memory is chosen as the way to generate round keys.

The Xilinx SpartanIII XC3S400 FPGA device is used to prototype the proposed
scheme. Simulation is done by Modelsim PE version. Xilinx ISE synthesizes and
implements the design. Very-High-Speed Integrated Circuit Hardware Description
Language (VHDL) is chosen as the description language and top-level source type in
Xilinx ISE.

The ABFT AES architecture is partitioned into four different modules performing
distinct functions, each of which synchronously cooperates with other modules by
using linked signals. Assembling these components together, a ciphertext state and an
error detection signal are obtained after each encryption process, which feed back the
encrypted ciphertext and error detection result.

The program control module takes charge of the procedure and sends out
time-sequential commands to the AES core module. The AES core is responsible for
all the sub-operations in the rolling architecture. These sub-operations include add
round key, substitute bytes, shift rows, mix columns, error detection computation and
result state comparisons. This module acts as an intermediary between the program
control module, S-box module, and key-ram module. The S-box module is used for
S-box table lookup for SubByte operation. It is a 16*16 ROM and each element is an
8-bit data. The key-ram module stores the 44 word round keys for the 11 rounds. In
this implementation, round keys are pre-generated before the encryption and are
stored in the key RAM in advance. A 16-bit RAM bus is used to transfer the two
bytes round keys to AES core module.

Table 1 gives the specification of the proposed scheme generated by the Xilinx
ISE. The comparison is performed between the original AES encryption and the
proposed scheme.

Table 1. Comparison between the original AES and the proposed scheme

Logic Utilization Original ABFT AES Overhead

of Slices 943 1254 32.9%

of Slice Flip Flops 289 433 49.8%

of 4 Input LUTs 1802 2376 31.9%
Clock Period (ns)

(Clock Frequency MHz)
17.494

(57.162)
17.760

(56.306) 1.52%

We use Modelsim PE edition to simulate the proposed scheme. Figure 3 shows the

simulated wave graph of our proposed scheme. The implementation details and input
parameters are set in the following way: the clock frequency is 50MHz with no
particular constraint specification. The plaintext is chosen to be “00 11 22 33 44 55 66
77 88 99 aa bb cc dd ee ff” (in hexadecimal), and the initial key is “f6 cc 34 cd c5 55 c5
41 82 54 26 02 03 ad 3e cd”. In this graph, the left column lists out the input, output and
intermediate parameters in our implementation. Next to this column is the detailed data
of each parameter. And in the right most view, you can find the variation of every signal
in the process of ABFT AES. The output signal (encrypted ciphertext) turns out to be

40 C.N. Zhang, Q. Yu, and X.W. Liu

Fig. 3. Simulation result of ABFT AES scheme

what we expected, which is “da d5 52 93 63 69 58 21 d5 11 47 a7 f2 fa 3a 9e”.
Essentially the point we want to show in this figure is that the logic of our design has
been verified on FPGA and accordingly, the waves prove the proposed scheme can
achieve AES encryption with fault tolerance in a parallel way.

Since there is no united way to evaluate various implementations of AES algorithm
across various platforms, and since every group employs different technology libraries,
chooses different tools and even sets up different constrained parameters to test their
designs, it is not quite comparable between these schemes merely because of their
presented implementation results.

The proposed scheme has a reasonable hardware overhead compared to the existing
schemes. Furthermore, the relative overhead will be much less if the unrolling
architecture is implemented.

5 Conclusion

In this paper, a lightweight concurrent error detection scheme is proposed. This error
detection scheme is based on the ABFT technique and the computational nature of
the AES algorithm. Utilizing the ready-made arithmetic units in the original
design, single error can be efficiently detected by the sender. In this way, useless
computation and false crypto code can prevent propagation. According to the practical

 An Algorithm Based Concurrent Error Detection Scheme for AES 41

requirements, two versions of the scheme are presented. The general version deals with
the whole AES process and the error detection procedure occurs at the end of all
rounds. The run-time version performs error detection for every round. Hence, it is
capable of terminating the error round immediately. Compared to other fault tolerant
schemes for AES, the proposed scheme only brings in overheads of computational
time spent on calculating the detection equations, as well as additional memory or
register for storing intermediate results. Moreover, without doing much modification to
the AES architecture, this scheme can be integrated both on software and hardware in
an easy way. The rolling architecture is chosen to implement the general version on
Xilinx FPGA board. The simulation result shows that our scheme has a reasonable
hardware overhead compared to the existing schemes and the relative overhead will be
much less if the unrolling architecture is to be implemented.

References

1. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: On the propagation of faults and
their detection in a hardware implementation of the advanced encryption standard. In: 13th
IEEE International Conference on Application-Specific Systems, Architectures and
Processors (ASAP 2002), p. 303 (2002)

2. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: A parity code based fault
detection for an implementation of the advanced encryption standard. In: 17th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2002), p. 51
(2002)

3. Breveglieri, L., Koren, I., Maistri, P.: Incorporating error detection and online
reconfiguration into a regular architecture for the advanced encryption standard. In: 20th
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT
2005), pp. 72–80 (2005)

4. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Detecting and locating faults in
VLSI implementations of the advanced encryption standard. In: 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2003), p. 105 (2003)

5. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and detection
procedures for a hardware implementation of the advanced encryption standard. IEEE
Transactions on Computers, 492–505 (April 2003)

6. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Low cost concurrent error
detection for the advanced encryption standard. IEEE Transactions on Computers, 492–505
(2003)

7. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: An efficient hardware-based
fault diagnosis scheme for AES: performances and cost. In: 19th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2004), pp. 130–138
(2004)

8. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against fault-injection
attacks on smart cards implementing the advanced encryption standard. In: International
Conference on Dependable Systems and Networks (DSN 2004), p. 93 (2004)

9. Yen, C.-H., Wu, B.-F.: Simple error detection methods for hardware implementation of
Advanced Encryption Standard. IEEE Transactions on Computers, 720–731 (2006)

10. Breveglieri, L., Koren, I., Maistri, P.: An operation-centered approach to fault detection in
symmetric cryptography ciphers. IEEE Transactions on Computers, 635–649 (2007)

42 C.N. Zhang, Q. Yu, and X.W. Liu

11. Karri, R., Wu, K., Mishra, P., Kim, Y.: A fault tolerant architecture for symmetric block
ciphers. In: IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT 2001), p. 0427 (2001)

12. Kermani, M.M., Reyhani-Masoleh, A.: Parity-based fault detection architecture of S-box for
Advanced Encryption Standard. In: 21st IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT 2006), pp. 572–580 (2006)

13. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: A structure-independent approach for fault
detection hardware implementations of the Advanced Encryption Standard. In: Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pp. 47–53 (2007)

14. Breveglieri, L., Koren, I., Maistri, P.: Detection faults in four symmetric key block ciphers.
In: 15th IEEE International Conference on Application-Specific Systems, Architectures and
Processors (ASAP 2004), pp. 258–268 (2004)

15. Maistri, P., Vanhauwaert, P., Leveugle, R.: Evaluation of register-level protection
techniques for the Advanced Encryption Standard by multi-level fault injections. In: 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT
2007), pp. 499–507 (2007)

16. Valinataj, M., Safari, S.: Fault tolerant arithmetic operations with multiple error detection
and correction. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in
VLSI Systems (DFT 2007), pp. 188–196 (2007)

17. Karri, R., Kuznetsov, G., Goessel, M.: Concurrent error detection in block ciphers. In:
International Test Conference 2003 (ITC 2003), p. 919 (2003)

18. Patel, J.H., Fung, L.Y.: Concurrent error detection in ALU’s by recomputing with shifted
operands. IEEE Trans. Comput. C-31, 589–595 (1982)

19. Gulati, R.K., Reddy, S.M.: Concurrent error detection in VLSI array structures. In: Proc.
IEEE Internet, Conf. on Computer Design, pp. 488–491 (1986)

20. Kuhn, R.H.: Yield enchancement by fault-tolerant systolic arrays in VLSI and modern
signal processing, pp. 178–184. Prentice-Hall, Englewood Cliffs (1985)

21. Qin, H., Sasao, T., Iguchi, Y.: An FPGA design of AES encryption circuit with 128-bit keys.
In: Great Lakes Symposium on VLSI, Proceedings of the 15th ACM Great Lakes
Symposium on VLSI, Chicago, Illinois, USA, pp. 147–151 (2005)

22. Guürkaynak, F.K., Burg, A., Felber, N., Fichtner, W., Gasser, D., Hug, F., Kaeslin, H.:
A 2 Gb/s balanced AES crypto-chip implementation. In: Great Lakes Symposium on VLSI,
Proceedings of the 14th ACM Great Lakes Symposium on VLSI, Boston, MA, USA,
pp. 39–40 (2004)

Cryptography for Unconditionally Secure
Message Transmission in Networks

(Invited Talk)

Kaoru Kurosawa

Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

We consider the model of unconditionally secure (r-round, n-channel) message
transmission schemes which was introduced by Dolev et al. [1]. In this model,
there are n channels between a sender and a receiver, and an infinitely powerful
adversary A may corrupt (observe and forge) the messages sent through t out
of n channels. The sender wishes to send a secret s to the receiver in r-round
without sharing any key with the receiver.

We say that a message transmission scheme is perfectly secure if it satisfies
perfect privacy and perfect reliability. The perfect privacy means that the ad-
versary A learns no information on s, and the perfect reliability means that
the receiver can output s correctly. We say that it is almost secure if it satisfies
perfect privacy and almost reliability.

In this talk, we survey some protocols and bounds for the above problem. We
also describe some new results for general adversary structures [4,5]. In particu-
lar, we introduce the general error decodable secret sharing scheme and show its
application to 1-round perfectly secure message transmission schemes [4].

References

1. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission.
J. ACM 40(1), 17–47 (1993)

2. Kurosawa, K., Suzuki, K.: Almost Secure (1-round, n-channel) Message Transmis-
sion Scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112.
Springer, Heidelberg (2009); Also appeared in Cryptology ePrint Archive: Report
2007/076 (2007)

3. Kurosawa, K., Suzuki, K.: Truly Efficient 2-Round Perfectly Secure Message Trans-
mission Scheme. IEEE Transactions on Information Theory 55(11), 5223–5232
(2009)

4. Kurosawa, K.: General Error Decodable Secret Sharing Scheme and Its Application.
Cryptology ePrint Archive: Report 2009/263 (2009)

5. Kurosawa, K.: Round-Efficient Perfectly Secure Message Transmission Scheme
against General Adversary. Cryptology ePrint Archive: Report 2010/450 (2010)

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, p. 43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Performance and Security Aspects of Client-Side
SSL/TLS Processing on Mobile Devices

Johann Großschädl and Ilya Kizhvatov

University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg, Luxembourg
{johann.groszschaedl,ilya.kizhvatov}@uni.lu

Abstract. The SSL/TLS protocol is the de-facto standard for secure
Internet communications, and supported by virtually all modern e-mail
clients and Web browsers. With more and more PDAs and cell phones
providing wireless e-mail and Web access, there is an increasing demand
for establishing secure SSL/TLS connections on devices that are rela-
tively constrained in terms of computational resources. In addition, the
cryptographic primitives executed on the client side need to be protected
against side-channel analysis since, for example, an attacker may be able
to monitor electromagnetic emanations from a mobile device. Using an
RSA-based cipher suite has the advantage that all modular exponentia-
tions on the client side are carried out with public exponents, which is
uncritical regarding performance and side-channel leakage. However, the
current migration to AES-equivalent security levels makes a good case
for using an Elliptic Curve Cryptography (ECC)-based cipher suite. We
show in this paper that, for high security levels, ECC-based cipher suites
outperform their RSA counterparts on the client side, even though they
require the integration of diverse countermeasures against side-channel
attacks. Furthermore, we propose a new countermeasure to protect the
symmetric encryption of messages (i.e. “bulk data”) against Differential
Power Analysis (DPA) attacks. This new countermeasure, which we call
Inter-Block Shuffling (IBS), is based on an “interleaved” encryption of a
number of data blocks using a non-feedback mode of operation (such as
counter mode), and randomizes the order in which the individual rounds
of the individual blocks are executed. Our experimental results indicate
that IBS is a viable countermeasure as it provides good DPA-protection
at the expense of a slight degradation in performance.

1 Introduction

In the past, research in network security was conducted under the assumption
that the endpoints of a communication channel are secure; an adversary could
only attack the communication itself. A typical attack in this scenario started
with eavesdropping on network traffic, followed by the modification, injection,
or replay of messages with the goal to compromise the security of (parts of) the
network [19]. However, with the current paradigm shift to more and more cell

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 44–61, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Performance and Security Aspects of Client-Side SSL/TLS Processing 45

phones, PDAs, and other mobile or embedded devices being used to access the
Internet, this adversary model must be adapted to incorporate attacks on the
communication endpoints themselves too. For example, an adversary can try to
obtain the secret key(s) used to encrypt the communication by analyzing side-
channel information (e.g. power consumption or EM emanations) leaking from
a device [22,9]. Recent research [29] shows that EM analysis is possible from a
distance as far as 50 cm1. In the worst case, an EM attack on a mobile phone
or PDA may even be conducted without the owner of the device being able to
notice it [30]. Therefore, secure networking does not only require sophisticated
protocols, but also a secure implementation of these protocols and the involved
cryptographic algorithms [23]. In particular, the cryptographic algorithms have
to be protected against all known forms of side-channel attack.

The “de-facto” standard for secure communication over an insecure, open
network like the Internet is the Secure Sockets Layer (SSL) protocol [8] and its
successor, the Transport Layer Security (TLS) protocol [6]. Both use a combi-
nation of public-key and secret-key cryptographic techniques to guarantee the
confidentiality, integrity, and authenticity of data transfer between two parties
(typically a client and a server). The SSL protocol is composed of two layers
and includes a number of sub-protocols. At the lower level is the SSL Record
Protocol, which specifies the format of data transmission between client and
server, including encryption and integrity checking [8]. It encapsulates several
higher-level protocols, one of which is the SSL Handshake Protocol. The main
tasks of the handshake protocol are the negotiation of a set of cryptographic
algorithms, the authentication of the server (and, optionally, of the client2), as
well as the establishment of a pre-master secret via asymmetric (i.e. public-key)
techniques [8]. Both the client and the server derive a master secret from this
pre-master secret, which is then used by the record protocol to generate shared
keys for symmetric encryption and message authentication.

1.1 Efficient and Secure Implementation of the Handshake Protocol

The SSL/TLS protocol is “algorithm-independent” (or “algorithm-agile”) in the
sense that it supports different algorithms for one and the same cryptographic
operation, and allows the communicating parties to make a choice among them
[8]. At the beginning of the handshake phase, the client and the server negotiate
a cipher suite, which is a well-defined set of algorithms for authentication, key
agreement, symmetric encryption, and integrity checking. Both SSL and TLS
specify the use of RSA or DSA for authentication, and RSA or Diffie-Hellman
1 Note that an attacker does not necessarily need to have direct physical access to the

target device in order to monitor EM emanations. Consequently, he does not need
to have the device under his possession to mount a side-channel attack; it suffices to
place an EM probe in the vicinity of the device.

2 Most Internet applications use SSL only for server-side authentication, which means
that the server is authenticated to the client, but not vice versa. Client authentication
is typically done at the application layer (and not the SSL layer), e.g. by entering a
password and sending it to the server over a secure SSL connection.

46 J. Großschädl and I. Kizhvatov

for key establishment. In 2006, the TLS protocol was revised to support Elliptic
Curve Cryptography (ECC) [2,13], and since then, cipher suites using ECDH
for key exchange and ECDSA for authentication can be negotiated during the
handshake phase [3]. The results from [11] and [12] clearly show that SSL/TLS
servers reach significantly better performance and throughput figures when the
handshakes are carried out with ECC instead of RSA. On the client side, how-
ever, the situation is not that clear since the cryptographic operations executed
during the handshake seem to favor RSA cipher suites over their ECC-based
counterparts. When using an RSA cipher suite, all modular exponentiations on
the client side are performed with public exponents, which are typically small
[8]. In the case of an ECC-based cipher suite, however, the client has to execute
two scalar multiplications for ephemeral ECDH key exchange, and at least one
double-scalar multiplication to validate the server’s certificate3, which is quite
costly. In addition, the scalar multiplications for ECDH key exchange need to
be protected against Simple Power Analysis (SPA) attacks, whereas RSA-based
key transport (or, more precisely, the encryption of a random number using the
public RSA key from the server’s certificate) is rather uncritical with respect to
side-channel leakage from the client.

It is widely presumed that, due to efficiency reasons, RSA cipher suites are
better suited for SSL/TLS handshake processing on resource-restricted clients
than ECC-based cipher suites. For example, Gupta et al. compared in [11] the
handshake time of OpenSSL 0.9.6b using a 1024-bit RSA cipher suite versus a
163-bit ECC cipher suite, and found the former outperforming the latter by 30%
when executed on a PDA operating as client. VeriSign, a major international
Certification Authority (CA), prefers RSA cipher suites over their ECC-based
counterparts for mobile clients since, as mentioned in [41], “very few platforms
have problems with RSA.” However, the ongoing migration to AES-equivalent
security levels (e.g. 256-bit ECC, 3072-bit RSA) makes a good case to reassess
the “ECC vs. RSA” question for client-side SSL processing. Surprisingly, the
relative performance of ECC and RSA-based cipher suites on the client side has
not yet been studied for security levels beyond 193 and 2048 bits, respectively
(at least we are not aware of such a study). With the present paper we intend
to fill this gap and demonstrate that a handshake with a cipher suite based on
256-bit ECC is roughly 30% faster than a handshake with 3072-bit RSA, while
ECC wins big over RSA at higher security levels. To support these claims, we
provide a detailed performance analysis of a “lightweight” SSL implementation
into which we integrated a public-key crypto library optimized for client-side
SSL processing on mobile devices. We also show that the protection of ECDH
key exchange against side-channel attacks has almost no impact on the overall
handshake time.

3 Instead of sending a single certificate to the client, the server may also send a chain
of two or more certificates linking the server’s certificate to a trusted certification
authority (CA). However, throughout this paper we assume that the certificate chain
consists of just one certificate, and hence a single signature verification operation is
sufficient to check the validity of the certificate.

Performance and Security Aspects of Client-Side SSL/TLS Processing 47

1.2 Efficient and Secure Implementation of the Record Protocol

Besides the ECDH key exchange, also the symmetric encryption of application
data (i.e. “bulk data”) using a block cipher such as the AES may leak sensitive
information through power or EM side channels, which can be exploited by an
adversary to mount a Differential Power Analysis (DPA) attack [22]. Numerous
countermeasures against DPA attacks on the AES have been proposed in the
past 10 years; from a high-level point of view they can be broadly categorized
into Hiding and Masking [25]. Typical examples of the hiding countermeasure
to protect a software implementation of the AES include the random insertion
of dummy instructions/operations/rounds and the shuffling of operations such
as S-box look-ups. The goal of hiding is to randomize the power consumption
by performing all leaking operations at different moments of time in each exe-
cution. Masking, on the other hand, conceals every key-dependent intermediate
result with a random value, the so-called mask, in order to break the correlation
between the “real” (i.e. unmasked) intermediate result and the power consump-
tion. However, masking in software is extremely costly in terms of execution
time, whereas hiding provides only a marginal protection against DPA attacks
[25]. Therefore, these countermeasures are not very well suited for an SSL/TLS
client since the amount of data to be encrypted can be fairly large, and hence
a significant performance degradation is less acceptable than, for example, for a
smart card application that encrypts just a few 128-bit blocks of data.

In order to solve this problem, we introduce Inter-Block Shuffling (IBS), a
new countermeasure to protect the AES (and other round-based block ciphers)
against DPA attacks. IBS belongs to the category of “hiding” countermeasures
and encrypts/decrypts several 128-bit blocks of data in a randomly interleaved
fashion. It can be applied whenever large amounts of data are to be encrypted
or decrypted, which is often the case when transmitting emails or HTML files
over an SSL connection. The SSL record protocol specifies a payload of up to
214 bytes, which corresponds to 1,024 blocks of 128 bits [8]. A straightforward
encryption of this payload starts with the first block, then continues with the
second block, and so on, until the last block has been processed. However, when
using IBS, the individual rounds of the blocks are executed “interleaved” and
in random order. More precisely, the encryption starts with the first round of a
randomly chosen block, followed by the first round of another randomly chosen
block, and so on, until the first round of each block has been performed. Then the
encryption of the up to 1024 blocks continues with the second round (again the
blocks are processed in random order), followed by the remaining rounds until
all rounds of all 1024 blocks have been executed. Of course, IBS can only be
used with a non-feedback mode of operation such as the Counter Mode or the
Galois/Counter Mode [31,36]. Contrary to IBS, the shuffling countermeasures
sketched in the previous paragraph randomize the sequence of operations within
one block, hence they can be referred to as “intra-block shuffling.” Our experi-
mental results show that IBS is significantly more effective than other software
countermeasures (in particular intra-block shuffling) as it achieves a high degree
of DPA-resistance at the expense of a small performance degradation.

48 J. Großschädl and I. Kizhvatov

ClientHello

ServerHello

Certificate

ServerHelloDone

ServerKeyExchange

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

8

10

Client Server

Fig. 1. SSL handshake with server authentication [37]

2 Handshake Protocol

The Secure Sockets Layer (SSL) protocol and its successor, the Transport Layer
Security (TLS) protocol, are standardized protocol suites for enabling secure
communication between a client and a server over an insecure network [6]. The
main focus in the design of these protocols lay in modularity, extensibility, and
transparency. Both SSL and TLS use a combination of asymmetric (i.e. public-
key) and symmetric (i.e. secret-key) cryptographic techniques to authenticate
the communicating parties and encrypt the data being transferred. The actual
algorithms to be used for authentication and encryption are negotiated during
the handshake phase of the protocol. SSL/TLS supports traditional public-key
cryptosystems (i.e. RSA, DSA, Diffie-Hellman) as well as ECC schemes such as
ECDSA and ECDH.

2.1 Handshake with Server Authentication

The SSL protocol contains several sub-protocols, one of which is the handshake
protocol. After agreeing upon a cipher suite4, which defines the cryptographic
primitives to be used and their domain parameters, the server is authenticated
to the client and a pre-master secret is established using public-key techniques
[8]. Figure 1 shows an overview of the messages exchanged during this process
(see [37] for a detailed description). When using an RSA-based cipher suite, the
pre-master secret is established through key transport: The client generates a
random number and sends it in RSA-encrypted form to the server. On the other
hand, when using an ECC cipher suite, the pre-master secret is established via
ECDH key exchange.

4 A cipher suite is a pre-defined combination of three cryptographic algorithms: A key
exchange/authentication algorithm, an encryption algorithm, and a MAC algorithm.

Performance and Security Aspects of Client-Side SSL/TLS Processing 49

In the ClientHello message the client sends its supported cipher suites to the
server, who confirms the selected suite in its own ServerHello message. Then, the
server transmits its certificate and an optional ServerKeyExchange message to
the client. The latter is only sent if the public key contained in the certificate is
not sufficient to establish a shared pre-master secret, which is, for example, the
case when the certificate is authorized for signing only and used in combination
with ephemeral Diffie-Hellman (or ephemeral ECDH) for key agreement. In this
scenario, the server generates another public key, signs it using the private key
associated with the certificate, and embeds both the key and the signature into
the ServerKeyExchange message. The ServerHelloDone message concludes the
hello phase of the handshake; after sending this message, the server waits for a
response from the client.

The client first checks the validity of the certificate (or chain of certificates),
which requires, among other things5, the verification of the signature(s) in the
certificate. Then, the client extracts the public key from the certificate; the type
and intended use of this key depends on the negotiated cipher suite [3,6]. If the
server has sent a ServerKeyExchange message, the client verifies the signature
(using the public key from the certificate) and retrieves the public key contained
in this message. Now the client possesses all keys required to agree upon a Pre-
Master Secret (PMS) with the server. Depending on the cipher suite, the PMS
is established through either key transport or key exchange. In the former case
(i.e. key transport), the client generates the PMS, which is simply a 46-byte
random number, and encrypts it using the public key6 from the certificate. The
client sends the encrypted PMS to the server as part of the ClientKeyExchange
message. On the other hand, if the PMS is established via key exchange, the
client generates a Diffie-Hellman (or ECDH) key pair and includes the public
part of this key pair in the ClientKeyExchange message. The client performs
a conventional Diffie-Hellman (resp. ECDH) computation taking the secret key
of the freshly generated key pair and the public key7 of the server as input; the
result is a shared key, which is used as PMS. Following the ClientKeyExchange
message, the client sends a ChangeCipherSpec message to the server to indicate
that subsequent messages will be encrypted. Finally, the Finished message is the
first one protected with the just negotiated algorithms and keys; it allows the
server to verify that the negotiation was successful.

Upon receipt of the ClientKeyExchange message, the server derives the PMS
either directly through encryption of this message and extraction of the 46-byte
random number (if the negotiated cipher suite is based on RSA key transport)

5 In particular, the client has to check the validity period and revocation status of the
certificate, and that it was issued by a trusted Certification Authority (CA).

6 If key agreement is realized through key transport, the public key contained in the
server’s certificate must be an RSA key authorized for encryption. The encryption
of the PMS not only ensures confidentiality, but also allows the client to verify that
the server possesses the secret key corresponding to the certified public key.

7 Depending on the cipher suite, the server’s public key is contained in either the
certificate (if the cipher suite is based on static Diffie-Hellman/ECDH keys) or the
ServerKeyExchange message (in the case of ephemeral Diffie-Hellman/ECDH).

50 J. Großschädl and I. Kizhvatov

or through a Diffie-Hellman/ECDH computation using the public key embedded
in this message and its own secret key as input (if the cipher suite is based on
Diffie-Hellman or ECDH key exchange). The server derives a master secret from
the PMS, which, in turn, is used by the record protocol to generate secret keys
for bulk encryption. Successful decryption of the client’s Finished message con-
firms that the server has computed the PMS correctly. Then, the server sends a
ChangeCipherSpec and a Finished message to the client; the former signals the
transition to encrypted communication, whereas the latter allows the client to
verify the correctness of the server’s PMS computation.

A handshake based on an ECC cipher suite as specified in [3] is executed in
a similar way as one based on a cipher suite that uses RSA or DSA for authen-
tication and Diffie-Hellman for key agreement. All ECC cipher suites require
the server to possess an ECDSA-signed certificate, i.e. the client has to perform
ECDSA instead of RSA or DSA verifications. The PMS is established through
either static or ephemeral ECDH key exchange. Static ECDH implies that the
certificate contains an ECDH-capable key and, hence, the server does not send
a ServerKeyExchange message. In the other case (i.e. ephemeral ECDH), the
server’s certificate contains an ECDSA-capable public key, and the server sends
its ephemeral ECDH key in the ServerKeyExchange message, which is signed
under the private key corresponding the certified public key.

ECC-based cipher suites differ significantly from their RSA-based counter-
parts with respect to the computational load they impose on the client. If an
RSA-based cipher suite has been negotiated, the client needs to carry out two
modular exponentiations: one to verify the RSA signature of the certificate, and
the second to encrypt the PMS. However, both exponentiations are performed
with public exponents, which are usually small, e.g. 216 + 1. Unfortunately, the
situation is less favorable for the client when an ECC-based cipher suite is used
[11]. ECDH key exchange requires the client to execute two scalar multiplica-
tions (one to generate a key pair, the second to obtain the shared key), whereas
ECDSA verification requires a double-scalar multiplication [13], all of which are
relatively costly in relation to exponentiation with a small exponent.

2.2 Performance Evaluation

The implementation results from [11] show that the overall handshake time on
the client side is significantly increased when using an ECC-based cipher suite
instead of an RSA cipher suite, at least for low security levels (163-bit ECC and
1024-bit RSA). To our knowledge, the relative performance of ECC-based and
RSA cipher suites has not yet been evaluated for higher (e.g. AES-equivalent)
security levels. We intend to fill this gap by presenting a detailed performance
analysis of a “lightweight” SSL/TLS implementation supporting both ECC and
RSA cipher suites. In the following, we briefly summarize our implementation
of the public-key primitives (i.e. RSA, ECDSA, ECDH), including the integrated
countermeasures against side-channel attacks.

We used MatrixSSL [34], a lightweight SSL implementation for mobile and
embedded devices, as starting point of our performance analysis. MatrixSSL is

Performance and Security Aspects of Client-Side SSL/TLS Processing 51

optimized towards small code size and low memory footprint, but nonetheless
provides both server and client functionality. The source code is written in pure
ANSI C and available under the GNU General Public License. MatrixSSL, in its
original form, contains cipher suites based on traditional public-key algorithms
(i.e. RSA, DSA, and Diffie-Hellman), but not the ECC cipher suites defined in
[3]. Therefore, we replaced the entire public-key part of the MatrixSSL crypto
library by our own library called MiniPKC. MiniPKC supports all the public-
key cryptosystems needed in SSL, including ECC schemes over both prime and
binary extension fields. Our priority in the design of MiniPKC lay on small code
size and low memory footprint rather than on pure performance. MiniPKC is
a generic public-key library in the sense that allows for arithmetic on operands
of arbitrary size. It supports arbitrary curves and fields for ECC, but contains
performance-optimized implementations for “standardized” domain parameters
[13]. We aimed to protect MiniPKC against all possible forms of side-channel
attack; in the context of client-side handshake processing, this boils down to a
protection against Simple Power Analysis (SPA) [23].

Implementation Details and SPA Countermeasures. As mentioned pre-
viously, MiniPKC supports RSA, DSA, Diffie-Hellman, as well as ECDSA and
ECDH on elliptic curves over arbitrary prime and binary extension fields. The
modular multiplication (resp. squaring) operation is implemented on basis of the
CIOS method for Montgomery reduction as described in [21]. The square-and-
multiply algorithm is used for modular exponentiation if the exponent is small
(e.g. a public exponent in RSA), whereas the m-ary method with m = 24 comes
into operation for large exponents (i.e. four bits of the exponent are processed
at a time).

The arithmetic in Fp is modular arithmetic, i.e. addition and multiplication
modulo the prime p. MiniPKC uses the C functions implementing Montgomery
multiplication and squaring not only for exponentiation (e.g. RSA), but also to
perform Fp-arithmetic such as needed for ECC. Our optimized implementation
of the arithmetic for standardized fields contains dedicated modular reduction
functions for generalized-Mersenne (GM) primes [13]. In addition, we unrolled
the inner loops of certain arithmetic operations. MiniPKC represents points on
an elliptic curve over Fp using the mixed Jacobian-affine coordinates described
in [13, Section 3.2.2] and performs scalar multiplications via a window method
with a window size of four. Double-scalar multiplications, such as carried out in
ECDSA verification, are realized according to Algorithm 3.48 in [13].

MiniPKC also supports ECC on elliptic curves over F2m . The multiplication
of two binary polynomials is accomplished using the left-to-right comb method
(Algorithm 2.36 in [13]) in combination with Karatsuba’s technique [17]. On the
other hand, the square of a binary polynomial is computed in linear time with
the help of a small look-up table. MiniPKC contains a generic reduction routine
for arbitrary irreducible polynomials, similar to the one in OpenSSL [33]. The
scalar multiplication of a point on an elliptic curve over F2m is implemented on
basis of the projective version of the López-Dahab algorithm [13, p. 103].

52 J. Großschädl and I. Kizhvatov

Table 1. Execution times (in msec) of cryptographic operations and SSL handshakes
using RSA and ECC-based cipher suites of different cryptographic strength

RSA-based cipher suite ECC-based cipher suite
Bits of

Key Key Sign. Hand- Key Key Sign. Hand-security
size establ. verif. shake size establ. verif. shake

80 1024 6.7 6.7 32.7 160 14.0 8.3 41.7
112 2048 26.3 26.3 72.6 224 37.6 18.1 75.2
128 3072 58.1 58.1 134.2 256 46.1 29.4 94.8
192 7680 404.7 404.7 829.4 384 155.8 99.2 275.0
256 15360 1605.5 1605.5 3235.6 512 265.3 169.9 455.3

Koschuch et al. [23] analyzed different cipher suites regarding side-channel
leakage from the server and the client. On the client side, RSA cipher suites do
not need to be protected against side-channel attacks, whereas the ECC-based
cipher suites from [3] require countermeasures against Simple Power Analysis
(SPA). MiniPKC is SPA-resistant as its implementation of the field and curve
arithmetic does not contain any key- or data-dependent branches or load/store
operations. Consequently, a scalar multiplication executes always exactly the
same sequence of operations and instructions, irrespective of the scalar and the
base point. To achieve this, it is important to avoid conditional subtractions in
Montgomery multiplication and other operations such as addition in Fp. More-
over, “irregularities” in the execution of the window method must be avoided
(e.g. special consideration of zero-digits in the scalar k), which can be achieved
by representing k with a digit set that does not contain zero [13].

Experimental Results. We integrated MiniPKC along with the ECC-based
cipher suites from [3] into MatrixSSL version 1.7 [34], which increased the code
size (i.e. the size of the binary executable) from 110 kB to approximately 150
kB. For comparison, the code size of OpenSSL [33] is more than 2 MB [23]. The
memory (i.e. RAM) footprint of MatrixSSL, when operating as client, is merely
10 kB. Table 1 summarizes the execution time of key establishment, signature
verification, and a full handshake for both RSA and ECC-based cipher suites
of different security levels. We measured the timings on a Compaq iPAQ h3600
PDA featuring a 200 MHz StrongARM SA-1100 processor. The iPAQ PDA ran
MatrixSSL with ECC support and operated as client in our experiments. It was
connected to a PC via the USB port of its cradle and initiated SSL handshakes
with an OpenSSL server running there.

Each row in Table 1 lists the timings of an RSA and an ECC cipher suite
of comparable cryptographic strength according to the recommendations of the
NIST [32] (e.g. 3072-bit RSA is comparable to 256-bit ECC). The leftmost cell
of each row indicates the number of bits of security provided by the algorithms
and key sizes listed in that row (e.g. 3072-bit RSA and 256-bit ECC provide 128
bits of security, which means they are comparable to e.g. AES-128). In the case
of ECC, the execution time of key establishment is the time the client needs to
perform two scalar multiplications. The overall handshake time was measured

Performance and Security Aspects of Client-Side SSL/TLS Processing 53

on the client as the time that elapsed from sending the ClientHello message to
receiving and checking the Finished message from the server. In summary, the
timings in Table 1 show performance advantages for RSA over ECC when the
security level is low (i.e. 1024-bit RSA, 160-bit ECC), which confirms the results
of Gupta et al. [11]. However, the relative performance of RSA and ECC-based
cipher suites turns into the opposite when increasing the security level, mainly
because the key length of ECC scales linearly with that of symmetric ciphers
(e.g. AES), while RSA keys go up sub-exponentially [32]. A handshake with a
256-bit ECC cipher suite is roughly 30% faster than an RSA-based handshake
of comparable cryptographic strength. On the other hand, ECC cipher suites
win big over RSA at security levels corresponding to 192 and 256-bit AES; in
the latter case, the ECC-based handshake outperforms its RSA counterpart by
a factor of more than seven.

When using an ECC cipher suite, the cryptographic operations (i.e. ECDH
key exchange, ECDSA verification) constitute between 53.5% and 95.6% of the
handshake time. The ECC-timings in Table 1 were obtained with cipher suites
based on NIST-approved elliptic curves over Fp; using a binary extension field
of roughly the same order as underlying algebraic structure increased the exe-
cution time of ECDH and ECDSA, as well as the full handshake time, by some
20–30%. Making the Fp-arithmetic and the window method for scalar multipli-
cation resistant against SPA attacks incurred a small performance degradation
of about 10% compared to a “straightforward” implementation. This result is
somewhat in contrast with the findings of Koschuch et al. [23], who reported a
50% jump in the handshake time due to SPA countermeasures. However, this
gap is caused by different algorithms for scalar multiplication: Koschuch et al’s
SPA-resistant implementation employs the Montgomery ladder [13], which is
significantly slower than the window method with a window size of four.

3 Record Protocol

The SSL/TLS record protocol is layered above the Transport Control Protocol
(TCP) but below other SSL/TLS sub-protocols such as the handshake proto-
col [6,8]. It provides private (i.e. encrypted) and reliable (i.e. integrity-checked)
communication between a client and a server. Among the supported algorithms
for the so-called “bulk encryption” are the block ciphers AES and 3DES, and
the stream cipher RC4. The integrity of the messages is protected via a keyed
MAC calculated using a cryptographic hash function (e.g. MD5 or SHA-1) in
combination with a secret key. All secret keys and initialization vectors needed
for bulk encryption and message authentication are derived from the so-called
master secret, which, in turn, is generated from the pre-master secret that was
negotiated during the handshake phase of the protocol. The record protocol is
also responsible for the fragmentation of the messages into chunks of up to 16
kB, and the encapsulation of these chunks with appropriate headers to create
so-called records, which are forwarded to the transport protocol.

To date, the security of embedded SSL implementations against side-channel
attacks was considered only for the public-key part, i.e. the handshake protocol

54 J. Großschädl and I. Kizhvatov

[23]. Besides ECDH key exchange, also the symmetric encryption of application
data (i.e. the records) using a block cipher such as the AES may leak sensitive
information through power or EM side channels. This leakage can be exploited
by an adversary to conduct a side-channel attack, Differential Power Analysis
(DPA) [22] being the most practical one. In this section we propose and analyze
a new countermeasure to protect the record protocol (i.e. the secret-key portion
of SSL) against power analysis and EM attacks.

3.1 Motivation for a New Countermeasure

Numerous countermeasures against DPA attacks on block ciphers have been pro-
posed in the past 10 years. From a high-level point of view, they can be broadly
categorized into hiding and masking [25]. The goal of hiding is to randomize the
power consumption by performing all leaking operations at different moments
of time in each execution. Masking, on the other hand, tries to conceal every
key-dependent intermediate result with a random value, the so-called mask, in
order to break the correlation between the “real” (i.e. unmasked) intermediate
result and the power consumption. In general, masking offers good protection
at the expense of very large performance (or memory) overhead, whereas hiding
usually provides less protection but does so at lower implementation cost.

Effect of Timing Disarrangement. Hiding can be implemented in software
in two flavors: by shuffling the order of the operations or by introducing random
delays through dummy operations. Both result in timing disarrangement of the
target operation in a side channel trace. A theoretical analysis in [5,24] shows
that, if the moment when the target operation occurs is uniformly distributed
across k time instants, the number of side-channel traces needed for a successful
DPA attack grows in k2 when the attack is performed straightforwardly, or lin-
early with k in case integration and windowing techniques (practically verified
also in [38]) are employed. The latter figure can be used to roughly estimate the
effect of timing disarrangement countermeasures.

Efficiency and Limitations of Shuffling. Shuffling is relatively attractive to
implementers since it introduces almost no performance overhead. However, the
disarrangement resulting from shuffling alone is often not sufficiently large. To
illustrate this, let us consider a natural choice for AES: shuffling the order of the
Sbox operations within a round. This introduces a disarrangement over 16 time
instances, thus the DPA attack with windowing and integration will require 16
times more traces compared to the unprotected implementation. Attacking an
unprotected implementation on an embedded micro-controller requires some 100
traces [25]. Therefore, several thousands of traces will be required to attack the
implementation protected with the described shuffling, which is still a feasible
amount. In practice, shuffling is strengthened by inserting dummy operations to
increase k and is combined with masking [15,39,35]. So the problem is evident:
shuffling is efficient when k is large; increasing k is, however, not possible due to
the nature of the algorithms being protected. The countermeasure we propose
in the next subsection allows one to overcome this limitation.

Performance and Security Aspects of Client-Side SSL/TLS Processing 55

1

2

3

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

50

4

7

12

47

3

10

15

50

1

6

13

48

5

8

11

49

2

9

14

46

Round 1

Round 2

Round 3

Round 10

Block 1 Block 2 Block 3 Block 4 Block 5

Round 1

Round 2

Round 3

Round 10

Block 1 Block 2 Block 3 Block 4 Block 5

Fig. 2. Conventional encryption (top) versus encryption using IBS (bottom)

Galois/Counter Mode. Our novel countermeasure is designed for non-feed-
back modes of operation of block ciphers, in particular the counter mode and
Galois/Counter mode (GCM) [7], which provides authenticated encryption. The
GCM has not shown any security flaws [28], is standardized by the NIST, and
included in TLS cipher suites [36]. Hence, it is very likely that AES-GCM will
become a mode of choice in embedded implementations of TLS. Note that the
HMAC scheme with CBC mode of operation specified in TLS was found to be
vulnerable to side-channel attacks [27], which is not the case for the MAC part
of GCM. An efficient implementation of AES-GCM resistant to timing attacks
was recently introduced by Käsper et al. [18]. Even though their implementation
does not consider resistance against DPA attacks, the techniques described in
[18] can be combined with our new countermeasure against DPA.

3.2 Our New Countermeasure: Inter-Block Shuffling

In this subsection we introduce the Inter-Block Shuffling (IBS) countermeasure
to protect the AES (and other round-based block ciphers) against DPA. IBS is
applicable in the context of TLS when the counter mode [31] or GCM is used.

Let us consider AES-GCM in TLS [36]. The TLS record protocol specifies
a payload of up to 214 bytes, which corresponds to 1024 blocks of 128 bits [6]
forming a record. A straightforward encryption of this payload starts with the
first block, continues with the second block, and so on, until the last block has
been processed. This is illustrated on the top of Figure 2 for a small example in
which five blocks are encrypted, whereby for each block 10 rounds are performed
(i.e. 50 rounds altogether). On the other hand, when using IBS, the individual
rounds of the blocks are executed “interleaved” and in a random order. More
precisely, the encryption starts with the first round of a randomly chosen block
(which is Block 3 in the example shown on the bottom of Figure 2), followed by
the first round of another randomly chosen block (Block 5), and so on, until the
first round of each block has been performed. Then, the encryption of the up to

56 J. Großschädl and I. Kizhvatov

1024 blocks continues with the second round (again the blocks are processed in
random order), followed by the remaining rounds until all rounds of all blocks
have been executed. Contrary to IBS, the traditional shuffling countermeasures
mentioned in Subsection 3.1 randomize the sequence of operations within one
block, hence they can be referred to as “intra-block shuffling.”

IBS breaks the correlation between the traces corresponding to encryption
rounds and the inputs/outputs of block encryptions. This thwarts side-channel
attacks which require knowledge of the inputs or outputs corresponding to a
specific trace, in particular DPA. The computations of the GHASH function in
the MAC part of the GCM are chained and, consequently, should be computed
without randomization. However, this does not introduce an opportunity for a
key-recovery DPA attack. In the sequel, we show that our IBS countermeasure
can be implemented efficiently and provides good security against side-channel
attacks.

Implementation Efficiency. The overhead of our IBS is relatively small. In a
concrete implementation using IBS, one can pick the values of the counter used
for encryption from random positions following the Fisher-Yates algorithm [20]
for obtaining a random shuffle. For example, a fast PRNG providing uniform
pseudo-random integers would suffice [26]. As the counter is incremental [7], the
counter values can be produced on-the-fly knowing the block number. One has
to keep all the ciphertexts buffered for the MAC part; however, 16 kB of RAM
(in the case of AES) should not be a problem on a state-of-the-art PDA or cell
phone. If less memory is available, inter-block shuffling can be performed within
the smaller group of blocks. So, IBS provides a trade-off between security and
memory requirements.

Encrypting (resp. decrypting) a 128-bit block of data using the AES takes
between 639 and 1,605 clock cycles on an iPAQ PDA featuring a StrongARM
processor. These performance figures are based on the implementation reported
in [1], whereby the exact cycle count depends on the size of the look-up tables
being used. When applying our IBS countermeasure, the 128-bit State is written
to memory after each round, and the State of a different (randomly selected)
block is loaded. Assuming 128-bit keys and, hence, 10 rounds per block, a total
of 9 additional load/store operations of 128-bit States have to be carried out in
relation to an unprotected implementation. Since a 128-bit AES State consists
of four 32-bit words, these extra load/store operations take 72 clock cycles on
a StrongARM processor, assuming that they hit the data cache. Our practical
results indicate that IBS increases the AES encryption time by between 4.5 and
11.3%, depending on the concrete implementation (not taking into account the
time needed to generate random numbers and update the counter value). One
random integer (of size 10 bits for 1024 blocks in a TLS record) per encryption
round is required.

The overhead of IBS is much smaller than that of intra-block shuffling since the
latter requires additional dummy blocks of instructions, several random integers
per round, and combination with masking [15] to achieve a comparable security
level. For example, it was shown in [38] that advanced DPA attacks on an AES

Performance and Security Aspects of Client-Side SSL/TLS Processing 57

implementation protected by these techniques require 500 times more traces than
for an unprotected implementation, while the performance overhead is more than
100%. On the other hand, with our IBS we can achieve the same security against
DPA with less than 25% (a rough estimate) overhead.

3.3 Security Analysis of AES-GCM with IBS

Starting already from a small number of blocks (i.e. 16), IBS introduces more
timing disarrangement than the intra-block shuffling. For a maximum number
of blocks, which is typically reached when transmitting E-mails or HTML files
over a TLS connection, a DPA attack with windowing and integration requires
(at least) 1000 times more traces than for an unprotected implementation. This
complexity estimation is quite pessimistic since for integration one would have
to acquire very long traces such that the additional cost of trace processing is
significant.

It was recently demonstrated that the exact knowledge of the incremental
counter values in counter mode and GCM is not necessary to mount a successful
first-order DPA attack [16]. However, this attack still requires the adversary to
know the correspondence between the traces and the inputs (or outputs), which
is not the case for the IBS. Hence, IBS is immune to this attack.

An attack that could be mounted against our IBS is the recently introduced
unknown plaintext template attack [14]. For this attack to work, the adversary
must 1) be able to profile an implementation [25] and 2) should know the times
when corresponding key bytes are processed, which are stronger assumptions
than for DPA. If these are considered to be feasible, IBS should be combined
with intra-block shuffling to thwart the unknown plaintext template attack.

Problem with Counter Structure. There is a problem due to the structure
of the 16-byte counter block in GCM, which is defined in [7,36] as follows.

ID︸︷︷︸
4 bytes

|| SEQNUM︸ ︷︷ ︸
8 bytes

|| BLOCKCTR︸ ︷︷ ︸
4 bytes

Here ID is the server or client identifier that is a part of the key material and
kept secret. SEQNUM is the value that should be unique for each TLS record and
is transmitted in clear; it may be the record sequence number. ID and SEQNUM
form the 12-byte GCM nonce. BLOCKCTR is the 32-bit counter initialized to 1
at the beginning of the TLS record and incremented by 1 for each successive
128-bit block.

We can observe that the bytes of SEQNUM do not change within a single TLS
record, so IBS has no effect on these bytes. At the same time, SEQNUM changes
from one TLS record to the other, which enables a conventional DPA attack in
the case of AES. When SEQNUM is simply a sequence counter, only few of the
low-order bytes of SEQNUM will change, and the corresponding key bytes can be
efficiently recovered via DPA. The key bytes corresponding to the fixed known
bytes of SEQNUM can be recovered with the collision attack techniques in [4]. The

58 J. Großschädl and I. Kizhvatov

same holds for the recovery of the two higher order bytes of BLOCKCTR that will
be zero in all blocks since the number of blocks in a TLS record is ≤ 210.

Because of the fixed parts in the counter block, 10 bytes of the AES key can
be recovered despite IBS. For AES-192 and AES-256, the security margin is still
sufficiently large, but for AES-128 only 48 unknown bits are left in the key. In
the following, we show that a simple modification of the counter can completely
thwart this attack.

Repairing the Counter. To thwart the described attack, the counter should
be updated in such a way that, for different blocks within a TLS record, all
of the counter bytes are different. This can be achieved by applying a bijective
transformation with good diffusion properties; in other words, we want to make
each bit of the output dependent on all the bits of the input, but the relations
can be linear. An LFSR would perfectly suit these requirements. We suggest to
generate the values of the counter as described in [7,36], but before encryption
feed each counter block into a 128-bit LFSR with maximum period, clock the
LFSR for 128 steps to propagate the difference, and take the resulting state as
the output. The clocking of the LFSR can be implemented efficiently in a word-
oriented way as in [42]. Of course, the suggested modification of the counter is
problematic in practice since GCM is already a well-established standard and
implemented in several products. Nonetheless, our results demonstrate that an
algorithmic- or protocol-level countermeasure can be very efficient (see e.g. [10]
for another example). On the other hand, protecting a given block without any
modification of the usage scheme (i.e. applying masking) is very costly.

In a classical scenario, using a plain incremental counter in a counter mode
of operation is considered secure. In a side-channel scenario, however, it appears
that the plain counter does not allow one to implement some countermeasures
like, for example, the presented IBS. Moreover, it has been shown in [40] that a
plain incremental counter allows for fault attacks, and that using an LFSR to
update the counter prevents these attacks. We conclude that standardizing an
LFSR-based counter update for counter modes of operation is desirable because
it allows for efficient prevention of implementation attacks.

4 Conclusions

In this paper, we studied the interplay between network security and applied
cryptography (i.e. resistance against side-channel attacks) by taking client-side
SSL/TLS processing on mobile devices as example. We conducted a detailed
performance analysis of the handshake protocol for different cipher suites and
found that a handshake using a 256-bit ECC cipher suite is roughly 30% faster
than an RSA-based handshake of comparable cryptographic strength, whereas
ECC wins big over RSA at higher security levels. This result in favor of ECC
was found despite the fact that ECDH key exchange requires countermeasures
against SPA attacks, which increased the handshake time of our SSL stack by
just up to 10%. We also introduced IBS, a novel countermeasure to protect the

Performance and Security Aspects of Client-Side SSL/TLS Processing 59

bulk encryption carried out by the record protocol against DPA attacks. IBS is
algorithm-independent (i.e. works with any round-based cipher), and provides
reliable protection against DPA attacks at the expense of a slight performance
degradation (between 4.5 and 11.3%). In summary, our results shows that good
countermeasures against side-channel attacks do not need to be costly, i.e. it is
possible to achieve high security without sacrificing performance.

References

1. Atasu, K., Breveglieri, L., Macchetti, M.: Efficient AES implementations for ARM
based platforms. In: Proceedings of the 19th ACM Symposium on Applied Com-
puting (SAC 2004), pp. 841–845. ACM Press, New York (2004)

2. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

3. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Möller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). Internet
Engineering Task Force, Network Working Group, RFC 4492 (May 2006)

4. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

5. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

6. Dierks, T., Rescorla, E.K.: The transport layer security (TLS) protocol version
1.2. Internet Engineering Task Force, Network Working Group, RFC 5246 (August
2008)

7. Dworkin, M.: Recommendation for block cipher modes of operation: Ga-
lois/Counter mode and GMAC. NIST Special Publication 800-38D (November
2007),
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

8. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol Version 3.0. Internet
Draft (November 1996), http://wp.netscape.com/eng/ssl3/draft302.txt

9. Gebotys, C.H., Ho, S.C., Tiu, C.C.: EM analysis of Rijndael and ECC on a wireless
Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

10. Guajardo, J., Mennink, B.: Towards side-channel resistant block cipher usage or
can we encrypt without side-channel countermeasures? Cryptology ePrint Archive,
Report 2010/015 (2010), http://eprint.iacr.org/

11. Gupta, V., Gupta, S., Chang Shantz, S., Stebila, D.: Performance analysis of elliptic
curve cryptography for SSL. In: Proceedings of the 3rd ACM Workshop on Wireless
Security (WiSe 2002), pp. 87–94. ACM Press, New York (2002)

12. Gupta, V., Stebila, D., Fung, S., Chang Shantz, S., Gura, N., Eberle, H.: Speeding
up secure Web transactions using elliptic curve cryptography. In: Proceedings of
the 11th Annual Network and Distributed System Security Symposium (NDSS
2004), pp. 231–239. Internet Society, San Diego (2004)

13. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer, Heidelberg (2004)

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://wp.netscape.com/eng/ssl3/draft302.txt
http://eprint.iacr.org/

60 J. Großschädl and I. Kizhvatov

14. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009)

15. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

16. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007)

17. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multidigit numbers on automata.
Soviet Physics - Doklady 7(7), 595–596 (1963)

18. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

19. Kaufman, C., Perlman, R., Speciner, M.: Network Security: Private Communica-
tion in a Public World. Prentice Hall, Englewood Cliffs (2002)

20. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Program-
ming, vol. 2. Addison-Wesley, Reading (1998)

21. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro. 16(3), 26–33 (1996)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

23. Koschuch, M., Großschädl, J., Payer, U., Hudler, M., Krüger, M.: Workload char-
acterization of a lightweight SSL implementation resistant to side-channel attacks.
In: Franklin, M.K., Hui, L.C., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
349–365. Springer, Heidelberg (2008)

24. Mangard, S.: Hardware countermeasures against DPA – A statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

25. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

26. Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14), 1–6 (2003)
27. McEvoy, R., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power anal-

ysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2007)

28. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

29. Meynard, O., Guilley, S., Danger, J.-L., Sauvage, L.: Far correlation-based EMA
with a precharacterized leakage model. In: Proceedings of the 13th Conference
on Design, Automation and Test in Europe (DATE 2010), pp. 977–980. IEEE
Computer Society Press, Los Alamitos (2010)

30. Mills, E.: Leaking crypto keys from mobile devices. CNET News (October 2009),
http://news.cnet.com/8301-27080_3-10379115-245.html

31. Modadugu, N., Rescorla, E.K.: AES Counter Mode Cipher Suites for TLS and
DTLS. Internet draft (June 2006),
http://tools.ietf.org/pdf/draft-ietf-tls-ctr-01.pdf

32. National Institute of Standards and Technology (NIST). Recommendation for Key
Management – Part 1: General (Revised). Special Publication 800-57 (March 2007),
http://csrc.nist.gov/publications/PubsSPs.html

http://news.cnet.com/8301-27080_3-10379115-245.html
http://tools.ietf.org/pdf/draft-ietf-tls-ctr-01.pdf
http://csrc.nist.gov/publications/PubsSPs.html

Performance and Security Aspects of Client-Side SSL/TLS Processing 61

33. OpenSSL Project. OpenSSL 0.9.7k (September 2006), http://www.openssl.org
34. PeerSec Networks, Inc. MatrixSSL 1.7.1 (September 2005),

http://www.matrixssl.org

35. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

36. Salowey, J.A., Choudhury, A.K., McGrew, D.A.: AES Galois Counter Mode (GCM)
Cipher Suites for TLS. Internet Engineering Task Force, Network Working Group,
RFC 5288 (August 2008)

37. Thomas, S.A.: SSL and TLS Essentials: Securing the Web. John Wiley & Sons,
Inc., Chichester (2000)

38. Tillich, S., Herbst, C.: Attacking state-of-the-art software countermeasures – A case
study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 228–243. Springer, Heidelberg (2008)

39. Tillich, S., Herbst, C., Mangard, S.: Protecting AES software implementations on
32-bit platforms against power analysis. In: Katz, J., Yung, M. (eds.) ACNS 2007.
LNCS, vol. 4521, pp. 141–157. Springer, Heidelberg (2007)

40. Tirtea, R., Deconinck, G.: Specifications overview for counter mode of operation.
Security aspects in case of faults. In: Proceedings of the 12th IEEE Mediter-
ranean Electrotechnical Conference (MELECON 2004), vol. 2, pp. 769–773. IEEE,
Los Alamitos (2004)

41. VeriSign, Inc. Secure Wireless E-Commerce with PKI from VeriSign. White paper
(January 2000), https://www.verisign.com/server/rsc/wp/wap/index.html

42. Zhang, M., Carroll, C., Chan, A.: The software-oriented stream cipher SSC2. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 31–48. Springer, Heidelberg
(2000)

http://www.openssl.org
http://www.matrixssl.org
https://www.verisign.com/server/rsc/wp/wap/index.html

A Practical Cryptographic Denial of Service
Attack against 802.11i TKIP and CCMP

Martin Eian

Department of Telematics
Norwegian University of Science and Technology

martin.eian@item.ntnu.no

Abstract. This paper proposes a highly efficient cryptographic denial
of service attack against 802.11 networks using 802.11i TKIP and CCMP.
The attacker captures one frame, then modifies and transmits it twice
to disrupt network access for 60 seconds. We analyze, implement and
experimentally validate the attack. We also propose a robust solution
and recommendations for network administrators.

1 Introduction

IEEE 802.11 is a standard for wireless local area networks1 [1]. The 802.11i
amendment to the standard specifies the robust security network (RSN) [2].
An RSN supports two security mechanisms, the temporal key integrity protocol
(TKIP) and counter mode with cipher block chaining message authentication
code protocol (CCMP).

TKIP was designed to be backward compatible with existing hardware, which
put computational constraints on the message integrity code (MIC) algorithm.
The TKIP MIC is vulnerable to attacks due to these constraints. Countermea-
sures were thus introduced to detect and respond to attacks. If two TKIP MIC
failures are detected within 60 seconds, all security associations using TKIP
are terminated and the negotiation of new security associations using TKIP is
disabled for 60 seconds.

The intended long term security mechanism for 802.11 networks, CCMP, has
strong confidentiality and integrity protection. CCMP does not use countermea-
sures to compensate for vulnerabilities. The most common default configuration
for 802.11 access points (APs) using 802.11i is to support both TKIP and CCMP.
This provides backward compatibility, as well as a stronger security mechanism
for clients that support it.

802.11 has been extensively used during the last decade in computers, mobile
phones, wireless security cameras and vehicular communication systems. 802.11
networks are thus attractive targets for adversaries that seek to disrupt commu-
nications through the use of denial of service (DoS) attacks. An attacker could
use physical layer jamming to disrupt a wireless network. In a typical jamming

1 In this paper, “network” is a synonym for a “basic service set” (BSS) in 802.11.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 62–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Practical Cryptographic Denial of Service Attack 63

attack the attacker transmits continuously. A distributed intrusion detection sys-
tem can locate the attacker by measuring the received signal strength on multiple
sensors. More sophisticated and efficient attacks target the 802.11 medium ac-
cess control (MAC) layer. A common MAC layer attack is the deauthentication
attack from Bellardo and Savage [3]. Transmitting a deauthentication frame,
which takes less than 100 microseconds, disrupts a network using 802.11i for ap-
proximately 1 second [4]. The deauthentication attack is far more efficient than
physical layer jamming. In general, the higher the efficiency of the attack, the
more difficult it is to locate the attacker. Vulnerabilities that can be exploited
by highly efficient DoS attacks should be found and amended.

The motivation of this work is to make 802.11 more resilient to DoS attacks
by finding and amending the abovementioned vulnerabilities. This paper makes
five principal contributions. First, we analyze the 802.11 standard and discover
a highly efficient cryptographic DoS attack. Second, we show that the attack
also works against clients using CCMP as the pairwise cipher in networks that
support both TKIP and CCMP. Third, we demonstrate that the attack works
even if 802.11e quality of service (QoS) support is disabled in the AP. Fourth, we
implement the attack and experimentally validate the analytical results. Fifth,
we propose a robust solution to the vulnerability and temporary measures to
limit the exposure to the vulnerability.

A more general lesson from this work is the connection between the crypto-
graphic protocol design and network availability. Information and network se-
curity was traditionally categorized as confidentiality, integrity and availability.
In the case of TKIP, availability was intentionally put at risk to improve the
integrity of the protocol. Later changes to the protocol resulted in a severe DoS
vulnerability, and design flaws even put clients using newer security mechanisms
at risk. The use of formal methods, models and tools to analyze the confiden-
tiality and integrity properties of cryptographic protocols is a well developed
field of research, but this is not the case for availability. The development of for-
mal methods, models and tools for the analysis of availability in cryptographic
protocols might help future protocol designers construct more robust protocols.

The rest of this paper is structured as follows. Section 2 reviews related work.
In Section 3, we present relevant parts of the 802.11 standard and a vulnerabil-
ity analysis. Section 4 provides the attack implementation. Section 5 presents
the experimental setup, and Section 6 contains the results. In Section 7, we dis-
cuss the results, propose a solution, and provide recommendations for wireless
network administrators. Section 8 concludes the work.

2 Related Work

Researchers have discovered several DoS vulnerabilities in the 802.11 standard.
An early paper on this topic by Bellardo and Savage demonstrated that DoS
attacks were practical [3]. In the years after the publication of this paper, such
attacks have become much easier to carry out due to readily available software
such as the aircrack-ng tool suite [5] and the driver support for 802.11 monitor
mode and frame injection.

64 M. Eian

One of the most widely implemented DoS attacks against 802.11 is the deau-
thentication attack [3], which disconnects a client2 by transmitting one deau-
thentication frame. Figure 4 in Appendix A illustrates the attack. When 802.11i
is used, eight frames must be exchanged between the access point (AP) and
the client before it is reconnected. Aime et al. performed measurements of the
efficiency of the deauthentication attack, and concluded that transmitting one
frame per second was sufficient to completely block the wireless channel in a
network using 802.11i [4].

Smith mentioned that there are a number of challenges associated with delib-
erately invoking the TKIP countermeasures [6, Ch. 6]. He concluded that other
DoS attacks against 802.11 were likely easier to mount.

Glass and Muthukkumarasamy published experimental results of a DoS attack
in 2007 [7]. The TKIP countermeasures were invoked using a man-in-the-middle
technique. They showed that it is possible to mount such an attack in a laboratory
environment, but difficult to consistently establish the attacker as a man-in-the-
middle between the client and AP. The reason for this difficulty is that the attacker
has to compete with the legitimate AP. Since 802.11 uses a wireless broadcast
medium, the client will receive messages from both the attacker and the AP, and
might choose to connect to the AP rather than the attacker.

Beck and Tews published the first partial key recovery attack against TKIP in
2009 [8]. One of their key observations was that the QoS mechanisms introduced
in 802.11e [9] made replay attacks against TKIP possible.

Halvorsen et al. proposed that the attack from Beck and Tews could be used
as a cryptographic DoS attack [10] . The attacker has to transmit 129 frames on
average to cause the network to shut down for 60 seconds. This attack is less ef-
ficient than the deauthentication attack, since the attacker has to transmit more
than two frames to cause one second of disruption. The authors assumed that the
802.11e QoS features had to be enabled in the AP for the attack to work.

Könings et al. published two new DoS attacks against 802.11 in 2009 [11]. The
attacks exploit the channel switch and channel assessment mechanisms of 802.11h
[12]. Their paper also provides an overview and classification of previous DoS at-
tacks against 802.11. With regards to DoS attacks invoking TKIP countermea-
sures, they only mention the paper by Glass and Muthukkumarasamy [7].

3 Vulnerability Analysis

Some background material from 802.11 is required to analyze the TKIP DoS
vulnerability. Only the most relevant parts are covered in this paper, see 802.11-
2007 [1] for more details.

3.1 TKIP and 802.11e

TKIP provides confidentiality and integrity for 802.11 networks by the use of the
stream cipher RC4 and the message integrity code (MIC) Michael. The input
2 In this paper, “client” is a synonym for a “non-AP station” (STA) in 802.11.

A Practical Cryptographic Denial of Service Attack 65

values to the MIC are the plaintext data, destination address, source address
and QoS priority. TKIP generates a new RC4 key for each frame, using a key
mixing function. The input values to the key mixing function are the temporal
key currently in use, the transmitter’s address and the TKIP sequence counter
(TSC), a 48-bit monotonically increasing counter. To construct a frame, the MIC
is appended to the data, then an integrity check value (ICV) is computed over
the data and MIC. TKIP uses a 32-bit cyclic redundancy check (CRC-32) to
compute the ICV. Finally, the data, MIC and ICV are encrypted by computing
a bitwise XOR with the key stream generated by RC4. Figure 5 in Appendix B
illustrates the structure of a TKIP frame.

The TSC is used to prevent replay attacks. If a frame is received with a TSC
value that is equal to or less than the previous value seen, then this frame is
discarded. This posed a problem when the QoS mechanisms in 802.11e were in-
troduced. With 802.11e, frames may be transmitted out of order due to different
priorities. For example, a frame carrying voice traffic may be transmitted before
a frame carrying data from a file transfer, even though the voice frame has a
higher TSC. To avoid legitimate frames being dropped, 802.11e introduced a
separate TSC for each QoS priority at the receiver. The QoS priority is an inte-
ger value stored in the QoS Control field of the medium access control (MAC)
header in 802.11, as illustrated in Figure 1. 802.11e defines 8 priority classes
(0-7).

The wireless multimedia (WMM) specification from the Wi-Fi Alliance, based
on 802.11e, defines 4 priority classes (0-3). The QoS Control field is only present
in QoS frames. To determine if a frame has a QoS Control field, the receiver
inspects the frame type and subtype in the Frame Control field of the MAC
header.

Fig. 1. The 802.11 MAC frame [1]

The MIC used in TKIP is vulnerable to forgery attacks with a complexity of
O(220) [13]. To compensate for this, TKIP uses countermeasures to detect and
respond to attacks. All MIC failures at the AP and clients are recorded. If a
client experiences a MIC failure, it sends an integrity protected failure report
to the AP. If two or more MIC failures or failure reports are observed within
60 seconds, countermeasures are invoked. The countermeasures are to terminate
all security associations using TKIP, and to refuse any new security associations
using TKIP for 60 seconds. An attacker is thus limited to one MIC forgery
attempt per minute.

66 M. Eian

The designers of TKIP tried to make it difficult to deliberately invoke the
countermeasures. The TSC and ICV are checked before the MIC. If either fail,
then the frame is discarded and the MIC is not checked. If an attacker changes the
TSC, then the encryption key of the RC4 cipher is also changed, so the encrypted
ICV would decrypt incorrectly. However, the changes made by 802.11e makes it
possible to perform countermeasures based DoS attacks against TKIP. The QoS
priority is one of the input values to the MIC, but not to the key mixing function
or ICV. If the QoS priority is changed, then the MIC is invalid, but the ICV
remains valid. The TSC of the new frame will be checked against the TSC for
the new priority. Since a transmitter uses a single, monotonically increasing TSC
counter, it is highly probable that the receiver will accept the TSC of a frame
that has its QoS priority modified before it is retransmitted. To perform the DoS
attack, the attacker captures traffic. When a QoS TKIP frame is observed, the
attacker modifies the QoS priority and retransmits the frame twice. The receiver
then invokes countermeasures, resulting in at least 60 seconds of downtime.

3.2 TKIP and CCMP

As mentioned in the introduction, the most common AP configuration is to al-
low both TKIP and CCMP. 802.11i specifies two temporal security associations
between an AP and a client. The pairwise transient key security association
(PTKSA) protects unicast traffic using a pairwise transient key (PTK). The
group transient key security association (GTKSA) protects broadcast and mul-
ticast traffic from the AP to clients using a group transient key (GTK). When
a client transmits a broadcast or multicast frame, it is protected by the PTK.
The frame is decrypted by the AP, encrypted with the GTK, and transmitted
to the wireless network. According to Section 9.2.7 of 802.11, clients should dis-
card broadcast and multicast frames that have their own address as the source
address [1].

The RSN information element (IE), present in frames of subtype beacon,
probe response, association request and reassociation request, contains infor-
mation about the security mechanisms supported by the transmitter. Figure 2
illustrates the RSN IE. The RSN IE supports multiple pairwise cipher suites, but
only one group cipher suite. A network that supports both TKIP and CCMP
has to use TKIP as the group cipher suite for all clients.

Fig. 2. The RSN information element [1]

A Practical Cryptographic Denial of Service Attack 67

Knowing that CCMP clients use TKIP as the group cipher suite in networks
that support both TKIP and CCMP, one might ask what happens if MIC failures
occur on broadcast or multicast frames. Section 8.3.2.4 of 802.11 provides the
answer [1]:

The number of MIC failures is accrued independent of the particular
key context. Any single MIC failure, whether detected by the Supplicant
or the Authenticator and whether resulting from a group MIC key failure
or a pairwise MIC key failure, shall be treated as cause for a MIC failure
event.

[...]
If less than 60 s have passed since the most recent previous MIC

failure, delete the PTKSA and GTKSA. Deauthenticate from the AP
and wait for 60 s before (re)establishing a TKIP association with the
same AP. A TKIP association is any IEEE 802.11 association that uses
TKIP for its pairwise or group cipher suite.

To make the DoS attack work against clients using CCMP, the attacker waits
for a broadcast or multicast frame from the AP. The attack is then carried out
as described in Subsection 3.1. This attack works even if none of the clients use
TKIP as the pairwise cipher suite. A side effect of such an attack is that the AP
also invokes countermeasures due to the MIC failure reports received from the
clients.

One might ask what happens to new security associations using CCMP as
the pairwise cipher when the AP invokes countermeasures. Section 8.3.2.4.1 of
802.11 specifies the AP behavior as follows [1]:

If less than 60 s have passed since the most recent previous MIC
failure, the Authenticator shall deauthenticate and delete all PTKSAs
for all STAs using TKIP. If the current GTKSA uses TKIP, that GTKSA
shall be discarded, and a new GTKSA constructed, but not used for 60
s. The Authenticator shall refuse the construction of new PTKSAs using
TKIP as one or more of the ciphers for 60 s. At the end of this period, the
MIC failure counter and timer shall be reset, and creation of PTKSAs
accepted as usual.

The statement “PTKSAs using TKIP as one or more of the ciphers” contradicts
the definition of a PTKSA, which contains only one cipher. If the term “PTKSA”
in this context is interpreted to mean “SA”, then the statement is consistent
with the rest of the standard. Such an interpretation implies that clients using
CCMP as the pairwise cipher and TKIP as the group cipher will not be allowed
to connect to the AP while countermeasures are in effect. As will be shown in
Section 6, the experimental results support this interpretation.

3.3 Networks without 802.11e QoS Support

Since the attack relies on 802.11e QoS support, one might ask what happens if
QoS support is disabled in the AP. 802.11 is vague on this point, but Section
6.1.1.2 provides a partial answer [1]:

68 M. Eian

At QoS STAs associated in a QoS BSS, MSDUs with a priority of
Contention are considered equivalent to MSDUs with TID 0, and those
with a priority of ContentionFree are delivered using the contention-free
delivery if a point coordinator (PC) is present in the AP. If a PC is
not present, MSDUs with a priority of ContentionFree shall be delivered
using an UP of 0. At STAs associated in a non-QoS BSS, all MSDUs with
an integer priority are considered equivalent to MSDUs with a priority
of Contention.

The last sentence implies that clients should accept QoS frames even if associ-
ated in a network that does not support QoS. The key word in this sentence is
“equivalent”, which is open to interpretation. If it means that the integer pri-
ority is used as input to the TKIP MIC, then the attack works even if QoS is
disabled in the AP, as long as the priority is not equal to 0. As will be shown
in Section 6, the experimental results support this interpretation. To convert a
regular data frame to a QoS frame, an attacker has to flip one bit in the Frame
Control field and insert a two byte long QoS Control field.

3.4 Analysis Summary

Invoking the TKIP countermeasures is easy due to the modifications in 802.11e.
An attacker captures a broadcast or multicast frame from the AP, then modifies
the QoS priority and retransmits the frame twice. Figure 3 in Appendix A il-
lustrates the attack. The attacker does not need to prevent the reception of the
original frame at the clients. The attack is a simple retransmission of a modified
frame, and does not use a man-in-the-middle technique. Since the frame is a
broadcast frame, all clients except the one that transmitted the frame will in-
voke countermeasures. The AP will also invoke countermeasures due to the MIC
failure reports from the clients. If the frame is not a QoS frame, the attacker
flips one bit in the MAC header and inserts the QoS Control field. The attack
also works against clients that use CCMP as the pairwise cipher. Furthermore,
the attack only relies on QoS support in the clients. Disabling QoS support in
the AP does not prevent the DoS attack.

4 Implementation

The aircrack-ng [5] tool suite was used as a framework for the vulnerability
assessment tool implementation. The implementation depends on a wireless net-
work interface card with driver support for 802.11 monitor mode and frame
injection. Network interface cards with the Atheros AR2413 and AR5001X+
chipsets were used as the attacker in the experiments. The driver used was the
Linux ath5k driver. A network interface card with the Intel 3945ABG chipset
was tested, but not usable as the attacker because it replaced the source MAC
address of all transmitted frames with the MAC address of the network interface
card. The implementation listens for a TKIP frame using 802.11 monitor mode,

A Practical Cryptographic Denial of Service Attack 69

then modifies and retransmits the frame to invoke the TKIP countermeasures.
The source code for the modification and retransmission of frames is included in
Appendix C.

Run-time configuration of several attack parameters is supported to make the
vulnerability assessment tool more flexible. The default behavior is to listen for
TKIP frames from the AP, and then perform the attack. The run-time options
for the vulnerability assessment tool, tkipdos-ng, are included in Appendix D.

To give wireless network administrators the opportunity to test the vulnerabil-
ity of their networks, tkipdos-ng will be made available as free software licensed
under the GNU General Public License version 2.

5 Experimental Validation

Based on the analysis in Section 3, several vulnerability tests were constructed
to validate the theoretical analysis on a wide array of different products. The
hypotheses and experimental design are detailed in this section. The hypotheses
to be tested were as follows:

1. Converting a non-QoS TKIP frame into a QoS TKIP frame with priority 1,
2 or 3 will cause a MIC failure in clients with QoS support even if QoS is
disabled in the AP

2. Clients using CCMP as the pairwise cipher and TKIP as the group cipher
will invoke countermeasures if they experience two TKIP MIC failures within
a 60 second time period

3. Clients using CCMP as the pairwise cipher and TKIP as the group cipher
will not connect to an AP if TKIP countermeasures in the client are currently
active for that AP

4. Clients using CCMP as the pairwise cipher and TKIP as the group cipher will
not be able to establish a connection to an AP with active countermeasures

To test the hypotheses, two experiments were designed. The first experiment
tests hypotheses 1, 2 and 3. An AP is configured with support for both TKIP
and CCMP. QoS and TKIP countermeasures are disabled in the AP. Two clients
connect to the AP using CCMP as the pairwise cipher suite. The attacker listens
for broadcast or multicast TKIP frames from the AP. When such a frame is
observed, the attacker converts the frame to a QoS frame with priority 1, 2
or 3 and retransmits the frame twice. The attacker then observes the effect
on the client that did not transmit the original broadcast frame. Since TKIP
countermeasures are disabled in the AP, this experiment isolates the effect of
MIC failures in the client. If hypotheses 1, 2 and 3 are true, then the client
invokes countermeasures and will not be able to reconnect to the AP for at least
60 seconds.

The second experiment tests hypothesis 4. An AP is configured with support
for both TKIP and CCMP. QoS and TKIP countermeasures are enabled in the
AP. A client connects to the AP using TKIP as the pairwise cipher suite. The
attacker listens for TKIP frames from the client to the AP. When such a frame is

70 M. Eian

observed, the attacker converts the frame to a QoS frame if it is non-QoS, changes
the frame priority to 1, 2 or 3 and retransmits the frame twice. The attacker
then observes the effect on the AP. If the AP has invoked countermeasures, a
client using CCMP as the pairwise cipher suite tries to connect to the AP. If
hypothesis 4 is true, the client using CCMP should not be able to connect to
the AP for at least 60 seconds after the countermeasures were invoked.

6 Results

The first experiment was performed with different clients to test whether the
vulnerabilities were general or implementation specific. A Linksys WRT54GL
wireless router with the OpenWrt [14] Kamikaze r19286 firmware was used as
the AP. The hostapd [15] implementation in the firmware was modified so that
it did not invoke TKIP countermeasures. The clients were configured to use
CCMP as the pairwise cipher suite. The clients used for the experiment and
the results are listed in Table 1. All of the clients that supported 802.11e QoS
were vulnerable to the attack. Transmitting two modified broadcast or multicast
frames from the attacker invoked countermeasures on all the clients, and caused
the clients to send MIC failure notifications to the AP. The clients were unable
to establish a new connection to the AP for 60 seconds.

Table 1. Equipment used in the first experiment. All 802.11e QoS supported clients
were vulnerable to the DoS attack.

Hardware Operating System QoS Support Vulnerable
Apple iMac 11.1 Mac OSX 10.6.2 Yes Yes
Apple iPhone iPhone OS No No

Apple iPhone 3G iPhone OS No No
Asus EEE 901 Mandriva Linux 2010.0 Yes Yes
Compaq 8510p Windows Vista Ultimate Yes Yes
Compaq CQ60 Windows Vista Home Basic Yes Yes

Dell Latitude D620 Windows XP Yes Yes
Dell Latitude D630 Fedora Linux 11 Yes Yes
Dell Latitude E4200 Windows 7 Yes Yes

HTC Hero Google Android Yes Yes
HTC S710 Windows Mobile 6 Yes Yes
Nokia N810 Maemo Linux 4 Yes Yes
Nokia N900 Maemo Linux 5 No No

The second experiment was performed with different APs to test whether the
vulnerabilities were general or implementation specific. The APs used for the
experiment and the results are listed in Table 2. Once the AP invoked coun-
termeasures, both clients using CCMP and clients using TKIP as the pairwise
cipher suite were unable to establish a new connection for 60 seconds.

A Practical Cryptographic Denial of Service Attack 71

Table 2. APs used in the second experiment. All of the APs refused to establish new
connections using CCMP as the pairwise cipher and TKIP as the group cipher while
the attack countermeasures were active.

Hardware Firmware Vulnerable
Cisco 1242AG 4.1.192.35M Yes

Linksys WRT54GL Linksys 4.30.13 Yes
Linksys WRT54GL OpenWrt 8.09.2 [14] Yes
Linksys WRT54GL Tomato 1.27 [16] Yes
Netgear WNR1000 V1.0.1.5 Yes

7 Discussion

The test results confirmed all of the interpretations in Section 3. Networks that
support both TKIP and CCMP are vulnerable to DoS attacks that invoke the
TKIP countermeasures, and such attacks cause all clients to be disconnected for
60 seconds. Disabling QoS support on the AP does not prevent an attack against
the clients. Furthermore, as long as at least one associated client supports QoS,
the attack will cause it to send MIC failure notifications to the AP. The AP will
invoke countermeasures and disconnect all clients, including those that do not
support QoS.

Since this cryptographic DoS attack only affects networks using 802.11i, it
could be used as a security rollback attack. When the attack is mounted, net-
works using weaker security mechanisms are functional, while networks using
802.11i are disrupted.

During the experiments, we observed that once clients reconnected after the
60 seconds of downtime, they transmitted several broadcast frames. The client
operating systems used the Address Resolution Protocol (ARP) [17] and the Dy-
namic Host Configuration Protocol (DHCP) [18] to establish Internet Protocol
(IP) connectivity. These protocols use broadcast messages that could be cap-
tured, modified and retransmitted as a new attack. Once the countermeasures
were deactivated, a new attack immediately invoked the countermeasures again.

The vulnerability presented in this paper can be removed by modifying TKIP.
If the QoS priority is used as input to the TKIP key mixing function, then a
modified priority will result in a different RC4 key stream. A modified frame
would then be rejected by the recipient due to a failed ICV check.

A network administrator could split a network that supports TKIP and CCMP
into two logical networks to reduce the exposure to the vulnerability. One net-
work would support TKIP only and the other would support CCMP only.
This approach guarantees that attacks against TKIP do not affect clients us-
ing CCMP.

Another partial solution is to prevent broadcast and multicast traffic from the
AP. By default, the Cisco Unified Wireless Network design [19] is configured so
that the AP does not transmit any broadcast or multicast frames on the wireless
network. As long as none of the clients use TKIP as the pairwise cipher suite,
the attack does not work against such networks.

72 M. Eian

8 Conclusions

The DoS attack described in this paper is practical, easy to implement, and can
be mounted using off the shelf hardware and readily available software. Trans-
mitting two modified frames disrupts a TKIP/CCMP-based 802.11 network for
60 seconds. It is one of the most efficient known DoS attacks against 802.11.
The attack works even if all clients use CCMP as the pairwise cipher and QoS
support is disabled in the AP. There are several ways to mitigate or prevent the
attack, and recommendations are given in Section 7.

Acknowledgments

Professor Stig F. Mjølsnes provided valuable discussions and feedback about the
topics in this paper. Jing Xie provided valuable feedback for revising this paper.
The following people and organization contributed their time and equipment for
use in the experiments: Hans Almåsbakk, Steinar Andresen, Danilo Gligoroski,
Linda Ariani Gunawan, Stig F. Mjølsnes, P̊al S. Sæther, Benedikt Westermann,
Jing Xie and the Wireless Trondheim project.

References

1. IEEE: IEEE Std 802.11-2007, New York, NY, USA (2007)
2. IEEE: IEEE Std 802.11i-2004, New York, NY, USA (2004)
3. Bellardo, J., Savage, S.: 802.11 denial-of-service attacks: Real vulnerabilities and

practical solutions. In: Proceedings of the 12th USENIX Security Symposium.
USENIX Association, Berkeley (2003)

4. Aime, M.D., Calandriello, G., Lioy, A.: Dependability in wireless networks: Can
we rely on WiFi? IEEE Security and Privacy 5, 23–29 (2007)

5. Devine, C., d’Otreppe, T., Beck, M.: Aircrack-ng (2009),
http://www.aircrack-ng.org

6. Smith, J.: Denial of service: Prevention, modelling and detection (2007)
7. Glass, S., Muthukkumarasamy, V.: A study of the TKIP cryptographic DoS attack.

In: Proceedings of the 15th IEEE International Conference on Networks, ICON
2007, pp. 59–65. IEEE, New York (2007)

8. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Proceedings of
the Second ACM Conference on Wireless Network Security, WiSec 2009, pp. 79–86.
ACM, New York (2009)

9. IEEE: IEEE Std 802.11e-2005, New York, NY, USA (2005)
10. Halvorsen, F.M., Haugen, O., Eian, M., Mjølsnes, S.F.: An improved attack on

TKIP. In: Proceedings of the 14th Nordic Conference on Secure IT Systems, Nord-
Sec 2009. LNCS, vol. 5838, pp. 120–132. Springer, Heidelberg (2009)

11. Könings, B., Schaub, F., Kargl, F., Dietzel, S.: Channel switch and quiet attack:
New DoS attacks exploiting the 802.11 standard. In: Proceedings of the IEEE 34th
Conference on Local Computer Networks, LCN 2009, pp. 14–21 (2009)

12. IEEE: IEEE Std 802.11h-2003, New York, NY, USA (2003)
13. Harkins, D.: Attacks against Michael and Their Countermeasures. In: IEEE 802.11

Working Group Document 03/211r0, New York, NY, USA (2003)

http://www.aircrack-ng.org

A Practical Cryptographic Denial of Service Attack 73

14. The OpenWrt Project: OpenWrt (2009), http://www.openwrt.org
15. Malinen, J.: hostapd: IEEE 802.11 AP, IEEE 802.1X / WPA / WPA2 / EAP /

RADIUS Authenticator (2009), http://hostap.epitest.fi/hostapd
16. Zarate, J.: Tomato Firmware (2009), http://www.polarcloud.com/tomato
17. Plummer, D.C.: RFC 826: An Ethernet Address Resolution Protocol (1982),

http://tools.ietf.org/html/rfc826

18. Droms, R.: RFC 2131: Dynamic Host Configuration Protocol (1997),
http://tools.ietf.org/html/rfc2131

19. Cisco Systems Inc.: Enterprise Mobility 4.1 Design Guide, San Jose, CA, USA
(2009)

A Message Sequence Diagrams

Fig. 3. The cryptographic DoS attack against clients using CCMP as the pairwise
cipher suite. Two transmitted frames from the attacker invokes countermeasures in all
clients except the originator of the broadcast frame. Countermeasures are also invoked
in the AP due to the MIC failure reports from the clients.

http://www.openwrt.org
http://hostap.epitest.fi/hostapd
http://www.polarcloud.com/tomato
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc2131

74 M. Eian

Fig. 4. The deauthentication attack against a client using 802.11i

B TKIP Frame Structure

Fig. 5. An 802.11 TKIP frame [1]

A Practical Cryptographic Denial of Service Attack 75

C Vulnerability Assessment Tool Source Code

qos = 0 ;
// z = MAC header l ength
z = ((h80211 [1] & 3) != 3) ? 24 : 30 ;
i f ((h80211 [0] & 0x80) == 0x80)
{

qos = 1 ;
z += 2 ;

}
i f (qos == 0) // I f the frame does not have a QoS Control

// f i e l d then i n s e r t one
{

// QoS data
h80211 [0] |= 0x80 ;
// Move frame body 2 byte s to the r i g h t
// to make room fo r QoS con t ro l f i e l d
f o r (i=cap len+1; i>z+1; i−−)

h80211 [i] = h80211 [i −2] ;
// Add 2 byte s QoS con t ro l f i e l d
cap l en += 2 ;
h80211 [2 4] = 0x00 ;
h80211 [2 5] = 0x00 ;

}

// QoS p r i o r i t y (TID)
t i d = h80211 [2 4] & 0x03 ;

i f (t i d >= opt . r npkts)
t i d = opt . r npkts ;

f o r (i =0; i<=opt . r npkts ; i++)
{

i f (i != t id)
{

// Set QoS p r i o r i t y
h80211 [2 4] = i ;
// Send frame
send packet (h80211 , cap len) ;

}
}

D Vulnerability Assessment Tool Command Line
Parameters

usage : tkipdos−ng <options > <rep lay i n t e r f a c e >
F i l t e r opt ions :

−d dmac : MAC address , De s t i na t i on
−s smac : MAC address , Source
−t tods : frame contro l , To DS b i t
−f fromds : frame contro l , From DS b i t
−D : d i s ab l e AP de t e c t i on

Replay opt ions :
−a b s s i d : s e t t a rge t AP MAC addre ss
−e e s s i d : s e t t a rge t AP SSID
−n npkts : number o f rep layed frames per frame captured [1 −3]
−m natks : number o f a t t ack s (keep going f o r ev e r i f not s e t)

−−help : Di sp lays t h i s usage sc r e en

User Tracking Based on Behavioral Fingerprints

Günther Lackner1, Peter Teufl1, and Roman Weinberger2

1 University of Technology Graz, Institute for Applied Information Processing
and Communications, Graz, Austria

guenther.lackner@iaik.tugraz.at, peter.teufl@iaik.tugraz.at
2 Studio78.at, Graz, Austria

roman.weinberger@studio78.at

Abstract. The pervasiveness of wireless communications networks is
advancing particularly in metropolitan areas. Broadband computer
networks as IEEE 802.11 are seriously competing with cellular network
technologies such as UMTS and HSDPA. Unfortunately, this increased
mobility comes with privacy and security related issues. We are currently
in the process of identifying possible attacks on the privacy of wireless
network users, since the development of effective countermeasures is only
possible with a thorough understanding of such attacks.

One serious threat we are discussing here, is the tracking of users in
metropolitan networks by means of determining their physical location.
Any individual user can be identified either by the devices she is us-
ing or by the behavior she is displaying. Suitable features range from
single identifiers such as IP or MAC addresses to complex conglomer-
ates of different values that provide valuable information due to their
combination.

This article focuses on the extraction and analysis of features that
are valuable for fingerprinting by employing Activation Patterns, a con-
cept based on artificial intelligence and machine learning techniques. The
concept is applied to email header data, since this allows for an effective
illustration of the employed techniques. Furthermore, due to the human
understandable data, we can easily evaluate the effectiveness of the con-
cept before we start to analyze more complex data-sets.

1 Introduction

With the growing requirement of pervasive connectivity, new business models
have emerged for network service providers. Cellular network based services are
usually too expensive for exhaustive broadband usage. Therefore, wireless com-
puter networks such as IEEE 802.11, or better known as wireless fidelity (Wi-Fi)
offer higher bandwidth at a lower cost, especially if a high-speed wired backbone
network is available. This is mostly the case in metropolitan areas.

More and more Internet service providers (ISP) are boarding this train and
install large-scale wireless networks in metropolitan areas. But also cellular net-
work operators are using their backbone infrastructure to install Wi-Fi access
points in crowded areas such as city centers, shopping malls or airports. This

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 76–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

User Tracking Based on Behavioral Fingerprints 77

Fig. 1. Overview

trend is also promoted by the availability of low-cost mobile hardware like smart
phones and netbooks, with excellent abilities to connect to Wi-Fi networks.

As many large metropolitan areas provide area-wide wireless network access,
it is massively used by a growing crowd of people. However, a lot of these people
are not aware of the security and privacy risks posed by wireless communications.
Even if a user uses state-of-the-art encryption for her communication, a lot of
personal information can be obtained from analyzing her traffic.

In this article we focus on privacy violations due to the threat of tracking
the location of a user in a large-scale wireless computer network. Apart from
determining the location of a user, the tracking process enables the collection of
user-data on different times of days and locations. These data can then be used
for further sophisticated analysis processes that disclose information about users
or user groups.

The main problem of tracking in such a massive multi user setting is to identify
the traffic of a particular user out of a myriad of network packets. It may seem
possible to identify a user by the device she is using to connect to the network.
In the best case, a device can be identified by its hardware address as shortly
discussed in Section 3. But if we cannot bind a user to a single device or a device
is forging its hardware address? In this case more sophisticated methods need
to be applied.

Figure 1 provides an overview on how we define the term tracking. It also
shows the connection between tracking a user by her behavior and by devices
used by her. As the title of this paper indicates, we put our focus on identifying
users by creating behavioral fingerprints.

2 Motivation

In order to understand and counter possible attacks on the privacy of users, we
need to develop a thorough understanding in which way captured data of an user
can be used to attack her privacy. Thereby, the identification/tracking of single

78 G. Lackner, P. Teufl, and R. Weinberger

users plays an important role, since the tracking of an user enables the collection
of a large amount of data on different times of day and locations. This data can
then be used for sophisticated analysis methods that violates user privacy:

– Creation of fingerprints for user identification: This allows the iden-
tification and thereby the tracking of users without having an unique ID.
The process itself violates user privacy, since it can be used to determine the
position of a user. Furthermore, it enables the capturing of more user-data
than would be possible in one location.

– Extracting knowledge about the relation between different fea-
tures: There is a wide range of features that provide data that can be cap-
tured (e.g. connection times, connections to servers, visited websites etc.).
In order to understand how arbitrary features influence privacy, we need to
understand how they are related to others and how the features themselves
or their relations disclose information.

– Finding groups of users with similar behavior: Clustering users ac-
cording to various combination of features gives a quick view of the analyzed
data and allows to derive more general behavior models (e.g. users that go
to similar restaurants, etc.).

– Searching for users with similar behavior: By utilizing semantic search
queries we are able to execute queries that take the semantic relations be-
tween features into account.

In order to evaluate the proposed techniques, we apply theses analysis techniques
to email headers captured from real traffic. Although, we are aware that plain
email headers are not available in general, there are good reasons for choosing
this data-set. These reasons will be discussed in Section 5.

Our work is organized as follows: Section 3 will shortly describe related work
on creating user fingerprints and how to identify network devices by creating
their fingerprints. Our approach, which allows the creation of behavioral finger-
prints and subsequent analysis is based on Activation Patterns. The main idea
behind this method is presented in Section 4 an a detailed explanation is given
in the Appendix. Section 5 describes the analyzed data-set and the reason for
choosing it. Section 6 explains in which way we can use these Activation Patterns
to compromise user privacy. Finally, Section 7 concludes our work.

3 Related Work

The subject of privacy in wireless networks has become more and more of interest
as their pervasiveness massively grows. Due to the immense scope of this topic
we will focus on related work in the area of creating user fingerprints based on
different approaches that we see related to our work. Further on, the concept of
hardware fingerprinting and three major approaches are briefly described.

Eagle and Pentland [EP07] of MITs Media Lab developed a vector based
scheme called Eigenbehavior that allows to quantify the behavior of a user in
order to predict her next actions. This should introduce more interactivity in

User Tracking Based on Behavioral Fingerprints 79

browsing webpages and allow networks and services to prepare contents in ad-
vance. As far as we know this approach has yet not been used for identifying
users in order to attack their privacy.

Liu and Peng [LP07] from the University of North Carolina were addressing
the problem of mutual trust in pervasive computer systems. They used unique
identifiers as hardware addresses to identify devices. Further on they track their
behavior by analyzing network event logs to find participants with hostile be-
havior and consequently level down trust to this nodes to prevent them from
harming the rest of the network. Although the fingerprinting method is not very
sophisticated, the approach of creating user profiles in order to assess trustwor-
thiness is related to our ideas.

Pang et al. [PGG+07] followed a similar approach as we did as they tried
to find characteristics in user behavior by analyzing their network traffic. The
main difference is that most of their features are based on IEEE 802.11 MAC
Layer properties while we focus on information extracted from higher layers.
While Pang et al. need to analyze traffic captured in the wireless cell the target
is actually stationed, we are able to collect all traffic at a central place in the
backbone of the underlaying network.

A straight forward approach for device identification is to utilize the device
addresses such as the MAC (Media Access Control) address (layer 2) or the
assigned IP address (layer 3). This can easily be achieved by analyzing relevant
ARP (Address Resolution Protocol) traffic [Plu82]. Unfortunately, this approach
has two major drawbacks. On one hand most devices allow to modify their
assigned MAC address with easy to use, free software tools and on the other
hand devices may not be bound to a single user. This could be the case if
hardware is used by a whole family or any other set of multiple users. The first
problem might be tackled by creating fingerprints of network hardware. It allows
the identification of any device by observing its external characteristics.

Radio Frequency Fingerprinting: This fingerprinting technique is based
on the signal characteristics of turn-on transients of wireless transceivers. These
transients are specific to each different transceiver and thus are perfectly suited as
data source for fingerprint generation. Transient capturing and analysis requires
a special infrastructure for signal capturing which is expensive and has to be
operated by experts. Hall et al. evaluated the performance of the fingerprinting
method with 30 transceivers. For each transceiver 120 signals were captured and
used for the performance evaluation. The results indicate that the method is
capable of achieving a very low false positive rate (0% during the evaluation)
and a high detection accuracy (95% during the evaluation). However, the biggest
disadvantage of this method is the special hardware needed for signal capturing
which limits the broad deployment. [HBK06]

Passive Data Link Layer Fingerprinting: This paragraph describes the
wireless NIC fingerprinting approach developed by Jason Franklin and his team,
published in 2006 [Fra06]. Franklin identified an imprecision in the IEEE 802.11
Media Access Control specifications that has been differently interpreted by

80 G. Lackner, P. Teufl, and R. Weinberger

wireless NIC firmware developers. The time between sending two so called beacon
frames used for network detection is not strictly defined. This method is able
to classify different firmware versions instead of the underlying hardware. For
creating a meaningful fingerprint a large number of probe-requests need to be
captured. Due to the fact that a NIC willing to join a network, usually just
needs a hand-full of these requests it could take a rather long time to obtain
a suitable amount of data. Another significant drawback is that fingerprinting
may easily be avoided by using passive-scanning or altering the device firmware.
[Fra06] Some improvements to this approach have been developed by Loh et al.
[DYPL08].

Acknowledge Delay Fingerprinting: Lackner et al. presented a passive fin-
gerprinting technique in [LLPT06], which identifies WLAN chipset by analyzing
the distribution of delay values between 802.11 packets and the corresponding
acknowledgement (ACK) frames. Related work published by Guenther et al.
[GH05] indicates that these delay values differ from chipset to chipset and thus
could be used for chipset identification. The presented technique uses machine
learning techniques to classify histograms which are created from delay time
values extracted from passively observed WLAN traffic. The classification algo-
rithm is based on Self Organizing Maps. This technique belongs to the area of
neural networks and was developed by Kohonen [Koh01]. To increase accuracy,
multiple SOMs arranged in a tree (SOM tree) are used for the classification of
the different WLAN chipsets. [LLPT06] A similar approach also based on timing
characteristics was developed by Sieka [Sie06].

4 Behavioral Fingerprints and Knowledge Mining

Based on the discussion in Section 3, we conclude that device fingerprints are
rather unreliable or too costly to be applied in real world scenarios. Therefore,
this paper concentrates on another approach – behavioral fingerprints. Taking
such a fingerprint of any user means to find characteristic features that describe
her behavior and thereby allows the identification and tracking of the user. Such
features can be derived from a wide variety of available data, ranging from
lower layer network packets to high level application related traffic. In addition
the extracted features can be subject to further sophisticated analysis processes
that extract information about users or user groups. Such analysis methods are
also employed in other research areas that are focused on knowledge mining. In
previous and ongoing work in the areas of e-participation [TPP09] , event corre-
lation [TPF10] , malware analysis [TLP10] and semantic RDF analysis [TL10],
we presented the concept of Activation Patterns (see Appendix B for a detailed
description) that allows us to use a single model as a basis for a wide range of
analysis methods. The basic idea behind this concept is to transform raw data
into a new representation that models the relation between the analyzed features.
Although, there are machine learning methods that could be used for particu-
lar analysis procedures, none of these methods has the flexibility of Activation
Patterns and their wide range of applications.

User Tracking Based on Behavioral Fingerprints 81

5 Email Analysis

In this paper we utilize the Activation Pattern concept for the analysis of email
data. In addition to generating behavioral fingerprints for user identification and
tracking the technique enables us to extract further valuable information about
the underlying dataset. The decision to utilize emails – to be precise the headers
of emails – for this first evaluation is based on the following reasons:

– We need to get a better understanding of the capabilities of the employed
Activation Patterns before we can apply them to other data. In case of emails
the extracted features are easy to understand for humans and therefore the
results gained by employing the Activation Patterns concept can easily be
verified.

– The lessons learned by the application of Activation Patterns will be of
benefit for future work that will concentrate on a wide range of features
extracted from different abstraction layers.

– For emails, one could use the from address as unique ID for tracking, how-
ever this address can easily be forged. Therefore, we do not take it into
consideration for the fingerprinting process.

– Although, VPNs, HTTPS and TLS POP/IMAP/SMTP connections are an
effective countermeasure against extracting the analyzed features, there is
still a large number of unencrypted POP3, IMAP and especially SMTP
traffic that is vulnerable to this kind of analysis.

– In case of unencrypted connections, SMIME and other email encryption
techniques are not an effective countermeasure, since the proposed method
relies completely on information extracted from the email headers which are
always transmitted in plaintext.

The remaining part of this section gives an introduction to the techniques em-
ployed by the Activation Pattern concept, the transformation process itself and
how the whole framework is applied to the email data. For an in-detail descrip-
tion of the Activation Pattern technique, we refer to Appendix B.

5.1 Applying the Activation Patterns Concept to Email Data

The transformation of raw emails into Activation Patterns is based on five pro-
cess layers depicted in Figure 2. After extracting and preprocessing the email
features we apply the four layers L1-L4 to the raw feature data in order to de-
termine the Activation Patterns. The techniques within these layers are based
on various concepts related to machine learning and artificial intelligence: se-
mantic networks for modeling relations within data [Qui68], [Fel98], [TVA07],
spreading activation algorithms (SA) [Cre97] for extracting knowledge from se-
mantic networks, and supervised/unsupervised learning algorithms to analyze
data extracted from the semantic network [MS91], [QS04].

The basic idea is to create a semantic network that stores the feature val-
ues and the relations between these values (L2-L3). The Activation Patterns are

82 G. Lackner, P. Teufl, and R. Weinberger

FROM TO
DOM

FROM
DOM
TO

TIME
DAY OF
WEEK

TYPE
FROM TO

DOM
FROM

DOM
TO

TIME
DAY OF
WEEK

TYPE
FROM TO

DOM
FROM

DOM
TO

TIME
DAY OF
WEEK

TYPE
FROM TO

DOM
FROM

DOM
TO

TIME
DAY OF
WEEK

TYPE

John
Tim

Lisa
Alice

Sun

Wed

08:00
AM

09:00
PM

L1
Feature

extraction

L2 - L3
Node
and

network
generation

L4
Activation
Pattern

generation

Discretize Discretize

L5
Analysis

Semantic
Search

Unsupervised
Clustering

Anomaly
Detection

Feature
Relevance

Feature
Relations

Supervised
Learning

Raw
email
data

Spreading Activation

Fig. 2. Transformation of raw data into Activation Patterns

then generated by applying spreading activation algorithms (L4) to the semantic
network. The Activation Pattern concept allows us to apply various analysis
techniques in L5. All of these techniques can be used to gain knowledge about
users, their behavior, the relations between data and to create fingerprints for
user tracking/identification. All of these methods have serious implications on
the privacy of users.

– Supervised Learning: The application of supervised learning algorithms al-
lows the generation of behavioral fingerprints for each user. In reality, such
fingerprints could be created at a Wi-Fi access point and then be used to
identify/track users at other locations.

– Semantic relations: The analysis of the nodes and the links within the se-
mantic network allows us to gain knowledge about the relations within the
given data. For example, by specifying a given time-of-day we are able to
retrieve the users that typically write emails at this time. Another exam-
ple would be the retrieval of the most activate communication partners of a
given user.

– Semantic search: Such search queries utilize the links (relations) within the
semantic network to find concepts related to the search query. For example
by specifying a user, we are able to find other users with a similar behavior
or identify the same user without requiring a unique ID.

User Tracking Based on Behavioral Fingerprints 83

Table 1. Features

Feature Type Abbr. Description

User From Nominal UF Sender address without domain name
Domain From Nominal DF Domain name of the sender address

User To Nominal UT Receiver address
Domain To Nominal DT Domain name of the receiver address
Time of Day Distance Based TD Timestamp of the message without the date
Day of Week Nominal DW Date of the message time stamp
Content Type Nominal CT Content-type field of the email header

– Unsupervised clustering: By grouping (clustering) semantically related pat-
terns, categories can be found that represent a certain behavior. An example
would be the creation of categories that group users according to similar
communication partners. The number of clusters (or model complexity) in-
fluences the grade of details covered by each category.

– Feature relevance: The relevance of a node representing a feature value within
the network can be determined by the number of connections from this node.
Nodes with high number of connections carry less information than those with
fewer connections. This can be utilized to identify features that are perfectly
suited for further analysis and therefore have an impact on privacy.

6 Fingerprinting and Further Analysis

In this section we apply various analysis methods to the transformed email Ac-
tivation Patterns. For the analysis we have extracted 8 features (see Table 1 for
a complete list) for each of the 1708 emails belonging to 13 users. For Feature
relations and Semantic Search the UF (user from) feature was included in the
analyzed patterns. For Feature Relevance, Unsupervised Clustering and Super-
vised Learning we excluded the UF feature in order to find out to what extend
UF could be identified by the other features.

6.1 Supervised Learning for the Creation of Behavioral Fingerprints

The Activation Patterns of emails that belong to a given user represent a finger-
print that can be used to identify and thereby track users. Further knowledge,
such as the feature relevance, extracted by the previous methods can be inte-
grated into the Activation Patterns in order to create more robust fingerprints.

For the creation of fingerprints, we apply a neural network1 to the Activation
Patterns of 13 users. The training data is generated by randomly taking 50% of

1 The MatlabTMNeural Network toolbox is utilized. Except for the validation check
parameter, the standard parameters are used: Training: Scaled Conjugate Gradient,
Performance: Mean Squared Error, Validation Checks: 20 instead of 6, Max Epochs:
1000, 20 hidden units, the training data is separated into 60% training data, 20%
validation data and 20% independent test data.

84 G. Lackner, P. Teufl, and R. Weinberger

Table 2. Performance per user: FN - false negatives, FP - false positives, TP - true
positives. Since these are the mean values for the 10 iterations, the sum over the
columns is not 1.

User 1 2 3 4 5 6 7 8 9 10 11 12 13

FN 0.0 0.31 0.23 0.16 0.12 0.40 0.07 0.23 0.01 0.14 0.1 0.1 0
FP 0.07 0.31 0.18 0.1 0.18 0.47 0.16 0.04 0.12 0.13 0.06 0.1 0.11
TP 1.0 0.69 0.77 0.84 0.88 0.60 0.93 0.77 0.99 0.86 0.9 0.9 1.0

the emails of each user. This results in 857 emails in the training data set and
851 in the test data set. The network is then trained and evaluated on these
two data sets. In order to increase robustness, the whole process is repeated
10 times. Table 2 shows the results for each user. The mean value of correctly
classified emails is calculated for the 10 iterations and yields 88.36%. We note,
that user sessions, which typically contain more than one email, are not taken
into account. By taking this information into account, the classification accuracy
will be increased further.

6.2 Feature Relations

The links within the semantic network represent the relations between the dif-
ferent feature values. By activating one or more nodes within the network and
applying spreading activation the related nodes receive activation energy. The
strength of the received activation energy depends on the strength of the rela-
tions. In Table 3 we show several examples for analyzing the relations between
different features. In all examples three nodes with the strongest activation val-
ues are extracted for each feature.

Relation 1: DT: The node representing the domain wizzards.com is activated
and the links to other nodes are analyzed, the results reveal other users that are
closely related to the given domain: gandalf, merlin and saruman.

Relation 2: TD: In this case the node representing the time 01:00 a.m. was
selected. The results allow us to find users and domains that are typical for
emails written at that time.

Relation 3: TD: In this example the time 10:00 a.m. was selected. When
compared to the results of Relation 2, we can see that other users and domains
are involved in the morning than during the night. This difference indicates that
the time of day feature adds valuable information for discriminating users.

6.3 Semantic Search

Due to the relations stored in the semantic network, we are able to apply se-
mantic search queries to the data in the following way: We activate one or more
nodes within the network, spread their activation to neighboring nodes and ex-
tract the generated Activation Pattern from the network. For this extracted

User Tracking Based on Behavioral Fingerprints 85

Table 3. Relation between feature values

Relation 1 DT:wizzards.com
UF gandalf (0.5), merlin (0.2), saruman (0.2)
DF wizzards.com (1.0), dragons.com (0.1), hobbits.com (0.1)
DT dwarfs.com (0.1), elfs.com (0.0), orks.com (0.0)
TD 08:46 (0.4), 16:08 (0.3), 13:12 (0.3)
DW Mon (0.3), Wed (0.3), Tue (0.3)
CT 5 (1.0), 1 (0.4), 3 (0.3)
Relation 2 TD:60 (in minutes, meaning 01:00 a.m.)
UF aragorn (0.2), ermurazor (0.1), fellowship (0.1)
DF giants.com(0.3), nazgul.com (0.3), elfs.com (0.1)
UT ermurazor (0.3), denetor (0.3), aragorn(0.3)
DT nazgul.com (0.9), giants.com (0.6), elfs.com (0.2)
DW Thu (0.4), Fri (0.4), Wed (0.3)
CT 5 (1.0), 1 (0.4), 3 (0.3)
Relation 3 TD:600 (in minutes, meaning 10:00 a.m.)
UF tower (0.3), gandalf (0.2), gimli (0.2)
DF wizzards.com (0.4), horadrim.com (0.2), dwarfs.com (0.2)
UT tower (0.7), gandalf (0.3), mithrandir(0.1)
DT dwarfs.com (0.6), wizzards.com (0.5), nazgul.com (0.4)
DW Mon (0.6), Tue (0.6), Wed (0.5)
CT 1 (1.0), 5 (0.8), 3 (0.5)

Activation Pattern the distance to the other patterns can be calculated. As dis-
tance measure, the cosine similarity is used:

Query 1: UT: We activate the node for the user lembas, which only occurs
once in the whole data set, spread the activation and compare the resulting
Activation Pattern to the others. Obviously, the best matching result contains
the user lembas. Since the Activation Patterns maintain the information about
semantic relations, we are also able to retrieve other search results, that do not
contain the given user, but are related to this user due to other features.

Query 2: DT: In this example we activate the node for the domain wizzards.com
and search for emails that are semantically related. As the results show, we are
also able to retrieve emails that contain other domains, but are still related to
wizzards.com due to the involved users.

Query 3: DT and UT: In this case we activate the same nodes as in Relation
4 (UT: gandalf and DT: wizzards.com). Obviously, the first results contain the
feature values specified in the search query. However, as we can see in results
648 and 650, we are also able to retrieve mails without those feature values, but
that are still semantically related due to other features. For 648 this is the user
saruman and for 650 it is the user merlin. We have already found out in Relation
3, that those users are strongly related to UT: gandalf and DT: wizzards.com.

86 G. Lackner, P. Teufl, and R. Weinberger

Table 4. Semantic search queries

Query 1 Query for UT lembas

Result UF DF UT DT TD DW CT

1 gandalf hobbits.com lembas hobbits.com 11:10 a.m. Tue 3
2 gandalf hobbits.com frodo hobbits.com 01:12 p.m. Tue 3
9 frodo hobbits.com gandalf hobbits.com 11:10 a.m. Tue 6
50 frodo hobbits.com mithrandir trolls.com 11:10 a.m. Tue 1
1496 sauron eagles.com boromir elfs.com 01:12 p.m. Tue 2
Query 2 Query for DT wizzards.com

Result UF DF UT DT TD DW CT

1 gandalf wizzards.com merlin wizzards.com 08:30 a.m. Mon 3
35 saruman wizzards.com gandalf wizzards.com 08:30 a.m. Wed 6
210 gandalf wizzards.com tower dwarfs.com 01:12 p.m. Thu 5
321 saruman wizzards.com ankantoiel gmail.com 06:42 p.m. Tue 6
996 gollum ents.com tower dwarfs.com 06:42 p.m. Mon 3
Query 3 Query for DT wizzards.com and UT gandalf

Result UF DF UT DT TD DW CT

1 saruman wizzards.com gandalf wizzards.com 08:30 a.m. Mon 3
648 saruman wizzards.com durin ringwraiths.com 01:12 p.m. Mon 3
650 merlin wizzards.com faramir urukhais.com 01:12 p.m. Mon 3

Table 5. Examples for feature values with low relevance

CT 5 (unknown)
CT 1 (text-plain)
DT nazgul.com
CT 3 (multipart-alternative)
DW Tue
DW Mon
DT giants.com
DW Fri

6.4 Feature Relevance

By analyzing the number and the strength of the links emanating from a given
unit, we are able to filter out features that do not carry information. In this case
the different content-types, certain days and domains are identified by the analy-
sis (see Table 5). This is not surprising, since these features and values are shared
by a large percentage of users and thus do not carry important information.

6.5 Unsupervised Clustering

Unsupervised clustering groups similar instances into clusters. These clusters
enable the user to gain a quick overview of the whole data set. For this evalua-
tion we apply the Neural Gas based RGNG algorithm [QS04] to the Activation

User Tracking Based on Behavioral Fingerprints 87

Table 6. Examples for clusters, the activation strength is normed and denoted within
parentheses, 1.0 represents the strongest activation

Cluster 1 98 emails and 1 user
DF nazgul.com (0.8), wizzards.com (0.1), giants.com (0.1)
UT ermurazor (0.8), denetor (0.2), tower (0.2)
DT nazgul.com (1.0), wizzards.com (0.2), dwarfs.com (0.2)
TD 03:33 p.m. (0.3), 10:57 a.m. (0.3), 01:03 p.m. (0.2)
DW Wed (0.3), Thu (0.3), Tue (0.3)
CT 5 (0.9), 1 (0.4), 2 (0.2)
UF/emails ermurazor/98
Cluster 2 101 emails and 4 users
DF wizzards.com (0.9), dragons.com (0.1), hobbits.com (0.1)
UT merlin (0.7), tower (0.2), gandalf (0.2)
DT wizzards.com (1.0), dwarfs.com (0.2), nazgul.com (0.1)
TD 03:33 p.m. (0.4), 08:52 a.m. (0.3), 01:03 p.m.(0.3)
DW Tue (0.5), Wed (0.3), Mon (0.3)
CT 6 (0.8), 5 (0.8), 1 (0.3)
UF/emails gandalf/86, saruman/8, stormcraw/5, merlin/2

Patterns. However, it would also be possible to apply any other clustering algo-
rithm to the patterns. In Table 6 we give two examples for the 22 clusters that
were found by the RGNG algorithm. For each feature we extract the three most
activate feature values. Cluster 1 covers the 98 emails of a single user, whereas
Cluster 2 covers 4 users that have similar communication partners.

7 Conclusion

In this paper we apply the concept of Activation Patterns to email data in order
to extract information related to the chosen set of features. The generated pat-
terns and the information extracted by various analysis methods is then used for
creating behavioral fingerprints. By employing such methods, a user’s location
privacy can be compromised. Although, the analyzed data is not always avail-
able, the lessons learned by applying Activation Patterns will be used to create
more sophisticated fingerprints based on a wide range of features from various
abstraction layers.

The final intention of our work is to develop privacy enhancing mechanisms
for wirless networks by identifying and counteracting possible threads.

We especially want to thank P. N. Suganthan for providing the Matlab sources
of RGNG [QS04].

References

[BDM04] Berger, H., Dittenbach, M., Merkl, D.: An adaptive information retrieval
system based on associative networks (2004)

88 G. Lackner, P. Teufl, and R. Weinberger

[BLC02] Barbará, D., Li, Y., Couto, J.: Coolcat: an entropy-based algorithm for
categorical clustering. In: Proceedings of the Eleventh International Con-
ference on Information and Knowledge Management, CIKM 2002, pp. 582–
589. ACM, New York (2002)

[Cou05] Couto, J.: Kernel k-means for categorical data. In: Famili, A.F., Kok, J.N.,
Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp.
46–56. Springer, Heidelberg (2005)

[Cre97] Crestani, F.: Application of spreading activation techniques in information
retrieval (1997)

[DYPL08] Desmond, L.C.C., Yuan, C.C., Pheng, T.C., Lee, R.S.: Identifying unique
devices through wireless fingerprinting. In: Proceedings of the First ACM
Conference on Wireless Network Security, WiSec 2008, pp. 46–55. ACM,
New York (2008)

[EP07] Eagle, N., Pentland, A.S.: Eigenbehaviors: identifying structure in routine.
Social Networks: New Perspectives (2007)

[Fel98] Fellbaum, C.: Wordnet: An electronic lexical database (language, speech,
and communication). Hardcover (May 1998)

[Fra06] McCoy, D., Van Randwyk, J., Tabriz, P., Sicker, D., Neagoe, V., Franklin,
J.: Passive data link layer 802.11 wireless device driver fingerprinting (2006)

[GH05] Guenther, A., Hoene, C.: Measuring round trip times to determine the dis-
tance between wlan nodes. Technical report, Telecommunication Networks
Group, TU-Berlin, Germans (2005)

[HBK06] Hall, J., Barbeau, M., Kranakis, E.: Radio frequency fingerprinting for
intrusion detection in wireless networks. In: IEEE Transactions On De-
pendable And Secure Computing (2006)

[KI96] Kozima, H., Ito, A.: Context-sensitive measurement of word distance by
adaptive scaling of a semantic space. volume cmp-lg/9601007 (1996)

[Koh95] Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sci-
ences, vol. 30. Springer, Berlin (1995)

[Koh01] Kohonen, T.: Self-organizing maps. Springer Series in Information Sciences,
vol. 30. Springer, Heidelberg (2001)

[Koz93] Kozima, H.: Similarity between words computed by spreading activation
on an english dictionary. In: EACL, pp. 232–239 (1993)

[LLPT06] Lackner, G., Lamberger, M., Payer, U., Teufl, P.: Wifi fingerprinting. In:
DACH Mobility 2006 (September 2006)

[LP07] Liu, Z., Peng, D.: User behavior identification for trust management in per-
vasive computing systems. In: Proceedings of the 11th IEEE International
Workshop on Future Trends of Distributed Computing Systems, FTDCS
2007, Washington, DC, USA, pp. 65–72. IEEE Computer Society Press,
Los Alamitos (2007)

[MS91] Martinetz, T., Schulten, K.: A ”neural gas” network learns topologies. In:
Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural
Networks, pp. 397–402. Elsevier, Amsterdam (1991)

[PGG+07] Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11
user fingerprinting. In: Proceedings of the 13th Annual ACM International
Conference on Mobile Computing and Networking, MobiCom 2007, pp.
99–110. ACM, New York (2007)

[Plu82] Plummer, D.C.: Rfc 862 - an ethernet address resolution protocol or con-
verting network protocol addresses to 48.bit ethernet address for transmis-
sion on ethernet hardware (1982)

User Tracking Based on Behavioral Fingerprints 89

[QS04] Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with
application in cluster analysis. Neural Netw. 17(8-9), 1135–1148 (2004)

[Qui68] Quillian, M.R.: Semantic memory (1968)
[Ris89] Rissanen, J.: Stochastic Complexity in Statistical Inquiry Theory. World

Scientific Publishing Co., Inc., River Edge (1989)
[Sie06] Sieka, B.: Active fingerprinting of 802.11 devices by timing analysis. In:

3rd IEEE Consumer Communications and Networking Conference, CCNC
2006. vol. 1, pp. 15–19 (January 2006)

[TL10] Teufl, P., Lackner, G.: Rdf data analysis with activation patterns. In: Pro-
ceedings of the 10th International Conference on Knowledge Management
and Knowledge Technologies (i-KNOW 2010), Graz, Austria (September
2010)

[TLP10] Teufl, P., Lackner, G., Payer, U.: From NLP (natural language processing)
to MLP (machine language processing). In: Kotenko, I., Skormin, V. (eds.)
MMM-ACNS 2010. LNCS, vol. 6258, pp. 256–269. Springer, Heidelberg
(2010)

[TPF10] Teufl, P., Payer, U., Fellner, R.: Event correlation on the basis of activation
patterns (2010)

[TPP09] Teufl, P., Payer, U., Parycek, P.: Automated analysis of e-participation
data by utilizing associative networks, spreading activation and unsuper-
vised learning. pp. 139–150 (2009)

[TVA07] Tsatsaronis, G., Vazirgiannis, M., Androutsopoulos, I.: Word sense dis-
ambiguation with spreading activation networks generated from thesauri
(January 2007)

A Machine Learning and Privacy

Using the Internet leaves tracks that might lead to the unwanted disclosure of
information resulting in the violation of user privacy – ranging from user tracking
over collecting web-usage data to modeling user behavior and putting it into
relation to other users or user groups. When looking at the available information
that can be logged (e.g. due to using a Wi-Fi access point) there are numerous
features that might disclose information about the user’s privacy. Although, there
are obvious ones (e.g. the MAC address of a network interface card), there are
other features or their combination that cannot be identified by simple methods2.
However, in order to protect user privacy, we must understand how privacy
information is disclosed. Only with this understanding it is feasible to deploy
effective countermeasures. Here, machine learning can play an important role.
Due to the fuzzy nature of machine learning algorithms, patterns within the data
can be identified and analyzed without the need for a human understanding of
the raw data. By combining various of these machine learning algorithms we
have created the Activation Patterns technique that enables us to analyze data
in an unsupervised way and to understand relations between single features.

This Appendix explains the Activation Pattern concept, gives details about
the transformation process and provides a simple example that highlights the
basic principles. The following definitions are used through this appendix.
2 E.g. simple key word matching signatures, or searching for unique IDs within the

data (e.g. MAC address) etc.

90 G. Lackner, P. Teufl, and R. Weinberger

– distance-based features: These are features that are represented by continu-
ous values for which it makes sense to define a distance measure (e.g tem-
perature values, connection duration, etc.)

– nominal features: These are features that are represented by values that can-
not be brought into relation via a distance measure (e.g. protocol identifiers
such as UDP, ICMP, TCP or email addresses).

– Activation Pattern: This is as an n-dimensional vector that represents the
activation values of the n nodes of an associative network.

A.1 Employed Machine Learning Methods

Activation Patterns are generated by utilizing three different techniques from
the areas of machine learning and artificial intelligence. These building blocks
include unsupervised learning algorithms, associative networks and SA algo-
rithms. For the analysis and discretization of single features and feature groups
we require unsupervised learning algorithms based on prototypes. Examples for
such algorithms are Neural Gas (NG) [MS91] and its successors Growing Neural
Gas, Robust Neural Gas and Robust Growing Neural Gas (RGNG) [QS04]).

Associative networks [Qui68] are directed or undirected graphs that store in-
formation in the network nodes and use edges (links) to present the relation
between these nodes. Typically, these links are weighted according to a weight-
ing scheme. Spreading activation (SA) algorithms [Cre97] can be used to extract
information from associative networks. Associative networks and SA algorithms
play an important role within Information Retrieval (IR) systems such as [Fel98],
[Koz93], [KI96], [BDM04] and [TVA07]. By applying SA algorithms we are able
to extract Activation Patterns from trained associative networks. These Acti-
vation Patterns can then be analyzed by arbitrary unsupervised learning algo-
rithms such as Self Organizing Maps (SOM) [Koh95], Hierarchical Agglomerative
Clustering (HAC), Expectation Maximization (EM), k-means, etc.

Unsupervised learning algorithms rely on some kind of distance measure to
find clusters of similar data within a given dataset. It is easy to define such
distance measures for datasets based on continuous features. However, as soon
as categorical features need to be analyzed, these distance measures might not
make sense. Typically, it is not possible to define a meaningful distance for
the values of such features. Therefore, several unsupervised algorithms for the
analysis of categorical data have been developed. Some examples are COOLCAT
[BLC02], or Kernel K-Means [Cou05]. Typically such techniques analyze the co-
occurences of attributes and use this information for unsupervised clustering.
Couto [Cou05] introduces the Kernel K-Means algorithm for categorical data
and gives a good overview of other unsupervised algorithms for categorical data.
If continuous features need to be analyzed with such algorithms, the values need
to discretized first. Such discretization methods range from very simple methods
that put the categorical data into n bins to more complex methods based on
entropy or fuzzy techniques.

The transformation of raw feature vectors into Activation Patterns involves
the mapping of categorial and continuous features into an associative network.

User Tracking Based on Behavioral Fingerprints 91

Similar to the other methods the continuous features need to be discretized.
Although there are several discretization methods available, we have decided to
employ an NG based algorithm for the discretization. This comes with certain
advantages that will be explained later.
As mentioned above, applying SA to the associative network generates the Acti-
vation Patterns. These patterns can then be analyzed by standard unsupervised
learning algorithms with conventional distance measures. In addition to unsu-
pervised analysis, the information stored in the associative network can be used
directly to gain information about the relations between features. Furthermore,
we are able to execute search queries that retrieve similar Activation Patterns.
These additional benefits are not given by the other algorithms.

B Activiation Patterns

B.1 From Feature Vectors to Activation Patterns

The process of generating and analyzing Activation Patterns is separated into
five processing layers. The general idea is to extract the co-occurence information
of different features (L1, L2), to store this information in an associative network
(L3) and to generate Activation Patterns by applying SA strategies (L4). Various
analysis techniques can then be applied to the generated patterns (L5).

L1 - Feature extraction: As mentioned before, features of any data set can be
separated into the categories distance-based features and nominal features. These
two types of features are handled differently by subsequent processing steps and
need to be identified correctly at L1. For distance-based features groups that
represent features with similar meanings and value ranges can be created. This
grouping is not a requirement for further analysis, but reduces the computational
complexity.

L2 - Node generation: This process layer creates the nodes of the associative
network that will be generated in the next layer. The process of mapping fea-
ture values to nodes depends on the type of the particular feature. For nominal
features the possible values are directly mapped to separate nodes. For distance-
based features we need to apply some kind of discretization operation to map
values onto nodes. Although there is a wide range of discretization algorithms
available, we have chosen the RGNG algorithm. It is applied to the continuous
values and the trained prototypes are used as nodes for the associative network.

Basically any prototype based unsupervised learning algorithm could be used
for the discretization process. RGNG was selected, since it includes several ad-
vanced method and employs the Minimum Description Length (MDL) [Ris89] to
automatically determine the model complexity. Since the performance of RGNG
and similar algorithms has been evaluated by applying them to a wide range of
datasets, we can assume that these algorithms will produce good results for the
low dimensional data represented by single features or selected feature groups.
Although the computational complexity of RGNG is high, the benefits justify

92 G. Lackner, P. Teufl, and R. Weinberger

its application and improve the employed analysis techniques. In other more
specific scenarios, the RGNG algorithm can be replaced with a simple adequate
discretization method.

The node generation process of L2 can be summarized as follows : Values
of nominal-features are directly mapped to unique nodes within the associative
network. For each of the feature groups or single features (defined in L1) of the
category distance-based features, an RGNG-map is trained and prototypes are
incorporated as new nodes into the associative network.

L3 - Network generation: In this layer, links are created between the nodes
according to the relations between the nodes:

1. The features are analyzed according to the two categories determined in L1.
Nominal features are directly mapped to nodes according to the mapping
from the previous step. For distance-based features (single values or groups)
the prototype of the corresponding RGNG-map with the smallest distance
to the data vector, is located. This prototype is called the Best Matching
Unit (BMU). Its corresponding node in the network is found according to
the mapping generated in L2.

2. All these nodes are now linked within the associative network. Newly created
links between two nodes are initialized with weight 1. The weight of existing
links is increased by 1. This linking represents the co-occurence of different
values of distinct features. The link weight represents the strength of this
relation.

The weight of the links within the network represents the number of times two
nodes co-occur. In order to apply the SA-algorithm in L4, we need to normalize
the link weights within the associative network, so that the maximum weight is
equal to 1. We can apply different strategies here that normalize the links locally
or globally.

L4 - Activation Pattern Generation: The links of the associative network
created in L3 represent the relations between features and values of the features
are represented as the nodes of the associative network. The information about
relations can be extracted by applying the SA-algorithm to the network. For each
data vector, the nodes in the network that represent the values stored in the data
vector, are determined. By activating these nodes for a given data vector, the
activation can be spread over the network according to the links and their associ-
ated weights for a predefined number of iterations. After this spreading process,
we can determine the activation value for each of the nodes in the network and
present this information in a vector - the Activation Pattern. The areas of the
associative network that are activated and the strength of the activation gives
information about which feature values occurred and how they co-occur. Exam-
ples for different patterns are shown in Figure 3. By applying distance measures,
such as the cosine similarity, the patterns can easily be compared.

User Tracking Based on Behavioral Fingerprints 93

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ct

iv
at

io
n

en
er

gy

Node ID
0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Node ID

A
ct

iv
at

io
n

en
er

gy

Fig. 3. Examples for two different Activation Patterns, the x-axis represents the nodes
within the network, the y-axis represents the activation energy of these nodes after
applying the spreading activation process to the activated nodes

L5 - Analysis

– Unsupervised clustering and semantic search: Due to the transformation of
the raw data into Activation Patterns we can apply standard distance-based
unsupervised clustering algorithms while keeping the information about se-
mantic relations within the data. This allows us to find clusters of similar
behavior patterns and to deduce common features within a cluster. By vary-
ing the model complexity, we are able to build a hierarchy from a very
coarse grained categorization down to a very detailed representation of the
analyzed data. The distance between the Activation Patterns can be used
to implement semantic search algorithms that retrieve similar behavior pat-
terns. These search queries can also be used to specify certain feature values
and find closely related patterns (e.g. given a user: which other users use
similar recipients within their emails).

– Feature relevance: The relations within the semantic network are created
according to the co-occurrence of feature values within the analyzed data
set. The strength of these relations are represented by the associated weights
within the network. Given a feature value that is represented by a node and
the number of emerging/incoming links and their weights, we are able to
deduce the importance of the information carried by the node. Nodes that are
connected to a large number of other nodes typically do not add information
for subsequent analysis processes. This is highlighted by a simple example:
Assuming a data set that describes features of various vehicles (bikes, cars,
trains), a node that describes that the vehicle has wheels does not carry any
information at all. The reason is that all the mentioned vehicles have wheels
and thus the node is connected to all other possible feature values. In the
analysis section we will show some examples of such values in the case of the
analyzed email data.

Nodes that do not carry information can be penalized by introducing so
called fanout factors that attenuate the spread activation.

94 G. Lackner, P. Teufl, and R. Weinberger

– Feature relations : The semantic network describes arbitrary relations be-
tween feature values. By activating one or more nodes (corresponding to
feature values) within the semantic network, and spreading their activation
via the links to the neighbors, we are able to extract details about the re-
lations between various feature values (e.g. between a given time and the
typical users that write emails at this time).

B.2 A Simple Example - Artificial Clusters

This section presents a simple example based on four distinct clusters that does
not include nominal-features (see Figure ??). Although this example data could
easily be analyzed with standard unsupervised analysis methods, we use it to
show the basic properties of the Activation Patterns and the influence of sin-
gle parameters. For visualization of the clusters, Self Organizing Maps (SOMs)
[Koh95] are used.

– L1: The data-set consists of 2D data-vectors representing two different
features. In this case there are only distance-based features meaning that the
values of these features can be related with a distance measure.

– L2: In this layer we create the nodes for the associative network. Since
both features belong to the category of distance-based features, we cannot
map their values directly to nodes within the associative network. Instead,
we apply the RGNG algorithm to the values of the first feature (represented
by the x-axis) and to the values of the second feature (represented by the
y-axis). The RGNG employs the MDL in order to control model complexity
and finds one prototype per cluster.

– L3: We now create the links of the associative network and determine
their strength by analyzing the co-occurence information of the two features
within the training data.

– L4: We now make use of the SA algorithm to generate Activation Patterns
for each data vector within the training set.

– L5: The generated Activation Patterns can now be analyzed with unsuper-
vised learning techniques. In order to provide a meaningful visualization, we
train SOMs for both Activation Pattern sets.

Coping with different ranges of features: Due to the transformation of
the raw data into the Activation Patterns, we get information about the co-
occurence of different features. The values of the features are represented by
different nodes in the associative network. The information about the relations
between them is stored in the links between the nodes and their strength. There-
fore, the framework does not require any kind of normalization operation applied
to the raw data. In order to show that we use the same data-set as in Figure ??,
we multiply the value of the second feature with a constant (1000). Again, we
train SOMs on the unmodified and modified raw data-set. For the unmodified
data-set, the four different clusters are very easy to recognize within the trained
SOM (see Figure 4(a)). However, for the modified data-set the trained SOM

User Tracking Based on Behavioral Fingerprints 95

(a) SOM trained on 2D
raw-data

(b) SOM trained on modi-
fied 2D raw-data (Y data is
multiplied with 1000)

(c) SOM trained on 4D
Activation Patterns

Fig. 4. Due to different value ranges only 2 clusters can be identified for the raw data-
set. Due to the inclusion of the co-occurrence information, the Activation Patterns can
still be separated into 4 clusters.

only shows two distinct clusters (see Figure 4(b)). This behavior is due to the
fact that the much larger values of the second feature have more influence on
the Euclidean distance and hide the relative small distances between the values
of the first feature. In contrast, by utilizing the Activation Patterns, the SOM is
always able to find four clusters regardless of the range differences between the
features (see Figure 4(c)).

On the Collision and Preimage Resistance of Certain
Two-Call Hash Functions

Nasour Bagheri1�3, Praveen Gauravaram2, Majid Naderi3, and Søren S. Thomsen2

1 Electrical Engineering Department, Shahid Rajaee University, Tehran, Iran
2 Department of Mathematics, Technical University of Denmark,

DK-2800 Kgs. Lyngby, Denmark
{P.Gauravaram,S.Thomsen}@mat.dtu.dk

3 Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran
{N Bagheri,M Nderi}@iust.ac.ir

Abstract. In this paper we present concrete collision and preimage attacks on a
large class of compression function constructions making two calls to the under-
lying ideal primitives. The complexity of the collision attack is above the theoreti-
cal lower bound for constructions of this type, but below the birthday complexity;
the complexity of the preimage attack, however, is equal to the theoretical lower
bound.

We also present undesirable properties of some of Stam’s compression func-
tions proposed at CRYPTO ’08. We show that when one of the n-bit to n-bit
components of the proposed 2n-bit to n-bit compression function is replaced by a
fixed-key cipher in the Davies-Meyer mode, the complexity of finding a preimage
would be 2n�3. We also show that the complexity of finding a collision in a variant
of the 3n-bits to 2n-bits scheme with its output truncated to 3n�2 bits is 2n�2. The
complexity of our preimage attack on this hash function is about 2n. Finally, we
present a collision attack on a variant of the proposed m � s-bit to s-bit scheme,
truncated to s � 1 bits, with a complexity of O(1). However, none of our results
compromise Stam’s security claims.

Keywords: cryptographic hash functions, information-theoretic security,
permutation-based hash functions.

1 Introduction

A cryptographic hash function maps messages of arbitrary length to a fixed length di-
gest. The design of a cryptographic hash function often involves two parts: designing a
fixed input length compression function, and designing a mode of operation of this com-
pression function. The most commonly used mode of operation is the Merkle-Damgård
construction [2, 5]. In this paper, we focus on the design of the compression function.

There are two general types of compression function designs; those that are based on
an existing cryptographic primitive such as a block cipher, and those that are designed
specifically for hashing. Of the first kind, many constructions are known, e.g., the so-
called PGV schemes [9] and the MDC-2 construction [6]. Of the second kind, there
are many examples, for instance MD4 [11], MD5 [12], SHA family [8] etc, although
structures of many of these designs look like that of block cipher based.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 96–105, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

On the Collision and Preimage Resistance of Certain Two-Call Hash Functions 97

Some compression function designs are provably secure (e.g., collision resistant) as-
suming that the underlying cryptographic primitives are ideal. In the security proofs the
adversary may be assumed to be computationally unbounded (or information-theoretic),
which means that one only counts the required number of calls to the underlying prim-
itives in the complexity estimate of the adversary. This type of security proof has re-
ceived a good deal of attention in the last few years [1, 13, 15, 17, 16]. In this paper, we
continue this line of research in the sense of providing cryptanalytic results on a number
of compression function schemes.

1.1 Background

Black et al. showed [1] that in the ideal cipher model, compression functions mak-
ing a single call to a permutation can never provide ideal collision resistance in the
information-theoretic security model.

Rogaway and Steinberger [13] generalised the results of Black et al. by deriving
upper bounds to collision and preimage attack complexities on compression functions
using any number of underlying permutations, again assuming information-theoretic
adversaries. Rogaway and Steinberger [14] continued this framework and proposed
constructions that are provably secure assuming ideal underlying primitives and
information-theoretic adversaries. Shrimpton and Stam [15] also proposed construc-
tions that reach the security bounds presented by Rogaway and Steinberger [13].

Stam [16] further generalised (and commented upon) the results of Rogaway and
Steinberger [13], and he proposed some constructions achieving provable collision re-
sistance assuming ideal underlying primitives (in Stam’s case, these primitives are usu-
ally modeled as random functions, not permutations).

1.2 Our Contributions

In this paper, we describe concrete collision and preimage attacks on a large class of
compression function constructions making two calls to the underlying ideal primitives.
The complexities of these attacks are less than that of for an ideal compression function,
but in the case of the collision attack complexity of our attack is above the lower bound
implied by the information-theoretic security proof.

In addition, we show that although the compression functions proposed in [16] are
provably collision resistant in the information-theoretic security model, they have other
undesirable properties. More precisely, we describe concrete preimage and near-collision
attacks on some of these compression functions.

2 The Compression Function Model

We use Stam’s model for a compression function based on a number of underlying ideal
primitives [16] which is a generalization to the model presented by Rogaway and Stein-
berger [13]. This model, depicted in Figure 1, assumes that the compression function
takes an m-bit message block and an s-bit chaining value as inputs, and produces an
output of size s bits. It processes the input by making one call to each of r underlying

98 N. Bagheri et al.

C1

��

C2
� f2

� � �

� �

�
�
�

fr
� Cr

�

�

��
�

m � s � C0

�

�� f1
nn � c

Fig. 1. The model of [16] for a compression function based on underlying primitives, which is a
generalization to the model presented in [13]

primitives fi, 1 � i � r, that all compress n � c bits down to n bits. The model also as-
sumes the existence of r�1 arbitrary functions Ci, 0 � i � r, without any cryptographic
property assumption. The first r of those functions take (m � s � in) bits of input and
produce n � c output bits and the last function, Cr , takes (m � s � rn) input bits and
produces s output bits, that form the output of the compression function.

Stam [16] showed that assuming computationally unbounded (information-theoretic)
adversaries, uniform compression functions following this model allow attacks of the
expected complexities that can be seen in Table1. The complexities are stated in terms
of the number of queries that must be made to the underlying primitives fi; calls to the
functions Ci are considered “free of charge”.

Table 1. Information-theoretic complexities of attacks on compression functions following the
model of [16] (output size: s bits)

Collision 2n�c�(m�s�2)�r

Preimage 2n�c�m�r

For future reference, we recall that finding a collision in an ideal n-bit hash func-
tion requires about 2n�2 queries to the compression function, and finding a preimage
requires about 2n queries to the compression function. A near-collision is a collision in
a pre-specified subset of the output bits. If the subset has size k � 1, then the expected
complexity of the near-collision for an ideal hash function is 2k�2.

3 Attacks

Shrimpton and Stam [15], Rogaway and Steinberger [13], and Stam [16] describe at-
tacks assuming information-theoretic adversaries. The attacks they described appar-
ently cannot always be carried out with the same time complexity in practice. As an
example, in the model of information-theoretic adversaries, the K-sum problem [18],
with K � 2k, has complexity 2n�K , but the best algorithm to solve this problem in prac-
tice (also [18]) has complexity K2n�(1�k). In many cases, there is a large gap between
the theoretical complexity, and the best known “real” upper bound.

On the Collision and Preimage Resistance of Certain Two-Call Hash Functions 99

In this section we describe “real” attacks on some compression function construc-
tions. First, we describe real collision and preimage attacks on a large class of con-
structions that make two calls to the underlying primitives. The collision attack does
not quite close the gap to the information-theoretic attack complexity, but the preimage
attack does. Then we describe preimage and near-collision attacks on some provably
collision resistant constructions [16]. Recall that it is a common approach to truncate
the output of the compression function at the output stage of hash functions following
wide-pipe hash function design strategy [3], it is important to consider near-collision
and near-preimage attacks in practice. Hence, the best attacks against a truncated com-
pression function are expected to be generic attacks.

3.1 Attacks on a Class of Two-Call Constructions

In this section we describe attacks using a standard complexity model on a large class of
two-call constructions. The constructions in question are 2n-bit to n-bit constructions
using two calls to the n-bit to n-bit underlying primitives. Hence, in the terminology
introduced above, we have m � s � n, c � 0, and r � 2. We assume that the functions
Ci, 0 � i � 2, are linear over �2n , but this is not strictly necessary; however, the attack
does not work for arbitrary Ci (obviously, if Ci are random functions, then we really
have a five-call construction). These constructions have collision resistance at most 2n�4

and preimage resistance at most 2n�2, in the model of information-theoretic adversaries
(see Table1). In this section, we describe a collision attack of complexity 2n�3, and a
preimage attack of complexity 2n�2, using standard complexity measures.

The constructions can be described as follows (the input is (M�V), and �M� � �V � � n).

W1 � C0(M�V) � aM � bV

Y � f1(W1)

W2 � C1(M�V� Y) � cM � dV � eY

Z � f2(W2)

W3 � C2(M�V� Y� Z) � fM � gV � hY � iZ�

The output is W3. All arithmetic takes place in the field �2n , and bold face symbols are
constants in this field.

Collision attack. First, we describe a collision attack on the mentioned class of con-
structions. The attack is based on Wagner’s generalized birthday attack [18]. This attack
is able to find collisions in functions F(x� y) that can be described as the sum of two sub-
functions with separate inputs, i.e., F(x� y) � F1(x)�F2(y). We show that the mentioned
class of constructions can be described in this way.

Let F be the compression function based on f1, f2, and the linear functions Ci. We
may expand the description of F somewhat to get

F(M�V) � fM � gV � h f1(W1) � i f2(W2)� (1)

where W1 � aM � bV and W2 � cM � dV � e f1(W1).

100 N. Bagheri et al.

Consider, on the other hand, the sum

� � F1(W1) � F2(W2) � (xW1 � y f1(W1)) � (zW2 � i f2(W2)) �

This sum expands into

� � (axM � bxV � y f1(W1)) � (czM � dzV � ez f1(W1) � i f2(W2)) �

Collecting terms, one obtains

� � (ax � cz)M � (bx � dz)V � (y � ez) f1(W1) � i f2(W2)�

In order to have � � F(M�V), see (1), we need to solve (for x, y, and z) the following
three simultaneous equations:

ax � cz � f

bx � dz � g

y � ez � h�

which can be written in the matrix form as����������
a 0 c
b 0 d
0 1 e

���������� �
����������

x
y
z

���������� �
����������

f
g
h

���������� �
This system of equations has a solution whenever ad � bc. Once x, y, and z have

been found, the compression function F can be written as

F(M�V) � (xW1 � y f1(W1)) � (zW2 � i f2(W2)) �

This means that Wagner’s generalized birthday attack, with 2n�3 query�time-complexity,
can be used to find the quadruple (W1�W�

1�W2�W�

2) such that:

(xW1 � y f1(W1)) � (zW2 � i f2(W2)) �
�
xW�

1 � y f1(W�

1)
�
�
�
zW�

2 � i f2(W�

2)
�

Now, From W1 and W2 one obtains M and V by solving the following equation:	
a b
c d

�

	
M
V

�

	
W1

W2 � e f1(W1)

�

Similarly, from W�

1 and W�

2 one obtains M� and V � which form a collision with M and
V . As above, the system of equations has a solution if ad � bc.

If ad � bc, then preimages, and thereby collisions, can be found for F in constant
time: The equation ad � bc implies that the vector (c� d) is a multiple of (a� b), or
(a� b) � (0� 0). If (a� b) � (0� 0), then the construction is in e�ect reduced to a single-
call construction. Therefore, we assume that (c� d) � k � (a� b). Then, it can bee seen
that W2 � kW1 � e f1(W1) is a function of W1 only. Given target image U, one finds a
preimage simply by choosing arbitrary W1 and solving the system of equations	

a b
f g

�

	
M
V

�

	
W1

U � h f1(W1) � i f2(W2)

�

This system of equations can be solved if ag � bf. If ag � bf, then the output of F is
a function of W1 only, and hence collisions in this variable extend to the compression
function. Surprisingly, this case does not seem to allow preimages to be found faster
than by brute force.

On the Collision and Preimage Resistance of Certain Two-Call Hash Functions 101

Preimage attack. The method of separating the function into the sum of two sub-
functions, each having its own independent input, can also be used to find preimages.
Assume we are given a target compression function output U. As above, write the com-
pression function as

F(M�V) � (xW1 � y f1(W1)) � (zW2 � i f2(W2)) �

Since we need F(M�V) � U, compute U1 � xW1�y f1(W1) and U2 � �(zW2�i f2(W2))�
U for 2n�2 di�erent values of each of W1 and W2, and find (with good probability) a
collision between U1 and U2. This gives U1 � U2 � 0, and hence F(M�V) � U. The
time complexity is about 2n�2, and the memory requirements are the same; however,
memoryless techniques [10, 7] can be used in the collision search.

3.2 Attacks on Some CRYPTO ’08 Proposals

At CRYPTO ’08, a number of compression function constructions [16], which are prov-
ably collision resistant in the information-theoretic complexity model, were presented.
By provably collision resistant we mean that the information-theoretic complexity of
finding collisions is 2n�2 when the output size of the hash function is n bits. Here, we
show that these constructions have a number of undesirable properties.

Preimage attack on a two-call single-length construction. The first construction that
we consider is a provably collision resistant single-length construction applying two un-
derlying primitives, modelled as random n-bit to n-bit functions. The output size is 2n�3
bits, and the size of a message block is n bits. This construction is called Construction 1.

Construction 1. On input M and V (�M� � n, �V � � 2n�3), compute:

X � V�0n�3

Y � f2(f1(M) � X) � X

Z � msb2n�3(Y)

Output Z

Here, ‘�’ denotes concatenation, �x� means the bitlength of x, 0n�3 is the string of n�3
‘0’-bits, and msb�(x) means the � most significant bits of x. If f1 is replaced by a per-
mutation p applied in the Davies-Meyer mode [9, 4], i.e., f1(x) � p(x) � x, then the
security proof still holds. Whether the same is true for f2 is unclear [16].

Note that the attacks described above on a class of two-call constructions do not seem
to apply to the Construction 1 due to the truncation. Without the truncation, however,
they would.

Here, we show that replacing f2 with a fixed-key blockcipher in Davies-Meyer mode
would lead to a preimage attack in time 2n�3. Let EK(�) be the fixed-key blockcipher.
Then the construction can be described as follows:

102 N. Bagheri et al.

On input M and V (�M� � n, �V � � 2n�3), compute:

X � V�0n�3

Y � EK(f1(M) � X) � f1(M)

Z � msb2n�3(Y)�

Output Z.
Let us denote by �x	� an �-bit representation of the integer x. To find a preimage of a

target image W, one may fix M to an arbitrary value, and compute X� � E�1
K ((W��i	n�3)�

f1(M))� f1(M) for increasing i (from 0 up to at most 2n�3 � 1), until X� has n�3 trailing
‘0’ bits. Then, V � msb2n�3(X�) and M form a preimage of W. The success probability
of receiving n�3 trailing ‘0’ bits at the ith query, that have not been received for the
previous queries, is 22n�3

2n
�i . Hence, we can determine the success probability of finding a

preimage for target image W, denoted by Prpre(W), as follows:

Prpre(W) � 1 �

i�q�
i�1

(1 �
22n�3

2n � i
)
 1 � e�

�i�q
i�1

22n�3

2n
�i �

1 � e�
�i�q

i�1
22n�3

2n � 1 � e
�q�22n�3

2n � 1 � e�q�2�n�3
�

Where we used the approximation ex
 1 � x, for x �� 1, through the calculations.
If we replace q by 2n�3 we receive the success probability of our attack which is 0�63.
Hence, the expected complexity of attack is 2n�3.

We note that when f2 is replaced by a fixed-key block cipher, then the truncation of
the chaining value from n bits to 2n�3 bits is vital to the security of the construction –
without it, collision and preimage attacks in constant time would be possible.

Preimage and near-collision attacks on a double-length construction. A provably
collision resistant double-length construction based on an underlying random 3n-bit to
n-bit function is also proposed in [16]. This construction has input size 3n bits and
output size 2n. We call it Construction 2.

Construction 2. On input M, V1, and V2 (�M� � �V1� � �V2� � n), compute:

Y � f (M�V1�V2)

Z � Y�(V2Y2 � V1Y � M)�

Output Z.

All arithmetic takes place in the finite field �2n .
A variant of Construction 2 applies two 2n-bit to n-bit functions f1 and f2, and defines

f (M�V1�V2) � f2(f1(M�V1)�V2). The properties that we describe below for Construc-
tion 2 also apply to this variant.

Construction 2 allows near-collisions in 3n�2 out of 2n bits to be found in time about
2n�2, significantly below the ideal complexity of 23n�4.

The idea of the attack is to fix V1 and V2 to zero, yielding Y�M as the output. Now,
one may vary half the bits in M until a collision occurs in Y, which would yield a
near-collision in 3n�2 bits of the output. More precisely, the attack proceeds as follows
(where C is an arbitrary n�2-bit string).

On the Collision and Preimage Resistance of Certain Two-Call Hash Functions 103

1. Assign V1 � 0 and V2 � 0.
2. For i from 0 to 2n�2 do

(a) Assign Mi � C��i	n�2
(b) Compute Yi � f (Mi�V1�V2) and assign Zi � Yi�Mi

3. Find (with good probability) a collision in the first (most significant) 3n�2 bits, i.e.,
i � j such that msb3n�2(Zi) � msb3n�2(Z j).

We note that any set of n�2 bits of M can be varied, and the collision will occur in the
remaining 3n�2 bits.

Furthermore, a preimage attack in time about 2n can be launched on Construction 2.
Assume that we are given the target image Z � Y�W. As an example, we may fix V2 � 0,
and search for a preimage of Y under f , using V1 and M � W � V1Y. When the preim-
age of Y has been found, we have also found a preimage of Z under the compression
function, since V2Y2 � V1Y � M � W. Since this technique requires finding a preimage
in an n-bit value, the expected complexity is 2n.

We note that 2n bits of the input to the compression function can be chosen freely in
every iteration, and the remaining n bits are fixed by the equation V2Y2�V1Y �M � W.
We also note that this attack is non-adaptive, meaning that all queries can be fixed before
any response is given.

Near-collision attack on a variable-length construction. A third construction pro-
posed in [16] is a generic single-call construction having collision resistance up to
2(n�c�m)�2 queries, where m � n � c, n � s, and c � m. This construction, which
we call Construction 3, provides a range of eÆciency�security trade-o�s.

Construction 3. On input M � M0�M1 and V � V0�V1, �M0� � n � c � s, �M1� � �V1� �

m � n � c � s, and �V0� � n � c � m, compute

X � M0�(M1 � V1)�V0

Y � f (X)

Z � Y0�((Y1�0s�n) � V1)�

Here, �Y0� � n � c � m, and �Y1� � m � c. Output Z.

The parameters m, s, n, and c can be varied; e.g., c � 0 and m � n � s gives a 2n-bit
to n-bit compression function using a single call to an n-bit to n-bit function – however,
this construction allows collisions to be found using a single call to f . At the other end
of the spectrum, by using c � m � s � n one obtains an optimally collision resistant
2n-bit to n-bit compression function; however, this requires a 2n-bit to n-bit random
function. Hence, this approach does not make the task of the designer to construct a
2n-bit to n-bit collision resistant compression function any easy.

We observe that a fixed XOR di�erence in the two inputs to Construction 3 may
propagate unchanged to the output. To be more precise, choose M and V arbitrarily,
and let d be an arbitrary bitstring of length m � n � c � s. Assign M� � M � d and
V� � V � d, where d is prepended with an appropriate number of ‘0’ bits. Now the
two inputs yield the same input to the function f , and hence the two outputs of the
compression function have the di�erence d in the last (least significant) m � n � c � s
bits. Therefore, if m � n� c � s � 0, a near-collision in all but a single output bit can be
found by selecting (e.g.) d � �1	m�n�c�s.

104 N. Bagheri et al.

4 Conclusion

In this paper we presented collision and preimage attacks on a large class of compres-
sion function constructions making two calls to the underlying ideal primitives.

We also described some undesirable properties in a number of provably collision
resistant compression function constructions proposed at CRYPTO ’08. These attacks
underline that designing an eÆcient compression function from small ideal components
is not an easy task.

References

1. Black, J., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-EÆcient Blockcipher-
Based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–
541. Springer, Heidelberg (2005)

2. Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

3. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

4. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

5. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

6. Meyer, C.H., Schilling, M.: Secure program load with manipulation detection code. In: Pro-
ceedings SECURICOM 1988, pp. 111–130 (1988)

7. Morita, H., Ohta, K., Miyaguchi, S.: A Switching Closure Test to Analyze Cryptosystems.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183–193. Springer, Heidelberg
(1992)

8. National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash Standard.
Federal Information Processing Standards Publication 180-2, U.S. Department of Commerce
(August 2002)

9. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Syn-
thetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378.
Springer, Heidelberg (1994)

10. Quisquater, J.-J., Delescaille, J.-P.: How Easy is Collision Search. New Results and Applica-
tions to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 408–413. Springer,
Heidelberg (1990)

11. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

12. Rivest, R.L.: The MD5 Message-Digest Algorithm, Network Working Group, Request For
Comments: 1321 (April 1992)

13. Rogaway, P., Steinberger, J.: Security�EÆciency Tradeo�s for Permutation-Based Hashing.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg
(2008)

14. Rogaway, P., Steinberger, J.P.: Constructing Cryptographic Hash Functions from Fixed-Key
Blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer,
Heidelberg (2008)

On the Collision and Preimage Resistance of Certain Two-Call Hash Functions 105

15. Shrimpton, T., Stam, M.: Building a Collision-Resistant Compression Function from Non-
compressing Primitives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–
654. Springer, Heidelberg (2008)

16. Stam, M.: Beyond Uniformity: Better Security�EÆciency Tradeo�s for Compression
Functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer,
Heidelberg (2008)

17. Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

18. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

Integral Distinguishers of Some SHA-3
Candidates

Marine Minier1, Raphael C.-W. Phan2, and Benjamin Pousse3

1 Universit de Lyon, INRIA
INSA-Lyon, CITI, F-69621, Villeurbanne, France

marine.minier@insa-lyon.fr
2 Electronic and Electrical Engineering, Loughborough University

LE11 3TU Leicestershire - UK
R.Phan@lboro.ac.uk

3 XLIM (UMR CNRS 6172), Université de Limoges
23 avenue Albert Thomas, F-87060 Limoges Cedex - France

benjamin.pousse@unilim.fr

Abstract. In this paper, we study structural Integral properties on re-
duced versions of the compression functions of some SHA-3 candidates:
Hamsi-256, LANE-256 and Grøstl-512. More precisely, we improve on
the Integral distinguishers of Hamsi-256 (less time complexity or deter-
ministic instead of probabilistic) and present the first known Integral
distinguishers for LANE-256 and improved Integral distinguisher for
Groestl-512. Whereas the SHA-3 competition focuses the cryptographic
world attention on the design and the attacks of hash functions, results
in this paper analyze the resistance of some SHA-3 candidates against
structural properties built on Integral distinguishers.

Keywords: hash functions, cryptanalysis, integral distinguishers,
SHA-3 candidates.

1 Introduction

Today, with the cryptographic world focus on the SHA-3 competition1, recent
cryptanalytic attacks are mounted across both hash function primitives and
underlying ciphers/permutations. Notably, the joint analysis of hash functions
and underlying block ciphers or permutations has led to considerations of new
attack models for block ciphers, e.g. known key [20] or chosen key [5]. In fact,
when block cipher inspired permutation structures are used as building blocks
within hash functions, there is no secret (key) input, thus the building block is not
only a known transformation, it is also a computable one. Interestingly enough,
doing so has led to the discovery of more powerful new techniques to construct
distinguishers and/or mount key recovery attacks for block ciphers back in the
conventional unknown key model where ciphers are standalone constructs instead

1 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 106–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Integral Distinguishers of Some SHA-3 Candidates 107

of underlying hash functions, including the first known related-key attacks on
the full version of AES-256 and AES-192 [5,4].

In this paper, we mainly focus on Integral properties and their applications
in the known transformation model to find structural properties of some of the
SHA-3 candidates: Hamsi-256, LANE-256 and Grøstl-512. As shown in [25,2],
particular Integral properties essentially depending on the structure of the lin-
ear part of the cipher could be exhibited and are powerful tool for cryptanalytic
studies. Those integral properties starting from the middle of the cipher lead to
distinguishers in the known key settings defined in [20] and for the underlying
compression functions of hash functions. In more details, our contributions are
as follows. For Hamsi-256, we present improved Integral distinguishers for its
full compression function: for its Pf permutation, our distinguisher requires less
time complexity, for its P permutation our distinguisher is deterministic ver-
sus the previous known distinguisher that is probabilistic. For LANE-256, we
present the first known Integral distinguishers. For Groestl-512, we present an
Integral distinguisher that is improved over the best previously known Integral
distinguisher.

This paper is organized as follows: Section 2 introduces the related work in
the field of integral cryptanalysis and the notations that will be used in the
rest of this paper. Sections 3, 4 and 5 respectively present integral properties
and distinguishers on the Hamsi-256, LANE-256 and Grøstl-512 compression
functions. Finally, Section 6 concludes this paper.

2 Related Work and Notations

Integral cryptanalysis was first introduced by Knudsen against the block cipher
Square in the original paper [10] in the unknown key model to retrieve infor-
mation on some key bytes. Then, it was applied to the AES in the original
submission paper [11,12] and later the distinguisher was extended by one round
by Ferguson et al. in [14].

After those first attacks, many ciphers especially the ones that use an SPN
structure have been studied in regard of this kind of distinguishers. Among
the integral cryptanalyses proposed in the literature, we could cite the attacks
against SAFER [3], CRYPTON [13] and more recently on PRESENT [9]. The
different Rijndael versions (Rijndael-192 and Rijndael-256) have also been at-
tacked using integral properties [19,15]. Other contributions also analyze the
general framework of Integral cryptanalysis and especially focus on the required
conditions for a block cipher to be attacked using this method [21,6]. In [21],
Knudsen and Wagner analyze integral cryptanalysis as a dual to differential
attacks notably applicable to block ciphers with bijective components. A first-
order integral cryptanalysis considers a particular collection of m words in the
plaintexts and ciphertexts that differ on a particular word. The aim of this at-
tack is thus to predict the values in the sums (i.e. the integral) of the chosen
words after a certain number of rounds of encryption. The same authors also
generalize this approach to higher-order integrals: the original set to consider

108 M. Minier, R.C.-W. Phan, and B. Pousse

becomes a set of md vectors which differ in d words and where the sum of this
set is predictable after a certain number of rounds. The sum of this set is called
a dth-order integral.

More recently, in [20] Integral cryptanalysis has been proposed in the new
cryptanalysis model called known key setting where the key is known to the
attacker. In the same setting, compression functions of hash functions could also
be analyzed and some distinguishers have been proposed against SHA-3 candi-
dates using Integral properties. As example we could cite integral distinguishers
on the compression functions of Hamsi-256 [2] and Keccak [7].

In the rest of this paper, we use the consistent notations introduced in [21]
and extend them for expressing word-oriented integral attacks. For a dth order
integral, we have:

• The symbol ‘C’ (for “Constant”) in the ith entry, means that the values of
all the ith words in the collection of texts are equal.

• The symbol ‘P ’ (for “Permutation”) means that all words in the collection
of texts are different.

• The symbol ‘?’ means that the sum of words cannot be predicted.
• The symbol ‘Pd’ corresponds with the components that participate in a dth-

order integral, i.e. if a word can take m different values then Pd means that
in the integral, the particular word takes all values exactly md−1 times.

• The symbol ‘B’ (for “Balanced”) means that the sum of all values is zero.
• The symbol ‘Eqi’ (for “Equality’) found for two different words means that

the sums of all values taken on those particular words matched (i.e. are
equals).

3 Hamsi-256

In this section, we will introduce new Integral properties first on the compression
function P of Hamsi-256 that happens with probability 1 contrary to the one
proposed in [2] and then on the final transformation Pf . Many recent results
concerning Hamsi cryptanalysis have been presented in [8] and in [2]. As previ-
ously mentioned, some probabilistic integral properties have been presented in
[2] and also an integral distinguisher on Pf which has a complexity of 228 compu-
tations. The rest of the cryptanalytic results on Hamsi-256 essentially concerns
differential paths that happen with low probabilities to build message-recovery
attacks and pseudo-second-preimage attacks.

3.1 Description of the Hamsi-256 Hash Function

This section describes the hash function Hamsi-256. We refer to [22] for a com-
plete specification.

General View. Hamsi is based on the Concatenate-Permute-Truncate design
strategy. It uses in addition a message expansion and a feed forward of the
chaining value in each iteration. Thus the compression function of Hamsi can be
divided into four mappings:

Integral Distinguishers of Some SHA-3 Candidates 109

– Message Expansion: E : {0, 1}32 → {0, 1}256
– Concatenation: C : {0, 1}256 × {0, 1}256 → {0, 1}512
– Non linear permutations P and Pf : {0, 1}512 → {0, 1}512
– Truncation: T : {0, 1}512 → {0, 1}256

The message M to hash is properly padded and cut into l 32-bit blocks M1, · · ·Ml.
Each block is transformed using the message expansion into a 256-bit block seen
as a 4× 4 matrix of 32-bit words. Once expanded, each block is processed by the
compression function. Starting from a predefined initial value h0, the compres-
sion function H (or Hf for the final transformation) could be written as follows
to compute the digest h of M :

hi = H(hi−1,Mi) = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1 for 0 < i < l

h = H(hl−1,Ml) = (T ◦ P ◦ C(E(Ml), hl−1))⊕ hl−1

Internal mappings

Message expansion. The message expansion of Hamsi-256 is based on a linear
code given by its generator matrix G (see [22] for more details). Thus:

E(Mi) = (m0, · · · ,m7) = (Mi ×G)

where (m0, · · · ,m7) are eight 32-bit words.

Concatenation. The concatenation function C builds a 512-bit word from the
256-bit expanded message (m0, · · · ,m7) and the 256-bit chaining value hi =
(c0, · · · , c7) at 32-bit word level:

C(m0, · · · , m7, c0, · · · , c7) = (m0, m1, c0, c1, m2, m3, c2, c3, m4, m5, c4, c5, m6, m7, c6, c7)

corresponding, when looking at the matrix representation, with rows that are
composed of two message words and of two chaining value words.

Truncation. The truncation function T selects eight 32-bit words among the 16
from the internal state to form the new chaining value after feed forward:

T (s0, s1, s2, · · · , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11)

corresponding, when looking at the matrix representation, with choosing the
second and the fourth rows.

Non-linear permutations. P and Pf use the same size parameters (the input
and output blocks are 512-bit long) and the same round function. They differ by
the round constants and by the number of rounds: three rounds for P and six
rounds for Pf (for this latter in fact 8 rounds are the recommended parameters
of the designers even if the specifications are always provided with 6 rounds).
The round function is composed of three layers:

110 M. Minier, R.C.-W. Phan, and B. Pousse

– Addition of constants and counter: predefined constants are first XORed to
the whole internal state. Then, a counter is XORed to s1, the second 32-bit
word of the internal state.

– Substitution layer: it uses the 4-bit Sbox of the block cipher Serpent [1] in a
bitslice mode. From each of the four 32-bit words of a same column, the four
bits at the same position are extracted and replaced by the corresponding
value of the Sbox.

– Linear diffusion layer: it applies the Serpent linear transform L from {0, 1}128
into itself to each diagonal of the state matrix:

(s0, s5, s10, s15) = L(s0, s5, s10, s15)
(s1, s6, s11, s12) = L(s1, s6, s11, s12)
(s2, s7, s8, s13) = L(s2, s7, s8, s13)
(s3, s4, s9, s14) = L(s3, s4, s9, s14)

The linear transformation L could be written in pseudo-code as follows for
a four 32-bit words input (a, b, c, d):

a := a <<< 13; c := c <<< 3; b := b ⊕ a ⊕ c; d := d ⊕ c ⊕ (a << 3); b := b <<< 1;

d := d <<< 7; a := a ⊕ b ⊕ d; c := c ⊕ d ⊕ (b << 7); a := a <<< 5; c := c <<< 22;

where <<< denotes left rotation and << denotes left shifting.

3.2 Integral Properties of Hamsi-256

We first give an Integral property on the permutation P that only depends on the
chaining value hi then we analyze an integral distinguisher on the permutation
Pf . When looking in detail at the diffusion function of P , we could see that a
complete diffusion could not be reached after three rounds. So, we have exhibited
the integral property described in Fig. 1, which was tested and verified on 2 ×
106 random values. This particular integral property leads to a distinguisher
that uses (22)4 = 28 values and that leads to values that sum to zero on 444
bits. In the same way when trying to limit the number of inputs, if the same
four particular words take all possible values only on the least significant bit,
this integral property leads to sums equal to 0 on about 30 bits after the P
application.

When looking at an integral distinguisher for the final transformation Pf , we
start from the middle as done when known key settings are considered. Thus, we
are looking for integral properties in the forward and in the backward senses on
three rounds. Fig. 2 presents the integral property found using intensive compu-
tations in the forward sense for three Pf rounds. Thus, we obtain a three forward
rounds integral distinguisher that uses 216 values that sum to zero everywhere.

In the same way, we have exhibited the three backward rounds integral prop-
erty shown in Fig. 3. Thus, we obtain a three backward rounds integral distin-
guisher that uses 216 values that sum to zero everywhere.

Thus, we could combine those two properties in the forward and in the back-
ward senses starting from the middle using 216 middletexts that are constant

Integral Distinguishers of Some SHA-3 Candidates 111

C C C C

P 8 P 8 C C

C C C C

P 8 P 8 C C

P→
4124000 a0000 904 82820000
4001000 8200 5000 20000040
2040008 702 1854 a00

0 8 140000 201000

Fig. 1. The Integral property for P where P 8 means that the four considered 32-
bit words are constant everywhere except on the 2 least significant bits that take all
possible values (between 0 and 3) and where the values given in hexadecimal notation
for the output corresponds with the output mask (i.e. a 0 value means that the sum
on this byte is always equal to 0)

P 16 C C C

P 16 C C C

P 16 C C C

P 16 C C C

3-round→
B B B B

B B B B

B B B B

B B B B

Fig. 2. The Integral property for 3 Pf rounds in the forward sense where P 16 means
that the four considered 32-bit words are constant everywhere except on the 4 least
significant bits that take all possible values (between 0 and 15). All the outputs have
the property B and sum to zero.

B B B B

B B B B

B B B B

B B B B

3-round←
P 16 C C C

P 16 C C C

P 16 C C C

P 16 C C C

Fig. 3. The Integral property for 3 Pf rounds in the backward sense where P 16 means
that the four considered 32-bit words are constant everywhere except on the 4 least
significant bits that take all possible values (between 0 and 15). All the outputs have
the property B and sum to zero.

everywhere except on the 4 least significant bits of four particular words. From
this set of texts, if we go forward, we obtain a set of values that sum to zero
everywhere and if we go backward, we also obtain a set of values that sum to
zero everywhere. Thus, we have exhibited a particular integral distinguisher that
is such that starting from 216 particular middletexts leads to input and output
values that sum everywhere to 0. The computational cost for this distinguisher
is 216 calls to the transformation Pf .

4 LANE-256

4.1 Description of the LANE-256 Hash Function

The cryptographic hash function LANE [18] has been submitted to the NIST
SHA-3 competition and has been discarded after round 1 due to the attack

112 M. Minier, R.C.-W. Phan, and B. Pousse

presented in [23]. This attack against the whole version of LANE-256 presents
semi-free-start collisions that could be constructed in 296 computations using
288 memory.

LANE-256 is an iterated hash function that supports four digest sizes (224,
256, 384 and 512 bits) and the use of a salt. We focus here on LANE-256 where
the initial chaining value H−1 has a 256 bits size. The message is padded and
split into message blocks Mi of length 512 bits for LANE-256. Then the com-
pression function f of Lane-256 transforms iteratively 256 bits of the chaining
value and 512 bits of the message block into a new chaining value of 256 bits
Hi = f(Hi−1,Mi, Ci) where Ci is a counter that indicates the number of mes-
sage bits processed so far. Finally, after all the message blocks are processed, the
final digest is derived from the last chaining value, the message length and the
salt by an additional call to the compression function. For the detailed structure
of the compression function we refer to the specification of LANE [18]. First, the
chaining value and the message block are processed by a message expansion that
produces an expanded state with doubled size. Then, this expanded state is pro-
cessed in two layers. The first layer is composed of six permutations P0, · · · , P5
applied in parallel, and the second layer of two parallel layers Q0, Q1.

The message expansion of LANE takes a message block Mi and a chaining
value Hi−1 and produces the input to six permutations P0, · · · , P5. In LANE-256,
the 512-bit message block Mi is split into four 128-bit blocks m0||m1||m2||m3
and the 256-bit chaining value Hi−1 is split into two 128-bit words h0||h1. Then,
six more 128-bit words a0, a1, b0, b1, c0, c1 are computed:

a0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3, a1 = h1 ⊕m0 ⊕m2,

b0 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3, b1 = h0 ⊕m1 ⊕m2,

c0 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2, c1 = h0 ⊕m0 ⊕m3.

Each of these 128-bit values, as in AES, can be seen as 4 × 4 matrix of bytes.
In the following, we will use the notation x[i, j] when we refer to the byte of
the matrix x with row index i and column index j, starting from 0. The values
a0||a1, b0||b1, c0||c1, h0||h1,m0||m1,m2||m3 become the inputs of the six permu-
tations P0, · · · , P5 described below.

Each permutation Pi operates on a state that can be seen as a double AES
state (2× 128-bits). The permutation reuses the transformations SubBytes (SB),
ShiftRows (SR) and MixColumns (MC) of the AES with the only exception, that
due to the larger state size, they are applied twice in parallel. Additionally, there
are three new round transformations introduced in LANE. AddConstant (AC)
adds a different value to each column of the state and AddCounter (ACO) adds
part of the counter Ci to the state. The third transformation is SwapColumns
(SC) used for mixing parallel AES states. It swaps the two right columns of the
left half-state with the two left columns of the right half-state.

The complete round transformation consists of the sequential application of all
these transformations in the given order. The last round omits AddConstant and
AddCounter. Each of the permutations Pi consists of six rounds for LANE-256.

Integral Distinguishers of Some SHA-3 Candidates 113

The permutations Q0 and Q1 are composed of three previously defined rounds
where the last round does not contain the AddConstant and AddCounter
operations.

4.2 Integral Properties of LANE-256

As the diffusion layer of LANE-256 has a really slow diffusion, we could expect
that the same kind of properties as the ones presented in [25] exist on 5 rounds
or more. When studying in detail the integral properties, we obtain a 2nd order
integral property on 4-round of each Pi as shown in Fig. 9 in Appendix A.
This 4 forward rounds integral property could be extended by two rounds at
the beginning using the two extensions (an 8th order and a 16th order integral
respectively) shown in Fig. 11 in Appendix A. Thus, using 2128 chosen plaintexts
we are able to distinguish the output after 6 forward rounds of all the Pi functions
from a random permutation because the sums taken at byte level over all the
inputs are equal to 0 for all the output bytes. The complexity of the distinguisher
is equal to 2128 Pi operations.

Similarly in the backward sense, we found a 2nd order integral property on
3 backward rounds presented in Fig. 10 in Appendix A. This property leads
to a distinguisher on 3 backward rounds where the sums taken at byte level
over all the inputs are equal to 0. It requires 216 chosen texts to work and has
a complexity equal to 216 operations. This property could be extended by one
backward rounds at the beginning using an 8th order integral property as shown
on Fig. 12 in Appendix A. This leads to an integral distinguisher that uses 264

chosen plaintexts with a complexity equal to 264 operations to test if the sums
taken at byte level over the 256 bits are equal to 0 or not.

We could combine those two properties (in the backward and in the forward
senses) starting from the middle of one particular Pi (say P4) and the corre-
sponding Qi (say Q1) to build a structural property on the right part of the
LANE compression function (see Fig. 13 in Appendix A). For the permutation
P4, start in the middle (after 4 rounds) with 2112 middletexts with 14 active bytes
(the other are taken equal to a constant) then, go backward on four rounds to
obtain inputs that sum to 0 everywhere and go forward on 5 rounds to obtain
outputs that sum to 0 everywhere.

In the same way, using the previous property on the right part of the com-
pression function, we could obtain a complete property on the LANE-256 com-
pression function when P0, P1 and P2 are limited to 3 rounds (instead of 6 in
the original version) using our 16th order integral property on the left part com-
posed of 6 rounds when concatenating P0 and Q0. To do so, repeat the property
on the right part considering that h0 and h1 are constants, for 2128 h0||h1 values
that correspond to a 16th order integral. Thus, and as shown in Fig. 14 in Ap-
pendix A, we have exhibited an intrinsic property of the compression function of
LANE when P0 has only 3 rounds (instead of 6) using 2240 values seen as in the
one hand 2128 copies of the 2112 middletexts that lead to integral properties on
the right part of LANE-256 and on the other hand 2112 copies of a 16th order

114 M. Minier, R.C.-W. Phan, and B. Pousse

integral 6-round property. The complexity required to exhibit this property is
equal to 2240 Pi operations whereas the memory requirements are small.

Note also that the same kind of properties could be directly deduced for
LANE-512.

5 Grøstl-512

5.1 Description of the Grøstl-512 Hash Function

Grøstl [16] is a SHA-3 candidate designed by Guaravaram et al., notably Grøstl-
256 outputs hash value of length 224 and 256 bits whereas Grøstl-512 outputs
hash value of length 384 or 512 bits. We mainly focus here on Grøstl-512. It is
an iterated hash function with a compression function built from two distinct
permutations P and Q. A t-block message M (after padding) is hashed using the
compression function f(Hi−1,Mi) and output tranformation g(Ht) as follows:

H0 = IV

Hi = f(Hi−1,Mi) = Hi−1 ⊕ P (Hi−1 ⊕Mi)⊕Q(Mi) for 1 ≤ i ≤ t

h = g(Ht) = trunc(Ht ⊕ P (Ht))

The two permutations P and Q are constructed using the wide trail strategy,
their design is very similar to the AES with a fixed key input. Both permutations
of Grøstl-512 act on a 1024-bit state represented as a 8× 16 matrix of bytes and
have 14 rounds. The round transformations of Grøstl-512 are the following ones:

– AddRoundConstant (AC) adds different one-byte round constants to the
8× 16 states of P and Q.

– SubBytes (SB) is the non-linear layer that applies the AES Sbox to each
byte of the state.

– ShiftBytes (ShB) rotates the bytes of row j in the following way: 0 for j = 1,
1 for j = 2, · · · 6 for j = 7 and 11 for j = 8.

– MixBytes (MB) is the linear diffusion layer where each column of the state
is multiplied by a constant matrix B.

5.2 Grøstl Analysis So Far

Grøstl has attracted significant amount of cryptanalysis. Among the best crypt-
analytic results on the two Grøstl version (Grøstl-256 and Grøstl-512), we could
mention semi-free-start collisions on the compression function of Grøstl-256 re-
duced to seven rounds presented in [17] that have a complexity of 2120 com-
putations and 264 in memory; and semi-free-start collisions on the compression
function of Grøstl-512 reduced to eight rounds presented in [24] that have a
complexity of 2152 computations and 264 in memory.

Integral Distinguishers of Some SHA-3 Candidates 115

F
ig

.
4
.
T

he
5t

h
or

de
r
In

te
gr

al
pr

op
er

ty
on

4
ro

un
ds

of
P

an
d

Q
F
ig

.
5
.

T
he

2n
d

or
de

r
In

te
gr

al
pr

op
er

ty
on

3
ba

ck
w

ar
d

ro
un

ds
of

P
an

d
Q

116 M. Minier, R.C.-W. Phan, and B. Pousse

Concerning particular distinguishers, structural non-random properties have
been observed e.g. fixed points [16] and q-multicollisions in the original submis-
sion; and distinguishers have been presented on Grøstl-256 reduced to 8 out of
10 rounds. In a more recent article [26], Thomas Peyrin presents distinguish-
ers using truncated differential properties on the 10 rounds of the compression
function of Grøstl-256 requiring 2192 computations and 264 memory; and on 11
rounds of the compression function of Grøstl-512 requiring 2640 computations
and 264 memory.

5.3 Integral Properties of Grøstl-512

As the diffusion layer of Grøstl-512 has a really slow diffusion, we could expect
that the same kind of properties as the ones presented in [25] may exist on 5
rounds or more. Studying in detail the diffusion layer, we obtain the 5th order
integral distinguisher on 4 rounds of P and of Q shown in Fig. 4.

This distinguisher leads to the sums taken at byte level over all the inputs on
the four columns marked in blue in Fig. 4 are equal to 0. Moreover, there are
some particular matching (equality) sums (marked in gray in Fig. 4) between
the bytes at positions (1, 7) and (1, 8) and also at positions (15, 7) and (15, 8)
and positions (16, 7) and (16, 8). This property requires 240 chosen texts to work
and has a complexity equal to 240 permutation operations.

This property could be extended by one round at the beginning using a 40th
order integral property as shown on Fig. 6. This leads to an integral distinguisher
that uses 2320 chosen plaintexts with a complexity equal to 2320 permutation
operations to test if the sums taken at byte level over 8 × 8 × 4 = 256 bits are
equal to 0 or not. The sums taken on the equalities could also be considered
leading to 0-sums on 230 bits.

Let us now analyze which are the integral properties that exist for the back-
ward sense. We found the 2nd order integral property on 3 backward rounds
presented in Fig. 5.

This property leads to a distinguisher on 3 backward rounds where the sums
taken at byte level over all the inputs on the three shifted columns marked in
blue in Fig. 5 are equal to 0. It requires 216 chosen texts to work and has a
complexity equal to 216 cipher operations. This property could be extended by
two backward rounds at the beginning using a 64th order integral property as
shown on Fig. 5. This leads to an integral distinguisher that uses 2512 chosen
plaintexts with a complexity equal to 2512 permutation operations to test if the
sums taken at byte level over 3× 8× 4 = 192 bits are equal to 0 or not.

We could combine those two properties (in the backward and in the forward
senses) starting from both the middle of P and the middle of Q to build a struc-
tural property on the compression function of Grøstl-512 when 10 rounds are
considered (see Fig. 8). For the permutation P , start from the middle with 2512

middletexts with 64 active bytes (the other are taken equal to a constant) then,
go backward on five rounds to obtain inputs that sum to 0 on 3 shifted columns

Integral Distinguishers of Some SHA-3 Candidates 117

Fig. 6. Extension by one round of the previous distinguisher using a 40th order Integral
property

Fig. 7. Extension by two backward rounds of the 3 backward rounds distinguisher
using a 64th order Integral property for P and of Q

118 M. Minier, R.C.-W. Phan, and B. Pousse

Fig. 8. Complete property on 10 rounds of P and Q starting from the middle with a
64th order integral property

and go forward on 5 rounds to obtain outputs that sum to 0 on 4 columns.
Do the same for the permutation Q. Using Q, get the 2512 corresponding Mt

messages. Using those messages and the inputs of P , compute the corresponding
2512 Ht−1 values. Those 2512 values also verify that their sums taken over all the
2512 values on 3 shifted columns are equal to 0 (due to the linearity of the xor
operation). Then with the knowledge of Ht−1, of the outputs of P and of the
outputs of Q, the corresponding Ht values are such that the sums taken over all
the 2512 values on the intersection of the 3 shifted columns (for the backward
sense) and of the 4 columns (for the forward sense) are equal to 0. In other
words, the sum taken over all the 2512 outputs of the compression function is
zero at 7 byte positions whereas the corresponding inputs Ht−1 and Mt have
0-sum on 3 shifted columns.

Thus, we have exhibited a structural property of the Grøstl-512 compression
function when P and Q are limited to 10 rounds. The computational cost of
this property is about 2513 operations with few memory requirements to find
some 0-sums at particular positions (7 bytes at the output of the compression
function and 24 bytes at the input). Note that this new structural property really
improves the one described in the original proposal of Grøstl [16] that reaches 9
rounds with a complexity equal to 2704 cipher operations.

Integral Distinguishers of Some SHA-3 Candidates 119

Table 1. Summary of distinguishers and of attacks on the three studied candidates

Hash functions Nb rounds Type of Attack Time Memory Source
Hamsi-256 Pf Integral Dist. 228 small [2]
Hamsi-256 P Prob. Int. Dist. 22 small [2]
Hamsi-256 Pf Integral Dist. 216 small this paper
Hamsi-256 P Integral Dist. 28 small this paper
LANE-256 complete Semi-free-start Coll. 296 288 [23]
LANE-256 (3,3,6,3) Integral Dist. 2240 small this paper
Grøstl-512 8 Semi-free-start Coll. 2152 264 [24]
Grøstl-512 9 Integral Dist. 2704 small [16]
Grøstl-512 11 Trunc. Diff. Dist. 2640 264 [26]
Grøstl-512 10 Integral Dist. 2513 small this paper

6 Conclusion

In this paper, we analyzed some SHA-3 candidates (Hamsi-256, LANE-256,
Groestl-512) in regard of Integral properties. Due to a slow diffusion of the
linear part of the proposed candidates, integral properties could be exhibited for
a number of rounds greater than expected. We sum up our results and the re-
lated works concerning distinguishers on the compression functions of the SHA3
candidates in Table 1 where Prob. Int. Dist. means Probabilistic Integral Din-
stinguisher.

References

1. Anderson, R.J., Biham, E., Knudsen, L.R.: Serpent : A proposal for the advanced
encryption standard. In: The First Advanced Encryption Standard Candidate Con-
ference. N.I.S.T. (1998), http://www.cl.cam.ac.uk/~rja14/serpent.html

2. Aumasson, J.-P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødeg̊ard, R., Peyrin,
T., Schläffer, M.: Distinguishers for the compression function and output transfor-
mation of hamsi-256. Cryptology ePrint Archive, Report 2010/091, to appear in
ACISP 2010 (2010), http://eprint.iacr.org/

3. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of safer++. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg (2003)

4. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

5. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

6. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Boura, C., Canteaut, A.: A zero-sum property for the keccak-f permutation with
18 rounds. NIST mailing list (2010)

http://www.cl.cam.ac.uk/~rja14/serpent.html
http://eprint.iacr.org/

120 M. Minier, R.C.-W. Phan, and B. Pousse

8. Calik, C., Turan, M.S.: Message recovery and pseudo-preimage attacks on the
compression function of hamsi-256. Cryptology ePrint Archive, Report 2010/057

9. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher present. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210.
Springer, Heidelberg (2009)

10. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Daemen, J., Rijmen, V.: Aes proposal: Rijndael. In: The First Advanced Encryption
Standard Candidate Conference. N.I.S.T. (1998)

12. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
13. D’Halluin, C., Bijnens, G., Rijmen, V., Preneel, B.: Attack on six rounds of crypton.

In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 46–59. Springer, Heidelberg
(1999)

14. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

15. Galice, S., Minier, M.: Improving integral attacks against rijndael-256 up to 9
rounds. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 1–15.
Springer, Heidelberg (2008)

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a sha-3 candidate. Submission to NIST
(2008)

17. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for aes-like
permutations. Cryptology ePrint Archive, Report 2009/531, to appear at FSE 2010
(2009), http://eprint.iacr.org/

18. Indesteege, S.: The lane hash function. Submission to NIST (2008)
19. Nakahara Jr., J., de Freitas, D.S., Phan, R.C.-W.: New multiset attacks on rijndael

with large blocks. In: Dawson, E., Vaudenay, S. (eds.) MYCRYPT 2005. LNCS,
vol. 3715, pp. 277–295. Springer, Heidelberg (2005)

20. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

21. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

22. Küçük, Ö.: The hash function hamsi. Submission to NIST (updated) (2009)
23. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound

attack on the full lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

24. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound attacks on the
reduced grøstl hash function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 350–365. Springer, Heidelberg (2010)

25. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)

26. Peyrin, T.: Improved differential attacks for echo and grøstl. Cryptology ePrint
Archive, Report 2010/223, to appear in Crypto 2010 (2010),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Integral Distinguishers of Some SHA-3 Candidates 121

A The Integral LANE Properties

Here are all the figures for a better illustration of Section 4.

Fig. 9. The 2nd order Integral
property on 4 forward rounds of Pi

Fig. 10. The 2nd order Integral
property on 4 backward rounds of
Pi or Qi

122 M. Minier, R.C.-W. Phan, and B. Pousse

Fig. 11. The 8th order Integral ex-
tension on 4 forward rounds of Pi

Fig. 12. The 8th order Integral ex-
tension on 3 backward rounds of Pi

Fig. 13. The 9 rounds integral property using 2112 middletexts

Integral Distinguishers of Some SHA-3 Candidates 123

Fig. 14. The complete attack on the compression function where P0, P1 and P2 are
limited to 3 rounds using 2240 texts

Near-Collisions on the Reduced-Round
Compression Functions of Skein and BLAKE

Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong

State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
{subozhan,wwl,wushuang,dongle}@is.iscas.ac.cn

Abstract. The SHA-3 competition organized by NIST [1] aims to find a
new hash standard as a replacement of SHA-2. Till now, 14 submissions
have been selected as the second round candidates, including Skein and
BLAKE, both of which have components based on modular addition, ro-
tation and bitwise XOR (ARX). In this paper, we propose improved near-
collision attacks on the reduced-round compression functions of Skein
and BLAKE. The attacks are based on linear differentials of the modu-
lar additions. The computational complexity of near-collision attacks on
a 4-round compression function of BLAKE-32, 4-round and 5-round com-
pression functions of BLAKE-64 are 221, 216 and 2216 respectively, and
the attacks on 20-round compression functions of Skein-256, Skein-512
and a 24-round compression function of Skein-1024 have a complexity of
297, 252 and 2452 respectively.

Keywords: Hash function, Near-collision, SHA-3 candidates, Skein,
BLAKE.

1 Introduction

Hash function, a very important component in cryptology, is a function of cre-
ating a short digest for a message of arbitrary length. The classical security
requirements for such a function are preimage resistance, second-preimage resis-
tance and collision resistance. In other words, it should be impossible to find a
collision in less hash computations than birthday attack, or a (second)-preimage
in less hash computations than brute force attack.

In recent years, the popular hash functions (MD4, MD5, RIPEMD, SHA-0
and SHA-1) have been seriously attacked [2–5]. As a response to advances in the
cryptanalysis of hash functions, NIST launched a public competition to develop
a new hash function called SHA-3. Till now, 14 submissions have been selected
as the second round candidates.

Skein and BLAKE are two of the second round candidates of SHA-3. Skein
uses the UBI chaining mode, while BLAKE uses HAIFA approach. Both of them
are of the ARX (Addition-Rotate-XOR) type. More specifically, their design
primitives use only addition, rotation and XOR.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 124–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Near-Collisions on the Reduced-Round Compression Functions 125

Previous works studied the linear differential trails of non-linear operations
such as boolean functions and modular additions. Linear differential trails can be
constructed to find near-collisions of these hash functions [7, 9, 10, 13]. Recently,
linear differential attacks have been applied to many SHA-3 candidates, such as
EnRUPT, CubeHash, MD6, and BLAKE [8–10].

In this paper, we further study the linear differential techniques and propose
near-collision attacks on the reduced-round compression functions of Skein and
BLAKE. Our strategy to find optimal linear differential trails can be described in
three steps. First, linear approximations of reduced-round compression functions
of Skein and BLAKE is constructed. In this step, all the addition modulo 264

components of Skein and BLAKE are approximated by bitwise XOR of the
inputs. Second, we select some intermediate state as a starting point and place a
low Hamming weight difference in it. Third, the difference above propagates in
both forward and backward directions until the probability becomes too small to
obtain near collisions. Table 1 summarizes our attack along with the previously
known ones on the reduced-round compression functions of Skein and BLAKE.

Table 1. Comparison of results on the reduced-round compression functions of Skein
and BLAKE

Target Rounds Time Memory Type Authors
Skein-512 17 224 - 434-bit near-collision [12]
Skein-256 20 297 - 130-bit near-collision �
Skein-512 20 252 - 266-bit near-collision �
Skein-1024 24 2452 - 512-bit near-collision �
BLAKE-32 4 256 - 232-bit near-collision [13]
BLAKE-32 4 221 - 152-bit near-collision �
BLAKE-64 4 216 - 396-bit near-collision �
BLAKE-64 5 2216 - 306-bit near-collision �

The paper is organized as follows. In Section 2, we describe Skein and BLAKE
hash functions. In Section 3, the linear differential technique is applied to Skein
and present near-collisions for Skein’s compression function with reduced-round
Threefish-256, Threefish-512 and Threefish-1024. In Section 4, we apply the lin-
ear differential technique to BLAKE and obtain near-collisions for reduced-round
compression functions of BLAKE. Finally, Section 5 summarizes this paper.

2 Description of Skein and BLAKE

2.1 Skein

Skein is a family of hash functions based on the tweakable block cipher Threefish,
which has equal block and key size of either 256, 512, or 1,024 bits. The MMO
(Matyas-Meyer-Oseas) mode is used to construct the Skein compression function

126 B. Su et al.

from Threefish. The format specification of the tweak and a padding scheme
defines the so-called Unique Block Iteration (UBI) chaining mode. UBI is used
for IV generation, message compression, and as output transformation.

Threefish consists of a number of similar rounds, which is based on three
simple operations: Addition modulo 264, Rotation and XOR. The intermediate
state of Threefish is organized as a number of 64-bit words. The letter Δ stands
for a difference in the most significant bit (MSB), i.e., Δ = 0x8000000000000000.
Subkeys are derived from the cipher key K and tweak T = (t0, t1) through a
simple key schedule.

Let Nw denote the number of words in the key and the plaintext block, Nr

be the number of rounds. For Threefish-256, Nw = 4 and Nr = 72. Let vd,i be
the value of the ith word of the encryption state after d rounds. The procedure
of Threefish-256 encryption is:

1. (v0,0, v0,1, · · · , v0,Nw−1) := (p0, p1, · · · , pNw−1), where (p0, p1, p2, p3) is the
256-bit plaintext.

2. For each round, we have

ed,i :=

{
(vd,i + kd/4,i) mod 264 if d mod 4=0,
vd,i otherwise.

Where kd/4,i is the i-th word of the subkey added to the d-th round. For i =
0, 1, · · · , Nw − 1, d = 0, 1, · · · , Nr − 1.

3. Mixing and word permutations followed:

(fd,2j, fd,2j+1) :=MIXd,j(ed,2j, ed,2j+1), j = 0, · · · , Nw/2− 1,
vd+1,i :=fd,π(i), i = 0, · · · , Nw − 1,

where the MIX operation depicted in Figure 1 transforms two of these 64-bit
words and is common to all Threefish variants, with Rd,i rotation constant de-
pending on the Threefish block size, the round index d and the position of the
two 64-bit words i in the Threefish state. The permutation π(.) and the rotation
constant Rd,i can be referred to [14].

<<<Rr,i

Fig. 1. The MIX function

After Nr rounds, the ciphertext C = (c0, c1, · · · , cNw−1) is given as follows:

ci := (vNr ,i + kNr/4,i) mod 264 for i = 0, 1, · · · , Nw − 1.

Near-Collisions on the Reduced-Round Compression Functions 127

The s-th keying (d = 4s) uses subkeys ks,0, · · · , ks,Nw−1. These are derived
from the key k0, · · · , kNw−1 and from the tweak t0, t1 as follows:

ks,i :=k(s+i) mod (Nw+1) for i = 0, · · · , Nw − 4
ks,i :=k(s+i) mod (Nw+1) + ts mod 3 for i = Nw − 3
ks,i :=k(s+i) mod (Nw+1) + t(s+1)mod 3 for i = Nw − 2
ks,i :=k(s+i) mod (Nw+1) + s for i = Nw − 1

where kNw := �264/3 ⊕
⊕Nw−1

i=0 ki and t2 := t0 ⊕ t1.

2.2 BLAKE

The BLAKE family of hash functions is designed by Aumasson et al. [11] and
follows HAIFA structure [6] with internal wide-pipe design strategy. Two versions
of BLAKE are available: a 32-bit version (BLAKE-32) for message digests of 224
bits and 256 bits operates on 32-bit words, and a 64-bit version (BLAKE-64) for
message digests of 384 bits and 512 bits operates on 64-bit words.

BLAKE operates on a large inner state v which is represented as a 4 × 4
matrix of words. The compression function consists of three steps: Initialization,
14 iterations of Rounds and Finalization as illustrated in Figure 2.

t M

FinalizationInitialization RoundH

S

Fig. 2. Overall Structure of Compression Function of BLAKE

During the First step, the inner state v is initialized from 8 words of the
chaining value h = h0, · · · , h7, 4 words of the salt S and 2 words of block index
(t0, t1) as follows:⎛⎜⎜⎜⎝

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

⎞⎟⎟⎟⎠←−
⎛⎜⎜⎜⎝

h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

⎞⎟⎟⎟⎠
Then, a series of 14 rounds is performed. Each round is based on the stream

cipher ChaCha [15] and consists of the eight round-dependent transformations
G0, · · · , G7. Figure 3 and Figure 4 show the G function of BLAKE-32 and

128 B. Su et al.

)12(iC
r

)2(iC
r

)2(im
r

)12(im
r

a

b

c

d >>>16

>>>12

>>>8

>>>7

a

b

c

d

Fig. 3. The G function of BLAKE-32 for index i

)12(iC
r

)2(iC
r

)2(im
r

)12(im
r

a

b

c

d >>>32

>>>25

>>>16

>>>11

a

b

c

d

Fig. 4. The G function of BLAKE-64 for index i

BLAKE-64 for index i respectively, where σr is a fixed permutation used in
round r, Mσr are message blocks and Cσr are round-dependent constants. The
Gi(0 ≤ i ≤ 7) function takes 4 registers and 2 message words as input and out-
puts the updated 4 registers. A column step and diagonal step update the four
columns and the four diagonals of matrix v respectively as follows:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

In the last step, the new chaining value h′ = h′
0, · · · , h′

7 is computed from the
internal state v and the previous chain value h (Finalization step):

h′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′
4 ← h4 ⊕ s4 ⊕ v4 ⊕ v12

h′
5 ← h5 ⊕ s5 ⊕ v5 ⊕ v13

h′
6 ← h6 ⊕ s6 ⊕ v6 ⊕ v14

h′
7 ← h7 ⊕ s7 ⊕ v7 ⊕ v15

3 Near-Collisions for the Reduced-Round Compression
Function of Skein

Skein is based on the UBI (Unique Block Iteration) chaining mode that uses
Threefish block cipher to build a compression function. The compression function
outputs Ek(t,m)⊕m, where E is Threefish.

Near-Collisions on the Reduced-Round Compression Functions 129

<<<Rr,i

Fig. 5. linearized MIX function in Threefish

Since the MIX function is the only non-linear component in the Threefish
block cipher, the first step is to linearize the MIX function to obtain linear ap-
proximations of the Compression Function of Skein. To Linearize the MIX func-
tion, We replace the modular addition with XOR. The linearized MIX function
is illustrated in Figure 5.

3.1 Near Collisions for the 20-Round Compression Function of
Skein-256

After linearizing the Compression Function of Skein-256, we need to choose the
starting point. Since Skein-256 has 72 rounds, there are 72 ≈ 26 possible choices.
Then we place one or two bits of differences in the message blocks and certain
round of the intermediate state at the starting point. Since compression function
of Skein-256 uses 256-bit message and 256-bit state, there are

(512
1

)
+
(512

2

)
≈ 217

choices of positions for the one or two bits above. Therefore, the search space is
less than 223, which can be searched exhaustively.

Our aim is to find one path with the highest probability in the search space.
As introduced in [9], we can calculate probability of one differential trail by
counting Hamming weight of the differences. We search for 24-round differential
trail and the results are introduced as follows.

The difference Δ in k2 and t0 gives a difference (Δ,Δ, 0, 0) at the third subkey,
and (0, 0, 0, 0) after the fourth. The difference in the state of round 8 is canceled
out at the third subkey which is then turned into an eight-round local collision
from round 9 to round 16. After 20 rounds, the Hamming weight of the difference
becomes too large to obtain near collisions. In the 20-th round, after adding the
final subkey and feedforward value, one obtains a collision on 256 − 126 = 130
bits. Table 2 shows the corresponding differential trail of the key and the tweak
from the 0-th round to the 19-th round. Table 3 presents the corresponding trail
from the 0-th round to the 19-th round. In the table, the probability for all
rounds are given, except for the first round, which are indicated with M as we
will use message modification techniques to make sure the first round of the trail
fulfills.

130 B. Su et al.

Table 2. Details of the subkeys and of their differences of Skein-256, given a difference
in k2 and t0

Rd d ks,0 ks,1 ks,2 ks,3

0 0 k0 k1 + t0 k2 + t1 k3

0 Δ Δ 0
1 4 k1 k2 + t1 k3 + t2 k4

0 Δ Δ Δ

2 8 k2 k3 + t2 k4 + t0 k0

Δ Δ 0 0
3 12 k3 k4 + t0 k0 + t1 k1

0 0 0 0
4 16 k4 k0 + t1 k1 + t2 k2

Δ 0 Δ Δ

5 20 k0 k1 + t2 k2 + t0 k3

0 Δ 0 0

Table 3. Differential trail used for near collision of a 20-round compression function
of Skein-256, with probability of 2−97

Rd Difference Pr
0 b0dff57c25c19314 a5b2b6692bd196c8 861349393b7673c0 3c708bb2d1caf2d2 -
1 e82d8c56764c8096 956d43150e1005dc 601166d49d04b503 3a63c28beabc8112 M
2 0a44a5491af1e45a 7d40cf43785c854a 5090945bd4b01c4b 5a72a45f77b83411 M
3 2708680a86a06010 77046a0a62ad6110 86e030002608280a 0ae23004a308285a M
4 5004000044050100 500c0200e40d0100 8400000405000050 8c02000485000050 M
5 0008000020080000 80080200a0080000 0802000000000000 0802000080000000 2−58

6 0000020000000000 8000020080000000 0000000000000000 0000000080000000 2−8

7 0000000080000000 8000000080000000 0000000080000000 0000000080000000 2−3

8 8000000000000000 8000000000000000 0000000000000000 0000000000000000 2−2

no differences in round 9 - 16 1

17 0000000000002000 8000000000000000 8000000000008000 0000000000000000 1
18 8008000000008008 8000000000002000 8000000000002040 8000000000008000 2−2

19 000000102040a040 000800000000a008 008808800800a008 000000000000a040 2−7

20 a156edfd2dd5925c 25bab6790b919680 8e0f41291b36718c 3cf88332d9caf29a 2−17

The message modification are applied to the most expensive part in our trail,
namely the first round. Freedom degrees in chaining value and the message can
be used to fulfill the first round of the trail. We use techniques introduced in
[9] to derive sufficient conditions for each modular addition of the first round of
the trail. Then the message block and the chaining value are chosen according
to the conditions.

Near-Collisions on the Reduced-Round Compression Functions 131

Table 4. Details of the subkeys and of their differences of Skein-512, given a difference
in k4, k5 and t0 (leading to a differences in t2)

Rd d ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7

5 20 k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3

0 0 0 0 0 Δ 0 Δ

6 24 k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4

0 0 0 0 0 0 0 Δ

7 28 k7 k8 k0 k1 k2 k3 + t1 k4 + t2 k5

0 0 0 0 0 0 0 0
8 32 k8 k0 k1 k2 k3 k4 + t2 k5 + t0 k6

0 0 0 0 Δ 0 0 0
9 36 k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7

0 0 0 Δ Δ 0 Δ 0
10 40 k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8

0 0 Δ Δ 0 Δ Δ 0

Table 5. Details of the subkeys and of their differences of Skein-1024, given a difference
in k0, k2 and t1 (leading to a differences in t2)

Rd d ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7 ks,8 ks,9 ks,10 ks,11 ks,12 ks,13 ks,14 ks,15

0 0 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 + t0 k14 + t1 k15

0 Δ 0 0 0 0 0 0 0 0 0 0 0 Δ Δ 0
1 4 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 + t1 k15 + t2 k0

Δ 0 0 0 0 0 0 0 0 0 0 0 0 Δ 0 Δ

2 8 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 + t2 k0 + t0 k1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 12 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 + t0 k1 + t1 k2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Δ Δ

4 16 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 + t1 k2 + t2 k3

0 0 0 0 0 0 0 0 0 0 0 0 Δ Δ Δ 0
5 20 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 k2 + t2 k3 + t0 k4

0 0 0 0 0 0 0 0 0 0 0 Δ 0 Δ Δ 0
6 24 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 k2 k3 + t0 k4 + t1 k5

0 0 0 0 0 0 0 0 0 0 Δ 0 Δ Δ Δ 0

3.2 Near Collisions for the 20-Round Compression Functions of
Skein-512 and Skein-1024

Ideas for near collision attacks on the reduced-round compression functions
of Skein-512 and Skein-1024 are similar to the one of Skein-256. So we skip

132 B. Su et al.

explanations here. In Table 4 and Table 5, we propose difference in the key sched-
ule of Skein-512 and Skein-1024. The differential trails for them are illustrated
in Table 6 and Table 7 in the appendix.

4 Near Collisions for the Reduced-Round Compression
Function of BLAKE

4.1 Linearizing G Function of BLAKE-32 and BLAKE-64

In order to linearize the G function, modular additions are replaced with XORs.
Near collision attack for a 4-round compression function of BLAKE-32 in [13]
also uses the linearization technique. The cyclic rotation constants in BLAKE-
32 are 16,12,8,7. Notice that three of the constants 16,12 and 8 have a greatest
common divisor 4, so difference 0xAAAAAAAA is cyclic invariant with these
rotation constants, where A is a 4-bit value. In the linearized BLAKE-32, if all
differences in registers are restricted to this pattern, cyclic rotations difference
>>> 16, >>> 12 and >>> 8 can be removed. If zero differences pass through
>>> 7, the only possible difference pattern in registers is either 0xAAAAAAAA
or zero which can be indicated as 1-bit value. So the linear differential trails with
this difference pattern form a small space of size 232, which can be searched by
brute force. The linear differential trail in [13] is the best one in this space. But
this attack doesn’t work on BLAKE-64, because the cyclic rotation constants
are different. BLAKE-64 uses the number of rotations 32, 25, 16 and 11. Two of
them are not multiples of 4, which implies more restrictions of the differential
trail.

To obtain near collisions for a reduced-round compression function of BLAKE-
64 and improve the previous near-collision attack on a reduced-round compres-
sion function of BLAKE-32 in [13], we have to release the restrictions. This can
be done in two ways: using non-linear differential trail instead of linear one, or
still using linear differential trail but releasing restrictions on the differential
pattern. In this paper, we use linear differential trail and try to release restric-
tions on the differential pattern. Instead of using cyclic invariant differences, we
use a random difference of Hamming weight less than or equal to two in the
intermediate states.

Since we intend to release restrictions on the differential pattern, the cyclic
invariant differential pattern in previous works is not used. So the cyclic rotations
can not be removed.

Figure 6 and Figure 7 show the linearized G function of BLAKE-32 and
BLAKE-64 respectively.

4.2 Searching for Differential Trails with High Probability

We need to choose the starting point after linearizing G function. Since BLAKE-
32 has 10 rounds and BLAKE-64 has 14 rounds, there are less than 24 possible
choices. Then we place one or two bits of differences in the message blocks and

Near-Collisions on the Reduced-Round Compression Functions 133

)12(iC
r

)2(iC
r

)2(im
r

)12(im
r

a

b

c

d >>>16

>>>12

>>>8

>>>7

a

b

c

d

Fig. 6. linearized G function in BLAKE-32

)12(iC
r

)2(iC
r

)2(im
r

)12(im
r

a

b

c

d >>>32

>>>25

>>>16

>>>11

a

b

c

d

Fig. 7. linearized G function in BLAKE-64

certain round of the intermediate state at the starting point. Because compres-
sion function of BLAKE-32 uses 512-bit message and 512-bit state and compres-
sion function of BLAKE-64 uses 1024-bit message and 1024-bit state, there are(1024

1

)
+
(1024

2

)
≈ 219 and

(2048
1

)
+
(2048

2

)
≈ 221 choices of positions for the pair

of bits on BLAKE-32 and BLAKE-64 respectively. Therefore, the search spaces
for BLAKE-32 and BLAKE-64 are less than 223 and 225 respectively, which can
be explored exhaustively.

Our aim is to find one path with the highest probability in the search space.
Furthermore, following Section 3.1, we calculate probability of one differential
trail by counting Hamming weight in the differences. We search for differential
trails of 4-round compression function of BLAKE-32, 4-round and 5-round com-
pression functions of BLAKE-64. And the results are introduced in the following
sections.

4.3 Near Collision for 4-Round Compression Function of BLAKE-32

We search with the configuration where differences are in m[0] = 0x80008000
and v[0, 2, 4, 8, 10] and find that a starting point at round 4 leads to a linear
differential trail whose total Hamming weight is 21. We don’t need to count for
the last round, since it can be fulfilled by message modifications with similar
techniques used in attacks on Skein.

134 B. Su et al.

So, This trail can be fulfilled with probability of 2−21. Complexity of this
attack is 221 with no memory requirements. With assumption that no differences
in the salt value, this configuration has a final collision on 256− 104 = 152 bits
after the finalization. Table 8 in the appendix demonstrates how differences
propagate in intermediate chaining values from round 4 to 7.

4.4 Near Collision for the 4-Round Compression Function of
BLAKE-64

We search with the configuration where differences are in m[11] = 0x80000000
80000000 and v[0, 2, 4, 8, 10] and find that a starting point at round 7 leads to
a linear differential trail whose total Hamming weight is equal to 16. We don’t
need to count for the last round, since it can be fulfilled by message modifications
with similar techniques used in attacks on Skein.

So, This trail can be fulfilled with probability of 2−16. Complexity of this
attack is 216 with no memory requirements. With assumption that no differences
in the salt value, this configuration has a final collision on 512− 116 = 396 bits
after the finalization. Table 9 in the appendix demonstrates how differences
propagate in intermediate chaining values from round 7 to 10.

4.5 Near Collision for the 5-Round Compression Function of
BLAKE-64

Then we search for 5-round differential trails, with the configuration where dif-
ferences are placed in m[11] = 0x8000000080000000 and v[0, 2, 4, 8, 10]. We find
that a starting point at round 7 leads to a linear differential trail whose total
Hamming weight is 216. This trail with probability of 2−216 is illustrated in
Table 10 of the appendix, which leads to a 512 − 206 = 306-bit collision after
feedforward. The message modifications are also applied to the last round.

5 Conclusion

In this paper, we revisited the linear differential techniques and applied it to
two ARX-based hash functions: Skein and BLAKE. Our attacks include near-
collision attacks on the 20-round compression functions of Skein-256, Skein-512
and the 24-round compression function of Skein-1024, the 4-round compression
function of BLAKE-32, and the 4-round and 5-round compression functions of
BLAKE-64. Future works might apply some non-linear differentials for integer
addition besides XOR differences to improve our results.

Acknowledgment

The authors would like to thank the anonymous referees for their valuable com-
ments. Furthermore, this work is supported by the National Natural Science
Foundation of China (No. 60873259, and No. 60903212) and the Knowledge
Innovation Project of The Chinese Academy of Sciences.

Near-Collisions on the Reduced-Round Compression Functions 135

References

1. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(17/10/2008)
2. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions

MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

3. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

4. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

5. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
In: Second NIST Cryptographic Hash Workshop, Santa Barbara, California, USA,
August 24-25 (2006)

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 122–138. Springer, Heidelberg (2009)

9. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to Cubehash and MD6. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 560–577. Springer, Heidelberg (2009)

10. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

11. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE,
version 1.3 (2008), http://131002.net/blake/blake.pdf

12. Aumasson, J.-P., Çalik, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varici, K.: Im-
proved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

13. Aumasson, J.-P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differen-
tial and Invertibility Properties of BLAKE. In: Beyer, I. (ed.) FSE 2010. LNCS,
vol. 6147, pp. 318–332. Springer, Heidelberg (2010)

14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST (2008)

15. Bernstein, D.J.: ChaCha, a variant of Salsa20 (January 2008),
http://cr.yp.to/chacha/chacha-20080128.pdf

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://131002.net/blake/blake.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf

136 B. Su et al.

A Differential Trails of Reduced-Round Skein and
BLAKE

Table 6. Differential trail used for near collision of 20-round Skein-512, with probability
of 2−52

Rd Difference Pr
20 0000000010004800 0020001000004000 0002201000080000 0000200000080000

-
8000000020000200 8000000020000200 0000088000080000 8000008000080000

21 0002001000000000 0000001000000000 8000000000000000 8000000000000000
2−35

0000080000000000 0000080000000000 0020001010000800 0000001000000800
22 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−7

0020000010000000 0020000000000000 0002000000000000 0002000000000000
23 0000000000000000 0000000000000000 0000000010000000 0000000010000000

2−3

0000000000000000 0000000000000000 0000000000000000 0000000000000000
24 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 8000000000000000

no differences in round 25 - 32 1

33 0000000000000000 0000000000000000 8000000000000000 0000000000000000
1

0000000000000000 8000000000000000 0000000000000000 0000000000000000
34 8000000000000000 0000000000000000 8000000000000000 0000000000000000

1
0000000000000000 8000000000002000 0000000000000000 8000000000000000

35 8000000000000000 8000000000000000 8000000000002000 8000004000000000
2−1

8000000000000000 8002000800002000 8000000000000000 8000000000000000
36 0000004000002000 0000080000000000 0002000800002000 0080000000000000

2−5

0000000000000000 0022008802002008 0000000000000000 0000804000002100
37 8082000800002000 0000084000042000 8022008802002008 c000806100002180

M
8000804000002100 882280a802882228 0000084000002000 8082000820202000

38 402280e902000188 818a084884040000 082200e802880328 8092480860210104
M

8082084820200000 8220a0e22200a108 8082084800040000 c62180eb03840188
39 88b048e062a9022c 50a080a187071598 02a2a8aa0220a108 66afce920f875994

M
46a388a303800188 02f22ceb1270d019 c1a888a186040188 84b468c0f2bb4b2d

40 640d66381da7b09c 78b069d6e2bbcfe4 c453845811f8d191 f5206eb3bfd667bf
M

c51ce06154bf48a5 5d535664dae2a341 5810c0c1e5a617b4 9837aa1b38d18c0c

Near-Collisions on the Reduced-Round Compression Functions 137

Table 7. Differential trail used for near collision of Skein-1024, of probability 2−452

Rd Difference Pr
0 8140008142000042 8040008100000042 0000000000080040 0000000000000040

-
0000000000000080 0000000000000080 4100000100488224 4000000100480200
0001000000024040 0001000000020040 0010208010000000 0010008010000000
2000000000000000 a000000000000000 8000044000008002 0000040000000002

1 8100000042000000 0100000002000000 0000000000080000 0000000000080000

2−870100000000008024 0100000000000020 0000000000000000 0000000000000000
0000200000000000 0000200000000000 0000000000000000 0000000000000000
0000004000008000 0000000000008000 0000000000004000 0000000000004000

2 8000000040000000 0000000040000000 0000000000000000 0000000000000000

2−120000000000000000 0000000000000000 0000000000008004 0000000000000004
0000000000000000 0000000000000000 0000004000000000 0000004000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

3 8000000000000000 0000000000000000 0000000000000000 0000000000000000

2−40000000000008000 0000000000008000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

4 8000000000000000 0000000000000000 0000000000000000 0000000000000000

2−10000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 8000000000000000 0000000000000000 8000000000000000

no differences in round 5 - 12 1

13 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
0000000000000000 0000000000000000 0000000000000000 0000000020000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−10000000020000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000020010000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

15 0000000000000000 0001000820010000 0000000000000000 0000000000000000

2−30000000000000000 0000000000000000 0000000020000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000020000000 0000000020010000 0000000000000000

16 0001000820010000 0000000000000000 0000000000000000 0000000020000004

2−80000000020000000 0000000000000000 0000000000000000 0000000020010000
0000000000000000 0000000020000000 0000000020000000 0000000000000000
0000000020010000 0000000000000000 0000000000000000 0201104822010000

17 0001000820010000 0000002020000000 0000000020000004 0000000020210000

2−420000000020010000 0000000020000000 0000000020000000 c221104862230904
0000000020000000 8000000020011000 0000000020010000 0000040020008004
8201104822010000 0000000020000000 0000000020000000 0001000820010000

18 0001002800010000 a001000000015002 0000000000210004 8211104802010000

2−47c221104842230904 1000840200118004 0000000000010000 0001001800830010
0000040000018004 404000c066121880 8201104802010000 0001010800210004
0001000800010000 0000008000010000 8000000000011000 0001002800010808

19 a000002800005002 d80866c167139b85 8211104802200004 0001008c00000800

2−840001001800820010 c000194000221004 d221944a42328900 8051002a1010180a
8200114002200004 2002000860800010 0001008800000000 a30014c82230000c
8001002800001808 d201144e6222898c 404004c066139884 a002a02d40025002

20 780866e96713cb87 a20a014962a43054 821010c402200804 464e7644ebae4385

2−163527094605222910a 21221440e8000140 c001195800a01014 bac2a04d2351cdc6
a30114402230000c 72408160f022c52a 5200146662229184 8ad010c482200814
e042a4ed2611c886 d005d95819e01036 a202114862a00014 7904bec58560bb3c

21 da0267a005b7fbd3 d9579a22fe406202 c45e6680e98e4b81 b14418b56264592e

M
7ac3b91523f1ddd2 5cda01cae860d880 73528020ba22904a 3a5e8142f9819499
58d004a2e0029990 eb6b5ff67e908df4 b0477db53ff1d8b0 58b2ef57b509410d
5b06af8de7c0bb28 7352a8249e601857 d1419520d212c526 9262cee411b56916

22 0355fd82fbf799d1 050ea433779acb2a 751a7e358bea12af a8355a6433003106

M
490c016243a304d3 c95e84bf600e3895 2619b8dfcb910552 29f176e0063a6413
e8f592e28af899bd edc5d39649b4c8df 285407a979a0a37f fc8b1a8f4efa707a
43235bc4c3a7ac30 a64562de0179658a b3bb5b549e921464 997703c299f54086

23 065b59b18c6d52fb 99820cd285b33f4c dd2f2451b8ea23a9 733e937e94f329ad

M
0fe8ce3fcdab6141 3d1ef6d41b30ee3e 805285dd23ad3c46 afffb2170a55bae5
d4df1d26375ad305 96ec0443901360cf e566391ac2dec9ba de3f4ed2ed4c6099
2acc5896076754e2 9c18617261f28c41 05304174c34c5162 bd963c248eea00e2

24 9fee540b09e9742f 63fb10d5c082c5c8 ae11bf272c2e139c 88b2be9fe5aeef4f

M
2fad3fc229cf87db 4dc84784c08d0ee2 32f638ebd6897253 067c7ad0439f7753
c4a688375301a8c3 81b79521741b2223 36d439ed66a2d8a3 85f11291bf6796f7
38b482904da65194 6b71411a3e2c0f92 bea1c00ba749b3ce 9b8060686fe0cc74

138 B. Su et al.

Table 8. Differential trail used for near collision of 4-round BLAKE-32, with proba-
bility of 2−21

Rd Difference Pr
4 88008800 00000000 80008000 00000000

88008800 00000000 00000000 00000000
-

80008000 00000000 80008000 00000000
00000000 00000000 00000000 00000000

5 00000000 00000000 80008000 00000000
00000000 00000000 00000000 00000000

2−12

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

6 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

2−1

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

7 80088008 00000000 00000000 00000000
00000000 11101110 00000000 00000000

2−8

00000000 00000000 88008800 00000000
00000000 00000000 00000000 08000800

8 28222822 18981898 11111111 19181918
33123312 44414441 02230223 32233223

M
91919191 10101010 28222822 08080808
89918991 08800880 89918991 08880888

Table 9. Differential trail used for near collision of 4-round BLAKE-64, with proba-
bility of 2−16

Rd Difference Pr
7 8100000081000000 0000000000000000 8000000080000000 0000000000000000

8100000081000000 0000000000000000 0000000000000000 0000000000000000
-

8000000080000000 0000000000000000 8000000080000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

8 0000000000000000 0000000000000000 8000000080000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−12

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

9 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

10 8000000080000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000001000000010 0000000000000000 0000000000000000

2−3

0000000000000000 0000000000000000 0000800000008000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000800000008000

11 8240204082402040 a8402040a8402040 0850085008500850 2850200028502000
0a0002000a000200 0004400400044004 0010080000100800 0a110a010a110a01

M
8850081088500810 2010285020102850 2240000022400000 a0002840a0002840
2840a0002840a000 0040000000400000 2840200028402000 2040804020408040

Near-Collisions on the Reduced-Round Compression Functions 139

Table 10. Differential trail used for near collision of 5-round BLAKE-64, with proba-
bility of 2−216

Rd Difference Pr
7 8100000081000000 0000000000000000 8000000080000000 0000000000000000

8100000081000000 0000000000000000 0000000000000000 0000000000000000
-

8000000080000000 0000000000000000 8000000080000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

8 0000000000000000 0000000000000000 8000000080000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−12

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

9 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

10 8000000080000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000001000000010 0000000000000000 0000000000000000

2−3

0000000000000000 0000000000000000 0000800000008000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000800000008000

11 8240204082402040 a8402040a8402040 0850085008500850 2850200028502000
0a0002000a000200 0004400400044004 0010080000100800 0a110a010a110a01

2−200

8850081088500810 2010285020102850 2240000022400000 a0002840a0002840
2840a0002840a000 0040000000400000 2840200028402000 2040804020408040

12 8a14284d8a14284d 8285222482852224 c2a442e0c2a442e0 4881023048810230
001d0aac001d0aac 1b001a111b001a11 4aa500044aa50004 0c284c3c0c284c3c

M
6ab4c0e56ab4c0e5 c26048d1c26048d1 2851a04d2851a04d 0a6122d00a6122d0
0081aa700081aa70 28c0209128c02091 2885223428852234 0091a8950091a895

Practical Algebraic Cryptanalysis for
Dragon-Based Cryptosystems

Johannes Buchmann1, Stanislav Bulygin2, Jintai Ding3,
Wael Said Abd Elmageed Mohamed1, and Fabian Werner4

1 TU Darmstadt, FB Informatik Hochschulstrasse 10, 64289 Darmstadt, Germany
{buchmann,wael}@cdc.informatik.tu-darmstadt.de

2 Center for Advanced Security Research Darmstadt (CASED)
Stanislav.Bulygin@cased.de

3 Department of Mathematical Sciences, University of Cincinnati,
Cincinnati OH 45220, USA

jintai.ding@uc.edu
4 TU Darmstadt
fw@cccmz.de

Abstract. Recently, the Little Dragon Two and Poly-Dragon multivari-
ate based public-key cryptosystems were proposed as efficient and secure
schemes. In particular, the inventors of the two schemes claim that Lit-
tle Dragon Two and Poly-Dragon resist algebraic cryptanalysis. In this
paper, we show that MXL2, an algebraic attack method based on the
XL algorithm and Ding’s concept of Mutants, is able to break Little
Dragon Two with keys of length up to 229 bits and Poly-Dragon with
keys of length up to 299. This contradicts the security claim for the pro-
posed schemes and demonstrates the strength of MXL2 and the Mutant
concept. This strength is further supported by experiments that show
that in attacks on both schemes the MXL2 algorithm outperforms the
Magma’s implementation of F4.

1 Introduction

The multivariate-based public-key cryptosystems (MPKCs) are public-key
cryptosystems that are based on the problem of solving multivariate quadratic
equations over finite fields. This problem is called “MQ-problem” and it is NP-
complete [1]. Several MPKCs based on the MQ-problem have been proposed in
the last two decades. An overview of MPKCs can be found in [2,3].

Recently, in the International Journal of Network Security & Its Applications
(IJNSA), Singh et al. presented a new multivariate-based public-key encryption
scheme which is called Little Dragon Two (LD2 for short) that is constructed
using permutation polynomials over finite fields [4]. According to the authors,
LD2 is as efficient as Patarin’s Little Dragon [5], but secure against all the known
attacks. Shortly after the publication [4] appeared, linearization equations were
found by Lei Hu, which became known in the private communication with the
first author.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 140–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 141

Due to these linearization equations, the authors of the LD2 scheme pre-
sented another scheme called Poly-Dragon [6]. Poly-Dragon as well as LD2 is
constructed using permutation polynomials over finite fields. It is considered as
an improved version of Patarin’s Big Dragon cryptosystem [5]. The Poly-Dragon
scheme was also proposed as an efficient and secure scheme. In particular, the
inventors of the Poly-Dragon scheme claim that Poly-Dragon resist algebraic
cryptanalysis.

In this paper, we present an algebraic attack for the LD2 and Poly-Dragon
schemes. We present experiments that show the weakness of these schemes by
solving corresponding multivariate quadratic equation systems over F2 up to
number of variables equal to 229 for LD2 and 299 for Poly-Dragon. In this attack,
we use an improved implementation of the MXL2 algorithm. This algorithm is
an improvement of the MutantXL [7] algorithm which was used to break the
MQQ scheme in [8].

We analyzed the reason why MXL2 is able to break the two schemes efficiently.
We use also two different versions of Magma’s implementation of F4 to compare
our results. For all the instances that we have, MXL2 outperforms Magma’s
F4 in terms of memory and time. We discuss linearization equations for both
schemes and present a way of obtaining these linearization equations.

This paper is organized as follows. In Section 2 we give an overview of the
LD2 scheme. Section 3 is a description for Poly-Dragon. We then briefly present
the MXL2 algorithm in Section 4. Section 5 presents the experimental results.
We discuss linearization equations in Section 6. Finally, we conclude the paper
in Section 7.

2 LD2: Little Dragon Two Multivariate Public-Key
Cryptosystem

The Little Dragon Two, LD2, multivariate public-key cryptosystem is a mixed
type scheme that has a public key in which plaintext and ciphertext variables
are “mixed“ together. LD2 is a modified version of Patarin’s Little Dragon cryp-
tosystem and it is constructed using permutation polynomials over finite fields.
In this section, we present an overview of the LD2 scheme. In multivariate public-
key cryptosystems, the main security parameters are the number of equations
and the number of variables. The authors of LD2 did not propose any such
security parameters. For a more detailed explanation see [4].

Definition 1. Let Fq be the finite field of q = pn elements where p is prime and
n is a positive integer. A polynomial f ∈ Fq[x1, . . . , xn] is called a permutation
polynomial in n variables over Fq if and only if one of the following equivalent
conditions holds:

1. the function f is onto.
2. the function f is one-to-one.
3. f(x) = a has a solution in Fq for each a ∈ Fq.
4. f(x) = a has a unique solution in Fq for each a ∈ Fq.

142 J. Buchmann et al.

Simply speaking, this means that a polynomial f ∈ Fq[x1, . . . , xn] is a permu-
tation polynomial over Fq if it induces a bijective map from Fq to itself.

Lemma 1. Let Tr(x) denotes the trace function on the field F2n i.e. Tr : F2n →
F2 is defined by Tr(x) = x + x2 + x22

+ · · · + x2n−1
. The polynomial g(x) =

(x2rk + x2r

+ α)� + x is a permutation polynomial of F2n, when Tr(α) = 1 and
� · (22rk + 2r) = 1 mod 2n − 1.

A proof of Lemma 1 is presented by the authors of [4]. A more detailed expla-
nation for permutation polynomials and trace representation on finite fields can
be found in [9].

Suppose that X = (x1, x2, . . . , xn) denotes the plaintext variables and Y =
(y1, y2, . . . , yn) denotes the ciphertext variables. In the LD2 scheme, the public
key equations are multivariate polynomials over F2 of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

P1(x1, x2, . . . , xn, y1, y2, . . . , yn) = 0,
P2(x1, x2, . . . , xn, y1, y2, . . . , yn) = 0,
...

...
Pλ(x1, x2, . . . , xn, y1, y2, . . . , yn) = 0,

where P1, P2, . . . , Pλ are polynomials of Fn
2 × Fn

2 → F2 of total degree two.
Due to the restrictions on r, k and � placed by Lemma 1, there are a few choices

for r, k and � to produce a permutation polynomial g(x) = (x2rk + x2r

+α)� +x
and to use g(x) to design a public-key scheme with a quadratic public key.
We can choose r = 0, n = 2m − 1, k = m and � = 2m − 1 for example, then
G(x) = (x2m

+ x + α)2
m−1 + x is a permutation polynomial. By choosing r =

0, n = 2m − 1, k = m and � = 2m + 1, the authors of [4] stated that it is not
clear whether G′(x) = (x2m

+ x + α)2
m+1 + x is a permutation polynomial or

not while it can produce a quadratic public key.
Let S and T be two invertible affine transformations. Then the plaintext can

be permuted to a ciphertext using the relation G(S(x1, . . . , xn)) = T (y1, . . . , yn).
Suppose S(x1, . . . , xn) = u and T (y1, . . . , yn) = v. Therefore the relation be-
tween plaintext and ciphertext can be written as follows:

(u2m

+ u + α)2
m−1 + u = v

(u2m

+ u + α)2
m−1 + (u + v) = 0

(u2m

+ u + α)2
m

+ (u + v)(u2m

+ u + α) = 0
((u2m

+ u) + α)2
m

+ u2m+1 + u2 + uα + vu2m

+ vu + vα = 0
(u2m

+ u)2
m

+ α2m

+ u2m+1 + u2 + uα + vu2m

+ vu + vα = 0
...

u2m

+ α2m

+ u2m+1 + uα + vu2m

+ vu + vα = 0
u2m+1 + u2m

v + uv + uα + u2m

+ vα + α2m

= 0 (1)

It is known that the extension field F2n can be viewed as a vector space over F2.
Let β = {β1, β2, . . . , βn, } be a normal basis of F2n over F2 for some β ∈ F2n .

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 143

Therefore any z ∈ F2n can be expressed as z =
∑n

i=1 ziβi, where z ∈ F2. By
substituting u = S(x1, . . . , xn) and v = T (y1, . . . , yn), Equation (1) can be
represented as n quadratic polynomial equations of the form:∑

aijxixj +
∑

bijxiyj +
∑

ckyk +
∑

dkxk + el = 0 (2)

where the coefficients aij , bij , ck, dk, el ∈ F2.
In Equation (2), the terms of the form

∑
xixj +

∑
xk + c1 are obtained from

u2m+1, the terms of the form
∑

xiyj +
∑

xk +
∑

yk + c2 are obtained from
u2m

v + uv, the terms of the form
∑

xi + c3 is obtained from uα + u2m

and vα
gives the terms of the form

∑
yi + c4, , where c1, c2, c3 and c4 are constants.

The secret parameters are the finite field element α and the two invertible
affine transformations S and T . A plaintext X = (x1, x2, . . . , xn) ∈ Fn

2 is en-
crypted by applying Algorithm 1. Decryption is accomplished by using Algo-
rithm 2.

A discussion for the security and the efficiency of the proposed scheme is
presented in [4]. As a conclusion, the authors claimed that they present an effi-
cient and secure multivariate public key cryptosystem that can be used for both
encryption and signatures.

Algorithm 1. Encryption
1: Inputs
2: A plaintext message X = (x1, x2, . . . , xn) of length n.
3: Output
4: A ciphertext message Y = (y1, y2, . . . , yn) of length n.
5: Begin
6: Substitute the plaintext (x1, x2, . . . , xn) in the public key.
7: Get n linear equations in the ciphertext variables (y1, y2, . . . , yn).
8: Solve these linear equations by Gaussian elimination method to obtain the correct

ciphertext Y = (y1, y2, . . . , yn).
9: End

Algorithm 2. Decryption
1: Inputs
2: A ciphertext message Y = (y1, y2, . . . , yn) of length n and the secret parameters

(S, T, α).
3: Output
4: A plaintext message X = (x1, x2, . . . , xn) of length n.
5: Begin
6: Let v = T (y1, y2, . . . , yn).
7: Let z1 = α + 1 + v + v2m

.
8: Let z2 = z2m−1

1 .
9: Let z3 = v + 1 + z2.

10: Let X1 = S−1(v + 1).
11: Let X2 = S−1(z3).
12: Return (X1, X2), Either X1 or X2 is the required secret message.
13: End

144 J. Buchmann et al.

3 Poly-Dragon Multivariate Public-Key Cryptosystem

The Poly-Dragon multivariate public-key cryptosystem is a mixed type scheme
that has a public key of total degree three, two in plaintext and one in ciphertext.
Poly-Dragon is based on permutation polynomials and is supposed to be as
efficient as Patarin’s Big Dragon [5]. As well as LD2, Poly-Dragon did not have
a proposed security parameters. In this section, we introduce an overview of the
Poly-Dragon scheme. See [6] for more details.

Definition 2. Let Fq be the finite field of of characteristic p. A polynomial of
the form

L(x) =
∑

i

αix
pi

with coefficients in an extension field Fq of Fp is called a p-polynomial over Fq.

Simply speaking, a polynomial over Fq is said to be a p-polynomial over Fq if
each of its terms has a degree equal to a power of p. A p-polynomial is also
called linearized polynomial because for all β, γ ∈ Fq and a ∈ Fp it satisfies the
following properties: L(β + γ) = L(β) + L(γ) and L(aβ) = aL(β). In [9], it is
proved that L(x) is a permutation polynomial of Fq if and only if the only root
of L(x) in Fq is 0.

Proposition 1. Let Lβ(x) =
∑n−1

i=0 βix
2i ∈ F2n be a p-polynomial defined with

n an odd positive integer and β = (β1, β2, . . . , βn) ∈ F2n such that the weight of
β is even and that 0 and 1 are the only roots of Lβ(x). Then

f(x) = (Lβ(x) + γ)� + Tr(x)

is a permutation polynomial of F2n, where l is any positive integer with (2k1 +
2k2) · � ≡ 1 (mod 2n − 1), γ ∈ F2n with Tr(γ) = 1 and k1 , k2 are non negative
integers such that gcd(2k1 + 2k2 , 2n − 1) = 1.

Proposition 2. The polynomial g(x) = (x2k2r

+ x2r

+α)� + x is a permutation
polynomial of F2n if Tr(α) = 1 and (2k2r

+ 2r) · � ≡ 1 (mod 2n − 1).

The two permutation polynomials g(x) = (x2k2r

+ x2r

+ α)� + x and f(x) =
(Lβ(x) + γ)� + Tr(x) from Proposition 1 and Proposition 2 are used in Poly-
Dragon public-key cryptosystem. The permutation polynomials in which � is of
the form 2m − 1 and r = 0, n = 2m − 1, k = m, k2 = m and k1 = 0 are used
to generate the public key. Therefore, for key generation G(x) = (x2m

+ x +
α)2

m−1 + x and F (x) = (Lβ(x) + γ)2
m−1 + Tr(x) are used where α, β, γ are

secret.
The relation between plaintext X = (x1, x2, . . . , xn) and ciphertext Y =

(y1, y2, . . . , yn) can be written as G(S(x1, x2, . . . , xn)) = F (T (y1, y2, . . . , yn)),

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 145

where S and T are two invertible affine transformations. This relation can be
written as (u2m

+ u + α)2
m−1 + u = (Lβ(v) + γ)2

m−1 + Tr(v) such that
S(x1, x2, . . . , xn) = u and T (y1, y2, . . . , yn) = v. Multiplying by (u2m

+ u+ α)×
(Lβ(v) + γ), which is a nonzero in the field F2n , we obtain:

(u2m

+ u + α)2
m

(Lβ(v) + γ) + u(u2m+u+α)(Lβ(v) + γ)

+(u2m

+ u + α)(Lβ(v) + γ)2
m

+ Tr(v)(u2m+u+α)(Lβ(v) + γ) = 0 (3)

The extension field F2n can be viewed as a vector space over F2. Then we
can identify F2n with Fn

2 . Let Tr(v) = ζy ∈ {0, 1} and by substituting u =
S(x1, x2, . . . , xn) and v = T (y1, y2, . . . , yn), in Equation (3), we obtain n non-
linear polynomials equations of degree three of the form:

∑
aijkxixjyk+

∑
bijxixj+

∑
(cij+ζy)xiyj+

∑
(dk+ζy)yk+

∑
(ek+ζy)xk+fl,

(4)

where aijk, bij , cij , dk, ek, fl ∈ F2.
The secrete parameters are the finite field elements α, β, γ and the two in-

vertible affine transformations S and T . A plaintext X = (x1, x2, . . . , xn) ∈ Fn
2

is encrypted by applying Algorithm 3. Decryption is accomplished by using Al-
gorithm 4.

In [6], the authors stated a proof for the validity of the generated plaintext
by the decryption algorithm. A discussion for the security and the efficiency of
the proposed scheme is also presented. As a conclusion, the authors claimed that
they presented an efficient and secure multivariate public key cryptosystem that
can be used for encryption as well as for signature.

Algorithm 3. Encryption
1: Inputs
2: A plaintext message X = (x1, x2, . . . , xn) of length n.
3: Output
4: A ciphertext message pair (Y

′
, Y

′′
).

5: Begin
6: Substitute the plaintext variables (x1, x2, . . . , xn) and ζy = 0 in the public key.
7: Get n linear equations in the ciphertext variables (y1, y2, . . . , yn).
8: Solve these linear equations by Gaussian elimination method to obtain the cipher-

text variables Y
′
= (y1, y2, . . . , yn).

9: Substitute the plaintext (x1, x2, . . . , xn) and ζy = 1 in the public key.
10: Get n linear equations in the ciphertext (y1, y2, . . . , yn).
11: Solve these linear equations by Gaussian elimination method to obtain the cipher-

text variables Y
′′

= (y1, y2, . . . , yn).
12: Return the ordered pair (Y

′
, Y

′′
) as the required ciphertext.

13: End

146 J. Buchmann et al.

Algorithm 4. Decryption
1: Inputs
2: A ciphertext message (Y

′
, Y

′′
) and the secrete parameters (S,T, α, β, γ).

3: Output
4: A plaintext message X = (x1, x2, . . . , xn) of length n.
5: Begin
6: Let v1 = T (Y

′
) and v2 = T (Y

′′
).

7: Let z1 = Lβ(v1) + γ and z2 = Lβ(v2) + γ.
8: Let z̄3 = z2m−1

1 and z̄4 = z2m−1
2 .

9: Let z3 = z̄3 + Tr(v1) and z4 = z̄4 + Tr(v2).
10: Let z5 = z2m

3 + z3 + α + 1 and z6 = z2m

4 + z4 + α + 1.
11: Let z7 = z2m−1

5 and z8 = z2m−1
6 .

12: Let X1 = S−1(z3 + 1).
13: Let X2 = S−1(z4 + 1).
14: Let X3 = S−1(z3 + z7 + 1).
15: Let X4 = S−1(z4 + z8 + 1).
16: Return (X1, X2, X3, X4), Either X1, X2, X3 or X4 is the required secret message.
17: End

4 MXL2: The MutantXL2 Algorithm

MXL2 [10] is an algorithm for solving systems of quadratic multivariate equa-
tions over F2 that was proposed at PQC2008. It is a variant of MutantXL [7]
which improves on the XL algorithm [11]. The MXL2 and MutantXL algorithms
are similar in using the concept of Mutants that is introduced by Ding [12], while
MXL2 uses two substantial improvements over F2. In this section, we present
a brief overview of the Mutant strategy, the MXL2 algorithm, MXL2 improve-
ments and MXL2 implementation.

The main idea for the Mutant strategy is to maximize the effect of lower-
degree polynomials occurring during the linear algebra step for the linearized
representation of the polynomial system. Throughout this section we will use
x := {x1, . . . , xn} to be a set of n variables. We consider

R := F2[x1, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉

the Boolean polynomial ring in x with graded lexicographical ordering <gradlex

on the monomials of R. We consider elements of R as polynomials over F2 where
the degree of each term w.r.t any variable is 0 or 1.

Let P := (p1, . . . , pm) be a system of m quadratic polynomial equations in R.
We are interested in finding a solution for P (x) = 0 that is based on creating
further elements of the ideal generated by the polynomials of P . In this context,
Mutants are defined as follows.

Definition 3. Let I be the ideal generated by the finite set of polynomials P ,
f ∈ I. For any representation of f , f :=

∑
p∈P fpp, we define the level of this

representation to be max{deg(fpp) : p ∈ P, fp
= 0}. Let Rep(f) be the set of all
representations of f . Then the level of f with respect to P is defined to be the

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 147

minimum of levels of all representations in Rep(f). The polynomial f is called
a Mutant with respect to P if its degree is less than its level.

From a practical point of view, the concept of Mutants can be applied to the
linear algebra step in the matrix-based algorithms for solving systems of mul-
tivariate polynomial equations, for example F4 and XL. In [10,7,13,14], during
the linear algebra step, the new polynomials that appear having a lower degree
are mutants. By using these mutants, MutantXL as well as MXL2 can solve
multivariate quadratic polynomial equations at a lower degree than the usual
XL.

The MXL2 algorithm performs the following steps:

– Initialization: Set P = {p1, . . . , pm}, D = Max{deg(p) : p ∈ P}, the elimi-
nation degree ED = min{deg(p) : p ∈ P}, the set of Mutants M = ∅.

– Echelonize: Consider each term in P as a new variable. Set P = P̃ where P̃
is the row echelon form of P .

– Solve: If there are univariate polynomials in P , then determine the values of
the corresponding variables and substitute in P . If the system is solved then
return solution and terminate. Otherwise, set D = Max{deg(p) : p ∈ P}
and ED = min{deg(p) : p ∈ P}.

– ExtractMutants: Add all new polynomials of degree less than D in P to M .
– MultiplyMutants: If M
= ∅, then select the necessary number of Mutants

that have degree k = min{deg(p) : p ∈ M}, multiply lower degree Mutants
by all terms up to degree D, remove the multiplied Mutants from M , add
the new polynomials obtained from the multiplication to P , set ED = k +1
then go back to Echelonize.

– Extend: Add all the polynomials that are obtained by multiplying a subset
of the degree D polynomials in P by all variables that are smaller than the
leading variable of the partition leading variable, set D = D + 1, ED = D.
Go to back to Echelonize.

As stated in [10], MXL2 has two important advantages over MutantXL. The first
is the use of the necessary number of mutants and the second is extending the
system only partially to higher degrees. The main idea for the first improvement
is to add only a necessary number of mutants to the given system. This number
is numerically computed. By using not all the emerged mutants, the efficiency is
increased, for space efficiency only a few mutants are used and for the time effi-
ciency the multiplications to generate higher degree polynomials do not have to
be performed to all mutants.

The second improvement is the usage of the partial enlargement technique
in which the polynomials at degree D are divided according to their so-called
“leading variable”. The leading variable of a polynomial p ∈ R is the smallest
variable in the leading term with respect to the order defined on the variables.
Instead of enlarging all the partitions, only the non-empty partitions are mul-
tiplied by all the variables that are smaller than the leading variable. This is
accomplished partition by partition. This partial enlargement technique gives
also an improvement in time and space since the system can be solved using a

148 J. Buchmann et al.

lower number of polynomials. Moreover, in some systems mutants may appear
in the last step together with the solution of the system. These mutants are
not fully utilized. Using partial enlargement technique enforces these mutants to
appear before the system is solved.

As a result of using the two MXL2 improvements, MXL2 generates the same
solution as if all Mutants would have been used and all partitioned would have
been multiplied. MXL2 solves multivariate quadratic polynomial equations using
a smaller number of polynomials than MutantXL.

The MXL2 algorithm has been implemented in C/C++ based on the latest
version of M4RI package [15]. In this package, there exist three different algo-
rithms for computing row echelon form. In this paper, we use the Method of
Four Russians Inversion (M4RI) algorithm [16].

5 Experimental Results

In this section we present experimental results of the attack on LD2 and Poly-
Dragon by using MXL2 and compare the performance of MXL2 with two versions
of Magma’s implementation of F4 namely V2.13-10 and V2.16-1. The reason for
using these two versions is that when we used Magma’s version (V2.16-1), we
found that this version solves the LD2 and Poly-Dragon systems at degree 4
while MXL2 as well as Magma V2.13-10 solves at degree 3. In this context, it is
not fair to use only this version (V2.16-1) in the comparison.

The main task for a cryptanalyst is to find a solution of the systems of equa-
tions that represent the LD2 and Poly-Dragon schemes. These systems were
essentially implemented as described in [4] and [6] respectively. Magma version
(2.16-1) has been used for the implementation. Due to the high number of vari-
ables, this direct approach is not very efficient but it is sufficient for modeling
purposes. For real-life applications, there are more elegant ways to create the
public key using specialized software and techniques like polynomial interpola-
tion (see [17] for example).

All the experiments are done on a Sun X4440 server, with four “Quad-Core
AMD OpteronTM Processor 8356” CPUs and 128GB of main memory. Each
CPU is running at 2.3 GHz. In these experiments we used only one out of the
16 cores.

We tried to solve different systems with the same number of variables. As a
result of our experiments, we noticed that the complexity for different systems
of LD2 and Poly-Dragon schemes with the same number of variable will be,
essentially, the same. In this context, the results given in this section are for one
particular instance for each system.

Table 1 presents the required steps of solving an LD2 instance of n = 229
using MXL2. In this table, for each step (Round) we present the elimination
degree (ED), the matrix dimensions (Matrix), the rank of the matrix (Rank),
the total number of mutants found (#Mutants), the number of linear mutants
found (#LM) and the number of univariate polynomials found (#Uni).

Table 2 and Table 3 show results of the LD2 systems for the range 79-229
equations in 79-229 variables and results of the Poly-Dragon systems for the

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 149

Table 1. MXL2: Results for LD2-229Var

Round ED Matrix Rank #Mutants #LM #Uni
1 2 229 × 26336 229 0 0 0
2 3 457 × 1975812 457 0 0 0
3 3 52670 × 2001690 52669 686 228 2
4 2 915 × 26336 913 226 226 108
5 2 913 × 26336 805 118 118 0
6 2 14847 × 26336 7140 1 1 1
7 2 7140 × 26336 7021 118 118 118

Table 2. Performance of MXL2 versus F4 for Little-Dragon-Two

Sys F4v2.13 F4v2.16 MXL2
D Mem Time D Mem Time D Mem Time

79 3 490 29 4 321 26 3 211 22
89 3 841 116 4 1600 203 3 346 40
99 3 1357 238 4 2769 411 3 545 73
109 3 2092 500 4 2046 331 3 844 122
119 3 3102 998 4 6842 1142 3 1251 217
129 3 4479 1827 4 11541 2529 3 2380 458
139 3 6280 3134 4 8750 1723 3 3387 742
149 3 8602 4586 4 23325 5795 3 3490 692
159 3 11547 7466 4 30178 7845 3 4545 1146
169 3 15191 11478 4 46381 18551 3 6315 1613
179 3 19738 17134 4 46060 17502 3 8298 2025
189 3 25234 28263 4 91793 54655 3 10697 2635
199 3 31848 11.24H 4 134159 1.47D 3 13772 1H
209 3 39800 16.36H 4 97834 13.19H 3 17431 1.32H
219 3 49,134 1.11D 4 184,516 2.92D 3 29,856 2.81H
229 3 60,261 1.56D Ran out of memory 3 25,847 2.60H

range 79-299 equations in 79-299 variables respectively. The first column “Sys”
denotes the number of variables and the number of equations for each system.
The highest degree of the elements of the system that occurred during the com-
putation is denoted by “D”. The used memory in Megabytes and the execution
time in seconds can be found in the columns represented by “Mem” and “Time”
respectively except for bigger systems it is in hours (H) or days (D). In both
tables we can see that MXL2 always outperforms both versions of Magma’s F4
in terms of memory and time.

Table 4 shows the required rounds of solving an Poly-Dragon instance of
n = 259 using MXL2. The columns are represented as the same as in Table 1.
From Table 4 we can see that MXL2 can solve the Poly-Dragon instance with
259 variables in 7 rounds. In the first round of the algorithm, there was no de-
pendency in the original 259 polynomials and no mutants were found. Therefore,
MXL2 extended the system partially to generate new 258 cubic equations. In

150 J. Buchmann et al.

Table 3. Performance of MXL2 versus F4 for Poly-Dragon

Sys
F4v2.13 F4v2.16 MXL2

D Mem Time D Mem Time D Mem Time

79 3 488 34 4 301 26 3 224 31
89 3 841 82 4 1519 153 3 285 39
99 3 1360 164 4 2883 320 3 454 71
109 3 2093 328 4 2039 241 3 674 117
119 3 3103 622 4 6873 972 3 1473 347
129 3 4475 1194 4 11542 1899 3 1573 312
139 3 6277 2113 4 8701 1238 3 2253 451
149 3 8606 3686 4 24105 5397 3 3151 659
159 3 11546 6645 4 30177 6734 3 4318 960
169 3 15195 10451 4 47787 14800 3 5812 1449
179 3 19741 15801 4 46064 14122 3 7698 1907
189 3 25262 25386 4 91720 41805 3 14154 3782
199 3 31852 40618 4 134144 124278 3 12944 3633
209 3 39813 64753 4 97898 69144 3 16472 6730
219 3 49129 85635 Ran out of memory 3 20736 8165
229 3 60231 1.83D Ran out of memory 3 36617 4.13H
239 3 73006 2.36D Ran out of memory 3 31922 3.62H
249 3 87,908 3.42D Ran out of memory 3 39,098 4.34H
259 3 105,012 4.15D Ran out of memory 3 47,512 6.51H
...
299 Ran out of memory Ran out of memory 3 95,317 11.28H

Table 4. MXL2: Results for Poly-Dragon-259Var

Round ED Matrix Rank #Mutants #LM #Uni
1 2 259 × 33671 259 0 0 0
2 3 517 × 2862727 517 0 0 0
3 3 67340 × 2895880 67339 776 258 2
4 2 1035 × 33671 792 256 256 138
5 2 1033 × 33671 895 118 118 0
6 2 14937 × 33671 7140 1 1 1
7 2 7140 × 33671 7021 118 118 118

the second round, after applying the Echelonize step to the extended system
(517 equations), all the equations were independent and there were no mutants
found. The MXL2 extended the system again by applying Extend step to gen-
erate 66823 new cubic equations. By echelonizing the resulting extended system
(67340 equations), we obtained a system of rank 67339, 518 quadratic mutants,
258 linear mutants in which 2 equations are univariate. After simplifying with
the two univariate polynomials and modifying the elimination degree to two,
we obtain a quadratic system of (1035 equations). Then third round is finished.
In the fourth round, echelonizing the system of 1035 equations at degree two,

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 151

Table 5. F4: Results for Poly-Dragon-259Var

Step SD Matrix #Pairs
1 2 259 × 33671 251
2 3 67349 × 2895880 4694
3 2 34446 × 33671 777
4 3 2835604 × 2832190 20423

yielded a system of rank 1033 and 256 linear mutants, 138 out of them are
univariate. Substituting with the 138 univariate equations and eliminating, we
obtained a system of rank 895 and 118 linear mutants in round 5. The necessary
number of mutants that are required at this round is 250. Therefore, all the 118
linear mutants are multiplied by variables using MultiplyMutants.In round 6, we
obtained 1 linear mutant which is also univariate polynomial from eliminating
the extended system of total 14937 equations and rank of 7140. In round 7, after
substituting with the univariate equation, we started with 7140 equations and
the elimination degree is the same, 2. We obtained a rank of 7021 and the rest
118 univariate equations after applying the Echelonize step.

Table 5 shows the required steps of solving the same Poly-Dragon instance as
in Table 4 using F4 version (V2.13.10). In each step, we show the step degree
(SD), the matrix dimensions (Matrix) and the number of pairs (#Pairs).

Experimentally, as far as we noticed, the main new feature of Magma’s F4
version (V2.16-1) is that if there exist some predetermined number of linear
polynomials, at certain degree, the program is interrupted and then a new phase
is started with extended basis by adding the linear polynomials to the original

 0

 50

 100

 150

 200

 250

 60 80 100 120 140 160 180 200 220 240

Li

ne
ar

 P
ol

yn
om

ia
ls

Sys

Comparison between number of linear mutants for MXL2 and linear polynomials for F4

MXL2
F4

Fig. 1. LD2:Number of linear Mutants for MXL2 and linear polynomials for F4v2.16−1

152 J. Buchmann et al.

ones then compute a Gröbner basis to the extended new system. Figure 1 shows
a comparison between the number of linear mutants that are generated at degree
3 and the number of linear polynomials generated by F4 (V2.16-1) at degree 3
for each LD2 system. These mutants as well as linear polynomials generated by
F4 show that there is an algebraic hidden structure in the LD2 scheme that
distinguishes it from a random system.

These predetermined number of linear polynomials at which Magma’s F4
version (2.16-1) interrupts the first phase of computation is not enough to finish
computing a Gröbner basis at the same degree at which these linear polynomials
appear. The usage of the necessary number of mutants improvement for MXL2
could help new Magma’s F4 to recover its defect.

6 Linearization Equations for the Dragons

The authors of [4] and [6] point out in [6] that both LD2 and Poly-Dragon possess
high order linearization equations (second order in the case of LD2). Recall that
a (high-order) linearization equation in plaintext variables X and ciphertext
variables Y is a polynomial F (X,Y), linear in the X-variables. If one is able to
obtain such polynomials relating inputs and outputs of an MPKC, an attack can
be undertaken by plugging in known ciphertexts and solving linear systems in the
plaintext variables. Using notation of Sections 2 and 3, Poly-Dragon possesses
linearization equations of the form

(z + u + 1)(z2m

+ z + α + 1) + (z2m

+ z + α + 1)2
m

= 0, (5)

where z = (Lβ(v)+γ)2
m−1+Tr(v). For the case of LD2 the equations are simply

(v + u + 1)(v2m

+ v + α + 1) + (v2m

+ v + α + 1)2
m

= 0. (6)

Since equations (6) are only of degree 2 in ciphertext for LD2, a linearization
attack is very feasible. The authors of [6] claim that the degree of (5) in cipher-
text variables is too high to be used in a practical linearization attack.

It is interesting to note that even existence of equations (6) and (5) for LD2
and Poly-Dragon respectively does not explain the nice behavior of the direct
attack using MXL2. Namely, the fact that we are able to solve at degree 3. This
is unlike the classical attack on Matsumoto-Imai scheme. There it is possible
to obtain linearization equations that are also linear in the ciphertext variables.
Considering that ciphertext variables depend explicitly on the plaintext variables
via quadratic equations, it is then clear why one is able to solve at degree 3 with
XL and Gröbner basis techniques: one simply plugs in public key equations in
the linearization equations and obtains that such degree-3 equations in the plain-
text variables lie in the linear span of degree 3 XL-extension of the public key
with the ciphertext variables fixed, see [18]. In the case of LD2 we have a mixed
system, therefore there are no explicit quadratic relations between a ciphertext
and a plaintext. Even if they existed, they would provide equations of degree 4
in the plaintext, which by no means explains solving at degree 3. Even “worse”

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 153

is the situation for the Poly-Dragon. This cryptosystem seems to be immune to
linearization attacks, but is very susceptible to algebraic attacks.

There is a simple known way of obtaining linearization equations. One as-
sumes that equations of the form F (x1, . . . , xn, y1, . . . , yn) =

∑
i aixifi(Y) +∑

i bigi(Y)+c with Y = (y1, . . . , yn) exist with certain requirements on degrees of
fi, gi. Then by plugging in known plaintext/ciphertext pairs for X = (x1, . . . , xn)
and Y one tries to find coefficients for the polynomials fi, gi as well as coeffi-
cients ai, bi, c. One should be lucky to get enough linearly independent equations
relating the above coefficients. In practice this method works pretty well and has
practical complexity polynomial in n. We present next a method of finding lin-
earization equations based on Gröbner bases.

Proposition 3. Let I be an ideal in the ring F2[X,Y], X = (x1, . . . , xn), Y =
(y1, . . . , yn). Let D > 0 be an integer. Let G be a Gröbner basis of I w.r.t weighted
degree lexicographic ordering with x1 > · · · > xn > y1 > · · · > yn with weights
D for each X-variable and weight 1 for each Y -variable. If in I there exists a
linearization equation f(x1, . . . , xn, y1, . . . , yn) =

∑
i aixifi(Y) +

∑
i bigi(Y) + c

with deg(fi) ≤ D, deg(gi) ≤ D ∀ i, then there is an element g ∈ G which is also
a linearization equation with leading monomial dividing the leading monomial of
f : lm(g)|lm(f).

Proof. First of all, since G is a Gröbner basis of I and f ∈ I there exists g ∈
G such that lm(g)|lm(f). From the form of f and the monomial ordering on
F2[X,Y] that we have chosen, we see that deg(g) = deg(lm(g)) ≤ deg(lm(f)) =
deg(f) ≤ 2D, where by degree we mean weighted degree. If g has a monomial
of the form xixj for some i and j, then weighted degree of this monomial is
2D and such monomial is larger than lm(f) w.r.t weighted degree lexicographic
ordering and so is larger than lm(g), which yields a contradiction with the fact
that lm(f) is linear in the X-variables. Similarly one comes to a contradiction
with other monomials that are non-linear in X-variables. This means that g is
linear in the X-variables and so is a linearization equation in X .

So with the use of the above proposition we are able to get “basis” elements
for the linearization equations in I. The method requires finding a Gröbner ba-
sis w.r.t a certain monomial ordering, therefore has higher complexity than the
method described earlier. Still the latter method does not involve any probabilis-
tic arguments and does not depend on a choice of plaintext/ciphertext pairs. It
is a matter of future work to realize if such a method has practical implications
on MPKCs.

7 Conclusion

We present an efficient algebraic cryptanalysis for the Little Dragon Two, LD2,
and Poly-Dragon public-key cryptosystems. Both cryptosystems were proposed
as efficient and secure schemes. In our attack we are able to break LD2 with
key length up to 229 bits and Poly-Dragon with key length up to 299 bits using

154 J. Buchmann et al.

both Magma’s F4 and MXL2. In all experiments, MXL2 outperforms the used
versions of Magma’s F4. We realized that the last version of Magma’s F4 is not
so well suitable for solving LD2 and Poly-Dragon systems.

In MXL2 algebraic attack, the LD2 and Poly-Dragon schemes are solved at
degree three which reflexes the weakness and contradicts the security claims for
these two schemes. We expect that MXL2 can attack a system that represent
Little Dragon Two up to 389 variables in less than one day using the same
memory resources that we have, 128GB memory. We claim also that MXL2 can
solve a systems that represent Poly-Dragon up to 339 variables in less than 20
hours.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

2. Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems (Ad-
vances in Information Security). Springer, New York (2006)

3. Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography. In: Bernstein, D.J.,
et al. (eds.) Post Quantum Cryptography, pp. 193–234. Springer, Heidelberg (2008)

4. Singh, R.P., Saikia, A., Sarma, B.K.: Little Dragon Two: An Efficient Multivari-
ate Public Key Cryptosystem. International Journal of Network Security and Its
Applications (IJNSA) 2, 1–10 (2010)

5. Jacques, P.: Asymmetric Cryptography with a Hidden Monomial. In: Koblitz, N.
(ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)

6. Singh, R.P., Saikia, A., Sarma, B.: Poly-Dragon: An efficient Multivariate Pub-
lic Key Cryptosystem. Cryptology ePrint Archive, Report 2009/587 (2009),
http://eprint.iacr.org/

7. Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.P.:
MutantXL. In: Proceedings of the 1st International Conference on Symbolic Com-
putation and Cryptography (SCC 2008), Beijing, China, pp. 16–22. LMIB (2008),
http://www.cdc.informatik.tu-darmstadt.de/reports/

reports/MutantXL Algorithm.pdf

8. Mohamed, M.S., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the
MQQ Public Key Cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

9. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and
its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

10. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer,
Heidelberg (2008)

11. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

12. Ding, J.: Mutants and its Impact on Polynomial Solving Strategies and Algorithms.
Privately distributed research note, University of Cincinnati and Technical Univer-
sity of Darmstadt (2006)

http://eprint.iacr.org/
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/MutantXL_Algorithm.pdf
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/MutantXL_Algorithm.pdf

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems 155

13. Ding, J., Cabarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant
Gröbner Basis Algorithm. In: Proceedings of the 1st International Conference on
Symbolic Computation and Cryptography (SCC 2008), Beijing, China, pp. 23–32.
LMIB (2008)

14. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3:
An Efficient Algorithm for Computing Gröbner Bases of Zero-dimensional Ideals.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer,
Heidelberg (2010)

15. Albrecht, M., Bard, G.: The M4RI Library– Linear Algebra over GF(2) (2008),
http://m4ri.sagemath.org

16. Bard, G.V.: Algebraic Cryptanalysis. Springer Publishing Company, Incorporated,
Heidelberg (2009)

17. Wolf, C.: Efficient Public Key Generation for HFE and Variations. In: Dawson, E.,
Klemm, W. (eds.) Cryptographic Algorithms and their Uses, Queensland Univer-
sity of Technology, pp. 78–93 (2004)

18. Billet, O., Ding, J.: Overview of Cryptanalysis Techniques in Multivariate Public
Key Cryptography. In: Sala, M., et al. (eds.) Gröbner Bases, Coding, and Cryp-
tography, pp. 263–284. Springer, Heidelberg (2009)

http://m4ri.sagemath.org

Generating Parameters for Algebraic
Torus-Based Cryptosystems

Tomoko Yonemura, Yoshikazu Hanatani, Taichi Isogai,
Kenji Ohkuma, and Hirofumi Muratani

Toshiba Corporation,
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

{tomoko.yonemura,hirofumi.muratani}@toshiba.co.jp

Abstract. Algebraic torus-based cryptosystems are public key cryp-
tosystems based on the discrete logarithm problem, and have compact ex-
pressions compared with those of finite field-based cryptosystems. In this
paper, we propose parameter selection criteria for the algebraic torus-
based cryptosystems from the viewpoints of security and efficiency. The
criteria include the following conditions: consistent resistance to attacks
on algebraic tori and their embedding fields, and a large degree of free-
dom to select parameters suitable for each implementation. An extension
degree and a characteristic size of a finite field on which the algebraic
tori are defined are adjustable. We also provide examples of parameters
satisfying the criteria.

1 Introduction

Practical public key encryption schemes are fundamental technology in the field
of network security. For instance, the RSA encryption scheme is famous and
its 2048-bit public key is recommended at present. The typical public key size
is increasing with the progress of computer science. The growth of the public
key size poses problems for machines with small memory or narrow bandwidth.
However, the public key size of the RSA encryption scheme is not compressed
in keeping with security.

We consider discrete logarithm problem-based cryptosystems defined on a
prime-order subgroup of a multiplicative group in a finite field. It has been
proposed that public key size can be compressed safely [1–3]. To compress the
public key size is to represent the subgroup with fewer bits than the size of the
finite field. For instance, the recommended size of the finite field is 2048 bits, and
the corresponding size of the prime-order subgroup is 224 bits [4], because the
discrete logarithm problem in the finite field is easier than in a general group.

Rubin and Silverberg constructed the (de)compression map by using bira-
tional maps between algebraic tori and affine spaces [3]. The security of cryp-
tosystems on the algebraic torus Tn(Fpm) is based on the hardness of the discrete
logarithm problem in it and the embedding field F(pm)n .

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 156–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Generating Parameters for Algebraic Torus-Based Cryptosystems 157

1.1 Previous Work

Tables 1 and 2 show the parameters given in previous research. Let F be a
minimal embedding field, and G be a subgroup on which cryptosystems are
defined. The relation G ⊂ Tn(Fpm) ⊂ F× holds. Let | • | denote the bit size of •.
The parameters with n = 30 are shown by van Dijk et al. [5]. Gower proposed
the parameter searching method and some examples with n=6, 30, and 210 [6].
Granger et al. used the algebraic torus T6 defined over the extension field F3m in
order to improve the Duursma-Lee method that computes the Tate pairing [7].
We can take parameters that also follow from all constructions of the pairing-
friendly elliptic curves.

Table 1. Parameters with 2048-bit |F |

author(s) n |F | |G| m �log p�
van Dijk et al. [5] 30 1920 200 1 64
Granger et al. [7] 6 1830 305 193 2
Granger et al. [7] 6 2268 378 239 2

Table 2. Parameters with 1024-bit |F |

author(s) n |F | |G| m �log p�
van Dijk et al. [5] 30 960 160 1 32
Gower [6] 6 1024 160 1 171
Gower [6] 30 1024 160 1 35
Gower [6] 210 1024 160 1 6
Granger et al. [7] 6 906 150 97 2
Granger et al. [7] 6 1548 258 163 2

There are two problems concerning the above parameters: security and effi-
ciency respectively. We consider the former problem. Some parameters are weak
against the Joux-Lercier function field sieve [8]. Joux and Lercier pointed out
that the complexity of the function field sieve over F is smaller than Pollard’s
ρ over G in the case of 1024-bit F regarded as a degree 30 extension field. Sim-
ilarly, the function field sieve over F regarded as a degree m extension of F3n

could be easier. Therefore, the parameters in Tables 1 and 2 don’t survive except
(n, |F |, |G|,m, �log p�) = (30, 1920, 200, 1, 64) in Table 1 and (6, 1024, 160, 1, 171)
in Table 2.

We consider the latter problem. In general, arithmetical operations are inef-
ficient when characteristic p is unsuitable for the word size (e.g. 32 bits or 64
bits). If m is equal to 1, then �log p� is often larger than the typical word size.
The pairing-friendly elliptic curves [9] are constructed with m = 1 except for the
MNT curves [10]. Therefore, most of the parameters following from the pairing-
friendly curves are inefficient. Selecting primitive polynomials is another point.
Although cyclotomic polynomials were used in the previous research [3, 11], it
is difficult to find suitable ones for the variable extension degree m.

1.2 Our Contributions

In this paper, we propose parameter selection criteria for the algebraic tori. The
criteria consist of four security criteria and four efficiency criteria. Parameters
include (n,m, p) of Tn(Fpm), the order q of the group G, and primitive polyno-
mials of the embedding field F(pm)n . We also provide examples of parameters

158 T. Yonemura et al.

satisfying the criteria. For security, the parameters must resist all known attacks
consistently. In view of Hitt’s indication [12], Tn(Fpm) can be covered by a sub-
field of F(pm)n , and its extension degree is not divisible by m. Therefore, G must
not be covered in any proper subfields of F(pm)n . In order to resist attacks on
algebraic tori and their embedding fields, the complexity of the index calculus in
F , and the Granger-Vercauteren method [7] in Tn(Fpm), and Pollard’s ρ method
in G must be sufficiently large.

For efficiency, we choose the extension field Fpm on which the algebraic tori
are defined, binomials for primitive polynomials, and the algebraic tori equal
to the group G. The binomials facilitate efficient arithmetic in the extension
field, and they also have a large degree of freedom to decide a constant term for
various m. Therefore, the extension degree m and the size of characteristic p are
adjustable. In order to define cryptosystems on G, the prime-order algebraic tori
themselves are easy to deal with.

The remainder of this paper is organized as follows: In section 2, we explain
fundamental concepts used in the following discussion. In section 3, we propose
the parameter selection criteria. In section 4, we provide examples of parameters
satisfying the above criteria. In section 5, we estimate calculation costs.

2 Preliminaries and Notation

Let p and q be primes, and n and m be positive integers. Let Fpm be a finite field
of an order pm. F×

pm denotes a multiplicative group of Fpm . Let G be a group on
which cryptosystems are defined of an order q. Let F be a minimal finite field
in which G is covered. The Greek letters α, β, γ, δ denote elements of F(pm)3 .
The bold letters c, d, w denote elements of Fpm . Let λI and λP be security
parameters for the index calculus and Pollard’s ρ method respectively.

2.1 Cyclotomic Polynomials

Definition 1. Let n be a positive integer. μ is the Möbius function. The n-th
cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏
d|n

(xd − 1)μ(n/d) . (1)

Theorem 1. Let p be a prime.

(a) If a is a positive integer not divisible by p, then Φap(x)Φa(x) = Φa(xp).
(b) If b is a positive integer divisible by p, then Φbp(x) = Φb(xp).

2.2 Algebraic Tori

Definition 2. Let n be a positive integer. NF(pm)n /f is a norm map to a field f .
An algebraic torus Tn over Fpm is defined by

Tn(Fpm) =
⋂

Fpm⊂f�F(pm)n

Ker
[
NF(pm)n /f

]
. (2)

Generating Parameters for Algebraic Torus-Based Cryptosystems 159

Theorem 2. (a) #Tn(Fpm) = Φn(pm).
(b) If h ∈ Tn(Fpm) has a prime order not dividing n, then h /∈ F(pm)d for any

d|n with d < n.

Proof. (a) Note that f can be F(pm)d for any d|n with d < n. See also [3].
(b) Prime q denotes the order of h. Since q
 |n, Xn− 1 has no repeated roots in

the algebraic closure of Fq. See also [13]. ��

If the extension degree m is greater than 1, Theorem 2 (b) is insufficient to
prove Tn(Fpm) is not covered by any proper subfields of F(pm)n . In view of Hitt’s
indication [12], Tn(Fpm) can be covered by a proper subfield that is not the form
F(pm)d . We discuss this point in section 3.1.

2.3 Representations

We choose n = 6 for a good compression ratio and less transformation costs.
The finite field F(pm)6 is constructed as follows:⎧⎪⎨⎪⎩

F(pm)6 = F(pm)3 [x]/f2(x), f2(x) = x2 − δ, δ ∈ F×
(pm)3 ,

F(pm)3 = Fpm [y]/f3(y), f3(y) = y3 −w, w ∈ F×
pm ,

Fpm = Fp[z]/gm(z), gm(z) = zm − s, s ∈ F×
p .

(3)

Projective representation. For all α+βx ∈ F×
(pm)6 , the {(pm)3−1}-th power

of the element is an element of T2(F(pm)3), where x(pm)3 = −x is led from the
condition that f2(x) is irreducible. Since T6(Fpm) ⊂ T2(F(pm)3), elements of
T6(Fpm) are represented as eq. (4).

T6(Fpm) =

{
α − βx

α + βx

∣∣∣∣∣α, β ∈ F(pm)3 , (α, β) �= (0, 0),
(

α − βx

α + βx

)Φ6(pm)

= 1

}
(4)

In the representation of T2(F(pm)3), the element corresponding to (α, β) is equiv-
alent to the element corresponding to (λα, λβ) for any λ ∈ F×

(pm)3 . So, this
representation can be called the projective representation [14].

Affine representation. Let δ = d be an element of F×
pm . Let −d/3 be a

quadratic nonresidue in Fpm . The elements of T6(Fpm)\{1} are also represented
as eq. (5). This representation is called the affine representation.

T6(Fpm)\{1} =
{

c0c1 + c2
1y + (c2

0 + d/3)w−1y2 − c1x

c0c1 + c2
1y + (c2

0 + d/3)w−1y2 + c1x

∣∣∣∣ c0 ∈ Fpm , c1 ∈ F
×
pm

}
(5)

In the affine representation, for all (c0, c1) ∈ Fpm×F×
pm , there is a corresponding

element of T6(Fpm)\{1}. This property is suitable for using the affine represen-
tation in cryptosystems. For instance, checking an element in T6(Fpm)\{1} is
simple. We just check c0 ∈ Fpm and c1 ∈ F×

pm ; it is unnecessary to calculate the
Φ6(pm)-th power of the element. In addition, an arbitrary bit string is mapped
to an element of T6(Fpm)\{1} by using {0, 1}l → Fpm and {0, 1}l → F×

pm .

160 T. Yonemura et al.

Eq. (5) is obtained from solving the condition
(

α−βx
α+βx

)Φ6(pm)
= 1 of eq. (4)

by substituting γ = α/β. The detail is in subsection 5.2. The suggested affine
representation have only one exception point and the constraint of the charac-
teristic p is not hard. There are two different affine representations. Granger et
al. also solved the condition [7]. They limited characteristic p = 3. The other
method of obtaining the affine representation was employed by Rubin and Sil-
verberg [3, 15]. They used a given solution to describe the other solutions. The
corresponding element is another exceptional point of the affine representation.

3 Parameter Selection Criteria

In this section, we propose eight criteria. Criteria 1, 2, 3 and 4 are security
criteria. Criteria 5, 6, 7 and 8 are efficiency criteria.

Parameters include (n,m, p) of Tn(Fpm), the order q of the group G, and
primitive polynomials of the embedding field F(pm)n . Where, we choose n = 6
for a good compression ratio and lower transformation costs.

3.1 Security

First, in the case G ⊂ Tn(Fpm), F = F(pm)n must hold. In other words, G must
not be covered in any proper subfields of F(pm)n . Criterion 1 is a sufficient but not
necessary condition for the above statement. Second, the complexity of the index
calculus in F , and the Granger-Vercauteren method in Tn(Fpm), and Pollard’s
ρ method in G must be sufficiently large. Criteria 2, 3 and 4 are sufficient and
necessary conditions for the above statements, respectively.

Criterion 1. Let q be the order of G. G ⊂ T6m(Fp) and q
 |6m hold.

If G is a prime-order subgroup of Tnm(Fp) and q
 |nm, then G is not a subgroup of
Tj(Fp) with j|nm and j
= nm. We consider the condition q
 |nm. In accordance
with Theorem 2 (b), if q
 |nm then Xnm − 1 has no repeated roots in the
algebraic closure of Fq. Xnm − 1 =

∏
j|nm Φj(X) by the definition of the cyclic

polynomials. If G ⊂ Tnm(Fp), then q|Φnm(p). So we have Φnm(p) ≡ 0 mod q.
Since Xnm− 1 has no repeated roots, Φj(p)
≡ 0 mod q for any j with j|nm and
j
= nm. Therefore, subgroups of Tj(Fp) do not have the order divided by q for
any j with satisfying j|nm and j
= nm.

We note what happens when Criterion 1 does not hold. A security level of
such cryptosystem may not reach the expected security level. Because a minimal
embedding field F can be smaller than F(pm)n . We show the following Fact 1 as
an example of this indication.

Fact 1. Let mn be the maximal divisor of m such that all its prime factors are
also prime factors of n. If mn
= m, then Tnmn(Fp) � Tn(Fpm) is covered in
Fpnmn � F(pm)n .

Generating Parameters for Algebraic Torus-Based Cryptosystems 161

Proof. By using Theorem 1, Φn(pm) is factorized as
∏

d| m
mn

Φnmnd(p). Therefore,
the corresponding algebraic torus is decomposed as eq. (6).

Tn(Fpm) = ×d| m
mn

Tnmnd(Fp) (6)

If mn
= m, then Tnmn(Fp) in the right-hand side of eq. (6) is smaller than
Tn(Fpm) in the left-hand side of eq. (6). ��

Where, m
mn

is the maximal divisor of m such that each its prime factor is not
prime factor of n. For instance, if n = 6 and m = 60 then we obtain mn = 12
and m

mn
= 5.

Criterion 2. The size of F is larger than the security parameter λI . When
an extension degree l′ and an order p′ of a corresponding base field satisfy
log p′ < O(

√
l′ log l′), the complexity of the index calculus should be larger than

the security parameter λP .

There are two efficient methods of calculating the index calculus: the number
field sieve method [16] in a prime field and the function field sieve method [17]
in a finite field with a large extension degree. Complexity is Lp[1/3, (64/9)1/3]
and Lpl [1/3, (32/9)1/3] by using eq. (7), respectively.

Lpl [a, b] = exp((b + o(1))(log pl)a(log log pl)1−a) (7)

Both of the above methods have the same order of subexponential complexity.
The constant term of the function field sieve method is smaller than that of the
number field sieve method. The security parameter λI = 2048, 1024 is defined
by the former for safety.

In the case of a medium-size characteristic, variations of the number field sieve
method and the function field sieve method have been proposed [8, 18]. There-
fore, the complexity of the index calculus for Fpl is Lpl [1/3] for all characteristic
sizes. When the constant part of the varied function field sieve is smaller than
the original, we should check that the complexity of the index calculus satisfies
the required security. For Fpl , the variation of the function field sieve is applied
to the field as Fp′l′ with a divisor l′ of l, where p′ = pl/l′ . The variation is effi-
cient when log p′ < O(

√
l′ log l′) holds. If log p′ and

√
l′ log l′ are balanced, then

l′ ∼ 50 for log p′l
′
= 2048, and l′ ∼ 35 for log p′l

′
= 1024. When the sieving step

is fast owing to a good implementation, we should check the complexity of the
linear algebra step that is estimated at O(p′2D) = Lpl [1/3]. The parameter D is
fixed by a parameter α with p′ = Lpl [1/3, α].

Criterion 3. When log p ∼ 3m log(3m) holds, the complexity of the T2 method
is larger than the security parameter λP . When log p ∼ 2m log(2m) + 12m −
3 logm holds, the complexity of the T6 method is larger than λP .

Granger and Vercauteren proposed two algorithms [7]. One is applied to
T2(Fp3m), the other is applied to T6(Fpm). The complexity of the T2 method

162 T. Yonemura et al.

is O((3m)!p((3m)3 + m2 log p) + (3m)3p2) and the complexity of the T6 method
is O((2m)!p(212m +32m log p)+m3p2). In the above complexity, if the first term
and the third term are balanced, then the second term is negligible. The com-
plexity becomes O(Lpm [1/2]).

Criterion 4. The size of G is larger than the security parameter λP .

There are only exponential time algorithms for solving the discrete logarithm
problem in the general group. For instance, the complexity of Pollard’s ρ method
is O(

√
q), where q is the order of G.

The computational complexity of these attacks for the parameters listed in
section 4 is given in the same section.

3.2 Efficiency

First, we choose the extension field Fpm on which the algebraic tori are defined,
and binomials for primitive polynomials. The binomials must be irreducible.
Criteria 5, 6 and 7 are sufficient and necessary conditions for the above statement.
Second, we choose the algebraic tori equal to G. When we choose n = 6, T6(Fpm)
must be equal to G. Criterion 8 is a sufficient and necessary condition for the
above statement.

Criterion 5. Let m′ be a prime factor of m. Both of eq. (8) hold.{
∀m′ m′|(p− 1) ∧ s(p−1)/m′
= 1
4|(p− 1) if 4|m

(8)

Criterion 6. 3|(pm − 1) ∧w(pm−1)/3
= 1 holds.

Criterion 7. p
= 2 ∧ δ(p3m−1)/2
= 1 holds.

Criteria 5 and 6 are transformed from Theorem 3 by using Fact 2.

Theorem 3. Let t > 1 be an integer and a ∈ F×
q′ . Then the binomial ft(w) =

wt − a is irreducible in Fq′ [w] if and only if eq. (9) is satisfied:{
∀m′ m′|ord(a) ∧m′
 | q′−1

ord(a)

4|(q′ − 1) if 4|m .
(9)

m′ denotes prime factor of t, and ord(a) denotes the order of a in Fq′ .

Proof. See chapter 3 section 5 of [19]. ��

Fact 2. Let m′ be a prime, and a ∈ F×
q′ . ord(a) is the order of a in F×

q′ . Then

eq. (10) holds. And also, ord(a)
 | q
′−1
m′ is equivalent to a(q′−1)/m′
= 1.

m′|ord(a) ∧m′
 | q
′ − 1

ord(a)
⇔ m′|(q′ − 1) ∧ ord(a)
 |q

′ − 1
m′ (10)

Generating Parameters for Algebraic Torus-Based Cryptosystems 163

Proof. q′ − 1, ord(a) and m′ are represented as the following eq. (11). Let pi be
a prime integer. ei and e′i are nonnegative integers. Since ord(a)|(q′ − 1), then
e′i ≤ ei for all i. ⎧⎪⎨⎪⎩

(q′ − 1) =
∏

i p
ei

i

ord(a) =
∏

i p
e′

i

i

m′ = pj

(11)

In the left-hand side of eq. (10), m′|ord(a) and m′
 | q′−1
ord(a) mean 1 ≤ e′j and

ej − e′j < 1. It leads to ej − 1 < e′j ≤ ej. Since ej and e′j are integers, then
ej = e′j . Therefore, we obtain 1 ≤ e′j = ej . The right-hand side of eq. (10) means
1 ≤ ej and ej − 1 < e′j. It leads to ej = e′j . Therefore, we obtain 1 ≤ ej = e′j .
The converse is proved in the same way. ��

Criterion 7 is transformed from Theorem 3 by using Fact 2, and 2|(p3m − 1) is
replaced by p
= 2.

Criterion 8. Let a and b be nonnegative integers. m = 2a3b holds. And, q =
Φ6(pm) = Φ6m(p) is prime.

If G = T6(Fpm), then q = Φ6(pm) =
∏

d| m
m6

Φ6m6d(p). The condition m
m6

= 1
means that m has no prime factor except 2 and 3.

– In the case of m
m6

= 1, q = Φ6(pm) = Φ6m6(p).
– In the case of m

m6

= 1, if q = Φ6(pm) is assumed, then there exist d with

Φ6m6d(p) = q, and Φ6m6d′(p) = 1 for all d′ satisfying with d′| m
m6

and d′
= d.
We consider d = 1. Since Φ6m6(p) = p2m6 − pm6 + 1, then Φ6m6(p)
= 1 with
1 < p, so we obtain Φ6m6(p) = q. However, Φ6m6(p) = q conflicts with the
assumption q = Φ6(pm). The reason is as follow: Φ6m6(p) = Φ6(pm) leads to
pm + pm6 − 1 = 0 when m
= m6, but pm + pm6 − 1 = 0 is inconsistent with
1 < p and 1 ≤ m6 < m. Therefore the assumption is denied. q
= Φ6(pm) in
this case.

We note what happens when Criterion 8 does not hold. A non-prime q does
not match many cryptosystems. Although a proper subgroup G of the algebraic
torus may be preferred to the algebraic torus itself from the viewpoint of size,
there was not a good representation of the subgroup.

4 Suggested Parameters

We find the parameters (m, p, s,w, δ) with the following steps:

1. obtaining possible m,
2. deciding (m, p),
3. deciding (s,w, δ).

Inputs are the security parameters (λI , λP)=(2048, 224), (1024, 160). In the
case of the prime-order algebraic torus, log q ∼ λI/3. Then, the second part of

164 T. Yonemura et al.

Table 3. (λI , λP) = (2048, 224)

n |F | |G| m �log p� p s w d

6 2048 683 6 57 ◦ 3 z 1 + z

6 2048 683 12 29 365292517 5 z z

◦ = 133432608300027847

Table 4. (λI , λP) = (1024, 160)

n |F | |G| m �log p� p s w d

6 1024 342 8 22 2643241 7 2 z

Criterion 1 “ q
 |6m” and Criterion 4 “ λP � log q” are always satisfied with the
above security parameters. The suggested parameters are shown in Tables 3 and
4. Note that δ = d ∈ F×

pm for constructing the affine representation. We explain
details of the above steps as follows.

At the first step, we obtain possible m by using Criterion 2 “λI ∼ 6m log p”,
the first part of Criterion 7 “p
= 2”, and Criterion 8 “m = 2a3b”. The upper
bound of m is led by 1 < log p ∼ λI/(6m) . The lower bound of m is led by
smaller characteristic p than the typical word size (e.g. 32 bits or 64 bits). We
check the second part of Criterion 2. When a divisor l′ of 6m is around 50 (or
35) for λI = 2048 (or 1024 respectively), D = 1 in the complexity of the index
calculus O(p′2D). We estimate that:

– l′ = 48, 54 for λI = 2048, the complexity log (p′)2 ∼ 85, 76.
– l′ = 36 for λI = 2048, the complexity log (p′)2 ∼ 144 > λP = 112.
– l′ = 32, 36 for λI = 1024, the complexity log (p′)2 ∼ 64, 57.
– l′ = 24 for λI = 1024, the complexity log (p′)2 ∼ 85 > λP = 80.

Therefore, we obtain m = 6, 12 for λI = 2048, and m = 8 for λI = 1024. We
also check the first and the second part of Criterion 3. The complexity becomes
subexponential when m = 6 for λI = 2048.

– m = 6 for λI = 2048, the complexity log (3m)3p2 ∼ 127 > λP = 112.

Therefore, possible m are unaffected by the Granger-Vercauteren method.
At the second step, we decide (m, p) by using the second part of Criterion 8

“q = Φ6m(p)”, the first part and the third part of Criterion 5 “m′|(p− 1)” and
“4|(p− 1) if 4|m”, and the first part of Criterion 6 “3|(pm − 1)”.

At the third step, we decide (s,w, δ) by using the second part of Criterion 5
“s(p−1)/m′
= 1”, the second part of Criterion 6 “w(pm−1)/3
= 1”, and the second
part of Criterion 7 “δ(p3m−1)/2
= 1”.

We estimate the number of available parameters satisfying the above con-
straints. Whenever (m, p) is fixed, (s,w,d) still have a great degree of freedom.
We are interested in the number of (m, p). When p satisfies �6m log p = λI

exactly, 656 different p for (λI ,m) = (2048, 12), many more p for (2048, 6), and
36 different p for (1024, 6).

5 Computation Costs

Costs of operations and transformations are shown in Tables 5 and 6. Where
I3,M3, F3 are a cost of inversion, multiplication, the Frobenius exponentiation

Generating Parameters for Algebraic Torus-Based Cryptosystems 165

Table 5. Costs of operations

Operation Cost
Mult 3M3 + 3B = 18M + 9B

Frob 2F3 + B = 6F + 7B

Table 6. Cost of transformations

Map Cost
P2A I3 + M3 = I + 21M + 6F + 12B

A2P M + 2S + B

in F(pm)3 , respectively. I,M, S, F are a cost of inversion, multiplication, square,
the Frobenius exponentiation in Fpm , respectively. B is a cost of multiplication
between unknown element and the constant w,d in Fpm .

Although the extension degree m and the size of characteristic p are ad-
justable, our result is similar to the case of cyclotomic polynomials [11] and the
case of characteristic 3 [7].

5.1 Arithmetical Operations

Multiplication. The primitive polynomial f2(x) = x2 − δ leads to x2 ≡ δ
(mod f2(x)). The multiplication between (α, β) ∈ T6(Fpm) and (α′, β′) ∈
T6(Fpm) implies the multiplication between α−βx

α+βx ∈ T6(Fpm) and α′−β′x
α′+β′x ∈

T6(Fpm), and becomes (α′′, β′′) ∈ T6(Fpm) by

(α± βx)(α′ ± β′x) = (αα′ + δββ′)± (βα′ + αβ′)x = α′′ ± β′′x. (12)

Eq. (12) is equal to the multiplication in the finite field F(pm)6 . We can compute
that with 3M3 + 3B by using the Karatsuba method, which performs better
than classical multiplication when the cost of the multiplication in the subfield
is higher than that of the addition in the subfield.

The Frobenius exponentiation. x2 ≡ δ (mod f2(x)) leads xpl

= δ(pl−1)/2x.
The pl-th power of (α, β) ∈ T6(Fpm) implies the pl-th power of α−βx

α+βx ∈ T6(Fpm),
and becomes (α′, β′) ∈ T6(Fpm) by

(α± βx)pl

= αpl ± βpl

δ(pl−1)/2x = α′ ± β′x. (13)

Eq. (13) is equal to the Frobenius exponentiation in the finite field F(pm)6 .

5.2 Transformations

From the projective into the affine (P2A). We consider the case that
δ = d ∈ F×

pm . If β
= 0, by substituting γ = α/β to the condition of eq. (4), we
have the following eq. (14).

γp2m+pm

+ γpm+1 + γp2m+1 = −d (14)

By substituting γ = c0 + c1y + c2y
2, ci ∈ Fpm to eq. (14), we obtain

c1c2w = c2
0 + d/3. (15)

c2 can be calculated from c0 and c1 in the case of c1
= 0. If m = 2a3b, then
c1
= 0 and c2
= 0 is proved. We show −d/3 is a quadratic nonresidue in Fpm in
order to prove that. See appendix A.

166 T. Yonemura et al.

From the affine into the projective (A2P). c0c1+c2
1y+(c2

0+d ·3−1)w−1y2

and c1 are substituted to α and β, respectively.

6 Concluding Remarks

In this paper, we produced the parameter selection criteria from the viewpoints
of security and efficiency. There are an improvement of the index calculus for
medium characteristic, subexponential time algorithm for solving the discrete
logarithm problem in algebraic tori, and the fact the algebraic torus Tn(Fpm)
can be covered by a subfield of F(pm)n . We established criteria in order to resist
attacks consistently. We also made the extension degree m and the size of char-
acteristic p adjustable. We provide examples of parameters satisfying the criteria
in the case that characteristics are shorter than the word size. Our analysis con-
firmed that the element of the algebraic torus T6 in the affine representation has
good properties: small size and simple use. Certain issues are left as subjects
for future work, including investigating the performance of an actual implemen-
tation, optimizing torus-based public key schemes, and selecting more efficient
parameters such that G is the minimum.

References

1. Smith, P., Skinner, C.: A Public-key Cryptosystem and a Digital Signature Based
on the Lucas Function Analogue to Discrete Logarithms. In: Safavi-Naini, R.,
Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 357–364. Springer,
Heidelberg (1995)

2. Lenstra, A.K., Verheul, E.R.: The XTR Public Key System. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)

3. Rubin, K., Silverberg, A.: Torus-based Cryptography. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management - Part 1: Genaral (Revised). Special Publication 800/57, NIST (2007)

5. van Dijk, M., Granger, R., Page, D., Rubin, K., Silverberg, A., Stam, M., Woodruff,
D.: Practical Cryptography in High Dimensional Tori. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 234–250. Springer, Heidelberg (2005)

6. Gower, J.E.: Prime Order Primitive Subgroups in Torus-based Cryptography.
Cryptology ePrint Archive, Report 2006/466 (2006)

7. Granger, R., Vercauteren, F.: On the Discrete Logarithm Problem on Algebraic
Tori. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 66–85. Springer,
Heidelberg (2005)

8. Joux, A., Lercier, R.: The Function Field Sieve in the Medium Prime Case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

9. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves.
Journal of Cryptology 23(2), 224–280 (2010)

10. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E84-A(5), 1234–1243 (2001)

Generating Parameters for Algebraic Torus-Based Cryptosystems 167

11. Granger, R., Page, D., Stam, M.: A Comparison of CEILIDH and XTR. In: Buell,
D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 235–249. Springer, Heidelberg (2004)

12. Hitt, L.: On the Minimal Embedding Field. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 294–301. Springer,
Heidelberg (2007)

13. Bosma, W., Hutton, J., Verheul, E.R.: Looking beyond XTR. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 321–332. Springer, Heidelberg (2002)

14. Galbraith, S.: Disguising Tori and Elliptic Curves. Cryptology ePrint Archive,
Report 2006/248 (2006)

15. Rubin, K., Silverberg, A.: Compression in Finite Fields and Torus-based Cryptog-
raphy. SIAM Jour. on Computing 37(5), 1401–1428 (2008)

16. Gordon, D.: Discrete Logarithms in GF (p) Using the Number Field Sieve. SIAM
Jour. on Discrete Math. 6, 124–138 (1993)

17. Adleman, L.M.: The Function Field Sieve. In: Huang, M.-D.A., Adleman, L.M.
(eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

18. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The Number Field Sieve in the
Medium Prime Case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006)

19. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics
and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

A Quadratic Nonresidue in Fpm

Fact 3. Let a and b be nonnegative integers, p be a prime, and m = 2a3b.
gm(z) = zm−s, f3(y) = y3−w and f2(x) = x2−δ are irreducible in Fp[z], Fpm [y]
and F(pm)3 [x], respectively. If δ = d ∈ F×

pm , −d/3 is a quadratic nonresidue in
Fpm .

Proof. −3 is a quadratic residue and d is a quadratic nonresidue. Then −d/3 is
a quadratic nonresidue in Fpm .

– Since f3(y) is irreducible, 3|(pm − 1) holds and 3
 |p. If 3|m, then 3|(p − 1)
because gm(z) is irreducible. The fact that −3 is a quadratic residue in Fpm

is proved by using Fact 4 (a) and Fact 5 (a). If 2|m and 3|(p − 1), the fact
is proved in the above way. If 2|m and 3|(p− 2), the fact is proved by using
Fact 4 (b) and Fact 5 (b).

– Since f2(x) is irreducible, d(pm−1)/2
= 1. d is a quadratic nonresidue in Fpm

straightforwardly. ��
Fact 4. Let p be a prime.

(a) If 3|(p− 1), −3 is a quadratic residue in Fp.
(b) If 3|(p− 2), −3 is a quadratic nonresidue in Fp.

Proof. We use the Legendre symbol
(

a
b

)
, the first supplementary law, and the

reciprocity law.(−3
p

)
=
(−1

p

)(
3
p

)
= (−1)

p−1
2 (−1)

p−1
2

(
p mod 3

3

)
=
(

p mod 3
3

)
(16)

If p mod 3 = 1, then −3 is a quadratic residue in Fp. Else if p mod 3 = 2, then
−3 is a quadratic nonresidue in Fp. ��

168 T. Yonemura et al.

Fact 5. Let m be a positive integer, p be a prime.

(a) If a is a quadratic residue in Fp, then a is a quadratic residue in Fpm .
(b) If a is a quadratic nonresidue in Fp, a is a quadratic residue in Fpm in the

case of 2|m, and a is a quadratic nonresidue in Fpm in the case of 2
 |m.

Proof. (a) If a(p−1)/2 = 1, then a
pm−1

2 = a
p−1
2 (pm−1+···+p+1) = 1.

(b) If a(p−1)/2 = −1, then a
pm−1

2 = (−1)pm−1+···+p+1 = (−1)m. ��

Analysis of the MQQ Public Key Cryptosystem

Jean-Charles Faugère2, Rune Steinsmo Ødeg̊ard1,�,
Ludovic Perret2, and Danilo Gligoroski3

1 Centre for Quantifiable Quality of Service in Communication Systems at the
Norwegian University of Science and Technology in Trondheim, Norway

rune.odegard@q2s.ntnu.no
2

SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6

104, avenue du Président Kennedy 75016 Paris, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

3 Department of Telematics at the Norwegian University of Science and Technology
in Trondheim, Norway
danilog@item.ntnu.no

Abstract. MQQ is a multivariate public key cryptosystem (MPKC)
based on multivariate quadratic quasigroups and a special transform
called “Dobbertin transformation” [17]. The security of MQQ, as well
as any MPKC, reduces to the difficulty of solving a non-linear system of
equations easily derived from the public key. In [26], it has been observed
that that the algebraic systems obtained are much easier to solve that
random non-linear systems of the same size. In this paper we go one
step further in the analysis of MQQ. We explain why systems arising
in MQQ are so easy to solve in practice. To do so, we consider the so-
called the degree of regularity; which is the exponent in the complexity
of a Gröbner basis computation. For MQQ systems, we show that this
degree is bounded from above by a small constant. This is due to the
fact that the complexity of solving the MQQ system is the minimum
complexity of solving just one quasigroup block or solving the Dobbertin
transformation. Furthermore, we show that the degree of regularity of
the Dobbertin transformation is bounded from above by the same con-
stant as the bound observed on MQQ system. We then investigate the
strength of a tweaked MQQ system where the input of the Dobbertin
transformation is replaced with random linear equations. It appears that
the degree of regularity of this tweaked system varies both with the size
of the quasigroups and the number of variables. We conclude that if a
suitable replacement for the Dobbertin transformation is found, MQQ
can possibly be made strong enough to resist pure Gröbner attacks for
adequate choices of quasigroup size and number of variables.

Keywords: multivariate cryptography, Gröbner bases , public-key, mul-
tivariate quadratic quasigroups, algebraic cryptanalysis.

� Rune Steinsmo Ødeg̊ard was visiting the SALSA team at LIP6 during the research
of this paper.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 169–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

170 J.-C. Faugère et al.

1 Introduction

The use of polynomial systems in cryptography dates back to the mid eight-
ies with the design of Matsumoto and Imai [25], later followed by numerous
other proposals. Two excellent surveys on the current state of proposals for
multivariate asymmetric cryptosystems has been made by Wolf and Preneel
[33] as well as Billet and Ding [6]. Basically the current proposals can be clas-
sified into four main categories, some of which combine features from several
categories: Matsumoto-Imai like schemes [28,30], Oil and Vinegar like schemes
[29,20], Stepwise Triangular Schemes [31,18] and Polly Cracker Schemes [11]. In
addition Gligoroski et al. has proposed a fifth class of trapdoor functions based
on multivariate quadratic quasigroups [17].

As pointed out in [6], it appears that most multivariate public-key cryptosys-
tems (MPKC) suffer from obvious to less obvious weaknesses. Some attacks are
specific and focus on one particular variation and breaks it due to specific prop-
erties. One example is the attack of Kipnis and Shamir against the Oil and
Vinegar scheme [21]. However, most attacks use general purpose algorithms that
solve multivariate system of equations. Generic algorithms to solve this problem
are exponential in the worst case, and solving random system of algebraic equa-
tions is also known to be difficult (i.e. exponential) in the average case. However,
in the case of multivariate public-key schemes the designer has to embed some
kind of trapdoor function to enable efficient decryption and signing. To achieve
this, the public-key equations are constructed from a highly structured system
of equations. Although the structure is hidden, it can be exploited for instance
via differential or Gröbner basis based techniques.

Using Gröbner basis [8] is a well established and general method for solving
polynomial systems of equations. The complexity of a Gröbner basis computation
is exponential in the degree of regularity, which is the maximum degree of polyno-
mials occurring during the computation [4]. The first published attack on multi-
variate public-key cryptosystems using Gröbner basis is the attack by Patarin on
the Matsumoto-Imai scheme [27]. In this paper Patarin explains exactly why one
is able to solve the system by using Gröbner bases. The key aspect is that there
exists bilinear equations relating the input and output of the system [6]. This low
degree relation between the input and the output means that only polynomials
of a low degree will appear during the computation of the Gröbner basis. Conse-
quently, the complexity of solving the system is bounded by this low degree.

Another multivariate cryptosystem which has been broken by Gröbner bases
cryptanalysis is the MQQ public key block cipher [17]. The cipher was broken
both by Gröbner bases and MutantXL independently in [26]. Given a ciphertext
encrypted using the public key, the authors of [26] were able to compute the cor-
responding plaintext. However, the paper did not theoretically explain why the
algebraic systems of MQQ are easy to solve in practice. In this paper we explain
exactly why the MQQ cryptosystem is susceptible to algebraic cryptanalysis.
This is of course interesting from a cryptanalysis perspective, but also from a
design perspective. If we want to construct strong multivariate cryptographic
schemes we must understand why the weak schemes have been broken.

Analysis of the MQQ Public Key Cryptosystem 171

1.1 Organisation of the Paper

This paper is organized as follows. In Section 2 we give an introduction to multi-
variate quadratic quasigroups. After that we describe the MQQ public key cryp-
tosystem. In Section 3 we give a short introduction to the theory of Gröbner
bases and reiterate the generic complexity of computing such bases. In Section
4 we show that the degree of regularity of MQQ systems is bounded from above
by a small constant. We then explain this charcteristic by looking at the shape of
the inner system. In Section 5 we further elaborate on the weaknesses of MQQ,
and investigate if some tweaks can make the system stronger. Finally, Section 6
concludes the paper.

2 Description of the MQQ Public Key Cryptosystem

In this section we give a description of the multivariate quadratic quasigroup pub-
lic key cryptosystem [17]. The system is based on previous work by Gligoroski
and Markovski who introduced the use of quasigroup string processing in
cryptography [23,24].

2.1 Multivariate Quadratic Quasigroups

We first introduce the key building block of the MQQ PKC, namely multivariate
quadratic quasigroups. For a detailed introduction to quasigroups in general, we
refer the interested reader to [32].

Definition 1. A quasigroup is a set Q together with a binary operation ∗ such
that for all a, b ∈ Q the equations � ∗ a = b and a ∗ r = b have unique solutions
� and r in Q respectively. A quasigroup is said to be of order n if there are n
elements in the set Q.

Let (Q, ∗) be a quasigroup of order 2d, and β be a bijection from the quasigroup
to the set of binary strings of length d, i.e

β : Q→ GF (2d)
a �→ (x1, . . . , xd)

(1)

Given such a bijection, we can naturally define a vector valued Boolean function

∗vv : GF (2d)×GF (2d)→ GF (2d)
(β(a), β(b)) �→ β(a ∗ b) (2)

Now let β(a ∗ b) = (x1, . . . , xd) ∗vv (xd+1, . . . , x2d) = (z1, . . . , zd). Note that each
zi can be regarded as a 2d-ary Boolean function zi = fi(x1, . . . , x2d), where each
fi : GF (2d) → GF (2) is determined by ∗. This gives us the following lemma
[17].

172 J.-C. Faugère et al.

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijection β :
Q→ GF (2d) there is a unique vector valued Boolean function ∗vv and d uniquely
determined 2d-ary Boolean functions f1, f2, . . . , fd such that for each a, b, c ∈ Q:

a ∗ b = c
�

(x1, . . . , xd) ∗vv (xd+1, . . . , x2d) = (f1(x1, . . . , x2d), . . . , fd(x1, . . . , x2d)).
(3)

This leads to the following definition for multivariate quadratic quasigroups.

Definition 2. ([17]) Let (Q, ∗) be a quasigroup of order 2d, and let f1, . . . , fd be
the uniquely determined Boolean functions under some bijection β. We say that
the quasigroup is a multivariate quadratic quasigroup (MQQ) of type Quadd−kLink

(under β) if exactly d − k of the corresponding polynomials fi are of degree 2
and k of them are of degree 1, where 0 ≤ k ≤ d.

Gligoroski et al. [17] mention that quadratic terms might cancel each other.
By this we mean that some linear transformation of (fi)1≤i≤n might result in
polynomials where the number of linear polynomials is larger than k, while the
number of quadratic polynomials is less than d − k. Later Chen et al. [9] have
shown that this is more common than previously expected. In their paper they
generalizes the definition of MQQ above to a family which is invariant by linear
transformations, namely:

Definition 3. Let (Q, ∗) be a quasigroup of order 2d, and let f1, . . . , fd be the
unique Boolean functions under some bijection β. We say that the quasigroup is
a multivariate quadratic quasigroup (MQQ) of strict type Quadd−kLink (under
β), denoted by Quads

d−kLins
k, if there are at most d−k quadratic polynomials in

(fi)1≤i≤d whose linear combination do not result in a linear form.

Chen et al. also improved Theorem 2 from [17] which gives a sufficient condition
for a quasigroup to be MQQ. We restate this result below.

Theorem 1. Let A1 = [fij]d×d and A2 = [gij]d×d be two d×d matrices of linear
Boolean expressions with respect to x1, . . . , xd and xd+1, . . . , x2d respectively. Let
c be a binary column vector of d elements. If det(A1) = det(A2) = 1 and

A1 ·(xd+1, . . . , x2d)T +(x1, . . . , xd)T = A2 ·(x1, . . . , xd)T +(xd+1, . . . , x2s)T , (4)

then the vector valued Boolean operation (x1, . . . , xd) ∗vv (xd+1, . . . , x2d) =

B1A1 · (xd+1, . . . , x2d)T + B2 · (x1, . . . , xd)T + c (5)

defines a quasigroup (Q, ∗) of order 2d which is MQQ for any two non-singular
Boolean matrices B1 and B2

In addition Chen et al. [9] proved that no MQQ as in Theorem 1 can be of
strict type Quads

dLins
0. This result uncovered a possible weakness in [17] as the

proposed scheme used 6 quasigroups of type Quad5Lin0.

Analysis of the MQQ Public Key Cryptosystem 173

Notice that the vector valued Boolean function defining the MQQ in Theorem
1 have no terms of the form xixj with i, j ≤ d or i, j > d. This means that if we
set the first or the last half of the variables to a constant, we end up with only
linear terms in the MQQ. It is still an open question if there exists MQQ that
are not as in Theorem 1.

The MQQs used in this paper have been produced using the algorithm pro-
vided in Appendix A. The algorithm is based on the paper [9], and produces
MQQs that are more suitable for encryption since they are guaranteed to be of
strict type Quads

d−kLins
k for 0 < k ≤ d.

2.2 The Dobbertin Bijection

In addition to MQQs, [17] also uses a bijection introduced by Dobbertin in [12].
Dobbertin proved that the following function, in addition to being multivariate
quadratic over GF (2), is a bijection in GF (22r+1):

Dr : GF (22r+1) → GF (22r+1)
x �→ x2r+1+1 + x3 + x

(6)

2.3 A Public Key Cryptosystem Based on MQQ

We are now ready to describe the public key cryptosystem presented by
Gligoroski et al. in [17]. Let N = nd be the desired number of variables (x1, . . . ,
xN), and let {∗1vv, . . . , ∗k

vv} be a collection of MQQs of size 2d represented as 2d-
ary vector valued Boolean functions. The public key is constructed as follows.

Algorithm. MQQ public key construction

1. Set X = [x1, . . . , xN]T . Randomly generate an N ×N non-singular Boolean
matrix S, and compute X←S ·X.

2. Randomly choose a n-tuple I = {i1, . . . , in}, where ij ∈ {1, . . . , k}. The
tuple I will decide which MQQ, ∗ij

vv, to use at each point of the quasigroup
transformation.

3. Represent X as a collection of vectors of length d, X = [X1, . . . , Xn]T .
Compute Y = [Y1, . . . , Yn]T where Y1 = X1, Y2 = X1 ∗i1

vv X2, and Yj+1 =
Xj ∗ij

vv Xj+1 for j = 1, . . . , n− 1.
4. Set Z to be the vector of all the linear terms of Y1, . . . , Yn. Here Y1 will be

all linear terms, while each Yj has between 1 and k linear terms depending
on the type Quads

d−kLins
k of MQQ used. Transform Z with one or more

Dobbertin bijections of appropriate size. For example if Z is of size 27 we
can use one Dobbertin bijection of dimension 27, three of dimension 9, or
any other combination summing up to 27. Finally, set W ←Dob(Z).

5. Replace the linear terms of Y = [Y1, . . . , Yn]T with the terms in W. Ran-
domly generate an N × N non-singular Boolean matrix T, and compute
Y←T ·Y

6. return the public key Y. The private key is S,T, {∗1vv, . . . , ∗k
vv} and I.

174 J.-C. Faugère et al.

3 Gröbner Bases

This section introduces the concept of Gröbner bases as well as a complexity
bound to compute such bases. We refer to (for instance) [10] for basic definitions,
and a more detailed description of the concepts.

Let K be a field and K[x1, . . . , xN] be the polynomial ring over K in the vari-
ables x1, . . . , xN . Recall that a monomial in a collection of variables is a product
xα = xα1

1 · · ·xαN

N where αi ≥ 0. Let > be an admissible monomial order on
K[x1, . . . , xn]. The most common example of such ordering is the lexicographical
order where xα > xβ if in the difference α− β ∈ ZN , the leftmost nonzero entry
is positive. Another frequently encountered order is the graded reverse lexico-
graphical order where xα > xβ iff

∑
i αi >

∑
i βi or

∑
i αi =

∑
i βi and in the

difference α − β ∈ ZN the rightmost nonzero entry is negative. For different
monomial orderings Gröbner bases hold specific theoretical properties and show
different practical behaviors. Given a monomial order >, the leading term of a
polynomial f =

∑
α cαx

α, denoted LT>(f), is the product cαx
α where xα is the

largest monomial appearing in f in the ordering >.

Definition 4. ([10]) Fix a monomial order > on K[x1, . . . , xN], and let I ⊂
K[x1, . . . , xN] be an ideal. A Gröbner basis for I (with respect to >) is a finite
collection of polynomials G = {g1, . . . , gt} ⊂ I with the property that for every
nonzero f ∈ I, LT>(f) is divisible by LT>(gi) for some i.

Let
f1(x1, . . . , xN) = · · · = fm(x1, . . . , xN) = 0 (7)

by a system of m polynomials in N unknowns over the field K. The set of
solutions in K, which is the algebraic variety, is defined as

V = {(z1, . . . , zN) ∈ k|fi(z1, . . . , zN) = 0∀1 ≤ i ≤ m} (8)

In our case we are interested in the solutions of the MQQ system, which are
defined over GF (2).

Proposition 1. ([15]) Let G be a Gröbner basis of [f1, . . . , fm, x2
1−x1, . . . , x

2
N−

xN]. Then the following holds:

1. V = ∅ (no solution) iff G = [1].
2. V has exactly one solution iff G = [x1−a1, . . . , xN −aN] where ai ∈ GF (2).

Then (a1, . . . , aN) is the solution in GF (2) of the algebraic system.

It is clear that as we are solving systems over GF (2) we have to add the field
equations x2

i = xi for i = 1, . . . , N . This means that we have to compute Gröbner
bases of m+N polynomials and N variables. This is quite helpful, since the more
equations you have, the more able you are to compute Gröbner bases [15].

3.1 Complexity of Computing Gröbner Bases

Historically, the concept of Gröbner bases, together with an algorithm for com-
puting them, was introduced by Bruno Buchberger in his PhD-thesis [8]. Buch-
berger’s algorithm is implemented in many computer algebra systems. However,

Analysis of the MQQ Public Key Cryptosystem 175

in the last decade, more efficient algorithms for computing Gröbner bases have
been proposed. Most notable are Jean-Charles Faugère’s F4[13] and F5 [14] algo-
rithms. In this paper we have used the magma [22] 2.16-1 implementation of the
F4 algorithm on a 4 core Intel Xeon 2.93GHz computer with 128GB of memory.

The complexity of computing a Gröbner basis of an ideal I depends on
the maximum degree of the polynomials appearing during the computation.
This degree, called degree of regularity, is the key parameter for understand-
ing the complexity of a Gröbner basis computation [4]. Indeed, the complexity
of the computation is polynomial in the degree of regularity Dreg, more precisely
the complexity is:

O(NωDreg), (9)

which basically correspond to the complexity of reducing a matrix of size ≈
NDreg . Here 2 < ω ≤ 3 is the “linear algebra constant”, and N the number
of variables of the system. Note that Dreg is also a function of N , where the
relation between Dreg and N depends on the specific system of equations. This
relation is well understood for regular (and semi-regular) systems of equations
[1,4,2,5]. However, as soon as the system has some kind of structure, this degree
is much more difficult to predict. In some particular cases, it is actually possible
to bound the degree of regularity (see the works done on HFE [15,19]). But this
is a hard task in general.

As already pointed out, the degree of regularity is abnormally small for al-
gebraic systems occuring in MQQ. This fact explains the weakness observed in
[26]. In this paper, we go one step further in the security analysis by explaining
why the degree of regularity is so small for MQQ.

Note that the degree of regularity is related to the ideal I = 〈f1, . . . , fm〉
and not the equations f1, . . . , fm themselves. In particular, for any non-singular
matrix T , the degree of regularity of [f ′

1, . . . , f
′
m]t = T · [f1, . . . , fm]t is similar

to the degree of regularity of [f1, . . . , fm]. More generally, we can assume that
this degree is generically (i.e. with high probability) invariant for a random
(invertible) linear change of variables, and an (invertible) combination of the
polynomials. These are exactly the transformations performed to mask the MQQ
structure. Note that such a hypothesis has already been used for instance in [19].

4 Why MQQ Is Susceptible to Algebraic Cryptanalysis

In [26], MQQ systems with up to 160 variables was broken usin MutantXL (the
same result has aslo been obtained independently with F4). The most important
point made by [26] is that the degree of regularity is bounded from above by
3. This is much lower than a random system of quadratic equations where the
degree of regularity increases linearly with the number of variables N . Indeed,
for a random system it holds that Dreg is asymptotically equivalent to N

11.114
[2]. The authors of [26] observed that this low degree is due to the occurrence
of many new low degree relations during the computation of a Gröbner basis.
In Section 4.2, we will explain in detail how the very structure of the MQQ
system results in the apparance of the low degree relations. First, however, we

176 J.-C. Faugère et al.

will show that same upper bound on the degree of regularity is obtained using
the improved quasigroups described in Section 2.1.

4.1 Experimental Results on MQQ

To test how the complexity of Gröbner bases computation of MQQ systems is
related to the number of variables, we constructed MQQ systems in 30, 60, 120
and 180 variables following the procedure described in Section 2.3. In this con-
struction we used 17 MQQs of strict type Quads

8Lins
2 and Dobbertin bijections

over different extension fields of dimension 7 and 9 respectively. We then tried
to compute the plaintext given a ciphertext encrypted with the public key. The
results of this test are presented in Table 1. From the table we see that the

Table 1. Results for MQQ-(30,60,120,180). Computed with magma 2.16-1’s implemen-
tation of the F4 algorithm on a Intel Xeon 2.93GHz quad core computer with 128GB
of memory.

Variables Dreg Solving Time (s) Memory (b)
30 3 0,06 15,50
60 3 1,69 156,47
120 3 379,27 4662,00
180 3 4136,31 28630,00

degree of regularity does not increase with the number of variables, but remains
constant at 3. This means breaking the MQQ system is only polynomial in the
number of variables. Once again, this is not the behaviour of a random system of
equations, for which the degree of regularity increases linearly with the number
of variables, and the solving time therefore increases exponentially. We explain
the reason of such difference in the next section.

4.2 Shape of the MQQ System

The non-random behavior described above can be explained by considering the
shape of the “unmasked” MQQ system. By unmasked we mean the MQQ system
without the linear transformations S and T . As already explained in Section
3.1, the maximum degree of the polynomials occurring in the computation of a
Gröbner basis is invariant under the linear transformation S and T .

In Figure 1 we show which variables appear in each equation for an unmasked
MQQ system of 60 variables. The staircase shape comes from the cascading use
of quasigroups, while the three blocks of equations at the bottom are from the
Dobbertin bijection of size 7. Obviously, a random multivariate system would
use all 60 variables in all equations. For this instance of MQQ, only 1

3 of the
variables are used in each quasigroup and about 2

3 is used in each block of the
Dobbertin transformation.

Analysis of the MQQ Public Key Cryptosystem 177

Fig. 1. Shape of 60 variable MQQ public key system without the use of S and T
transformations. The black color means that the corresponding variables is used in the
equation. The system was constructed using 4 MQQs of type Quads

8Lins
2, one MQQ of

type Quads
7Lins

3, and 3 Dobbertin bijections defined over 3 different extension fields of
dimension 7.

Now assume that the Gröbner basis algorithm somewhere during the calcula-
tion has found the solution for one of the quasigroup blocks Yj = Xj ∗ij

vv Xj+1.
Due to the cascading structure of the MQQ system, the variables of Xj are used
in the block Yj−1 = Xj−1 ∗ij−1

vv Xj and the variables of Xj+1 are used in the
block Yj+1 = Xj+1 ∗ij+1

vv Xj+2. In Section 2.1 we showed that if we set the first
or the last half of the variables of an MQQ to constant, all equations become
linear. This means that if we have solved the block Yj , the equations of the
blocks Yj−1 and Yj+1 becomes linear. The blocks Yj−1 and Yj+1 can then be
solved easily. This gives a solution for the variables Xj−1 and Xj+2, which again
makes the equations in the blocks Yj−2 and Yj+2 linear. Continuing like this we
have rapidly solved the whole system.

Similarly, assume the Gröbner basis has solved the Dobbertin blocks at some
step. This gives us the solution to all the variables in X1 which makes the first
quasigroup block Y1 = X1 ∗i1

vv X2 linear. Solving this gives us the first half of the
equations of the block Y2 and so on. As a conclusion, solving a MQQ system is
reduced to either solving just one block of quasigroup equations, or solving the
Dobbertin transformation. The security of solving an MQQ system is therefore
the minimum complexity between solving the Dobbertin transformation or one
MQQ block.

178 J.-C. Faugère et al.

5 Weaknesses of MQQ

The goal of this part is to determine the weakest part of the system; the Dob-
bertin transformation or the quasigroup transformation. We first look closer at
the Dobbertin block of equations. Since these equations constitutes a square
system of equations, we expect them to be easier to solve then the quasigroup
block of equations, which is an undetermined system of equations.

5.1 The Dobbertin Transformation

Recall that the Dobbertin transformation is a bijection over GF (22r+1) defined
by the function Dr(x) = x2r+1+1 + x3 + x. For any r, we can view this func-
tion as 2r + 1 Boolean equations in 2r + 1 variables. Using magma 2.16-1’s
implementation of the F4 algorithm1, we experimentally computed the degree
of regularity for solving this system of equations for r = 2, . . . , 22. We observed
that the degree of regularity was 3 for all computed instances. Therefore the
Dobbertin transformation can be easily solved by a Gröbner basis computation.
In addition we learn that tweaking the MQQ system by increasing the size of
the extension field, over which the transformation is defined, will have no effect
on strengthening the system.

Proving mathematically (if true) that the degree of regularity of Dr(x) is
constant at 3 for all r is difficult. We can, however, explain why the degree of
regularity is low for all practical r. Let K = Fq be a field of q elements, and let
L be an extension of degree n over K. Recall that an HFE polynomial f is a
low-degree polynomial over L with the following shape:

f(x) =
∑

0≤i,j≤n

qi+qj≤d

ai,jx
qi+qj

+
∑

0≤k≤n

qk≤d

bkx
qk

+ c, (10)

where ai,j , bk and c all lie in L. The maximum degree d of the polynomial has
to be chosen such that factorization over L is efficient [7]. Setting q = 2 and
n = 2r + 1 we notice that the Dobbertin transformation is actually an HFE
polynomial, Dr(x) = x2r+1+20

+ x21+20
+ x20

. This is very helpful since a lot of
work has been done on the degree of regularity for Gröbner basis compuation of
HFE polynomials [15,7]. Indeed, it has been proved that the degree of regularity
for HFE polynomial of degree d is bounded from above by log2(d) [15,16]. For
Dobbertin’s transformation this means the degree of regularity is bounded from
above by r + 1 at least.

However, since the coefficients of the Dobbertin transformation all lie in
GF (2), we can give an even tighter bound on the degree of regularity. Similarly to
the weak-key polynomials in [7], the Dobbertin transformation commutes with
the Frobenius automorphism and its iterates Fi(x) : x �→ x2i

for 0 ≤ i ≤ n,
namely

Dr ◦ Fi(x) = Fi ◦Dr(x). (11)
1 The computer used was 4 processor Intel Xeon 2.93GHz computer with 128GB of

memory.

Analysis of the MQQ Public Key Cryptosystem 179

Table 2. Effects of quasigroup size and the Dobbertin transformation on the observed
degree of regularity for different MQQ. Dreg is the observed degree of regularity of
normal MQQ systems, while D∗

reg is the observed degree of regularity for the same
system where the input to Dobbertin has been replaced with random linear equations.

Variables Quasigroup size Quasigroups type Dobbertin Dreg D∗
reg

30 25 4 Quads
3Lins

2 and 1 Quads
2Lins

3 7,9 3 3
210 2 Quads

8Lins
2 7,7 3 4

40
25 5 Quads

3Lins
2 and 2 Quads

2Lins
3 7,7,7 3 4

210 3 Quads
8Lins

2 7,9 3 4
220 1 Quads

17Lins
3 7,7,9 3 4

50
25 9 Quads

3Lins
2 7,7,9 3 3

210 4 Quads
8Lins

2 9,9 3 4

60
25 11 Quads

3Lins
2 9,9,9 3 3

210 4 Quads
8Lins

2 and 1 Quads
7Lins

3 7,7,7 3 5
220 1 Quads

18Lins
2 and 1 Quads

17Lins
3 7,9,9 3 5

Thus Dr(x) = 0 implies that Fi◦Dr(x) = 0. This means for each i we can add the
2r + 1 equations over GF (2) corresponding to the equation Dr ◦ Fi(x) = 0 over
GF (22r+1) to the ideal. However, many of these equations are similar. Actually,
we have that Fi and Fj are similar if and only if gcd(i, 2r + 1) = gcd(j, 2r + 1)
[7]. Worst case scenario is when 2r + 1 is prime. The Frobenius automorphism
then gives us (only) 2(2r+1) equations in 2r+1 variables. From [3] we have the
following formula for the degree of regularity for a random system of multivariate
equations over GF (2) when the number of equations m is a multiple of the
number of variables N . For m = N(k+o(1)) with k > 1/4 the degree of regularity
is

Dreg

N
=

1
2
− k +

1
2

√
2k2 − 10k − 1 + 2(k + 2)

√
k(k + 2) + o(1). (12)

Setting k = 2 we get Dreg = − 3
2 + 1

2

√
−13 + 16

√
2·(2r+1) ≈ 0.051404·(2r+1) =

0.102808 ·r+0.051404. Note that the degree of regularity can not be smaller then
3. This means we have max(3, 0.102808 · r + 0.051404) as an upper bound for a
random multivariate system with the same number of equations and variables as
the Dobbertin transformation. This provides a good indication that the degree
of regularity for Dobbertin (which is not random at all) should be small, as
observed in the experiments, and even smaller than a regular HFE polynomial.

5.2 The Quasigroup Transformation

To get an idea how strong the quasigroup transformation is, we performed some
experiments where we replaced the input of the Dobbertin transformation by
random linear equations. This means that solving a Dobbertin transformation
block will no longer make all the equations in the first quasigroup transformation
linear. The result of our experiment on this special MQQ system where the
linear equations are perfectly masked is listed in Table 2. Note that the degree

180 J.-C. Faugère et al.

of regularity of 5 is still too small to prevent Gröbner bases attacks. What is
important is how the degree of regularity increases when we increase different
parameters. From the table it appears that both the quasigroup size and the
number of variables have an effect on the degree of regularity. This tells us that
if we replace the Dobbertin transformation with a stronger function, the MQQ
system can possibly be made strong enough to resist pure Gröbner attacsk for
adequate choices of quasigroup size and number of variables.

6 Conclusion

We further explained the results of [26] by showing that the degree of regularity
for MQQ systems are bounded from above by a small constant. Therefore even
MQQ systems with large number of variables can easily be broken with Gröbner
bases cryptanalysis. The main result of this paper is an explanation of the un-
derlying reason for this abnormal degree of regularity. We demonstrated how the
complexity of solving MQQ systems with Gröbner bases is equal to the minimum
of the complexity of solving the Dobbertin transformation and the complexity
of solving one MQQ block. Furthermore, our experimental data showed that the
degree of regularity for solving the Dobbertin transformation is bounded from
above by 3, the same as the bound on the MQQ system. These experimental re-
sults were also explained mathematically. A natural interpretation of the results
of our investigation is that the Dobbertin transformation employed is a serious
weakness in the MQQ system.

From a design point of view, we also showed that if Dobbertin’s transformation
is replaced with an ideal function – which perfectly hides the linear parts of the
system – the degree of regularity varies with the size of the quasigroups and the
number of variables. We conclude that if a suitable replacement for Dobbertin’s
transformation is found, MQQ can possibly be made strong enough to resist
pure Gröbner attacsk for adequate choices of quasigroup size and number of
variables. This remains an interesting open problem.

References

1. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université de Paris VI (2004)

2. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity study of Gröbner basis computa-
tion. Technical report, INRIA (2002), http://www.inria.fr/rrrt/rr-5049.html

3. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner basis computation
for semi-regular overdetermined sequences over F2 with solutions in F2. Technical
report, Institut national de recherche en informatique et en automatique (2003)

4. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

5. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Proc. of MEGA 2005,
Eighth International Symposium on Effective Methods in Algebraic Geometry
(2005)

http://www.inria.fr/rrrt/rr-5049.html

Analysis of the MQQ Public Key Cryptosystem 181

6. Billet, O., Ding, J.: Overview of cryptanalysis techniques in multivariate public
key cryptography. In: Sala, M., Mora, T., Perret, L., Sakata, S., Traverso, C.
(eds.) Gröbner Bases, Coding and Cryptography, pp. 263–283. Springer, Heidelberg
(2009)

7. Bouillaguet, C., Fouque, P.-A., Joux, A., Treger, J.: A family of weak keys in hfe
(and the corresponding practical key-recovery). Cryptology ePrint Archive, Report
2009/619 (2009)

8. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Leopold-
Franzens University (1965)

9. Chen, Y., Knapskog, S.J., Gligoroski, D.: Multivariate Quadratic Quasigroups
(MQQ): Construction, Bounds and Complexity. Submitted to ISIT 2010 (2010)

10. Cox, D., Little, J., O’Shea, D.: Using Algebraix Geometry. Springer, Heidelberg
(2005)

11. Levy dit Vehel, F., Marinari, M.G., Perret, L., Traverso, C.: A survey on polly
cracker system. In: Sala, M., Mora, T., Perret, L., Sakata, S., Traverso, C. (eds.)
Gröbner Bases, Coding and Cryptography, pp. 263–283. Springer, Heidelberg
(2009)

12. Dobbertin, H.: One-to-one highly nonlinear power functions on GF(2n). Appl.
Algebra Eng. Commun. Comput. 9(2), 139–152 (1998)

13. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

14. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation. ACM, New York (2002)

15. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

16. Fouque, P.-A., Macario-Rat, G., Stern, J.: Key recovery on hidden monomial mul-
tivariate schemes. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
19–30. Springer, Heidelberg (2008)

17. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor
functions based on multivariate quadratic quasigroups. In: Proceedings of the
American Conference on Applied Mathematics, MATH 2008, Stevens Point, Wis-
consin, USA, pp. 44–49. World Scientific and Engineering Academy and Society
(WSEAS), Singapore (2008)

18. Goubin, L., Courtois, N.T., Cp, S.: Cryptanalysis of the TTM cryptosystem. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer,
Heidelberg (2000)

19. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

20. Kipnis, A., Hotzvim, H.S.H., Patarin, J., Goubin, L.: Unbalanced oil and vinegar
signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
206–222. Springer, Heidelberg (1999)

21. Kipnis, A., Shamir, A.: Cryptanalysis of the oil & vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

22. MAGMA. High performance software for algebra, number theory, and geometry
— a large commercial software package, http://magma.maths.usyd.edu.au

http://magma.maths.usyd.edu.au

182 J.-C. Faugère et al.

23. Markovski, S.: Quasigroup string processing and applications in cryptography. In:
Proc. 1st Inter. Conf. Mathematics and Informatics for Industry MII 2003, Thes-
saloniki, April 14-16, pp. 278–290 (2003)

24. Markovski, S., Gligoroski, D., Bakeva, V.: Quasigroup string processing. In: Part
1, Contributions, Sec. Math. Tech. Sci., MANU, XX, pp. 1–2 (1999)

25. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

26. Mohamed, M.S., Ding, J., Buchmann, J., Werner, F.: Algebraic attack on the MQQ
public key cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

27. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

28. Patarin, J.: Hidden field equations (hfe) and isomorphisms of polynomials (ip):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

29. Patarin, J.: The oil & vinegar signature scheme (1997)
30. Patarin, J., Goubin, L., Courtois, N.T.: C ∗ −+ and HM: Variations around two

schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

31. Shamir, A.: Efficient signature schemes based on birational permutations. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

32. Smith, J.D.H.: An introduction to quasigroups and their representations. Chapman
& Hall/CRC, Boca Raton (2007)

33. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077
(2005)

Analysis of the MQQ Public Key Cryptosystem 183

A Algorithm for Generating Random MQQ

In this section we present the pseudo-code for how the MQQs used in this paper
have been generated. The code was implemented in magma.

Algorithm. MQQ algorithm

1. n ←{size of quasigroup}
2. L ←{number of linear terms}
3. if L ≤ 2
4. then Q = n
5. else Q = n− L
6. CorrectDeg ←True
7. while CorrectDeg
8. do A1 ←IdentityMatrix(n) (∗ The identity matrix of size n ∗)
9. X1 ←[x1, . . . , xn]T

10. X2 ←[xn+1, . . . , x2n]T

11. for i ←1 to Q
12. do for j ←i + 1 to n
13. do for k ←i + 1 to (n)
14. r ∈R {0, 1} (∗ random element from the set

{0,1} ∗)
15. A1(i,j) = A1(i,j) + r ∗X1k

16. B ←RandomNonSingularBooleanMatrix(n) (∗ Random non singular
Boolean matrix of size n ∗)

17. C ←RandomBooleanVector(n) (∗ Random Boolean vector of size
n ∗)

18. A1 ←B ∗A1
19. X1 ←B ∗X1 + C
20. L1 ←RandomNonSingularBooleanMatrix(n) (∗ Random non singu-

lar Boolean matrix of size n ∗)
21. L2 ←RandomNonSingularBooleanMatrix(n) (∗ Random non singu-

lar Boolean matrix of size n ∗)
22. A1 ←LinTrans(A1, L1) (∗ Lineary transform the indeterminates of

A1 according to L1 ∗)
23. X1 ←LinTrans(X1, L1) (∗ Lineary transform the indeterminates of

X1 according to L1 ∗)
24. X2 ←LinTrans(X2, L2) (∗ Lineary transform the indeterminates of

X2 according to L2 ∗)
25. MQQ ←A1 ∗X2 + X1
26. GBMQQ ←Gröbner(MQQ,2) (∗ The truncated Gröbnerbasis of de-

gree 2 under graded reverse lexicographical ordering. ∗)
27. Deg ←{number of linear terms in GBMQQ}
28. if Deg= L
29. then CorrectDeg ←False
30. return GBMQQ

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 184–198, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Efficient Scalar Multiplications for Elliptic Curve
Cryptosystems Using Mixed Coordinates Strategy and

Direct Computations

Roghaie Mahdavi and Abolghasem Saiadian

Department of Electronic Engineering, Amirkabir University of Technology, Tehran, Iran
{Samaneh5628,eeas335}@aut.ac.ir

Abstract. Scalar multiplication is the heart of elliptic curve cryptosystems.
Several techniques have been proposed for efficient scalar multiplication. Mixed
coordinate strategy is a useful technique for implementing efficient scalar
multiplication. It splits a scalar multiplication into a few parts, and performs each
part in the best coordinate. Also, the running time of scalar multiplication can be
reduced by applying direct computations in the evaluation stage. This technique
directly computes points of the form 2 from points and on the elliptic
curve. In this paper, we apply mixed coordinate strategy and direct computations
to various scalar multiplication algorithms such as binary method, NAF and
window NAF methods, MOF and window MOF methods to find the best
combinations of mixed coordinates strategy and direct computations for scalar
multiplication with respect to the computational costs and memory consumption.

Keywords: Elliptic curve cryptosystem, Scalar multiplication, Coordinate system,
Mixed coordinates strategy, Direct computations.

1 Introduction

Elliptic Curve Cryptosystem (ECC) was first proposed by Koblitz [1] and Miler [2]
independently in 1985. Security of ECC is derived from hardness of the discrete
logarithm problem on the additive group of points on an elliptic curve over a finite
field [3].

The benefits of ECC, when compared with other traditional public key
cryptosystems such as RSA in the same security level, include: shorter key length,
higher speed, lower power consumption. These are especially useful for mobile and
wireless devices which typically have limited computational resources and bandwidth.

The main operation in ECC is scalar multiplication that is . where is an
integer, and is an elliptic curve point. The common method for scalar multiplication
is performed by iterative additions (ECADD) and doubling (ECDBL) on an elliptic
curve according to bits of binary representation . Various methods have been
proposed for the efficient computation of . by reducing EC-operations (ECADD,
ECDBL). One method can be made by taking different binary representations of
the multiplier such as non-adjacent form (NAF) [3], window non-adjacent forms
such as (wNAF) [3], NAF+SW [3] and Frac-wNAF [3]. The other signed binary

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 185

representations of is Mutual Opposite Form (MOF) [4], wMOF [5] and Frac-
wMOF [6]. The conversion of MOF representations of an integer is highly flexible,
because it can be made from left-to-right and right-to-left and it is more efficient in
memory-constraint devices such as smart cards.

The running time of scalar multiplication is computed based on two levels of
complexity, elliptic curve operations and finite filed operations. Performing fast
addition and doubling on an elliptic curve is crucial for efficient scalar multiplication.
Computation time of EC-operation depends on the coordinate system adapted. EC-
operation in affine coordinate involves inversion, which is particularly a very costly
operation over prime fields. To avoid inversion for prime filed, various coordinate
systems have been proposed such as Projective coordinate [7], Jacobian coordinate
[7], modified Jacobian coordinate, and Chudnovsky Jacobian coordinate [7]. Using
these coordinates, we can remove inversions from the EC-operations at the cost of
increase in the other simpler filed operations.

Computation cost of an ECADD and ECDBL are different for various coordinates.
Some coordinate systems such as modified Jacobian coordinate have faster doubling
than the other coordinate systems and some coordinate systems such as Chudnovsky
Jacobian coordinate have faster addition. One possible way for an efficient scalar
multiplication is to switch the coordinate systems in the computation of ECADD and
ECDUB which is called “mixed coordinate strategy” [8]. Another approach for
efficient scalar multiplication is direct computation [9]. In recent years, several
algorithms have been proposed for direct computation of points of the form 2
where and are on the elliptic curve.

In this paper, we use both mixed coordinate strategy and direct computations to get
efficient scalar multiplication. We compute the running time of various scalar
multiplication algorithms with mixed coordinate strategy and combination of mixed
coordinate strategy and direct computations to discover the best strategy to compute
scalar multiplication from running time and memory consumption point of view.

The rest of the paper organized as follow, a brief overview of scalar multiplication
algorithms is presented in Section 2. In Section 3, we discuss about various coordinate
systems and mixed coordinate strategy, and we calculate the running time of scalar
multiplication algorithms with mixed coordinate strategy according to computational
cost. Direct computations are discussed in Section 4. In this section, we also calculate
the running time of scalar multiplication algorithms with combination of mixed
coordinate strategy and direct computations with respect to computational cost. In
Section 5, we compare both strategies to find the optimal strategy to obtain efficient
scalar multiplication and finally, conclusions are drawn.

2 Scalar Multiplication

Scalar multiplication is the heart of elliptic curve cryptosystems. The speed of scalar
multiplication plays an important role in the efficiency of these systems. Several
algorithms have been proposed to compute scalar multiplication in an efficient way.
They increase speed of scalar multiplication by reducing ECADD and ECDBL
operations. Some of them are discussed in the following subsection. They are studied

186 R. Mahdavi and A. Saiadian

from the running time perspective of scalar multiplication based on EC-operations.
For the number of elliptic curve additions and doublings, the time needed to perform
an addition will be denoted A and time of doubling D.

2.1 Binary Method

The most common method for performing scalar multiplication is the binary method
which computes . according to bits where ∑ 2 , 0,1 .
Algorithm1 computes scalar multiplication with the binary method.

Algorithm 1. Binary Scalar Multiplication

Input: Affine point , positive integer with binary representation , … ,

Output: .

 For 2 to 0

 If 0

 2

 Else

 2

Return

The cost of multiplication depends on the bit length of the binary representation of and the number of non-zero digits that is called the Hamming weight of scalar

multiplication. On average, Hamming weight of binary representation of is , so

this method requires (1) doubling and () adding. The efficiency of binary

method may be enhanced if pre-computation is allowed. In this case each non-zero bit

 is not restricted to be 1, but is an element of a suitable digit set of integers. We

call ∑ 2 a -representation if 0 hold for each 0 . In
this technique, in the pre-computation stage the points for are pre-

computed and stored. In the recoding stage, the scalar is rewritten to a -
representation and in the evaluation stage eventually the scalar multiplication is

performed. The most established technique for generating -representation is window
method [6]. In the window method with width w, successively, w consecutive bits of
the binary scalar are scanned and replaced by a table-entry corresponding. The

Hamming weight of window method is , therefore the computational cost of this

method is 1) elliptic curve addition and (1) elliptic curve doubling

operations. In the window method there is a trade-off between the running time of

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 187

scalar multiplication and memory consumption. We have to store 2 of s in the

pre-computation stage but the Hamming weight is reduced to which causes faster

scalar multiplication.

2.2 NAF Method

The most popular signed binary representation is NAF (non-adjacent form) that the
integer is represented as ∑ 2 where 1,0,1 . In NAF
representation, among any two adjacent digits, at most one is non-zero. Fortunately,
the NAF of K is at most one digit longer than the binary representation. The
Hamming weight of NAF representation is 1/3 and it has a lower Hamming weight
than the binary representation. Hence we can save 1/6 of additions required for
evaluating K.P, but the number of doubling is not affected. To reduce the number of
additions, wNAF representation have been proposed with a pre-computed table of
size 2 points. Algorithm 2 computes scalar multiplication from Left-to-Right
window NAF method. In Table 2.1, we have summarized computational cost of NAF
and window NAF methods according to EC-operations. The terms # and # are
computational costs of pre-computation and evaluation stages according to EC-
operations, respectively.

Algorithm 2. Left-to-Right window NAF method

Input: Affine point , positive integer with , … ,

Output: .

 Pre-computation:

 Set , 2

 For each 3,5, … , 2 1

Evaluation:

 For 2 to 0

 If 0

 2

 Else if 0

 2

 Else 2

Return

188 R. Mahdavi and A. Saiadian

Table 2.1. Comparison of Non-Zero Density and EC-operations Cost NAF Methods

Scheme 1/N.Z. Density # #
NAF[3] 3 — 33 1

wNAF[3] 1 2 1 1 1 1

NAF+SW[3] 43 13. 2
2 13 1 1 1

Frac- wNAF[3] , 12 2
2 12 1 , 1 1

According to Table 2.1, the running time of window NAF algorithms is reduced by

decreasing the number of additions with some pre-computation points. The
disadvantage of the NAF methods is that they can be computed only from the least
significant bit, that is, right-to-left; however, when used with memory constraint
devices such as smart cards; left-to-right recoding schemes are by far more valuable.
We have to compute the recoding and store them before starting left-to-right
evaluation stage. Hence, it requires additional n-bit memory for the right-to-left
exponent recoding.

2.3 MOF Method

The first left-to-right recoding algorithm was proposed by Joye and Yen[13] in 2000.
In CRYPTO 2004, Okeya[5] proposed a new efficient left-to-right recoding scheme
called Mutual Opposite Form(MOF) with these properties that:

• Signed adjacent non-zero bits (without considering 0 bits) are opposite.
• Most non-zero bit and the least non-zero bit are 1 and -1, respectively.
• All the positive integers with d bit binary string can be represented by

unique (d+1) bit MOF.

The d bit binary string can be converted to a signed binary string by computing 2 , where ‘(-)’ stands for a bitwise subtraction. Algorithm 3 efficiently
converts the binary string to MOF from most significant bit.

Algorithm 3. Computing the Left-to-Right MOF from Binary Representation of

Input: Binary string K = , … ,

Output: MOF of K = , … ,

 For 1 to 1 do

Return , … ,

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 189

Hamming weight of MOF representation is . To reduce the hamming weight of

MOF representation, we can use the window methods. In Table 2.2; we summarized
computational costs of MOF and window MOF scalar multiplication algorithms
according to EC-operations.

Table 2.2. Comparison of Non-Zero Density and EC-operations Cost MOF Methods

Scheme 1/N.Z. Density # #
MOF[4] 2 — 2 1

wMOF[5] 1 2 1 1 1 1

Frac- wMOF[6] 1 2 1 1 1 1

3 Elliptic Curve Coordinate Systems

An elliptic curve can be represented using several coordinate systems. For each
system, the computation cost of elliptic curve addition and doubling operations are
different. For efficient curve scalar multiplication, choosing a coordinate system with
fast addition and doubling operations is an important factor.

Let : , where , , be an elliptic curve over . Let , and , be two points on E. The addition formula for affine
coordinate is mentioned in Table 3.1. We denote the computational time of an elliptic
curve addition operation with and an elliptic curve doubling operation with 2). We also denote a field squaring, a filed multiplication and a field inversion by
S, M, I; respectively. EC-operations in affine coordinate involve inversion, which is a
very costly operation. To avoid inversion, Projective coordinate systems have been
proposed. Using these coordinates, we can remove inversions from EC-operation with
increasing the simpler field operations.

Table 3.1. Addition Formula in Affine Coordinate

 3 2

Cost: I +2 M + S Cost: 2)= I + 2 M + 2S

In Projective coordinate systems, the formula for point arithmetic can be obtained

from the formula for affine coordinate by the substitutions and . The

appropriateness of using coordinates is strongly determined by the ratio .

190 R. Mahdavi and A. Saiadian

Table 3.2. Computation Cost of Addition and Doubling Operations in Projective Coordinate
Systems

Coordinate Transform Field-Cost M-Cost 2) 2)
Affine , I +2 M + S I + 2 M + 2S 32.8 M 33.6 M

Projective , 12M + 2S 7M + 5S 13.6 M 11M

Jacobian , 11M + 5S 1M + 8S 15 M 7.4M

modified Jacobian (, , ,) 11M + 7S 3M + 5S 16.6M 7M

Chudnovsky Jacobian , , , , 11M + 3S 6M + 4S 13.4M 9.2M

Projective coordinate systems are proposed for ratio 10 satisfying. In Table 3.2,

we summarized the computation cost of elliptic curve point additions in Projective
coordinate systems according to field-cost and M-cost. We used the newest
algorithms proposed for addition and doubling operations in Projective coordinate
systems [16]. We assumed that S = 0.8 M and I = 30M.

The key observation is that point addition operations in projective coordinates can
be done only using field multiplication, with no inversion required. The cost of
eliminating inversion is an increased number of field multiplications.

3.1 Mixed Coordinate Strategy

Coordinate system has a vital role to speed up scalar multiplication in elliptic curve
cryptosystems. In previous section, the computation cost of scalar multiplication
algorithms were computed according to EC-operations. To speed up scalar
multiplication, it is important to choose coordinate systems with fast addition
operation. To compute elliptic curve addition operations, coordinate systems have
different computational costs. Some coordinate systems have faster addition operation
than the other and some have faster doubling operation. Therefore, a possible way for
an efficient scalar multiplication is to switch coordinate system in each stage of the
scalar multiplication algorithms. Cohn, Miyaji and Ono [8] proposed this strategy,
which is called “mixed coordinate strategy”. In recent years, for efficient scalar
multiplication, several algorithms have been proposed that would correctly add two
points in different coordinate systems or take a point in one coordinate system and
return its double in another. In Table 3.3, we mentioned some of these algorithms and
their computational costs. We denote by , , and the affine coordinates, the
Jacobian coordinate, the modified Jacobian coordinates and the Chudnovsky Jacobian
coordinates, respectively.

3.2 Computational Costs of Scalar Multiplications with Mixed Coordinate
Strategy

We first describe some notation for representing mixed coordinate in this paper. The
notation “2 “ or (,) represents a mixed doubling of 2 in coordinate
system from in coordinate system .The notation “ “ or
(, ,) represents a mixed addition in coordinate system from and

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 191

in coordinate systems and , respectively. In this section, we compute the
computational cost of various scalar multiplication algorithms such as binary and sign
binary algorithms, window NAF and window MOF algorithms by mixed addition
(, ,) and mixed doubling (,). For example, we will study the required
steps to compute scalar multiplication in binary and window NAF methods in the
details. Then, we will use of Algorithm1 and Algorithm2 for binary and window NAF
methods, respectively. In both methods, we set base point P in in affine
coordinate to obtain faster mixed additions.

Table 3.3. Mixed Addition and Doubling
Algorithms

Table 3.4. Direct Computation for 2
[8]

Computation Computation Cost 2 4 3 2 1 5 2 5 7 2 4 5 2 2 5
 7 4

 7 2

 11 3

 10 2

 5 3

 8 5

 8 3

 12 6 12 4 7 6

Computation Computation Cost 2 9 2 2 11 3 2 15 4 2 13 5 2 17 6 2 15 4 2 12 4 2 16 5 2 16 5 2 14 7 2 13 6 2 16 6

To perform scalar multiplication in the binary method, we have proposed some

combinations of mixed doubling (,) and mixed additions in the form of
(, ,). In Table 3.5, we computed the computational cost of these combinations
according to the field cost and M-cost. On average, the combination (, ,) for mixed
addition operation and (,) for doubling is an optimal combination that speeds up the
scalar multiplication.

Table 3.5. Combinations of Mixed Addition and Doubling to Compute Scalar Multiplication

 combinations , , ,

Field cost M-cost Field cost M-cost
1 (, ,) , (,) 7 4 10.2 1 8 7.4

2 (, ,) , (,) 7 6 11.8 3 5 7

3 (, ,) , (,) 8 3 10.4 6 4 9.2

192 R. Mahdavi and A. Saiadian

The computational cost of the binary algorithm according to EC-operation is 1 that d is the bit length of scalar multiplier in . For simplicity

in calculation of computational cost, we assumed that 0. Since the base point
P is in affine coordinate, for doubling operation, we have (,) at first and (,)
otherwise. In the following, we compute the time of computation of scalar
multiplication for binary algorithm according to Field-cost and M-cost by substituting
computational cost of algorithms according to Table 3.3. We denote TC as the time of
computation for scalar multiplication. The final result in window NAF method with
this strategy is in Jacobian form, so is needed to return the result in affine
form with computational cost of 3 . , 2 , , , (3.1) 4.5 11.5 10 4 12.5 15.3

We also used this combination for signed binary methods, such as NAF and MOF. In
table 3.6, we computed the computational cost of scalar multiplication for binary
methods with this strategy.

To perform window NAF method, there are two stages to compute scalar
multiplication, pre-computed and evaluation stages. At first, it is necessary to compute
some pre-computation points in pre-computed stage. The computational cost of
window NAF algorithm in pre-computed stage is 2 1 .Since the
computational cost in pre-computed stage depends on ECADD, it is efficient to choose
a coordinate system with the lowest computation cost for addition operations.
According to Table 2.2, Chudnovsky Jacobian coordinate has the lowest computational
cost for elliptic curve addition operation. Hence, for efficient scalar multiplication, we
choose this system and represent pre-computation points in Chudnovsky Jacoobian
coordinate system. Since the base point is an affine coordinate, we have a mixed
doubling (,) at first and after that for 3 we must compute (, ,) then
(, ,) otherwise.The time of computation in pre-computed stage is computed by
the following formula: , , , 2 2 , , (3.2) 12 11 2 2 11 3 2 2 16.8 13.4 2 2

In evaluation stage, since the pre-computed points are in Chudnovsky Jacobian
coordinate, the optimal combination to compute scalar multiplication in a fast way is
(, ,) for addition operations and (,) for doubling operations. But first, we must
compute (,). When window representation of scalar multiplier K is none zero, 1 happened with probability around , we will have (, ,) with

probability .The time of computation in evaluation stage is computed by the

following formula:

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 193

 , 1 , 1 , , 1 , , (3.3)

 1 8 3 1

 7.4 2.4 13.4 2 1 10.22 1 1

The total time of computation to compute scalar multiplication in window NAF
according to M-cost is computed in Equation (3.4). At the end, we return the
representation of the point in affine coordinate with the computational cost of 3 . (3.4) 48.68 7.4 13.4 2 213.4 2 1 10.22 1 1

In table 3.7, the computational costs of window NAF methods are presented. Since
the density of representation of window MOFs is identical to that of the window
NAF, the computational costs of window MOFs are the same as the window NAF and
we do not report them again. In Table 3.7, the term # is the number of pre-
computation points.

Table 3.6. Computation Cost of Binary Methods with Mixed Coordinates Strategy

Scheme Field-Cost M-Cost
Binary method 4.5 1.5 10 6 12.5 22.7

NAF[3] 3.33 5 9.33 14 10.794 13.8
MOF[4] 4.5 2 10 8 12.5 25.6

Table 3.7. Computation Cost of Window NAF Methods with Mixed Coordinates Strategy

w wNAF NAF+SW Frac- wNAF
M-Cost #

M-Cost #

M-Cost #

3 10.35 29 2 9.898 43.47 3 9.788 81.27 6

4 10.08 55 4 9.742 68.88 5 9.518 134.8 10

5 9.566 108.2 8 9.409 148.6 11 9.267 241.9 18

6 9.282 215.2 16 9.186 283.3 21 9.055 456.3 34

7 9.064 429.5 32 8.988 577 43 8.88 885.1 66

4 Mixed Coordinate Strategy and Direct Computation Algorithms

Direct computation is another approach to get efficient scalar multiplications. In
recent years, several algorithms have been proposed for direct computation of points

194 R. Mahdavi and A. Saiadian

of the form 2 directly. Since such points are repeatedly computed in the
evaluation stage, direct computation algorithms can be effective for efficient scalar
multiplication. We can use mixed coordinate strategy in direct computations and
improve the computational cost of these algorithms. In table 3.4, some of these
algorithms and their computational costs are reported.

4.1 Computational Costs of Scalar Multiplications with Mixed Coordinate
Strategy and Direct Computation

In Section 3.2, the computational cost of scalar multiplication is computed by mixed
coordinate strategy. In this section, we combine mixed coordinates with direct
computation to get more efficient scalar multiplications. For direct computation, 2

, we use the notation “2 ” or (2 , ,) representing a direct
computation 2 in coordinate system from and in coordinate systems
and , respectively.

At first, to perform scalar multiplication in binary method we choose some
combinations of mixed doubling (,) and direct computations in the form of
(2 , ,). In Table 4.1, we computed the computational cost of these combinations
according to field cost and M-cost. On average, we can see that the combination
(2 , ,) for direct computation and (,) for doubling operations are optimal
combinations to speed up the scalar multiplication process.

Table 4.1. Computation Cost of Some Combinations of Direct Computations and Doubling
Operation

 combinations , , ,

Field cost M-cost Field cost M-cost
1 (2 , ,) , (,) 13 5 17 1 8 7.4

2 (2 , ,) , (,) 14 7 19.6 3 4 6.2

3 (, ,) , (,) 13 6 17.8 4 5 8

4 (, ,) , (,) 12 4 15.2 5 7 10.6

For binary method, Equation (4.1) computes the time required for computation

algorithm. For simplicity, we assumed that 0. , , 2 , , (4.1) 7 7 6.5 9.5 12.2 15.4

For signed binary methods such as NAF and MOF, we use this combination too. In
table 4.2, we computed the computational cost of scalar multiplication for binary
methods by the combination of mixed coordinate strategy and direct computation.

In window methods, the operations in pre-computed stage are the same. For the
evaluation stage, the optimal combinations to compute scalar multiplication are 2 , ,)

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 195

for direct computation and ,) for doubling operation. In bellow, we computed the
computational cost of window NAF in evaluation stage according to Field-cost and
M-cost. , 1 , 1 2 , , 1 2 , , (4.2)

 1 1 1 5 8 1 1

 5 7.4 1 1 20 2 1 172 1 1

The total time to compute window NAF according to M-cost is shown in the
following equation: (4.3) 55.6 7.4 1 1 13.4 2 220 2 1 172 1 1

The output of window NAF and window MOFs are the same and so we do not
mention them. In Table 4.3, we computed computational cost of window NAF
methods with this strategy for several window lengths.

Table 4.2. Computational Cost of Binary Methods with Direct Computation Strategy

Scheme Field-Cost M-Cost
Binary method 7 7 6.5 7 12.2 17.4

NAF[3] 5 13 7 7 10.6 14.4
MOF[4] 7 1 6.5 8.5 12.2 22.2

Table 4.3. Computational Cost of Window NAF Methods with Direct Computation Strategy

w wNAF NAF+SW Frac- wNAF
M-Cost #

M-Cost # M-Cost #
3 10.175 29.7 2 9.754 43.6 3 9.643 82.05 6

4 9.77 55.75 4 9.57 69.6 5 9.392 135.55 10

5 9.43 109 8 9.29 149.35 11 9.154 242.68 18

6 9.11 216 16 9.081 283.1 21 8.956 457.04 34

7 8.863 430.3 32 8.842 577.8 43 8.448 885.83 66

5 Comparison

In Sections 3 and 4, we calculated the running time of scalar multiplication based on
computational time of field multiplication and bits number of multiplier . In Section 3,
we applied mixed coordinate strategy to compute the running time of scalar

196 R. Mahdavi and A. Saiadian

Fig. 5.1. Comparison between computation cost of mixed coordinate strategy and combination
of mixed coordinate strategy and direct computation in binary and signed binary methods

150 200 250 300 350 400 450 500 550
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Bits number

M
-c
os
t

M-cost of binary method with mixed coordinate strategy and direct computation

mixed coordinate strategy

direct computation strategy

150 200 250 300 350 400 450 500 550
1000

2000

3000

4000

5000

6000

Bits number

M
-c

os
t

M-cost of NAF method with mixed coordinate strategy and direct cmputation

mixed coordinate strategy
direct computation startegy

150 200 250 300 350 400 450 500 550
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Bits number

M
-c
os
t

M-cost of MOF method with mixed coordinate strategy and direct computation

mixed coordinate strategy
direct computation strategy

 Efficient Scalar Multiplications for Elliptic Curve Cryptosystems 197

Fig. 5.2. comparison between computation cost of mixed coordinate strategy and combination
of mixed coordinate strategy and direct computation in wNAF method

multiplication algorithms. In Tables 3.6 and 3.7, we calculated running time of binary
methods and window NAFs, respectively. In window NAFs methods, there is a trade-
off between the running time of scalar multiplication and memory consumption. The
running time of scalar multiplication can be reduced by doing some pre-computation
points in pre-computed stage, but it requires an additional memory space. Window
NAF and window MOF methods have the same output but the advantage of
window MOFs to widow NAF is in flexibility of conversion an integer to window
representation. It can be done from left-to-right and right-to-left and it is more
efficient in memory-constraint devices such as smart cards. In Section 4, we used of
combinations of mixed coordinate strategy and direct computations to compute
running time of scalar multiplications. Figure 5.1 and Figure 5.2 show the running
time of binary and signed binary methods and wNAF method for various bits number
for mixed coordinate strategy and combination of mixed coordinate strategy and
direct computation. In Figure 5.2, we assume that window length is 6.

In Figure 5.1 and Figure 5.2, we can see that the running time of scalar
multiplication using direct computations is lower than the strategy of mixed
coordinate alone. To speed up scalar multiplication, the use of direct computation
algorithms 2 , , is more efficient instead of computing , , and , separately and finally adding them.

6 Conclusion

In this paper, we compared computational costs of two strategy mixed coordinate
strategy and direct computations strategy. We applied both strategies in binary and
signed binary methods and window NAFs algorithms. We observed that direct
computation with mixed coordinate strategy was more efficient and had lower
computation cost to compute scalar multiplication. Combination of mixed coordinates
strategy and direct computations is a useful technique to speed up scalar multiplication
in all methods.

150 200 250 300 350 400 450 500 550
1500

2000

2500

3000

3500

4000

4500

5000

5500

Bits number

M
-c
os
t

M-cost of WNAF method with mixed coordinate strategy and direct computation

mixed coordinate strategy

direct computation strategy

198 R. Mahdavi and A. Saiadian

References

[1] Koblitz, N.: Elliptic curve cryptosystem. Mathematics of Computation 48, 203–209
(1987)

[2] Miler, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

[3] Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

[4] Morain, F., Olivos, J.: Speed up the computations on an elliptic curve using addition-
subtraction. chains. RAIRO Theoretical Informatics and Applications 24, 531–543
(1990)

[5] Okeya, K.: Signed binary representations revisited. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 123–139. Springer, Heidelberg (2004)

[6] Schmidt-Samoa, K., Semay, O., Takagi, T.: Analysis of Fractional Window Recoding
Methods and Their Application to Elliptic curve cryptosystems. IEEE Transactions on
Computers 55, 48–57 (2006)

[7] IEEE Standard 1363-2000, IEEE Standard Specifications for Public Key Cryptography.
IEEE Computer Society, Los Alamitos (August 29, 2000)

[8] Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65.
Springer, Heidelberg (1998)

[9] Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosystems. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 342–356. Springer, Heidelberg
(1997)

[10] Balasubramaniam, P., Karthikeyan, E.: Elliptic curve scalar multiplication algorithm
using complementary recoding. Applied Mathematics and Computation 190, 51–56
(2007)

[11] Cilardo, A., Coppolino, L., Mazzocca, N., Romano, L.: Elliptic Curve Cryptography
Engineering. Proceeding of the IEEE 94, 395–406 (2006)

[12] Lauter, K.: The advantages of elliptic curve cryptography for wireless security. IEEE
Wireless Commun. 11(1), 62–67 (2004)

[13] Joye, K., Yen, S.: Optimal left-to-right binary signed digit recoding. IEEE Transactions
on Computers 49, 740–748 (2000)

[14] Li, Z., Higgins, J., Clement, M.: Performance of Finite Field Arithmetic in an Elliptic
Curve Cryptosystem. IEEE, New York (2001); 0-7695-1315-8/01

[15] Adachi, D., Gamou, M., Hirata, T.: Efficient scalar multiplication on elliptic curve using
direct computations. IEICE Trans. Fundamentals J88(1), 54–61 (2005) (in Japanese)

[16] http://www.hyperelliptic.org/EFD

Cryptography Meets Hardware: Selected Topics
of Hardware-Based Cryptography

(Invited Talk)

Ahmad-Reza Sadeghi

Technical University Darmstadt, System Security Lab, Germany
ahmad.sadeghi@cased.de

Modern cryptography provides a variety of methods and protocols that allow
different entities to collaborate securely without mutual trust, and hence con-
stitutes the basic technology for a wide range of security and privacy critical
applications. However, even the most basic cryptographic functionalities such
as commitments, oblivious transfer, or set intersection require computation-
ally expensive public key cryptography when implemented in software only, and
their secure universal composition cannot be achieved without additional setup
assumptions.

A recent line of research aims to incorporate tamper-proof (tamper-resistant)
hardware tokens (e.g., smartcards) into cryptographic schemes benefiting both,
theory and practice: Theoreticians aim at founding cryptography on tamper-
proof hardware to overcome known, or show new impossibility results, e.g., in
established security frameworks such as Universal Composability (UC); practi-
tioners aim to substantially improve the performance of cryptographic protocols
(e.g., use hardware instead of computationally expensive public-key operations
or fully homomorphic encryption), to reduce or prevent physical information
leakage of cryptographic operations (through side-channel attacks), or to real-
ize Trusted Computing functionality in hardware allowing to link software to
the underlying hardware (e.g., as proposed by the Trusted Computing Group,
TCG).

In this talk we consider selected topics and aspects of hardware-based cryp-
tographic protocols: Motivated by applications we discuss different trust models
and security goals. We then focus on secure two-party computation, often called
Secure Function Evaluation (SFE), allowing two untrusting parties to jointly
compute an arbitrary function on their respective private inputs while reveal-
ing no information beyond the outcome. Although in the past SFE was widely
believed to be inefficient, the rapidly growing speed of computing devices and
communication networks along with algorithmic improvements and the auto-
matic generation and optimizations of SFE protocols has made them usable in
practical application scenarios. We show how the complexity of SFE protocols
can be reduced through using tamper-proof hardware tokens where the token is
not fully trusted, i.e., only by one (the issuer) but not both parties. In this con-
text we also evaluate the practical performance of one-time programs (OTPs),
a functionality which can be evaluated exactly once in an insecure environment

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 199–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

200 A.-R. Sadeghi

without leaking any information about the security critical data. In future work
token-based SFE protocols can be combined with cryptographic compilers such
as the most recent TASTY (Tool for Automating Secure Two-partY computa-
tion) compiler.

The tamper-proofness assumption is critical in real world implementations
given the fact that physical side channel attacks on cryptographic implemen-
tations and devices have become crucial today. More concretely, in practice,
computation and memory leak information about the secret values, and hence,
the conventional algorithmic provable security (black box approach) is not suffi-
cient. In this context a recent line of research considers physical primitives called
Physically Unclonable Functions (PUFs). They represent a promising new tech-
nology that allows to store secrets in a tamper-evident and unclonable manner,
and enjoy their security from the unique physical structures at deep submicron
level. Here the assumption is that the same randomness/key cannot be extracted
when the device is physically tampered with. We discuss some recent approaches
towards combining and binding algorithmic properties of cryptographic schemes
with physical structure of the underlying hardware by means of PUFs.

Towards a Cryptographic Treatment of
Publish/Subscribe Systems

Tsz Hon Yuen, Willy Susilo, and Yi Mu

Center for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{thy738,wsusilo,ymu}@uow.edu.au

Abstract. Publish/subscribe mechanism is a typical many-to-many
messaging paradigm when multiple applications want to receive the same
message or when a group of applications want to notify each other.
Nonetheless, there exist only a few works that deal with this topic for-
mally, in particular addressing their security issues. Although security is-
sues and requirements for content-based publish/subscribe systems have
been partially addressed by Wang et al., there are no formal definition
for all of these security requirements in the literature. As a result, most
of the existing schemes do not have any security proof and there is no
way to justify whether those schemes are really secure or not in practice.
Furthermore, there is no comprehensive scheme that satisfies the most
essential security requirements at the same time. In this paper, for the
first time in the literature, we introduce the security model for all secu-
rity requirements of content-based publish/subscribe systems. We then
exhibit a new publish/subscriber system that fulfills most of the security
requirements. Furthermore, we also provide a comprehensive proof for
our concrete construction according to the new model.

1 Introduction

Publish/subscribe (pub/sub) is an efficient communication infrastructure that
supports dynamic, many-to-many data dissemination in a distributed environ-
ment. It allows decoupled messaging between: (1) subscribers, having subscrip-
tions to the interested information, and (2) publishers, providing notifications
for the information they provide. This kind of many-to-many communication is
being more and more popular in social networking websites.

All pub/sub technologies use subject or topic names as the loosely coupled
link between publishers and subscriber systems. Publishers produce messages
on a particular subject or topic name and subscribers receive those messages
by registering interest in the subject name either explicitly or through some
broader subscription scheme using wildcards. Subscribers and publishers are
loosely coupled by a network of brokers that route the notifications to the in-
terested subscribers. Pub/sub allows subscribing applications to select messages
that these applications receive by topic (as specified by the publishing applica-
tion) or by content (by specifying filters). The latter is usually referred to as

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 201–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 T.H. Yuen, W. Susilo, and Y. Mu

Fig. 1. Publish/subscribe system

the content-based pub/sub systems (CBPS). Any messages addressed to a topic
are delivered to all the topic’s subscribers. Every subscriber receives a copy of
each message. Information is automatically pushed to subscribing applications
without them having to pull or request it. In short, pub/sub topologies pub-
lish messages directly to the bus or network, and these topologies are known as
shared bus-based solutions.

The current proposed or existing pub/sub systems tend to focus on the per-
formance, scalability and expressiveness issues of the mechanism. Security issues
and requirements are firstly addressed by Wang et al. [11]. The main issues in-
clude authentication, integrity and anonymity, which can usually be achieved by
minor modification to the existing approaches. On the other hand, confidential-
ity is considered more difficult to achieve. Therefore, we refer Wang et al.’s work
as addressing the security of pub/sub network partially.

Our Contributions. Publish/subscribe systems are important to the future
social networking services. However, there is no formal security model for the
pub/sub systems. Wang et al. [11] proposed some security issues and require-
ments, without defining a formal model. Nikander and Giannis [6] points out the
difficulty of modeling pub/sub systems using traditional send/receive paradigm.
They only give a general model to reflect the multicast nature of the pub/sub
systems, without concerning the security requirements. As a result, most of the
existing schemes do not have any security theorem or proof. To the best of the
author’s knowledge, only Raicius and Rosenblum [8] proposed the security model
for confidentiality and they proved the confidentiality of their scheme. A com-
plete security theorem and proof is essential to analysis the security level of a
CBPS protocol. Moreover, a complete security model is needed to identify the
security requirements and the attacker’s capability. Therefore, in this paper, we
propose a formal security model for all security requirements for the CBPS.

Secondly, Wang et al. [11] suggested some possible solutions for each security
requirements that they proposed. However, it is not clear that if these methods
can work together under the same threat model. Moreover, some methods are
out-of-band solutions and are handled independently of the pub/sub infrastruc-
ture. Additionally, most of the existing CBPS schemes enabling confidentiality

Towards a Cryptographic Treatment of Publish/Subscribe Systems 203

do not consider authenticity and integrity simultaneously. In this paper, we pro-
pose a comprehensive CBPS scheme which fulfills most security requirements
concurrently. We prove the security of our scheme under the new security model.

In this paper, for the first time in the literature, we provide a formal crypto-
graphic treatment of Content-based pub/sub systems (CBPS). Our model can
therefore be used to analyze the security of any CBPS system. Furthermore,
we also provide a concrete construction of CBPS that satisfies our model. We
provide a security proof for our scheme that our scheme is secure under our
proposed model.

2 Publish/Subscribe Systems and Their Security Models

In this section we first give the definition of publish/subscribe system. After
that, we describe the security requirements and security models for CBPS. It
is the first comprehensive security model of pub/sub system. Without a formal
security model, we cannot analysis the concrete security of any pub/sub system.

2.1 Publish/Subscribe Systems

A publish/subscribe system is a system with interactions between four parties:

– Publishers notify the brokers for the information they provide in the pub/sub
system. They do not know who will obtain the information.

– Subscribers subscribe to the interested information. They only receive the
information which matches their subscription.

– Brokers match the subscription and the notification by the subscribers and
the publishers. The broker network will route and forward the packets to the
matching subscribers. Sometimes they are further categorized into:
• Intermediate brokers. They only route packets within the broker network.
• Border brokers. They act as a link between the broker network and the

other parties in the pub/sub network.
• Publisher hosting brokers. They are a kind of border brokers that connect

between the broker network and the publishers.
• Subscriber hosting brokers. They are a kind of border brokers that connect

between the broker network and the subscribers.
– Managers maintains and coordinates the keys used within the pub/sub sys-

tem. According to the basic concept of pub/sub system, the publisher does
not know the public keys of subscribers. Therefore, the publisher cannot
encrypt using subscribers’ public keys. In order to provide confidentiality,
managers are needed to act as the target of the encryption scheme. If con-
fidentiality is not considered in the pub/sub system, then this party can be
ignored. Some papers [8,4] assume that the publishers and the subscribers
have a pre-shared session key. They do not concern about how the managers
help to share the session key within the pub/sub system. The managers
are called key distribution center in [9], accounting server in [3] and secure
administrator in [14].

204 T.H. Yuen, W. Susilo, and Y. Mu

Fig. 2. Brokers in publish/subscribe system. PHB stands for Publisher Hosting Bro-
kers, SHB stands for Subscriber Hosting Brokers and IB stands for Intermediate Bro-
kers. PHB and SHB are both border brokers.

A content-based publish/subscribe system consists of ten algorithms defined as
follows:

– Setup(1λ): On input a security parameter 1λ, it outputs the system param-
eter param and the manager’s secret key msk.

– KeyGen(param): On input the system parameter param, it outputs a secret
key and a public key. It can be further divided into publisher’s KeyGenp to
generate publisher secret key psk and public key ppk; subscriber’s KeyGens to
generate subscriber secret key ssk and public key spk; and broker’s KeyGenb

to generate broker secret key bsk and public key bpk.
– RegP(param, f ilter, psk), IssueP(param,msk, ppk): The interactive algorithms

RegP and IssueP are run by the publisher and the manager respectively,
where param is the system parameter, filter is the filter set by the pub-
lisher, (psk, ppk) is the publisher’s secret key, public key pairs and msk is
the manager’s secret key. RegP first sends the notification to IssueP and
IssueP returns a publisher key Kp to RegP.

– RegS(param, sub, ssk), IssueS(param,msk, spk): The interactive algorithms
RegS and IssueS are run by the subscriber and the manager respectively,
where param is the system parameter, sub is the subscription by the sub-
scriber, (ssk, spk) is the subscriber’s secret key, public key pairs and msk
is the manager’s secret key. RegS first sends the subscription to IssueS and
IssueS returns a subscriber key Ks to RegS.

– Pub(param,m, psk,Kp): On input (param,m, psk,Kp) where param is the
system parameter, m is the message, psk is the publisher’s secret key and
Kp is the publisher key for some filter, the publisher outputs a notification
n1 to the broker network.

1 We use the term “notification” instead of “ciphertext” for a few reasons. Firstly, part
of the information sent by the publisher may not be encrypted, such as the keyword
of the message, to facilitate routing. Secondly, the subscription by the subscriber
may also be encrypted as another ciphertext in the system.

Towards a Cryptographic Treatment of Publish/Subscribe Systems 205

– Sub(param, sub, ssk, bpk): On input (param, sub, ssk, bpk) where param is the
system parameter, sub is the subscription, ssk is the subscriber’s secret key
and bpk is the (subscriber hosting) broker public key, the subscriber outputs
a ciphertext for subscription Csub to the broker network.

– Match(param, n, Csub, bsk): On input (param, n, Csub) where param is the sys-
tem parameter, n is the notification, Csub is the subscription ciphertext and
bsk is the (subscriber hosting) broker secret key, the broker first outputs
spk for matching the subscription by spk, 0 for not match, ⊥p for invalid
notification or ⊥s for invalid subscription.

– Retrieve(param, n,Ks): On input (param, n,Ks) where param is the system
parameter, n is the notification and Ks is the subscriber key, the subscriber
outputs a pair (m, ppk) or ⊥ for invalid, where m is the message and ppk is
the publisher’s public key.

We define that the subscription condition sub, the filter condition filter and also
the notification n (except the encrypted part) are in the format of (name, op,
value). For example, it can be (price,=, 10) or (age,≥, 30). We define the symbol
n ⊆s F as the notification n satisfies the boolean relationship in F . In the
CBPS system, we require that the publisher’s notification n should satisfy the
publisher’s filter (n ⊆s filter). Otherwise, the publisher does not have a valid
publisher key Kp for n. Similarly, we require that the notification n should satisfy
the subscription sub (n ⊆s sub). Otherwise, the subscriber does not have a valid
subscriber key Ks for decryption of n. For example if

sub = 〈((code,=, ABC) AND (date,<,May 30 2008)) OR (code,=, DEF)〉,
f ilter = 〈(code,=, ABC)〉,

n = 〈(code,=, ABC) AND (price,=, ??)
AND (time,=, 14 : 20) AND (date,=,May 12 2008)〉,

then n ⊆s sub and n ⊆s filter.

2.2 Correctness

The content-based publish/subscribe system has two types of correctness: match-
ing correctness and retrieval correctness. Matching correctness means that an
honest broker can always correctly match a valid notification to a subscriber
with a valid satisfying subscription. Retrieval correctness means that an honest
subscriber can obtain the message if the notification which matches his subscrip-
tion criteria.

Formally, they are defined as follows:

– Matching Correctness. We require that

Match(param, n, Sub(param, sub, ssk, bpk), bsk) = spk,

where (ssk, spk) ← KeyGen(param), (bsk, bpk) ← KeyGen(param), n ←
Pub(param, m, psk, RegP(param, f ilter)), and n ⊆s sub.

206 T.H. Yuen, W. Susilo, and Y. Mu

– Retrieval Correctness. We require that

Retrieve(param, n,RegS(param, sub, ssk)) = (m, ppk),

where (psk, ppk) ← KeyGenp(param), (ssk, spk) ← KeyGens(param), n ←
Pub(param,m, psk, RegP(param, f ilter, psk)), n ⊆s sub and n ⊆s filter.

2.3 Trust Model

There are three types of trust regarding the underlying broker network:

1. A complete trust to the broker network. The adversary is not given any
information within the broker network.

2. A trust to the border brokers only. The adversary can access any information
in the intermediate brokers, but not the border brokers.

3. Untrusted broker network. The adversary can access any information in the
the broker network.

Notice that the trust we discuss here is whether the brokers’ keys (if any) and
data accessed by the brokers are available to the adversary. We always assume
that the brokers honestly route the packets. If not, the subscribers may never
receive any packets.

According to different trust level of the broker network, the broker public keys
and secret keys can be used as the input in the Pub, Sub or Match protocol.

2.4 Confidentiality

The publish/subscribe system has three types of confidentiality: information con-
fidentiality, subscription confidentiality and publisher confidentiality as discussed
by Wang et al. [11].

In some cases, part of the information can be known by the brokers to facilitate
routing (e.g. stock code, update date in a pub-sub stock quote application) while
part of the information must be kept secret from untrusted brokers (e.g. stock
price, percentage change). Therefore we consider the confidentiality for the secret
information instead of the whole document to be sent.

Information confidentiality means that the secret information in the notifi-
cation should not be known by the untrusted brokers and all outsiders. Sub-
scription confidentiality means that the secret information in the subscription
should not be known by the untrusted brokers, publishers, other subscribers and
all outsiders. Publisher confidentiality means that the secret information in the
notification should not be known by the non-subscribers of that notification. It
includes the untrusted brokers and all outsiders. Therefore publisher confiden-
tiality implies information confidentiality.

We note that our model for confidentiality only involves one trusted manager
only. In real system, there may be many managers. Our model can be modified
for multiple managers. We give the current confidentiality model of one manager
for simplicity.

Towards a Cryptographic Treatment of Publish/Subscribe Systems 207

Publisher Confidentiality. We describe the publisher confidentiality for the
secret information in the pub/sub network. The indistinguishability game is
formally defined as follows:

1. The challenger runs (param,msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The
manager’s secret key msk is unknown to A.

2. A is allowed to query the following oracles:
– IssueS Oracle: On input the subscription sub and the subscriber’s public

key spk, it runs the IssueS(param, msk, spk) protocol and interacts with
the RegS(param, sub, ·) run by A. The oracle outputs the subscriber key
Ks from IssueS.

– IssueP Oracle: On input the publisher’s filter filter and the publisher’s
public key ppk, it runs the IssueP(param,msk, ppk) protocol and inter-
acts with the RegP(param, f ilter, ·) run by A. The oracle outputs the
publisher key Kp from IssueP.

– Retrieval Oracle: On input (n, sub) where n is the notification and sub
is the subscription, the oracle first runs (ssk, spk) ← KeyGens(param).
Then the oracle runs both IssueS(param,msk, spk) and RegS(param, sub,
ssk) by itself and obtains Ks. Finally, it outputs the secret information
(m, ppk)/⊥ ← Retrieve(param, n,Ks).

3. A sends two messages m∗
0 and m∗

1 from the message space, a publisher secret
key psk∗2 and a filter filter∗ to the challenger. The messages m∗

0 and m∗
1 are

only different in the part of the secret information. The challenger encrypts
m∗

b as n∗
b ← Pub(param,m∗

b , psk
∗,RegP(param, f ilter∗, psk∗)). There should

be no subscription sub queried to the IssueS Oracle, such that n∗
b ⊆s sub.

The challenger picks a bit b ∈ {0, 1} and sends the notification n∗
b to A.

4. A is allowed to query the oracles, with the exception that no subscription
sub queried to the IssueS Oracle, such that n∗

b ⊆s sub; and n∗ should not be
queried to the Retrieval Oracle.

5. Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b]− 1
2 |.

Definition 1. A CBPS scheme is (ε, t, qs, qp, qr)-publisher confidential against
chosen ciphertext attack if there is no t-time adversary with qs queries to the
IssueS oracle, qp queries to the IssueP oracle and qr queries to the retrieval
oracle has an advantage over ε in the game.

Information Confidentiality. Due to the similarity of the definition between
information confidentiality and publisher confidentiality, we can define the indis-
tinguishability game of publisher confidentiality same as the one of information
confidentiality without query to the IssueS Oracle.
2 Our publisher confidentiality is a strong model since the publisher secret key of the

challenge notification is chosen by the adversary. It is possible to define a weaker
model where the adversary is only given the publisher public key.

208 T.H. Yuen, W. Susilo, and Y. Mu

Definition 2. A CBPS scheme is (ε, t, qp, qr)-information confidential against
chosen ciphertext attack if there is no t-time adversary with qp queries to the
IssueP oracle and qr queries to the retrieval oracle has an advantage over ε in
the game.

Notice that for both publisher and information confidentiality, we say that a
system is selectively secure if we require the adversary commits to the challenge
filter filter∗ at the beginning of the game.

Subscription Confidentiality. We describe the confidentiality for the sub-
scription in the pub/sub system. The subscribers may want their subscriptions
to be confidential against the broker network3. Then the brokers need to match
the “encrypted subscriptions” with the notifications4. The indistinguishability
game is defined as follows:

1. The challenger runs (param,msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The
manager’s secret key msk is unknown to A.

2. A is allowed to query the IssueS Oracle, IssueP Oracle and Retrieval Oracle
defined in the publisher confidentiality game.

3. A sends two subscription sub∗0 and sub∗1 and the subscriber secret key
ssk∗, where sub∗0 and sub∗1 have never been queried to the IssueS Or-
acle. The challenger picks a bit b ∈ {0, 1} and computes C∗

sub ←
Sub(param, sub∗b , ssk

∗, bpk). He sends the resulting ciphertext C∗
sub to A.

4. A is allowed to query the oracles, with the exception that no subscription
sub∗0 and sub∗1 are queried to the IssueS Oracle.

5. Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b]− 1
2 |.

Definition 3. A CBPS scheme is (ε, t, qs, qp, qr)-subscription confidential
against chosen ciphertext attack if there is no t-time adversary with qs queries to
the IssueS oracle, qp queries to the IssueP oracle and qr queries to the retrieval
oracle has an advantage over ε in the game.

Notice that all of the above definitions for confidentiality is against chosen
ciphertext attack (CCA). If we do not allow any query to the retrieval oracle,
then the above confidentiality definition is reduced to against chosen plaintext
attack (CPA).

2.5 Unforgeability

We describe the unforgeability in the pub/sub system. It provides authen-
tication and integrity for the pub/sub system. Wang et al. [11] mentioned
3 For example, an investor may not want other people to know which stock price he

has subscribed, since it may leak information of which stock he may buy.
4 Public key Encryption with Keyword Search (PEKS)[2] can be one of the method

to solve this dilemma. We will explain in details in the full version of the paper.

Towards a Cryptographic Treatment of Publish/Subscribe Systems 209

that authentication (end-to-end and point-to-point), information integrity,
subscription integrity and service integrity are important security requirements
for the pub/sub system. We use the standard notion of unforgeability for digital
signature to cover the authentication and integrity requirements.

Information Unforgeability. Information unforgeability means that the sub-
scriber believes that the notification is produced by the publisher and is not
altered in the broker network. The game for information unforgeability is for-
mally defined as follows:

1. The challenger runs (param,msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (psk, ppk) ← KeyGenp(param). The challenger
gives the public parameters param, the manager’s secret key msk, the
secret/public key pairs of the untrusted brokers and the publisher public
key ppk to the adversary A. The publisher’s secret key psk is unknown to
A.

2. A is allowed to query the Pub Oracle: On input the message m and the
publisher filter filter, the oracle first runs both IssueP(param,msk, ppk) and
RegP(param, f ilter, psk) by itself and obtains Kp. Then, it outputs the no-
tification n← Pub(param,m, psk,Kp).

3. A returns a message m∗, a notification n∗ for a subscription sub∗.

A wins the game if (m∗, ppk)← Retrieve(param, n∗,Ks), where Ks is the output
of RegS(param, sub∗, ssk)) interacting with IssueS(param,msk, spk), n∗ was not
the output of Pub Oracle query with input m∗ and (ssk, spk)← KeyGens(param).

Definition 4. A CBPS scheme is (ε, t, qp)-information unforgeable against cho-
sen message attack if there is no t-time adversary winning the above game with
probability at least ε with qp queries to the Pub oracle.

Subscription Unforgeability. Subscription unforgeability means that the bro-
ker believes that the subscription is produced by the subscriber and is not altered
in the broker network. The game for subscription unforgeability is formally de-
fined as follows:

1. The challenger runs (param,msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (ssk, spk) ← KeyGens(param). The challenger
gives the public parameters param, the manager’s secret key msk, the
secret/public key pairs of the untrusted brokers and the subscriber’s public
key spk to the adversary A. The subscriber’s secret key ssk is unknown to
A.

2. A is allowed to query the Sub Oracle: On input the subscription sub, the
oracle first runs both IssueS(param, msk, spk) and RegS(param, sub, ssk) by
itself and obtains Ks. Then, it outputs the subscription ciphertext Csub ←
Sub(param, sub, ssk, bpk).

3. A returns a subscription ciphertext C∗
sub and a notification n∗.

A wins the game if spk ← Match(param, n∗, C∗
sub, bsk) and C∗

sub was not the
output of Sub Oracle query.

210 T.H. Yuen, W. Susilo, and Y. Mu

Definition 5. A CBPS scheme is (ε, t, qs)-subscription unforgeable against cho-
sen message attack if there is no t-time adversary winning the above game with
probability at least ε with qs queries to the Sub oracle.

Service Unforgeability. Service unforgeability means that the broker believes
that the notification is produced by the publisher and is not altered in the previ-
ous broker network. It ensures that once malicious faults arises at the infrastruc-
ture level, it could be detected by the next broker. Information unforgeability
provides end-to-end authentication of the publisher, while service unforgeability
provides authentication of the publisher to every point in the network. It mini-
mizes the damage by a malicious broker who insert bogus notifications into the
pub/sub network. The game for information unforgeability is formally defined
as follows:

1. The challenger runs (param,msk) ← Setup(1λ), (bsk, bpk) ←
KeyGenb(param) and (psk, ppk) ← KeyGenp(param). The challenger
gives the public parameters param, the manager’s secret key msk, the
secret/public key pairs of the untrusted brokers and the publisher public
key ppk to the adversary A. The publisher’s secret key psk is unknown to
A.

2. A is allowed to query the Pub Oracle: On input the message m and the
publisher filter filter, the oracle first runs both IssueP(param,msk, ppk) and
RegP(param, f ilter, psk) by itself and obtains Kp. Then, it outputs the the
notification n← Pub(param,m, psk, Kp).

3. A returns a notification n∗, a subscription ciphertext C∗
sub, a subscriber’s

public key spk∗ and the corresponding subscriber key K∗
s .

A wins the game if (m∗, ppk) ← Retrieve(param, n∗,K∗
s), spk∗ ← Match(param,

n∗, C∗
sub, bsk) and n∗ was not the output of any Pub Oracle query.

Definition 6. A CBPS scheme is (ε, t, qp)-service unforgeable against chosen
message attack if there is no t-time adversary winning the above game with
probability at least ε with qp queries to the Pub oracle.

2.6 Anonymity

The anonymity in the pub/sub system is different for the publishers and
subscribers. We will consider two cases separately. The trust model for
anonymity is different from confidentiality and unforgeability, since the border
brokers directly connecting to the publisher and subscriber must know who is
communicating with them. Therefore the border brokers must be trusted for
anonymity. To be more specific, publisher hosting broker is trusted for publisher
anonymity; and subscriber hosting broker is trusted for subscriber anonymity.

Publisher Anonymity. The anonymity for the publisher means the publisher
remains anonymous when he sends a notification. Only the legitimate subscribers

Towards a Cryptographic Treatment of Publish/Subscribe Systems 211

can know the identity of the publisher (for authentication purpose). The pub-
lisher anonymity game is formally defined as follows:

1. The challenger runs (param,msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param and the
secret/public key pairs of the untrusted brokers to the adversary A. The
manager’s secret key msk is unknown to A.

2. A is allowed to query the IssueS Oracle, IssueP Oracle and Retrieval Oracle
defined in the publisher confidentiality game.

3. A sends two publisher key pairs (ppk∗
0 , psk

∗
0) and (ppk∗

1 , psk
∗
1), a mes-

sage m∗ and a filter filter∗ to the challenger. The challenger computes
n∗

b ← Pub(param,m∗, psk∗
b , RegP(param, f ilter∗, psk∗

b)). There should be no
subscription sub queried to the IssueS Oracle, such that n∗

b ⊆s sub, no matter
b = 0 or 1. He picks a bit b ∈ {0, 1} and sends the notification n∗

b to A.
4. A is allowed to query the oracles, with the exception that no subscription

sub queried to the IssueS Oracle, such that n∗
b ⊆s sub; and n∗

b should not be
queried to the Retrieval Oracle.

5. Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b]− 1
2 |.

Definition 7. A CBPS scheme is (ε, t, qs, qp, qr)-publisher anonymous against
chosen ciphertext attack if there is no t-time adversary with qs queries to the
IssueS oracle, qp queries to the IssueP oracle and qr queries to the retrieval
oracle has an advantage over ε in the game.

Subscriber Anonymity. The anonymity for the subscriber means that the
subscriber remains anonymous when he sends a subscription. The subscriber
anonymity game is formally defined as follows:

1. The challenger runs (param,msk) ← Setup(1λ) and (bsk, bpk) ←
KeyGenb(param). The challenger gives the public parameters param, the man-
ager’s secret key msk and the subscriber hosting broker’s public key bpk to
the adversary A. The subscriber hosting broker’s secret key bsk is unknown
to A.

2. A is allowed to query the following oracles: Match Oracle: On input (n,Csub)
where n is the notification and Csub is the subscription ciphertext to bpk, it
outputs the matching result: spk, 0, ⊥s and/or ⊥p which is the output from
Match(param, n, Csub, bsk).

3. A sends two publisher key pairs (spk∗
0 , ssk

∗
0) and (spk∗

1 , ssk
∗
1), a subscription

sub∗ to the challenger. The challenger picks a bit b ∈ {0, 1} and computes
C∗

sub ← Sub(param, sub∗, ssk∗
b , bpk). He sends the subscription ciphertext

C∗
sub to A.

4. A is allowed to query the oracles, with the exception that no subscription
ciphertext C∗

sub queried to the Match Oracle.
5. Finally A output his guess b′.

The advantage of A in the game is |Pr[b′ = b]− 1
2 |.

212 T.H. Yuen, W. Susilo, and Y. Mu

Definition 8. A CBPS scheme is (ε, t, qm)-subscriber anonymous against cho-
sen ciphertext attack if there is no t-time adversary with qm queries to the Match
oracle has an advantage over ε in the game.

Notice that subscription anonymity may contradict the accountability require-
ment in [11]. In commercial pub/sub applications, publishers may want to charge
subscribers for the information they provide. If the charge is time basis, sub-
scribers pay when they get the subscription key for a period of time from the
manager. Each independent subscription can still be anonymous and our cur-
rent subscription anonymity model can still be used. However if the charge is
per notification basis, subscribers’ identities must be revealed for accountability
and auditability purposes. The security model need to be changed, such that a
publisher needs to know whose subscription matches his notification.

3 Our Construction

In this section, we will construct some CBPS protocols and we will prove their
security against the security model defined in the previous section. We first de-
scribe the main idea of the scheme. We review the relevant cryptographic back-
ground and then we show the basic construction. Our basic construction satisfies
most security requirements in confidentiality and unforgeability. However, our
construction does not satisfy all the security requirements mentioned in previous
section. Finally, we demonstrate that our basic scheme can be further extended
to satisfy the other security requirements.

3.1 Main Idea of Our Basic Scheme

The main weakness of the existing CBPS protocols is that they do not have any
proof of security. Furthermore, some of them only consider either confidentiality
or authenticity. A secure CBPS protocol should have security proofs for both
confidentiality and unforgeability. To provide information confidentiality and in-
formation unforgeability at the same time, we use an approach commonly used
in signcryption schemes. It means that the randomness used in the signature
and the encryption are the same. It ensures that the signature and the encryp-
tion protocol are run by the same party. An adversary cannot use the cipher-
text from a legitimate user and append the adversary’s signature to it; nor use
the signature from a legitimate user and append a ciphertext computed by the
adversary.

To facilitate routing while providing confidentiality in the pub/sub system, we
employ the approach that only the part of the document containing the secret
information is encrypted. For example, in a pub-sub stock quote application, a
publisher (the bank) provides stock quote to subscribers (the bank’s customers).
The stock price is encrypted while the stock name is not. Therefore the document
can be routed to subscribers who are interested in a particular stock.

Towards a Cryptographic Treatment of Publish/Subscribe Systems 213

Unforgeability. The challenge of encrypting the partial document is how the
brokers authenticate the document without knowing the plaintext. Refer to
the previous example, an obvious solution is to sign on the stock name and
the encrypted stock price. However, a signature on the encrypted stock price
does not guarantee the authenticity of the stock price. A more complicated so-
lution in [3] is to encrypt the stock price and the signature of the stock price.
After that the stock name and the whole ciphertext is signed again.

In this paper, we use a simpler approach by sanitizable signatures [5]. A
sanitizable signature scheme allows one to verify a signature even when part to
the original message is not known. Therefore, we can use compute a sanitizable
signature to the whole document and encrypt the stock price. The brokers only
needs to verify the signature for the part of the stock name. For the subscribers,
the same signature is verified against the whole document after decryption. By
the property of sanitizable signatures, it is difficult to obtain any information
on the sanitized messages from the sanitizable signature. Therefore authenticity
is preserved while having confidentiality in the (untrusted) broker network. Our
scheme uses the sanitizable signatures by Suzuki et al. [10].

Confidentiality. The challenge of confidentiality is that how publishers can
restrict the access of the secret information. By the loose coupling property
of the pub/sub network, publishers do not know who are going to subscribe
the notifications. Hence publishers have no public key to encrypt the secret
information. Some schemes ([8,4]) assume that publishers and subscribers share a
symmetric key. However, it contradicts the very first assumption of decoupling of
publishers and subscribers. These schemes are only suitable for private pub/sub
systems over public networks. An internet-scale, dynamic pub/sub network with
a universe of publishers and subscribers are unlikely to share a symmetric key.
Another possible solution ([7]) for confidentiality is through access control to the
broker network. Encryption and decryption is performed by the border brokers
and therefore trust must be placed upon them. If the broker network is not
trusted, it is difficult for the publisher to find a suitable public key for encryption
(brokers are not trusted and subscribers are not known).

Our scheme uses the Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) by Waters [12] to solve this problem. In CP-ABE, attributes are
used to describe the user’s (subscriber’s) credentials and the encrypting party
(publisher) can encrypt the message according to some formulas over these cre-
dentials. Therefore, publishers can encrypts the secret information by some at-
tributes that describe the information. Subscribers can request keys from the
manager about the attributes that they are interested in.

3.2 Cryptographic Backgrounds

We present a brief revision on groups with efficiently computable bilinear maps
and then review some number theoretic assumptions. After that, we review the
definition of access structures and relevant backgrounds on Linear Secret Sharing

214 T.H. Yuen, W. Susilo, and Y. Mu

Schemes (LSSS), sanitizable signatures and CP-ABE. They are extensively used
in our concrete construction of pub/sub system.

Pairings and Intractability Assumptions. Let G and GT be two multi-
plicative cyclic groups of prime order p. Let g be a generator of G.

Definition 9. A map ê : G×G → GT is called a bilinear map if, for all u, v ∈ G

and a, b ∈ Zp, we have ê(va, vb) = ê(u, v)ab, and ê(g, g)
= 1.

Definition 10 (CDH). The Computational Diffie-Hellman problem is that,
given g, gx, gy ∈ G for unknown x, y ∈ Zp, to compute gxy.

We say that the (ε, t)-CDH assumption holds if no t-time algorithm has the
non-negligible probability ε in solving the CDH problem.

Definition 11 (DBDH). The Decisional Bilinear Diffie-Hellman problem is
that, given (g, ga, gb, gc) ∈ G and T ∈ GT for unknown a, b, c ∈ Zp, to distinguish
if T = ê(g, g)abc or T is a random element in GT .

We say that the (ε, t)-DBDH assumption holds if no t-time algorithm has the
non-negligible probability ε minus half in solving the DBDH problem.

Definition 12 (decisional q-BDHE). The decisional q-BilinearDiffie-Hellman
Exponent problem is that, given (g, ga, ga2

, . . . , gaq

, gaq+2
, . . . , ga2q

, gs) ∈ G and
T ∈ GT for unknown a, s ∈ Zp, to distinguish if T = ê(g, g)aq+1s or T is a
random element in GT .

We say that the (ε, t)-decisional q-BDHE assumption holds if no t-time algorithm
has the non-negligible probability ε minus half in solving the decisional q-BDHE
problem.

Access Structures. We first review the definition of access structure in [1].

Definition 13 (Access Structure [1]). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C
then C ∈ A. An access structure (resp. monotone access structure) is a col-
lection (resp. monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn}.
The sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

In our context, the role of parties is taken by the attributes, which is equivalent
to the subscription condition. Thus the access structure A will contain the au-
thorized set of attributes (subscription condition). We restrict our attention to
monotone access structure. From now on, unless stated otherwise, by an access
structure we mean a monotone access structure.

Linear Secret Sharing Schemes. We adapt the definition of Linear Secret
Sharing Schemes (LSSS) in [1].

Towards a Cryptographic Treatment of Publish/Subscribe Systems 215

Definition 14 (LSSS [1]). A secret sharing scheme Π over a set of parties P
is called linear over Zp if:

1. The shares for each party form a vector over Zp.
2. There exists a matrix M called the share-generating matrix for Π. The ma-

trix M has � rows and n columns. For i = 1, . . . , �, the i-th row of M we
let the function ρ defined the party labeling row i as ρ(i). When we consider
the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of � shares
of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

Beimel [1] showed that every LSSS enjoys the linear reconstruction property,
defined as follows: Suppose that Π is an LSSS for the access structure A. Let
S ∈ A be any authorized set, and let I ⊂ {1, . . . , �} be defined as I = {i : ρ(i) ∈
S}. Then there exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares
of any secret s according to Π , then

∑
i∈I ωiλi = s. Furthermore, Beimel [1]

showed that these constants {ωi} can be found in time polynomial in the size of
the share-generating matrix M .

Sanitizable Signatures. A digital signature prohibits any alteration of the
original message once it is signed. It protects the signer against the message
forgery. Nevertheless, it also prevents the message from being process further
legitimately as well, which sometimes is actually desirable.

A typical example of sanitizable signature includes the case when the govern-
ment wants to release some partial information in an officially signed document.
In this particular case, a government officer may want to delete some sensitive
information such as personal information or national secrets. In order to avoid
the process of having the message to be signed again (since the original signer
may not be available at that time), a sanitizable signature can be used to sign
the document at the first place; and the sensitive information can be sanitized
prior to the release of the signature. The major goal of sanitizable signature is to
protect the confidentiality of part of the document while ensuring the integrity
of the document.

Ciphertext-Policy Attribute-based Encryption. During encryption, the
data provider can express how he wants to share data in the encryption algo-
rithm. In traditional public key encryption, the data provider uses the recipient’s
public key to encrypt, such that the data is shared with the intended recipient
only (by decryption).

In Ciphertext-Policy Attribute-based Encryption (CP-ABE), the recipient is
ascribed a secret key associated with a set of string called “attributes”. The data
provider will provide a formula over these attributes, describing how he wants
to share the data. The recipient can correctly decrypt a ciphertext encrypted
with a formula only if his secret key associates with attributes which satisfy the
formula.

216 T.H. Yuen, W. Susilo, and Y. Mu

3.3 The Basic Scheme

We use the sanitizable signature scheme by Suzuki et al. [10] and CP-ABE
scheme by Waters [12]. Some input parameters described in §2.1 are omitted
here when they are not used in the basic scheme. Denote ⊕ as the bit-wise XOR
function.

– Setup. On input 1λ, it picks the pairing ê : G × G → GT and generators
g, g1 ∈ G and collision resistant hash functions H1 : {0, 1}∗ → G and H2 :
{0, 1}∗ → G. It chooses a random exponent α ∈ Zp. The manager secret key
is gα. It outputs the system parameter param = {g, g1, ê(g, g)α, ê, H1, H2}.
Let (Sig, Vfy) be a secure signature scheme.

– KeyGen. On input the system parameter param, the publisher randomly picks
his secret key xp ← Zp. He outputs his public key yp = gxp . The subscriber
randomly picks his secret key xs ← Zp. He outputs his public key ys = gxs .

– RegP, IssueP. The publisher chooses the filter as an LSSS access structure
(M,ρ). We limit ρ to be an injective function, that is an attribute is as-
sociated with at most one row of an � × n matrix M . It is the same as
the publisher key Kp and therefore he does not need to interact with the
manager.

– RegS, IssueS. On input the subscription as a set of attributes S, the subscriber
sends it to the manager. the manager with master secret key gα first chooses
a random t ∈ Zp. He creates the subscriber key as

K = gαgt
1, L = gt, ∀x ∈ S Kx = H1(x)t

The manager sends the subscriber key Ks = (K,L, {Kx : ∀x ∈ S}) to the
subscriber.

– Pub. On input (param,m, xp,Kp) where param is the system parameter, m is
the message, xp is the publisher’s secret key and Kp = (M,ρ) is the publisher
key.
The publisher first chooses a random vector v = (s, y2, . . . , yn) ∈ Zn

p . For
i = 1, . . . , �, he calculates λi = v ·Mi, where Mi is the vector corresponding
to the i-th row of M . The publisher then chooses random r1, r2 ∈ G and
s ∈ Zp. He computes

w1 = H2(m||r1), w2 = H2(M ||ρ||r2), C = ê(g, g)αs ⊕ (m,σ1, r1),

C′ = gs, C1 = gλ1
1 H1(ρ(1))−s, . . . , C� = gλ�

1 H1(ρ(�))−s,

σ1 = w
xp

1 , w3 = H2(w1||w2||C′||C||C1|| . . . ||C�), σ2 = (w2w3)xp .

The notification is published as n = (C′, r2, w1, σ2, C, C1, . . . , C�,M, ρ)5.
– Sub. On input (param, xs) where param is the system parameter and xs is

the subscriber’s secret key, the subscriber signs the subscription attributes
S by σs = Sig(xs, S). He sends Csub = (S, σs, ys) to the broker network.

5 (σ1, σ2) can be viewed as the sanitizable signature part of the notification. Even
without the knowledge of m, the broker can check the validity of σ2 in the Match
algorithm to ensure that the notification is authenticated.

Towards a Cryptographic Treatment of Publish/Subscribe Systems 217

– Match. On input (param, n, Csub) where param is the system parameter, n =
(C′, r2, w1, σ2, C, C1, . . ., C�,M, ρ) is the notification from publisher yp and
Csub = (S, σs, ys) is the subscription, the broker first computes

w2 = H2(M ||ρ||r2), w3 = H2(w1||w2||C′||C||C1|| . . . ||C�).

If ê(σ2, g2)
= ê(w2w3, yp), the broker outputs ⊥p. If Vfy(ys, S, σs) = 0, the
broker also outputs ⊥s.
Otherwise, when S satisfies the access structure (M,ρ), the broker forwards
the notification to the subscriber and outputs yp. If S does not satisfy, the
broker outputs 0.

– Retrieve. On input (param, n,Ks) where param is the system parameter, n =
(C′, r2, w1, σ2, C, C1, . . ., C�,M, ρ) is the notification and Ks = (K,L, {Kx :
∀x ∈ S}) is the subscriber key, suppose that S satisfies the access structure
(M,ρ). The subscriber finds the set I = {i : ρ(i) ∈ S}. Let {ω ∈ Zp}i∈I be a
set of constants such that if {λi} are valid shares of any secret s according
to M , then

∑
i∈I ωiλi = s. Then he computes

ê(C′,K)(∏
i∈I(ê(Ci, L)ê(C′,Kρ(i)))ωi

) =
ê(g, g)αsê(g, g1)st(∏

i∈I ê(g, g1)tλiωi
) = ê(g, g)αs.

The subscriber obtains (m,σ1, r1) = ê(g, g)αs ⊕ C. He computes

w1 = H2(m||r1), w2 = H2(M ||ρ||r2), w3 = H2(w1||w2||C′||C||C1|| · · · ||C�).

If ê(σ1σ2, g)
= ê(w1w2w3, yp), the subscriber outputs ⊥. Otherwise, he out-
puts a pair (m, ppk), where m is the message and ppk is the publisher’s
public key.

3.4 Security

Our basic scheme has publisher confidentiality, information confidentiality, in-
formation unforgeability, subscription unforgeability and service unforgeability.

Theorem 1. Suppose the (ε, t′)-decisional q-BDHE assumption holds. Then our
basic scheme is (ε, t, qs, qp)-selectively publisher confidential against chosen plain-
text attack in the random oracle model, with a challenge filter (M∗, ρ∗) and

t′ = t + (qs + qh)O(n∗(τm + τe)),

where M∗ is of size �∗ × n∗ and n∗ ≤ q, qh is the number of query to the H1
oracle, τm and τe are the time for a multiplication and an exponentiation in G,
respectively.

As discussed in §2.1, publisher confidentiality implies information confidential.
Therefore our basic scheme is also selectively secure for information confiden-
tiality against the chosen plaintext attack. However, we can give a direct proof
without selective model and use a weaker assumption.

218 T.H. Yuen, W. Susilo, and Y. Mu

Theorem 2. Suppose the (ε, t′)-DBDH assumption holds. Then our basic scheme
is (ε, t, qp)-information confidential against chosen plaintext attack in the random
oracle model, with t′ = t + qhO(τe), where qh is the number of query to the H1
oracle and τe is the time for an exponentiation in G.

Theorem 3. Suppose the (ε′, t′)-CDH assumption holds. Then our basic scheme
is (ε, t, qp)-information unforgeable against chosen message attack in the random
oracle model, where

ε′ ≥ ε(
3
qh
− 3

q2
h

+
1
q3
h

), t′ = t + (qp + qh)O(τm + τe),

where τm and τe are the time for a multiplication and an exponentiation in G,
respectively; and qh is the number of query to the H2 oracle.

Theorem 4. Suppose that (Sig, Vfy) is EUF-CMA secure. Then no poly-time
adversary can break the subscription unforgeability.

Theorem 5. Suppose the (ε′, t′)-CDH assumption holds. Then our basic scheme
is (ε, t, qp)-service unforgeable against chosen message attack in the random or-
acle model, where

ε′ ≥ ε(
2
qh
− 1

q2
h

), t′ = t + (qp + qh)O(τm + τe),

where τm and τe are the time for a multiplication and an exponentiation in G,
respectively; and qh is the number of query to the H2 oracle.

Theorem 4 is straightforward by the construction of our basic scheme. The se-
curity proofs of other theorems are given in the full version of the paper due to
the space limit. We also discuss some possible extensions that can be applied to
our basic scheme in the full version of the paper.

4 Related Works

In this section we compare our basic CBPS scheme and the extension with the
existing CBPS schemes providing confidentiality. The result of the comparison
can be found in Table 1.

The scheme of Li, Lu and Shi [4] and Srivatsa and Liu [9] use prefix-preserving
tree structure for information and subscription confidentiality as well as efficient
matching. However, if the adversary have a large number of matching notification
and subscription pairs, then the adversary may obtain some information about
the prefix in the notification and subscription. Therefore they are only secure
if the adversary knows a few notification and subscription pairs. They are not
secure in our security model.

Khurana [3] proposed a CBPS scheme with a threshold key sharing scheme
such that t out of n managers are responsible to generates keys for subscribers
and publishers. It reduces the trust to a single manager. However, the group of

Towards a Cryptographic Treatment of Publish/Subscribe Systems 219

Table 1. Comparison of pub/sub schemes providing confidentiality. For confidentiality
(Conf), I stands for information confidentiality, S stands for subscription confidential-
ity and P stands for publisher confidentiality. For unforgeability (Unf), I stands for
information unforgeability, S stands for subscription unforgeability and V stands for
service unforgeability. For anonymity (Anon), S stands for subscriber anonymity. A
small letter means that it is secure in a weaker security model in the original cited
paper only. BB. stands for border brokers. For * in the table, it will be explained in §4.

Scheme Conf Unf Anon Pre-Shared Key Proof Trust
Li et al. [4] i, s - - Yes No No
Khurana [3] I I, V - No No *

Zhao and Sturman [14] I i, s - No No BB.
Raicius and Rosenblum [8] I, S i, s - Yes Yes No

Srivatsa and Liu [9] i, p, s - - No No No
Pesonen et al. [7] I, S * - No No BB.
Zhang et al. [13] i, s - - No No No

Our Basic Scheme I, P I, S, V - No Yes No
Our Extension I, P, S I, S, V s No Yes No

(in full version of the paper)

n managers must help to calculate the notification when the notification travels
from a broker to another. It greatly increases the workload of the managers.

Zhao and Sturman [14] placed a complete trust to the border brokers in their
CBPS scheme. Encryption is performed between border brokers. Publishers and
subscribers access pub/sub system through the access control list. Information
confidentiality and authenticity is protected by this access control. The scheme
is not secure in our unforgeability model.

Pesonen, Eyers and Bacon [7] also placed a trust to the border brokers in
their CBPS scheme. Publishers and subscribers access pub/sub system through
the access control list. Information and subscription confidentiality are protected
by this access control. Since authenticated encryption is used, integrity is also
protected. However, the scheme is not secure in our unforgeability model.

Raicius and Rosenblum [8] proposed the first CBPS scheme with proof of
information and subscription confidentiality. It comes with the cost of publishers
and subscribers having a pre-shared key. The unforgeability of the scheme is also
protected by this pre-shared key, since encryption cannot be performed without
the symmetric key. The scheme is not secure in our unforgeability model.

Zhang et al. [13] proposed a CBPS scheme using a new mechanism called in-
formation foiling. The publishers and subscribers generate a set of fake messages
to hide the authentic message. Their new algorithm does not fit into our model
since their confidentiality is in a probabilistic sense.

5 Conclusion

In this paper, we introduced the first security model for all security requirements
of CBPS. We proposed a new CBPS scheme that fulfills most of the security
requirements concurrently. We proved its security according to our new model.

220 T.H. Yuen, W. Susilo, and Y. Mu

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Department of Computer Science, Israel Institute of Technology (1996)

2. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

3. Khurana, H.: Scalable security and accounting services for content-based pub-
lish/subscribe systems. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright,
R.L. (eds.) SAC 2005, pp. 801–807. ACM, New York (2005)

4. Li, J., Lu, C., Shi, W.: An efficient scheme for preserving confidentiality in content-
based publish-subscribe systems, Tech. Rep. GIT-CC-04-01, Georgia Institute of
Technology (2004)

5. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.:
Digital documents sanitizing problem. IEICE Technical Report ISEC2003-20, 61–
67 (2003)

6. Nikander, P., Giannis, M.F.: Towards understanding pure publish/subscribe cryp-
tographic protocols. In: 16th International Workshop on Security Protocols (2008)

7. Pesonen, L.I.W., Eyers, D.M., Bacon, J.: Encryption-enforced access control in
dynamic multi-domain publish/subscribe networks. In: DEBS 2007. ACM Inter-
national Conference Proceeding Series, vol. 233, pp. 104–115. ACM, New York
(2007)

8. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In: Securecomm 2006. IEEE, Los Alamitos (2006)

9. Srivatsa, M., Liu, L.: Secure event dissemination in publish-subscribe networks. In:
ICDCS 2007, p. 22. IEEE Computer Society, Los Alamitos (2007)

10. Suzuki, M., Isshiki, T., Tanaka, K.: Sanitizable signature with secret information.
In: Symposium on Cryptography and Information Security, 4A1-2 (2006)

11. Wang, C., Carzaniga, A., Evans, D., Wolf, A.L.: Security issues and requirements
for Internet-scale publish-subscribe systems. In: HICSS 2002. IEEE Computer So-
ciety, Los Alamitos (2002)

12. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008), http://eprint.iacr.org/

13. Zhang, H., Sharma, A., Chen, H., Jiang, G., Meng, X., Yoshihira, K.: Enabling
information confidentiality in publish/subscribe overlay services. In: ICC 2008, pp.
5624–5628. IEEE, Los Alamitos (2008)

14. Zhao, Y., Sturman, D.C.: Dynamic access control in a content-based pub-
lish/subscribe system with delivery guarantees. In: ICDCS 2006, p. 60. IEEE Com-
puter Society, Los Alamitos (2006)

http://eprint.iacr.org/

STE3D-CAP: Stereoscopic 3D CAPTCHA

Willy Susilo1,�, Yang-Wai Chow2, and Hua-Yu Zhou2

1 Centre for Computer and Information Security Research
2 Centre for Multimedia and Information Processing

School of Computer Science and Software Engineering
University of Wollongong, Australia

{wsusilo,caseyc,hz285}@uow.edu.au

Abstract. We present STE3D-CAP (pronounced as “steed-cap” /��������/)1, a
text-based CAPTCHA that is built from stereoscopic 3D images. This is a com-
pletely new direction in CAPTCHA techniques. Our idea is to incorporate stereo-
scopic 3D images in order to present the CAPTCHA challenge in 3D, which will
be easy for humans to read (as the text stands out in the 3D scene) but hard for
computers. The main idea is to produce a stereo pair, two images of the distorted
3D text objects generated from two different camera/eye viewpoints, that are pre-
sented to a human user’s left and right eyes, respectively. When the two images
are supplied to hardware capable of displaying stereoscopic 3D images, the re-
sulting CAPTCHA can easily be solved by humans, as the text will appear to
stand out from the rest of the scene, but computers will not be able to solve them
easily. As per the usual practice, the text in the produced images will be distorted
(e.g. translated, scaled, warped) and overlapped but additionally the depth of the
3D text objects in the stereoscopic images will add a degree of complexity to
the CAPTCHA and make it harder for CAPTCHA attacks (due to positive and
negative parallax in the stereo pair). We demonstrate that the existing attacks on
STE3D-CAP will fail with an overwhelming probability and that we can increase
our CAPTCHA’s resistance to segmentation attacks whilst maintaining usability.
We also note that our technique is applicable to other stereoscopic approaches,
such as anaglyph.

1 Introduction

The invention of CAPTCHAs (Completely Automated Public Turing test to tell Com-
puters and Humans Apart)2 was put forth by von Ahn et al. in 2003 [26]. CAPTCHAs
are designed to be simple problems that can be quickly solved by humans, but are dif-
ficult for computers to solve. After von Ahn et al.’s seminal work, hundreds of design
variants have appeared either in practice or in the literature. CAPTCHAs have quickly
gained popularity over the past few years, since they are used to prevent exploitations
by bots and automated scripts in public web services, which are rapidly increasing. Es-
sentially, CAPTCHAs are challenge response tests that have become almost ubiquitous

� This work is supported by ARC Future Fellowship FT0991397.
1 The name is inspired by a working mount (horse) especially for warfare.
2 The term CAPTCHAs have also been known as Human Interaction Proofs (HIPs) [6].

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 221–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

on the World Wide Web to determine whether a user is a human or a computer. Using
CAPTCHAs, services can distinguish legitimate users from computer bots while re-
quiring minimal effort by the human user. Many companies currently employ the use of
CAPTCHAs to protect their services against email spam, as well as to prevent fraud and
denial of service attacks in online registrations, ticket/event reservations, online voting,
chat rooms, weblogs, etc. [8].

To date, there exist three main types of CAPTCHAs: [30]

– Text-based CAPTCHAs: typically obtained by selecting a sequence of letters, ren-
dering them, distorting the image and adding some noise;

– Image-based CAPTCHAs: typically ask users to conduct an image recognition task;
and

– Sound-based CAPTCHAs (or audio CAPTCHAs): typically require users to solve
a speech recognition task.

Among the three families, text-based CAPTCHAs are the most popular since they are
simple, small and easy to design and implement. Therefore, they have been widely used
in major web sites such as Google, Yahoo and Microsoft, since they are very intuitive
to users world-wide, in addition to having good potential to provide strong security
[30]. Theoretically, challenges as short as five characters are robust against random
guessing3, namely 625 ≈ 912 million possible five-character challenges that compris-
ing case-insensitive letters and digits. Nevertheless, computing efforts, such as Optical
Character Recognitions (OCR) or segmentation techniques, have been found very suc-
cessful to achieve human-like accuracy [10,29,6]. Generally, text-based CAPTCHAs
have universally suffered from a property that making them hard for computers also
implies making them hard for humans [10].

Image-based CAPTCHAs were first described using labelled photographs by Chew
and Tygar [9], which rely on Google Image Search [15]. This work was known to be
unsuccessful due to Google’s method of inferring photo contents based on surround-
ing descriptive text [10]. A more recent example in this family is Asirra [10], which
is an image-based CAPTCHAs proposed in ACM CCS 2007 that uses images from
Petfinder.com database. The security of Asirra relies on the problem of distinguishing
images of cats and dogs, which is a task that is trivial for humans. Unfortunately, Golle
demonstrated an attack based on machine learning to produce a classifier with 82.7%
accuracy in telling apart the images of cats and dogs used in Asirra [13].

Audio CAPTCHAs were introduced to provide an alternative for those who are un-
able to use visual CAPTCHAs. Nevertheless, a recent study by Bigham and Caven-
der demonstrated that existing audio CAPTCHAs are clearly more difficult and time-
consuming to complete as compared to visual CAPTCHAs for both blind and sighted
users [3]. They also questioned how audio CAPTCHAs could be created that are eas-
ier for humans to solve while still addressing the improved automatic techniques for
defeating them and posed it as an open problem for future research [3].

Elson et al. [10] classified CAPTCHAs into two different classes. In a Class I
CAPTCHA, a secret value, which is merely a random number, is fed into a publicly

3 We assume that random guessing is taken over upper and lowercase letters plus the digits.

STE3D-CAP: Stereoscopic 3D CAPTCHA 223

known algorithm to produce a challenge, which is analogous to a public-key cryptosys-
tem. In a Class II CAPTCHA, two inputs are required namely a secret value and a
secret high-entropy database, which is somewhat analogous to a one-time-pad cryp-
tosystem. One of the challenges in building a secure Class II CAPTCHA is populating
the database with a sufficiently large set of classified and high-entropy entries [10].

Combining the two classifications above, it is clear that the most desirable way to
construct CAPTCHAs is to employ Class I text-based CAPTCHAs, as they are small
and easy to design and implement. The key challenge is how to enlarge the gap between
human and non-human success rates whereas the resulting CAPTCHAs will be toler-
ated by users. Elson et al. [10] criticized text-based CAPTCHAs and commented that
they must be intolerable to users or else the resulting CAPTCHAs would be too easy to
break. In addition, Jakobsson further argues that in its current incarnation, CAPTCHAs
may be nearing the end of its useful life [16]. He also contends that the current trend
is such that strengthening CAPTCHAs to withstand increasingly powerful automated
attacks also results in them becoming increasingly difficult for human users to solve.
This will hurt user tolerance and at some point this trend will simply make CAPTCHAs
too hard for people to use [16]. Therefore, it is an interesting open question to produce
a Class I text-based CAPTCHA.

Our Contributions. In this paper, we present STE3D-CAP, a text-based CAPTCHA
that is built from stereoscopic 3D images, as shown in Figure 1.

Fig. 1. STE3D-CAP without appropriate stereoscopic viewing equipment

STE3D-CAP is easy for human users, as it can be solved by humans who are
equipped with an “appropriate” 3D visualization device (eg. Stereoscopic 3D display
and glasses). The stereoscopic 3D images that represent left and right views are ren-
dered by a graphics system on the server side and the resulting images are sent to the
client system. The client system’s hardware is therefore only provided with the two im-
ages and has to display these images to the user in stereo. We implemented our STE3D-
CAP technique using an NVIDIA 3D Vision kit on a compatible NVIDIA graphics card
and an AlienwareTMOptX AW2310, 3D capable, 120Hz monitor. We observe that all
the known attacks, such as segmentation attacks [29] or pattern recognition analysis,
will not be successful in analyzing STE3D-CAP.

The main drawback of STE3D-CAP is that it relies on the required stereoscopic
display hardware that the user must own. Nevertheless, with the recent surge in the

224 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

popularity of 3D movies and 3D games, LCD monitors and 3D TVs capable of dis-
playing stereoscopic 3D images are becoming more and more common place nowadays
(such as [12]). Further evidence of this can also be observed from the fact that the cost
of 3D capable devices have become significantly cheaper in the past few years4. Our
goal is to exploit advances in the lastest technology in order to breathe new life into
current CAPTCHA techniques which are susceptible to novel attacks, by strengthening
text-based CAPTCHAs against such attacks whilst maintaining human usability.

1.1 Related Work

After the seminal concept of a CAPTCHA was introduced by von Ahn [26], many design
variations of CAPTCHAs have been proposed and used. The text-based CAPTCHAs
are very popular due to its simplicity. Unfortunately, computer attacks have been found
against most of the existing text-based CAPTCHAs. Simard et al. demonstrated the use
of Optical Character Recognition (OCR) to obtain human-like accuracy, as long as the
letters can be segmented reliably [24]. Mori and Malik showed that von Ahn et al.’s
original GIMPY CAPTCHA [25] can be solved automatically 92% of the time [19].

Reading text-based CAPTCHA challenges typically consists of a segmentation chal-
lenge and a recognition challenge [6]. The segmentation challenge involves the iden-
tification of character locations in the right order, whereas the recognition challenge
is in recognizing individual characters. The difficulty of these challenges can be in-
creased using various techniques like cluttering the foreground and background, dis-
torting individual characters, etc. Research has shown that computers are extremely
successful in recognizing individual characters, even characters that are highly distorted
[7,29]. This therefore suggests that the challenge for text-based CAPTCHAs is to design
CAPTCHAs that are resistant to segmentation yet human readable.

In 2005, Microsoft published a text-based CAPTCHA, which was designed to be seg-
mentation resistant [6]. The resulting CAPTCHA had been widely deployed in many
Microsoft’s online services, such as Hotmail, MSN and Windows Live for years. Unfor-
tunately, a low-cost attack with success rate higher than 90% was developed by Yan and
Ahmad [29], which demonstrated that this carefully designed CAPTCHA is vulnerable
to novel, but simple attacks.

Usability issues of text-based CAPTCHAs have also been investigated by Yan and
Ahmad [30]. The four common distortion on text-based CAPTCHAs that will not make
them difficult for human users to recognize them are as follows [30].

– Translation: characters can be moved up or down and left or right by an amount;
– Rotation: characters can be turned either in the clockwise or counter clockwise

direction;
– Scaling: characters can be stretched or compressed in either the x-direction or y-

direction;
– Warp: elastic deformation of CAPTCHA images at different scales.

The length of text strings used in CAPTCHAs also plays an important role to their
security. Some schemes choose to use a fixed length, and they turned out to be insecure.

4 A set of NVIDIA [21] capable devices nowadays are around US$ 500, which is significantly
lower compared to the cost last year.

STE3D-CAP: Stereoscopic 3D CAPTCHA 225

For example, the Microsoft’s CAPTCHAs use 8 characters in their challenge [6]. It
turns out that the segmentation attack can be done easier knowing this fact [29]. On the
other hand, Google’s CAPTCHAs incorporate a different number of characters in each
challenge, although their security has not been rigorously tested [30].

The use of color also plays an important role in CAPTCHA design. In terms of us-
ability, color is good for drawing a user’s visual attention. The incorporation of color can
also make the CAPTCHA challenge more appealing, it can potentially aid in the recog-
nition and comprehension of the text and it potentially makes the CAPTCHA seem less
intrusive in the context of the application [6,30]. Color schemes can potentially increase
a CAPTCHA’s security against some attacks, e.g. OCR software attacks which are poor
at recognising text in colored images. However as highlighted in [30], if used inappro-
priately color may add little or nothing to the security of a CAPTCHA, but at the same
time can significantly reduce the usability of the CAPTCHA. The misuse of color can
make the text in a CAPTCHA very difficult to read even for people with normal vision.
In fact, color can have a negative effect on the security of a CAPTCHA, as it might make
it easy for a computer to distinguish the important text from the background/foreground
clutter, etc. As such, care must be taken when using color in CAPTCHAs.

The idea of representing text-based CAPTCHAs with 3D text objects has been used
in [22]. Their CAPTCHA, which is called Teabag 3D, is obtained by making a picture
in 3D with text objects. Unfortunately, it can be seen clearly that the location of the text
objects can easily be distinguished due to the somewhat regular pattern in the surround-
ing regions, and therefore these CAPTCHAs would be breakable by using something
like a simple segmentation technique [29].

There have also been a number of recent approaches to representing CAPTCHA
challenge based on 3D models. A 3D object matching CAPTCHA challenge was intro-
duced in [31]. This is an image-based CAPTCHA approach where users are presented
with images of 3D models, which are rendered from different angles using Lambertian
lighting, and are required to select matching 3D models from a set of images. How-
ever as pointed out in [23], this approach is susceptible to attacks using basic computer
vision techniques. Ross et al. [23] introduced ‘Sketcha’, an image-based CAPTCHA
approach based on images of line drawings which are rendered from 3D models. In
Sketcha, users are presented with a set of randomly orientated line drawings, and are
required to rotate each image until all the images are upright. Mitra et al. [18] pro-
posed a technique of generating ‘emergence images’ by rendering extremely abstract
representations of 3D objects models placed in a 3D environment. Their approach
is based on ‘emergence’ which is the unique human ability to perceive objects from
seemingly meaningless patches in an image. However when the image is viewed as a
whole, a human can perceive the form of the main subject which pops out from the
clutter [18].

The idea of CAPTCHAs has also been turned into another useful purpose, namely
to help to digitize old printed material from books that computerized optical charac-
ter recognition failed to recognize. This technique is known as reCAPTCHA [27]. In-
terestingly, it has reported that this method can transcribe text with a word accuracy
exceeding 99.99% matching the guarantee of professional human transcriber [27].

226 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

2 CAPTCHA Revisited

Formally, CAPTCHAs have been defined by von Ahn et al. [26] as follows.

“A CAPTCHA is a cryptographic protocol whose underlying hardness assumption is
based on an Artificial Intelligence problem.”

When the underlying Artificial Intelligence (AI) problem is useful, a CAPTCHA im-
plies an important situation, namely either the CAPTCHA is broken and there is a way
to differentiate humans from computers, or the CAPTCHA is broken and a useful AI
problem is solved [26].

2.1 Definitions and Notation

The following definitions and notation are adapted and simplified from [26]. Intuitively,
a CAPTCHA is a test V where most humans have success close to 1, while it is hard to
write a computer program that has overwhelming probability of success over V . That
means, any program that has high probability of success over V can be used to solve
a hard AI problem. In the following, let C be a probability distribution. If P (·) is a
probabilistic program, let Pr(·) denote the deterministic program that results when P
uses random coins r.

Definition 1. [26] A test V is said to be (α, β)-human executable if at least an α portion
of the human population has success probability greater than β over V .
Definition 2. [26] An AI problem is a triple P = (S,D, f) where S is a set of problem
instances, D is a probability distribution over S and f : S → {0, 1}∗ answers the
problem instances. Let δ ∈ (0, 1]. For α > 0 fraction of the humans H , we require
Prx←D [H(x) = f(x)] > δ.
Definition 3. [26] An AI problem P is said to be (ψ, τ)-solved if there exists a program
A that runs in time for at most τ on any input from S, such that

Prx←D,r [Ar(x) = f(x)] ≥ ψ.

Definition 4. [26] An (α, β, η)-CAPTCHA is a test V that is (α, β)-human executable
and if there exists B that has success probability greater than η over V to solve a (ψ, τ)-
hard AI problem P , then B is a (ψ, τ) solution to P .
Definition 5. An (α, β, η)-CAPTCHA is secure iff there exists no program B such that

Prx←D,r [Br(x) = f(x)] ≥ η

for the underlying AI problem P .

3 Review on 3D Stereoscopy

Stereoscopy relates to the perception of depth in the human visual system that arises
from the horizontal separation of our eyes by the interocular distance (distance between
the eyes) [5]. In real life, this results in our visual cortex being presented with two
slightly different views of the world. When viewing a 3D scene, binocular disparity

STE3D-CAP: Stereoscopic 3D CAPTCHA 227

refers to the difference in the images that are projected onto the left and right eye retinas,
then onto the visual cortex [17]. The human visual system perceives the sensation of
depth through a process known as stereopsis, by using binocular disparity to obtain
depth cues from the 2D images that are projected onto the retinas.

Though a variety of 3D display devices have been developed over the years, in this
study we only concern ourselves with stereo pair based technologies. A stereo pair
is a set of two images, one created for the left eye and the other for the right eye.
Stereo pair based technologies simulate binocular disparity based on the presentation
of the different images to each of the viewer’s eyes independently [17]. By synthetically
creating and presenting two correctly generated images of the left and right views of a
scene, the visual cortex will fuse the images as it does in normal viewing to give rise to
the sense of depth [4].

However, it is important to note that there are a variety of other depth cues that the
human brain can infer from a 2D image, e.g. perspective (objects further away from
the viewer look smaller), occlusion (where closer objects block objects that are further
away), shading and shadows, etc. Depth cues are generally additive, in other words the
more the better. Therefore, it is important for the depth cues to be consistent and to
avoid conflicting depth cues in the generation of the stereo pair [5,17].

3.1 Stereo Pair Generation

To generate the stereo pair, two camera/eye viewpoints are used to create the left and
right images by horizontally displacing the cameras by an appropriate eye separation.
Stereo pairs that are not created correctly will make viewing very uncomfortable or the
brain might not even fuse the images at all resulting in the viewer seeing two separate
images. Therefore a number of factors have to be considered in practice when attempt-
ing to generate the stereo pair, so as to not overwhelm the visual system. For example,
eye separation that is set to be too large results in a condition known as hyperstereo,
and although this exaggerates the stereo effect the brain might find it hard to fuse the
images. Another consideration particularly relevant to our study where we attempt to
clutter the CAPTCHA with noise, is that if the frequency of the noise is too high, there
will essentially be little matching visual information for the brain to resolve between
the images in the stereo pair [4].

Parallax refers to the signed distance on the projection plane between the projected
positions of a point in the stereo pair. Parallax is a function of the depth of a point in
eye space [11]. A point in space that is projected onto the projection plane can be clas-
sified as having one of three relationships: zero parallax, positive parallax and negative
parallax. Note that these refer to the horizontal distance on the projection plane as the
vertical parallax should always be zero, otherwise the user will generally suffer from
uncomfortable physical symptoms from misaligned cameras. While the amount that can
be tolerated will vary from viewer to viewer, adverse side effects include headaches, eye
strain, and in severe cases even nausea [17].

Zero parallax occurs when the projected point is on the projection plane. The pixel
position of the projected point is exactly the same position on both left and right images.
This is depicted in Figure 2(a) from a top-down view. As illustrated in Figure 2(b),
positive parallax occurs when the projected point is located behind the projection plane.

228 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

In this case, the pixel position of the projected point is located on the right in the right
image and on the left in the left image. To the observer, the point appears at a depth
‘into’ the screen. The maximum possible positive parallax is equal to the eye separation
and arises when the point is located at infinity. Figure 2(c) depicts negative parallax
which occurs when the projected point is located in front of the projection plane. When
this happens, the pixel position of the projected point is located of the left in the right
image and on the right in the left image. The observer perceives the point as coming
‘out’ of the screen [11].

Fig. 2. Parallax

3.2 Stereoscopic 3D Display Technologies

Stereo pair based technologies require a method of ensuring that the left eye only sees
the left eye’s image and the right eye only sees the image for the right eye. There are
a variety of methods that have been developed to achieve this. Here we highlight a
number of stereo pair based technologies of relevance to our study, a comprehensive
overview of 3D display technologies can be found in [17].

A common technique used in a number of stereoscopic display devices is to alternate
the display of left and right views on a single display. These techniques require the
viewer to use equipment such as viewing glasses to prevent the left eye from seeing the
right view and vice versa. These can either be active or passive viewing glasses. Active
systems employ blocking lenses which synchronize with the display to alternately cause
the left and right eye lenses to become opaque, thereby blocking the respective eye’s
view. On passive systems, the display device produces polarized light where left and
right eye images are polarized in orthogonal directions. The viewing glasses for these
systems have similarly polarized lenses for each eye that only allows through light that
is polarized along an axis parallel to the respective eye [17]. Either of these systems is
suitable for STE3D-CAP.

Unlike the previous approaches, in the anaglyph method the viewer is not presented
with alternate left and right views independently. Rather, both views are presented to

STE3D-CAP: Stereoscopic 3D CAPTCHA 229

the viewer simultaneously on a single image, where the left and right eye views are
color encoded using two colors. The viewer has to wear glasses with red/green filters
(or similar red/cyan, red/blue, etc.) which filter out colors with certain frequencies for
each eye [5]. Some of the drawbacks of this approach include the lack of representation
of the full range of color, and this approach typically suffers from a lot of cross-talk
(this means that a portion of the view intended for one eye is visible to the other eye,
resulting in what is known as ‘ghosting’). However, this presents a low-cost solution.

There are other stereoscopic display technologies that do not require special view-
ing glasses, these devices are called autostereoscopic. These devices use a variety of
approaches such as lenticular sheets and parallax barriers, which are designed to focus
and redirect light to different viewing regions causing the viewer to perceive a differ-
ent image for each eye. Such display devices are increasingly gaining popularity and
a number of companies have recently announced the launching of their glass-free 3D
devices [20]. STE3D-CAP can be used on any of these systems as long as they are
stereo pair based.

4 Design and Implementation of STE3D-CAP

In this section, we will describe the design of our new CAPTCHA, stereoscopic 3D
CAPTCHA, or STE3D-CAP for short. To describe it precisely, we will proceed with
presenting the underlying AI problem and then commence with the detail of our design
and implementation.

STE3D-CAP is a CAPTCHA that are built using the stereoscopic 3D technology.
The idea is to present CAPTCHA text as 3D objects that will be easily identified by
humans (who are equipped with the proper equipment), but they are hard to be analyzed
by machines. For the implementation of our idea, we use existing NVIDIA technology
that requires us to supply two images (2D) that represent the 3D object for the left and
right eyes, resp. Then, the NVIDIA card will render the two images and present the 3D
objects.

STE3D-CAP have several attractive features:

– Humans can solve it quickly (§4.1).
– Computers cannot solve it easily (§4.1).
– STE3D-CAP is easy to generate as it is a text-based CAPTCHA.
– STE3D-CAP uses the latest technology.
– STE3D-CAP uses 3D, and hence, more noise can be added in the 3D scene while

the resulting CAPTCHA is still usable.
– STE3D-CAP is a variable length CAPTCHA, which are more difficult to defeat.
– STE3D-CAP is built in a 3D environment, and therefore more distortion can be

added to the CAPTCHA (eg. negative/positive parallax).

Nevertheless, STE3D-CAP has several disadvantages:

– STE3D-CAP requires special-type of equipment, namely equipment to display
3D5.

5 Even though specialized 3D displays are preferable, for practical applications, the anaglyph
approach can be used. Moreover, the requirement for dedicated hardware in new CAPTCHA
techniques has never been an issue (e.g. physical CAPTCHAs) [14].

230 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

– STE3D-CAP challenges may require more screen space than traditional text-based
CAPTCHAs.

– Like virtually all other CAPTCHAs, STE3D-CAP is not accessible to those with
visual impairments including those who are stereo-blind.

It should be noted that although STE3D-CAP is currently text-based, it can easily be
extended to use models of other 3D objects instead of only 3D text. Nevertheless, we
choose to focus on using a text-based CAPTCHA approach for reasons outlined in [8];
namely, that text characters were designed by humans for humans, humans have been
trained to recognize characters since childhood, text-based CAPTCHA tasks are easily
understood by users without much instruction and that each character has a correspond-
ing key on the keyboard which gives rise to many possible input combinations.

An interesting approach to confuse segmentation attacks would be to randomly inter-
leave 3D models among the 3D text. A human user would clearly be able to distinguish
between the text and the random objects. However, it would make segmentation and
recognition harder for a computer which cannot easily differentiate between the text
and objects.

In addition, we use random character strings in STE3D-CAP rather than dictionary
words. While the use of words from a dictionary will probably make the text in STE3D-
CAP easier to perceive and has implications on the security, we avoid this as it unfairly
disadvantages people unfamiliar with the chosen language.

4.1 New AI Problem Family

In this section, we introduce a family of AI problems that will be used to build our
CAPTCHA, STE3D-CAP. An image is defined as an h×w matrix (where h stands for
height and w stands for width), whose entries are pixels. A pixel is defined as a triplet
(R,G,B), where 0 ≤ R,G,B ≤M , for a constant M .

Let I2d be a distribution on images, I3d be a distribution on stereoscopic 3D images
and T be a distribution on stereoscopic image transformations, that include rotation,
scaling, translation and warp. Let Ω be a distribution on noise frequency, and Υ be a
distribution on erosion factors. Let C : I3d × Ω × Υ → I3d be a distribution of clutter
functions. A clutter function is a function that accepts a 3D image, a noise frequency
∈ Ω and an erosion factor ∈ Υ and outputs a cluttered 3D image. Let |A| denote the
cardinality of A.

Let Δ : |I3d| → I3d be a lookup function that maps an index in |I3d| and output
a stereoscopic 3D image in I3d. Let ϑ : I2d × I2d → I3d be a function that maps
two images (left and right images) to a stereoscopic image. Subsequently, let ϑ−1 :
I3d → I2d×I2d be a function that given a stereoscopic image, outputs two images that
represent left and right images, resp. Subsequently, we also assume that ϑ is publicly
available. For simplicity, we denote the left and right images with superscript L and R,
resp.

For clarify, for the rest of this paper, we will use Roman boldface characters to
denote elements of I3d, while Sans Serif characters to denote elements of I2d.

STE3D-CAP: Stereoscopic 3D CAPTCHA 231

Problem Family (PSTE3D-CAP).
Consider the following experiment.

1. Randomly select i ∈ |I3d|.
2. Compute i ← Δ(i).
3. Select a transformation t← T .
4. Compute ī ← t(i).
5. Select a clutter function c← C.
6. Compute j ← c(̄i, ω, υ), where ω ∈ Ω and υ ∈ Υ are selected randomly.
7. Output ϑ−1(j).

The output of the experiment is (jL, jR) ← ϑ−1(j), where (jL, jR) ∈ I2d × I2d.
PSTE3D-CAP is to write a program that takes (jL, jR) ∈ I2d × I2d as input and

outputs i ∈ |I3d|, assuming the program has precise knowledge of T , C and I2d.
More formally, let

SI2d,T ,C = {ϑ−1 (c (t(Δ(i)), ω, υ)) = (jL, jR) : t← T ,

c← C, ω ∈ Ω, υ ∈ Υ, (jL, jR) ∈ I2d × I2d}

Let DI2d,T ,C be the distribution of SI2d,T ,C that are obtained from executing the
above experiment, and

fI2d,T ,C : SI2d,T ,C → |I3d|

such that fI2d,T ,C = i, i ∈ |I3d|. Then,

PSTE3D-CAP = (SI2d,T ,C, DI2d,T ,C , fI2d,T ,C).

Hard Problem in PSTE3D-CAP.
We believe that PSTE3D-CAP contains a hard problem. Given PSTE3D-CAP =

(SI2d,T ,C , DI2d,T ,C , fI2d,T ,C), for any program B,

Prx←DI2d,T ,C,r [Br(x) = f(x)] < η.

Based on this hard problem, we can construct a secure (α, β, η)-CAPTCHA.

Theorem 1. A secure (α, β, η)-CAPTCHA can be constructed fromPSTE3D-CAP as
defined above.

Proof. We will provide the proof in two stages. First, we show that (α, β, η)-CAPTCHA
is (α, β)-human executable. Then, we show that (α, β, η)-CAPTCHA is hard for a com-
puter to solve. We also show an instantiation of our proof.

GivenPSTE3D-CAP, humans can get the instance (jL, jR)← ϑ−1(j), where (jL, jR)
∈ I2d × I2d. Then, by executing ϑ(jL, jR) humans can easily see the instance of the
problem and output i. We should justify that in practice, ϑ(·) is implemented in a 3D
hardware capable of displaying 3D, such as an NVIDIA card [21]. Executing ϑ(jL, jR)
means that humans will be able to see the objects provided clearly using the required
equipments (such as 3D glasses), and humans can output i easily. Hence, (α, β, η)-
CAPTCHA is (α, β)-human executable.

232 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

However, given PSTE3D-CAP, machines cannot output i. Although ϑ(jL, jR) is
available publicly, machines cannot “view” the 3D representation of i and hence, cannot
output i easily. The best way to analyze the problem is by processing (jL, jR) directly,
which will not help machines to identify i. Hence, Prx←DI2d,T ,C,r [Br(x) = f(x)] <
η, for any B.

An in-depth security analysis on PSTE3D-CAP will be provided in §5.

4.2 Design Principles of STE3D-CAP

1. Differences between left and right images Intuitively, the first design principle re-
quires that the “difference” between the left and the right images must be sufficiently
noisy to ensure that segmentation attacks will fail. The idea is to ensure that j will be
clearly visible for humans to identify i, while machines observing (jL, jR) cannot de-
duce i. Note that jL is the 2D version of the image from the left eye’s perspective and
jR is from the right eye’s perspective. While the 3D version of i in both jL and jR must
exist, the noise in both images can be made vary since the noise visible from the left eye
maybe blocked and invisible from the right eye, and vice versa. Suppose we define that
jL = t̄(jR) + δ, where T̄ is a distribution on 2D image transformation (eg. translation)
and t̄← T̄ . We require δ to be sufficiently noisy to deter against segmentation attacks.
Formally, we have the following theorem.

Theorem 2. An (α, β, η)-CAPTCHA constructed from PSTE3D-CAP is secure
against segmentation attacks, iff for δ = jL − t̄(jR), where T̄ is a distribution on 2D
image transformation and t̄← T̄ , we require that there exists no program B such that

Prx←DSTE3D-CAPI2d,T ,C
,r [Br(x) = i] ≥ η.

2. Human Factors Although we vary a number of parameters in STE3D-CAP in order
to make it less predictable and harder for computers to perform automated attacks, a
number of human factors issues had to be kept in mind. This is because our aim is for a
human user to be able to use STE3D-CAP comfortably.

In terms of stereoscopic viewing, it is generally easier on the eyes to view objects
that are at screen depth or objects that appear into the screen, even though this does not
result in the pop out of screen effect. Caution must be exercised for objects in front of
the screen as parallax diverges quickly to negative infinity for objects closer to the eyes
[11]. Focusing on objects that are positioned too close to the eyes forces the viewer’s
eyes to cross at a point in front of the screen, which can be very strenuous on the eyes.
The focal length refers to the distance at which objects in the scene will appear to be
at zero parallax. In general, objects should not be positioned closer than half the focal
length, in other words negative parallax should not exceed the eye separation [4].

In addition, eye separation must also be kept within a reasonable range. Ideally, eye
separation should be made as large as possible. This way the images for the left and
right views will be rendered from very different angles and some information present
in one image might be missing from the other and vice versa, as shown in Figure 3(b).
Therefore, information will only be complete if both images are viewed together. How-
ever, it must be kept in mind that too large an eye separation will lead to hyperstereo

STE3D-CAP: Stereoscopic 3D CAPTCHA 233

(a) Distorted 3D text (b) Rotated 3D text object

Fig. 3.

which is uncomfortable for users, whereas a value which is too small results in hy-
postereo. In hypostereo, the user does not really perceive a 3D effect and furthermore
the images in the stereo pair will not differ by much.

4.3 Implementation

We implemented STE3D-CAP by using a graphics system to render models of 3D text
objects against foreground and background clutter. To develop and view STE3D-CAP,
we used an NVIDIA 3D Vision kit with an AlienwareTMOptX AW2310 3D monitor.
To avoid user eye strain, perspective camera properties, view frustums, etc. were set up
using the general rules of thumb. For quantitative guidance, please refer to [4] and [11].

Customizable vertex and fragment shaders were used to give rise to random vertex
perturbations and erosion effects. The vertices of the text models were randomly per-
turbed in 3D to distort the text. Figure 3(a) gives a depiction of this for the left eye.
Please note that all STE3D-CAP images in this paper were generated using the same
character string as shown in Figure 3(a) for comparison sake.

Individual 3D text objects also undergo random 3D transformations. Unlike conven-
tional 2D CAPTCHAs, we can add more variation to the transformations as we are now
dealing with 3D. Translation is not merely left/right and up/down but can also be varied
with respect to depth from screen. Similarly rotation is not restricted to being clockwise
and counter clockwise, as we can also rotate the 3D text objects about the vertical axis
as well as the horizontal axis pointing to the right. Rotation must be limited to be within
a certain range, otherwise the text may not be readable if slanted at angles which are too
steep. We chose a conservative rotation range of between +/- 20 degrees for the rotation
axes parallel to the projection plane and +/- 45 degrees clockwise/counter clockwise.
By rotating the text objects the parallax of the projected points on the object will also
be different in screen space. This is illustrated in Figure 3(b). We also randomly scale
the 3D text objects to alter their size.

234 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

To increase the difficulty of segmentation attacks we adopted the “crowding char-
acters together” method (letting characters touch or overlap with each other) which is
suggested to be segmentation resistant [30], and we also attempted to clutter the scene
with noise. Our implementation allows us to adjust the frequency of the noise. However,
as noted in Section 3.1 high frequency noise makes it difficult for the brain to correlate
matching visual information and subsequently makes it hard to fuse the stereo pair.
Also, if the noise is too fine, it will be easy to differentiate the text from the noise by
simply removing small individual clusters of noise. Furthermore, completely random
noise that appears in one image but not the other will also be hard to fuse, and at the
same time easy to filter out by simply finding the differences between the stereo pair.

Instead, in our implementation we use foreground and background surfaces with
randomly perturbed vertices and eroded surface sections base on a 3D Perlin noise
function. The surfaces’ vertices were perturbed to avoid completely smooth surfaces
which will be easy to filter out between stereo pair images. We can also adjust the scale
and amount of erosion. In addition, we made the foreground clutter slightly translucent
for usability reasons, so that the text behind it will not be completely obscured. In this
manner, the clutter does not appear as random noise, but rather from the user’s point of
view looks like two eroded surfaces, and they can perceive the text amidst the surfaces.
Figure 46 shows an example of such a stereo pair. It can be seen that one cannot use the
images individually to complete the CAPTCHA challenge.

Fig. 4. Example of a STE3D-CAP stereo pair

At the moment, color is used in STE3D-CAP merely from a usability standpoint
to improve the attractiveness of the CAPTCHA rather than for any particular security
reason. This is because even though it will be much easier to see the text if it was
highlighted with a different color from the clutter, this would also make it very easy
to filter out the clutter by just separating the text based on color. Furthermore, if we
introduced a lot of random colors to improve security, it would make the stereo pair
very hard to fuse. Moreover, an automated attack could simply convert the images to
greyscale and attempt to threshold the intensity levels rather than dealing with the color.
The colors in STE3D-CAP were deliberately made to overlap with the clutter to make
it harder for automated attacks whilst still being usable.

Despite STE3D-CAP being rendered in 3D, confusing character combinations still
had to be avoided as highlighted in [30]. For example, a distorted ‘vv’ might look like
a ‘w’, etc.

6 Though we do not recommend this, it is possible to see the 3D text by crossing one’s eyes à la
magic eye images.

STE3D-CAP: Stereoscopic 3D CAPTCHA 235

5 Security of STE3D-CAP

Before describing the security of STE3D-CAP, it is useful to review the threat model
associated with CAPTCHAs, as CAPTCHAs are an unusual area of security where we
are not trying to provide absolute assurances, but rather to merely slow down attackers.
CAPTCHAs are considered to be “successful” if they force an automated attack to cost
more than approximately 30 seconds worth of a human’s time in part of the world where
labor is cheap [10]. It is generally acceptable if CAPTCHAs can admit bots with less
than 1/10,000 probability [25].

When considering the security of STE3D-CAP, we provide the adversary with
(jL, jR) instead of j, due to the following reason. First, although the input for humans
is j, machines cannot view 3D objects like humans. Therefore, it would be easier for
machines to be provided with (jL, jR) instead. Second, the function ϕ is available pub-
licly. This function will transform j ← ϕ(jL, jR). This assumption is very reasonable as
the implementation is on the client’s system. Therefore, the machine adversary can also
make use of this function whenever it is deemed necessary. Third, since the 3D view
is generated by the client’s machine, the two images (jL, jR) will need to be sent to the
client’s machine. Therefore, even though the view that is shown in the client’s machine
is j, it is reasonable to assume that the adversary can capture both (jL, jR) by observing
the TCP/IP packets.

5.1 Single Image Attacks

Any of the existing CAPTCHA attacks can be attempted on the left and right images
of STE3D-CAP individually. However, unlike existing 2D text-based CAPTCHA ap-
proaches which cannot be overly cluttered in order to maintain usability (which makes
them more susceptible to segmentation attacks), it is possible to increase the foreground
and background clutter in STE3D-CAP. This will increase STE3D-CAP’s security
against segmentation attacks, while at the same time when STE3D-CAP is viewed
in 3D, the viewer can still perceive the text and differentiate this against the clutter.
Figure 5(a) was obtained by passing the left image through a Sobel edge detection fil-
ter. While it highlights the edges in the image, it does not give rise to much useful
information.

(a) Edge detection image (b) Difference image

Fig. 5.

236 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

5.2 2D Image Difference Attacks

Unlike the existing attack models in the literature, we introduce a new type of attack
namely 2D image difference attacks. In this type of attack, an adversary who is given a
pair of 2D images, (jL, jR) will first find the difference between these two. This relies on
the fact that jL = t̄(jR) + δ, where T̄ is a distribution on 2D image transformation (eg.
translation) and t̄ ← T̄ . The adversary will need to find the appropriate t̄7. Then, sub-
sequently, the adversary will try to eliminate δ, which is δ = jL − t̄(jR). By eliminating
δ, the leftover image will then be analyzed using the existing segmentation techniques,
such as [29], to identify the segments and break the CAPTCHAs. To demonstrate this,
Figure 5(b) depicts the difference image8 between left and right views. Sections in white
are in the left image but not in the right, whereas black represents sections in the right
image but not in the left, and grey shows overlapping sections. It can be seen that little
useful information can be gathered from the image. Figure 6 is the anaglyph version of
Figure 1. For usability and ease of use of STE3D-CAP, one can view Figure 6 using a
low cost red-cyan anaglyph glasses. Note however that the anaglyph version will look
slightly different compared to when using appropriate stereoscopic devices, as one can
see greater variation in the depth of the characters using the latter approach.

Fig. 6. Anaglyph

Theorem 3. An (α, β, η)-CAPTCHA constructed fromPSTE3D-CAP as defined above
is secure against 2D image differences attacks.

Proof. Our (α, β, η)-CAPTCHA has been designed according to the first design princi-
ple in §4.2. This means δ has been chosen such that it will be sufficient to deter against
segmentation attacks. Hence, an adversary launching 2D image differences attacks will
end up with a noisy 2D image that will not represent mere the object i. Therefore, image
segmentation attacks on the newly developed image will not be able to extract i.

7 We note that this action can be done trivially by comparing the two images (jL and jR).
8 This image is obtained by taking the left image minus the right image, and scaled between

black and white.

STE3D-CAP: Stereoscopic 3D CAPTCHA 237

Subsequently, we will also obtain the following theorem.

Theorem 4. An (α, β, η)-CAPTCHA constructed fromPSTE3D-CAP as defined above
is secure against segmentation attacks.

5.3 Brute Force Attacks

A straightforward attack on STE3D-CAP is brute force. In this attack, the adversary
will just provide a random solution to challenges until one succeeds. This means, given
a STE3D-CAP challenge, (jL, jR), the adversary will find a random solution for it.
Note that STE3D-CAP are variable length CAPTCHAs. Hence, the adversary has no
knowledge on the length of the challenge. Suppose the length of the challenge is λ,
and there are 62 possible characters comprising lower and upper case letters and digits.
Then, the chance of successful brute force attacks is 1

62λ . In practice, this chance can be
considered as negligible, especially when CAPTCHAs are combined with techniques
such as token bucket algorithms [10] to combat denial-of-service attacks.

Theorem 5. An (α, β, η)-CAPTCHA constructed from PSTE3D-CAP as defined
above is secure against brute force attacks.

5.4 3D Reconstruction Attacks

While one may be able to approximate the reconstruction of the 3D scene from the
stereo pair, this still leaves the problem of how to separate the 3D text from the 3D
clutter which is difficult due to the different parallax. In addition, because of the char-
acters are touching/overlapping this still leaves the problem of segmenting to individual
characters. In short, even if one can successfully remove the clutter this will reduce to
the difficulty of segmentation attacks which forms the basis of security for existing 2D
CAPTCHA approaches. Furthermore, human visual perception of 3D scenes is still an
open research problem that cannot easily be modeled.

6 Applications

The incorporation of STE3D-CAP in an application requires that the application be
usable with a stereoscopic 3D display. Two current areas are increasingly moving to-
ward the use of 3D displays; namely, 3D games and 3D movies. STE3D-CAP can
be included seamlessly into applications like 3D Massively Multiplayer Online Games
(MMOGs). These are online games that support multiple players who interact in the
same shared virtual space. Many of these games are already being developed or modi-
fied to cater for stereoscopic 3D displays. An example is the popular World of
WarcraftTM[2]. The use of CAPTCHAs in these applications will help deter the use
of bots to gain an unfairly advantage over other players and ruin the fun for other
players [14].

The number of applications that use stereoscopic 3D displays will certainly increase
with more and more companies currently developing and producing glass-free 3D dis-
play devices [20]. A number of web pages already contain anaglyph flash and java

238 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

applets, while others provide 3D images and videos [1]. Web browser plugins are cur-
rently being developed to be able to display stereoscopic 3D images and videos on web
pages [28], and this will certainly become more and more widespread. In that respect,
stereoscopic 3D CAPTCHAs is anticipated to be the way of the future. While stereo-
scopic displays have yet to proliferate, the existing solution is to adopt the low-cost
anaglyph approach as a drop-in replacement for current CAPTCHAs on web pages.

7 Conclusion and Further Work

In this paper we presented a new stereoscopic 3D CAPTCHA, called STE3D-CAP,
which attempts to overcome limitations with existing 2D approaches. We demonstrated
that STE3D-CAP is resistant against the existing 2D CAPTCHA attacks. Our approach
has opened a new research direction to incorporate CAPTCHA challenges in 3D scenes.

Our approach also gives rise to the possibility of producing animated 3D CAPTCHAs
where either the camera’s viewpoint is translated in 3D or the scene is moved with re-
spect to the camera. The differences between animated frames will give rise to 3D depth
perception of the text in the scene via motion parallax, where objects at a distance ap-
pear to move slower compared to objects what are close to the viewer. Furthermore,
as the camera moves from one position to another, the 3D text which might have been
obscured in one frame will become visible in another frame. In order to break this
CAPTCHA, one would have to somehow correlate the content between frames whilst
attempting to separate the 3D text from the background and foreground clutter, which is
not an easy task. This approach will work on standard displays and can be incorporated
into web pages as animated Graphics Interchange Format (GIF) images.

References

1. Anaglyph flash gallery, http://www.3dmix.com/eng/flash-gallery/
2. Activision Blizzard. World of Warcraft, http://www.worldofwarcraft.com/
3. Bigham, J.P., Cavender, A.C.: Evaluating existing audio CAPTCHAs and an interface opti-

mized for non-visual use. In: Proceedings of the 27th International Conference on Human
Factors in Computing Systems, pp. 1829–1838 (2009)

4. Bourke, P.: Calculating stereo pairs,
http://local.wasp.uwa.edu.au/˜pbourke/miscellaneous/
stereographics/stereorender/

5. Bourke, P., Morse, P.: Stereoscopy: Theory and Practice. In: Workshop at the 13th Interna-
tional Conference on Virtual Systems and Multimedia, VSMM 2007 (2007),
http://local.wasp.uwa.edu.au/˜pbourke/papers/vsmm2007/
stereoscopy_workshop.pdf

6. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Building Segmentation Based
Human-friendly Human Interaction Proofs. In: Baird, H.S., Lopresti, D.P. (eds.) HIP 2005.
LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

7. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Computers beat humans at single
character recognition in reading based human interaction proofs. In: 2nd Conference on
Email and Anti-Spam (2005)

http://www.3dmix.com/eng/flash-gallery/
http://www.worldofwarcraft.com/
http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/stereographics/stereorender/
http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/stereographics/stereorender/
http://local.wasp.uwa.edu.au/~pbourke/papers/vsmm2007/stereoscopy_workshop.pdf
http://local.wasp.uwa.edu.au/~pbourke/papers/vsmm2007/stereoscopy_workshop.pdf

STE3D-CAP: Stereoscopic 3D CAPTCHA 239

8. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Designing human friendly human
interaction proofs (HIPs). In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 711–720 (2005)

9. Chew, M., Tygar, J.D.: Image Recognition CAPTCHAs. In: Zhang, K., Zheng, Y. (eds.) ISC
2004. LNCS, vol. 3225, pp. 268–279. Springer, Heidelberg (2004)

10. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: A CAPTCHA that Exploits Interest-
Aligned Manual Image Categorization. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (ACM CCS 2007), Conference on Computer and
Communications Security, pp. 366–374 (2007)

11. Gateau, S.: Th. In: and Out: Making Games Play Right with Stereoscopic 3D Technologies.
NVIDIA presentation, Game Developers Conference (2009)

12. Gizmodo: Sony plans to introduce 3D LCD television by the end (2010),
http://gizmodo.com/5350607/
sony-plans-to-introduce-3d-lcd-television-by-end-of-2010

13. Golle, P.: Machine Learning Attacks Against the Asirra CAPTCHA. In: Proceedings of the
14th ACM Conference on Computer and Communications Security (ACM CCS 2008), Con-
ference on Computer and Communications Security, pp. 535–542 (2008)

14. Golle, P., Ducheneaut, N.: Preventing bots from playing online games. Computers in Enter-
tainment (CIE) 3(3), 3 (2005)

15. Google Images, http://images.google.com
16. Jakobsson, M.: Captcha-free throttling. In: Proceedings of the 2nd ACM Workshop on Secu-

rity and Artificial Intelligence, pp. 15–22 (2009)
17. McAllister, D.: 3D Displays. Wiley Encyclopedia on Imaging, pp. 1327–1344 (2002),

http://research.csc.ncsu.edu/stereographics/wiley.pdf
18. Mitra, N.J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., Cohen-Or, D.: Emerging images.

ACM Transactions on Graphics (TOG) 28(5) (December 2009)
19. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA.

In: Conference on Computer Vision and Pattern Recognition (CVPR 2003), pp. 134–144
(2003)

20. Murph, D.: Intel shows off glasses-free 3D demo (2010),
http://www.engadget.com/2010/01/10/intel-shows-
off-glasses-free-3d-demo-now-this-is-more-like-it/

21. NVIDIA. NVIDIA 3D Vision,
http://www.nvidia.com/object/3D_Vision_Main.html

22. OCR Research Team. Teabag 3D Revolution,
http://www.ocr-research.org.ua/teabag.html

23. Ross, S., Chen, T.L.: The Effects of Promoting Patient Access To Medical Records. Journal
of American Medical Informatics Association 10, 129–138 (2003)

24. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks ap-
plied to visual document analysis. In: International Conference on Document Analysis and
Recognition, pp. 958–962 (2003)

25. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: The CAPTCHA web page,
http://www.captcha.net

26. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI problems for
security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer,
Heidelberg (2003)

27. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-
Based Character Recognition via Web Security Measures. Science 321(5895), 1465–1468
(2008)

http://gizmodo.com/5350607/sony-plans-to-introduce-3d-lcd-television-by-end-of-2010
http://gizmodo.com/5350607/sony-plans-to-introduce-3d-lcd-television-by-end-of-2010
http://images.google.com
http://research.csc.ncsu.edu/stereographics/wiley.pdf
http://www.engadget.com/2010/01/10/intel-shows-off-glasses-free-3d-demo-now-this-is-more-like-it/
http://www.engadget.com/2010/01/10/intel-shows-off-glasses-free-3d-demo-now-this-is-more-like-it/
http://www.nvidia.com/object/3D_Vision_Main.html
http://www.ocr-research.org.ua/teabag.html
http://www.captcha.net

240 W. Susilo, Y.-W. Chow, and H.-Y. Zhou

28. VREX. DepthCharge V3 Browser Plug-In,
http://www.vrex.com/depthcharge/

29. Yan, J., Ahmad, A.S.E.: A Low-cost Attack on a Microsoft CAPTCHA. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security (ACM CCS 2008),
Conference on Computer and Communications Security, pp. 543–554 (2008)

30. Yan, J., Ahmad, A.S.E.: Usability of CAPTCHAs - Or Usability issues in CAPTCHA design.
In: Symposium on Usable Privacy and Security (SOUPS) 2008, pp. 44–52 (2008)

31. YUNiTi, http://www.yuniti.com

http://www.vrex.com/depthcharge/
http://www.yuniti.com

TRIOB: A Trusted Virtual Computing
Environment Based on Remote I/O Binding

Mechanism

Haifeng Fang1,2, Hui Wang3, Yiqiang Zhao1, Yuzhong Sun1, and Zhiyong Liu1

1 Key Laboratory of Computer System and Architecture, Institute of Computing
Technology, Chinese Academy of Sciences

2 Graduate University of Chinese Academy of Sciences
3 High Performance Computer Research Center, Institute of Computing Technology,

Chinese Academy of Sciences
{fanghaifeng,wanghui}@ncic.ac.cn,{zhaoyiqiang,yuzhongsun,zyliu}@ict.ac.cn

Abstract. When visiting cloud computing platforms, users are very
concerned about the security of their personal data. Current cloud com-
puting platforms have not provided a virtual computing environment
which is fully trusted by users. Meanwhile, the management domain of
cloud computing platform is subject to malicious attacks, which can se-
riously affect the trustworthiness of the virtual computing environment.
This paper presents a new approach to build a trusted virtual computing
environment in data centers. By means of three innovative technologies,
the user’s data can be remotely stored into trusted storage resources,
the user’s virtual computing environment is isolated, and the user can
automatically detect the rootkit attacks against the cloud computing
management domain. We design and implement a Xen-based prototype
system called TRIOB. This manuscript presents the design, implemen-
tation, and evaluation of TRIOB, with a focus on rootkits detection.

Keywords: virtual computing environment, remote I/O binding, vir-
tual machine isolation, rootkits detection.

1 Introduction

Cloud computing has become an increasingly popular computing solution. Using
VMM technologies such as Xen[1], and VMware, in the cloud computing platform
people can dynamically create a large number of virtual machines (VMs) to meet
customers’ requirements. For example, through IaaS[2] services (like Amazon’s
EC2[15]), users can get their own exclusive VMs for running a number of security-
sensitive applications. However, from the users’ point of view, data security and
privacy is still an unmet concern, which is currently the major obstacle to the
development of cloud computing[3].

Presently, Xen, an open source virtualization system software, is widely used
in data centers. In Xen system, the virtual machine (VM) is called Domain. In
order to provide a management entrance for system administrator, after Xen

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 241–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

242 H. Fang et al.

started, it immediately creates a unique privilege VM (called Domain0) to run
the VM management program. Domain0 provides interface for the administra-
tor to create, delete, start and stop multiple user VMs (called DomainU), and
allocate resources to the users’ VMs. In Xen-based virtual computing environ-
ment, the trustworthiness of DomainU depends not only on its internal software
configuration, but also on the internal software in Domain0. This is decided by
the device driver model of Xen (as illustrated in Fig. 1)[1].

DomainU

Application Application

Guest OS

Front-end
device driver

Domain0

Malicious
Application

Control
Panel

Guest OS

Back-end
device driver

Local native
device
drivers

Xen I/O Ring, Event channel, Grant Table

 Hardware（CPU、Memory、I/O devices、TPM, etc.）

Manager
Application

Control Interface

……

DomainU
image

Fig. 1. The architecture of Xen and splitting device driver model

However, there are still some security weaknesses in Xen-based virtual com-
puting environment as follows.

First, the code size of the whole trusted computing base (TCB) of the virtual
computing environment keeps increasing. To solve this problem, Xen introduces
a new domain called Isolated Driver Domain (IDD)[29]. In this way, Domain0 is
split away, having some device drivers in Domain0 encapsulated in a separated
IDD. This not only reduces the code size of the guest OS kernel in Domain0,
but also improves the device driver’s reliability. However, in the current Xen
architecture, it is very common that cloud providers still take Domain0 as the
IDD. Besides, the operating system codes related to the management applica-
tions inside Domain0 could not be completely separated away. Consequently, we
need to dynamically monitor them to ensure their integrity.

Second, the assumption that Domain0 of each server in data centers is trusted
may not always be true. There exist several external or internal weakness in Do-
main0, e.g., wrong configurations and software bugs, which can compromise the
trustworthiness of Domain0. It is common in the current virtualized environment
to have a management console (like XenCenter, HyperVM) that manages Domai-
nUs through the control interface (like XenAPI) in Domain0. While these consoles
help the administrators to manage the machines, they open new vulnerabilities,
e.g., the XenAPI HTTP interface has a cross-site scripting vulnerability[31]. Com-
promising a management console allows an attacker to control all the VMs man-
aged by it. For instance, on June 8th 2009, 100,000 hosted websites were affected
by a zero-day SQL injection hole in the HyperVM 2.09[32]. With this attack, the
intruders gained the root privileges to perform malicious operations (like installing
rootkits) in Domain0.

CANS 2010 - TRIOB 243

Finally, malicious applications may be able to affect the data integrity of
DomainU through Domain0. Most of the management tasks are executed in
Domain0, including the I/O processing, Domain management, etc. After Do-
mainU is created, Domain0 can read and write the memory space that belongs
to DomainU through one management interface (xc map foreign range). Unfor-
tunately, malicious applications can also run in Domain0, as we mentioned. Once
these applications control the interface, it will seriously affect the integrity of Do-
mainU. To address this issue, Xen developers introduced one new concept called
DomB[13]. With this new addition, the interface can only be called by the DomB
in which there only deployed some special programs. Although the interface can
be protected by the special Domain, sometimes DomainU need to close down
the xc map foreign range interface for security purpose, but it can not do this
currently. Therefore, we should re-arrange the privileges amongst Xen, Domain0
and DomainU to meet the users’security requirements.

Currently, through the virtual trusted platform model (TPM)[8], we can es-
tablish the trust connection between Domains belonging to different management
fields. But the TPM technology can only ensure the Domains’ configuration in-
tegrity at startup[9][21], and it cannot guarantee the runtime integrity of the pro-
cesses running in the Domains when they are attacked by malicious programs like
rootkits. Existing research work [16][17][18] mainly enhance the trustworthiness
of DomainU by means of “out-of-the-box” monitoring technologies. However,
because the trustworthiness of DomainU also depends on Domain0, we must en-
sure that Domain0 is in a trusted running state[34][35][36]. Therefore, no matter
how Domain0 was split, the integrity of the processes in Domain0 needs to be
monitored, otherwise DomainU will be in an untrustworthy state.

Based on the above analyses, we designed and implemented a new trusted
virtual computing environment (called TRIOB) for data center with some new
trust-enhancing techniques. In this virtual computing environment, users can
specify the resource configuration and the running mode of DomainU in which
users’ applications are deployed. In detail, by means of the new remote I/O
binding technique, DomainU can be bound with the remote storage resources
located in the users’ physical machines outsides cloud computing platform. Dur-
ing users’ applications are running, DomainU can be in a new trusted running
mode to absolutely isolate from other DomainUs and Domain0 in data center.
Meanwhile, the integrity of the Domain0 is measured dynamically and remotely
verified by users.

We have tested the TRIOB prototype system. Our experimental results show
that compared to the traditional remote I/O binding technique, the TRIOB’s
performance is improved. At the same time, under the introduction of the trust-
enhancing mechanisms, the TRIOB system can timely detect the rootkit attacks
against the Domain0, while the overhead remains in an acceptable range for users.

The rest of this paper is organized as follows: Section 2 describes the back-
ground information. Section 3 gives a specific application scenario, and discusses
the existing challenges. In Section 4, we give the architecture of prototype system
and its work principle. Section 5 introduces an implementation of the prototype

244 H. Fang et al.

system in detail. Section 6 is the prototype evaluation. Some related works are
introduced in Section 7. Finally concluding remarks are presented in Section 8.

2 Background

2.1 Splitting Device Driver Model

The unique splitting device driver model (illustrated in Fig. 1)[1] is the core fea-
ture of Xen. Applications in DomainU access I/O devices through the front-end
device driver which provides virtual I/O devices for DomainU, such as virtual
block device. Whenever these applications produce I/O operations, the front-end
device driver receives these I/O requests. Then these I/O requests are forwarded
to the back-end device driver in Domain0 through the communication mecha-
nisms (I/O ring, event channel, grant table) between VMs. After the back-end
device driver receives these I/O requests, it checks whether the requests are
legitimate and then calls the local native device drivers to perform real I/O op-
erations. When the I/O operations are completed, the back-end device driver will
notice the front-end device driver which reports to the applications in DomainU.

With the splitting device driver model, DomainU just works with virtual I/O
devices, and it does not need to concern with the physical I/O devices’ type and lo-
cation. For example, a VM can be configured with some virtual CPUs and virtual
memory which derive from the local physical node in data center, and virtual stor-
age devices which derive from other non-local physical nodes’ storage devices. In
this situation, the VM can use local resources for running applications, and trans-
parently store data into the other remote physical nodes. However, Xen currently
only supports this idea indirectly based on traditional technologies such as NFS,
NBD[10][11], and it does not consider the relevant trustworthiness issues that may
arise because of introduction of some remote I/O binding in the current model.

2.2 Kernel-Level Rootkit Attacks against Domain0

To ensure the trustworthiness of Domain0, we need to analyze the possible
attacks against Domain0. Currently, the guest OS running in Domain0 is Xeno-
Linux (Linux’s modified version running on Xen). Various rootkit attacks, es-
pecially the kernel-level ones, are the most serious threats for Linux operating
system[19]. Unfortunately, due to the back-end device drivers locating within
the Linux kernel in Domain0, the kernel-level rootkit attacks against Domain0
will also affect DomainU.

In general, rootkits are collections of programs that enable attackers who have
gained administrative control of a host to modify the host’s software, usually
causing it to hide their presence from the host’s genuine administrators[27].
Linux-oriented kernel-level rootkit usually enters into the kernel space through
accessing /dev/kmem (or /dev/mem), or it is loaded into kernel space as a kernel
module (LKM). After the rootkit enters into the kernel space, it can make dam-
ages as follows. 1) Modifying the kernel text code, such as the virtual file system,
the device drivers; 2) Modifying the kernel’s critical data structures such as the

CANS 2010 - TRIOB 245

system call table and the interrupt table. From users’ point of view, it is necessary
to monitor the integrity of the kernel code, the key kernel data structures and
other critical kernel memory space in Domain0, so that users can timely make
awareness of the exception in Domain0 and take effective countermeasures.

3 Scenario and Challenges

Typically, a trusted computing environment should enable users to know its
software configuration and runtime state. In addition, while the computing en-
vironment is under damage, it should provide the mechanism to protect users’
sensitive data[4].

To build such a Xen-based trusted virtual computing environment, we sup-
pose that the users need to get a VM from the IaaS service in cloud computing
platform. But, they do not trust the cloud computing platform, especially its
internal storage resources. Meanwhile, they only want to lease the virtual com-
puting environment (that is DomainU in Xen) to run some security-sensitive
applications. In this scenario, users can customize the lent DomainU with a spe-
cial recourse configuration in which its virtual storage device is bound with the
users’ storage resources. From user’s point of view, the actual storage resource
remotely locates in user’s local physical machine.

At first, we assume that Xen is trustworthy because its code size is very small
and the Domain in running state has almost no power to destroy Xen[30]. Note
that this assumption is consistent with that of many other VMM-based security
research efforts [5][14]. Then, the virtual computing environment for user needs
to undergo two stages as follows.

(1) Starting DomainU. User needs to specify the DomainU’s resource configura-
tion (like the location information of the remote storage resources) through
the service interface of the cloud computing platform. The information will
be sent to Domain0 which is responsible for creating the corresponding Do-
mainU. When starting DomainU, user needs to get the configuration metric
information of DomainU, Domain0 and Xen to determine whether he can
establish a trusted connection with them. By means of TPM technology, we
can achieve this goal in that we do not focus on this stage in this paper.

(2) Running user’s applications in DomainU. These applications are installed
in user’s storage resources, so user can believe that DomainU is trustwor-
thy. When these applications access data from user’s remote storage devices,
the I/O requests in DomainU will be forwarded to the guest OS kernel in
Domain0. However, currently user cannot control Domain0 from DomainU.
According to the preceding analysis, at this stage, Domain0 should be ex-
cluded from the TCB.

Based on the above analysis, the Xen-based virtual computing environment is
trustworthy only if it has two basic properties: trusted storage resources and
secure runtime computing environment (we call it TRIOB-DomainU). To achieve
these goals, we need to overcome the following challenges.

246 H. Fang et al.

First, how to bind TRIOB-DomainU with the remote user’s storage resources?
By using NFS technology, we can mount the remote storage image file onto Do-
main0. But this solution is not secure because Domain0 can directly access the
content inside the mounted image file. Meanwhile, it would be better that the re-
mote I/O binding mechanism can match with the splitting device driver model
and facilitate with TRIOB-DomainU for trusty purpose. Thus, we need to de-
sign a new secure remote I/O binding mechanism for TRIOB-DomainU, by which
users only need to provide the location information of the remote image file.

Second, how to allow user to control the runtime state of TRIOB-DomainU?
DomainU should be absolutely isolated from other VMs, so that the user believes
his applications running in a secure space. As mentioned before, we need to re-
divide the privileges amongst Xen, Domain0 and the DomainU. For example,
after DomainU is created, user can close up the xc map foreign range interface to
prohibit Domain0 from mapping the memory of the DomainU. Most importantly,
DomainU should own the power of monitoring some memory regions of Domain0
to check its integrity. At the same time, we should not allow attacker to damage
Domain0 by means of the privileges of the DomainU. That is to say, DomainU
can only specify the location and type of mapped memory area in Domain0, and
can only obtain the integrity information related to the memory area. On the
other hand, the memory area that can be read by DomainU must be verified by
Xen so that some valuable contents in Domain0 are protected by Xen. The most
important thing is that the proposed mechanism needs to ensure that only the
memory area that mapped to the DomainU can be accessed by the user.

Finally, how to allow user to be aware of the exceptions, e.g., the attacks
against VM’s kernel, in cloud computing platform? According the security re-
quirements of TRIOB-DomainU, user hopes to perceive Domain0 kernel’s ex-
ception in time and make the appropriate treatments. Meanwhile, in data center
there are many DomainUs serving to different users and the users would take
care of different security issues. It is obvious that someone needs to dynamically
monitor and measure the memory of Domain0 to check its integrity. But, who
should be responsible for this task? Is TRIOB-DomainU or Xen? We believe
that Xen is better because in Xen space we can easily monitor any memory area
belonging to different Domains including Domain0. Furthermore, who is respon-
sible for the verification task? For the special scenario above, it is the user who
should do this work. Especially, user needs to determine whether the I/O data
produced from TRIOB-DomainU could be stored into user’s storages based on
the runtime state of Domain0.

To address the above challenges, we propose a new approach to construct a
trusted virtual computing environment and we call it TRIOB system. Its archi-
tecture is shown in Fig. 2.

4 Architecture of TRIOB

The TRIOB system consists of two parts, the computing environment running
in data center and the storage resource locating in the user’s physical node. In

CANS 2010 - TRIOB 247

Fig. 2, the left side is the computing environment (TRIOB-DomainU) which
provides a trusted running environment for user’s applications, and the right
side is the user’s physical machine which provides reliable storage resources.
In TRIOB-DomainU, the storage resources are some VM image files (that is,
DomainU’s image). From the functionality viewpoint, the TRIOB system in-
cludes three subsystems, that is, the remote I/O subsystem, the mode-control
subsystem and the dynamic monitoring and measurement subsystem. The three
subsystems can help overcome the challenges respectively.

TRIOB-DomainU

measurement
policy

mode-control
manager

Guest OS

front-end
device driver

C-Domain0

back-end
device driver

front-end
remote
storage

device driver

Xen

I/O ring, event channel, grant table

 physical infrastructure （CPU、Memory、I/O devices、TPM, etc.）

trusted
applications

policy
interpreter

monitoring Domain

memory hash-metric engine

remote binding
configuration

table

privilege interface for DomainU

metric-tag
generator

privilege
interface for

Domain0

measurement
Information

table

Domain page-table manager

machine memory manager

Xen

U-Domain0

physical hardware

Guest OS

back-end
remote
storage

device driver

Linux FS

metric-value
verifier

metric-value
baseline

table

DomainU
image

VCPU

cloud side user side

trust network
connection

❶❷

❸

Fig. 2. Architecture of TRIOB system (1©remote I/O subsystem; 2©mode-control
subsystem; 3©dynamic monitoring and measurement subsystem)

The remote I/O subsystem consists of the front-end remote storage device
driver, the back-end remote storage device driver, and the associated remote
verification modules. The front-end remote storage device driver is responsible
for transferring the I/O requests produced by applications to the back-end re-
mote storage device driver through network. If TRIOB-DomainU is in the trusted
running mode, each I/O request will be attached with the tag which contains
the metric-hash value of C-Domain0. In the user side, when the back-end re-
mote storage device driver receives the I/O requests, it will first send the tag
to the metric-value verifier who is responsible for the verification based on the
metric-value baseline. Only these I/O data belonging to trusted I/O requests
can be stored into the user’s local storage resource, that is, the DomainU’s im-
age. To enhance the security of the remote I/O channel, we can encrypt the
corresponding I/O data in TRIOB-DomainU and decrypt them in user side.

The mode-control subsystem consists of the mode-control manager, the mea-
surement policy, the policy semantic interpreter, the metric-tag generator and
the privilege interface for DomainU. When security-sensitive applications are
running in TRIOB-DomainU, the mode-control manager can switch DomainU

248 H. Fang et al.

into the trusted mode through calling the privilege interface. The user can specify
the policy what content of kernel memory in C-Domain0 to be measured and how
to measure. Then the policy interpreter is responsible for translating the policy
and registering this information into the measurement information table and the
remote binding configuration table, respectively. The privilege interfaces for Do-
mainU mainly include running mode interface, measurement interface, memory
mapping interface, etc.

The dynamic monitoring and measurement subsystem consists of the monitor-
ing Domain, the memory hash engine, the domain page-table manager, etc. The
monitoring Domain is a special Domain which is started together with Xen and
hidden inside Xen space. In the monitoring Domain, there is a VCPU which is
scheduled by Xen to periodically activate the memory metric-hash engine. With
the help of the Domain page-table manager, the hash engine can access any
memory areas belonging to C-Domain0. According to the measurement infor-
mation table, the engine calculates the hash value of the related memory area of
C-Domain0 and then stores these hash values into the measurement information
table.

4.1 The Workflow of TRIOB System

As mentioned in Section 3, The running of the TRIOB system is divided into
two stages, that is, the initial trusted binding stage and the trusted running
stage.

The initial binding stage is based on the trusted network connection (TNC)
between the C-Domain0 and the U-Domain0[12]. In this stage, we introduce
a protocol to ensure the trusted exclusive connection between the TRIOB-
DomainU and remote storage resources. The protocol is listed as follows.

1) U-Domain0 sends message to C-Domain0. The message contains image con-
figuration, U-Domain0’s public encryption key (Kg);

2) C-Domain0 stores the message into both configuration file for DomainU and
the remote binding configuration table in Xen space;

3) According to the remote binding configuration table, Xen generates a random
symmetric encryption key (Ku) used to encrypt I/O requests;

4) C-Domain0 creates and starts TRIOB-DomainU based on the configuration
file;

5) When C-Domain0 loads the guest OS in TRIOB-DomainU, Xen checks
whether the guest OS matches with the requirements based on the remote
binding configuration table. For example, the version is correct or not;

6) The Monitoring-Domain in Xen measures the hash value (Mu) of the guest
OS kernel in TRIOB-DomainU and stores Mu into the measurement infor-
mation table in Xen;

7) TRIOB-DomainU initializes the virtual storage device, gets Ku from the
remote binding configuration table, and gets Mu from the measurement in-
formation table;

8) TRIOB-DomainU sends message to U-Domain0. The message contains the
command of binding image, EKg (Ku), Mu, image configuration, etc.;

CANS 2010 - TRIOB 249

9) U-Domain0 gets the message. Then it decrypts Ku using its private key
(Kp), and checks whether Mu matches with the user’s requirement;

10) If all above steps are passed through, U-Domain0 completes the binding
process.

It can be proved that the binding protocol is a one-to-one exclusive binding
protocol. First, we ensure the one-to-one trusted connection between the two
Domain0s by means of TPM/TNC specifications. Secondly, Xen is responsible
for verifying the loaded guest OS kernel in TRIOB-DomainU, and generating
Ku which cannot be obtained by C-Domain0. Furthermore, in the end of the
binding process, user can verify the configuration of TRIOB-DomainU.

In the trusted running stage, the main task is to ensure TRIOB-DomainU to
be in an absolutely close state, so that the I/O data produced by applications
are securely stored into remote storage resources.

According to the users’ requirements, TRIOB-DomainU can work in two
modes, namely, the normal mode and the trusted mode. In the normal
mode, TRIOB-DomainU is an ordinary DomainU which can be controlled by
C-Domain0 as usual. In the trusted mode, C-Domain0 cannot control TRIOB-
DomainU. In addition, the I/O data is attached with the metric-hash tag. In
the trusted mode, C-Domain0 cannot transparently read or write the memory
of TRIOB-DomainU so that TRIOB-DomainU is isolated from C-Domain0 and
other DomainUs.

In the trusted mode, when the users run security-sensitive applications in
TRIOB-DomainU, the processing steps of TRIOB are listed at follows:

1) User logs on to TRIOB-DomainU by means of some remote access protocol
software such as ssh, then configures the measurement policy;

2) The policy interpreter translates the measurement policy and registers this
information into the measurement information table in Xen;

3) User switches TRIOB-DomainU into the trusted mode;
4) User starts the trusted applications;
5) The VCPU in monitoring Domain is periodically scheduled, then the VCPU

activates the memory metric-hash engine which calculates hash of the mem-
ory areas in C-Domain0 according to the measurement information table;

6) The applications produce I/O operations which are received by the front-end
device driver;

7) The metric-tag generator gets the metric information from the measurement
information table to generate the metric-tag, then it sends the tag to the
front-end device driver;

8) The front-end device driver attaches the tag onto the block I/O requests and
then forwards the block I/O requests to the back-end device driver;

9) The front-end remote storage device driver receives these I/O requests and
further transfers them to back-end remote storage device driver;

10) The back-end remote storage device driver receives these I/O requests. Then
it separates the metric-tag and I/O data from these I/O requests, and sends
them to the metric-value verifier and Linux file system, respectively;

250 H. Fang et al.

11) The metric-value verifier checks the metric-tag based on the metric-value
baseline table;

12) If the metric value matches with the metric-value baseline, the I/O data can
be stored into the DomainU image; otherwise, the metric-value verifier will
report an error alarm.

In the normal mode, user can run some ordinary applications in TRIOB-
DomainU. We do not elaborate the scenario in this paper.

5 Implementation

Currently, we have implemented the TRIOB prototype based on Xen 3.1 and
Linux 2.6.18. Our implementation is described in this section.

5.1 Trusted Remote I/O Processing

In Xen, the front-end virtual block device driver in DomainU is “blkfront” mod-
ule and the back-end virtual block device driver is “blktap” module[16]. To solve
the first challenge, we firstly expand the blktap module and add two new mod-
ules (that is, remote-blkfront and remote-blkback) so that the block I/O request
can be transferred to the remote storage through network. At the same time, we
modify the blkfront module so that the metric-hash tag can be attached onto
per block I/O request. Fig. 3 shows the detail internal structure.

blkif_reponse

blkfront blktap

tapdisk

grant table

mmap (/dev/blktap)

remote-blkfront

blk_read/write()

get_io_request()
remote-blkback

direct_read/write()

Linux file system

Socket

O_DIRECT

 O_LARGEFILE

blkif_front_ring

Segment

#1
……

Segment

#n-1
hash tag

block I/O request

bio_vec page

gnttab_grant_foreign_access_ref()

metric hash listsmetric-tag generator

 blkfront

blkif_request

TRIOB-DomainU C-Domain0 U-Domain0

user space

kernel space

network

Fig. 3. Transfer the I/O requests attached with tag to remote storage in user’s physical
machine

As shown in the right part of Fig. 3, the user space part (tapdisk) of blktap
maps the I/O ring memory to the user space through mmap interface. In the
new remote-blkfront module, blk read calls the get io request function to get the
I/O requests from the user space I/O ring. In the other side, the new remote-
blkback module, which has a socket connection with the remote-blkfront module,
receives the I/O requests. The remote-blkback module can read or write the
image with O DIRECT and O LARGEFILE operational mode. According to
the blkif request in I/O ring, the remote-blkback can quickly locate the block
data in the image so as to ensure the I/O processing efficiency.

CANS 2010 - TRIOB 251

The I/O ring is a data structure shared between Domain0 and DomainU
which contains the I/O requests. For virtual storage device, the I/O ring is called
blkif front ring. When the blkfront module receives the block I/O request, it will
interpret the request and re-organize it. In detail, it will translate the bio vec into
the blkif request which encapsulates some segments. Amongst these segments,
we select the last segment to save the metric hash value (called hash tag). The
last segment is made by metric-tag generator which will get the corresponding
metric hash values of some kernel memory areas in C-Domain0 through the
privilege hypercall for TRIOB-DomainU.

5.2 The Privilege Interface for DomainU and Policy Interpreter

To solve the second challenge, firstly, we add a new hypercall which can only be
called by TRIOB-DomainU. Through passing different command parameter for
the hypercall, user can own some privileges as follows.

Command Functions
DOMU switch to trusted mode TRIOB-DomainU in trusted mode
DOMU switch to normal mode TRIOB-DomainU in normal mode
MONITOR checking register Registering metric-related policy
MONITOR checking get digests Getting metric-hash value

Secondly, we modify the xc map foreign range interface. There is a lot of work
based on this interface, and the most famous one is XenAccess[16]. In the TRIOB
system, we modify the interface to ensure that, when TRIOB-DomainU is in the
trusted mode, the DomainU can map the physical memory area in Domain0 into
its virtual address space, at the same time prohibits C-Domain0 to do the same
thing.

The xc map foreign range interface triggers Xen’s memory management func-
tions by accessing the character driver (/proc/privcmd). We modify the ioctl
function’s subroutine (IOCTL PRIVCMD MMAP, IOCTL PRIVCMD MMAP-
BATCH) and add the privilege checking logic. The Domain can access the inter-
face only if it matches one of two conditions 1) the mapping Domain is the initial
Domain (like Domain0), and the mapped Domain is running in the normal mode;
2) the mapping Domain is not the initial Domain (like TRIOB-DomainU), and
it is running in the trusted mode.

XenAccess currently can only run in Domain0. Based on the modified xc map
foreign range interface and with some minor patches, XenAccess can also run in
DomainU. In the TRIOB system, we rename the modified XenAccess as policy
interpreter (as shown in Fig. 4).

The policy interpreter gets the physical-to-machine (P2M) table of Domain0
by accessing the modified xc map foreign range interface, and calculates the
starting machine address of the kernel page table of Domain0 by referring to the
P2M table. According to the measurement policy, the policy interpreter reads
the “System.map” file to look up the corresponding starting virtual address of
the measured memory areas in Domain0. Then by means of the P2M table and

252 H. Fang et al.

the kernel page table, it can look up the corresponding page table entries (PTE)
from which it can get the starting machine address (start mfn) of the measured
memory areas, and then it registers these addresses into the measurement infor-
mation table by calling the new hypercall with “MONITOR checking register”
command.

5.3 The Memory Hash-Metric Engine, the Domain Page-Table
Manager and the Monitoring Domain

The memory hash-metric engine, the Domain page-table manager and the mon-
itoring Domain are all implemented in Xen space for two reasons. On the one
hand, due to the trustworthiness of Xen, we can ensure these components are
trust. On the other hand, these components need to access any memory areas
belonging to C-Domain0, which is easy to do in Xen space. All of the three
components cooperate together to solve the third challenge.

The memory hash-metric engine is implemented as a set of hash functions
which can calculate the digest of the machine memory area. Meanwhile, we
choose the MD5 hash algorithm to calculate the digest. When it is activated,
the engine computes the hash of the machine memory area specified in the
measurement information table and saves the hash value into the table again.

Through periodically activating the engine, the functions within the engine
can be dynamically executed in Xen space. However, currently Xen does not
support the concept like kernel thread in Linux OS. We found that there is an
idle domain within Xen space. The idle domain manages all of the idle vcpu, and
these idle vcpus and the VCPUs belonging to all other Domains are scheduled
by the Xen scheduler. When the idle vcpu is scheduled, some function codes
in Xen space will run on this VCPU. Based on this idea, we introduce a new
Domain (called monitoring Domain) in Xen space. The monitoring Domain has
three features as follows. First, its data structure is not embodied in global
domain management list, so that it is hidden in Xen space. Secondly, it shares
the page table (idle pg table) with Xen so that it can call all of functions within
Xen. Finally, it only creates one VCPU which is similar to the idle vcpu, but
the VCPU’s priority is the same with the general VCPU so that it can timely
activate the memory hash-metric engine.

In the measurement information table, there are some items related to ma-
chine memory regions for which the engine needs to calculate the correspond-
ing hash value. However, the engine cannot access them directly in Xen space
currently.

On the 32-bit x86 physical platform, the virtual address space of Xen in non-
PAE mode covers only 64MB memory, which means that Xen can only access a
maximum 64MB of machine memory for one time. To access the machine mem-
ory belonging to C-Domain0, we add a simple Domain memory mapping module
(called Domain page-table manager). Now, we illustrate the way how to access
the kernel machine memory of C-Domain0 as follow (Fig. 4 gives the details).

CANS 2010 - TRIOB 253

First, as mentioned in Section 5.2, we can get PTE or the starting machine
address (start mfn) of the kernel memory region in C-Domain0 and the length
of the kernel memory area, from the measurement information table.

Then, we allocate one-page memory from Xen heap space by calling the al-
loc xenheap page function. The purpose of allocating the page is to temporary
use its virtual address region occupied by the page. By the virt to mfn macro, we
can translate the page’s starting virtual address into the corresponding starting
machine page frame number (mfn). Meanwhile, by traversing the kernel page
table (idle pg table) of Xen, we get the corresponding PTE of the page.

Finally, the Domain page-table manager temporarily replaces the PTE for
Xen heap page memory with the PTE for kernel memory in C-Domain0 and
refreshes TLB. Then the memory remapping work is completed. From now on
the engine can directly access the kernel memory in C-Domain0. If the measured
memory area is larger than one page, we can repeat the process for several times.
We do not tell the way how to recover the original mapping in this paper.

4MB

4MB

Xen：idle_pg_table

4MB

Xen

code

Xen

data

Xen

heap

…… 4MB

Domain heap Frame Table

C-Domain0：
swapper_pg_dir

3G

Xen：idle_pg_table_l2

4KB

alloc_xenheap_page()

virt_to_mfn()

0G

4G-64MB

4KB

4KB

PTE

Domain0 kernel

code

4KB

4KB

4G

0G

start mfn

Xen

virtual address

space

kernel virtual

address space

machine

memory

machine

memory

layout

TRIOB-DomainU:

Policy interpreter

P

T

System.map

pagetable_lookup()

xc_map_foreign_range()

P2M

Xen: monitoring Domain

❷

❸

❶

Fig. 4. Accessing the memory in C-Domain0 from Xen space (1©getting the start
machine page number (start mfn) and the PTE of machine memory belonging to kernel
code; 2©allocating the temporary machine memory from Xen heap space; 3©replacing
the PTE belonging to Xen heap page with the PTE belonging to kernel machine page)

254 H. Fang et al.

6 Evaluation

Currently, our research group has built a virtual computing platform (called
TRainbow[12]) for data center. TRainbow provides the IaaS service and TRIOB
is its key component. According to the previous scenario, we get a high perfor-
mance physical node from the TRainbow platform for the cloud side. Meanwhile,
we also choose one lower performance node for the user side. The two machines
are connected via Gigabit Ethernet network. The detail configuration of the
experiment environment is shown in Table 1.

Table 1. Experiment environment configuration

Cloud side User side
Physical Machine CPU Intel Xeon E5410 2.33GHz AMD Athlon2200+ 1.800GHz

Core 8 2
Cache 6144 KB 256 KB
Memory 16GB 1GB
Network Gigabit Ethernet Controller Gigabit Ethernet Controller
Disk SCSI 2*512GB IDE 36GB
VMM Xen 3.1 (modified) Xen 3.1

Domain0 VCPU 1 1
Memory 512MB 512MB
Guest OS FC 6 XenoLinux 2.6.18 FC 6 XenoLinux 2.6.18

TRIOB-DomainU VCPU 1
Memory 256MB
Guest OS XenoLinux 2.6.18(modified)
Image 8GB

6.1 Functional Verification

The goal of functional testing experiment is to check whether the TRIOB system
can detect the change of the integrity when the kernel in C-Domain0 is dam-
aged by attacker. Currently, the system focuses on rootkits attacks against the
XenoLinux in Domain0.

Our system prototype is implemented on the XenoLinux 2.6.18. During the
experiment, we discovered that many of the well-known rootkits listed in Ta-
ble 2, such as adore-ng 0.56, lvtes, override, phalanx-b6, cannot, without ad-
ditional changes, be compiled or installed on XenoLinux 2.6.18. Besides, we
cannot find other suitable rootkits. Through deeply analyzing the principle of
Linux kernel-level rootkits and Xen, we conclude the major reasons as follow.
First, the “/dev/mem” driver’s mmap interface is re-implemented in Xen, as
a result, traditional mem-type rootkits (like phalanx-b6) cannot easily locate
the memory area belonging to the kernel. Second, Xen is the only piece of code
running in ring 0, while the kernel of Domains runs in less privileged ring (ring
1 in case of x86 32). So, in XenoLinux’s kernel space, traditional kernel-level
rootkits cannot directly execute the privilege operations such as setting control
registers. Third, most LKM-type rootkits are based on the symbols exported by
the kernel, for example, the sys call table, as a way to hook its own code to it.
But, since Linux version 2.6, some critical kernel symbols are not exported any
longer and even protected in read-only memory area, which improves the system
hardening process.

CANS 2010 - TRIOB 255

Therefore, we port these rootkits to the XenoLinux 2.6.18. For mem-type
rootkits we resort to the C-Domain0’s “System.map” to find the locations of
the attacked memory area[33]. Based on this approach, we successfully install
phalanx-b6. For LKM-type rootkits we need to bypass the memory protection.
Traditional kernel-level rootkits can directly clear the WP bit of CR0, while
XenoLinux’s kernel prevents it from happening. However, there is a hypercall
(HYPERVISOR update va mapping) by which rootkits can make the read-only
memory area to be writable. Based on the hypercall, we successfully install
those LKM-type rootkits (like adore-ng 0.56, lvtes, override). Meanwhile, we
also implement a typical kernel-level rootkit (called hack open) for XenoLinux
2.6.18. The rootkit is a kernel module which can modify the system call table
and some other kernel memory areas. (The key function based on this hypercall
is shown as follow.)

static int make_syscall_table_writable(unsigned long va)
{

pte_t *pte;
int rc = 0;
pte = virt_to_ptep(va);
rc = HYPERVISOR_update_va_mapping(

(unsigned long)va, pte_mkwrite(*pte), 0);
if (rc)
{

xen_l1_entry_update(pte, pte_mkwrite(*pte));
return rc;

}
return rc;

}

Table 2 lists the public representative kernel rootkits which can be detected
by the TRIOB prototype.

Table 2. Public representative kernel rootkits for Linux 2.6 and detection results

rootkit name kernel
version

loading
mode
(type)

Can run on
XenoLinux
2.6.18?

Can be
detected? integrity verification report

modify
syscall table

modify ker-
nel text

adore-ng-0.56 2.6.16 LKM
√

(ported)
√ √

lvtes 2.6.3 LKM
√

(ported)
√ √

mood-nt 2.6.16 kmem
√ √ √

override 2.6.14 LKM
√

(ported)
√ √

phalanx-b6 2.6.14 mem
√

(ported)
√ √

suckit2priv 2.6.x kmem
√ √ √

hack open 2.6.18 LKM
√ √ √ √

6.2 Performance Evaluation

To further assess the validity of the system, we measure its time performance
index. We deploy a few typical application workloads into TRIOB-DomainU,
and test theirs total execution time by using “time” command under different
I/O binding mode. The results are shown in Table 3.

256 H. Fang et al.

Table 3. The execution time of different application workloads under three binding
modes

kernel-build emacs bzip2
Time(s) % NFS Time(s) % NFS Time(s) % NFS

NFS 456.16 NFS 7.85 NFS 140.34
RIOB 371.59 -18.54 RIOB 7.23 -7.90 RIOB 116.64 -16.89

TRIOB 523.57 14.78 TRIOB 8.09 3.06 TRIOB 155.24 10.62

We run three different typical application workloads under three different
modes. Kernel-build is a typical I/O intensive and computation intensive ap-
plication workload, and opening a large file with Emacs and then immediately
closing it up is cache-sensitive, and decompressing the compressed Linux kernel
source package file by bzip2 is a typical computation intensive workload.

RIOB means the DomainU (in the normal mode) bound with remote storage
in the user’s physical machine by our new I/O binding technology, and TRIOB
represents the situation in the trusted mode. NFS means the DomainU (in the
normal mode) bound with remote storage using NFS technology (version 4). As
depicted in Table 3, the system’s performance in the normal mode (RIOB) is bet-
ter than NFS. Especially for I/O intensive workloads, the performance increases
up about 19% than NFS. In the trusted mode (TRIOB) the performance lowers
down about 15% than NFS under the I/O intensive workload, the overhead is
significant but still in an acceptable range for users.

Fig. 5. Related lmbench results

In order to reduce the overhead, we run the lmbench benchmark suite in
TRIOB-DomainU to help for system performance analysis. As shown in Fig.5,
the overhead of TRIOB includes three parts, that is, process creation (slct tcp,
fork), inter-process communication (TCP conn) and file system (file create,
delete, protection fault). All of these factors are related to the “trusted I/O pro-
cessing” subsystem, especially the metric-hash tag attached onto per block I/O
request. In our current implementation, the tag occupied the location belonging
to original block segment, which leads the times of I/O data transmission and the
total transmission time to be extended. The time of accessing meta-data (related
to “file create, protection fault”) is critical to the overhead. For example, during
compiling the Linux kernel, there will be a large number of small temporary files

CANS 2010 - TRIOB 257

to be created. The time of “0KB file create” becomes longer which results in the
total compile time longer. We will deal with this problem in future work.

7 Related Work

VPFS[20] proposes a virtual private file system built on L4. Its implementation is
divided into two parts. The front-end part provides a secure computing environ-
ment for the applications, and the back-end part reuses the traditional file system
in an untrusted computing environment. As the untrusted part controls the stor-
age resources, VPFS modifies the traditional file system with encryption func-
tions to ensure the trustworthiness of the whole system. In contrary, in TRIOB
the users can directly control the storage resources so as to avoid the additional
encryption overhead. Storage Capsules[21] provides a trusted computing environ-
ment based on VM hosted on PC. The VM can run in a trusted mode (discon-
necting the network) to protect user’s data from attacks. Similarly, TRIOB has a
trusted mode, but it focuses on the cloud computing platform. Software-Privacy
Preserving Platform[22], Overshadow[23] both assume the guest OS is not trust-
worthy, and they both provide similar mechanism to bypass the guest OS for
trust application. These works only focus on ensuring the isolation amongst the
applications within the same VM, while TRIOB assumes that the guest OS in
Domain0 is not trustworthy, and provides a trusted virtual machine in cloud
computing platform to protect users’ applications and data.

Remote I/O Binding. Collective[24] provides a remote I/O binding technol-
ogy by which user’s notebook can access the virtual storage resources in cloud
computing platform. In contrary, in TRIOB a user can bind the VM in cloud
computing platform with the virtual storage resources in the user’s physical ma-
chine. Netchannel[25] provides a remote back-end I/O device driver for DomainU
to help for the VM migration. In the TRIOB system, the back-end remote stor-
age device driver adopts similar technology with the I/O requests verification
feature. NFS, NBD, iSCSI[10][11] and other traditional remote I/O technologies
are widely used in data centers. They are implemented in virtual file system
layer or block device driver layer of traditional OS. Due to the splitting device
driver model, there are redundant layers in the implementation when they are
used in virtual computing environment. In the TRIOB system the implementa-
tion of remote I/O binding makes better of the features of the splitting device
driver model to bypass some layers, and the performance is better than these
traditional technologies.

Dynamic Measurement. To enforce the trustworthiness of the virtual comput-
ing environment, researchers have introduced a series of trust-enhancing mecha-
nisms into data center[5][7][9]. In this field, many works are based on the TCG’s
TPM technology. In Terra framework[5], VMs are divided into two types, that
is, gray-box and white-box. In gray-box VM, users can determine the VM’s
trustworthiness by the way of remote verification based on TPM. However, the
TPM-based measurement can only ensure a VM’s integrity at startup. To further
ensure the integrity of the computing platform at running time, researchers have

258 H. Fang et al.

bought up with many technologies related to dynamic measurement and veri-
fication of the integrity. Copilot[27] provides a dynamic memory measurement
mechanism by means of a memory monitoring co-processor installed on the main-
board. In this system, the hardware can hash the memory area containing kernel
text and other key components through direct memory access (DMA). In the
TRIOB system, it does the similar work in Xen without adding special hardware.
Pioneer[28] provides a dynamic trust root which is a running program. To verify
the program’s trustworthiness, pioneer periodically monitors the integrity and
response time of the running program. Similarly, TRIOB dynamically monitors
the integrity of Domain0 so as to determine the trustworthiness of the I/O data.

VM Monitoring. As virtualization technology is gradually mature, Tal
Garfinkel and Mondel Rosenblum[14] propose the idea of VM introspection
(VMI), an approach to intrusion detection which co-locates an IDS on the same
machine as the host it is monitoring and leverages a VMM to isolate the IDS
from the monitored host. In VMwatcher[18], the IDS system running in Domain0
monitors the memory in DomainU through xc map foreign range interface. It
can deduce the processes information in DomainU based on the data structure
of task and sends this information to the anti-virus software. Lares[6] provides
an active monitoring framework based on virtual machine architecture in which
some hooks are inserted into the critical path in the kernel of the monitored
VM. In TRIOB, we don’t need to modify the kernel in the monitored VM. As
for full virtual machine, by observing the related hardware behaves (like CR3
changing, TLB flush) of the process running in VM, Antfarm[17] can transpar-
ently guess the processes information. Being different from all these works, in
TRIOB we propose a new function for VMI technology, that is, the monitored
virtual machine can be a virtual machine (like Domain0) with higher privileges.

8 Conclusion

We introduced a new approach to build a trusted virtual computing environ-
ment, called TRIOB, that is geared towards data center protection and security.
In TRIOB there are three key technical contributions to meet users’ data se-
curity requirements. Firstly, user’s data can be securely stored into theirs own
storage resources through the trusted remote I/O binding technology. Second,
the virtual computing environment for user is absolutely isolated from other
VMs in cloud platform leveraging the trusted mode-control technique. This can
ensure the integrity of user’s computing environment. Finally, through the novel
dynamic monitoring technique, user can timely detect the attacks against the
administrator’s computing environment. Dynamic monitoring can ensure the in-
tegrity of the remote I/O binding channel. We implemented a prototype system
based on Xen and we quantified its security and performance properties. Our
experiments show that the TRIOB system can achieve those goals above and
the overhead is in an acceptable range for users.

Acknowledgments. This work was supported in part by the National High-
Tech Research and Development Program (863) of China under grants 2009AA

CANS 2010 - TRIOB 259

01Z141 and 2009AA01Z151, the projects of National Science Foundation of
China (NSFC) under grant 90718040, and the National Grand Fundamental
Research Program (973) of China under grant No.2007CB310805. We would like
to thank Angelos Stavrou and the anonymous reviewers for their comments.

References

1. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the Art of Virtualization. In:
Proc. of the 19th ACM Symp. on Operating Systems Principles 2003, pp. 164–177
(2003)

2. Huizenga, G.: Cloud Computing: Coming out of the fog. In: Proceedings of the
Linux Symposium 2008, vol. 1, pp. 197–210 (2008)

3. Armbrust, M., Fox, A., et al.: Above the Clouds: A Berkeley View of Cloud. Tech-
nical Report No. UCB/EECS-2009-28 (2009)

4. Kaufman, L.M.: Data Security in the World of Cloud Computing. IEEE Security
and Privacy 7(4), 61–64 (2009)

5. Garfinkel, T., et al.: Terra: A Virtual Machine-Based Platform for Trusted Com-
puting. In: Pro. of the 19th ACM Symp. on Operating Systems Principles 2003,
pp. 193–206 (2003)

6. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An Architecture for Secure
Active Monitoring Using Virtualization. In: Proceedings of the IEEE Symposium
on Security and Privacy 2008, pp. 233–247 (2008)

7. Berger, S., et al.: TVDc: managing security in the trusted virtual datacenter. ACM
SIGOPS Operating Systems Review 42(1), 40–47 (2008)

8. Berger, S., Cceres, R., et al.: vTPM: Virtualizing the Trusted Platform Module.
In: Proc. of the 15th Conference on USENIX Security Symposium (2006)

9. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of
a TCG-based Integrity Measurement Architecture. In: Proceedings of the 13th
Conference on USENIX Security Symposium (2004)

10. Tan, T., Simmonds, R., et al.: Image Management in a Virtualized Data Center.
ACM SIGMETRICS Performance Evaluation Review 36(2), 4–9 (2008)

11. Warfield, A., Hand, S., Fraser, K., Deegan, T.: Facilitating the development of soft
devices. In: USENIX Annual Technical Conference 2005 (2005)

12. Sun, Y., Fang, H., Song, Y., et al.: TRainbow: a new trusted virtual machine based
platform. International Journal Frontiers of Computer Science in China 4(1), 47–64
(2010)

13. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security through Disaggrega-
tion. In: Proc. Of the 4th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments 2008, pp. 151–160 (2008)

14. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: Proc. of the Network and Distributed Systems Security
Symposium 2003, pp. 191–206 (2003)

15. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
16. Payne, B., Carbone, M., Lee, W.: Secure and Flexible Monitoring of Virtual Ma-

chines. In: Computer Security Applications Conference 2007, pp. 385–397 (2007)
17. Jones, S.T., Arpaci-Dusseau, A.C., et al.: Antfarm: Tracking Processes in a Virtual

Machine Environment. In: Proc. of USENIX Annual Technical Conference 2006
(2006)

http://aws.amazon.com/ec2/

260 H. Fang et al.

18. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-
of-the-box semantic view reconstruction. In: Proc. of the 14th ACM Conference on
Computer and Communications Security 2007, pp. 128–138 (2007)

19. Linux kernel rootkits - protecting the system’s Ring-Zero,
http://www.sans.org/reading_room/whitepapers/honors/

linux-kernel-rootkits-protecting-systems_1500

20. Weinhold, C., Hartig, H.: VPFS: building a virtual private file system with a small
trusted computing base. In: Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008, pp. 81–93 (2008)

21. Weele, E.V., Lau, B., et al.: Protecting Confidential Data on Personal Computers
with Storage Capsules. In: Proceedings of the 18th USENIX Security Symposium
2009 (2009)

22. Yang, J., Shin, K.G.: Using Hypervisor to Provide Application Data Secrecy on a
Per-Page Basis. In: Pro. of the Fourth International Conference on Virtual Execu-
tion Environments 2008, pp. 71–80 (2008)

23. Chen, X., Garfinkel, T., et al.: Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. In: Proc. of the 13th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems 2008, pp. 2–13 (2008)

24. Chandra, R., Zeldovich, N., Sapuntzakis, C., Lam, M.S.: The collective: a cache-
based system management architecture. In: Proc. of the 2nd Conference on Sympo-
sium on Networked Systems Design and Implementation 2005, vol. 2, pp. 259–272
(2005)

25. Kumar, S., Schwan, K.: Netchannel: a VMM-level mechanism for continuous,
transparent device access during VM migration. In: Pro. of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
2008 (2008)

26. Aiken, S., Grunwald, D., Pleszkun, A.R., Willeke, J.: A performance analysis of
the iSCSI protocol. IEEE MSST (2003)

27. Petroni, N.L., et al.: Copilot: a Coprocessor-based Kernel Runtime Integrity Mon-
itor. In: Proc. of the 13th Conference on USENIX Security Symposium (2004)

28. Seshadri, A., Luk, M., Shi, E., et al.: Pioneer: Verifying Code Integrity and En-
forcing Unhampered Code Execution on Legacy Systems. In: The 20th ACM Sym-
posium on Operating Systems Principles (2005)

29. Fraser, K., et al.: Safe Hardware Access with the Xen Virtual Machine Monitor. In:
Proceedings of the 1st Workshop on Operating System and Architectural Support
for the on Demand IT InfraStructure, Boston, MA (2004)

30. Wojtczuk, R.: Subverting the Xen Hypervisor. Black Hat USA (2008)
31. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3253l

32. Goodin, D.: Webhost hack wipes out data for 100,000 sites,
http://www.theregister.co.uk/2009/06/08/webhost_attack

33. Lineberry, A.: Malicious Code Injection via /dev/mem. Black Hat 2009 (2009)
34. Milos, G., Murray, D.G.: Boxing clever with IOMMUs. In: Proceedings of the 1st

ACM Workshop on Virtual Machine Security 2008, pp. 39–44 (2008)
35. Murray, D.G., Hand, S.: Privilege separation made easy: trusting small libraries not

big processes. In: Proceedings of the 1st European Workshop on System Security
2008, pp. 40–46 (2008)

36. Dalton, C.I., Plaquin, D., et al.: Trusted virtual platforms: a key enabler for con-
verged client devices. SIGOPS Oper. Syst. Rev. 43(1), 36–43 (2009)

http://www.sans.org/reading_room/whitepapers/honors/linux-kernel-rootkits-protecting-systems_1500
http://www.sans.org/reading_room/whitepapers/honors/linux-kernel-rootkits-protecting-systems_1500
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3253l
http://www.theregister.co.uk/2009/06/08/webhost_attack

Dynamic Group Key Exchange Revisited

Guomin Yang and Chik How Tan

Temasek Laboratories
National University of Singapore
{tslyg,tsltch}@nus.edu.sg

Abstract. In a dynamic group key exchange protocol, besides the basic
group setup protocol, there are also a join protocol and a leave protocol,
which allow the membership of an existing group to be changed more
efficiently than rerunning the group setup protocol. The join and leave
protocols should ensure that the session key is updated upon every mem-
bership change so that the subsequent sessions are protected from leav-
ing members (backward security) and the previous sessions are protected
from joining members (forward security). In this paper, we present a new
security model for dynamic group key exchange. Comparing to existing
models, we do a special treatment to the state information that a user
may use in a sequence of setup/join/leave sessions. Our treatment gives
a clear and more concise definition of session freshness for group key ex-
change in the dynamic setting. We also construct a new dynamic group
key exchange protocol that achieves strong security and high efficiency
in the standard model.

Keywords: Group Key Exchange, Dynamic Group, Insider Security,
Mutual Authentication, Strong Contributiveness.

1 Introduction

Group key exchange (GKE) protocols are mechanisms by which a group of n > 2
parties communicate over an insecure network can generate a common secret key
(usually we call this common secret key a session key as a user may have multiple
key exchange sessions). A static group key exchange (SGKE) protocol consists
of a long-lived key generation algorithm, and a group setup protocol which is
invoked whenever a group of parties want to establish a shared key. In contrast,
a dynamic group key exchange (DGKE) protocol consists of a long-lived key
generation algorithm and three sub-protocols: a setup protocol, a join protocol,
and a leave protocol. The join and leave protocols allow the membership of an
existing group to be changed more efficiently than rerunning the group setup
protocol. In this paper, we focus on the dynamic setting.

Since the goal of a GKE protocol is to establish a shared key that is known
only to the group members, the main security requirement is to make sure that
no information, not even a single bit, of the agreed key is leaked to any passive
or active adversaries outside the group. For the special case of two-party key
exchange, the problem has been extensively studied (e.g., [3, 4, 2, 13, 25] and

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 261–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 G. Yang and C.H. Tan

many more). Though it might be natural to extend the existing results for two-
party key exchange to the group setting, such an extension is less trivial for
the dynamic group case. For dynamic group key exchange, special attentions
should be paid to the join and leave protocols: these two protocols must make
sure that upon every membership change, the session key is updated so that
the subsequent sessions are protected from leaving members (namely, backward
security) and the previous sessions are protected from joining members (namely,
forward security1). In other words, for the leave/join protocol, we have to assume
that the leaving/joining users are the adversary, who may misbehave (i.e. deviate
from the protocol specification) in one session, and try to break the security of
a subsequent/previous session among other parties.

To see more clearly the differences between a two-party (or static group) pro-
tocol and a dynamic group protocol: first, in the dynamic setting, the state infor-
mation of the honest parties in two sessions (e.g., one involves a joining/leaving
adversary and the other the adversary wants to attack) can be related, so the
definition of a fresh (or clean) session is less straightforward when session state
reveal queries are allowed; secondly, for several, say t, related sessions created
in a sequence of setup/join/leave events, the adversary can choose to attack one
session but at the same time actively participate in the rest t − 1 sessions, in
which the adversary may not honestly follow the protocol specification (e.g., the
adversary may plant some trapdoor information in one session, and try to break
the following sessions after he/she leaves the group); thirdly, when considering
the notion of forward secrecy, a secure DGKE protocol should ensure a past
session key Ki remains secure even when the adversary compromises both the
long-lived keys and the state information of the subsequent join/leave sessions
after session i.

For group key exchange protocols, it is also necessary to consider insider se-
curity. Two insider security issues need to be addressed: mutual authentication
and key control resistance. Different from two-party protocols, mutual authen-
tication for GKE protocol means when a party makes a decision “accept” in a
session, he/she must be sure that all his/her partners have indeed participated in
the session, in particular, a subset of protocol participants should not be able to
impersonate another party. For key control resistance, we require a secure group
key exchange protocol to be able to prevent a subset of users from controlling
(any part) of the session key.

Related Work. The case of two-party key exchange protocols has been exten-
sively studied in the past three decades (e.g., [16, 17, 3, 4, 2, 13, 25] and many
more). A lot of efficient and provably secure two party key exchange protocols
have been constructed, and many have been deployed in the real practice (e.g.
SSL, SSH, IPSec).

1 We remark that the notion of forward security with respect to the join protocol is
different from the conventional notion of “forward secrecy”. Informally, the latter
means an established session key remains secure even if an adversary learns the
long-lived keys of the protocol participants in the future.

Dynamic Group Key Exchange Revisited 263

Some early group key exchange protocols [12, 1,29, 30,21] extended two-party
key exchange (e.g., the two-party Diffi-Hellman protocol) to the multi-party set-
ting. In [9], based on the Bellare-Rogaway security model [3] for two-party key ex-
change, Bresson, Chevassut, Pointcheval, and Quisquater proposed the first
computational security model (referred to as the BCPQ model) for (static) group
key exchange protocols. The BCPQ model and its variants then became the de
facto standard for analyzing group key exchange protocols.

In [23], Katz and Yung proposed a scalable compiler to transform any static
GKE protocol secure against passive adversaries to a new protocol secure against
active adversaries. They then applied their compiler to the Burmester-Desmedt
protocol and obtained the first constant-round and fully-scalable static GKE
protocol in the standard model.

In [8], a formal model for dynamic group key exchange was proposed, this
model was later extended in [7] to consider concurrent protocol executions and
strong corruption. Provably secure protocols which require linear round com-
plexity are also proposed in [8, 7]. In [24], Lim et al. proposed another DGKE
protocol provably secure in the model of Bresson et al., the protocol requires
only two rounds but is proven secure in the random oracle model. In [18], Dutta
et al. presented another security model for dynamic group key exchange, and a
protocol with formal security proof, but neither their model nor the protocol was
carefully designed, as a result the model didn’t really capture forward/backward
security [32] and the protocol is flawed [31]. In [26], Manulis presented a 3-round
provably secure DGKE protocol (denoted by Dynamic TDH1) which uses a bi-
nary tree structure.

Insider Security. Katz and Shin [22] provided the first formal definition of
insider security for static group key exchange protocols under the Universal
Composability (UC) framework [14]. They also presented a generic compiler
to build UC-secure Static GKE protocols. Recently, in [19], Furukawa et al.
presented a more round-efficient UC-secure Static GKE protocol which requires
only two rounds, but the protocol requires each protocol participants to perform
O(n) pairing operations for an n-party group.

The insider security by Katz and Shin [22] considers impersonation attacks
by malicious protocol participants. Later, Bresson and Manulis [11] unified this
notion with key confirmation, and unknown key share resistance into their def-
inition of Mutual Authentication. Recently, Gorantla el al. [20] further unified
the Mutual Authentication definition by Bresson and Manulis with the notion
of Key Compromise Impersonation resistance.

The notion of key control was first introduced by Mitchell et al. [27], which
refers to attacks by which part of the protocol participants aim to control the
value of the session key. Resistance to key control attacks is formalized via the
notion of “contributiveness” in [6, 11] for group key exchange protocols. In [10],
Bresson and Manulis presented a compiler that can transform any GKE protocols
to achieve contributiveness at the cost of 2 extra communication rounds.

264 G. Yang and C.H. Tan

Our Contributions. In this paper, we present a new security model for dy-
namic group key exchange protocols. To define forward and backward security,
we provide a special treatment to the shared state information among a sequence
of setup/join/leave sessions. Our treatment gives a clear and more concise def-
inition of session freshness than existing models. We then construct an efficient
DGKE protocol and prove its security in the standard model.

2 Security Definitions

We start by some existing definitions and notations [3, 5] for key exchange pro-
tocols.

Protocol Participants and Long-Lived Keys. Let HU denote a nonempty
set of parties. Each party U ∈ HU is provided with a Long-Lived Key LLKU

that is generated by running a long-lived key generation algorithm KG. Later on,
new users can still be created and added into the system by the adversary. Such
an adversarial capability was first considered in [11]. Let MU denote the set
of users added by the adversary. When being created, a long-lived key LLKM

for M is generated by the adversary with the restriction that LLKPub
M , which

denotes the public part of LLKM , has never been used by any other user in the
system. However, we do not require LLKM to be generated by honestly running
the long-lived key generation algorithm KG, and the adversary may not know
the secret part of LLKM .

Instance Oracles. A party may run many instances concurrently except that
an instance in a join or leave session cannot run concurrently with any of its
ancestors (see footnote 2). We call each instance of a party an oracle, and we
use Πi

U (i ∈ N) to denote the ith instance of party U . All the oracles within
a party U share the same long-lived key LLKU . An oracle is activated when
it receives an incoming message from the network. Upon activation, the oracle
performs operations by following the Setup, Join or Leave protocol. We assume
that whenever a user wants to setup a new group or join an existing group, an
unused oracle will be used.

Session and Partner IDs, State Information, and Session Keys. When
an oracle Πi

U is activated to start a protocol (Setup, Join or Leave), it learns its
partner id pidi

U (similar to [11], we let pidi
U include the identity of U itself). At

the time Πi
U makes a decision Accept, it outputs (secret) session key ki

U under a
session id sidi

U which is determined during the protocol execution. Since we are
considering group key exchange in the dynamic setting, some state information
of Πi

U should also be saved. This information would be used if a Join or Leave
event later. In this paper, we assume that, after an instance Πi

U accepts, its state
information (which includes two fields pidold = pidi

U and sidold = sidi
U) will be

passed to another unused instance Πj
U (possibly picked by the adversary), and

Πj
U would replace Πi

U to participate in the next Join or Leave session. Also, after
Πj

U receives the state information from Πi
U , all the state information in Πi

U is
erased, and Πj

U is labeled used.

Dynamic Group Key Exchange Revisited 265

Discussion. A straightforward way to deal with the join and leave events is to
let Πi

U keep the state information at the end of a session and become active again
in the subsequent Join or Leave event. However, such an approach will introduce
troubles when we later define the freshness of an instance, since one instance may
participate in different sessions with different partners and generate different
session IDs. On the other hand, as we will see later, our approach makes the
security definition easy and clean. Besides, our approach is meaningful, it mimics
the following space-friendly implementation in real practice: after a KE session
is completed and the session key is returned to the upper layer application, the
user saves the necessary state information at a safe place in the harddisk, and
erases that copy of the program (which implements the DGKE protocol) and all
its state information from the memory. Later, when a join or leave event occurs,
the user starts a new copy of the protocol/program with the previously saved
state information as the parameters to the program.

Definition 1. A Dynamic Group Key Exchange Protocol DGKE consists of a
Long-Lived Key generation algorithm KG, a group setup protocol Setup, a join
protocol Join, and a leave protocol Leave.

– KG(1k): On input a security parameter 1k, the long-lived key generation al-
gorithm provides each user with a long-lived key LLKU .

– Setup(I): on input a set of user identities I, the setup protocol creates a new
multicast group G = I.

– Join(G′, I): on input an existing multicast group G′ and a set of users I such
that I ∩ G′ = ∅, the join protocol creates a new multicast group G = G′ ∪ I.

– Leave(G′, I): on input an existing multicast group G′ and a set of users I ⊂
G′, the leave protocol creates a new multicast group G = G′\I.

An execution of DGKE consists of running the KG algorithm once, and many
concurrent executions of the other three protocols. We say DGKE is correct if,
when no adversary is present, all the parties in the group G compute the same
session key at the end of the Setup, Join or Leave protocol.

Security Model. We consider the following game that involves all the users
in the set HU and an adversary A. All the users are connected via an unau-
thenticated network that is controlled by A. The game is initiated by running
the long-lived key generation algorithm KG to provide each user in HU with
a long-lived key. The adversary A is then given {LLKPub

U }U∈HU and interacts
with the oracles via the queries described below.

– Register(M,LLKPub
M): This query allows the adversary A to create and add

a new user M with long-live (public) key LLKPub
M into the system. We re-

quire that neither the user identity M nor the long-lived public key LLKPub
M

has been used by any other user in the system. However, we don’t require
LLKPub

M to be generated by running the KG algorithm. All the activities and
operations of user M will be performed by the adversary A.

266 G. Yang and C.H. Tan

– Send(Πi
U ,msgin): This query allows A to invoke instance Πi

U with an incom-
ing message msgin. Upon receiving the message, Πi

U performs operations
according to the Setup, Join or Leave protocol, and generates the response.
Should Πi

U accept or reject will be made available to A. When an oracle Πi
U

accepts, A chooses another unused instance Πj
U . The state information of

Πj
U is then set to StjU = StiU (this operation is assumed to be done within

the user U . In particular, the adversary is unaware of the state information
being passed, but the adversary may learn this information via a RevealState
query (described below) to Πj

U). Πj
U is labeled used and will replace Πi

U to
participate in the subsequent Join or Leave protocol. The Setup, Join and
Leave events are also activated by A through Send queries, as follows:
1. When A wants to activate an unused instance Πi

U to start the Setup
protocol, it sets msgin = setup‖pid where pid is the partner id of the
instance Πi

U .
2. When A wants activate an instance Πi

U , which is either unused (i.e. U
is going to join an existing group) or has been used (i.e. U is a mem-
ber of the existing group), to start the Join protocol, it sets msgin =
join‖pidold‖sidold‖pidnew where pidold denotes the old group (with ses-
sion id sidold) on top of which a new group pidnew is to be built. It is
worth noting that several groups with the same set of members may
exist, so the session id is necessary to uniquely identify the (old) group.

3. Similarly, when A wants activate an instance Πi
U to start the Leave

protocol, it sets msgin = leave‖pidnew . Note that if Πi
U participates in

the leave protocol, it should already have the information of the existing
group, so the fields pidold and sidold are not needed.

– Corrupt(U): This query allows the adversary to obtain the long-lived key
LLKU .

– RevealKey(Πi
U): This query reveals the session key being held by the oracle

Πi
U .

– RevealState(Πi
U): This query reveals all the state information, but not the

long-lived key, currently being held by the oracle Πi
U .

– Test(Πi
U): This query is asked only once in the game, and is only available if

oracle Πi
U has accepted, and is fresh (see below). An unbiased coin b is tossed,

if b = 0, a random value drawn from the session key space is returned; if
b = 1, the real session key ki

U is returned. After the Test query, the adversary
can still perform those queries described above.

Oracle Freshness. An oracle Πi
U is fresh if all of the following conditions hold:

1. pidi
U ∩MU = ∅;

2. No user in pidi
U is corrupted before the adversary makes a Send(Πj

V , ∗) query
with (V ∈ pidi

U ∧ sidj
V = sidi

U);
3. No RevealState query is performed to an oracle Πj

V with (V ∈ pidi
U ∧ sidj

V =
sidi

U) or any of its ancestors2.
2 We say Πi

V is an ancestor of Πj
V if there exists a path (Πi

V , ..., Πt
V , ...Πj

V) such that
each instance in the path passes its state information to the next one.

Dynamic Group Key Exchange Revisited 267

4. No RevealKey query is performed to an oracle Πj
V with (V ∈ pidi

U ∧ sidj
V =

sidi
U).

SK-Security. Before A terminates it outputs a bit b′. We say A wins the game
if b′ = b. We define the advantage of the adversary A attacking protocol DGKE
to be

Advsk
A,DGKE(k) = |Pr[b′ = b]− 1

2
|

Definition 2 (SK-Security). We say a dynamic group key exchange protocol
DGKE is SK-secure if, for any polynomial time adversary A, the advantage
Advsk

A,DGKE(k) is a negligible function of the security parameter k.

Comparisons with Existing Models. In the early models by Bresson et
al. [8, 7], a single instance will maintain the state information in a sequence
of setup, join, and leave events. When defining the freshness, the adversary
is not allowed to reveal the state information of the instance (or any of its
partners) at any time. As a consequence, it does not capture the scenario that
the adversary compromises the state information in the join/leave sessions which
are subsequent sessions of the test session.

In the model by Dutta and Barua [18], the adversary can only passively re-
ceived communication transcripts of the join and leave protocols, but in real-
ity, the adversary is the joining/leaving user who actively participated in the
join/leave session. In [32], it has been shown that the proven secure protocol
in [18] doesn’t provide backward security.

In the model by Manulis [26], similar to the approach by Bresson et al., a single
instance will maintain the state information in a sequence of setup/join/leave
events, however the adversary is allowed to reveal the state information of the
instance output in the test query at some points. While in our model, due to our
trick to the state information, each oracle will participate in at most one session,
which makes the definition of session freshness more concise as we don’t need to
consider at which points the adversary is allowed to perform RevealState to an
instance.

Another difference between Manulis’s model and ours is that we have different
meanings in backward security. In Manulis’s model, backward security considers
an adversary who compromises state information of the ancestors (see footnote
2) of the instances in the test session, while ours means the leaving users, who
may plant some trapdoors in the previous sessions, cannot learn any information
of the session key established among the remaining group of users, but our model
requires none of the instances in the test session, or any of their ancestors, has
been asked a RevealState query. The definition by Manulis is stronger than ours,
however, such a definition may be too strong as no existing DGKE protocol
(including the dynamic TDH1 by Manulis) can achieve such a security level.
The reason is that in order to perform join/leave efficiently, some critical state
information (such as the DH exponents) used by the join/leave protocol is related
to state information of the previous session. In order to provide the backward
security defined by Manulis, each instance needs to freshly generate all critical

268 G. Yang and C.H. Tan

state information in each session, in which case the join/leave protocol most
likely gains no advantage than the setup protocol (i.e., the protocol essentially
becomes a static one).

MA-Security. We say that an instance Πi
U is honest if U ∈ HU and Πi

U

honestly performs its operations according to the protocol. Below we review
the definition of MA-security in [20]. The definition is a modification of the MA-
security in [11] by including the notion of Key Compromise Impersonation (KCI)
resistance. Recall that in a KCI attack an adversary corrupts a user U and then
impersonates other (uncorrupted) users to (honest instances of) U .

Definition 3 (MA-Security). Let DGKE be a correct dynamic group key ex-
change protocol and A′ an adversary who is allowed to perform Register, Send,
Corrupt, RevealKey and RevealState queries. We say that A′ breaks the mutual au-
thentication of DGKE if at some point during the execution of DGKE , there exists
an honest instance Πi

U who has accepted with ki
U and another user V ∈ HU∩pidi

U

who is uncorrupted at the time Πi
U accepts such that

1. There is no instance oracle Πt
V with (pidt

V , sidt
V) = (pidi

U , sidi
U), or

2. There is an instance oracle Πt
V with (pidt

V , sidt
V) = (pidi

U , sidi
U) that has

accepted with kt
V
= ki

U .

Denote Advma
A′,DGKE(k) the probability that A′ breaks the mutual authentication

of DGKE . We say a dynamic group key exchange protocol DGKE is MA-secure
if for any polynomial time adversary A′, Advma

A′,DGKE(k) is a negligible function
of the security parameter k.

Contributiveness. We present below the notion of contributiveness for dy-
namic group key exchange protocols. A group key exchange protocol secure
under this notion can resist key control attacks where a subset of insiders tries
to control any part of the resulting session key.

Definition 4 (Co-Security). Let DGKE be a correct dynamic group key ex-
change protocol and A′′ = (A′′

1 ,A′′
2) an adversary who is allowed to perform

Register, Send, Corrupt, RevealKey and RevealState queries. A′′ runs in two
stages:

– (Prepare.) A′′
1 performs the oracle queries and outputs a bit b, an index j,

along with some state information St.
– (Attack.) On input St, A′′

2 performs the oracle queries and finally outputs
(U, i).

We say that A′′ wins if

1. Πi
U has terminated accepting ki

U such that the j-th bit of ki
U is equal to b,

2. Πi
U is honest and has not started its execution in the Prepare stage,

3. Πi
U has never been asked a RevealState query in the Attack phase.

Define

Advco
A′′,DGKE(k) = Pr[A′′ wins]− 1

2
.

Dynamic Group Key Exchange Revisited 269

A dynamic group key exchange protocol DGKE is said to provide contributiveness
(or Co-security) if for any polynomial time adversary A′′, Advco

A′′,DGKE(k) is a
negligible function of the security parameter k.

Our definition of contributiveness is different from the existing definitions of
strong contributiveness defined in [11,20]. The later requires that the adversary
cannot control the whole key, and as a result it does not capture partial-key con-
trol attacks. Below we present a protocol that achieves strong contributiveness
but fail to achieve our notion of contributiveness.

U1 U2 U3 U4 U5

ki
$←{0, 1}�, xi

$←Z
∗
q , σ1

i ← DS.Sign(ski, M
1
i ‖I)

M1
1 = k1‖gx1 , σ1

1 M1
2 = k2‖gx2 , σ1

2 M1
3 = k3‖gx3 , σ1

3 M1
4 = k4‖gx4 , σ1

4 M1
5 = H(k5)‖gx5 , σ1

5

Broadcast Round 1

sid ← H(I‖k1‖k2‖k3‖k4‖H(k5)), tLi ← H(gxL(i)xi), tRi ← H(gxR(i)xi)

Ti ← tLi ⊕ tRi , T̂5 ← k5 ⊕ tR5 , σ2
i ← DS.Sign(ski, M

2
i)

M2
1 = T1‖sid, σ2

1 M2
2 = T2‖sid, σ2

2 M2
3 = T3‖sid, σ2

3 M2
4 = T4‖sid, σ2

4 M2
5 = T̂5‖T5‖sid, σ2

5

Broadcast Round 2

Session Key k = H(I‖k1‖k2‖k3‖k4‖k5)

Fig. 1. A (Static) Group Key Exchange Protocol [20]. I = {U1, U2, U3, U4, U5}.

The protocol in Fig. 1 is proven secure under the strong contributiveness
definition in [11,20]. However, the protocol does not provide partial-key control
resistance. In the protocol, the keying materials ki of Ui (1 ≤ i ≤ 4) are sent in
clear at the beginning of the protocol, so the last user (i.e. U5 in our example)
can (partially) control the session key as follows: after seeing the ki’s of all
the other users, U5 repeatedly tries different values for k5 until the session key
k = H(I‖k1‖k2‖k3‖k4‖k5) has a desired pattern. We can see that in order to
control s bits of the final session key, the expected number of trials that U5 needs
to perform is 2s.

A similar attack can be performed to other protocols (e.g., those in [8,7,24,
18,26,11]) where a user can repeatedly try different keying materials after seeing
the keying material sent by other users.

However, in our definition of contributiveness, we don’t allow the adversary
to make the RevealState query. This restriction is necessary in our definition
since otherwise the adversary can use the RevealState query to learn the keying
material of the instance under attack, and then repeatedly choose the proper
keying materials for other users. In contrast, such a restriction is not required in
the strong contributiveness definition in [11,20]. So in general, these two notions
are incomparable. However, we believe partial-key control resistance may be
more important in some circumstances.

It is also worth noting that partial-key control attacks have been considered
in some previous work, such as in the shielded-insider privacy security notion

270 G. Yang and C.H. Tan

by Desmedt et al. [15], and in the weak contributiveness notion by Bresson and
Manulis [10]. We leave the relationship among these partial-key control resistance
notions an open problem.

3 A New Dynamic Group Key Exchange Protocol

In this section, we present a new dynamic group key exchange protocol and show
that it satisfies all the security definitions (i.e. SK-, MA-, and Co-Security) given
in Sec. 2. Our protocol makes use of a commitment scheme CMT = (CMT,CVF),
a digital signature scheme DS, and two pseudo-random function families F̂
and F̃.

3.1 Primitives

Commitment Schemes. A commitment scheme CMT consists of two algo-
rithms: a commitment algorithm CMT which takes a message M to be committed
as input and returns a commitment C and an opening key δ, and a deterministic
verification algorithm CVF which takes C,M, δ as input and returns either 0 or
1. We say CMT = (CMT,CVF) is a perfectly hiding and computationally bind-
ing commitment scheme with binding error ε if CMT achieves all the following
properties.
– Consistency: for any message M

Pr[(C, δ) $←CMT(M) : CVF(C,M, δ) = 1] = 1.

– Perfectly Hiding: for any messages M0 and M1 such that |M0| = |M1|, the

commitmentsC0 andC1 are identically distributed where (C0, δ0)
$←CMT(M0),

and (C1, δ1)
$←CMT(M1).

– Computationally Binding: For every polynomial time algorithm M

Advbind
CMT ,M

def= Pr

⎡⎣ (C, (M0, δ0), (M1, δ1))←M(1k) :
M0
= M1 ∧ CVF(C,M0, δ0) = 1
∧CVF(C,M1, δ1) = 1

⎤⎦ ≤ ε(k).

In our protocol we will make use of a commitment scheme with the following
additional property: for any message M , an honest execution of CMT(M) gen-
erates a commitment C that is uniformly distributed in the range of CMT(·).
We call such kind of commitment schemes Uniformly Distributed commitment
schemes. A typical example of this type of commitment schemes is the Peder-
sen commitment scheme [28] where the computationally binding property holds
under the Discrete Log assumption.

Pseudo-random Function Family. A family of efficiently computable func-
tions F = {FK : D → R|K ∈ K} is called a pseudo-random function family, if for
any polynomial time algorithm A,

Advprf
F,A(k) def= Pr[AFκ(·)(1k) = 1]− Pr[ARF(·)(1k) = 1]

is negligible where κ
$←K and RF : D → R is a truly random function.

Dynamic Group Key Exchange Revisited 271

Digital Signature Scheme. A digital signature scheme DS consists of three
algorithms: a key generation algorithm DS.Kg that takes a security parameter
1k as input and returns a long-lived key pair (pk, sk) where pk is public and
sk is private; a signing algorithm DS.Sign that takes a private key sk and a
message m ∈ {0, 1}∗ as input, and returns a signature σ; and a verification
algorithm DS.V er that takes a public key pk, a message m and a signature σ as
input, and returns a bit b ∈ {0, 1} indicating the validity of the signature. The
consistency requirement is that for any security parameter k and any message
m ∈ {0, 1}∗,

Pr[(pk, sk)← DS.Kg(1k) : DS.V er(pk,m,DS.Sign(sk,m)) = 1] = 1.

We say DS is existentially unforgeable under chosen message attacks (uf-cma),
if for any polynomial time algorithm F ,

Advuf−cma
DS,F (k) def= Pr

⎡⎢⎢⎣
(pk, sk)← DS.Kg(1k),
(m∗, σ∗) ← FDS.Sign(sk,·)(pk) :
DS.V er(pk,m∗, σ∗) = 1
∧ F has never queried DS.Sign(sk,m∗)

⎤⎥⎥⎦
is negligible.

3.2 The Protocol

Our protocol is an improved version of the protocol by Kim et al. [24] with the
following differences: (1) the protocol in [24] is in the random oracle model while
ours is in the standard model; (2) the protocol in [24] cannot achieve MA- and
Co-security.

Protocol Design. The setup protocol makes use of two-party Diffie-Hellman
key exchange to form a ring structure: each party generate an ephemeral pub-
lic/private key pair (xi, g

xi), and generates a left key KL
i (based on gxi−1xi) with

his left neighbor and a right key KR
i (based on gxi+1xi) with his right neighbor,

and broadcasts KL
i ⊕KR

i . Then each group member can recover the left/right
keys of all other group members due to the ring structure. One of the mem-
bers also conceals its keying material using his right key, and others just send
the keying materials in clear. Now only the legitimate group members can re-
cover the concealed keying material and compute the final session key. To ensure
contributiveness, we require each party to commit their keying material before
receiving others’ keying materials.

For the join/leave event, we let part of the existing group members to perform
the same procedures as in the setup protocol, but the rest of the users do not
need to run the full setup protocol, so computational and communication cost
can be saved. And to ensure forward/backward security, the state information
of the each user is updated using two pseudo-random functions. Below are the
details of the protocol.

272 G. Yang and C.H. Tan

Let G denote a cyclic group of prime order q, and g is a generator of G. Our
dynamic group key exchange protocol works as follows:

– KG: For each user Ui inside the system, a long lived key pair (pki, ski) ←
DS.Kg(1k) is generated.

– Setup (Fig. 2): The following protocol is performed among a set I = {U1,
U2, ..., Un} of users.
1. (Round 1) Each user Ui chooses ki

$←{0, 1}�, xi
$←Z∗

q and computes
(k′

i, δi)← CMT(ki). Ui then broadcasts M1
i = k′

i‖gxi.
2. (Round 2) Upon receiving all the messages M1

j (j
= i), each Ui computes
sidi ← k′

1‖k′
2‖...‖k′

n, tLi ← F̂g
xL(i)xi (1)3, tRi ← F̂g

xR(i)xi (1), ωi ← tLi ⊕ tRi .
Ui (1 ≤ i < n) sets M2

i = ωi‖ki‖δi and Un computes Tn ← tRn ⊕ (kn‖δn)
and sets M2

n = ωn‖Tn. Each Ui then generates a signature σ2
i on the

message M1
i ‖M2

i ‖I‖sidi and broadcast M2
i ‖σ2

i .
3. (Key Computation) Upon receiving M2

j ‖σ2
j (j
= i), each Ui verifies all

the signatures. If the signatures are valid, Ui derives tLi−1 ← tLi ⊕ ωi−1,
tLi−2 ← tLi−1 ⊕ ωi−2, ... until tL1 = tRn is derived. Ui then derives kn‖δn ←
tRn ⊕ Tn. Ui then verifies if CVF(k′

j , kj , δj) = 1 for all j
= i. If all the
verifications are successful, Ui computes the session key as ki ← F̃k̂(1)
where k̂ ←

⊕
Uj∈I kj .

4. (Post Computation) Each Ui computes hL
i ←F̂g

xL(i)xi (0), hR
i ←F̂g

xR(i)xi (0)
and X ← F̃k̂(0), saves (hL

i , h
R
i , X) with pidi = I and sidi in the memory,

and erases all other state information.

U1 U2 U3 U4

ki
$←{0, 1}�, (k′

i, δi) ← CMT(ki), xi
$←Z

∗
q

M1
1 = k′

1‖gx1 M1
2 = k′

2‖gx2 M1
3 = k′

3‖gx3 M1
4 = k′

4‖gx4

Broadcast Round 1

sidi ← k′
1‖k′

2‖k′
3‖k′

4, tLi ← F̂
g

xL(i)xi (1), tRi ← F̂
g

xR(i)xi (1), ωi ← tLi ⊕ tRi
T4 ← tR4 ⊕ (k4‖δ4), σ2

i ← DS.Sign(ski, M
1
i ‖M2

i ‖I‖sidi)

M2
1 = ω1‖k1‖δ1, σ2

1 M2
2 = ω2‖k2‖δ2, σ2

2 M2
3 = ω3‖k3‖δ3, σ2

3 M2
4 = ω4‖T4, σ2

4

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ = k1 ⊕ k2 ⊕ k3 ⊕ k4

Post Computation

hL
i ← F̂

g
xL(i)xi (0), hR

i ← F̂
g

xR(i)xi (0), X ← F̃k̂(0)

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X

Fig. 2. The Setup Protocol. I = {U1, U2, U3, U4}.
3 Here for simplicity we directly use the Diffie-Hellman key as the pseudo-random

function key, in practice, one may need to first apply a Key Drivation Function
(KDF) to the Diffie-Hellman key, and then use the output of the KDF as the pseudo-
random function key.

Dynamic Group Key Exchange Revisited 273

– Join (Fig. 3): Given an old group I = {U1, U2, ..., Un} where each member has
state information (hL

i , h
R
i , X) and a set of new users J = {Un+1, Un+2, ...,

Un+k}, the Join protocol works as follows:
1. (Round 1): Each Ui (1 ≤ i ≤ n + k) chooses k̂i

$←{0, 1}� and computes
(k̂′

i, δ̂i) ← CMT(k̂i). Each Uj (j ∈ {1, n, n + 1, ..., n + k}) also chooses

x̂j
$←Z∗

q , and U2 sets x̂2 = X . Then each Ui (1 ≤ i ≤ n + k) broadcasts
M1

i where M1
j = k̂′

j‖gx̂j for j ∈ {1, 2, n, n + 1, ..., n + k} and M1
� = k̂′

�

for � ∈ {3, ..., n− 1}.
2. (Round 2): Upon receiving all the messages, each Ui(1 ≤ i ≤ n + k)

computes sidi ← k̂′
1‖k̂′

2‖...‖k̂′
n+k. Each Uj (j ∈ {1, 2, n, n + 1, ..., n +

k}) then computes tLj ← F̂
g

x̂L(j) x̂j (1), tRj ← F̂
g

x̂R(j) x̂j (1) where x̂L(n) =
x̂2, x̂R(2) = x̂n, and ωi ← tLi ⊕ tRi . Each U� (� ∈ {3, ..., n − 1}) also
computes tR� = tR2 , tL� = tL2 (as U� also has X), ω� ← tL� ⊕ tR� . Ui (i ∈
{1, 2, n + 1, ..., n + k}) sets M2

i = ωi‖k̂i‖δ̂i, U� (3 ≤ � ≤ n − 1) sets
M2

� = k̂�‖δ̂�, and Un computes Tn ← tRn ⊕ (k̂n‖δ̂n) and sets M2
n =

ωn‖Tn. Each Ui (1 ≤ i ≤ n+k) generates a signature σ2
i on the message

M1
i ‖M2

i ‖I ′‖sidi and broadcasts M2
i ‖σ2

i .
3. (Key Computation): Each Ui ∈ I′ performs the same procedures as

he/she does in the Key Computation phase of the Setup protocol, except
that for each U� (3 ≤ � ≤ n−1), tL� = tL2 and tR� = tR2 are used. The final
session key of each Ui is computed as ki ← F̃k̂(1) where k̂ ←

⊕
Uj∈I′ k̂j .

4. (Post Computation) Each Uv (v ∈ {1, n + 1, ..., n + k}) computes hL
v ←

F̂
g

x̂L(v) x̂v (0), each Uj (j ∈ {n, n+1, ..., n+k}) computes hR
j ← F̂

g
x̂R(j) x̂j (0),

and hR
1 , hL

n , h
L
� , h

R
� (2 ≤ � ≤ n − 1) remain unchanged. Each Ui (i ∈

{1, 2, ..., n+ k}) computes X ′ ← F̃k̂(0), saves (hL
i , h

R
i , X ′) with pidi = I ′

and sidi in the memory, and erases all other state information.
– Leave (Fig. 4): Let I = {U1, U2, ..., Un} be an existing group where each

member Ui has state information (hL
i , h

R
i , X). Let I ′ = I\J where J =

{Ul1 , Ul2 , ..., Uln′} denotes the set of leaving users, and N(J) be the set
of neighbors of those leaving users, i.e. N(J) = {Ul1−1, Ul1+1, ..., Uln′−1,
Uln′+1}. The Leave protocol works as follows:
1. (Round 1): Each Ui in I ′ randomly chooses k̃i ∈ {0, 1}� and computes

(k̃′
i, δ̃i) ← CMT(k̃i). Each U� (� ∈ I′\N(J)) sets M1

� = k̃′
�. Each Uj in

N(J) additionally chooses x̃j
$←Z∗

q , and sets M1
j = k̃′

i‖gx̃j . Each Ui in I ′
broadcasts M1

i .
2. (Round 2): Upon receiving all the messages, each Ui in I ′ computes

sidi as the concatenation of all the k̃′
j sent by Uj ∈ I′. Each pair of

neighbors Ulj−1 and Ulj+1 in N(J) generate hR
lj−1 = F̂

g
x̃lj+1x̃lj−1 (0)

and hL
lj+1 = F̂

g
x̃lj−1x̃lj+1 (0), respectively. Each Ui in I ′ generates tLi =

F̂hL
i
(1), tRi = F̂hR

i
(1), and ωi ← tLi ⊕ tRi . The user Uln′+1 additionally

computes Tln′+1 ← tRln′+1⊕ (k̃ln′+1‖δ̃ln′+1). Each Ui in I ′\{Uln′+1} then
sets M2

i = ωi‖k̃i‖δ̃i, Uln′+1 sets M2
ln′+1 = ωln′+1‖Tln′+1. Finally, each

274 G. Yang and C.H. Tan

U1 U2 U3 U4 U5

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X

k̂i
$←{0, 1}�, (k̂′

i, δ̂i) ← CMT(k̂i), x̂i
$←Z

∗
q , x̂2 ← X

M1
1 = k̂′

1‖gx̂1 M1
2 = k̂′

2‖gX M1
3 = k̂′

3 M1
4 = k̂′

4‖gx̂4 M1
5 = k̂′

5‖gx̂5

Broadcast Round 1

tLi ← F̂
g

x̂L(i)x̂i (1), tRi ← F̂
g

x̂R(i)x̂i (1) for {U1, U2, U4, U5}, tL3 = tL2 & tR3 = tR2

ωi ← tLi ⊕ tRi , T4 ← tR4 ⊕ (k̂4‖δ̂4), sidi ← k̂′
1‖k̂′

2‖k̂′
3‖k̂′

4‖k̂′
5, σ2

i ← DS.Sign(ski, M
1
i ‖M2

i ‖I′‖sidi)

M2
1 = ω1‖k̂1‖δ̂1, σ2

1 M2
2 = ω2‖k̂2‖δ̂2, σ2

2 M2
3 = k̂3‖δ̂3, σ2

3 M2
4 = ω4‖T4, σ2

4 M2
5 = ω5‖k̂5‖δ̂5, σ2

5

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ ← k̂1 ⊕ k̂2 ⊕ ... ⊕ k̂5

Post Computation

h′L
i ← F̂

g
x̂L(i)x̂i (0), h′R

i ← F̂
g

x̂R(i)x̂i (0), X′ ← F̃k̂(0)

h′L
1 , hR

1 , X′ hL
2 , hR

2 , X′ hL
3 , hR

3 , X′ hL
4 , h′R

4 , X′ h′L
5 , h′R

5 , X′

Fig. 3. The Join Protocol. I′ = {U1, U2, U3, U4, U5},J = {U5}.

Ui in I ′ generates a signature σ2
i on the message M1

i ‖M2
i ‖I ′‖sidi and

broadcasts M2
i ‖σ2

i .
3. (Key Computation): Each Ui ∈ I′ performs the same procedures as

he/she does in the Key Computation phase of the Setup protocol. The
final session key of each Ui is computed as ki ← F̃k̂(1) where k̂ ←⊕

Uj∈I′ k̃j .

4. (Post Computation): Each Ui ∈ I′ computes h′L
i ← F̂hL

i
(0), h′R

i ←
F̂hR

i
(0), X ′ ← F̃k̂(0), saves (h′L

i , h
′R
i , X ′) with pidi = I ′ and sidi in the

memory, and erases all other state information.

3.3 Security Analysis

We prove that our protocol is secure with respect to the security definitions (i.e.
SK-, MA, and Co-security) given in Sec. 2.

Decisional Diffie-Hellman (DDH) Problem: Fix a generator g of G. The
DDH assumption claims that {g, ga, gb, Z} and {g, ga, gb, gab} are computation-
ally indistinguishable where a, b are randomly selected from Zq and Z is a random
element of G.

Theorem 1. The proposed dynamic group key exchange protocol is SK-secure
if the DDH assumption holds in the underlying group G, DS is a uf-cma secure
digital signature scheme, CMT is a uniformly distributed perfectly hiding com-
mitment scheme, F̂ and F̃ are two independent pseudo-random function families.

We prove the Theorem in three cases: (1) the Test query is made to a setup
session, (2) the Test query is made to a join session, and (3) the Test query is

Dynamic Group Key Exchange Revisited 275

U1 U2 U3 U4 U5

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X hL
5 , hR

5 , X

k̃i
$←{0, 1}�, (k̃′

i, δ̃i) ← CMT(k̃i), x̃i
$←Z

∗
q

M1
1 = k̃′

1 M1
2 = k̃′

2 M1
3 = k̃′

3‖gx̃3 M1
5 = k̃′

5‖gx̃5

Broadcast Round 1

hR
3 ← F̂(gx̃5)x̃3 (0) hL

5 ← F̂(gx̃3)x̃5 (0)

sidi ← k̃′
1‖k̃′

2‖k̃′
3‖k̃′

5, tLi ← F̂hL
i

(1), tRi ← F̂hR
i

(1), ωi ← tLi ⊕ tRi

T5 ← tR5 ⊕ (k̃5‖δ̃5), σ2
i ← DS.Sign(ski, M

1
i ‖M2

i ‖I′‖sidi)

M2
1 = ω1‖k̃1‖δ̃1, σ2

1 M2
2 = ω2‖k̃2‖δ̃2, σ2

2 M2
3 = ω3‖k̃3‖δ̃3, σ2

3 M2
5 = ω5‖T5, σ2

5

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ = k̃1 ⊕ k̃2 ⊕ k̃3 ⊕ k̃5

Post Computation

h′L
i ← F̂hL

i
(0), h′R

i ← F̂hR
i

(0), X′ ← F̃k̂(0)

h′L
1 , h′R

1 , X′ h′L
2 , h′R

2 , X′ h′L
3 , h′R

3 , X′ h′L
5 , h′R

5 , X′

Fig. 4. The Leave Protocol. I′ = {U1, U2, U3, U5},J = {U4}.

made to a leave session. To prove (1), we just follow the same approach as other
existing work does, we define a sequence of games, starting from the original
SK-security game, ending with a game in which the adversary has no advantage,
and show that the difference between each two consecutive games is negligible.
For case (2) and (3), we use the idea that f(0) and f(1) “looks” random and
independent to any polynomial time adversary if f(·) is a secure pseudo-random
function, so even if the adversary see one of them, we can still replace the other
with a random element.

Theorem 2. The proposed dynamic group key exchange protocol is MA-secure
if DS is a uf-cma secure digital signature scheme, and CMT is a computationally
binding commitment scheme.

Theorem 3. The proposed dynamic group key exchange protocol is Co-secure
if CMT is a perfectly hiding and computationally binding commitment scheme,
and F̃ is a pseudo-random function family.

The detailed proofs are deferred to the full paper.

4 Conclusions and Future Work

In this paper, we presented a new security model for dynamic group key ex-
change (DGKE) protocols and a new definition of contributiveness which cap-
tures partial-key control attacks. Comparing to existing security models, our
new model is more concise and easy to use. We also presented a new DGKE
protocol that provides strong security as well as high efficiency. Some possible
future work includes 1) study the relationship among the existing partial-key
control resistance notions; and 2) construct a robust protocol that can handle
the situation of user crash during protocol execution.

276 G. Yang and C.H. Tan

References

1. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and
friends. In: ACM Conference on Computer and Communications Security, pp. 17–
26 (1998)

2. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proc. 30th ACM Symp.
on Theory of Computing, pp. 419–428. ACM, New York (May 1998)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Bellare, M., Rogaway, P.: Provably secure session key distribution – the three party
case. In: Proc. 27th ACM Symp. on Theory of Computing, Las Vegas, pp. 57–66.
ACM, New York (1995)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bohli, J.-M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure group key establishment
revisited. Int. J. Inf. Sec. 6(4), 243–254 (2007)

7. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key ex-
change under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

9. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: ACM Conference on Computer and
Communications Security, pp. 255–264 (2001)

10. Bresson, E., Manulis, M.: Contributory group key exchange in the presence of
malicious participants. IET Information Security 2(3), 85–93 (2008)

11. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions
and key registration attacks. International Journal of Applied Cryptography 1(2),
91–107 (2008)

12. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 275–286. Springer, Heidelberg (1995)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/

15. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: A non-malleable group key
exchange protocol robust against active insiders. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–
475. Springer, Heidelberg (2006)

16. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

17. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes, and Cryptography 2(2), 107–125 (1992)

http://eprint.iacr.org/

Dynamic Group Key Exchange Revisited 277

18. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Heidelberg (2005)

19. Furukawa, J., Armknecht, F., Kurosawa, K.: A universally composable group key
exchange protocol with minimum communication effort. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 392–408. Springer,
Heidelberg (2008)

20. Choudary Gorantla, M., Boyd, C., González Nieto, J.M.: Modeling key compromise
impersonation attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G.
(eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009)

21. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996)

22. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
ACM Conference on Computer and Communications Security, pp. 180–189 (2005)

23. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

24. Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-round authenticated group key ex-
change for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 245–259. Springer, Heidelberg (2004)

25. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

26. Manulis, M.: Provably secure group key exchange. PhD Thesis, Ruhr University
Bochum (2007), http://www.manulis.eu/phd.html

27. Mitchell, C., Ward, M., Wilson, P.: On key control in key agreement protocols.
Electronics Letters 34, 980–981 (1998)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1991)

29. Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A secure audio teleconfer-
ence system. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528.
Springer, Heidelberg (1988)

30. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: ACM Conference on Computer and Communications
Security, pp. 31–37 (1996)

31. Tan, C.-H., Yang, G.: Comment on provably secure constant round contributory
group key agreement in dynamic setting. IEEE Transactions on Information Theory
(to appear)

32. Teo, J.C.M., Tan, C.H., Ng, J.M.: Security analysis of provably secure constant
round dynamic group key agreement. IEICE Transactions 89-A(11), 3348–3350
(2006)

http://www.manulis.eu/phd.html

Towards Practical and Secure
Coercion-Resistant Electronic Elections

Roberto Araújo1, Narjes Ben Rajeb2, Riadh Robbana3,
Jacques Traoré4, and Souheib Yousfi5

1 Universidade Federal do Pará, ICEN, Faculdade de Computação, Brazil
2 LIP2, INSAT, Tunisia

3 LIP2, Tunisia Polytechnic School, Tunisia
4 Orange Labs, France
5 LIP2, ENIT, Tunisia

Abstract. Coercion-resistance is the most effective property to fight
coercive attacks in Internet elections. This notion was introduced by
Juels, Catalano, and Jakobsson (JCJ) at WPES 2005 together with a
voting protocol that satisfies such a stringent security requirement. Un-
fortunately, their scheme has a quadratic complexity (the overhead for
tallying authorities is quadratic in the number of votes) and would there-
fore not be suitable for large scale elections. Based on the work of JCJ,
Schweisgut proposed a more efficient scheme. In this paper, we first show
that Schweisgut’s scheme is insecure. In particular, we describe an at-
tack that allows a coercer to check whether a voter followed or not his
instructions. We then present a new coercion-resistant election scheme
with a linear complexity that overcomes the drawbacks of these previous
proposals. Our solution relies on special anonymous credentials and is
proven secure, in the random oracle model, under the q-Strong Diffie-
Hellman and Strong Decisional Diffie-Hellman Inversion assumptions.

1 Introduction

Internet elections are far from being a consensus. On one hand, many people
believe that the current technology is enough for deploying such elections in large
scale. On the other hand, a number of voting researchers do not recommend them
nowadays. They state that Internet elections have many intrinsic problems and
that these problems must be addressed before carrying out these elections in real
world scenarios. Despite of the disagreement, Estonia and the city of Geneva in
Switzerland have made advances towards Internet elections. They have already
developed voting systems and accomplished elections over Internet. Especially,
in 2007, Estonia was the first country in the world to conduct online voting in
parliamentary elections.

The success of the Internet elections in Geneva and Estonia may stimulate
other countries to follow them and implement Internet voting in the near future.
This may be boost by the many benefits of Internet elections over the traditional
ones. Voters have the possibility to vote from any convenient place including the

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 278–297, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Practical and Secure Coercion-Resistant Electronic Elections 279

comfort of their residences and offices. Also, Internet elections may be more
attractive for voters and consequently increase voter turnout. Other benefits
include a faster computation of the voting results and a possible reduction of
costs.

These elections, however, have been criticized and discouraged by specialists
as they have a number of problems. One of them is the fact that Internet elections
are susceptible to coercion and vote-selling. Because voters are free for voting
from any place they desire, coercers and vote buyers can easily influence them
to vote for their candidates. Anyone may imagine a scenario where a vote buyer
offers money to a voter and later observes her voting for his candidate. In order to
reach a large number of voters, adversaries may even automatize these attacks.
As stated by Jefferson et al. [21], “the Internet can facilitate large scale vote
buying by allowing vote buyers to automate the process”.

Although coercion and vote-selling may be difficult to hold in Internet elec-
tions, a number of voting protocols that mitigate these problems were proposed.
Some of them deal with these problems through the property of receipt-freeness.
That is, these schemes prevent voters from making or obtaining any evidence
about their votes that could be transfered to adversaries via network.

In 2005 a more powerful property with regard to coercion and vote-selling was
introduced by Juels, Catalano, and Jakobsson (JCJ) [23], though. The property,
called coercion-resistance, takes into account that a voter cannot be able to make
receipts as the receipt-free one. Also, it considers that the adversary may threat
voters to abstain from voting, to reveal her private data, or to cast random votes.
The coercion-resistance is the most effective property nowadays to fight coercion
and vote-selling. In order to accomplish this notion, JCJ also introduced the first
scheme that satisfies it.

Related Work on Coercion-resistance

The coercion-resistant scheme of Juels, Catalano, and Jakobsson (JCJ) first
appeared in 2002 in the Cryptology ePrint Archive [22]. After improvements, it
was effectively published in 2005 at WPES [23]. This scheme represents another
step in the development of secure Internet voting systems. It was the first scheme
to fight realistic attacks not well considered in previous solutions.

JCJ’s proposal relies on anonymous credentials to overcome coercive attacks.
The voter receives a valid credential (i.e. an alphanumeric string) in a secure
way and uses it to cast her vote. When under coercion, the voter makes a fake
credential and follows the instructions of the coercer. Later on, when alone, the
voter votes again using her valid credential; this is the vote that will be counted
in the tallying phase. The adversary is unable to distinguish between the valid
and the fake credential. This scheme, however, suffers from an intrinsic drawback.
As described in their paper “the overhead for tallying authorities is quadratic in
the number of voters”. Consequently, their solution is impractical for large scale
elections.

280 R. Araújo et al.

Following JCJ’s work, several coercion-resistant schemes were proposed.
Clarkson et al. [15] presented a variant of Prêt-à-Voter scheme suitable for
Internet voting and based on decryption mix nets. Mix nets are cryptographic
techniques used to anonymize messages (e.g. votes). They perform this by per-
muting a set of messages and then by decrypting (or reencrypting) the permuted
messages.

Schweisgut [29] and more recently Clarkson et al. [14] proposed schemes which
mitigate the inefficiency problem of the JCJ’s solution. The former scheme relies
on decryption mix nets and on a tamper-resistant hardware, whereas the latter
is a modified version of JCJ’s proposal.

One of the most promising schemes based on JCJ’s ideas was introduced by
Smith [30]. He presented an efficient scheme with linear work factor. Weber
et al. [32], however, pointed out problems of Smith’s proposal and presented a
protocol that combines the ideas of JCJ with a variant of Smith’s mechanism.
Unfortunately, the solutions of Smith and Weber et al. are not coercion-resistant
as showed in [2]. The problem of Smith’s scheme was also noted independently
by Clarkson et al. [14].

The first practical and secure coercion-resistant scheme was given by Araújo,
Foulle, and Traoré [2]. This proposal, different from the previous ones, employs
special formed credentials that allows the scheme to achieve a linear work factor.
It avoids the mechanism of comparisons that makes the scheme of JCJ inefficient.
Unfortunately, the security of their scheme is only conjectured.

Paper Contribution and Organization

In this paper, we first show a weakness of the scheme of Schweisgut [29]. In
particular, we describe an attack that allows an adversary to check whether a
voter followed or not his instructions.

We then introduce a new coercion-resistant voting scheme. Our solution is
practical and can be used in elections that comprehend a large number of voters.
The new proposal employs some ideas similar to that presented in [2]. However,
our scheme differs from the previous solution mainly in two aspects. First, we
employ new anonymous credentials whose security relies on a different problem.
These credentials are shorter than the credentials presented in [2] and make our
proposal more efficient than the previous one. Second, while in [2] they did not
prove that their scheme is coercion-resistant, we formally prove that our solution
fulfills this security requirement.

This work is organized as follows: in the next section, we show that the pro-
posal of Schweisgut is not coercion-resistant. In Section 3, we first introduce the
main assumptions on which rely the security of our new voting protocol. We
then present the main cryptographic building blocks used in our scheme and re-
call the game-based definition of coercion-resistance introduced by JCJ. We next
describe our new proposal. In Section 4, we present a formal security analysis of
our solution. Finally, in Section 5, we conclude this work.

Towards Practical and Secure Coercion-Resistant Electronic Elections 281

2 Weaknesses on a Known Coercion-Resistant Solution

In this section we briefly describe a known coercion-resistant proposal. The
scheme was given by Schweisgut [29] and aims at being more efficient than
JCJ’s protocol. However, we show here that Schweisgut’s scheme is not coercion-
resistant as claimed.

2.1 The Protocol of Schweisgut

As the original proposal of JCJ, the scheme employs anonymous credentials.
These credentials identify eligible voters without revealing their identity. They
also allow the voter to deceive adversaries. More specifically, the voter has a valid
credential that she uses when she is not under coercion. When coerced by an
adversary, the voter is able to make a fake credential and use it. As the coercer
cannot distinguish between a valid and a fake credential, he cannot determine
whether the voter gave him a valid credential or not.

In the scheme of Schweisgut, in particular, the voter has only two credentials.
One of them is a valid one and the other is a fake one. Both credentials are
stored in an observer, i.e. a tamper resistant device. Taking into account that a
public generator g (among other public parameters) and that an El Gamal key
pair [19] of the talliers (where T is the public key) were previously generated,
the scheme is briefly described as follows:

Registration Phase. After authenticating the voter, the registration authori-
ties (registrars) generate a random valid credential σ and encrypts it producing
ET [σ] (where EX [m] means an El Gamal encryption of a message m computed
with the public key X). They then transfer ET [σ] to the voter that stores it in
her observer. The voter now generates a random fake credential σ′, encrypts it,
and stores ET [σ′] on her observer. At the end of this phase, the registrars send
a list of encrypted valid credentials through a verifiable decryption mix net (i.e.
the mixes have to prove that they have correctly permuted and decrypted the
tuples) and publish the mix net results.

Voting Phase. In order to vote, the voter interacts with her observer. During
this, she selects two random numbers a, a′, uses a to encrypt her vote v and
obtains ET [v]; she then employs the other random number to compute ga′

, and
sends ET [v] and ga′

to the observer. The observer now selects two fresh random
numbers b and b′, reencrypts ET [v] with b and obtains ET [v]′, and reencrypts
the encrypted valid credential ET [σ] (or the encrypted fake credential ET [σ′]
according to the voter intention) to obtains ET [σ]′; it then computes ga′+b′ and
O = [b ·H(g, ET [v]′, ET [σ]′, ga′+b′) + b′], where H is a secure hash function, and
sends back to the voter: 〈ga′+b′ , ET [v]′, ET [σ]′, O〉; O is a non-malleability proof.
After receiving the values from the observer, the voter computes O′ = [(a +
b) ·H(g, ET [v]′, ET [σ]′, ga′+b′) + (a′ + b′)] and publishes on a bulletin board the
following tuple: 〈ga′+b′ , ET [v]′, ET [σ]′, O′, P 〉, where P is a proof that ET [v]′

contains a valid vote. This is performed via an anonymous channel.

282 R. Araújo et al.

Tallying Phase. Once the voting period is finished, the talliers first verify
the proof of non-malleability O′ and the proof P . After excluding votes with
invalid proofs, the talliers apply a plaintext equivalence test1 [20] to identify
credentials used more than once (i.e. duplicates); the talliers keeps one of the
duplicates based on a policy (e.g. the last posted vote). Then, the talliers send the
votes (i.e. the remaining tuples 〈ET [v]′, ET [σ]′〉) through a verifiable decryption
mix net. Finally, the resulting mixed credentials are compared with the valid
credentials processed in the registration phase. A match identify a valid vote.
Observe that the plaintext pairs (i.e. vote and credential) are published on a
bulletin board so that anyone can verify the correctness of the protocol.

2.2 A Weakness in Schweisgut’s Scheme

At first glance, the scheme of Schweisgut seems to be coercion-resistant. However,
the coercer could use a simple strategy to test whether a credential is valid or not.
Suppose a coercer forces the voter to reveal the encrypted credential ET [σ] he
received from the registrars. The coercer then employs this encrypted credential
to compute a new ciphertext in such a way that their underlying plaintexts satisfy
a specific relation R; for example, the coercer could select a random value t and
compute ET [t · σ]′ from ET [σ] and t (by exploiting the fact that El Gamal is
malleable). He then computes the proof O′ for the new encrypted credential t ·σ.
Note that the coercer can make this proof himself without needing an observer
and without knowing the plaintext σ. As the proof only involves the exponent
used to encrypt the vote and the coercer makes this ciphertext, he knows the
corresponding exponent and can make the proof himself. For this, he selects new
fresh random numbers i, j, i′, j′ and computes: O′ = [(i + j) ·H(g, ET [v], ET [t ·
σ]′, gi′+j′) + (i′ + j′)]; this proof will hold as the one generated by an observer
since its verification is true. The coercer then posts two votes (i.e. two tuples) on
the bulletin board: one with the encrypted credential ET [σ] received from the
voter and one containing the encrypted credential ET [t · σ]′.

In the tallying phase, after sending all tuples 〈ET [v]′, ET [σ]′〉 to the decryption
mix net, the talliers obtain a list L with pairs 〈v, σ〉; this list is published on
a bulletin board. In order to verify the voter gave him a valid or an invalid
credential, the coercer reads a σ in L and uses the value t to compute t · σ. The
coercer then search on L for a value t · σ. When a match is found, the coercer
verifies whether the vote corresponding to the credential σ was removed or not
from the count. If this occurs, the coercer learns that the voter gave him an
invalid credential and punishes her. Otherwise, the coercer can be sure that he
received the correct credential and rewards the voter. If no match is found, the
coercer repeats the process with another credential. Observe that, in the worst
case, the complexity of this attack is roughly in O(|L|log|L|) operations.

1 This is a cryptographic primitive that operates on ciphertexts in a threshold cryp-
tosystem. The input to a Plaintext Equivalence Test is a pair of ciphertexts; the
output is a single bit indicating whether the corresponding plaintexts are equal or
not.

Towards Practical and Secure Coercion-Resistant Electronic Elections 283

3 Our New Coercion-Resistant Protocol for Internet
Voting

As we showed in Section 2, the proposal of Schweisgut is not coercion-resistant
as an adversary is able to distinguish between a valid and an invalid credential.
In this section we introduce a new coercion-resistant scheme. Our proposal is
based on JCJ’s ideas and employs new credentials that prevent adversaries from
checking them. The new credentials have their security based on known problems
and are different from the credentials used in past coercion-resistant proposals.

3.1 Preliminaries

Notation. Let A be an algorithm. By A(·) we denote that A has one input
(resp., by A(·, ..., ·) we denote that A has several inputs). By y ← A(x), we
denote that y was obtained by running A on input x. If A is deterministic, then
y is unique; if A is probabilistic, then y is a random variable. If S is a finite set,
then y ← S denotes that y was chosen from S uniformly at random.

By AO(·), we denote a Turing machine that makes queries to an oracle O.
Let b be a boolean function. By (y ← A(x) : b(y)), we denote the event

that b(y) = 1 after y was generated by running A on input x. The statement
Pr[{xi ← Ai(yi)}1≤i≤n : b(xn)] = α means that the probability that b(xn) = 1
after the value xn was obtained by running algorithms A1,..., An on inputs y1,...,
yn is α, where the probability is over the random choices of the probabilistic
algorithms involved.

According to the standard definition, we say that a quantity f(k) is negligible
in k if for every positive integer c there is some lc such that f(k) < k−c for k > lc.
In most cases, we use the term negligible alone to mean negligible with respect to
the full set of relevant security parameters. Similarly, in saying that an algorithm
has polynomial running time, we mean that its running time is asymptotically
bounded by some polynomial in the relevant security parameters.

Complexity Assumptions. The security of our voting protocol relies on the
following assumptions:

In [4], Boneh and Boyen introduced a new computational problem in bilinear
context. However, for our purpose, we will consider this problem in the classical
discrete log setting, i.e. without bilinear map.

q-Strong Diffie-Hellman assumption I (q-SDH-I) [4]: Let k denotes a
security parameter. Let G be a group of prime order p with 2k < p < 2k+1and
g a random generator in G. We say that the q-SDH-I assumption holds in G if
for all polynomial-time adversaries A the advantage

Advq-SDH-I
G,A (k) = Pr[y ← Z∗

p ; (c, A) ← A(g, gy, ..., gyq

) : c ∈ Zp ∧A = g1/(y+c)]

is a negligible function in k.

284 R. Araújo et al.

q-Strong Diffie-Hellman assumption II (q-SDH-II): Let k denotes a se-
curity parameter. Let G be a group of prime order p with 2k < p < 2k+1and
g1 and g2 two random generators in G. We say that the q-SDH-II assumption
holds in G if for all polynomial-time adversaries A the advantage

Advq-SDH-II
G,A (k) = Pr[y ← Z∗

p ; {(xi, ri) ← Z2
p ;Ai = (g1g

xi
2)1/(y+ri);Bi =

(xi, ri, Ai)}1≤i≤q−1;B = (x, r, A) ← A(g1, g2, g
y
2 , B1, ..., Bq−1) :

(x, r) ∈ Z2
p ∧A = (g1g

x
2)1/(y+r) ∧ {B
= Bi}1≤i≤q−1]

is a negligible function in k.

Lemma 1. If the q-SDH-I assumption holds in G then the q-SDH-II assumption
holds in G

Proof. see [17] for a proof of this Lemma.

The security of our voting protocol also relies on the Decision Diffie-Hellman
assumption and on strongest variants of this assumption.

Decision Diffie-Hellman assumption (DDH) [3]: Let k denotes a security
parameter. Let G be a group of prime order p with 2k < p < 2k+1. We let DDDH
be the distribution (g, gx, gy, gxy) in G4 where g is a random generator in G and
x, y are uniform in Zp. We let RDDH be the distribution (g, gx, gy, gz) where g
is a random generator in G and x, y, z are uniform in Zp subject to z
= xy. We
say that the DDH assumption holds in G if for all polynomial-time adversaries
A the advantage

AdvDDH
G,A (k) = |Pr[x← DDDH : A(x) = 1]− Pr[x← RDDH : A(x) = 1]|

is a negligible function in k.
The following assumption has been introduced by Camenisch et al. [8] in order

to prove the security of their e-token system.

Strong Decision Diffie-Hellman Inversion assumption I (SDDHI-I) [8]:
Let k denotes a security parameter. Let G be a group of prime order p with
2k < p < 2k+1 and g a random generator in G. Let Oa(·) be an oracle that, on
input z ∈ Z∗

p , outputs g1/(a+z). We say that the SDDHI-I assumption holds in
G if for all polynomial-time adversaries A, that do not query the oracle on r,
the advantage

AdvSDDHI-I
G,A (k)= |Pr[a← Z∗

q ; (r, α)←AOa (g, ga); y0 = g1/(a+r); y1←G;

b← {0, 1}; b′ ← AOa(yb, α) : b = b′]− 1/2|

is a negligible function in k.

Towards Practical and Secure Coercion-Resistant Electronic Elections 285

Strong Decision Diffie-Hellman Inversion assumption II (SDDHI-II):
Let k denotes a security parameter. Let G be a group of prime order p with
2k < p < 2k+1 and g1 and g2 two random generators in G. Let Oa(·) be an
oracle that, on input z, t ∈ Z∗

p , outputs (g1g
t
2)

1/(a+z). We say that the SDDHI-
II assumption holds in G if for all polynomial-time adversaries A, that do not
query the oracle on r, the advantage

AdvSDDHI-II
G,A (k) = |Pr[a← Z∗

q ; (x, r, α) ← AOa (g1, g2, g
a
2); y0 = (g1g

x
2)1/(a+r);

y1 ← G; b← {0, 1}; b′ ← AOa(yb, α) : b = b′]− 1/2|

is a negligible function in k.

Lemma 2. If the SDDHI-I assumption holds in G then the DDH assumption
holds in G

Lemma 3. If the SDDHI-I assumption holds in G then the SDDHI-II assump-
tion holds in G

For ease of presentation, we will call in the sequel q-SDH (respectively SDDHI)
assumption the q-SDH-II (respectively SDDHI-II) assumption.

3.2 Cryptographic Building Blocks

The new voting scheme requires a set of cryptographic primitives to ensure its
security. We describe next these primitives.

Bulletin Boards. The new scheme requires information to be publicly pub-
lished so that anyone can verify them. In order to perform this, the scheme relies
on a bulletin board communication model. By using this model, the scheme al-
lows anyone to post information on bulletin boards. However, no one can delete
or alter any information published on the board. The proposal of Cachin et al. [7]
may be used to implement the bulletin boards required here.

A Threshold Cryptosystem. Our scheme relies on a threshold version of a
semantically secure cryptosystem with homomorphic property. We require here,
though, the Modified El Gamal cryptosystem proposed by JCJ [23]. This variant,
is described as follows: let G be a cyclic group of order p where the Decision Diffie-
Hellman problem (see Boneh [3] for details) is hard. The public key is composed
of the elements (g1, g2, h = gx1

1 gx2
2) with g1, g2 ∈ G and the corresponding private

key is formed by x1, x2 ∈ Zp. The Modified El Gamal ciphertext of a message
m ∈ G is (M = gs

1, N = gs
2, O = mhs), where s ∈ Zp is a random number. The

message m is obtained from the ciphertext (M,N,O) by O/(Mx1Nx2). In the
threshold version, the El Gamal public key and its corresponding private key are
cooperatively generated by n parties; though, the private key is shared among
the parties. In order to decrypt a ciphertext, a minimal number of t out of n
parties is necessary. The Modified El Gamal cryptosystem is semantically secure

286 R. Araújo et al.

under the DDH assumption. Borrowing freely from the exposition in [23], we
provide, for completeness, a sketched version of this proof. Suppose there exists a
probabilistic polynomial time algorithmA which can break the semantic security
of the Modified El Gamal cryptosystem then there exists an algorithm B that
breaks the Decision Diffie-Hellman problem. We prove this claim by constructing
B as follows. So assume that B receives on input a quadruple (g1, g2, h1, h2)
from the challenger C of the DDH problem and has to determine whether this
quadruple follows the DDDH distribution or not. B constructs the public key for
the Modified El Gamal scheme as follows. It chooses x1 and x2 at random, sets
h = gx1

1 gx2
2 and sends (g1,g2, h) to A as the challenge parameters of the Modified

El Gamal scheme.
When A will come up with the two messages m0, m1 he wants to be challenged

on, B will proceed as follows. It flips a random (private) bit b, and encrypts mb

as follows: (hk
1 , h

k
2 ,mhkx1

1 hkx2
2) where k is a random value.

Note that if the given quadruple is a DH one then the ciphertext has the
right distribution. This is because hk

1 = gk′

1 and hk
2 = gk′

2 for some k′ and
(hx1

1 hx2
2)k = hk′

(for the same k′).
If on the other hand, the given quadruple is not a DH one then it is easy to

check that A gains no information at all about the encrypted message (this is
because this time to decrypt, A has to know the secret exponents x1 and x2
which remains information theoretically hidden by h). The latter property will
be important in the proof that our voting protocol is coercion-resistant.

Universally Verifiable Mix Nets. In some steps of our scheme we employ
mix nets to provide anonymity. This cryptographic primitive was introduced
by Chaum [12] and further developed by many other authors. It performs by
permuting messages, and by reencrypting or by decrypting them. Our scheme
requires a re-encryption mix net based on the El Gamal cryptosystem. However,
in order to reduce the trust in the mix process, the mix net should be universally
verifiable. That is, after mixing messages, the mix net must prove publicly the
correctness of its shuffle. The proposals of Neff [26], and Furukawa and Sako [18]
are examples of universally verifiable mix nets.

Non-Interactive Zero-knowledge Proofs. The proposal we present below
also requires several zero-knowledge proofs of knowledge. Zero-knowledge proofs
of knowledge are interactive protocols between a verifier and a prover allowing
a prover to assure the verifier his knowledge of a secret, without any leakage on
it. These primitives help ensuring security in our solution. Our scheme employs
a proof of knowledge of a discrete logarithm [28] to make ciphertexts plain-
text aware (i.e. the party who makes the ciphertext should be aware of what
he is encrypting) and so preventing the use of the El Gamal malleability by
adversaries; in addition, the verifier should check that the components of the
ciphertexts are of order p to prevent the attacks described in [9]. The solution,
moreover, requires a protocol to prove that a ciphertext contains a vote for a
valid candidate. Besides these protocols, our proposal uses the discrete logarithm

Towards Practical and Secure Coercion-Resistant Electronic Elections 287

equality test owing to Chaum and Pedersen [13], a protocol for proving knowl-
edge of a representation, such as the one proposed by Okamoto [27], and a
plaintext equivalence test [20].

Especially, our scheme requires a zero-knowledge proof of knowledge of the
plaintext related to a M-El Gamal ciphertext (M = gs

1, N = gs
2, O = mhs), and a

proof that this plaintext is
= 1. The former proof is accomplished by first proving
the knowledge of the discrete logarithms of the M-El Gamal terms M,N in the
bases g1, g2, respectively. Then, we prove the representation of O in the bases B
and h, where B denote the basis of a special formed plaintext m and h is the
M-El Gamal public parameter. We finally prove that the discrete logarithm of
M,N in the bases g1, g2 is equal to the second component of the representation
of O in the bases B and h. A description of a similar proof can be found in [1].
For the latter proof, we prove that the discrete logarithm of M,N in the base
g1, g2 is different from the discrete logarithm of O in the base h. This proof can
be performed by means of the protocol of Camenisch and Shoup (see Section 5
of [10]).

These interactive proofs can also be used non-interactively (a.k.a signatures
of knowledge) by using the Fiat-Shamir heuristic [16]. We will use in the sequel
the following notation Pok[α, β, ... : Predicate] to denote a non-interactive zero-
knowledge proof (NIZKP) proving that the prover knows values (α, β, ...) satis-
fying the predicate Predicate. In this notation, the Greek letters will denote the
secret knowledge and the others letters will denote public parameters between
the prover and the verifier. For example, using this notation, Pok[α : h = gα]
will denote a proof of knowledge of the discrete logarithm of h in the base g.

3.3 Attack Model

Our coercion-resistant proposal follows the general idea presented by JCJ in
their scheme. This let our scheme inherits some caracteristics from the original
proposal. The security model under which our scheme relies on is similar to that
one of JCJ. We take into account the following assumptions:

Limited Computational Power and Small Number of Authorities. An
adversary has limited computational power and may compromise only a small
number of authorities. He can force the voter to reveal any secret information
that she is holding. Also, he can force her to abstain from voting or to post a
random composed ballot as her vote;

Interactions with the Voter. The adversary cannot monitor or interact with
the voter constantly during the whole voting process. However, he may interact
with the voter occasionally during the voting;

A Registration Phase Free of Adversaries. The registration official is trust-
worthy and voters receive private data securely. Also, we assume that the voters
communicate with the registrar via an untappable channel and without the in-
terference of adversaries. This channel provides information-theoretical secrecy
to the communication;

288 R. Araújo et al.

Anonymous Channels in the Voting Phase. The existence of some anony-
mous channels in the voting phase. These channels are used by the voters to
post their votes and prevent adversaries from learning who sent a specific vote.
In practice, voters may use computers in public places to achieve this or a mix
net;

Trustworthy Voting Computers. The computers that the voters use for vote
are trustworthy. We do not consider attacks where the adversary may control
the voters’ computers (e.g. by means of malwares) in order to obtain their votes
or other private data.

Denial of Service Attacks are not considered. The scheme employs bulletin
boards that receive data from anyone and hence would be susceptible to these
attacks.

3.4 Formal Definitions

We will use the security model introduced by JCJ [23]. The essential properties
are correctness, verifiability, and coercion-resistance, respectively abbreviated
corr, ver, and c-resist in the sequel. Following [23], we will only focus on the
formal security definition of the property of coercion-resistance as the two other
properties (correctness and verifiability) are more classical and of less relevance
to our work (see JCJ for formal definitions of these two properties).

In [23] coercion resistance centers on a kind of game between the adversary
A and a voter targeted by the adversary for coercive attack. A coin is flipped;
the outcome is represented by a bit b. If b = 0 then the coerced voter V0 casts
a ballot of its choice β, and provides the adversary with a false voting key (fake
credential) s̃k; in other words, the voter attempts to evade adversarial coercion.
If b = 1, then the voter submits to the coercion of the adversary; she gives him
her valid voting key (credential) sk and does not cast a ballot. The task of the
adversary is to guess the value of the coin b, that is to determine the behavior
of the voter. An election scheme ES is coercion-resistant, according to JCJ’s
definition [23], if for any polynomially-bounded adversary A, any parameters n
and nC , and any probability distribution Dn,nC , the quantity

Advc-resist
ES,A =

∣∣∣Succc-resist
ES,A (·)− Succc-resist-ideal

ES,A (·)
∣∣∣

is negligible in all security parameters for any voter function V0. Where:

– n denotes the number of voters outside the control of the adversary
– nC denotes the total number of candidates.
– Dn,nC denotes a probability distribution that models the state of knowledge

of the adversary about the intentions of honest voters
– Expc-resist

ES,A represents the game between the adversary and the voter.
– Expc-resist-ideal

ES,A represents an ideal voting experiment, between the adversary
and the voter, in which the adversary never sees the bulletin board.

– SuccE
ES,A(·) = Pr[ExpE

ES,A(·) =’1’]

Towards Practical and Secure Coercion-Resistant Electronic Elections 289

Intuitively, the definition of JCJ [23], means that in a real protocol execution,
the adversary effectively learns nothing more than the election tally X . The
adversary cannot learn any significant information from the protocol execution
itself, even when mounting an active attack (see [23] for more details about this
definition and [25,31,11] for alternative definitions in the simulation-based model
and also [24] for an alternative definition in the game-based model).

3.5 Anonymous Credentials

Anonymous credentials have an important role in coercion-resistant schemes.
They make possible voters to deceive adversaries when under coercion and to
vote later on. In most of the coercion resistant schemes such as JCJ, a valid
credential is a random string. Our scheme, however, employs a different technique
of credentials that differs from past proposals. Our new credentials bear some
similarities with the membership certificates of the group signature scheme of
Boneh, Boyen, and Shacham [5].

The credentials used in our solution are presented as follows: let G be a cyclic
group with prime order p where the Decision Diffie-Hellman (DDH) problem
(see [3] for details) is assumed to be hard, y a secret key, (g1, g3) two random
generators of G and (r, x) two random numbers in Z∗

p . The credential is com-

posed of (A, r, x), where A = (g1g
x
3)

1
y+r . A credential in our system therefore

corresponds to a membership certificate in Boneh et al’s group signature scheme
(we could in fact either use the original version of their membership certificates
or the extended one described in Section 8 of [5]).

Due to the mathematical structure of our credentials, their security depends
on two known assumptions: the q-Strong Diffie-Hellman and the Strong De-
cisional Diffie-Hellman Inversion. The q-Strong Diffie-Hellman assumption (q-
SDH for short) ensures that even if an adversary has many genuine credentials
(Ai, ri, xi), it is hard for him to forge a new and valid credential (A, r, x) with
(r, x)
= (ri, xi) for all i (see Lemma 1). This assumption is known to hold for
generic groups and the security of Boneh et al.’s group signature scheme also re-
lies on it. The Strong Decisional Diffie-Hellman Inversion assumption (SDDHI),
which also holds in generic group, ensures that an active coercer, ignoring the
secret key y, cannot decide whether a triplet (A, r, x) is a valid credential or not;
in other words, whether it satisfies or not the following equation: Ay+r ?= g1g

x
3 .

This way, a voter under coercion will generate a random value x′ and give to the
coercer a fake credential (A, r, x′) instead of his valid credential (A, r, x). Under
the SDDHI assumption, the adversary will not be able to distinguish between a
fake credential and a valid one.

In a real-world scenario, our credential can be seen as containing two parts: a
short one, that is x, which must be kept secret, and a longer one, that is (A, r).
The first part (i.e. x) has around twenty ASCII characters (this corresponds to
160 bits, the actual secure size for the order of generic groups), so a small piece
of paper and a pen are sufficient to write x down. The other part (A, r) can be
stored in a device or be even sent by email to the voter without compromising
(under the SDDHI assumption) the credential security.

290 R. Araújo et al.

3.6 An Overview of the Scheme

Before showing the details of our proposal, we give an intuition of the new
scheme.

The protocol begins in a setup phase. In this phase, a set of authorities in
cooperation generate the key materials and publish the corresponding public
parameters on a bulletin board. In particular, they publish the public key of a
threshold homomorphic cryptosystem. After this stage, the registration phase
takes place. In order to register to vote, voters prove their identities to trustwor-
thy registration authorities (registrars). These authorities issue for each voter a
unique and valid credential. The voter uses this credential to cast her vote in
the voting phase.

At time of voting, the voter makes a tuple containing her vote. The tuple
contains the ciphertext of the vote and ciphertexts corresponding to a credential
along with a set of non-interactive zero-knowledge proofs showing the validity
of these encryptions. The voter casts his vote by sending this tuple to a bulletin
board via an anonymous channel. When she wants to cast her vote, the voter
makes the tuple using the credential she received in the registration phase. How-
ever, if the voter is under coercion, she makes a fake credential and may either
use it to cast an invalid vote (i.e. a vote that will not be counted) or give this
fake credential to an adversary. The adversary is not able to distinguish between
the valid and the fake credential. The voter may vote again later on using her
valid credential.

In the tallying phase, a set of talliers cooperate to compute the voting results.
For this, they first verify some proofs on each tuple and discard tuples with
invalid proofs. After that, the talliers check part of each tuple to detect tuples
posted with the same credential (duplicates). Based on the order of postings of
these tuples, the talliers keep the last posted tuple and eliminate the other ones.
Now, the talliers send the remaining tuples through a verifiable mix net. From the
mix net output, they begin to identify the tuples posted with valid credentials.
These tuples contains the votes to be counted. The validity of the credentials
is checked under the encryption by exploiting the homomorphic property of the
underlying cryptosystem. After identifying the tuples with valid credentials, the
authorities in cooperation decrypt the corresponding vote ciphertext and publish
the voting results.

3.7 The Protocol in Details

We present now the description of our scheme in details. This description con-
sider the building blocks and the attack model presented above.

Participants and Notation. The solution is composed of four phases: setup,
registration, voting, and tallying. The setup phase is where the parameters of
the voting are generated. The key pairs used in the scheme, for example, are
generated in this phase. In the registration phase, the voter registers to the
authorities and receives a valid credential. Afterwards, in the voting phase, the
voter uses her credential to express her vote intention. Finally, in the tallying

Towards Practical and Secure Coercion-Resistant Electronic Elections 291

phase, the voting results are computed and published. In order to perform the
steps to be described in these phases, the scheme considers three participants:

– The voter is identified by B. She obtains a valid credential σ and is able to
produce a fake credential σ′. The valid credential is used for posting a valid
vote, whereas the fake one is used to deceive adversaries;

– The talliers are composed of a set of authorities and are denoted by T . They
control the bulletin board, run the mix net, and compute the voting results.
They share an M-El Gamal private key T̂ corresponding to a public key T ;

– The registrars, as the talliers, are composed of more than one and are iden-
tified by R. They authenticate each eligible voter in the registration phase
and issue a valid credential for her. They share a M-El Gamal private key R̂
associated to a public key R.

In addition to the notation above, we use the following one: BB is a bulletin
board, ET [m] is a M-El Gamal encryption of a message m computed with the
public key T , and DT̂ [m] is a M-El Gamal decryption of m with the private
key T̂ .

Setup of the Voting Parameters. This phase takes place prior to the regis-
tration and is necessary for the definition of the voting parameters. In order to
establish these parameters, first a cyclic group G with prime order p is defined.
The Decision Diffie-Hellman problem must be hard in this group. After that,
the authorities produces four generators g1, g2, g3, o ∈ G. The talliers T now col-
laborate to generate the public key T = (g1, g2, h = gx1

1 gx2
2) of the Modified El

Gamal threshold cryptosystem and its corresponding private key T̂ = (x1, x2).
The resulting key T̂ is not known by the authorities individually. Each authority
knows only a share of this key. The registrars R also cooperate to establish a
public key R = gy

3 and the corresponding shared private key R̂ = y.

Registration Phase. After generating their keys, the registrars are ready to
issue credentials for the voters. In order to receive a secret credential, the voter
first proves to the registrars that she is eligible to vote. R then selects two
random numbers r, x ∈ Zp and computes: A = (g1g

x
3)

1
y+r (which implies that

Ay+r = g1g
x
3 and then that Ay = g1g

x
3A

−r). After that, R issues to the voter
the secret credential σ = (A, r, x).2 The registrars might generate the credential
in a threshold fashion. The communication between the voter and registars is
performed through an untappable channel. Following JCJ, we assume that the
majority of players in R are honest and can thus ensure that R provides the voter
B with a valid credential. Nonetheless, it is possible for R to furnish the voter
with a proof that σ = (A, r, x) is a valid credential. To do this, R has to com-
pute a non-interactive proof of knowledge that the discrete logarithm of g1g

x
3A

−r

(which should be equal to Ay if σ = (A, r, x) is a valid credential) in the base A
is equal to the discrete logarithm of R = gy

3 in the base g3. In order to prevent the

2 In a variant, the value x could be jointly generated by the voter and the registrars.

292 R. Araújo et al.

voter from transferring this proof (and thus to prevent coercion), R should in-
stead issue a designated verifier proof of the equality of these discrete logarithms.

Voting Phase. In order to vote, the voter with credential (A, r, x) first se-
lects a random s ∈ Z∗

p and computes B = As using the element A of her
credential. After that, she computes the tuple: 〈 ET [v], B,ET [Bs−1

], ET [Brs−1
],

ET [gx
3], ox, Π 〉 which is equal to 〈ET [v], B,ET [A], ET [Ar], ET [gx

3] , ox, Π〉 =
〈C1, B, C2, C3, C4, o

x, Π〉. The voter then publishes his tuple on a public bul-
letin board by means of an anonymous channel.

The tuple is composed of the ciphertext ET [v] that contains the voter’s choice,
the value B, the ciphertexts 〈ET [Bs−1

], ET [Brs−1
]〉 that correspond to part of

the credential σ, the ciphertext ET [gx
3] that encrypts the public generator g3

to the power of the part x of σ. In addition, it has a set of non-interactive
zero-knowledge proofs Π . This set contains:

– (Π1) A proof that C1 = ET [v] encrypts a valid vote (i.e, that v represents a
valid candidate choice).

– (Π2) A proof that the voter knows the plaintext related to the ciphertext
C2 = ET [Bs−1

] = (M1, N1, O1). In particular, the voter will have to prove
that he knows the representation of O1 in the bases B and h using the
protocol proposed by Okamoto [27]. In other words, he will have to prove
that he knows a pair (β, α) such that O1 = Bβhα: Π2 = Pok[α, β : M1 =
gα
1 ∧N1 = gα

2 ∧O1 = Bβhα]
– (Π3) A proof that the voter knows the plaintext related to the ciphertext

C3 = ET [Brs−1
] = (M2, N2, O2). In particular, the voter will have to prove

that he knows the representation of O2 in the bases B and h using the
protocol proposed by Okamoto [27]. In other words, he will have to prove
that he knows a pair (θ, δ) such that O2 = Bθhδ: Π3 = Pok[δ, θ : M2 =
gδ
1 ∧N2 = gδ

2 ∧O2 = Bθhδ]
– (Π4) A proof that the voter knows the plaintext related to the ciphertext

C4 = ET [gx
3] = (M3, N3, O3): Π4 = Pok[λ, μ : M3 = gλ

1 ∧N3 = gλ
2 ∧ O3 =

gμ
3h

λ]
– (Π5) A proof that the plaintext of C2 = ET [Bs−1

] is different from 1, as
explained in Section 3.2: Π5 = Pok[α, β : M1 = gα

1 ∧ N1 = gα
2 ∧ O1 =

Bβhα ∧ β
= 0 mod p]
– (Π6) A proof that the voter knows the discrete logarithm of O = ox in

the basis o and that it is equal to the discrete logarithm of the plaintext of
C4 = ET [gx

3] in the basis g3: Π6 = Pok[λ, μ : M3 = gλ
1 ∧ N3 = gλ

2 ∧ O3 =
gμ
3h

λ ∧O = oμ]

Remark: All these proofs of knowledge may be accomplished using standard
techniques such as the ones mentioned in Section 3.2. As is standard practice,
the challenge values for these proofs of knowledge are constructed using a call
to a cryptographic hash function (the Fiat-Shamir heuristic [16]), modeled in
our security analysis by a random oracle. The inputs to this cryptographic hash
function for these challenges values should include IDElection (a random election
identifier), B, C1 = ET [v], C2 = ET [Bs−1

], C3 = ET [Brs−1
], C4 = ET [gx

3],

Towards Practical and Secure Coercion-Resistant Electronic Elections 293

O = ox and other values required for the realization of these non-interactive
zero-knowledge proofs. In this way, the actual vote C1 = ET [v] submitted by a
voter will be bound to the remaining voting material. Observe that, in contrast
to the scheme of JCJ that employs the plaintext equivalence test [20] to eliminate
duplicates, i.e. votes posted with the same credential, our scheme uses the value
ox to perform the identification of these votes. This ensures that just one vote
per credential will be processed in the tabulation phase.

Tabulation Phase. After the end of the voting period, the talliers T read
all tuples 〈ET [v], B,ET [Bs−1

] , ET [Brs−1
], ET [gx

3], ox, Π〉 posted on the bulletin
board and process them as follows:

1. Checking proofs: T checks all proofs Πi’s that compose the tuples and
discards tuples with incorrect proofs. In other words, T verifies that ET [v]
contains a vote for a valid candidate, checks the proof of knowledge of the
plaintexts with regards to 〈ET [Bs−1

], ET [Brs−1
]〉, the proof that ET [Bs−1

]
does not encrypts the plaintext 1, the proof of knowledge of the plaintext
related to the ciphertext C4 = ET [gx

3], as well as the equality of the discrete
logarithm of the plaintext of C4 = ET [gx

3] in the basis g3 and of ox in the
basis o. The tuples that passed the test are processed in the next step without
Π and B, that is, it now contains the values 〈ET [v], ET [Bs−1

], ET [Brs−1
],

ET [gx
3], ox〉;

2. Eliminating duplicates: In order to detect and remove tuples posted with
the same credential (i.e. duplicates), T compares all ox by means of a hash
table. If a duplicate is detected, T keeps the last posted tuple (based on
the order of posting on the bulletin board) and removes the other ones. T

processes in the next step the values 〈ET [v], ET [Bs−1
], ET [Brs−1

], ET [gx
3]〉;

3. Mixing: T now sends all tuples composed of 〈ET [v], ET [Bs−1
], ET [Brs−1

],
ET [gx

3]〉 to a verifiable mix net. The mix net outputs a permuted and re-
encrypted set of tuples 〈ET [v]′, ET [Bs−1

]′ , ET [Brs−1
]′, ET [gx

3]′〉, where
ET [X]′ means the re-encryption of ET [X].

4. Checking credentials: From the mixed tuples 〈ET [v]′, ET [Bs−1
]′,

ET [Brs−1
]′, ET [gx

3]′〉, the talliers T perform along with the registrars R
the following steps (for each tuple) to identify the valid votes (that is the
ones which encrypt valid credentials σ = (A, r, x) satisfying the relation
Ay+r = g1g

x
3):

(a) By means of his secret key y, R cooperatively computes: ET [Bs−1
]′y =

ET [Bys−1
]′. Now R uses the El Gamal homomorphic property to com-

pute: ET [Bys−1
]′ ·ET [Brs−1

]′ = ET [Bys−1+rs−1
]′

(b) T now computes C = ET [Bys−1+rs−1
g−1
1 g−x

3]′ from ET [Bys−1+rs−1
]′,

ET [gx
3]′, and the public parameter g1. Note that if we denote by A =

Bs−1
then ET [Bys−1+rs−1

]′ = ET [Ay+r]′. Hence, C = ET [Ay+rg−1
1 g−x

3]′.
(c) In order to identify a valid credential, T executes a Plaintext Equivalence

Test in order to determine whether C is an encryption of the plaintext
1 or not. For this, T cooperatively selects a random number z ∈ Zp and

294 R. Araújo et al.

computes Cz. T then decrypts Cz . If the decryption result is equal to
1, the credential is a valid one. Otherwise, the result will be a random
number and this indicates an invalid credential.

5. Tallying: T discards all tuples with invalid credentials and cooperatively
decrypts the value ET [v]′ of the tuples with valid credentials.

4 Security Analysis

In this section, we define the security properties our scheme provides. Following
JCJ [23], we will however explain why our protocol satisfies the standard security
requirements i.e. correctness, democracy, verifiability and coercion-resistance.

Correctness. The purpose of the proofs Πi’s is to ensure that only ballots (tu-
ples) which contain valid credentials will be counted. Indeed, when the talliers
along with the registrars will perform the test described at Step 4 of the Tabu-
lation Phase to determine whether the ballot contains a valid credential or not,
they will compute the following ciphertext which is, using the above notation
(see the Voting Phase), equal to ET [ByβBθg−1

1 g−μ
3]. In other words this is

an encryption of Byβ+θg−1
1 g−μ

3 . If this is an encryption of 1, this means that
Byβ+θg−1

1 g−μ
3 = 1. Remember that the voter has also to prove that β
= 0 (mod

p) in the voting phase (using the proof of knowledge owing to Camenisch and
Shoup [10]). Let us denote by A = Bβ , r = θ/β and x = μ. So Byβ+θg−1

1 g−μ
3 = 1

can be rewritten as follows: Ay+rg−1
1 g−x

3 = 1 which is equivalent to Ay+r = g1g
x
3 .

In other words, if all the zero-knowledge proofs are valid, this means that the
voter knows a tuple (A, r, x) such that Ay+r = g1g

x
3 . Therefore he knows a

valid credential. The proof that β
= 0 (mod p) is crucial. Without this proof, an
adversary could generate a ballot that will pass the test, without knowing a valid
credential. Thanks to this proof, only ballots that encrypt a valid credential will
pass this test.

The method employed in this verification ensures therefore that a valid vote
cannot be identified as invalid or vice versa. In addition, no one can produce valid
credentials as this would involve breaking the q-SDH assumption. Therefore, only
the votes from eligible voters will appear in the final count.

Democracy. By removing duplicates in step 2, we ensure that only one vote per
credential (valid or fake) is processed in the remaining steps. This is performed
by comparing all values ox and then by verifying two or more values ox match.
If this takes place, only the last posted vote is considered in the next step; the
others are discard. The fact that only one valid credential is processed in the
next steps ensures that one vote per eligible voter will be counted.

Universal Verifiability. The bulletin board and the NIZKPs allow anyone to
verify the tuples and the work of the talliers. Each posted tuple contains a set
of NIZKPs. These proofs allow anyone to verify that the tuple is well-formed.
Anyone can perform this and complain to the authorities in case where tuples
with invalid proofs are sent to the next step. In the same way, after processing

Towards Practical and Secure Coercion-Resistant Electronic Elections 295

the tuples in each step of the tallying phase, the authorities publish proofs on the
bulletin board. In step 2, for example, as all the tuples are published, anyone
can perform the comparisons. In addition, the mix net provide NIZKPs after
processing the tuples in step 3; the authorities publish NIZKPs after verifying
the credentials in step 4c; especially, the authorities prove that they have used
the correct share after powering the encrypted credential to a random number.

Coercion-resistance. Our voting protocol satisfies the coercion-resistance re-
quirement as defined in [23].

Theorem 1. The proposed voting protocol satisfies the coercion resistance require-
ment, in the random oracle model, under the q-SDH and SDDHI assumptions.

Owing to space limitations, the proof of this theorem is omitted from this ex-
tended abstract and will appear in the full version of the paper.

5 Conclusion

In this paper, we have introduced a new coercion-resistant scheme. Our solution
(which has a linear work factor instead of a quadratic work factor in previous
solutions) is practical and secure. It employs anonymous credentials that have a
similar structure than the membership certificates in the group signature scheme
of Boneh, Boyen, and Shacham [5]. These credentials have their security based
on the q-Strong Diffie-Hellman and on the Strong Decisional Diffie-Hellman
Inversion assumptions.

Differently from some previous schemes, the new credentials can be used in
more than one election. This way, a voter does not need to issue a new credential
each time a new election takes place. We have also shown that a recent coercion-
resistant voting protocol is insecure.

References

1. Araújo, R.: On Remote and Voter-Verifiable Voting. PhD thesis, Technische Uni-
versität Darmstadt, Darmstadt, Germany (September 2008)

2. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting, Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, vol. 07311, Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany (2008)

3. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Brickell, E.F. (ed.): CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)

296 R. Araújo et al.

7. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical
asynchronous byzantine agreement using cryptography (extended abstract). In:
Neiger, G. (ed.) PODC, pp. 123–132. ACM, New York (2000)

8. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clone wars: efficient periodic n-times anonymous authentication.
In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Conference
on Computer and Communications Security, pp. 201–210. ACM, New York (2006)

9. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

10. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

11. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract).
In: FOCS, pp. 504–513 (1996)

12. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

13. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell [6], pp.
89–105

14. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In:
IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society,
Los Alamitos (2008)

15. Clarkson, M.R., Myers, A.C.: Coercion-resistant remote voting using decryption
mixes. In: Workshop on Frontiers in Electronic Elections (2005)

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1986)

17. Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size fair
e-cash. Cryptology ePrint Archive, Report 2009/146 (2009),
http://eprint.iacr.org/

18. Furukawa, J., Sako, K.: An efficient publicly verifiable mix-net for long inputs.
In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 111–125.
Springer, Heidelberg (2006)

19. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1984)

20. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

21. Jefferson, D., Rubin, A., Simons, B., Wagner, D.: A security analysis of the secure
electronic registration and voting experiment (2004)

22. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
Cryptology ePrint Archive, Report 2002/165 (2002), http://eprint.iacr.org/

23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., De Capitani di Vimercati, S., Dingledine, R. (eds.) WPES, pp. 61–70.
ACM, New York (2005)

24. Kuesters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. Cryptology ePrint Archive, Report 2009/582 (2009),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Towards Practical and Secure Coercion-Resistant Electronic Elections 297

25. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

26. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM
Conference on Computer and Communications Security, pp. 116–125 (2001)

27. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell (ed.) [6], pp. 31–53 (1992)

28. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

29. Schweisgut, J.: Coercion-resistant electronic elections with observer. In: Krimmer,
R. (ed.) Electronic Voting. LNI, vol. 86, pp. 171–177. GI (2006)

30. Smith, W.: New cryptographic election protocol with best-known theoretical prop-
erties. In: Workshop on Frontiers in Electronic Elections (2005)

31. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. Cryptology
ePrint Archive, Report 2009/520 (2009), http://eprint.iacr.org/

32. Weber, S.G., Araújo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: 2nd Workshop on Dependability and Security in e-Government
(DeSeGov 2007) at 2nd Int. Conference on Availability, Reliability and Security
(ARES 2007), pp. 908–916. IEEE Computer Society, Los Alamitos (2007)

http://eprint.iacr.org/

Predicate Encryption with Partial Public Keys

Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni
Università di Salerno

I-84084 Fisciano (SA), Italy
{carblu,iovino,giuper}@dia.unisa.it

Abstract. Predicate encryption is a new powerful cryptographic prim-
itive which allows for fine-grained access control for encrypted data: the
owner of the secret key can release partial keys, called tokens, that can
decrypt only a specific subset of ciphertexts. More specifically, in a pred-
icate encryption scheme, ciphertexts and tokens have attributes and a
token can decrypt a ciphertext if and only if a certain predicate of the
two associated attributes holds.

In this paper, ciphertext attributes are vectors x of fixed length �
over an alphabet Σ and token attributes, called patterns, are vectors y
of the same length over the alphabet Σ� = Σ ∪ {�}. We consider the
predicate Match(x, y) introduced by [BW06] which is true if and only if
x = 〈x1, . . . , x�〉 and y = 〈y1, . . . , y�〉 agree in all positions i for which
yi �= �.

Various security notions are relevant for predicate encryption schemes.
First of all, one wants the ciphertexts to hide its attributes (this property
is called semantic security). In addition, it makes sense also to consider
the property of token security, a security notion in which the token is
required not to reveal any information on the associated pattern. It is
easy to see that predicate privacy is impossible to achieve in a public-
key setting. In [SSW09], the authors considered the notion of a predicate
encryption scheme in the symmetric-key setting and gave the first con-
struction with token security.

In this paper, we consider the notion of a partial public key encryption
(as suggested in [SSW09]) in which a partial public key allows a user to
generate only a subset of the ciphertexts. We give a construction which is
semantically secure and in which a token does not reveal any information
on the associated pattern except for the locations of the �’s. The proofs
of security of our construction are based on hardness assumptions in
bilinear groups of prime order; this greatly improves the efficiency of the
construction when compared to previous constructions ([SSW09]) which
used groups of composite orders.

Our security proofs do not use random oracles.

1 Introduction

In a predicate encryption scheme, ciphertexts and keys have attributes and a
key can decrypt a certain ciphertext if and only if a certain predicate on the

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 298–313, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Predicate Encryption with Partial Public Keys 299

two attributes holds. In this paper, ciphertext attributes x are vectors of fixed
length � over an alphabet Σ and key attributes (also called patterns) are vectors
of the same length over the alphabet Σ� = Σ ∪ {�}. We consider the predicate
Match(x,y) which is true if and only if x = 〈x1, . . . , x�〉 and y = 〈y1, . . . , y�〉
agree in all positions i for which yi
= �.

We are interested in two security requirements which, roughly speaking, can
be described as follows. We first require that a ciphertext X̃ should hide all
information on the associated attribute vector x (we call this notion Semantic
Security). In addition, we require that a key T (also called a token) should hide
all information on the associated pattern y (we call this notion Token Security).
Formal definitions of the two security requirements are found in Section 2. We
would like to stress though that Token Security is not achievable in a pure
public-key scenario: given token T for an unknown pattern y an adversary could
check if Match(x,y) holds by creating a ciphertext C for attribute vector x
using the public key, and then testing T against C. We thus consider the partial
public key model in which the key owner can decide on a policy that describes
which subset of the ciphertexts can be generated. More specifically, a policy
Pol = 〈Pol1, . . . ,Pol�〉 is simply a vector of length � of subsets of Σ with the
following intended meaning: the public key associated with policy Pol allows
to create ciphertexts with attribute vector x = 〈x1, . . . , x�〉 iff and only for
i ∈ [�] we have that xi ∈ Poli. The private key scenario corresponds to a policy
Pol with Poli = ∅ for all i’s; whereas a public key scenario corresponds to a
policy with Poli = Σ for all i’s. For example, for � = 2, Σ = {0, 1}, and policy
Pol = 〈{1}, {0, 1}〉, then public key PPKPol associated with Pol allows to create
ciphertexts with attribute vector x = 〈1, 0〉 but not x = 〈0, 1〉. In the formal
definition of Token Security we thus require that an adversary is not able to
distinguish between tokens with pattern y0 or y1 with respect to a policy Pol
provided that the two patterns have the same value of the predicate Match for
all attributes x that can be encrypted under policy Pol.

Previous work. The first example of predicate encryption scheme has been given
by Boneh et al. [BDOP04] that introduced the concept of an encryption scheme
supporting equality test. Roughly speaking, in such an encryption scheme, the
owner of the public key can compute, for any message M , a token TM that allows
to test if a given ciphertext encrypts message M without obtaining any additional
information. More recently, along this line of research, Goyal et al. [GPSW06]
have introduced the concept of an attribute-based encryption scheme (ABE
scheme). In an ABE scheme, a ciphertext is labeled with a set of attributes
and private keys are associated with a predicate. A private key can decrypt a
ciphertext iff the attributes of the ciphertext satisfy the predicate associated
with the key. An ABE scheme can thus been seen as a special encryption scheme
for which, given the key associated with a predicate P , one can test whether a
given ciphertext carries a message M that satisfies predicates P without having
to decrypt and without getting any additional information. The construction of
[GPSW06] is very general as it supports any predicate that can be expressed as a
circuit with threshold gates but attributes associated with a ciphertexts appear

300 C. Blundo, V. Iovino, and G. Persiano

in clear in a ciphertext. Boneh and Waters [BW07] were the first to give predi-
cate encryption schemes that guaranteed security of the attributes for the Match
predicate and showed that this implies construction for several families of pred-
icates including conjunctions of equality, range predicate and subset predicates.
This has been subsequently extended to disjunctions, polynomial equations and
inner products [KSW08]. Both constructions are based on hardness assumptions
regarding bilinear groups on composite order. Iovino and Persiano [IP08] gave
more efficient constructions based on hardness assumptions regarding bilinear
group of prime order. Shen et al. [SSW09] were the first to consider the issue of
token security and gave private-key predicate encryption schemes for inner prod-
uct based on hardness assumptions regarding bilinear group of order product of
four primes.

Our results. In this paper we give a predicate encryption scheme with partial
public keys based on hardness assumptions regarding bilinear group of prime
order for the Match predicate. Being able to use prime order groups greatly im-
proves the efficiency of the resulting encryption schemes since, for the same level
of security, our constructions uses groups of much smaller order. Our scheme
guarantees privacy of the attributes associated with the ciphertexts (see Defini-
tion 3). In addition, we also show that tokens only reveal the positions of the
�-entries in the associated pattern. More precisely, for any two patterns y0 and
y1 that have �-entries in the same positions, no probabilistic polynomial time
adversary can distinguish a token for y0 from a token for y1 better than guessing
at random (see Definition 4).

2 Predicate Encryption Schemes with Partial Public
Keys

In this section we present the notion of a predicate encryption scheme with par-
tial public keys. Following [SSW09, KSW08], we present our definitions (and
constructions in Section 4) for the case in which the ciphertexts are predicate-
only; that is, they do not carry any message and only specify the attributes. It
is straightforward to extend the definitions (and the constructions) to the case
in which ciphertexts carry a message.

In the following we will denote by [�] the set {1, . . . , �} of natural numbers.
We let Σ denote an alphabet (that is, a finite set of symbols) and let 2Σ denote
its power set (that is, the family of all subsets of Σ). Furthermore, we let Σ�

denote the alphabet Σ augmented with the special symbol �. Finally, we say that
function ν : N → [0, 1] is negligible if, for all polynomials poly and sufficiently
large n, we have that ν(n) ≤ 1/poly(n).

We start by defining the notion of a policy and of an allowed attribute vector
for a policy.

Definition 1. Fix the number � > 0 of attributes and alphabet Σ. A policy
Pol = 〈Pol1, . . . ,Poll〉 ∈ (2Σ \ ∅)� is a sequence of � non-empty subsets of Σ. The

Predicate Encryption with Partial Public Keys 301

set XPol of allowed attribute vectors for policy Pol consists of all vectors x ∈ Σ�

such that for i ∈ [�] we have that xi ∈ Poli.

Our predicate encryption schemes are for the predicate Match : Σ�×Σ�
� → {0, 1}

defined as follows: Match(x,y) = 1 if and only if x = 〈x1, . . . , x�〉 and y =
〈y1, . . . , y�〉 agree in all positions i for which yi
= �. We remark that a predicate
encryption scheme for the Match predicate implies efficient constructions for
several other predicates (see [BW07] for the descriptions of the reductions).

Definition 2. A Predicate Encryption Scheme with Partial Public Keys for the
predicate Match consists of five algorithms:

Setup(1n, 1�): Given the security parameter n and the number of attributes � =
poly(n), procedure Setup outputs the secret key SK.

PPKeyGen(SK,Pol): Given the secret key SK and the policy Pol ∈ (2Σ\∅)�, pro-
cedure PPKeyGen outputs the partial public key PPKPol relative to policy Pol.
We denote by PK the public key relative to policy Pol = Σ�.

Encryption(PPKPol,x): Given the partial public key PPKPol relative to policy Pol
and the attribute vector x ∈ XPol, procedure Encryption outputs an encrypted
attribute vector X̃.

GenToken(SK,y): Given the secret key SK and the pattern vector y ∈ Σ�
�, pro-

cedure GenToken outputs token Ty.

Test(X̃, Ty): given the encrypted attribute vector X̃ corresponding to attribute
vector x and the token Ty corresponding to pattern y, procedure Test returns
Match(x,y) with overwhelming probability. More precisely, for all � = poly(n),
all policies Pol ∈ (2Σ\∅)�, all attribute vectors x ∈ XPol, and all patterns y ∈ Σ�

�,
we have that

Prob[SK ← Setup(1n, 1�); PPKPol ← PPKeyGen(SK,Pol) :
Test(Encryption(PPKPol,x),GenToken(SK,y))
= Match(x,y)]

is negligible in n.

Next we state security in the selective attribute model.

2.1 Semantic Security

Semantic security deals with an adversary that tries to learn information from
ciphertexts. We define the security requirement by means of an indistinguishabil-
ity experiment in which the adversary A selects two challenge attribute vectors
z0 and z1 and a policy Pol. The adversary A then receives the partial pub-
lic key PPKPol and is allowed to issue token queries for patterns y such that
Match(z0,y) = Match(z1,y) = 0. Finally, A receives encrypted attribute vector
X̃ corresponding to a randomly chosen challenge attribute vector zη. We require
that A has probability essentially 1/2 of guessing η.

We model the semantic security property by means of the following game
SemanticExpA between a challenger C and adversary A.

302 C. Blundo, V. Iovino, and G. Persiano

SemanticExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge attribute

vectors z0, z1 ∈ Σ� and policy Pol ∈ (2Σ \ ∅)�.
2. Key-Generation Phase. Challenger C computes the secret key SK by running

the Setup procedure on input (1n, 1�) and the partial public key PPKPol by
running PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of token queries.
C answers token query for pattern y as follows. If Match(z0,y) =
Match(z1,y) = 0, then A receives the output of GenToken(SK,y). Other-
wise, A receives ⊥.

4. Challenge construction. C chooses random η ∈ {0, 1} and gives the output
of Encryption(PK, zη) to A.

5. Query Phase II. Identical to Query Phase I.
6. Output phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.
Notice that in SemanticExpA we can assume, without loss of generality, that A

always asks for PK (the public key that allows to encrypt all attribute vectors).
We chose the formulation above to keep it similar to the game used to formalize
the token security property (see Section 2.2).

Definition 3. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is semantically secure, if for all
probabilistic polynomial-time adversaries A∣∣Prob[SemanticExpA(1n, 1�) = 1]− 1/2

∣∣
is negligible in n for all � = poly(n).

2.2 Token Security

In this section, we present an experiment that models the fact that a token T
gives no information on the associated pattern y but the position of the �-entries.
We use an indistinguishability experiment in which the adversary A picks two
challenge patterns y0 and y1 such that y0,i = � iff y1,i = � and a policy Pol
such that for all x ∈ XPol we have that Match(x,y0) = Match(x,y1) = 0. A
receives the partial public key PPKPol associated with Pol and A is allowed to
issue token queries for patterns y of his choice. Finally, A receives the token
associated to a randomly chosen challenge pattern yη. We require that A has
probability essentially 1/2 of guessing η.

We model the token security property by means of the following game
TokenExpA between a challenger C and adversary A.

TokenExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge patterns

y0,y1 ∈ Σ�
� and a policy Pol such that for all x ∈ XPol we have that

Match(x,y0) = Match(x,y1) = 0.

Predicate Encryption with Partial Public Keys 303

If there exists i ∈ [�] such that y0,i = � and y1,i
= � or if there exists i ∈ [�]
such that y1,i = � and y0,i
= � then the experiment returns 0.

2. Key-Generation Phase. The secret key SK is generated by the Setup pro-
cedure. The partial public key PPKPol relative to policy Pol is generated
running procedure PPKeyGen(SK,Pol). PPKPol is given to A.

3. Query Phase I. A can make any number of token queries that are answered
by returning GenToken(SK,y).

4. Challenge construction. η is chosen at random from {0, 1} and receives
GenToken(SK,yη).

5. Query Phase II. Identical to Query Phase I.
6. Output phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 4. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is token secure if for all proba-
bilistic polynomial-time adversaries A,∣∣Prob[TokenExpA(1n, 1�) = 1]− 1/2

∣∣
is negligible in n for all � = poly(n).

Definition 5. A predicate encryption scheme with partial public keys
(Setup,PPKeyGen,Encryption, GenToken,Test) is a secure predicate encryption
scheme with partial public keys if it is both semantically secure and token secure.

3 Background and Complexity Assumptions

Linear secret sharing In our assumptions and constructions we use the concept
of a (k, n) linear secret sharing scheme (LSSS), for k ≤ n. A (k, n) LSSS takes as
input a secret s (typically from a finite field Fp) and returns k shares (s1, . . . , sk)
with the following properties. Any set of k− 1 (or fewer) shares are independent
among themselves and are independent from the secret s. In addition, the secret s
can be expressed as a linear combination of the shares held by any k participants.
More precisely, for any F ⊆ [n] of size k there exist reconstruction coefficients αi

such that s =
∑

i∈F αisi. For instance, in Shamir’s secret sharing scheme [Sha79],
the reconstruction coefficients are the Lagrange interpolation coefficients. We
stress that the reconstruction coefficients depend only on the set F and not on
the actual shares.

The symmetric bilinear setting. We have two multiplicative groups, the base
group G and the target group GT both of prime order p and a non-degenerate
bilinear pairing function e : G × G → GT . That is, for all x ∈ G, x
= 1, we
have e(x, x)
= 1 and for all x, y ∈ G and all a, b ∈ Zp, we have e(xa, yb) =
e(x, y)ab. We denote by g and e(g, g) generators of G and GT . We call a tuple
I = [p,G,GT , g, e] a symmetric bilinear instance and assume that there exists

304 C. Blundo, V. Iovino, and G. Persiano

an efficient generation procedure that, on input security parameter 1n, outputs
an instance with |p| = Θ(n).

We now review and justify the hardness assumptions we will use for proving
security of our constructions.

Our first two assumptions posit the hardness of distinguishing whether the
exponents relative to given bases of a sequence of (2�−1) elements of G constitute
the shares of 0 with respect to an (�, 2�− 1) LSSS or one of the exponents (the
exponent of the challenge element, usually denoted by Z in the following) is
random. This computational problem is clearly trivial if �−1 elements share the
same base A with the challenge element Z. Indeed, given an ordered �-subset
F = 〈f1, . . . , f�〉 of [2� − 1], base A, elements Asi for i ∈ 〈f1, . . . , f�−1〉 and
challenge Z = Asf� , checking if the exponents si constitute � shares of 0 of an
(�, 2� − 1) LSSS is trivial by the linearity of the secret sharing scheme. In a
bilinear setting, the problem remains easy in the base group if (�− 1) elements
share the same base A ∈ G even though this is different from the base B ∈ G

of the challenge element. Specifically, given bases A and B, elements Asi , for
i ∈ 〈f1, . . . , f�−1〉 and challenge Z = Br it is possible to check whether the si’s
and r constitute � shares of 0 of an (�, 2�− 1) LSSS in the following way. First,
use linearity to compute Asf� and then use bilinearity to check if r = sf�

by
comparing e(As� , B) and e(A,Br). If instead less than �− 1 elements share the
same base then the problem seems to be computationally difficult.

The Linear Secret Sharing Assumption (see Section 3.1 below) makes a formal
statement of this fact. Specifically, we are given bases

U1, . . . , U2�−1 ∈ G, elements Ua1
1 , . . . , U

a2�−1
� ∈ G and index j ∈ [2� − 1] of

the challenge element and we have to decide whether (a1, . . . , a2�−1) constitute
an (�, 2� − 1) secret sharing of 0 or the exponent aj of the challenge element
is random. We stress that, for sake of ease of exposition, in stating the Linear
Secret Sharing Assumption we have not tried to reduce the number of bases: we
have (2�− 1) bases for (2�− 1) elements. It is not difficult to see that we could
have used only 4 bases to formulate an assumption that is sufficient for proving
the security of our constructions.

If we consider the same problem in the target group GT , it seems that it remains
difficult even if �−1 elements share the same base which is different from the base
used for the challenge element. Indeed in the target group we are not allowed to
use the pairing function e and thus we cannot use the same approach employed for
the base group. The F -Linear Secret Sharing Assumption (see Section 3.2 below)
makes a formal statement of this fact. By looking ahead, in the F -Linear Secret
Sharing Assumption we have � shares corresponding to an ordered subset F =
〈f1, . . . , f�〉 of elements of [2�− 1] which appear as exponents of � elements of GT :
�− 1 of these elements share the same base e(g, g) (specifically, in the assumption
we have e(Ūfj , Vfj) = e(g, g)afj for 2 ≤ j ≤ �) and the challenge element uses
a different base (specifically, e(Uf1 , Vf1) = e(Uf1 , Uf1)af1). The task is to decide
whether the ai’s for i ∈ F constitute an (�, 2�− 1) secret share of 0 or the af�

is
random. We state our assumptions using elements of G (i.e., the Ūj ’s and the Vj ’s)
instead of elements of GT (i.e., giving only e(Ūj , Vj)).

Predicate Encryption with Partial Public Keys 305

For each of the two above assumptions, we have a split version which we
call the Split Linear Secret Sharing Assumption (see Section 3.3) and the F -
Split Linear Secret Sharing Assumption (see Section 3.4). The split versions of
our assumptions are derived by mixing the assumptions based on linear secret
sharing with the Decision Linear Assumption (see [BW06]). In the Decision
Linear Assumption, the task is to decide, given A,Ar, B,Bs, C, Cz whether z =
r− s or z is random. Specifically, in the Split Linear Secret Sharing Assumption
we have bases U1, . . . , U2�−1, elements Ua1

1 , . . . , U
a2�−1
2�−1 and ga1 , . . . , ga2�−1 with

(a1, . . . , a2�−1) constituting an (�, 2�−1) LSSS of 0, and 2�−2 related instances of
the Decision Linear Assumptions for a randomly chosen j ∈ [2�−1]: Uu

i , U
aj

j ,W s,
with i ∈ [2� − 1] \ {j} in which we have to decide whether s = u − aj . In
addition, we are also given Û = Wuj where Uj = guj . The F -Split Linear
Secret Sharing Assumption is obtained is a similar way from the F -Linear Secret
Sharing Assumption.

3.1 Linear Secret Sharing Assumption

Consider the following game between a challenger C and an adversary A.

LSSExpA(1n, 1�)
01. C computes shares a1, . . . , a2�−1 of 0 using an (�, 2�− 1) LSSS;
02. C chooses instance I = [p,G,GT , g, e] with security parameter 1n;
03. C chooses random j ∈ [2�− 1];
04. for i ∈ [2�− 1]

C chooses random ui ∈ Zp and sets Ui = gui and Vi = Uai

i ;
05. C chooses random η ∈ {0, 1};
06. if η = 1 then C sets Z = U

aj

j else C chooses random Z ∈ G;
07. C runs A on input [I, j, (Ui)i∈[2�−1], (Vi)i∈[2�−1]\{j}, Z];
08. Let η′ be A’s guess for η;
09. if η = η′ then return 1 else return 0.

Assumption 1 (LSS Assumption). The Linear Secret Sharing Assumption
states that for all probabilistic polynomial-time algorithms A,∣∣Prob[LSSExpA(1n, 1�) = 1]− 1/2

∣∣ is negligible in n for all � = poly(n).

3.2 F -Linear Secret Sharing Assumption

Let F = 〈f1, . . . , f�〉 be a sequence of � distinct elements from [2� − 1]. We
formalize the F -Linear Secret Sharing Assumption (F -LSS Assumption) by
means of the following game between a Challenger C and an Adversary A.

F -LSSExpA(1n, 1�)
01. C computes shares a1, . . . , a2�−1 of 0 using an (�, 2�− 1) LSSS;
02. C chooses instance I = [p,G,GT , g, e] with security parameter 1n;
03. for i ∈ F

C chooses random ui ∈ Zp and sets Ui = gui , Ūi = g1/ui , and
Vi = Uai

i ;

306 C. Blundo, V. Iovino, and G. Persiano

04. C chooses random η ∈ {0, 1};
05. if η = 1 then C sets Z = U

af�

f�
else C chooses random Z ∈ G;

06. C runs A on input [I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , Z];
07. Let η′ be A’s guess for η;
08. if η = η′ then return 1 else return 0.

Assumption 2 (F -LSS Assumption). The F -Linear Secret Sharing As-
sumption states that for all probabilistic polynomial-time algorithms A,∣∣Prob[F -LSSExpA(1n, 1�) = 1]− 1/2

∣∣ is negligible in n for all � = poly(n).

The proof of the following theorem is similar to, but simpler than, the proof of
Theorem 2. So, we omit it.

Theorem 1. For any sequences F and K each of � distinct elements from [2�−
1], F -LSS implies K-LSS.

3.3 Split Linear Secret Sharing Assumption

In this section we present the Split Linear Secret Sharing Assumption (the
SplitLSS Assumption) which is similar to the Linear Secret Sharing Assumption.
The only difference is that whereas in the LSS Assumption the task is to decide
whether Vj = U

aj

j or Vj is random, here the task is to decide, whether Z = Wu−aj

or Z is a random element of G. We formalize the SplitLSS Assumption by means
of the following game between a Challenger C and an Adversary A.

SplitLSSExpA(1n, 1�)
01. C computes shares a1, . . . , a2�−1 of 0 using an (�, 2�− 1) LSSS;
02. C chooses instance I = [p,G,GT , g, e] with security parameter 1n;
03. C chooses random u,w ∈ Zp and sets W = gw;
04. for i ∈ [2�− 1]

C chooses random ui ∈ Zp and sets Ui = gui , Vi = Uai

i ,
Ai = gai , and Si = Uu

i ;
05 C picks a random j ∈ [2�− 1] and sets Û = Uw

j ;
06. C chooses random η ∈ {0, 1};
07. if η = 1 then C sets Z = Wu−aj else C chooses random Z ∈ G;
08. C runs A on input

[I, j, (Ui)i∈[2�−1], (Vi)i∈[2�−1], (Ai)i∈[2�−1], (Si)i∈[2�−1]\{j},W, Û , Z];
09. Let η′ be A’s guess for η;
10. if η = η′ then return 1 else return 0.

Assumption 3 (SplitLSS Assumption). The Split Linear Secret Sharing
Assumption states that for all probabilistic polynomial-time algorithms A,∣∣Prob[SplitLSSExpA(1n, 1�) = 1]− 1/2

∣∣ is negligible in n for all � = poly(n).

Predicate Encryption with Partial Public Keys 307

3.4 F -Split Linear Secret Sharing Assumption

Let F = 〈f1, . . . , f�〉 be a sequence of � distinct elements from [2� − 1]. We for-
malize the F -Split Linear Secret Sharing Assumption (F -SplitLSS Assumption)
by means of the following game between C and A.

F -SplitLSSExpA(1n, 1�)
01. C computes shares a1, . . . , a2�−1 of 0 using an (�, 2�− 1) LSSS;
02. C chooses instance I = [p,G,GT , g, e] with security parameter 1n;
03. C chooses random u ∈ Zp;
04. for i ∈ F ,

C chooses random ui ∈ Zp and sets Ui = gui , Ūi = g1/ui , Vi = Uai

i ,
and Si = Uu

i ;
05. C chooses random w ∈ Zp and sets W = gw and W̄ = g1/w.
06. C chooses random η ∈ {0, 1};
07. if η = 1 then C sets Z = Wu−af� else C chooses random Z ∈ G;
08. C runs A on input

[I, F, (Ui)i∈F , (Ūi)i∈F\{f1}, (Vi)i∈F , (Si)i∈F ,W, W̄ , Z];
09. Let η′ be A’s guess for η.
10. if η = η′ then return 1 else return 0.

Assumption 4 (F -SplitLSS Assumption)). The F -Split Linear Secret
Sharing Assumption states that for all probabilistic polynomial-time algorithms
A
∣∣Prob[F -SplitLSSExpA(1n, 1�) = 1]− 1/2

∣∣ is negligible in n for all � = poly(n).

The proof of the next theorem is found in Appendix A.

Theorem 2. For any two sequences F and K each of � distinct elements from
[2�− 1], we have that F -SplitLSS implies K-SplitLSS.

4 The Scheme

In this section, we describe a new proposal for a secure predicate encryption
scheme with partial public keys. Our description is for binary alphabets; it is
possible to convert our scheme to a scheme for any alphabet by increasing the
size of the key, but not the size of ciphertexts and tokens.

The Setup procedure. On input security parameter 1n and the number of
attributes � = poly(n), Setup proceeds as follows.
1. Select a symmetric bilinear instance I = [p,G,GT , g, e] with |p| = Θ(n).
2. For i ∈ [2�− 1], choose random t1,i,0, t2,i,0, t1,i,1, t2,i,1 ∈ Zp and set

Ki =
(

T1,i,0 = gt1,i,0 , T2,i,0 = gt2,i,0

T1,i,1 = gt1,i,1 , T2,i,1 = gt2,i,1

)
and

K̄i =
(

T̄1,i,0 = g1/t1,i,0 , T̄2,i,0 = g1/t2,i,0

T̄1,i,1 = g1/t1,i,1 , T̄2,i,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki, K̄i)i∈[2�−1]].

308 C. Blundo, V. Iovino, and G. Persiano

The PPKeyGen procedure. On input SK and policy
Pol = 〈Pol1, . . . ,Pol�〉 ∈ (2{0,1}\∅)� of length �, PPKeyGen proceeds as follows.
1. For i = 1, . . . , �,

for every b ∈ Poli, add T1,i,b and T2,i,b to PPKi.
2. For i = � + 1, . . . , 2�− 1,

add T1,i,0 and T2,i,0 to PPKi.
3. Return PPKPol = [(PPKi)i∈[2�−1]].

The Encryption procedure. On input partial public key PPKPol and attribute
vector x = (x1, . . . , x�) of length �, Encryption proceeds as follows.
1. If x /∈ XPol return ⊥.
2. Extend x to a vector with 2�− 1 entries by appending (�− 1) 0-entries.
3. Pick s at random from Zp.
4. Compute shares (s1, . . . , s2�−1) of 0 using an (�, 2�− 1) linear secret sharing

scheme.
5. For i = 1, . . . , 2�− 1,

set X1,i = T s−si

1,i,xi
and X2,i = T−si

2,i,xi
.

6. Return the encoded attribute vector X̃ = [(X1,i, X2,i)i∈[2�−1]].
Notice that if x ∈ XPol, then for every i it holds that T1,i,xi, T2,i,xi ∈ PPKPol.
Hence, the Encryption procedure will be able to execute the steps above.
In the following will use sometimes the writing
Encryption(PPKPol,x; s, (si)i∈[2�−1]) to denote the encoded attribute vector X̃
output by Encryption on input PPKPol and x when using s as random element
and (si)i∈[2�−1] as shares of an (�, 2� − 1) linear secret sharing scheme for the
secret 0.

The GenToken procedure. On input secret key SK and pattern vector y =
(y1, . . . , y�) of length �, GenToken proceeds as follows.
1. Let h be the number of non-� entries of y. Extend y to a vector with (2�−1)

entries by appending (�−h) 0-entries and (h−1) �-entries and denote by Sy

the indices of the non-� entries of the extended vector. Notice that |Sy| = �.
2. Compute shares (r1, . . . , r2�−1) of 0 using an (�, 2�− 1) linear secret sharing

scheme.
3. Pick random r ∈ Zp.
4. For i ∈ Sy,

set Y1,i = T̄ ri

1,i,yi
and Y2,i = T̄ r−ri

2,i,yi
.

5. Return Ty = [Sy, (Y1,i, Y2,i)i∈Sy].
In the following we will sometimes use the writing
GenToken(SK,y; r, (ri)i∈Sy) to denote the token Ty computed by GenToken on
input SK and y and using r as random element and (ri)i∈Sy as � shares of an
(�, 2�− 1) LSSS for the secret 0.

The Test procedure. On input token Ty = [S, (Y1,j1 , Y2,j1 , . . . , Y1,j�
, Y2,j�

)]
and attribute vector X̃ = [(X1,i, X2,i)i∈[2�−1]], Test proceeds as follows. Let

Predicate Encryption with Partial Public Keys 309

vj1 , . . . , vj�
be the reconstruction coefficients for the set S = {j1, . . . , j�}. Then,

the Test procedure returns∏
i∈[�]

[e(X1,ji , Y1,ji) · e(X2,ji , Y2,ji)]
vji .

The proof of next theorem is found in Appendix A.

Theorem 3. The quintuple of algorithms
(Setup,PPKeyGen,Encryption,GenToken,Test) specified above is a predicate en-
cryption scheme with partial public keys.

5 Semantic Security

In this section, we show that, if the Linear Secret Sharing Assumption and
the Split Linear Secret Sharing Assumption hold, then the scheme presented in
Section 4 is semantically secure. Specifically, we show that, for any attribute
vector z and for any policy Pol, the encoded attribute vector output by the
Encryption procedure is indistinguishable from a sequence of 2 · (2�− 1) random
elements of G to a polynomial time adversary A that has the partial public key
associated with Pol and oracle access to GenToken for all pattern vectors y such
that Match(z,y) = 0. As it is easily seen, this implies semantic security.

The experiments. We start by describing 3� experiments with a probabilistic
polynomial-time adversary A.

Experiment k with 0 ≤ k ≤ 2� − 1. In this experiment, A outputs an at-
tribute vector z and a policy Pol, receives the partial public key PPKPol relative
to Pol, and has oracle access to GenToken for all pattern vectors y such that
Match(z,y) = 0. Then A receives challenge X̃ = [(X1,i, X2,i)i∈[2�−1]] computed
as follows and outputs a bit.
1. Extend z to a 2�− 1 vector by appending (�− 1) 0-entries.
2. Compute shares (s1, . . . , s2�−1) of 0 using an (�, 2�− 1) LSSS.
3. For i = 1, . . . , k, randomly choose X1,i ∈ G and set X2,i = T si

2,i,zi
.

4. For i = k + 1, . . . , 2�− 1, set X1,i = T s−si

1,i,zi
and X2,i = T si

2,i,zi
.

Experiment 2� + k − 1 with k ∈ [�]. These experiments differ from the previous
ones only in the way in which the challenge X̃ is computed. More precisely,
X̃ = [(X1,i, X2,i)i∈[2�−1]] is computed as follows.
1. Extend z to a 2�− 1 vector by appending (�− 1) 0-entries.
2. Compute shares (s1, . . . , s2�−1) of 0 using an (�, 2�− 1) LSSS.
3. For i = 1, . . . , k randomly choose X1,i, X2,i ∈ G.
4. For i = k + 1, . . . , 2�− 1 randomly choose X1,i ∈ G and set X2,i = T si

2,i,zi
.

310 C. Blundo, V. Iovino, and G. Persiano

Clearly, in Experiment 0, vector X̃ is a well-formed encryption of z whereas in
Experiment 3�− 1 vector X̃ consists instead of randomly chosen elements from
G. We denote by pAk the probability that A outputs 1 when playing Experiment
k. We start by proving that, under the Split Linear Secret Sharing Assumption,
the difference |pAk − pAk−1| is negligible, for k ∈ [2�− 1].

Due to space limit, some proofs are omitted and they can be found in the full
version of this paper [BIP10].

Indistiguishability of the first 2�− 1 experiments.

Lemma 1. Assume the Split Linear Secret Sharing Assumption. Then, for k ∈
[2�−1], it holds that |pAk −pAk−1| is negligible for all probabilistic polynomial-time
adversaries A.

Indistiguishability of the last � experiments.

Lemma 2. Assume the Linear Secret Sharing Assumption. Then, for k ∈ [�], it
holds that |pA2�+k−2 − pA2�+k−1| is negligible for all probabilistic polynomial-time
adversaries A.

Lemma 1 and Lemma 2 imply the following theorem.

Theorem 4. Assume LSS and SplitLSS. Then, predicate encryption
scheme with partial public keys
(Setup,PPKeyGen,Encryption,GenToken,Test) is semantically secure.

6 Token Security

In this section, we show that, if the F -Linear Secret Sharing Assumption and
the F -Split Linear Secret Sharing Assumption hold, the scheme presented in
Section 4 is token secure. Specifically, let z be a pattern and Pol a policy such
that XPol does not contain any attribute vector x such that Match(x, z) = 1.
Then we show that no probabilistic polynomial-time adversaryA that has oracle
access to GenToken and the public key relative to Pol can distinguish a well
formed token for pattern z from a sequence of random elements of G. It is
straightforward to see that this implies token security.

The experiments. We start by describing 4� experiments with a probabilistic
polynomial-time adversary A.

Experiment j with 0 ≤ j ≤ 2� − 1. In this experiment, A outputs a pattern
z ∈ {0, 1, �}� and a policy Pol, receives the partial public key PPKPol relative to
Pol and has oracle access to GenToken for all pattern vectors y. If there exists
an attribute vector x ∈ XPol such that Match(x, z) = 1 then, A receives ⊥;
otherwise, A receives challenge Tz computed as follows. In both cases A outputs
a bit.

Predicate Encryption with Partial Public Keys 311

1. Let h be the number of non-� entries of z. Extend z to a vector with (2�−1)
entries by appending (� − h) 0-entries and (h − 1) �-entries. With a slight
abuse of notation, we call z the extended vector and denote by Sz the set
of indices i such that zi ∈ {0, 1}. Notice that |Sz | = �.

2. Choose random r ∈ Zp and compute shares (r1, . . . , r2�−1) of 0 using an
(�, 2�− 1) LSSS.

3. For i ∈ Sz and i ≤ j, set Y1,i = gri/t1,i,zi and Y2,i = g(r−ri)/t2,i,zi .
4. For i ∈ Sz and i > j, set Y1,i = gri/t1,i,zi and choose random Y2,i ∈ G.
5. Set Tz = [Sz , (Y1,i, Y2,i)i∈Sz].

Experiment j with 2� ≤ j ≤ 4� − 1. The experiments differ from the previous
ones only in the way the challenge Tz is computed. More precisely, the challenge
Tz is computed as follows.
1. Let h be the number of non-� entries of z. Extend z to a vector with (2�−1)

entries by appending (� − h) 0-entries and (h − 1) �-entries. With a slight
abuse of notation, we call z the extended vector and denote by Sz the set
of indices i such that zi ∈ {0, 1}. Notice that |Sz | = �.

2. Choose random r ∈ Zp and compute shares (r1, . . . , r2�−1) of 0 using an
(�, 2�− 1) LSSS.

3. For i ∈ Sz, set Y2,i to a random element in G.
4. For i ∈ Sz and i ≤ j, set Y1,i = gri/t1,i,zi .
5. For i ∈ Sz and i > j, set Y1,i to a random element in G.
6. Set Tz = [Sz , (Y1,i, Y2,i)i∈Sz].

Clearly in Experiment 0, Tz is a well formed token for pattern z whereas in
Experiment 4�− 1, Tz consists of 2� randomly chosen elements of G. We denote
by pAj the probability that A outputs 1 when playing Experiment j. We start
by proving that, under the F -Linear Secret Sharing, the difference |pAj − pAj−1|
is negligible for j ∈ [2�− 1].

Indistinguishability of the first 2� experiments.

Lemma 3. Assume F -Split Linear Secret Sharing holds. Then, for j ∈ [2�−1], it
holds that |pAj −pAj−1| is negligible for all probabilistic polynomial-time adversary
A.

Indistinguishability of last 2� experiments.

Lemma 4. Assume F -Linear Secret Sharing holds. Then, for j = 2�, . . . ,
4�− 1, it holds that |pAj − pAj−1| is negligible for all probabilistic polynomial-time
adversary A.

Next theorem holds.

Theorem 5. Assume F -Linear Secret Sharing and F -Split Linear Secret Shar-
ing. Then predicate encryption

(Setup,PPKeyGen,Encryption,GenToken,Test) is token secure.

312 C. Blundo, V. Iovino, and G. Persiano

Acknowledgments

This work is partially founded by the Italian Ministry of University and Research
Project PRIN 2008 PEPPER: Privacy and Protection of Personal Data (prot.
2008SY2PH4).

References

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004)

[BIP10] Blundo, C., Iovino, V., Persiano, G.: Predicate encryption with partial
public keys. Cryptology ePrint Archive, Report 2010/476 (2010),
http://eprint.iacr.org/

[BW06] Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryp-
tion (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset and range queries on en-
crypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
535–554. Springer, Heidelberg (2007)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption
for Fine-Grained Access Control for Encrypted Data. In: ACM CCS 2006:
13th Conference on Computer and Communications Security, Alexandria,
VA, USA, October 30-November 3, pp. 89–98. ACM Press, New York
(2006)

[IP08] Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime
order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 75–88. Springer, Heidelberg (2008)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Dis-
junction, Polynomial Equations, and Inner Products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[Sha79] Shamir, A.: How to share a secret. Communications of the Association
for Computing Machinery 22(11), 612–613 (1979)

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer,
Heidelberg (2009)

A Appendix

Theorem 2. For any two sequences F and K each of � distinct elements from
[2�− 1], we have that F -SplitLSS implies K-SplitLSS.

Proof. Let F = 〈f1, . . . , f�〉 and K = 〈k1, . . . , k�〉 be sequences of � distinct
elements from [2�− 1]. Given an F -SplitLSS instance

[I, F, (Uj)j∈F , (Ūj)j∈F\{f1}, (Vj)j∈F , (Sj)j∈F ,W, W̄ , Z]

we show how to get from it a K-SplitLSS instance

http://eprint.iacr.org/

Predicate Encryption with Partial Public Keys 313

[I,K, (U ′
j)j∈K , (Ū ′

j)j∈K\{k1}, (V
′
j)j∈K , (S′

j)j∈K ,W ′, W̄ ′, Z ′].

For i = 1, . . . , �, let αi = vfi,F /vki,K , where vfi,F (vki,K) is the publicly known
value associated to fi-th (ki-th) share when participants whose identities are in
F (resp., K) collaborate to the reconstruction of the secret in an (�, 2�−1) LSSS.
Set U ′

k1
= Uf1 . For i = 2, . . . , �, set

U ′
ki

= Ufi and Ū ′
ki

= Ūfi .

For i = 1, . . . , �, set
V ′

ki
= V αi

fi
and S′

ki
= Sα�

fi
.

Set W ′ = W and W̄ ′ = W̄ . Finally, set Z ′ = Zα� . It is immediate to see that the
values (U ′

j)j∈K , (Ū ′
j)j∈K\{k1}, (V

′
j)j∈K , (S′

j)j∈K ,W ′, W̄ ′, Z ′ define a K-SplitLSS
instance.

Theorem 3. The quintuple of algorithms
(Setup,PPKeyGen,Encryption,GenToken,Test) specified above is a predicate en-
cryption scheme with partial public keys.

Proof. It is sufficient to verify that the procedure Test returns 1 when
Match(x,y) = 1. Let X̃ = [(X1,i, X2,i)[2�−1]] be the output of

Encryption(PPKPol,x; s, (si)[2�−1]) and let Ty = [Sy, (Y1,i, Y2,i)i∈Sy] be the
output of procedure GenToken(SK,y; r, (ri)i∈Sy). Let vj1 , . . . , vj�

be the recon-
struction coefficients for set Sy = {j1, . . . , j�}. We have,

Test(X̃, Ty) =
∏
i∈[�]

[e(X1,ji , Y1,ji) · e(X2,ji , Y2,ji)]
vji

=
∏
i∈[�]

e(T
s−sji

1,ji,xji
, T̄

rji

1,ji,yji
)vji · e(T−sji

2,ji,xji
, T̄

r−rji

2,ji,yji
)vji

= (since xji = yji for i ∈ [�])

=
∏
i∈[�]

e(g, g)rji
vji

(s−sji
) · e(g, g)−sji

vji
(r−rji

)

=
∏
i∈[�]

e(g, g)srji
vji

−rsji
vji = e(g, g)s

∑
i∈[�] rji

vji ·

e(g, g)−r
∑

i∈[�] sji
vji = 1.

The last equality is satisfied as the rji ’s and the sji ’s for i ∈ [�] are � shares
of an (�, 2� − 1) linear secret sharing scheme for the secret 0 and the vji ’s are
the reconstructing coefficient for set Sy = {j1, . . . , j�}. Hence, we have that∑

i∈[�] rjivji = 0 and
∑

i∈[�] sjivji = 0.

Anonymous Credential Schemes
with Encrypted Attributes

Jorge Guajardo1, Bart Mennink2, and Berry Schoenmakers3

1 Information and System Security Group
Philips Research, Eindhoven, The Netherlands

jorge.guajardo@philips.com
2 Dept. Electrical Engineering, ESAT/COSIC and IBBT

Katholieke Universiteit Leuven, Belgium
bart.mennink@esat.kuleuven.be

3 Dept. of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

berry@win.tue.nl

Abstract. In anonymous credential schemes, users obtain credentials
on certain attributes from an issuer, and later show these credentials to
a relying party anonymously and without fully disclosing the attributes.
In this paper, we introduce the notion of (anonymous) credential schemes
with encrypted attributes, in which issuers certify credentials on en-
crypted attributes to users. These schemes allow for the possibility that
none of the involved parties, including the user, learns the values of the
attributes. In fact, we will treat several variations differing in which par-
ties see which attributes in the clear. We present efficient constructions
of these new credential schemes, starting from a credential scheme by
Brands, and we show that the security of Brands’ original scheme is re-
tained. Finally, we sketch several interesting applications of these novel
credential schemes.

1 Introduction

Anonymous credential schemes, credential schemes for short, allow users to ob-
tain credentials on particular attributes from issuers certifying that the users
comply with particular conditions. These credentials can subsequently be shown
to a relying party (or, verifier) in order to gain access to a service. Credential
schemes were introduced by Chaum [14,15], and many efficient constructions
are known [16,20,5,7,22,24,10,11,12,2], as well as several variations and exten-
sions [17,3,4,1,9,8] (incl. anonymous cash). Credential schemes can be seen as
a refined form of blind signatures, inheriting the unforgeability and unlinkabil-
ity properties, but adding an extra level of privacy by allowing users to control
which private information is disclosed when showing a credential. For example,
irrelevant attributes need not be disclosed at all [7,1], or a zero-knowledge proof
that the attributes satisfy some given constraints may suffice [6].

In general, a credential scheme consists of a key generation algorithm, an is-
suance protocol and a verification (or, showing) protocol. The key generation

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 314–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Anonymous Credential Schemes with Encrypted Attributes 315

algorithm supplies an issuer with a key pair, which is used to issue credentials
on lists of attributes x = (x1, . . . , xl) to users. Such a credential is of the form
(p, s, σ(p)), where p is the public part authenticated by σ(p) and s is a secret
part (including x) corresponding to p. To show a credential to a verifier, a user
sends the public parts p and σ(p), and proves knowledge of the secret part s,
possibly revealing some of the attributes in x. Common to all credential schemes
in the literature, however, is the property that the focus is on authentication via
credentials to protect access to services. Naturally, the user knows the attributes
in these applications. As we will see below, however, in many applications the
user is not allowed to know (some of) the attributes or does not want to know
these. In this paper, we therefore introduce credential schemes with encrypted
attributes, or encrypted credential schemes for short, in which credentials may
contain encrypted attributes. In the most general case, all parties involved (is-
suer, user, and verifier) might have access to the attributes in encrypted form
only. We note that these encrypted credential schemes still offer the authentica-
tion property, as described above.

Applications. Basically, there are two types of applications of encrypted cre-
dential schemes: one can think of scenarios where the user is not allowed to
learn the attributes, as well as cases where the user does not want to learn the
attributes. As a simple example of the former case, consider the use of confiden-
tial letters of recommendation: if a person wants to apply for a job or wants to
enter into a graduate program at a university, he can request a letter of recom-
mendation from his former supervisor, which he in turn shows to the potential
employer. Since the holder of this letter is not allowed to learn the supervisor’s
opinions, the letter can be implemented as an encrypted credential. Note that
this allows one to apply for jobs anonymously (at first) and without the super-
visor knowing of the job applications. For the case where the user does not want
to learn the attributes, one can think of people who do not want to learn about
(genetic) diseases they suffer, but still need credentials on these data for various
purposes.

More generally, encrypted credential schemes provide the missing link be-
tween anonymous credentials (where credentials are merely issued on data), and
secure multiparty computation (MPC) based on threshold homomorphic cryp-
tosystems (where one can usually trace which outputs are used in subsequent
computations). For instance, one can consider a first MPC where the total wealth
of a party is computed based on his salary, registered possessions (such as real
estate), etc. This computation may involve various database lookups, and in
particular, the identity of the party may be known. The computed result rep-
resenting the total wealth, however, should remain hidden, and will only be
given in encrypted form to the credential issuer. A second MPC could then be
the millionaires protocol, or a more elaborate computation, on the wealths of a
number of parties, where all involved parties should remain anonymous. Here,
one needs the encrypted data to be accompanied with an anonymous credential.
The parties performing the secure computations will remain oblivious to the
links between the inputs and outputs of the secure computations.

316 J. Guajardo, B. Mennink, and B. Schoenmakers

Challenges and Technical Issues. Observe that one cannot solve this prob-
lem by naively issuing ‘standard’ credentials on the ciphertexts (as being the
attributes): while the message to be signed can be re-blinded by the user, the
attributes themselves cannot. As a consequence, the ciphertexts cannot be re-
randomized in this solution to the problem. More generally, common credential
schemes rely in an essential way on the fact that (at least) the user has access to
the attributes in the clear. Instead, to handle encrypted attributes some major
changes are needed. Below we highlight some of the issues.

– If users do not know the attributes of a credential, they cannot render zero-
knowledge proofs for these attributes as part of the verification protocol.
To resolve this issue, verification of a credential with encrypted attributes
will involve some type of plaintext equality test, ensuring minimal disclo-
sure of the attributes. The secret key used for verification will in general be
distributed among multiple parties;

– Given the use of some type of plaintext equality test in the verification
protocol, it must be prevented that a malicious user abuses the verifica-
tion protocol to gain partial information on the encrypted attributes (which
in general need to remain hidden from the user). This contrasts with the
verification protocol in common credential schemes, where the verifier only
generates a random challenge and has no private inputs;

– To achieve unlinkability for the credential scheme, honest users should be
able to blind the encrypted attributes as provided by the issuer, basically by
performing random re-encryptions of these attributes. Malicious users, how-
ever, should not be able to abuse this mechanism by replacing a particular
encrypted attribute with a target encryption. Based on the success or failure
in a run of the verification protocol, a malicious user would then be able to
find out if the encryption of the attribute and the target encryption contain
the same plaintext or not.

Our Contributions. We introduce and define the notion of encrypted creden-
tial schemes as a new concept in the area of anonymous credentials (Sect. 3). Our
definition captures the case of an issuer certifying encrypted attributes, such that
none of the involved participants learns the encryptions. For a variation where
the issuer knows the attributes (see the above-mentioned applications), we in-
troduce a concrete construction of an efficient scheme (Sect. 4), but we notice
that the scheme can be easily adjusted to a more general case where the issuer
does not learn (some of) the attributes (Sect. 6). The security of the scheme
is analyzed in Sect. 5. The construction of our scheme is based on an efficient
and well-established credential scheme by Brands [7]. By combining the newly
introduced schemes with Brands’ original scheme, we also obtain schemes in
which users learn some of the attributes in the clear, and some in encrypted
form (Sect. 6). Since Brands’ schemes are providing single-use credentials, our
schemes do so as well1. We leave it as an open problem to construct multi-use

1 As observed in [8], Brands’ schemes allow for efficient issuance of multiple credentials
on the same attribute list. The same remark applies to our schemes.

Anonymous Credential Schemes with Encrypted Attributes 317

credential schemes with encrypted attributes (e.g., starting from [11,12]), or to
show the impossibility of such construction.

2 Preliminaries

Below, we introduce some well-known cryptographic primitives along with some
relevant notation. In particular, we give some background on the credential
scheme by Brands on which our constructions are based. Throughout, we use
x ∈R V to denote that x is drawn uniformly at random from V , and H to denote
a cryptographic hash function (viewed as a random oracle) with range equal to
Zq. Here, q is a prime of bit-length k, for a security parameter k. Furthermore,
we let 〈g〉 denote a cyclic group of prime order q, representing a suitable discrete
log setting.

ElGamal Cryptosystem. Our scheme uses the additively homomorphic El-
Gamal cryptosystem. For cyclic group 〈g〉, the secret key is a λ ∈R Zq and the
corresponding public key is the group element f = gλ. A message x ∈ Zq is
encrypted by taking an r ∈R Zq and computing c = (gr, gxf r) =: �gx�. For
efficient decryption, x must be limited to a sufficiently small set (but this is no
limitation for our setting). The decryption function is denoted by D. The homo-
morphic properties ensure that an encryption can be re-blinded by multiplying
it with a random zero-encryption �g0�.

Σ-Protocols. Informally, a zero-knowledge proof of knowledge is a two-party
protocol for a prover to convince a verifier that he knows something, without
leaking any information other than the value of the assertion that is being proved.
More specifically, for a relation R = {(x;w)} and for an x, common input for
the prover and verifier, the prover proves in zero-knowledge that he knows a
value w (the witness) such that (x;w) ∈ R. We use the notion of Σ-protocols,
cf. Cramer et al. [19]. A Σ-protocol consists of a conversation (a, c, r), where
the prover sends a commitment a, the verifier returns a random challenge c and
the prover sends a response r. Afterwards, the verifier either accepts or rejects.
A Σ-protocol needs to satisfy three properties: completeness, special soundness
and special honest-verifier zero-knowledge.

Brands’ Credential Scheme. We will consider Brands’ credential scheme [7]
based on the blind Chaum-Pedersen signature scheme [18]2. Given cyclic group
〈g〉, the issuer’s public key consists of the group elements h0, g1, . . . , gl ∈R 〈g〉,
and a credential on attribute list (xi)

l
i=1 is a tuple (h′, (xi)

l
i=1 , α, σ(h′)) satisfying

σ(h′) is a signature on h′, and (gx1
1 · · · gxl

l h0)α = h′. (1)

2 Brands also introduced a more efficient DL-based scheme, but this scheme does not
offer the possibility for the issuer to issue a credential without knowing the attributes
in the clear, while this is clearly a requirement in encrypted credential schemes.

318 J. Guajardo, B. Mennink, and B. Schoenmakers

Upon verification of a credential, the user sends the public part of the credential,
(h′, σ(h′)), to the verifier, and executes a Σ-protocol to prove knowledge of
((xi)

l
i=1 , α) satisfying (gx1

1 · · · gxl

l h0)α = h′. A summary of Brands’ scheme is
given in App. A.

3 Definition of Encrypted Credential Schemes

In this section, the notion of encrypted credential schemes will be introduced
more precisely. As mentioned above, an encrypted credential scheme considers
the case of an issuer certifying encrypted attributes to users, such that none
of the involved participants learns the attributes. The basic ingredients for this
type of schemes are three protocols: a key generation protocol for generating
public and secret keys, and protocols for issuance and verification of encrypted
credentials. Informally stated, the security and privacy of these schemes com-
prise the following. Security roughly means (1) that credentials are unforgeable,
meaning that it is hard for a user to convince the verifier with a forged creden-
tial and (2) that no unauthorized participant learns the encrypted attributes.
Privacy means that anonymity of the users is guaranteed and executions of the
verification protocol cannot be linked. More precisely, we propose the follow-
ing definition of encrypted credential schemes, taking into account the technical
issues mentioned in Sect. 1.

Definition 1. An encrypted credential scheme consists of the following proto-
cols, where I denotes an issuer, U denotes a user, and V denotes a verifier:

– A key generation protocol for I and V, that on input of security parameter
k outputs public/secret keys (pk, skI , skV), where pk includes the system
parameters. It also includes a key pair for an encryption scheme, of which
the secret key is owned by V. We write (pk, skI , skV) ← keygenI,V(k);

– An issuance protocol for I and U , that on input of pk and a list of encrypted
attributes C, together with I’s secret key, outputs a credential (p, s, σ(p))
for the user. This credential satisfies that σ(p) is a signature on p, that
p is a public key part for which s is a secret key, and that p contains re-
encryptions of the encryptions in C. The protocol is denoted by (p, s, σ(p)) ←
issueI(skI);U(pk, C);

– A verification protocol for U and V, that on input of pk, U ’s input (p, s, σ(p))
and V’s secret key outputs a bit, representing either acceptance or rejection.
We write verifyU(p,s,σ(p));V(skV)(pk) to denote a run of the protocol, which
outputs a bit.

These protocols satisfy the following properties for any (pk, skI , skV) resulting
from an execution of the key generation protocol:

– Completeness. For any honest I,U and V, the credential obtained by U in
the execution of the issuance protocol, will be accepted in the verification
protocol;

Anonymous Credential Schemes with Encrypted Attributes 319

– Security. The credentials are unforgeable and no unauthorized party learns
the encrypted attributes;

– Privacy. The scheme offers unlinkability, and anonymity of the users is guar-
anteed.

In practice, the verifier’s secret key can be shared among multiple verifiers using
threshold cryptography, such that the user can execute the verification protocol
with any qualified set of verifiers [25]. The definition is formulated in a gen-
eral way, but variations are possible as well. The definition can for instance be
adjusted to the case where I learns the attributes, but U and V do not. Note
that this is precisely the case in the specific applications mentioned in Sect. 1.
Furthermore, we notice that Def. 1 does not restrict credentials to be single-use
or multi-use. The remainder of the paper, however, concentrates on single-use
credentials. In particular, Def. 2 below states completeness, security and privacy
properties more concretely for single-use credentials, following Brands’ definition
of secure credential schemes [7]. Throughout, a (potentially) malicious partici-
pant is indicated by an apostrophe, as in U ′. A participant is called semi-honest in
case he follows the protocol but tries to obtain as much information as possible.
For simplicity, we consider semi-honest verifiers only. This can be guaranteed
by implementing V as a set of parties using threshold cryptography (see also
Sect. 6).

Definition 2. A key generation, issuance and verification protocol involving
parties I,U and V constitute a secure encrypted credential scheme (cf. Def. 1)
if the following properties are satisfied for any (pk, skI , skV) resulting from an
execution of the key generation protocol:

– Completeness. For any attribute list C and honest I,U and V, the issuance
protocol on input of C results in a valid credential for U . More formally, for
any C we have

Pr
(
verifyU(p,s,σ(p));V(skV)(pk) = 1

∣∣∣ (pk, skI , skV)← keygenI;V(k);

(p, s, σ(p)) ← issueI(skI);U(pk, C)
)

= 1;

– User privacy. For any two issued credentials, a malicious I′ cannot distin-
guish between the public key parts of these credentials. More formally, there
exists a negligible ν(k), such that for any C0, C1 we have

Pr
(
I ′(pk, skI′, (p, σ(p))b, (p, σ(p))1−b, view0, view1) = b

∣∣∣
(pk, skI′, skV) ← keygenI′;V(k); b ∈R {0, 1};

(p, s, σ(p))j ← issueI′(skI′);U(pk, Cj) for j = 0, 1
)
<

1
2

+ ν(k),

where viewj denotes I ′’s view on the j-th issuing execution (j = 0, 1), i.e. all
values I′ sees during the execution;

320 J. Guajardo, B. Mennink, and B. Schoenmakers

– One-more unforgeability. Suppose that for any K ≥ 0, malicious U ′ can
perform K arbitrarily interleaved credential queries on adaptively chosen at-
tribute lists Cj (j = 1, . . . ,K). Then, the probability that U ′ outputs K + 1
distinct credentials is negligible in k. More formally, there exists a negligible
ν(k), such that for any K ≥ 0 we have

Pr
(
∀K+1

i=1

[
verifyU ′((p,s,σ(p))i);V(skV)(pk) = 1

] ∣∣∣ (pk, skI , skV) ← keygenI;V(k);

{(p, s, σ(p))i}K+1
i=1 ← U ′ issueI(skI);U′ (pk,·)

)
< ν(k),

where U ′ queries its oracle K times;
– Blinding-invariance unforgeability. Suppose that for any K ≥ 0, malicious
U ′ can perform K arbitrarily interleaved credential queries on adaptively
chosen attribute lists Cj (j = 1, . . . ,K), and that U ′ outputs L credentials
((p, s, σ(p))i)L

i=1 for some L ≤ K. Then, for any of the attribute lists in
these L credentials, the number of credentials on this list does not exceed
the number of times a credential has been issued on this list. More formally,
there exists a negligible ν(k), such that for any K ≥ L ≥ 0 we have

Pr
(
∀L

i=1
[
verifyU ′((p,s,σ(p))i);V(skV)(pk) = 1

]
∧ R
⊆ S

∣∣∣
(pk, skI , skV)← keygenI;V(k);

R := {D(inv(pi))}L
i=1 and S := {D(Cj)}K

j=1 multisets;(
{(p, s, σ(p))i}L

i=1, Q
)
← U ′ issueI(skI);U′ (pk,·)

)
< ν(k),

where U ′ queries its oracle K times, and Q = {Cj}K
j=1 are the corresponding

attribute lists. Here, inv is some non-constant function that, on input of the
public key part of a credential, outputs the corresponding list of encrypted
attributes (cf. Def. 1), and R and S denote multisets of plaintext (decrypted)
attribute lists;

– Secure verification. For any credential (p, s, σ(p)), the verification protocol is
a secure two-party protocol for proving knowledge of s such that (p, s, σ(p))
is a valid credential, where U sent (p, σ(p)) to V.

Additionally, no unauthorized party learns the encrypted attributes.

We note that these properties indeed cover the privacy and security require-
ments informally introduced in the beginning of this section. In particular, the
two unforgeability statements encompass any possible forgery: a forger can ei-
ther construct more credentials than he is issued on, or less but on different
attributes3. The property that no unauthorized party learns the attributes usu-
ally follows directly from the other properties (cf. App. B). In particular, the
encrypted attributes do not leak during the verification execution, as the verifier
is semi-honest and this protocol is a secure two-party protocol.
3 Even though the idea of encrypted credential schemes is that the user will not learn

the attributes in the clear, the unforgeability requirements are defined so as to cover
security against malicious users adaptively choosing the attributes. This is done in
order to achieve similar security results as in the credential scheme by Brands.

Anonymous Credential Schemes with Encrypted Attributes 321

4 An Encrypted One-Show Credential Scheme

In this section, we construct an encrypted credential scheme. The scheme pre-
sented below is for the case where the issuer knows the attributes in the clear,
while the user and verifier4 do not learn these. This is one of the most interest-
ing variations (see the applications in Sect. 1). In Sect. 6 we will consider the
extension to the case where the issuer does not learn the attributes either. For
simplicity, it is assumed that the attributes are binary, i.e., x∗

1, . . . , x
∗
l−1 ∈ {0, 1}.

The scheme is based on a credential scheme by Brands [7], and in particular our
scheme can be combined with Brands’ scheme, for instance such that the user
learns x∗

1, x
∗
2, but does not learn x∗

3, . . . , x
∗
l−1. See also Sect. 6.

The encrypted credential scheme will be introduced from a constructive point
of view: at first the ideas of the protocols are described with respect to Brands’
scheme, and then the mathematical descriptions of the protocols are given. A
general remark is that the issuer will actually certify attributes xi = x∗

i + φi for
some φi ∈R Zq unknown to the user (for i = 1, . . . , l − 1), and an additional
xl ∈R Zq. This adjustment turns out to be important for solving the third tech-
nical issue of Sect. 1: without this modification, the verification of a credential
with an encrypted attribute replaced with a target or faked encryption would
succeed with significant probability for attributes from a limited range (e.g. bi-
nary attributes). By artificially extending their range to Zq, such attack succeeds
with negligible probability only. Interestingly, it turns out that an issuer can use
the same tuple (φi)

l−1
i=1 for all executions of the issuance protocol.

4.1 Key Generation

Essentially, we combine the key generation algorithms of Brands’ scheme and of
the ElGamal cryptosystem. Additionally, the values (φi)

l−1
i=1 are needed as well,

as mentioned above. However, in our scheme the key generation is actually a
protocol between issuer and verifier, because the verifier needs secret data as
well. The verifier will use its secret data in a plaintext equality test, cf. Eq. (2b),
and these values are not needed by the issuer for issuing credentials.

The key generation protocol can now be described as follows. Given a security
parameter k, system parameters (q, g), with prime q > 2k, are generated first.
Then, public key (h0, f, f̂ , (gi)

l
i=1 , (fi)

l−1
i=1) is generated jointly, corresponding to

the issuers secret key x0, (φi)
l−1
i=1 ∈R Zq and the verifiers secret key λ, (yi)

l
i=1 ∈R

Zq satisfying

h0 = gx0, f = gλ, f̂ = fx0 = hλ
0 , ∀l

i=1 : gi = gyi, ∀l−1
i=1 : fi = gφi .

4.2 Credential Issuance

As in Brands’ issuance protocol, the user’s attributes are signed indirectly via the
group element h = gx1

1 · · · gxl

l h0
= 1. The attributes are provided to the user in

4 Recall that we consider semi-honest verifiers only.

322 J. Guajardo, B. Mennink, and B. Schoenmakers

encrypted form only, and are blinded by the users by random re-encryption. To
indeed restrict the users to random re-encryptions of the encrypted attributes,
the issuer uses the values (φi)

l−1
i=1 when forming h and the encryptions ci of the

attributes, as well as the values zi = cx0
i and ei = cw

i . The protocol for issuing
a credential on (x∗

i)
l−1
i=1 is given in Fig. 1. It results in a credential for U , which

consists of a tuple (h′, (c′i)
l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′) satisfying

c′ = H([c′i, z′i, (c
′
i)

r′
(z′i)

−c′]li=1;h
′, z′, gr′

h−c′

0 , (h′)r′
(z′)−c′), (2a)

and (D((c′1)
y1 · · · (c′l)yl)h0)α = h′
= 1, (2b)

where c′i = �gx∗
i fi� for i = 1, . . . , l − 1, and c′l = �gxl� for xl ∈R Zq.

Note that these credentials mainly differ from Brands’ credentials in the sec-
ond part (2b). By defining xi := x∗

i + φi for i = 1, . . . , l − 1, we have (c′i)
yi =

�gxi�yi = �gxi

i � for all i. Consequently, (2b) simplifies to (gx1
1 · · · gxl

l h0)α = h′,
which is the same equation as in Brands’ credential scheme, cf. (1). The crucial
difference is that the verification of (2b) is done through a plaintext equality test
and requires access to a secret key.

4.3 Credential Verification

For verification of a credential (h′, (c′i)
l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′), the user sends the

public part (all values except for α) to the verifier, and proves knowledge of α
such that (2) holds. This protocol is given in Fig. 2. Upon successful verification,
the verifier will extract the encrypted attributes �gx∗

i � by computing c′i�fi�
−1 (for

i = 1, . . . , l − 1).
The verification protocol can be viewed as a proof of knowledge for relation

{(h′, (c′i)
l
i=1 ;α) | (h′)α−1

= D((c′1)
y1 · · · (c′l)yl)h0 ∧ α
= 0}, except that the

verifier uses a secret input as well for the evaluation of a plaintext equality test.
For this reason, the protocol is not a Σ-protocol, and an explicit fourth round
has been added to inform the user whether verification succeeded.

5 Security Analysis

Using Def. 2, we analyze the security of the above encrypted credential scheme.

Theorem 1. The protocols introduced in Sect. 4 constitute a secure encrypted
credential scheme cf. Def. 2.

The proof is rather technical, and is included in App. B. It is based on Ass. 2.
Intuitively, this assumption states that if a malicious user can succeed showing a
credential, then (with overwhelming probability) he has been issued a credential
on precisely the same attributes, and he moreover knows the blinding factors
(δi)

l
i=1 corresponding to this issuance. It corresponds to the fourth property of

Def. 2, and is similar to an assumption Brands needed to prove his scheme secure
(Ass. 3). In particular, the level of security of Brands’ scheme is retained. We
refer to [23, App. A] for a detailed heuristic analysis of Ass. 2.

Anonymous Credential Schemes with Encrypted Attributes 323

U I
(knows: (x∗

i)
l−1
i=1 ; x0, (φi)l−1

i=1)

(ri)l
i=1 , xl ∈R Zq(

ci ← (gri , gx∗
i fif

ri)
)l−1

i=1

cl ← (grl , gxlfrl)

h ←
l−1∏
i=1

g
x∗

i +φi
i gxl

l h0

z ← hx0 , (zi ← cx0
i)l

i=1

w ∈R Zq , a ← gw, b ← hw

f̃ ← fw , (ei ← cw
i)l

i=1h,z,(ci,zi)
l
i=1;

a,b,f̃,(ei)
l
i=1←−−−−−−−−−−

α ∈R Z
∗
q , β, γ ∈R Zq

h′ ← hα, z′ ← zα

a′ ← hβ
0 gγa, b′ ← (z′)β(h′)γbα⎛⎝ δi ∈R Zq , c′i ← ci · (g, f)δi

z′
i ← zi · (h0, f̂)δi

e′i ← (z′
i)β(c′i)γei · (a, f̃)δi

⎞⎠l

i=1

c′ ← H([c′i, z
′
i, e

′
i]

l
i=1; h

′, z′, a′, b′)

c ← c′ + β mod q c−−−−−−−−−−→
r ← cx0 + w mod qr←−−−−−−−−−−

a
?= grh−c

0 , b
?= hrz−c

f̃
?= fr f̂−c, (ei

?= cr
i z

−c
i)l

i=1

r′ ← r + γ mod q

Fig. 1. Issuance protocol of the encrypted credential scheme

U V
(knows: h′, z′, (c′i, z

′
i)

l
i=1, c

′, r′; α) (knows: (yi)l
i=1 , λ)

u ∈R Zq, a ← (h′)u

a;(c′i,z′
i)

l
i=1,

h′,z′,c′,r′
−−−−−−−→

c ∈R Zqc←−−−−−−−
r ← u + cα−1 mod q r−−−−−−−→

b1 ← c′ ?= H([c′i, z
′
i, (c

′
i)

r′
(z′

i)
−c′]li=1;

h′, z′, gr′
h−c′

0 , (h′)r′
(z′)−c′)

b2 ← (h′)r ?= a(D((c′1)
y1 · · · (c′l)yl)h0)c

b ← [b1 ∧ b2]b←−−−−−−−

Fig. 2. Verification protocol of the encrypted credential scheme

324 J. Guajardo, B. Mennink, and B. Schoenmakers

Assumption 2. If U ′ produces, after K ≥ 0 arbitrarily interleaved executions
of the protocol in Fig. 1 on adaptively chosen

(
x∗

ji

)l−1
i=1 (j = 1, . . . ,K) a tu-

ple (h′, (c′i)
l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′), then this tuple does not satisfy (2), or with

overwhelming probability there exists a j ∈ {1, . . . ,K} such that

U ′ knows values (δi)
l
i=1 such that (c′i)

l
i=1 =

(
cji(g, f)δi

)l
i=1 , (3)

where (cji)
l
i=1 is the list of encryptions coming from the first round of the j-th is-

suance execution. More formally, there exists a p.p.t. extractor E that may use U ′

as a subroutine and also outputs a tuple (h′, (c′i)
l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′), but addi-

tionally outputs the values (hj , (cji)l
i=1)

K
j=1 on which the user is issued credentials,

and a value τ ∈ {0, . . . ,K}: τ = 0 meaning that (3) is not satisfied for any j (and
implying that (2) is not satisfied), and τ
= 0 meaning that it is satisfied for j = τ ,
in which case the extractor also outputs a tuple (δi)

l
i=1 satisfying (3).

6 Variations

It is possible to adjust the scheme of Sect. 4 to the scenario where all parties only
learn the encryptions (c∗i)

l−1
i=1. However, it turns out that for the computation of

h the issuer then needs secret values (yi)
l
i=1 , λ, and thus we need to identify the

role of I with the role of V . This adjustment is quite simple: in Fig. 1, the issuer
now computes (ci)

l−1
i=1 and h as

(ci ← c∗i · (gri , fif
ri))l−1

i=1 , h← D(cy1
1 · · · c

yl

l)h0.

The remainder of the scheme remains unchanged (this variation is discussed in
detail in [23]). Furthermore, it is possible to combine our encrypted credential
schemes with Brands’ credential scheme [7]: for instance, it is straightforward
to construct a scheme for the case that both the user and issuer only know a
specific (possibly non-overlapping) subset of the attributes in the clear. For these
constructions, the security proofs are similar. Recall that our schemes achieve
the same level of security as Brands’ schemes.

We notice that the semi-honest behavior of the verifier (as mentioned in
Sect. 5) can be achieved by implementing V as a set of parties using thresh-
old cryptography. Indeed, the secret keys can be threshold shared among the
parties using a distributed key generation protocol [21], and the plaintext equal-
ity test in the protocol of Fig. 2 can then be securely evaluated. Additionally,
the possibility of multiple verifiers can be realized using verifiable secret redistri-
bution, where the verifier redistributes his secret key to other verifiers (possibly
also implemented as sets of parties) [25].

7 Conclusions

The notion of encrypted credential schemes is introduced and defined as a new
concept in the area of anonymous credentials. We have presented and analyzed
various efficient constructions of this new type of digital credential schemes,
starting from a credential scheme by Brands [7]. Our schemes are comparable in

Anonymous Credential Schemes with Encrypted Attributes 325

security and efficiency to Brands’ schemes, except that the cost grows linearly
with the number of encrypted attributes. These new credential schemes have a lot
of interesting applications, in particular to scenarios where the user is not allowed
to learn the attributes in the clear (e.g., letters of recommendation), or where the
user does not want to learn these data (e.g., medical information about illnesses).
The schemes can also be used in the context of secure multiparty computation,
where credentials can be issued on the results of a secure computation, which may
be used as input in another secure computation, without the parties performing
the computations learning anything about the links between these computations,
and about the secret data.

The encrypted credential schemes constructed in this paper operate with
single-use credentials. It would be interesting to extend existing multi-use cre-
dential schemes (such as [11,12]) with the functionality of encrypted attributes.
Since our techniques do not readily apply to this case, we leave this as an open
problem. Additionally, the construction of an encrypted credential scheme with
publicly verifiable credentials remains open.

Acknowledgments. This work has been funded in part by the European Com-
munity’s Sixth Framework Programme under grant number 034238, SPEED
project - Signal Processing in the Encrypted Domain, in part by the IAP Pro-
gram P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in
part by the European Commission through the ICT program under contract
ICT-2007-216676 ECRYPT II. The second author is supported by a Ph.D. Fel-
lowship from the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

References

1. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for
the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm,
J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer,
Heidelberg (2004)

2. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

3. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1993)

4. Brands, S.: Off-line electronic cash based on secret-key certificates. In: Baeza-Yates,
R., Poblete, P.V., Goles, E. (eds.) LATIN 1995. LNCS, vol. 911, pp. 131–166.
Springer, Heidelberg (1995)

5. Brands, S.: Restrictive blinding of secret-key certificates. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 231–247.
Springer, Heidelberg (1995)

6. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

7. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates -
Buildin. Privacy. PhD thesis, Eindhoven University of Technology, Eindhoven
(1999), http://www.credentica.com/the_mit_pressbook.html

http://www.credentica.com/the_mit_pressbook.html

326 J. Guajardo, B. Mennink, and B. Schoenmakers

8. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking
the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson,
E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007)

9. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

10. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2002)

12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

13. Canetti, R.: Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology 13, 143–202 (2000)

14. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982. LNCS,
pp. 199–203. Plenum Press, New York (1983)

15. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

16. Chaum, D., Evertse, J.: A secure and privacy-protecting protocol for transmitting
personal information between organizations. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 118–167. Springer, Heidelberg (1987)

17. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

18. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

19. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, University of Amsterdam, Amsterdam (1997)

20. Damg̊ard, I.: Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 328–335. Springer, Heidelberg (1990)

21. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

22. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

23. Mennink, B.: Encrypted Certificate Schemes and Their Security and Privacy Anal-
ysis. Master’s thesis, Eindhoven University of Technology, Eindhoven (2009)

24. Verheul, E.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001)

25. Wong, T., Wang, C., Wing, J.: Verifiable secret redistribution for archive system.
In: IEEE Security in Storage Workshop, pp. 94–106 (2002)

A Brands’ Credential Scheme

In this appendix, the credential scheme by Brands, as introduced in Sect. 2, is
discussed in technical detail.

Anonymous Credential Schemes with Encrypted Attributes 327

Key Generation. Given a security parameter k, system parameters (q, g), with
prime q > 2k, are generated first, followed by the generation of a secret key
x0 ∈R Zq. Finally the public key (h0, g1, . . . , gl) is generated as h0 = gx0 and
g1, . . . , gl ∈R 〈g〉.

Credential Issuance. Given attribute list (xi)
l
i=1, one sets h = gx1

1 · · · gxl

l h0
=
1. The issuance protocol is given in Fig. 3. It results in a credential for U on
(xi)

l
i=1, which consists of a tuple (h′, (xi)

l
i=1 , α, z′, c′, r′) satisfying

c′ = H(h′, z′, gr′
h−c′

0 , (h′)r′
(z′)−c′), and (gx1

1 · · · gxl

l h0)α = h′
= 1. (4)

U I
(knows: h) (knows: h; x0)

z ← hx0 , w ∈R Zq

a ← gw, b ← hw
z;a,b←−−−−−−−

α ∈R Z
∗
q , β, γ ∈R Zq

h′ ← hα, z′ ← zα

a′ ← hβ
0gγa, b′ ← (z′)β(h′)γbα

c′ ← H(h′, z′, a′, b′), c ← c′ + β mod q c−−−−−−−→
r ← cx0 + w mod qr←−−−−−−−

a
?= grh−c

0 , b
?= hrz−c

r′ ← r + γ mod q

Fig. 3. Issuance protocol

Credential Verification. For verification of a credential, the user sends the
public part (h′, z′, c′, r′) to the verifier, and proves knowledge of ((xi)

l
i=1 , α)

such that (4) holds. This is a Σ-protocol for relation {(h′; (xi)l
i=1, α) | h0 =

(h′)α−1
g−x1
1 · · · g−xl

l ∧ α
= 0} (note that α
= 0 should indeed hold as h′
= 1),
and it is given in Fig. 4.

U V
(knows: h′, z′, c′, r′; (xi)l

i=1 , α)

u1, . . . , ul, uα ∈R Zq

a ← (h′)uαg−u1
1 · · · g−ul

l a;h′,z′,c′,r′
−−−−−−−→

c ∈R Zqc←−−−−−−−
(ri ← ui + cxi mod q)l

i=1

rα ← uα + cα−1 mod q
(ri)

l
i=1,rα−−−−−−−→

c′ ?= H(h′, z′, gr′
h−c′

0 , (h′)r′
(z′)−c′)

(h′)rαg−r1
1 · · · g−rl

l

?= ahc
0

Fig. 4. Verification protocol

328 J. Guajardo, B. Mennink, and B. Schoenmakers

Security Analysis. Security of the above credential scheme is analyzed in [7].
Apart from some standard assumptions, the following specific assumption is
needed as well.

Assumption 3. If U ′ produces, after K ≥ 0 arbitrarily interleaved executions of
the protocol in Fig. 3 on adaptively chosen (xji)

l
i=1 (j = 1, . . . ,K) a valid tuple

(h′, (xi)
l
i=1 , α, z′, c′, r′), then this tuple does not satisfy (4), or with overwhelming

probability there exists a j ∈ {1, . . . ,K} such that (xi)
l
i=1 = (αxji mod q)l

i=1.

B Proof of Thm. 1

In this appendix we prove Thm. 1. The properties to be proven (cf. Def. 2)
can be divided in the first four properties concerning the issuance protocol,
and the last concerning the verification protocol. These protocols will be proven
secure in Sects. B.1 and B.2, respectively. We will consider the five properties
for any probabilistic key generation execution, resulting in a tuple (pk, skI , skV).
We assume that this protocol execution is done properly, i.e. that the system
parameters are correctly constructed. Notice that the issuer is the only party
who learns the encrypted attributes: the verification protocol is a secure two-
party protocol, and in the issuing execution the user only learns perfectly hiding
commitments of the encrypted data.

B.1 Correctness of Issuance Protocol

Proposition 1 (Completeness). If both U and I follow the protocol, then for
any attribute list C = (x∗

i)
l−1
i=1, the resulting credential of the issuance execution

will be accepted upon verification.

Proof. See [23, Sect. 6.4]. ��

Proposition 2 (User privacy). For any pair of attribute lists C0, C1, if U
and I ′ engaged in the issuance execution for both lists, obtaining credentials
(p, s, σ(p))0, (p, s, σ(p))1, then it is hard for malicious I ′ to guess b correctly,
given (p, σ(p))b and (p, σ(p))1−b with b ∈R {0, 1}.

Proof. The game played by I ′ and U is the following: given any two different
attribute lists C0, C1, I ′ and U engage in an issuance execution for Cj (j = 0, 1),
U takes b ∈R {0, 1} and sends the public parts of the b-th and (1−b)-th credential
to I ′ (in that order). I ′ wins if he guesses b correctly. Denote by Pr(A) the success
probability of I ′ in this game. We slightly change this game, obtaining game B.
Now, in each issuance execution U sets for each i = 1, . . . , l:

c′i ← (g, f)δi , z′i ← (h0, f̂)δi , e′i ← (z′i)
β(c′i)

γ(a, f̃)δi , (5)

and executes the remainder as is. (Note that the resulting tuple does not yield a
valid credential as (D((c′1)y1 · · · (c′l)yl)h0)α = h′ need not be satisfied. However,
I ′ will not notice as he is p.p.t. and does not have the decryption key.) Denote I′’s

Anonymous Credential Schemes with Encrypted Attributes 329

success probability in the new game by Pr(B). Now, the only difference between
the games is in the encryptions, and as I ′ is p.p.t. and does not have the decryp-
tion key, if I ′ is able to distinguish between the two games, he is able to distinguish
between the constructions of one of the 6l encryptions. Hence, the success proba-
bilities in the different games are of negligible difference by the semantic security
of the cryptosystem. Formally, there exists a negligible ν(k) such that

|Pr(A)− Pr(B)| < ν(k). (6)

We consider the success probability of I ′ in game B. We will first prove that
for any public part of a credential, and any view on an issuance execution by
I′, there is exactly one possible secret random tuple U could have chosen. In
particular this means that from I ′’s point of view, (p, σ(p))b could have come
from the 0-th or 1-th issuance execution with equal probability, and similar
for (p, σ(p))1−b. Then, as U takes his values uniformly at random, I ′ can only
succeed in guessing b correctly with probability 1

2 . Hence Pr(B) = 1
2 , which by

(6) implies that the success probability in the original game is upper bounded
by 1

2 + ν(k) for negligible ν(k).
So we prove that for any public part of a credential, (h′, z′, (c′i, z

′
i)

l
i=1, c

′, r′),
and all values a malicious I ′ sees during the issuance execution of a credential,
(h, z, (ci, zi)

l
i=1) and (a, b, f̃ , (ei)l

i=1, c, r) satisfying (as U accepted)

a = grh−c
0 , b = hrz−c, f̃ = f r f̂−c, ∀l

i=1 : ei = cr
i z

−c
i , (7)

there exists exactly one possible combination of random values α, β, γ, (δi)l
i=1

that U could have chosen to end up with that credential. The values α, β
and γ are determined by (h, h′), (c, c′) and (r, r′), namely as α = logh h′,
β = c − c′ mod q and γ = r′ − r mod q. Furthermore, for each i, δi is deter-
mined by c′i as δi = logg(c

′
i)1 = logf (c′i)2. Remains to prove that this choice

satisfies c′ = H([c′i, z
′
i, e

′
i]

l
i=1;h

′, z′, a′, b′). But the issued credential satisfies c′ =
H([c′i, z

′
i, (c

′
i)

r′
(z′i)

−c′]li=1;h
′, z′, gr′

h−c′

0 , (h′)r′
(z′)−c′), from which the equality

follows if a′ = gr′
h−c′

0 , b′ = (h′)r′
(z′)−c′ and ∀l

i=1 : e′i = (c′i)
r′

(z′i)
−c′ . But the

first two equations are easy to check, and for the third we have for all i = 1, . . . , l:

(c′i)
r′

(z′i)
−c′ = (c′i)

γ(z′i)
β(c′i)

r(z′i)
−c {setup r′, c′}

= (c′i)
γ(z′i)

β(grh−c
0 , f rf̂−c)δi {equation (5)}

= (c′i)
γ(z′i)

β(a, f̃)δi {equation (7)}
= e′i {equation (5)}. ��

Remark 1. For the proof of Prop. 2, I ′ may only work in probabilistic polyno-
mial time5, simply because different issuance executions might involve different
encryptions. However, if the two attribute lists are the same, so C0 = C1, then
the changeover to game B is unnecessary. In particular, the issuance executions
5 In case the issuer would know the secret decryption key, e.g. if the issuer plays the

role of the verifier as well, we moreover require the issuer to be semi-honest. However,
as V is semi-honest (Sect. 5), this is naturally enforced.

330 J. Guajardo, B. Mennink, and B. Schoenmakers

then become unlinkable even for issuers with unlimited resources. This is relevant
in case the issuer issues many credentials on the same attribute list.

The proof of one-more unforgeability relies on tightly reducing the credentials to
signatures of the blind signature scheme by Chaum and Pedersen [18]. Briefly,
the blind Chaum-Pedersen signature scheme considers a cyclic group 〈g〉 and a
public h ∈ 〈g〉 corresponding to secret key x, known by the signer. The issuance of
a signature on message m happens in four rounds, starting with the user blinding
m and sending it to the signer. The protocol results in a signature (m, z, c′, r′)
such that c′ = H(m, z, gr′

h−c′ ,mr′
z−c′). The reader is referred to [18] for a more

detailed discussion of the scheme. In what follows, we assume this scheme to be
secure. Note that forging a Chaum-Pedersen signature is just as hard as forging
a signature of the form (ξ,m, z, c′, r′) such that c′ = H(ξ,m, z, gr′

h−c′ ,mr′
z−c′)

for any arbitrary bit string ξ. This is due to the properties of the cryptographic
hash function.

Proposition 3 (One-more unforgeability). Under the assumption that the
blind Chaum-Pedersen signature scheme is secure against one-more forgeries, it
is impossible for a user U ′ to, after K ≥ 0 arbitrarily interleaved executions of
Fig. 1 on adaptively chosen attribute lists Cj = (x∗

ji)
l−1
i=1 (j = 1, . . . ,K), with

non-negligible probability output K + 1 different credentials satisfying (2).

Proof. Suppose it is possible, so after K executions of the protocol of Fig. 1,
on adaptively chosen (x∗

ji)
l−1
i=1 for j = 1, . . . ,K, U ′ can output K + 1 differ-

ent credentials (h′, (c′i)
l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′) satisfying (2), with non-negligible

probability. We construct an interactive polynomial time forger F that is is-
sued K Chaum-Pedersen signatures by a Chaum-Pedersen signer S, possibly on
different messages m for each execution j = 1, . . . ,K, and uses U ′ to output
K + 1 different Chaum-Pedersen signatures. By assumption that is impossible,
and hence we obtain a contradiction.

Let 〈g〉, hCP be the system parameters of the Chaum-Pedersen signature
scheme, for which S knows x = logg hCP . Now F simulates the credential issuer
for Fig. 1 as follows:

1. Initialization: For the encryption scheme, F takes secret key λ ∈R Zq and
publishes f = gλ. Furthermore, F inherits S’s system parameters, and takes
moreover (yi)l

i=1, (φi)l−1
i=1 ∈R Zq and publishes h0 = hCP , fi = gφi (i =

1, . . . , l − 1), gi = gyi (i = 1, . . . , l), and f̂ = hλ
0 ;

2. Issuance: For each of theK issuance protocol executions,F operates as follows6:
i. Commitment part 1 : F obtains x∗

i ∈ {0, 1} from U ′ (i = 1, . . . , l − 1).7

He takes (ri)l
i=1, xl ∈R Zq, sets (xi ← x∗

i + φi mod q)l−1
i=1, sets

6 For ease of presentation, the first round of the original protocol in Fig. 1, the com-
mitment part, is separated into two phases i and ii. That is, firstly (h, z, (ci, zi)l

i=1)
is sent to U ′, and then (a, b, f̃ , (ei)l

i=1).
7 Recall that U ′ can adaptively choose the attribute list. If U ′ would adaptively choose

encrypted attributes �x∗
i � instead (for instance in the variation of the scheme, cf.

Sect. 6), F can still obtain the plaintext attributes by using the decryption key λ.

Anonymous Credential Schemes with Encrypted Attributes 331

ci ← (gri , gxif ri) and zi ← (hri
0 , hxi+λri

0), for each i = 1, . . . , l,

and h← gx1
1 · · · gxl

l h0. For the setup of z, F sends m̃← h to S, in order
to obtain z̃. The forger sends z ← z̃ to U ′;

ii. Commitment part 2 : F receives ã, b̃ from S, he sets (a, b) ← (ã, b̃) and
f̃ ← aλ, and for each i = 1, . . . , l he takes ei ← (ari , axi+λri). He sends
(a, b, f̃ , (ei)l

i=1) to U ′;
iii. Challenge: F receives c from U ′ and sends c̃← c to S;
iv. Response: F receives r̃ from S and sends r← r̃ to U ′;

3. Signature forging: Now U ′ outputs, with non-negligible probability, K+1 dis-
tinct credentials (h′, (c′i)

l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′). For each of these credentials

F computes Chaum-Pedersen forgery

(ξ, z, c, r,m)← ([c′i, z
′
i, (c

′
i)

r′
(z′i)

−c′]li=1, z
′, c′, r′, h′), (8)

and he outputs these K + 1 Chaum-Pedersen signatures.

The proof that this reduction works can be found in [23, Sect. 6.4]. ��

The proof of blinding-invariance unforgeability relies on Ass. 2. However, this
assumption is not sufficient: it essentially says that a malicious user cannot with
non-negligible probability output any credential on a different plaintext attribute
list than he is issued credentials on, while blinding-invariance unforgeability more
generally requires that for any attribute list the user cannot output more cre-
dentials on it than he is issued. So similar to Brands’ scheme [7, Ass. 4.4.5],
blinding-invariance unforgeability of our scheme is slightly more general than
the corresponding assumption. Therefore, it is stated without proof.

Proposition 4 (Blinding-invariance unforgeability). If U ′ comes, after
K ≥ 0 arbitrarily interleaved executions of Fig. 1 on adaptively chosen attribute
lists Cj = (x∗

ji)
l−1
i=1 (j = 1, . . . ,K), with L different credentials satisfying (2),

Then, for any of the attribute lists in these L credentials, the number of creden-
tials on this list does not exceed the number of j’s such that this attribute list
equals Cj.

B.2 Correctness of Verification Protocol

We need to prove that the verification protocol in Fig. 2 is a secure two-party
protocol for proving knowledge of α such that (h′, (c′i)

l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′) is

a valid credential. The equality c′
?= H(·) can be checked publicly and is therefore

assumed to hold. Consequently, the verification protocol of Fig. 2 simplifies to
Fig. 5, where U can be an active attacker, but V can only be passive.

So, we need to prove that the protocol in Fig. 5 is a secure two-party protocol
for U to prove knowledge of α such that (h′)α−1

= D((c′1)
y1 · · · (c′l)yl)h0. The

protocol should be a secure proof of knowledge for relation

R = {(h′, (c′i)
l
i=1;α) | (h′)α−1

= D((c′1)
y1 · · · (c′l)yl)h0 ∧ α
= 0}.

332 J. Guajardo, B. Mennink, and B. Schoenmakers

U V
(knows: h′, (c′i)

l
i=1; α) (knows: h′, (c′i)

l
i=1; (yi)l

i=1 , λ)

u ∈R Zq, a ← (h′)u
a−−−−−−−→

c ∈R Zqc←−−−−−−−
r ← u + cα−1 mod q r−−−−−−−→

b ←
[
(h′)r ?= a(D((c′1)

y1 · · · (c′l)yl)h0)c
]

b←−−−−−−−

Fig. 5. Simplified verification protocol of the encrypted credential scheme

We need to prove that the protocol in Fig. 5 is a proof of knowledge, and that it
is secure. Demonstrating that it is a proof of knowledge is captured by proving
‘completeness’ and ‘special soundness’ (cf. Sect. 2) for relation R. For security,
using the multiparty computation model of [13], we need to prove that the adver-
sarial view on the protocol can be simulated for any allowed adversary structure:
V being semi-honest or U being malicious. Therefore, we construct two simula-
tors that may both use the adversarial party as a subroutine, and that simulate
the conversations of the corrupted party with an honest participant in an indis-
tinguishable way, on any common input (h′, (c′i)

l
i=1).

Proposition 5. The protocol in Fig. 5 is complete and special sound.

Proof. See [23, Sect. 6.4]. ��

Proposition 6. For any common input (h′, (c′i)
l
i=1), the protocol in Fig. 5 can

be simulated in a perfectly indistinguishable way, for any semi-honest V ′.

Proof. Given a common input (h′, (c′i)
l
i=1). For any honest prover U and semi-

honest verifier V ′ following the protocol, the real conversations satisfy the fol-
lowing distribution8:{

(a, c, r, b)
∣∣ u, c ∈R Zq; a← (h′)u; r ← u + cα−1 mod q;

b←
[
(h′)r ?= a(D((c′1)

y1 · · · (c′l)yl)h0)c
]}

.

This distribution is perfectly simulated by:{
(a, c, r, b)

∣∣ c, r ∈R Zq; a← (h′)r(D((c′1)
y1 · · · (c′l)yl)h0)−c;

b←
[
(h′)r ?= a(D((c′1)

y1 · · · (c′l)yl)h0)c
]}

.

Note that the simulator knows the values ((yi)
l
i=1 , λ) as he may use V ′ as subrou-

tine, and therefore he can compute D((c′1)y1 · · · (c′l)yl), where D is the decryption
function. ��
8 Effectively, b = 1 by construction. To keep the simulation clear, it is however denoted

in full.

Anonymous Credential Schemes with Encrypted Attributes 333

The construction of a simulator for the view of a malicious prover U ′ on the
protocol relies on Ass. 2. We can assume that U ′ did K ≥ 0 credential issuance
queries, and output a tuple (h′, (c′i)

l
i=1 , α, z′, (z′i)

l
i=1 , c′, r′). We recall that the

equation c′ = H(·) of (2) is assumed to hold.

Proposition 7. For any common input (h′, (c′i)
l
i=1), the protocol in Fig. 5 can

be simulated in a perfectly indistinguishable way, for any malicious U ′.

Proof. Given a common input (h′, (c′i)
l
i=1). For any prover U ′ and honest verifier

V , the real conversations are as follows:

– Receive a from U ′, send c ∈R Zq to U ′, and receive r from U ′;
– Set b←

[
(h′)r ?= a(D((c′1)

y1 · · · (c′l)yl)h0)c
]
, and output (a, c, r, b).

We construct a simulator that also has input (h′, (c′i)
l
i=1) and may use U ′ as a

subroutine:

– Receive a from U ′, send c ∈R Zq to U ′, and receive r from U ′;
– Use the extractor E of Ass. 2 to obtain (hj , (cji)l

i=1)
K
j=1 and τ ∈ {0, . . . ,K};

– Set b←
{

1, if τ
= 0 and (h′)r = ahc
τ ,

0, if τ = 0 or (h′)r
= ahc
τ ;

– Output (a, c, r, b).

Remains to prove that these two distributions are indistinguishable, given any
common input (h′, (c′i)

l
i=1). But the values (a, c, r) are constructed the same in

both conversations, remains to show that b is distributed the same in both sets.
Suppose that in the real conversation b = 1. By the special soundness property

(Prop. 5), with overwhelming probability U ′ knows an α such that (h′)α−1
=

D((c′1)
y1 · · · (c′l)yl)h0. By Ass. 2 (and as c′ = H(·) holds), this implies that with

overwhelming probability there exists a j such that (3) holds, which by definition
means that τ
= 0. It moreover implies that:

(h′)r = a(D((c′1)
y1 · · · (c′l)yl)h0)c {since b = 1}

= a(D((cτ1)y1 · · · (cτl)yl)h0)c {equation (3)}
= ahc

τ {by construction}.

So by construction the simulator sets b = 1 as well.
Conversely, suppose that in the simulated conversation b = 1. By construction

this means that τ
= 0 and (h′)r = ahc
τ . By definition, τ
= 0 implies that (3) is

satisfied with j = τ . Now:

(h′)r = ahc
τ {since b = 1}

= a(D((cτ1)y1 · · · (cτl)yl)h0)c {by construction}
= a(D((c′1)

y1 · · · (c′l)yl)h0)c {equation (3)},

which implies that also in the real execution b = 1. Concluding, with overwhelm-
ing probability b is computed the same in both conversations, and hence the real
and simulated conversations are perfectly indistinguishable. ��

One Time Anonymous Certificate: X.509
Supporting Anonymity�

Aymen Abed1 and Sébastien Canard2

1 Logica IT Service - 17 place des Reflets - 92097 Paris la Défense Cedex - France
2 Orange Labs - 42 rue des Coutures - BP6234 - F-14066 Caen Cedex - France

Abstract. It is widely admitted that group signatures are today one
of the most important cryptographic tool regarding privacy enhancing
technologies. As evidence, the ISO organization has began a subject on
authentication mechanisms supporting anonymity, in which group sig-
natures are largely studied. However, it seems difficult to embed group
signatures into other standards designed for classical authentication and
signature mechanisms, such as the PKI X.509 certification. In fact, X.509
public key certificates are today widely used but not designed to support
anonymity. One attempt has been done by Benjumea et al. but with
the drawback that (i) the solution loses the principle of one certification
per signer, (ii) revocation cannot be performed efficiently and (iii) the
proposed architecture can not be applied to anonymous credentials, a
concept close to group signature and today implemented by IBM or Mi-
crosoft. This paper presents a new approach which permits to use the
X.509 standard to group signature schemes and anonymous credentials
in a more standard and efficient way than related work.

1 Introduction

Anonymity is today considered as one possible base of individual privacy. In
this case, the customer is anonymous when she is accessing a specific service.
A lot of theoretical work has been done to design new signature schemes which
provide such anonymity of the signer. Among them, one of the most popular is
the concept of group signature scheme, introduced by Chaum and van Heyst [17]
and currently under discussion to be standardized at the ISO organization.

Several constructions of group signature schemes today exist, either secure in
the random oracle model [1,5,18] or in the standard model [21]. Many variants
have also been proposed, such as Direct Anonymous Attestation [16,7,15,30] or
anonymous credential systems [12,2].

The latter, a.k.a. “need to know approach”, is an emerging concept which is
currently under development in concrete systems such as IBM Idemix [23] or

� This work has been financially supported by the French Agence Nationale de la
Recherche under the PACE project and by the European Commission’s Seventh
Framework Programme (FP7) under contract number ICT-2007-216676 ECRYPT
II, while 1st author was working at Orange Labs.

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 334–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

One Time Anonymous Certificate: X.509 Supporting Anonymity 335

Microsoft Credentica UProve [25]. This concept permits users to access services
that are conditioned to some attributes such as the age, the address or the
nationality, while revealing the minimum of information about them. In fact, this
is not necessary to reveal the information on all the attributes (age, nationality,
etc.) or indeed the attribute itself. For example, one needs not to reveal her date
of birth to prove that she is more than 65 years old.

However, there is not enough work to apply these theoretical concepts in
current existing infrastructures. As one of the main example, X.509 public key
certificates are widely used but not designed to support anonymity. A Public Key
Infrastructure (PKI) serves to identify the holder of a private key in a standard
fashion and has been used in many types of transactions and communications
over Internet. It seems however that it is not possible to use a X.509 certificate
with e.g. group signatures, for the following reasons.

1. In the Subject Name field of a X.509 certificate, one can find the true identity
of the user to whom it was issued.

2. In the Subject Public Key Information field, the Certification Authority (CA)
puts the public key of the signer.

3. A certificate is published by the CA, for example in a directory system,
which may be widely accessible.

Recently at CANS 2007, Benjumea, Choi, Lopez and Yung [4] have proposed
Anonymity 2.0 as a way to use X.509 certificates in the group signature scheme
setting (as well as in the case of traceable and ring signatures). In a nutshell, they
consider a unique X.509 certificate for the whole group, which one is valuable
to all group members. In the proposed X.509 certificate, the Serial Number and
the Validity Period are fixed, the Subject Name field is the identity IdG of the
whole group and the Subject Public Key Information field contains the public
key gpk of the whole group.

However, there are three main issues to solve regarding the use of X.509
certificates for group signatures.

1. Using Anonymity 2.0 [4], the “real identity” of the user is lost since the
X.509 certificate is no more related to one unique signer.

2. X.509 standard includes the way to revoke one particular signer. Regarding
Anonymity 2.0, either each revocation in the group modifies the group public
key gpk and thus the corresponding X.509 certificate, which is a very expen-
sive solution, or the X.509 certificate is not used for the revocation purpose,
which makes Anonymity 2.0 not in accordance with the X.509 standard.

3. Anonymity 2.0 can not be applied in the context of anonymous credentials.

It also exist some work on the way to use X.509 certificates while protecting the
privacy of the owner of the certificate. For example, the RFC 5636 on traceable
anonymous certificate [28] defines a practical architecture and protocols such
that the X.509 certificate contains a pseudonym, while still retaining the ability
to map such a certificate to the real user who requested it. The architecture
separates the authority responsible for the verification of the ownership of a

336 A. Abed and S. Canard

private key and the one who validate the contents of a certificate. In [29], Persiano
and Visconti propose the concept of Secure and Private Socket Layer protocol,
that is an extension of the SSL/TLS protocol that allows the server to present a
list of certificates and the client to prove that she owns the private key related to
at least one of those certificates, without revealing which one. But none of these
two approaches focuses on group signatures nor anonymous credentials, which
is the case in this paper.

In fact, we propose a new approach, called One-Time Anonymous Certificate
(OTAC), which permits to better use group signatures with X.509 certification.
Our solution also solve all the above issues and, this way, permits the user to
become the center of the whole system.

The paper is organized as follows. Section 2 presents the concept of group
signature schemes, and describes some existing constructions. In Section 3, we
recall X.509 certification and give some words on Anonymity 2.0. Section 4
describes our work and compares it with other proposed solutions to make X.509
supporting anonymity. The Section 5 finally studies the application of OTAC to
anonymous credentials.

2 Group Signature Schemes

We first focus on group signature schemes which have been introduced in [17].
In such scheme, any member of the group can sign messages on behalf of the
group. Such signature remains anonymous and unlinkable for anyone except a
designated authority who has the ability to identify the signer. This entity is
sometimes called the Opening Manager. The group is typically controlled by a
Group Manager GM that handles enrollment of members.

2.1 Concept of Group Signatures

In the following, we consider a group which is publicly identified by a unique
identifier denoted IdG. This group can be dynamic in the sense that group
members can enter or leave the group at any time during the life cycle of this
group. Following [3], a group signature scheme is a digital signature scheme
comprised of the following procedures.

– Setup is a probabilistic algorithm which on input a security parameter 1λ,
outputs the initial group public key gpk, the secret key gmsk for the group
manager and the opening secret key osk.

– UserKg is a user key generation which on input a user i and the group public
key gpk, outputs a personal public and private key pair (upk[i], usk[i]). We
assume that upk[i] is public.

– Join is a protocol between the group manager, on input gmsk and a user
i on input (upk[i], usk[i]) that results in the user becoming a new group
member. The user’s output is a membership secret gsk[i], which may include
(upk[i], usk[i]). GM makes an entry reg[i] in the registration table which is
included into gpk.

One Time Anonymous Certificate: X.509 Supporting Anonymity 337

– Sign is a probabilistic algorithm that on input a group public key gpk, a
membership secret gsk[i] and a message m outputs group signature σ of m.

– Verify is an algorithm for establishing the validity of a group signature σ
of a message m with respect to the group public key gpk.

– Open is an algorithm that, given a message m, a valid group signature σ on
it, the group public key gpk and an opening secret key osk, determines the
identity i of the signer, together with a proof τ that the opening has been
correctly done. This algorithm output i = 0 in case no group member has
produced this signature.

– Judge takes on input the group public key gpk, an integer j ≥ 1, the public
key upk[j] of the user j, a message m, a valid signature σ of m, and a proof
τ . Its aim is to check that τ is a proof that user j has truly produced σ.

As described in [3], a secure group signature scheme must satisfy the following
properties. Note that we do not give the formal definitions since our aim in this
paper is not to study in detail the security properties of some schemes.

– Correctness: a signature which is produced by the group member i using
Sign must be accepted by Verify. Moreover, in case of opening, the Open

procedure should output i together with a proof τ which is accepted by the
Judge algorithm.

– Anonymity: an adversary should not be able to decide whether one given
signature has been produce by two known group members of her choice. The
adversary has chosen both members and may know their respective secret
keys. The adversary has also access to both group manager’s secret keys
gmsk and can ask for the opening of group signatures (except for the given
signature).

– Traceability: this property describes that an adversary is not able to pro-
duce a signature such that either the honest opener declares herself unable
to identify the origin of the signature (that is Open outputs i = 0), or she
has find the signer but is unable to produce a correct proof τ of its claim.

– Non-frameability: the adversary should not be able to create a proof,
accepted by the Judge algorithm, that an honest user produced a certain
valid signature unless this user really did produce this signature.

2.2 Constructions of Group Signature Schemes

Group signatures have been the subject of many research papers over the past
years. Currently proposed group signatures have been proved secure in the ran-
dom oracle model [1,5,18], or in the standard one [21].

Zero-knowledge proof of knowledge. Roughly speaking, a zero knowledge
proof of knowledge is an interactive protocol during which an entity proves to
a verifier that he knows a set of secret values α1, . . . , αq verifying a given rela-
tion R without revealing anything else. These protocols are also used to prove
that some public values are well-formed from secret ones known by the prover.
In the sequel, we denote by Sok(α1, . . . , αq : R(α1, . . . , αq))(m) a signature of

338 A. Abed and S. Canard

knowledge based on a proof of knowledge of the secrets α1, . . . , αq verifying the
relation R, and where m is the message to be signed. As shown in [14,9], it is
today possible to prove discrete-logarithm based predicates (e.g. representation,
equality of discrete logarithms, belonging to a public interval).

Constructions in the random oracle model. Group signature scheme con-
structions that are secure in the random oracle model [1,8,5,20,18] are based on
the use of signatures of knowledge [13], that is zero-knowledge proofs of knowl-
edge transformed into signatures using the Fiat-Shamir heuristic [19].

In a nutshell, such group signature schemes are based on the same structure.
Namely, during the Join procedure, the new group member obtains from the
group manager a (Camenisch-Lysyanskaya [11] type) signature on one secret
computed by both entities but only known by the member. The group signature
is next the proof of knowledge of the signature from GM on the secret, without
revealing the signature nor the secret, to ensure anonymity. We recall below the
ACJT group signature scheme [1] and give some words on the BBS one [5].

The ACJT group signature scheme. In this scheme1, the underlying signature
scheme [11] is based on the Flexible RSA assumption (a.k.a. Strong RSA as-
sumption). The secret key, denoted x is signed by the group manager and the
resulting signature is the couple (A, e) such that Ae = a0a

x (mod n) where n
is a safe RSA modulus and a0 and a are publicly known random elements of
QR(n), the group of quadratic residues modulo n. The secret key of the group
manager is the factorization of n, which permits to choose at random e and to
compute the corresponding A in the signature.

The group signature next consists in first encrypting one part of the obtained
signature using the public key related to the opening secret one. In the ACJT
case, the encryption is done by using the El Gamal encryption scheme, as

T1 = Ayw, T2 = gw, T3 = gehw

where y is the public key corresponding to the opening secret key θ (that is, y =
gθ). The couple (T1, T2) is the El Gamal encryption of A while T3 corresponds
to a commitment on e. Note that these values, denoted in the following Kg =
(T1, T2, T3), do not depend on the message m to be signed. The second part of
the group signature, denoted Sm in the following, is the signature of knowledge
on the message m, which can be written as

U = Sok

[
x, e, w, ew : a0 = T e

1 /(a
xywe)∧T2 = gw∧1 = T e

2 /g
we∧T3 = gehw

]
(m)

with the message m on input. The group signature σ onm is finally (T1, T2, T3, U),
which correspond to the couple (Kg, Sm).

1 One better solution in terms of efficiency and security has afterward been proposed
by Camenisch and Groth in [8] but we do not need to detailed it in this paper, since
both solutions can be used in our result and the ACJT description is easier to give.

One Time Anonymous Certificate: X.509 Supporting Anonymity 339

The BBS group signature scheme. The BBS group signature scheme [5] and its
variants [20,18] are based on the q-SDH assumption. For example in [20,18], the
secret key, denoted y, is signed by the group manager and the resulting signature
is the couple (A, x) such that Aγ+x = g0h

y in a group of prime order. γ is the
secret key of the group manager and g0 and h are publicly known generators.

Next, the group signature is composed of a ciphertext and a signature of
knowledge. For example, in the XSGS variant [18] of the BBS group signature
scheme, the encryption is done by using the double El Gamal encryption scheme.
Next, the first part of the group signature scheme consists in

T1 = Ayα
1 , T2 = gα, T3 = Ayβ

2 , T4 = gβ,

where y1 and y2 are the public keys corresponding to the opening secret keys
ζ1 (that is, y1 = gζ1) and ζ2 (that is, y2 = gζ2). The tuple (T1, T2, T3, T4) is the
double El Gamal encryption of A and does not depend on the message m. The
second part of the group signature is the signature of knowledge on the message
m, which can be written as

U = Sok

[
α, β, x, z : T2 = gα ∧ T4 = gβ ∧ T1/T3 = yα

1 /y
β
2 ∧

e(T1, g2)xe(h,w)−αe(h, g2)z = e(g1, g2)/e(T1, w)
]
(m)

where g1 and g2 are random generators, z = xα+y, w = gγ
2 and with the message

m on input. The resulting group signature is composed of the (double) El Gamal
or linear encryption Kg = (T1, T2, T3, T4) and the signature of knowledge Sm = U
on the message m. The group signature is again a couple of the form (Kg, Sm)
where Kg does not depend on the message, while Sm does.

Constructions in the standard model. Groth Sahai NIWI proofs [22] permit
to prove to a third party that some given values are well-formed (they lie in
the correct given language) but do not permit to prove the knowledge of these
values. As it is sometimes necessary to prove the knowledge of some secret values
related to the group membership (e.g. in group signature schemes), the use of
Groth-Sahai technique is not enough.

In [21], Groth proposes to use certified signatures. During the Join proto-
col, each group member obtains a signature vi on a user secret key (xi, ai, bi).
During the signature procedure, the signer chooses at random a new key pair
(vksots, sksots) for a one-time signature, produces a certificate σ and two interme-
diary values (a, b) (one a which is revealed and the other, b, which is kept secret
by the signer) of the corresponding public key using her certified secret key. The
Groth signature also encrypts the value vi to open the group signature if needed.
She next produces proofs (π, ψ) that all the above values are well-formed. Finally,
she signs the message m and the values vksots, a, π, y, ψ), using the one-time se-
cret key, obtaining σsots. The final group signature is (vksots, a, π, y, ψ, σsots),
which is again of the form (Kg, Sm) with Kg = (vksots, a, π, y, ψ) (not depending
on m) and Sm = σsots (depending on m).

340 A. Abed and S. Canard

2.3 Group Member Revocation

It may be necessary, in some cases, to handle the situation in which a group
member wants to leave a group or is excluded by the Group Manager. In both
cases, it is necessary to set up a mechanism to prevent the possibility for a
revoked member to produce a valid group signature. It exists today two different
methods to revoke a group member in a group signature scheme, that is, make it
infeasible for a membership secret gsk[i] to be used to produce a group signature
which will be accepted by the Verify algorithm: the use of accumulators or the
verifier-local revocation approach.

It is moreover necessary to modify the above security model. In fact, it cur-
rently exists two different models dealing with group member revocation, one
for each underlying solution: accumulator technique [10], or verifier local revo-
cation [6,24]. We do not detail these models as it is not really necessary to the
understanding of our paper.

The accumulator technique. This technique has been introduced by
Camenisch and Lysyanskaya [10] and is based on the use of dynamic accumula-
tors [10,27]. In a nutshell, GM publishes a single value v which accumulates a
group member secret key per valid group member. The group signature should
next include a zero-knowledge proof that the member knows a secret value and
a corresponding witness that this value is truly accumulated in v. It should be
hard for users outside the group to forge such proof (by finding an appropri-
ate witness). The accumulator is next updated each time a new user becomes
a group member (a new value is added into the accumulator) and after each
revocation (the value of the revoked group member is deleted from the public
accumulator).

The main problem with this method is that it implies for each group mem-
ber to update her secret data (more precisely a witness that her value is truly
accumulated) after each modification (addition and deletion) in the group.

The Verifier Local Revocation (VLR) technique. This technique has been
proposed by Boneh and Shacham [6]. The idea behind is to manage a revocation
list with a data for each revoked group member. During the Sign process, the
group member produces an extra value which is used by the verifier who run
through the revocation list to test, for each entry, if this is related to the value
used to produce the signature.

This gives a solution without any update for group members. However, the
group public key gpk needs to be regularly updated to avoid backward linkability
(see e.g. [26]). More importantly, the time complexity from the verifier’s side is
linear in the number of entries in the revocation list.

Using one of these solutions, a revocation mechanism can thus be used for
group signatures with the X.509 principles. The side effect is that each group
member needs to produce two different group signatures, which makes our solu-
tion less efficient than the Anonymity 2.0 one [4]. However, our solution is more
efficient considering the revocation mechanism since the use of Anonymity 2.0
implies the creation of a new certificate at each modification within the group.

One Time Anonymous Certificate: X.509 Supporting Anonymity 341

2.4 Anonymous Credential

In the context of anonymous credentials, users have to show a kind of tokens
to prove statements about themselves. For this purpose, each user has one or
several credentials which are issued by some organizations that ascertain the
authenticity of the information and can be provided to check things on demand.
The certified attributes can be e.g. a name, an address, an age, etc. Users may
also be required to prove a predicate on the attributes encoded in their creden-
tials, such as for example that her age is greater than a fixed value, revealing
neither their age nor other attributes.

The main requirements an anonymous credential systems are (i) unforgeability
which states that the user can not prove the validity of forged credentials or
predicates that are encoded on her issued credential and (ii) privacy which states
that the verifier should not be able to learn any information about the user’s
credentials (e.g. other attributes) beyond what can be logically inferred from the
status of the proven predicate.

It is possible to construct an anonymous credential system using the same
techniques as group signature schemes. For example [12], it is possible to con-
struct such system based on the ACJT group signature scheme as follows. The
credential (A, e) is of the form Ae = a0a

c1
1 · · · ac�

� bx (mod n) where n is a safe
RSA modulus, b, a0, · · · , a� are publicly known random elements of QR(n), the
ci’s are the certified attributes (for example c1 represents the nationality, c2
the address, c3 the date of birth, etc.) and x is a secret value only known by
the user, but jointly computed.

The proof of possession of a credential is done similarly as for a group sig-
nature. For example, if one user wants to prove that her first attribute (her
nationality) is the value c1, she has first to compute

T1 = Ayw,T2 = gw,T3 = gehw

where w is a random value and next to produce the signature of knowledge

U = Sok

[
x, e,w, ew, c2, · · · , c� : a0a

c1
1 = Te

1/(a
c2
2 · · · a

c�

� bxywe) ∧
T2 = gw ∧ 1 = Te

2/g
we ∧ T3 = gehw

]
(m)

with the message m on input. The user sends (c1,T1,T2,T3,U) to the verifier
who verifies the signature of knowledge to be convinced that the credential embed
the certified attribute c1, as expected.

3 X.509 Certification and Anonymity

In this section, we recall X.509 certification principles and we describe the pa-
per from Benjumea et al. [4], which is the first to propose the use of X.509
certification for signature schemes with anonymity (group, traceable and ring
signatures).

342 A. Abed and S. Canard

3.1 X.509 Certification

X.509 is an ITU-T standard for a public key infrastructure (PKI). Its aim is to
make the link between a public key and an entity, since public key cryptography,
for example in the signature setting, only permits to know that one signature
has been produced by this particular public key but not by this particular entity.
In a nutshell, a X.509 certificate is the certification by a trusted authority called
the Certification Authority (CA) that the public key in the certificate belongs
to the identity in this certificate.

Thus, when sending a signed message, one has to give the message m, the sig-
nature σ produced using her secret key, and the X.509 certificate on the corre-
sponding public key. The verification step consists next in verifying the validity
of the certificate, extracting the verification public key and using it to verify σ on
m. More precisely, all X.509 certificates have the following data, in addition to the
signature from the CA on all these fields.

– Version: this identifies which version of the X.509 standard applies to this
certificate, which affects what information can be specified in it. We do not
detail this field as it is not really important in our study, except that we
should use X.509 Version 3, which is the most recent one.

– Serial Number : the entity that created the certificate is responsible for as-
signing it a serial number to distinguish it from other certificates it issues.
This information is used in numerous ways, for example when a certificate is
revoked its serial number is placed in a Certificate Revocation List (CRL).

– Signature Algorithm Identifier : this identifies the algorithm used by the CA
to sign the certificate.

– Issuer Name: the X.500 name of the entity that signed the certificate. This is
normally a CA. Using this certificate implies trusting the entity that signed
this certificate2.

– Validity Period : each certificate is valid only for a limited amount of time.
This period is described by a start date and time and an end date and time,
and can be as short as a few seconds or almost as long as a century. The
chosen validity period depends on a number of factors, such as the strength
of the private key used to sign the certificate or the amount one is willing
to pay for a certificate. This is the expected period that entities can rely on
the public value, if the associated private key has not been compromised.

– Subject Name: the name of the entity whose public key is embedded into the
certificate. This name uses the X.500 standard, so it is intended to be unique
across the Internet. This is the Distinguished Name (DN) of the entity.

– Subject Public Key Information: this is the public key of the entity being
named, together with an algorithm identifier which specifies which public
key cryptosystem this key belongs to and any associated key parameters.

– Extensions : there are today some common extensions in use. KeyUsage limits
the use of the keys to particular purposes such as “signing-only”, Alterna-
tiveNames allows other identities to also be associated with this public key,

2 Note that in some cases, such as root or top-level CA certificates, the issuer signs
its own certificate.

One Time Anonymous Certificate: X.509 Supporting Anonymity 343

e.g. DNS names, Email addresses, IP addresses. Extensions can be marked
critical to indicate that the extension should be checked and enforced/used.
For example, if a certificate has the KeyUsage extension marked critical and
set to “keyCertSign” then if this certificate is presented during SSL commu-
nication, it should be rejected, as the certificate extension indicates that the
associated private key should only be used for signing certificates and not
for SSL use.

3.2 Anonymity 2.0

X.509 public key certificates were designed to support the concept of one public
key, corresponding to a unique private key, for one identity, referring to the one
who has the private key. As a consequence, this does not support the anonymity
of the signer, by construction. If one want to use such X.509 certificate structure
for group signature, one has to face to the problem that the group member key
reg[i] (see group signatures above) can not be transcript in the certificate, as it
reveals the identity of the group member.

Benjmumea et al. propose in [4] to consider one single standard X.509 cer-
tificate for the whole group. The elegant model which is given in [4] is based on
adding some semantic extensions, keeping the same X.509 structure. More pre-
cisely, they define a X.509 public key certificate with extended semantic where
the public key is not bound to a single entity but it is bound to a concept (see
the Appendix A in [4] for the specification of extension fields in ASN.1). Con-
sidering the above structure of an X.509 certificate, they propose the following
modifications.

1. Fix the Serial Number.
2. Fix the Validity Period, that is the start date/time and the end date/time.
3. Put the identity of the group IdG in the Subject Name field.
4. Put the public key of the group gpk in the Subject Public Key Information

field.

In fact, this concept stated that members belonging to the same group possess
the same X.509 certificate. Thanks to their solution we get the desired anonymity
and their solution can next be applied for group signatures, but also for traceable
and ring signatures, as shown in [4].

3.3 Remaining Issues

However, there remains three main issues to solve regarding the use of X.509
certificates for group signatures.

1. One aim of X.509 certificates is to make the link between one public key and
one identity. However, using Anonymity 2.0 [4], the “real identity” binding
the X.509 certificate is lost since it is no more related to one unique signer,
but to the whole group. From this point of view, Anonymity 2.0 is not totally
in accordance with the X.509 standard principles.

344 A. Abed and S. Canard

2. X.509 standard includes the way to revoke one particular signer. Using for
example a revocation list, this is possible to put the certificate corresponding
to a revoked signing secret key onto this revocation list so that, in case of
fraud, a signature produced by this private key is no more accepted. Thus, in
this case, each time a signature and a certificate is received, the verifier needs
to verify whether this certificate belongs to the revocation list. Regarding
group signature schemes, this is not completely possible using Anonymity
2.0. In fact, there are two ways to consider revocation using Anonymity 2.0.
(a) Each revocation in the group modifies the group public key gpk and thus

the corresponding X.509 certificate. As a consequence, if a revoked mem-
ber uses the wrong group public key to be accepted, then the X.509 will
be refused and the whole group signature rejected. This is thus necessary
to put each time the previous X.509 certificate onto the revocation list
and next to recreate a new one for the whole group. This is therefore a
very expensive solution.

(b) The X.509 certificate is not used for the revocation purpose. This way,
the revocation is only done using the simple group signature and usual
techniques (see Section 2.3). The X.509 certificate is here only used to
make the link between the group public key and the group in which
belong the signer. With such solution, Anonymity 2.0 is again not in
accordance with the X.509 standard.

3. Anonymity 2.0 can not be applied in the context of anonymous credentials
(see Section 2.4), which can be described as a way to manage several groups
(group of people who live in the same town, group of people being more than
65 years old, group of people being a student, etc.) in an efficient and compact
way. Using Anonymity 2.0 in such context, having one X.509 certificate per
group, implies as many certificates as there are possibilities of attributes,
which makes it unusable in practice.

In the following, we design a new way to consider X.509 certificates in the context
of group signature schemes and anonymous credential systems in such a way that
the proposed solution is totally in accordance with the X.509 standard, without
the multiplication of revoked and/or issued certificates.

4 One Time Anonymous Certificate

In this section, we present our result on X.509 certification for group signature
schemes. We name it OTAC for One-Time Anonymous Certificate and we here
give a general overview and next detail our system.

4.1 Overview of Our Solution

We want to add to a message m and its group signature σ a X.509 certificate
which

1. can be used by the verifier to verify the group signature, as a standard X.509
certificate;

One Time Anonymous Certificate: X.509 Supporting Anonymity 345

2. does not compromise the security aspects of group signature schemes (see
Section 2.1);

3. is unique for a given group member and
4. directly permits the management of revocation of group members.

The idea is to put on the Subject Public Key Information field a cryptographic
key which is at the same time unique for a given group member and different
from one signature to another (to obtain the anonymity property). This “public
key” should be generated by the group member as many time as she wants and
should not depend on the message to be signed (since it is included into the
certificate).

If we examine different group signature schemes (See Section 2.2), we remark
that for each of them, the final group signature is divided into two parts. The
first one, denoted Kg does not depend on the message to be signed and is related
to the identity of the group member. The second one, denoted Sm, depends on
the message m. Moreover, the first part Kg includes the way for the Opening
Manager to open the group signature (see (T1, T2) for the ACJT group signa-
ture [1] or y for the Groth one [21]). In Figure 1, we resume the way current
group signatures are divided in that way.

Group signature Kg Sm

ACJT [1] T1, T2, T3 U
BBS [5,18] T1, T2, T3, T4 U
Groth [21] vksots, a, π, y, ψ σsots

Fig. 1. The Kg and Sm variables for some group signatures

As a consequence, regarding the X.509 certificate as described in Section 3.1,
we can consider that the key Kg corresponds to the Subject Public Key Infor-
mation, while Sm is a true signature (of knowledge) on the message m, using, in
some senses, the “public key” Kg. We thus obtain our “one-time” X.509 certifi-
cate.

Focusing on the X.509 certificate signature, it is obvious that we cannot ask
for the certification authority to perform this task each time a group member
produces a group signature, for two obvious reasons. First, this implies that this
authority is always on-line, which comes against the principle of certification.
Second, this goes against the anonymity of the user.

In this paper, we adopt a new approach which consists in delegating to each
group member the power to sign a certificate. As it is necessary for the signer to
be anonymous, we introduce the concept of “major group” in which each user
is thus able to produce a major group signature on the above one-time X.509
certificate. Consequently, each group member lies into two (or more) groups,
the “major” one for signing a X.509 certificate and the “minor” one(s) for the
purpose of the initial group.

346 A. Abed and S. Canard

4.2 Detailed Description

In the following, we consider a group, called the minor group, identified by IdG,
and related to a group signature scheme. This minor group is managed by a
Group Manager and an Opening Manager and is composed of several group
members. Each of them has a membership secret gsk[i] for this minor group and
is thus capable of producing group signatures σ on messages m, on behalf of this
minor group.

We now describe how to create a One Time Anonymous Certificate (OTAC)
for group signatures.

Creation of an OTAC. On input a message m, the group member executes
Sign(gpk, gsk[i],m) and obtains the group signature σ. We here remember that
we use one of the group signature that has been described in Section 2.2. Thus,
the obtained signature is of the form (Kg, Sm) (see Section 2.2 and Figure 1).
The user can now create the one-time certificate, based on the X.509 structure,
with the following fields.

– Serial Number : as we consider that this certificate is one-time, and according
to the standard X.509 certificate, the serial number should be different from
one OTAC to another. It may for example be the (collision-resistant) hash
value of Kg;

– Signature Algorithm Identifier : the signature algorithmID must be redefined
to be the major group signature. We detail this step just below;

– Issuer Name: the issuer name will be the CA;
– Validity Period : according to [4] the validity period needs to be fixed by e.g.

the CA and is consequently common to all group members;
– Subject Name: the subject name should not give any information about the

identity of the group member. It may for example be the hash value of
Kg‖IdG;

– Subject Public Key Information: this field is defined by the user to be the
value Kg outputted by the execution of Sign(gpk, gsk[i],m) = σ = (Kg, Sm).

Remark 1. As this is the user herself who fill in these fields, one can argue
that the verifier may not be convinced that those values have been correctly
computed. In fact, for most of them (serial number and subject name), it is
in the user’s interest to fill in them as described above. For the other ones
(Signature Algorithm ID, Issuer Name, Validity Period), it is possible for the
verifier to check them using a parent certificate.

Note that this certificate is necessarily one-time since it includes the value Kg,
which is specific to this signature, for unlinkability purpose. It now remains to
sign this certificate. As said above, this is not possible to ask the certification
authority to sign this message, since it goes against the essence of X.509 certifi-
cation (the CA should be off-line) and compromises the user anonymity.

One Time Anonymous Certificate: X.509 Supporting Anonymity 347

Signature of the OTAC. To cope with the above problem, our solution con-
sists in enabling the user to sign certificates on behalf of the CA. As the user
should be anonymous, we thus use again a group signature scheme. For this pur-
pose, the user should also belong to a major group, managed by the Certification
Authority himself. Thus, each above user should interact with the CA using the
Join protocol of the major group signature scheme, to obtain a membership
secret here denoted GSK[i]. She can now produce a group signature Σ on some
message M .

After having creating a certificate and fulfilled the different fields as described
above, the generated certificate should be hashed in order to get mcert that plays
the role of a generic message m. The group member next generates a “major”
group signature Σ which play the role of the signature of the X.509 certificate
(performed by the CA in the standard certification process).

Finally, the complete certificate OTAC is composed of the above fields, includ-
ing the subject public key with Km, and the complete major group signature Σ.

General scenario. After having created the certificate, the user can send all
the information to the verifier, that is (i) the message m, (ii) the signature Sm

from the minor group signature and (iii) the above signed OTAC. The verifier
next first verifies the validity of the certificate by using the Verify algorithm
for the major group on input the signature Σ and the message mcert (that is,
the hash value of all the fields in the X.509 certificate). Next, the verifier gets
back from the OTAC the value Kg and uses it with the signature Sm on the
message m on input of the Verify procedure for the minor group signature. If
both verifications succeed, then the signature is accepted.

Remark 2. In the standard PKI setting, a fraudulent user may give her X.509
certificate and the corresponding secret key to another user so that the verifi-
cation is falsely said to be correct. We have the same problem with our above
description since one fraudulent user can give her major group membership se-
cret key to another user (which is not necessarily a group member in this major
group). There are two ways to deal with this problem. First, we can assume that
the Group Manager for the minor group does not accept a user which is not a
group member in the major group. This also implies that this Group Manager
and the Certificate Authority communicate one to each other in case of revoca-
tion of a user. The second solution consists in checking that the two valid group
signatures σ = (Kg, Sm) and Σ are based on the same initial secret. In fact,
this is easily possible in the group signature schemes described in Section 2.2,
as shown in Section 5.4.

4.3 Conclusion on OTAC for Group Signature Schemes

As a first conclusion, our OTAC proposal for group signature schemes solves all
the issues considered in Section 3.3, except the case of anonymous credentials
which is considered in the next section. More precisely, we have the following
points.

348 A. Abed and S. Canard

Unicity. With OTAC, it is clear that the resulting X.509 certificate is unique for
a given group member and is related to the identity of her. In fact, the certificate
is related to Kg which includes, as described in Section 2.2, the encryption of
a value which is used by the Opening Manager to open the group signature.
OTAC is here totally in accordance with the X.509 standard.

Revocation. In Section 2.3, we have described the two ways to deal with the
revocation of a group member in group signature schemes. It is relatively obvious
that our OTAC solution can easily include both mechanisms. In fact, we only
need to add a revocation mechanism to the minor group (even if this is also
possible for the major one), which makes the revocation totally in accordance
with the revocation principles in the X.509 standard.

1. Accumulator: this revocation solution includes the modification of the
group signature, that is the addition of some Ti’s (see e.g. [10] for details
in the ACJT case) which are included into Kg and the modification of the
signature of knowledge U accordingly. If a group member is revoked, she will
not be able to produce a valid U .

2. VLR: similarly, this mechanism add some values to Kg and implies the
modification of the signature of knowledge U , accordingly. This time, the
revocation is next based on the principle of a certificate revocation list (CRL)
which is used by the verifier to check whether this certificate is related to a
revoked user. This way, OTAC is in accordance with the X.509 standard.

In some cases, the Group Manager can inform the Certification Authority to
revoke a particular user in the major group.

Security considerations. We should be careful that the addition of an OTAC
does not compromise the security of the initial group signature scheme. As a
consequence, the whole protocol (including the OTAC) should verify the cor-
rectness, anonymity, traceability and non-frameability properties, as described
in Section 2 and in [3]. We here do not give a formal security proof but assuming
that both chosen group signature schemes (minor and major) are secure in the
BSZ sense [3] and according to the fact that the filled fields in OTAC does not
compromise any security property, then it is clear that the global scheme is also
secure in the BSZ sense. The latter argument can be validated by the fact that
the fields depending on Kg (Serial Number, Subject Name and Subject Public
Key Information) do not reveal any extra information that is not initially re-
vealed. Finally, the other OTAC fields do not give any useful information to the
adversary.

5 The Case of Anonymous Credentials

In this section, we show how our OTAC solution can be applied to anonymous
credentials [2]. As described in Section 2.4, anonymous credentials permits users

One Time Anonymous Certificate: X.509 Supporting Anonymity 349

to give evidence to service providers that they have the right attribute (age,
address, nationality, etc.) while revealing the minimum of information on the
certified attributes. We here first recall the two ways to treat attributes with the
X.509 standard. (X.509 Attribute Certificate or the addition of an extension to
X.509 traditional certificates) and we next give our solution.

5.1 X.509 Attribute Certificate

An attribute certificate is a digital document that describes a written permission
from the issuer to use a service or a resource that the issuer controls or has access
to use. It is also known as an authorization certificate. The most recent ITU-
T X.509 recommendation standardizes this concept of attribute certificate and
describes how the attribute certificate should be used with a standard PKI X.509
certificate.

As shown in Figure 2, the Attribute Certificate is close to the identity certifi-
cate described in Section 3.1. The main differences come from the field Holder
which contains the serial number of the related PKI X.509 certificate, and the
Attribute one which contains the attributes of the related user. This certificate
is signed by an authority designated to be the Attribute Authority (AA). The
revocation process is defined using the concept of Attribute Certificate Revoca-
tion List, which is used in the same way as a Certification Revocation Lists in
the PKI case.

Version Number Holder
Serial Number Attributes

Signature Algorithm Issuer Unique Identifier
Issuer Extensions

Validity Period AA Signature

Fig. 2. The Attribute Certificate

5.2 An Alternative to X.509 Attribute Certificate

Most of recent applications do not use attribute certificate to carry permission
or authorization information. User attributes (date of birth, address, nationality,
etc.) are rather put inside a X.509 PKI certificate, using an extension field which
contain a sequence of one or more attributes. This extension field, namely Subject
Directory Attributes, is defined in ASN.1 as follows.

subjectDirectoryAttributes Extension::= {
SYNTAX AttributesSyntax
IDENTIFIED BY id-ce-subjectDirectoryAttributes }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

350 A. Abed and S. Canard

5.3 Using OTAC with the Extension Field

As described in Section 2.4, we suppose that a user obtains from an organization
a credential which contains several user certified attributes c1, · · · , c�. As we use
the extension field, we can consider that the credential system is the minor group
in our OTAC solution. Thus, following the description given in Section 2.4, the
proof of possession of a credential is composed of a first part Kg = (T1,T2,T3)
and a second part Sm = U. We can now apply our technique described in Sec-
tion 4. As a first consequence, this user (as any other in the same case) belongs
to the major group managed by the Certification Authority (CA). She can thus
produce group signatures Σ on some message M , using her membership secret
GSK[i].

When this user wants to prove that her first attribute c1 is for example equal
to the correct nationality (see our example in Section 2.4), she has to create a
one-time certificate OTAC as described in Section 4, with the following modified
fields:

– Subject Public Key Information: the public key contains Kg = (T1,T2,T3);
– Subject Directory Attributes: this extension field contains the value of the

revealed attribute c1.

The signature of the OTAC is done by the user as a member of the major group,
and is thus equal to ΣM , that is the group signature on the hash of all the
fields of the OTAC. The verification is done similarly as for the simple OTAC
described in Section 4 and is not repeated again.

5.4 Using OTAC with the Attribute Certificate

We now describe how to use the attribute certificate with our OTAC solution. As
described above, the Attribute Certificate is sent together with a standard X.509
PKI certificate. In our case, the idea is to replace the latter by our OTAC during
the proof of possession. Before describing our solution, we first focus on the link
between a group signature and an anonymous credential, based on Remark 2
(see Section 4.2).

Link between a group signature and an anonymous credential. In the
following, we need to make a link between a group membership secret and a
certified credential. For this purpose, we take the example of the ACJT based
construction but, in fact, we need to slightly modify both. According to Section 2
and based on the result in [11], we remark that the group membership secret
can also be taken as (A, e, v, x) such that Ae = a0a

vbx (mod n), where x is only
known by the group member but computed by both her and the Group Manager,
while v is randomly chosen by the group member. Moreover, this group member
may have a credential on her attributes (c1, · · · , c�) of the form (A, e, v, x) such
that Ae = a0a

c1
1 · · · ac�

� avbx (mod n), with the same v, which does not compromise
the security, as show in [11].

One Time Anonymous Certificate: X.509 Supporting Anonymity 351

From these two related tuples, (A, e, v, x) and (A, e, v, x), this becomes possible
for the group member to provide a proof that both tuples are truly related. Thus,
from

T1 = Ayw, T2 = gw, T3 = gehwandT1 = Ayw,T2 = gw,T3 = gehw,

which are computed at each group signature and proof of possession (see Sec-
tions 2.2 and 2.4), the group member can provide the following signature of
knowledge

V = Sok

[
v, x, e, w,we, x, e,w,we, c2, · · · , c� : a0 = T e

1 /(a
vbxywe) ∧

a0a
c1
1 = Te

1/(a
c2
2 · · · ac�

� avbxywe)
]
(m),

which in particular proves that the same v is used in both equations. Given that,
we are now able to describe our solution.

Our solution. We consider that a user is the member of a (minor) group,
identified by IdG, and can therefore produce group signatures on behalf of this
group. Again, this user also belongs to a major group which permits her to sign
X.509 based group signature OTAC on behalf of the Certification Authority, as
explained in Section 4. Finally, the organization in the anonymous credential
plays the role of the Attribute Authority AA.

According to the X.509 Attribute Certificate principle (see Section 5.1), the
user has to send a message, a signature, a PKI X.509 certificate and a X.509
attribute certificate. In our solution, the PKI X.509 certificate is the OTAC as
described in Section 4. Most of the fields (e.g. Serial Number, Validity Period)
are unchanged from the initial description of OTAC, which includes the two
following ones.

– Subject Public Key Information: this field is defined by the user to be the
value Kg = (T1, T2, T3) outputted by the execution of Sign(gpk, gsk[i],m) =
σ = (Kg, Sm).

– OTAC Signature: this field is the “major” group signature Σ, using the
membership secret GSK[i].

The Attribute Certificate is next constructed as follows.

– Holder : we put in this field the signature of knowledge V described above,
which permits to make the link between the key embed in the OTAC and
the anonymous credential.

– Attribute: this field contains the revealed attribute c1. In case no attribute
needs to be given (if the user has for example to prove that she is more than
65 years old), this field is set to the empty string.

– AA Signature: the Attribute Certificate signature is the whole proof of pos-
session of an anonymous credential (T1,T2,T3,U) as described in Section 2.4.

Remark 3. Another solution can be to have only one group which permits to
sign both the message and the OTAC. This is more efficient but implies the
delegation of the group management to a single authority.

352 A. Abed and S. Canard

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

4. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Anonymity 2.0 - x.509 extensions
supporting privacy-friendly authentication. In: Bao, F., Ling, S., Okamoto, T.,
Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 265–281. Springer,
Heidelberg (2007)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security 2004, pp. 168–177. ACM,
New York (2004)

7. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
Conference on Computer and Communications Security 2004, pp. 132–145. ACM,
New York (2004)

8. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2004)

9. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2002)

12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

13. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-
tended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

14. Canard, S., Coisel, I., Traoré, J.: Complex zero-knowledge proofs of knowledge are
easy to use. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 122–137. Springer, Heidelberg (2007)

15. Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List signature schemes. Dis-
crete Applied Mathematics 154(2), 189–201 (2006)

16. Canard, S., Traoré, J.: List signature schemes and application to electronic voting.
In: Proceedings of Workshop on Coding and Cryptography (WCC 2003), pp. 81–90
(2003)

One Time Anonymous Certificate: X.509 Supporting Anonymity 353

17. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

18. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

19. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1986)

20. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467.
Springer, Heidelberg (2005)

21. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg
(2007)

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

23. IBM. Idemix - identity mixer (2004),
http://www.zurich.ibm.com/security/idemix/

24. Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and back-
ward unlinkability in the standard model. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

25. Microsoft. Microsoft U-Prove CTP (2010),
https://connect.microsoft.com/content/

content.aspx?contentid=12505&siteid=642

26. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

27. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

28. Park, S., Park, H., Won, Y., Lee, J., Kent, S.: Traceable Anonymous Certificate.
RFC 5636 (Experimental) (August 2009)

29. Persiano, P., Visconti, I.: User privacy issues regarding certificates and the tls
protocol: the design and implementation of the spsl protocol. In: ACM Conference
on Computer and Communications Security, pp. 53–62 (2000)

30. Trusted Computing Group. Direct Anonymous Attestation (2004),
http://www.zurich.ibm.com/security/daa/

http://www.zurich.ibm.com/security/idemix/
https://connect.microsoft.com/content/content.aspx?contentid=12505\&siteid=642
https://connect.microsoft.com/content/content.aspx?contentid=12505\&siteid=642
http://www.zurich.ibm.com/security/daa/

Author Index

Abed, Aymen 334
Araújo, Roberto 278

Bagheri, Nasour 96
Bay, Asli 1
Blundo, Carlo 298
Buchmann, Johannes 140
Bulygin, Stanislav 140

Canard, Sébastien 334
Chen, Jiazhe 20
Chow, Yang-Wai 221

Ding, Jintai 140
Dong, Le 124
Du, Chenghang 20

Eian, Martin 62

Fang, Haifeng 241
Faugère, Jean-Charles 169

Gauravaram, Praveen 96
Gligoroski, Danilo 169
Großschädl, Johann 44
Guajardo, Jorge 314

Hanatani, Yoshikazu 156

Iovino, Vincenzo 298
Isogai, Taichi 156

Kizhvatov, Ilya 44
Kurosawa, Kaoru 43

Lackner, Günther 76
Liu, Xiao Wei 31
Liu, Zhiyong 241

Mahdavi, Roghaie 184
Mennink, Bart 314
Minier, Marine 106
Mohamed, Wael Said Abd

Elmageed 140
Mu, Yi 201
Muratani, Hirofumi 156

Naderi, Majid 96
Nakahara Jr., Jorge 1

Ødeg̊ard, Rune Steinsmo 169
Ohkuma, Kenji 156

Perret, Ludovic 169
Persiano, Giuseppe 298
Phan, Raphael C.-W. 106
Pousse, Benjamin 106

Rajeb, Narjes Ben 278
Robbana, Riadh 278

Sadeghi, Ahmad-Reza 199
Saiadian, Abolghasem 184
Schoenmakers, Berry 314
Su, Bozhan 124
Sun, Yuzhong 241
Susilo, Willy 201, 221

Tan, Chik How 261
Teufl, Peter 76
Thomsen, Søren S. 96
Traoré, Jacques 278

Vaudenay, Serge 1

Wang, Hui 241
Weinberger, Roman 76
Werner, Fabian 140
Wu, Shuang 124
Wu, Wenling 124

Yang, Guomin 261
Yonemura, Tomoko 156
Yousfi, Souheib 278
Yu, Qian 31
Yuen, Tsz Hon 201

Zhang, Chang N. 31
Zhao, Yiqiang 241
Zhou, Hua-Yu 221

	Title Page
	Preface
	Organization
	Table of Contents
	Block Ciphers
	Cryptanalysis of Reduced-Round MIBS Block Cipher
	Introduction
	A Brief Description of MIBS
	Linear Cryptanalysis
	Searching for Linear Relations for MIBS
	17-Round Multiple Linear Attack
	Ciphertext-Only Attack
	18-Round Linear Attack

	Differential Cryptanalysis
	Searching for Differential Characteristics of MIBS
	13-Round Differential Attack
	14-Round Differential Attack

	Impossible-Differential Cryptanalysis
	Some Properties of MIBS for 80-Bit User Key
	Construction of 8-Round Impossible Differential Distinguisher
	12-Round Impossible Differential Attack on MIBS with 80-Bit User Key
	Complexity Analysis

	Conclusions
	Appendix - Figures and Tables

	Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds
	Introduction
	Description of ARIA
	4-Round Impossible Differentials of ARIA
	7-Round Impossible Differential Attack on ARIA-256
	Four Equations
	The Procedure of 7-Round Attack on ARIA-256
	Time Complexity

	Conclusion

	An Algorithm Based Concurrent Error Detection Scheme for AES
	Introduction
	The AES Algorithm and Relevant Notations
	The Initial Round
	The 9 Rounds
	The Final Round

	The Algorithm Based Error Detection Schemes for AES
	The General Version of Concurrent Error Detection Scheme
	The Run-Time Concurrent Error Detection Scheme

	Hardware Implementation and Simulation Results
	Conclusion
	References

	Invited Talk I
	Cryptography for Unconditionally Secure Message Transmission in Networks (Invited Talk)

	Wireless Network Security
	Performance and Security Aspects of Client-Side SSL/TLS Processing on Mobile Devices
	Introduction
	Efficient and Secure Implementation of the Handshake Protocol
	Efficient and Secure Implementation of the Record Protocol

	Handshake Protocol
	Handshake with Server Authentication
	Performance Evaluation

	Record Protocol
	Motivation for a New Countermeasure
	Our New Countermeasure: Inter-Block Shuffling
	Security Analysis of AES-GCM with IBS

	Conclusions

	A Practical Cryptographic Denial of Service Attack against 802.11i TKIP and CCMP
	Introduction
	Related Work
	Vulnerability Analysis
	TKIP and 802.11e
	TKIP and CCMP
	Networks without 802.11e QoS Support
	Analysis Summary

	Implementation
	Experimental Validation
	Results
	Discussion
	Conclusions
	Message Sequence Diagrams
	TKIP Frame Structure
	Vulnerability Assessment Tool Source Code
	Vulnerability Assessment Tool Command Line Parameters

	User Tracking Based on Behavioral Fingerprints
	Introduction
	Motivation
	Related Work
	Behavioral Fingerprints and Knowledge Mining
	Email Analysis
	Applying the Activation Patterns Concept to Email Data

	Fingerprinting and Further Analysis
	Supervised Learning for the Creation of Behavioral Fingerprints
	Feature Relations
	Semantic Search
	Feature Relevance
	Unsupervised Clustering

	Conclusion

	Hash Functions
	On the Collision and Preimage Resistance of Certain Two-Call Hash Functions
	Introduction
	Background
	Our Contributions

	The Compression Function Model
	Attacks
	Attacks on a Class of Two-Call Constructions
	Attacks on Some CRYPTO ’08 Proposals

	Conclusion
	References

	Integral Distinguishers of Some SHA-3 Candidates
	Introduction
	Related Work and Notations
	Hamsi-256
	Description of the Hamsi-256 Hash Function
	Integral Properties of Hamsi-256

	LANE-256
	Description of the LANE-256 Hash Function
	Integral Properties of LANE-256

	Grøstl-512
	Description of the Grøstl-512 Hash Function
	Grøstl Analysis So Far
	Integral Properties of Grøstl-512

	Conclusion
	The Integral LANE Properties

	Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE
	Introduction
	Description of Skein and BLAKE
	Skein
	BLAKE

	Near-Collisions for the Reduced-Round Compression Function of Skein
	Near Collisions for the 20-Round Compression Function of Skein-256
	Near Collisions for the 20-Round Compression Functions of Skein-512 and Skein-1024

	Near Collisions for the Reduced-Round Compression Function of BLAKE
	Linearizing G Function of BLAKE-32 and BLAKE-64
	Searching for Differential Trails with High Probability
	Near Collision for 4-Round Compression Function of BLAKE-32
	Near Collision for the 4-Round Compression Function of BLAKE-64
	Near Collision for the 5-Round Compression Function of BLAKE-64

	Conclusion
	Differential Trails of Reduced-Round Skein and BLAKE

	Public Key Cryptography
	Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems
	Introduction
	LD2: Little Dragon Two Multivariate Public-Key Cryptosystem
	Poly-Dragon Multivariate Public-Key Cryptosystem
	MXL2: The MutantXL2 Algorithm
	Experimental Results
	Linearization Equations for the Dragons
	Conclusion

	Generating Parameters for Algebraic Torus-Based Cryptosystems
	Introduction
	Previous Work
	Our Contributions

	Preliminaries and Notation
	Cyclotomic Polynomials
	Algebraic Tori
	Representations

	Parameter Selection Criteria
	Security
	Efficiency

	Suggested Parameters
	Computation Costs
	Arithmetical Operations
	Transformations

	Concluding Remarks
	Quadratic Nonresidue in F_{p^m}

	Analysis of the MQQ Public Key Cryptosystem
	Introduction
	Organisation of the Paper

	Description of the MQQ Public Key Cryptosystem
	Multivariate Quadratic Quasigroups
	The Dobbertin Bijection
	A Public Key Cryptosystem Based on MQQ

	 Gröbner Bases
	Complexity of Computing Gröbner Bases

	Why MQQ Is Susceptible to Algebraic Cryptanalysis
	Experimental Results on MQQ
	Shape of the MQQ System

	Weaknesses of MQQ
	The Dobbertin Transformation
	The Quasigroup Transformation

	Conclusion
	Algorithm for Generating Random MQQ

	Efficient Scalar Multiplications for Elliptic Curve Cryptosystems Using Mixed Coordinates Strategy and Direct Computations
	Introduction
	Scalar Multiplication
	Binary Method
	NAF Method
	MOF Method

	Elliptic Curve Coordinate Systems
	Mixed Coordinate Strategy
	Computational Costs of Scalar Multiplications with Mixed Coordinate Strategy

	Mixed Coordinate Strategy and Direct Computation Algorithms
	Computational Costs of Scalar Multiplications with Mixed Coordinate Strategy and Direct Computation

	Comparison
	Conclusion
	References

	Invited Talk II
	Cryptography Meets Hardware: Selected Topics of Hardware-Based Cryptography (Invited Talk)

	Secure Mechanisms
	Towards a Cryptographic Treatment of Publish/Subscribe Systems
	Introduction
	Publish/Subscribe Systems and Their Security Models
	Publish/Subscribe Systems
	Correctness
	Trust Model
	Confidentiality
	Unforgeability
	Anonymity

	Our Construction
	Main Idea of Our Basic Scheme
	Cryptographic Backgrounds
	The Basic Scheme
	Security

	Related Works
	Conclusion
	References

	STE3D-CAP: Stereoscopic 3D CAPTCHA
	Introduction
	Related Work

	CAPTCHA Revisited
	Definitions and Notation

	Review on 3D Stereoscopy
	Stereo Pair Generation
	Stereoscopic 3D Display Technologies

	Design and Implementation of STE3D-CAP
	New AI Problem Family
	Design Principles of STE3D-CAP
	Implementation

	Security of STE3D-CAP
	Single Image Attacks
	2D Image Difference Attacks
	Brute Force Attacks
	3D Reconstruction Attacks

	Applications
	Conclusion and Further Work
	References

	TRIOB: A Trusted Virtual Computing Environment Based on Remote I/O Binding Mechanism
	Introduction
	Background
	Splitting Device Driver Model
	Kernel-Level Rootkit Attacks against Domain0

	Scenario and Challenges
	Architecture of TRIOB
	The Workflow of TRIOB System

	Implementation
	Trusted Remote I/O Processing
	The Privilege Interface for DomainU and Policy Interpreter
	The Memory Hash-Metric Engine, the Domain Page-Table Manager and the Monitoring Domain

	Evaluation
	Functional Verification
	Performance Evaluation

	Related Work
	Conclusion
	References

	Cryptographic Protocols
	Dynamic Group Key Exchange Revisited
	Introduction
	Security Definitions
	A New Dynamic Group Key Exchange Protocol
	Primitives
	The Protocol
	Security Analysis

	Conclusions and Future Work
	References

	Towards Practical and Secure Coercion-Resistant Electronic Elections
	Introduction
	Weaknesses on a Known Coercion-Resistant Solution
	The Protocol of Schweisgut
	A Weakness in Schweisgut's Scheme

	Our New Coercion-Resistant Protocol for Internet Voting
	Preliminaries
	Cryptographic Building Blocks
	Attack Model
	Formal Definitions
	Anonymous Credentials
	An Overview of the Scheme
	The Protocol in Details

	Security Analysis
	Conclusion
	References

	Anonymous Credentials
	Predicate Encryption with Partial Public Keys
	Introduction
	Predicate Encryption Schemes with Partial Public Keys
	Semantic Security
	Token Security

	Background and Complexity Assumptions
	Linear Secret Sharing Assumption
	F-Linear Secret Sharing Assumption
	Split Linear Secret Sharing Assumption
	F-Split Linear Secret Sharing Assumption

	The Scheme
	Semantic Security
	Token Security
	References

	Anonymous Credential Schemes with Encrypted Attributes
	Introduction
	Preliminaries
	Definition of Encrypted Credential Schemes
	An Encrypted One-Show Credential Scheme
	Key Generation
	Credential Issuance
	Credential Verification

	Security Analysis
	Variations
	Conclusions
	References

	One Time Anonymous Certificate: X.509 Supporting Anonymity
	Introduction
	Group Signature Schemes
	Concept of Group Signatures
	Constructions of Group Signature Schemes
	Group Member Revocation
	Anonymous Credential

	X.509 Certification and Anonymity
	X.509 Certification
	Anonymity 2.0
	Remaining Issues

	One Time Anonymous Certificate
	Overview of Our Solution
	Detailed Description
	Conclusion on OTAC for Group Signature Schemes

	The Case of Anonymous Credentials
	X.509 Attribute Certificate
	An Alternative to X.509 Attribute Certificate
	Using OTAC with the Extension Field
	Using OTAC with the Attribute Certificate

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

