

Lecture Notes in Computer Science 6500
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Mike Papazoglou Klaus Pohl
Michael Parkin Andreas Metzger (Eds.)

Service Research
Challenges and Solutions
for the Future Internet

S-Cube – Towards Engineering, Managing
and Adapting Service-Based Systems

13

Volume Editors

Mike Papazoglou
Michael Parkin
Tilburg University
European Research Institute in Service Science (ERISS)
5000 LE Tilburg, The Netherlands
E-mail: {m.p.papazoglou, m.s.parkin}@uvt.nl

Klaus Pohl
Andreas Metzger
University Duisburg-Essen
Paluno (The Ruhr Institute for Software Technology)
45127 Essen, Germany
E-mail: {klaus.pohl, andreas.metzger}@sse.uni-due.de

Library of Congress Control Number: 2010940045

CR Subject Classification (1998): C.2, F.3, D.2, I.2, H.4, H.3

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-17598-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17598-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

, corrected publication 2018

Foreword

S-Cube’s Foundations for the Internet of Services

Today’s Internet is standing at a crossroads. The Internet has evolved from a
source of information to a critical infrastructure which underpins our lives and
economies. The demand for more multimedia content, more interconnected
devices, more users, a richer user experience, services available any time and
anywhere increases the pressure on existing networks and service platforms.
The Internet needs a fundamental rearrangement to be ready to meet future
needs.

One of the areas of research for the Future Internet is the Internet of Ser-
vices, a vision of the Internet where everything (e.g., information, software,
platforms and infrastructures) is available as a service. Services available on
the Internet of Services can be used by anyone (if they are used according
to the policies defined by the provider) and they can be extended with new
services by anyone. Advantages of the Internet of Services include the pos-
sibility to build upon other people’s efforts and the little investment needed
upfront to develop an application. The risk involved in pursuing new business
ideas is diminished, and might lead to more innovative ideas being tried out
in practice. It will lead to the appearance of new companies that are able to
operate in niche areas, providing services to other companies that will be able
to focus on their core business.

The Internet of Services vision is very attractive, but still needs a lot of
fundamental and applied research to become a reality. Some of the questions
that need to be answered are:

• How can we deal with the increasing complexity and dynamicity of tomor-
row’s software and services?

• How can we engineer services that can be reused in situations not foreseen
during design time but that will still behave in a reliable and dependable
manner?

• How can we deal with the heterogeneity in devices, networks, computers,
and service platforms, and ease their management?

VI Foreword

As part of the European Union’s FP7 – ICT Programme for Research and
Development, two calls for projects have been made in the field of the Internet
of Services. As a result of these calls, a group of more than 50 projects with
a total budget of more than 340 million euro is researching various aspects of
the Internet of Services, guided by the questions above. Within this group the
project S-Cube is researching fundamental principles, techniques and meth-
ods for the service-based systems of the future, combining knowledge from
top-level experts in the areas of grid, business process management, software
engineering and human–computer interaction. Some of the results of S-Cube
are reflected in this book.

Of all the interesting results, I would like to mention the service life cy-
cle research. S-Cube has developed a reference service life cycle for adaptable
service-based applications. For each phase of the life cycle an analysis is made
of the main concepts, issues, and challenges. In addition, various software en-
gineering and business process management methodologies that can be useful
in a certain phase of the life cycle are identified.

This service life cycle research is just one example of how S-Cube is com-
bining fundamental practices in various disciplines to provide a basis for the
service-based systems of the future. The research described in this book is
important for any further research related to the Internet of Services, and
also serves very well as one of the first books of the Springer Service Science
subseries.

October 2010 Anne-Marie Sassen
Project Officer

European Commission, DG Information Society and Media

Preface

The field of software services has become increasingly significant as the ubiq-
uitous Internet has provided global connectivity to networked software (i.e.,
services) and allowed the flexible composition of those services into innova-
tive service-based applications (SBAs). The number and scope of services
available globally is predicted to grow exponentially into the “Internet of Ser-
vices”. Therefore, in order for these services to be used in and between SBAs,
significant research effort is required into the broader aspects of services and
especially the multidisciplinary problems that cut across a number of scientific
fields.

Although many research organizations have developed research agendas
to study services and SBAs, the multidisciplinary issues and challenges the
Internet of Services brings have so far not been investigated in an organized,
systematic and coherent manner. S-Cube, the European Software Services
and Systems Network, was designed to meet this urgent need in the field of
European software services research.

S-Cube uses the combined efforts and the diverse, multidisciplinary knowl-
edge of the network’s members to bridge the gap in current research and to
define a broader research vision that will help shape the Internet of Services.
S-Cube is a four-year project funded by the European Commission under
Framework Programme 7. This book presents the foundations, vision, first
results and future work of the S-Cube project.1

Chapter 1 opens the book with an introduction to the vision of S-Cube
and how the anticipated growth in services and service-based systems will
have a profound effect on business and society. This vision chapter presents
the S-Cube research framework, developed to assist in unifying research com-

1 The research leading to the results presented in this book has received funding
from the European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement 215483 (S-Cube). The book reflects only the authors’ view.
The EC is not liable for any use that may be made of the information contained
therein.

VIII Preface

munities and agendas across Europe. The chapter describes selected, funda-
mental cross-cutting research challenges and how the cooperation of different
research disciplines plays a crucial role in meeting these challenges.

The remainder of the book follows the building blocks of the S-Cube re-
search framework, which are separated into two areas of concern:

• Technologies required for realizing future service-based systems
• Engineering principles, techniques and methods that use those technologies

to ensure robust, manageable and adaptable systems

Thus, Chaps. 2–4 focus on the three service technology layers of the frame-
work (business process management, service composition and coordination,
and service infrastructure), while Chaps. 5–9 focus on service engineering
principles, techniques and methods including service adaptation and service
quality assurance.

Chapter 2 surveys recent advances in business process management (BPM).
It describes how business transactions between services can be enabled through
a novel business transaction model developed by S-Cube researchers. This
model and an associated business transaction language allow service net-
works to behave according to agreed-upon transaction criteria. The objec-
tive of this work is to provide the environment to build robust and successful
mission-critical SBAs, using a fusion of concepts from application integration,
transaction-based and business process management technologies.

Chapter 3 provides a survey of the state of the art in modeling service
composition and coordination (SCC). This chapter covers two areas: service
composition models and approaches for synthesizing service compositions, in-
cluding model-driven, automated and QoS-aware strategies. The survey pre-
sented in this chapter clearly indicates the need to align and improve service
composition approaches, one of S-Cube’s research aims. The conclusions of
this chapter can be used as a basis for aligning and improving existing ap-
proaches and solutions for service composition and to provide future research
directions in this area.

Chapter 4 discusses advances in service infrastructure technologies. Those
technologies provide the capabilities for defining basic communication pat-
terns and interactions amongst services that can provide, for example, con-
textual and qualitative information about a service’s environment and per-
formance. Providing these capabilities to the other technology layers allows
service developers to use contextual information when building service-based
applications and facilitates cross-layer and proactive monitoring and adap-
tation of services. This chapter gives an overview of service infrastructures
to provide the adaptation, monitoring and management of services and con-
cludes with a discussion of more detailed research challenges in the context of
service infrastructure management.

Chapter 5 addresses the issue of how to handle unexpected events and
modified conditions, such as changes in the context in which an application is
used or changes in the user’s requirements. To this end the chapter presents

Preface IX

a survey and review of relevant techniques and methods for monitoring ser-
vices and SBAs to detect those changes, followed by an analysis of existing
techniques for adapting SBAs in response to such changes.

Chapter 6 presents the principles, techniques and methods required to
specify and negotiate the nonfunctional properties of a service, or the quality
of service (QoS). Establishing and agreeing on QoS properties is essential for
building reliable and predictable services and SBAs. This chapter identifies
problems inherent in this task and reviews the related work that attempts
to solve these problems. The chapter ends with the identification of current
research gaps and potential research challenges in modeling and negotiating
this aspect of a service’s or SBA’s behavior.

Chapter 7 continues the theme of service quality and presents a review
of techniques and methods to assure the quality of services and service-based
applications. This chapter focusses on analytical quality assurance techniques
and reviews critically the state of the art in testing, static analysis and formal
verification. From the point of view of quality assurance, the chapter also
reviews monitoring techniques (introduced in Chap. 5) in order to understand
the differences and potential synergies with testing and static analysis. The
chapter concludes with a discussion of highly relevant research issues in service
quality.

Chapter 8 presents an analysis of existing service engineering and design
approaches for building and operating adaptable and evolvable service-based
applications. It identifies the main activities and phases in the service life cycle
and highlights issues, and challenges that need to be addressed to realize the
life cycle. The emphasis in this chapter is on how the current lack of a standard
service life cycle incorporating the evolution, adaptation and quality assurance
of service-based applications led to the definition of the S-Cube reference life
cycle introduced in Chap. 1.

Chapter 9 shows how service engineering and design principles can be
used to develop a service by employing two industrial case studies. The work
emphasizes the identification of three service engineering views: the automa-
tion decision view, degree of service automation view and service automation
related data view. These views structure and support the elicitation and doc-
umentation of stakeholders’ concerns and assists them in their work.

We would like to take this opportunity to thank the people who contributed
to the successful publication of this book. We acknowledge the support of Ur-
sula Barth from Springer, who made this book possible. Our particular thanks
go the European Commission, in particular to Jorge Gasos for his continu-
ous and valuable support as the project officer of S-Cube and to Anne-Marie
Sassen for contributing the foreword to this book. On behalf of the S-Cube
consortium, we extend our gratitude to S-Cube’s reviewers. Their constructive
recommendations have been extremely helpful in improving the project. Last
but not least, we would like to thank the many S-Cube researchers that made
this book possible through their excellent and comprehensive contributions to
the various chapters.

X Preface

We hope this book will be a helpful reference and inspiring source for your
own research and development activities in services and service-based systems.

October 2010 Mike Papazoglou
European Research Institute in Services Science (ERISS)

Tilburg University

Klaus Pohl
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

Michael Parkin
European Research Institute in Services Science (ERISS)

Tilburg University

Andreas Metzger
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

List of Contributors

Françoise André
INRIA
Campus Universitaire de Beaulieu
35042 Rennes Cedex
France
francoise.andre@irisa.fr

Vasilios Andrikopoulos
European Research Institute in Service
Science (ERISS), Tilburg University
PO Box 90153, 5000 LE Tilburg
The Netherlands
v.andrikopoulos@uvt.nl

Olivier Barais
INRIA
Campus Universitaire de Beaulieu
35042 Rennes Cedex
France
barais@irisa.fr

Luciano Baresi
Politecnico de Milano
Dipartimento di Elettronica
e Informazione, via Golgi, 42
20133 Milano
Italy
baresi@elet.polimi.it

George Baryannis
Department of Computer Science
University of Crete
GR 71409 Heraklion
Greece
gmparg@csd.uoc.gr

Salima Benbernou

Université Paris Descartes

45 rue des Saints Pères

75270 Paris Cedex 06

France

sbenbern@liris.univ-lyon1.fr

Ivona Brandic

Distributed Systems Group

Vienna University of Technology

Argentinierstrasse 8/184-1

1040 Vienna

Austria

ivona@infosys.tuwien.ac.at

Antonio Bucchiarone

SOA Research Unit, FBK-Irst

via Sommarive 18

38100 Povo (TN)

Italy

bucchiarone@fbk.eu

Cinzia Cappiello

Politecnico di Milano

Dipartimento di Elettronica

e Informazione

Piazza Leonardo da Vinci 32

20133 Milano

Italy

cappiell@elet.polimi.it

XII List of Contributors

Manuel Carro
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo
E-28660 Boadilla del Monte
Spain
mcarro@fi.upm.es

Noel Carroll
Lero - the Irish Software Engineering
Research Centre
Department of Computer Science &
Information Systems
University of Limerick
Ireland
noel.carroll@lero.ie

Marco Comuzzi
School of Industrial Engineering
Eindhoven University of Technology
Den Dolech 2
5612AZ, Eindhoven
The Netherlands
m.comuzzi@tue.nl

Félix Cuadrado
ETSI Telecomunicación
Universidad Poliécnica de Madrid
Avda Complutense 30
28040 Madrid
Spain
fcuadrado@dit.upm.es

Olha Danylevych
Institut für Architektur von Anwen-
dungssystemen
Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart
Germany
olha.danylevych@iaas.

uni-stuttgart.de

Erwan Daubert
INRIA
Campus Universitaire de Beaulieu
35042 Rennes Cedex
France
erwan.daubert@irisa.fr

Claudia Di Napoli
Istituto di Cibernetica “E. Caianiello” -
C.N.R.
Via Campi Flegrei 34
80078 Pozzuoli, Naples
Italy
c.dinapoli@cib.na.cnr.it

Elisabetta Di Nitto
Politecnico di Milano
Dipartimento di Elettronica
e Informazione
via Golgi, 42
20133 Milano
Italy
dinitto@elet.polimi.it

Maha Driss
INRIA, IRISA, Equipe TRISKELL,
F233
Université de Rennes 1, Campus de
Beaulieu
35042 Rennes
France
maha.driss@inria.fr

Juan Carlos Dueñas
ETSI Telecomunicación
Universidad Poliécnica de Madrid
Avda Complutense 30
28040 Madrid
Spain
jcduenas@dit.upm.es

Schahram Dustdar
Technische Universität Wien
Institut für Informationssysteme 184/1
Arbeitsbereich für Verteilte Systeme
Argentinierstrasse 8
A-1040 Wien
Austria
dustdar@infosys.tuwien.ac.at

Guillaume Gauvrit
INRIA
Campus Universitaire de Beaulieu
35042 Rennes Cedex
France
guillaume.gauvrit@irisa.fr

List of Contributors XIII

Maurizio Giordano
Istituto di Cibernetica “E. Caianiello” -
C.N.R.
Via Campi Flegrei 34
80078 Pozzuoli, Naples
Italy
m.giordano@cib.na.cnr.it

Qing Gu
Department of Computer Science
VU University Amsterdam
De Boelelaan 1081a
1081HV Amsterdam
The Netherlands
qinggu@cs.vu.nl

Mohand-Said Hacid
LIRIS-UFR Informatique
Université Claude Bernard Lyon 1
43, boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
mohand-said.hacid@univ-lyon1.fr

François Hantry
LIRIS UMR 5205
Université Claude Bernard Bâtiment
Nautibus (710)
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex
France
francois.hantry@liris.cnrs.fr

Rafiq Haque
European Research Institute in Service
Science (ERISS)
Tilburg University
PO Box 90153
5000 LE Tilburg
The Netherlands
r.haque@uvt.nl

Willem-Jan van den Heuvel
European Research Institute in Service
Science (ERISS)
Tilburg University
PO Box 90153
5000 LE Tilburg
The Netherlands
w.j.a.m.vdnheuvel@uvt.nl

Dimka Karastoyanova
Institut für Architektur von Anwen-
dungssystemen
Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart
Germany
karastoyanova@iaas.

uni-stuttgart.de

Raman Kazhamiakin
Raman Kazhamiakin
SOA Research Unit, FBK-Irst
via Sommarive 18
38100, Povo (TN)
Italy
raman@fbk.eu

Gábor Kecskeméti
MTA Computer & Automation
Research Institute
P.O. Box 63
H-1518 Budapest
Hungary
gabor.kecskemeti@sztaki.hu

Attila Kertész
MTA Computer & Automation
Research Institute
P.O. Box 63
H-1518 Budapest
Hungary
attila.kertesz@sztaki.hu

Kyriakos Kritikos
ICS-FORTH
N. Plastira 100, Vassilika Vouton
GR-700 13 Heraklion, Crete
Greece
kritikos@ics.forth.gr

Patricia Lago
Department of Computer Science
VU University Amsterdam
De Boelelaan 1081a
1081HV Amsterdam
The Netherlands
patricia@cs.vu.nl

XIV List of Contributors

Stephen Lane
Lero - the Irish Software Engineering
Research Centre
Department of Computer Science &
Information Systems
University of Limerick
Ireland
stephen.lane@lero.ie

Winfried Lamersdorf
Arbeitsbereich Verteilte Systeme und
Informationssysteme (VSIS)
FB Informatik der Universität Hamburg
Vogt-Kölln-Straße 30
D-22527 Hamburg
Germany
lamersd@informatik. uni-hamburg.de

Frank Leymann
Institut für Architektur von Anwen-
dungssystemen
Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart
Germany
leymann@iaas.uni-stuttgart.de

Philipp Leitner
Distributed Systems Group
Vienna University of Technology
Argentinierstrasse 8/184-1
1040 Vienna
Austria
leitner@infosys.tuwien.ac.at

Valentina Mazza
Politecnico di Milano
Dipartimento di Elettronica
e Informazione
via Golgi, 42
20133 Milano
Italy
vmazza@elet.polimi.it

Andreas Metzger
Paluno (The Ruhr Institute for Software
Technology)
University of Duisburg-Essen
45127 Essen
Germany
andreas.metzger@sse.uni-due.de

Andrea Mocci
Politecnico di Milano
Dipartimento di Elettronica
e Informazione
Via Ponzio 34/5
20133 Milano
Italy
mocci@elet.polimi.it

Zsolt Németh
MTA Computer & Automation
Research Institute
P.O. Box 63
H-1518 Budapest
Hungary
zsolt.nemeth@sztaki.hu

Christos Nikolau
Transformation Services Lab – CSD
University of Crete
Leoforos Knossou, 71409
Greece
nikolau@tsl.gr

Mike Papazoglou
European Research Institute in Service
Science (ERISS)
Tilburg University
PO Box 90153
5000 LE Tilburg
The Netherlands
m.p.papazoglou@uvt.nl

Michael Parkin
European Research Institute in Service
Science (ERISS)
Tilburg University
PO Box 90153
5000 LE Tilburg
The Netherlands
m.s.parkin@uvt.nl

Jean-Louis Pazat
INRIA
Campus universitaire de Beaulieu
35042 Rennes Cedex
France
jean-louis.pazat@irisa.fr

List of Contributors XV

Barbara Pernici
Politecnico di Milano
Dipartimento di Elettronica
e Informazione
Piazza Leonardo da Vinci 32
20133 Milano
Italy
barbara.pernici@polimi.it

Pierluigi Plebani
Politecnico di Milano
Dipartimento di Elettronica
e Informazione
Piazza Leonardo da Vinci 32
20133 Milano
Italy
plebani@elet.polimi.it

Klaus Pohl
Paluno (The Ruhr Institute for Software
Technology)
University of Duisburg-Essen
45127 Essen
Germany
klaus.pohl@sse.uni-due.de

Harald Psaier
Technische Universität Wien
Institut für Informationssysteme 184/1
Arbeitsbereich für Verteilte Systeme
Argentinierstrasse 8
A-1040 Wien
Austria
h.psaier@infosys.tuwien.ac.at

Wolfgang Renz
Multimedia Systems Laboratory
Faculty of Engineering & Computer
Science
Hamburg University of Applied Sciences
Berliner Tor 7
20099 Hamburg
Germany
wolfgang.renz@haw-hamburg.de

Ita Richardson
Lero - the Irish Software Engineering
Research Centre
Department of Computer Science &
Information Systems
University of Limerick
Ireland
ita.richardson@ul.ie

Florian Rosenberg
CSIRO ICT Centre
GPO Box 664
Canberra ACT 2601
Australia
florian.rosenberg@csiro.au

Fabrizio Silvestri
Istituto di Scienze e Tecnologie
dell’Informazione (ISTI) – A. Faedo
Area della Ricerca di Pisa
Via G. Moruzzi, 1
56124 Pisa
Italy
fabrizio.silvestri@isti.cnr.it

Jan Sudeikat
Multimedia Systems Laboratory
Faculty of Engineering & Computer
Science
Hamburg University of Applied Sciences
Berliner Tor 7
20099 Hamburg
Germany
jan.sudeikat@haw-hamburg.de

Maike Uhlig
Paluno (The Ruhr Institute for Software
Technology)
University of Duisburg-Essen
45127 Essen
Germany
maike.uhlig@sse.uni-due.de

Branimir Wetzstein
Institut für Architektur von Anwen-
dungssystemen
Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart
Germany
branimir.wetzstein@iaas.

uni-stuttgart.de

Eoin Whelan
Lero - the Irish Software Engineering
Research Centre
Department of Computer Science &
Information Systems
University of Limerick
Ireland
eoin.whelan@ul.ie

Contents

1 The S-Cube Research Vision . 1
Mike Papazoglou, Klaus Pohl, Andreas Metzger, and Willem-Jan
van den Heuvel together with the S-Cube team

2 Business Process Management . 27
Francois Hantry, Mike Papazoglou, Willem-Jan van den Heuvel,
Rafique Haque, Eoin Whelan, Noel Carroll, Dimka Karastoyanova,
Frank Leymann, Christos Nikolaou, Winfried Lammersdorf, and
Mohand-Said Hacid

3 Service Composition . 55
George Baryannis, Olha Danylevych, Dimka Karastoyanova,
Kyriakos Kritikos, Philipp Leitner, Florian Rosenberg, and
Branimir Wetzstein

4 Architectures & Infrastructure . 85
Françoise André, Ivona Brandic, Erwan Daubert,
Guillaume Gauvrit, Maurizio Giordano, Gabor Kecskemeti,
Attila Kertész, Claudia Di Napoli, Zsolt Nemeth, Jean-Louis Pazat,
Harald Psaier, Wolfgang Renz, and Jan Sudeikat

5 Adaptation of Service-Based Systems . 117
Raman Kazhamiakin, Salima Benbernou, Luciano Baresi,
Pierluigi Plebani, Maike Uhlig, and Olivier Barais

6 Modeling and Negotiating Service Quality 157
Salima Benbernou, Ivona Brandic, Cinzia Cappiello, Manuel Carro,
Marco Comuzzi, Attila Kertész, Kyriakos Kritikos, Michael Parkin,
Barbara Pernici, and Pierluigi Plebani

XVIII Contents

7 Analytical Quality Assurance . 209
Andreas Metzger, Salima Benbernou, Manuel Carro, Maha Driss,
Gabor Kecskemeti, Raman Kazhamiakin, Kyriakos Krytikos,
Andrea Mocci, Elisabetta Di Nitto, Branimir Wetzstein, and
Fabrizio Silvestri

8 Service Engineering . 271
Vasilios Andrikopoulos, Antonio Bucchiarone, Elisabetta Di Nitto,
Raman Kazhamiakin, Stephen Lane, Valentina Mazza, and
Ita Richardson

9 Architecture Views Illustrating the Service Automation
Aspect of SOA . 339
Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Duenãs

.
Salima Benbernou, Ivona Brandic, Cinzia Cappiello, Manuel Carro,
Marco Comuzzi, Attila Kertész, Kyriakos Kritikos, Michael Parkin,
Barbara Pernici, and Pierluigi Plebani

E1Correction to: Modeling and Negotiating Service Quality

1

The S-Cube Research Vision

Mike Papazoglou1, Klaus Pohl2, Andreas Metzger2, and
Willem-Jan van den Heuvel1 together with the S-Cube team

1 European Research Institute in Service Science (ERISS), Tilburg University, PO
Box 90153, 5000 LE Tilburg, The Netherlands m.p.papazoglou@uvt.nl
w.j.a.m.vdnheuvel@uvt.nl

2 Paluno (The Ruhr Institute for Software Technology), University of
Duisburg-Essen, 45127 Essen, Germany klaus.pohl@sse.uni-due.de

andreas.metzger@sse.uni-due.de

Chapter Overview. This chapter sets the scene and gives the background for
S-Cube’s research vision and activities described in the remainder of the book.
It does this by describing, in Section 1.1, how the anticipated growth in services
and service-based systems that together form the Internet of Services will have a
profound effect on business and society. Section 1.2 discusses in more detail some
selected, fundamental cross-cutting research challenges and how the cooperation of
different research disciplines plays an important role. In Section 1.3 we describe the
research framework S-Cube has adopted to assist in unifying research communities
and agendas across Europe to meet the challenges faced in realizing the Future
Internet.

1.1 The Internet of Services

The next decade holds the prospect of remarkable progress in a wide range
of pervasive technologies culminating in the introduction of the Future Inter-
net — a global, open platform with emphasis on mobility, massive scale of
connected devices, increased bandwidth and digital media. The goal is the
development of a converged information, communication and service infras-
tructure that gradually will replace the current Internet, mobile, fixed, satel-
lite and audiovisual networks. This infrastructure will not only be pervasive,
ubiquitous, and highly dynamic, but will also offer almost unlimited capacities
to users, by supporting a wide variety of nomadic and mobile interoperable
devices and services, a variety of content formats and a multiplicity of deliv-
ery modes. Beyond technological aspects, the Future Internet is likely to have
a profound effect on our society, from a societal, organizational or business
perspective. Future Internet-based systems are set to revolutionize the worlds
of healthcare, agriculture, the environment, transport, telecommunications,
manufacturing, distribution, recycling, and retailing, to name just a few ap-

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 1–26, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

2 M. Papazoglou et al.

plication areas, so much that the Future Internet could be of huge benefit to
mankind.

Central to this vision is the availability of rich and flexible service capabil-
ities, where the Internet world comprises of cooperating services with appli-
cation components than can be combined dynamically with little effort into
globally value-added services that can be traded outside traditional owner-
ship and provisioning boundaries to yield higher levels of productivity. With
these technological changes on the horizon, there is enormous potential for
globally-available software services that gravitate towards new kinds of high-
speed networks that employ a multiplicity of wired and wireless devices, sen-
sors (e.g., RFID) and other service delivery artifacts. With global availability
service-related functions are independent of the underlying devices, platform
characteristics, connectivity protocols and transport technologies. This not
only widens considerably the scope of systems but also provides the possibil-
ity of developing a new range of innovative systems, which can be provisioned
by widely distributed network infrastructures.

In this new environment, software services (or simply services) constitute
self-contained computational elements that support rapid and flexible com-
position of loosely coupled distributed software systems. The functionality
provided by a service can range from answering simple requests to executing
sophisticated processes requiring peer-to-peer relationships between a multi-
tude of service consumers and providers. Services are described, published,
discovered, and can be assembled to create complex service-based systems
and service-based systems, which are inherently distributed. For the service
consumer, a service represents functionality that can be invoked through the
service interface. The actual software or application logic that implements the
service composition is owned by the service provider. However, the composed
service itself as well as the services which are aggregated by the composed ser-
vice are often owned, executed and maintained by third parties. Thus, services
take the concept of ownership to the extreme: not only is the development,
quality assurance, and maintenance of the software under the control of third
parties, but the software can also be executed and managed by third parties.

Software services and service-based systems imply fundamental changes to
how software is developed, deployed, and maintained. More specifically, three
broad classes of challenges need to be addressed:

• Evolution and Adaptation: Service-based systems run in dynamic busi-
ness environments and address constantly evolving requirements. These
systems hence have to be able to adequately identify and react to var-
ious changes in the business requirements and application context. Be-
sides run-time mechanisms and strategies to support system adaptation,
this requires novel engineering and design approaches that consider these
mechanisms and strategies during the construction service-based systems.

1 The S-Cube Research Vision 3

• Dynamic Quality Assurance: To provide the desired end-to-end quality of
globally distributed service-based systems, the dynamic agreement and as-
surance of quality becomes a key issue. This requires that not only quality
aspects are negotiated and agreed, but also that those are checked during
run-time. Further, to address dynamic adaptations of service-based sys-
tems, a growing need for automating the negotiation of quality attributes
(e.g., stipulated by SLAs) can be observed. Finally, validation and verifi-
cation techniques that can be applied at run-time become essential.

• Interplay of Technology Layers: Currently, the common practice for de-
veloping service-based applications (SBAs) following the Service-Oriented
Architecture (SOA) paradigm considers three technology layers: service
infrastructure, service composition and coordination, and business process
management (BPM). When setting out to build innovative software ser-
vices and service-based systems of the future, relying on the current layers
of the SOA will not suffice. For example, the interplay of the layers must be
understood to avoid conflicting adaptations in different layers. Also, each
layer impacts on the end-to-end quality of a service-based system and thus
needs to be taken into account.

Having set the scene for the Internet of Services, the following section describes
in detail selected research challenges arising from it. As we will show, these
challenges cut-across many scientific disciplines, techniques and approaches,
demand a coordinated interplay between the building blocks of the S-Cube
research framework and together represent the focus of research in software
systems for the next decade.

1.2 Cross-Cutting Research Challenges

This section identifies typical research challenges arising from the Internet
of Services that have helped to form the S-Cube research framework. The
purpose of this section is not to be exhaustive but rather to highlight some of
the representative research challenges S-Cube will address.

1.2.1 Considering Contextual Information for Service-Based
Systems

The information about the context in which service-based systems are exe-
cuted effects the expected behaviour and quality of the systems. To consider
contextual information for service-based systems we face the following chal-
lenges:

1. Context modeling approaches are required to facilitate the description
of the context, in which the service-based application is embedded. This
requires understanding the different context facets, such as the business

4 M. Papazoglou et al.

context facet (e.g., stakeholders, regulations, business trends and business
objects), the user context facet (e.g., end-user preferences and settings,
as well as tasks and activities), the application operational context facet
(e.g., protocols and networks, devices, and their properties) and so forth.
The context description therefore needs to consider context facets rang-
ing from the business (i.e., business process management) layer to the
lower level operational context of service-based systems and the service
infrastructure.

2. Using and managing context information. Context models are key to
support the selection, realisation and enactment of adaptation actions
through service engineering and design. As input for extending the ex-
isting and for defining novel monitoring and adaptation approaches that
are capable of explicitly considering and reasoning upon such information
through service adaptation and monitoring techniques, context models
need to be exploited, collected, refined, and integrated.

3. Context issues in service discovery, selection, and negotiation. Another rel-
evant impact of context can be observed in service discovery and registries
which are devised by the service infrastructure layer and are exploited
by composition and coordination techniques and methods. Specifically,
feedback-based service discovery deals with finding the impact of human
activities and social relationships among service users on the evaluation
of the quality of experience in service consumption. Thus, concepts which
allow for gathering, storing, exchanging and evaluating quality of experi-
ence metrics (which are also relevant for service quality) are needed. To
address dynamic adaptation of service-based systems, a growing need for
automating the selection, negotiation and agreement of quality attributes
(e.g., as stipulated by SLAs) can be observed (also see Section 1.2.4 below).
This issue requires considering — in an explicit form — user interaction
and experience patterns developed for service engineering and design, as
these may impact on the negotiation itself.

4. Context-driven adaptation and monitoring. Service-based systems should
be equipped with the mechanisms necessary to quickly adapt to changes in
the system’s run-time. This requires identifying and codifying the relevant
context information such that it can be monitored and exploited to trigger
adaptations.

1.2.2 Cross-Layer and Pro-active Monitoring and Adaptation

Existing adaptation and monitoring approaches are not adequate for the pur-
poses of future service-based systems. They are very fragmented and thus only
address specific problems, particular application domains or particular types
of systems. Often, the monitoring solutions are isolated from the adaptation
needs and approaches. What is ultimately needed is a holistic framework for
adaptation and monitoring, which leads to the following key research prob-
lems:

1 The S-Cube Research Vision 5

1. Cross-layer monitoring and adaptation. Integration of the monitoring ap-
proaches across the technology layers is crucial for future service-based
application provisioning, as it provides a way to properly locate, evaluate
and cross-correlate the source of the problem leading to an adaptation and
its impact. Together with cross-layer adaptation, this will allow properly
identifying and propagating the necessary adaptation activities in different
elements of the service-based application, while avoiding conflicting adap-
tations. Cross-layer monitoring and adaptation will require the integration
of currently isolated monitoring and adaptation mechanisms available at
different functional layers into the holistic cross layer approach. In addi-
tion, the cross-correlation of different quality levels monitored across the
different layers will become relevant (also see Section 1.2.3 below).

2. Cross-life-cycle integration of monitoring and adaptation. Cross-life-cycle
integration requires monitoring and adaptation techniques that exploit
synergies between the knowledge and mechanisms available at different
phases of the life-cycle of the service-based application. This allows de-
vising new monitoring approaches (e.g., exploiting post-mortem process
analysis for prediction) or adaptation decision mechanisms (e.g., explore
previous decisions and adaptation effects to select proper adaptation strat-
egy). This problem needs to be considered by research into service engi-
neering and design and service adaptation and monitoring — the latter
providing the reference points of the relevant principles and approaches
available at different phases of the service-based application life-cycle.

3. Proactive adaptation. In contrast to reactive adaptation (i.e., an adapta-
tion that is performed after a deviation or critical change has occurred),
proactive adaptation offers significant benefits, like not having to compen-
sate for deviation. Therefore, there is a need to perform adaptation not
only reactively, as in existing approaches, but also proactively. This will
prevent negative and undesired situations by anticipating the decisions
and adaptation activities. Realizing techniques for proactive adaptation
will require consideration of the following issues:
• A cornerstone of a proactive adaptation technique is the ability to pre-

dict critical changes in service-based application functioning and its
delivered quality is needed. As an example, quality prediction can be
addressed through novel run-time quality assurance techniques. Lo-
cal quality assurance mechanisms and techniques of the technology
stack — from business process management to service coordination
and composition and service infrastructure — as well as techniques
from software engineering constitute important inputs for those novel
quality assurance techniques.

• Based on the predicted quality values, the service-based application
can be modified in advance. This would mean to adaptation techniques
and mechanisms that are based on the predicted knowledge. In contrast
to the existing approaches that select and realize adaptation strategies
based on current information, novel approaches should provide a way

6 M. Papazoglou et al.

to make those decisions and realization while relying upon predicted,
anticipated situations.

• To support proactive adaptation, proactive negotiation and agreement
techniques are needed. Otherwise, effective run-time SLA negotiation
will not be feasible, since negotiation implies significant computational
costs.

1.2.3 End-to-End Quality Provision

Each functional layer and service provider contributes to the end-to-end qual-
ity of a service-based system. Thus, to assure end-to-end quality, the different
layer and service quality characteristics (like reliability or performance) and
their dependencies must be understood and individual quality contracts (e.g.,
as part of SLAs) need to be aggregated. However, to guarantee the end-to-end
quality of service-based applications, we face the following research problems:

1. End-to-end quality definition. To enable end-to-end quality definition, an
end-to-end quality reference model and an according quality definition
language is key. This requires understanding and aligning the quality at-
tributes relevant for to the technologies involved at the business process
management, service composition and coordination and service infrastruc-
ture levels as well as the quality attributes relevant for software engineer-
ing and design. Such a model and language will enable the definition of
end-to-end quality for service-based systems, which can be used as an re-
quirements engineering techniques developed for service engineering and
design and monitoring techniques and mechanisms developed through re-
search into service adaptation and monitoring.

2. Aggregating quality levels across layers. The challenge is to achieve an
understanding on how to aggregate quality levels stipulated in individual
quality contracts (e.g., as part of SLAs) across layers and across networks
of service providers and consumers. This will support assessing the end-
to-end quality of a service-based application and will, for example, be
relevant for cross-layer monitoring techniques. The starting point can be
the quality attributes and their relationships as provided by the quality
reference model.

1.2.4 Autonomic Service Infrastructure

To reduce the cost and improve the reliability of making changes to complex
service-based systems, new technologies are needed which support automated,
dynamic system adaptation via self-configuring architectural service models
and performance-oriented run-time gauges. Self-(re)-configuring service-based
systems can automatically leverage distributed service infrastructures and re-
sources to create an optimal architectural configuration according to the re-
quirements of the system characteristics. There are various adaptation mech-

1 The S-Cube Research Vision 7

anisms for bootstrapping and initial configuration of service infrastructures
but there are few solutions that solve run-time adaptation by reconfiguration.

At the service infrastructure layer one significant challenge is to provide
autonomic behavior for services, which would enable them to, for instance,
remain healthy, conform to SLAs and make the optimal use of resources.
In the general case, an autonomic infrastructure involves dealing with the
following open research problems jointly with the other framework building
blocks:

1. Autonomic infrastructure support. High-level policies and objectives are
needed for establishing methods for decision making, realizing pro-active
and reactive adaptation and studying collaboration with middleware and
operating system level resource allocation. This involves, for instance, cre-
ating optimal infrastructures for service value networks at the business
process management level. Also, existing research results from the au-
tonomic/organic computing area need to be leveraged for service-based
systems.

2. Automated quality support. Autonomic behavior of services and service-
based systems also implies a growing need for automating the selection,
negotiation and agreement of quality attributes and SLAs. Thus, novel
automated quality negotiation and assurance techniques need to be de-
vised.

1.2.5 Concepts, Languages and Mechanisms for Agile Service
Networks

The detailed literature carried out by S-Cube revealed two key classes of
broad research challenges in business process management of service-based
systems that realize agile service networks (ASNs): design-time and run-time
challenges. The survey identified a number of open problems for each of these
classes of challenge:

1. Design-time concepts, mechanisms and languages for specifying, analyz-
ing, and simulating end-to-end processes in agile service networks. This
challenge requires improving our understanding of service engineering and
design principles and methodologies, as well as quality definition and ne-
gotiation techniques. In addition, this challenge will be addressed in close
alignment with ongoing research in service composition and coordination
as well as the enabling service infrastructure. In particular, this issue in-
volves at least overcoming the following three impediments:
• Exploring, developing and validating effective techniques, concepts,

languages and mechanisms for analyzing, modelling and simulating
end-to-end business processes in ASNs. In particular, a deeper under-
standing of existing service engineering methodologies is required.

8 M. Papazoglou et al.

• Developing and validating approaches for analysis and formal verifica-
tion of business protocols involving bi-lateral and multi-lateral agree-
ments between network nodes. Solutions should be grounded on ex-
isting approaches and techniques in protocol engineering, as well as
devising quality of service schemes for service-based systems and Ser-
vice Level Agreements.

• Analysis and design techniques for business-aware transaction con-
cepts and mechanisms to support business protocols in ASNs are typ-
ically very traditional in nature addressing traditional, short-running
database transactions and thereby ignore important business seman-
tics including multi-party agreements on QoS. This challenge is also
related to research into service quality and service engineering and
design.

2. Concepts, mechanism and languages for run-time monitoring of business
transactions. Meeting this challenge will require a better understanding
of existing adaptation and monitoring approaches, techniques and solu-
tions. Some of these approaches are scrutinized in service adaptation and
monitoring approaches. This challenge requires addressing the following
open problems:
• Existing transaction monitors typically limit themselves to detecting

and aggregating system-level events. An integrated approach includ-
ing mechanisms and concepts for monitoring and measuring business
events raised by business-aware transactions and related protocols and
processes is currently lacking. This research challenge will particularly
benefit from ongoing research with regard to service adaptation and
monitoring and business activity monitors in particular.

• While existing business transaction monitors may be able to detect
and measure system-level errors and anomalies in service-based sys-
tems, mechanisms and concepts for adapting business-aware transac-
tions and related protocols and processes in ASNs are not yet effec-
tively supported. In particular, the development of adaptable business-
aware transactions can be based on existing adaptation techniques and
methods.

1.2.6 Fragmentation of Service Compositions and Their
Coordination

Business processes and service compositions realizing those processes can be
created faster and at lower cost if process fragments are reused. This approach
requires the separation and unique identification of reusable (sub-objective)
content and their encapsulation in business process fragments (i.e., building
blocks such as service patterns or templates) to rapidly tailor service compo-
sitions as users or individual application needs demand. This challenge intro-
duces a number of open research problems:

1 The S-Cube Research Vision 9

1. Mechanisms for fragmentation. Reasons and criteria for the fragmentation
of service compositions need to be identified (e.g., outsourcing, resource
workload distribution and optimization, organizational (re-distribution)
and relevant mechanisms for process fragmentation need to be developed.
This topic requires service engineering and design principles and method-
ologies and is used for decomposition of complex service networks in busi-
ness process management.

2. Reusable process fragments. Mechanisms for creating parameterised frag-
ments from repeatable service compositions (and business sub-processes)
are required, which are based on best practices facilitating application
and systems delivery and development. Such reusable customized and/or
differentiated service patterns can be offered by service providers to their
customers. This topic requires service engineering and design principles
and methodologies.

3. Coordination of fragments. There is a lack of coordination protocols to
maintain the original composition logic of decomposed processes. Depend-
ing on the fragmentation reasons and criteria, as well as on the fragmen-
tation mechanisms, the coordination protocols may be different. These
protocols can be used for coordination of business transactions at the
business process management layer.

4. Cross-layer adaptation support. Fragmentation may lead to conflicts
across the technology layers during an adaptation of a service-based ap-
plication. Thus, a deep understanding of the fragmentation techniques
and strategies is needed to support devising the cross-layer adaptation
strategies (see Section 1.2.2 above).

1.2.7 Coherent Lifecycle for Adaptable and Evolvable
Service-Based Systems

In Section 1.5.1, we will describe in more detail the importance of a life-cycle
for service-based systems and demonstrate how the S-Cube life-cycle model
focuses on all aspects concerned with the adaptation of such systems. The
life-cycle models for SBAs that are currently presented in the literature are
mainly focused on the phases that precede the release of software and, even
in the cases in which focus on the operation phases, they do not consider
the possibility for SBAs to adapt dynamically to new situations, contexts,
requirement needs, service faults, and the like. Moreover, they do not seem
to pay much attention to the importance of humans both in the application
development and operation phases. There are some initiatives that aim at
supporting so called Human-Provided Services. However, to this day, there
has been little intersection between research in service-centric systems and
Human-Computer Interaction (HCI). Thus, many research issues need to be
considered and addressed. The ones we consider most relevant are the follow-
ing:

10 M. Papazoglou et al.

1. Requirements elicitation and design for adaptation. Adaptation can be ad-
dressed both on the fly, while the SBA is being executed, or it can require a
new design and development cycle (in this case we talk about evolution).
The conception of the Agile Service Network (see Section 1.2.5 above)
through to the implementation of the corresponding composition and the
infrastructure has to be designed and developed in such a way that it is
able to recognize an adaptation requirement and to act accordingly. This
means that not only the application logic needs to be analysed, designed,
and developed, but also the context in which the system is executed (see
Section 1.2.2 above) as well as the rules that will allow the identification
of the adaptation and evolution strategy to be chosen (see Section 1.2.4
above). The effects of these issues encompass also the requirements en-
gineering phase. If classical requirements elicitation can be simplified so
the system can work even in the presence of missing or misunderstood re-
quirements, new kinds of requirements, i.e., requirements for adaptation,
need to be identified and must result in a corresponding implementation.
In general, the effects of designing for adaptation on the system life-cycle
are only partially understood, if at all.

2. Extended operation phase. The operation phase is not only restricted to
the simple execution and monitoring of the application, but also requires
adaptations to be identified and the corresponding adaptation strategies
to be enacted (see Figure 1.3 and Section 1.2.2 above). The way the opera-
tion and the adaptation cycle are managed depends also on the autonomic
features offered by the underlying infrastructure (see Section 1.2.4 above)
and on their programmability. In principle, this last aspect can have an
impact also on the way the application is designed, deployed, and config-
ured.

3. Incorporate end-to-end quality within the life-cycle: Quality assurance has
an impact on all aspects of the life-cycle. Therefore, the issues highlighted
in Section 1.2.3 above have to be properly incorporated into the various
phases of the SBA life-cycle. Quality characteristics to be assessed and
ensured should be identified since the requirement analysis phases and
should concern not only functional but also non-functional characteristics.
Moreover, similar to the application code, these quality characteristics
change over time, and their changes have to be re-identified and re-assessed
continuously.

4. Control and improve the life-cycle. It is normal practice in software engi-
neering to apply approaches to improve development and operation pro-
cesses. In the area of service-based systems, little attention has been paid
so far to this aspect. However, we feel that, especially to foster the adop-
tion of the service-based approach in companies working in regulatory
environments, we need to ensure that all development and operation ac-
tivities in the life-cycle are somehow measured and kept under control,
and process improvement approaches are put in place (which may seem
contrasting with the adaptation requirement). Thus, understanding the

1 The S-Cube Research Vision 11

interplay between life-cycle control and improvement on the one hand,
and application adaptation on the other hand becomes a critical aspect.

5. Develop HCI knowledge for service engineering. Human specificities, di-
versity, and tasks characteristics need to be taken into account when engi-
neering service-based systems. This requires at least (1) the identification
of HCI knowledge that delivers enhanced or new capabilities for service-
based systems and (2) the codification of this knowledge for its application
to the development and use of service-based systems.

1.3 The S-Cube Research Framework

Having described the context for research into software services this section
describes the S-Cube research framework, which is organized around the six
building blocks depicted in Figure 1.1. These blocks are organized in two:
the service technology layers and the service techniques and methods planes.
The technology layers consist of Service Infrastructure (SI), Service Com-
position & Coordination (SCC) and Business Process Management (BPM),
whilst the service techniques and method planes contains Service Adapta-
tion & Monitoring (SAM), Service Engineering & Design (SED) and Service
Quality Definition, Negotiation & Assurance (SQ).

o
ri

n
g

s
ig

n

&
 M

o
n

it
o

A
M

)

Business
Process

Mgt. (BPM)

n
g

 &
 D

e
s

E
D

)

p
ta

ti
o

n
&

(S
A

Composition &
Coordination

(SCC)

g
in

e
e

ri
n

(S
E

A
d

a
p

Infra-
structure

(SI)

E
n

g

Q lit D fi iti N ti ti & AQuality Definition, Negotiation & Assurance

(SQ)

Fig. 1.1. Overview of the S-Cube Research Framework

12 M. Papazoglou et al.

The benefit of adopting such an approach is that the S-Cube research frame-
work provides a clear distinction between technology-focussed approaches of
the service technology layers and the cross-cutting principles, techniques and
methods provided by the techniques and method planes that together exploit
and integrate the capabilities of the technology layers. Each of the elements
in the framework is now briefly described with reference to where the full
description and treatment of each research area can be found in this book.

Service Technologies

• Business Process Management (BPM): The BPM layer provides mech-
anisms for expressing, understanding, representing and managing enter-
prises that are organized in service networks, which may be loosely defined
as a large, geographically dispersed and complex networks of collaborating
and transacting value-adding services. Service networks furnish a collection
of business processes built on top of composed services by the SCC layer,
and are responsive to the business environment of internal or external
events. Service networks use BPM facilities to coordinate work between
people and systems, with the ultimate goal of improving organizational
efficiency, responsiveness and reliability, strategic measures (business per-
formance management), and their correlation as the basis for continuous
process improvement and innovation. The state of the art and future re-
search directions for this aspect of service technologies are described in
Chapter 2.

• Service Composition & Coordination (SCC): The SCC layer encompasses
the functions required for the aggregation of multiple services into a single
composite service offering. The execution of the constituent services in a
composition is controlled through the SI layer. In addition to managing
the control flow, this layer also manages data flow between the services
in a composition, for example by specifying workflow models and using a
workflow engine for runtime control of service execution. SCC technologies
and research are set out in Chapter 3.

• Service Infrastructure (SI): The SI layer represents the most basic layer
of the S-Cube framework and supports services communication primitives
and utilizes service middleware and architectural constructs that connect
heterogeneous systems, provide multiple-channel access to services, and
introduces a runtime environment for the execution of services. The SI
layer provides infrastructure capabilities for defining basic communication
patterns and interactions involving the description, publishing, finding and
binding of services. It also provides facilities for analyzing and aggregat-
ing historical data to support, for example, predictive adaptation. A full
description of this research area and S-Cube’s activities in this domain is
given in Chapter 4.

1 The S-Cube Research Vision 13

Service Principles, Techniques & Methods

• Service quality definition, negotiation and assurance (SQ): This plane in-
volves principles, techniques and methods for defining, negotiating and as-
suring end-to-end quality and conformance to SLAs. It provides novel facili-
ties to detect problems and deviations in systems before quality is impacted
and triggers the adaptations coordinated by the SAM plane to pro-actively
respond to these situations. To detect and resolve problems in service-based
systems, different quality attributes (i.e., quality characteristics) need to be
measured for a service, including throughput, utilization, service availability,
response time, transaction rate, service throughput, service idle time, service
usability and so on. End-to-end quality provision implies that those differ-
ent quality attributes must be understood and correlated across the tech-
nology stack layers: service infrastructure, service composition, and business
process management. The modeling, specification and analytical analysis of
qualities of service in S-Cube are described in Chapters 5 and 6.

• Service Engineering and Design (SED): The SED plane provides the princi-
ples, techniques and methods that interweave and exploit the mechanisms
provided by the technology stack with the aim of developing high-quality
service-based systems. The SED plane provides requirements engineering
and design principles and techniques, which – in conjunction with context,
HCI and quality knowledge – help to create high-quality service-based
systems. For example, the SED plane provides specifications that guide
the service composition and coordination layer in composing services in a
manner that guarantees that the composition does not produce spurious
results and that the overall system behaves in a correct and unambiguous
manner. Similarly, the SED plane provides specification to the BPM and
SAM layers. Moreover, the SED plane aims at establishing, understand-
ing and managing the entire service lifecycle, including identifying, finding,
designing, developing, deploying, evolving, quality assuring, and maintain-
ing services. Further details about how this area supports the technology
layers can be found in Chapter 7.

• Service Adaptation and Monitoring (SAM): Service-based systems should
possess the ability to continuously adapt themselves in reaction to con-
textual changes, such as evolving user or customer requirements or the
appearance of new services. In addition, service-based systems should also
possess the ability to predict problems, such as potential degradation sce-
narios and erroneous behavior (e.g., exceptions/deviations from expected
behavior) and move toward resolving them. The SAM plane supports mon-
itoring, predicting and governing the activities of a distributed services-
system and performing control actions to adapt the entire services tech-
nology stack, for example in cases where individual services need to evolve
and adapt their functionality and characteristics to be able to interoperate
with other services. S-Cube’s approach to the evolution and adaptation of
service-based systems is described in full in Chapter 8.

14 M. Papazoglou et al.

1.4 The Interaction View

The SED, SQ and SAM planes operate in close concert with the BPM, SCC
and SI layers to handle evolving and adaptable services and service-based
systems. Figure 1.2 depicts the interactions between the three planes and the
three technology layers. In the following sections we briefly characterize these
interactions between the building blocks of the S-Cube framework.

1

Business
Process

Management Design

Local Design

Capabilities

Local A&M

Capabilities

A&M

Adaptation and Monitoring Specifications

Integrated Adaptation and Monitoring Capabilities
Engineering

and

Design

(SED)

Adaptation

and

Monitoring

(SAM)
2

2

1

5

5
(BPM)

Service
Composition

& Coordination

(SCC)

Design

Specifications

Design

S ifi ti

Local Design

Capabilities

Local A&M

Capabilities

A&M

Specifications

A&M

S ifi ti

2

3

3

6

6

(SCC)

Service
Infrastructure

(SI)

Specifications

Design

Specifications

Local Design

Capabilities

Local A&M

Capabilities

Specifications

A&M

Specifications
4

47

7

L
o

c
a
l
Q

D
N

A

C
a
p

a
b

il
it

ie
s

Q
D

N
A

S

p
e

c
if

ic
a

ti
o

n
s

n
te

g
ra

te
d

 Q
D

N
A

C
a
p

a
b

il
it

ie
s

Q
D

N
A

S
p

e
c

if
ic

a
ti

o
n

s

Q
D

N
A

 C
a
p

a
b

.

Q
D

N
A

 S
p

e
c
.

10

10

8a

8a

9

9

M
o

n
it

.
C

a
p

a
b

.

M
o

n
it

.
S

p
e
c
.

8b

8b

Quality Definition, Negotiation & Assurance

(SQDNA)

I

Fig. 1.2. Interactions between the Elements of the S-Cube Research Framework

1.4.1 SED Interactions with Technology Layers

The service engineering and design plane provides methodological guidance to
the three technology layers in order to help develop sound, complex, and con-
tinuously evolving service-based systems. Taking the capabilities and features
offered by the three technology layers into account, the integrated SED tech-
niques and methods specify a service-based application. Resulting restrictions
and constraints for the mechanism and capabilities provided by the technol-
ogy layers are passed to the corresponding layers which adjust their behavior
accordingly. An example for such a restriction is the disabling of a mechanism
provided by the SI plane (e.g., virtualization of the infrastructure) for a par-
ticular service-based application. In addition, if adaptations of the SAM plane

1 The S-Cube Research Vision 15

do not suffice, the SED plane also supports the evolution of a service-based
system (e.g., by means of re-design) based on evolution requests received, e.g.,
from the three technology layers.

SED & Business Process Management (BPM)

Approaches and mechanisms for Agile Service Networks (ASN) and business
process definitions developed in the BPM layer are incorporated and used in
requirements engineering and high-level design techniques of the SED plane.
In addition the BPM layer provides the techniques and methods of the SED
plane with knowledge on mechanisms for detecting the need for adaptation
at the business level (❷). Further, the SED plane aims at aligning ASN and
SCC and provides guidelines as how to construct end-to-end service networks
supporting the business processes (②). Such information describes all the re-
sources used to generate the process outcome, including people, technology,
procedures and any other resources linked together for the capability’s spe-
cific purpose. For example, it provides knowledge about transaction volumes,
the number and value of transactions per business process step, how long it
takes to deal with transactions between process steps, process cycle times,
wait-time between events, and so on.

SED & Service Composition and Coordination (SCC)

To allow the creation of meaningful service compositions that realise business
processes, the SCC layer provides a service composition meta-model and ser-
vice composition techniques to the SED plane (❸). To assist in composing
services in a manner that guarantees consistency (i.e., so composite services
do not lead to spurious results and that the overall process behaves in a correct
and unambiguous manner) the SED plane specifies the use of the mechanisms
in the SCC layer (③). During the operation an evolution of the service-based
application might be required, for example, to adjust the application to con-
textual changes. Thereupon, (re-)design activities, which produce updated or
even new specifications for the SCC layer are initiated. (Also see the lifecycle
description in Section 1.5.1).

SED & Service Infrastructure (SI)

To operate a service-based application in the most appropriate run-time en-
vironment, the main input from the SI layer to the SED plane is knowledge
about infrastructural services, e.g., service discovery or search facilities, which
are in turn used to guide the lifecycle’s design and runtime phases (❹). The
SED techniques and methods provide specifications to the SI layer which
restrict the SI mechanisms and capabilities for describing, publishing and
discovering services and on how to run that service-based application (④).

16 M. Papazoglou et al.

Thereby, the SI layer, under consideration of the specifications from the SED
plane, chooses the most appropriate architecture and run-time environment
for the service application.

1.4.2 SED Interactions with Service Techniques & Methods Planes

To drive the continuous adaptation of a service-based application across all
three technology layers and to guarantee a constant quality of the application,
the interactions between the SED plane and the SAM and SQ planes are as
follows:

SED & Adaptation and Monitoring (SAM)

The Adaptation and Monitoring plane provides monitoring and adaptation
principles, techniques and methods. It communicates their capabilities to the
SED plane. These capabilities are taken into account when designing the
service-based system (❶). In turn, the SED plane specifies which monitor-
ing and adaptation principles can be used for the service-based system at
hand (①). Also, the SED plane provides the SAM plane with codified knowl-
edge about the application context and about user types, which will be ex-
ploited for monitoring the context of the service-based application as well as
for pro-actively adapting the application. This means that the SED plane is
responsible for “design for adaptation”, while the SAM plane enacts adapta-
tion.

SED & Service Quality Definition, Negotiation
and Assurance (SQ)

The SQ plane provides techniques to ensure the quality of a service-based
application during its lifecycle. It communicates the capabilities of those tech-
niques to the SED plane (❿). The SED plane takes this knowledge into account
when designing the service-based application. It specifies which quality defi-
nition, negotiation and assurance techniques are used during the design of the
service-based application (⑩). In addition, the SQ plane will offer a quality
reference model and an end-to-end quality modeling language together with
quality negotiation techniques, which are envisioned to be integrated in the
lifecycle of service-based systems (addressed in the SED plane). Further, the
SED plane provides HCI knowledge in the form of user and task models as well
as knowledge about potential systems contexts to the SQ plane which exploits
this knowledge, e.g., when devising automated negotiation techniques.

1.4.3 SAM Interactions with Technology Layers

The adaptation and monitoring plane describes interactions with the three
technology stack layers and what type of knowledge needs to be provided

1 The S-Cube Research Vision 17

to these three layers in order to control, to steer and to successfully adapt
complex service-based systems. The current convention is that each technology
layer focuses separately on providing local adaptation mechanisms. However,
in S-Cube the adaptation mechanisms employed by SAM adopt a holistic
view of all local perspectives and cross-correlate events and data to provide a
unified and more complete solution to service adaptation problems that span
more than one technology layer.

The SAM plane receives monitoring events and data gathered and pro-
duced by each of the three technology layers. The SAM plane analyses those
events and data and decides whether the service-based systems needs to be
adapted and if so, how the system should be adapted. In the case of an adap-
tation, the SAM plane steers the three technology layers by invoking the
adaptation mechanisms across the three layers needed to achieve the required
adaptations. In essence, the SAM plane takes a logically centralised decision
(involving human actors if needed) about the adaptation based on analysing
and cross-correlating technology layer-specific monitoring events and data. It
thereby rectifies partially overlapping and even conflicting adaptations intro-
duced by each of the local layers.

SAM & Business Process Management (BPM)

The efficient management of services requires new techniques and methods
in monitoring large networks. The SAM plane uses knowledge of business
events (❺) that cause changes to processes in service networks to recognize
and respond to these events and manage process changes (⑤). The SAM
plane detects the event patterns that indicate potential process changes and
correlates the relationships between possibly independent or isolated events
and event-driven processes, such as causality, membership and timing.

SAM & Service Composition and Coordination (SCC)

Based on the monitoring events and data provided by the SCC layer (❻) as
well as other monitoring events and data obtained from the BPM and SI layers,
the SAM plane derives specifications to ensure that service compositions are
able to function in spite of changes of constituent services in the composition
and in spite of context changes (⑥). The intention is to catch and repair
faults and predict behavior (to the extent this is possible) so as to reduce
as much as possible the need of human intervention in adapting services to
subsequent changes, while guaranteeing QoS and SLA requirements. During
the operation of the service-based application, concrete monitoring events
are provided by the SCC layer. These are analyzed and cross-correlated by
the inter-layer adaptation techniques in the SAM plane taking into account
monitoring events from the other technology layers. If required, this leads to
adaptation triggers which are enacted by the SCC layer.

18 M. Papazoglou et al.

SAM & Service Infrastructure

The SAM plane typically gathers information about the service platform,
managed resource status and performance (e.g., root cause analysis, SLA
monitoring and reporting, service deployment, and lifecycle management and
capacity planning) and communicates this information to the SAM layer
(❼).Vice versa, the SAM plane communicates adaptation request to the SI
layer (⑦). The SAM plane has the knowledge to detect system malfunctions
and initiate policy-based corrective actions without disrupting the service in-
frastructure. Corrective actions could, for example, involve a server altering
its state or effecting changes in other components in the service infrastructure
as a result of a changing service composition that may create uncharacter-
istically high processing loads. In this way, service-based solutions — as a
whole — become more resilient because day-to-day operations are less likely
to fail. Further, triggered by the SAM plane, the SI layer supports the au-
tomatic tuning of service resources. For example, a tuning action could lead
to the reallocation of resources — such as in response to dynamically chang-
ing workloads — to improve overall utilization, or ensuring that particular
business processes or transactions can be completed in a timely fashion.

1.4.4 SAM Interactions with Service Techniques & Methods
Planes

In addition, we envision interactions of the SAM plane with the SED and SQ
planes in order to control, steer and successfully adapt complex service-based
systems.

SAM & Service Engineering and Design (SED)

The SED and SAM planes work closely together to jointly handle adaptive
services and service-based systems by exchanging relevant information. To
achieve this synergy, the SAM plane contains knowledge required to predict,
sense and respond as required for service and process adaptability. In a sense,
SED designs for adaptation, while SAM provides techniques to enact adapta-
tion. These interactions are described in more detail from the perspective of
the SED plane in Section 1.4.2.

SAM & Service Quality (SQ)

These interactions are described in Section 1.4.6 from the perspective of the
SQ plane.

1 The S-Cube Research Vision 19

1.4.5 SQ Interactions with Technology Layers

The SQ plane focuses on achieving end-to-end service quality and SLA confor-
mance and thus complements the SED and SAM planes. It provides assurances
with respect to relevant quality guarantees (e.g., KPIs) that drive an end-to-
end service composition. In general, the SQ plane integrates and correlates
the quality attributes, also known as quality characteristics, and the local
quality negotiation and assurance techniques provided by each of the three
technology layers (SI, SCC, BPM) (❾). This will result in the S-Cube quality
reference model and end-to-end quality definition language. Based on the ref-
erence model and language, novel quality assurance techniques and methods
of the SQ plane will provide guidance to all three technology layers to mea-
sure, negotiate and assure, among others, the quality of business processes,
the quality of service (QoS) and the quality of information (⑨).

SQ & Business Process Management (BPM)

The BPM layer provides knowledge of how quality characteristics of running
processes could be expressed in the form of real-time and historical reports
(❾). The techniques of the SQ plane, together with the mechanisms of the
BPM layer (⑨) enable the detection of deviations from KPI target values,
such as the percent of requests fulfilled within the limits specified by a SLA,
and may trigger an alert and an escalation procedure, or even propose changes
to affected process models (i.e., trigger an adaptation in cooperation with the
SAM plane) to allow them to achieve their goals. The BPM layer will provide
mechanisms for keeping metrics aligned to corporate objectives in order to help
understand how to continually improve processes and underlying IT resources
to most effectively contribute to the organization’s overall goals.

SQ & Service Composition and Coordination (SCC)

By exploiting the quality reference model, the SQ plane provides information
to help achieve QoS-aware service compositions (⑨). This requires under-
standing and respecting composed service policies, performance levels, secu-
rity requirements, SLA stipulations, and so forth. An illustrative example can
be provided when considering security as a quality attribute. Here, knowing a
newly composed service adopts a Web services security standard, such as one
of the WS-Security specifications, would not be enough information to enable
successful composition. The client also needs to know if the services in the
business process actually require WS-Security, what kind of security tokens
they are capable of processing, and which ones they prefer. Finally, the client
must decide on when to encrypt the messages, which algorithm to use, and
how to exchange a shared key with the service. For example, a purchase order
service in an order management process may indicate that it only accepts
username tokens that are based singed messaged using X.509 certificate that
is cryptographically endorsed by a third party (❾).

20 M. Papazoglou et al.

SQ & Service Infrastructure (SI)

We anticipate the SQ plane will exploit service infrastructure data (e.g., per-
formance statistics) (❾) to support the assessment of platform effectiveness,
permit complete visibility into individual service compositions, guarantee con-
sistency of service compositions, and ultimately assure end-to-end SLAs. This
will require a better visibility into individual service compositions, which in
turn will require new infrastructure capabilities, like dedicated test interfaces
for services (⑨). To allow quality prediction techniques from the SQ plane,
it is envisioned that novel infrastructure technology, e.g., reputation systems,
will be exploited.

1.4.6 SQ Interactions with Technology Planes

SQ & Service Engineering and Design (SED)

The SQ plane complements the SED plane in developing complex and con-
tinuously evolving service-based systems. These interactions are described in
more detail from the perspective of the SED plane in Section 1.4.2.

Interactions with SAM

The SQ plane provides to the SAM plane quality prediction techniques ca-
pabilities that facilitate the development of integrated, proactive adaptation
techniques (❽a). To support pro-active adaptation, the SQ plane further pro-
vides pro-active negotiation techniques and offers an end-to-end quality defi-
nition language used, among others, by the cross-layer monitoring techniques
devised by the SAM plane. Vice versa, the SAM plane stipulates specifica-
tions for the quality definition, prediction and negotiation techniques of the
SQ plane (⑧a). In the opposite direction, SAM provides to SQ integrated
monitoring capabilities for the purpose of checking at run-time that expected
quality is met (⑧b). Analogously, monitoring specifications are passed from
the SQ to SAM (❽b). Synergies between monitoring and other quality assur-
ance techniques (like testing or model analysis) are envisioned to be jointly
explored between the SAM and the SQ planes.

1.5 The Lifecycle & Runtime Views

To elaborate on the research vision some more, this section describes two
further views of the research framework and activities of the S-Cube network:

• In Section 1.5.1 we elaborate on the lifecycle view on our S-Cube research
framework which focuses on analyzing, identifying, designing, developing,
deploying, finding, provisioning, evolving, and maintaining service-based
systems.

1 The S-Cube Research Vision 21

• In Section 1.5.2 we sketch the run-time view of our research framework
which structures the implementation, deployment, and management of
distributed service-based systems with a focus on assembling, deploying,
and managing those systems.

1.5.1 The Lifecycle View

The S-Cube research framework places emphasis on avoiding the pitfalls of de-
ploying an uncontrolled maze of services and therefore provides a holistic and
solid approach for orderly service development so services can be efficiently
combined into service-based systems. The S-Cube framework views service-
based systems as an orchestrated set of service interactions and it adopts a
broader view of its impact on how the service-based solutions are designed,
what it means to assemble them from disparate services, and how deployed
services-oriented systems can evolve and be managed. This requires addressing
common concerns such as the identification, specification and realization of
services, their flows and composition, as well as ensuring the required quality
levels.

In their early use of SOA, many enterprises assumed that they could port
existing components to act as Web services by merely creating wrappers and
leaving the underlying component untouched. Since component methodolo-
gies focus on the interface, many developers assume that these methodologies
apply equally well to service-oriented environments. As a consequence, imple-
menting a thin SOAP/WSDL/UDDI layer on top of existing systems or com-
ponents that realize the services is by now widely practiced by the software
industry. Yet, this is in no way sufficient to construct commercial strength
service-based systems. Unless the nature of the component makes it suitable
for use as a service, and most components are not suited to this, for instance,
because they are tightly coupled to other components, it takes serious thought
and redesign effort to properly deliver a component’s functionality through a
service. While relatively simple Web services may be effectively built that way,
a service-based development methodology is required to specify, construct, re-
fine and customize highly flexible service-based systems from internally and
externally available components and services. More importantly, older soft-
ware development paradigms for object-oriented and component-based devel-
opment cannot be blindly applied to SOA and services.

The service lifecycle model envisioned by the S-Cube framework relies on
a twin development and adaptation cycle. The development cycle addresses
the classical development and deployment lifecycle phases, while the second
cycle extends the classical lifecycle by explicitly defining phases for addressing
changes and adaptations (see Figure 1.3).

The S-Cube service lifecycle model builds on established practices from
software engineering and captures a highly iterative and continuous method
for developing, implementing, and maintaining services in which feedback is
continuously cycled to and from phases in iterative steps of refinement and

22 M. Papazoglou et al.

 Adaptation Evolution

Construction

Requirements
Engineering and

Design

Deployment &
Provisioning

Operation &
Management

Identify Adaptation
Needs

Identify Adaptation
Strategy

Enact Adaptation

Fig. 1.3. The S-Cube Lifecycle View

adaptations of all three layers of the technology stack. To that effect the
method facilitates designing solutions as assemblies of services in which the
assembly description is a managed, first-class aspect of the solution, and hence,
amenable to analysis, change, and evolution. The method accommodates con-
tinuous modifications of service-based systems and its quality (e.g., QoS and
KPIs) at all layers. Continuous modifications (evolutions and adaptations)
are based on monitoring and measurement of service execution against SLAs
and quality goals. In this way, the S-Cube reference lifecycle is enabled to
continuously a) detect new problems, changes, and needs for adaptation, b)
identify possible adaptation strategies, and c) enact them. These three steps
are depicted on the left hand side of Figure 1.3. Once service-based systems
(or parts thereof) have been adapted, they will be re-deployed, re-provisoned
and put into operation.

More details on the S-Cube lifecycle can be found in S-Cube deliverable
CD-JRA-1.1.2 “Separate design knowledge models for software engineering
and service-based computing” [1].

1.5.2 The Runtime View

S-Cube’s run-time view depicts a conceptual run-time architecture which
structures the implementation, deployment, and management of distributed
service-based systems with a focus on assembling, deploying, and managing
those systems. The run-time architecture supports service invocations, mes-
sage, and event-based interactions with appropriate service levels and manage-
ability (see Figure 1.4). In essence, the S-Cube run-time architecture envisions
providing containers and engines for hosting and providing services that can
be assembled and orchestrated and are available for use by any other service
on the communication backbone. Once a service is deployed into a service
container it becomes an integral part of the S-Cube run-time architecture

1 The S-Cube Research Vision 23

and thus can be used by any application or service. The service container
hosts, manages, and dynamically deploys services and binds them to exter-
nal resources, e.g., data sources, enterprise and multi-platform systems. The
different engines (e.g., composition, monitoring, adaptation, etc) work in tan-
dem to execute a service-based application. These engines rely heavily on
techniques and methods provided by the SED, SAM and SQ planes.

n
e
r

n
e
r

ti
o

n

y s
tr

y

c
tu

re

c
e e
r

Software

Service

S
e
rv

ic
e

C
o

n
ta

i n Human

Service

S
e
rv

ic
e

C
o

n
ta

in

S
e
rv

ic
e

C
o

m
p

o
s
i

E
n

g
in

e

D
is

c
o

v
e
ry

a
n

d
 r

e
g

is

In
fr

a
s

tr
u

c

Resource

R
e
s
o

u
rc

C
o

n
ta

in
e

Communication backbone

in
g

io
n

ti
o

n

e
 Q

A

Ad t ti N ti ti
Test cases,

M
o

n
it

o
ri

E
n

g
in

e

A
d

a
p

ta
t

E
n

g
in

e

N
e

g
o

ti
a
t

E
n

g
in

e

R
u

n
ti

m
e

E
n

g
in

eMonitoring

logic

Adaptation

logic

Negotiation

logic

,

runtime

models …

Fig. 1.4. The S-Cube Runtime View

The communication backbone facilitates the communication among any kind
of service, regardless of whether the service is a core service or an application
specific service. In particular, the communication backbone allows access to
both core services and application specific services which are deployed within
a container. An application specific service exposes a dedicated interface to
access the application specific functionalities provided by the service. In con-
trast, a core service offers a management interface for controlling the behavior
of the container or, in particular, for the deployment and operation of an appli-
cation specific service. Examples for core services are an engine for executing
service compositions, a discovery service, or an engine for monitoring the be-
havior of a service-based application. Exposing core services and application
services on the same communication backbone enables interactions between
the two logical levels and is one of the key elements of the conceptual run-time
architecture proposed.

More details on the S-Cube run-time view can be found in S-Cube deliv-
erable CD-IA-3.1.1 “Integration Framework Baseline” [2].

1.6 Adaptive Services in Context

The software services studied by S-Cube pose research challenges in contexts
of applications characterized by high variability, dynamic service invocation,
quality of service requirements, and flexibility and evolution. One of the goals
of S-Cube is to analyze the research results within cases studies characterized

24 M. Papazoglou et al.

by the use of services in a flexible way, derived from an analysis of real case
studies n which the above mentioned needs are particularly relevant.

The case studies in S-Cube are derived from industrial experiences within
the NESSI platform3 and from industrial experiences presented by the S-Cube
partners. However, within S-Cube the need is not only to apply research results
within a real or realistic case study, but also to analyze the characteristics of
these case studies in order to compare the results obtained from validation.
Therefore, in order to make the research results comparable, a methodology
suited for the description of case studies in service-based applications has been
developed, together with strategies to link the validation of research results
to the research challenges and research questions defined within the S-Cube
Integrated Research framework. This section briefly describes the case-studies
developed for service-based applications in S-Cube, with an introduction to
the validation process.

1.6.1 Case Studies for SBA and Their Documentation Process

Five case studies have been studied, each focusing of different flexibility and
adaptation needs:

1. Vineyard management and wine production.
2. A complex and geographically distributed supply chain from the automo-

tive sector.
3. E-Health and, in particular, the management of Complex Diagnostic

Workflows.
4. E-Government.

In the first case study, the focus is on two aspects of wine production
and distribution: harvesting of the grapes and the logistics to deliver the
product to retailers. Harvesting of grapes, observing the vineyard parameters
and reacting to critical conditions that may happen during the cultivation
phase are crucial, and supported by a service-based adaptive sensor network.
Critical conditions may be represented by overcoming the threshold for some
particular environmental parameter. In the product delivery phase, a flexible
distribution network is envisioned, supported by agile service networks, and
with the need of supporting business transactions.

In the automotive case study, the focus a flexible approach which allows
different distribution logistics providers to participate in the SBA to provide
the transportation of finished products from the manufacturing factory to the
warehouses, and from the warehouses to the retail customers. The providers
are dynamically selected according to the transportation routes and rules.
The evaluation of KPIs in processes and linking them to quality of service
in service compositions, when some tasks are outsourced, poses new research
challenges in the management of these SBAs.

3 http://www.nessi-europe.com/

http://www.nessi-europe.com/

1 The S-Cube Research Vision 25

The e-health case study seeks to provide new kinds of services and to
integrate new and existing services, to support the work of healthcare pro-
fessionals. In particular, this case study takes the viewpoint of the medical
staff and the patient during a diagnostic workflow. The focus is on integra-
tion issues arising in dynamically evolving SBAs and in developing efficient
processes in a distributed users environment. In such a context critical issues
concerning security aspects are also considered.

In the e-government case study the goal is to improve the efficiency of
public sector, avoiding the time spent traveling to different offices or wait-
ing in queues, resulting in an improvement of the offered services and better
accessibility and transparency of the public services. The focus here is on a
seamless integration of services provided within a given geographical area,
with guaranteed service and security levels.

1.6.2 Validation Methodology

A validation methodology for the results of S-Cube has been developed based
on the case studies introduced above.

For each case study, a description is provided in terms of business goals,
expressing the main purposes of some system in the terms of the business do-
main in which the system will live or currently lives; domain assumptions and
constraints, reporting properties of the domain or restrictions on the design
of the system architecture; domain description, phenomena occurring in the
world together with the laws that regulate such a world; abstract scenario de-
scription as a way to describe world phenomena, which correspond to concrete
detailed scenarios in the case study.

The definition of detailed scenarios helps to validate the research of S-
Cube by relating each scenario to the research challenges introduced earlier in
this chapter. Each scenario is described in terms of involved actors, a detailed
operational description, problems and challenges posed by the scenario, non-
functional requirements and constraints.

1.7 Chapter Conclusions

S-Cube sets out to address cross-cutting research challenges faced when en-
gineering, designing, adapting, operating and evolving the next generation of
services and service-based systems for the Internet of Services. The research
in S-Cube is guided by the S-Cube research framework, which clearly distin-
guishes between principles and methods for engineering and adapting service-
based systems and the technology and mechanisms which are used to realize
those systems, while taking into account cross-cutting issues. By synthesizing
and integrating diversified knowledge across different research disciplines, S-
Cube aims at delivering the novel principles, techniques and methods for the
service-based systems of the future.

26 M. Papazoglou et al.

The remainder of this book is structured as follows:

• Service Technologies
– Chapter 2: Business Process Management,
– Chapter 3: Service Composition & Coordination,
– Chapter 4: Service Architectures & Infrastructures.

• Service Engineering Techniques & Methods
– Chapter 5: Modeling & Specification of Quality of Service,
– Chapter 6: Analytical Quality Assurance,
– Chapter 7: Service Engineering,
– Chapter 8: Adaptation of Service-Based Systems,
– Chapter 9: Service Automation Aspects.

References

1. Andrikopoulos, V. (ed.): Separate Design Knowledge Models for Software En-
gineering & Service-Based Computing. Contractual Deliverable CD-JRA-1.1.2,
S-Cube Network of Excellence (March 2009)

2. Pistore, M. (ed.): Integration Framework Baseline (including initial definition of
interfaces among layers). Contractual Deliverable CD-IA-3.1.1, S-Cube Network
of Excellence (March 2009)

2

Business Process Management

Francois Hantry1, Mike Papazoglou2, Willem-Jan van den Heuvel2,
Rafique Haque2, Eoin Whelan3, Noel Carroll3, Dimka Karastoyanova4,
Frank Leymann4, Christos Nikolaou5, Winfried Lammersdorf6, and
Mohand-Said Hacid1

1 Université Claude Bernard, Lyon 1, France
2 Tilburg University, The Netherlands
3 Lero – the Irish Software Engineering Research Centre, Ireland
4 University of Stuttgart, Germany
5 University of Crete, Greece
6 University of Hamburg, Germany

Chapter Overview. Business process management is one of the core drivers of
business innovation and is based on strategic technology and capable of creating and
successfully executing end-to-end business processes. The trend will be to move from
relatively stable, organization-specific applications to more dynamic, high-value ones
where business process interactions and trends are examined closely to understand
more accurately an application’s requirements. Such collaborative, complex end-to-
end service interactions give rise to the concept of Service Networks (SNs).

This book chapter surveys business process management, concentrating on busi-
ness transactions, and introduces a business transaction language to realizes a novel
business transaction model that enables end-to-end service constellations to behave
according to agreed-upon transaction criteria. The objective of the BTL is to pro-
vide the environment to build robust and successful mission-critical SBAs, using
a fusion of concepts from application integration, transaction-based and business
process management technologies.

2.1 Introduction: Towards Business Transaction
Management

Over the past decade, Business Process Management (BPM) emerged as both
a management principle and a suite of software technologies focusing on bridg-
ing diverse systems, organizations, people, and business processes [7]. BPM
is an information technology-enabled management discipline that treats busi-
ness processes as assets to be valued, designed and enhanced in their own
right. BPM technologies support both human-centric processes (e.g., claims
processing, accounts payable or customer servicing) and system-intensive pro-

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 27–54, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

28 F. Hantry et al.

cesses (straight-through processing or trade settlement), as well as a mixture
of both (the granting of loans).

BPM is the capability to discover, design, deploy, execute, interact with,
operate, optimize and analyze end-to-end business processes, and to achieve
this at the level of business design (modeling, designing, simulating and re-
designing business processes) and not purely technical implementation. We
may therefore define BPM as: a strategy and associated technology for man-
aging and improving the performance of an enterprise or value-chain through
continuous monitoring and optimization of business processes in a closed-loop
cycle of modeling, execution, and measurement.

BPM tools are far less effective without a method and strategy for defining,
measuring, and improving processes [8]. BPM is a structured approach that
aims to improve agility and operational performance and it represents a fun-
damental change in how organizations manage and run their operational busi-
ness processes. It treats business processes as organizational building blocks
with a focus in managing the efficiency and effectiveness of business processes
throughout the organization or integrated supply chain.

The ideas behind modern BPM are not new, though the term itself
was only introduced in the early 2000s. BPM follows initiatives established
throughout the 1980s and 1990s such as Total Quality Management (TQM),
Business Process Reengineering (BPR), Enterprise Resource Planning (ERP)
and Enterprise Application Integration (EAI). These methodologies attempt
to improve the performance of enterprises through measurement, restructur-
ing, automation, and business process integration techniques.

The trend in BPM will be to move from relatively stable, organization-
specific applications to more dynamic, high-value ones where business process
interactions and trends are examined closely to understand more accurately
application needs, most notably requirements with regard to business transac-
tions, and dynamics. Such collaborative, complex end-to-end service interac-
tions give rise to the concept of Service Networks (SNs)in which management
of business processes will concentrate on analyzing, designing, implementing,
simulating and continuously improving business transactions between network
parties.

BPM is a natural complement to SOA [19], and a mechanism through
which an organization can apply SOA to high-value business challenges. The
objective is to effectively align technical initiatives with the strategic goals of
the business user at every level within service networks to achieve a compre-
hensive approach to real business transformation.

Currently, SOA-centric BPM solutions concentrate on service-enabled pro-
cesses and cannot explicitly correlate critical business activities and events,
QoS requirements, and application (business) data, such as delivery dates,
shipment deadlines and pricing, in one process with related activities, events,
QoS and business data in other processes in an end-to-end process constella-
tion. This implies that application management information and procedures
are deeply buried in service-based application (SBA) code, which severely hin-

2 Business Process Management 29

ders maintenance and adaptation, both of which are essential for SNs. Such
hardwiring means that any change or update to the application management
logic already fabricated within an application requires programmatic changes
to the SBA itself. This renders impossible the potential reuse, customization,
and monitoring of application management capabilities. This also introduces
intrinsic discontinuities between end-to-end business processes as information
flows may be disrupted. For instance, a possible decoupling of payment in-
formation in payment and invoicing business processes from the ordering and
delivery information of goods and services in order management and shipment
business processes increases risks, could violate data integrity and contractual
agreements, and may introduce discrepancies between the various informa-
tion sources, which underlie these processes. Fixing this problem requires
expensive and time-consuming manual reconciliation. The principal activi-
ties required to sustain SBAs that collectively enact end-to-end processes, as
outlined by [24], include the “collection, management, analysis, and interpre-
tation of the various business activities and data to make more intelligent and
effective transaction-related decisions”.

SBAs that support end-to-end processes in SNs typically involve well-
defined processes such as payment processing, shipping and tracking, deter-
mining new product offerings, granting/extending credit, managing market
risk and so on. These reflect standard processes or process fragments that ap-
ply to a variety of application scenarios. Although such standard processes or
process fragments may drive transactional applications between SN partners,
they are completely external to current Web service transaction mechanisms
and are only expressed as part of application logic. Indeed, there is a need
for explicitly managing fine-grained properties of SBAs such as business data,
events, operations, process fragments, local and aggregated QoSs and associ-
ated Key Performance Indicators (KPIs), and so on, to guarantee a continuous
and cohesive information flow, correlation of end-to-end process properties,
and termination and accuracy of interacting business processes that is driven
by application control (integration) logic.

The above considerations give rise to a multi-modal transaction process-
ing scheme by enabling reliable business transactions that span from front-end
SBAs to back-end system-level transaction support and beyond to organiza-
tions that are part of a SN. Thus, the need for application-level management
technologies that can ensure highly reliable application (not only system)-
level transactions and end-user performance via rapid problem diagnosis and
resolution — while at the same time support change and capacity planning
— is paramount. In particular, we argue in favour of the need to provide rich
features and QoS similar to that offered by transaction processing monitors
but at the level of application management and application control logic.

Clearly, Business Transaction Management (BTM) is the heart-and-soul
of the Business Process Management workpackage in S-Cube, viewing every-
thing from an application perspective. In the world of BTM, an application
is considered as a collection of business transactions and events, each trig-

30 F. Hantry et al.

gering actions on the application and corresponding on the infrastructure-
level, which is handled by transaction monitors using WS-standards such
as WS-Transaction and WS-Coordination. The goal is to track every busi-
ness transaction in an end-to-end process and correlate it to the information
collected from the infrastructure so that, solving problems and planning is
done efficiently and holistically. It should be possible to have the ability to
“stitch together” the individual business transaction data points into a map
of the transaction topology and to monitor the metrics of each transaction
for Service Level Agreement (SLA) compliance. Service analytics, e.g., simu-
lation scenarios, and monitoring can then be applied to the transaction data
to proactively manage services and accurately pinpoint problems. Such an
end-to-end view enables to quickly isolate and troubleshoot the root cause
of application bottlenecks, e.g., failure of an order due to the unavailability
of just-in time production alternatives, potential performance problems, and
tune proactively.

With the above backdrop in mind, there is a need for explicitly introduc-
ing fine grained application management techniques that can be applied to
SNs ranging from business data, e.g., delivery times, quantities, prices, dis-
counts, events, operations, local and aggregated QoSs and associated KPIs,
to business process of transactional nature, e.g., payment and delivery, to
guarantee a continuous and cohesive information flow and correlation of end-
to-end process properties. This facilitates the potential reuse, customization,
of applications expressed in terms of processes and process fragments, as well
as the monitoring of applications. The philosophy of this work is that this
information and integration logic should be carved out, isolated and made
visible to facilitate the design of transactional processes or process fragments
that could be used to compose end-to-end processes in SNs (see Figure 2.1).

Loosely speaking, a transactional process fragment is a transactional sub-
process that is realized within an end-to-end process, while meeting granular
process properties (a list of granular process properties is shown in Figure 2.1).
Figure 2.1 shows that SBAs need to cross-correlate granular process properties
that span across processes in an end-to-end process constellation. Clearly,
granular process properties go far beyond conventional application properties
that are considered in traditional system transaction models, and include:
operational level agreements (e.g., SLAs), underpinning contracts, policies,
rules and QoS thresholds for services at the application-level. Some of these
process properties may be designated as being transactional in nature as they
can be used to drive a service composition, e.g., end-to-end SLAs.

In this way, granular process criteria can be used to drive and manage
the composition of end-to-end processes at the application level. In partic-
ular, end-to-end processes exhibit transactional characteristics to deliver on
undertakings or commitments that govern their formation and execution at
the SBA-level. In other words, an entire end-to-end process or parts of it may
fail if some transactional process properties, e.g., non-conformance to SLAs
or aggregate mean-value KPIs, are violated. End-to-end processes exhibit

2 Business Process Management 31

transactional characteristics that can be supported by an appropriate transac-
tion infrastructure that employs Web service standards, such as Web services
Atomic Transaction [4], Web services-Business Activity [5], Web Services-
Coordination [3], and the Business Process Execution Language (BPEL) [17].
Currently, this quartet of Web service standards is used to implement Web
service transactions.

The transaction management infrastructure (see bottom layer in Fig-
ure 2.1) could for example be based on an open source implementation frame-
work provided by JBoss Transactions (http://www.jboss.org) which sup-
ports the latest Web service transactions standards, providing all of the com-
ponents necessary to build interoperable, reliable, multi-party, Web service-
based applications. In such environments there is a clear need for advanced
SBAs to coordinate multiple services and processes into a multi-step business
transaction.

The suggested approach requires that several service operations or pro-
cesses attain transactional process properties reflecting SBA semantics, which
are to be treated as a single logical (atomic) unit of work that can be performed
as part of a business transaction. For example, consider a SN populated by a
manufacturer and various suppliers; the manufacturer develops SBAs to auto-
mate the order and delivery business functions with its suppliers as part of a
business transaction (see Figure 2.1). The transaction between the manufac-

Fig. 2.1. Business Transactions in Service Networks

http://www.jboss.org

32 F. Hantry et al.

turer and its suppliers may only be considered as successful once all products
are available in stock, delivered to their final destination, which could take
days or even weeks after the placement of the order, and payment has ensued.

Some participating services in a SBA may be vital to a successful outcome
of an end-to-end process. For example, a successful order for goods is a prereq-
uisite, i.e., a strong requirement, for the entire end-to-end process to succeed
followed by shipping and payment of goods. Given this vital precondition,
there are several viable (successful and useful) outcomes. One viable option
could be shipping and insurance. Within each viable combination, there may
be a further subdivision: competitive (alternative) selection. There might be
several prices and types of shipping insurance available from which a selection
must be made. These correspond to different instances of insurance services
and insurance prices offered by diverse service providers.

The above rationale directs us towards a business-transaction driven ser-
vice composition and eventual service selection. Such business transactions
differ from conventional atomic (database-like) transactions through their
ability to interact with a pool of potential composable services and partic-
ipants (providers) at run-time and to ponder different outcomes, before mak-
ing a process-specific decision on a subset of those services and associated
providers. Such process-specific decisions are based on granular process con-
structs (e.g., SLA mandates, cross-correlated business operations and data,
policies, mean-time KPIs, and so on).

In a SN environment, transactions are complex involving multiple parties,
spanning many organisations, and can have a long duration. More specifi-
cally, they are automated long-running propositions involving negotiations,
commitments, contracts, shipping and logistics, tracking, varied payment in-
struments, and exception handling.

Business transactions are dynamic in nature. Parts of a business transac-
tion may be retracted, alternatives may be tried out and optional activities
may fail without influencing the transaction. Vital activities of a transaction
behave as conventional short-lived ACID transactions and need to commit
in order for the overall transaction to successfully commit its results. In ad-
dition, data — for example, a customer account number or invoice — must
be passed between the individual actions that make up the business trans-
action and some application control logic is required, to “glue” the actions
together and make them succeed or fail (individually or collectively) depend-
ing on the requirements of the SBA. For example, there must be logic to deal
with the conditional invocation of actions and with failures. Performance of all
these tasks requires the infusion of advanced and unconventional transactional
properties onto the services paradigm.

To achieve some of the above stated objectives, business transactions rely
on and extend transactional workflow technology. Like a general workflow, a
transactional workflow consists of tasks that satisfy a set of coordination con-
straints but unlike a general workflow, a transactional workflow emphasizes
the transaction aspects that are poorly supported by general workflow, for

2 Business Process Management 33

instance, to guarantee the correctness and reliability of an application in the
presence of concurrency and failure [14]. The term transactional workflow is
used to emphasize the relevance of the transactional properties for collabora-
tive workflows implementing public processes that transcend functional units
within an enterprise or across the organizational boundaries.

As a result of these considerations, this chapter sets out to review and
redefine the concept of “business transaction” and their requirements as well
as the high-level design principles for a business transaction language or BTL
whilst outlining the fundamental properties involved. As such it targets the
first research challenge of S-Cube’s Global Research Vision on Concepts, Lan-
guages and Mechanisms for Agile Service Networks (see Chapter 1). In partic-
ular, through integrative efforts, bringing knowledge from various disciplines
including SOC, CSCW, BPM and Software Engineering, this book chapter
defines how we should design a business transaction, which incorporates the
process-level approach with the more conventional applications-level view and
sketches the constructs for an initial transactional language.

The book chapter is organised as follows. We will firstly review the essen-
tial characteristics of business transactions, leading to our own definition of
the concept. Based on the essential characteristics of business transactions we
then define a list of requirements for defining a BTL. Subsequently, we will
introduce a detailed scenario that serves for further exploring and illustrat-
ing the various concepts. Following this we will then introduce the business
transaction model, which defines the essential business transaction properties
and constructs. The business transaction model is used as a basis to develop
and illustrate some initial core BTL elements. Lastly, we summarize the key
conclusions of this book chapter and outline directions for future work.

2.2 Essential Characteristics of Business Transactions

As organisations and technology continue to evolve, our understanding of the
concept of a “business transaction” also changes. Therefore, it is critical that
we formulate a deeper understanding of what a business transaction actually
is. Today’s organisational structure is heavily influenced by advanced SBAs,
which execute well-defined business processes. [21] explains that although ser-
vice applications execute well-defined business functions, which may drive
transactional applications, they are normally external to current Web service
(i.e., WS-*) mechanisms. The unprecedented growth in SBAs in a short period
of time has emphasized the need to understand the mechanisms and under-
lying theorize related to the business transaction concept. Understanding the
logic of business processes requires us to re-examine what is meant by a busi-
ness transaction. In this vein, the goal of this section of the book chapter is
to help achieve an understanding of what a business transaction is, what do
business transactions achieve, and how do they compare with conventional
transaction procedures. As research works and technological developments

34 F. Hantry et al.

broaden the scope of transaction management, we will align transactional de-
velopments with the developments to improve functionality and performance
within a SN environment.

2.2.1 Business Transaction Overview

Transactions are mainly associated with the business domain as they represent
both tangible and intangible items (goods, money, information, and service).
In recent years, the focus within computer science was on the automation
of business transactions (i.e., process, execute and coordinate). In addition,
the transaction model has undergone some significant changes through the
introduction of business and information technological influences.

Nowadays, most business-to-business (B2B) collaborative applications re-
quire transactional support, while presenting many difficulties incorporating
transactional properties such as Atomicity, Consistency, Isolation, and Dura-
bility (ACID). The ACID model is comprised of these four fundamental prop-
erties, which are considered the “building blocks” for transaction models.
Although extremely reliable, classic ACID transactions are not suitable for
loosely coupled environments such as Web service-based systems and trans-
actions, which rely on long running processes. Strict atomicity and isolation
is not appropriate to a loosely coupled world of autonomous trading partners,
where security and inventory control may foster issues and prevent the ‘hard
locking’ of local databases. The major issue is the isolation of a database
transaction. This property requires resource locking that is impractical in the
services world. It would also preclude clients from participating in a business
process, which is a strong requirement for SBAs. Sometimes, in a loosely-
coupled or long-running activity, it may be desirable to cancel a work unit
without affecting the remainder. In such cases, the strict atomicity property
of transactions needs to be flexible. This is very similar to the property of
open nested transactions where the work performed within the scope of a
nested transaction is provisional and sub-transaction failure does not affect
the enclosing transaction.

The concept of the business transaction is heavily documented throughout
various bodies of literature, where many authors share similar meanings and
others argue its meaning within various contexts. The increase in organizations
adopting a service-networked approach challenges our traditional understand-
ings of the business transaction paradigm. In the following we summarize most
of the important works and definitions for reasons of completeness.

The emergence of e-markets has created opportunities for organizations to
combine capabilities and configure business transactions to integrate roles and
relationships across partnering networks. The relationships of these networks
play a fundamental role in the architecture of transactions. [2], captures the
essence of the change that business transactions have brought about in recent
years due to “the unprecedented reach, connectivity, and low-cost information

2 Business Process Management 35

processing power, open entirely new possibilities for value creation through
the structuring of transactions in novel ways”.

[13] also makes reference to the ‘relationship’ factor within a transaction.
According to [13], a business relationship is “any distributed state maintained
by two or more parties, which is subject to some contractual constraints pre-
viously agreed to by those parties”. [13], then describes a business transaction
as “a consistent change in the state of a business relationship. Each party in
a business transaction holds its own application state corresponding to the
business relationship with other parties in that transaction”.

[11] also adopts an operational view and states that all business transac-
tions should present “significant information processing and communication
to reduce uncertainties for buyers and sellers”, i.e., quality, commitment, and
protocols in plane for resolution over conflicts. Reducing uncertainties within
a transaction heavily influences its outcomes.

[9] simply defines a transaction as a “sequence of messages” which suggests
that a transaction is triggered through the exchange of messages within a
business management system (i.e., the initiator).

[21] reports that a business transaction is defined as “a trading interac-
tion between possibly multiple parties that strives to accomplish an explicitly
shared business objective, which extends over a possibly long period of time
and which is terminated successfully only upon recognition of the agreed con-
clusions between the interacting parties”. This implies that there is an atomic
or ‘all or nothing’ approach to meet defined objectives, and upon failure the
transaction is rolled back.

According to [6], a business transaction is a “set of business information
and business signal exchanges amongst two commercial partners that must oc-
cur in an agreed format, sequence and time period. If any of the agreements
are violated then the transaction is terminated and all business information
and business signal exchanges must be discarded”. Thus, the document flow
structure (time, format, and sequence) which exists between parties is impor-
tant. [12], states that a business transaction consists of “one or two prede-
fined business document flows and additional business signals”. [1] suggests
that document flow is important and defines a business transaction as “an
atomic unit of work between trading partners. Each business transaction has
one requesting (incoming) document and an optional responding (outgoing)
document”.

However, the flow of these documents often only indicates the pattern in
which a transaction relationship exists, for example [12] and [1] do not propose
that a transaction provides any business gain. [21], includes the business value
factors and states that business transactions are driven by “economic needs
and their objective is accomplished only when the agreed upon conclusion
among trading parties is reached, e.g., payment in exchange for goods or
services”.

One of the most important evolutionary factors of the traditional trans-
action model has been the transition from the single level transaction struc-

36 F. Hantry et al.

ture to the multi-level structures. Business processes now interact across and
between organizations to create a SN. Therefore, within a typical business
transaction there must be at least two parties involved, i.e., a supplier who
has a product or service to sell, and a customer who buys this product or
service in exchange at a cost. A business model should therefore explicitly
describe the collaborative interoperable business processes that are required
to fulfill a business transaction.

The formation of a business transaction evolves to encapsulate a more net-
worked and collective effort to reach predefined agreements, practices, proce-
dures and outcomes. To add to this effort, [20] introduces a business trans-
action model encompassing business principles and models transactions with
QoS characteristics, which highlights the need to describe the collaboration as-
pects’ of business processes. Nonetheless, managing the complex transactions
is extremely difficult, and these services are managed through the ‘negotiation
and enforcement of service level agreements’ [21].

As these definitions outline a number of key principles, they have been
summarized in Table 2.1.

From the above it is evident that the concept of business transactions has
adopted several interpretations. It is therefore important to attempt to tie in
these meanings to develop a more holistic vision of what constitutes a business
transaction.

Within end-to-end processes in a SBA, complex information is exchanged
for example, expected service, financial and contractual. [15] draws our atten-
tion to the concept of scalability in transaction-based systems, which need to
grow to support the relationships within these transactions, especially in the
case where organizations are increasing the level of negotiating and interac-
tion in transactions with other organizations to provide some form of business
solution. This places a greater emphasis on the choreography of business tran-
sitions (i.e., specific business states and the transitions between those states).
[12] explains that “the purpose of choreography is to order and sequence
business transaction activity and/or collaboration activity within a binary
collaboration, or across binary collaborations within a multiparty collabora-
tion”. In that respect, a business transaction describes the mission, behavior,
action, sequence, correlations of collaborative interactions with an objective
of securing a business relationship to request or supply a product or service
under predefined conditions.

Having critically analyzed and assessed the previous business transaction
definitions, we can now define a business transaction as follows: “A series of
collaborative activities that explicitly enforces the achievement of an agreed-
upon business objective in end-to-end processes. This objective is subject to
service-level agreements that govern the choreographed/orchestrated behav-
ior, non-functional and timing requirements, correlated exchange of informa-
tion, and control flow of composed services”. Business transaction manage-
ment [16] has evolved from its early roots in business process management to
a more comprehensive approach that offers concepts, mechanisms and tools

2 Business Process Management 37

Table 2.1. Summary of Business Transaction Definitions

Author Definition Key Words

Hofman
(1994) [9]

“sequence of messages” Message, sequence

Kambil
(1997) [11]

“significant information processing and
communication to reduce uncertainties
for buyers and sellers”

Information
processing, reduce
uncertainties

Clark
(2001) [6]

“set of business information and busi-
ness signal exchanges amongst two
commercial partners that must occur
in an agreed format, sequence and time
period. If any of the agreements are
violated then the transaction is termi-
nated and all business information and
business signal exchanges must be dis-
carded”

Information and busi-
ness signals, exchange,
format, sequence, vio-
lation, termination

Aissi
(2002) [1]

“an atomic unit of work between trad-
ing partners. Each business transaction
has one requesting (incoming) docu-
ment and an optional responding (out-
going) document”

Atomic unit, request,
respond

Kim
(2002) [12]

“one or two predefined business docu-
ment flows and additional business sig-
nals”

Predefines flows

Kratz
(2004) [13]

“a consistent change in the state of
a business relationship. Each party in
a business transaction holds its own
application state corresponding to the
business relationship with other parties
in that transaction”

Distributed
relationship, change,
transaction state

Papazoglou
(2006) [21]

“a trading interaction between possi-
bly multiple parties that strives to ac-
complish an explicitly shared business
objective, which extends over a pos-
sibly long period of time and which
is terminated successfully only upon
recognition of the agreed conclusions
between the interacting parties”

Interaction,
parties,
accomplish,
objectives,
long periods,
negotiation,
conclusion

38 F. Hantry et al.

to manage the lifecycle of a business transaction starting from business goals
over transactions definition, through deployment, execution, measurement,
analysis, change, and redeployment.

A shared business objective extends over a possibly long period of time
and is terminated successfully only upon recognition of the agreed conclusions,
e.g., stipulated QoS, compliance to business and regulations, etc, between the
interacting parties. A transaction usually outlines the liabilities of each party
in the event where the intended actions are not carried out (e.g., promised
services not rendered, services rendered but payment not issued). If a busi-
ness transaction completes successfully then each participant will have made
consistent state changes, which, in aggregate, reflect the desired outcome of
the multi-party business interaction.

2.3 Requirements of a Business Transaction Language

Business Transaction Management (BTM) views everything from an applica-
tion perspective. In the world of business transaction management, an appli-
cation is considered as a collection of business transactions and events, each
triggering actions on the application and corresponding on the infrastructure-
level, which is handled by transaction monitors using WS-standards such as
WS-Transaction and WS-Coordination. The goal is to track every business
transaction in an end-to-end process and correlate to the information col-
lected from the infrastructure so that, solving problems and planning is done
efficiently and holistically. It should be possible to have the ability to “stitch
together” the individual business transaction data points into a map of the
transaction topology and to monitor the metrics of each transaction for SLA
compliance.

A BTL plays a pivotal role in BTM. The core requirement for a BTL is
the ability to describe the granular transactional process properties of end-to-
end processes, such as business commitments, mutual obligations and agreed
upon KPIs, in a standard form that can be consumed by tools for business
transaction implementation and monitoring. In this section, we will refine this
all-encompassing BTL requirement.

Table 2.2 summarizes the behavioral characteristics and key factors, which
differ within a transaction and need to be expressed as part of a BTL.

As summarised in Table 2.2 above, there are several characteristics and key
factors, which distinguish certain stages within a business transaction. These
stages, including transaction activities, business service dimensions, and their
implications for SNs, are captured in Table 2.3.
As Table 2.3 (partly based on Open Electronic Data Interchange, or Open
EDI [10]) shows, in order to deliver a business transaction, there are business
processes, transaction activities, dimensions, and behaviour which need to
be agreed upon, at various phases upon entering a transaction agreement.
The last column (far right) summarises the key tasks required at each stage

2 Business Process Management 39

Table 2.2. Behavioural Characteristics and Key Factors of Transactions (Adapted
from [20]

Characteristics Key Factors

Generic

Who is involved
What is being transacted
Destination of payment and delivery
Transaction time frame
Permissible operations

Distinguishing
Links to other transactions
Receipt and acknowledgment

Advanced
Ability to support reversibility (compensatible) and repaired
(contingency) transactions
Ability to reconcile transactions with other transactions
Ability to specify contractual agreements, liabilities, and dispute
solution policies

within a transaction occurring in a SN. While the information gathering and
negotiation stages fall outside the scope of this chapter, we will concentrate
in this book chapter on language requirements emerging from stages 3 and 4.

Based on an extensive literature survey and associated comparative analy-
sis of existing business transaction models — notably Open EDI, the UN/CE-
FACT Modelling Methodology (UMM) [23] and electronic business using eX-
tensible Markup Language (ebXML) [6] — in connection with the S-Cube ref-
erence architecture, we have distilled the following key transaction language
requirements for stages 3 and 4:

Requirement 1: Expressing Collaborative Activities That Explicitly Enforce
the Achievement of an Agreed-Upon Business Objective in End-to-End
Processes

The BTL is pervasive in that it will be defined over end-to-end processes
involving choreographed and/or orchestrated services that exhibit transac-
tional properties. Transactional properties may be expressed by combining
existing transactional services or process fragments and associating them with
application-level characteristics as well as contractual agreements in order to
develop SBAs for SNs.

Requirement 2: Expressing an On-Demand Delivery Model for SBAs

Business transactions are required to furnish an “on-demand” delivery model
in which end-users may specify their preferences, e.g., desirable QoS, manda-
tory regulations, etc, as regards an end-to-end process. This implies that ser-
vices are tentatively (re-) selected from a pool of service providers on the fly.
Services and transactional process fragments can then be tailored, composed
and then deployed over a variety of platforms.

40 F. Hantry et al.

Table 2.3. Business Transaction Stages & Dimensions [25]

Requirement 3: Facilitating Reusability and Extensibility

The BTL will impart constructs that define reusable and extensible transac-
tional process fragments.

Requirement 4: Expressing Conventional Atomic Actions

The transaction language needs to cater for conventional atomicity as, in
some circumstances, service operations or transactional process fragments in
an end-to-end process have to be strictly atomic. Assuming, for instance, that
a client application decides to invoke one or more operations from a particular
process fragment such as order confirmation, or inventory check, it is highly
likely for the client application to expect these operations to succeed or fail
as a unit. We can thus view the set of operations used by the client in each
process fragment as constituting an atomic unit of work (viz. atomic action).

2 Business Process Management 41

Requirement 5: Expressing Application-Level Atomicity Criteria

In addition to the previous requirement, the language should be able to express
and associate application-level atomicity (described in Section 2.5.1) criteria.
For instance, we may be able to express that a transaction is a payment-aware.
This means that if payment is not made within a pre-specified period then
the transaction fails. Similarly, transactions could be made QoS, or SLA-aware
and succeed or fail depending whether QoS criteria or SLA terms are met.

Requirement 6: Expressing Long Duration Nested-Activities

Long-duration (business) activities could be expressed as aggregations of sev-
eral atomic actions and may exhibit the characteristics and behaviour of open
nested transactions and transactional workflows. The atomic actions forming
a particular long-duration business activity do not necessarily need to have a
common outcome. Under application control (business logic), some of these
may be performed (confirmed), while others may fail or raise exceptions such
as time-outs or failure. To exemplify a long-duration business activity, consider
a slight variation of the order processing scenario where a manufacturer asks
one of its suppliers to provide it with valuable and fragile piece of equipment.

Now, consider that one atomic action arranges for the purchase of this
product, while a second arranges for its insurance, and a third one for its
transportation. If the client application is not risk-averse (due to excessive
costs), then even if the insurance operation (atomic action) votes to cancel, the
client might still confirm the transaction and get the item shipped uninsured.
Most likely, however, the client application would probably retry to obtain
insurance for the item. Once the client discovers a new insurer, it can try
again to complete the long-duration business activity with all the necessary
atomic actions voting to confirm on the basis of the particular coordination
protocol used.

Requirement 7: Expressing and Enforcing Policies

This helps service networks achieve the global control of end-to-end processes
by enforcing policy consistently across the runtime environment, without re-
quiring applications to be recoded and deployed. This involves constructs to
define policies and SLA thresholds based for example on transaction averages.
It also involves constructs to define and enforce policies.

Requirement 8: Expressing and Enforcing QoS and Compliance Criteria

Activities in business transactions will be able to express compliance with
regulations, SLA terms and QoS characteristics in an end-to-end fashion. The
BTL will therefore be equipped with constructs to define controls and counter
measures.

42 F. Hantry et al.

Requirement 10: Incident Management

The language needs to be endowed with constructs to feed the transaction
management infrastructure with information on business transaction events
and SLA violations (in addition to current component based events) that is
useful for repairing a process anomaly or problem, reducing the mean time to
repair. This includes constructs to define stalled transactions, missing steps,
faults, and application exceptions, as well as other issues such as incorrect
data values, boundary conditions, and so on.

Requirement 11: Business Transaction Monitoring

Traditional transaction monitors are able to monitor only system-related ac-
tivities and performance. The capability of the BTM system (that is built
around the BTL) is the ability to compute and monitor KPIs using rules that
trigger automated alerts or process actions when they move outside their tar-
get range. Process owners can then respond instantly to events that affect the
bottom line. This thus implies that the BTL will contain constructs and op-
erators that will define exactly how processes and services will be monitored
(e.g., through logging or actively checking), and how process-level KPIs will
be mapped down to SBA-level SLAs and QoS.

Requirement 12: End-to-End Visibility and Optimization

The purpose is to provide visibility into the service interactions within the
scope (i.e., context) of the business transaction and make process performance
visible to process owners and also to provide a platform for problem escalation
and remediation. BTM system should provide the ability to measure perfor-
mance across organizational and system boundaries and detect exceptions in
service interactions. As processes run, the BTM system should be able to con-
tinuously capture the snapshots of process instance data and aggregate them
in a meaningful manner.

The above requirements above are essential in determining the character-
istics and functionality of the BTL, which is presented in Section 2.6 of this
chapter.

2.4 Illustrating Scenario

The following scenario deals with an integrated logistics process involving a
customer, suppliers and a logistics service provider. This logistics model con-
sists of forecast notification, forecast acceptance, inventory reporting, ship-
ment receipt, request and fulfil demand, consumption and invoice notification
activities. In particular, this scenario is part of the automotive supply chain

2 Business Process Management 43

case study proposed in the vision chapter, illustrating the use of simple busi-
ness transactions and associated event monitoring.

Figure 2.2 depicts the flow of information between the interacting nodes
(business partners) in a very simple SN involving three parties (car man-
ufacturers, part suppliers and logistics providers). Service interactions are
governed by a simplified SLA. This figure shows the sequential ordering of
the interaction events between the business partners in terms of message ex-
changes. The message “Notify of Forecast”, contains car part demand infor-
mation (planning demand), is sent by a forecast owner (the car manufacturer)
to a forecast recipient (the supplier).

Fig. 2.2. The Integrated Logistics Scenario

The message “Forecast Acceptance” sent back from the supplier acknowledges
that the demand forecast has been accepted. Next, the message “Distribute
Inventory Report” is performed by an inventory information provider to report
the status of the inventory to an inventory user.

The inventory report can include any car parts held in inventory. The
message “Advance Shipment Notification” allows a shipper to notify a receiver
that a shipment has been assigned. This notification is often a part of the
shipment process. Message “Shipment Receipt” is performed by a consignee
to report the status of a received shipment to another interested party, such
as another consignee, a transport service provider, a third-party logistics firm,
or a shipper.

Receipt of a shipment is reported after it has been delivered by a carrier
and inspected by receiving personnel. The customer then issues an “Invoice

44 F. Hantry et al.

Notification” to communicate car parts consumption to the supplier, allow-
ing the supplier to trigger invoicing for the consumed material. The message
“Invoice Notification” enables a provider to invoice another party, such as a
buyer, for goods or services performed.

Finally, the message “Notify of Remittance Advice” enables a payer to
send remittance advice to a payee (in this case the supplier), which indicates
which payables are scheduled for payment.

Message exchanges are bundled together in three separate message ex-
changes (A, B and C). As shown in Figure 2.3, the message exchanges 1,2,6,7
and 8 (named A) can be bundled together in the form of a business-aware
transaction, which is governed by a simplified SLA between the two trading
partners, i.e., the car manufacturer and the supplier.

As a whole, our global business transaction scenario consists of three bi-
nary business transactions, i.e., transaction A between the car manufacturer
and the supplier, B between the car manufacturer and the logistics service
provider, and C between the logistics service provider and the supplier. The
SLA for each transaction contains a set of policy constraints, such as tem-
poral and spatial constraints, penalties, some business regulatory rules, etc,
that must be fulfilled during the transaction execution. It also prescribes the
recovery strategies for the business transaction in case any of the message
exchanges fail, for instance, either this business transaction must be compen-
sated by some means, e.g., issuing another forecast or invoice, or the entire
transaction fails. Besides, the SLA also drives the business-aware transac-
tion with other agreements on the KPIs of the transaction, which enables
the performance monitoring and measurement of the execution. To sum up, a
business transaction between two trading partners is driven by the conditions
specified in the agreed-upon SLA.

Some sample conditions in the SLA that should be monitored and enforced
by the transaction management system during the transaction execution are:

• Has the supplier acknowledged the order?
• Has the supplier and logistics service provider committed to a ship date?
• Will the supplier start manufacturing on-time?
• Will the order be shipped on-time?
• Does this order meet our on-time delivery goals and other KPIs?
• If the order shipped by the logistics provider does not arrive on-time, how

should we proceed?
• Does it affect other partners if the logistics service provider cannot deliver

the order? How to compensate this problem?

A process activity can be vital or non-vital for its business transaction. If
the vital one fails, its transaction will fail, e.g., the activity “Prepare Invoice”
in transaction A is vital for its transaction, since without the invoice, the
payment between the trading partners in A cannot be conducted. Process
activities in the same or different business transactions can have weakly or
strongly consistent atomicity relationships. “Weakly” means that either both

2 Business Process Management 45

the two activities succeed or if one of them fails and is compensated/recovered
then the other one will also fail or be compensated/recovered in the near fu-
ture. “Strongly consistent-atomic” enhances the “weakly consistent-atomic”
relationship by requiring that if both activities fail, they must result into a
consistent (predefined) state (see Section 2.5.1 which explains formalization of
consistent-atomicity). For instance, the activities “Send Invoice” in transac-
tion B and “Receive Invoice” in transaction C are strongly consistent-atomic.

Traditional transaction monitoring mechanisms are able to monitor only
system-related activities and performance. However, it is important to under-
stand that business-aware transactions correlate application-level events and
situations with the supporting infrastructure. For example if the manufacturer
requests a change in the order, can we accept the change in connection with
agreed-upon KPIs? Alternatively, if an infrastructure-level change has been
made, we can assess its impact on the application (SBA) level. More impor-
tantly, we can deduce if the processes are still working to plan, if there are
any bottlenecks and where they appear, if there was a process improvement or
worsening, and so on. Correlating lower level activities, e.g., from the service
composition or the infrastructure level, with higher level business events in the
form of transactions, provides opportunities to continuously monitor and mea-
sure the lifecycle of a transaction, while providing data and events to trigger
and populate controls, as well as time-based data for on-time measurement.

2.5 Business Transaction Model

From the definition of a business transaction, it has been shown that it is a
mission-critical task that spans across the organizational boundaries and en-
compasses different types of business concepts to achieve business awareness,
such as SLA awareness. To provide a more in-depth understanding of a busi-
ness transaction, this section first scrutinizes the business concepts that signif-
icantly pertain to a business transaction and proposes a business transaction
model on the basis of which the transaction language described in Section 2.6
can be developed. Section 2.5.1 describes high-level business transaction con-
cepts concentrating on rationalizing their indispensability in a BTL. Then,
an advanced model of business transaction is presented is Section 2.5.2 that
captures these business transaction concepts either explicitly or implicitly.

2.5.1 High-Level Concepts

A collaborative business environment involves multiple partners (or organi-
zations) that foster the indispensability of mutual obligations. The mutual
obligations can be presented by an SLA that explicitly defines the common
requirements and policies that have to be satisfied by the committed trading
partners. Business transaction is deemed as one of the main drivers of an end-
to-end process that involves multiple trading partners. Hence, any transaction

46 F. Hantry et al.

mechanism that is used to enforce the business transaction in an end-to-end
process needs to be cognizant of SLA concepts. These SLA concepts are de-
scribed in this section including application-level atomicity that governs the
transaction process. The concept of Business Collaboration is also discussed
to present a brief overview of business transaction in a collaborative business
environment.

Business Collaborations and Business Transactions

One key requirement for enabling cross-enterprise business process automation
is the ability to describe the collaboration aspects of the business processes,
such as commitments and exchanges of monetary resources in a standard form
that can be used by applications and consumed by tools for business process
implementation and monitoring [18]. Business collaboration captures the in-
formation and message exchange requirements between trading partners. Ad-
ditionally, trading partners may have multiple interactions in an end-to-end
process. The sequence of these interactions is captured by a business protocol.
A business protocol identifies and captures all behavioural aspects that have
cross enterprise business significance [21]. Behavioural aspects may include
the messaging behaviours between trading partners, which help the partici-
pants understand and plan their interactions that conform to the agreed-upon
business protocol. We have incorporated a set of important business artefacts
(e.g., business protocol) in our business transaction model.

Application-Level Atomicity

The governing factors (e.g., SLAs) of a business transaction foster the atomic
behaviour. This type of atomicity is called application-level atomicity or non-
conventional atomicity [18] and consists of a set of application related atomic-
ity criteria. Each criterion is treated as a single individual logical unit of work
that determines a set of vital or viable outcomes for a business transaction.
The outcomes of a business transaction may involve non-critical partial failure,
or selection among contending service offerings rather than the conventional
strict atomicity (all or nothing).

Application-level atomicity can be deemed as the criteria for checking con-
sistency and correctness of a business transaction against predefined standard
operations. According to [18], there may be different types of application-level
atomicity that are discussed in the following:

• Contractual Atomicity: Business transactions are generally governed by
contracts and update accounts. Contractual atomicity may include mes-
saging sequence (or interactions), QoS parameters (e.g., time to perform),
and security parameters (e.g., non-repudiation). Electronic contracts de-
fine both the legal terms and conditions and technical specification that a
trading partner must implement to put an electronic trading relationship

2 Business Process Management 47

into effect. As an example, if a contract enforces an obligation to acknowl-
edge a purchase order within specified time frame, seller has to send an
acknowledgement to buyer. Otherwise, the transaction should be aborted
and failed. Consequently, the contract will be null and void. A business
transaction is completed successfully only when the contractual provisions
are satisfied.

• Operational Level Atomicity: Business transactions usually involve the ac-
tual delivery of purchased items (tangible and non-tangible) [18]. This type
of atomicity has been well defined by [22] and refined by [18]. The opera-
tional atomicity is decomposed into Payment Atomicity, Goods Atomicity,
and Delivery Atomicity. This research does not include Goods Atomicity
but emphasizes on payment atomicity and delivery atomicity since Goods
Atomicity can be realized by Delivery Atomicity.
– Payment Atomicity: Payment atomic protocol affects the monetary

transaction from one party to another. It is the basic level of atomicity
that each operation level business transaction should satisfy. This type
of atomicity has greater influence on the entire transaction process
because if the payment process fails, all the cohorts must have to be
failed. Notably, a payment atomic transaction can be contract atomic.

– Delivery Atomicity: Delivery is typically the last phase of an end-to-end
process chain. The purpose of this type of atomicity is to ensure that
the right goods are delivered to the buyer. The delivery atomic protocol
also guarantees the quality of the specified products is maintained and
they are delivered within the specified. A business transaction cannot
be completed successfully unless a Delivered notification arrives from
the buyer, since the failure of delivery may cause failure of all the (sub-)
transactions that participated in the transaction process.

Our business transaction model adapts the application-level atomic crite-
ria to achieve a consistent and business-aware transaction mechanism since
application-level atomicity contains higher business significance involving con-
tract, constraints, and also the operations. The association of business trans-
action with these business aspects is shown in the business transaction model
in the next section. Noticeably, these atomicity (contract and operational level
atomicity) are not shown explicitly in the business transaction model instead
they are represented by contractual primitive and operational primitive.

2.5.2 Business Transaction Model Overview

An important requirement in making end-to-end process automation happen
is the ability to describe the collaboration aspects of the processes, such as
commitments and mutual obligations, in a standard form that can be con-
sumed by tools for business process implementation and monitoring. This
gives rise to the concept of a business transaction model that provides a com-
prehensive set of concepts and several standard primitives and conventions

48 F. Hantry et al.

that can be utilized to develop complex Service Based Applications (SBAs)
(see Section 2.1). Central to the business transaction model is the notion of
a business transaction (see Section 2.2.1 for the definition). Business trans-
actions cover many domains of activity that businesses engage in, such as
request for quote, supply chain execution, purchasing, manufacturing, and so
on. The purpose of a business transaction is to facilitate specifying common
(and standard) business activities and operations that allow expressing busi-
ness operational semantics and associated message exchanges as well as the
rules that govern them. The combination of all these primitives enforces SN
partners to achieve a common semantic understanding of the business trans-
action and the implications of all messages exchanged.

The business transaction is initiated by a service client and brings about a
consistent change in the state of a relationship between two or more network
parties. A business relationship is any distributed state held by the parties,
which is subject to contractual constraints agreed by those parties.

There are four key components in a business transaction model that help
differentiate it from (general) message exchange patterns. These are:

• Commitment exchange.
• The party (or parties) that has the ability to make commitments.
• Business constraints and invariants that apply to the message exchanged

between the interacting parties.
• Business objects (documents) that are operated upon by business activities

(transactional operations) or by processes.

We have developed a meta-model in UML that captures the key constructs of
the business transaction model and their interrelationships (see Figure 2.3).

Fig. 2.3. The Business Transaction Model

2 Business Process Management 49

Business transactions make up the core of the transaction model, and may
incorporate a blend of transactional and non-transactional process fragments
that are coordinated through business protocols and collectively make up an
end-to-end process.

Transactional process fragments are characterized by universally accept-
able system level primitives — such as resume, cancel, commit and retry.
There are also referential primitives that correlate an activity with other ac-
tivities using control or data flow, e.g., payment refers to an associated order.
Application level primitives comprise of contractual primitives and opera-
tional primitives. Contractual primitives define mutual agreements between
network parties relying on constructs such as authorizations, obligations and
violations. Lastly, operational primitives help to enforce network partner com-
mitments. They introduce a mandatory set of three operational level atomicity
criteria that reflect the operational semantics of three standard business ac-
tivities (ordering, payment, and delivery). For instance, payment atomicity
affects the transfer of funds from one party to another in the transaction.
This means that the transaction would fail if payment were not made within
a pre-specified time period that was agreed between a supplier and a cus-
tomer. Delivery atomicity, on the other hand, implies that the right goods
will be delivered to a customer at the time that has been agreed.

Transactional process fragments embody one or more activities that fall
apart in the following two mutually exclusive activity types: vital or non-vital.
Atomic activities are short-lived and atomic actions which in some cases may
be part of long-running business transactions, referred to as Business Activ-
ities (adopting the WS-Transaction terminology). The alternatives set is a
group of alternative atomic activities and can be vital or non-vital. Alterna-
tives set can contain only non-vital atomic activities since it is not pre-defined
which alternative is executed at run-time.

Business activities usually operate on business (document-based) objects.
These are traditionally associated with items such as purchase orders, cata-
logues (documents that describe products and service content to purchasing
organizations), inventory reports, shipping notices, bids and proposals. Such
objects may also be associated with agreements, contracts or bids. This allows
business transactions to interchange everything from product information and
pricing proposals to financial and legal statements.

Activities could also belong to the Exception Handler, e.g., Compensa-
tion Handler, Event Handler, and Fault Handler. They are special kinds of
activities that are performed in case of particular activity fails or repair the
transactions after they were disrupted.

An SLA is defined as a coherent set of explicitly stated policies that pre-
scribe, limits, or specifies any aspect of a business protocol that forms part
of the commitment(s) mutually agreed to among the interacting parties, and
stipulates agreed upon QoS constraints (some of which stem from business
rules). An SLA also outlines what each party can do in the event the intended

50 F. Hantry et al.

actions are not carried out (e.g., promised services not rendered, services ren-
dered but payment not issued).

Policies may encompass one or more constraints. Spatial constraints regu-
late the access to protocols based on criteria such as spatial point and route.
Temporal constraints stipulate timing restrictions such as time, date, duration
and interval. The business transaction model also furnishes some standard op-
erational constraints for governing message exchanges. The model could eas-
ily express sequencing semantics, which for instance require that “ordering”
occurs first and is followed by “transport” and “delivery”. “Payment” can
happen either before or after the “delivery” function.

2.6 Initial Design of Business Transaction Language
(BTL)

After describing the business transaction model we can now develop the BTL
to transform our transaction model into language constructs. This section
presents some initial and elementary constructs that we have developed and
captured in a transaction language named as BTL. The BTL is a declara-
tive transaction language and its constructs are XML-based representing the
transactional elements specified at design time. BTL is also planned to facili-
tate annotating the granular process properties for each of the activities in the
process fragments that compose end-to-end processes. Noticeably, a detailed
description of the run-time environment as well as run-time transformation
between the BTL and equivalent executable constructs is not within the scope
of this chapter. However, the mapping will most likely be from BTL to an ex-
ecution language, e.g., an extended transactional BPEL. Hence, the purpose
of this section is confined only to our elementary work on the BTL constructs.

The business transaction model in the previous section consists of various
domains (e.g., SLA, Constraints, Primitives, etc) that are related to business
transactions, their elements and associations between the elements as well as
domains. In this section, we codify the model considering all these elements
and relations.

This XML snippet shown in Listing 2.1 is an example of using the business
transaction language constructs defined in Section 2.5.2 to describe part of
the Integrated Logistics Scenario in Figure 2.2. In particular, we focus on the
process fragment “Payment Processing” at the car manufacturer, which is
in fact a transactional process fragment. First, the fragment uses a business
protocol, which prescribes the sequence order of activities and interactions
performed by the car manufacturer that must be visible for other participants.
An activity can be vital or non-vital. For instance, “Process Payment” is
considered to be vital since it actually executes the payment, while “Receive
Invoice” and “Send Remittance Advice” are non-vital since it may be no
problem at all for the supplier to resend an invoice a few times more and to
check the payment without the remittance advice.

2 Business Process Management 51

Listing 2.1. Sample code snippet of Business Transaction Language

<BTL >

<TransactionalProcessFragment name=’Payment � Processing ’>

<BusinessProtocol>

<Sequence >

<Activity vital =’false ’>Receive Invoice </Activity >

<Activity vital =’true’>Process Payment </Activity >

<Activity vital =’false ’>Send Remittance Advice </Activity >

</Sequence >

</BusinessProtocol >

<LanguagePrimitives >

<applicationLevelPrimitive >

<operationalPrimitive >

<Activity vital=’true ’>Process Payment </Activity >

<extend >Payment </extend >

</operationalPrimitive >

<ContractualPrimitive >

<SLA >

<Policy >

<timeToComplete>1 month </timeToComplete>

<creditMaximumAllowance >

\$1000

</ creditMaximumAllowance >

</Policy >

</SLA >

</ContractualPrimitive >

</ applicationLevelPrimitive >

</LanguagePrimitives >

</ TransactionalProcessFragment >

</BTL >

Second, the transactional process fragment may be driven by many language
primitives, which are in this case the operational primitives and contractual
primitives that are the subsets of application-level primitive.

The operational primitive indicates that in order to realize the vital ac-
tivity “Process Payment”, we will extend the existing predefined operational
primitive “payment”. The contractual primitive prescribes the agreed-upon
SLA between the participants, which comprises of a number of constraints
embedded in a policy definition.

In this case there are two policy constraints, one prescribes that the com-
pletion time for this fragment must be within a month, and the other one
allows the payment using credit card only up to $1000.

2.7 Summary and Outlook

The discipline of Business Process Management emerged as both a manage-
ment principle and a suite of software technologies focusing on bridging di-
verse systems, organizations, people, and business processes. Its objective is

52 F. Hantry et al.

to manage the lifecycle of a process starting from business goals over process
definition, through deployment, execution, measurement, analysis, change and
redeployment.

In the context of S-Cube’s research vision, and particularly the ongoing
research efforts on the first research challenge dealing with languages and
mechanisms for Agile Service Networks (see Section 1.2.5 of Chapter 1), this
chapter has considered the management of business processes that are in-
creasingly complex and integrated both within internal corporate business
functions (e.g., manufacturing, design engineering, sales and marketing, and
enterprise services) and across end-to-end processes. Particularly, the trend
will be to move from relatively stable, organization-specific applications to
more dynamic, high-value ones where business process interactions and trends
are examined closely to understand more accurately application needs and
dynamics. In such environments there is a clear need for advanced business
process management concepts and mechanisms to coordinate multiple ser-
vices into a multi-step business transaction. This requires that several service
operations or processes attain transactional properties reflecting business se-
mantics, which are to be treated as a single logical (atomic) unit of work that
can be performed as part of a business transaction.

The recent advent of Web service technologies and open standards such as
WSDL, BPEL, and WS-Policy has helped to evolve our thinking about how
distributed applications can connect and work together. However, none of
these core Web service specifications were designed to provide mechanisms by
themselves for describing how individual services can be connected to create
dependable business critical solutions with the appropriate level of complexity
that can guarantee absolute completion and accuracy of interacting business
processes.

Indeed, there is a need for explicitly managing fine grained tenets of SBAs
such as business data, events, operations, process fragments, local and ag-
gregated QoS and associated KPIs, and so on, to guarantee a continuous
and cohesive information flow, correlation of end-to-end process properties,
termination and accuracy of interacting business processes that is driven by
application control(-integration) logic.

The above considerations give rise to a multi-modal transaction process-
ing scheme by enabling reliable business transactions that span from front-end
SBAs to back-end system-level transaction support and beyond to organiza-
tions that are part of a SN. Thus, the need for application-level management
technologies that can ensure highly reliable application (not only system)-
level transactions and end-user performance via rapid problem diagnosis and
resolution — while at the same time support change and capacity planning —
is paramount. In particular, we argue in favour of the need to provide rich fea-
tures and QoS similar to that offered by transaction processing monitors but
at the level of application management and application control logic, giving
rise to the concept of a business transaction.

The business transaction then becomes the framework for expressing de-
tailed operational business semantics. Conventional approaches to business

2 Business Process Management 53

transactions, such as Open EDI, UMM and ebXML, focus only on the doc-
uments exchanged between partners, rather than coupling their application
interfaces, which inevitably differ.

This book chapter targeted the concept of a business transaction and ex-
plored how process fragments, and particularly transactional process frag-
ments, fit in the context of a running scenario that possesses transaction prop-
erties. Conventional (ACID) and unconventional (application-based) types of
atomicity were introduced, including contract and delivery atomicity, in the
frame of a business transaction model. The transaction model provides a com-
prehensive set of concepts and several standard primitives and conventions
that can be utilized to develop complex SBAs involving transactional process
fragments.

The main goal of this chapter was to survey the field of business process
management, concentrating on business-aware transactions, and introducing
an initial version of a business transaction language (BTL) to represent and de-
velop them. In particular, the initial BTL specification presented in this book
chapter defines a transaction model and mechanisms for transactional inter-
operability between end-to-end service constellations in SNs and provides a
means to define and enforce transactional QoSs within SBAs. Both the model
and language are firmly grounded on a requirements analysis, involving an
in-depth literature survey while taking into account requirements stemming
from other work packages in the S-Cube research framework. The approach
taken mimics business operational semantics and does not depend upon un-
derlying technical protocols and implementations. Mission-critical composite
applications will differ from the smaller-scale composite applications built
using BPEL extensions. The mission-critical composite applications will be
built on the established foundation of service networks, enterprise systems,
Web service standards and platforms.

References

1. Aissi, S., Malu, P., Srinivasan, K.: E-Business Process Modelling: the next big
step. IEEE Computer 35(5), 55–62 (2002)

2. Amit, R., Zott, C.: Value Creation in eBusiness. Strategic Management Jour-
nal 22, 493–520 (2001)

3. Cabrera, L.F., Copeland, G., Feingold, M., Freund, R.W., Freund, T., Johnson,
J., Joyce, S., Kaler, C., Klein, J., Langworthy, D., Little, M., Nadalin, A., New-
comer, E., Orchard, D., Robinson, I., Shewchuk, J., Storey, T.: Web Services
Atomic-Transaction Specification, Version 1.0. IBM Web Service Transactions
Specifications (2005)

4. Cabrera, L.F., Copeland, G., Feingold, M., Freund, R.W., Freund, T., John-
son, J., Joyce, S., Kaler, C., Klein, J., Langworthy, D., Little, M., Nadalin, A.,
Newcomer, E., Orchard, D., Robinson, I., Storey, T., Thatte, S.: Web Services
Atomic-Transaction Specification. IBM Web Service Transactions Specifications
(2005)

54 F. Hantry et al.

5. Cabrera, L.F., Copeland, G., Feingold, M., Freund, R.W., Freund, T., Joyce, S.,
Klein, J., Langworthy, D., Little, M., Leymann, F., Newcomer, E., Orchard, D.,
Robinson, I., Storey, T., Thatte, S.: Web Services Business Activity Framework
(WS-BusinessActivity). IBM Web Service Transactions Specifications (2005)

6. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Smith, N., Yunker, J., Riemer,
K.: ebXML Business Process Specification Schema, Version 1.01. UN/CEFACT
and OASIS Specification (2001)

7. Ferguson, D.F., Stockton, M.L.: Enterprise Business Process Management –
Architecture, Technology and Standards. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 1–15. Springer, Heidelberg (2006)

8. Harmon, P.: Business Process Change. Morgan Kaufmann, San Francisco (2007)
9. Hofman, W.J.A.: Conceptual Model of a Business Transaction Management

System. PhD thesis, Uitgeverij Tutein Nolthenius (1994)
10. International Organization for Standardisation (ISO). ISO/IEC JTC1/SC30:

The Open-EDI Reference Model. Committee Draft 14662 (1995)
11. Kambil, A., van Heck, E.: Reengineering the Dutch Flower Auctions: A

Framework for Analyzing Exchange Organizations. Information Systems Re-
search 9(1), 1–19 (1997)

12. Kim, H.: Conceptual Modelling and Specification Generation for B2B Business
Process based on ebXML. ACM SIGMOD Record Archive 31(1), 37–42 (2002)

13. Kratz, B.: Protocols for Long Running Business Transactions. Technical Re-
port 17, Infolab, Tilburg University (2004)

14. Liu, C., Kuo, D., Lawley, M., Orlowska, M.E.: Gehrmann Laboratories. Model-
ing and Scheduling of Transactional Workflow (1996)

15. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., Elmagarmid,
A.: Business-to-Business Interactions: Issues and Enabling Technologies.
VLDB 12(1), 59–85 (2003)

16. Moeller, M., Ceylan, S., Bhuiyan, M., Graziani, V., Henley, S., Veress, Z.: End-
to-End e-business Transaction Management Made Easy. IBM Redbooks (2004)

17. OASIS Web Services Business Process Execution Language (WSBPEL) TC.
Business Process Execution Language Specification, Version 2.0. Oasis specifi-
cation, OASIS (April 2007)

18. Papazoglou, M.P.: Web Services and Business Transactions. World Wide Web:
Internet and Web Information Systems 6(1), 49–91 (2003)

19. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-Hall, En-
glewood Cliffs (2007)

20. Papazoglou, M.P., Georgeakopoulos, D.: Service Oriented Computing. Commu-
nications of the ACM 46(10), 25–28 (2003)

21. Papazoglou, M.P., Kratz, B.: A Business-Aware Web Services Transaction
Model. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
352–364. Springer, Heidelberg (2006)

22. Tygar, J.D.: Atomicity in Electronic Commerce. In: Proceedings of the 15th
annual ACM symposium on Principles of distributed computing, pp. 8–26 (1996)

23. UN/CEFACT. UMM Meta Model – Foundation Module Candidate for 2.0. Part
of UN/CEFACT’s Modeling Methodology, UMM (2009)

24. Yang, J., Papazoglou, M.P.: Interoperation Support for Electronic Business.
Communications of the ACM 43(6), 39–47 (2000)

25. Yang, Y., Humphreys, P., McIvor, R.: Business Service Quality in an E-
commerce Environment. Supply Chain Management: An International Jour-
nal 11(3), 195–201 (2006)

3

Service Composition

George Baryannis1, Olha Danylevych2, Dimka Karastoyanova2,
Kyriakos Kritikos1, Philipp Leitner3, Florian Rosenberg3, and
Branimir Wetzstein2

1 University of Crete, Greece
2 University of Stuttgart, Germany
3 Technische Universität Wien, Vienna, Austria

Chapter Overview. In the S-Cube research framework, the Service Composition
and Co-ordination (SCC) layer encompasses the functions required for the aggrega-
tion of multiple services into a single composite service offering, with the execution
of the constituent services in a composition controlled through the Service Infras-
tructure (SI) layer. The SCC layer manages the control and data flow between the
services in a service-based application by, for example, specifying workflow models
and using a workflow engine for runtime control of service execution.

This chapter presents an overview of the state-of-the-art in service composition
modeling and covers two main areas: service composition models and languages
and approaches to the synthesis of service compositions including model-driven,
automated, and QoS-aware service composition. The contents of this chapter can
be seen as a basis for aligning and improving existing approaches and solutions for
service composition and provide directions for future S-Cube research.

3.1 Introduction

Service oriented computing (SOC) [34] is a paradigm that uses services as
building blocks to create loosely-coupled software solutions. In this context,
services are provided by software components that are described, discovered
and composed in an interoperable way. They implement functionality ranging
from low-level technical aspects to complete business processes [63]. Service-
based applications (SBAs) are built on a service-oriented architecture (SOA).
Web services [18], including standards such as WSDL, SOAP, and WS-BPEL
are, currently, the most popular realization of a SOA.

An important property of services taking part in a SOA is their com-
posability [18]. A service composition combines several services together to
achieve a certain goal. There are several different usages for service com-
position which also result in different languages and technologies. Business
processes can be implemented by orchestrating existing business functions
implemented as services. Such a service orchestration implements a part of a

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 55–84, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

56 G. Baryannis et al.

business process and is again exposed as a service that can be used in other
business processes. Service coordination is needed when services need to follow
a coordination protocol driven by a central coordinator in order to perform
a distributed activity. Consider, for example, an auction scenario, where the
actions of sellers and bidders and the outcome of the auction are driven by
a auctioneer. Service choreography models are used for describing service in-
teractions from a global point of view. They are often used to describe the
public processes of different business partners, in contrast to service orches-
trations which describe the executable private process of each single partner.
Finally, service assembly models define how different services should be pack-
aged together into a deployable software solution. Some of these composition
model types can often be combined together. For example, after creating a
service choreography model, it can be refined to service orchestrations for each
partner.

Considering the lifecycle of service compositions, we can distinguish be-
tween four phases: synthesis, execution, monitoring, and adaptation. In the
synthesis phase, service compositions are created in either a top-down or a
bottom-up fashion. A model-driven service composition approach involves cre-
ating more abstract models, such as business process models, and then gen-
erating the service composition or parts of it automatically. Bottom-up ap-
proaches involve automated service composition and QoS-aware service com-
position. In automated service composition, existing services are composed
automatically based on a predefined abstract goal, e.g., by using AI planning
techniques. QoS-aware service composition ensures that the overall composi-
tion achieves certain QoS targets when services are selected. In the second
phase of the lifecycle, after the composition is created, it can be deployed and
executed on the corresponding service infrastructure. For example, a service
orchestration engine is used for execution of service orchestration models. At
process runtime, the service composition is monitored and based on monitor-
ing results can be adapted, thus closing the lifecycle. In this chapter we focus
on the synthesis phase while other phases are dealt with in other chapters of
this book as described further below.

The goal of this chapter is to present an overview of the state-of-the-art
in service composition modeling. It is structured into two main sections. In
Section 3.2 we describe and compare different service composition models and
languages. In Section 3.3 we then present approaches to synthesis of service
compositions including model-driven, automated, and QoS-aware service com-
position. In each subsection we present and classify research directions and
approaches and elaborate on the most important papers in each category.
Please note that this is not meant to be a complete report on all existing
publications in the area. Often only a single and more prominent approach
has been included in the survey.

3 Service Composition 57

3.2 Service Composition Models and Languages

In a broader sense, service composition can be seen as a combination of a set
of services for achieving a certain purpose. Interchangeably, the term service
aggregation can be used in this context [39]. In a narrower sense, the term
service composition is typically used alternatively for service orchestration, as
discussed below.

We will use the term in its broader sense and thus can consider four types
of service composition models:

• Service Orchestration: In service orchestration, a new service is created
by combining several existing services in a process flow. The standard
language for orchestrating Web services is WS-BPEL.

• Service Choreography: A service choreography defines the interaction
protocol between services. Service choreographies are specified by means
of languages such as WS-CDL or BPEL4Chor.

• Service Coordination: Service coordination models are needed when
several services have to agree on the outcome of a distributed process
by using a central coordinator and a coordination protocol. Service co-
ordination models in the context of Web services can be defined using
WS-Coordination.

• Service Assembly: Service assembly is performed during deployment
of service based applications. A service assembly is a deployable artifact,
which is deployed to an enterprise service bus. Service Component Archi-
tecture implements the service assembly model.

In addition to the four listed composition types, we will also present Semantic
Web service Composition in this section. It is not a separate composition type,
but extends existing models and languages, in particular service orchestration,
by use of semantic technologies in the context of Semantic Web services.

In the following subsections we will describe each composition type in
detail by describing its concepts, and presenting and comparing the main
languages and approaches.

3.2.1 Service Orchestration

A service orchestration composes a new service by reusing existing services.
Service orchestration is a recursive model. Services which are orchestrated can
be atomic services, i.e., services which do not use any other services, or again
service orchestrations.

A service orchestration can be seen as a proactive composition that drives
the interactions with the services it orchestrates. It defines execution seman-
tics on a set of activities that perform these interactions. These execution
semantics can be defined in different ways, e.g., calculus-based (XLANG),
statechart-based [11], or graph-based (WSFL).

58 G. Baryannis et al.

Service orchestrations can be created using a multi-purpose 3GL program-
ming language, such as Java, but more typically a special language is used
which deals with services as first-class citizens. In the context of Web services,
there have been several efforts related to Web service orchestration using work-
flow languages, e.g., WSFL [46], XLANG [73], BPML [7], BPEL [60]. In the
context of Web services, these service orchestrations are called WS-flows. Be-
sides WS-Flow languages, there are other approaches to service orchestration,
such as JOpera [64] which is a visual service composition approach, not con-
strained to orchestration of (WSDL-based) Web services.

WS-Flow Languages

Web service flow languages enable construction of service orchestration using
workflow like constructs whereby the invoked applicaions out of the workflow
are Web services. There have been several efforts related to the creation of
WS-Flow languages, in particular, WSFL [46], XLANG [73], BPML [7]. WS-
BPEL [60] (BPEL) has superseded these languages and has emerged as a
standard in the Web services community. It can be seen as the successor of
WSFL from IBM and XLANG from Microsoft and it combines concepts and
constructs from both languages. In the following, we will focus on WS-BPEL.

WS-Flows can be thought of having two dimensions: the “what?” dimen-
sion, and the “what with?” dimension. The “what?” dimension is represented
by the control flow and the data flow, and is also referred as business logic.
The control flow models alternative paths of execution, defines how excep-
tional situations are handled (fault handling and compensation handling) and
how the process reacts to events signalled by the environment (event han-
dling). The control flow of a BPEL process is specified using a combination
of graph-based (WSFL) and calculus-based (XLANG) approaches. Another
aspect of the “what?” dimension is the data flow which defines how data is ex-
changed among activities and between the workflow and its participants. The
data flow is explicitly present in only some of the existing WS-Flow languages,
such as WSFL, and XLANG. In BPEL, however, data flow is implicit. Ac-
tivities can access data variables, which can be defined either globally for the
whole process or for specific (nested) scopes (which restrict their visibility).

The second dimension of WS-flows, the “what with?” dimension, is the one
assigning to each interacting activity a participant, namely a Web service.
Interacting activities are those tasks in the model of a WS-flow that stand
for interaction with a partner Web service. The definitions of these activities
specify the participating Web services only on the abstract level, namely only
their portTypes and operations are to be supplied, and refer to no actual
endpoints that implement these portTypes. Mechanisms for binding service
instances to a process are intentionally left up to the runtime and therefore
out of the process definition. This is where service assembly mechanisms come
into play (see Section 3.2.4).

3 Service Composition 59

BPEL only supports the orchestration of Web services described using
WSDL. There are, however, extensions to BPEL which relax this restric-
tion. BPEL4People enables incorporating human tasks into a BPEL process.
BPELlight [58] removes the dependency on WSDL altogether, and describes
just conversations as message exchanges with partner services.

BPEL process models can be defined as abstract or executable. An exe-
cutable process model specifies a service orchestration which can be executed
by a BPEL engine. In contrast, an abstract process model hides some activities
(a part of the process model) by defining them as “opaque”. Abstract process
models can be used to define process templates or behavioral interfaces. A
behavioral interface contains mostly messaging activities which denote how
the service requester should communicate with the process thus specifying its
public process which can be seen by external requesters. Private information
(process logic) is replaced by opaque activities.

3.2.2 Service Choreography

Service choreography provides the global point of view on existing and future
multi-party collaborations, as opposed to the local perspective provided by
service orchestration. Each participant in a service choreography can be mod-
eled as a service orchestration, called participant implementations. The chore-
ography “ties” the participant implementations in a global collaboration by
specifying the one-to-one and one-to-many message-based interactions among
them. The internal structure of each participant implementation is outside the
focus of choreography, and it is interesting only insofar it affects the partici-
pant’s behavior as perceived from the outside. In fact, a participant of chore-
ography is described only in terms of its messaging behavior. The messaging
behavior (also known as business protocol) can be represented for example
as an abstract process whose actions are the consumption and production of
messages.

The goal of choreography notations is to support the description of
message-based interactions among their participants. The expressiveness of
a choreography notation can be estimated by its ability to express (describe)
different types of message-based interactions. The Service Interaction Pat-
terns [10, 78] describe the recurring interaction scenarios among services in
SOA. They outline the different ways of realizing interactions, e.g., bilateral,
multilateral, competing, atomic and causally related. Since participants in a
choreography are usually implemented as Web services, the Service Interaction
Patterns have been used to evaluate the expressiveness of some choreography
notations. Examples of such classifications can be found in [23, 21].

Alternatively to the support of Service Interaction Patterns, choreography
notations can be categorized on the basis of the following two dimensions:
(1) Interaction modeling paradigm: how the notation describes the interac-
tions among the participants; (2) Level of abstraction: to which extent the
choreography notation is tied to a particular set of technologies.

60 G. Baryannis et al.

The main interaction modeling paradigms are Interaction and Intercon-
nected Interface see [41]. The Interaction paradigm describes the conversa-
tions by combining elementary interaction blocks (e.g., request-response and
one-way) into more complex interactions that define the dependencies among
them. The data and control flow are defined globally instead of being assigned
to the single roles. The advantage of interaction paradigm is that it supports
the early stages of service development lifecycle by capturing the overview of
interactions between the identified potential services. However, the drawback
is that, since the interactions are defined globally, “outside” the participants,
it is possible to define interactions that are not realizable by the choreography
participants (e.g., [28, 20]).

The Interconnected Interface paradigm takes an opposite approach with
respect to the Interaction one. The logic of the interactions is not defined glob-
ally, but spread across the participants. In fact, the Interconnected Interface
paradigm specifies separately the logic of each participant. The overall logic is
(implicitly) given by the data and control flow dependencies defined between
the send and receive activities inside each participant’s logic. Because of its
focus on each participant separately, the Interconnected Interface paradigm is
well suited for both adapting existing collaboration-enabled processes and cre-
ating new ones. Moreover, since each participant’s logic is defined separately,
this paradigm is not concerned with the problem of realizability. However,
the interfaces of participants may be incompatible, e.g., resulting in dead-
locks during the enactment [52].

Regarding the level of abstraction, the various choreography notations can
be classified as either implementation specific or implementation independent.
On one hand, implementation specific choreography notations cover techni-
cal aspects of the interactions such as communication protocol, security is-
sues and exception handling. Implementation specific choreography notations
usually assume participant implementations to be Web services, and spec-
ify the technical details using the related technologies (SOAP, WS-Security,
WS-ReliableMessaging, WS-Policy, etc.). On the other hand, implementation-
independent notations do not encompass technical details. Their goal is gen-
erally to support the Business Process Management community in making
decisions about the collaborations on the basis of provided overview of inter-
actions from business processes.

Table 3.1 presents the classification of the main choreography languages
in terms of the “Interaction modeling paradigm” and “Level of abstraction”
criteria. In Table 3.1 we classify two types of notations:

1. Industrial: WS-CDL [80], Let’s Dance [86], BPMN [59] and BPEL4Chor
[22]. These languages are focused on usability for the end user, and gen-
erally result from industrial efforts (e.g., consortia) or collaborations be-
tween industry and academy. Unfortunately, they often lack a formal un-
derpinning (e.g., a formal semantics), which is often added a posteriori
instead of being an integral part of the specifications [9].

3 Service Composition 61

Table 3.1. A Categorization of Choreography Notations

Implementation
independent

Implementation
specific

Interaction Let’s Dance, automata-
based notations, Process
Algebras

WS-CDL

Interconnected
Interface

BPMN, Petri Net-based
notations

BPEL4Chor

2. Formal: these notations are usually developed in academic approaches.
They can be split into three categories:
• Automata-based, e.g., timed automata [51], conversation protocols [28]

and Mealy services [13];
• Petri Net-based, e.g., [24, 33];
• Process algebras, e.g., [14, 56, 84, 69].

The formal notations are specifically useful because they enable the analysis
and verification of different properties of the choreographies built on the wide
spectrum of available verification methods for their underpinning formalisms.
The verification of choreographies covers many different properties. Some ex-
amples are: Conformance, i.e., whether a participant implementation behaves
in terms of message exchanges as mandated by the choreography; Realizabil-
ity, i.e., whether it is possible to create the implementations of participants
that conform to the given choreography (already covered when addressing the
Interaction paradigm); Deadlock freeness, i.e., whether the enactments of the
choreography can deadlock; Synchronizability, i.e., whether the enactments
of the choreography can execute the same traces assuming both synchronous
and asynchronous messaging among the participants. The various verifications
methods for choreographies have been investigated in an extremely broad and
increasing body of research. For a more complete overview of the verification
of choreographies, the interested reader is referred to overviews such as [76].

3.2.3 Service Coordination

Service coordination denotes a model in which a set of participating service
instances perform a distributed activity by following a coordination protocol.
A coordinator decides on the outcome of the protocol (e.g., success or failure)
and informs the participants of the result.

Service choreography is similar to service coordination in that it also mod-
els the interactions between services, however service coordination is much
more loosely constrained as the participants do not have to communicate
with each other, but communicate with the coordinator who drives the coor-
dination protocol. One could use service choeography languages to model the

62 G. Baryannis et al.

interactions between the participant and the coordinator and also the protocol
logic in the coordinator.

The typical usage of coorditnation is the implementation of transactional
processing. For example, as described further below, there are existing coor-
dination protocols for implementing ACID transactions ot long-running busi-
ness transactions, which can be used between services to agree on the outcome.
There are also non-transactional use cases, such as the already mentuioned
auction scenario, which can leverage coordination frameworks [47].

Web Service Coordination

In the context of Web services, there are two competing specifications, WS-
Coordination [4] and Web services Composite Application Framework (WS-
CAF) [83]. As they are relatively similar in their approaches, we will in the
following present only WS-Coordination.

WS-Coordination [4] defines a framework for coordinating interactions be-
tween Web services. It enables participting Web services to reach agreement
on the outcome of activities using a coordinator based on a coordination
protocol. WS-Coordination is extensible in respect to coordination protocols.
Two such protocol specifications already exist specifying transaction proto-
cols, namely the WS-AtomicTransaction specification [82] for atomic (2PC)
transactions and the WS-BusinessActivity [3] specification for long-running
business transactions.

In WS-Coordination, coordinated interactions are called activities. An ac-
tivity ties together several participants into a (distributed) application. A
participant is a Web service that contributes to an activity. A coordinator
uses the coordination protocol to mediate between participants on the out-
come of the activity. Therefore, participants and the coordinator exchange
messages specified in a coordination protocol in order to agree on an outcome
of the activity. A coordination protocol consists of a set of messages and a
specification of how these messages are to be exchanged.

The coordinator provides three services needed for using the framework:
(1) Activation service: The coordinated activity is started when a service in its
role as an initiator requests a coordination context from the activation service.
The coordination context consists of an activity identifier, the coordination
type (e.g., atomic transaction), and the endpoint reference of the registration
service. The initiator distributes the coordination context to the participant
Web services. (2) Registration service: Before starting its work, the participant
registers at the registration service of the coordinator. (3) Protocol service: At
some later point the protocol service is started which coordinates the outcome
according to the specific protocol of the coordination type. The first two are
needed to initialize the distributed activity, the latter is used for running the
coordination protocol resulting in an outcome.

3 Service Composition 63

3.2.4 Service Assembly

A service-based application typically consists of several services which interact
with each other. Each service thereby provides an interface to other services,
but also defines requested interfaces of other services which it uses. Services
specify provided and requested interfaces in form of operations with inputs and
outputs, e.g., BPEL orchestrations use partnerlink types in order to specify
provided and requested service interfaces.

In order to create an executable service based application, requested and
provided service interfaces have to be wired together, thus creating a so called
service assembly. A service assembly is a deployable artefact which is installed
in an enterprise service bus. It is exposed to the outside as a service over a
certain protocol such as SOAP/HTTP, namely by using the provided inter-
face of the first service in the wiring chain. A service assembly can again be
recursively wired to other service assemblies.

Service Component Architecture

Service Component Architecture (SCA) [19] is a set of specifications that
provide an assembly model for building composite applications based on a
SOA. It is based on the idea that a service-based application consists of sev-
eral services, which are wired together to create solutions for implementing a
particular business function. SCA provides a model for both the creation of
service components and assembly of these components into composite appli-
cations. It supports a wide range of technologies for the implementation of
service components and for the communication mechanisms which are used
to connect them.

The SCA Assembly Model is the main specification which defines the con-
figuration of an SCA System. The SCA Assembly Model consists of a series of
artifacts. The main artifact is the Composite, which is the unit of deployment
and which can be accessed remotely. A Composite contains one or more Service
Components. Components offer their function as Services, which can either be
used by other Service Components within the same Composite or which can
be made available for use outside the module. Service Components may also
depend on Services provided by other Components. These dependencies are
called References. References can either be wired to services provided by other
components in the same module, or References can be linked to Services pro-
vided outside the Composite, which can be provided by other Composites
or arbitrary external services. All Service Components in the Composite are
linked together, by connecting References with corresponding Services using
Wires. A Component consists of an implementation, where an implementa-
tion is the piece of program code implementing a business function (e.g., in
Java or BPEL). The configuration of an SCA system has a standardized XML
representation. That configuration can be seen as a deployment descriptor for

64 G. Baryannis et al.

the SCA System. The SCA System is deployed to an SCA Runtime which is
part of an Enterprise Service Bus.

Finally, for supporting non-functional properties such as security, SCA pro-
vides a Policy Framework to support specification of constraints, capabilities
and Quality of Service (QoS) expectations, from component design through
to concrete deployment.

3.2.5 Semantic Web Service Composition

Whilst promising to revolutionize e-Commerce and enterprise-wide integra-
tion, current standard technologies for Web services (e.g., WSDL) provide
only syntactic-level descriptions of their functionalities, without any formal
definition to what those syntactic definitions might mean. This lack of ma-
chine readable semantics necessitates human intervention for automated ser-
vice discovery and composition within open systems, thus hampering their
usage in complex business contexts.

Semantic Web services (SWSs) relax this restriction by augmenting Web
services with rich formal descriptions of their capabilities, thus facilitating
automated composition, discovery, dynamic binding and invocation of services
within an open environment. A prerequisite to this, however, is the emergence
and evolution of the Semantic Web (SW), which provides the infrastructure
for the semantic interoperability of Web services.

Semantic annotation of Web services description has been the issue of
many initiatives, projects and languages introduced, where the most signifi-
cant among them are: the OWL-S Semantic Markup for Web services [77] and
the Web service Modeling Ontology (WSMO) [43]. We also analyze an effort to
extend the BPEL standard with ontological annotations. Finally, we compare
all of these languages based on their Web service composition capabilities.

OWL-S

OWL-S consists of a set of ontologies designed for describing and reasoning
over service descriptions. It consists of three main upper ontologies: the Profile,
Process Model and Grounding. The Profile contains a description of service
properties for the purposes of service discovery. These properties include both
functional (i.e., inputs, outputs, preconditions, and effects – IOPEs) and non-
functional (e.g., QoS) ones.

OWL-S process models describe the behavioral interface of a service and
are not executable, similarly to an abstract BPEL process. They are used
both for reasoning about possible compositions (validation, verification, etc.)
and for controlling the invocation of a service. The atomic process is a sin-
gle, black-box process description with exposed IOPEs. Composite processes
are hierarchically defined workflows, consisting of atomic, simple, and other
composite processes, constructed using a number of different composition con-
structs.

3 Service Composition 65

The profile and process models provide semantic frameworks whereby ser-
vices can be discovered and invoked, based upon conceptual descriptions de-
fined within OWL ontologies. The grounding provides a pragmatic binding
between this concept space and the physical data/machine/port space, thus
facilitating service execution. The process model is mapped to a WSDL de-
scription of the service. Each atomic process is mapped to a WSDL operation,
and the OWL-S properties used to represent inputs and outputs are grounded
in terms of XML data types.

WSMO

WSMO (Web service Modeling Ontology) is a conceptual model for describ-
ing semantically-enhanced Web services. The WSMO framework consists of
four main modeling elements: Ontologies, Web services, Goals and Mediators.
Ontologies provide terminologies for defining the formal semantics of informa-
tion resources. WSMO ontologies are classic ontologies with classes, relations,
instances and axioms, plus functions (n-ary relations) and some additional
information coded as non-functional properties such as QoS or metadata.

WSMO Web services descriptions consist of functional, non-functional and
behavioral aspects, of a Web service. The functional aspect of a WSMO Web
service is described through one capability using similar concepts with OWL-
S IOPEs. A capability is linked to several goals via mediators. An interface
(behavioral aspect) describes how the functionality of the Web service can
be achieved by providing a twofold view on the operational competence of
the Web service: a) a choreography and b) an orchestration. A WSMO chore-
ography specifies a behavioral interface of the service, and not a complete
choreography model. Both WSMO choreography and WSMO orchestration
are based on Abstract State Machines (ASMs) [12].

Goals are limited descriptions of Web services (a capability and an inter-
face) that would potentially satisfy the user desires. WSMO model definition
follows a goal-driven approach, which means that requests and services are
strongly decoupled. Finally, Mediators connect heterogeneous components of
a WSMO description which have structural, semantic or conceptual incom-
patibilities. Mismatches can arise at the data or process level. There exist four
types of mediators: ontology, goals, Web service-to-goal and Web service-to-
Web service mediators.

BPEL4SWS

The Web service stack of standards (i.e., WS-*) currently relies on BPEL
for executing orchestrations. BPEL is using WSDL descriptions to identify
partner/component services in the process models. Unfortunately, effective
dynamic service binding cannot be performed by solely matching WSDL mes-
saging interfaces. Restricting service descriptions to the expressivity of strictly

66 G. Baryannis et al.

syntactic WSDL interfaces limits the integration of service partners that op-
erate on messages that have different syntax but are semantically compatible.
The solution to the dynamic selection of Web services comes with Seman-
tic Web services (SWS). SWS describe services not in terms of an interface
but rather describe their functionality and capability semantically and in a
machine processable manner.

As a result, a new language called BPEL4SWS [1] was introduced that
extends BPEL. This language uses BPELlight [58] as basis and allows to
attach SWS descriptions to BPELlight such that SWS frameworks like OWL-
S and WSMO and corresponding implementations can be used to discover
and select SWS that implement the functionality required for an activity. As
WSMO distinguishes between a service provider (Web service) and a service
consumer (goal) and thus enables asynchronous communication between Web
services, it is preferred to OWL-S. Both, the SWS description and the process
itself are partly grounded to WSDL to facilitate WS-* based communication.
BPEL4SWS processes are able to use both SWSs as well as conventional Web
services intermixed within a single process. Moreover, BPEL4SWS processes
themselves can be exposed both as SWSs and conventional Web services.
Current SWS frameworks use ontologies as data model to facilitate semantic
discovery. For that reason, SAWSDL [27] is used to enable a seamless mapping
of data between its XML representation and its ontological representation.
This is required because in BPEL4SWSWeb services and SWSs can be mixed.

Comparison

From all SWSs languages, OWL-S is the most mature and has been used
in many Web service discovery research approaches that include both func-
tional and non-functional characteristics of Web services. However, it has been
proven that OWL-S has some drawbacks [8] that prevent it from being used
in practical real-world scenarios. Concerning composition synthesis, OWL-S
has been successfully used in AI planning [53] for automatically producing
and executing Web service composition plans. Moreover, it can be used for
the analysis and validation of Web service compositions as it can be mapped
to (colored) Petri-nets [53, 49]. Unfortunately, as far as orchestration is con-
cerned, OWL-S presents two major drawbacks. First of all, its process model is
neither an orchestration model (although it resembles one) nor a conversation
model but it just describes the behavioral interface of the service. Secondly,
OWL-S describes the execution of a Web service as a collection of remote pro-
cedure calls. Unfortunately, this is only correct for a small percentage of the
cases in business processes [1] as the communication is typically asynchronous.

WSMO has the same discovery capabilities as OWL-S and has also been
used in many Web service discovery research approaches. It is starting to at-
tract many SWS researchers as there exist a lot of SW tools that support it.
Concerning Web service composition, WSMO contains a choreography model
that can be easily mapped to ASMs. In this way, WSMO inherits the core

3 Service Composition 67

principles of ASMs which include the modelling of state changes by guarded
transition rules. However, the current transition rules in WSMO Choreogra-
phy can only represent local constraints. In addition, WSMO Choreography
needs to be formalized in order to allow reasoning and verification about it.
Moreover, WSMO contains an orchestration model which is quite primitive.
So, WSMO can only be used in a limited way to orchestrate the interactions
of Web service-based processes.

BPEL’s lack of dynamic service binding and choreographymodel led to the
synergy with WSMO and SAWSDL with BPEL4SWS as the result. Through
this synergy, the goal of dynamic service binding has been achieved. Now,
BPEL4SWS is better in comparison to OWL-S concerning orchestration.
Concerning the composition synthesis capability, there are many research ap-
proaches that have been applied to BPEL. So BPEL4SWS seems to be the
right language for the Web service composition process.

3.3 Service Composition Synthesis Approaches

The lifecycle of service compositions consists of four phases: synthesis, exe-
cution, monitoring and adaptation. In this Section we will focus on the first
phase, as the other phases are described in other chapters of this book (see
Section 1).

When creating service compositions, we can distinguish between top-down
and bottom-up approaches. In a top-down approach, the composition logic is
first created on a higher abstraction level, e.g., as a business process model,
and then this abstract model is refined to a service composition model by se-
lecting appropriate services. In model-driven service composition, the compo-
sition model is automatically generated from a more abstract process model.
In QoS-aware service composition, services are selected based on local and
global QoS constraints. A bottom-up approach tries to come up with the
composition logic by combining existing services in order to achieve a certain
abstract goal. In automated service composition, the services are combined
automatically, e.g., based on their pre- and postconditions using AI planning
techniques.

In the following subsections, we will discuss these three main synthesis
approaches, namely model-driven, QoS-aware, and automated composition,
in detail.

3.3.1 Model-Driven Service Composition

Model-Driven Service Composition is the application of model-driven devel-
opment (MDD) ideas, such as the Model-Driven Architecture (MDA), to the
problem of service composition. MDA has been put forward by the Object
Management Group (OMG) in 2001, and is currently the de facto standard

68 G. Baryannis et al.

for MDD. In MDA, all software functionality is specified using platform-
independent models (PIMs). Platform definition models (PDMs) are used to
translate PIMs to various platform-specific models (PSMs), which can either
be compiled into executable code or run directly. Many authors have presented
approaches to service composition, which exhibit similar characteristics [66].

One important high-level language to model orchestrations is the UML [74].
Here, UML Activity Diagrams are used to define the orchestration, which are
then transformed into executable representations. The initial prototype in [74]
supports both WS-BPEL and WorkSCo.4 One advantage of this approach
is the endorsement of a complete roundtrip model, where existing WSDL
contracts can be refactored into UML models, which are in turn arranged
into orchestrations; these can then be transformed to executable code as dis-
cussed above, and deployed on a composition engine. Since both WS-BPEL
and WorkSCo are XML-based languages the actual transformation process is
implemented using XSLT.

This work has later been extended to also consider semantic Web service
composition and QoS attributes [31] (see Section 3.3.2 below for more de-
tails on QoS-aware composition). This extension considerably improved on
the support for run-time discovery of services and run-time service binding:
in [74] the service bindings are statically defined at design-time, while [31]
considers abstract bindings to specific functionality defined using semantic
annotations; concrete services implementing this functionality are discovered
at run-time using semantic discovery and matchmaking technologies. Addi-
tionally, services are ranked based on QoS properties, i.e., if more than one
service instance is discovered during run-time the one exhibiting the best QoS
properties is selected. However, the work is based on a set of assumptions
(e.g., the existence of a semantic matchmaking and service discovery entity),
which are not fulfilled even today.

Already in 2003, Koehler et al. have presented an approach that is more
clearly aligned to the ideas of MDA [40] and Business Driven Development
(BDD) [55]. Their work presents the transformation of business models (rep-
resented in ADF and again in the UML) to technology-level WS-BPEL code.
Unlike other approaches, their work considers not only the top-down trans-
formation from high-level models to code, but also the other direction, i.e.,
the bottom-up re-engineering of existing WS-BPEL compositions into busi-
ness processes. This is different to the round-trip model of [74] in that it
also allows for bottom-up construction of high-level composition models. The
transformation architecture consists of four levels: business models are firstly
transformed to process graphs, which are in turn refined to flow graphs; sub-
flows can then be compiled to solution components using platform-specific
transformation. Bottom-up, solution components are combined to create flow
graphs, which are merged to process graphs, and finally the business model
can be restored. Later on, these ideas have been refined in [32]. In this paper

4 http://www.esw.inesc-id.pt/worksco/

http://www.esw.inesc-id.pt/worksco/

3 Service Composition 69

the authors detail how graph-based process models can be transformed into
executable code using graph transformation and compiler theory.

Ouyang et al. use a different language, OMGs Business Process Modeling
Notation (BPMN), to represent business models [62]. They argue that BPMN
is more common in the business world than the more software-centric UML.
Additionally, BPMN is well supported by business analyst tools. However, the
transformation from BPMN to WS-BPEL is rather complex, since BPMN is
a graph-oriented language and fundamentally different than the block-based
WS-BPEL. However, the authors have still presented a complete and fully
automated transformation approach, which produces WS-BPEL code that is
also comprehensible for humans and well-structured.

In [61], Orriens et al. have presented a model-based composition approach
based on composition rules. These rules are expressed in OCL (the Object
Constraint Language, part of the UML), and are used to model constraints
on possible compositions. Examples of such rules are activity.function

= ‘‘FlightBooking’’ (i.e., the function of the activity always has to be
“FlightBooking”) or activity.input - > notEmpty (i.e., there always has
to be an input message for this activity). Generally, they distinguish between
rules which are used to structure activities within the composition (structural
rules), rules that relate messages to each other (data rules), rules that protect
the integrity of the composition, by enforcing preconditions, postconditions
and invariants (behavioral rules), rules concerning the usage of resources (re-
source rules) and rules that specify the behavior of the composition in case of
errors or unexpected behavior (exception rules). An automated dynamic ser-
vice composition engine is used to create an orchestration from a set of input
rules. However, of course this approach implies that the composition has to
be fully specified using business rules, which is not always easy in practice.

Another form of model-driven service composition is mapping service or-
chestrations specified in WS-CDL to WS-BPEL. This approach is discussed
e.g., by Mendling and Hafner [54]. WS-CDL defines the externally visible be-
havior of business entities, i.e., which messages are transferred to which busi-
ness partner at which point in the interaction, and what options are available.
Additionally, WS-CDL relates operations to concrete states in the business
processes. Mendling and Hafner propose to use the inter-business WS-CDL
model as basis to generate WS-BPEL code for each specific participating part-
ner. They show that many WS-CDL constructs can be mapped directly (such
as cdl:sequence, cdl:parallel, cdl:assign, and some others), but other
constructs are more complex to map. For example, it is not easy to identically
map the semantics of a cdl:workunit construct, since no similar construct is
available in WS-BPEL. In this case, the authors propose to map the construct
to a bpel:scope, but a human BPEL engineer is required to eventually add
additional information that cannot be deduced from the choreography auto-
matically. Therefore, this approach can be considered only semi-automated
— a fully autonomous mapping from WS-CDL to WS-BPEL without human
interaction is currently not possible.

70 G. Baryannis et al.

Table 3.2. Comparison of Model-Driven Composition Approaches

Business
Model

Composition
Model

Top-
Down?

Bottom-
Up?

QoS Semantics

[74] UML AD WS-BPEL and
WorkSCo

+ - - -

[31] UML AD Not
Explained

+ - + +

[40] ADF and
UML AD

WS-BPEL + + - -

[62] BPMN WS-BPEL + - - -

[54] WS-CDL WS-BPEL + - - -

The most important presented approaches are summarized in Table 3.2. In the
table, “Not Explained” represents properties which are not mentioned in the
concerning paper. UML Activity Diagrams are abbreviated as “UML AD”.

As can be seen from the table and the discussion above, many approaches
exist which map widely used higher-level languages such as the UML to service
compositions (mostly WS-BPEL, since WS-BPEL is the de facto standard
for specifying compositions nowadays). However, current research issues such
as the inclusion of QoS or service semantics are rarely taken into account.
Additionally, little work exists in the area of Bottom-Up model-driven service
composition, i.e., the extraction of higher-level models from existing service
compositions.

3.3.2 QoS-Aware Service Composition

Service-oriented systems in general and service compositions in particular are
often required to adapt themselves to different situations. For example, a
service in a composition might yield intermittent or even permanent fail-
ures, therefore, exchanging such a service by an equivalent service automat-
ically is necessary to meet certain service level agreements. A key enabler
for realizing such adaptive behavior is Quality of Service (QoS) as a means
to describe all non-functional attributes of a service. QoS attributes can be
grouped into deterministic and non-deterministic attributes [72]. These in-
clude performance-specific aspects such as response time or throughput of
a service, dependability-specific aspects such as availability or cost-related
data [48]. Deterministic QoS attributes, on the one hand, indicate that their
value is known before a service is invoked, including price or the supported
security protocols. On the other hand, their non-deterministic counterpart
includes all attributes that are uncertain at service invocation time, for ex-
ample the service response time. Therefore, the availability of accurate non-
deterministic information QoS (through QoS monitoring) plays a crucial role
during development and execution of a composite application.

3 Service Composition 71

Firstly, QoS enables a QoS-aware dynamic binding to concrete services
that are available in registries known at runtime. Secondly, QoS enables an
optimization of composite services in terms of its overall QoS and adaptation
of services whenever QoS changes. We denote a composite service leveraging
QoS to enable adaptive behavior as QoS-aware composite service and the
engineering process as QoS-aware service composition.

Over the last years a number of approaches have been introduced to deal
with the problem of how to compose service to build QoS-optimized com-
positions using a variety of approaches and algorithms. In the following, we
describe selected composition and optimization approaches.

Combinatorial Approaches

Zeng et al. [87, 88] present a QoS optimization approach by splitting a compo-
sition into multiple execution paths based on their notation that a composition
is specified using a state chart diagram. Each execution path is considered to
be a directed acyclic graph (DAG) given the assumption that the state chart
has no cycles. Additionally, the authors define an execution plan which is basi-
cally a set of pairs expressing that for every task in the composition, a service
exists that implements the operations required for that task. For the local
optimization, the system tries to find all candidate Web services that imple-
ment the given task. Each service is assigned a quality vector and user defined
scores for the different quality constraints. These constraints are then used to
compute a score for each candidate service. Based on Multiple Criteria Deci-
sion Making (MCDM), a service is chosen which fulfills all requirements and
has the highest score. In order to find a global optimum, the authors propose
an optimization approach based on Integer Programming (IP). To achieve a
QoS-aware optimization of the composition, global and local QoS constraints
can be specified. In addition, an objective function has to be maximized. The
optimization problem is then solved using an IP solver. In addition to opti-
mizing a composition, the authors also describe an approach to re-plan and
re-optimize a composition based on the fact that QoS can change over time.

Yu et al. [85] discuss algorithms for Web services selection with end-to-end
QoS constraints. Their approach is based on different composition patterns
similar to [36] and they group their algorithms according to flows that have
a sequential structure and ones that solve the composition problem for gen-
eral flows (i.e., flow that can have splits, loops etc). Based on this distinc-
tion, two models are devised to solve the service selection problem: a com-
binatorial model that defines the problem as multidimensional multi-choice
knapsack problem (MMKP) and the graph model that defines the problem
as a multi-constrained optimal path (MCOP) problem. These models allow
the specification of user-defined utility functions that allow to optimize some
application-specific parameters and the specification of multiple QoS criteria
taking global QoS into account. In the case of the combinatorial model, the

72 G. Baryannis et al.

authors use an MMKP algorithm, that is known to be NP-complete. There-
fore the authors apply different heuristics to solve it in polynomial time. For
the general flow structure the authors use an IP programming solution (also
NP complete), thus they again apply different heuristics to reduce the time
complexity.

Jaeger et al. [36, 35] present a different approach of deriving QoS of a
composite services by following an aggregation approach that is based on the
well-known workflow patterns by van der Aalst et al. [79]. The authors analyze
all workflow patterns for their suitability and applicability to composition and
then derive a set of seven abstractions that are well suited for compositions,
called composition patterns. Additionally, the authors define a simple QoS
model consisting of execution time, cost, encryption, throughput, and uptime
probability and QoS aggregation formulas for each pattern. The computation
of the overall QoS of a composition is then realized by performing a stepwise
graph transformation, that identifies a pattern in a graph, calculates its QoS
according to the aggregation functions and the replaces the calculated pat-
tern with a single node in the graph. The process is repeated until the graph
is completely processes and only one single node remains (which is itself a
sequence according to their composition pattern). For optimizing a composi-
tion, the authors analyze two classes of algorithms, namely the 0/1-Knapsack
problem and the Resource Constrained Project Scheduling Problem (RCSP).
For both algorithms a number of heuristics are defined to solve the problems
more efficiently.

Evolutionary Approaches

Canfora et al. [29] propose an approach that tries to solve the QoS-aware
composition problem by applying genetic algorithms. Firstly, the authors de-
scribe an approach to compute the QoS of an aggregated service, similar
to [16, 36, 37]. Secondly, the main issue of their approach, namely the encod-
ing of QoS-aware service composition problem as genome, is presented. The
genome is represented by an integer array with the number items equals to
the number of distinct abstract services composing our service. Each item, in
turn, contains an index to the array of the concrete services matching that
abstract service. The crossover operator is a standard two-point crossover,
while the mutation operator randomly selects an abstract service (position in
the genome) and randomly replaces the corresponding concrete service with
another one from the pool of available concrete service. The selection problem
is modeled as a dynamic fitness function with the goal to maximize some QoS
attributes (e.g., response time) while minimizing others (e.g., costs). Addition-
ally, the fitness function must penalize individuals that do not meet the QoS
constraints. The authors evaluate their approach by comparing it to well-
known integer programming techniques. In another paper, the authors also
describe an approach that allows re-planning of existing service compositions
based on slicing [15].

3 Service Composition 73

Stochastic Approaches

Mukhija et al. [57] present the Dino framework that is targeted for the use
in open dynamic environments. Their main idea is that no global view on a
service composition is available and thus each service specifies which services
it requires for its own execution. The service composition is formed at runtime
by the infrastructure. A key aspect is the fact that service requirements can
change dynamically (triggered for example by changing application context).
Dino also supports QoS-aware service composition by describing it formally
using an ontology. QoS is computed by using the actual and estimated QoS
values that are monitored by the Dino broker. QoS computation is modeled
by using a continuous-time Markov chain that enables the association of a
probability value that expresses the confidence of the QoS specification.

Wiesemann et al. [81] present a QoS-aware composition model that is
based on stochastic programming techniques. Their model takes QoS-related
uncertainty into account that minimized the average-value-at-risk (AVaR) -
a particular quantile-based risk measure - from the stochastic programming
domain. The trade-off between different QoS criteria is modeled by a combi-
nation of goal weighting and satisficing two prominent techniques in multi-
criteria optimization with the goal to minimize the AVaR.

Combined Approaches

The aforementioned approaches focus very specifically on the optimization
part of QoS-aware compositions and do not address, for example, other con-
cerns such as the specification of QoS-aware composition or runtime-specific
issues. Rosenberg et al. [71] provide a holistic, end-to-end environment for a
constraint-based specification and generation of QoS-aware compositions us-
ing a domain-specific language (DSL) called VCL (Vienna Composition Lan-
guage). VCL allows to specify microflow compositions using global and local
constraints by providing Composition as a Service (CaaS). These constraints
can be separated in soft- and hard-constraints. The former specify QoS con-
straints that are nice to have and are associated with a strength value to
express their importance that is desired by the user whereas the latter specify
constraints that need to be fulfilled. One the composition runtime has satis-
fied all the constraints and optimized the composition with respect to its QoS
properties and executable and adaptive composition is generated.

Comparison

Table 3.3 summarizes the approaches according to key aspects of QoS-aware
composition.

As it can be seen from Table 3.3, most approaches support simple and
complex composition structures (such as sequences, loops, conditionals and
parallel execution). Moreover, various constraint types can be specified, in

74 G. Baryannis et al.

T
a
b
le

3
.3
.
C
o
m
p
a
ri
so
n
o
f
A
p
p
ro
a
ch

es

P
a
p
er

C
o
m
p
o
si
ti
o
n

R
e
o
p
ti
m
iz
a
ti
o
n

C
o
m
p
o
si
ti
o
n

C
o
n
st
ru

c
ts

C
o
n
st
ra

in
t

T
y
p
e
s

O
p
ti
m
iz
a
ti
o
n

T
e
ch

n
iq
u
e

C
o
m
p
le
x
it
y

Z
en

g
et

a
l.
(2
0
0
4
)

S
im

p
le

a
n
d

co
m
p
le
x
st
ru
ct
u
re
s

L
o
ca
l
a
n
d
g
lo
b
a
l

(h
a
rd
)

IP
N
P
-c
o
m
p
le
te

R
eg
io
n
-b
a
se
d

Y
u
et

a
l.
(2
0
0
7
)

S
im

p
le

a
n
d

co
m
p
le
x
st
ru
ct
u
re
s

L
o
ca
l
a
n
d
g
lo
b
a
l

(h
a
rd
)

M
M
K
P
,
M
C
S
P
-K

,
IP

N
P
-c
o
m
p
le
te

n
/
a

J
a
eg
er

et
a
l.
(2
0
0
5
)
C
o
m
p
le
x
st
ru
ct
u
re
s
L
o
ca
l
a
n
d
g
lo
b
a
l

(h
a
rd
)

0
/
1
K
n
a
p
sa
ck

a
n
d

R
C
S
P

N
P
-c
o
m
p
le
te

n
/
a

M
u
k
h
ij
a
et

a
l.
(2
0
0
7
)

S
im

p
le

st
ru
ct
u
re
s

L
o
ca
l
(h
a
rd
)

N
o
t
sp
ec
ifi
ed

U
n
k
n
ow

n
n
/
a

W
ie
se
m
a
n
n
et

a
l.
(2
0
0
7
)

C
o
m
p
le
x
st
ru
ct
u
re
s
P
ro
b
a
b
il
is
ti
c
lo
ca
l

a
n
d
g
lo
b
a
l

co
n
st
ra
in
ts

S
to
ch
a
st
ic

P
ro
g
ra
m
m
in
g

U
n
k
n
ow

n
n
/
a

R
o
se
n
b
er
g
et

a
l.
(2
0
0
9
)

S
im

p
le

a
n
d

co
m
p
le
x
st
ru
ct
u
re
s

L
o
ca
l
a
n
d
g
lo
b
a
l

(s
o
ft

a
n
d
h
a
rd
)

IP
,
S
A
,
G
A
,
T
S

N
P
-c
o
m
p
le
te

O
n
In
v
o
ca
ti
o
n
,

P
er
io
d
ic

R
e-
o
p
ti
m
iz
a
ti
o
n

3 Service Composition 75

particular local and global constraints, however, mostly only hard constraints
are allowed. Rosenberg et al. provides the only approach also allowing to
specify soft constraints. With regards to the optimization approach, integer
programming (IP) is the predominant approach, however, other approaches
such as genetic algorithms (GA), simulated annealing (SA) and tabu search
(TS) are also popular. Runtime re-composition of existing compositions is only
supported by Zeng et al. and Rosenberg et al. (which use a re-composition
mechanism every time a request is sent to the composite service and addition-
ally also provide a periodic rebinding running in the background).

3.3.3 Automated Service Composition

A major family of approaches to Web service composition aim to fully or par-
tially automate the process of composition in order to deal with its high level
of complexity. Manual implementation of a composition schema is a time-
consuming, error-prone and generally hard procedure and is most certainly
not scalable. Therefore, the need for automation in Web service composition
should be apparent. In [70], the authors propose a general framework for auto-
matic Web service composition. Through this framework, one can extract five
distinct phases that constitute a complete automatic composition approach.

Atomic Services Description

The first phase deals with the description and advertisement of atomic services
that will be used as building blocks for the composition. Service advertisement
can be achieved using UDDI or using the Service Profile class of OWL-S [77],
which provides semantically annotated descriptions for Web services.

Internal Processes Description

The second phase focuses on service specifications that describe the internal
processes of the service, essentially specifying how the service works. Formal
and precise languages such as logic programming are required in this case
in order to effectively capture the constraints describing the internals of a
service.

Generation of Composition Process Model

This phase is the heart of the composition process, as it involves generating the
composition process based on the requester’s requirements. The result should
be one or more process models that describe which services participate in the
composition as well as the control and data flow among the participants.

76 G. Baryannis et al.

Composition Evaluation and Execution

The final two phases involve the evaluation of the composition process models
produced in the previous phase, the selection of the optimal one based on a
set of non-functional attributes such as QoS aspects and the execution of the
composite service according to the selected process model.

Automatic service composition approaches can be grouped into two dis-
tinct categories: workflow-related approaches and AI planning approaches.
The first group draws mainly from the fact that a composite service is con-
ceptually similar to a workflow, making it possible to exploit the accumulated
knowledge in the workflow community in order to facilitate Web service com-
position. On the other hand, AI planning techniques involve generating a
plan containing the series of actions required to reach the goal state set by
the service requester, beginning from an initial state.

Workflow-Based Approaches

Composition frameworks based on workflow techniques were one of the initial
solutions proposed for automatic Web service composition. In [42], the authors
define the Transactional WorkFlow Ontology (TWFO), an ontology used to
describe workflows. A registry containing OWL-S service descriptions is used
to find services corresponding to the tasks in the composite workflow. In
contrast to the previous work, where concrete workflows associated to services
are combined to a master workflow, [5] and [50] deal with abstract workflows.
[5] argues that business process flow specifications should be abstractly defined
and only bound to concrete services at runtime. The authors present a BPEL
engine that is able to take an abstract workflow specification and dynamically
bind Web services in the flow taking into consideration any relations and
dependencies between services as well as domain constraints. [50] advances one
step further by allowing for the automatic generation of an abstract workflow
based on a high-level goal.

More recent work seems to focus on bridging the gap between traditional
workflow composition methods and techniques based on AI planning that
will be presented in the next sections. For instance, [75] presents a workflow
framework that contains a Planning Module and a Constraint Solving Problem
Module. The first one produces candidate composite plans based only on
functional requirements while the second one takes the resulting plans of the
first module and selects the most appropriate service based on non-functional
attributes.

AI Planning Approaches

AI research has extensively covered a complex problem known as planning,
where an agent uses its beliefs about available actions and their consequences,
in order to identify a solution over an abstract set of possible plans. An AI

3 Service Composition 77

planning problem can be described as a quintuple {S, s0, G,A, Γ} [17], where
S is the set of all possible world states, including initial state s0 and goal
states G, A is the set of actions that can be performed in order to reach a
goal state and Γ ⊆ S×A×S is a transition relation from one state to another
when a particular action is executed. This problem definition can be applied
to the case of Web service composition if we consider A to be the available
services, G to be the goal set by the requester, and S, s0 and Γ to refer to a
state model of the available services. It should be noted that this correlation
is not followed by all approaches in this category.

Logic-Based Planning

A large number of AI planning techniques involves expressing a domain theory
in classical logic. A set of rules is defined and plans are derived based on these
rules. In [6], the authors extend composition rules to include new constraints
known as invariants, in order to capture the knowledge that a property must
not change from a state to another. The extended composition rules are used in
a backward planning approach that can reason about service compositionality.

Another AI planning technique in the field of logic is planning with sit-
uation calculus. The situation calculus represents the world and its change
as a sequence of situations, where each situation is a term that represents a
state and is obtained by executing an action. McIlraith and Son [53] adapt
and extend Golog, a logic programming language built using situation calcu-
lus in order to allow customizable user constraints, nondeterministic choices
and other extensions to better satisfy the requirements of service composition.
In [67], the authors present a set of methods written in the logic program-
ming language Prolog, for translating OWL-S service descriptions into Golog
programs.

Other Planning Techniques

Despite the advantages of the aforementioned logic-based approaches, such
as precise semantics and the ability to prove properties of domain theories,
the AI planning community developed several formalisms to express planning
domains. Planning Domain Definition Language (PDDL) [30] is widely rec-
ognized as a standardized input for state-of-the-art planners. In [65], WSDL
descriptions along with service-annotation elements are transformed to PDDL
documents. The framework allows for replanning when additional knowledge
has been acquired.

Graph-based planners have also been used in Web service composition ap-
proaches such as the one presented by Lecue et al. [44]. Their framework in-
cludes an Automatic Composition Engine that can take as input both natural
language and formalized requests. The suggested framework uses the Causal
Link Matrix (CLM) formalism [45], extended to support non-functional prop-
erties, in order to facilitate the computation of the final service composition
as a semantic graph.

78 G. Baryannis et al.

Hierarchical Task Network (HTN) planning [25, 26], which provides hierar-
chical abstraction to deal with the complexity of real-world planning domains
has also been exploited to facilitate Web service composition [38]. Finally,
some planning techniques are based on model checking, a formal verification
technique which allows determining whether a property holds in a certain
system formalized as a finite state model, i.e., using a Finite State Machine
(FSM). Pistore et al. [68] present such a composition framework that covers
both cases of extended goals and cases of partial observability.

Comparison

The research approaches presented in this section are summarized and com-
pared in Table 3.4. The table examines if there are approaches in each category
that support the the following criteria:

• Domain independence: The method is not exclusive to a specific domain
(e.g., travelling, automotive) but can be applied to any, allowing for the
solution of a broad range of problems.

• Partial observability: The method is able to reason on incomplete infor-
mation.

• Non-determinism: The method deals with actions that may lead to dif-
ferent states depending on the values of some parameters (e.g., an if-else
construct).

• Scalability: The method is able to solve real-world composition problems
which often deal with a large number of services. High scalability ensures
that there is support for large numbers of services and/or high levels of
complexity.

• Applicability: The method uses well-known and widely used standards
(mentioned in the table).

3.4 Summary

In S-Cube, service compositions are the middle layer in the layered structure
of service-based applications and have a crucial importance in developing and
executing such applications. In this chapter we have presented the state-of-
the-art in the field of service compositions in a structured manner, although
the classification of approaches and related solutions may not give the full
overview of existing research results. We presented solutions to three differ-
ent approaches to developing service compositions, namely the model-driven,
QoS-aware and automated service composition. In addition, we presented ex-
isting well-established languages for service orchestration, choreography, co-
ordination and assembly. The material in this book chapter can serve as a
basis for homogenizing the existing approaches for service composition and
improving the existing solutions.

3 Service Composition 79

Table 3.4. Comparison of Automated Service Composition Methods

Automated Domain Partial Non- Scalability Applicability
Composition Independence Observability Determinism

Method

Workflow Yes No Yes Average BPEL

Logic-based pl/ng Yes No No Varies OWL-S
Rule-based

Logic-based pl/ng Yes Yes Yes Average OWL-S
Situation calculus PDDL

Logic-based pl/ng Yes No No Low OWL-S
Event calculus

PDDL No Yes No Good PDDL
planning

Graph-based No Yes Yes Average BPEL
planning

HTN Varies Yes Yes Good OWLS
planning PDDL

Model-checking Yes Yes Yes Varies BPEL
and FSM OWL-S

References

1. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for seman-
tic web services (BPEL4SWS). In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 179–188. Springer, Heidelberg
(2007)

2. Alonso, G., Dadam, P., Rosemann, M. (eds.): BPM 2007. LNCS, vol. 4714.
Springer, Heidelberg (2007)

3. Web Services Business Activity Framework (WS-BusinessActivity). Ver-
sion 1.1 (April 2007), http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-
spec-os.pdf

4. Web Services Coordination (WS-Coordination) Version 1.1 (April 2007),
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf

5. Akkiraju, R., Verma, K., Goodwin, R., Doshi, P., Lee, J.: Executing Abstract
Web Process Flows. In: Proceedings of the Workshop on Planning and Schedul-
ing for Web and Grid Services of the ICAPS ’04 Conference, Whistler, British
Columbia, Canada (2004)

6. Alevizou, V., Plexousakis, D.: Enhanced Specifications for Web Service Com-
position. In: ECOWS ’06: Proceedings of the European Conference on Web
Services, Zurich, Switzerland, pp. 223–232. IEEE Computer Society (2006)

7. Arkin, A.: Business Process Modeling Language (BPML) (November 2002)
8. Balzer, S., Liebig, T., Wagner, M.: Pitfalls of OWL-S – A Practical Semantic

Web Use Case. In: ICSOC’ 04: Proceedings of the 2nd International Conference
on Service Oriented Computing, New York, NY, USA, November 2004, pp.
289–298 (2004)

9. Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography
and Orchestration: Status and Perspectives. In: Bussler, C.J., Haller, A. (eds.)
BPM 2005. LNCS, vol. 3812, pp. 61–74. Springer, Heidelberg (2006)

http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf

80 G. Baryannis et al.

10. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM
2005. LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

11. Benatallah, B., Dumas, M., Maamar, Z.: Definition and Execution of Com-
posite Web Services: The SELF-SERV Project. IEEE Data Eng. Bull. 25(4),
47–52 (2002)

12. Börger, E.: High Level System Design and Analysis Using Abstract State Ma-
chines. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641,
pp. 1–43. Springer, Heidelberg (1999)

13. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach
to design and analysis of e-service composition. In: WWW, pp. 403–410 (2003)

14. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Towards a for-
mal framework for choreography. In: WETICE, pp. 107–112. IEEE Computer
Society (2005)

15. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning
of Composite Web Services. In: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’05), Orlando, FL, USA, pp. 121–129 (2005)

16. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for
Workflows and Web Service Processes. Journal of Web Semantics 1(3), 281–308
(2004)

17. Carman, M., Serafini, L., Traverso, P.: Web Service Composition as Planning.
In: Workshop on Planning for Web Services in ICAPS’03, Trento, Italy, AAAI
(2003)

18. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.:
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI. IEEE Internet Computing 6(2), 86–93 (2002)

19. Curbera, F., Ferguson, D.F., Nally, M., Stockton, M.L.: Toward a programming
model for service-oriented computing. In: Benatallah, B., Casati, F., Traverso,
P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 33–47. Springer, Heidelberg (2005)

20. Decker, G.: Realizability of interaction models. In: ZEUS. CEUR Workshop
Proceedings, vol. 438, pp. 55–60. CEUR-WS.org (2009)

21. Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 208–219. Springer, Heidelberg (2008)

22. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for modeling choreographies. In: ICWS, pp. 296–303. IEEE Computer Society
(2007)

23. Decker, G., Overdick, H., Zaha, J.M.: On the suitability of ws-cdl for choreog-
raphy modeling. In: Weske, M., Nüttgens, M. (eds.) EMISA. LNI, vol. 95, pp.
21–33, GI (2006)

24. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

25. Erol, K., Hendler, J., Nau, D.S.: Semantics for HTN Planning. Technical Re-
port CS-TR-3239, UM Computer Science Department (1994)

26. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A Sound and Complete Proce-
dure for Hierarchical Task-network Planning. In: AIPS’ 94: 2nd International
Conference on AI Planning Systems, Chicago, IL, USA, pp. 249–254. Morgan
Kaufmann, San Francisco (1994)

3 Service Composition 81

27. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema.
W3C Member Submission (2007)

28. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message
contents. Int. J. Web Service Res. 2(4), 68–93 (2005)

29. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-
aware Service Composition based on Genetic Algorithms. In: Proceedings of
the Genetic and Computation Conference (GECCO’05), Washington DC, USA,
ACM Press, New York (2005)

30. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M.,
Weld, D., Wilkins, D.: PDDL – The Planning Domain Definition Language.
Technical Report CVC TR–98–003/DCS TR–1165, Yale Center for Computa-
tional Vision and Control, Version 1.2 (1998)

31. Gronmo, R., Jaeger, M.C.: Model-Driven Semantic Web Service Composition.
In: APSEC ’05: Proceedings of the 12th Asia-Pacific Software Engineering
Conference, Washington, DC, USA, pp. 79–86. IEEE Computer Society (2005)

32. Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code.
In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336.
Springer, Heidelberg (2004)

33. Huang, Y., Wang, H.: A petri net semantics for web service choreography. In:
SAC, pp. 1689–1690. ACM (2007)

34. Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and
Principles. IEEE Internet Computing 9(1), 75–81 (2005)

35. Jaeger, M.C., Mühl, G., Golze, S.: QoS-Aware Composition of Web Services:
An Evaluation of Selection Algorithms. In: Meersman, R., Tari, Z. (eds.) OTM
2005. LNCS, vol. 3760, pp. 646–661. Springer, Heidelberg (2005)

36. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Service
Composition using Workflow Patterns. In: Proceedings of the 8th International
Enterprise Distributed Object Computing Conference (EDOC’04), Monterey,
California, USA, September 2004, pp. 149–159. IEEE Computer Society Press,
Los Alamitos (2004)

37. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation in Web Service
Compositions. In: Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE’05), Hong Kong, China, March
2005, IEEE Press, Los Alamitos (2005)

38. Jianhong, Z., Shensheng, Z., Jian, C., Yujie, M.: Improved HTN Planning
Approach for Service Composition. In: SCC ’04: Proceedings of the 2004 IEEE
International Conference on Services Computing, Shanghai, China, pp. 609–
612. IEEE Computer Society (2004)

39. Khalaf, R., Leymann, F.: On web services aggregation. In: Benatallah, B.,
Shan, M.-C. (eds.) TES 2003. LNCS, vol. 2819, pp. 1–13. Springer, Heidelberg
(2003)

40. Koehler, J., Hauser, R., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S.: A
Model-Driven Transformation Method. In: EDOC ’03: Proceedings of the 7th
International Conference on Enterprise Distributed Object Computing, Wash-
ington, DC, USA, p. 186. IEEE Computer Society (2003)

41. Kopp, O., Leymann, F.: Choreography design using WS-BPEL. IEEE Data
Eng. Bull. 31(3), 31–34 (2008)

42. Korhonen, J., Pajunen, L., Puustjärvi, J.: Automatic Composition of Web
Service Workflows Using a Semantic Agent. In: WI ’03: Proceedings of the 2003

82 G. Baryannis et al.

IEEE/WIC International Conference on Web Intelligence, Halifax, Canada, p.
566. IEEE Computer Society,

43. Lausen, H., Polleres, A., Roman, D.: Web Service Modelling Ontology
(WSMO). W3C Member Submission (2005)

44. Lécué, F., Silva, E., Pires, L.F.: A Framework for Dynamic Web Services Com-
position. In: Pautasso, C., Gschwind, T. (eds.) WEWST07: Proceedings of the
2nd ECOWS Workshop on Emerging Web Services Technology, Halle, Ger-
many, vol. 313, CEUR (2007)

45. Lécué, F., Léger, A.: A formal model for semantic web service composition. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer,
Heidelberg (2006)

46. Leymann, F.: Web services flow language (wsfl 1.0). Technical report, IBM
Corporation (May 2001)

47. Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-
Coordination and WS-CF. In: Third IEEE European Conference on Web Ser-
vices (ECOWS 2005), November 2005, pp. 160–169. IEEE Computer Society
(2005)

48. Liu, Y., Ngu, A.H.H., Zeng, L.: QoS Computation and Policing in Dynamic
Web Service Selection. In: Proceedings of the 13th International Conference
on World Wide Web, WWW’04 (2004)

49. Luo, N., Yan, J., Liu, M.: Towards efficient verification for process composi-
tion of semantic web services. In: Proceedings of the 2007 IEEE International
Conference on Services Computing (SCC 2007), Salt Lake City, Utah, USA,
9-13 July 2007, pp. 220–227 (2007)

50. Majithia, S., Walker, D.W., Gray, W.A.: A Framework for Automated Ser-
vice Composition in Service-Oriented Architectures. In: Bussler, C.J., Davies,
J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 269–283.
Springer, Heidelberg (2004)

51. Mancioppi, M., Carro, M., van den Heuvel, W.-J., Papazoglou, M.P.: Sound
multi-party business protocols for service networks. In: Bouguettaya, A.,
Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 302–316.
Springer, Heidelberg (2008)

52. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing compatibility of
bpel processes. In: AICT/ICIW, p. 147. IEEE Computer Society (2006)

53. McIlraith, S.A., Son, T.C.: Adapting Golog for Composition of Semantic Web
Services. In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.-A.
(eds.) KR, pp. 482–496. Morgan Kaufmann, San Francisco (2002)

54. Mendling, J., Hafner, M.: From inter-organizational workflows to process exe-
cution: Generating BPEL from WS-CDL. In: Meersman, R., Tari, Z., Herrero,
P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 506–515. Springer, Heidelberg
(2005)

55. Mitra, T.: Business-driven Development (2005), http://www-128.ibm.com/

developerworks/webservices/library/ws-bdd/index.html

56. Montangero, C., Semini, L.: A logical view of choreography. In: Ciancarini,
P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 179–193.
Springer, Heidelberg (2006)

57. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware Service Com-
position in Dino. In: Proceedings of the Fifth European Conference on Web
Services (ECOWS’05), Halle (Saale), November 2007, pp. 3–12 (2007)

http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html

3 Service Composition 83

58. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
214–229. Springer, Heidelberg (2007)

59. OMG: Business Process Modeling Notation Version 1.1. OMG Recommen-
dation, OMG (February 2008), http://www.bpmn.org/Documents/BPMN%201-
1%20Specification.pdf

60. Web Services Business Process Execution Language Version 2.0 – OASIS Stan-
dard. Technical report, Organization for the Advancement of Structured Infor-
mation Standards (OASIS) (Mar. 2007)

61. Orriëns, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition.
In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC
2003. LNCS, vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

62. Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Trans-
lating BPMN to BPEL. Technical Report BPM-06-02, BPM Center Report
(2006)

63. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented
Computing: State of the Art and Research Challenges. Computer 40(11), 38–
45 (2007)

64. Pautasso, C., Alonso, G.: The jopera visual composition language. Journal of
Visual Languages and Computing (JVLC) 16, 119–152 (2005)

65. Peer, J.: A PDDL based tool for automatic web service composition. In:
Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 149–163.
Springer, Heidelberg (2004)

66. Pfadenhauer, K., Kittl, B., Dustdar, S.: Challenges and Solutions for Model
Driven Web Service Composition. In: WETICE ’05: Proceedings of the 14th
IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise, Washington, DC, USA, pp. 126–134. IEEE Computer
Society (2005)

67. Phan, M., Hattori, F.: Automatic Web Service Composition Using ConGolog.
In: ICDCS Workshops, IEEE Computer Society (2006)

68. Pistore, M., Barbon, F., Bertoli, P.G., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA
2004. LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004)

69. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of
choreography. In: WWW, pp. 973–982. ACM (2007)

70. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

71. Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., Dustdar, S.: Towards
composition as a service - a quality of service driven approach. In: Proceedings
of the 25th International Conference on Data Engineering (ICDE2010), March
2009, pp. 1733–1740 (2009)

72. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping Performance and De-
pendability Attributes of Web Services. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS’06), Chicago, USA, IEEE Computer
Society (2006)

73. Thatte, S.: XLANG - Web Services for Business Process Design. Microsoft
Corporation (2001)

http://www.bpmn.org/Documents/BPMN%201-1%20Specification.pdf
http://www.bpmn.org/Documents/BPMN%201-1%20Specification.pdf

84 G. Baryannis et al.

74. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In:
EDOC ’04: Proceedings of the Enterprise Distributed Object Computing Con-
ference, Eighth IEEE International, pp. 47–57. IEEE Computer Society (2004)

75. Song, X., Dou, W., Song, W.: A workflow framework for intelligent service
composition. In: Workshops at the Grid and Pervasive Computing Conference,
0:11–18 (2009)

76. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service chore-
ographies. In: WS-FM, pp. 1–16 (2007)

77. Sycara, K., et al.: OWL-S 1.0 Release. OWL-S Coalition (2003), http://www.
daml.org/services/owl-s/1.0/

78. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction:
Patterns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavat-
taro, G. (eds.) SFM. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

79. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

80. W3C. Web Services Choreography Description Language Version 1.0.
Candidate Recommendation, W3C (November 2005), http://www.w3.org/

TR/2005/CR-ws-cdl-10-20051109/

81. Wiesemann, W., Hochreiter, R., Kuhn, D.: A Stochastic Programming Ap-
proach for QoS-Aware Service Composition. In: Proceedings of the 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’08),
Lyon, France (May 2008)

82. WS-AtomicTransaction Working Committee. Web Services Atomic Transac-
tion (WS-AtomicTransaction). Version 1.1. OASIS Specification (April 2007)

83. WS-CF Working Comittee. Web Services Coordination Framework Specifica-
tion (WS-CF) Version 1.0. OASIS Specification (December 2004)

84. Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S.: A formal model for web service
choreography description language. In: ICWS, pp. 893–894. IEEE Computer
Society (2006)

85. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection
with End-to-End QoS Constraints. ACM Trans. Web 1(1), 6 (2007)

86. Meersman, R., Tari, Z.: Let’s dance: A language for service behavior modeling.
In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 145–162.
Springer, Heidelberg (2006)

87. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality
Driven Web Services Composition. In: Proceedings of the 12th International
Conference on World Wide Web (WWW’03), New York, NY, USA, pp. 411–
421. ACM Press, New York (2003)

88. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions
on Software Engineering 30(5), 311–327 (2004)

http://www.daml.org/services/owl-s/1.0/
http://www.daml.org/services/owl-s/1.0/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

4

Architectures & Infrastructure

Françoise André1, Ivona Brandic2, Erwan Daubert1, Guillaume Gauvrit1,
Maurizio Giordano3, Gabor Kecskemeti4, Attila Kertész4,
Claudia Di Napoli3, Zsolt Nemeth4, Jean-Louis Pazat1, Harald Psaier2,
Wolfgang Renz5, and Jan Sudeikat5,6

1 Institut National de Recherche en Informatique et Automatique (INRIA), France
2 Technische Universität Wien, Vienna, Austria
3 Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
4 MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,
Hungary

5 Multimedia Systems Lab. (MMLab), Hamburg University of Applied Sciences,
Germany

6 Department of Informatics, University of Hamburg, Germany

Chapter Overview. The third of the S-Cube technology layers provides infras-
tructure capabilities for defining basic communication patterns and interactions in-
volving as well as providing facilities for providing, for example, contextual and
qualitative information about a service’s and their client’s environment and perfor-
mance. Providing these capabilities to other layers allows service developers to use
contextual information when building service based systems and provide cross layer
and pro-active monitoring and adaptation of services (see research challenges). This
chapter provides an overview of service infrastructures for the adaptation, monitor-
ing and management of services which will provide these functions and concludes
with a discussion of more detailed research challenges in the context of service in-
frastructures and their management.

4.1 Introduction

A high-level, logical view of an infrastructure is shown in Figure 4.1. This pic-
ture illustrates all the relevant concepts of the architecture for the execution of
service oriented applications. In most cases, this run-time architecture should
itself be service-oriented and assume the run-time mechanisms and compo-
nents are realized as services and are exposed on a communication backbone.
This view guarantees that the run-time mechanisms can be integrated and
exploited in a synergistic way, at least at the conceptual level.

In Figure 4.1, we distinguish between core services and application-specific
services. The core services are middleware services that the run-time architec-
ture provides to all SBA in order to support the different aspects of the SBA

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 85–116, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

86 F. André et al.

Fig. 4.1. Logical Infrastructure View

execution. Examples of such core services are a discovery service, an engine
for executing service compositions or an engine for monitoring the behavior
of a SBA or the performance of a business network. Some of these core ser-
vices act as containers for application-specific services, i.e., services that are
specific of the SBA in execution, and that encapsulate part of the application-
specific logic. This is the case of the engine for executing service compositions.
The core services acting as containers for application-specific services are also
referred to as service containers.

Other core services contain other parts of the application-specific logic
(which is not exposed as a service). This is the case, for instance, of the
monitoring engine, which contains the application-specific logic and properties
that describe what should be monitored and how. For lack of a more precise
name, this type of core services will be referred to in this chapter as engines.
Finally, there are core services that are generic. This is the case, for instance, of
discovery services. When a SBA is deployed, specific pieces of the application
logics will hence be deployed in the service containers and in the engines —
depending on whether these pieces of application logics are themselves services
or not — but no application-specific code is deployed in generic core services.

The communication backbone supports the communication among any
kind of services, regardless of whether they are core services or application-
specific services. In particular, in the case of service containers, the commu-
nication backbone allows accessing both the core service and the application-
specific services deployed within the container. The core service will offer a
management interface for controlling the behavior of the container and in
particular the deployment and operation of application-specific services. The
application-specific services expose interfaces that allow access to application-
specific service functions.

4 Architectures & Infrastructure 87

4.2 Service Infrastructures for Adaptation,
Monitoring & Management of Services

4.2.1 Introduction

Recently, computing infrastructures have grown in size and manage multi-
ple interconnections to cover all requirements of functionality, coordination,
and cooperation. An example are corporate infrastructures that provide the
means to use, combine and exploit various communication, collaboration, and
productivity tools. The situation becomes more complex the larger the in-
frastructure grows and the number of users and applications to be catered for
increases. IBM describes the dilemmas, problems and open issues in operating
such infrastructures today [35]:

• The huge amount of budget spent on preventing or recovering from system
crashes.

• The effort spent in keeping a deployed system running.
• About 40% of the system outages are caused by an operator error.
• The costs provoked by long system downtimes.
• The complexity of todays applications and the related extended require-

ments on testing.

The current situation in providing a multipurpose computing, storage and
communication infrastructure is that users want to use the infrastructure ac-
cording to their individual ideas and requirements. As a result, some of their
requests are difficult to fulfill because of the involved dependencies between,
e.g., applications and hardware resources. This becomes especially challeng-
ing if these dependencies interfere with the requirements of other users of the
same infrastructure. As an example users could lock each-others requests when
accessing the same infrastructure resources. It could also occur that users re-
quest the same resources even if there is enough alternative resources but they
are not aware of the fact. As a result, there is a need for the monitoring, man-
agement and adaptation of the infrastructure to balance these requirements,
hide the details from the users and give sound and timely responses to their
requests.

The issues described above are substantial research challenges. As men-
tioned, the result of the complexity in an infrastructure’s components, de-
pendencies and applications can causes unreliable and unpredictable behavior
in the system. However, these problem cannot be solved by human support
alone as human administrators can become overwhelmed with the task of
maintaining complex systems. Even highly-sophisticated on-line monitoring
and analysis instruments cannot assure that the humans using them react in
time and correctly to malfunctions in the infrastructure. Thus, the main con-
sensus of the research is that current and future infrastructures require some
means of autonomy and ability to self-manage.

88 F. André et al.

The research challenges in providing such an infrastructure are manifold
as it is not only difficult to design and implement self-managing systems, but
also to integrate such a system with existing systems. The existing, production
system is usually already build and running and may have been designed to
function as a stand-alone unit with few interfaces that allow it to be managed
and adapted. Thus integrating observation and adaptation are crucial to the
success of any self-management technique.

4.2.2 Self-Adaptation

Self-adaptation can be realised at several levels in the system being considered:
the operating system level, application level or in middleware.

At the operating system level, adaptations should be transparent to the
applications using it. So applications developers do not need to rewrite their
applications to cope with the variations of the environment but the adaptation
is not very accurate. Generic adaptation mechanisms are included into the
operating system.

The direct application adaptation is a more specialized adaptation since it
requires placing adaptation mechanisms inside each application. The advan-
tages of this approach is that the adaptation is aware of application-specific
qualities, which makes it more reactive and efficient but also makes it much
more difficult for applications developers as they need to develop their code
with this extra requirement in mind.

Moreover, it is impossible to coherently manage multiple applications. The
adaptation by middleware, also called Applications-aware adaptation is a com-
promise between the two other solutions. This adaptation can use the specific
aspect of each application and manage multiple simultaneous executions of
different applications.

4.2.3 Self-Management

Self-management refers to a system component closely aligned with or in-
tegrated into a system. This binding must allow self-managing applications
to observe the system in a timely and careful manner through the interfaces
provided. The observations are then analyzed and possible adaptation re-
quirements for the current system may be discovered. These requirements can
be identified according to different criteria, including system degradation, the
need to optimize or support new configurations or respond to security threats.
When an adaptation requirement is met, a self-managing implementation can
take decisions regarding which changes are to be made in current system con-
figuration and plan the timing of those changes to minimise system downtime.

The preconditions for a self-managing component include the knowledge of
itself, i.e., that the component is aware of its functionality, the resulting capa-
bilities and possible combinations of new capabilities. This last ability already
hints that a self-managing design needs to be extensible and self-adaptable.

4 Architectures & Infrastructure 89

Arriving conditions might require the design to reconfigure its internals on the
fly. For example, acceptable threshold values can vary related to daytime. In
other cases such a threshold value could represent the result of monitoring data
and fluctuate constantly. Actions depend on the observed and, thus, a range of
possible combinations must be permitted to the self-management component.
Apart from the knowledge of its own capabilities self-management must also
maintain a clear picture of the surroundings. Once the interfaces with the
observed system are identified, the self-management component learns and
adopts the system’s capabilities of adaptation. It is essential to furnish the
self-management with all the details about the correct operation modes. This
gives the component a model to relate the current observed data and detect ex-
traordinary events indicating deviations from normal. However, together with
new requirements the system changes over time. Therefore, self-management’s
view on the system must also adapt along with the development of the system.

To describe the outline of an infrastructure with monitoring, adaptation,
and management capabilities Figure 4.2 provides a layered overview of the
main parts and dependencies. Although infrastructures are multipurpose an
the details of the layer combinations differ from operation and purpose, the
illustrated assembly is considered general.

System requirements

Management

AdaptationMonitoring

Service
definitions

Service
infrastructure

Sensor Effector

Monitor

Analyze Plan

Execute
Knowledge

BPM, Service Composition,
Coordination, Design

Mng. interface

UI

Analyze

Adapt

Log

Fig. 4.2. Overview

On top, the management layer provides configuration, observation, and con-
trol facilities. Once new requirements derive from adapted process models
in the BPM, polished composition, advanced coordination, and updated de-
sign, the layer provides a control interface for human operators. This supports
system management by a simple interface to apply the requirements and a off-
line analysis of the running system’s status and properties. It empowers the
human administrator to define high level requirements at the management
console and deploy them to the system. Thereby, the administrator is relieved
from the deployment details. Generally, the management layer is supported
by monitoring and adaptation layers. These two and their internal functions
enhance the infrastructure with self-management. They assure that manage-
ment can provide a comprehensible and reliable representation of the system’s
state. It is essential for the design of a self property enhanced infrastructure
that the capabilities of self-management are understood and do not interfere
with management decisions.

90 F. André et al.

4.2.4 Monitoring Infrastructure

Monitoring (lat. monere: to remind, to warn) refers to the continuous pro-
cess of observing and recording the behavior of an environment affected by
dynamic influences. The monitoring process is responsible for collecting and
correlating data from sensors and converting them to behavioral patterns and
symptoms. The process can be realized through event correlation, or simply
threshold checking, as well as other methods.

In general monitoring is motivated by the unpredictable behaviors exposed
by system’s parts. As a result prior to the deployment of a monitoring infras-
tructure it is necessary to assess the relevant intersections with the system
for a precise positioning of the sensors. These are usually identified by ex-
perience gathered from historical observations that identify typical locations
of unpredictable behavior in the system. An example are all kind of sensors
that observe a service environment behavior. These could include hardware
sensors, such as sensors for temperature, hardware load, etc., sensors for appli-
cations, e.g., aspect-oriented implementations, and communication channels
sensors. The result of a deployed monitoring infrastructure is timely event in-
formation about status changes in the critical locations of the system. In the
final step it lies in the responsibility of the monitoring component to decide
which events to filter and provide to management and analysis. There might
be different representations of the event expected by the two other compo-
nents. Furthermore, monitoring is also expected to run its own analysis on the
received events. Current events are then compared with and related to past
events.

A combination of the new and related events can result in a composite
event with information which allows for a better conclusion on the current
system states. Figure 4.3 illustrates the interfaces and data-flow of a monitor-
ing component in an infrastructure.

The figure shows at the bottom the infrastructure with some common re-
sources available in a system. An essential prerequisite for monitoring is a
reliable interface to sensing facilities. Sensors are placed at important infras-
tructure building blocks such as hosts, applications, communication channels,
etc., that can provide reliable environment status information.

Sensor Interface

Sensor management is established by the sensor interface. This provides con-
trol over the functionality and fine-tuning of the sensors. As the system runs
through changes during the course of time and the environment changes its
characteristics it might be necessary to also adapt the sensors to the new
conditions. Sensors might react sensitive to the changes and a calibration is
necessary to avoid false alarms. Most of the time, however, the sensor inter-
face’s function is to provide the sensor data for processing by the monitoring
process.

4 Architectures & Infrastructure 91

Fig. 4.3. Monitoring an Infrastructure

Monitor

The central process of the monitoring component gathers all the sensor data
and turns it into an event. Thereby, it usually extends the event with account-
ing data, such as, time-stamp of arrival. The event is logged and forwarded
to the analysis process. The monitoring process also provides the means of
adapting the sensors through the sensor interface. On a recommendation by
analysis, the system knowledge, or the management layer, monitoring cali-
brates the sensors to the new requirements.

Log

The logging process comprises the list of historical events gathered by the
system. This event log is essential in estimating the root cause for any incident
in the system. A interface to the monitoring process adds the new events to
the database. Another interface to the analysis must provide a convenient
access to the historical data.

Analysis

The analysis process is split between monitoring and adaptation component.
The configuration of the analysis adjusts the monitoring intentions. The main
function of analysis in monitoring is to filter the events according to the pro-
vided configuration and adjust their presentation to match the expectations
from adaptation and management. At the more analysis uses event logs to

92 F. André et al.

create high level composite events. These are events only observed and mea-
sured over a time interval. Finally, analysis shares the collected experience to
the knowledge component of the system. These allows the processes in the
other components to decide also on the knowledge gathered in the monitoring
process. This is especially important for self-managing infrastructures that
need to learn from past events to adapt to a changing situation.

Summarizing, monitoring reduces and transforms the “shower” of sensor
data to essential and better processable information. This process is crucial
for an adequate reaction estimation. Furthermore, the quality of the event
composition and thresholds (filters) define the detection capabilities of the
monitoring process. An accurate filter must be reconfigurable by the manage-
ment interface but also itself adapt to the eventually changing environment
conditions. Next a list of the most common monitoring techniques is pro-
vided [56]:

Log Sensors

Logging states from all parts is one of the main techniques available in many
of today’s systems. The challenge in monitoring logs is that logs usually don’t
provide a common format. Thus, a log monitor needs to implement individual
sensors able to process the syntax used by the different log formats. Log sensor
data arrives from different sources. Therefore, monitoring is required to filter
and analyze the sensor data. There are generally two possibilities. The data
can be matched against admissible thresholds, or more sophisticated, data
from different sources can be combined for analysis. This particular analysis
allows to detect state changes that affect composed parts of the system and
gives a clearer view on the overall system state7.

Event Sensors

A event sensor provides monitoring already with an event in a certain format.
Usually the monitoring process subscribes to the event or waits for an event
to happen. The advantage compared to log sensors is that the event format
and contained status data is in a predefined format and, thus, easily processed
by the monitoring process8.

Protocol & Standard Sensors

The sensors of established protocols and standards generate event data from
data channels that transmit information in a certain standard. Similar to the
log sensors, these sensors require a configuration that matches the protocol

7 c.f., IBM: Generic Log Adapter (GLA), Log Trace Analyzer (LTA)
8 c.f., DMTF: Common Information Model (CIM), IBM: Common Base Events
(CBE)

4 Architectures & Infrastructure 93

subtleties of the observed data. The most prominent examples are IP networks
transmitting various protocols9.

Signal Sensors

These sensors transmit data to the monitoring process in regular intervals. The
absence of a signal indicates a predefined event has occurred in the sensors
place. According to the meaning, a event is reported by the monitoring process
to the neighbor processes. Examples are heartbeat and pulse messages from
system resources.

Profiling Sensors

This type of sensor operates on the application layer and observes the execu-
tion behavior of an application. Similar to other sensors information this data
has first to be gathered and analyzed over time intervals to detect possible
incidents. A composite event is the result of analysis10 .

Aspect-Oriented Programming

Aspect-oriented programming is a possibility to precisely monitor an appli-
cation’s behavior. However, this method is intrusive because the sensors are
coupled to application code through joinpoints.

Management Frameworks

Complete management frameworks exist for all parts of the monitoring, adap-
tation, and management components. One of the best known to-date is the
Java Management eXtension (JMX) that provides interfaces for many kinds
of sensors, sensor data formats, extensions for monitoring, management and
adaptation logics. The package also includes a management interface that
provides an overview of all monitoring data and allows the configuration of
attached sensors.

4.2.5 Adaptation Infrastructure

Types of Adaptation

Dynamic adaptation actions can be classified according to several criteria; if
one considers what can be changed in a service or in a composition of services,
five possible cases can be found:

9 c.f., Simple Network Management Protocol (SNMP), Web-Based Enterprise Man-
agement (WBEM)

10 c.f., JVM Tool Interface (JVMTI)

94 F. André et al.

1. Parameter adaptation: the simplest, “parameter adaptation” consists in
changing the value of an interface parameter, for example to modify the
frame-rate of a streamed video.

2. Functional adaptation: there is also “functional adaptation” that consists
of changing the code that realizes the service, without visible logical con-
sequences for the outside (the users) of the service. For instance, one can
change the bytecode of a Java service to improve its performance.

3. Behavioral adaptation: “behavioral adaptation” consists of changing the
algorithm of a service which has some visible effect to the service’s users.

4. Environmental adaptation: this adaptation allows the modification of the
service execution environment. For example, service migration is an envi-
ronmental adaptation because after this adaptation, the service will not
run in the same context and its performance, security level and available
resources may be different. This migration may be useful when infrastruc-
ture is overloaded through hosting too many services. If a service A is
migrated from an overloaded node in the infrastructure X towards a node
Y, resources allocated to the service on node X are released and can real-
located to the others services, improving their Quality of Service (QoS).
The QoS of service A is also improved as it is moved on a node that is not
overloaded. Migration could be useful in other cases, for example to bring
a service closer to its users. There are several approaches to performing
service migration. The simplest do not consider the state of a service and
consist of installing and starting the service on the new location. In this
case, the “binary representation” (or in some cases, the executable file)
which represents the service is migrated and re-started on the new node.
This method is convenient for stateless services and when the service can
be stopped before migration. In the other approaches, migration also con-
sists of the migrating the execution context of the service. This context is
represented by data stored in memory and the service execution can be
resumed on the new node in a transparent way for the users of the service.
However, this type of migration needs to take into account the state of
threads created by the service, which is a complex task [31, 62, 3].

5. Structural adaptation: “structural adaptation” is concerned with the mod-
ification of compositions of services by changing one or more links between
the services in each composition.

Location of Adaptation

In addition to this distinction between adaptation actions, we can also con-
sider the location where adaptations are performed. Execution may be done
‘locally’, i.e., when an adaptation strategy is executed on the same node of
an infrastructure. Distributed execution occurs when the adaptation strategy
is executed on different nodes in the infrastructure. For example, a structural
adaptation which adds a new service SNEW between two already composed
services S1 and S2, if these services reside on the same platform this is a ‘local’

4 Architectures & Infrastructure 95

adaptation, but if S1 is located on a node N1, S2 on a different node N2 and
SNEW on a third one N3, the adaptation will be distributed on these 3 nodes,
needing some cooperation and synchronization capabilities.

From these possibilities, adaptation strategies can be applied to one or
more services, applications, complete environments, composed nodes, clusters,
Grids or dynamic clouds.

Analysis

The purpose of adaptation infrastructure is to react to monitored changes in
the system by deciding when and how to adapt services, compositions and
service infrastructure according to an adaptation strategy. Therefore, adapta-
tion infrastructure lies at the interface between the monitoring and adaptation
infrastructures.

Decision Guides and Strategies

A strategy is a reification of a chosen configuration to apply. This configuration
can equally be represented by the complete configuration to adopt or as an
expression of the difference between the current configuration and the one to
adopt. The latter might be seen as a high-level view of a collection of actions.
However, those actions might not be directly executable.

The use of two different terms for the configuration and its reification is
used to make a clear distinction between the concept and the entity. Since a
configuration can be represented in multiple ways, such as by a graph repre-
senting a network configuration or by a list of parameters, multiple languages
can be used to represent a configuration and thus a strategy. Which language
is used is dependent from the adaptation infrastructure and might vary from
one to another. A strategy represents a goal to reach and multiple means
might be available to reach it, and different ways might exist to execute the
strategy. The task of planning a particular strategy in executable actions is
done by the planning part of the adaptation infrastructure.

To create a strategy, the analysis function uses a reasoner that follows
an algorithm. Various generic algorithms are available, each with different
advantages and disadvantages for different purposes. For instance, some are
fast to compute a strategy but grow easily in complexity and can become
hard to maintain while others are slower but can efficiently model complex
systems.

Using generic algorithms enables to use the same component or code in
different applications. However the adaptation goals and means vary between
applications. For instance, some can seek performance while other the econ-
omy of energy. Thus, the generic algorithms have to be specialized to each
application. This is done using decision guides.

A decision guide is a document where is expressed a logic to follow using
an algorithm to make decisions of adaptation when appropriate, producing

96 F. André et al.

strategies. A guide is followed each time — and only when — the inner repre-
sentation of the system by the analysis function is changed, since there might
be a need for adaptation only when changes occur. Following a guide usually
can, depending on the algorithm, change the representation of the system
used by the algorithm, thus making the algorithm recursive. Changing the
inner representation enables to make intermediate states, states or values to
compute a strategy.

Among the different algorithms or mechanisms used by reasoners are event-
condition-action rules (ECA), expert systems, utility functions and learning
mechanisms. Multiple reasoners — frameworks or libraries — can be found
for each of those methods, generally using different languages to express their
guides.

Behavior Modeling

A self-* service is a service able to react to changes in its environment by
adapting itself. To do so, a self adaptable service has to be able to decide if a
change is needed and how to achieve it. A behavioral model of the service and
its environment can be used to compare different configurations by estimating
how they would perform relatively to the current one.

As an example to illustrate the modeling of the behavior of a system, we
take an component-based application running on a computing grid. One of
the components in this application is used to assign requests sent by a master
component to worker components. That is, this broker component implements
a master-worker pattern. A self-optimization in this application is to switch
between implementations of the pattern, in order for the application to make
a better use of the grid according to a high-level objective.

The objective used in this example is to maximize the execution speed of
the application. It is measured by the average number of executed requests by
seconds. This objective is a performance oriented one, but price or consump-
tion oriented ones can be considered.

We consider in this example three master-workers patterns. The round-
robin one distributes request to workers in circular order. This pattern is
fast but doesn’t take into account the dynamism of the workload on the grid.
Another pattern is the load-balancing one, as implemented by NetSolve, which
use a queue to ensure that every worker gets the same load to process, as long
as there are more requests than workers at any time. The DIET pattern uses
a modified version of the DIET framework, which uses a request sequencing
policy, a distributed architecture with many agents and has probes to its
disposal to estimate the workers’s processing speed. It differs from the original
by using a scheduler which sorts the requests by the estimated time to process
the requests, when possible.

4 Architectures & Infrastructure 97

Planning

The planning step specifies the actions that can implement the adaptation
strategy and schedule them. A planning algorithm is used for that purpose. It
takes as input a source configuration and a target configuration that are the
result of the decision step and represent the strategy. It also use a domain of
actions that defines the set of all possible actions to implement the strategies.
For the planning step, the actions need not be defined with too much details
of implementation. One may prefer to use “abstract actions” that will only be
converted as concrete ones at the execution step. For instance the planning
may use the abstract action “start service” without needing to know if the
service is an OSGi service or a Web service. At execution time the abstract
“start service” will be converted either in “register the service on the OSGi
platform” or in “register the service in the Web repository”.

Preconditions and postconditions are associated with actions : they help in
choosing the actions which could lead from the source configuration to the tar-
get configuration. Sometimes choices are possible between two or more actions
or subset of actions to achieve the goal. Some planning algorithms are able
to take into account constraints associated to actions in order to choose the
actions that will the best achieve the objectives. For example constants may
express the time to execute an action or the resource consumption. The objec-
tives of the planning algorithm could be to minimize the total execution time
to perform the adaptation or to minimize the resource consumption. For in-
stance the planning language PDDL (Planning Domain Definition Language),
first introduced in 1998 [36], allows to describe such constraints. Indeed since
1998 the PDDL language has evolved to take into account new constraints,
for instance on time duration for actions or on resource consumption. Current
version of PDDL is constituted by a basic kernel and a set of extensions for
each added feature. The user of PDDL needs to choose among the extensions,
those that he needs depending on the planning algorithm used.

The planning step has also to schedule the selected actions. Indeed some
actions may be dependent of some others. For example, it is not possible to
start a bundle on an OSGi platform if the bundle is not already installed and
its dependencies resolved. At the opposite, some actions can be independent
of some others, leading to a partial order between them. For example, two
bundles can be started on two distinct OSGi platforms at the same time. So,
if the applications that are subject for adaptation are running on a distributed
architecture, it could be useful to exhibit the potential parallelism between
the adaptation actions. On distributed platforms, for the actions that have to
be executed in a predefined order, explicit synchronization operations have to
be added.

Within a distributed architecture, the designer of the adaptation system
can choose to instantiate several planners in order to distribute the planning
step. This could be of interest either to achieve fault tolerance in case of a node
where the planner is located breaks down, or to decompose the planning opera-

98 F. André et al.

tions into parallel tasks. In that case a distributed parallel planning algorithm
should be designed which probably will need some cooperation mechanisms
in order to achieve a common goal without inconsistency.

Execution

If one considers that the planning phase produces a set of abstract actions,
they should be first translated into concrete ones, before to be executed (con-
crete actions are also called effectors). Some adaptation designers may prefer
not to use abstract actions as a result of the planning, in that case this step
is not necessary. Abstract actions are used to hide the concrete SOA imple-
mentation. More than facilitating the task of planning, it is also particularly
useful if several different SOA such as SCA, OSGi, may be used to build the
adaptable applications. Each specific platform can then choose the best pos-
sible concrete actions to implement an abstract one (see Figure 4.4). In the
following we will consider that the actions specified by the planner are ab-
stract ones. The set of actions produced by the planning phase respects the
schedule computed by the planning algorithm. This means that the actions
are ordered by steps. A step regroups actions that could be done simultane-
ously. But the actions included in a step N can not be started before all the
actions in step N-1 are not finished.

Fig. 4.4. Abstract and Concrete Actions

4.2.6 Management Infrastructure

In Figure 4.2 we can see a layered overview of the main parts of a service in-
frastructure. The management layer provides configuration, observation, and
control facilities supported by monitoring and adaptation layers. Their main
task is to reduce the complexity, since modern infrastructures tend to become
incomprehensible and unreliable, therefore there is an emerging need for self-*
properties.

The Management layer is best exemplified with an overview and insight of
an existing solution. Therefore in this subsection we introduce, how the man-
agement layer appears and operates in an autonomic Service-level Agreement-
based Service Virtualization architecture (SSV). SSV provides a way to ease
service executions in a diverse, heterogeneous, distributed and virtualized

4 Architectures & Infrastructure 99

world of services. The architecture consists of the combination of negotia-
tion, brokering and deployment using SLA-aware extensions implementing
autonomic computing principles for achieving reliable service operations.

Agreement negotiation, brokering and service deployment are closely re-
lated and each of them requires extended capabilities in order to interoperate
smoothly. In the following we focus on illustrating how autonomic manage-
ment operations appear in the components of SSV the architecture. Figure 4.5
shows the management interfaces and connections of the three main compo-
nents: agreement negotiation, brokering and service deployment.

Fig. 4.5. Management Interfaces in the SSV Architecture

We distinguish three types of interfaces in this architecture: the job manage-
ment interface, the negotiation interface and the self-management interface.
Negotiation interfaces are typically used by the monitoring processes of bro-
kers and meta-brokers during the negotiation phases of the service deploy-
ment process. Self-management is needed to re-negotiate established SLAs
during service execution. The negotiation interface implements negotiation
protocols, SLA specification languages, and security standards as stated in
the meta-negotiation document.

Job management interfaces are necessary for the manipulation of services
during execution, for example for the upload of input data, or for the download
of output data, and for starting or canceling job executions. Job management
interfaces are provided by the service infrastructure and are automatically uti-
lized during the service deployment and execution processes. In the following
we focus on the management interface. The Autonomic manager in the SSV
architecture is an abstract component, that specifies how self-management
is carried out. All components of the architecture is notified about the sys-
tem malfunction through appropriate sensors (see Figure 4.5). This interface

100 F. André et al.

specifies operations for sensing changes of the desired state and for reacting
to that changes. Sensors can be activated using some notification approach
(e.g., implemented by the WS-Notification standard). Sensors may subscribe
for specific topic, e.g., violation of the execution time. Based on the measured
values (provided by the monitoring infrastructure) notifications are obtained,
if execution time is violated or seems to be violated very soon. After the ac-
tivation of the control loop, i.e., propagation of the sensed changes to the
appropriate component, the service actuator reacts and invokes proper oper-
ations, e.g., migration of resources.

Based on various malfunction cases, the autonomic manager propagates
the reactions to the Meta negotiatiator, Meta-broker or Automatic Service
Deployer. Before service executions, the user and the provider may enter into
negotiations that determine the definition and measurement of user QoS pa-
rameters, and the rewards and penalties for meeting and violating them re-
spectively. The term negotiation strategy represents the logic used by a part-
ner to decide which provider or consumer satisfies his needs best. A negotiation
protocol represents the exchange of messages during the negotiation process.
Many researchers have proposed different protocols and strategies for SLA ne-
gotiation, however, these not only assume that the parties to the negotiation
understand a common protocol but also assume that they share a common
perception about the goods or services under negotiation. In reality however,
a participant may prefer to negotiate using certain protocols for which it has
developed better strategies, over others. Thus, the parties to a negotiation
may not share the same understanding that is assumed by the earlier publi-
cations in this space. In order to bridge the gap between different negotiation
protocols and scenarios, SSV uses a so-called meta-negotiation architecture.
Meta-negotiation is needed by means of a meta-negotiation document where
participating parties may express: the pre-requisites to be satisfied for a nego-
tiation, for example a specific authentication method required or terms they
want to negotiate on (e.g., time, price, reliability); the negotiation protocols
and document languages for the specification of SLAs that they support; and
conditions for the establishment of an agreement, for example, a required
third-party arbitrator. These documents are published into a searchable reg-
istry through which participants can discover suitable partners for conducting
negotiations.

Management includes brokering-related aspects of the SSV architecture.
Brokers are the basic components that are responsible for finding the re-
quired services with the help of an Automatic Service Deployer (ASD). This
task requires various activities, such as service discovery, matchmaking and
interactions with information systems, service registries, repositories. In this
architecture brokers need to interact with ASDs and use adaptive mechanisms
in order to fulfill agreements. A higher-level component is also responsible for
management in SSV: the Meta-Broker. Meta-brokering means a higher level
service management that utilizes existing resource or service brokers to access
various services. In a more generalized way, it acts as a mediator between users

4 Architectures & Infrastructure 101

or higher level tools (e.g., negotiators or workflowmanagers) and environment-
specific resource managers. The main tasks of this component are: to gather
static and dynamic broker properties (availability, performance, provided and
deployable services, resources, and dynamic QoS properties related to ser-
vice execution), to interact with MN to create agreements for service calls,
and to schedule these service calls to lower level brokers, i.e., match service
descriptions to broker properties (which includes broker provided services).
Finally the service call needs to be forwarded to the selected broker. Three
main tasks need to be done by the Meta-Broker: the first, namely the infor-
mation gathering (which relies on the monitoring infrastructure), the second
one is negotiation handling and the third one is service selection (which re-
lies on the Adaptation infrastructure). They need the following steps: During
the negotiation process the Meta-Broker interacts with the Meta-Negotiator:
it receives a service request with the service description and SLA terms and
looks for a deployed service reachable by some broker that is able to fulfill
the specified terms. If a service is found, the SLA will be accepted and the
and meta-negotiator is notified, otherwise the SLA will be rejected. If the ser-
vice requirements are matched and only the terms cannot be fulfilled, it could
continue the negotiation by modifying the terms and wait for user approval
or further modifications. Autonomic behavior is needed by brokers basically
in two cases: the first one is to survive failures of lower level components,
the second is to regain healthy state after local failures. To overcome these
difficulties brokers in SSV use the help of the ASD component to re-deploy
some services.

Further on we discuss deployment, which is also part of management pro-
cesses, and refer to low-level services as the ones which are used during the
automation of the service deployment process. A low-level service could op-
erate on the service instances residing on the same node where the low-level
service is running. Typical low-level services are including the management,
adaptation, configuration and installation services. Adaptation, configuration
and installation services are offering the functionality of a given deployment
step discussed in the previous paragraphs. Management services however, are
usually composite of the adaptation, configuration, and installation triplet.
As a bare minimum installation services should be available on each node of
the service infrastructure because they let other service instances to be in-
stalled locally. It would be beneficial that all the other previously mentioned
services are available on the nodes, however using the installation service it is
possible to install and activate the other low-level services on-demand. Using
the autonomic manager self-healing services use local adaptation strategies
that are based on the management, configuration and adaptation services.
For example they might use management services to suspend under-utilized
service instances on a node where there is a highly demanded service. As an
exception, installation services are usually not useful for self-healing. Because
installations can further degrade the health state of the already deployed parts
of the service, which is the situation self-healing tries to avoid. In the scope of

102 F. André et al.

deployment local adaptation is a simple extension of self-healing by extend-
ing the decision making policies with conditions about the service instance’s
context. As an example the decision making process should take into consid-
eration the health state of the surrounding service instances that offer the
same functionality. Local adaptation might exist without self-healing services,
however it is useful to have self-healing services on the lowest level. Then one
can build local adaptation on top of the self-healing capabilities. In case the
local adaptation is not using self-healing capable services, then at least the
service instance level monitoring facilities should be implemented before do-
ing local adaptation. Service instances should offer interfaces to share their
health status independently from an information service. The health status
of a service instance does not need to be externally understood, the only re-
quirement that other service instances, which offer the same interface should
understand them. A monitoring infrastructure should be built similarly to the
self-healing monitoring solutions, however the events and adaptation strate-
gies should take into consideration the health state of the connected service
instances. For example the service instance now can make decisions whether
it has to prepare for an increased amount of requests. As a result it should use
its management interfaces to reconfigure itself to make sure it will bear the
future load. In case the local adaptation is offered without self healing capa-
bilities, then the management interfaces will not be available for the service
instance, therefore the locally adaptable services should decide together to
use the automatic service deployment system to deploy a new instance which
can cope with the increased needs and it could also decide to request the
decommission of a underperforming service instance from the group.

Service instances should not build on centralized discovery mechanisms to
find other instances offering the same service interface in the SBA. Service
instances should have embedded discovery mechanisms and they should use
it as a failsafe solution. For example by using peer-to-peer mechanisms the
service instances can decide to locally increase the processing power of a given
service by deploying new instances in the neighborhood without even affecting
the entire SBA. This could be useful when the SBA becomes partitioned or
the service instances further away cannot feasibly serve the locally increased
service requests. The packages should be stored in a repository as part of
the automatic service deployment (ASD) system. This repository is a package
repository, and it is not a single entity in the infrastructure but replicated.
Packages should be replicated among them this is one of the reason why the
automatic service deployment system should be aware of the repositories. In
case of new deployments, frequently used components can be replicated and
also merged when the package retrieval patterns suggest – e.g., two pack-
ages are frequently downloaded together. Packages should also be stored with
their configuration options, because healing strategies are usually simple maps
between different situations and configuration options. Automatic service de-
ployment (ASD) is a higher-level service management concept, which provides
the dynamics to SBAs — e.g., during the SBA’s lifecycle services can appear

4 Architectures & Infrastructure 103

and disappear without the disruption of their overall behavior. To interface
with a broker the ASD should be built on a repository. All the master copies
of all the deployable services should be stored in the repository. In this con-
text the master copy means everything what is needed in order to deploy a
service on a selected site – which we call the virtual appliance (VA). The
virtual appliance could be either defined by an external entity or the ASD
solution should be capable of acquiring it from an already running system.
The repository allows the broker to determine which services are available for
deployment and which are the static ones. Thus the repository would help to
define a schedule to execute a service request taking into consideration those
sites where the service has been deployed and where it could be executed but
has not yet been installed. If the deployed services are not available, it checks
whether any of the latter resources can deliver the service taking into account
the deployment cost. Regarding component interactions, the ASD needs to be
extended with the following in order to communicate with brokers: Requested
service constraints have to be forced independently from what Virtual Ma-
chine Monitor is used. To help the brokers making their decisions about which
site should be used the ASD has to offer deployment cost metrics which can
even be incorporated on higher level SLAs. The ASD might initiate service
deployment/decommission on its own when it can prevent service usage peak-
s/lows, to do so it should be aware of the agreements made on higher levels.

In the management infrastructure of SSV, there is a bidirectional connec-
tion between the ASD and the service brokers. First the service brokers could
instruct ASD to deploy a new service. However, deployments could also oc-
cur independently from the brokers as explained in the following. After these
deployments the ASD has to notify the corresponding service brokers about
the infrastructure changes. This notification is required, because information
systems cache the state of the SBA for scalability. Thus even though a ser-
vice has just been deployed on a new site, the broker will not direct service
requests to the new site. This is especially needed when the deployment was
initiated to avoid an SLA violation.

4.3 Future Challenges

4.3.1 Self-* Properties: Main Research Directions

The most cited cornerstone of the research on self-* properties is probably
the autonomic computing initiative by IBM currently comprising several pa-
pers and research directions. One of their initial works [35] introduces the
most prominent self-* properties comprised by their self-managing idea. Self-
management is integrated into existing or novel complex system to mask the
complexity. The goal and result is a system which becomes manageable again.
According to their vision the following four self properties are required to
gather a self-managing system:

104 F. André et al.

• Self-configuring: This reflects the ability to readjust itself “on-the fly”.
The necessity for configuration emerges usually as a response to changes
by installing, updating, integrating, and composing/decomposing entities.

• Self-healing: A system with this property can discover, diagnose, and react
to its disruptions It can also anticipate potential problems, and accordingly
take proper actions to prevent a failure.

• Self-optimizing: This property tries to maximize resource utilization to
meet end-user needs. Examples of important optimization concerns are
response time, throughput, utilization, and workload.

• Self-protection: A self-protecting implementation can anticipate, detect,
identify, and protect itself from attacks. It has two aspects, namely de-
fending the system against malicious attacks, and anticipating problems
and taking actions to avoid them or to mitigate their effects.

Early research directions that support the research on self-* properties in-
clude fault-tolerant and self-stabilizing systems. Fault-tolerant systems handle
transient and mask permanent failures in order to return to a valid state [52].
Self-stabilizing systems [26] are considered a non fault masking approach for
fault-tolerant systems. These systems have two distinct properties. These are
(i) the system is guaranteed to return to a legal state in a finite amount of
time regardless of interferences (convergence) and (ii) once in legal state it
tries to remain in the same (closure).

With overlapping intentions to the autonomic computing research the re-
search on self-adaptive systems has evolved. According to [56] the four main
self-* properties are the same for both directions. One distinction is the fact
that self-adaptive systems try to state their challenges at a more general level.
Most of their contributions cover higher level functionality such as the au-
tonomous management, control, evaluation, maintenance, and organization of
a whole systems. Autonomic computing also includes this areas, but extends
their research also to sublayers of middleware.

Over the years the list of self-* properties, also known as self-X properties,
has grown substantially [63]. Example are self-governing, self-regulation, self-
correction, self-organization, self-scheduling, self-planning, self-management,
self-administration, self-optimization, self-monitoring, self-adjustment, self-
tuning, self-configuration, self-diagnosis of faults, self-protection, self-healing,
self-recovery, self-learning, self-knowledge (awareness), self-modeling/repre-
sentation, self-evolution, self-assessment of risks, etc. Most of them relate to
each-other such as the original four properties and have been picked up by
researchers to motivate and explain parts of their works.

As an example the research on self-healing properties for systems includes
surveys [37, 54], but also various specific research works and applications.
These include higher layers such as models and systems’ architecture [24,
17], application layer, and large-scale agent-based systems [8, 71, 18], Web
services [39] and their orchestration [7]. In the middle, self-healing ideas can

4 Architectures & Infrastructure 105

be found for middleware [9], and at a lower layer self-healing designs include
operating systems [61], embedded systems, networks, and hardware [38].

4.3.2 Bio-inspired Decentralized Self-Organization in Service
Infrastructures

The self-organization of the configurations of system entities is typically re-
garded as an alternative approach to the construction of self-adaptive sys-
tems [56, pp. 5–23]. The self-organization concept, as known from biologi-
cal, physical and social systems, describes dynamic adaptive processes among
autonomous entities that give rise to structures at the macroscopic system
level [53]. The integrations of these processes is an attractive design approach
to distributed systems in dynamic environments, since the established struc-
tures are continuously maintained and adapted. The systematic handling of
these collective processes is an active research area [53, 59] that enables sys-
tem self-adaptivity by designing the collective, concurrent adjustments of sys-
tem elements. In addition, this development stance inherently supports non-
functional system properties, e.g., the scalability and robustness. Adaptive
features do not depend on dedicated system entities, but emerge from entity
interactions [53].

Challenges of Decentralized Software Management

The embedding of self-organizing process requires two foundational design ef-
forts. First, system entities are required to be locally adaptable, i.e., these are
able to reason about their local configuration and adjust themselves. In [56],
internal and external approaches for the construction of self-adaptive software
components are distinguished. Internal approach refers to intertwining ele-
ment functionality and their adaptation logic. An alternative approach is the
encapsulation of the adaptation logic on external computational elements. Ap-
proaches to the construction of adaptation logic are discussed in Section 4.2.5.

The second foundational design effort is to establish information flows
among system elements. These perceptions are inputs to the localized adap-
tation and follow a locality principle. Adaptation elements are enabled to
perceive changes in their immediate context and perceptions diminish with
the logical or spatial distance between elements and/or the age of the con-
tained information. Dedicated interaction mechanisms [59] are available to the
control of the dynamics of the information transport and the attenuation of
aging information.

A prominent technological foundation for the conception of self-organizing
applications [59] is agent technology [43]. This research area provides tools and
concepts to design applications by concerting the interplay of autonomous,
pro-active actors that are situated in an environment. The local reasoning
inside agents decides the local activities and/or changes of agent configura-
tions. In addition, communication models and infrastructures are available to

106 F. André et al.

decouple agents and realize differing communication modes. These range from
message-based communication to environment-mediated interactions [74].

Self-Organization in Self-Adaptive Application

Besides the recognition as an alternative development approach, the integra-
tion of concerted decentralized coordination techniques is relevant for self-
adaptive software architectures [44], as it enables developers to relate entity
adaptation to high level properties, which are established by multitudes of
system elements. Development efforts benefit from top-down architectural
principles, but it is necessary to plan for the collective effects among sys-
tem entities [42]. Collectives of sub-systems may not per se behave effectively,
when they are arbitrarily combined [55]. Unexpected self-organizing effects can
arise [49], which may diminish performance and/or work against the manage-
ment of superordinates. Consequently, the ability to plan for the dynamics
that arise in managed collectives, e.g., managed system elements and sub-
systems, has been identified as a research challenge [42, 44].

Designing self-organizing dynamics addresses these challenges by provid-
ing a conceptual framework plan for the decentralized concerting of element
activities. If the dynamics of information flows and local adaptation policies
are well matched, the collective interplay of system elements enables the rise of
self-organizing structures. These structures can be used to control the spatial
or temporal correlation of the local adaptations of system entities. Two basic
construction approaches exist. First, system designs can be gradually evolved
to exhibit the intended collective dynamics, e.g., by using evolutionary algo-
rithms or training neural systems [32]. Secondly, decentralized coordination
can be built-in by resembling the dynamics of natural systems. In the follow-
ing, we focus on the latter approach.

Implementing Self-Organization

Architectural guidelines for the construction of self-organizing applications ac-
knowledge the significance of situating inter-operating agents, e.g., [75]. The
elaboration of foundational design principles for these systems (e.g., [12]) pre-
pares the software-technological utilization of self-organizing processes. A key
challenge is the provision of architectural models that separate the applica-
tion logic within agents from the coordination logic, i.e., when and how to
engage in activities that are conceptually related to the coordination. Recent
research explores the utilization of software engineering techniques to realize
this structuring. Examples are the utilizations of software services [60], OSGi
components [25], and aspect-orientation [58].

An attractive development approach is to supplement coordination to ex-
isting applications. Dedicated frameworks (e.g., [64]) provide means to ex-
ternalize prescriptions of coordinating processes as well as run-time environ-
ments to their enactment. This approach allows to equip applications with

4 Architectures & Infrastructure 107

self-organizing features. Consequently, the presence of a self-organizing fea-
ture is not necessarily an initial design objective in a software project, but it
can be supplemented to existing applications when system tests/simulations
reveal the need for decentralized, adaptive features.

In [64], a corresponding reference architecture for the concerting of agent
activities via self-organization is discussed. The operating principle of this ar-
chitecture is illustrated in figure 4.6 (I). On the top-layer, distributed system
elements provide application functionality (Application Layer). The applica-
tion in conceived as a Multiagent System (MAS), thus a subset of system
elements is realized as autonomous, pro-active agents [43]. A subjacent Co-
ordination Layer provides the Mechanisms to enact Coordination Strategies
within the agent population. Information Exchange Mechanisms are encapsu-
lated in Coordination Media, i.e., virtual coordination spaces. Media control
the dynamics of information exchanges among agents and different mecha-
nisms are encapsulated in a generic usage interface. Media are accessed by
Coordination Endpoints, i.e., agent modules that control the engagement and
responses to information exchanges.

These modules (c.f., Figure 4.6, II) separate the activities that are con-
ceptually related to coordination, including the local adaptation of entities,
from the agent model. These activities are enacted transparently as a back-
ground process within agents, as the endpoints are enabled to observe and
manipulate the agent execution (1). Endpoint modules exchange Coordina-
tion Information (2) to inform each other about individual behavior adjust-
ments via Coordination Media. The activities of the endpoints are prescribed
by the coordination process (3). Underlying layers, which are omitted in Fig-
ure 4.6 provide the middleware services and execution environment for the
coordinated MAS.

A recent application case study is the decentralized management of appli-
cation servers. The challenge is to balance the deployments of services and the
utilization of servers with fluctuating user demands. The supplementation of
honey-bee foraging-inspired coordination model is demonstrated in [65] and
in [67] the management of J2EE application servers is discussed. In the lat-
ter case, software agents use the SUN Appserver Management EXtensions11

(AMX) to control the deployment of Web services.

4.3.3 Nature Inspired Models for Service Management

Service management involves the cooperation of a large number of entities to
perform service selection, scheduling, deployment, enactment, coordination,
(re-)configuration and others tasks in such a way that management operations
fulfill their requirements and are optimal according to some criteria. Needless
to say, controlling systems of complexity is far beyond the capabilities of
humans, so automated machinery is necessary for ensuring these management

11 https://glassfish.dev.java.net/javaee5/amx/index.html

https://glassfish.dev.java.net/javaee5/amx/index.html

108 F. André et al.

Fig. 4.6. The Enactment of Externalized, Decentralized Coordination Strategy Def-
initions, Following [66].

functions take place. Furthermore, the complexity of this control is increasing
so that even machines cannot cope with all possible or potential cases based
on predefined conditions and algorithms. This is why service management
systems must exhibit some degree of autonomy, they should be able to adapt
to changes and they should provide some essential self-* properties, such as
self-configuration, self-optimisation, self-healing and self-protection [45] and
possibly advanced self-* properties like self-adjustment, self-adaption, self-
organization or self-recovery, to mention a few.

Metaphors from nature were used as inspiration for tackling complexity
some decades ago when some problems reached a complexity that could not
be tackled with conventional solutions. The most notable problems came from
the distributed computing area, process control and artificial intelligence ap-
plications. A recent survey of nature inspired models and approaches [50]
listed neural networks, ant colonies, cells, swarms, genetic algorithms, and
many of their subtypes and combinations, and targeted application domains
including medical imaging to wireless networks, grid, routing, data mining,
mobile computing, electrical design and many others for solving scheduling,
optimization, diagnosis, adaptation and security configuration.

The motivation for seeking models inspired by nature to computational
problems are twofold:

• In cases where problems such as coordinating large-scale distributed sys-
tems (or even a part of one) can be formalized in a much easier and more
efficient way. Most of our algorithms nowadays are sequential, expressed
in imperative programmimg languages built on the notion of the von Neu-
mann computing model. This has the effect of making the description
of algorithms complex and potentially incomplete. Often nature-inspired
formalisms offer a well-defined mechanism to specify the goal of the com-
putation and not the detailed steps of the computation.

4 Architectures & Infrastructure 109

• In cases where an exact algorithm is difficult to formalize, nature metaphors
may help by providing some heuristic approaches. In these cases certain na-
ture phenomena, e.g., physical processes, chemical reactions, cells, tissues,
various biological interactions, colonies, etc. are modeled and certain pa-
rameters are observed. These nature phenomena follow the laws of nature,
e.g., minimum of energy, equilibrium, lower entropy, equal distribution,
ideal shape, and evolve into some well defined states. By establishing an
adequate relationship between the modeled nature phenomenon and the
process to be controlled, certain parameters can emulate the laws of nature
and converge towards a known state.

A Survey of Nature Inspired Approaches

One of the earliest nature based algorithms was simulated annealing (SA) [46]
where the crystal structure of a cooling metal is simulated and its observed en-
ergy level is tied to certain parameters to be optimized. Simulated annealing is
still a current method, e.g., in mobile networks [70] and routing problems [57].

Particle swarms are on the boundary of physical and biological systems.
They model flowing particles whose position represents a solution and their
velocity changes partly randomly partly depending on their position with
respect to the best position so far [40]. Recent works focus on using Particle
Swarm Optimization to tackle aspects of scheduling, like metaheuristics [2] or
workflow scheduling [51].

Ant colonies realize probabilistic optimization by mimicking ants as find-
ing optimal routes between their colonies and food. Individuals in the colony
are extremely simple yet they are organized in a structured way that enable to
accomplish complex tasks. Stigmergy (self-coordination) is achieved by mark-
ing their ways with pheromone trails and its strength signals other ants to
optimize their ways [29]. The behavior of ant colonies provides models of dis-
tributed organization, optimization and routing, most notably able to solve
the traveling salesman problem known to be NP-hard [28].

Artificial immune systems (AIS) exhibit self-organizing properties. The
biological immunity is a reaction to foreign intrusions whereas the immunity
system is a distributed adaptive system with decentralized control and us-
ing feature extraction, signaling, learning, associative retrieval. Learning and
recalling self and foreign entities is adaptive so that the reaction speed and
accuracy improves. Intrusion detection, anomaly and misbehavior characteri-
zation of systems are obvious candidates for applying AIS [23]. Since immune
systems are especially good at classifying certain objects, application scenarios
involve various image analysis, fault detection and other recognition tasks [22].

Genetic algorithms (GA) resemble natural evolution. Chromosomes, (bi-
nary strings) representing certain solutions of an optimization or search prob-
lem, reproduce and by crossover, mutation and selection better chromosomes
(solutions) remain alive in each turn. Genetic algorithms are able to evolve
complex structures. The most common application field of genetic algorithms
is multiparameter optimization [33].

110 F. André et al.

Complex biological symbiotic systems emulate the collective actions and
interactions of multiple living entities. Such systems are aimed at a high level
of self-organization by defining various potential behavior like reproduction,
death, migration and attributes like health and energy. For instance, social
insect behavior inspired methods for designing distributed control and opti-
mization algorithms that are being applied successfully to a variety of scientific
and engineering problems. Such techniques tend to exhibit a high degree of
flexibility and robustness in a dynamic environment [10]. An example for such
symbiotic system is SymbioticSphere [14] [16].

Different aspects of chemical reactions can be taken from precise simu-
lation of interacting atoms to the abstract mathematical notion of chemical
modeling. Their notion is representing the computation as reactions, i.e., data
and procedures are molecules that react and yield new molecules. The cen-
tral idea of chemical system is adaptation to unpredictable situations as they
always take place according to actual conditions.

Outlook: Service Management and Nature Metaphors

It is anticipated that future service infrastructures will be more autonomous
and possess self-* capabilities. Both the utilization of these infrastructures
and their internal behavior involve many issues of optimization, coordination,
adaptation that, according to the discussion and the survey above, nature
inspired approaches may help to tackle. For instance, the rationale for (self-
)adaptive service selection and composition is summarized as: the evolving
behavior of a service (mobility, quality, faults, etc.), uninformed evolution
of external services, inadequacy of pre-deployment information [48], extreme
dynamicity, unreliability, and large scale [4], and a highly complex task, al-
ready beyond the human capability to deal with [27]. Also, it has been argued
and generally accepted, that such self-adaptable, evolvable and context-aware
systems require innovative and fundamentally novel approaches that take in-
spiration from nature. These approaches consider devices, data, and services
uniformly as entities interacting in the same way as individuals of an ecosys-
tem [73] and can effectively organize large numbers of unreliable and dynami-
cally changing components (cells, molecules, individuals, etc.) into robust and
adaptive structures [4].

Applying nature inspired models to service oriented systems is a quite
new research area. Viroli et al. [73] designed a conceptual architecture for
clarifying the concepts expressed and framing the several possible nature-
inspired metaphors that could be adopted. They follow a biochemical ap-
proach where above a common environmental substrate (defining the basic
“laws of nature”), individuals of different kinds interact, compete, and com-
bine with each other, so as to serve their own individual needs as well as
the sustainability and the evolvability of the overall service ecosystem. Ding
et al. [27], Sun et al. [68] take the neuroendocrine-immune (NEI) system as
a metaphor and create a decentralized, evolutionary, scalable, and adaptive

4 Architectures & Infrastructure 111

system for Web service composition and management. Here, Web services are
represented by bio-entities that are able to obtain the desirable characteristics
by self-organizing, cooperating, and composing. Banâtre et al. [5], [6] use the
Higher Order Chemical Language (HOCL) to model and express various is-
sues related to services and service invocations. HOCL tries to grab the notion
of chemical reactions as a computing paradigm. The aim is to realize a system
that is self-organizing, i.e., able to react autonomously to changes in the envi-
ronment. Csorba et al. tackle the problem of service deployment in a cloud, a
notable example of service infrastructure management task. They investigate
how virtual machine images can be mapped onto physical machines in a self-
organizing way so that the reconfiguration improves the system performance.
They apply a variation of ant colony optimization to achieve this goal [20], and
an earlier version in [21]. The same problem of efficient service deployment
has been addressed by swarm intelligence heuristics (ant colony optimization)
where services are provided by collaborating components [19]. Canfora et al.
apply genetic algorithms to assist QoS aware service composition [13]. The
composition takes into consideration non-functional features, cost and time
constraints and is traced back to an optimization problem where application
of genetic algorithms is widespread. An adaptation framework for mobile ser-
vices based on genetic algorithm is proposed by Vanrompay et al. [72]. Services
must adapt (composition and deployment) to changes in the environment in
a self-organizing and scalable way, the use of genetic algorithms provides an
appropriate heuristic solution. Another scenario for service composition based
on ant colony optimization is presented in [41]. They take into consideration
composite multimedia services where quality issues are obviously strict. En-
suring such quality criteria is especially challenging due to the continuous
flow, synchronization issues, dynamic characteristics and rich semantics.

The survey of existing literature and current trends shows nature-inspired
solutions are good candidates for some challenges in (autonomous) ser-
vice infrastructure management, like self-configuration, self-optimization, self-
healing, self-protection and others. Scheduling approaches, for instance, based
on nature metaphors are being investigated in several scenarios as discussed
above, e.g., scheduling workflow applications in clouds [51] and Grids [1] or
artificial immune-system based scheduling in multiprocessor systems [69]. It is
anticipated these solutions will find their way into service based applications,
where scheduling is a crucial issue in service composition. Data mining tech-
niques are well-supported by nature based heuristics, e.g., artificial immune
systems [34] and they will play an important role in future service discovery
mechanisms. Many approaches address the issue of (re)configuration either as
a means of adaptation, optimization or protection [47] [15]. The vast majority
of nature inspired approaches focusing on optimizations, e.g., particle swarm
optimization [11], ant colony optimization [30] and simulated annealing. These
are likely to be adopted by any aspect of services infrastructures in the future.

112 F. André et al.

4.4 Chapter Summary

This chapter has provided a review of service infrastructures for adaptation,
monitoring and management of services. Providing these capabilities is essen-
tial in meeting several of the S-Cube research challenges described in Chap-
ter 1, such as proactive monitoring and adaptation and allowing end-to-end
quality provision for service-based systems. Future research challenges in this
area have been presented that seek to achieve the optimal self-organization of
services through self-configuration, healing, optimization and protection.

References

1. Abraham, A., Liu, H., Grosan, C., Xhafa, F.: Nature inspired meta-heuristics
for grid scheduling: Single and multi-objective optimization approaches. In:
Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed
Computing Environments, pp. 247–272. Springer, Heidelberg (2008)

2. Abraham, A., Liu, H., Zhao, M.: Particle swarm scheduling for work-flow appli-
cations in distributed computing environments. In: Metaheuristics for Schedul-
ing in Industrial and Manufacturing Applications, pp. 327–342 (2008)

3. Artsy, Y., Finkel, R.: Designing a process migration facility: the charlotte ex-
perience. Computer 22(9), 47–56 (1989)

4. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gam-
bardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.,
Urnes, T.: Design patterns from biology for distributed computing. ACM
Transactions on Autonomous and Adaptive Systems 1(1), 26–66 (2006)

5. Banâtre, J.-P., Priol, T.: Chemical programming of future service-oriented ar-
chitectures. JSW 4(7), 738–746 (2009)

6. Banâtre, J.-P., Priol, T., Radenac, Y.: Service orchestration using the chemi-
cal metaphor. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008.
LNCS, vol. 5287, pp. 79–89. Springer, Heidelberg (2008)

7. Baresi, L., Guinea, S., Pasquale, L.: Self-healing bpel processes with dynamo
and the jboss rule engine. In: ESSPE, pp. 11–20 (2007)

8. Bigus, J.P., Schlosnagle, D.A., Pilgrim III., J.R., Mills, W.N., Diao, Y.: Able: A
toolkit for building multiagent autonomic systems. IBM Systems Journal 41(3),
350–371 (2002)

9. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R.,
Parlavantzas, N.: Reflection, self-awareness and self-healing in openorb. In:
WOSS, pp. 9–14 (2002)

10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from
social insect behaviour. Nature 406, 39–42 (2000)

11. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Locating multiple optima using
particle swarm optimization. Applied Mathematics and Computation 189(2),
1859–1883 (2007)

12. Brueckner, S., Czap, H.: Organization, self-organization, autonomy and emer-
gence: Status and challenges. International Transactions on Systems Science
and Applications 2(1), 1–9 (2006)

4 Architectures & Infrastructure 113

13. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-
aware service composition based on genetic algorithms. In: GECCO ’05: Pro-
ceedings of the 2005 conference on Genetic and evolutionary computation, New
York, NY, USA, pp. 1069–1075. ACM Press (2005)

14. Champrasert, P., Lee, C., Suzuki, J.: Symbioticsphere: Towards an autonomic
grid network system. In: CLUSTER, pp. 1–2 (2005)

15. Champrasert, P., Suzuki, J.: A biologically-inspired autonomic architecture for
self-healing data centers. In: COMPSAC (1), pp. 103–112 (2006)

16. Champrasert, P., Suzuki, J.: Symbioticsphere: A biologically-inspired auto-
nomic architecture for self-managing network systems. In: COMPSAC (2), pp.
350–352 (2006)

17. Cheng, S.-W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitnagel, B., Steenkiste,
P.: Using architectural style as a basis for system self-repair. In: WICSA, pp.
45–59 (2002)

18. Corsava, S., Getov, V.: Intelligent architecture for automatic resource alloca-
tion in computer clusters. In: IPDPS, p. 201.1 (2003)

19. Csorba, M.J., Heegaard, P.E.: Swarm intelligence heuristics for component
deployment. In: EUNICE. LNCS, vol. 6164, pp. 51–64. Springer, Heidelberg
(2010)

20. Csorba, M.J., Meling, H., Heegaard, P.E.: Ant system for service deployment
in private and public clouds. In: BADS ’10: Proceeding of the 2nd workshop
on Bio-inspired algorithms for distributed systems, New York, NY, USA, pp.
19–28. ACM (2010)

21. Csorba, M.J., Meling, H., Heegaard, P.E., Herrmann, P.: Foraging for better
deployment of replicated service components. In: DAIS ’09: Proceedings of
the 9th IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems. LNCS, vol. 5523, pp. 87–101. Springer, Heidelberg
(2009)

22. Dasgupta, D.: Advances in artificial immune systems. IEEE Computational
Intelligence Magazine, 40–49 (Nov. 2006)

23. Dasgupta, D., González, F.A.: An immunity-based technique to characterize
intrusions in computer networks. IEEE Trans. Evolutionary Computation 6(3),
281–291 (2002)

24. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based
self-healing systems. In: WOSS, pp. 21–26 (2002)

25. Devescovi, D., Di Nitto, E., Dubois, D., Mirandola, R.: Self-organization al-
gorithms for autonomic systems in the selflet approach. In: Autonomics ’07:
Proceedings of the 1st international conference on Autonomic computing and
communication systems, pp. 1–10, ICST, Brussels, Belgium, Belgium, 2007.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering) (2007)

26. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Com-
mun. ACM 17(11), 643–644 (1974)

27. Ding, Y., Sun, H., Hao, K.: A bio-inspired emergent system for intelligent web
service composition and management. Knowledge-Based Systems 20, 457–465
(2007)

28. Dorigo, M.: Ant algorithms solve difficult optimization problems. In: Kelemen,
J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 11–22. Springer,
Heidelberg (2001)

114 F. André et al.

29. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Fu-
ture Gener. Comput. Syst. 16(9), 851–871 (2000)

30. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete opti-
mization. Artificial Life 5(2), 137–172 (1999)

31. Douglis, F., Ousterhout, J.: Transparent process migration: Design alternatives
and the sprite implementation. Software - Practice and Experience 21, 757–785
(1991)

32. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence Theories, Meth-
ods, and Technologies. MIT Press, Cambridge (Sept. 2008)

33. Forrest, S.: Genetic algorithms. ACM Comput. Surv. 28(1), 77–80 (1996)
34. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune sys-

tems for data mining. IEEE Trans. Evolutionary Computation 11(4), 521–540
(2007)

35. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Syst. J. 42(1), 5–18 (2003)

36. Ghallab, M., Ecole Nationale, Constructions Aeronautiques, Isi, C.K., Pen-
berthy, S., Smith, D.E., Sun, Y., Weld, D.: Pddl - the planning domain defini-
tion language. Technical report (1998)

37. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems -
survey and synthesis. Decission Support Systems 42(4), 2164–2185 (2007)

38. Glass, M., Lukasiewycz, M., Reimann, F., Haubelt, C.D., Teich, J.: Symbolic
reliability analysis of self-healing networked embedded systems. In: Harrison,
M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 139–152.
Springer, Heidelberg (2008)

39. Halima, R.B., Drira, K., Jmaiel, M.: A QoS-Oriented Reconfigurable Middle-
ware for Self-Healing Web Services. In: ICWS, pp. 104–111 (2008)

40. Hinchey, M.G., Sterritt, R., Rouff, C.A.: Swarms and swarm intelligence. IEEE
Computer 40(4), 111–113 (2007)

41. Hossain, M.S., Alamri, A., El-Saddik, A.: A biologically inspired framework
for multimedia service management in a ubiquitous environment. Concurrency
and Computation: Practice and Experience 21(11), 1450–1466 (2009)

42. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees,
models, and applications. ACM Comput. Surv. 40(3), 1–28 (2008)

43. Jennings, N.R.: Building complex, distributed systems: the case for an agent-
based approach. Comms. of the ACM 44(4), 35–41 (2001)

44. Kephart, J.O.: Research challenges of autonomic computing. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pp.
15–22. ACM Press, New York (2005)

45. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

46. Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simmulated an-
nealing. Science 220(4598), 671–680 (1983)

47. Lee, C., Suzuki, J.: An immunologically-inspired autonomic framework for self-
organizing and evolvable network applications. TAAS 4(4) (2009)

48. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection approach to ser-
vice composition. In: Proceedings of the IEEE International Conference onWeb
Services (ICWS 2008), IEEE Computer Society Press, Los Alamitos (2008)

49. Mogul, J.C.: Emergent (mis)behavior vs. complex software systems. Technical
Report HPL-2006-2, HP Laboratories Palo Alto (2005)

4 Architectures & Infrastructure 115

50. Olariu, S., Zomaya, A.Y. (eds.): Handbook of Bioinspired Algorithms and Ap-
plications. CRC Press, Boca Raton (2005)

51. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing envi-
ronments. In: AINA, pp. 400–407 (2010)

52. Pierce, W.H.: Failure-tolerant Computer Design. Academic Press, London
(1965)

53. Prokopenko, M.: Design vs. Self-organization. In: Prokopenko, M. (ed.) Ad-
vances in Applied Self-organizing Systems, pp. 3–17. Springer, London (2008)

54. Psaier, H., Dustdar, S.: A survey on self-healing systems - approaches and
systems. Computing 87(1) (2010)

55. Saffre, F., Halloy, J., Shackleton, M., Deneubourg, J.L.: Self-organized service
orchestration through collective differentiation. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 36(6), 1237–1246 (2006)

56. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

57. Salleh, S., Sanugi, B., Jamaluddin, H., Olariu, S., Zomaya, A.Y.: Enhanced
simulated annealing technique for the single-row routing problem. The Journal
of Supercomputing 21(3), 285–302 (2002)

58. Seiter, L.M., Palmer, D.W., Kirschenbaum, M.: An aspect-oriented approach
for modeling self-organizing emergent structures. In: SELMAS ’06: Proceed-
ings of the 2006 international workshop on Software engineering for large-scale
multi-agent systems, pp. 59–66. ACM Press, New York (2006)

59. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organisation and
emergence in mas: An overview. Informatica 30, 45–54 (2006)

60. Di Marzo Serugendo, G., Fitzgerald, J.: Designing and controlling trustworthy
self-organising systems. Perada Magazine (2009)

61. Shapiro, M.W.: Self-healing in modern operating systems. ACM Queue 2(9),
66–75 (2005)

62. Stellner, G.: Cocheck: checkpointing and process migration for mpi. In: The
10th International Parallel Processing Symposium, 1996, Proceedings of IPPS
’96, Apr. 1996, pp. 526–531 (1996)

63. Sterritt, R.: Autonomic computing. Innovations in Systems and Software En-
gineering 1(1), 79–88 (2005)

64. Sudeikat, J., Braubach, L., Pokahr, A., Renz, W., Lamersdorf, W.: Systemat-
ically engineering self-organizing systems: The sodekovs approach. Electronic
Communications of the EASST 17 (2009)

65. Sudeikat, J., Renz, W.: MASDynamics: Toward systemic modeling of decen-
tralized agent coordination. In: David, K., Geihs, K. (eds.) Kommunikation
in Verteilten Systemen. Informatik aktuell, pp. 79–90. Springer, Heidelberg
(2009)

66. Sudeikat, J., Renz, W.: Programming adaptivity by complementing agent func-
tion with agent coordination: A systemic programming model and development
methodology integration. Communications of SIWN 7, 91–102 (2009)

67. Sudeikat, J., Renz, W.: Shoaling glassfishes: Enabling decentralized web ser-
vice management. In: 3rd International Conference in Sef-Adaptive and Self-
Organizing Systems, pp. 291–292 (short paper). IEEE Computer Society Press,
Los Alamitos (2009)

116 F. André et al.

68. Sun, H., Ding, Y.: A scalable method of e-service workflow emergence based on
the bio-network. In: Fourth International Conference on Natural Computation
(2008)

69. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor scheduling and
rescheduling with use of cellular automata and artificial immune system sup-
port. IEEE Trans. Parallel Distrib. Syst. 17(3), 253–262 (2006)

70. Taheri, J., Zomaya, A.Y.: A simulated annealing approach for mobile location
management. Computer Communications 30(4), 714–730 (2007)

71. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I.,
Kephart, J.O., White, S.R.: A multi-agent systems approach to autonomic
computing. In: AAMAS, pp. 464–471 (2004)

72. Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization
of service composition and deployment. In: SIPE ’08: Proceedings of the 3rd
international workshop on Services integration in pervasive environments, New
York, NY, pp. 13–18. ACM (2008)

73. Viroli, M., Zambonelli, F.: A biochemical approach to adaptive service ecosys-
tems. Inform. Sci. (2009)

74. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastruc-
tures for the environment of multiagent systems. Autonomous Agents and
Multi-Agent Systems 14(1), 49–60 (2007)

75. Weyns, D., Holvoet, T.: An architectural strategy for self-adapting systems.
In: SEAMS ’07: Proceedings of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, Washington, DC, USA,
IEEE Computer Society (2007)

5

Adaptation of Service-Based Systems

Raman Kazhamiakin1, Salima Benbernou2, Luciano Baresi3,
Pierluigi Plebani3, Maike Uhlig4, and Olivier Barais5

1 Fondazione Bruno Kessler (FBK), Trento, Italy
2 Université Claude Bernard Lyon 1, France
3 Politecnico di Milano, Italy
4 Universität Duisburg-Essen, Germany
5 Institut National de Recherche en Informatique et Automatique (INRIA), France

Chapter Overview. The advances in modern technology development and future
technology changes dictate new challenges and requirements to the engineering and
provision of services and service-based systems (SBS). These services and systems
should become drastically more flexible; they should be able to operate and evolve
in highly dynamic environments and to adequately react to various changes in these
environments. In these settings, adaptability becomes a key feature of services as it
provides a way for an application to continuously change itself in order to satisfy
new contextual requirements.

Events and conditions triggering application adaptation include: changes in the
infrastructural layer of the application due to quality of service changes; changes
of the (hybrid) application context and location; changes of the user types, pref-
erences, and constraints that require application customization and personalization
as a means to adapt the application behavior to a particular user; changes in the
functionalities provided by the component services that requires modifying the way
in which services are composed and coordinated; and changes in the way the service
is being used and managed by its consumers, which in turn leads to changes in the
application requirements.

5.1 Introduction

In the following we will exploit the vision of the adaptation and monitoring
of services and service-based system continuously developed within the scope
of the S-Cube project. At the high level of abstraction, the adaptation and
monitoring framework can be described by the concepts represented in Figure
5.1. This figure identifies Monitoring Mechanisms, Monitored Events, Adap-
tation Requirements, Adaptation Strategies, Adaptation Mechanisms, and the
relations between these concepts, as the key elements of the adaptation and
monitoring framework. It is important to remark that the significance of this
conceptual framework is not in the figure itself – it describes a standard sens-
ing/planning/actuating control chain. The significance is in the very broad

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 117–156, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

118 R. Kazhamiakin et al.

Monitoring
mechanisms

Adaptation
mechanisms

Monitored
events

Adaptation
requirements

Adaptation
strategies

detect

trigger

achieve

realize

Fig. 5.1. Adaptation and Monitoring

meaning that we give to the different concepts, and to the capability of the
chain to allow for a very general integration of a wide range of mechanisms,
techniques and methodologies for monitoring and adaptation.

• With Monitoring Mechanism we mean any mechanism that can be used
to check whether the actual situation corresponds to the expected one.
The meaning we give to the monitoring mechanisms is very broad; in this
way, we refer not only to “classical” run-time monitoring facilities, but also
to techniques such as post-mortem log analysis techniques, data mining,
online and offline testing and even verification/validation, etc. Realization
of monitoring mechanisms is provided by the corresponding monitoring
engines built on top of the monitoring infrastructures.

• Monitoringmechanisms are used to detectMonitored Events, i.e., the events
that deliver the relevant information about the application execution, evo-
lution, and context. These events represent the fact that there is critical dif-
ference with respect to the expected SBS state, functionality, and environ-
ment. The monitored events result from observing monitoring properties,
derived from the adaptation requirements as a specification of the expected
state and functionality of the SBS and its environment. The notion of mon-
itored events may be very broad ranging from basic failures, deviation of
QoS parameters, to complex properties over many executions of SBS, cer-
tain trends in the SBS environment, changes in business rules, etc.

• Monitored events in turn trigger Adaptation Requirements, which repre-
sent the necessity to change the underlying service or SBS in order to
remove the difference between the actual (or predicted) situation and the
expected one. They may include dependability and functional correctness
requirements, optimality, interoperability, usability, etc.

• In order to satisfy adaptation requirements, it is necessary to define Adap-
tation Strategies, which define the possible ways to achieve those require-
ments given the current situation. Note that it is possible to have a set
of different adaptation strategies applicable in the same situation. In this
case the process requires certain decision mechanisms that operate au-
tonomously or involve humans.

5 Adaptation of Service-Based Systems 119

• Finally, the adaptation strategies are realized by the Adaptation Mecha-
nisms – the techniques and facilities provided by the underlying SBS or by
the operation and management platform in different functional layers that
enable corresponding strategies. The adaptation may be also done “man-
ually”, i.e., by re-designing/re-engineering the application. In this case we
should speak about application evolution as the permanent service or SBS
changes are required that should be done via SBS re-design.

An important aspect of these conceptual elements is the necessity to define
and implement the corresponding decision mechanisms, which correspond to
the four arrows in the picture in Figure 5.1 and coordinate the work of the
framework and realize the relations among them. In particular,

• Monitoring properties allow us to analyze the variety of SBS information
observed during its execution and evolution, and to extract and report
those events and situations that are critical from the point of view of the
monitoring.

• Adaptation decision mechanisms relate the monitoring activities with the
adaptation activities: they regulate when a particular monitored event
corresponds to a situation in which the system should be changed.

• Strategy decision mechanisms define the way a particular adaptation strat-
egy is chosen based on the adaptation needs, SBS state, history of previous
adaptations, etc. In particular, these mechanisms will provide a way to re-
solve conflicts among different adaptation requirements.

• Realization mechanisms define how a particular strategy is realized, when
there is a wide range of available options (e.g., many services to bind in
place of failed one).

Note that the realization of these decision mechanisms may be done auto-
matically or may require user involvement. In the latter case we speak about
the human-in-the-loop adaptation: the users (with different roles) may de-
cide whether the adaptation is needed, which strategy to choose, and even
participate to its realization (e.g., manual ad-hoc service adaptation through
re-design).

5.1.1 Aims and Focus of the Chapter

While the problem of monitoring and adaptation of various types of soft-
ware system has gained a lot of interest in the recent years, the results and
directions are still insufficient. First, the proposed approaches are very frag-
mented; they address only specific problems, particular application domains,
and particular types of applications and systems; the monitoring solutions
are often isolated from the adaptation needs and approaches. Second, most of
the approaches dealing with adaptation address the problem reactively: the
solutions aim to define a way to recovery from the problem when it is already
happened rather than to prevent it to happen. This is, indeed, insufficient

120 R. Kazhamiakin et al.

in certain applications and domains. Third, as the applications, their users,
and the settings where they operate become more and more dynamic, open,
and unpredictable, the role of the application context (being a physical, busi-
ness, or user-specific) becomes much more critical. In these settings also very
relevant is the role and participation of various types of users in the moni-
toring and adaptation process. The service-based systems are often designed
to target final users, and, therefore, should be able to collect and properly
exploit the information about the user in order to customize and personalize
those applications as well as to let the users participate to the corresponding
activities.

All these issues are often omitted by the state-of-the-art solutions both for
monitoring and adaptation. In terms of the cross-cutting research challenges
represented in Chapter 1 and constituting the core of the S-Cube project
research agenda, the most relevant problems that the novel research results
should address are

• Cross-layer and proactive monitoring and adaptation, as the different
adaptation aspects can not be considered in isolation along the SBS life-
cycle or across different functional SBS layers as it happens in most of the
state of art approaches. Moreover, as we will see in the following sections,
the existing adaptation approaches are mostly reactive; they aim to “re-
cover” from the problem or to adapt to the change when it has already take
place. In many settings, such a behavior may not be possible as the service
invocations, process activities and executions go beyond simple software
call and have certain, sometimes very critical, business value that is not
always possible to revert. Proactive adaptation is the key mechanism in
these settings.

• considering contextual information for service-based systems, since the con-
text, and more specifically the user context, often becomes a key driver of
the adaptation activities in the modern Internet of Service applications.

To understand better these phenomena, in this survey we will study and review
the relevant monitoring and adaptation approaches. We will provide a com-
prehensive classification of the corresponding concepts, principles, techniques,
and methodologies; we will identify the overlaps between various research ac-
tivities and reveal the gaps and problems that the research community should
address in this area. We remark that the state of art survey activities presented
in this chapter as well as the adaptation taxonomy have been elaborated and
developed in the scope of the S-Cube project.

The structure of the survey is organized as follows. Section 5.2 will provide
a classification of the principles and concepts related to the problem of the
service adaptation. Section 5.3 will provide a review of the existing works
in the area. Finally, Section 5.3.3 identifies gaps and overlaps in the current
research contributions on the basis of the results of the survey. Finally, Section
5.4 makes a review of the adaptation approaches in other types of information
systems.

5 Adaptation of Service-Based Systems 121

5.2 Adaptation Taxonomy

In order to provide a holistic, comprehensive, and integrated vision on the
monitoring and adaptation across various research disciplines, in we will try
to present a generalized and universal yet practical definition of the adapta-
tion problem. We will present a generic conceptual model for the adaptation.
Based on the conceptual model, this section will provide a classification of
the adaptation concepts structured such as to answer the following questions
about the corresponding concepts: “Why?”, “What?” and “How?”. In partic-
ular,

• the “Why?” dimension provides a description of the motivation for moni-
toring respectively adaptation;

• the “What?” dimension is used to classify the subject of monitoring re-
spectively adaptation and the way it is described;

• the “How?” dimension describes the way the monitoring approach respec-
tively adaptation approach is delivered.

5.2.1 Conceptual Model

Adaptation can be defined as a process of modifying Service-Based Applica-
tion in order to satisfy new requirements and to fit new situations dictated
by the environment on the basis of Adaptation Strategies designed by the
system integrator. An Adaptable Service-Based Application is a service-based
application augmented with the corresponding control loop that monitors and
modifies itself on the basis of these strategies. Notice that adaptations can be
performed either because monitoring has revealed a problem or because the
application identifies possible optimizations or because its execution context
has changed. The context here may be defined by the set of services available
to compose SBSs, the computational resources available, the parameters and
protocols being in place, user preferences, environment characteristics.

High-level conceptual model of the adaptation concepts is represented in
Figure 5.2.

Adaptation Adaptation Subject

Adaptation Actor

Adaptation Requestor

requires

Adaptation Designer Adaptation InitiatorAdaptation Executor

Adaptation
Requirements

Adaptation Strategy

performs

triggersdefines

modifiesachieves

designs

Adaptation Mechanism

Realization Mechanism

realize

Decision Mechanism

Fig. 5.2. High-Level Adaptation Model

122 R. Kazhamiakin et al.

The Adaptation Requirements identify the aspects of the SBS model that
are subject to change, and what the expected outcome of the adaptation
process is. Adaptation Strategies are the ways through which the adaptation
requirements are satisfied. Examples of adaptation strategies are re-configure
(i.e., modify the current configuration parameters of the SBS), substitute (re-
place one constituent service with another), compensate (remove the negative
effect of the previously executed action by performing new actions), re-plan
(modify the structure and the model of the application, which is more suitable
for the current situation), re-compose (modify the way the services are com-
posed), and re-negotiate (modify the service-level agreement with the service
provider).

Adaptation Strategies are realized using the available Adaptation Mecha-
nisms. These mechanisms include the tools for performing actual adaptation
actions, i.e., Realization Mechanisms, and the tools for making important de-
cisions about the adaptation, i.e., Decision Mechanisms. The latter include
the mechanisms for selecting adaptation strategies among possible alternatives
given the current situations, histories of previous adaptations, user decisions
or preferences, etc.

The adaptation procedure may modify various elements of the SBS, i.e.,
may have different Adaptation Subjects. The adaptation process involves dif-
ferent kinds of Adaptation Actors covering various roles with which the users
may be involved in the process. When these roles are performed by the corre-
sponding software components, we speak about self-adaptation approaches.

Below we will provide a classification of the adaptation problem and iden-
tified adaptatio concepts.

5.2.2 Adaptation Taxonomy

In this chapter, we describe a graphical representation of the adaptation tax-
onomy (depicted in Figure 5.3) that distinguishes approaches by Why, Who,
What, and How software adaptation takes place.

Taxonomy Dimension: Why?

The first dimension of our taxonomy define the usage of the adaptation pro-
cess, i.e., why adaptation is needed. Indeed, the “why” dimension provides a
description of the motivation for the adaptation.

Depending on the goal of the adaptation process, one can distinguish be-
tween

• Perfective Adaptation, which aims to improve the application even it runs
correctly, e.g., to optimize its quality characteristics.

• Corrective Adaptation, which aims to remove the faulty behavior of a SBS
by replacing it by a new version that provides the same functionality.
Various faults can occur relatively often and unexpectedly in distributed

5 Adaptation of Service-Based Systems 123

Adaptation

taxonomy

Usage of

adaptation

Subject of

adaptation

Adaptation

aspect

Adaptation

scope

Adaptation

strategy

Adaptation

implementation

Temporary

Permanent

Dynamicity of

decision

Scope of effect

Functional layer

Timing

Level of autonomy

Why?

What?

How?

Automation of

decision

Notation

Specification

Actions

Location

Methodology

Direction

Distribution

Invasiveness

Realization

mechanisms

Adaptation

characteristics

Corrective Adaptation

Adaptive Adaptation

Perfective Adaptation

Extending Adaptation

Preventive Adaptation

Context-aware Adaptation

Mediation

Customization/Personalization

SBA Instance

SBA Context

SBA Mechanisms

SBA Class

Decision

Mechanisms

Fig. 5.3. Adaptation Taxonomy

systems. It is therefore necessary to handle failures reported during execu-
tion of the SBS in order to recover from undesired behavior, or to change
the application logic in order to remove the possible fault.

• Adaptive Adaptation, which modifies the application in response to changes
affecting its environment. The need for this kind of adaptation in SBAs is
dictated by (i) the necessity to accommodate to the changes in the SBS
context (execution context, user context, or physical context); (ii) the need
to ensure interoperability between interacting parties by providing appro-
priate adapters or mediators; (iii) the necessity to customize or personalize
the application according to the needs and requirements of particular user
or customers.

• Preventive Adaptation, which aims to prevent future faults or extra-
functional issues before they occur.

124 R. Kazhamiakin et al.

• Extending Adaptation, which extends the application by adding new
needed functionalities.

These classes may be further decomposed given particular problems in mind.
For example, adaptive class may be divised into context-aware adaptation,
mediation, and customization/personalization.

Taxonomy Dimension: What?

The “what” dimension is used to classify the adaptation target and the ex-
pected result. In this way, we consider the following elements of the taxonomy:
Subject of Adaptation, Adaptation Aspect, and Adaptation Scope.

With the Subject of Adaptation we mean an entity that should be modified
by the adaptation process. At the highest level of abstraction we distinguish

• SBS Instance, i.e., business process instance, an application customized to
a particular user according to her user profile, a particular configuration
of a service;

• SBS Class, which defines the whole application model, including its busi-
ness process model, business requirements and KPIs;

• SBS Context, which may encompass various aspects, i.e., user/physical/-
computing environment in which the application is performed;

• Adaptation and Monitoring Mechanisms themselves, changing the way the
system is changed and managed.

Finer granularity may be thought of, such as services, compositions, rules and
policies, SLAs, etc.

With the Adaptation Aspect we refer to a particular concern of the adap-
tation process: different dimensions of the SBS quality model (e.g., security,
dependability, usability), functionality, HCI aspects, etc.

With the Adaptation Scope we refer to the effect of the adaptation process,
i.e., whether it is expected to be temporary (i.e., hold only to a particular SBS
instance or in a particular context) or permanent adaptation (i.e., modify
the whole application model that will be applicable to other instances and
situations).

Taxonomy Dimension: How?

The third dimension of our taxonomy is “how” adaptation can be achieved and
implemented, that is, what the specific strategies are exploited and what the
specific mechanisms are used to implement the,. This dimension includes the
characteristics of the relations established between the monitoring artifacts
and the changes of SBS addressed by the approaches; e.g., models, types,
granularity,etc.

Adaptation Strategies are the means through which adaptation is accom-
plished. Examples of adaptation strategies are re-configuration, re-binding,

5 Adaptation of Service-Based Systems 125

re-execution, re-planning, etc. Adaptation Strategies define the possible ways
to achieve Adaptation Requirements and Objectives given the available Adap-
tation Mechanisms. They may be classified according to a set of character-
istics, including the location of changes, the used methodology, and the way
the strategy is specified.

Location determines the placement of the changes in the SBS architecture
and environment:

• Scope of adaptation effect (“horizontal” placement) says whether the
changes are local (shallow), i.e., the small-scale incremental changes local-
ized to a service or are restricted to the clients of that service, or whether
they are global (deep), i.e., large-scale transformational changes cascading
beyond the clients of a service possibly to entire value-chain (end-to-end
processes) - clients of affected services e.g., outsourcers or suppliers.

• Affected Functional SBS Layer (“vertical” placement), where one can dis-
tinguish between infrastructural changes that affect service signatures,
protocols, and the run-time execution environment; changes at service
composition level, when the behavioral protocols and/or operational se-
mantics of SBS are affected; level of business process management, when
the change involve business rules and requirements, organizational mod-
els, clients, and even entire value chain. Finally, cross-layer changes affect
different functional layers.

Adaptation Methodology characterizes the time, distribution, and direction of
the adaptation.

• Timing defines the moment of time when the adaptation is performed.
Reactive adaptation refers to the modification in reaction to the changes
already occurred; proactive adaptation aims to modify SBS before a devi-
ation will occur during the actual operation and before such a deviation
can lead to problems; post-mortem adaptation is characterized by a sig-
nificant gap between the triggering event is detected and the modification
performed. Typically, the post-mortem adaptation is accomplished by re-
designing/re-engineering the application.

• Direction of the adaptation distinguishes between forward adaptation,
where the adaptation strategy that directs the system to a new state, where
the adaptation requirements are met, and backward adaptation, where the
adaptation strategy reverts the system to a state, previously known to
meet the adaptation requirements.

• Distribution of the adaptation distinguishes between centralized adapta-
tion, where the actions are defined and executed on all the affected com-
ponents in the controlled and integrated way, and distributed adaptation
performed locally and then propagated among components.

Adaptation Specification represents the notations needed to specify the strate-
gies and the particular actions representing those strategies. It can range from
procedural approach (concrete actions to be performed), over declarative (the

126 R. Kazhamiakin et al.

description of the goals to be achieve), to hybrid. The notation may be im-
plicit : in this case the adaptation strategies and actions are hard-coded within
the system according to some predefined schemata and can not be changed,
without modification of the adaptation mechanism. On the contrary, explicit
adaptation specification allows the designer to guide or influence the adapta-
tion process by explicitly stating the adaptation requirements or instructions.
The following forms of explicit adaptation specification may be considered:

• action-based specification consists of situation-action rules which specify
exactly what to do in certain situations or upon occurrence of a certain
event. The situation part corresponds to the specification of variation,
while the second part prescribes concrete adaptation actions to be per-
formed. The action-based approaches differ in the way the instructions
and the primitive actions are defined and structured.

• goal-based specification is a higher-level form of behavioural specification
that establishes performance objectives, leaving the system or the middle-
ware to determine the actions required to achieve those objectives;

• utility function-based specification exploits utility functions to qualify and
quantify the desirability of different adaptation alternatives, and, there-
fore, permit, on the fly, determination of a “best” feasible state;

• explicit variability approach associate the situations, where the adaptation
should take place (adaptation points), with a set of alternatives (variants)
that define different possible implementations of the corresponding appli-
cation part.

Adaptation Action is an action performed over an adapted system with the
purpose of changing it according to the adaptation requirements. Adaptation
action defines an operation semantics of the adaptation strategy. Different
approaches define various adaptation actions. Those actions may be further
classified according to the subject of the adaptation and the scope: for ex-
ample, service instance adaptation actions (retry, negotiate SLA, duplicate
service, substitute service), flow instance adaptation actions (substitute flow,
redo, choose alternative behavior, undo, skip / skip to, compensate), service
class actions (change SLA, and suggestion for service re-design), flow class ac-
tions (re-design/re-plan, change service selection logic, change service registry,
change platform).

Decision Mechanisms are the means through which adaptation approach
may make a decision on the strategy to be performed in a given situation
in order to better satisfy the adaptation requirements. The mechanisms are
characterized by

• Dynamicity of decision refers to the flexibility, with which the adaptation
approach may decide on the strategy to be applied. One can distinguish:
static selection, when the adaptation strategy is predefined and explic-
itly associated with the given adaptation requirement, situation or event;
dynamic selection, when the adaptation strategy is selected at run-time

5 Adaptation of Service-Based Systems 127

based on a concrete situation, information, and context properties; and
evolution-based selection, when the adaptation strategy is chosen taking
into account not only the current situation, but also the history of previ-
ous decisions, adaptations, and their results.

• Automation of decision characterizes the degree of the human involve-
ment in the decision process. The degree can range from totally automatic
(no user intervention is needed), to interactive (where the user makes the
choice).

Adaptation Implementation defines the way the adaptation methodology and
architecture are realized. It is characterized by the autonomy of the execu-
tion, invasiveness of the framework, realization mechanisms, and by specific
characteristics of the approach that allow one to “measure” the approach:

• Autonomy characterizes the involvement of the human in the adaptation
execution. It can be done in a autonomous way (self-adapt), manually, or
in an interactive form, where the execution of adaptation actions requires
human involvement.

• Invasiveness characterizes the adaptation framework from the perspective
of how tightly it is integrated with the subject of adaptation and the exe-
cution framework. We distinguish between the cases, when the adaptation
facilities are integrated with the subject, the cases, when the adaptation
facilities are integrated with the platform, where the subject operates, and
the cases, when the adaptation facilities are completely separated and in-
dependent from the subject of adaptation.

• Realization mechanisms define the tools and facilities, necessary to en-
able a given adaptation methodology, to implement the adaptation strate-
gies, and to build the corresponding adaptation architecture. Realization
mechanisms strongly depend on a given adaptation problem and on the
approach used for that. Typical examples include, in particular, reflection
wich refers to the ability of a program to reason about, and possibly al-
ter, its own behavior; automated composition that provides a support for
the automated service composition in order to accomplish composition (or
adaptation) goals; service discovery / binding that allows to find, select,
and exploit a new service as a replacement of the incorrect one; SLA ne-
gotiation that allows to dynamically agree on the service quality, aspect
weaving techniques to inject the adaptation facilities into the SBS code,
design facilities and tools supporting manual adaptation of SBS, etc.

• Adaptation characteristics address some important challenges that adap-
tation process should satisfy, such as safety, security, optimality, cost, per-
formance of the adaptation process.

5.3 Survey Results

In this section we present a survey of the adaptation approaches for Service-
Based Applications. We start from the adaptation approaches in business

128 R. Kazhamiakin et al.

processes and workflow systems as they usually are typical applications based
on top of service-oriented architectures. The adaptation solutions, however,
in those approaches are different from those in service compositions. First,
different levels of abstraction are applied in those adaptations. Second, the
degree of automation is radically different in business process and in service
composition management. Below we consider both layers.

5.3.1 Adaptation in Business Process Management

Adaptation of business processes may deal with permanent modification of
the whole model or only a modification of a particular instance. In the former
case, one can speak of evolution, as all the new instances of the process will
follow the new model. This type of adaptation is usually achieved by re-
designing/re-engineering the business processes.

Consequently, the term “adaptation” in the workflow and business process
management systems refers to the run-time modification and/or extension
of the running process instances in order to react to various problems and
to accommodate different changes in their environment. These changes may
be dynamics of organizational models, upcoming of better services, and new
business rules and regulations.

The goal is to change the process while it is running, without having to
re-model and re-deploy the process, which is in general very time-consuming.
Run-time modification of the business process instances normally assumes a
strategy, which is predefined at design-time and which targets the modification
of the structure of the process instance control flow or data flow.

Business Process Adaptation by Process Variants

Many approaches in the business process adaptation deal with the problem
of defining and dynamically managing process variants. The need to deal
with various versions of the process models is motivated by the necessity to
accomodate to specific business context, customers, and situations. As the
management of variants becomes a complex and error-prone procedure, when
the complexity of process models and the number of variants grows, specific
approaches are proposed in the literature.

In [28] the PROVOP (PROcess Variants by OPtions) approach for manag-
ing large collections of process variants. The basic idea is to keep the variants
in the one model. For this purpose, the basic (or the most common case) pro-
cess is defined, and its variants are represented by the set of change operations
that allow the migration of the basic case model into a specific variant model.
The transformation operations are defined as action templates, where actions
are insert, delete or move process fragment, and modify process attributes.
Additionally to the option definition, the PROVOP approach allows for spec-
ifying constraints on their usage. The constraints include dependency, mutual
exclusion, execution order constraints, and hierarchy. In order to associate the

5 Adaptation of Service-Based Systems 129

process variants to the process context, the latter is defined explicitly using
special context variables and the rules that define their relations and evo-
lution. At run-time the relevant variants are selected and filtered according
to the contextual information and the selected options are applied and exe-
cuted in a process engine. As the context variables may change dynamically,
the platform also aims at providing support for run-time migration from one
option to another.

Relatively different solution is presented in [24, 45]. While the works ad-
dress the variability of the business process models, the main focus of the
approach is on the problems related to dynamic transformation of one process
to another. On the one side, this requires specific approaches for the definition
of the process transformation actions and instructions. On the other side, in
many cases the transformation should be applied to the already running pro-
cess instances, potentially leading to unpredictable problems and situations.
Apart from modeling process variants, the approaches presented in [24, 45]
define the notations and formalisms for describing and implementing trans-
formation actions. These actions define the instructions for changing both
control flow and data flow model. In [24] the list of possible actions includes
add/remove variable, insert task, add/remove successor of a task, change con-
nection type, or change transition condition. In [45] the actions also include
changes in the order of the operations, serialization, task deletion, etc. The
presented works also propose solutions for dynamic transformation of already
running process instances. The solutions are based on the Petri Net-based for-
malization of the transformation activities and the transformation correctness
conditions.

Semantic Correctness of Process Adaptation

An important mechanism for the process instance adaptation refers to ensur-
ing correctness of the adaptation activities in order to avoid so called instance
migration bug. This problem refers to the fact that the changes performed
on the partially executed process instance may lead to the situation, which
violates certain predefined correctness requirements. In order to accomplish
this, special mechanisms are introduced to validate the applicability of the
adaptation actions with respect to a current instance.

Dynamic transformation of enterprise process models is also addressed
in [47, 38]. Both approaches propose a formal framework for representing
both the underlying dynamic models and changes in them. Differently to
other approaches, these works also come up with semantic constraints on
the changes in these models, and with notion of correctness and consistency
of the changes with respect to those constraints. The underlying adaptation
frameworks take into account verification and enforcement of the constraints
when the changes are performed. Specifically, in [47] the underlying models
correspond to organization models, where one models the structure of the
organizations in terms of roles, persons and their relations, as well as the

130 R. Kazhamiakin et al.

access rules and privileges of these roles. Semantic constraints have a form of
correctness conditions of these rules with respect to the mode. The authors
provided a way to perform the semi-automated adaptation of access rules in
response to changes made on the organizational model. In [38] business process
modeling is addressed. Similar to the approach of [24], the authors formally
define the language and semantics of changes over business process model.
Additionally, semantic constraints are introduces in the form of dependency
and mutual exclusion of applicable changes. Using these models, a framework
for automated verification of process changes with respect to the constraints
is proposed.

Recovery in Workflow Systems

Focusing on the corrective adaptation, recovery actions have been widely used
in workflow systems. The workflows models of [12, 22, 46] provide specific ca-
pabilities for recovery actions. The approach in [27] focuses on the handling
of expected exceptions and the integration of exception handling in the work-
flow management systems. In [2] the authors propose the use of “worklets”,
a repertoire of self-contained subprocesses and associated selection and ex-
ception handling rules to support the modelling, analysis and enactment of
business processes. In [30] the authors consider a set of recovery policies both
on tasks and regions of a workflow. They use an extended Petri Net approach
to change the normal behavior when an expected but unusual situation or
failure occurs. The recovery policies are set at design time.

5.3.2 Adaptation in Service-Oriented Architectures

To this end, a variety of methods for adaptation in Service-Based Applications
has been proposed. Given high dynamism of such applications, the adapta-
tion has become an important mechanism for managing continuous changes
in the constituent services and their quality, in the context, and in the exe-
cution process. Accordingly, the adaptation approaches in service computing
range from the self-healing functionalities to recover from application faults
to quality degrade, to the customization of the application for the needs of
the specific user, context, or even usage scenario of the services. Due to this
diversity, the proposed solutions and their complexity differs substantially.
Here we consider those approaches starting from simpler forms of adaptation,
where the substitution of constituent services is exploited as the only adap-
tation mean, and moving to much more sophisticated types of adaptation,
where the adaptation strategies and actions are reacher and where they are
modelled and specified explicitly.

Adaptation by Dynamic Service Binding

A wide range of adaptation approaches relies on the ability to select and
dynamically substitute services at run-time or at deployment time. In these

5 Adaptation of Service-Based Systems 131

approaches, the SBS model, i.e., service composition is defined in abstract
way, while the candidate services are bind or re-bind when necessary. Service
discovery is particularly relevant in this context, since the services are selected
in such a way that the adaptation requirements are satisfied in the best possi-
ble way. In many cases the selection is driven not only by the categorization of
the replaced service and/or by the necessity to optimize the quality-of-service
characteristics of a system, but additional requirements that the replaced ser-
vice has failed to satisfy. The adaptation goal is, therefore, to bind to a new
service that is compliant with these additional requirements.

In [53, 52, 55] the authors present a framework, METEOR-S, for dynam-
ically configuring and executing abstract workflows with a set of available
services. The way the processes and requirements are specified relies on a set
of specifications defining functional and non-functional constraints on the pro-
cesses and involved services. In the presented approach the abstract workflow
models are defined by the designer and represented in BPEL. Additionally to
the workflow specification, the designer provides a set of specific requirements
that constrain the functional and non-functional properties of the target pro-
cess instance and the involved component services. In order to specify this
information, the process model is equipped with the semantic specifications
in OWL (OWL-S for service descriptions) that describe the domain specific
knowledge, the functional and non-functional characteristics of the relevant
aspects of the process model. The non-functional constraints refer to QoS
properties, security or transactional aspects, and are transformed into integer
linear programming constraints. Functional constraints define the statements
over the data compatibility or control flow, and are represented in [52] us-
ing Semantic Web Rule Language (SWRL). At deployment-time, as well as
at run-time when the service failures are detected and the reconfiguration
is required, the proposed platform performs service discovery based on the
requested service templates and their semantic descriptions, performs quanti-
tative analysis over non-functional properties using linear programming solver,
and qualitative analysis over functional properties using a dedicated SWRL
reasoner. The run-time execution platform supports also data mediation, and
run-time reconfiguration in case of service execution failure. The implementa-
tion adopted in [55] relies on a specific algorithm based on Markov Decision
Process, which enables coordinated management of adaptation activities in
case of distributed service and process constraints.

The approach presented in [9] targets the problem of maintaining dynamic
service compositions, when the component services fail or become defective.
As in previous approach, the composition is designed as a BPEL process. How-
ever, the run-time criterion for selecting the best possible service is different.
First, the decision is made for each invocation of the component services.
Second, the decision is driven by the only factor, which is service reputa-
tion. However, the approach adopts a proactive approach, where the processes
proactively provide the reputation information about the usage of a service. If
the service invocation was successful, the reputation is positive, while in case

132 R. Kazhamiakin et al.

of failure the value degrades. This approach allows to improve the quality of
selection. However, the system integrator has no way to control or alter such
selection and adaptation process. Interestingly, this technique does not re-
quire extra description of the component services needed to drive adaptation
strategy.

SCENE framework [17] offers a language for composition design that ex-
tends the standard BPEL language with rules used to guide the execution of
binding and re-binding self-reconfiguration operations. A SCENE composition
is enacted by a runtime platform composed by a BPEL engine executing the
composition logic, an open source rule engine, Drools, responsible for running
the rules associated to the composition, WS-Binder [43] that is in charge of
executing dynamic binding and re-binding, and by a Negotiation component
that can be used to automatically negotiate SLAs with component services
when needed [42]. In a later work (see [13]), the SCENE framework has been
extended through the integration of a module enabling the resolution of mis-
matches between the interfaces and protocols of invoked services. In the pa-
per a set of possible mismatches is defined, together with a list of available
adaptation strategies, that can be combined in scripts through a language.
The adaptation script specifies the differences between the primary concrete
service selected for binding, which is defined at design time, and the other
available concrete services that can be candidate for dynamic binding.

The PAWS framework [4] proposes an interplay between design-time and
run-time activities. Starting from an abstract process definition, in the design
time a selection of candidate services is performed using a semantically en-
hanced registry, defining mapping information to be used for mediation at run
time, and negotiating QoS levels with potentially participating services. At
run time, concrete services are selected, based on QoS global constraints and
QoS optimization techniques, and services are invoked through a mediation
engine to semantically transform input and output messages. The run-time
activities are managed by three modules: a Process Optimizer, a Self-healing
module and a Mediation engine. The Process Optimizer is in charge of guaran-
teeing both local and global QoS, according to the constraints required by the
user. The Self-healing module enables adaptation, performing semi-automatic
actions in reaction to failures. The recovery could imply service reinvocation or
substitution. If the recovery requires to substitute the running service, a new
service is selected, among the candidates. Finally, the mediation engine, which
is set up at design-time, redirects the invocations of the deployed process to
the selected services.

Relatively different approach is proposed in [50]. The problem amounts
to dynamic substitution of services that fail certain behavioral requirements
and constraints. In this approach, the composite application is monitored at
run-time, and if the violation of requirements is identified, the platform au-
tomatically extracts the additional constraints to the replacing services, and
performs service discovery and selection based on those constraints. The re-
quirements to be monitored are related to the behavior of the system or QoS

5 Adaptation of Service-Based Systems 133

parameters over a service or a composition, and are defined in event calculus
in terms of event and fluents. The former correspond to operations performed
by the application logic (message reception or emission, assignments, etc),
while the latter characterize the state of the application (conditions that hold
in some interval). At run-time these requirements are checked by the monitor
against the actual executions of the system. When the violation is detected
and the platform decides to replace the failed service, new services are discov-
ered and the candidate is selected. The selection is based on the additional
adaptation requirements extracted from the diagnostic information provided
by the monitor. This information comprises the structural part regarding the
categorization and functionality of the failed service and the behavioral part
that defines the set of paths that the execution of the target service should re-
spect. The behavioral part is obtained from the violated requirement and the
violation synopsis generated by the monitor using predefined transformation
rules. The discovery tool checks the behavioral specification of the candidate
services expressed as state machines against the behavioral part of the query
and selects the corresponding candidate.

QoS-Driven Adaptation of Service Compositions

In case of Web service based processes, the quality of the overall process
strictly depends on the quality provided by Web services tied to the task.
In this scenario, as defined in the perfective adaptation, it might happen
that even if the process runs properly, the adaptation is required because
of insufficient quality. As a consequence, the SBS should react in order to
improve the quality of the service process. The goal is to select the best set of
services available at run-time, taking into consideration process constraints,
but also end-user preferences and the execution context. Normally, service
selection and binding are used as a key mechanisms for the adaptation in
these approaches.

As a consequence, Web service selection results in an optimization prob-
lem. The literature has provided two generations of solutions. First generation
solutions implemented local approaches, which select Web services one at the
time by associating the running abstract activity to the best candidate service
which supports its execution. Local approaches can guarantee only local QoS
constraints, i.e., candidate Web services are selected according to a desired
characteristic, e.g., the price of a single Web service invocation is lower than
a given threshold.

Second generation solutions proposed global approaches. The set of ser-
vices that satisfy the process constraints and user preferences for the whole
application are identified before executing the process. In this way, QoS con-
straints can predicate at a global level, i.e., constraints posing restrictions
over the whole composed service execution can be introduced. The main issue
for the fulfillment of global constraints is Web service performance variabil-
ity. Indeed, the QoS of a Web service may evolve relatively frequently. If a

134 R. Kazhamiakin et al.

business process has a long duration, the set of services identified by the op-
timization may change their QoS properties during the process execution or
some services can become unavailable or others may emerge. In order to guar-
antee global constraints Web service selection and execution are interleaved:
optimization is performed when the business process is instantiated and iter-
ated during the process execution performing re-optimization at run-time. To
reduce optimization/re-optimization complexity, a number of solution have
been proposed that guarantee global constraints only for the critical path [57]
(i.e., the path which corresponds to the highest execution time), or reduce
loops to a single task [11], satisfying global constraints only statistically.

In WSCE framework [14] the authors address the problem of adaptive ser-
vice composition states as follows: “given the specifications of a new service,
create and execute a workflow that satisfies the functional and non-functional
requirements of the service, while being able to continually adapt to dynamic
changes in the environment”. This problem requires not only to compose and
to bind the services in a composition that satisfies the given requirements,
but also to continuously monitor the execution and the environment and to
dynamically modify the composition when the critical changes occur. The
authors propose the two-staged approach, where first the abstract service
composition (template) is defined based on the functional user requirements,
and then the abstract composition is instantiated with the dynamic services
based on the optimization of QoS metrics. The first stage relies on the com-
position goal specifications from the Semantics Web services domain, and the
second stage relies on optimization of global QoS constraints. Furthermore,
at run-time the two approaches may be interleaved. This happens when the
platform cannot find a suitable instantiation of currently selected abstract
process templates, and the templates should be regenerated from the same
user requirements.

In [5], a new modeling approach to the Web service selection problem is in-
troduced. This approach is particularly effective for large processes and when
QoS constraints are severe. In the model, the Web service selection problem
is formalized as a mixed integer linear programming problem, loops peeling
is adopted in the optimization, and constraints posed by stateful Web ser-
vices are considered. Moreover, negotiation techniques are exploited to iden-
tify a feasible solution of the problem, if one does not exist. Experimental
results compare our method with other solutions proposed in the literature
and demonstrate the effectiveness of our approach toward the identification
of an optimal solution to the QoS constrained Web service selection problem.

In [11] the authors propose an implicit approach towards dynamic ser-
vice composition based on multi-dimensional optimization of quality of service
metrics. In the approach the composed process is designed as a workflow com-
posing elementary tasks. At run-time a concrete elementary service is selected
to perform a particular task from a community of services that provides the
same functionality, but have different quality characteristics. The description
of the services, therefore, should include not only functional aspect, but also

5 Adaptation of Service-Based Systems 135

non-functional properties that are required in the selection process. The au-
thors identify different sets of the relevant quality properties, such as price,
duration, reputation, reliability, availability, and define the corresponding ag-
gregation functions for each of them. The predefined goal of the approach is,
therefore, at run-time optimize the values of these functions. Since this model
is multi-dimensional, the weights should be provided in order to define the
global criteria. This weights may be predefined, or set by the end user (as a
set of preferences).

The approach of [25] particularly focuses on developing methods to provide
the highest QoS. The authors use an extension of WSDL to express properties
about the QoS behaviour of a system. The focus is on obtaining an adapta-
tion of the system configuration through and adaptation of the observed QoS
behaviour. The information gathered about the QoS behaviour provided is
used to compare the different candidate configurations, using genetic algo-
rithm to find the best one. Choosing the configuration with the highest QoS
using genetic algorithms: genes are represented by variables concerning service
selection and resource allocation. The QoS of each configuration is evaluated,
and then a new configuration is generated through mutation.

Another example of run-time management of a SOA configuration can
be found in [56]. The approach is based on representing a service configura-
tion through a model, and then modifying this model as needed to adapt the
configuration to changes in the environment and in the requirements of the
users. This approach addresses the Web service context, particularly the case
of highly dynamical environments. The system is described through a Petri
Net, which represents the dependencies among the services in the configura-
tion. In other words, the Petri Net represents the places where the services are
mapped, and the arcs in the graph model the relationships among the places.
This model can dynamically evolve, according to changes in the environment.
In [56] the authors describe an algorithm which modifies the configuration
(and its model) with the aim to provide the highest QoS. Many different
parameters are used to evaluate the QoS, and many metrics are considered
to measure each parameter. The QoS provided by a service is defined as a
function of place and time, and the described algorithm looks for the best
configuration.

While both local and global approaches have been applied, the need for
further research toward more advanced optimization techniques, in particular
for cycli processes is necessary. In addition, none of the previous approaches
considers in the optimization the case of processes composed by stateful Web
services, where more than one task must be performed by the same Web
service.

Adaptation of Service Interfaces and Protocols

While standardization in Web services makes interoperability easier, adap-
tation still remains necessary. Adaptation, or in this case we speak about

136 R. Kazhamiakin et al.

mediation, is an important functionality that should be offered to enable inte-
gration inside and across enterprise boundaries. We need to generate a service
that mediates the interactions among two services with different signatures,
interfaces. and protocols so that interoperability can be made effective. The
need for adapters in Web services comes from two sources: (1) the heterogene-
ity at the higher levels of the interoperability stack (e.g., at business-level vs.
infrastructural protocols), and (2) the high number and diversity of clients,
each of which can support different interfaces and protocols. Such a mediation
may be automatic or semi-automatic. Depending on the level of the service
specification, this may amount to signature-based adaptation (syntactic prop-
erties of the exchanged messages), ontology-based adaptation (exchanged data
represent different concepts), or behavior-based adaptation (differences in be-
havioral specification). In order to perform all these kinds of adaptation, the
service descriptions should provide the corresponding models at the different
levels of Web service stack.

Generation of adapters for behavioral mismatches is addresed in [10, 8, 21].
The approach requires that the participating service descriptions are equipped
with the interaction protocol the service implements. Such a protocol may
be defined, for instance, as an abstract BPEL process. While the approach
presented in [10] aims at automated generation of an adapter that guarantees
the non-locking interaction of the services, the approaches of [8, 21] transfer
the problem to the system integrator. In [8] the authors propose taxonomy of
different behavioral mismatches and a set of parametric behavioral patterns
that may resolve the mismatch. The corresponding pattern is instantiated
when the mismatch is detected and proposes it to the application integrator
as a possible adaptation strategy. In [21] the authors propose an algebraic
model of six transformation operators and the corresponding visual notation
that permits, given a pair of required and provided interfaces, construct the
necessary adaptation. Based on this construction, a mediation engine performs
the necessary run-time actions for processing and managing the messages and
service invocations.

An approach presented in [41] addresses wider range of mismatches (signa-
ture, merge/split, extra/missing message) providing, however, semi-automated
support for adapter generation. By leveraging XML schema matching ap-
proaches, the proposed framework allows one to identify the inputs needed to
cover the mismatches. For the behavioral mismatches the framework provides
an automated generation of mismatch tree that show the possible deadlocks
entailed by the mismatch. Based on these two components, the framework
and the implementing tool provide the decision support for the engineers that
allow for managing mismatches and defining the appropriate adapters.

The work in [37] address the problem of mediation in a different way. In-
stead of generating external adapters, the authors propose an aspect-oriented
framework for aligning internal service implementation to a standardized ex-
ternal specification. In particular, the framework consists of a taxonomy of the
different possible types of mismatch between external specification and service

5 Adaptation of Service-Based Systems 137

implementation (i.e., signature mismatch, ordering mismatch, etc.). The rea-
soning behind having a taxonomy of mismatches is because the authors argue
that similar mismatches can be addressed with similar modifications to the
service implementation. Then, for each mismatch, a template that embodies
the AOP approach to adaptation is provided. Specifically, the template con-
tains a set of pointcut-advice pairs that define where the adaptation logic is to
be applied, and what this actions are. The approach relies on the assumption
that the services are realized as BPEL processes, so also the templates are.
Finally, the authors present a tool to support template instantiation and their
execution together with the service implementation.

Work in [54] focus on Semantic Web services protocol mediation by pro-
viding a framework that allows interaction between two services despite the
difference of the protocols they rely on. Mediation allows automatic adapta-
tion of a service requester behavior while meeting the interface constraints of
the service provider. This is done by abstracting from the existing interface
descriptions before services interact and instantiating the right actions when
contracting a service. To be possible, a framework managing these levels of
abstraction was provided. It consists of defining abstract primitives used by
services during their interaction that will be mapped to concrete primitives
that represent the real actions in terms of messages exchange between the
two communicating parties. Monitoring is however necessary for ensuring the
correct use of the abstract primitives that must follow the constraints defined
for the service in a low level description language. It could be stated in a state
chart expression. An ontology of shared concepts (of the business domain for
example) where each concept used in the protocols is defined is also necessary
for understanding the semantics of the domain actions which in addition have
to exploitable by machine.

Explicit Adaptation Specification Languages

The approaches to adaptation in services and service compositions consid-
ered in previous section define the adaptation activities implicitly. That is,
the way the system is adapted is somehow predefined and is hard-coded in
the managing infrastructure, being service selection and binidng or genera-
tion of adapters. As described in the taxonomy, a wide range of approaches
comes with the capability to explicitly choose and describe the adaptation
specification. Here we present such approaches for the adaptation in service
compositions.

In SH-BPEL approach [40] the problem of providing self-healing capa-
bilities to the service compositions in BPEL is presented. The authors aim
at extending the standard failure recovery and management capabilities of
BPEL with additional functionalities that are crucial in open and dynamic
settings. Apart from service-level recovery strategies, such as retry or rebind,
the authors identify and describe a wide range of process-specific activities,
such as modifying the values of process variables, redoing a process task or

138 R. Kazhamiakin et al.

an entire part of a process (scope), specifying and executing alternative paths
in the process, going back to a “safe point” in the process execution, etc.
The proposed solution defines the extension of the standard BPEL execution
environment, namely SH-BPEL, which integrates and supports the necessary
recovery facilities. In this solution, the original process specification is pre-
processed and extended with the additional instructions and control points,
which allow for performing the above actions. These additional recovery ac-
tions constitute the management API and can be invoked through a spe-
cial process management interface that is made available at deployment-time.
The underlying architecture provides the necessary tools for detecting criti-
cal events and engaging recovery actions invoked through this management
interface. The existence of a well-defined management and recovery API and
interface enables various ways to control and define the recovery strategies.
First, these strategies and decisions may be pre-defined in the underlying pro-
cess manager and customized through a corresponding programming interface.
Second, the architecture allows for a collaborative environment, where a set
of engines running different composed services participating to choreography
perform coordinated recovery activities through the corresponding manage-
ment interfaces. Finally, the platform allows for recovery both at the instance
level, when only current process instance is adapted, and class level, when the
whole process model is changed.

In [44] the SH-BPEL framework is extended with the methodology and a
tool for learning the repair strategies of Web services to automatically select
repair actions are proposed. The methodology is able to incrementally learn
its knowledge of repairs, as faults are repaired. This learning technique and the
strategy selection are based on a Bayesian classification of faults in permanent,
intermittent and transient, followed by a comparative analysis between current
fault features and previously classified faults features which suggests which
repair strategy has to be applied. Therefore, this methodology includes the
ability to learn autonomously both model parameters, which are useful to
determine the fault type, and repair strategies, which are successful and proper
for a particular fault.

In [7, 6] the authors address similar problem, that is, how to recover the ap-
plication execution in case of unpredictable service failures in highly dynamic
execution environments. The authors exploit run-time monitoring for timely
detection of problematic situations. The monitoring instructions are defined as
functional and non-functional assertions on the BPEL composition activities.
In order to react to the detected violations, the authors propose three kinds
of recovery strategies, namely retry, rebind, and restructure. The correspond-
ing instructions for the retry and rebind actions are introduced directly in the
composition specification, while the restructure instructions, defined as rewrit-
ing rules on the process flow graphs, are defined separately. In [6] the proposed
approach is further refined and extended. In particular, the monitoring spec-
ification is defined using specific notation, Web Service Constraint Language
(WSCoL), which provides expressive and extendable facilities for monitoring

5 Adaptation of Service-Based Systems 139

composition assertions over functional and non-functional properties of the
system. In order to define recovery specifications, Web Service Recovery Lan-
guage (WSReL) is proposed. The main ingredients of the language are the
atomic recovery actions and the recovery specifications that declaratively join
atomic actions in two complex procedures (steps) and alternatives. The set of
actions include actions at service level (retry, rebind, ignore), at process level
(substitute, halt, call), and management actions (notify, log). The supporting
platform relies on a specific rule engine that manages recovery specifications
and activates recovery, and on aspect-oriented techniques to introduce the
recovery implementation at the level of the process engine.

In MASC approach [23] the authors propose policy-driven middleware for
self-adaptation to accommodate to various business exceptions and faults. In
particular, the policies define the customization actions that should be per-
formed in order to react to certain exceptional situation or a fault. The policies
are defined in the form of ECA-rules (Event-Condition-Action) that describe
the triggering event (application fault, interaction operations, start/end of an
application instance), the condition, under which the rule applies (restriction
on the application state or history), and the actions to be applied. The poli-
cies are represented in a specific language that extends WS-Policy standard in
order to deal with monitoring and adaptation activities. The language allows
for defining not only adaptation but also monitoring rules and directives. The
monitoring rules define the (relevant) information to be observed and map
the undesirable situation or condition to a meaningful failure event that will
be processed by the adaptation rules. The approach allows for the specifica-
tion of two kinds of adaptation action: process-level actions and message-level
actions. The former are used to alter business logic of a particular instance,
while the latter are mainly used to deal with various low-level faults, such
as invocation failure, SLA violation, etc. The possible process-level actions
are add, remove, replace, change order of activities, suspend, delay, resume
business process. Message-level actions include invocation retries, service sub-
stitution, concurrent invocation of several similar services, etc. The adaptation
rules may be also assigned priorities to define the order of executions when
several rules apply to an event. The adaptation process is supported by the
specific platform that allows for monitoring relevant policy information and
events and performs the necessary actions both at message-level (intercepting
the messages) and process-level (altering the process engine).

A similar problem is addressed in the context of WS-Diamond project
[18]. The project focuses on problem diagnosis in service compositions, as
well as on the recovery actions for those problems.The service execution envi-
ronments are extended to include the features to support the diagnostic/fault
recovery process. Different types of repair strategies and implementic mech-
anisms are systematically studied through the project. They include, in par-
ticular, instance- and class-level actions, actions refering to the single service
or composition-related actions, etc.

140 R. Kazhamiakin et al.

In mobile applications pervasiveness and ubiquitous availability are essen-
tial features; they exploit a wide range of diverse mobile services provided
and advertised locally, making the user and application contexts a central
concept in the development and provision of mobile service-based systems. In
[48] the authors propose an approach that defines a simple policy-based frame-
work and architecture for designing and providing mobile service-based and
context-aware applications. In this approach, the context is represented using
Resource Description Framework, and then reflected in definition of policies
using the concepts of template (generic contextual aspect) and facts (concrete
contextual situation). The context in these settings refers to the properties
of the device, possible services and their characteristics, user preferences and
settings, etc. The policies define the adaptation actions that should be fired
when the system occurs in a certain context. Based on these concepts, the work
also defines an iterative methodology for defining contextual information and
adaptation policies. Starting from initially collected contextual knowledge,
the designer specifies the adaptation policies and extracts intermediate con-
textual information. The process is iteratively repeated until no new rules can
be identified or new contextual specifications can be obtained. The context
models and policies are separated into modules and the module pipelines are
identified. The process is supported with a visual notation, which shows the
initial and intermediate contexts, the final result and the policy processing
flow between context modules. The proposed methodology is supported with
the agent-based run-time platform that incorporates the monitoring facilities
for observing various contextual properties, the communication middleware
for interacting with the services, the policy decision maker that filters the
policies to be applied, and the policy enforcement point, where the adapta-
tion actions are defined.

Model-based approaches, which are often used at design-time, can also be
exploited to obtain automatic run-time adaptation of a system configuration.
An example of this approach is presented in [31]. It is based on building a
model of the system at design time, together with an initial configuration of
its services. The model is object-oriented, and it includes high level policies
that specify the desired behaviour of the system. They are composed by a left-
hand-side and a right-and-side, which both are graphs of the same kind of the
one representing the model. When a part of the system model meeting the left-
hand-side of a rule is met, then it is substituted with the corresponding right-
hand-side. These simple rules can be easily modify by users as needed, with
the same tool allowing for the building of a model of the system. Moreover, the
policies described at design-time are deployed on a structure made of services
which enables the run-time adaptation of the system.

Adaptation by Explicit Variability Modeling

Explicit variability approaches allow one to define relevant application changes
and the way the system should react to it, but to precisely identify a particu-

5 Adaptation of Service-Based Systems 141

lar moment in the execution, where the change happens, and to represent all
the relevant variants of behavior, applicable in such cases. In order to provide
explicit definition of the execution location (variation point), where the vari-
ation takes place, the behavioral specification of the application is used. The
variation point is equipped with a set of alternative behaviors (variants) that
may be applied under certain conditions and in particular cases. The explicit
variability approaches are widely used in business process modeling and soft-
ware product line engineering, where variability models provide the basis for
application customization, flexibility and re-use. In business processes varia-
tion often refers to the single tasks or sub-processes, while in SPL this may
also correspond to components, their interfaces and implementations.

In the DySOA approach [49] the problem of reconfiguring the application
in order to react to the critical changes in QoS metrics is addressed. As in
many approaches, the adaptation actions correspond to selection and bind-
ing to a new service or to changes in the composition specification structure.
The approach adopted in this work, however, relies on a completely different
design method. The relevant adaptation concepts become first-class entities,
and the variation of the application is modeled and represented explicitly.
The approach is based on explicit modeling of different variants correspond-
ing to the variation points, and on defining various constraints that drive the
selection of one alternative or another. Variant defines the behavioral or func-
tional alternative to be applied in the variation point (e.g., process fragment
or a concrete component service). The actual code/specification of the variant
is defined in its realization definition. The variation model may contain in-
trinsic variation constraints that restrict the selection of a particular variant,
or extrinsic variation constraints define mutual dependencies between various
choices potentially at different variation points. The proposed DySOA archi-
tecture provides run-time support for the application adaptation. The QoS
metrics of the application are continuously monitored and evaluated. When
the certain violations are detected, the reconfiguration unit takes care of an-
alyzing and selecting possible variants in the corresponding points, such that
all the variation constraints are met and, moreover, the QoS optimality is
ensured.

The work in [29] contribution proposed to model the variability of a service-
based system using principles and methods from the field of software product
line engineering. These include the explicit modeling of commonalities and the
variability of a software product line. The variability of a software product line
is modeled explicitly by variation points and variants. The authors observe
that an adaptive service-based system can have different types of variability,
which can be found at the following layers of a service-based system:

• Business Process Layer: This layer includes the definition of business pro-
cesses from the customer’s perspective. The authors use BPMN (the Busi-
ness Process Modeling Notation) to model the business processes. The

142 R. Kazhamiakin et al.

required flexibility in the sequence of activities of a business process is
called Workflow Variability by the authors.

• Unit Service Layer: This layer includes the definition of service units from
an architect’s perspective, which are necessary for handling a business
process. The dynamic composition of services is called Composition Vari-
ability and it is modeled using BPEL (The Business Process Execution
Language).

• Service Interface Layer: This layer includes the definition of service inter-
faces which reflect the requirements of the service units. The interfaces are
described by WSDL (the Web Service Description Language). If alterna-
tive interfaces are defined this is called Interface Variability.

For a description of Web services and their composition, the authors use
WSDL and BPEL. The respective XML schemas thus are expanded to de-
scribe additional properties and composition possibilities of services. By de-
termining the variability types and simple XML-based description of vari-
ability, the variability of an adaptive service-based system can be explicitly
documented.

In the work of [16] the authors state that dealing with changes in service-
oriented systems requires the following information: knowledge about the ra-
tionales for decisions; understanding the alternatives; traceability between
stakeholders’ goals and technical realization elements. In addition, they ob-
serve that very flexible and adaptable systems cannot be fully specified in
advance and thus postulate that design methods and modeling techniques are
needed in order to describe flexible and evolvable systems as far as possible in
a declarative way. The approach proposes integrating goal modeling and vari-
ability modeling techniques. This is done by identifying variability aspects
in i* goal models and by proposing an approach for mapping i* models to
variability models. Those variability models in turn are then refined and em-
ployed to support monitoring and adaptation of service-oriented systems. The
proposed approach focuses on the following two “directions” of changes:

1. Top-down stakeholder-driven changes: A new requirement affects existing
services or service architecture. Maybe negotiations with 3rd-party service
providers are needed and new SLAs are “signed”. The new decisions have
to be considered within the service architecture through reconfiguration.

2. Bottom-up monitoring-driven changes: Monitoring results demand
changes within the current service configuration to fulfill SLA directives.

In order to deal with both kinds of changes, the authors state that the follow-
ing facts need to be considered:

• common and specific (individual) goals of different stakeholders;
• knowledge about the current service configuration;
• information about alternative service configurations;
• traceability information to handle dependencies between goals, service

types, services and service instances (see definitions below);

5 Adaptation of Service-Based Systems 143

• kind of representation of the system at different levels to understand the
assignment of stakeholders’ needs down to the current and alternative
system configurations.

The proposed approach allows modeling these different facts together with
traceability and variability information to support system adaptation. In or-
der to map between these facts, the authors propose integrating the meta-
models of i* and the variability modeling language used. To map concrete i*
models to variability models, the authors have identified six different types
of variability (e.g., softgoal and instance variability) and show how these can
be specified with the different i* modeling constructs and map to variability
models. The mapping between i* models and variability models is supported
by the DOPLER tool suite [1]. The Variability management engine (VME) of
this tool is used to manage the variability model of available service instances,
services, and goals together with the relevant traceability information. The
Adaptor component of the tool ultimately performs the requested updates of
the service-oriented system. The approach presents how a variability model
can be derived from an i* goal model and how this variability - derived from
the goal model - can be employed to support the monitoring as well as adap-
tation of service-based applications.

5.3.3 Comparison of the Adaptation Approaches

The synthetic summary of the adaptation approaches considered in this sec-
tion is presented in Table 5.1 and 5.3. For the summary the following elements
of the adaptation taxonomy are considered: usage of adaptation, subject and
aspect of adaptation, location and methodology of the adaptation approach,
the specification, the characterization of human involvement (realization of
decision mechanisms and level of autonomy), and the specific features of the
realization. Note that the approaches we consider here (as well as most of the
adaptation approach) deal with temporal modifications with local effect, and
therefore these dimensions are not considered here.

While the presented adaptation framework demonstrate good coverage and
diversity of the adaptation problems and proposed solutions, there are several
important considerations we would like to focus on.

Usage of Adaptation

Different approaches use adaptation for the purpose of recovery (correction),
optimization (mainly of QoS properties), and customization. The customiza-
tion, however, may be caused by different factors. This includes, in particular,
contextual properties (i.e., business context or specific customers in BPM
systems, operational context or specific application users), or the use of the
services in different applications that entails mediation of service interactions
and messages. However, the use of contextual factors is currently limited;

144 R. Kazhamiakin et al.

existing approaches do not focus on the specific role of various contextual fac-
tors in the adaptation process. Another important consideration is the lack
of preventive adaptation approaches. Most of the solutions are reactive. those
marked as pro-active (i.e., for QoS optimization or mediation) do not aim to
prevent some problem, but construct the solution given the current situation
without “looking ahead”.

Subject of Adaptation

Most of the existing approaches focus on the adaptation of the application in-
stance (i.e., composition or process instance) or even its part (i.e., constituent
service). There are few approaches targeting adaptation of the SBS class or
the adaptation mechanisms themselves. This makes the adaptation weaker
and less flexible in the face of unexpected changes and failures.

Adaptation Strategy

As we already mentioned, there is a lack of pro-active approaches that try to
predict and prevent future failures, QoS degrades, trends, etc. Another critical
consideration is that the adaptation is usually forward. While such adapta-
tion is easier to implement, it leads to accumulation of problems as the new
problems may occur when adaptation is executed. Furthermore, the problem
of distribution and coordination of adaptation activities is not considered in
the existing frameworks.

Adaptation Specification

While several approaches that provide rich and expressive notations for the
adaptation specification, most of the approaches hard code the adaptation
activities, providing few or no freedom to its configuration. This is another
factor that makes the adaptation framework not flexible and static. Note also
that the explicit adaptation languages codify adaptation strategies usually
at design time. Consequently, only a subset of possible situation is consid-
ered, which may lead to a situation, where the adaptation is harmful for the
application [33].

Decision and Autonomy

The adaptation decision in different approaches made either statically (i.e.,
predefined at design time) or dynamically. The adaptation process in sev-
eral cases involves also human actors. This latter factor is usually entailed
by the inability of the framework to identify appropriate adaptation action
(i.e., appropriate mediation protocol), and in some cases is motivated by the
necessity to make a critical decision (i.e., which process activity to perform
to customize a process, or to recover from the fault). Human involvement,
however, should be further studied in order to enhance the capabilities of the
adaptation solutions.

5 Adaptation of Service-Based Systems 145

T
a
b
le

5
.1
.
C
la
ss
ifi
ca
ti
o
n
o
f
A
d
a
p
ta
ti
o
n
A
p
p
ro
a
ch

es
:
P
a
rt

1

U
sa

g
e

S
u
b
je
c
t

A
sp

e
c
t

L
o
c
.
M

e
th

o
d
o
lo
g
y

S
p
e
c
ifi
c
a
ti
o
n

D
e
c
is
io
n

A
u
to

n
o
m
y

R
e
a
li
z
a
ti
o
n

P
R
O
V
O
P

[2
8
]

cu
st
o
m
iz
e

p
ro
ce
ss

in
st
a
n
ce

w
o
rk
fl
ow

B
P
M

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

ex
p
li
ci
t

va
ri
a
b
il
it
y,

fl
ow

in
st
a
n
ce

a
ct
io
n
s

va
ri
a
n
ts

a
re

d
efi

n
ed

a
t
d
es
ig
n

ti
m
e

a
u
to
n
o
m
o
u
s

in
te
g
ra
te
d
in
to

w
o
rk
fl
ow

sy
st
em

,
a
u
to
m
a
ti
c

g
en

er
a
ti
o
n
o
f

B
P
E
L

A
D
E
P
T
fl
ex

[4
5
]

cu
st
o
m
iz
e

p
ro
ce
ss

in
st
a
n
ce

w
o
rk
fl
ow

B
P
M

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
d
-h
o
c

sp
ec
ifi
ca
ti
o
n
o
f

fl
ow

in
st
a
n
ce

a
ct
io
n
s

d
y
n
a
m
ic
,

in
te
ra
ct
iv
e

m
a
n
u
a
l

su
p
p
o
rt

fo
r

ch
a
n
g
e

m
a
n
a
g
em

en
t

P
ro
ce
ss

a
d
a
p
ta
ti
o
n

co
rr
ec
tn
es
s
[2
4
,

4
7
,
3
8
]

cu
st
o
m
iz
e

p
ro
ce
ss

in
st
a
n
ce

w
o
rk
fl
ow

B
P
M

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
d
-h
o
c

sp
ec
ifi
ca
ti
o
n
o
f

fl
ow

in
st
a
n
ce

a
ct
io
n
s

d
y
n
a
m
ic
,

in
te
ra
ct
iv
e

m
a
n
u
a
l

co
rr
ec
tn
es
s

a
n
a
ly
si
s
o
f

ch
a
n
g
es

P
ro
ce
ss

R
ec
ov

er
y

[2
7
,
3
0
,
2
]

co
rr
ec
t

p
ro
ce
ss

in
st
a
n
ce

fa
u
lt

h
a
n
d
li
n
g

B
P
M

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d
,

fl
ow

in
st
a
n
ce

a
ct
io
n
s

st
a
ti
c,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

in
te
g
ra
te
d
in
to

w
o
rk
fl
ow

sy
st
em

M
E
T
E
O
R
-S

[5
2
,
5
3
]

cu
st
o
m
iz
e/

co
rr
ec
t

co
n
st
.

se
rv
ic
es

fu
n
ct
io
n
a
l

co
n
-

st
ra
in
ts
,

Q
o
S
,

se
cu

ri
ty

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

im
p
li
ci
t
+

d
ec
la
ra
ti
v
e

co
n
st
ra
in
ts

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

In
te
g
ra
te
d
in
to

ex
ec
u
ti
o
n

fr
a
m
ew

o
rk
,

S
W

R
L
re
a
so
n
er

fo
r
co
n
st
ra
in
ts

R
ep

u
ta
ti
o
n
-

b
a
se
d

m
a
in
te
n
a
n
ce

[9
]

co
rr
ec
t

co
n
st
.

se
rv
ic
es

re
p
u
ta
ti
o
n

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

im
p
li
ci
t

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

in
te
g
ra
te
d
in
to

B
P
E
L

en
g
in
e,

re
p
u
ta
ti
o
n

m
a
n
a
g
em

en
t

S
C
E
N
E

[1
7
,

4
2
,
1
3
]

cu
st
o
m
iz
e/

co
rr
ec
t

co
n
st
.

se
rv
ic
es

fu
n
ct
io
n
a
l

co
n
-

st
ra
in
ts
,

Q
o
S

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

im
p
li
ci
t
+

b
in
d
in
g
p
o
li
ci
es

a
n
d
sc
ri
p
ts

st
a
ti
c,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

E
x
te
n
si
o
n
o
f

B
P
E
L

en
g
in
e,

su
p
p
o
rt

fo
r

n
eg
o
ti
a
ti
o
n
a
n
d

in
te
rf
a
ce

m
ed

ia
ti
o
n

146 R. Kazhamiakin et al.

T
a
b
le

5
.2
.
C
la
ss
ifi
ca
ti
o
n
o
f
A
d
a
p
ta
ti
o
n
A
p
p
ro
a
ch

es
:
P
a
rt

1
a

P
A
W

S
[4
]

o
p
ti
m
iz
e/

co
rr
ec
t

co
n
st
.

se
rv
ic
es

Q
o
S

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

im
p
li
ci
t
+

Q
o
S

co
n
st
ra
in
ts

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c/

se
m
i-

a
u
to
m
a
ti
c

(r
ec
ov

er
y
)

in
te
ra
ct
iv
e

ru
n
-t
im

e
m
ed

ia
ti
o
n
o
f

m
es
sa
g
es
,

se
lf
-h
ea
li
n
g

ca
p
a
b
il
it
ie
s

D
is
co
v
er
y

fr
a
m
ew

o
rk

[5
0
]

co
rr
ec
t

co
n
st
.

se
rv
ic
es

Q
o
S
o
r

b
eh

av
io
ra
l

co
rr
ec
t-

n
es
s

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

im
p
li
ci
t
+

b
eh

av
io
ra
l

co
n
st
ra
in
ts

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

se
le
ct
io
n
b
a
se
d

o
n
ru
n
-t
im

e
b
eh

av
io
ra
l

d
ia
g
n
o
si
s

in
fo
rm

a
ti
o
n

W
S
C
E

[1
4
]

o
p
ti
m
iz
e

co
n
st
.

se
rv
ic
es

/
co
m
p
o
si
-

ti
o
n

te
m
p
la
te

fu
n
ct
io
n
a
l

re
q
u
ir
e-

m
en

ts
,

Q
o
S

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

u
ti
li
ty

fu
n
ct
io
n
,

fu
n
ct
io
n
a
l

co
n
st
ra
in
ts

(f
o
r

co
m
p
o
si
ti
o
n

te
m
p
la
te
)
a
n
d

Q
o
S

co
n
st
ra
in
ts

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

ru
n
-t
im

e
in
te
rl
le
av

in
g
o
f

S
em

a
n
ti
c

W
eb

-b
a
se
d

co
m
p
o
si
ti
o
n
a
n
d

Q
o
S

o
p
ti
m
iz
a
ti
o
n

F
le
x
ib
le

p
ro
ce
ss
es

[5
]

o
p
ti
m
iz
e

co
n
st
.

se
rv
ic
es

Q
o
S

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

u
ti
li
ty

fu
n
ct
io
n
,
Q
o
S

co
n
st
ra
in
ts

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

su
p
p
o
rt

fo
r
Q
o
S

n
eg
o
ti
a
ti
o
n

C
o
m
p
o
si
ti
o
n

re
p
la
n
n
in
g
[1
1
]

o
p
ti
m
iz
e

co
n
st
.

se
rv
ic
es

Q
o
S

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

m
u
lt
i-

d
im

en
si
o
n
a
l

u
ti
li
ty

fu
n
ct
io
n

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

m
u
lt
i-

d
im

en
si
o
n
a
l
Q
o
S

o
p
ti
m
iz
a
ti
o
n

w
it
h

cu
st
o
m
iz
a
b
le

w
ei
g
h
ts

Q
o
S
m
a
x
im

iz
a
-

ti
o
n
[2
5
]

o
p
ti
m
iz
e

co
n
st
.

se
rv
ic
es

Q
o
S

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

g
o
a
l-
b
a
se
d

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

g
en

et
ic

a
lg
o
ri
th
m
s
fo
r

se
le
ct
io
n

P
et
ri

n
et
-b
a
se
d

co
n
fi
g
u
ra
-

ti
o
n
[5
6
]

cu
st
o
m
iz
e/

o
p
ti
m
iz
e

co
n
st
.

se
rv
ic
es

Q
o
S

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

g
o
a
l-
b
a
se
d

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

P
et
ri
-n
et

b
a
se
d

co
m
p
o
si
ti
o
n

m
o
d
el

5 Adaptation of Service-Based Systems 147

T
a
b
le

5
.3
.
C
la
ss
ifi
ca
ti
o
n
o
f
A
d
a
p
ta
ti
o
n
A
p
p
ro
a
ch

es
:
P
a
rt

2

U
sa

g
e

S
u
b
je
c
t

A
sp

e
c
t

L
o
c
.
M

e
th

o
d
o
lo
g
y
S
p
e
c
ifi
c
a
ti
o
n

D
e
c
is
io
n

A
u
to

n
o
m
y

R
e
a
li
z
a
ti
o
n

B
P
E
L

a
d
a
p
te
rs

[1
0
,

8
,
2
1
]

cu
st
o
m
iz
e

se
rv
ic
e

in
te
ra
ct
io
n

p
ro
to
co
l

co
m
p
a
ti
b
il
it
y

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd

im
p
li
ci
t

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c/

se
m
i-

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s/

in
te
ra
ct
iv
e

ru
n
-t
im

e
en

g
in
e

fo
r
m
ed

ia
ti
o
n
o
f

m
es
sa
g
e

ex
ch

a
n
g
es

S
em

i-
a
u
to
m
a
te
d

m
ed

ia
-

ti
o
n
[4
1
]

cu
st
o
m
iz
e

in
te
rf
a
ce
,

d
a
ta
,

p
ro
to
co
l

co
m
p
a
ti
b
il
it
y

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd

im
p
li
ci
t

d
y
n
a
m
ic
,

se
m
i-

a
u
to
m
a
ti
c

in
te
ra
ct
iv
e

g
en

er
a
ti
o
n
o
f

m
is
m
a
tc
h
tr
ee

fo
r
d
ec
is
io
n

su
p
p
o
rt

A
sp

ec
t-

o
ri
en

te
d

m
ed

ia
-

ti
o
n
[3
7
]

cu
st
o
m
iz
e

in
te
ra
ct
io
n

p
ro
to
co
l

co
m
p
a
ti
b
il
it
y

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd

a
ct
io
n
-b
a
se
d
,

a
sp

ec
t-

o
ri
en

te
d

st
a
ti
c,

se
m
i-

a
u
to
m
a
ti
c

in
te
ra
ct
iv
e

A
O
P

a
p
p
ro
a
ch

fo
r
te
m
p
la
te

in
st
a
n
ti
a
ti
o
n

a
n
d
ex

ec
u
ti
o
n

M
ed

ia
ti
o
n

in
S
em

a
n
ti
c

W
eb

[5
4
]

cu
st
o
m
iz
e

in
te
ra
ct
io
n

p
ro
to
co
l

co
m
p
a
ti
b
il
it
y

S
C

p
ro
-a
ct
iv
e,

fo
rw

a
rd

im
p
li
ci
t

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

O
n
o
to
lo
g
y
-b
a
se
d

re
a
so
n
in
g
fo
r

id
en

ti
fy
in
g

m
ed

ia
ti
o
n

a
ct
io
n
s

S
H
-

B
P
E
L
[4
0
,

4
4
]

co
rr
ec
t

co
n
st
.

se
rv
ic
es
,

co
m
p
o
si
-

ti
o
n

in
st
a
n
ce

fa
il
u
re

re
co
v
er
y

S
C

re
a
ct
iv
e,

fo
rw

a
rd
/

b
a
ck
w
a
rd
,

ce
n
tr
a
li
ze
d
/

d
is
tr
ib
u
te
d

a
ct
io
n
-b
a
se
d
,

se
rv
ic
e
a
n
d

fl
ow

in
st
a
n
ce

a
n
d
cl
a
ss

a
ct
io
n
s

st
a
ti
c,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

h
ig
h
ly

in
te
g
ra
te
d
w
it
h

B
P
E
L

en
g
in
e

a
n
d
B
P
E
L

p
ro
ce
ss
es
,

le
a
rn
in
g
o
f

re
co
v
er
y

st
ra
te
g
ie
s
[4
4
]

R
u
le
-b
a
se
d

a
d
a
p
ta
-

ti
o
n
[7
,
6
]

co
rr
ec
t

co
n
st
.

se
rv
ic
es
,

co
m
p
o
si
-

ti
o
n

in
st
a
n
ce

fa
il
u
re

re
co
v
er
y

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d
,

se
rv
ic
e
a
n
d

fl
ow

in
st
a
n
ce

a
ct
io
n
s

st
a
ti
c,

a
u
to
m
a
ti
c

a
u
to
n
o
m
o
u
s

in
st
ru
m
en

ta
ti
o
n

o
f
B
P
E
L
co
d
e,

ru
le

en
g
in
e
[6
]

148 R. Kazhamiakin et al.

T
a
b
le

5
.4
.
C
la
ss
ifi
ca
ti
o
n
o
f
A
d
a
p
ta
ti
o
n
A
p
p
ro
a
ch

es
:
P
a
rt

2
a

U
sa

g
e

S
u
b
je
c
t

A
sp

e
c
t

L
o
c
.

M
e
th

o
d
o
lo
g
y

S
p
e
c
ifi
c
a
ti
o
n

D
e
c
is
io
n

A
u
to

n
o
m
y

R
e
a
li
z
a
ti
o
n

M
A
S
C

[2
3
]

co
rr
ec
t

co
n
st
.

se
rv
ic
es
,

co
m
p
o
si
-

ti
o
n

in
st
a
n
ce

fa
il
u
re

re
co
v
er
y

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d
,

se
rv
ic
e
a
n
d

fl
ow

in
st
a
n
ce

a
ct
io
n
s

st
a
ti
c,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

p
o
li
cy

-b
a
se
d

m
id
d
le
w
a
re

b
a
se
d
o
n

W
S
-P

o
li
cy

st
a
n
d
a
rd

W
S
-

D
ia
m
o
n
d
[1
8
]
co
rr
ec
t

co
n
st
.

se
rv
ic
es
,

co
m
p
o
si
-

ti
o
n

in
st
a
n
ce

fa
il
u
re

re
co
v
er
y

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d
,

se
rv
ic
e
a
n
d

fl
ow

in
st
a
n
ce

a
ct
io
n
s

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

fa
il
u
re

d
ia
g
n
o
si
s

to
d
ri
v
e

a
d
a
p
ta
ti
o
n

P
o
li
cy

-b
a
se
d

a
d
a
p
ta
-

ti
o
n
[4
8
]

cu
st
o
m
iz
e

m
o
b
il
e

a
p
p
li
ca
ti
o
n

in
st
a
n
ce

co
n
te
x
tu
a
l

ch
a
n
g
es

S
C
/
S
I
re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d

(d
o
m
a
in
-

sp
ec
ifi
c

p
o
li
ci
es
)

st
a
ti
c,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

d
es
ig
n
-t
im

e
fr
a
m
ew

o
rk

fo
r

co
n
te
x
t
p
o
li
cy

m
o
d
el
in
g
,

ru
n
-t
im

e
m
id
d
le
w
a
re

M
o
d
el
-b
a
se
d

a
d
a
p
ta
-

ti
o
n
[3
1
]

cu
st
o
m
iz
e

se
rv
ic
e

co
m
p
o
si
-

ti
o
n

b
eh

av
io
ra
l

re
co
n
fi
g
u
ra
-

ti
o
n

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

a
ct
io
n
-b
a
se
d

st
a
ti
c,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

u
se

o
f
g
ra
p
h

re
w
ri
ti
n
g

p
o
li
ci
es

D
y
S
O
A

[4
9
]

co
rr
ec
t

co
m
p
o
si
ti
o
n

in
st
a
n
ce

Q
o
S

d
eg
ra
d
e

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

ex
p
li
ci
t

va
ri
a
b
il
it
y,

fl
ow

a
ct
io
n
s

st
a
ti
c,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

in
te
g
ra
te
d
in
to

ex
ec
u
ti
o
n

p
la
tf
o
rm

S
P
L
E
-b
a
se
d

a
d
a
p
ta
-

ti
o
n
[2
9
]

cu
st
o
m
iz
e

co
m
p
o
si
ti
o
n

in
st
a
n
ce

w
o
rk
fl
ow

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

ex
p
li
ci
t

va
ri
a
b
il
it
y

st
a
ti
c,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

ex
te
n
si
o
n
o
f

B
P
E
L
/
W

S
D
L

fo
r
va

ri
a
b
il
it
y

G
o
a
l/
V
a
ri
-

a
b
il
it
y

m
o
d
el
in
g
[1
6
]

cu
st
o
m
iz
e

co
m
p
o
si
ti
o
n

in
st
a
n
ce

ch
a
n
g
in
g

re
q
u
ir
e-

m
en

ts

S
C

re
a
ct
iv
e,

fo
rw

a
rd
,

ce
n
tr
a
li
ze
d

ex
p
li
ci
t

va
ri
a
b
il
it
y,

i*
-b
a
se
d
g
o
a
l/

va
ri
a
b
il
it
y

m
o
d
el
in
g

d
y
n
a
m
ic
,

a
u
to
m
a
ti
c
a
u
to
n
o
m
o
u
s

in
te
g
ra
te
d
in
to

ex
ec
u
ti
o
n

p
la
tf
o
rm

5 Adaptation of Service-Based Systems 149

5.4 Related Works on Adaptation in Software Systems

Due to the constant changes in information systems, the adaptability has been
considered an important challenge in different types of information system dis-
ciplines. Here we discuss and demonstrate some of the most active research
areas in this line, namely the adaptation in component based software engi-
neering and in software product line engineering.

5.4.1 Adaptation in Component-Based Systems

The problem of building adaptive computing systems has gained dramatically
more interest over recent years. The emergence of ubiquitous computing and
the growing demand for autonomic computing are the main factors entailing
this interest [39]. Ubiquitous computing aims to remove traditional bound-
aries for how, when, and where humans and computers interact. To do this,
computer systems must adapt to its environment of computing platforms and
communication networks. Autonomic computing refers to the ability of a sys-
tem to manage and protect their own resources. Such systems require run-time
adaptation in order to survive failures, network outages, and security attacks.

In [34] the authors identify the following groups of reasons for software
system adaptation: corrective (remove faulty behavior), adaptive (response to
changes affecting the context), extending (extend the system with new func-
tionalities), and perfective (improve characteristics of an application). The
authors also classify the adaptation into the following classes: architectural
adaptation (affect the structure of the system), implementation adaptation
(affect implementation of the components without changing the interface), in-
terface adaptation (affect the interfaces of the components), geography adap-
tation (affect distribution of the components over the network). Orthogonally
to this, adaptation approaches in [39] are classified into parameter adaptation,
where the variables that determine the system behavior are affected, and the
composition adaptation, where the structural parts of the system are changed.

The rapid growth in the area of adaptation in software engineering is ex-
plained by a set of technological reasons [39]. Separation of concerns, compu-
tational reflection, and component-based design provided programmers with
the tools to construct adaptable system in a systematic way, while widespread
use of middleware provided a place to locate and enable adaptive behavior.
These technologies, combined in different ways, lead to the development of a
wide range of application adaptation approaches and principles [39, 3].

Separation of concerns provides a way to separate development of the
functionality and the crosscutting concerns (e.g., quality of service, security).
This principle has become one of the cornerstone principle in software en-
gineering, and has lead to a wide spread od aspect-oriented programming
(AOP) approach [35]. AOP supports adaptation in several ways. First, many
adaptations are relative to some crosscutting concern (e.g., quality-of-service)

150 R. Kazhamiakin et al.

and therefore AOP may be used to define and implement this concern. Sec-
ond, it permits delaying the modification of the system to run-time, making
adaptation more flexible and dynamic.

Computational reflection refers to the ability of a program to reason about,
and possibly alter, its own behavior. Reflection enables a system to reveal
(selected) details of its implementation without compromising portability. It
comprises two activities: introspection (enables an application to observe its
own behavior) and intercession (enables a system or application to act on
the observations and modify its own behavior). Together with AOP, it allows
for observing and reasoning on the system behavior, enabling its run-time
modification.

Component-based design comes with well-defined interfaces, providing a
way to develop separately providers and consumers independently, and, there-
fore, promoting component re-use. We remark that this technology was fur-
ther advanced by the service-oriented architecture providing even better de-
coupling, interoperability and re-use of the underlying services (components).

Middleware is a set of services that separate applications from operating
systems and protocols. These services include high-level programming abstrac-
tions, different aspects (QoS, security, fault tolerance, persistence, transaction-
ality), and specific functionalities. Since middleware provides an abstraction
of many adaptation-related concerns, it serves as good place for implementing
adaptation mechanisms.

The above technologies and principles has many similarities with the
service-oriented architectures and technologies for the SBS development. Not
surprisingly, a wide range of adaptation approaches for SBSs adopt similar
concepts as the ones for component-based software systems, such as aspect-
oriented approaches, use of middleware for realizing adaptation, etc.

5.4.2 Adaptation in Software Product Line Engineering

Software product line engineering (SPLE [15, 36]) has proven to be the para-
digm for developing a diversity of similar software applications and software-
intensive systems at low costs, in short time, and with high quality. Numerous
reports document the significant achievements of introducing software product
lines in industry [36].Key to SPLE is to define and realize the commonality
and the variability of the product line and its applications. The commonalities
comprise the artifacts and the properties that are shared by all product line
applications. The variability defines how the various applications derived from
the product line can vary. A prerequisite for managing software product line
variability is the explicit documentation of the variability.

A Framework for Software Product Line Engineering

The SPLE framework depicted in Figure5.4 illustrates the two product line
engineering processes: domain engineering and application engineering. The

5 Adaptation of Service-Based Systems 151

Fig. 5.4. SPLE Framework (Simplified Version of the One in [36])

framework has been developed in the context of European SPLE research
projects ESAPS, CAFE, and FAMILIES [51]. The domain engineering process
is responsible for defining the commonality and the variability of the applica-
tions of the product line [19]. Furthermore, the do-main artifacts are realized
which implement the commonalities and provide the variability required to
derive the set of intended applications. The domain artifacts constitute the
product line platform and include, among others, requirements models (e.g.,
use case diagrams), architectural models (e.g., component or class diagrams)
and test models. The application engineering process is responsible for deriv-
ing applications from the domain artifacts. Application engineering exploits
the variability of the domain artifacts by binding (resolving) variability ac-
cording to the requirements defined for the particular application.

By splitting the overall development process into do-main engineering and
application engineering a separation of the two concerns building a robust
product line platform and creating individual, customer or market specific
applications is established.

152 R. Kazhamiakin et al.

Fig. 5.5. Variability Model and Relationship to Existing Conceptual Models

Two Approaches for Modelling Variability

To model the variability of a product line, two principle types of approaches
are proposed in the literature. One type of approaches proposes to integrate
variability information into existing models. For example, extensions for UML
models by defining stereotypes for product line variability are proposed (e.g.,
see [26]), or feature models are extended to facilitate the documentation of
variability information (e.g., FORM [32], CBFM [20]). The other type of ap-
proaches proposes employing a dedicated variability model, i.e., those ap-
proaches argue that variability should not be integrated into existing mod-
els, but defined separately. Among, others, the Orthogonal Variability Model
(OVM, [36]) has been proposed for documenting software product line vari-
ability in a dedicated model. In a dedicated variability model only the vari-
ability of the product line is documented (independent of its realization in
the various product line artifacts). The variability elements (Figure5.5)in a
dedicated variability model are, in addition, related to the elements in the
traditional conceptual models which “realize” the variability defined by the
variability model.

In a dedicated variability model, at least the following information is doc-
umented:

• Variation Point (“what does vary?”): This documents a variable item or
a variable property of an item.

• Variant (“how does it vary?”): This documents the possible instances of a
variation point.

• Variability Constraints: There can be constraints on variability, because
product management decided, e.g., not to offer certain combinations of
variants in an application or because the realization of one variant requires
another variant to be present.

5 Adaptation of Service-Based Systems 153

References

1. DOPLER: An Adaptable Tool Suite for Product Line Engineering, volume 2.
IEEE Computer Society (2007)

2. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Fa-
cilitating flexibility and dynamic exception handling in workflows through
worklets. In: Short Paper Proceedings at (CAiSE), Porto, Portugal. CEUR
Workshop Proc., vol. 161 (2005)

3. Aksit, M., Choukair, Z.: Dynamic, Adaptive and Reconfigurable Systems
Overview and Prospective Vision. In: ICDCS Workshops, p. 84 (2003)

4. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Frame-
work for Executing Adaptive Web-Service Processes. IEEE Software 24(6),
39–46 (2007)

5. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Trans. Software Eng. 33(6), 369–384 (2007)

6. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dy-
namo and the JBoss rule engine. In: ESSPE ’07: International workshop on
Engineering of software services for pervasive environments, pp. 11–20 (2007)

7. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Service Compositions.
In: First Conference on the PRInciples of Software Engineering (PRISE’04),
pp. 11–20 (2004)

8. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Devel-
oping Adapters for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

9. Bianculli, D., Jurca, R., Binder, W., Ghezzi, C., Faltings, B.V.: Automated
Dynamic Maintenance of Composite Services Based on Service Reputation. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 449–455. Springer, Heidelberg (2007)

10. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer,
Heidelberg (2006)

11. Canfora, G., di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning
of Composite Web Services. In: ICWS 2005 Proc., Orlando (2005)

12. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl.
Eng. 24(3), 211–238 (1998)

13. Cavallaro, L., Di Nitto, E.: An Approach to Adapt Service Requests to Actual
Service Interfaces. In: SEAMS ’08: Proceedings of the 2008 international work-
shop on Software engineering for adaptive and self-managing systems, New
York, NY, USA, pp. 129–136. ACM Press (2008)

14. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in
Web Service Composition and Execution. In: International Conference on Web
Services - ICWS, pp. 549–557 (2006)

15. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2001)

16. Clotet, R., Dhungana, D., Franch, X., Grünbacher, P., Lôpez, L., Marco, J.,
Seyff, N.: Dealing with Changes in Service-Oriented Computing Through In-
tegrated Goal and Variability Modelling. In: Proceedings 2nd International
Workshop on VaMoS (2008)

154 R. Kazhamiakin et al.

17. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execu-
tion Environment Supporting Dynamic Changes Disciplined Through Rules.
In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202.
Springer, Heidelberg (2006)

18. Console, L., Fugini, M.G.: The WS-Diamond Team:WS-DIAMOND: an ap-
proach to Web Services - DIAgnosability, MONitoring and Diagnosis. In: e-
Challenges Conf. 2007, The Hague (Oct. 2007)

19. Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software
Engineering. IEEE Software 15(6), 37–45 (1998)

20. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Fea-
ture Models and Their Specialization. Software Process: Improvement and
Practice 10(1), 7–29 (2005)

21. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

22. Eder, J., Liebhart, W.: Workflow recovery. In: Proc. of IFCIS Int. Conf. on
Cooperative Information Systems (CoopIS), Brussels, Belgium, pp. 124–134.
IEEE Computer Society Press, Los Alamitos (1996)

23. Erradi, A., Maheshwari, P., Tosic, V.: Policy-driven middleware for self-
adaptation of web services compositions. In: van Steen, M., Henning, M. (eds.)
Middleware 2006. LNCS, vol. 4290, pp. 62–80. Springer, Heidelberg (2006)

24. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. In: Thalheim,
B. (ed.) ER 1996. LNCS, vol. 1157, Springer, Heidelberg (1996)

25. Gao, T., Ma, H., Yen, I.-L., Bastani, F., Tsai, W.T.: Toward QoS analysis
of adaptive service-oriented architecture. In: Toward QoS analysis of adaptive
service-oriented architecture (SOSE), pp. 219–226 (2005)

26. Gomaa, H., Barber, M.: Designing Software Product Lines With UML: From
Use Cases to Pattern-Based Software Architectures. Addison-Wesley, Reading
(2004)

27. Hagen, C., Alonso, G.: Exception handling in workflow management systems.
IEEE Trans. Software Eng. 26(10), 943–958 (2000)

28. Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the
Process Lifecycle. In: 10th Int’l Conf. on Enterprise Information Systems (2008)

29. Hallsteinsen, S.O., Stav, E., Solberg, A., Floch, J.: Using Product Line Tech-
niques to Build Adaptive Systems. In: SPLC, pp. 141–150 (2006)

30. Hamadi, R., Benatallah, B.: Recovery nets: Towards self-adaptive workflow
systems. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K.
(eds.) WISE 2004. LNCS, vol. 3306, pp. 439–453. Springer, Heidelberg (2004)

31. Illner, S., Pohl, A., Krumm, H., Luck, I., Manka, D., Sparenberg, T.: Auto-
mated runtime management of embedded service systems based on design-time
modeling and model transformation. In: 3rd IEEE International Conference on
Industrial Informatics, pp. 134–139 (2005)

32. Kang, K.C., Kim, S., Lee, J., et al.: FORM: A Feature-oriented Reuse Method
with Domain-specific Reference Architectures. Annals of Software Engineer-
ing 5, 143–168 (1998)

33. Kazhamiakin, R., Metzger, A., Pistore, M.: Towards correctness assurance in
adaptive service-based applications. In: Mähönen, P., Pohl, K., Priol, T. (eds.)
ServiceWave 2008. LNCS, vol. 5377, pp. 25–37. Springer, Heidelberg (2008)

34. Ketfi, A., Belkhatir, N., Cunin, P.-Y.: Dynamic Updating of Component-based
Applications. In: SERP (2002)

5 Adaptation of Service-Based Systems 155

35. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,
J.-M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

36. Bockle, G., Pohl, K., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, New York (2005)

37. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented
framework for service adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 15–26. Springer, Heidelberg (2006)

38. Ly, L.T., Rinderle, S., Dadam, P.: Integration and Verification of Semantic Con-
straints in Adaptive Process Management Systems. Data Knowl. Eng. 64(1),
3–23 (2008)

39. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: A Taxonomy of
Compositional Adaptation. Technical report, Department of Computer Science
and Engineering, Michigan State University (2004)

40. Modafferi, S., Mussi, E., Pernici, B.: Sh-bpel: a self-healing plug-in for ws-
bpel engines. In: Proceedings of the 1st Workshop on Middleware for Service
Oriented Computing, MW4SOC 2006, Melbourne, Australia, November 27 -
December 01, 2006, pp. 48–53 (2006)

41. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW ’07: Proceedings of
the 16th international conference on World Wide Web, pp. 993–1002, New
York, NY, USA, ACM (2007)

42. Di Nitto, E., Di Penta, M., Gambi, A., Ripa, G., Villani, M.L.: Negotiation of
Service Level Agreements: An Architecture and a Search-Based Approach. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 295–306. Springer, Heidelberg (2007)

43. Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto,
E.: WS Binder: a Framework to Enable Dynamic Binding of Composite Web
Services. In: SOSE ’06: Proceedings of the 2006 international workshop on
Service-oriented software engineering, New York, NY, USA, pp. 74–80. ACM
(2006)

44. Pernici, B., Rosati, A.M.: Automatic Learning of Repair Strategies for Web
Services. In: Proceedings of the Fifth European Conference on Web Services
(ECOWS 2007), November 26 - 28, 2007, pp. 119–128 (2007)

45. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Work-
flows Without Loosing Control. JIIS, 93 – 129 (1998)

46. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process manage-
ment with ADEPT2. In: Proc. of Int. Conf. on Data Engineering ICDE, pp.
1113–1114, Tokyo, Japan (2005)

47. Rinderle, S., Reichert, M.: A formal framework for adaptive access control
models. J. Data Semantics 9, 82–112 (2007)

48. Rukzio, E., Siorpaes, S., Falke, O., Hussmann, H.: Policy based adaptive ser-
vices for mobile commerce. In: WMCS ’05: Proceedings of the Second IEEE
International Workshop on Mobile Commerce and Services, pp. 183–192, Wash-
ington, DC, USA, IEEE Computer Society (2005)

49. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making service sys-
tems self-adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 255–268. Springer, Heidelberg (2005)

156 R. Kazhamiakin et al.

50. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A Service Discovery Framework
for Service Centric Systems. In: Proceedings of Service Computing Conference,
SCC (2005)

51. van der Linden, F.: Software Product Families in Europe: The Esaps & Café
Projects. IEEE Software 19(4), 41–49 (2002)

52. Verma, K., Akkiraju, R., Goodwin, R., Doshi, P., Lee, J.: On accommodating
inter service dependencies in web process flow composition. In: Proc. of Int.
Semantic Web Services Symposium, AAAI spring symposium series, Palo Alto
(CA) USA (2004)

53. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S
Approach for Configuring and Executing Dynamic Web Processes. Technical
report (2005)

54. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol Mediation for Adapta-
tion in Semantic Web Services. In: 2nd European Semantic Web Conference,
pp. 635–649 (2006)

55. Wu, Y., Doshi, P.: Regret-Based Decentralized Adaptation of Web Processes
with Coordination Constraint. In: Proceedings of Service Computing Confer-
ence, SCC (2007)

56. Xiong, P.C., Fan, Y.S., Zhou, M.C.: Petri net-based Approach to QoS-aware
Configuration for WS. In: IEEE International Conference on Systems, Man
and Cybernetics, pp. 1286–1291 (2007)

57. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Trans. on Software Engineer-
ing 30(5) (2004)

6

Modeling and Negotiating Service Quality

Salima Benbernou1, Ivona Brandic2, Cinzia Cappiello3, Manuel Carro4,
Marco Comuzzi3, Attila Kertész5, Kyriakos Kritikos3, Michael Parkin6,
Barbara Pernici , and Pierluigi Plebani3

1 Université Claude Bernard Lyon 1, France
2 Technische Universität Wien, Vienna, Austria
3 Politecnico di Milano, Italy
4 Universidad Politécnica de Madrid, Spain
5 MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,
Hungary

6 Tilburg University, The Netherlands

Chapter Overview. In this chapter the research problems of specifying and nego-
tiating QoS and its corresponding quality documents are analyzed. For this reason,
this chapter is separated into two main sections, Section 6.1 and 6.2, with each
dedicated to one of the two problems, i.e., QoS specification and negotiation, re-
spectively. Each section has a similar structure: they first introduce the problem
and then, in the remaining subsections, review related work. Finally, the chapter
ends with Section 6.3, which identifies research gaps and presents potential research
challenges in QoS modelling, specification and negotiation.

6.1 QoS Specification

The Quality of Service (QoS) of a service is a set of quality attributes that
indicate the service’s ability to satisfy a stated or implied requirement in an
end-to-end fashion [55]. This set of quality attributes not only characterizes
the service but also any entity used in the path between the service and its
client. Such an entity may exist in any of the three possible service technology
layers described in Chapter 1. Thus, different QoS attributes may be used to
define the QoS of a service or service-based application in the application,
service, and infrastructure layers.

In the literature two main research approaches can be identified for specify-
ing QoS attributes: QoS models and Quality Specification Formalisms (QSFs).
Section 6.1.1 analyzes which are the main QoS artifacts for services which in-
clude the QoS models and the QSFs. Several of these QoS models and QSFs
have been proposed. Section 6.1.2 analyzes the general content of QoS mod-
els and reviews the most representative QoS models proposed. Section 6.1.3
reviews proposals for QSFs from academia and industry.

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 157–208, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

3

The original version of this chapter was revised: The affiliation of Barbara Pernici was corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-642-17599-2_10

https://doi.org/10.1007/978-3-642-17599-2_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-642-17599-2_6&domain=pdf

158 S. Benbernou et al.

Quality Documents:

QoS Models, QSDs, SLAs

QoS Meta-model / Language Q
o
S

M
a
n
a
g
e
m

e
n
t

defines

based on

manages

Fig. 6.1. QoS Artifacts

6.1.1 Main QoS Artifacts

In a Service Oriented Architecture (SOA), service providers need to charac-
terize their services to define both the offered functionalities and the offered
quality. At the same time, users not only express their requirements by listing
the desired functionalities, but also define a minimum level of quality that the
service must ensure. The main issue here is the subjectiveness ‘quality’: the
quality of a service from the provider’s perspective may be different than the
quality experienced by the user. At the same time, the same quality level might
be sufficient for a given user and not enough for another one. Thus, an effective
quality of service definition must mediate between the intrinsic subjectiveness
of quality definition and the objectiveness required whenever we have to com-
pare different standpoints. From the taxonomy proposed by Sabata et al. [88],
Figure 6.1 shows the artifacts required to define and manage QoS for services.
These artifacts are distinguished between Quality Documents, Quality Speci-
fication Formalisms, and QoS management. In the following, we analyze the
content and purpose of these artifacts.

QoS models, Quality-Based Service Descriptions (QSDs) [10] and Service
Level Agreements (SLAs) are classified under the term quality document. Each
of these documents focuses on a different aspect of QoS expression usually
with a different granularity of information. A QoS model is a taxonomy or
categorization of QoS attributes. QSDs express service quality capabilities
or requirements in the form of a set of quality constraints that involve QoS
attribute and metrics. QSDs are used during service advertisement and dis-
covery, SLAs are produced after service negotiation and express the agreed
service quality level between the service provider and requester defined again
as a set of quality constraints. Moreover, they contain other information that
is used for supporting the service quality assurance activity.

Both QSDs and SLAs use or reference QoS models in order to select those
QoS attributes and metrics that will be used in their quality constraints. In
other words, QoS models provide the concrete semantics of the quality terms
that may be used in QSDs and SLAs [10]. Thus, QoS models constitute the
basis for expressing QoS. For this reason, we regard them as one of the most

6 Modeling and Negotiating Service Quality 159

significant artifacts in QoS models. Indeed, many QoS models have been pro-
posed in the literature (the most representative are reviewed in Section 6.1.2).
However, as QoS models are usually tailored for specific scenarios or appli-
cation domains, their usage is quite limited. Indeed, no standard QoS model
has been yet identified for services. Moreover, the mechanisms used for service
discovery, selection, and negotiation and designed based on a specific service
QoS model are not extensible and have to be re-designed and implemented
each time this QoS model is changed or extended with new QoS aspects.

Knowledge of the QoS offered by a service, in combination with ability to
request a certain level of QoS for a particular service, implies an unavoidable
need for expressing that QoS. However, widely adopted service description
languages (in particular WSDL) do not allow the inclusion of QoS proper-
ties with the functional properties. Before service providers and clients can
make any decision based on quality of a service, both sides have to agree on
a common Quality Specification Formalism, which can be used not only to
describe basic QoS parameters and their possible combinations but also the
provider or requested or finally agreed service quality level. For this reason,
many research works have defined a QSF for specifying QoS attributes and
other QoS concepts and their inter-relationships, stating the necessity to have
a common way for expressing service QoS models. Apart from their ability to
specify QoS models, all QSFs are also able to specify either QSDs or SLAs or
both types of quality documents. By adopting a specific QSF, mechanisms for
service discovery, selection, and negotiation can become more generic as they
can be designed and implemented independently of a particular set of quality
attributes.

Finally, QoS management includes mechanisms needed for supporting
users during those service management activities which are encompassed un-
der the term service provisioning, i.e., service discovery (matchmaking and
selection), service negotiation, and service quality assurance. These mecha-
nisms actually manage the quality documents exchanged by the service users,
i.e., service providers and requesters, and thus support the life-cycle of those
documents. However, as the quality documents themselves existentially de-
pend on the service that they describe, their management mechanisms are
tightly coupled with those of the described service [10]. Indeed, as it is ana-
lyzed in [10], QSDs are used and managed during service advertisement and
discovery, while SLAs and their respective templates are used also during
service quality assurance.

In the remainder of this chapter we will review the ability of QoS models
and QSFs to define QoS for a service, using a different perspective for each of
the two quality artifacts. In addition, we will review the ability of the QSFs
to support a subset of the service provisioning activities, i.e., those of service
discovery and negotiation. The interested reader is encouraged to read [10]
for a more detailed review of the related work in service quality definition

160 S. Benbernou et al.

that spans the activities of service provisioning and Chapter 7 for a thorough
analysis of related work in service quality assurance.

6.1.2 QoS Taxonomies

In a QoS model, each QoS attribute (i.e., quality characteristic) may belong
to one or more QoS groups (quality dimensions). For example, response time
belongs to the performance QoS group. Apart from the categorization of QoS
attributes, the structure of QoS models may encompass some other informa-
tion. Most QoS models describe technical QoS attributes, i.e., QoS attributes
that characterize the service provisioning and are relevant regardless of the
kind of service and its application domain. For instance, the service avail-
ability is considered an important quality aspect even if we are considering a
travel-reservation service, rather than a bank account service. Few QoS mod-
els describe QoS attributes applicable to a particular application domain, i.e.,
domain-dependent QoS attributes. This is because it is impossible to enumer-
ate all QoS attributes for all application domains. As a result, QoS models
are often extensible to facilitate domain-dependent categorizations of QoS
attributes.

Some QoS models describe if QoS attributes are atomic or composite.
Composite QoS attributes can be computed by evaluating the values of other
attributes. For instance, response time can be computed in terms of execution
time and latency. QoS attributes may also bemeasurable or unmeasurable. Un-
measurable quality attributes represent static information which is qualitative
in nature. For instance, the flexibility QoS attribute can take the following
values {inflexible; flexible; very flexible} which denote the degree to which a
specific service functions correctly in the presence of invalid, incomplete or
conflicting inputs. Measurable QoS attributes are measured with the use of
one or more QoS metrics. The latter are concepts which encompass all mea-
surement details of a QoS attribute, such as measurement units, schedules,
directives, formulas, and values. Very few QoS models can describe the de-
pendencies between QoS attributes. An example of such dependency which is
qualitative in nature is that availability and reliability have “a positive cor-
relation”, i.e, an increase of the one’s value causes an increase to the other’s
value.

In the literature, several research approaches propose a list of quality at-
tributes classified in different ways. For instance, similarly to the ISO 9126
standard which provides a QoS model for software product quality, Som-
merville [96] identifies three main categories of non-functional requirements
— process requirement, product requirements and external requirements —
to cover the whole software life-cycle.

The majority of proposed QoS models for services only describe technical
quality attributes. In the following paragraphs, the most representative QoS
models are reviewed based on their extensiveness, level of detail, and number
of referenced service levels.

6 Modeling and Negotiating Service Quality 161

Liu et al. [63]

The research described in [63] discusses the need for an extensible QoS model
that not only contains general but also domain-specific QoS criteria. It follows
that QoS must be presented to users according to their preferences and users
should express accurately their preferences with the same QoS model without
resorting to complex coding of user-profiles. It also suggests that QoS compu-
tation must be fair and open for providers and requesters. Then it proposes a
QoS model which is not very extensive as it contains a small number of QoS
groups or categories.

Ran [83]

The QoS model in [83] identifies a set of technical quality attributes, grouped
in four main categories (runtime, transaction, configuration management, and
security), that are considered relevant for describing a Web service: i.e, scala-
bility, capacity, performance, reliability, availability, flexibility, exception han-
dling, integrity, regulatory, supported standard, stability, cost, completeness.
This QoS model is very extensive but it defines only QoS attributes that are
relevant at the service level.

Chung et al. [25]

The QoS model proposed in [25] contains 161 attributes and some of them
are presented using the NFR (Non-Functional Requirements) Framework pro-
posed by the same authors. These attributes refer to the accuracy, security,
and performance requirement categories. Thus, this QoS model is not partic-
ularly extensive but it has a great level of detail.

Oasis WSQM [100]

Oasis proposes in its Web Service Quality Model (WSQM) [100] a QoS model
with three interdependent components:

1. Quality Factors: the different attributes, dimensions, and measures of the
quality.

2. Quality Associates: the organizations or people related to inspection, load-
ing, provision, and use of Web services. These associates may be providers,
developers, stakeholders, etc.

3. Quality Activities: the actions which can be taken by the Quality asso-
ciates related to ensuring the stability of the web service, such as (out-
standingly) contracting, but also search, delegation, monitoring, etc.

The overall WSQM is informally defined through the composition of sev-
eral quality dimensions, namely the business value quality, the service level
measurement quality, the interoperability quality, the business processing qual-
ity, the manageability quality and the security quality. Each quality dimen-
sion is decomposed into a set of quality sub-factors and associated quality
contracts, quality associates, and (in some cases) standards are identified.

162 S. Benbernou et al.

Table 6.1. Some Service Level Measurement Quality Factors for WSQM

Factor Definition

Availability 1− Down time
Unit time

Successability Number of response messages
Number of request messages

Accessability Number of acknowledgements received
Number of request messages

Max. Throughput maxCompleted requests
Unit time

Business Value Quality This measures the value that a Web service usage
brings to the business itself. It is dependent on the type of business, and
is decomposed into the following sub-factors: business suitability, business
effect, and business recognition level. Suggestions of how to calculate these
sub-factors and how to compose them together, are given in the WSQM.

Service Level Measurement Quality This deals with the user’s percep-
tion of the Web service and is divided into performance (i.e., response
time, maximum throughput), stability (i.e., availability, successability and
accessibility). Numerical formulas are given to calculate these indicators
(see Table 6.1).

Interoperability Quality This measures the degree of compatibility of a
Web service with established standards, such as SOAP,WSDL, and UDDI.

Business Processing Quality This factor is a measure of the swiftness and
accuracy with which a business process is executed. It is divided into
three sub-factors: reliability of messaging (which identifies when unreliable
communications happen and when certain properties of the messaging
system must be guaranteed), transactionality (i.e., ACID properties) and
collaborability (i.e., the ability to include execution of distributed Web
services within a business process).

Manageability Quality This factor measures the quality of the Web service
from the viewpoint of the maintainer or developer. It includes subfactors
such as introspectability, controlability, and notifiability of the Web service
and of the platform, measured by both taking into account the possibil-
ity that these sub-factors can be achieved and whether they are actually
achieved. These sub-factors are, clearly, more closely related with other
classic notions of software quality.

Security Quality This final factor deals with the ability to prevent or avoid
unauthorized access to the system and to protect the integrity of data.
Security is subclassified into several sub-factors including (data confiden-
tiality, data integrity, authentication, access control, non-repudiation, ac-
cessibility, audit trail and privacy), and is defined at two different levels:
the transport and the message level (e.g., use of TLS or IPSEC to ensure
user authentication at the transport level, or SOAP messages signed with

6 Modeling and Negotiating Service Quality 163

XML-DISG at the message level). Several security profiles are defined
depending on which quality factors are guaranteed by a Web service.

WSQM is a broad model, tackling QoS from the point of view of several
parties. In addition, it defines QoS attributes at all possible service levels.
However, as a result of the breadth of the approach, there is a lack of well-
defined indicators for the objective comparison of quality levels.

Data Quality

In case where the final product of a service is data, previous work in informa-
tion quality provides a rich set of approaches for identifying and classifying
quality attributes. Data quality can be measured along the following dimen-
sions that contain various QoS attributes [85, 98]:

• Data views: relevance, granularity and level of detail.
• Data values: accuracy, consistency, currency and completeness.
• Data presentation: format and ease of interpretation.
• General dimensions: privacy, security, trust and ownership.

6.1.3 Formalisms for Modeling and Specifying QoS Characteristics

In the presence of multiple services with overlapping or identical functional-
ity, service requesters need objective QoS criteria to distinguish one service
from another. It is argued in [63] that it is not practical to come up with a
standard QoS model that can be used for all services in all domains. This is be-
cause QoS is a broad concept and can contain a number of context-dependent
non-functional properties such as privacy, reputation and usability. Moreover,
when evaluating QoS of Web services, domain specific criteria must be taken
into consideration. For example, in the domain of phone service provisioning,
the penalty rate for early termination of a contract and compensation for
non-service, offered in the service level agreement are important QoS criteria
in that domain. Therefore, an extensible QoS model must be proposed that
includes both the generic and domain specific criteria. In addition, new do-
main specific criteria should be added and used to evaluate the QoS of Web
services without changing the underlying computation (i.e., matchmaking and
ranking) model.

Last but not least, the semantics of QoS attributes/concepts must be de-
scribed in order to ensure that both Web service provider and consumer can
‘talk’ about the same QoS attribute/concept. Sometimes, generic and domain-
dependent QoS attributes with the same name like “availability” may have
different meanings to the parties that describe them (i.e., the network level of
the hosting system or application that implements the service) or they may be
computed differently. As a result, it is important to describe QoS attributes/-
concepts not only syntactically but also semantically in order to have a better
discovery (matchmaking) process with high precision and recall.

164 S. Benbernou et al.

The above problems can be solved with the introduction of QSFs for speci-
fying formal and extensible QoS models. The specified QoS models are able to
provide the concrete semantics of all quality terms, i.e., quality attributes and
metrics, used to specify the quality constraints in QSDs and SLAs. Moreover,
the majority of QSFs define all appropriate concepts that are needed in or-
der to fully construct QSDs, SLAs, or both types of quality documents. Thus,
QSFs constitute the cornerstone of quality documents and QoS specifications.

The main approaches proposed in the literature can be distinguished be-
tween: a) pure QoS meta-models, b) QoS Languages, and c) QoS ontologies.
Pure QoS meta-models use a model-based approach to represent the charac-
teristics of quality attributes or dimensions and to relate them to services and
to their use by interested parties. Several models have been proposed as a
basis for QoS metamodeling, including UML and Object-Role Model (ORM).
The characteristic of these approaches is that they provide a high level, semi-
formal description of quality, focusing on syntactic aspects and leaving the
semantic aspects informally defined.

QoS languages are either text-based or use XML in order to describe QoS
models, QSDs, or SLAs. In the second case, the XML Schema is used to pro-
vide rules on how the language constructs can be combined and structured.
QoS languages are usually designed using a specific QoS meta-model which
is either abstract or is specified informally in an XML Schema. The charac-
teristic of the QoS languages is that they provide a high-level, semi-formal
(XML-based) or informal (text-based) description of quality, focusing more
on syntactic aspects.

Ontologies provide a formal, syntactic and semantic description model of
concepts, properties and relationships between concepts. They give meaning
to concepts like QoS attributes, QoS offers, domains, services so they are
human-understandable, machine-interpretable and provide the means for in-
teroperability. Moreover, they are extensible as new concepts, properties or re-
lationships can be added to an ontology. In addition, Semantic Web techniques
can be used for reasoning about concepts or for resolving or mapping between
ontologies. These techniques can lead to syntactic and semantic matching of
ontological concepts and enforcement of class and property constraints (e.g.,
type checking or cardinality constraints). Therefore, by providing semantic
description of concepts and by supporting reasoning mechanisms, ontologies
cater for better discovery process with high precision and recall. Last but not
least, ontologies can help specialized agents/brokers in performing complex
reasoning tasks like Web service discovery or mediation. For these reasons,
many ontology-based approaches have been proposed and implemented for
specifying QoS and there is a trend in using ontologies for specifying QoS in
the recent years. However, most of the ontology-based approaches focus only
on the support of QSDs, while only one — [74] — goes one step further and
provides a semantic language for Web service agreements.

6 Modeling and Negotiating Service Quality 165

Based on the above categorization of QSFs, the following subsections re-
view the related work in each category according to the criteria defined in [55].
These criteria include:

• An extensible and formal semantic QoS model.
• Standards compliance.
• Syntactical separation of QoS-based and functional parts of service speci-

fication.
• Support refinement of QoS specifications and their constructs.
• Allow both provider and requester QoS specification.
• Allow a fine-grained QoS specification.
• Extensible and formal QoS metrics model.
• Allow classes of service specification.
• Use in frameworks or tools.

Pure QoS Meta-models

Non-functional Service Properties Based on the Object-Role Modeling
(ORM) [80]

O’Sullivan et al. [80] propose a formal description of non-functional service
properties based on the Object-Role Modeling (ORM). Using this approach,
the authors define foundational concepts as: service provider, temporal model,
locative model, service availability, obligations, price, payments, discounts,
penalties, rights, language, trust, quality, security. Concerning service quality,
Figure 6.2 shows the definition of a QoS dimension and the relationships with
the other concepts introduced in their work.

Fig. 6.2. Service Quality

166 S. Benbernou et al.

QoS Modeling Language [40]

QML (QoS Modeling Language) [40] is another research effort for the specifi-
cation of a QoS meta-model. It was designed according to some basic principles
for the support of QoS specification. It contains the following constructs:

• Contract type: definition of a QoS dimension that includes definitions for
the metrics of this QoS dimension.

• Contract: gives particular values/constraints to the fields of a contract
type. This is where the idea of contract inheritance is implemented.

• Profile: one service is associated with many (QoS) profiles. Each profile
consists of one list of contracts/requirements.

Each contract may describe constraints for a QoS dimension either for the
whole service or just for one service operation. But for every QoS dimension,
at most one constraint will be valid for one operation of the functional inter-
face of the service. One (QoS) Service Profile P is matched with one client
profile Q if all contracts of P conform to all the contracts of Q. Contract
conformance is translated into constraint conformance. Considering its ex-
pressivity, QML conforms to many of the requirements set in [55] that were
previously referenced in this section and was initially designed based on an ab-
stract meta-model it is now specified in UML. However, the major drawback
with QML is that there is no implemented framework supporting it.

OMG Metamodel to Define Quality of Web Services [101]

In [101] the OMG group proposes a UML profile (i.e., a definition of entities
and their relations) encompassing generic QoS concepts, which reflect non-
functional characteristics that can be uniformly represented. This model is
intended to represent the concepts contained in a metamodel (an abstract
description) that defines what QoS is and how it can be used. This metamodel
(which is in itself described using UML) is decomposed into:

QoS characteristics This sub-metamodel includes the names (construc-
tors) of the non-functional characteristics/attributes in the QoS model
(e.g., latency, throughput); the dimensions in which each characteristic is
measured (e.g.: reliability can be measured in MTBF, time to repair, etc),
as well as the direction of order in the domain, its units, associated statis-
tics, etc.; the possibility of grouping several characteristics (e.g., the per-
formance category); the description of the values that quantifiable/mea-
surable QoS characteristics can take, and others.

QoS constraints This makes it possible to express the limits the values that
some QoS characteristics can take, and also to specify whether these limits
are offered (guaranteed by a provider) or requested (needed by a client).
UML classes make it possible to represent a QoS contract which links
offered and requested QoS levels between two participants, including the
degree to which the constraints are to be satisfied (e.g., Guaranteed or
Best-Efforts) and their extent (e.g., end-to-end). Note that constraints
can be composed of other constraints.

6 Modeling and Negotiating Service Quality 167

QoS Level This defines the different modes in which a service can function.
Depending on, e.g., available resources, a different execution level can be
jumped to if continuing the execution in the current one is not possible.
This part of the meta-model defines the abstract classes to represent levels,
transitions between them, and when those transitions have to take place.

The metamodel is complemented with a profile that extends it in a constrained
way, with a catalog (i.e., a QoS model) of some categories which group char-
acteristics/attributes (e.g., performance characteristics, security characteris-
tics), expressed through UML models. This proposal does not provide any
guidance of how to calculate QoS for a given service. However, it does provide
a structured representation of the different traits needed to state or calculate
the QoS of a service and the relationships between these traits.

QoS Languages

UDDI Approaches [84]

The UDDI7 Web service standard is dedicated to the description and discovery
of Web services. However, UDDI is based on the tModel concept which leads
to purely syntactic queries. In addition, there is no QoS description of offers
or demands in the UDDI description model.

In [84], an extension to UDDI is proposed. A new data structure type —
called qualityInformation — is added to the UDDI model that represents de-
scription of QoS information about a particular Wb Service. This proposed
data structure uses the businessService and bindingTemplate data structure
types to provide the binding information for a particular service. The quali-
tyInformation data structure type also refers to tModels as references to QoS
taxonomies which also need to be defined in the extended UDDI registry.
These taxonomies define the new terminologies or concepts about the pro-
posed QoS information, which do not exist in existing UDDI registries.

The main disadvantage of this approach is that there is no description of
the contents of the qualityInformation data structure type and its referenced
tModels. In addition, it relies on the UDDI technology and UDDI’s tModel so
can be used only for syntactic matchmaking of QoS terms and specifications.

Modeling Web Service Reputation [67]

In [67], an architecture and model for Web service reputation is presented. It
is proposed that for successful description of QoS, three challenges must be
dealt with: a) definition of a QoS conceptual model for Web service attribute;
b) semantics to QoS service attributes must be added; and c) reputations
should consider time and history of endorsements and ratings.

7 http://www.uddi.org/pubs/uddi_v3.htm

http://www.uddi.org/pubs/uddi_v3.htm

168 S. Benbernou et al.

Based on the above requirements and challenges, a conceptual model of
Web service reputation is proposed which is used for the calculation of a
Web service reputation and is influenced by the following factors: a) relative
weights given to QoS service attributes by the requesting user; b) QoS at-
tribute aggregation algorithm for each QoS attribute; c) the set of endorsers
of the service and the list of trusted endorsers of the user; d) the history of the
service; and e) smoothing the rating so older ratings matter less than newer
ratings.

The suggested conceptual model includes a model of QoS attributes. In
this model, for each attribute the following aspects are defined: a) its type
and allowed values; b) the domains it belongs to, along with a weight of
this attribute in relation to the enclosing domain and user preferences; c)
the characteristic function from attribute values to ratings; and d) the time
characteristics of the values of this attribute.

The main disadvantages of this work are the following. First, the repu-
tation of a Web service is calculated and not its QoS (we believe reputation
should be considered as another QoS attribute). Second, there is no explicit
clarification of how the reputation of a Web service is calculated. Third, con-
cepts like QoS constraints, QoS offers and demands are not modeled. Fourth,
the QoS metrics conceptual model is limited [103].

WSDL Extension for Constraint Specification [29]

In [29], there is an extension to WSDL that allows the construction of con-
straint specifications for Web services. By using these constructs, a service
provider can specify meaningful attributes for characterizing a Web service
and its operations. Attribute and inter-attribute constraints can be explic-
itly defined. In addition, a constraint satisfaction processor was developed for
matching the requirements given in a service request against the constraints
of registered services in the service discovery process. This processor and some
additional components are integrated with the IBM’s UDDI registry to form
a constraint-based broker. The drawbacks of this approach are the following:
a) the QoS-related language constructs/concepts are not rich enough as they
do not cover every possible aspect of QoS; b) the semantics of QoS metrics
and of other entities are missing; and c) the constraint specification language
is not rich enough as it only allows unary attribute constraints and simple
inter-attribute constraints of the form “if A then B”. This language also does
not include linear and non-linear attribute functions.

QRL[27]

QRL [27] is a simple but powerful text-based language used mostly to describe
complex constraints between QoS metrics and to analyze how the assessment
of QoS metrics will take place based on their values or range of values. Its main
highlights are: a) both QoS offers and demands contain not only constraints
about their capabilities but also requirement constraints on the capabilities

6 Modeling and Negotiating Service Quality 169

of the other party, and it follows a symmetric approach of QoS-based Web
service description for both providers and requesters; b) the QoS demand has
a specific part that realizes the specification of the utility function of a QoS
metric so the selection part of the Web service discovery process is easier
to implement; and c) it relies on the powerful OPL8 language for describing
mathematical or constraint programming problems.

Its main drawbacks are: a) the language is not XML based, and its full
specification is not given; b) it is not particularly expressive; c) QoS param-
eters and their metrics are described in a single common text-based catalog
which is not easily maintained; and d) it is transformed to OPL so relies on
the OPL language and its specific capabilities.

HP Language to Specify Service Level Agreements [89]

HP Labs have devised a language to specify SLAs in a flexible and extensible
way [89]. Their proposal focuses on the ability to express QoS constraints and
takes into account they may be seen from several points of view:

• When should a service check for SLA conformance? (e.g., after every
invocation or as average of n invocations).

• Which inputs are necessary for checking SLA conformance?
• Where is the conformance monitored? (e.g., at the provider or at the

client).
• What factors are monitored and how are they measured?

Within these points of view, this proposal is somewhat better suited for time-
related constraints, than for other interesting kinds of constraints. Table 6.2
shows an abstract syntax for this SLA language. Clause contains the exact
information regarding the expected performance. measuredItem defines what
is being measured (e.g., messages, operations, ports, etc.); evalWhen specifies
when it has to be measured; evalOn specifies the range of data on which the
evaluation takes place (e.g., delivery time of a message, or average over some
time span); evalFunc is the function which is applied to the data to obtain
the final QoS evaluation; finally, evalAction is the operation to be executed
upon measurement (which could take, for example, corrective actions).
The concrete syntax used in the specification is specified through an XML
schema.

IBM WSLA [51]

IBM provides a generic SLA framework [51] on top of which different specific
QoS models and SLAs can be built. As such, this framework is rich, trying to
provide basic blocks to specify metrics, constraints, SLA parameters, etc. The
framework also makes it possible to delegate part of the SLA enforcement to
third parties and aims at achieving seamless integration with state-of-the-art

8 http://www.ilog.com/products/oplstudio/

http://www.ilog.com/products/oplstudio/

170 S. Benbernou et al.

Table 6.2. Abstract Scheme of the SLA Specification Proposed by HP Labs

SLA = Dateconstraint Parties SLO*

Dateconstraint = Startdate Enddate Nextevaldate

SLO = Daytimeconstraint Clause*

Dateconstraint = Day* Time*

Clause = MeasuredItem EvalWhen EvalOn EvalFunc EvalAction

MeasuredItem = Item*

Item = MeasuredAt ConstructType ConstructRef

e-Commerce systems. Similarly to [89], specifications following the language
of the WSLA framework state what the SLA parameters are, to which service
they are related, how they are computed, and which metrics they are using.
Unlike other proposals, the aim of the framework is to make this as flexible
and customizable as possible.

The SLA definitions are contained in a document which extends the WSDL
document(s) corresponding to the service(s) being monitored. These SLA defi-
nitions can be applied either to separate operations, or refer to the Web service
as a whole – even to compositions of Web services — and cover negotiation,
deployment, SLA measurement and reporting, necessary corrective actions
and termination.

IBM’s WSLA framework has an associated language, WSLA, extensively
specified both in syntax and runtime semantics in [64]. WSLA documents have
three main sections: the Parties section, identifying all the parties taking part
in a SLA; the Service Description, which specifies the characteristics of the
service and its observable parameters; and the Obligations, which defines
guarantees and constraints on SLA parameters.

The language itself is XML-based and covers all the concepts in the frame-
work, including, for example, the possibility of defining metrics, where the
party containing the source of the data for the metric can be expressed, the
function to be applied to give the final result (and its units) can be written,
and the metric can be composed of other metrics.

The WSLA monitoring services are automatically configured to enforce an
SLA upon receipt. The SLA management life-cycle of WSLA consists of five
stages:

• Negotiation & Creation: in this stage an agreement between the provider
and the consumer of a service is arranged and signed. An SLA document
is generated.

• SLA Deployment: The SLA document of the previous stage is validated
and distributed to the involved components and parties.

• Measurement and Reporting: In this stage the SLA parameters are com-
puted by retrieving resource metrics from the managed resources and the
measured SLA parameters are compared against the guarantees defined in
the SLA.

6 Modeling and Negotiating Service Quality 171

• Corrective Management Actions: If an SLO has been violated, corrective
actions are carried out. These actions can be the opening of a trouble ticket
or the automatic communication with the management system to solve
potential performance problems. Before all actions regarding the managed
system are executed, the Business Entity of the service provider is con-
sulted to verify if the proposed actions are allowable.

• SLA Termination: The parties of an SLA can negotiate the termination
the same way the establishment is done. Alternatively, an expiration date
can be specified in the SLA.

WS-Policy [8]

IBM’s WS-Policy [8] is an XML-based language and W3C recommendation
which aims at describing models by expressing different types of policies,
through policy assertions, and how they should be combined. The language
design is not made concrete at the level of individual policy assertions, but it
focuses more on the combination of several, possibly nested, policies to gener-
ate more complex policies. Among the combination patterns in the language
we can find patterns for:

• Policy intersection.
• The requirement that a least one out of a non-empty collection of policies

is enforced.
• The requirement for all policies in a non-empty collection of policies to be

enforced.

This language permits referring to policies using an URI, and has also the
notion of “normal form” of policies (since, due to the combination patters
above, several ways of writing the same combination are possible). In order
to have shorter policy expressions, additional attributes are also defined (for
example, to express that a policy is optional). A series of XML transformation
operators are defined so that compactly expressed policies can be transformed
into a normal form, which can then be used to, for example, compare different
policies.

WS-Agreement [112]

The work by the Grid Resource Allocation Agreement Protocol (GRAAP)
Working Group [2] of the Open Grid Forum (OGF) has led to the develop-
ment of WS-Agreement [112], the specification of a simple generic language
and protocol to establish agreements between two parties. It defines a lan-
guage and a protocol to represent the services of providers, create agreements
based on offers and monitor agreement compliance at run-time. The agreement
structure is composed of several distinct parts: Name, Context and Terms of
Agreement. The latter is also divided in service description terms and guaran-
tee terms. Service descriptions terms mainly describe the functionality to be

172 S. Benbernou et al.

delivered under the agreement. The guarantee terms denote the assurance on
service quality for each item mentioned in the service description terms section
of the WS-Agreement. In grid resource management such assurances may be
denoted as a parameter (constant) or bounds (min/max) on the availability of
part or the whole of the resource. In the WS-Agreement, such assurances are
referred to as Service Level Objectives (SLOs); in a domain specific to com-
putation services provision, they are usually expressed as values. Each SLO
may refer to one or more business values, called Business Value Lists (BVLs).
This list expresses different value aspects of an SLO: importance (relative im-
portance of meeting an objective), reward (reward to be assessed for meeting
an objective), penalty (the penalty to be assessed for not meeting an objec-
tive), and preference (a list of fine-granularity business values for different
alternatives, where each alternative refers to a Service Description Term and
its associated utility). An SLO can also have a Qualifying Condition, which
is an optional condition that must be met (when specified) for a guarantee
to be enforced (e.g., on external factors such as time of the day or defining
conditions to be met by service consumers).

Web Service Offerings Language (WSOL) [104, 105]

WSOL [104, 105] (Web Service Offerings Language) is a WSDL-compatible
language to express the QoS that a given service can offer as well as QoS
constraints. Functional, non-functional constraints, access rights, as well as
management statements (management responsibility, prices, monetary penal-
ties) and different reusability constructs can be expressed within WSOL in a
homogenous way that is non-intrusive to the WSLD description, using QoS
constraints. A QoS constraint contains the specification of what QoS metrics
are monitored, as well as when and by what entity, and usually describes QoS
guarantees.

QoS constraints can be grouped in classes of services, termed service of-
ferings (also possible within the meta-model of [101]) which bundle together
related QoS constraints; different classes of QoS can be separately applied to
a single Web service. One advantage in so is that changes in the environment
conditions (due to, e.g., network problems) can be compensated for by rene-
gotiating the QoS with the same service which was being accessed, without
the need to start another search and composition phase — unless, of course,
the alternative service offering is not satisfactory.

The available types of constraints are defined in an XML schema, and these
may usually refer to arithmetic and boolean operations. However, metrics and
measurement units are assumed to be defined in an external ontology. Inter-
estingly enough, WSOL makes it possible to define, besides post-conditions
of the Web service operations, constraints that have to be checked some time
(to be defined) after an operation takes place, periodically, etc.

The (dynamic) relationship between service offerings is not represented in
WSOL. It is, rather, represented in a specific XML format the triple

6 Modeling and Negotiating Service Quality 173

〈ServOff1, ContrState, ServOff2〉
where ServOff1 and ServOff2 are the initial and replacement service of-
ferings and ContrState are the constraint and statements which were not
satisfied by ServOff1.

The shortcomings of this proposal include: a) the lack of integration be-
tween constraint dimensions; b) the need to improve the specification of re-
lationships between service offerings to support both easier and more flexible
specification and dynamic adaptation; c) there is no specification of the QoS
demand of the consumer; and d) the ontologies for metrics have, to the best
of our knowledge, not yet been developed.

QoS Ontologies

Ontologies for QoS [103]

[103] describes the specification of constraints between QoS metrics. In this
work, five ontologies must be developed from which the base ontology is the
metrics ontology. The authors describe the structure and involved elements
in four out of the five ontologies. However, the description is limited to the
requirements for the metrics ontologies and does not propose any specific
ontology. In addition, the requirements specified are incomplete according to
the requirements from [55]. For example, the ‘metric’ class consists only of five
attributes while other important attributes/properties are missing. Another
example states that metrics should be related to each other. However, the
authors do not describe the types of relationships that can be made between
QoS metrics.

OWL-S [99]

The OWL-S [99] ontology is a semantic approach for the description of Web
services. It has many advantages in respect with the other Web service descrip-
tion standards but it does not describe QoS offers or demands. It only contains
an attribute used for rating a Web service. However, as it is an ontological
approach, it can be extended in order to describe QoS offers or demands.

In [117], the DAML-S (OWL-S) Web service description language is ex-
tended to include a QoS specification ontology called DAML-QoS. This is
achieved by the following: a) a ServiceProfile element is associated to many
QoS profiles (service offerings); b) external ontologies in DAML for metrics
and units are referenced or developed; and c) the existence of a BasicQoSPro-
file containing all the basic metrics and ability to inherit/extend this type of
profile to provide constraints and/or include custom-made metrics. DAML-
QoS is supported by an implemented QoS-based Web service discovery frame-
work.

The deficiencies of this research are: a) the proposed ontology is limited,
does not capture many aspects of QoS description and it is not accompanied by

174 S. Benbernou et al.

a QoS model, e.g., describing domain-independent QoS attributes and metrics;
and b) the QoS metrics values are restricted to have the set of natural numbers
as their range for better reasoning support. This approach, however, leads to
imprecision and errors up to one half of measurement unit. Moreover, this
flaw is actually the result of a misuse of the ontology language’s (i.e., OWL’s)
cardinality constraints.

Relations among QoS Attributes [67, 68]

The work analyzed in [68] is a continuation of the work in [67]. The require-
ments of the work in [67] have been translated into an expressive ontology
language. This work’s main highlight is the formalization of relationships be-
tween QoS attributes. When a QoS attribute depends on another then either
value can influence the value of the other with a specified impact or through
changing the values of another attribute. A framework using the ontology to
support dynamic Web services selection is also outlined.

The main drawback of the proposed ontology is the lack of a metric de-
scription model. In addition, this ontology lacks both an openly available
implementation and links to a semantic description Web service language like
OWL-S.

Mapping Requirements from Higher Layers onto the Underlying
Network [102]

The research described in [102] analyzes what must be enclosed into the QoS
information for a Web service request or advertisement with the help of a
QoS ontology. Important elements of this ontology are QoSInfo and QoS-
Definition. QoSInfo describes standard or user-defined serverQoSMetrics and
transportQoSPriorities and the values they will take. It also references pro-
tocols used by a Web service for security and transaction support. The QoS-
Definition element describes QoS information (QoSInfo) either for the whole
service or for a particular operation of the service. Additionally, it includes
information about protocols supporting service management and QoS moni-
toring and about the trusted third-parties that will participate in these pro-
tocols. It ends with the price for the usage of this service supporting the QoS
offer. One Web service advertisement is related to many service offers (QoS-
Definition) while one service request enquires one particular service offer. One
important feature of this research effort is that it supports the mapping of
QoS requirements from higher layers onto the underlying network in terms of
the Internet model. This mapping is achieved by the help of proxies (residing
at the provider and consumer) and by the existence of a QoS-aware network.
QoS network parameters are given as guidelines to QoS-aware routers while
the client proxy calculates the network performance by taking into account the
server performance information provided by the server proxy. This research
work comes with three main deficiencies. First of all, there is not a com-
plete and accurate description of QoS constraints as QoS constraints are just

6 Modeling and Negotiating Service Quality 175

equality constraints. Secondly, metrics ontologies are not developed, but are
just referenced. Finally, this work is not supported by Web service discovery
framework.

QoSOnt and Upper Level Ontologies [31, 106, 53]

QoSOnt [31] is another carefully designed ontology for semantic QoS-based
Web service description. Its main features are: a) an ability to measure QoS
attributes by many metrics; b) the application of a QoS metric to either whole
Web service or a single operation; c) an approach to unit conversion using
SWRL rules; and d) a direct connection to OWL-S. This is a good approach
but not complete. In addition, it is not accompanied by a formal Web service
discovery framework.

The work in [106] proposes an upper-level ontology that uses the main
features of the ontologies produced by the work of [68, 31]. In addition, a
mid-level ontology has been designed for domain-independent QoS properties
(i.e., a QoS model). The proposed ontology is rich and is also connected to
OWL-S. However, it lacks information on how QoS constraints are specified
and it is not publicly available. In addition, it is also not supported by a Web
service discovery framework.

OWL-Q [53] is an upper ontology carefully designed on specific require-
ments [55]. The ontology is composed of many facets, each capturing a par-
ticular aspect of QoS-based Web service description. It is publicly available
available9, directly connected to OWL-S and is supported by a QoS-based
Web service discovery framework. A mid-level ontology has also been de-
signed for domain-dependent QoS metrics. In addition, this ontology is now
enriched with SWRL rules in order to support unit transformation, statisti-
cal metric value derivation, semantic property inference and matching of QoS
metrics [54].

Enriched WS-Agreement [74]

The work in [74] semantically enriches the WS-Agreement language in or-
der to develop a semantic framework for matching agreement specifications
of providers and requester automatically. The WS-Agreement language is ex-
tended in important areas such as the SLO and QualifyingCondition with the
addition of the expression, predicate, parameter, and value tags as defined in
the WSLA specification [51]. In addition, four ontologies are used to provide a
commonality of terms between agreement parties and to provide rich domain
knowledge to the search engine so that it may achieve the best possible match
results: 1) an OWL ontology for representing the WS-Agreement schema; 2)
a OWL-based QoS ontology encompassing QoS concepts used in guarantees;
3) a third OWL ontology representing domain knowledge; 4) the OWL Time

9 http://www.csd.uoc.gr/~kritikos/OWL-Q.zip

http://www.csd.uoc.gr/~kritikos/OWL-Q.zip

176 S. Benbernou et al.

ontology [47] for representing temporal constructs such as endTime, inter-
val, dayOfWeek, and seconds. Moreover, this approach uses SWRL rules in
order to: a) transform one SLO to another one that is semantically similar
but syntactically heterogeneous with respect to the first one; b) to compare
SLOs according to the semantics of a domain specific predicate; c) to derive
new domain knowledge by e.g., producing a new SLO from one or more other
SLOs ; d) to enable user assertions over subjective personal preferences. Last
but not least, it must be stated that this extended language is connected to
WSDL-S10 and is supported by a complete semantic QoS-based Web service
discovery framework. This work has the following deficiencies: a) QoS met-
rics are not modeled at all; b) SLOs of guarantees are expressed in terms on
unary constraints (i.e., containing just one QoS concept); c) Although timing
conditions are expressed in guarantees, this does not happen with the whole
alternative.

WSMO-QoS [108]

WSMO-QoS [108] is an upper level ontology complementary to the WSMO11

semantic language for functional Web service description. It is also directly
connected to WSMO. Besides this upper-level ontology, a vocabulary (i.e., a
QoS model) of general domain-independent QoS attributes has also been de-
veloped. WSMO-QoS is a very rich ontology capturing many aspects of QoS
metric description. It includes and allows many metric value types (including
linguistic, numeric and boolean), dynamic calculation of metrics values, the
attachment of units to metrics, unit transformation functions, the expression
of the tendency of the metric’s value from the user’s perspective and group-
ing of QoS attributes. This ontology is supported by a QoS-aware selection
framework of Web services. The main deficiencies of this ontology are the fol-
lowing: a) there is a one-to-one mapping of QoS attributes and metrics, which
is incorrect; b) there is no measurement modeling, i.e., functions and mea-
surement directives of metrics are not expressed; c) only equality constraints
on metrics are allowed, which is quite restrictive; and d) it is not yet publicly
available.

onQoS-QL [43]

The onQoS-QL [43] ontology is rich, and covers all aspects of QoS-based Web
service description in almost the same way as OWL-Q. It is also supported by
a semantic QoS-based Web service discovery framework. Its main highlights
are: a) the use of scales for restricting the metric value types; b) the use of
unary and binary predicates for constructing metric constraints; c) metric
constraints have both retrieval and ranking semantics; d) many important
types of measurement processes are supported. The main drawbacks of this

10 www.w3.org/Submission/WSDL-S/
11 www.wsmo.org

www.w3.org/Submission/WSDL-S/
www.wsmo.org

6 Modeling and Negotiating Service Quality 177

work are: a) no connection to a functional Web service description language;
b) measurement process is external and not specifically defined with the use of
metric functions and measurement directives; c) only unary and binary metric
comparison predicates are used for expressing QoS constraints.

6.1.4 Trust and Security QoS Models and Formalisms

The growing number of services accessible in open distributed systems nec-
essarily calls for security enforcement. Examples of such systems include the
World Wide Web, grid computing systems, distributed intelligence systems
and ad-hoc networks used by the military [45][86]. The security requirements
for these systems can include guarantees of confidentiality, integrity, authen-
tication, authorization, availability, auditing and accountability [79, 7]. A sig-
nificant issue for service-based applications is that if they are publicly acces-
sible, such as over the Internet, there is no way of knowing in advance the
users that will be accessing the service. Ensuring the users of a Web service
can gain access to it where no relationship exists between the user and the
service provider is a challenging task which requires a flexible approach to
access control through trust mechanisms.

A number of surveys relating to trust have been published: [45] provides
an overview of trust in Internet, [7] discusses trust in computer science and
semantic web, [86] examines trust management. [7] organizes trust research in
four areas: 1) policy-based trust, using policies to establish trust, focused on
managing and exchanging credentials and enforcing access polices; 2) using
reputation to establish trust where past interactions or performance for an
entity are combined to assess its future behaviour; 3) general models of trust,
where trust models are useful for analyzing human and agent-based trust
decisions; and 4) trust in information resources in relation to Web resources
and the reliability of Web sites.

Our study focusses on the first area. Traditional access control models
rely on knowing requester identities in advance [36]. However, service-based
applications typically have large and dynamic requester populations meaning
that requesters’ identities are seldom known in advance. Most existing Web
applications deal with strangers by requiring them to first register an identity
at the Web site. Such approaches do not fit into the Web service philosophy
of dynamically choosing services at run-time. As a result, traditional assump-
tions for establishing and enforcing access control regulations no longer hold.
Trust negotiation is an access control model that addresses this issue by avoid-
ing the use of requester identities in access control policies [114, 14]. Instead,
access is granted based on the trust established in a negotiation between the
service requester and the provider. In this negotiation — called a trust negoti-
ation — the requester and the provider exchange credentials. Credentials are
signed assertions describing attributes of the owner. Examples of credentials
include membership documents, credit cards, and passports. The attributes
of these credentials are then used to determine if access should be granted.

178 S. Benbernou et al.

For instance, a requester may be given access to resources of a company by
disclosing a credential proving she is an employee of that company. This ex-
ample shows that the requester identity is not always needed to determine
access. Credentials are typically implemented as certificates.

To summarize, the goal of a trust negotiation is to find a sequence of
credentials (C1, ..., Ck,R), where R is the resource to which access was origi-
nally requested, such that when credential Ci is disclosed, its policy has been
satisfied by credentials disclosed earlier in the sequence or to determine that
no such credential disclosure sequence exists (more details about trust nego-
tiation will be discussed in Section 6.2.3). In recent years, trust negotiation
has been proposed as a novel authorization solution and as an automated
technique for the establishment of trust and the enforcement of need-to-know
between entities in open-system environments, in which resources are shared
across organizational boundaries.

6.2 QoS Negotiation

This section reviews research concerning automated the negotiation of a ser-
vice’s QoS. We tailor the discussion of QoS negotiation in SBAs around: 1)
application level quality negotiation; 2) QoS negotiation in grid services; and
3) mechanisms for trust and security negotiation.

In current practice the QoS of a Web service is usually statically defined.
Policies or, more generally, quality documents are attached to Web services
when they are deployed. These documents are retrieved and analyzed once a
service is requested. In Web service selection, quality documents are matched
against the quality requirements expressed by applications or users requesting
a service, whereas, in service composition, information about quality of a Web
service can be used to make a decision on whether to consider or not a Web
service for executing a process task. Such an evaluation is made on the ability
of a service offer to satisfy local and global quality constraints that users can
express on tasks or the whole process, respectively.

In theory, the above mentioned approach represents a take-it-or-leave-it
or one-shot negotiation of Web service QoS. In other words, the service re-
questor is forced to accept the QoS offer made by the provider and there is
no opportunity for setting the QoS profile of a service at runtime on the basis
of the providers or requestors preferences, cost model or willingness to pay.
However, Web services are usually provided in a loosely coupled and highly
variable environment. On one hand, Web services can be offered with multiple
QoS profiles and, on the other hand, the offered QoS may vary according to
current conditions, such as network load or the number of requests served in
a given time instant. The interests of both service providers and requestors
on the QoS of a Web service may also be different. For instance, the costs
sustained by a Web service provider to increase the availability of its services

6 Modeling and Negotiating Service Quality 179

may not be balanced by a comparable increase of the service requestors’ ben-
efits in obtaining a service with higher availability. The on-the-fly setting of
QoS profiles on the basis of the service oriented architecture users’ needs can
be instantiated through the adoption of automated negotiation frameworks in
the context of SBAs.

This section reviews relevant literature in the field of QoS negotiation in
SBAs and is structured as follows. Section 6.2.1 revises research on applica-
tion level Web service QoS negotiation, classifying contributions on the basis
of the QoS model adopted for negotiation, the supported negotiation proto-
cols, and the chosen architectural style adopted for the implementation of
the negotiation infrastructure. Adopting similar classification criteria, Section
6.2.2 discusses the issue of service QoS negotiation in Grid computing, where
negotiation is mostly employed as an admission control mechanism for re-
source reservation. In a loosely-coupled environment, service requestors and
providers are not likely to know each other in advanced, since business rela-
tionships can be created on-the-fly. This is why we consider establishing trust
as a paramount issue in SBAs and why we review relevant work in the field
of trust and security negotiation in Section 6.2.3.

6.2.1 QoS Negotiation in Web Services and Semantic Web Services

The objective of this section is to revise relevant literature on QoS negotia-
tion in a Web service context. In particular, the literature on Web service QoS
negotiation is constituted by several isolated contributions. The heterogene-
ity of contributions in this field can be ascribed to different motives. First,
negotiation is not a native research issue of Web services, since it has been
studied since 50 years by microeconomics and, more recently, by the liter-
ature on multi-agent systems. Moreover, QoS negotiation represents a tool
for improving the management of architectures using Web services. In par-
ticular, typical issues in loosely coupled environments management, such as
service discovery and selection, composition, and monitoring, raise different
issues concerning the negotiation of QoS. Finally, QoS negotiation can be
implemented according to different paradigms, such as in broker-based archi-
tectures and multi-agent systems. Each implementation paradigm introduces
specific issues that must be dealt with while tackling the Web service QoS
negotiation problem.

In order to provide a common background for classifying research on Web
service QoS negotiation, we start from understanding the nature of the ne-
gotiation problem in the Web service context. As underlined in the previous
sections, QoS of a Web service is usually defined by multiple attributes, which
span from performance related to domain specific QoS dimensions. Hence, the
negotiation of Web service QoS can be usually intended as a multi-attribute
negotiation problem [50]. For what concerns negotiation participants, negoti-
ation can be either one-to-one or multiparty. Specifically, the participants in-
volved in Web service QoS negotiation are the service requestor, who requires

180 S. Benbernou et al.

a service with a certain level of quality, and one or more service providers,
which provide services with variable quality.

More specifically, our literature classification is grounded on the three basic
elements that define an automated negotiation problem [50, 34], that is:

• Negotiation Object. It defines the features of the object that is under
negotiation. While, for instance, in a planning problem agents may negoti-
ate which actions need to be taken in the future, in the Web service context
the object of negotiation is always QoS. Therefore, as already underlined,
negotiation is always multi-attribute because of the multi-attribute nature
of Web service QoS.

• Negotiation Protocol. It is constituted by the set of rules that define
what is allowed in a negotiation and how negotiation participants can
exchange messages.

• Negotiation Strategy. It defines the decision models of negotiation par-
ticipants. A decision model defines how negotiators generate new offers,
when they accept offers, or when to withdraw from negotiation.

Starting from the framework above, we propose three dimensions for classify-
ing the research contributions in the field of Web service QoS negotiation re-
search. First, we classify research contributions according to the features of the
quality description on which negotiation is performed. Secondly, we focus on
the negotiation protocols that can be instantiated by the proposed solutions.
Finally, we classify contributions according to the architectural paradigm cho-
sen for their implementation. A summary of the classification made in this
section is reported in Table 6.5.

The first classification is based on the nature of the negotiation object,
i.e., how to define the QoS dimensions on which negotiation is performed. In
particular, we make a distinction between approaches to negotiation that rely
on a fixed set of QoS dimensions and other approaches that adopt extensible
ways to define QoS. When QoS dimensions are fixed, their number, types,
and metrics cannot be modified according to the domain in which QoS nego-
tiation occurs. QoS dimensions, in this case, are usually performance-related,
since they are usually independent from the application domain. Conversely,
extensible QoS usually rely on the definition of a model, either declarative or
ontological, which can be used to define and use ad-hoc QoS dimensions.

The research in [22, 113], for instance, presents an architecture for execut-
ing QoS negotiations between service requestors and providers in an Internet
applications outsourcing scenario. The negotiation considers a fixed set of QoS
dimensions, i.e., the throughput, the availability, and the latency of service
provisioning.

Declarative extensible QoS models are considered in [26, 30, 44]. QoS di-
mensions can be defined in terms of name, metric, unit of measure, and eval-
uation method. An ontological model for QoS description is proposed in [57],
where a QoS ontology is required to validate the content of policies that define
Web service SLAs.

6 Modeling and Negotiating Service Quality 181

Table 6.3. Fixed vs. Extensible Negotiable QoS Definition: Advantages and Draw-
backs

Fixed set of QoS dimensions Extensible QoS model

Advantages
Real world use cases specification.
Rigorous definition of QoS metrics
and evaluation methods.

Ease in including domain specific
QoS.
Facilitated QoS lifecycle manage-
ment.
In tune with the open world perspec-
tive of SOA.

Drawbacks
Domain specific QoS constrained to
chosen use cases.
No QoS lifecycle management.

Lack of real-world use cases.

Most of the approaches presented in the literature rely on extensible QoS
models, that can be either declarative or ontological. In particular, declarative
QoS models [44, 71] include QoS definitions into policies that are usually
attached to published services. Ontological models [57] organize the elements
that define a negotiable QoS dimension, such as name, metric, and monitoring
methods, in an ontology, usually expressed in OWL-S.

It should be noted the extensible QoS models reviewed so far do not allow
the dynamic definition of QoS dimensions while negotiation is executing. In
other words, relevant QoS dimensions for a given domain should be defined
prior to the negotiation architecture deployment, since it is not possible for
negotiating participants to define new QoS dimensions on-the-fly.

Table 6.3 summarizes the principal benefits and drawbacks of the two al-
ternatives concerning QoS models. The main benefit of considering a fixed set
of QoS is that is provides the opportunity to adopt real-world use cases with a
rigorous definition of relevant QoS characteristics. Conversely, extensible QoS
models trade-off the adoption of real world use cases in favor of flexible and
generalizable QoS descriptions that are easier to be managed, i.e., updated,
modified and revised.

Concerning the negotiation protocol, we discern between approaches that
support one-to-one (1:1) negotiations between the service requestor and a
single service provider and one-to-many (1:N) negotiations between the service
requestor and N service providers.

On the one hand, 1:1 negotiation applies to the case of automated SLA
establishment [26, 44]. In this case, the service requestor has already chosen a
service but, since such service can be provided with variable quality, the QoS
of the Web service can be automatically negotiated at runtime.

On the other hand, 1:N negotiation applies to the issues of Web service
discovery and selection [41], when the service requestor must choose among a
set of functionally equivalent Web services that can be distinguished only by
their variable QoS profile. A utility-based approach to QoS-based Web service
selection is proposed in [70]. In particular, although no actual negotiation
algorithms are provided, the authors propose a service selection method which

182 S. Benbernou et al.

maximizes the utility of the Web service consumer while guaranteeing costs
constraints.

In case of service compositions, current solutions for Web service QoS au-
tomated negotiation rely on the coordination of a set of bilateral negotiations
between the service requestor and the services involved in the composition
[30, 22]. In particular, [22] proposes two different methods for dealing with
such a coordination. The negotiate-all-then-enact approach involves a round of
bilateral negotiation before enacting the service compositions. The objective
is for the service requestor to obtain agreements on QoS that satisfy his or her
global QoS requirements. The second approach is the step-by-step-negotiate-
and-enact, in which the QoS of a service is negotiated just before it is invoked.
This second case increases the complexity of obtaining QoS agreements which
satisfy the service requestor’s global QoS requirements.

Semantic-based negotiation mechanisms and protocols have often been in-
spired by the literature produced by the Artificial Intelligence (AI) and agent
communities. This is because in these fields the goal is to design appropri-
ate models with automated and tractable negotiation mechanisms such that
autonomous agents can deal with. [56] provides a survey of approaches for
multi-attribute negotiation in AI. Faratin et al. [35] presents a formal account
of a negotiating agent’s reasoning component to generate the initial offer,
to evaluate the incoming proposal, and to generate the counter proposal. Re-
garding the protocols, the FIPA Communicative Act Library Specification [38]
is considered as a foundational approach for defining specialized negotiation
protocols. An example architecture based on this specification is discussed by
Chhetri et al. [23].

Focusing on the semantic Web community, Chiu et al. [24] discuss how
ontology can be helpful for supporting this negotiation. In particular, the au-
thors highlight how shared and agreed ontologies provide common definitions
of the terms to be used in the subsequent negotiation process. In addition, they
propose a methodology to enhance the completeness of issues in requirements
elicitation. Lamparter et al. [58] introduce a model for specifying policies for
automatic negotiation of Web services. In this case, the starting point is the
upper ontology DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) [66]. On this basis, this work proposed a policy ontology that
also includes the user preferences specifications and an additional ontology for
expressing the contracts.

Regarding the use of ontologies for specifying the agreement among par-
ties, Oldham et al. [75] present reasoning methods for the components of an
agreement which must be compatible for quality matches. This approach is
based on WS-Agreement and takes advantage of Semantic Web methods to
achieve rich and accurate matches. Along the same lines, Uszok et al. [107]
have developed KAoS policy ontology that allows for the specification, man-
agement, conflict resolution and enforcement of policies within the specific
contexts established by complex organizational structures.

6 Modeling and Negotiating Service Quality 183

We argue that providing a review of negotiation strategies proposed in the
literature is out of scope of this chapter since the analysis of negotiation strate-
gies belongs to different fields of inquiry, such as agent-based computing and
microeconomics. Moreover, we want to stress that the reviewed approaches to
Web service QoS negotiation are not innovative from the point of view of ne-
gotiation strategies, since they rely on well known families of strategies, such
as concession-based [26], learning-based [22], or search-based strategies [30].

We end our discussion with a classification of the architectural styles
adopted for the implementation of the architecture that supports the de-
sign and the execution of negotiations. In particular, we have identified two
main approaches for implementing QoS negotiations, i.e., broker-based and
multi-agent architectures.

Broker-based architectures imply the existence of a third party, i.e., a
broker, which executes QoS negotiation on behalf of service requestors and
providers [26, 70]. The negotiation strategy of the participants is made known
to the broker by means of policies. Once having read the policies, the broker
is able to simulate the whole negotiation process. The need for including a
broker to execute the negotiation was introduced in [65]. The architecture of
a broker for supporting Web service QoS negotiation is described in [26]. On
the requestor side, negotiation can be either automated, by means of policies,
or manually executed by human actors. [44] and [71] propose frameworks for
QoS negotiation based on policy matching. Although the description of an
architecture is out of scope in the policy framework definition, the authors
hypothesize the existence of a broker which execute QoS negotiation and
policy matching.

Multi-agent architectures exploit Multi-Agent Systems (MAS) to execute
Web service QoS negotiations. Specifically, negotiation is executed by agents
that negotiate on behalf of external actors, that is, Web service providers and
requestors. The underlying multi-agent system is usually built according to the
FIPA specification [37]. Negotiation agreements are then translated into XML
documents which can be easily managed by the Web service architecture.

[22, 113] propose a multi-agent based negotiation system for coordinated
negotiations in service compositions. A coordinator manages the message ex-
change among service providers and requestors’ negotiating agents built from
service offers and requirements, respectively. A multi-agent negotiation system
that supports multiple protocols is proposed in [30]. A rule-based system im-
plements different negotiation protocols, such as auctions and 1:1 negotiations,
while message exchange is managed with an event-based approach. Negotiat-
ing agents implement strategies for generating or accepting offer and with-
drawing from negotiation on the behalf of their owners, i.e., service requestors
and providers. Finally, the Collaborative Agreement for Automatic Trading
(CAAT) is a multi-agent negotiation system built on top of the FIPA speci-
fication for managing negotiations in Web service choreography [73]. CAAT
is described in terms of the agents’ interaction protocol, which is based on

184 S. Benbernou et al.

Table 6.4. Broker-Based vs. Multi-agent QoS Negotiation Architectures: Advan-
tages and Drawbacks

Broker-based Multi-agent

Advantages

Reduced negotiation communication
overhead.
No need to create new agents/ser-
vices for negotiating.

Customizable negotiation strategies
embedded in agents.
Increased flexibility in implementing
complex negotiation protocols.
Strategies not disclosed to third par-
ties.

Drawbacks

Trust and security (information dis-
closure to third party).
Need for complex policy model defi-
nitions.
Lack of scalability (the broker may
become a bottleneck).

Communication overhead (message
exchange among agents).
Need to integrate agent-based plat-
forms into Web service architectures.
Often a coordinator of negotiating
agents is required.
Effort required for building and man-
aging negotiating agents.

an ontology of concepts, and supports bilateral negotiation and moderated
negotiations, i.e., bilateral negotiation moderated by an external third party.

Table 6.4 summarizes the principal benefits and drawbacks of the two alter-
natives for Web service QoS negotiation implementation. The main benefit of
broker-based solutions is to reduce the negotiation communication overhead,
since negotiation strategies and offers can be automatically generated by the
broker. At the same time, the need to declare strategies, e.g., behavioral and
pricing models, to a third party introduces issues of privacy and security that
will be further analyzed in the sections to come. Agent-based solutions have
higher communication overhead and need to rely on an underlying multi-agent
platform in order to be implemented. The main advantages of agent-based so-
lutions are customization and flexibility, since service requestors and providers
can create ad hoc agents that reflect their personal negotiation strategies.

6.2.2 Negotiation Protocols in Grid Computing

The shift of emphasis in Grid computing towards a service-oriented paradigm
and the trends in application service delivery to move away from tightly-
coupled systems towards loosely-coupled, dynamically bound systems, has led
to the adoption of Service Level Agreements (SLAs) as the standard concept
through which Grid schedulers can allocate resources and allow coordinated
resource management. In the context of Grid and Web services, the current
understanding is that an SLA is an electronic contract, which is expected to
be negotiated almost fully-automatically, as such, must be machine readable
and understandable. As a result, there has been a significant amount of recent
research on various topics related to SLAs.

6 Modeling and Negotiating Service Quality 185

Table 6.5. Comparison of Approaches to Web Service QoS Negotiation

QoS Model Neg. protocols Architecture
Fixed
QoS

Ext. QoS 1:1 1:N others
Broker-
based

Agent-
Based

Chhetri et
al. [22]

√

√

(WS
composi-
tion)

√

Yan et
al. [113]

√

√

(WS
composi-
tion)

√

Comuzzi
and Pernici
[26]

√ √ √

Di Nitto et
al. [30]

√ √ √ √

Gimpel et
al. [30]

√ Not specified

√

policy
matching

Lamparter
et al. [57]

√

ontology
Not specified

√

policy
matching

Mukhi and
Plebani [71]

√ Not specified

√

policy
matching

Menasce
and Dubi
[70]

√

√

Web service
selection and
composition

√

Service Negotiation and Acquisition Protocol (SNAP) [28]

The first promising negotiation protocol in the field of Grid Computing was
the Service Negotiation and Acquisition Protocol (SNAP) [28]. The negotia-
tion objects are tasks (QoS user requests) and resources (its characteristics).
This work proposes three different types of SLAs:

1. Task service level agreements (TSLAs) in which one negotiates for the
performance of an activity or task. It characterizes a task in terms of its
service steps and resource requirements.

2. Resource service level agreements (RSLAs) in which one negotiates for
the right to consume a resource. An RSLA can be negotiated without
specifying for which activity the resource will be used. These two SLAs
can be regarded as negotiation protocols.

186 S. Benbernou et al.

3. Binding service level agreements (BSLAs) in which one negotiates for the
application of a resource to a task. The BSLA associates a task, defined
either by its TSLA or some other unique identifier, with the RSLA.

By combining these agreements in different ways, a high variety of resource
management approaches can be represented, including: batch submission, re-
source brokering, co-allocation and co-scheduling. These variations define dif-
ferent negotiation strategies. The authors have also shown an SLA usage sce-
nario for resource brokering, which they call the ‘community scheduler’ sce-
nario. They define a community scheduler as an entity similar to a broker (see
previous section) that acts as a mediator between the user community and
the Grid resources. Activities are submitted to the scheduler rather than to
the end resource, and the activities are scheduled to resources in a way that
optimizes the use of the community’s resources. A Grid environment may
contain many resources, all presenting a RSLA interface as well as a TSLA
interface. Optimizing the use of resources across the community by the sched-
uler is only possible if the scheduler has some control over the resources used
by the community. Hence the scheduler negotiates guarantees via RSLAs with
a pool of underlying resources, and exploits those capabilities via TSLAs and
BSLAs. This set of agreements abstracts away the impact of other community
schedulers as well as any local workloads, assuming the resource managers en-
force SLA guarantees at the resources. Community scheduler services present
a TSLA interface to users. Thus a user can submit a task to the scheduler by
negotiating a TSLA, and the scheduler then turns to a resource by binding
this TSLA against one of the existing RSLAs. The scheduler may also offer an
RSLA interface. This would allow applications to co-schedule activities across
communities, or combine scheduled resources with additional non-community
resources. The various SLAs offered by the community scheduler result in a
very flexible resource management environment. Users in this environment
can interact with community and resource-level schedulers as appropriate for
their goals and privileges.

In the area of Grid Computing SLA use is of great importance in the
area of resource management. The following use cases, gathered in a technical
report as [93], describe the need for such agreements:

• Agreement on resource usage: for a presentation with live demonstration
of an application the necessary compute resources to run the application
have to be available at the time of the presentation. In a normal cluster
environment where the nodes of the cluster are used under a space-sharing
policy, the probability of finding a free slot that matches the requirements
of a user immediately is low, thus his job usually will be queued and
executed later. In order to have the resources required at the time of the
presentation the presenter needs to reserve the resources in advance to be
sure that they can be used for the demonstration at the time foreseen.
This reservation can be expressed as a Quality of Service and an SLA may
be issued where the reservation is fixed.

6 Modeling and Negotiating Service Quality 187

• Agreement on multiple QoS parameters: in an environment containing sev-
eral compute clusters operated in different administrative domains, SLAs
might be used for co-allocation or workflow-based resource allocation. A
typical use-case is the co-allocation of multiple compute resources along
with the network links between these resources with a dedicated QoS to
run a distributed parallel application. The user specifies his request and a
resource broker starts the negotiation with the local scheduling systems of
the compute resources and with the network resource management system
in order to find a suitable time-slot, where all required resources are avail-
able at the same time. Once a common time-slot is identified, the broker
requires the reservation of the individual resources. This reservation can
also be expressed as a Quality of Service and an SLA may be issued where
the reservation is fixed. Another use-case is a workflow spanning several re-
sources. The only difference to the use-case described before is the type of
temporal dependencies: While for the distributed parallel application the
resources must be reserved for the same time, for the workflow use-case the
resources are needed in a given sequence. Thus, a scheduler needs to nego-
tiate the reservations such that one workflow component can be executed
on the required resource after the preceding component is completed.

• Grid Scheduler interoperation: as there is no single orchestrating service or
Grid scheduler in a Grid spanning countries and administrative domains,
we have to deal with multiple instances of independent Grid schedulers. Us-
ing resources from different domains requires co-ordination across multiple
sites. Two approaches can support such co-ordination: a) direct negotia-
tion with respective local scheduling systems; and b) negotiation with the
respective local broker. The first requires local policies allowing a remote
broker to negotiate with local schedulers, which is in general unrealistic. In
the second case, there is one access point to the local resources, which then
negotiates on behalf of the initiation broker. As the second approach also
has a better scalability than the first one, the OGF Grid Scheduling Archi-
tecture Research Group (GSA-RG) [3] decided to consider this approach
for the definition of a Grid Scheduling Architecture. For the communi-
cation between the different Grid schedulers, a language and protocol to
create SLAs was selected to achieve the necessary interoperability, while
at the same time resulting in SLAs at the end of the negotiation process
that can be combined by the initiating scheduler into one single agreement
with his client.

The work presented in [91] provides a deeper investigation of SLA usage
for computational job scheduling in Grids. Computational jobs, submitted
to high-performance computing resources for execution, are associated with
an SLA. This SLA is negotiated between a client (e.g., a user or a resource
broker) and a provider (the owner of a resource with its own local scheduler)
and contains information about the level of service agreed between the two
parties, such as acceptable job start and end times. Users negotiate and agree

188 S. Benbernou et al.

an SLA with a resource broker. Brokers negotiate and agree an SLA with
users; these SLAs may be mapped to one or more SLAs, which are negotiated
and agreed with local resources and their schedulers. Finally, local schedulers
need to schedule the work associated with an SLA they have agreed to (the
constraints associated with such an SLA, agreed by a resource, may be stored
locally in the resource, in some kind of a resource record). It is also noted that
a single SLA between a user and a broker may translate to multiple SLAs be-
tween the broker and different local resources to serve the user’s request (for
example, this could be the case when the SLA between a user and a broker
refers to a workflow application with several tasks that are executed on dif-
ferent resources). In such case, the user may want to set constraints for the
workflow as a whole and the broker may have to translate it to specific SLAs
for individual tasks. To indicate the possible differences between these two
types of SLA, the terms meta-SLA and sub-SLA are used. Furthermore, this
SLA-based view for job submission, may still allow the submission of jobs that
are not associated with an SLA. However, no guarantee of their completion
time would be offered in this case.

To introduce SLA usage to job scheduling the following challenges need to
be solved:

• SLA vocabulary: the vision of SLA-based scheduling assumes that the
SLAs themselves are machine readable and understandable. This implies
that any agreement between parties for a specified level of service needs to
be expressed in a commonly understood (and legally binding) language.

• SLA negotiation: it is envisaged that SLAs may be negotiated between
machines and users or only between machines. In this negotiation some
commonly agreed protocol needs to be followed. This protocol needs to
take into account the unreliable nature of the distributed systems and
networks used for the negotiation and should abide by appropriate legal
requirements. In addition, during negotiation, machines should be able to
reason about whether an offer is acceptable and possibly they should be
allowed to issue counter-offers.

• Scheduling: currently, most scheduling of jobs on high-performance com-
pute resources uses priority queues (with the possible addition of backfill-
ing techniques). The use of SLAs would require the development of a new
set of algorithms for efficient scheduling, which would be based on satisfy-
ing the terms agreed in the SLA. The existence of these efficient scheduling
algorithms would be of paramount importance to estimate capacity and
reason on the possible acceptance (by a local resource) of a new request
to form an SLA.

• Constitutional Aspects: in the context of any SLA based provision, sooner
or later the need for dispute resolution will arise. In addition, users may
also be interested in the reliability of specific brokers; for example, how
likely is that a broker will honour an SLA, even if breaking the SLA would

6 Modeling and Negotiating Service Quality 189

require the broker to pay a penalty? This issue of modeling reputation
may also be related to the approaches followed for pricing and/or penalties
when agreeing SLAs.

These requirements and the previously introduced use cases reveal the rele-
vant properties of SLA usage in Grids. The negotiation objects are the static
resource characteristics (e.g., CPU, memory, disk), the resource capabilities
(e.g., licenses, reservation, price, software) and the user requirement proper-
ties (e.g., time, cost constraints). The negotiation protocol and implementation
depend on the actual solution, such as the WS-Agreement and the WSLA lan-
guages. The negotiation strategies usually depend on the actual protocol but
solutions using the same protocol may differ. SLA-based Grid resource man-
agement relies heavily on the concept of renegotiation of existing agreements.
Renegotiation generally means reconsideration of the quality and the level
of service, such as processor, memory or bandwidth requirements, resource
reservations, and so on. Renegotiation requires user involvement during the
job execution. Therefore, the most important issue is to reduce the amount of
user interaction. In [90] researchers provided an interesting solution to achieve
this goal within the WS-Agreement framework. The basic idea is to regard
guarantee terms as functions to increase the flexibility of the agreement. They
introduced a list of universal variables (i.e., current wall clock time, network
bandwidth) and a list of predefined functions (i.e., min/max bound, list aver-
age, Gaussian function). As a result the Service Level Indicatiors/Objectives
in the SLAs are described not as constants but as functions of universal vari-
ables. In this way, the terms of the WS-Agreement are no longer constants or
independent range-values. Such an agreement has an infinitely large number
of outcomes, therefore it is able to describe the entire guarantee terms of an
SLA. This way of SLA usage provides a richer term set for Grid applications
and reduces the need for renegotiation.

QoWL [20]

[20] presents an approach for high level Grid workflow specification that con-
siders a comprehensive set of QoS requirements. Besides performance related
QoS, it includes economical, legal and security aspects. For instance, for secu-
rity or legal reasons the user may express the location affinity regarding Grid
resources on which certain workflow tasks may be executed. The QoS-aware
workflow system provides support for the whole workflow life cycle from speci-
fication to execution. Workflow is specified graphically, in an intuitive manner,
based on a standard visual modeling language. A set of QoS-aware service-
oriented components is provided for workflow planning to support automatic
constraint-based service negotiation and workflow optimization. For reducing
the complexity of workflow planning, a QoS-aware workflow reduction tech-
nique is introduced.

190 S. Benbernou et al.

Amadeus [21]

[21] presents the Amadeus framework, a holistic service-oriented environment
for QoS-aware Grid workflows. Amadeus considers user requirements, in terms
of QoS constraints, during workflow specification, planning, and execution.
Within the Amadeus environment workflows and the associated QoS con-
straints are specified at a high level using an intuitive graphical notation. A set
of QoS-aware service-oriented components is provided for workflow planning
to support automatic constraint-based service negotiation and workflow opti-
mization. The Amadeus framework uses static and dynamic planning strate-
gies for workflow execution in accordance with user-specified requirements.

End-to-End QoS for Compute-Intensive Medical Simulation Services [12]

In [12], a Grid infrastructure is presented that addresses the issues in offering
end-to-end QoS in the form of explicit timeliness guarantees for a compute-
intensive medical simulation service. Within the GEMSS project [1], parallel
applications installed on clusters or other HPC hardware may be exposed as
QoS-aware Grid services for which clients may dynamically negotiate QoS
constraints with respect to response time and price using SLAs. The infras-
tructure uses standard Web services technology and relies on a reservation
based approach to QoS coupled with application specific performance mod-
els.

6.2.3 QoS Negotiation in Security

In this section two specific aspects of QoS negotiation in security are discussed:
1) trust negotiation; and 2) privacy negotiation.

Features of Trust Negotiation System

As described earlier, the goal of trust negotiation is to allow ‘strangers’ to
access sensitive data in open environments without violating the data’s ac-
cess policy. In trust negotiation, two parties establish trust through iterative
disclosure of credentials and requests for credentials to verify properties of
the negotiating parties. To carry out a trust negotiation, parties usually use
strategies implemented by an algorithm. Most of the research in this area fo-
cuses on protecting resources and credentials and assumes that policies can be
freely disclosed. Research in trust negotiation has focused on a number of im-
portant issues, including languages for expressing resource access policies such
as Trust-X, X-TNL, Trustbuilder, Cassandra (e.g., [9, 13, 16, 62]), protocols
and strategies for conducting trust negotiations (e.g., [115, 4, 52, 46]), and
logics for reasoning about the outcomes of these negotiations (e.g., [81, 111]).
The initial results presented in this work have been shown to be viable as

6 Modeling and Negotiating Service Quality 191

access control solutions for real-world systems through a series of implemen-
tations (such as those presented in [15, 4, 110]) that demonstrate the utility
and practicality of these theoretical advances.

Based on the current work, we can state that a trust negotiation system
may include four components:

• Trust negotiation policy module.
• Credential manager module.
• Strategies negotiation module.
• Trust negotiation policy management module.

We now define the requirements for each of these components. We propose
some dimensions to evaluate the current relevant negotiation models. However,
these dimensions are not limited and can be augmented due to the increasing
requirements in this area.

Trust Negotiation Policy Language Requirements

A trust negotiation policy language is a set of syntactic constructs, including
credentials and policies and the way they encode access control needs [15, 14].
The following discusses the characteristics of the policy language.

Policy specification. Trust negotiation policies specify which credentials —
and other resources — to disclose at a given state of the trust negotiation,
and the conditions to disclose them. The specification can be formal (using
logic, algebra, etc.) or semi-formal.

Specification of the combination. The language may be expressive enough
to contain operators combining credentials characterizing a given subject.

Authentication of multiple identities. Under this approach to automate
trust creation, each party can have many identities with each identifying a
particular credential issuer. For instance, if today my purse includes my drivers
license, my credit card and my library card I may be asked to prove that I
possess one or more of these identities at any time to establish a level trust
based on the credentials issuers.

Sensitive Policy protection. The protection can be handled at the policy
level or system level in the sense that by analyzing policies’ content, outsiders
might infer sensitive information about parties.

Trust negotiation policy lifecycle management. The trust negotiation policy
life-cycle management may include details about how to update trust nego-
tiation policies in a consistent manner and how to cope with dynamic policy
evolution, that is, changes to a policy during a trust negotiation.

Credential Manager Requirements

Type of disclosure. Context-aware applications should reveal credentials only
in the correct context. This disclosure needs some actions to be specified that
will satisfy what those conditions are.

192 S. Benbernou et al.

Automation. The credential exchange can be automatic (no user inter-
vention is needed), semi-automated (where some aspects are automated and
others need user intervention) or manual.

Credential chain discovery. The credentials used in a negotiation can be
available locally or discovered at run-time.

Ownership. Some systems use various security protocols during negotia-
tion, where a remote credential is received asking for verification to prove
the ownership. Some other systems integrate negotiation frameworks with the
existing tools and systems.

Strategies Negotiation Requirements

Dynamicity

In some domains, such as e-Health, not all entities are willing to negotiate
credentials or disclose access policies directly to strangers regardless of ne-
gotiation strategies and instead prefer to negotiate and disclose sensitive in-
formation only to strangers within what we refer to as a circle of trust. The
requirement here is to describe how locally-trusted intermediary parties can
delegate whilst protecting credentials and access policies [5].

Privacy Protection Mechanisms

Privacy is one of the major concerns of users when exchanging information
through the Web and we believe that trust negotiation systems must effec-
tively address privacy issues in order to be widely applicable. Some research
investigates privacy in the context of trust negotiations, e.g., [39, 17, 97, 78]
propose a set of privacy-preserving features for inclusion in any trust negoti-
ation system and [92] proposes the identification of privacy vulnerabilities in
trust negotiation.

Automation

The exchange of attribute credentials is a means to establish mutual trust
between strangers wishing to share resources or conduct business transactions.
Automating trust negotiation to regulate the exchange of sensitive information
during this process is therefore important [49, 109].

Bilateral Trust Creation

It is important not only for a service provider to trust the clients requesting its
services but also for clients to trust the services that they choose to interact
with.

Scalability

How much trust creation can be automated in a highly scalable manner? Can
it be truly ubiquitous?

6 Modeling and Negotiating Service Quality 193

Analyzing Existing Trust Negotiation Work for Web Services and
Grid Computing

In this section we survey and analyze several approaches based on the require-
ments presented earlier.

Web Services

Existing efforts in the area of trust negotiation have not been standardized
and do not fit into any authorization standard such as the eXtensible Access
Control Markup Language (XACML). In [69], it is investigated how XACML
can fit into trust authorization management systems by exploring existing
concepts, and where necessary, extending them to accomplish the goal. The
authors propose the XACML Trust Authorization Framework (XTAF), which
is a loosely-coupled architecture with a trust component that protects autho-
rization information (policies and credentials) layered in such way that it
integrates seamlessly into any XACML compliant authorization engine with
minimal effort. They show how the XACML policy language can be used to
support bilateral exchange of policies and credentials, and protect unautho-
rized access to services. They also introduce a Trust Authorization Service
Handler (TASH) to handle trust and privacy of authorization information.
This supports runtime bilateral authorization operations between two or more
parties.

In [95], authors propose a model-driven approach to trust negotiation in
Web services. The framework, called Trust-Serv, features a trust negotiation
policy model based on state machines. Importantly, this model is supported
by both abstractions and tools that permit life-cycle management of trust
negotiation policies, an important trait in the dynamic environments that
characterize Web services. In particular, TrustServ provides a set of change
operations to modify policies, and migration strategies that permit ongoing
negotiations to be migrated to new policies without being disrupted.

In [94] the WS-ABAC model is proposed to use attributes associated with
subject, object and environment, and service parameters for access control
measures in Web services environment. The WS-ABAC model extends the
traditional RBAC model to gain many advantages from its attributes-based
capability. In this model, authorization decisions are based on the attributes
of the related entities. The ATN mechanism is used to provide the needed
attributes and addresses the disclosure issue of the sensitive attributes when
the attribute conditions are not satisfied. So it can protect user’s privacy. Only
when the user does not give the needed attributes for authorization decision,
the access request is rejected.

Re-designing and re-standardizing existing protocols to make authoriza-
tion decisions meet the needs of large-scale open systems is time consuming.
To address this problem, in [59, 79, 60], authors propose a system called
Traust, a stand-alone authorization service that allows for the adoption of

194 S. Benbernou et al.

trust negotiation in a modular, incremental, and grassroots manner, provid-
ing access to a wide range of resources without requiring widespread software
or protocol upgrades. It uses the current prototypes Trust-X or TrustBuilder
to allow clients to establish bilateral trust.

In [77], the authors investigate the problem of trust in Semantic Web
services. They include trust policies in WSMO, together with the informa-
tion disclosure policies of the requester, using the Peertrust language [42].
Peertrust provides the means to perform trust negotiation and delegation.
As the matchmaker must have access to both the requestor’s and provider’s
policies, in order to match the requestor’s functional requirements and trust
information the authors propose a distributed registry and matchmaker ar-
chitecture that allows the service providers to keep their policies private, thus
not forcing them to disclose sensitive information.

In [32], security-by-contract is proposed as a novel negotiation framework
where services, credentials and behavioral constraints on the disclosure of
privileges are bundled together, and clients and servers have a hierarchy of
preferences among the different bundles. While the protocol supports arbitrary
negotiation strategies, two concrete strategies (one for the client and one for
the service provider) make it possible to successfully complete a negotiation
when dealing with a co-operative partner and to resist attacks by malicious
agents to “vacuum-clean” the preference policy of the honest participant.

The Web Services Trust Language (WS-Trust) uses the secure messaging
mechanisms of WS-Security to define additional primitives and extensions
for the issuance, exchange and validation of security tokens. WS-Trust also
enables the issuance and dissemination of credentials within different trust
domains.

The goal of WS-Trust [72] is to enable applications to construct trusted
[SOAP] message exchanges. In order to secure a communication between two
parties, the two parties must exchange security credentials (either directly or
indirectly). However, each party needs to determine if they can “trust” the
asserted credentials of the other party. This specification defines extensions
to WS-Security for issuing and exchanging security tokens and ways to es-
tablish and access the presence of trust relationships. Using these extensions,
applications can engage in secure communication designed to work with the
general Web services framework, including WSDL service descriptions, UDDI
businessServices and bindingTemplates and SOAP messages.

Grid Computing

In [61], a novel trust negotiation framework is proposed, TOWER, which
provides distributed trust chain construction and management with the goal
of enhancing Grid security infrastructure. The approach leverages attribute-
based credentials to support flexible delegation, and dynamically constructs
trust chains. The TRust chAin based Negotiation Strategy (TRANS) is pro-
posed to establish trust relationships on-the-fly by gradually disclosing cre-

6 Modeling and Negotiating Service Quality 195

dentials according to various access control policies. It is implemented in the
CROWN Grid. In [48], ROST is presented, an original scheme for Remote
and hOt Service deployment with Trustworthiness. By dynamically updating
runtime environment configurations, ROST avoids restarting the runtime sys-
tem during deployment. In addition, trust negotiation is included in ROST,
which greatly increases the flexibility and security of the CROWN Grid.

In [6], several classes of trust and their use in Grids are analyzed: service
provision, resource access, delegation, certification and context trust. Current
technologies for managing trust have been also discussed. The concept of Vir-
tual Organizations is central to Grids. The authors have enriched the classical
VO life-cycle with trust management activities. Trust values and trust policies
are created before starting the VO identification phase. In the VO Identifica-
tion phase, trust information such as reputation could be taken into account
when selecting potential VO candidates. The VO formation phase includes
all activities related to trust negotiation. During VO operation, trust values
are computed and distributed among the VO participants. In VO dissolution,
trust information such as credentials and access rights are revoked to avoid
misuse of the information.

An efficient method of providing hidden credentials by reusing randomness
in a way that does not compromise the security of the system is proposed in
[19]. The number of elliptic curve operations required depends only on the
number of credentials relevant to a transaction and is constant over a change in
policy size or complexity. A monotonic secret splitting scheme is also proposed,
where the relevant shares and the corresponding boolean expression are only
revealed when relevant pairs of shares are discovered.

[87] introduces the adaptive trust negotiation and access control (ATNAC)
framework that addresses the problem of access control in open systems by
providing protecting from adversaries who may want to misuse, exhaust or
deny service to resources. ATNAC provides a federated security context that
allows Grid participants to communicate their security appraisal and make
judgments based on collective wisdom and the level of trust between them.

Comparing the Approaches

To assess the current state-of-the art, this section maps the requirements in-
troduced in Section 6.2.3 to three tables to provide a higher-level view of
the detailed discussions provided in Section 6.2.3. Each of the approaches
have their own drawbacks and advantages and none of the proposals are
complete, though current approaches address significant subsets of relevant
requirements.

Comparing Policy Languages

Table 6.6 compares the approaches surveyed with respect to the policy lan-
guage requirements. The comparison is based on the following dimensions: the

196 S. Benbernou et al.

nature of the policy specification, whether the combination on credentials can
be supported by the policy language or not, the existence of multiple authen-
tication, if the protection of sensitive data is provided in the policy level and,
finally, if the management of the policy life-cycle is supported.

In the approaches the combination of credentials is considered important
and there is a way to express it in the specification language in almost all exist-
ing frameworks. However, the authentication of multiple identities is missing
in almost all the approaches surveyed.

Also, life-cycle management of policies — i.e., the creation, evolution, and
management of policies — is an often overlooked part of policy model design
as policies are rarely set in stone when first defined. Such aspect is totally
absent in all the current frameworks except Trust-Serv.

There are no existing approaches addressing the trust negotiation cross
all the layers of the service based systems with respect to the variety of in-
formation discussed earlier. However, all the surveyed approaches address the
requirement trust negotiation at one level.

Comparing Credential Management

Table 6.7 compares the approaches surveyed with respect to the credential
management requirements. The comparison is based on the following dimen-
sions: the types of disclosure, the automation when tackling the credentials,
the discovery of the credential chain and, finally, the ownership of the creden-
tial.

The table shows that in the research into service trust negotiation, the
trend is towards performing actions while disclosing credentials in an auto-
matic way. Mechanisms for credentials discovery during the negotiation are
rare. However, run-time systems should include tools for chain discovery to
retrieve at run-time credentials that are not locally cached.

Most of current systems try to integrate the negotiation framework with
the exiting tools and systems in order to maximize the control of the security
while the data are exchanged.

No existing system addresses how to obtain credentials, assuming that
the entity disclosing credentials has its own method to obtain and cache the
credentials locally.

Comparing Systems and Strategies

Table 6.8 compares the approaches surveyed with respect to the strategy of ne-
gotiation requirements. The comparison is based on the following dimensions:
the dynamicity, the degree of automation, the presence of the mechanism
of privacy protection during the negotiation, the scalability and, finally, the
existence of bilateral trust establishment.

The table shows that there is a trend in the strategies to support dynamic
and automatic negotiations. Most credentials are not disclosed locally during
run-time but can be found dynamically or through combining credentials.

6 Modeling and Negotiating Service Quality 197

T
a
b
le

6
.6
.
C
o
m
p
a
ri
n
g
P
o
li
cy

S
p
ec
ifi
ca
ti
o
n
L
a
n
g
u
a
g
e

A
p
p
ro
a
ch

es
T
ru
st
-S
er
v
T
ra
u
st

W
S
-A

B
A
C

X
T
A
F

P
ee
rT

ru
st

W
S
-T
ru
st

S
p
ec
ifi
ca
ti
o
n

F
o
rm

a
l

S
em

i
F
o
rm

a
l

se
m
i-
fo
rm

a
l
S
em

i
S
y
n
ta
ct
ic

C
o
m
b
in
a
ti
o
n

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

M
u
lt
ip
le
-a
u
th
en

ti
ca
ti
o
n

N
o

N
o

N
o

N
o

N
o

Y
es

S
en

si
ti
v
e-
p
o
li
cy

-p
ro
te
ct
io
n
N
o

Y
es

N
o

Y
es

Y
es

Y
es

M
a
n
a
g
em

en
t-
ev
o
lu
ti
o
n

Y
es

N
o

N
o

N
O

N
o

N
o

T
a
b
le

6
.7
.
C
o
m
p
a
ri
n
g
C
re
d
en

ti
a
l
M
a
n
a
g
er

A
p
p
ro
a
ch

es
T
ru
st
-S
er
v
T
ra
u
st

W
S
-A

B
A
C

X
T
A
F

P
ee
rT

ru
st

W
S
-T
ru
st

T
y
p
e-
d
is
cl
o
su
re

a
ct
io
n
s

A
ct
io
n
s

A
ct
io
n
s

co
n
te
x
t+

a
ct
io
n
s
A
ct
io
n
s

A
ct
io
n
s

A
u
to
m
a
ti
o
n

A
u
to

A
u
to

S
em

i
se
m
i

A
u
to

S
em

i
C
h
a
in

d
is
co
v
er
y
Y
es

N
o

N
o

N
o

Y
es

Y
es

O
w
n
er
sh
ip

N
o

In
te
g
(T

o
k
en

s)
In
te
g
(R

B
A
C
)
In
te
g
(X

A
C
M
L
)

N
o

IN
te
(T

o
k
en

s)

T
a
b
le

6
.8
.
C
o
m
p
a
ri
n
g
S
tr
a
te
g
ie
s

A
p
p
ro
a
ch

es
T
ru
st
-S
er
v
T
ra
u
st

W
S
-A

B
A
C

X
T
A
F

P
ee
rT

ru
st

W
S
-T
ru
st

D
yn

a
m
ic
it
y

D
y
n
a
m
ic

R
u
n
-t
im

e
N
o

N
o

Y
es

N
o

A
u
to
m
a
ti
c

A
u
to

S
em

i
se
m
i-
a
u
to

A
u
to

se
m
i

P
ri
va
cy

p
ro
te
ct
io
n
m
ec
h
a
n
is
m

N
o

Y
es

N
o

Y
es

Y
es

Y
es

sc
a
la
bi
li
ty

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

bi
la
te
ra
l

N
o

Y
es

N
o

N
o

Y
es

Y
es

198 S. Benbernou et al.

We found current systems are increasingly aware of protecting sensitive
data exchanged during the negotiation with the integrated mechanism taking
care of this. Furthermore, bilateral trust creation is considered in the current
systems as it is critical that a service provider and customer trust each other.

Scalability is an important evaluation criterion in distributed systems such
as service-based applications (SBAs). However, in the presented approaches,
the complexity and the consistency of the credential discovery mechanisms are
not discussed, which are very important factors in distributed systems. More-
over, the existing approaches are only research paradigms, no standardization
is pointed out.

Privacy Negotiation in SBAs

Privacy violation is a serious and pressing problem for Internet users that
requires an immediate solution.

Records of negotiation attempts should confidential and private and their
creators may not want to the details of these record revealed. In [116], a privacy
preserving negotiation learning scheme is introduced, which incorporates se-
cure multiparty computation techniques into negotiation learning algorithms
to allow negotiation parties to securely complete the learning process on a
union of distributed data sets.

[33] identifies the risks of privacy invasion during the setup of interactive
multimedia applications, and introduce three schemes to solve the problem of
protecting the user’s privacy, with varying degree of complexities. The first
approach is based on the use of a trusted third party, a common approach
used in Public Switched Telephony Networks (PSTNs). The second approach
is based on a trust relationship between communicating parties, and the third
approach is uses primitives from the field of secure distributed computation.

[82] has presented the necessity of negotiation about privacy principles in
the relationship between a service provider and customer. Modeling the user’s
individual utility maximization can take into account the multi-dimensionality
of privacy; the service provider may wish to reduce the negotiation space in a
way that suits the given business scenario. Two new elements were proposed
that follow the structure of the current P3P 1.1 grouping mechanisms and
allow software-supported negotiations in e-Commerce.

E-commerce systems are increasingly concerned with data protection.
They follow a property-based approach to privacy which leads to privacy
negotiation and bargaining upon the base of the data subjects’ consent. After
considering the technological and regulative strategies of protecting consumer
privacy, [76] discusses the shortcomings of that approach and claims that, as
long as a general privacy culture has not yet evolved in the (web) society, it
might conflict with the notion of data protection as a fundamental right.

Due to the automation of infrastructures, both users and services have
many agents acting on their behalf. In pervasive systems one of the most
problematic concerns arises over the user’s right to maintain their privacy.

6 Modeling and Negotiating Service Quality 199

[18] is focused on instruments to enable and maintain privacy through a sub-
tle fusion of different privacy enabling techniques. The authors present a con-
ceptual privacy enabling architecture of infrastructural pervasive middleware
that uses trust management, privacy negotiation, and identity management
during the inter-entity communication life-cycle.

In order to take into account the privacy concerns of the individuals, orga-
nizations (e.g., Web services) provide privacy policies as promises describing
how they will handle the personal data of the individual. However, privacy
policies do not convince potential individuals to disclose their personal data,
do not guarantee the protection of personal information, and do not specify
the way to handle the dynamic environment of the policies. [11] introduces a
framework based on an agreement as a solution to these problems. It proposes
a privacy agreement model that spells out a set of requirements related to the
requestor’s privacy rights in terms of how the service provider must handle
privacy information. It defines two levels in the agreement: 1) the policy level;
and 2) the negotiation level. A formal privacy model is described in the policy
level to provide upon it a reasoning mechanism for the evolution. The frame-
work supports life-cycle management during the negotiation of the agreement
and, hence, the privacy evolution is handled in this level.

6.3 General Observations

6.3.1 QoS Specification Observations

Our survey has uncovered the lack of a well established and standard QoS
model for services. In addition, most of the approaches do not offer a rich,
extensible, and formal QoS model that includes an extensive categorization of
QoS attributes in all service levels. As a result, QSDs and SLAs are populated
using many different incompatible QoS models and which lack the richness
needed to specify the QoS of many types of services.

Apart from the lack of a standard service QoS model, there is also a lack
of well-established and standard QoS meta-models or languages that could
be used to specify QSDs and SLAs. The QoS meta-models surveyed either
do not have the appropriate formality or richness (or both) to specify quality
documents. As a result, QSDs and SLAs are described by many different
formalisms of languages or meta-models, all of which are not rich enough.

The above inefficiencies in specifying quality documents limit the fulfill-
ment of the vision of automated and precise QoS-based service matchmaking
and selection and QoS-aware service composition and the automation and
support of all other activities related to service provisioning.

Hence, we argue that research should be carried out in the development of a
standard and rich QoS model that provides an extensive categorization of QoS
attributes in all service levels. Moreover, this QoS model should be extensible
so as to allow the addition of new quality dimensions when it is needed (e.g., for

200 S. Benbernou et al.

a new application domain). Last but not least, this standard QoS model should
be semantically enriched (i.e., formal) in order to be machine-processable and
machine-interpretable.

Such a comprehensive QoS model for services requires a suitable formal
QoS language or meta-model to be used in complex service-based applications,
in which services can be invoked and composed with variable QoS profiles.
Such a language should be capable of expressing QoS capabilities and SLAs
by using functions, operators and comparison predicates on QoS metrics and
attributes. It should also allow the description of composition rules for every
possible combination of composition constructs and QoS metrics. Moreover, it
should allow the description of different QoS offerings for the same functional
offering of a service; i.e., it should be able to describe classes of service.

6.3.2 QoS Negotiation Observations

We identify two main streams for short-term research on service QoS nego-
tiation. First, we underline the issue of automated SLA creation in service
compositions. The review shows that most of the current work in this field
concerns the negotiation between a service consumer and a service provider or
the set of providers of functionally equivalent services. Proposals for managing
complex one to many negotiations with services involved in the same service
composition are still at their infancy and need further development. Second,
research efforts should be devoted to the analysis of innovative negotiation
strategies explicitly tailored to the requirements of service-based applications.
Currently, the participants of QoS negotiations in service-based applications
adopt state-of-the-art strategies, drawn from research on agent-based com-
puting. We argue that more efficient and flexible solutions to the negotiation
problem become feasible when negotiation strategies take into account the
features of negotiation objects and protocols in service-based applications.

QoS negotiation can also be used to extend the capabilities of service
composition tools. QoS agreement gives of course best results when global
optima have been achieved. This is difficult, because complex QoS expressions
can give rise to optimization functions which are difficult or impossible to treat
mathematically. Approximations and heuristics, such as the ones achieved
with genetic algorithms, simulated annealing or planning strategies, appear
to be the only feasible resort at this moment. Additionally, if the architecture
allows for dynamic re-negotiation (within the same service, for which services
should offer different QoS classes, or selecting another service), the cost of
negotiation, e.g., planning, equation solving, etc., should be evaluated against
the expected gain achieved with the new service.

In Grid computing, we have observed the QoS models and SLAs used
for resource provisioning in current Grids are similar to approaches used in
service-based applications. Some of the models and implemented tools are even
used in both fields (an example is WS-Agreement). Concerning the solutions

6 Modeling and Negotiating Service Quality 201

available for Grid computing, we can state that the adopted and proof-of-
concept implementations are still premature. We found promising theoretical
approaches that fit SLA usage to current Grid systems, but there is no com-
mon mechanism for SLA advertisement and discovery. WS-Agreement seems
to be a good candidate, but existing solutions using this form still cannot
interoperate. Regarding SLA negotiation, WS-Agreement still cannot deliver
the solution: in most cases it can only be used for a simple offer-accept interac-
tion. The future directions should identify a commonly accepted approach for
service advertisement and discovery. Recent experiences both in the service-
oriented and Grid communities should be taken into account in order to arrive
at a widely accepted and interoperable solution.

References

1. The GEMSS project: Grid-enabled medical simulation services, EU IST
project, ist-2001-37153, http://www.gemss.de/

2. OGF grid resource allocation agreement protocol working group website:
https://forge.gridforum.org/sf/projects/graap-wg

3. OGF grid scheduling architecture research group website: https://forge.

gridforum.org/sf/projects/gsa-rg

4. Interactive Access Control for Web Services. Kluwer (2004)
5. Ajayi, O., Sinnott, R., Stell, A.: Dynamic trust negotiation for flexible e-health

collaborations. In: Proceedings of the 15th ACM Mardi Gras conference (MG),
pp. 1–7. ACM Press, New York (2008)

6. Arenas, A., Wilson, M., Matthews, B.: On trust management in grids. In:
Proceedings of the 1st international conference on Autonomic computing and
communication systems (Autonomics’07), pp. 1–7. ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2007)

7. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Web Semant. 5(2), 58–71 (2007)

8. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker,
M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, H. Pra-
fullchandra, C. von Riegen, D. Roth, J. Schlimmer, C. Sharp, J. Shewchuk,
A. Vedamuthu, C.Ü. Yal D. Orchard. Web Services Policy Framework (WS-
Policy). IBM (March 2006)

9. Becker, M., Sewell, P.: Cassandra: Distributed access control policies with tun-
able expressiveness. In: POLICY ’04: Proceedings of the Fifth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks, Washing-
ton, DC, USA, p. 159. IEEE Computer Society (2004)

10. Benbernou, S., Brandic, I., Cappiello, C., Carro, M., Comuzzi, M., Kertész, A.,
Kritikos, K., Parkin, M., Pernici, B., Plebani, P.: A Survey on Service Quality
Description. ACM Computing Surveys, submitted (2009)

11. Benbernou, S., Meziane, H., Li, Y.H., Hacid, M.-S.: A privacy agreement model
for web services. In: IEEE SCC, pp. 196–203. IEEE Computer Society Press
(2007)

http://www.gemss.de/
https://forge.gridforum.org/sf/projects/graap-wg
https://forge.gridforum.org/sf/projects/gsa-rg
https://forge.gridforum.org/sf/projects/gsa-rg

202 S. Benbernou et al.

12. Benkner, S., Engelbrecht, G., Middleton, S.E., Brandic, I., Schmidt, R.: End-
to-End QoS support for a medical grid service infrastructure. New Generation
Computing, Special Issue on Life Science Grid Computing (2007)

13. Bertino, E., Ferrari, E., Squicciarini, A.: X-TNL: An XML-based language for
trust negotiations. In: POLICY ’03: Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and Networks, page 81, Wash-
ington, DC, USA, IEEE Computer Society (2003)

14. Bertino, E., Ferrari, E., Squicciarini, A.: Trust negotiations: concepts, systems,
and languages. Computing in Science and Engineering 6(4), 27–34 (2004)

15. Bertino, E., Ferrari, E., Squicciarini, A.: Trust negotiations: Concepts, systems,
and languages. Computing in Science and Engineering 06(4), 27–34 (2004)

16. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust-X: A peer-to-peer framework
for trust establishment. IEEE Transactions on Knowledge and Data Engineer-
ing, TKDE 16(7), 827–842 (2004)

17. Bhargav-Spantzel, A., Squicciarini, A.C., Bertino, E.: Trust negotiation in iden-
tity management. IEEE Security and Privacy 5(2), 55–63 (2007)

18. Blazic, A.J., Dolinar, K., Porekar, J.: Enabling privacy in pervasive comput-
ing using fusion of privacy negotiation, identity management and trust man-
agement techniques. In: First International Conference on the Digital Society
(ICDS 2007), Guadeloupe, French Caribbean, 2-6 January 2007, Springer, Hei-
delberg (2007)

19. Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with
hidden credentials. In: Proceedings of the 11th ACM conference on Computer
and communications security CCS ’04, Washingtion, DC, USA, pp. 146–157.
ACM Press (2004)

20. Brandic, I., Pllana, S., Benkner, S.: An approach for the high-level specification
of QoS-aware grid workflows considering location affinity. Scientific Program-
ming Journal 14(3-4), 231–250 (2006)

21. Brandic, I., Pllana, S., Benkner, S.: Specification, planning, and execution of
QoS-aware grid workflows within the Amadeus environment. Concurrency and
Computation: Practice and Experience 20(4), 331–345 (2008)

22. Chhetri, M.B., Lin, J., Goh, S., Yan, J., Zhang, J.Y., Kowalczyk, R.: A coor-
dinated architecture for the Agent-based Service Level agreement Negotiation
of Web service composition. In: Proc. 2006 Australian Software Engineering
Conference, ASWEC’06 (2006)

23. Chhetri, M.B., Lin, J., Goh, S., Zhang, J.Y., Kowalczyk, R., Yan, J.: A coor-
dinated architecture for the agent-based service level agreement negotiation
ofweb service composition. In: ASWEC ’06: Proceedings of the Australian
Software Engineering Conference, Washington, DC, USA, pp. 90–99. IEEE
Computer Society (2006)

24. Chiu, D.K.W., Cheung, S.C.: Patrick C.K. Hung, and Ho fung Leung. Fa-
cilitating e-negotiation processes with semantic web technologies. In: HICSS
’05: Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05) - Track 1, Washington, DC, USA,
p. 36.1. IEEE Computer Society (2005)

25. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements
in Software Engineering. Kluwer Academic Publishers, Dordrecht (2000)

26. Comuzzi, M., Pernici, B.: An architecture for flexible Web service QoS nego-
tiation. In: Proceedings of the 9th IEEE Enterprise Computing Conference,
Enschede, The Netherlands (2005)

6 Modeling and Negotiating Service Quality 203

27. Cortés, A.R., Mart́ın-Dı́az, O., Toro, A.D., Toro, M.: Improving the Automatic
Procurement of Web Services Using Constraint Programming. Int. J. Cooper-
ative Inf. Syst. 14(4), 439–468 (2005)

28. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP:
A protocol for negotiating service level agreements and coordinating re-
source management in distributed systems. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer,
Heidelberg (2002)

29. Degwekar, S., Su, S.Y.W., Lam, H.: Constraint specification and processing in
web services publication and discovery. In: ICWS, pp. 210–217. IEEE Com-
puter Society (2004)

30. Di Nitto, E., Di Penta, M., Gambi, A., Ripa, G., Villani, M.L.: Negotiation of
Service Level Agreements: An Architecture and a Search-Based Approach. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 295–306. Springer, Heidelberg (2007)

31. Dobson, G., Lock, R., Sommerville, I.: QoSOnt: a QoS ontology for service-
centric systems. In: EUROMICRO ’05: Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Applications, Porto, Por-
tugal, pp. 80–87. IEEE Computer Society (2005)

32. Dragoni, N., Massacci, F.: Security-by-contract for web services. In: Proceed-
ings of the 2007 ACM workshop on Secure web services (SWS ’07), New York,
NY, USA, pp. 90–98. ACM (2007)

33. El-Khatib, K., von Bochmann, G.: Protecting the privacy of user’s qos pref-
erences for multimedia applications. In: Proceedings of the 2nd ACM interna-
tional workshop on Wireless multimedia networking and performance modeling
(WMuNeP ’06), New York, NY, USA, pp. 35–42. ACM (2006)

34. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems 23(3-4),
159–182 (1998)

35. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems 24(3-4),
159–182 (1998)

36. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed nist standard for role-based access control. ACM Trans. Inf. Syst. Se-
cur. 4(3), 224–274 (2001)

37. FIPA. FIPA standard status specifications, http://www.fipa.org/reposi-

tory/standardspecs.html
38. Document Title Fipa. FIPA Communicative Act Library Specification (2003)
39. Frikken, K., Atallah, M., Li, J.: Hidden access control policies with hidden

credentials. In: Proceedings of the 2004 ACM workshop on Privacy in the
electronic society (WPES ’04), New York, NY, USA, pp. 27–28. ACM (2004)

40. Frølund, S., Koistinen, J.: Quality of services specification in distributed object
systems design. In: COOTS’98: Proceedings of the 4th conference on USENIX
Conference on Object-Oriented Technologies and Systems (COOTS), 5(4), pp.
179–202 (1998)

41. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Contemporary
Web Service Discovery Mechanisms. Journal of Web Engineering 5(3), 265–
290 (2006)

42. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K., Winslett, M.: No reg-
istration needed: How to use declarative policies and negotiation to access
sensitive resources on the semantic web (2004)

http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/repository/standardspecs.html

204 S. Benbernou et al.

43. Giallonardo, E., Zimeo, E.: More semantics in QoS matching. In: International
Conference on Service-Oriented Computing and Applications, Newport Beach,
CA, USA, pp. 163–171. IEEE Computer Society (2007)

44. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying policies for
automated negotiations of service contracts. In: Orlowska, M.E., Weerawarana,
S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 287–
302. Springer, Heidelberg (2003)

45. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications.
IEEE Communications Surveys and Tutorials 3(4), http://www.comsoc.org/
livepubs/surveys/public/2000/dec/index.html

46. He, Y., Zhu, M.: A complete and efficient strategy based on Petri Nets in au-
tomated trust negotiation. In: Proceedings of the 2nd international conference
on Scalable information systems (InfoScale), pp. 1–7, ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2007)

47. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans.
Asian Lang. Inf. Process. 3(1), 66–85 (2004)

48. Huai, J., Sun, H., Hu, C., Zhu, Y., Liu, Y., Li, J.: Rost: Remote and hot service
deployment with trustworthiness in crown grid. Future Generation Computer
Systems 23(6), 825–835 (2007)

49. Irwin, K., Yu, T.: Preventing attribute information leakage in automated trust
negotiation. In: Proceedings of the 12th ACM conference on Computer and
communications security (CCS ’05), New York, NY, USA, pp. 36–45. ACM
(2005)

50. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J.,
Sierra, C.: Automated negotiation: Prospects, methods and challenges. Group
Decision and Negotiation 10(2), 199–215 (2001)

51. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring ser-
vice level agreements for web services. Journal of Network and Systems Man-
agement 11(1), 57–81 (2003)

52. Koshutanski, H., Massacci, F.: Interactive credential negotiation for stateful
business processes. In: iTrust, pp. 256–272 (2005)

53. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: ECOWS ’06:
Proceedings of the European Conference on Web Services, Zurich, Switzerland,
pp. 265–274. IEEE Computer Society (2006)

54. Kritikos, K., Plexousakis, D.: Semantic QoS-based web service discovery al-
gorithms. In: ECOWS ’07: Proceedings of the Fifth European Conference on
Web Services, Halle, Germany, pp. 181–190. IEEE Computer Society (2007)

55. Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web Service De-
scription and Discovery. IEEE Transactions on Services Computing, accepted
(2009)

56. Lai, G., Li, C., Sycara, K., Giampapa, J.A.: Literature review on multi-
attribute negotiations. Technical Report CMU-RI-TR-04-66, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA (December 2004)

57. Lamparter, S., Luckner, S., Mutschelr, S.: Formal specification of Web service
contracts for automated contracting and monitoring. In: Proceedings of the
40th Hawaii International Conference on System Sciences, Honolulu, Hawaii,
pp. 63–73 (2007)

http://www.comsoc.org/livepubs/surveys/public/2000/dec/index.html
http://www.comsoc.org/livepubs/surveys/public/2000/dec/index.html

6 Modeling and Negotiating Service Quality 205

58. Lamparter, S., Luckner, S., Mutschler, S.: Formal specification of web service
contracts for automated contracting and monitoring. In: HICSS ’07: Proceed-
ings of the 40th Annual Hawaii International Conference on System Sciences,
Washington, DC, USA, IEEE Computer Society (2007)

59. Lee, A., Winslett, M., Basney, J., Welch, V.: Traust: a trust negotiation-based
authorization service for open systems. In: SACMAT ’06: Proceedings of the
eleventh ACM symposium on Access control models and technologies, New
York, ACM (2006)

60. Lee, A.J., Winslett, M., Basney, J., Welch, V.: The Traust authorization ser-
vice. ACM Trans. Inf. Syst. Secur. 11(1), 1–33 (2008)

61. Li, J., Huai, J., Xu, J., Zhu, Y., Xue, W.: Tower: Practical trust negotiation
framework for grids. In: Second IEEE International Conference on e-Science
and Grid Computing (e-Science’06), 0:26 (2006)

62. Li, N., Mitchell, J.: Rt: A role-based trust-management framework. In: The
Third DARPA Information Survivability Conference and Exposition (DISCEX
III) (April 2003)

63. Liu, Y., Ngu, A.H.H., Zeng, L.: QoS computation and policing in dynamic web
service selection. In: Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.)
WWW (Alternate Track Papers & Posters), pp. 66–73. ACM Press, New York
(2004)

64. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level
Agreement (WSLA) Language Specification. Technical report, IBM Corpora-
tion (2003)

65. Mani, A., Nagarajan, A.: Understanding quality of service for web services
(2002), http://www-128.ibm.com/developerworks/library/ws-quality.html

66. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:
Wonderweb deliverable d17. the wonderweb library of foundational ontologies
and the dolce ontology

67. Maximilien, E.M., Singh, M.P.: Conceptual model of web service reputation.
SIGMOD Rec. 31(4), 36–41 (2002)

68. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web
services selection. IEEE Internet Computing 8(5), 84–93 (2004)

69. Mbanaso, U.M., Cooper, G.S., Chadwick, D.W., Proctor, S.: Privacy preserving
trust authorization framework using XACML. In: 2006 International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks(WoWMoM’06),
pp. 673–678. IEEE (2006)

70. Menascé, D., Dubey, V.: Utility-based QoS brokering in service oriented archi-
tectures. In: Proceedings of the 2007 International Conference on Web services
(2007)

71. Mukhi, N.K., Plebani, P.: Supporting policy-driven behaviors in Web services:
experiences and issues. In: Proceedings of the 2nd International Conference on
Service Oriented Computing, New York, NY (2004)

72. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.: WS-Trust
specification. Technical report. OASIS Working Draft (2007), http://www.

ibm.com/developerworks/webservices/library/specification/ws-trust

73. Ncho, A., Aimeur, E.: Building a multi-agent system for automated negotiation
in Web service applications. In: Proc. of AAMAS’04 (2004)

74. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement
partner selection. In: WWW ’06: Proceedings of the 15th International con-

http://www-128.ibm.com/developerworks/library/ws-quality.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-trust
http://www.ibm.com/developerworks/webservices/library/specification/ws-trust

206 S. Benbernou et al.

ference on World Wide Web, Edinburgh, Scotland, pp. 697–706. ACM Press,
New York (2006)

75. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement
partner selection. In: WWW ’06: Proceedings of the 15th international confer-
ence on World Wide Web, New York, NY, USA, pp. 697–706. ACM (2006)

76. Oliver-Lalana, A.D.: Consent as a threat. A critical approach to privacy nego-
tiation in e-commerce practices. In: Katsikas, S.K., López, J., Pernul, G. (eds.)
TrustBus 2004. LNCS, vol. 3184, pp. 110–119. Springer, Heidelberg (2004)

77. Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust Negotiation for Seman-
tic Web Services. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS,
vol. 3387, pp. 81–95. Springer, Heidelberg (2005)

78. Olson, L.E., Rosulek, M.J., Winslett, M.: Harvesting credentials in trust nego-
tiation as an honest-but-curious adversary. In: Proceedings of the 2007 ACM
workshop on Privacy in electronic society (WPES ’07), New York, NY, USA,
pp. 64–67. ACM (2007)

79. Olson, L., Winslett, M., Tonti, G., Seeley, N., Uszok, A., Bradshaw, J.: Trust
negotiation as an authorization service forweb services. In: ICDEW ’06: Pro-
ceedings of the 22nd International Conference on Data Engineering Workshops,
Washington, DC, USA, IEEE Computer Society (2006)

80. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: Formal description of non-
functional service properties. Technical report, Queensland University of Tech-
nology (2005)

81. Bonatti, P., Samarati, P.: Regulating service access and information release on
the web. In: CCS ’00: Proceedings of the 7th ACM conference on Computer
and communications security, New York, NY, pp. 134–143. ACM (2000)

82. Preibusch, S.: Implementing privacy negotiations in E-commerce. In: Zhou,
X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS,
vol. 3841, pp. 604–615. Springer, Heidelberg (2006)

83. Ran, S.: A model for web services discovery with QoS. SIGecom Exch. 4(1),
1–10 (2003)

84. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1),
1–10 (2003)

85. Redman, T.C.: Data Quality for the Information Age (Foreword By - Blanton
Godfrey, A.). Artech House, Inc., Norwood (1997)

86. Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Herrmann, P., Is-
sarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer,
Heidelberg (2005)

87. Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.E.: Adaptive trust
negotiation and access control. In: Proceedings of the tenth ACM symposium
on Access control models and technologies (SACMAT ’05), New York, NY,
USA, pp. 139–146. ACM (2005)

88. Sabata, B., Chatterjee, S., Davis, M., Sydir, J.J., Lawrence, T.F.: Taxonomy
for QoS Specifications. In: Third International Workshop on Object-Oriented
Real-Time Dependable Systems, 1997. Proceedings, 5-7 Feb. 1997, pp. 100–107
(1997)

89. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management
for Web Services. Technical Report HPL-2001-310, HP Laboratories, Palo Alto,
CA (July 2002)

6 Modeling and Negotiating Service Quality 207

90. Sakellariou, R., Yarmolenko, V.: On the flexibility of WS-Agreement for job
submission. In: Proceedings of the 3rd International Workshop on Middleware
for Grid Computing, MGC’05 (2005)

91. Sakellariou, R., Yarmolenko, V.: Job Scheduling on the Grid: Towards SLA-
Based Scheduling. In: High Performance Computing and Grids in Action
(March 2008)

92. Seamons, K.E., Winslett, M., Yu, T., Yu, L., Jarvis, R.: Protecting privacy
during on-line trust negotiation. In: Dingledine, R., Syverson, P.F. (eds.) PET
2002. LNCS, vol. 2482, pp. 129–143. Springer, Heidelberg (2003)

93. Seidel, J., Wäldrich, O., Ziegler, W., Wieder, P., Yahyapour, R.: a survey.
Using SLA for resource management and scheduling. Technical report, TR-
0096, Institute on Resource Management and Scheduling, CoreGRID - Network
of Excellence (August. 2007)

94. Shen, H., Hong, F.: An attribute-based access control model for web services.
In: Seventh International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2006), pp. 74–79 (2006)

95. Skogsrud, H., Benatallah, B., Casati, F.: Trust-Serv: Model-driven lifecycle
management of trust negotiation policies for web services. In: Proc. 13th World
Wide Web Conf. (May 2004)

96. Sommerville, I.: Software Engineering, 4th edn. Addison-Wesley, Reading
(1992)

97. Squicciarini, A., Bertino, E., Ferrari, E., Paci, F., Thuraisingham, B.: PP-trust-
X: A system for privacy preserving trust negotiations. ACM Transactions on
Information and System Security (TISSEC) 10(3), 12 (2007)

98. Strong, D.M., Lee, Y.W., Wang, R.Y.: 10 potholes in the road to information
quality. Computer 30(8), 38–46 (1997)

99. Sycara, K., et al.: OWL-S 1.0 Release. OWL-S Coalition (2003), http://www.
daml.org/services/owl-s/1.0/

100. The OASIS Group. Quality model for web services. Technical report, The Oasis
Group (September 2005)

101. The OMG Group. UMLTM Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Technical Report ptc/2005-05-02,
The OMG Group (May 2005)

102. Tian, M., Gramm, A., Nabulsi, M., Ritter, H., Schiller, J., Voigt, T.: Qos
integration in web services. In: Gesellschaft fur Informatik DWS 2003, Dok-
torandenworkshop Technologien und Anwendungen von XML (October 2003)

103. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K.: On requirements for ontologies
in management of web services. In: Bussler, C.J., McIlraith, S.A., Orlowska,
M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512,
pp. 237–247. Springer, Heidelberg (2002)

104. Tosic, V., Pagurek, B., Patel, K.: WSOL - A language for the formal specifi-
cation of classes of service for web services. In: Zhang, L.-J. (ed.) ICWS, June
2003, pp. 375–381. CSREA Press (2003)

105. Tosic, V., Patel, K., Pagurek, B.: WSOL - web service offerings language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.)
CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg
(2002)

http://www.daml.org/services/owl-s/1.0/
http://www.daml.org/services/owl-s/1.0/

208 S. Benbernou et al.

106. Tsesmetzis, D.T., Roussaki, I.G., Papaioannou, I.V., Anagnostou, M.E.: Qos
awareness support in web-service semantics. In: AICT-ICIW ’06: Proceedings
of the Advanced Int’l Conference on Telecommunications and Int’l Confer-
ence on Internet and Web Applications and Services, Guadeloupe, French
Caribbean, pp. 128–134. IEEE Computer Society (2006)

107. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,
Johnson, M., Kulkarni, S., Lott, J.: Kaos policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and enforce-
ment. In: POLICY ’03: Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, Washington, DC, USA, IEEE
Computer Society (2003)

108. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qoS-aware selection model for
semantic web services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

109. Winsborough, W.H., Li, N.: Safety in automated trust negotiation. ACM
Transactions on Information and System Security (TISSEC) 9(3), 352–390
(2006)

110. Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson, J., Jarvis, R., Smith,
B., Yu, L.: The TrustBuilder architecture for trust negotiation. IEEE Internet
Computing 6(6), 30–37 (2002)

111. Winslett, M., Zhang, C.C., Bonatti, P.A.: Peeraccess: a logic for distributed
authorization. In: CCS ’05: Proceedings of the 12th ACM conference on Com-
puter and communications security, pp. 168–179, New York, NY, USA. ACM
(2005)

112. WS-AGREEMENT. WS-Agreement Framework (September 2003), https://
forge.gridforum.org/projects/graap-wg

113. Yan, J., Zhang, J.Y., Chhetri, M.B., Lin, J., Goh, S., Kowalczyk, R.: Towards
autonomous service level agreement negotiation for adaptvive service compo-
sition. In: Proc. 10th Int. Conf. on Computer Supported Cooperative Work in
Design (2006)

114. Yu, T., Winslett, M.: Policy migration for sensitive credentials in trust negoti-
ation. In: Proceedings of the 2003 ACM workshop on Privacy in the electronic
society (WPES ’03), New York, NY, USA, pp. 9–20. ACM (2003)

115. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and
sensitive policies through interoperable strategies for automated trust negoti-
ation. ACM Trans. Inf. Syst. Secur. 6(1), 1–42 (2003)

116. Zhang, S., Makedon, F.: Privacy preserving learning in negotiation. In: Pro-
ceedings of the 2005 ACM symposium on Applied computing (SAC ’05), New
York, NY, USA, pp. 821–825. ACM (2005)

117. Zhou, C., Chia, L.-T., Lee, B.-S.: Daml-qos ontology for web services. In:
ICWS ’04: Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’04), San Diego, CA, USA, pp. 472–479. IEEE Computer Society
(2004)

https://forge.gridforum.org/projects/graap-wg
https://forge.gridforum.org/projects/graap-wg

7

Analytical Quality Assurance

Andreas Metzger1, Salima Benbernou2, Manuel Carro3, Maha Driss4,
Gabor Kecskemeti5, Raman Kazhamiakin6, Kyriakos Krytikos7,
Andrea Mocci8, Elisabetta Di Nitto8, Branimir Wetzstein9, and
Fabrizio Silvestri10

1 Universität Duisburg-Essen, Germany
2 Université Claude Bernard, Lyon 1, France
3 Universidad Politécnica de Madrid, Spain
4 Institut National de Recherche en Informatique et Automatique (INRIA)
MTA Computer & Automation Research Institute (MTA-SZTAKI), Budapest,
Hungary

5 Fondazione Bruno Kessler (FBK), Trento, Italy
6 University of Crete, Greece
7 Politecnico di Milano, Italy
8 University of Stuttgart, Germany
9 Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

Chapter Overview. As we described in Chapter 1, Services are often provisioned
within short-term, volatile and highly dynamic (business) processes. These pro-
cesses are designed in an abstract manner and when instantiated can involve service
providers not known of during the design time of the service-based application.
Thus, different from traditional software systems, service-based applications require
the composition and coordination of services within highly distributed environments,
cutting across the administrative boundaries of various organizations.

This chapter provides a review of quality contracts, or more generally, those
parts of Service Level Agreements (SLAs) which deal with statements about the
services quality levels on which the service requestor and the providers have reached
an agreement. Aspects of the contracts, such as the identification of parties, legal
obligations and penalties for contract violation, are not covered by this chapter.

7.1 Motivation

To guarantee the desired end-to-end quality of those service-based applica-
tions, contracts between the service providers and the service requestors (also
known as service consumers) on quality aspects of services must be estab-
lished [30]. In general, a contract is a formal agreement between two or more
parties to create mutual business relations or legal obligations. Contracts can
have different parts, such as the definition of business partners, the specifica-

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 209–270, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

210 A. Metzger et al.

tion of functional obligations, and quality, price, and penalties related with
the object of the agreement.

Based on the general life-cycle of electronic contracts [109] [151], three
main activities relevant for quality contracts within service-based applications
can be identified:

• Quality definition: In electronic contracting, the contract definition activ-
ity concerns the establishment of a model or language for the definition
of contract terms, which is understood and shared by the contracting par-
ties. This model or language then is used to instantiate an actual contract
(e.g., a SLA) that reflects the domain dependent interests of providers and
consumers.

• Quality negotiation: Establishment of an electronic contract concerns the
set of tasks required for defining an actual contract (e.g., SLA) based on the
model or language for the definition of contract terms (see above). This
may involve the selection of the service provider (the contract partner)
among a set of potential providers, the negotiation of the contract terms
between the selected provider and the service consumer, and the agreement
to the contract terms.

• Quality assurance: Contract enactment in electronic contracting concerns
tasks for assuring the satisfaction of the contracts. In the case of qual-
ity contracts, this implies assuring that the quality levels negotiated and
agreed between the service provider and the service requestor are met. In
the dynamic setting of service-based applications, quality assurance can
reveal that there is a deviation from the expected quality, thus necessi-
tating an adaptation of the application. How such an adaptation can be
achieved is described in Chapter 5.

This chapter addresses the final activity in electronic quality contracting,
namely quality assurance (the first two activitues are addressed in Chapter
6). To achieve the desired quality of a service-based application (i.e, for con-
tract enactment), two complementary kinds of techniques and methods can be
employed: constructive and analytical quality assurance techniques and meth-
ods. The goal of constructive quality assurance techniques and methods is to
prevent the introduction of faults (or defects) while the artifacts are created.
Examples for such techniques include code generation (model-driven develop-
ment), development guidelines, as well as templates. The goal of analytical
quality assurance techniques and methods is to uncover faults in the artifacts
after they have been created. Examples for analytical quality assurance tech-
niques are reviews and inspections, formal correctness proofs, testing, as well
as monitoring.

This chapter will cover the state of the art in analytical quality assurance
techniques and methods for service-based applications by providing a com-
prehensive literature review in analytical quality assurance for service-based
applications. Furthermore, this chapter will identify gaps in the state of the

7 Analytical Quality Assurance 211

art in order to identify open research issues that should be addressed in future
research.

The literature review covers three major classes of approaches for ana-
lytical quality assurance in service-based applications: (i) Testing, the goal
of which is to (systematically) execute services or service-based applications
with predefined inputs in order to uncover failures, (ii) Monitoring, which
observes services or service-based applications as well as their context during
their current execution, (iii) Static Analysis, the aim of which is to system-
atically examine (without execution) an artifact (e.g., a service specification)
in order to determine certain properties or to ascertain that some predefined
properties are met.

The literature review has been carried out by members of the S-Cube
network of excellence, to whom we extend our gratitude.

7.2 Review Methodology

The review of relevant research in the fields of quality asurance in service-
based applications has followed a systematic approach. Both general confer-
ence and journals on services and software engineering have been covered,
and in addition, special research area publication sites have also been cov-
ered. Specifically, we reviewed work, starting from year 2000, in the following
publication forums:

• Conference Proceedings: Int. Conf. on Software Engineering (ICSE),
Int. Conf. on Web Services (ICWS), Int. Services Computing Conf. (SCC),
European Conf. on Web Services (ECOWS), Int. Enterprise Distributed
Object Computing Conf. (EDOC), World Wide Web Conf. (WWW), Int.
Conf. on Service Oriented Computing (ICSOC), Int. Conf. on Business
Process Management (BPM), Int. Conference on Software Engineering
(ICSE), International Symposium on Software Testing and Analysis (IS-
STA), International Symposium on Software Testing and Analysis (ISSTA)

• Academic Journals and Magazines: IEEE TSE, ACM TOSEM
• Digital libraries: ACM Digital library on a keyword basis (e.g., SOA,

SBS, SOA and monitoring, verification, analysis), SCOPUS, INSPEC

With respect to monitoring in SOA, the presented survey is based on and
extends a previous work in [56]. In that survey the authors concentrated on
run-time monitoring of Web services and service compositions. The reviewed
work presents both the research approaches towards monitoring of Web ser-
vices and Web service-based compositions. The presented survey follows this
approach and extends the list of relevant work with recent advances in this
area.

Given the very wide field of analysis, we have chosen to narrow the selection
of the survey in this chapter to these papers which are more related with non-

212 A. Metzger et al.

functional properties such as performance prediction, structural complexity
of service compositions, etc.

Other contributions for the literature review have been derived from the
expertise of the different partners that contributed to this chapter. These
include relevant work published in domain specific conferences and workshops
proceedings or in specialized academic journals, all of which fall outside the
aforementioned list of academic publications systematically reviewed.

7.3 Fundamentals

In order to structure the survey results, we sub-divide the analytical quality
assurance techniques and methods into the three major classes: testing, mon-
itoring and static analysis. These classes have been proposed in the software
quality assurance literature (e.g., see [97, 93, 103, 55]) and have been used in a
recent overview of quality assurance approaches for service-based applications
(cf. [12]).

Figure 7.1 provides an overview of these classes and their sub-classes which
are explained in the following sub-sections.

Quality Assurance

Constructive Quality

Assurance

Analytical

Quality Assurance

Dynamic Checks

Testing

Monitoring

Static Analysis

Profiling

Monitoring to

uncover failures

Monitoring to support optimization,

context adaptation, …

“Synthesizing”

Approaches

Verifying

Approaches

Fig. 7.1. Overview of Quality Assurance Approaches

Testing

The goal of testing is to (systematically) execute services or service-based
applications10 in order to uncover failures (cf. [97, 93, 103, 55]).

10 In the remainder of this part of the chapter, we use the term service-based appli-
cation as a synonym for service composition.

7 Analytical Quality Assurance 213

During testing, the service or service-based application which is tested is
fed with concrete inputs and the produced outputs are observed. The observed
outputs can deviate from the expected outputs with respect to functionality
as well as quality of service (e.g., performance or availability). When the
observed outputs deviate from the expected outputs, a failure of the service
or the service-based application is uncovered.

Failures can be caused by faults (or defects) of the test object. Examples
for faults are a wrong exit condition for a loop in the software code that
implements a service, or a wrong order of the service invocations in a BPEL
specification. Finding such faults typically is not part of the testing activities
but is the aim of debugging (e.g., cf. [93, 55]).

A special case of testing is profiling. During profiling, a service or a service-
based application can be systematically executed in order to determine specific
properties. As an example, during profiling the execution times of individual
services in a service composition could be measured for ‘typical’ or ‘extreme’
inputs in order to identify optimization potentials.

Testing cannot guarantee the absence of faults, because it is infeasible
(except for trivial cases) to test all potential concrete inputs of a service or
service-based application. As a consequence, a sub-set of all potential inputs
has to be determined for testing (e.g., cf. [103]). The quality of the tests
strongly depends on how well this sub-set has been chosen. Ideally this sub-
set should include concrete inputs that are representative for all potential
inputs (even those which are not tested) and it should include inputs that
– with high probability – uncover failures. However, in cases where choosing
such an ideal sub-set typically is infeasible, it is important to employ other
quality assurance techniques and methods which complement testing.

Monitoring

Monitoring observes services or service-based applications during their current
execution, i.e. during their actual use or operation (cf., [37]). In addition, the
context of a service or a service-based application can be monitored. This con-
text can include other systems, the execution platform (hardware, operating
systems, etc.) and the physical environment (e.g., sensors or actuators).

Monitoring can address different goals. As an example, monitoring tech-
niques can be employed to support the optimization of a service-based applica-
tion during run-time. Further, monitoring can be used to enable the context-
driven run-time adaptation of a service-based application. Also, monitoring
may be used to uncover failures during the current execution of a service or
service-based application.

In contrast to testing and static analysis, which aim at providing more
or less general statements about services or service-based applications, mon-
itoring always provides statements about their current execution (i.e., about
current execution traces). Thereby, monitoring can uncover failures which

214 A. Metzger et al.

have escaped testing, because the concrete input that lead to the current ex-
ecution trace might have never been tested.11 Also, monitoring can uncover
faults which have escaped static analysis, because static analysis might have
abstracted from a concrete aspect which was relevant during the current ex-
ecution. Monitoring therefore provides a complementary measure to ensure
the quality of a service-based application and thus “can be used to provide
additional defense against catastrophic failure” [37].

Static Analysis

The aim of static analysis (e.g., see [44, 55]) is to systematically examine an
artifact in order to determine certain properties or to ascertain whether some
predefined properties are met. In the remainder of this chapter, we refer to
the first kind of approaches as synthesis approaches and to the latter kind
of approaches as verification approaches. Analysis can be applied at several
stages in the development cycle, and therefore examples for artifacts which can
be subject to analysis include requirement documents, design specifications,
interface descriptions, and code.

Examples of static analysis include formal techniques and methods, such
as data flow analysis, model checking, execution in abstract domains, sym-
bolic execution, type checking, and correctness proofs, which are all usually
characterized because they compute properties that are in many cases approx-
imations of the more concrete properties, but which, in this case, are safe, in
the sense that the lack of accuracy must not lead to an error for the intended
use of the analysis. Informal approaches, such as reviews, walkthroughs, and
inspections, are as well examples of static analysis.

In contrast to testing (or monitoring), where individual executions of the
services or service-based applications are examined, analysis can examine
classes of executions [55]. Thus, analysis can lead to more universal state-
ments about the properties of the artifacts than testing (or monitoring).

In order to achieve these more universal statements, static analysis – un-
like testing or monitoring – does not execute the artifacts which are being
examined, since termination (which is theoretically ensured when the system
has a finite state space) is usually a necessary condition for a successful analy-
sis. However, systems may have a state space so large (or infinite) as to make
traversing it unfeasible. In those cases static analysis resorts to working with
safe approximations of the actual system semantics, which makes the system
actually under analysis effectively finite, but different from the initial one.

Those approximations can be very sophisticated and take the form of, e.g.,
relations between inputs and outputs which approximate the system behavior
in the domain of the analysis. When these approximations capture the prop-
erties of interest faithfully enough, then the results, even if not as accurate as
they could be, are useful – and correct. Yet, as approximations might abstract

11 As explained above, only a sub-set of all potential inputs can be tested.

7 Analytical Quality Assurance 215

away from some relevant concrete details, aspects might be overlooked [55] or
simply not be captured faithfully enough. Thus static analysis can complement
the other classes of quality assurance techniques and methods but typically
will not be enough, if used in isolation, in order to give a complete picture of
the whereabouts of the execution of a computational system.

7.4 Classification Framework

The papers which are surveyed in this section are categorized in order to
understand common concepts and thus identify potential gaps and overlaps
(see Section 7.7.3). A number of “dimensions” are used for this categorization
and constitute our classification framework.

During the process of surveying the papers and based on discussions
amongst S-Cube reseaechers, this framework has been continuously evolved
in order to cover all relevant dimensions.

The “dimensions” of this classification framework are described in the
following sub-sections.

Major Class of Quality Assurance Technique or Method (Class)

As has been described in Section 7.3, we will distinguish between three major
classes of quality assurance techniques and methods for service-based appli-
cations: testing, monitoring and static analysis. For an individual technique
it can well be possible that it will be classified to fall into more than one of
these major classes.

Quality Characteristics Which Are Addressed (Quality)

Different kinds of quality characteristics – also known as QoS dimensions,
quality attributes or quality parameters – can be addressed by the quality
assurance techniques and methods.

An important quality characteristics is functional correctness, i.e. assuring
that the functionality expected from the service or service-based application
is met.12

Other quality characteristics that are relevant for service-based applica-
tions include performance, privacy, security or availability.

12 Often, a distinction between functional and non-functional (quality) characteris-
tics is made. Following the ISO/IEC 9126 standard, we subsume “functionality”
under “quality”.

216 A. Metzger et al.

Moment during the Life-Cycle (Life-Cycle)

This dimension classifies the techniques and methods according to the moment
during the life-cycle at which they can be / should be employed. For the
purpose of this chapter, we distinguish between two major phases in the life-
cycle: design (before the application is being deployed) and operation (while
and after the system has been deployed).

More detailed software life-cycle models for service-based applications are
discussed in Section NNN.

Research Discipline (Discipline)

This dimensions states which research disciplines has proposed the discussed
solution (this can typically be identified by the affiliation of the authors or
the conference / journal in which the paper has been published).

Those disciplines include (but are not limited to) Business Process Man-
agement (BPM), Service-oriented Computing (SOC), Software Engineering
(SE) and Grid Computing (Grid).

Relevant Layer of the Service-Based Application (Layer)

A check can involve artifacts on different layers of a service-based application.
These layers are Business Process Management (BPM), Service Composition
and Coordination (SCC) and Service Infrastructure (SI).

Artifact That Is Checked (Artifact)

This dimension classifies the technique or method according to the artifact
that is checked (i.e., analyzed, tested or monitored).

The entity which is checked, can include – besides others – an atomic
service (which does not invoke other services), a composed/aggregated service
(or a service-based application), a service registry, or the context of a service
or a service-based application. As an example, many monitoring approaches
(see Section 7.6) observe changes in the context of the system in order to
produce monitoring results and to enable the adaptation of the service-based
application.

Artifact against Which the Entity Is Checked (Reference)

In order to check an entity, a reference artifact is needed against which the
check is performed. As an example, when performing the test of an atomic
service, the service implementation could be tested against the service inter-
face.

Examples for such reference artifacts are service interfaces, service speci-
fications, or Service-level Agreements (SLAs).

7 Analytical Quality Assurance 217

Level of Formalization (Formality)

The following levels of formalization of a quality assurance technique and
method can be distinguished: formal, semi-formal, or non-formal techniques
and methods.

The results of a formal techniques or methods are achieved by means of
mathematical methods. This requires that the input artifacts to such formal
techniques or methods have a formal representation. Examples for formal
techniques include model checking, correctness proofs or symbolic execution.

A semi-formal technique or method rests on a language that contain formal
as well as informal elements. Thus those artifacts are not completely amenable
to mathematical methods.

Examples for non-formal techniques are reviews or inspections. Although
the process for inspections is rigorously defined, the steps during inspection
do not rely on mathematical precision.

Degree of Automation (Automation)

Quality assurance techniques and methods can consist of individual steps. An
individual step can be amenable to automation (i.e., it can be executed by
a software tool) or it cannot be automated, because it requires a human to
perform a creative task.

The degree of automation of a technique or method can thus range from
fully automated, over partially automated to not automated.

In a fully automated technique or method no manual steps have to be per-
formed. During the application of a partially automated technique or method,
not all the steps are performed by tools and thus some steps require “user”
intervention.

Means of Validation (Validation)

This dimension aims at classifying how the proposed technique or method has
been (empirically) validated.

The following “levels” of empirical evaluation, taken from [156], are used
for that purpose:

• Controlled Experiment: All of the following exist: Random assignment of
treatments to subjects. Large sample size. Hypotheses formulated. Inde-
pendent variable selected. Random sampling.

• Quasi Experiment: One or more of points in Controlled Experiment are
missing.

• Case Study: All of the following exist: Research question stated. Proposi-
tions stated. Unit(s) of analysis stated. Logic linking the data to proposi-
tions stated. Criteria for interpreting the findings provided. Performed in
a ‘real world’ situation.

218 A. Metzger et al.

• Exploratory Case Study: One or more of points in Case Study are missing.
• Experience Report: All of the following exist: Retrospective. No proposi-

tions (generally). Does not necessarily answer how or why. Often includes
lessons learned.

• Meta-Analysis: Study incorporates results from previous similar studies in
the analysis.

• Example Application: Authors describing an application and provide an
example to assist in the description, but the example is “used to validate”
or “evaluate” as far as the authors suggest.

• Survey: Structured or unstructured questions given to participants.
• Discussion: Provided some qualitative, textual, opinion-oriented evalua-

tion. E.g., compare and contrast, oral discussion of advantages and disad-
vantages.

∗∗
The following sections 7.5 - 7.7 comprise the results of the literature survey
for the three major classes of analytical quality assurance techniques and
methods for service-based applications. At the end of the description of the
survyed quality assurance techniques, the classsification results (see Section
7.4) are summarized and compared in two tables. The first table (Table-A)
contains the Class, Quality, Life-Cycle, Discipline and Layer dimension of
the classification framework. The second table (Table-B) shows the Artifact,
Reference, Formality, Automation and Validation dimension.

7.5 Testing

7.5.1 Test Case Generation

An Approach for Specification-based Test Case Generation for Web
Services [60]

Specification-based testing of Web services is important for consumers and
brokers as Web services source code is usually unavailable to them and those
stakeholders only have access to the descriptions or specifications of the Web
services. Hanna and Munro in [60] thus describe a method for specification-
based testing of Web services using WSDL and XML Schema data types.

Extending WSDL to Facilitate Web Services Testing [139]

WSDL files can be seen as a specification for testing Web services. A WSDL
specification contains the number of inputs and outputs, the type and order
of inputs and outputs and how Web services should be invoked. However,
this information is not sufficient for testing. Thus, in [139] Tsai et al. propose
four kinds of extensions for WSDL files: (1) input-output dependency, which

7 Analytical Quality Assurance 219

can be generated by dependence analysis inside a Web service; (2) invoca-
tion sequence, which provides tracing information among Web services; (3)
hierarchical functional description, which can improve functional and regres-
sion testing and enable automation; (4) concurrent sequence specifications, to
capture Calling sequences, concurrent behaviors and timing aspects.

Coyote: An XML-Based Framework for Web Services Testing [143]

Web services are distributed and often only WSDL specifications are avail-
able. The authors of [143] thus propose an XML-based object-oriented testing
framework called Coyote. The framework is composed of test master and test
engine. The test master specifies test scenarios and test cases, performs the
analysis and converts WSDL specifications into test scenarios. The test engine
interacts with the Web service under test and provides tracing information.

WSDL-Based Automatic Test Case Generation for Web Services Testing [8]

Services are published, bound, invoked and integrated at runtime and only
have a programmable interface. So automation of the testing process without
user interaction is essential. In [8] Bai et al. thus propose a technique for gen-
eration test cases automatically based on WSDL specifications. They present
their technique for individual and combination operations of atomic services.
The technique consists of four steps: First the test data is generated from
WSDL message definitions. Then test operations are generated based on the
analysis of the parameters in the WSDL file. The third step is the generation
of operation flows to test a sequence of operations by operation dependency
analysis. At the end the test specification is build as test cases encoded in
XML files.

Swiss Cheese Test Case Generation for Web Services Testing [136, 140]

Web services are based on UDDI which is not responsible for the quality of
services. So the trustworthiness or vulnerability of Web services is a problem
for the users of those services. Traditional dependability techniques must be
redesigned to handle the dynamic features of Web services. To this end, in
[136] the authors present the ’Swiss Cheese’ test case generation approach.
The OWL-S specification of a Web service is converted to scenarios. After
that boolean expressions are extracted. With this boolean expressions a K-
map is formed and Hamming distances and boundary counts are computed.
Finally a Swiss Cheese map is created in which each cell at least belongs to a
test case. Positive and negative test cases are generated. At the end the test
cases can be ranked.

Ontology-Based Test Case Generation for Testing Web Services [152]

To test automatically constructed Web services, Wang et al. present a model-
based approach with automatically generated test cases based on the OWL-S

220 A. Metzger et al.

Web services process specification. The OWL-S description is first transformed
to a Petri-Net model to provide a formal representation of the structure and
behavior of the service under test. Then, test cases are generated based on the
Petri-Net model. A prototype implementation, called TCGen4WS, has been
implemented.

Automated Functional Conformance Test Generation for Semantic Web
Services [106]

In [106], the authors introduce an approach to generate functional confor-
mance tests for Semantic Web services which are defined using the Inputs,
Outputs, Preconditions, Effects (IOPEs) paradigm. For each Web service, the
approach produces testing goals which are refinements of the Web service
preconditions using a set of fault models. A planner component accepts these
testing goals, along with an initial state of the world and the Web service
definitions to generate a sequence of Web service invocations as a test case.

Generating Test Cases for Web Services Using Extended Finite State
Machine [78]

As observed in [78], Web services are distributed applications with numerous
aspects of runtime behavior that are different from typical applications. To
this end, the authors introduce a new approach to testing Web services based
on EFSM (extended finite state machine). A WSDL (Web services description
language) file alone does not provide dynamic behavior information. Thus, the
authors propose augmented it with a behavior specification, in the form of a
formal EFSM model.

Contract-Based Testing for Web Services [33]

In [33] Dai et al. describe that the problems of testing services derive from
the fact that services are invoked instead of integrated and thus providers can
evolve a service without the knowledge of the users. This lack of notification on
changes are a problem for users of a service because they want to be sure that
the service functions as stipulated when first using the service. The authors
conclude that the system “has to be tested dynamically and automatically
at runtime without human interaction” and they present an approach which
uses contracts as formal agreements between users and providers containing
rights and obligations for both sides. The contracts are described using the
OWL-S process model. For generating test cases two parts are suggested: the
generation of valid test data and the generation of the test process. Both
generation processes are based on contracts. In addition, contracts contain
enough information on the expected output for using them as test oracles.

7 Analytical Quality Assurance 221

Towards Contract-Based Testing of Web Services [61]

In [61], the authors state that due to the loose coupling and the distribution of
services, service requestors often bind to services at run-time. In the authors’
point of view this prevents integration testing of a service-based application.
Thus, the authors propose using ’Design by Contract’ for Web services. For
the interoperability of service providers and requesters the concept of Design
by Contract, which comes from component-based systems, should be comple-
mented by the use of required and provided contracts. A provided contract
specifies pre- and post-conditions of the service. A required contract speci-
fies the information the requester is willing to provide and the situation he
wants to achieve at the end. For the representation of the contracts Heckel
and Lohmann propose the use of graph transformation rules.

Testing BPEL-Based Web Service Composition Using High-Level
Petri Nets [41]

As observed in [41], BPEL-based Web service composition essential has dy-
namic aspect such as recomposition, re-configuration, and dynamic binding
during execution, which makes behavior analysis and testing of BPEL-based
Web service composition software significantly complicated. To this end, the
authors propose a technique for analysis and testing BPEL-based Web ser-
vice composition using high-level Petri nets (HPN). To illustrate how these
compositions are verified, the relationships between BPEL-based Web service
composition and high-level Petri nets is constructed. By analyzing the struc-
ture of Web service composition based on BPEL, the corresponding HPN is
constructed. After translation, the equivalent HPN of the Web service compo-
sition based on BPEL can be verified on existing mature tool, and the related
researches on HPN, e.g., testing coverage and reduction techniques that have
been studied deeply, can be employed in testing of Web service composition
based on BPEL.

On Combining Multi-formalism Knowledge to Select Test Models for Model
Transformation Testing [124]

In [124] the authors present a method to automatically select test models
given any meta-model as input. The selected models are used to test model
transformations. Model transformations are ubiquitous in Model-driven Engi-
neering as they automate important software development steps. Testing and
validating them is thus a crucial activity for successful MDE. These test mod-
els serve as input for black-box testing of a model transformation. The papers
outlines a black-box testing tool Cartier that uses Alloy as the relational logic
language to represent combined knowledge.

222 A. Metzger et al.

Probabilistic QoS and Soft Contracts for Transaction Based Web
Services [111]

To test Web services, one needs test oracles that states whether a contract
was satisfied by the input test case. In [111] the authors present probability
distributions of QoS properties such as response time as soft contracts that
can act as test oracles. In particular they present the idea of obtaining a
QoS contract for a Web service orchestrations and choreographies leading
to composed services. These soft contracts are better suited to incremental
testing compared hard contracts (e.g., response time always less than 5 msec).

Model-Based Functional Conformance Testing of Web Services Operating on
Persistent Data [127]

The WSDL standard does not allow behavioral specification (such as pre-
and postconditions) of Web services in the presence of persistent data. Thus,
the authors in [127] propose the use of existing test generation techniques
based on Extended Finite State Machine (EFSM) specifications to address
the generation of functional conformance tests for Web services which operate
on persistent data. Key contribution is an algorithm to translate a WSDL-
S behavioral specification of operations of a Web service into an equivalent
EFSM representation which can be exploited to generate an effective set of
test cases.

Generation of Conformance Test Suites for Compositions of Web Services
Using Model Checking [54]

The complexity of testing compositions of Web services relies on their dis-
tributed nature and asynchronous behaviour. To consider this challenge, a new
testing method for compositions of Web services is proposed in [54]. Specifi-
cally, a formal verification tool (SPIN model checker) is used to automatically
generate test suites for compositions specified in BPEL.

7.5.2 Test Execution

Scenario-Based Web Service Testing with Distributed Agents [138]

Tsai et al. [138] motivate that testing Web services is difficult, because they
are loosely coupled, have a dynamic behavior, are invoked by unknown parties,
can have concurrent threads and object sharing and different parties (client,
broker and provider) are involved in testing. To address those challenges, the
authors propose a Web service testing framework (WSTF). The proposed
WSTF includes the following features: (1) enhanced WSDL, which includes
four kinds of extensions as described in [139]; (2) scenario-based testing as
a specification-based testing technique which can be applied to WSDL files;
(3) automated test script generation based on the scenario specification; (4)
automated distributed test execution including test monitors and distributed
agents.

7 Analytical Quality Assurance 223

Group Testing for Web Services [137, 145, 135, 144, 5, 142]

A large number of Web services is expected to become available on the In-
ternet. In particular, this means that for the same specification different im-
plementations (services) will possibly exist. To test all those services (which
satisfy a specification), huge effort for testing needs to be invested. To this
end, in [137, 145] suggest progressive group testing as a solution to be applied
for unit and integration testing. Two phases are proposed: (1) prescreening,
during which ’unlikely-to-win’ Web services are eliminated as far as possible;
(2) runtime group testing, during which the best candidates identified in the
prescreening phase are integrated in the live system and tested. Given a set
of functionally equivalent Web services, the input for one of these services is
forwarded to all of them. The results from all services are voted (by a voting
service). By comparing the output of one service with the weighted majority
output (as oracle) faults can be detected.

In [135] the authors integrate their group testing technique into a frame-
work called ASTRAR (Adaptive Service Testing and Ranking with Auto-
mated oracle generation and test case Ranking). In [5] group testing is further
extended with an adaptive mechanism. This adaptive mechanism provides the
possibility to adapt test cases to the continuously changing services (in case of
updates or redeployment). Finally, in [142] the authors introduce a stochastic
voting for group testing.

Perturbation-Based Testing for Web Services [102, 35, 154]

Web services can be located on different servers belonging to different compa-
nies. The Web services interact by passing messages and data (through XML,
SOAP). In [102] the authors propose to exploit data perturbation as a means
to test the interaction of Web services. Request messages are modified. With
the resending of the modified request the messages are used as test cases. The
analysis of the response messages reveals uncorrect behavior. In [154] further
perturbation operators for XML schema are described. [35] builds upon the
work of Offutt and Xu. They introduce new perturbation operators for the
modification of SOAP messages.

A Test Bed for Web Services Protocols [110]

Transactions involving more than one Web service can become non-trivial
and thus require the use of some pre-agreed or standard protocols. A proper
specification and implementation of these transaction protocols this becomes
critical for the correct execution and termination of transactions.. To address
this problem, the authors of [110] propose a test bed based on conformance
checking for automatically testing a given Web service protocol implementa-
tion.

224 A. Metzger et al.

Regression Testing Approach of Ruth and Tu [118, 117, 119]

Similar to the modification of traditional software systems, for each modifica-
tion of a Web service two aspects have to be examined: (1) Do the modified
parts function correctly? (2) Does the modification have effects on the unmod-
ified functions? For the second aspect it is common practice to use regression
testing and to run previously generated test cases again. In [118] the authors
propose to apply safe regression test selection (RTS) to Web services. The
approach is based on the safe RTS algorithm by Rothermel and Harrold for
monolithic applications and builds on control-flow graphs.

In [117] that approach is extended so that the safe RTS technique can be
automated. Another extension is the handling of multiple concurrent modifi-
cations which is described in [119].

Quality Analysis of Composed Services through Fault Injection [53]

The authors in [53] present a systematic testing method for service-based,
cooperative information system (CIS). The method is based on fault injection
during process execution. Two types of testing are supported: (1) black-box
testing, when the service implementation code is not accessible; (2) white-box
testing, when service code is accessible, and in particular when information
on used data sources used by the service is also visible. Two types of faults
are considered: data faults and time delays.

7.5.3 Testing Frameworks and Tools

BPEL Unit Testing [92, 84]

One problem with testing BPEL compositions, as observed by the authors,
are the numerous external dependencies. These dependencies are based on
the Web services that are accessed by the BPEL composition. To systemat-
ically consider those dependencies, the authors present an approach for unit
testing BPEL processes. The framework supports the following steps: (1) test
specification, where the WSDL specification is used to generate test cases; (2)
test organization, where test cases are grouped into test suites with links to
external artifacts; (3) test execution, where the BPEL process can be tested
by simulation or by real-life deployment; (4) test results, where a report of
successful test cases, failures and errors is generated.

Biased Covering Arrays for Progressive Ranking and Composition of Web
Services [23]

When building a composed service, a choice between several services that
provide the same functionality must be taken. The authors of [23] build upon
the group testing techniques of Tsai et al. [137, 145, 135, 144, 5]. They apply
Group Testing to narrow down the number of prospective candidates for each

7 Analytical Quality Assurance 225

Web service. As a subsequent step, they propose to use interaction testing
techniques, specifically biased covering arrays, to generate economically sized
test suites that further evaluate the candidate Web services.

Testing of Service-Oriented Architectures – A Practical Approach [43]

The authors identify two key issues for testing: (1) whenever a change in one
of the source code parts arises, a new test has to be done; (2) very often
there is no stable test environment, which leads to the problem of setting up
the whole test environment for every single change. Thus, the investment for
testing can explode in such a setting. To address these issues, the authors
suggest to exploit the automation of the test process, which promises to lead
to a decrease of costs and time for testing. In [43] an approach for automated
testing of services is presented including a Meta language in XML for the
definition of test cases. The authors focus on the presentation of a prototype
implementation called SITT (Service Integration Test Tool).

An Abstract Workflow-Based Framework for Testing Composed Web
Services [68]

As has been discussed above, testing composed Web services imposes many
challenges to existing testing methods, techniques, and tools. To address
some of those challenges, the authors in [68] introduce a formal model for
an abstract-based workflow framework that can be used to capture a com-
posed Web service under test. The structural-based workflow framework uses
workflow graphs for simple composed and complex composed Web services.
Additionally a set of applicable structural-based testing criteria to the frame-
work is defined.

WSDLTest – A Tool for Testing Web Services [128]

The authors observe that in general, one cannot guarantee that Web services
will work as one might expect, which could lead to serious interaction er-
rors. As a solution, the authors propose to simulate the usage of the services,
where both requests are automatically generated and responses are automat-
ically validated. In [128], a tool that accomplishes this goal is introduced.
The tool generates Web service requests from the WSDL schemas and adjusts
them in accordance with the pre-condition assertions written by the tester. It
dispatches the requests and captures the responses. After testing it then ver-
ifying the response contents against the post-condition assertions composed
by the tester.

Automatic Conformance Testing of Web Services [62]

In [62] Heckel and Mariani present how service descriptions can be supple-
mented by adding a behavioral specification of the service consisting of graph

226 A. Metzger et al.

transformation rules. Still, it remains open whether the actual service im-
plementation is correct with respect to this model, and thus whether such a
model is a valid representation of the service. To overcome this problem, the
authors introduce high-quality service discovery which adds automatic testing
to the approach of behavioural matching with graph transformation rules. In
this setting, a service can be entered into the registry only, if it has succesfully
passed testing.

WebSob: Automated Robustness Testing of Web Services [88, 89, 90]

In [88, 89] and [90] Martin, Basu and Xie look at Web service testing from the
consumer point of view. Consumers mostly don’t have the possibility to get
implementation details of the used Web services. Thus consumers can only
perform black-box testing. Moreover robustness of the Web service is a prob-
lem for the consumer. The Web service has to handle input parameters which
contain consumer specific information. If the Web service is not robust enough
to handle these inputs it is possible that unauthorized instances retrieve con-
sumer specific information. To address those issues, the authors propose the
framework “WebSob” for automated robustness testing of Web services.

Distributed Functional and Load Tests for Web services [122]

The authors introduce a flexible test framework that allows executing func-
tional, service interaction and load tests. The framework is presented as being
generic in terms of being largely independent of the system to be tested. The
paper discusses the automation capabilites of the test framework that rely on
the Testing and Test Control Notation (TTCN-3).

A Multi-agent Based Framework for Collaborative Testing on Web
Services [7]

The auhtors start from the observation that testing is a challenge due the
dynamic and collaborative nature of Web services. To address these issues
they introduce a multi-agent based framework to coordinate distributed test
agents to generate, plan, execute, monitor and communicate tests on Web
services.

The Audition Framework for Testing Web services Interoperability [18]

To consider the SOA propoerties such as loose coupling, distribution and
dynamism of ’components’, the authors propose a framework that extends
UDDI registry role from the current one of a ’passive’ service directory, to
become an accredited testing ’organism’, which validates service behaviour
before actually registering it. This specific form of testing, called audition,
mainly focuses on interoperability issues, such as to facilitate the coordination
among services registered at the same UDDI.

7 Analytical Quality Assurance 227

A Framework for Testing Web Services and Its Supporting Tool [95]

In their paper, the authors focus on facilitating the testing of Web services.
In particular, they propose a framework for testing Web services, which can
help a tester of Web services in two ways: (1) it can help the tester to acquire
effective test data; (2) it can help the tester to execute the test cases (that
include that data).

Testing Web services [126]

Im their paper, the authors introduce a technique for testing Web services us-
ing mutation analysis. The technique is based on applying mutation operators
to the WSDL document in order to generate mutated Web service interfaces
that are used to test the Web service. For this purpose, the authors define
mutant operators that are specific to WSDL descriptions.

A Model-Driven Approach to Discovery, Testing and Monitoring of Web
Services [82]

The authors observe that established technology for providing, querying and
binding services is largely based on syntactic information. As a consequence
of the lack of semantic information in service descriptions, the reliable, auto-
matic integration of services is hindered. To address this problem, the authors
introduce a framework which enforces that only tested Web services are par-
ticipating in (as a consquence) high-quality service-based applications. To
achieve this, only successfully tested services are stored in registries (cf. [62]).

A Simple Approach for Testing Web Service Based Applications [132]

In their paper, the authors introduce a technique for supporting the construc-
tion of reliable Web applications composed of Web services. All relevant Web
services are linked to the component under test at the testing time; thus,
the availability of suitable Web services is guaranteed at invocation time. The
Web application and its composed components are specified by a two-level ab-
stract model: (1) the Web application itself is represented as task precedence
graph (TPG); (2) the behavior of the individual components is represented
as a timed labeled transition system (TLTS). Three sets of test sequences are
generated and executed automatically using a test execution algorithm and a
test framework.

Search-Based Testing of Service Level Agreements [40]

In [40], the authors deal with the problem on how to detect the violation of
a Service Level Agreement (SLA), negotiated between service provider and
service consumer. As the violation of an SLA is undesirable for both the
provider and the consumer, the authors suggest that the SLA should be tested
before the service is offered, as this can reduce the probability that the SLA
will be violated during the service usage. The presented solution builds on
Genetic Algorithms (GAs) for the generation of test data.

228 A. Metzger et al.

Using Test Cases as Contract to Ensure Service Compliance across Releases
[22, 107]

In [22], the authors address the issue that services are used but not owned.
This means that services are out of the users’ control, leading to the problems
that the users thus cannot decide on migrating to a new version of the service,
or that the users are not always aware of changes the service provider makes
to the service implementation. To address those problems, the authors present
an approach appropriate for regression testing by users. The approach has its
roots in component-based software testing and uses test cases as a contract
between the user and the provider of the service. The basic idea of the ap-
proach is to bind test cases and a set of QoS assertions to a service and to
test after a certain time if the test cases and assertions still hold.

7.5.4 Online Testing

A Metamorphic Testing Approach for Online Testing of Service-Oriented
Software Applications [28]

As the authors observe, a service-based application may bind dynamically
to its constituent services. This means that for the same service interface,
the actual services that are invoked may behave differently. To address this
issue, the authors propose a metamorphic approach for online services testing.
During off-line testing first a set of successful test cases is constructed and
corresponding follow-up test cases for online testing are determined.

Dynamic Reconfigurable Testing of Service-Oriented Architecture [6]

The authors point out that one problem imposed by the dynamic reconfig-
uration of service-based applications is that testing needs to adapt to the
changes of the service-based applications at runtime. As a solution, the paper
presents a testing approach enabling the run-time change of test organization,
test scheduling, test deployment, test case binding, and service binding. The
approach is based on previous research on the MAST (Multi-Agents-based
Service Testing) framework [7]. It extends MAST with a new test broker archi-
tecture, configuration management and event-based subscription/notification
mechanism.

7.5.5 Classification of Testing Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.1 and 7.2.

7 Analytical Quality Assurance 229

Table 7.1. Table-A for Testing

Contribution Class Quality Life-Cycle Discipline Layer

[60] testing correctness design SE, SOC SCC
[139] testing functionality design SOC SI
[143] testing functionality design SOC SCC
[8] testing functionality design SOC SCC
[136, 140] testing trustworthiness,

robustness
design SOC, SE SCC

[152] testing functionality design SOC, SE SCC
[106] testing functionality,

conformance
design SE, SOC SCC

[78] testing functionality design SE, SOC SCC
[33] testing,

monitoring
functionality operation SOC SI

[61] testing functionality,
interoperability

design SE SI

[41] testing functionality design SOC SCC, BPM
[124] testing functionality operation SE SCC
[111] testing several quality

characteristics
operation SE SCC

[127] testing functionality,
conformance

design SE, SOC SCC

[138] testing,
monitoring

functionality whole
life-cycle

SOC, SE SCC, SI

[137, 145, 135,
144, 5, 142]

testing,
monitoring

functionality design and
operation

SOC SCC

[102, 35] testing functionality design SE SI
[92, 84] testing functionality design SOC SCC, BPM
[23] testing functionality design SE SCC
[43] testing,

monitoring
functionality design SOC SCC

[68] testing functionality design SOC SCC
[110] testing conformance design SOC SCC
[128] testing functionality design SE SCC
[62] testing conformance registration SE SI
[88, 89, 90] testing robustness design SOC, SE SCC
[118, 117, 119] testing functionality execution SOC, SE SCC
[122] testing functionality

and
performance
load

design SE SCC

[7] testing,
monitoring

functionality design SOC, SE SCC

[18] testing interoperability registration SE SCC
[95] testing functionality design SE SCC
[126] testing functionality design SE SCC
[82] testing,

monitoring
reliability,
conformance

whole
life-cycle

SE SCC

[54] testing functionality design SE, SOC SCC
[132] testing correctness,

reliability,
availability

design SOC SCC

[40] testing all QoS
characteristics

operation SE, SOC SCC

[22, 107] testing,
monitoring

arbitrary QoS
characteristics

operation SOC, SE SCC

[28] testing functionality operation SOC SCC
[6] testing functionality operation SOC, SE SCC
[53] testing functionality design SOC, IS BPM

230 A. Metzger et al.

Table 7.2. Table-B for Testing

Contribution Artifact Reference Formality Automation Evaluation

[60] service, service
composition

WSDL
description

semi-formal automated discussion

[139] service WSDL spec. - - -

[143] service, service
composition

WSDL spec. semi-formal automated -

[8] (atomic)
service

WSDL spec. formal automated experience
report

[136, 140] web service OWL-S spec. formal non-
automated

example appl.

[152] web service OWL-S spec. formal automated example appl.

[106] semantic web
services

inputs,
outputs,
preconditions,
effects
(IOPEs)

semi-formal automated experience
report

[78] web service EFSM based
on WSDL
spec.

formal non-
automated

example appl.

[33] services,
service
compositions

OWL-S
process model

semi-formal automated discussion

[61] (atomic)
service

provided and
required
contracts

formal automated discussion

[41] web service
composition

BPEL spec. semi-formal automated discussion

[124] service, service
composition

provided and
required
contracts

formal automated discussion

[111] service
composition

probability
distribution
functions

formal automated discussion

[127] web services
which operate
in the
presence of
persistent data

EFSM based
on WSDL-S
specification

formal automated discussion

[138] service
composition

WSDL
description

semi-formal automated example appl.

[137, 145, 135,
144, 5, 142]

group of
services

majority
output

semi-formal automated example

[102, 35] test of
interaction
between two
web services

XML and
SOAP
messages

semi-formal automated example appl.

[92, 84] BPEL process WSDL spec. semi-formal automated example appl.

[23] composed web
service

other web
services

formal non-
automated

example appl.

[43] service and
service
workflow

XML test
description

semi-formal automated example appl.

[68] composed
service and
workflow

- formal non-
automated

example

[110] web service
protocol

formal model
of the web
service
protocol

formal automated example appl.

7 Analytical Quality Assurance 231

Table 7.2. (continued)

Contribution Artifact Reference Formality Automation Evaluation

[128] web service WSDL spec. non-formal automated experience
report

[62] (atomic)
service

specification
(as graph-
transformation
rules)

formal automated experience
report

[88, 89, 90] service, service
composition

WSDL spec. semi-formal automated explor. case
study

[118, 117, 119] service, service
composition

control-flow
graph

formal automated example appl.

[122] service-based
application

XML
description

non-formal automated discussion

[7] atomic and
composed
services

service spec. semi-formal automated discussion

[18] web service protocl state
machine spec.

semi-formal automated discussion

[95] composed web
service

WSDL spec. semi-formal automated example appl.

[126] web service WSDL spec. semi-formal automated example

[82] service-based
application

UML models
and graph
transformation
rules

formal automated discussion

[54] compositions
of web services

BPEL spec. formal automated discussion

[132] web service
based
application

WSDL spec.,
TLTS, TPG

formal automated discussion

[40] service
composition

SLA semi-formal automated case study

[22, 107] services,
service
compositions

WSDL
description

semi-formal automated example appl.

[28] service-based
application

oracle from
offline test

formal automated experience
report

[6] service-
oriented
application

- semi-formal automated example

[53] service, service
composition

WSDL, BPEL semi-formal automated discussion

7.6 Monitoring

7.6.1 Web Service Monitoring

Assumption-Based Monitoring of Service Compositions [108, 10]

The papers [108, 10] focus on run-time checking of the behavioral require-
ments (expressed in a special temporal logic-based notation) on the services
participating to the composition, and collecting certain statistical and non-
functional information over their execution.

232 A. Metzger et al.

Monitoring Conversational Web Services [20]

The work presents an approach for checking at run-time that the actual be-
havior of the conversational service complies with the expected behavior rep-
resented in a special algebraic notation that expresses functional constraints
on the service evolution.

Smart Monitors for Composed Services [13]

A technique for monitoring functional and non-functional assertions over
BPEL process activities is presented. Assertions may be specified either in
programming language directly, or using special assertion language. The mon-
itored process is modified in a way to interact with a dedicated monitoring
service to provide the relevant data.

Dynamo [14, 15, 11]

Dynamo framework proposes an expressive monitoring language WSCoL for
expressing functional and non-functional requirements (assertions and invari-
ants) on the BPEL processes. The framework allows for collecting information
from external sources (services). In [11] the language is extended with the pos-
sibilities to express more complex (temporal) properties over the executions
of underlying processes.

Monitoring for Diagnosis [4]

Monitoring approach in this work has a goal of collecting and reporting a fault
diagnosis information, rather than simply detecting property violation. The
approach is based on a distributed framework that extends the functionality
of the services with the diagnosis evaluation and management facilities.

Monitoring Privacy-Agreement Compliance [17]

The work addresses run-time monitoring of compliance of the privacy agree-
ment defining the user’s privacy rights and their possible handling by the
service provider. The privacy properties (obligations and data rights) are for-
mally in temporal logic specifications and the corresponding state machines,
and then monitored at run-time using the events reported in the system log.

Requirements Monitoring Based on Event Calculus [130, 86, 87]

The authors approach the problem of monitoring service-based applications
for conformance to a set behavioral requirements expressed in a rich event
calculus-based specification language, and deals with service events, quality
metrics, temporal constraints, etc. A run-time logic inference engine is used
to detect violations of the properties.

7 Analytical Quality Assurance 233

Monitoring Security Patterns [129, 79]

The problem of monitoring security properties is addressed. The security prop-
erties are specified as patterns and formally represented in event calculus-
based notation. The run-time checking of the properties relies on the approach
defined above.

Performance Monitoring for Utility Computing [46]

The work deals with monitoring of SLA. The contract patterns are formally
represented in event calculus and monitored using a specific framework.

Planning and Monitoring Execution with Business Assertions [81]

In the work monitoring is used to detect failures in the execution of customized
business process in order to dynamically re-plan and adapt the process exe-
cution to the user requirements.

Automated SLA Monitoring [120]

The work proposes an approach for monitoring compliance of the service exe-
cution to the predefined contract information (SLA). The formalized contract
statements are monitored by intercepting service interactions and process logs.
The management of the monitored information and the analysis of compliance
is performed by a dedicated platform.

WSLA [77]

An industrial approach proposed by IBM for monitoring SLA information
is presented. The framework relies on a comprehensive model of contracts,
QoS metrics and their aggregation, and on a sophisticated, multi-functional
run-time environment.

Cremona [83]

Cremona is an industrial run-time platform for negotiating, managing, and
monitoring SLA agreements. The agreements are defined usingWS-Agreement
notation. Multi-layered and extensible execution platform and API support
the monitoring and management actions.

Colombo [31]

Colombo is an industrial platform for the development and enactment of ser-
vices and service-based applications. Apart from many other facilities, it pro-
vides a way to check and enforce service policies expressed in WS-Policy no-
tations. The policies may be attached to services, service operations, and even
exchanged message types.

234 A. Metzger et al.

7.6.2 Process Monitoring and Mining

Query-Based Business Process Monitoring [16]

The approach targets the problem of monitoring BPEL processes. The moni-
toring queries are defined using visual pattern-based notations compliant with
BPEL to define when the report should be provided, and using report specifi-
cations defining the information to be reported. For monitoring the queries are
transformed into BPEL processes that collect information on the monitored
processes from a low-level observer.

Model-Driven Development of Monitored Process [96]

The work proposes a way to develop SOA-based business processes with inte-
grated monitoring information utilizing a model-driven approach. The authors
have created a metamodel for modeling of process performance metrics (PPIs)
based on BPMN process elements. The process augmented with monitoring
primitives is automatically generated.

Model-Driven Development for BPM [29]

The work focuses on efficient development and deployment of monitoring in-
formation in BPM. The proposal relies on a meta-model extended with the
concepts of metrics, business actions and events. The model is transformed
into observer specification (for monitoring and evaluating the metrics) and a
and data warehouse (to query and visualize information).

Probing and Monitoring WS-BPEL Processes [112]

The work deals with the problem on how to extract events from a BPEL pro-
cess in order to enable auditing in an interoperable way. The authors propose
a way to augment the BPEL processes with auditing activities, and present a
set of strategies and mechanisms for collecting the relevant probes at different
functional layers.

iBOM [27]

in this work the authors deal with the problem on how to create a monitoring
solution, which not only enables to measure KPIs, but also to understand the
causes of undesired KPI values, and prediction of future values. The approach
is based on the combination of business activity monitoring with data mining
to explain the monitored results.

An Agent-Based Architecture for BAM [66]

The work present a multi-layered agent-based architecture for providing con-
tinuous, real-time analytics for business processes.

7 Analytical Quality Assurance 235

Fuzzy Mining [59]

The work proposes an approach for automated extraction of the behavioral
specification of the business process from the actual execution logs of the
system. The approach relies data mining techniques for the log analysis.

Conformance Checking with ProM [115, 149]

The presented approach allows for checking (at run-time or posteriori) the
conformance of the observed business process execution with respect to the
actual process specification and characteristics. The monitoring is based on
mining and analyzing information from process logs.

Process Mining for Security [147]

The approach allows for auditing security-critical properties of the process
executions. First, the correct model of process is extracted using logs without
security violations. Second, the actual executions are verified for conformance
to that model using process mining techniques.

Deriving Protocol Models from Logs [101]

The approach to extraction of service interaction protocol models based on
monitoring interaction logs is proposed. The approach is semi-automated and
provides a way to interact with the designer in order to refine and correct the
extracted model.

Timed Transition Discovery from Web Service Conversations [39]

The approach targets extraction of behavior model of the service in terms of
temporal constraints (timed transitions) between relevant service interactions
and events.

7.6.3 Grid Monitoring

Grid Monitoring Architecture (GMA) [133]

GMA is an abstraction of the essential characteristics needed for scalable
high performance monitoring on a large distributed computational Grid. It
provides the standard specification of the grid monitoring architecture, the
components and their roles, the communication models, without, however,
defining the implementation.

SCALEA-G [134]

A unified monitoring and performance analysis tool for the grid is presented.
The tool provides flexible facilities for the definition and instrumentation of
sensors, access to previously monitored information. The information may be
collected both at the system (middleware) level and at the application level.

236 A. Metzger et al.

Globus MDS-2, MDS-4 [32, 51]

In Metacomputing Directory Service (MDS) architecture the monitoring infor-
mation collected by distributed information providers is collected and stored
in a dedicated aggregate directory services. The proposed architecture allows
for distributed, standardized and easily extendable implementation of grid
monitoring, while suffering from serious performance problems. These prob-
lems were taken into account and partially resolved in version MDS-4, where
the corresponding directory services are re-implemented using Web service
standards and solutions.

R-GMA [48]

R-GMA is a relational database implementation of GMA that can be used not
only as a monitoring solution, but as a generic information source. It allows
for managing monitoring information providers defined as database providers,
stream data providers, or providers of historical data. The information queries
are expressed in SQL-like notation and collect the historical data, ongoing
events, or latest events of certain type.

MonALISA [100]

MonALISA is a monitoring solution based on peer-to-peer Jini platform. The
platform is used for dynamic discovery, loading and replication of relevant
common information. The data collection is performed by a special engine,
which dynamically loads and controls the monitoring modules. The engine
allows also for aggregating the previous information and is equipped with a
powerful management user interface.

GridICE [1]

GridICE is a multi-layer centralized grid monitoring platform that is capable
of observing simple and composite resource metrics. The collected data is
made available for consumers by the publisher service, while the notifications,
statistics and periodic reports are provided by the notification service.

7.6.4 Classification of Monitoring Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.3 and 7.4.

7 Analytical Quality Assurance 237

Table 7.3. Table-A for Monitoring

Contribution Class Quality Life-Cycle Discipline Layer

[108, 10] monitoring behavior run-time
(operation)

SOC SCC

[20] monitoring behavioral
conformance

run-time
(operation)

SOC SCC

[13] monitoring functional
correctness

run-time
(operation)

SOC SCC

[14, 15, 11] monitoring behavioral
correctness

run-time
(operation)

SOC SCC

[4] monitoring behavioral
correctness

run-time
(operation)

SOC SCC

[17] monitoring privacy
agreements

run-time
(operation)

SOC SI

[130, 86, 87] monitoring behavioral
correctness,
QoS (e.g.,
perfomance)

run-time
(operation)

SOC SCC

[129, 79] monitoring compliance to
security
requirements

run-time
(operation)

SOC SI, SCC

[46] monitoring correctness
with respect
to SLA
properties

run-time
(operation)

SOC, Grid SI

[81] monitoring behavioral
correctness

run-time
(operation)

SOC, BPM SCC, BPM

[120] monitoring SLA, QoS
(security,
performance,
reliability,
cost)

run-time
(operation)

SOC SI

[77] monitoring SLA, QoS
(performance,
reliabiltiy)

run-time
(operation)

SOC SI

[83] monitoring SLA, various
observable
QoS

run-time
(operation)

SOC SI

[31] monitoring functional
correctness

run-time
(operation)

SOC SI

[16] monitoring relatively any
characteristic
of a process

run-time
(operation)

BPM BPM

[96] monitoring performance,
KPI

run-rime
(operation)

BPM SCC

[29] monitoring business
metrics, KPIs

run-time
(operation),
post-mortem

BPM BPM

[112] monitoring relatively any
characteristic
of a process

run-time
(operation)

BPM SCC

[27] monitoring business
parameters

run-time
(operation)

BPM BPM

[66] monitoring business
properties and
metrics

run-time
(operation)

BPM BPM

[59] monitoring behavior post-mortem BPM BPM

238 A. Metzger et al.

Table 7.3. (continued)

Contribution Class Quality Life-Cycle Discipline Layer

[115, 149] monitoring behavioral
correctness

run-time
(operation),
post-mortem

BPM BPM

[147] monitoring security
(security-
critical
behavior)

run-time
(operation),
post-mortem

BPM BPM

[101] monitoring behavior post-mortem SOC SCC

[39] monitoring behavioral
properties

post-mortem SOC SCC

[133] monitoring Performance run-time Grid SI

[134] monitoring Performance run-time Grid SI

[32, 51] monitoring Various
domain-
specific
information
(QoS, resource
properties,
available
services)

run-time,
post-mortem

Grid SI

[48] monitoring Domain-
specific
information

run-time,
post-mortem

Grid SI

[100] monitoring Domain-
specific
information,
performance

run-time,
post-mortem

Grid SI

[1] monitoring Domain-
specific
information,
performance

run-time,
post-mortem

Grid SI

7.7 Analysis

7.7.1 Modelling and Simulation

QoS Analysis with PEPA Models [57, 58]

Service-based applications in general must be developed by taking into ac-
count both the problem of scalability and security. The solution proposed by
the authors uses UML diagrams, such as state diagrams and sequence dia-
grams, which are suitable for model-driven development. Those diagrams are
colored with performance-related characteristics of modeled systems, and they
are automatically translated to PEPA, a common used stochastic process al-
gebra. In [58], authors propose the analysis of retrieved PEPA models with the
multi-terminal binary decision diagram (MTBDD)-based PRISM stochastic
model checker.

Complexity analysis of BPEL Web Processes [26]

The complexity of BPEL descriptions, when used for describing Web service
processes, can interfere with maintenance, understandability and effectiveness

7 Analytical Quality Assurance 239

Table 7.4. Table-B for Monitoring

Contribution Artifact Reference Formality Automation Evaluation

[108, 10] composition of
BPEL
processes

behavioral
composition
requirements

formal automated explor. case
study

[20] composition of
BPEL
processes

conversation
constraints

formal automated explor. case
study

[13] BPEL process func.
assertions on
BPEL
activities

formal automated explor. case
study

[14, 15, 11] BPEL process func. and
non-func.
assertions,
temporal
requirements

formal automated explor. case
studies

[4] global
behavior of
service
composition

compliance
with local
service
execution
models

formal automated explor. case
study

[17] use of privacy
information by
service
provider

privacy
agreement
properties
(rights and
obligations)

formal automated discussion

of both the WS-based application and development. Thus, it can be useful to
measure the complexity of such descriptions in term of metrics derived by
static analysis of the BPEL descriptions. The proposed approach uses three
different static-analysis derived metrics to predict and measure the complexity
of a BPEL description.

Performance Modeling of WS-BPEL-Based Web Service Compositions [116]

Classic QoS analysis of service-based applications is applied in the context of
this chapter in order to select an optimal set of services to orchestrate a Web
service composition by filling a WS-BPEL description of the process, which
is the aim of the service integrator. The non-functional contract between the
integrator and the third party service providers is composed of a set of Service
Level Agreements (SLAs). The overall problem is the development of a per-
formance analysis and a model for the evaluation of the quality of processes
created by using WS-BPEL. To address this problem, the approach by the au-
thors introduces a mathematical model, based on operational research, which
describes the performance of composed web service processes written in the
WS-BPEL language. The authors also introduce a distributed infrastructure
which is able to detect if the introduction of a new instance affects (and how)
the performance of the web service provider nodes, and detect if SLAs are
violated or fulfilled.

240 A. Metzger et al.

Table 7.4. (continued)

Contribution Artifact Reference Formality Automation Evaluation

[130, 86, 87] BPEL process,
service
composition
execution

func. and
non-func.
assertions,
temporal
requirements

formal automated explor. case
study,
experiments

[129, 79] service
composition
execution

security
properties
(patterns)

formal automated explor. case
study

[46] BPEL process func. and
non-func.
assertions,
temporal
requirements

formal automated discussion

[81] business
process

func.
requirements
and assertions

formal automated explor. case
study

[120] service
execution

proprietary
SLA
properties and
assertions

- automated discussion

[77] service
execution

proprietary
SLA
properties and
assertions

- automated discussion

[83] service
execution

WS-
Agreement
properties and
assertions

- automated discussion

[31] services and
message
exchanges

WS-Policy
spec.

- automated discussion

[16] BPEL process visual
behavioral
queries and
report spec.

formal automated explor. case
study

[96] BPEL process process
performance
indicators

- automated explor. case
study

[29] business
process

business
metrics

- automated discussion

[112] BPEL process process audit
spec.

- automated discussion

[27] business
process

metrics, KPIs - automated discussion

[66] business
process

metrics, KPIs - automated discussion

[59] process
execution logs

- formal automated explor. case
study

[115, 149] business
process
execution logs

process spec. formal automated explor. case
study,
experiments

[147] business
process
execution logs

security-
correct process
spec.

formal automated explor. case
study

[101] service
interactions

- formal semi-
automated

experiments

[39] service
interactions

- formal automated discussion,
experiments

7 Analytical Quality Assurance 241

Table 7.4. (continued)

Contribution Artifact Reference Formality Automation Evaluation

[133] service
messages

Domain-
specific
metrics

- automated discussion

[134] TCP streams XPath queries
over
monitoring
data

- automated TBD

[32, 51] specific data
providers

specific
information
queries

- automated discussion,
case studies

[48] data streams,
specific
providers

SQL-like
queries

- automated discussion

[100] specific data
providers

regular
expression
predicates

- automated discussion

[1] specific data
providers

domain-
specific
metrics

- automated TBD

Performance Prediction of Web Service Workflows [91]

Web service based application play an important role in service-based ar-
chitectures as they can be selected and composed in order to create highly
complex applications. In this case, the Business Process Execution language
(BPEL) can be used to express such compositions and interactions. Although,
a very important factor to decide how composition can be instantiated, that
is, which actual services must be selected, is the whole performance of the
BPEL description. The prediction of the BPEL workflow performance can be
also useful to detect if a given composition is able to provide the requirements
about the quality of service. To this end, the authors propose an integrated
framework to resolve the issue of performance prediction and assessment of
workflows expressed in the BPEL language. The starting point for the predic-
tion is composed of annotated BPEL and WSDL specifications, from which
authors derive performance bounds on response time and throughput. Thus,
users are able to assess the efficiency of the BPEL workflow, and service
providers can, for example, adapt their compositions by estimating perfor-
mance gains of different upgrades to existing systems.

A Logic-Based Verification of Contracts in Semantic Web Services[34]

Service contracts describe mutual expectations and commitments of the inter-
acting participants. The dynamic aspect of contracts amounts to the workflow
models of the interaction protocols seen from the point of view of each par-
ticipant. The problem of automated contracting deals with the analysis of
compliance between the expectations and commitments between the partners
and therefore the verification of the compatibility of the workflow models. In

242 A. Metzger et al.

order to capture the dynamic aspects of contracting, the authors in [34] pro-
pose a logic called CTR-S. The logic permits representation of the composition
participants in terms of workflow, while the desired properties (expectations)
are represented as constraints. The automated contracting is therefore a prob-
lem of verifying that the expectation is enforceable by the workflow model. A
corresponding model and proof theories for capturing the workflow constructs
(sequence, concurrent execution, external/internal choices, etc.) and execution
constraints (single or serial occurrence of events, their arbitrary nested logical
combinations) are developed and represented. Finally, the authors present the
reasoning algorithms for the automated verification of the workflows against
expectation constraints.

Web Service Interfaces [19]

A Web service often depends on other Web services, which have been im-
plemented by different vendors, and their correct usage is governed by rules.
Such rules may constrain data types and service signatures, but they may
also express temporal constraints on the service invocations. In order to veri-
fy/enforce these rules, specific forms of analysis are necessary. To this end, the
authors propose an approach to verify that within a composition one service
can correctly collaborate with another or may be substituted by another ser-
vice according to the predefined set of rules. In order to specify these rules, a
special formalism, Web service interface language, is presented. The interface
defines three kinds of rules on the Web service use: (i) it specifies the service
signature rules (methods and their types of input / output parameters); (ii)
consistency rules, i.e., propositional constraints on method calls and output
values that may occur in a Web service conversation; and (iii) protocol rules,
i.e., temporal constraints on the ordering of method calls. For each kind of
rules a specific logic-based notation is presented and formalized.

Transforming BPEL into Annotated Deterministic Finite State Automata
for Service Discovery [153]

Web services advocate loosely coupled systems, although current loosely cou-
pled applications are limited to stateless services. The reason for this limi-
tation is the lack of a method supporting matchmaking of state dependent
services exemplarily specified in BPEL. In particular, the sender’s requirement
that the receiver must support all possible messages sent at a certain state are
not captured by models currently used for service discovery. To this end, the
authors in [153] present the concept of matching business processes in loosely
coupled architectures. It proposes a transformation from BPEL to annotated
Deterministic Finite State Automata aDFA. The transformation represents
messages that might be sent by a party at a particular state as messages that
must be supported by the corresponding receiving party. This explicit model-
ing of mandatory transitions of a sender and optional transitions of a receiver
is the main contribution of this approach.

7 Analytical Quality Assurance 243

Specification and Validation of the Business Process Execution Language for
Web Services [45]

The authors approach the problem of enriching business process models spec-
ified with BPEL4WS specification with operational semantics. Specifically,
an abstract operational semantics for BPEL4WS in terms of a real-time dis-
tributed abstract state machine DASM is proposed in [45]. The BPEL ab-
stract machine is organized into three basic layers reflecting different levels of
abstraction. The top layer, called abstract model, provides an overview and
defines the modeling framework comprehensively. The second layer, called in-
termediate model, specifies the relevant technical details and provides the full
DASM model of the core constructs of the language. Finally, the third layer,
called execution model, provides an abstract executable semantics of BPEL.

7.7.2 Verification of Service Compositions

Adaptive Service Composition in Flexible Processes [3]

The problem of service selection arises whenever complex applications, de-
scribed as processes invoking services, need to select their composing elements
from a set of functionally equivalent services which differ for nonfunctional
characteristics (QoS parameters). The problem can be defined as the selec-
tion of the best set of available services at runtime. Constraints are both
process-related ones, and end-user preferences. To this end, the authors in-
troduce a modeling and analysis technique for the WS selection problem at
runtime based on integer linear programming. (optimization problem). The
new modeling approach to the service selection problem is based on diverse
contributions:

Analysis of Interacting BPEL Web Services [52]

The analysis illustrated in the paper considers interactions of composite web
services as conversations, that is, the sequence of messages which have been
exchanged by the services. Compositions are described, as usual, with the
BPEL language, against which some behavioral properties must be model-
checked. The proposed solution translates BPEL specifications of composite
web services to an intermediate representation, and then to the target verifi-
cation language Promela, which can be used, together with a LTL property,
as input to the SPIN model checker.

A Model Checking Approach to Verify BPEL4WS Workflows [21]

As in many fields of Software Engineering, the problem of practical formal
verification by using model checking can be also used to verify functional
properties in service-based applications. As one possible solution, the authors
propose to translate Web Service compositions described in BPEL4WS to
BIR, the source language of Bogor, a state-of-the-art extensible model checker.

244 A. Metzger et al.

First, the methodology can be used to verify deadlock freedom from Web
Service compositions. Moreover, additional properties to be verified can be
specified by using WS-CoL and LTL. In the first case, WS-CoL allows the
predication on variables containing data both inside and outside the process;
they can be verified by using assert statements in the BIR language. LTL
properties can be verified by using two ad-hoc Bogor extensions.

Modeling Web Service Orchestration [94]

Current network technologies allow the development of new interaction busi-
ness paradigms, such as virtual enterprises: different companies pool together
their services to offer more complex, added-value products and services. Sys-
tems supporting such models are commonly referred to as Cooperative Infor-
mation Systems (CIS). By using a service-based approach, the cooperative sys-
tem consists of different distributed applications which integrate the E-services
offered by different organizations. Such integration raises issues regarding ser-
vice composability, correctness, synchronization and coordination. To address
those issues, the authors in [94] propose the PARIDE framework (Process-
based framework for oRchestratIon of Dynamic E-services) to define a com-
mon conceptual component model (and the related description language) for
E-services, and the notions of compatibility and dynamic substitution of E-
services based on the concept of cooperative process. PARIDE adopts a Petri
Net-based model to ensure the description of the orchestration of E-services,
and the related design of distributed orchestration engines. Besides, it pro-
vides analysis techniques based on the Petri Nets in order to address specific
issues such as deadlocks, possible timeouts, configuration reachability, etc.

Workflow Verification [146, 148, 114]

In their work Aalst et al. address the problem of the verification and the anal-
ysis of service-based workflows. Based on a Petri-net-based representation of
workflows, Aalst et al. [146] provide techniques to verify soundness property,
e.g., a workflow is sound if and only if, for any case, the process terminates
properly, i.e., termination is guaranteed, there are no dangling references,
and deadlock and live-lock are absent. The correctness of a process can be
decided by partitioning the workflow into sound subprocesses. A Petri-net-
based workflow analyzer called Woflan is proposed to support the application
of the approach. In [114], Aalst et al. are interested in providing answers to
conformance problem due to the coexistence of event logs and process models
of business workflows. They use Petri nets to model processes; this is argued
by the fact that Petri nets are formal and have associated analysis techniques
to easily parse any event log. [114] shows that conformance has two dimen-
sions: fitness (the event log may be the result of the process modeled) and
appropriateness (the model is a candidate from a structural and behavioral
point of view). Metrics measuring fitness and appropriateness are supported
by the Conformance Checker, a tool which has been implemented by the ProM
Framework.

7 Analytical Quality Assurance 245

Modeling and Model Checking Web Services [123]

Schlingloff et al. [123] address the problem of checking correctness of com-
posite web service processes. The original goal of modeling BPEL processes
with Petri nets is to give the language BPEL4WS a formal semantic, and
to compare the applicability of several formalisms for this task (e.g.,Abstract
State Machines). The work described in [123] shows how to build Petri net
models of web services formulated in the BPEL4WS specification language.
The main goal is to define an abstract correctness criterion, called usability
and to study the automated verification according to this criterion. This work
relates correctness of web service models to the model checking problem for
alternating temporal logics.

Model-Checking Verification for Reliable Web Service [98]

Model checking is a technique for the verification of software systems. In this
paper, the author attempts to assess model checking techniques in the case
of distributed service-based applications. The SPIN model-checker is used
in [98] to verify a set of properties related to business flows, described by the
WSFL workflow. SPIN provides a specification language Promela that de-
scribes the target system to be a collection of Promela processes (automata)
with channel communications. The flow description written in WSFL is trans-
lated into Promela, the input specification language of SPIN. The properties to
be checked are reachability, deadlock-freedom, or application specific progress
properties. The application specific properties are expressed as formulas of
LTL (Linear Temporal Logic), which are also fed into SPIN.

Modeling and Verifying Web Service Orchestration by Means of the
Concurrency Workbench [80]

In their work, the authors address the problem of how to exploit verification
techniques like model checking, preorder checking and equivalence checking to
model and verify web service orchestrations. They propose the Concurrency
Workbench (CWB) as a generic and customizable verification tool. The CWB
supports model checking, preorder checking and equivalence checking. In the
work presented in [80], authors show how the CWB and the Process Algebra
Compiler (PAC) can be exploited to model and verify web service orchestra-
tion. To this end, a new calculus for formalizing web service orchestration is
introduced. The operational semantics of BPE-calculus is used as input of the
PAC to produce modules for the CWB.

Model Checking with Abstraction for Web Services [125]

In their paper, the authors address the problem of verifying the applications
that implement the web services. Particularly, the authors address the state
explosion problem of model checking techniques. They propose to use abstrac-
tion data techniques to face this problem. They apply this solution in the case

246 A. Metzger et al.

of distributed service-based applications. They introduce the SatAbs tool [125]
that allows for the analysis of service-based applications. It relies on model
checking techniques to identify eventual flaws in such concurrent systems.
[125] formalizes the semantics of a PHP-like language and enables modeling
of both synchronous and asynchronous communication between services. The
resulting models are amenable to verification using model checking.

Compatibility Verification for Web Service Choreography [49]

In [49], the authors address the problem of verifying process interactions for
coordinated web services composition. Web Service workflow languages aim
to fulfil the requirement of a coordinated and collaborative service invocation
specification to support long running and multi-service transactions. Amongst
the key issues in the design and implementation of components in this archi-
tecture style for critical business applications, is the formation of compositions
as a series of interacting workflows and how transactions of activities inter-
act to support the underlying business requirements. The authors proposes to
use finite state machine representations of web service orchestrations to ana-
lyze process interactions of web service compositions. The aim of this analysis
concentrates on the compatibility of processes that take part in the complete
composition environment.

Modeling Component Connectors in Reo by Constraint Automata [9]

Coordination models and languages close the conceptual gap between the
cooperation model used by the constituent parts of an application and the
lower-level communication model used in its implementation. In [9], the au-
thors introduce constraint automata as a formalism to describe the behav-
ior and possible data flow in coordination models that connect anonymous
components to enable their coordinated interaction. Constraint automata are
used as an operational model for Reo, an exogenous coordination language for
compositional construction of component connectors based on a calculus of
channels. Constraint automata make modeling subtle timing and input/out-
put constraints of Reo connectors possible, specifically their combined mix of
synchronous and asynchronous transitions.

A Model-Checking Verification Environment for Mobile Processes [47]

A global computing system is a network of stationary and mobile components.
The primary features of a global computing system are that its components are
autonomous, software versioning is highly dynamic, the network’s coverage is
variable and often its components reside over the nodes of the network (WEB
services), membership is dynamic and often ad hoc, without a centralized
authority. Global computing systems must be made very robust since they
are intended to operate in potentially hostile dynamic environments. The
authors in [47] exploit History Dependent automata HD-automata as a basis

7 Analytical Quality Assurance 247

for the design and development of verification toolkits for reasoning about the
behavior of mobile systems. A verification environment, called HD-Automata
Laboratory HAL, is used to exploits HD-automata of systems specified in the
π-calculus. The HAL environment includes modules that implement decision
procedures to calculate behavioral equivalences.

Describing and Reasoning on Web Services Using Process Algebra [121]

Web services are an emerging and promising area involving important techno-
logical challenges. Some of the main challenges are to correctly describe web
services, to compose them adequately and/or automatically, and to discover
suitable services working out a given problem. In their work, the authors pro-
pose a framework to that uses Process Algebra called CCS as an abstract
representation means to describe, compose and reason (simulation, property
verification, correctness of composition) on service-based applications. The
techniques, used to check whether a service-based application described in
process-algebraic notations respects temporal logic properties (e.g., safety and
liveness properties), are referred to as model checking methods.

LTSA-WS: A Tool for Model-Based Verification of Web Service
Compositions and Choreography [50]

Web service composition languages such as the BPEL4WS aim to fulfill the
requirement of a coordinated and collaborative service invocation specifica-
tion to support running transactions and multi-service scenarios. However, a
composition alone does not fulfill the requirement of an assured collabora-
tion in cross-enterprise service domains. Participating services must adhere
to policies set out to support these collaborative roles with permissions and
obligations constraining the interactions between services. The authors intro-
duce LTSA-WS, as a tool implementing a model-based approach to verifying
service-based applications. This tool supports verification of global proper-
ties (e.g., absence of deadlock and liveness) created from design specifications
and implementation models to confirm expected results from the viewpoints
of both the designer and implementer. Scenarios are modeled in UML, in
the form of Message Sequence Charts, and then compiled into the Finite
State Process FSP process algebra to concisely model the required behavior.
BPEL4WS implementations are mechanically translated to FSP to allow an
equivalence trace verification process to be performed.

Formal Verification of Web Service Composition [113]

Current Web services composition proposals, such as BPML, BPEL4WS,
WSCI, and OWL-S, provide solutions for describing the control and data
flows in Web service composition. However, such proposals remain at the de-
scriptive level, without providing any kind of mechanisms or tool support
for analysis and verification. The work presented in [113] proposes an event-
based approach for checking both functional and non-functional requirements

248 A. Metzger et al.

of web service compositions. The properties to be monitored are specified using
the Event Calculus formalism. Functional requirements are initially extracted
from the specification of the composition process that is expressed in WS-
BPEL. This ensures that they can be expressed in terms of events occurring
during the interaction between the composition process and the constituent
services that can be detected from the execution log. Non-functional require-
ments (e.g., such as security policies) to be checked are subsequently defined
in terms of the identified detectable events by service providers.

Execution Semantics for Service Choreographies [36]

A service choreography is a model of interactions in which a set of services
engage to achieve a goal. Choreographies have been put forward as a starting
point for building service-oriented systems since they provide a global pic-
ture of the system’s behavior. In [36], the authors present a new approach
that proposes to define a service interaction modeling language as well as
techniques for analyzing and relating global and local models of service in-
teractions. This work introduced a formal semantics for a service interaction
modeling language, namely Let’s Dance, which supports the high-level cap-
ture of both global models (i.e., choreographies) and local models of service
interactions. The semantics is defined by translation to π-calculus.

Integrating Business Requirements and Business Processes [74, 73]

In order to support continuous changes and adaptation of business process
models to business goals and requirements it is necessary to explicitly relate
the strategic goals and requirements to the business process models. The abil-
ity to formally analyze how the changes in the requirements affect the process
models enables the requirements traceability and improves the reliability of
the system through its continuous evolution. The authors propose to explicitly
associate the strategic models representing business requirements and goals
to the business process models and then provide a formal analysis support
for the verification of their compliance. In order to perform formal analysis
of these models, the requirements specifications and the annotated process
models are translated into an internal unified representation, and then the
analysis is performed using model checking techniques.

WS-VERIFY: Formal Analysis of Web Service Compositions [76, 75, 72, 69]

The necessity to detect requirements violations and problems in the specifica-
tions of the composition behavior is an important issue in the service-oriented
design and requires high level of formalisation and automation support. Such
analysis, however, has to tackle several problems specific to service composi-
tion behavior. First, the service communications are essentially asynchronous
and rely on complex message management systems. Second, the service spec-
ifications extensively use complex data structures and operations. Third, the

7 Analytical Quality Assurance 249

correctness of a wide class of systems strongly relies on a compliance of the
time-related composition requirements. In [76] a unified framework for the
formal verification of Web service compositions is introduced. The framework
integrates the methods and techniques for modeling and analyzing specific
aspects, such as asynchronous interactions [75], data-flow properties [72] and
qualitative/quantitative time characteristics [69].

Choreography Analysis [70, 71]

Service choreographies aim at representing global observable behavior of the
collaborating services. The realizability problem addresses the possibility to
“project” the choreography on the participants so that the behavior of the pro-
jection composition is guaranteed to correspond to the original choreography.
The conformance analysis instead aims at checking whether the observable
behavior generated by the service implementations corresponds to the chore-
ography specification. These complementary forms of analysis are equally nec-
essary for the correct implementation of the Web service collaborations. The
authors present an approach that relies on a formal model that allows for
defining both the prescribed choreography behavior and the behavior of the
composition of the implementing services. The formalism is given in terms of
state transition systems communicating through a certain model of message
queues. In order to address the realizability problem, the authors present a
hierarchy of realizability notions that allow one to efficiently analyze whether
the given choreography can be implemented and under which conditions. In
order to address the problem of conformance, the authors formally define the
notion of conformance relation between the choreography and the composi-
tion implementation, extended with a set of constraints on the information
alignment between partners.

Petri Net-Based Analysis of WS-BPEL Processes [105, 104, 150]

BPEL language is de-facto standard for implementing executable business
processes on top of Web services. The necessity to carry out verification ac-
tivities before the process deployment requires (i) correct and unambiguous
language formalization and (ii) the techniques for the efficient and automated
checking of relevant correctness properties.

The authors present a rigorous and detailed scheme for the formalization of
BPEL structures. For this purpose a special class of Petri nets, called workflow
nets, is adopted. In this way the formal semantics of BPEL is defined. Based
on this formalism, the authors define two tools that in combination allow
for the automated verification of BPEL. The BPEL2PNML tool translates
the BPEL process into the Petri Net Modeling Language (PNML), and the
resulting model is analyzed with the WofBPEL tool. Within the approach
the following forms of analysis have been defined: detection of unreachable
BPEL activities, detection of multiple concurrently enabled activities that
may consume the same type of message, and determining for every reachable

250 A. Metzger et al.

state of the process, which message types may be consumed in the rest of the
execution.

Verification of Web Service Compositions with Service/Resource Nets[131]

In [131] Tang et al. target the analysis of the Web service composition work-
flows. In particular, the concurrent resource access and linear time analysis
problems are studied. They introduce a special Petri Net-based formalism,
called Service/Resource Net (SRN) that is able to capture not only the control
flow of the composition workflow, but also other relevant aspects of the com-
position, such as time bounds of activities, resources (different data variables
or services), and conditions. The authors show how the service composition
may be represented in this formalism. When the composition is translated
into the SRN model, and the target net is simplified it is possible to perform
traditional analysis methods applicable to Petri Nets. Beyond these methods,
it is possible to perform certain specific analysis techniques, namely resource
matching and linear temporal inference.

CP-Net Based Verification for Web Service Compositions [155]

In Web service composition the integration of different services should be
done efficiently and correctly. One of the key issues here is to provide a pre-
cise and reliable way of integrating conversation partner into the composition
specification. Accordingly, the composition design framework should provide
the means for the correctness analysis of such integration. To this end, the
authors in [155] present a design and verification framework for service com-
positions based on the Coloured Petri Nets (CP-Nets) formalism. Given its
expresiveness, the formalism allows for the representation of data types and
data manipulations, as well as the concurrency issues and interprocess syn-
chronization. The proposed formal model enables specification of both the
complex conversation protocols of single partners and the overall composition
model.

Semantic Based Verification of BPEL4WS Abstract Processes[42]

Abstract processes represent the behavioral interface of a composition compo-
nent and therefore defines the restrictions on the component use. The abstract
process corresponds to a workflow, where elementary tasks correspond to the
basic Web service calls. When the preconditions and effects of the elementary
tasks are known it is possible to check whether the whole process is compatible
with this information, and, moreover, construct from elementary tasks new
abstract workflows satisfying the required properties. In [42], the authors’ so-
lution relies on a logical model, which allows for associating preconditions
and effects with the atomic service calls and with the complex control flow
constructs. The preconditions and effects are given as boolean expressions
over state propositions that hold in source and target states of the process

7 Analytical Quality Assurance 251

respectively. Given a process model and a set of semantic annotations of the
elementary tasks, it is possible to infer the precondition and effect of the whole
process.

Verification of Data-Driven Web Services[38]

The behavioral verification of service composition problem is a complex anal-
ysis problem due to various features of the underlying service models, such as
asynchronous and lossy interactions, data, object cardinality. These features
may seriously restrict the applicability of any analysis techniques and should
be carefully studied. In [38], the authors present a formalism for specifying
compositions as a set of asynchronously interacting Web service peers. Each
peer is represented with a local database, a control flow model, input out-
put queues, and reaction rules. The composition The reaction is described
by queries over the database, internal state, user input and received mes-
sages. The composition model is parametric with respect the queue bounds,
message loss, openness, etc. The correctness properties of the composition
have the form either of temporal first order logic sentences (e.g., ordering
constraints on the action execution) or Büchi automata representing the ex-
pected conversation protocol. The authors discuss modular verification, where
the correctness is checked when the complete specification of other peers is
not available or partial. Modular verification is useful when some peers are
provided by autonomous parties unwilling to disclose implementation details,
or when verification of a partially specified composition is desired.

Automated Model Checking and Testing for Composite Web Services [65]

The process-oriented models of model checking approaches successfully cap-
ture the temporal properties among atomic WSs. However, if the internal
structure of each atomic Web Service is blank in the model specification, then
it is inherently hard to describe and check more delicate properties involving
the effect and output of each atomic Web Service. In [65], the solution consists
of the following steps: a) use OWL-S to bound the behavior of atomic WSs; b)
convert OWL-S to the C-like language of BLAST [63]; c) enhance BLAST for
checking concurrency in OWL-S; d) embed data-bound and safety temporal
properties in the C-like code; e) use BLAST for model-checking and positive
test case generation; f) use of the typological algorithm of [141] and the pos-
itive test cases as input for the generation of the corresponding negative test
cases.

Simulation, Verification and Automated Composition of Web Services[99]

The success of the Web Service paradigm has led to a proliferation of available
WSs. These WSs can be combined in a composition in order to perform a
complex task. The big challenge is to describe and prove properties of these
WSs in order to: a) test the composed system by simulating its execution under

252 A. Metzger et al.

different input conditions; b) to logically verify certain maintenance and safety
conditions associated with the composed WS; c) to automatically compose
WSs. The authors take the DAML-S ontology for describing the capabilities
of WSs and define the semantics for a relevant subset of DAML-S in terms of
a first-order logical language. The basic idea for composing and verifying is
to first map salient aspects of the DAML-S model into a situation calculus,
and from there into the Petri net domain. Then, they relate the complexity
of various Web Service tasks (simulation, verification, performance analysis)
to the expressiveness of DAML-S by providing proofs for their claims. Most
importantly, they show that the complexity of the reachability problem for
DAML-S Process Models is PSPACE-complete.

Towards a Formal Verification of OWL-S Process Models[2]

Verification of the interaction protocol of WSs can be used to prove that the
protocol to be advertised is indeed correct (e.g., does not contain deadlocks)
and to guarantee additional properties, e.g., purchased goods are not delivered
if a payment is not received. In [2], the authors work extends the work analyzed
in [99] in three directions. First, a model of Web Service data flow is provided
in addition to control flow. Second, an OWL-S process model is translated into
a simpler model of the PROMELA specification language [64] that preserves
all the essential behavior to be verified. Third, the PROMELA specifications
are fed into the SPIN [64] model checking tool for automatically verifying that
the interaction protocol satisfies the claims.

Towards Efficient Verification for Process Composition of Semantic Web
Services[85]

OWL-S provides no way to validate a Web Service composition. In practice,
Web Service composition is usually a complex and error-prone process whether
happening at design time or at runtime. Moreover, if an erroneous composition
plan is executed without being previously verified, deployment of the Web
Service composition process often results in runtime errors, which need to
be repaired on-the-fly at high costs. The authors propose an analysis and
verification technique based on Colored Petri Nets (CPNets) [67].The main
idea is to define a composite process in a three-level specification: interface
net, orchestration net and composition net, and to specify the control and data
flow by mapping control constructs of OWL-S into the CPNet representation.
Then the constructed CPNet model is simulated and validated to detect the
composition errors, such as deadlocks, and to verify whether the composition
process does have certain expected dynamic properties.

7.7.3 Classification of Analysis Techniques

The various approaches that have been discussed above are classified and
summarized (according to the classification scheme introduced in Section 7.4)
in tables 7.5 and 7.6.

7 Analytical Quality Assurance 253

Table 7.5. Table-A for Analysis

Contribution Class Quality Life-Cycle Discipline Layer

[57, 58] analysis
(verification)

QoS
(scalability,
security)

design SE, SOC SCC

[26] analysis
(synthesis)

code
complexity

design SE, SOC SCC

[116] analysis
(synthesis)

QoS (many) design SE, SOC SCC

[91] analysis
(synthesis)

QoS (many) design,
execution

SE, SOC SCC

[3] analysis
(synthesis)

QoS (many) design,
execution

SOC, SE SCC

[52] analysis
(verification)

functional
behavior

design SE, SOC SCC

[21] analysis
(verification)

behavior design SE, SOC SCC

[94] analysis
(verification)

Deadlock,
Timeouts,
Reachability

Execution SOC and BPM SCC

[146, 148, 114] analysis
(verification)

Correctness,
Conformance

Design,
Execution

BPM SCC

[123] analysis
(synthesis)

Usabiliy Design SOC SCC

[98] analysis
(verification)

Dataflows
properties
(e.g.,
deadlocks,
reachability)

Design SE, SOC SCC

[80] analysis
(verification)

Deadlocks Execution BPM, SOC SCC

Verification
and Validation

SE, SOC SCC

[125] analysis
(verfication)

Safety
properties

Execution SOC SCC

[153] analysis
(synthesis)

Exchanged
message
properties

Design BPM, SOC SCC

[45] analysis
(verification)

Correlation
and
synchronous
receive/reply
messages

Execution BPM, SOC SCC

[49] analysis
(verification)

Interface
Compatibility,
Safety
Compatibility,
Liveness
Compatibility

Design BPM, SOC SCC

[9] analysis
(verification)

Synchronous
and
asynchronous
transition
properties

Design SE, SOC SCC

[47] analysis
(verification)

Behavioral
and safety
properties

Design SE, SOC SCC

[121] analysis
(verification)

Safety and
liveness
properties

Design SE, SOC SCC

254 A. Metzger et al.

Table 7.5. (continued)

Contribution Class Quality Life-Cycle Discipline Layer

[50] analysis
(verification)

Deadlock,
liveness

Design,
execution

SOC SCC

[113] analysis
(verification)

Security
policies

Execution SOC SCC

[36] analysis
(synthesis)

Reachability Design,
execution

SOC SCC

[74, 73] analysis
(verification)

behavioral
correctness

design BPM, RE BPM, SCC

[76, 75, 72, 69] analysis
(verification)

behavioral
correctness

design BPM, SOC SCC

[70, 71] analysis
(verification)

behavioral
correctness

design SOC SCC

[105, 104, 150] analysis
(verification)

behavioral
correctness

design BPM SCC, BPM

[131] analysis
(verification)

behavioral
correctness

design SOC SCC

[155] analysis
(verification)

protocol
conformance

design SOC SCC

[19] analysis
(verification)

behavioral
correctness

design,
execution

SOC SCC, SI

[42] analysis
(verification)

behavioral
correctness

design SOC SCC

[38] analysis
(verification)

behavioral
correctness

design SOC SCC

[34] analysis
(verification)

behavioral
correctness

design SE, SOC SCC

[65] analysis
(verification)

behavioral
correctness

design SE, SOC SCC

[99] analysis
(verification),
simulation

behavioral
correctness

design SE, SOC SCC

[2] analysis
(verification)

behavioral
correctness

design SE, SOC SCC

[85] analysis
(verification),
simulation

behavioral
correctness

design SOC SCC

Table 7.6. Table-B for Analysis

Contribution Artifact Reference Formality Automation Evaluation

[57, 58] colored UML
statecharts,
sequence
diagrams

QoS
requirements

formal automated explor. case
studies

[26] WS-BPEL
descriptions

developer
interpretation,
complexity
standards

formal automated explor. case
study

[116] WS-BPEL
descriptions

SLAs formal automated not evaluated

[91] BPEL, WSDL
descritions

QoS
requirements

formal automated explor. case
study

[3] BPEL
descriptions

QoS
parameters

formal automated test cases

[52] BPEL
descriptions

LTL
properties

formal automated explor. case
study

7 Analytical Quality Assurance 255

Table 7.6. (continued)

Contribution Artifact Reference Formality Automation Evaluation

[21] BPEL4WS
compositions

LTL
properties,
WS-CoL,
deadlock
freedom

formal automated explor. case
studies

[94] Petri nets Orchestration
schemas

formal automated explor. case
study

[146, 148, 114] Petri nets Workflow
models

formal automated explor. case
study

[123] Petri nets BPEL4WS
specifications

formal not automated -

[98] Promela
processes, LTL
formula

WSFL
specifications

formal automated explor. case
study

[80] BPE-calculus BPEL4WS
specifications

formal automated empirical
evaluations

[125] PHP Safety
properties

formal automated -

[153] aDFA BPEL4WS
specifications

formal automated explor. case
study

[45] DASM BPEL4WS
specifications

formal automated explor. case
study

[49] LTS BPEL4WS
specifications

formal automated explor. case
study

[9] Constraint
automata

Graphs formal automated theoretical
proves

[47] HD-automata π-calculus
processes

formal automated explor. case
studies

[121] CCS BPEL4WS
specifications

formal automated explor. case
studies

[50] FSP BPEL4WS
specifications

formal automated empirical case
studies

[113] Event
Calculus

BPEL4WS
specifications

formal not automated empirical case
studies

[36] π-calculus Let’s Dance formal not automated Theoretical
proves

[74, 73] business
process
specification
in BPEL

formal Tropos
requirements
specifications

formal automated explor. Case
Study

[76, 75, 72, 69] BPEL
descriptions

behavioral
composition
requirements

formal automated explor. case
studies

[70, 71] composition of
stateful
services

choreography
specification

formal automated Simple
Scenarios

[105, 104, 150] BPEL
descriptions

predefined
execution
properties

formal automated explor. case
study

[131] formal model
of the
composition
specification

predefined
execution
properties

formal automated explor. case
study

[155] formal model
of the service
composition

generic
correctness
properties,
and
conversation
protocol of a
participant

formal automated explor. case
study

256 A. Metzger et al.

Table 7.6. (continued)

Contribution Artifact Reference Formality Automation Evaluation

[19] WS interface
models

other Web
service
interface
models

formal automated Simple
Scenario,
Theoretical
proves

[42] abstract
process models

elementary
service
preconditions
and process
postconditions
(goals)

formal automated not evaluated

[38] WS
composition
model

temporal
properties
(LTL),
conversation
protocols

formal not automated not evaluated

[34] protocols of
the
composition
participants

dynamic
properties of
service
contracts

formal automated explor. case
Study

[65] OWL-S
Composite WS
Descriptions

temporal
properties

formal automated explor. case
study

[99] AML-S
Composite WS
Descriptions

safety
conditions

formal automated explor. case
study

[2] OWL-S
Composite WS
Descriptions

temporal
properties

formal automated explor. case
study

[85] OWL-S
Composite WS
Descriptions

reachability,
liveness,
fairness
properties

formal automated explor. case
study

7.8 Observations and Future Research Directions

Based on the results of the literature review, this section discusses key research
challenges in quality assurance for services and service-based applications and
how they have been addressed in the literature thus far.

Concerning testing, the reviewed papers and their classification show sev-
eral areas of interest in the testing community. The majority of the approaches
that has been reviewed addresses the problem of generating test cases for test-
ing services and service-based applications. This includes deriving test cases
from service descriptions (“black box”), based on WSDL for instance, and de-
riving test cases from service compositions (“white box”), based on BPEL for
example. Approaches are presented for deriving (or generating) test inputs, as
well for determining the expected outputs (test oracles). In addition, several
of these approaches include techniques for executing the test cases, once these
have been defined.

Concerning monitoring, the reviewed papers provide very rich and com-
prehensive set of approaches that cover wide range of goals, problem aspects,

7 Analytical Quality Assurance 257

and information types, as well as the different components of the SBA ar-
chitecture. The monitoring problem is considered from various stakeholder
perspectives and it addresses functional and also QoS aspects.

Concerning analysis, the literature review results show that a lot of re-
search effort has been spent by the community to build the current state
of the art in analysis of service-based applications from a quality assurance
point of view. Different formal approaches, ranging from Petri nets to process
algebras, and different quality characteristics, ranging from non-functional
to functional properties, and for different forms of service-based applications
specifications, have been proposed and analyzed by the research community.

Run-Time Quality Assurance

Services are often provisioned in the context of short-term, volatile and
thus highly dynamic business relationships between service providers and re-
questors which are not known at design time. Thus, services will have to be
enabled to collaborate in highly distributed environments, cutting across the
boundaries of various organizations (including enterprises, governmental and
non-profit organizations). The aggregation of services to build service-based
applications is very likely to happen mostly at run-time in the near future.
Which means that the actual functional behavior and quality aspects of the
service-based application will have to be determined during its actual opera-
tion. Moreover, determining the relevant aspects of the context in which the
service-based application is executed becomes a run-time issue. As an exam-
ple, the types of users which interact with the service-based application, or
the actual situation or location in which the application is operated is only
determined at run-time.

There is thus a strong need for quality assurance techniques that can be
applied while the service-based application is in operation. The review has
uncovered, that currently typically monitoring techniques are proposed for
assuring the quality of an application during its operation. The problem with
monitoring is that it only checks the current (actual) execution. It does not
allow to pro-actively uncover faults which are introduced, e.g., due to a change
in the application, if they are not leading to a failure in the current execution.
Other techniques, such as testing or static analysis, examine sets of classes
of executions and thus would allow to pro-actively uncover such faults before
they lead to an actual failure during the operation of the system. Therefore,
standard and consolidated “off-line” software quality assurance techniques
(like testing and analysis) should be extended such that they are applicable
while the application operates (“on-line” techniques).

There are some contributions on regression testing for service-based ap-
plications. A regression test, i.e., re-testing the application, is essential due
to its dynamic nature (the service composition can change due to the evo-
lution of the services or other changes in the context of the service-based
application). Interestingly, although dynamics as an important characteristic

258 A. Metzger et al.

of service-based applications is acknowledged and many of the testing tech-
niques support the automatic generation and execution of test cases, there
are but a few contributions that propose performing tests during the actual
operation of the system (’on-line’ testing).

One important requirement of those “on-line” techniques, however, is that
their overhead and costs should not be an overkill to the point that they
become unpractical for this reason. Overheads and costs that incur under
any execution environment typically include time, computational resources
(e.g., processing power and memory) as well as communication resources (e.g.,
network bandwidth). Therefore, work on making the “on-line” techniques as
light-weight as possible is needed.

Finally, as (self-)adaptation of service-based applications becomes an es-
sential characteristic, there is a strong need to assure that the adaptation of
a service-based application behaves as expected. This requires specific test-
ing and analysis techniques to verify the adaptation behavior; e.g., this could
include checking whether the behavior after the adaptation conforms to the
expected behavior before the adaptation took place (in order to keep back-
wards compatibility). Those techniques and methods to assure the correctness
of adaptations are badly lacking at the moment.

Assuring End-to-End Quality

In a dynamic business scenario, the contract life-cycle should be automated
as much as possible, in order to allow organizations to dynamically change
service providers (business partners) or to re-negotiate SLAs (see above). That
requires that QoS aspects need to be checked during the operation, e.g., by
monitoring the QoS characteristics, in order to determine whether the new
service provider meets the desired QoS or whether there is a need for re-
negotiating the SLAs. As this literature review has revealed, there are only few
and isolated research contributions on assuring QoS aspects. There is thus a
strong need for novel techniques and methods that address QoS characteristics
in a comprehensive and end-to-end fashion across all layers of a service-based
application. In addition, approaches that consider the context of a service-
based application and its impact on QoS are needed in order to pave the way
towards context-aware service-based application.

Due to the dynamic world in which service-based applications operate,
techniques are needed to aggregate individual QoS levels of the services in-
volved in a service composition in order to determine and thus check the
end-to-end QoS during run-time. This aggregation will typically span differ-
ent layers of a service-based application and thus a common understanding of
what the different QoS characteristics mean within and across these layers is
needed (also see above). In fact, the definition of a QoS taxonomy is addressed
within S-Cube by defining a “Quality reference model for service-based appli-
cations” (see Chapter 6).

7 Analytical Quality Assurance 259

Another important trend is to consider more and more aspects during
the monitoring task, such as different types of information, sources, types of
event, their distribution. However, only few approaches go beyond a partic-
ular monitoring problem or provide a wider perspective on the application
execution. Furthermore, there are no existing approaches that cross all the
functional layers of a service-based application, consider evolutionary aspects
of executions with respect to a variety of information, etc.

Only very few isolated testing approaches provide solutions for considering
specific QoS characteristics. However, as it has been motivated in the intro-
duction to this chapter, QoS is an important aspect of the contracts between
service providers and consumers. Thus, assuring whether the services conform
with the agreed levels of quality is an essential activity.

Despite the great effort in the area of analysis, an evident problem can be
found in the lack of integrated methods for the overall analysis of functional
and quality properties of service-based applications. In other words, a set of
comprehensive, integrated techniques and methods able to incorporate differ-
ent aspects of quality analysis at different levels of abstraction are needed.
Such techniques should take into account the specific layers of a service-based
application, and face coherence issues among different models and aspects of
the same application.

Synergies between Approaches

The literature review results have shown that first attempts are made to ex-
ploit potential synergies between the different classes of analytical quality
assurance techniques. As an example, testing can be used as preventive mech-
anism for finding faults while monitoring is used during the operation of the
service-based application. A combination of both techniques can compensate
the weaknesses of the single approaches [25, 24]. Further examples are the use
of dedicated tests during the operation of the service-based applications in
order to determine the conformance to SLAs, the use of static analysis tools
(like model checkers) to derive test cases, or the analysis of monitoring logs
(“post-mortem” analysis or audit).

Despite these initial attempts, synergies that can be achieved by joining
and integrating different kinds of techniques have not been fully exploited.
For example, research can be directed at facilitating the use of monitoring
results as input for run-time verification. Or, testing could be combined with
monitoring in such a way that when a deviation is observed during monitoring,
dedicated test cases are executed in order to pinpoint the issues that lead to
the deviation (also see next sub-section).

Debugging and Diagnosis

In this chapter, the focus has been on dynamic techniques and methods for
uncovering failures and on static techniques for uncovering faults. Obviously,

260 A. Metzger et al.

once a failure has been identified, the cause for this failure, i.e., the fault in the
artifact, needs to be uncovered. This is the realm of debugging and diagnosis.
In this area, we see many open issues in the context of quality assurance.
Specifically, this leads to issues on how one can interact with services for the
purpose of debugging without this interaction having side-effects on the cur-
rent execution (actual operation) of the service-based application. This also
means that current service interfaces must be enhanced for testability, diag-
nosis and debuggability, which however must be well balanced with desired
characteristics such as information hiding, encapsulation and loose coupling.

∗ ∗ ∗

This chapter gave an overview of this broad field of “service quality assur-
ance” and identified the key areas where research contributions are currently
available. Based on this review of the state of the art, important and emerg-
ing research challenges were highlighted. In S-Cube, the research challenges
“run-time quality assurance”, “end-to-end quality” and “synergies between
approaches” are addressed.

References

1. Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini, G.L., Tortone,
G., Vistoli, M.C.: GridICE: a monitoring service for grid systems. Future Gen-
eration Computer Systems 21(4), 559–571 (2005)

2. Ankolekar, A., Paolucci, M., Sycara, K.: Towards a formal verification of OWL-
S process models. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 37–51. Springer, Heidelberg (2005)

3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes.
IEEE Transactions on Software Engineering 33(6), 369–384 (2007)

4. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Fault tolerant
web service orchestration by means of diagnosis. In: Gruhn, V., Oquendo, F.
(eds.) EWSA 2006. LNCS, vol. 4344, pp. 2–16. Springer, Heidelberg (2006)

5. Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing. In: 31st Annual
International Computer Software and Applications Conference (COMPSAC),
vol. 2, pp. 233–236 (2007)

6. Bai, X., Xu, D., Dai, G., Tsai, W., Chen, Y.: Dynamic reconfigurable testing of
service-oriented architecture. In: Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 368–
375 (2007)

7. Bai, X., Dai, G., Xu, D., Tsai, W.-T.: A multi-agent based framework for col-
laborative testing on Web services. In: The Fourth IEEEWorkshop on Software
Technologies for Future Embedded and Ubiquitous Systems, 2006 and the 2006
Second International Workshop on Collaborative Computing, Integration, and
Assurance.SEUS 2006/WCCIA 2006, p. 6 (2006)

7 Analytical Quality Assurance 261

8. Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-Based Automatic Test Case
Generation for Web Services Testing. In: Proceedings of the IEEE International
Workshop on Service-Oriented System Engineering (SOSE), pp. 215–220. IEEE
Computer Society (2005)

9. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors
in reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

10. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of
Instances and Classes of Web Service Compositions. In: IEEE International
Conference on Web Services (ICWS 2006), pp. 63–71 (2006)

11. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: A Timed Ex-
tension of WSCoL. In: 2007 IEEE International Conference on Web Services
(ICWS 2007), pp. 663–670 (2007)

12. Baresi, L., DiNitto, E.: Test and Analysis of Web Services. Springer, Heidelberg
(2007)

13. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In:
Service-Oriented Computing – ICSOC 2004, Second International Conference,
pp. 193–202 (2004)

14. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 269–282. Springer, Heidelberg (2005)

15. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Tech-
nologies for E-Services, 6th International Workshop, TES 2005, pp. 72–83
(2005)

16. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring Business Processes with
Queries. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, pp. 603–614 (2007)

17. Benbernou, S., Meziane, H., Hacid, M.S.: Run-time monitoring for privacy-
agreement compliance. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 353–364. Springer, Heidelberg (2007)

18. Bertolino, A., Polini, A.: The audition framework for testing Web services
interoperability. In: Proceedings. 31st Euromicro Conference on Software En-
gineering and Advanced Applications, pp. 134–142 (2005)

19. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web Service Interfaces. In: Pro-
ceeding of the International Conference on World Wide Web, WWW (2005)

20. Bianculli, D., Ghezzi, C.: Monitoring Conversational Web Services. In: IW-
SOSWE’07 (2007)

21. Bianculli, D., Ghezzi, C., Spoletini, P.: A model checking approach to verify
BPEL4WS workflows. In: Proceedings of the 2007 IEEE International Con-
ference on Service-Oriented Computing and Applications (IEEE SOCA 2007),
Newport Beach, USA, June 2007, pp. 13–20. IEEE Computer Society Press,
Los Alamitos (2007)

22. Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using Test
Cases as Contract to Ensure Service Compliance Across Releases. In: Bena-
tallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
87–100. Springer, Heidelberg (2005)

23. Bryce, R.C., Chen, Y., Colbourn, C.J.: Biased covering arrays for progressive
ranking and composition of Web Services. International Journal of Simulation
and Process Modelling 3(1-2), 80–87 (2007)

262 A. Metzger et al.

24. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of
International Workshop on Web Services – Modeling and Testing – WS-MaTE,
pp. 3–12 (2006)

25. Canfora, G., di Penta, M.: Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IT Professional 8(2), 10–17 (2006)

26. Cardoso, J.: Complexity analysis of BPEL web processes. Software Process:
Improvement and Practice 12(1), 35–49 (2007)

27. Castellanos, M., Casati, F., Shan, M.-C., Dayal, U.: iBOM: A Platform for
Intelligent Business Operation Management. In: ICDE ’05: Proceedings of the
21st International Conference on Data Engineering, pp. 1084–1095 (2005)

28. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: A metamorphic testing approach
for online testing of service-oriented software applications. International Jour-
nal of Web Services Research 4(2), 61–81 (2007)

29. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.-
K., Dikun, M., Lei, H., Jeng, J.-J., Kapoor, S., Lang, C.A., Mihaila, G., Stanoi,
I., Zeng, L.: Model Driven Development for Business Performance Manage-
ment. IBM Syst. J. 45(3), 587–605 (2006)

30. Curbera, F.: Components contracts in Service-Oriented architectures. IEEE
Computer 11, 74–80 (2007)

31. Curbera, F., Duftler, M.J., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana,
S.: Colombo: Lightweight Middleware for Service-Oriented Computing. IBM
Systems Journal 44(4), 799–820 (2005)

32. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information
Services for Distributed Resource Sharing. In: 10th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC-10 2001), pp.
181–194 (2001)

33. Dai, G., Bai, X., Wang, Y., Dai, F.: Contract-based testing for web services.
In: 31st Annual International Computer Software and Applications Conference
(COMPSAC 2007), vol. 1, pp. 517–524 (2007)

34. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: CTR-S: A Logic for Specifying
Contracts in Semantic Web Services. In: Proceeding of the International Con-
ference on World Wide Web (WWW), pp. 144–153 (2004)

35. Júnior de Almeida, L.F., Vergilio, S.R.: Exploring Perturbation Based Testing
for Web Services. In: IEEE International Conference on Web Services (ICWS),
pp. 717–726 (2006)

36. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreogra-
phies. In: WS-FM, pp. 163–177 (2006)

37. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Trans. Software Eng. 30(12), 859–872
(2004)

38. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of Communicating Data-
driven Web Services. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 90–99 (2006)

39. Devaurs, D., Musaraj, K., De Marchi, F., Hacid, M.-S.: Timed Transition Dis-
covery from Web Service conversation Logs. In: 20th International Conference
on Advanced Information Systems Engineering, CAISE’08 (2008)

40. Di Penta, M., Canfora, G., Esposito, G., Mazza, V., Bruno, M.: Search-based
Testing of Service Level Agreements. In: Proceedings of the Conference on
Genetic and Evolutionary Computation – GECCO, pp. 1090–1097. ACM Press,
New York (2007)

7 Analytical Quality Assurance 263

41. Dong, W.-L., Yu, H., Zhang, Y.-B.: Testing BPEL-based Web Service Com-
position Using High-level Petri Nets. In: EDOC ’06: Proceedings of the 10th
IEEE International Enterprise Distributed Object Computing Conference, pp.
441–444. IEEE Computer Society (2006)

42. Duan, Z., Bernstein, A.J., Lewis, P.M., Lu, S.: Semantics Based Verification
and Synthesis of BPEL4WS Abstract Processes. In: Proceeding of the Inter-
national Conference on Web Services (ICWS), pp. 734–737 (2004)

43. Dustdar, S., Haslinger, S.: Testing of service-oriented architectures – A prac-
tical approach. In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS,
vol. 3263, pp. 97–109. Springer, Heidelberg (2004)

44. Hankin, C., Nielson, F., Nielson, H.R.: Principles of Program Analysis, 2nd
edn. Springer, Heidelberg (2005)

45. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the
business process execution language for web services. In: Abstract State Ma-
chines, pp. 78–94 (2004)

46. Farrell, A., Sergot, M., Bartolini, C., Salle, M., Trastour, D., Christodoulou,
A.: Using the Event Calculus for the Performance Monitoring of Service-Level
Agreements for Utility Computing. In: Proceedings of First IEEE International
Workshop on Electronic Contracting, WEC 2004 (2004)

47. Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking
verification environment for mobile processes. ACM Trans. Softw. Eng.
Methodol. 12(4), 440–473 (2003)

48. Fisher, S.: Relational Model for Information and Monitoring. Technical Report
GWD-GP-7-1, Global Grid Forum (2001)

49. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility verification for
web service choreography. In: ICWS ’04: Proceedings of the IEEE International
Conference on Web Services, Washington, DC, USA, p. 738. IEEE Computer
Society (2004)

50. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-
based verification of web service compositions and choreography. In: ICSE ’06:
Proceedings of the 28th international conference on Software engineering, New
York, NY, USA, pp. 771–774. ACM (2006)

51. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,
B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., von Reich, J.:
The Open Grid Services Architecture, Version 1.0. Technical Report GFD-
I.030, Global Grid Forum (January 2005)

52. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In:
Proceedings of the 13th International World Wide Web Conference, WWW’04
(2004)

53. Fugini, M.G., Pernici, B., Ramoni, F.: Quality analysis of composed services
through fault injection. Information System Frontiers, Special Issue on Collab-
orative Business Processes (in press)

54. Garcia-Fanjul, J., de la Riva, C., Tuya, J.: Generation of Conformance Test
Suites for Compositions of Web Services Using Model Checking. In: TAIC-
PART ’06: Proceedings of the Testing: Academic & Industrial Conference
on Practice And Research Techniques, pp. 127–130. IEEE Computer Society
(2006)

55. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice-Hall, Englewood Cliffs (1991)

264 A. Metzger et al.

56. Ghezzi, C., Guinea, S.: Run-Time Monitoring in Service-Oriented Architec-
tures. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web Services, pp.
237–264. Springer, Heidelberg (2007)

57. Gilmore, S., Haenel, V., Kloul, L., Maidl, M.: Choreographing security and
performance analysis for web services. In: Bravetti, M., Kloul, L., Zavattaro,
G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 200–214. Springer, Hei-
delberg (2005)

58. Gilmore, S., Kloul, L.: A unified tool for performance modelling and prediction.
Reliability Engineering and System Safety 89, 17–32 (2005)

59. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process
Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer,
Heidelberg (2007)

60. Hanna, S., Munro, M.: An approach for specification-based test case genera-
tion for Web services. In: IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA 2007, pp. 16–23 (2007)

61. Heckel, R., Lohmann, M.: Towards Contract-based Testing of Web Services.
In: Proceedings of the International Workshop on Test and Analysis of Compo-
nent Based Systems (TACoS 2004). Electronic Notes in Theoretical Computer
Science, vol. 116, pp. 145–156. Elsevier B.V., Amsterdam (2005)

62. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In:
Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg
(2005)

63. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT Annual Sympo-
sium on Principles of Programming Languages, Portland, Oregon, USA, pp.
58–70. ACM (2002)

64. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual,
2003. Addison-Wesley Professional, Reading (Sept. 2003)

65. Huang, H., Tsai, W.-T., Paul, R., Chen, Y.: Automated Model Checking and
Testing for Composite Web Services. In: 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2005), pp. 300–
307. IEEE Computer Society (2005)

66. Jeng, J.-J., Schiefer, J., Chang, H.: An Agent-based Architecture for Analyzing
Business Processes of Real-Time Enterprises. In: EDOC ’03: Proceedings of the
7th International Conference on Enterprise Distributed Object Computing, p.
86 (2003)

67. Jensen, K. (ed.): Coloured Petri Nets – Basic concepts, analysis methods and
practical use, vol. 1, 2nd edn. Monographs in Theoretical Computer Science.
Springer, Heidelberg (1997)

68. Karam, M., Safa, H., Artail, H.: An abstract workflow-based framework for
testing composed web services. In: International Conference on Computer Sys-
tems and Applications (AICCSA), pp. 901–908 (2007)

69. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, Verification, and
Computation of Timed Properties in Web Service Compositions. In: Proceeding
of the International Conference on Web Services (ICWS), pp. 497–504 (2006)

70. Kazhamiakin, R., Pistore, M.: Analysis of Realizability Conditions for Web
Service Choreographies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge,
V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 61–76. Springer, Heidelberg
(2006)

7 Analytical Quality Assurance 265

71. Kazhamiakin, R., Pistore, M.: Choreography Conformance Analysis: Asyn-
chronous Communications and Information Alignment. In: Proceedings of the
International Workshon on Web Services and Formal Methods (WS-FM), pp.
227–241 (2006)

72. Kazhamiakin, R., Pistore, M.: Static Verification of Control and Data in Web
Service Compositions. In: Proceeding of the International Conference on Web
Services, ICWS (2006)

73. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal Verification of Requirements
using SPIN: A Case Study on Web Services. In: Proceedings of the Interna-
tional Conference on Software Engineering and Formal Methods (SEFM), pp.
406–415 (2004)

74. Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating Busi-
ness Processes and Business Requirements. In: Proceedings of the Interna-
tional Enterprise Distributed Object Computing Conference (EDOC), pp. 9–20
(2004)

75. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of Communication Models
in Web Service Compositions. In: Proceeding of the International Conference
on World Wide Web, WWW (2006)

76. Kazhamiakin, R.: Formal Analysis of Web Service Compositions. PhD thesis,
University of Trento (2007)

77. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring ser-
vice level agreements for web services. Journal of Network and Systems Man-
agement 11(1), 57–81 (2003)

78. Keum, C., Kang, S., Ko, I.-Y., Baik, J., Choi, Y.-I.: Generating test cases for
web services using extended finite state machine. In: Uyar, M.Ü., Duale, A.Y.,
Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 103–117. Springer,
Heidelberg (2006)

79. Kloukinas, C., Spanoudakis, G.: A pattern-driven framework for monitoring
security and dependability. In: Lambrinoudakis, C., Pernul, G., Tjoa, A.M.
(eds.) TrustBus. LNCS, vol. 4657, pp. 210–218. Springer, Heidelberg (2007)

80. Koshkina, M., van Breugel, F.: Modelling and verifying web service or-
chestration by means of the concurrency workbench. SIGSOFT Softw. Eng.
Notes 29(5), 1–10 (2004)

81. Lazovik, A., Aiello, M., Papazoglou, M.P.: Associating Sssertions with Business
Processes and Monitoring their Execution. In: Service-Oriented Computing –
ICSOC 2004, Second International Conference, pp. 94–104 (2004)

82. Lohmann, M., Mariani, L., Heckel, R.: A Model-Driven Approach to Discovery,
Testing and Monitoring of Web Services, pp. 173–204. Springer, Heidelberg
(2007)

83. Ludwig, H., Dan, A., Kearney, R.: Cremona: An Architecture and Library for
Creation and Monitoring of WS-Agreements. In: Service-Oriented Computing
– ICSOC 2004, Second International Conference, pp. 65–74 (2004)

84. Luebke, D.: Unit Testing BPEL Compositions, pp. 149–171. Springer, Heidel-
berg (2007)

85. Luo, N., Yan, J., Liu, M.: Towards efficient verification for process composition
of semantic web services. In: IEEE SCC, pp. 220–227. IEEE Computer Society
(2007)

86. Mahbub, K., Spanoudakis, G.: Run-time Monitoring of Requirements for Sys-
tems Composed of Web Services: Initial Implementation and Evaluation Expe-
rience. In: 2005 IEEE International Conference on Web Services (ICWS 2005),
pp. 257–265 (2005)

266 A. Metzger et al.

87. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An Event
Calculus-Based Approach. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis
of Web Services, pp. 265–306. Springer, Heidelberg (2007)

88. Martin, E., Basu, S., Xie, T.: Automated Robustness Testing of Web Services.
In: Proc. 4th International Workshop on SOA And Web Services Best Prac-
tices, SOAWS 2006 (2006)

89. Martin, E., Basu, S., Xie, T.: Automated Testing and Response Analysis of
Web Services. In: IEEE International Conference on Web Services (ICWS),
pp. 647–654 (2007)

90. Martin, E., Basu, S., Xie, T.: WebSob: A tool for robustness testing of web
services. In: Companion to the proceedings of the 29th International Conference
on Software Engineering (ICSE), pp. 65–66 (2007)

91. Marzolla, M., Mirandola, R.: Performance prediction of web service workflows.
In: Overhage, S., Szyperski, C., Reussner, R., Stafford, J.A. (eds.) QoSA 2007.
LNCS, vol. 4880, pp. 127–144. Springer, Heidelberg (2008)

92. Mayer, P., Luebke, D.: Towards a BPEL unit testing framework. In: Proceed-
ings of the 2006 Workshop on Testing, Analysis, and Verification of Web Ser-
vices and Applications, TAV WEB’06, volume 2006, pp. 33–42 (2006)

93. McGregor, J.D., Sykes, D.A.: A Practical Guide to Testing Object-oriented
Software. Addison-Wesley Professional, Reading (2001)

94. Mecella, M., Parisi Presicce, F., Pernici, B.: Modeling E-service orchestration
through petri nets. In: Buchmann, A., Casati, F., Fiege, L., Hsu, M.-C., Shan,
M.-C. (eds.) TES 2002. LNCS, vol. 2444, pp. 38–47. Springer, Heidelberg (2002)

95. Mei, H., Zhang, L.: A Framework for Testing Web Services and Its Supporting
Tool. In: SOSE ’05: Proceedings of the IEEE International Workshop, pp. 207–
214. IEEE Computer Society (2005)

96. Momm, C., Malec, R., Abeck, S.: Towards a Model-driven Development of
Monitored Processes. Wirtschaftsinformatik 2 (2007)

97. Myers, G.J.: The Art of Software Testing. Wiley, Chichester (2004)
98. Nakajima, S.: Model-checking verification for reliable web service. In: OOPSLA

Workshop on Object-Oriented Web Services (2002)
99. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated com-

position of web services. In: WWW ’02: Proceedings of the 11th international
conference on World Wide Web, Honolulu, Hawaii, USA, pp. 77–88. ACM
(2002)

100. Newman, H.B., Legrand, I.C., Galvez, P., Voicu, R.: MonALISA: A Distributed
Monitoring Service Architecture. In: International Conference on Computing
in High Energy Physics, CHEP2003 (2003)

101. Nezhad, H.R.M., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving Protocol
Models from Imperfect Service Conversation Logs. In: IEEE Transactions on
Knowledge and Data Engineering (TKDE), to appear (2008)

102. Offutt, J., Xu, W.: Generating Test Cases for Web Services Using Data Per-
turbation. In: Workshop on Testing, Analysis and Verification of Web Services
(2004)

103. Osterweil, L.J.: Strategic directions in software quality. ACM Comput.
Surv. 28(4), 738–750 (1996)

104. Ouyang, C., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede,
A.H.M., Verbeek, H.M.W.: Formal Semantics and Analysis of Control Flow in
WS-BPEL. Technical report, BPMcenter.org, BPM Center Report BPM-05-15
(2005)

7 Analytical Quality Assurance 267

105. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: WofBPEL: A tool for automated analysis of BPEL pro-
cesses. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS,
vol. 3826, pp. 484–489. Springer, Heidelberg (2005)

106. Paradkar, A.M., Sinha, A., Williams, C., Johnson, R.D., Outterson, S., Shriver,
C., Liang, C.: Automated Functional Conformance Test Generation for Seman-
tic Web Services. In: IEEE International Conference on Web Services, ICWS
2007, pp. 110–117 (2007)

107. Di Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.: Web Services
Regression Testing, pp. 205–234. Springer, Heidelberg (2007)

108. Pistore, M., Traverso, P.: Assumption-Based Composition and Monitoring of
Web Services. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web
Services, pp. 307–335. Springer, Heidelberg (2007)

109. Radha Krishna, P., Karlapalem, K., Chiu, D.K.W.: An EREC framework for
e-contract modeling, enactment, and monitoring. Data Knowl. Eng. 51, 31–58
(2004)

110. Ramsokul, P., Sowmya, A., Ramesh, S.: A test bed for web services protocols.
In: Second International Conference on Internet and Web Applications and
Services, ICIW (2007)

111. Rosario, S., Beneveniste, A., Haar, S., Jard, C.: Probablistic QoS and soft
contracts for transaction based web services. In: IEEE ICWS, pp. 126–133
(2007)

112. Roth, H., Schiefer, J., Schatten, A.: Probing and Monitoring of WSBPEL Pro-
cesses with Web Services. In: CEC-EEE ’06: Proceedings of the The 8th IEEE
International Conference on E-Commerce Technology and The 3rd IEEE Inter-
national Conference on Enterprise Computing, E-Commerce, and E-Services,
p. 30 (2006)

113. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web ser-
vice composition. In: Business Process Management, pp. 257–273 (2006)

114. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: Measuring the fit
and appropriateness of event logs and process models. In: Bussler, C., Haller,
A. (eds.) Business Process Management Workshops, pp. 163–176 (2006)

115. Rozinatand, A., van der Aalst, W.M.P.: Conformance Checking of Processes
Based on Monitoring Real Behavior. Inf. Syst. 33(1), 64–95 (2008)

116. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of WS-BPEL-
based web service compositions. scw 0, 140–147 (2006)

117. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards
automatic regression test selection for web services. In: Proceedings of the
31st Annual International Computer Software and Applications Conference
(COMPSAC 2007), vol. 2, pp. 729–734 (2007)

118. Ruth, M., Tu, S.: A safe regression test selection technique for Web services.
In: Second International Conference on Internet and Web Applications and
Services, ICIW (2007)

119. Ruth, M.E.: Concurrency in a decentralized automatic regression test selection
framework for web services. In: MG ’08: Proceedings of the 15th ACM Mardi
Gras conference, pp. 1–8. ACM (2008)

120. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Auto-
mated SLA Monitoring for Web Services. In: Feridun, M., Kropf, P.G., Babin,
G. (eds.) DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

268 A. Metzger et al.

121. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS ’04: Proceedings of the IEEE International
Conference on Web Services, Washington, DC, USA, IEEE Computer Society
(2004)

122. Schieferdecker, I., Din, G., Apostolidis, D.: Distributed functional and load
tests for Web services. International Journal on Software Tools for Technology
Transfer 7(4), 351–360 (2005)

123. Schlingloff, B.-H., Martens, A., Schmidt, K.: Modeling and model checking
web services. In: Proceedings of the 2nd International Workshop on Logic and
Communication in Multi-Agent Systems, vol. 126, Elsevier, Amsterdam (2005)

124. Sen, S., Baudry, B., Mottu, J.-M.: On combining mullti-formalism knowledge
to select test models for model transformaion testing. In: ACM/IEEE Interna-
tional Conference on Software Testing, Lillehammer, Norway (April 2008)

125. Sharygina, N., Krning, D.: Model checking with abstraction for web services.
In: Test and Analysis of Web Services, pp. 121–145 (2007)

126. Siblini, R., Mansour, N.: Testing Web services. In: ACS/IEEE 2005 Interna-
tional Conference on Computer Systems and Applications (AICCSA), p. 135.
IEEE Computer Society (2005)

127. Sinha, A., Paradkar, A.: Model-based functional conformance testing of Web
services operating on persistent data. In: Proceedings of the 2006 workshop on
Testing, analysis, and verification of web services and applications, vol. 2006,
pp. 17–22 (2006)

128. Sneed, H.M., Huang, S.: WSDLTest – A tool for testing web services. In: Pro-
ceedings of the Eighth IEEE International Symposium on Web Site Evolution
(WSE’06), pp. 14–21 (2006)

129. Spanoudakis, G., Kloukinas, C., Androutsopoulos, K.: Towards security mon-
itoring patterns. In: Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pp. 1518–1525 (2007)

130. Spanoudakis, G., Mahbub, K.: Requirements Monitoring for Service-Based
Systems: Towards a framework based on Event Calculus. In: 19th IEEE In-
ternational Conference on Automated Software Engineering (ASE 2004), Linz,
Austria, 20-25 September 2004, pp. 379–384 (2004)

131. Tang, Y., Chen, L., He, K.T., Jing, N.: SRN: An Extended Petri-Net-Based
Workflow Model for Web Service Composition. In: Proceeding of the Interna-
tional Conference on Web Services (ICWS), pp. 591–599 (2004)

132. Tarhini, A., Fouchal, H., Mansour, N.: A simple approach for testing web ser-
vice based applications. In: Bui, A., Bui, M., Böhme, T., Unger, H. (eds.) IICS
2005. LNCS, vol. 3908, pp. 134–146. Springer, Heidelberg (2006)

133. Tierney, B., Aydt, R.A., Gunter, D., Smith, W., Taylor, V., Wolski, R., Swany,
M.: A Grid Monitoring Architecture. Informational Document GFD-I.7, Global
Grid Forum (January 2002)

134. Truong, H.-L., Fahringer, T.: SCALEA-G: a Unified Monitoring and Perfor-
mance Analysis System for the Grid. Scientific Programming (AxGrids 2004
Special Issue) 12(4), 225–237 (2004)

135. Tsai, W., Chen, Y., Paul, R., Huang, H., Zhou, X., Wei, X.: Adaptive testing,
oracle generation, and test case ranking for web services. In: 29th Annual
International Computer Software and Applications Conference (COMPSAC),
vol. 1, pp. 101–106 (2005)

7 Analytical Quality Assurance 269

136. Tsai, W., Wei, X., Chen, Y., Paul, R., Xiao, B.: Swiss cheese test case genera-
tion for web services testing. IEICE Transactions on Information and Systems,
E88-D(12):2691–2698 (2005)

137. Tsai, W.-T., Chen, Y., Cao, Z., Bai, X., Huang, H., Paul, R.: Testing web ser-
vices using progressive group testing. In: Chi, C.-H., Lam, K.-Y. (eds.) AWCC
2004. LNCS, vol. 3309, pp. 314–322. Springer, Heidelberg (2004)

138. Tsai, W.T., Paul, R., Yu, L., Saimi, A., Cao, Z.: Scenario-Based Web Ser-
vices Testing with Distributed Agents. IEICE Transaction on Information and
System, E86-D(10):2130–2144 (2003)

139. Tsai, W.T., Paul, R., Wang, Y., Fan, C., Wang, D.: Extending WSDL to Fa-
cilitate Web Services Testing. In: 7th IEEE International Symposium on High
Assurance Systems Engineering (HASE’02), vol. 00, p. 171. IEEE Computer
Society (2002)

140. Tsai, W.T., Wei, X., Chen, Y., Paul, R.: A Robust Testing Framework for Ver-
ifying Web Services by Completeness and Consistency Analysis. In: SOSE ’05:
Proceedings of the IEEE International Workshop, pp. 159–166. IEEE Com-
puter Society (2005)

141. Tsai, W.T., Wei, X., Chen, Y., Xiao, B., Paul, R., Huang, H.: Developing and
assuring trustworthy web services. In: ISADS 2005: Proceedings of the 7th
International Symposium on Autonomous Decentralized Systems, Chengdu,
China, 2005, pp. 43–50. IEEE Computer Society,

142. Tsai, W.T., Zhang, D., Paul, R., Chen, Y.: Stochastic Voting Algorithms for
Web Services Group Testing. In: QSIC ’05: Proceedings of the Fifth Interna-
tional Conference on Quality Software, pp. 99–108. IEEE Computer Society
(2005)

143. Tsai, W.-T., Paul, R.A., Song, W., Cao, Z.: Coyote: An XML-Based Frame-
work for Web Services Testing. In: Proceedings of the 7th IEEE International
Symposium on High Assurance Systems Engineering (HASE), pp. 173–176
(2002)

144. Tsai, W.T., Bai, X., Chen, Y., Zhou, X.: Web Service Group Testing with
Windowing Mechanisms. In: IEEE International Workshop on Service-Oriented
System Engineering (SOSE), pp. 213–218 (2005)

145. Tsai, W.T., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and Group
Testing in Verification of Dynamic Composite Web Services. In: Workshop
on Quality Assurance and Testing of Web-Based Applications, in conjunction
with COMPSAC, pp. 170–173 (2004)

146. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors us-
ing petri-net-based techniques. In: Business Process Management, pp. 161–183
(2000)

147. van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance.
Electr. Notes Theor. Comput. Sci. 121, 3–21 (2005)

148. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.): BPM 2003.
LNCS, vol. 2678. Springer, Heidelberg (2003)

149. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The proM framework: A new era in pro-
cess mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

270 A. Metzger et al.

150. Verbeek, H.M.W., van der Aalst, W.M.P.: Analyzing BPEL Processes using
Petri Nets. In: Proceedings of the 2nd International Workshop on Applications
of Petri Nets to Coordination, Workflow and Business Process Management,
pp. 59–78 (2005)

151. Vonk, J., Grefen, P.: Cross-organizational transaction support for E-services in
virtual enterprises. Distrib. Parallel. Dat. 14, 137–172 (2003)

152. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for
testing web services. In: Proceedings of the Eighth International Symposium
on Autonomous Decentralized Systems, pp. 43–50 (2007)

153. Wombacher, A., Fankhauser, P., Neuhold, E.: Transforming BPEL into anno-
tated deterministic finite state automata for service discovery. In: ICWS ’04:
Proceedings of the IEEE International Conference on Web Services, Washing-
ton, DC, USA, p. 316. IEEE Computer Society (2004)

154. Xu, W., Offutt, J., Luo, J.: Testing Web services by XML perturbation. In:
Proceedings. 16th IEEE International Symposium on Software Reliability En-
gineering, p. 10 (2006)

155. Yi, X., Kochut, K.J.: A CP-nets-based Design and Verification Framework for
Web Services Composition. In: Proceeding of the International Conference on
Web Services (ICWS), p. 756 (2004)

156. Zannier, C., Melnik, G., Maurer, F.: On the success of empirical studies in the
international conference on software engineering. In: ICSE ’06: Proceedings
of the 28th international conference on Software engineering, New York, NY,
USA, pp. 341–350. ACM (2006)

8

Service Engineering

Vasilios Andrikopoulos1, Antonio Bucchiarone2, Elisabetta Di Nitto3,
Raman Kazhamiakin2, Stephen Lane4, Valentina Mazza3, and
Ita Richardson4

1 Tilburg University, The Netherlands
2 Fondazione Bruno Kessler (FBK), Trento, Italy
3 Politecnico di Milano, Italy
4 Lero — the Irish Software Engineering Research Centre, Ireland

Chapter Overview. Service Engineering and Design (SED) aims at establishing,
understanding and managing the entire service lifecycle, including identifying, find-
ing, designing, developing, deploying, evolving, quality assuring, and maintaining
services. SED principles, techniques and methods interweave and exploit the mech-
anisms provided by the S-Cube technology stack with the aim of developing high-
quality service-based systems. For example, the SED plane provides specifications
to the BPM and SAM layers that can guide the service composition and coordina-
tion layer in composing services in a manner that guarantees that the composition
behaves as expected.

This chapter focuses on the analysis of existing life cycle approaches for adapt-
able and evolvable service-based applications with an emphasis on how the lack of a
life cycle that can handle adaptation lead to the definition of a reference service life
cycle for the development of adaptable service based applications. This chapter also
identifies the main concepts, issues, and challenges concerning the various phases of
our reference life cycle as they have been identified in the literature.

8.1 Context

The evolution of software methodologies and technologies can be seen as a
progressive journey from rigid to flexible, static to dynamic, centralized to
distributed solutions. The history of software engineering shows a progressive
departure from the strict boundaries of the closed-world assumption [14] to-
ward more flexibility to support continuous evolution. Methods, techniques,
and tools were developed to support the need for change without compromis-
ing product quality and cost-efficient developments. The demand for software
to live in an open world and to evolve continuously as the world evolves
(the open world assumption), however, is now reaching unprecedented levels
of dynamism. Over the past years a major step of evolution toward this di-
rection has been made possible by the birth of the concepts of services and

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 271–337, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

272 V. Andrikopoulos et al.

service-based applications (more often called service-oriented architectures -
SOAs in the literature), and by the development of technologies and proposed
standards to support them.

Such evolution needs now to be fully conceptualized and understood in
order to identify those methodological and formal means that allow us to
build service-based applications with the required level of quality. A detailed
discussion on the open issues and research areas can be found in [34].

In this chapter the focus is on the analysis of the existing life cycles for
adaptable and evolvable service-based applications. In particular, the lack of
a life cycle taking explicitly adaptation into account led to the definition of
a reference service life cycle for the development of adaptable service based
applications. Moreover through the chapter are identified the main concepts,
issues, and challenges concerning the various phases of our reference life cycle
as they have been identified in the literature. Finally are analyzed the areas
of software engineering and business methodologies that can be relevant to
service-based applications with the objective of identifying experiences and
approaches that can be useful for service-based applications.

Consistently with its objectives, the chapter is structured as follows. Sec-
tion 8.2 introduces some basic definitions relevant for the content of the chap-
ter. Section 8.3 presents the life cycles for service-based applications and de-
tails the various activities in the life cycle. Section 8.4 summarizes the knowl-
edge acquired from the fields of software engineering and business processes
and discusses on how it can be exploited in the engineering of service-based
applications. Finally, Section 8.5 draws the identified gaps and the Section 8.6
draws the conclusions.

8.2 Preliminary Definitions

The goal of this section is to give a short overview of the main basic concepts
that are relevant for the content of the chapter. In particular, we identify the
main actors that have a role in the context of service based applications, the
main concepts concerned with the definition of service-based application, and
the various kinds of services that have been identified in the literature so far.
The terms and the relationships among them will be described using UML
(Unified Modeling Language) diagrams. The UML was intended as a ‘language
that is used to specify, visualize, construct and document the artifacts of a
software system’ (see [94, p. 3]) and not as a language for describing such
concepts. In the diagrams reported in the following sections, some of the
UML constructs are used to identify the main concepts of the conceptual
model and the relationships among them. Such diagrams are an extension
and clarification of some of those belonging to the conceptual model proposed
in the SeCSE project [2]. As an extension of such model, moreover, we have
introduced the concepts of Service-Based Application and Adaptable Service-

8 Service Engineering 273

Based Application showing the relationships between them and the other
concepts.

8.2.1 Agents and Actors

The model of Figure 8.1 [2] identifies a set of Agents and Actors and the rela-
tionships between them. The model exploits the UML2.0 features that allow
for the development of orthogonal inheritance hierarchies. In particular, it ex-
presses the fact that Agents are entities of the real world and Actors are the
roles the Agents may play. Agents in the diagram are Person, Organization and
Systems (that may be Legacy Systems and Software Systems). They can act
as Providers, Service Developers, Service Integrators, Consumers, Monitors,
and Negotiation Agents. Providers can offer any kind of resource (including
a whole application). Service Providers are those that specifically offer one
or more services. Similarly, a Consumer can consume or exploit any kind of
resource while Service Consumers consume, in particular, services.

The classification of Actors is overlapping, this means that, for instance, a
Person, an Organization, or a System can act both as a Service Consumer and
a Service Integrator. On the contrary, the classification of Agents is disjoint.
This means that, for instance, a Service Consumer can be either a Person, an
Organization, or a System. In the diagram, the human characters represent
those Agents that are human beings and all Actors as all of them represent
roles that can be potentially taken by human Agents.

Fig. 8.1. The Agent-Actor Diagram

274 V. Andrikopoulos et al.

8.2.2 Service Based Applications

A service-based application is obtained by composing various Services in order
to satisfy the desired functionality. It is an Adaptable Service Based Appli-
cation when it is able to react autonomously to changes and to self-adapt to
them. Service-based applications are often implemented in terms of an or-
chestration, that is, a centralized logic that describes the order in which the
various services are called and the way their parameters are formed and used
for further calls. This orchestration is also called Service Process. The Ser-
vice Integrator (see Figure 8.1) is the actor that is in charge of developing a
service-based application, while the Provider is the one that offers (provides)
it and the Consumer is the one that exploits it. Figure 8.2 shows the defined
terms and highlights the relationships among them.

Fig. 8.2. The Service Based Application Diagram

8.2.3 Types of Services

Services exploited in a service-based application can be offered by various
different agents, as highlighted in Section 8.2.1 (for instance, they can be of-
fered by Persons or by Organizations), or they can simply be software services
exploiting some specific technology, e.g., Web services.

Besides for the agent that is providing them, services may also differ for
their nature. They can be abstract when they do not have a concrete im-
plementation but only represent an idea that could correspond, possibly in
the future, to various implementations. Of course, they are concrete when
they are actually provided by some actor. This distinction is quite relevant
when developing adaptable service-based applications as a Service Integrator
at design time may reason even in the absence of Concrete Services simply
by exploiting Abstract Services. Clearly, in this case, the resulting application
will be executable only in those cases when at runtime some Concrete Service

8 Service Engineering 275

implementing the abstract ones exists and these services are selected in some
adaptation step.

Orthogonally to this classification, Services can also be distinguished in
Simple and Composite. Composite Services are service-based applications be-
ing accessible as services. The current technology for building service-based
applications, BPEL, actually, only supports the development of Composite
Services.

The last orthogonal classification refers to the statefulness of services. A
special kind of Stateful Services are the Conversational Services. These store
the state of the conversation with a single specific stakeholder, but keep the
states of different conversations separate from each other.

The three classifications are shown in Figure 8.3. Given their orthogonal-
ity, they lead to the definition of eight possible types of services, all considered
relevant and worth of being supported by proper service engineering technolo-
gies.

Fig. 8.3. The Service Type Diagram

8.3 Engineering Service Based Application

The purpose of this section is the analysis of the state of the art of the service
life cycles that can be found in literature. Moreover a reference life cycle is
proposed in order to provide a service life cycle taking explicitly adaptation
into account. Then, each phase of the life cycle is analysed.

8.3.1 SBA Life Cycles

Existing Life Cycles

The distinguishing feature of the adaptable applications, in contrast to clas-
sical SBAs, is the ability to accommodate and manage various changes at

276 V. Andrikopoulos et al.

runtime. This, in turn, requires the capability to observe the changes relevant
to the application execution, to the application context, and the capability to
enact the corresponding adaptation strategy. In this section, a description of
the existing SBA life-cycle methodologies is reported.

The Web Services Development Lifecycle (SLDC)

The Web Services Development Lifecycle (SLDC) [85] is a continuous and it-
erative approach to the development, implementation, deployment and main-
tenance of software services.

Nevertheless, [86] discusses the way that SLDC has to be extended to
manage the evolution of services by supporting a change-oriented life cycle
that allows for re-configuration, alignment, and control of cascading through
the service network changes in an orderly fashion.

Rational Unified Process (RUP) for SOA

The Rational Unified Process (RUP) is a framework that aims to support the
analysis and design of iterative software systems. It was created with com-
ponent based development (CBD) and object oriented analysis and design
(OOAD) in mind [121], so it is not easily transferable to serviced-based ap-
plications. With some adjustments however, several of its milestones can be
adjusted to fit in SOA solutions [26, 43].

RUP for SOA is covering the same aspects of service lifecycle management
as SLDC does, but instead of not dealing directly with adaptation issues, it
depends on project and change management capabilities to allow for flexibility.

Service Oriented Modeling and Architecture (SOMA)

Service oriented modeling is a service oriented analysis and design (SOAD)
process for modeling, analysing, designing and producing a SOA that aligns
with business goals [12]. The SOMA method of analysis and design attempts
to make practitioners think about business goals in a top-down manner from
the beginning of the project, and then develop the services from a bottom-up
perspective once high level business goals have been satisfied. At a high level,
SOMA consists of three primary activities (inter-related phases): identifica-
tion, specification and realization. These primary activities correspond to the
requirements engineering and construction aspects of the reference lifecycle.
In addition to the three primary activities, SOMA also provides activities
for business modeling and transformation, existing solution management, im-
plementation by building or assembling and testing of services, deployment,
monitoring and management of services, and governance to support SOA [13].

Service Oriented Analysis and Design/Decision Modeling (SOAD)

Service oriented analysis and design (SOAD) is a structured approach to the
analysis, design and realisation of quality SOAs [121]. While SOAD process

8 Service Engineering 277

and notation have yet to be defined in detail [121], key elements such as
conceptualization (or identification), service categorization and aggregation,
policies and aspects, meet-in-the-middle process, semantic brokering and ser-
vice harvesting (for reuse) can already be identified. SOAD, like SOMA, fo-
cuses primarily on the analysis, design and architecture of SBAs and does not
include provisions for service adaptation.

ASTRO

ASTRO is a methodology that is focused primarily on service composition or
service orchestration. It covers all the life cycle of service-based systems, in
addition, it supports the evolution and adaptation of SBAs by allowing the
design of service compositions directly from requirements and by enforcing
an incremental development approach that iteratively refines the behavioral
requirements.

BEA Services Lifecycle

The BEA Service lifecycles specifies the stakeholders, the tools, the deliv-
erables, the processes and the best practices for each stage of the services
lifecycle [36], covering all the phases of service development and maintenance
lifecycle. The entire lifecycle is underpinned by a governance process which
promotes the interoperability, discoverability and standardisation of services
and leverages the adaptation of services to new requirements. In that sense
the BEA Service lifecycles indirectly handle the left-hand cycle in Figure 8.4.

The Reference Service Life Cycle

As seen in the descriptions before, almost all life-cycles in the literature do not
address explicitly the possibility of a service-based application to be adaptable.
There is a need for introducing a life-cycle for SBAs that takes adaptation into
explicit account. The life-cycle (proposed in S-Cube network of Excellence in
order to address this issue) shown in Figure 8.4 aims at filling this gap. Not
only applications can undergo the transition between the runtime operation
and the analysis and design phases in order to be continuously improved and
updated (we call the right hand side of our life cycle the evolution cycle), but
they also have intrinsic mechanisms that, during runtime, continuously and
automatically a) detect new problems, changes, and requirements for adap-
tation, b) identify possible adaptation strategies, and c) enact them. These
three steps are shown in the left hand side of the figure and define what we
call the adaptation cycle. The observation of the changes in the environment is
obtained through monitoring which is part of the management activities typi-
cally performed during execution. This is one of the trigger for the iteration of
the adaptation cycle, whose effect is to inject changes directly into the appli-
cation being operated and managed. The two cycles are not conflicting with
each other; instead, they cohexist and support each other during the lifetime

278 V. Andrikopoulos et al.

of the application. We say, in particular, that design time activities allow for
evolution of the application, that is, for the introduction of permanent and,
usually, important changes, while the runtime activities allow for temporary
adaptation of the application to the specific circumstances that are occurring
at a certain time.

 Adaptation Evolution

Construction

Requirements
Engineering and

Design

Deployment &
Provisioning

Operation &
Management

Identify Adaptation
Needs

Identify Adaptation
Strategy

Enact Adaptation

Fig. 8.4. The Lifecycle for Evolvable and Adaptable Service-Based Applications

In particular, similarly to what happens in the development of other kinds of
systems, there is the need to understand how the life cycle and all the related
processes can be measured, controlled, evaluated and improved.

At the requirements engineering and design phase the adaptation and mon-
itoring requirements are used to perform the design for adaptation and moni-
toring. During SBA construction, together with the construction of the SBA,
the corresponding monitors and the adaptation mechanisms are being real-
ized. The deployment phase also involves the activities related to adaptation
and monitoring: deployment of the adaptation and monitoring mechanisms
and deployment time adaptation actions (e.g., binding). During the operation
and management phase, the run-time monitoring is executed, using some de-
signed properties, and help the SBA to detect relevant context and system
changes. After this phase the left-side of the life-cycle is executed. Here, we
can proceed in two different directions; executing evolution or adaptation of
the SBA. In the first case we re-start the right-side of the cycle with the re-
quirements engineering and design phase while in the second case we proceed
identifying adaptation needs that can be triggered from monitored events,
adaptation requirements or context conditions. For each adaptation need it
is possible to define a set of suitable strategies. Each adaptation strategy
can be characterized by its complexity and its functional and non functional
properties. The identification of the most suitable strategy is supported by a
reasoner that also bases its decisions on multiple criteria extracted from the

8 Service Engineering 279

current situation and from the knowledge obtained from previous adaptations
and executions. After this selection, the enactment of the adaptation strategy
is performed. The execution of all activities and phases in all runtime phases
may be performed autonomously by SBAs or may involve active participation
of the various human actors.

As said, adaptation and evolution are triggered by the occurrence of some
events that result in the emergence of some requirements for adaptation/evo-
lution. These requirements can either be raised, more or less directly, by the
human beings involved in the execution of service-based applications or they
can be generated by the technological environment in which the system is
running. In general, the context in which the system and its actors are im-
mersed has an important impact on the emergence of requirements for adapta-
tion/evolution. The context has been characterized in the literature in various
ways, depending on the application domains in which it has been studied. An
important issue is to characterize the context of service-based applications and
to ensure that these applications are able to use it to identify the adaptation
requirements.

Assuming that adaptable service-based applications are able to identify
adaptation requirements, they should also be able to decide if and when to
take them into consideration. There could be application states in which some
adaptation requirements could not been used as they would lead the appli-
cation into an inconsistent and unrecoverable case. Also, some requirements
could be conflicting with each other and could require some reconciliation to
take place before one of them is selected. The literature so far has addressed
these issues only partially and with ad hoc solutions. The main challenge is to
identify proper modeling means that enable the automatic identification and
analysis of adaptation requirements and the solution of the potential incon-
sistencies that can arise.

While the software engineering literature has provided through the last
fifthy years proper approaches to design evolvable systems, a consolidated
understanding on what to do to design adaptable systems is still to come.
In the SOA literature some approaches have been identified to perform some
limited adaptation, often on the basis of a hard-coded logic.

As humans have a very important role in the open world either as users
of service-based systems or as service providers themselves, the aspects con-
cerned with the so called Human-Computing Interaction (HCI) have to be
considered with particular attention. In particular, it’s important to select
and codify human-computer interaction knowledge that delivers new capabil-
ities to the development and use of service-centric systems. Examples of that
knowledge include user knowledge, user task knowledge, accessibility knowl-
edge, and organizational culture knowledge.

While in the past relatively complex computations running on things were
not possible, now these are being experimented in research. This, of course,
opens up a huge number of new possibilities in terms of systems that perva-
sively influence the life of people and help them in several tasks and situations.

280 V. Andrikopoulos et al.

For instance, through these devices we can imagine users access complex infor-
mation systems, but also, in the opposite direction, information systems could
access software services available on these devices to actuate local-scope op-
erations such as the execution of a temperature monitoring function on some
critical patient or the invocation of a ”turn red for 5 min” service on all the
semaphores on some critical paths. We could even imagine some systems where
the computation is entirely in charge of devices that cooperate to achieve a
common goal without a direct control of any centralized complex system. The
literature of service-based applications so far has been mainly focusing (with
some exceptions in the OSGI domain) on more traditional settings where de-
vices (e.g., the car system) were used as a mechanism for the user to interact
with services and, in limited cases, as data sources (this is the case of the GPS
that provides the position of the car to the service). Now, the challenge would
be to understand how to have services living within devices and be accessed
by other consumers running anywhere else, how to be aware and control the
execution context of these services, how to handle the intrinsic limitations and
peculiarities of devices that, being quite limited in terms of resources, surely
require a high level of adaptability.

Comparison

Figure 8.5 shows how each of the discussed lifecycles compare to the reference
lifecycle introduced in Figure 8.4. It is evident that the ASTRO and BEA
lifecycles (to a lesser extent) are the ones which bear closest resemblance to
the reference lifecycle. The reference life cycle of Figure 8.4 is based on SLDC;
for that reason SLDC covers all the phases of the right side of the life cycle
in a more fine-grained way, but does not discuss the adaptation phases. The
following sections investigate each phase in more depth.

Fig. 8.5. Lifecycles vs. Reference Lifecycle

8 Service Engineering 281

8.3.2 Life Cycle Phases

Requirement Engineering and Design

In this section we address the phase of Requirement Engineering and Design.
In particular will be explained, first, the phase of Requirement Engineering,
and then the phase of Design focusing on adaptation and monitoring.

Requirement Engineering

Before developing any system, the developers must understand what the sys-
tem is supposed to do and how its use can support the goals of the individuals
or business that will pay for that system.

This means understanding the application domain and the specific func-
tionality required by the stakeholders. Requirements Engineering (RE) is the
name given to a structured set of activities that help developing this under-
standing.

Requirements are derived from documents, people, and the observation
of the social context of people expressing them. In fact, requirements are
expressed by the stakeholders using concepts strictly related to their social
world. Stakeholders may be different and numerous; they include paying cus-
tomer, users, indirect beneficiaries, and developers. Their social worlds may
be distinct and they may express goals, often conflicting, depending on the
different perspectives of the environment in which they work. This, together
with the fact that often stakeholders are not able to make explicit their tacit
knowledge, makes the elicitation of requirements a very critical and difficult
to accomplish activity.

Not only requirements have to be elicited, but they have also to be docu-
mented, possibly in a formal way. Also, their evolution needs to be managed
and kept under control in order to guarantee that the implemented system
can evolve with them.

In general, the activities that belong to the RE process varies depending
on the complexity of the application being developed, the size and culture of
the companies involved. Large systems require a formal RE stage to produce a
well documented set of software requirements. For small companies developing
innovative software products, usually the RE process might consist of brain-
storming sessions leading to a short vision statement of what the software is
expected to do.

Regardless of the process used, some activities are fundamental to all RE
processes [102]:

Elicitation Identify sources of information about the system and discover the
requirements from these.

Analysis Understand the requirements, their overlaps, and their conflicts.
Validation Check if the requirements are what the stakeholders really need.

282 V. Andrikopoulos et al.

Negotiation Try to reconcile conflicting views and generate a consistent set
of requirements.

Documentation Write down the requirements in a way that stakeholders and
software developers can understand.

Management Control the requirements changes that will inevitably arise.

These activities constitute a cyclic process performed during the system lifecy-
cle. Such activities are not always executed in a fixed sequence: if needed some
activity can be re-executed. This is mainly due to the fact that requirements
change is inevitable, because the business environment where the software
is executing is highly dynamic: new products emerge, businesses reorganize,
restructure, and react to new opportunities.

Fig. 8.6. Requirement Engineering Process

The industry increasingly recognizes the importance of using good RE pro-
cesses and appropriate RE techniques when developing software systems to
achieve high software quality. Researchers emphasize the necessity of adopt-
ing proper requirements engineering techniques in order to derive high quality
specification. Davis [32] states that knowing which technique to apply to a
given problem is necessary for effective requirements analysis. Requirements
are often written in natural language and are often vague descriptions of what
is wanted rather than detailed specifications: this could be the best choice in
domains where requirements change quickly. The actions of the process are
sketched in Figure 8.6. The action of Requirement Elicitation consists of gath-
ering and clarifying the needs of the purchaser and the business goals. Several
techniques may be used for Requirement Elicitation, such as focus group run-

8 Service Engineering 283

Fig. 8.7. Requirement Engineering Diagram

ning, interviews to the stakeholders, questionnaires, contextual observation
and others approaches. In the Requirement Analysis the goals are decomposed
in sub-goals and the best strategies to satisfy each goal are individuated; this
action produces a set of functional requirements that will be validated to check
potential conflicts among the requirements (Requirement Validation). If con-
flicts are detected, a negotiation action (Requirement Negotiation) is required
to obtain a set of consistent requirements then formalized in a Requirement
Documentation. Obviously the a continuous management requirement (Re-
quirement Management) is performed to manage changes. Figure 8.7 high-
lights that the main outcome of the RE process is a requirements document
that defines what is to be implemented. The association between the Service
Integrator and the Requirement Document implies the actions shown in the
diagram of Figure 8.6. The Requirement Document contains a formalization
of the collected Requirements. A Requirement could have different nature:
it could be a Quality of Service Requirement or a Functional Requirement.
When adaptation is needed, Adaptation Requirements must be defined and
consequently Monitoring Requirements.

Boehm [21] argues that in order to deliver systems rapidly that meet cus-
tomer needs, a key challenge is to reconcile customer expectations with de-
veloper capabilities. He developed an approach to RE called the WinWin
approach, in which negotiation between customers and software suppliers is
central.

Service Oriented Requirement Engineering

Service-Oriented Requirements Engineering (SORE) specializes RE for
service-based applications. SORE is an important topic in Service-Oriented
System Engineering (SOSE) and an emerging research area; it assumes ap-
plications developed in an SOA framework running in an SOA infrastructure.
SORE shares with traditional requirement engineering the same activities.
However, some of them are conducted in a different way. The most remark-
able difference is that service and workflow discovery has a very significant

284 V. Andrikopoulos et al.

role in SORE as part of the requirement elicitation and analysis activities.
While, usually, traditional RE activities do not deal with pre-existing soft-
ware, the availability of services and of service descriptions in registries allow
System Integrator to exploit this knowledge to enable reuse [108].

Maiden [74] focuses on the availability of services in registries during
SORE, and suggests that existing services guide requirement elicitation; more-
over results and information of the queries in the registries can be reused in
the forthcoming searches.

In recent years, researchers have begun to develop techniques that could
be employed by requirements engineers to identify service requirements spec-
ified in SLAs. For example Bohmann et al. [22] argue that one of the key
features of applications hosting services is the heterogeneity in customer re-
quirements. Their aim is to assist service providers to address heterogeneity in
customer requirements through matching and mapping required service fea-
tures and factors during RE and design phases. In traditional RE Macaulay
[71] identified poor communication between stakeholders as the key factor of
limiting or enabling effective RE. As technology and systems are embedded
within socio-organizational contexts and processes, strong socio-technical ap-
proaches to RE are required. Lichtenstein et al. [68] suggest that in the new
IT services era new techniques and approaches are needed for eliciting and
determining provider and customer requirements; moreover it is required to
involve key stakeholder groups to negotiate the sometimes-conflicting provider
and customer service needs.

Among SBAs, Adaptable SBAs play a significant role. In such applications
the phase of RE must take in account the mechanisms of reaction to critical
conditions or changes in the environment or in the user needs. One of the main
challenges in the RE for Adaptable SBAs is the difficulty to know in advance
all the possible adaptations since it is unfeasible to anticipate requirements for
all the possible critical conditions that may happen. While RE for traditional
systems reports what the system “shall do”, RE for adaptable systems reports
what the system “can do if something happens”. RE for adaptive systems is
an open research area, offering a limited number of approaches. Some research
was conducted to use a goal models approach in describing the requirements
of an adaptable system. Goldsby et al. [44] proposed an approach to modeling
the requirements of an adaptable system using i∗ goal models. In particular,
using i∗ goal models, they represent the stakeholder objectives, the business
logic, the adaptive behavior, and the adaptive mechanism needs.

Design for Monitoring and Adaptation

An Adaptable Service-Based Application is a service-based application aug-
mented with a control loop that aims to continuously monitor the execution
and evolution of the application and its environment and to modify it on the
basis of application-dependent strategies designed by system integrators. In

8 Service Engineering 285

general, the adaptation may be caused by different reasons: it may be a nec-
essary tool for the application to recover from unexpected problem or failure;
to customize the application in order to better fit the current execution con-
text or to better satisfy the needs of a particular application user; it may be
required in order to improve the application performance or to optimize the
way the application resources are managed.

Design for Monitoring and Adaptation is a design process specifically de-
fined to take the necessity for the SBA adaptation into account. It extends
the design phases of the ”classical” SBAs with all the activities that aim to
incorporate into the application or into the underlying execution platform the
facilities and mechanisms necessary for the adaptation and monitoring pro-
cess. While concrete mechanisms and activities necessary to enable SBA adap-
tation vary depending on a particular form of adaptation (such as context-
aware adaptation, customization, optimization, recovery) and the realization
of a particular approach (e.g., autonomous vs. human-in-the-loop adaptation,
run-time vs. design-time), general design steps specific to the adaptable SBA
may be defined as follows:

• Define adaptation and monitoring requirements. Based on the application
requirements and key quality properties, it is necessary to define the re-
quirements and objectives that should be satisfied when certain discrep-
ancy with respect to the expected SBA state, functionality or environ-
ment is detected. More precisely, the monitoring requirements specify what
should be continuously observed, and when the discrepancy becomes crit-
ical for the SBA. The adaptation requirements describe the desired situa-
tion, state, or functionality, to which the SBA should be brought to. Typ-
ically, the adaptation and monitoring requirements correspond to various
SBA quality characteristics that range from dependability, to functional
and behavioral correctness, and to usability. In many cases monitoring
requirements are derived directly from the adaptation requirements: the
monitoring is often performed with the goal to identify the need for adap-
tation and to trigger it.
Definition of adaptation and monitoring requirements is not explicitly ad-
dressed by the existing requirements engineering approaches; these require-
ments are implicitly identified and mapped to the corresponding capabili-
ties in ad-hoc manner.

• Identify appropriate adaptation and monitoring capabilities. When the
adaptation and monitoring requirements are defined, there is a need to
identify the possible candidates for their implementation. These refer to
the existing adaptation and monitoring frameworks and tools provided at
different functional SBA layers and to various mechanisms enabled at dif-
ferent layers for more general purposes, such as online testing [48], data
and process mining for monitoring purposes, and service discovery, binding
and automated composition [92] for adaptation purposes.

286 V. Andrikopoulos et al.

• Define monitoring properties and adaptation strategies. Requirements and
capabilities identified in previous steps are used to provide concrete mon-
itoring and adaptation specification for a given SBA. These specifications
may be given implicitly when they are hard-coded within the given ap-
proach or explicitly. For instance, when one deals with the recovery prob-
lem, a typical implicit monitored property refers to the failures and ex-
ceptions not managed by the application code [8]. Accordingly, the self-
optimization approaches often rely on the predefined threshold for certain
quality of service properties for triggering adaptation need; the correspond-
ing adaptation strategy (e.g., re-composition) is also often predefined [47].

• Incorporate adaptation and monitoring mechanisms. Based on the above
specifications, the adaptable SBA is extended with the corresponding mon-
itors and adaptation mechanisms. Depending on the mechanisms, this ex-
tension may require integrating the monitoring and/or adaptation func-
tionalities into the SBA code or into the underlying execution platform. A
typical example of the former approach is presented in [16]: the underly-
ing BPEL process is augmented with the calls to the a special proxy that
evaluates the monitored properties. In [118] analogous code modification is
applied in order to inject the necessary adaptation actions. On the other
side, monitoring approaches presented in, e.g., [92, 72], as well most of
approaches to Business Activity Monitoring, rely on the mechanisms for
generating monitors independent from the application and on the specific
tools respectively.

Conceptual Model

The presented design for adaptation and monitoring concepts are represented
in Figure 8.8. The Adaptable Service-Based Application is associated with the
Monitoring Requirements and Adaptation Requirements, which define when
the changes in the application functionality or environment become critical
and what we should achieve in that case respectively. From these require-
ments one should derive the Monitored Properties and Adaptation Strategies
achieving them. In order to be monitored, the application is associated with
the Monitors that continuously observes the monitored properties represent-
ing critical changes in the SBA functionality or environment. The Adaptation
Mechanisms are identified and incorporated in order to achieve the defined
strategies.

There exists a wide range of adaptation strategies to be used by different
approaches. In a simple case, adaptation targets modification of the appli-
cation parameters (e.g., re-configuration, re-negotiation of the SLAs, substi-
tution of one failed or underperforming service with another one) without
changing its structure. In more complex cases, the adaptation involves also
modification of the application structure (e.g., re-compose the services, re-
plan the underlying process, or introduce specific activities that compensate
the incorrect results achieved by the faulty execution).

8 Service Engineering 287

Fig. 8.8. The Design for Adaptation Diagram

Below, some aspects relevant for the specification of the adaptation strategies
and monitoring properties are presented.

Adaptation and Monitoring Specification

As already mentioned, the monitoring specification defines the moment and
conditions “when” adaptation activities should be triggered, while the adapta-
tion specification prescribes “how” the adaptation should be performed. Both
these specification may be given either explicitly, or implicitly.

Explicit monitoring specification is defined using standard notations (such
as WS-Agreement or WS-Policy) or specific languages (such as RTML [92],
WS-CoL [16]). In the first case the specification is first translated into some
internal representation specific monitoring framework, and then is given as
input to the corresponding monitoring tool.

Explicit adaptation specification may have different forms:

• goal-based specification, where the adaptation activities are described in a
higher-level form that contains only objectives to be reached, leaving the
system or the middleware to determine the concrete actions required to
achieve those objectives. This goals may have the form of certain utility
function to be maximized [47], declarative functional goal specification
[63], etc.

• action-based specification, where the activities are defined explicitly. In
the corresponding languages the strategies are specified using high-level
action specification, where actions correspond to re-binding, terminating,
selection of alternative behavior, rolling back to some previous stable state,
etc [118, 15].

• approaches based on explicit variability modeling. In such approaches the
identified variation point is associated with a set of alternatives (variants)

288 V. Andrikopoulos et al.

that define different possible implementations of the corresponding ap-
plication part. In business processes this corresponds, for example, to a
nominal sub-process, and a set of potential customized flows [93].

With implicit adaptation specifications the decisions when the system has to
be changed and which actions to perform are predefined by the adaptation
framework. This is a typical situation for dynamic service compositions, where
the services are selected and composed dynamically upon, e.g., unavailability
of some of them. This is also the case for many self-healing systems, where the
recovery activities are somehow hard-coded. The role of the design activities
in case of implicit adaptation is to provide possibly richer and more complete
descriptions of the services and compositions in order to support and simplify
the decisions made at run-time automatically. In case of dynamic composition,
for example, these decisions correspond to the discovery and selection of the
candidate services. Implicit adaptation specification may have different forms
shortly introduced in the following:

• Quality driven specification that supports dynamic composition of ser-
vices with the goal of optimal valuation of service qualities. In this way
the composed process (e.g., in BPEL) is designed as a workflow composing
elementary tasks. At run-time a concrete elementary service is selected to
perform a particular task from a community of services that provide the
same functionality, but have different quality characteristics. The descrip-
tion of the services, therefore, should include not only functional aspect,
but also non-functional properties that are required in the selection pro-
cess. The predefined goal of this kind of specification is, therefore, at run-
time optimize the values of characteristics;

• Reputation-based specification approaches that target the problem of
maintaining dynamic service compositions, when the component services
fail or become defective. If the service invocation was successful, the repu-
tation is positive, while in case of failure the value degrades. They allows
improving the quality of selection;

• P2P self-healing approaches support the dynamic look-up and replacement
of elementary services that failed during the execution of the process. The
key idea is that they use peer-to-peer resource management for publishing
and discovery and binding of the necessary services.

• Adapters-based approaches have the objective to automatic generate me-
diators based on predefined requirements (e.g., deadlock freeness) or semi-
automated methodologies for identifying and modelling instructions and
procedures for adapting the specification (transformation templates or
commands);

• Local knowledge-based approaches allow run-time adaptation of the sys-
tem configuration according to changes in the context. The key idea is to
define properties of a system starting from the local knowledge, defined as
the knowledge about its immediate structure. Local knowledge is used to

8 Service Engineering 289

reconfigure the structure of the system when a change in the context is
found, and is propagated upward when needed.

• Semantic Web-based approaches specify protocol mediation allowing for
the automatic adaptation of the service requester behaviour meeting the
constraints of the providers interface, by abstracting from the existing in-
terface description. A shared ontology is used to understand the semantics
of the domain actions.

Construction

The construction of SBAs is based on top of the design phase, where the model
of the future SBA is defined and described. The construction of SBA assumes
the definition and specification of the executable code of the corresponding
Service-based Application on top of the existing services or service templates.
In the latter case, the abstract service definitions are used, which are bound
to concrete services at deployment/provisioning time.

The construction of an SBA as an executable service composition may
be achieved in several ways (Figure 8.9). Note that since a Service Based
Application isn’t always exposed as a service, we could have a Provider (at
not necessarily a Service Provider). At the highest level of abstraction we
distinguish between:

• Manual construction of a service composition. In this case the goal of the
service integrator is to define an executable process composed of concrete
or abstract services using an appropriate service composition specification
language. In literature a variety of languages for the construction of SBA
are presented. Among them Business Process Execution Language (BPEL
for short, [83]) is one of the prominent standard languages supported by
industry and accepted by the community. It supports loosely coupled com-
position of Web services described in a standard WSDL notation. Besides
BPEL, there exists a variety of notations for the construction of composed
service compositions and service-based business processes such as JOpera
[87], jPDL [1], etc.

• Model-driven service composition, which copes with generating service
orchestration models from more abstract models, which are often ab-
stract business process models created by business analysts. Notations
like BPMN [80] or WS-CDL [115] may be used for these purposes.

• Automated service composition. Here the goal is to automatically generate
the executable SBA using available service models (abstract and concrete,
stateful and stateless) and predefined composition goals that restrict the
behavior, functionality, and QoS parameters of the future SBAs. The com-
position goals are usually defined during the SBA design phase, and are
specified in high-level notations (see, e.g., [91, 90]).

Another important activity that should be accomplished during the construc-
tion phase as well as in other phases of the development and operation process

290 V. Andrikopoulos et al.

Fig. 8.9. The Construction Diagram

is the verification and validation of the SBA against various requirements and
constraints. Section 8.3.2 provides a summary of this issue.

Deployment and Provisioning

The phase ”Deployment and Provisioning” of the lifecycle in Figure 8.4 com-
prises all the activities related to the publication and deployment of a Service
Based Application; this section discusses the major concepts related to this
phase.

Service Description

A Service Description allows the users to access a service regardless of where
and whom it is actually offered. It specifies all the information needed to the
potential consumers to access and use the service. Web services transform
the Web from a distributed source of passive information into a distributed
source of active services. When a consumer decides to acquire the use of
a service, he would be sure the service fulfills his/her expectations both in
terms of offered functionality and of non functional characteristics. Thus, it
is important to have an expressive service description that does not only
report the syntactical aspects of the service, but also describes its meaning
in a human readable format, describes its QoS, the way its operations should
be used, and the like. The description is provided by the service provider
during the service publication (see next section), and it is used by the service
consumer to choose the correct service during the service discovery.

The standard description for Web service is provided by the Web Service
Description Language (WSDL) [30]: it is an XML language describing the
public interface of the service. It offers a syntactical description of the service

8 Service Engineering 291

permitting the consumer to interact with it; WSDL, among the other things,
gives information about the location, and the types of input/output messages
of the service. Such information, though essential, is not often enough to
provide the full understanding of the service.

Hence, the need for more expressive service descriptions arises: such an at-
tempt was carried out by the Semantic Web initiative. The Semantic Web has
added machine-interpretable information to Web content in order to provide
intelligent access to heterogeneous and distributed information. In a similar
fashion, Semantic Web concepts are used to define intelligent Web services,
i.e., services supporting automatic discovery, composition, invocation and in-
teroperation. This joint application of Semantic Web concepts and Web ser-
vices in order to realize intelligent Web services is usually referred as Semantic
Web services. A lot of proposals addressing the semantic Web services try to
improve the current technologies such as SOAP, WSDL and UDDI because
they provide very limited support in mechanizing service recognition, service
configuration and combination, service comparison and automated negotia-
tion. Among them, an important solution is represented by OWL-S [105] that
enriches the service descriptions with rich semantic annotations facilitating
automatic service discovery, invocation and composition.

An important framework for service description is the Web Service Model-
ing Framework (WSMF) [40] whose aim is to provide an appropriate concep-
tual model for developing and describing services and their composition. The
WSMF consists of four different main elements: ontologies that provide the
terminology used by other elements, goal repositories that define the prob-
lems the Web services should solve, Web services descriptions that define var-
ious aspects of a Web service and mediators to bypass interoperability limits.
WSMF’s aim is to enable fully flexible and scalable e-commerce based on Web
services providing an architecture characterized by:

• Strong de-coupling of the various components that realize an e-commerce
application.

• Strong mediation service enabling anybody to speak with everybody in a
scalable manner.

Among other proposed approaches we can include BPEL4WS [6] and BPML
[9] /WSCI [10]: they offer similar functionalities; in fact they define a lan-
guage to describe process models, offer support for service choreography and
provide conversational and interoperation means for Web services. They focus
on the composition of services, permitting the description of services interac-
tions. The need to have an exhaustive service description is examined, among
the others, by the SeCSE project. The view in Figure 8.10 [2] focuses on
the way SeCSE views Service Description. A Service Description comprises a
Service Specification and, if available, some Service Additional Information.
A Service Specification is usually defined by the Service Developer and may
include both functional and non-functional information such as information
on the service interface, the service behavior, service exceptions, test suites,

292 V. Andrikopoulos et al.

commercial conditions applying to the service (pricing, policies, and SLA ne-
gotiation parameters) and communication mechanisms. Service Additional In-
formation may include information such as user ratings, service certificates,
measured QoS and usage history. Both Service Specification and Service Ad-
ditional Information could be specified by means of different Facets. Each
Facet is the expression of one or more Service Properties in some specification
language. A Facet represents a property of a service such as, for example,
binding, operational semantics, exception behavior. Within a facet, the prop-
erty can be encoded in a range of appropriate notations. So each service in
the SeCSE environment is described by an undefined set of Facet permitting
to the consumer to gain understanding of the service.

Fig. 8.10. The SeCSE Service Description Diagram

Service Publication

Service providers can make their services accessible via Web service interfaces.
In order to make a Web service usable by other parties, a provider will pub-
lish the Web service description at some network location reachable by target
users. It is a common practice to publish syntactic WSDL descriptions of
Web services at UDDI (Universal Description, Discovery, and Integration) [3]
repositories, which act as a common entry point for the location of Web ser-
vices and provide keyword-based search facilities, as well as searching based on
categories in taxonomies such as UNSPSC (Universal Standard Products and
Services Classification) [4]. A UDDI registry is similar to a CORBA trader, or
it can be thought as a DNS service for business applications. A UDDI registry
has two kinds of users: businesses that want to publish a service description
(and its usage interfaces), and clients who want to obtain services descriptions
of a certain kind and bind to them. The UDDI entry contains the following
elements:

8 Service Engineering 293

• The Business entity, which provides general data about a company such
as its address, a short description, contact information and other general
identifiers. This information can be seen as the white pages of UDDI.

• A list of Business services. These contain a description of the service and a
list of categories that describe the service, e.g., purchasing, weather fore-
cast etc. These can be considered as the yellow pages of UDDI.

• One or more binding templates define the green pages: they provide the
more technical information about a Web service [114].

The main goal of UDDI was to speed interoperability and adoption for Web
services through the creation of standards-based specifications for service de-
scription and discovery, and the shared operation of a business registry on
the Web.

Another solution addressing the service repository is provided by ebXML
[31]. Like its predecessor, UDDI, ebXML Registry also facilitates seamless and
automatic inter-enterprise collaborations. This feature enables integration be-
tween trading partners permitting the communication and functionality shar-
ing among SOA applications without human interaction. An ebXML registry
can have a persistence mechanism for enterprises, allowing to share and store
information as registered content: XML artifacts can be stored, maintained,
and automatically discovered, increasing efficiency in XML-related develop-
ment efforts. There are two general ways in which an e-business registry may
be used: for discovery and for collaboration: while, UDDI is focused exclusively
on this discovery aspect, ebXML Registry is focused on both discovery and
collaboration. Due to its focus on storing and maintaining XML artifacts,
an ebXML registry can used for a collaborative development of XML arti-
facts within an organization and for a run-time collaboration between trading
partners. Note that there is the possibility of run-time interoperability be-
tween UDDI and an ebXML registry. For example, it is possible to discover
an ebXML registry from UDDI, and vice versa.

The publication of WSDL descriptions at UDDI repositories is character-
ized by two limitations: a) manual assignment of Web services to categories,
and b) the use of syntactic descriptions does not allow for advanced search
based on formal semantics. An evaluation and comparison of the Web services
registry was led in 2005 by Dustdar et al. [37]. Actually, UDDI specification
has not received a lot of support from industry and many products implement.
In literature, a lot of proposals to enable the retrieval of Web services based
on the semantic description can be found [60]. The METEOR-S project [113]
proposes an environment for federated Web services publication and discov-
ery among multiple registries: it uses an ontology-based approach to organize
registries, enabling semantic classification based on domains. Each registry
supports semantic publication of the service, used during discovery process.
Several works exist in the literature that extend UDDI or ebXML and propose
federated architectures usually based on the P2P paradigm (for example [89],
[101]).

294 V. Andrikopoulos et al.

Deployment of Service-Based Applications

The term Deployment is used to refer to the process of concretely associating
services to devices in the real world system, and all the activities that must
be executed to achieve it.

Dynamic deployment, in particular, is related to the body of techniques
that are needed to apply such a process in a dynamic context, where changing
conditions in the environment must be taken into consideration, together with
changes in the requirement, QoS, and other aspects. Dynamic deployment is
particularly important in a service-based context where new services or new
versions of the same services need to be deployed without stopping or inter-
fering with the normal execution of the others. Some of them, concentrating
on the possibility of dynamically deploying services, are also dealing with the
degree of reusability of services, and how flexibly they can be configured. The
main goals of these approaches are indeed both to provide a high level of QoS
and to enable dynamic deployment. A deployment infrastructure for service-
based applications should offer the following elements: ways to describe the
services that are required for the execution (if any) and ways to describe
the software components to deploy (both of the two above aspects belong to
“the what” category); where to deploy these services/components, a strategy
for deployment, and an infrastructure for executing the deployment strategy.
Tawlar et al. [106] have classified the approaches for describing deployment
strategies in four main classes: manual, script-, language-, and model-based
approaches. Among the others, model-based approaches have gained a lot of
interest because they are able to control and evolve an SBA while it is running.
Notable is the work of Arnold et al. [11] suggesting an approach for Pattern
Based deployment. On demand deployment requires the search of application
in centralized or distributed repositories, and the installation and the config-
uration before the operation. A view of the service deployment is shown in
the Figure 8.11.

Not only all software components that are part of services have to be in-
stalled. Their deployment also requires the associated description to be pub-
lished on some registries. Thus, deployment is strictly connected to Service
Description, Service Publication and Service Operation.

Operation and Management

In this section the issues related to the phase of Operation and Manage-
ment will be discussed. More specifically, in the world of Web services, dis-
tributed management becomes a clear requirement because the growing com-
plexity of global Web services brings together large numbers of services, suppli-
ers and technologies, all with potentially different performance requirements.
However, many existing system management infrastructures do not support
service-level agreement reporting or collect specific service information from

8 Service Engineering 295

Fig. 8.11. The Service Publication/Deployment Diagram

SBAs for troubleshooting purposes. Furthermore, existing management stan-
dards primarily focus on data collection and not on supporting rich man-
agement applications for the adaptive infrastructure required by Web ser-
vices [85].

Web services and SBAs management provides the necessary infrastructure
to help enterprises monitor, optimize, and control the Web services infras-
tructure. A services management system provides visibility into the services
runtime environment to enable: monitoring of availability, accessibility, per-
formance of services SLA-compliance tracking and error detection, resolution,
and auditing.

OASIS Web Services Distributed Management [5] is a key standard for ser-
vices management. It allows exposing management functionality in a reusable
way through two specifications: one for Management Using Web Services
(MUWS) and the other for Management Of Web Services (MOWS). The
MUWS specification provides a framework that defines how to represent and
access the manageability interfaces of resources as Web services. MOWS builds
on MUWS to define how to manage a Web service as a resource. It defines
WSDL interfaces, which allows management events and metrics to be exposed,
queried, and controlled by a broad range of management tools.

During the operation phase and the execution of its functionalities, the sys-
tem’s behavior must be compliant to the QoS stated in the SLA. An important
aspect to guarantee the respect of the SLA is the monitoring of the service
state during its execution. Service operation requires a service governance (see
section 8.3.2) ensuring that the architecture is operating as expected main-
taining a certain QoS level (Figure 8.12). Of particular interest for the service

296 V. Andrikopoulos et al.

Fig. 8.12. The Operation and Management Diagram

operation is the service fault, since the identification of service faults permits
the triggering of adaptation mechanisms needed to adapt SBAs.

Fault Detection

Internet services represent an important class of systems requiring 24x7 avail-
ability. Moreover they must guarantee the QoS levels stated in the SLA con-
tract between consumer and provider. Oppenheimer et al. [81] analyzed fail-
ure reports from large-scale Internet services in order to identify the major
factors contributing to user-visible failures, evaluate the (potential) effective-
ness of various techniques for preventing and mitigating service failure, and
build a fault model for service-level dependability. Their results indicate that
the main contributors to user-visible failures are operator error and network
problems, and that online testing and more thoroughly exposing and handling
component failures would reduce failure rates in some cases. Referring to the
IEEE standard terminology for definitions of failures and faults [38] we find
that a failure is the inability of a system or component to perform its required
functions within specified performance requirements. Moreover a fault is (1)
a defect in a hardware device or component; (2) an incorrect step, process,
or data definition in a computer program. Figure 8.13 represents the service
fault diagram. A service can produce, during execution, a fault. The nature
of the fault may be different depending on a wide variety of causes. A fault
is an observable event in the service execution that can lead to an erroneous
state, and, as consequence, a failure. By observing the system it is possible
to discover the occurrence of a fault (Fault Detection activity). The output of
this activity are alarms; such events signal the occurrence of a failure, i.e., of
a discrepancy between the delivered service and the correct one. Alarms are

8 Service Engineering 297

Fig. 8.13. The Service Fault Diagram

generally implemented in software using Exceptions. Detecting a fault means
only discovering the occurrence of a fault; to know the nature and the cause
of the fault its identification is needed; such activity requires a process of
diagnosis.

The aim is to achieve the fault tolerance for the architecture: fault toler-
ance is the ability of an application to provide valid operation after a fault. The
application is returned to a consistent state, for example using a checkpoint-
ing mechanism. Fault tolerance is considerably more difficult for distributed
applications, composed by several process communicating among themselves.
Moreover in SBA a single process may be part of multiple applications. Di-
alani et al. [35] proposed a framework able to offer a method of decoupling
the local and global fault recovery mechanisms. In a different way, to achieve
fault tolerance in SOA, Santos et al. proposed an approach for deployment of
the active replication technique; they presented an engine able to detect and
recovery fault and invoke concurrently service replicas [97].

Since the nature of a fault depends on a lot of causes, some authors [7] pro-
posed a classification of the Web service faults distinguishing them in three
levels: infrastructural and middleware, Web service and Web application
level faults. Infrastructure middleware level faults are caused by failure in the
underlying hardware or network: this type of fault makes it impossible to use
the Web service or provide the expected QoS. Among Web service faults they
proposed the classification into Web service execution faults (raising during in-
vocation or execution of Web service) and coordination faults (resulting by the
composition of Web services). Finally the application level faults are related
to the Web applications based on Web services. The same authors proposed
some mechanism of recovery action at Web service and Web application level

298 V. Andrikopoulos et al.

in order to guarantee self-healing properties of Web services. In particular,
after diagnosing a fault, adaptable Web services are able to perform recovery
actions and restore the correct state: recovery actions may be reactive (recov-
ery of the running service) and proactive (data mining techniques executed in
an off-line mode). Substitution of unavailable services, completion of missing
parameters in the input message causing a fault and retry the invocation of an
unavailable service until it return available are some of the proposed recovery
actions.

Faults can also be related to non-functional behavior of Web services in-
cluding SLA and QoS agreement [14]. SLAs are used to ensure to the consumer
a certain QoS during service execution. Even a violation of the contract raises
a SLA disagreement fault.

Adaptation Life-Cycle Phases

Differently from classical SBAs, the distinguishing feature of the adaptable
SBAs is the support for accommodating and managing various changes oc-
curring in the application or in its context. This capability extends the tradi-
tional view on the Service-Based Application and requires the following two
functionalities to become the core elements of the application life-cycle: mon-
itoring and adaptation (Figure 8.14).

Fig. 8.14. The Adaptation Diagram

In a broad sense, monitoring is a process of collecting relevant information
in order to evaluate properties of interest over SBA and report corresponding
events. As it follows from the diagram, monitoring observes either the appli-
cation (more precisely, various properties of an SBA instance, the whole class
of instances, and/or its evolution) or its context (contextual properties of an
instance or of the whole application). When the events reported by the moni-
toring represent critical deviations from the expected functionality, evolution,

8 Service Engineering 299

or context of SBA, the latter should be adapted and therefore adaptation is
triggered.

Adaptation is a process of modifying a Service-Based Application in order
to satisfy new requirements and to fit new situations dictated by the environ-
ment. It correponds to the adaptive category of the maintenance activity that
will be described in detail in Chapter 8.4. This general definition becomes more
concrete when we consider different forms of adaptation (see Figure 8.14):
Proactive (to prevent future problems proactively identifying and handling
their sources), Reactive(to handle faults and recover from problems reported
during execution of an SBA instance or a set of instances), and Postmortem
(to modify (or evolve) the system at design time or when it is stopped). With
respect to the human involvement, as highlighted in the figure, we distinguish
the following two extreme types of adaptation: self-adaptation and human-in-
the-loop adaptation. Self-adaptation is an adaptation process that is executed
without any external human intervention. In this case all adaptation steps,
decisions, and actions are performed by the SBA autonomously. This also as-
sumes that all the necessary mechanisms to enact adaptation strategies are
built into the application. When the adaptation process assumes any form of
human intervention, one deals with human-in-the-loop adaptation. This inter-
vention may have different forms and take place at the different phases of the
adaptation cycle.

As it is shown in Figure 8.4, the adaptation cycle consists of the following
principle steps:

• decide whether the SBA adaptation is needed (Identify Adaptation Re-
quirements);

• decide how the system should be adapted (Identify Adaptation Strategies);
• modify the application (Enact Adaptation).

The ability to initiate this process relies, however, on the ability to identify
critical discrepancies between the expected (or desired) state, execution, and
evolution of SBAs and the actual ones. For this reason, monitoring becomes
an essential component of the adaptation process.

Identify Adaptation Requirements Phase

The decision on the necessity for SBA to adapt is based on the information
about the execution, evolution and context of SBA provided by monitoring.
There are two possible ways to make such a decision. In the first case, the
monitoring requirements are derived from the adaptation requirements, and
the appropriate monitoring properties represent severe problems, contextual
changes or other type of discrepancies that are critical from the adaptation
perspective. These properties are observed by the monitors, and when the
corresponding events are detected, the need for adaptation is automatically
triggered. In the second case, the process requires human involvement: based
on the monitored information, the user (being end user, system integrator,
application manager, etc.) makes a decision on the need for adaptation.

300 V. Andrikopoulos et al.

Identify Adaptation Strategies Phase

When the adaptation requirements are instantiated, the corresponding adap-
tation strategies should be identified and selected. In Section 8.3.2 we have
already presented a set of strategies applicable to various forms of SBA adap-
tation, including service substitution or re-negotiation of their SLAs, reconfig-
uring SBA or recomposing services, execute specific recovery or compensation
actions, and even re-planning the underlying business process. Different adap-
tation strategies may refer to different functional SBA layers, may be prede-
fined or created dynamically, may follow different methodologies and specified
in different ways.

An important aspect for the adaptation cycle is how a particular strategy
is defined and selected. As in the case of adaptation requirements, this may
or may not require human involvement. If it does not require human inter-
vention, the selection is made by the SBA or the execution platform, based
on some predefined decision mechanisms and the current information derived
from monitors. In the opposite case, the role of the user can be to choose one
or another alternative among those proposed by the adaptation framework.

Enact Adaptation Phase

After the adaptation strategy is identified and chosen, the corresponding adap-
tation mechanisms are activated in order to implement the strategy and to ex-
ecute corresponding adaptation activities. For the strategies mentioned above
the following mechanisms are usually considered:

• automated service discovery and dynamic binding mechanisms are crucial
for the realization of such adaptation strategies as service substitution,
re-composition and re-configuration; (automated) SLA negotiation frame-
works and infrastructures are necessary for the realization of re-negotiation
strategy,

• automated service composition techniques and mechanisms are necessary
for the re-composition and re-planning techniques (when the latter is done
in autonomous mode),

• design time adaptation tool support may be necessary in order to perform
manual, design-time adaptation of SBA or its constituent parts when a
re-planning strategy is achieved through re-design of SBA. Such tools may
include, e.g., various frameworks for designing and generating adapters for
constituent services [25, 17], tools supporting customization of the process
models [59], etc.

Also in this case the process may involve the users (e.g., to select a particular
realization, to provide additional information and decisions, or to perform the
adaptation manually through re-designing the application or components) or
may be done autonomously.

Depending on the strategy, the adaptation process may involve other
phases of the SBA life-cycle such as quality assurance and deployment.

8 Service Engineering 301

Cross-Cutting Concerns

The previous sections presented methodologies and processes for each the
phases of the service life cycle of Figure 8.4. These sections discuss issues that
spread beyond one individual phase in the life cycle, affecting in some cases
all the life cycle of services like service governance, quality assurance of SBAs,
service discovery and service level agreement negotiation.

Service Governance

A significant challenge to widespread SOA adoption is for SOAs to deliver
value. To achieve this, there must be control in areas ranging from how a cross-
organizational end-to-end business process that is composed out of a variety
of service fragments is built and deployed, how QoS is enforced, proven and
demonstrated to service consumers, to granular items such as XSD schemas
and WSDL creation. This requires efficient SOA governance.

Prior to describing SOA governance it is useful to describe the meaning of
IT governance as SOA governance stems from and is deeply rooted in IT gov-
ernance [20]. IT governance is a formalization of the structured relationships,
procedures and policies that ensure the IT functions in an organization sup-
port and are aligned to business functions. IT governance aligns IT activities
with the goals of the organization as whole and includes the decision-making
rights associated with IT investment, as well as the policies, practices and
processes used to measure and control the way IT decisions are prioritized
and executed [56].

The IT Governance Institute (http://www.itgi.org/) has established a
value IT framework that consists of a set of guiding principles, and a number
of processes conforming to those principles, which are further defined as a
suite of key management practices. ITG recommends these guiding principles
to be applied in terms of three core processes: value governance, portfolio
management and investment management. The goal of value governance is
to optimize the value of an organization’s IT-enabled investments by estab-
lishing the governance, monitoring and control framework, providing strategic
direction for the investments and defining the investment portfolio character-
istics. The goal of portfolio management is to ensure that an organization’s
overall portfolio of IT-enabled investments is aligned with, and contributing
optimal value to the organization’s strategic objectives by establishing and
managing resource profiles, defining investment thresholds, evaluating, priori-
tizing and selecting, managing the overall portfolio, monitoring, and reporting
on portfolio performance. Finally, the goal of investment management is to
ensure that an organization’s individual IT-enabled investment programs de-
liver optimal value at an affordable cost with a known and acceptable level of
risk by identifying business requirements, analyzing the alternatives, assign-
ing clear accountability and ownership, managing the program through its full
economic life cycle, and so forth.

302 V. Andrikopoulos et al.

SOA governance has to oversee the entire life cycle of an enterprise service
portfolio in order to identify, specify, create, and deploy enterprise services,
as well as to oversee their proper maintenance and growth [77].

SOA governance is an extension of IT governance and guiding principles,
such as the ones described above, which focus is on the life cycle of services
and is designed to enable enterprises to maximize business benefits of SOA
such as increased process flexibility, improved responsiveness, and reduced
IT maintenance costs. SOA governance refers to the organization, process,
policies and metrics that are required to manage an SOA successfully [75]. In
particular, SOA governance is a formalization of the structured relationships,
procedures and policies that ensure that the IT functions in an organization
support and are aligned to business functions, with a specific focus on the life
cycle of services.

Services that flow between enterprises have defined owners with established
ownership and governance responsibilities, including gathering requirements,
design, development, deployment, and operations management for any mission
critical or revenue generating service.

To achieve its stated objectives and support the enterprise’s business objec-
tives on strategic, functional, and operational levels, SOA governance provides
a well-defined structure. It defines the rules, processes, metrics, and organi-
zational constructs needed for effective planning, decision-making, steering,
and control of the SOA engagement to meet the business requirements of an
enterprise and its customers.

SOA governance introduces the notion of business domain ownership,
where domains are managed sets of services sharing some business context to
guarantee that services fulfil their functional and QoS objectives both within
the context of a business unit and the enterprise’s within which they operate
[85]. Two different governance models are possible [85]:

1. Central governance: With central governance, the governing body within
an enterprise has representation from each business domain as well as from
independent parties that do not have direct responsibility for any of the
service domains. There is also representation from the different business
units in the organization and subject matter experts who can talk to the
developers who implement key technological components of the services
solution. The central governance council reviews any additions or dele-
tions to the list of services, along with changes to existing services, before
authorizing the implementation of such changes. Central governance suits
an entire enterprise.

2. Federated governance: With federated governance each business unit has
autonomous control over how it provides the services within its own en-
terprise. This requires a functional service domain approach. A central
governance committee can provide guidelines and standards to different
teams. This committee has advisory role only in the sense that it makes
only recommendations and it does not have to authorize changes to the

8 Service Engineering 303

Fig. 8.15. Developing and Managing SBAs

existing service infrastructure within any business unit. Federated gover-
nance suits enterprise chains better.

Figure 8.15 illustrates the usual stratification in runtime environment, infras-
tructure services and business services and highlights the importance that
monitoring facilities play in SOA governance. Resource and business process
optimization are also highlighted.

As mentioned above, the concept of SOA governance comprises all the
activity needed to exercise control over services in an SOA. The focus is on
those resources to be leveraged for SOA to deliver value to the business; it
involves many phases of a service architecture lifecycle, including specification,
deployment and evolution. SOA governance is about ensuring and validating
that assets and artifacts within the architecture are operating as expected and
maintaining a certain level of quality. So, it has to offer features to monitor
execution, check the policies and handle the exceptions (see the class diagram
in figure 8.16).

Fig. 8.16. The Governance of Service Based Applications Diagram

304 V. Andrikopoulos et al.

Quality Assurance (QA) of SBAs

In this section the focus is on the major points of QA for SBA throughout all
the phases of the life-cycle (see the section 7 for further details).

More specifically, three major approaches have been identified in the lit-
erature for SBA QA:

1. Static Analysis: In a narrower sense, static analysis “. . . is the system-
atic examination of program structure for the purpose of showing that
certain properties are true, regardless of the execution path the program
may take.” [84] In a broader sense, static analysis can be extended to
documents at all stages of the software life cycle.

2. Testing: “. . . testing entails executing a program and examining the results
produced.” [84] Testing a software system or an SBA requires test data,
which are fed into the system. The resulting outputs are than compared
to the expected outputs. An error (or defect) results if the actual outputs
do not fit the expected outputs. In SBAs these defects are due to services
or to service compositions, e.g., a wrong sequence of service requests in a
BPEL specification.

3. Monitoring: The purpose of monitoring in the software engineering do-
main is to “. . . determine whether the current execution [of the software]
preserves specified properties; thus, monitoring can be used to provide ad-
ditional defence against catastrophic failure. . . ” [33] In SOAs monitoring
can be used to observe the status of SBAs - as in traditional software engi-
neering - and services. Monitoring of services may lead to the adaptation
of the SBA, e.g., when one ore more services are not available.

Figure 8.17 summarizes the QA for SBAs: Monitor is used to check the com-
pliance of the behavior exposed by an SBA during execution and its expected
QoS. If some deviation is detected, the monitor could enact some adaptation
mechanism to correct the behavior.

Fig. 8.17. The QA Diagram

8 Service Engineering 305

Service Discovery

The Service Discovery is an important aspect in Service Oriented Computing.
The process of service discovery requires locating the services satisfying user
requirements and returning the most relevant ones for the consumer. In other
words, service discovery is the matching of the needs of a service requestor
with the offerings of service providers.

The continuous growth of the number of services published in the Web
makes the process very hard. A key aspect of the service-oriented architec-
ture approach is that the services advertise themselves using directory or
lookup services so clients can find them. Consumers need to know only lim-
ited information about the service. Like a caller using telephone white pages,
a consumer application looks up the desired service in some directory, which
returns the associated service provider information. The consumer then uses
this information to interact with the provider. Performing a name lookup on
an implementation of the Java Naming and Directory Interface, for example,
returns a Java object that the caller can use to invoke the named service.

Web services enforce the paradigm of distributed computing enabling
enterprise-wide interoperability: integration of the services requires the lo-
calization and the purchase of the needed services. Existing Universal De-
scription Discovery Integration (UDDI) [3] technology uses a central server
to store information about registered Web services; the centralized approach
becomes unsuitable managing large distributed system. WSDL (Web Service
Description Language) provides descriptions for Web services [30], containing
the service interface, specifying inputs and the outputs of service operations.
But these descriptions are purely syntactic: the problem with syntactical in-
formation is that the semantics implied by the information provider are not
explicit, leading to possible misinterpretation by the users.

Among the most used service discovery approaches, important is the
keyword-based (syntactic) discovery mechanism; the limit of this approach is
that it doesn’t consider the semantic of the requestor goals, service and con-
text, retrieving objects whose descriptions contain keywords from the user’s
request. This approach can lead to the individuation of services, often not
expected by the consumers: for example the query keyword might be syntac-
tically equivalent but semantically different from the terms in the object de-
scriptions; moreover this approach doesn’t consider the relations between the
keywords. A solution is represented by ontology-based discovery approaches:
the retrieval is based on semantic information rather than keywords. Improv-
ing Web services discovery requires explicating the semantics of both the
service provider and the service requestor. Shoujian et al.[100] proposed an
ontology-based approach to capture real world knowledge for a finer granular-
ity annotation of Web services. Moreover [70] proposed a more sophisticated
approach using Probabilistic Latent Semantic Analysis (PLSA) to capture
semantic concepts hidden behind the term constituting the user query.

306 V. Andrikopoulos et al.

A lot of effort is spent to automatize discovery: automatic service discovery
requires automated matching of semantic service descriptions or, in worse
cases, a composition of them [58]. Figure 8.18 focuses on the Service Request
and the process of Service Discovery. A Service Consumer expresses one or
more Service Requests in order to discover Concrete Services that can serve
its requests and satisfy its needs. Service discovery is usually executed at
least in three different moments, related to different phases in the lifecycle of
Figure 8.4 : 1) when the requirements for a new system are gathered (Early
Discovery) (Requirement Engineering activity in Requirement Engineering
and Design Phase in figure 8.4), 2) when the system is being designed and
new specific needs for services are identified (Design Time Discovery) (Design
activity in Requirement Engineering and Design Phase in figure 8.4), or 3)
when the system is running and new services need to be discovered to replace
the ones that the system is currently using (Run-Time Discovery) (Operation,
management and Quality Assurance Phase in figure 8.4). The latter type of
discovery is required during adaptation enactment (see section 8.3.2). Some
researches attempt to optimize the runtime service discovery process [103],
using the information gathered during design time service discovery as a sort
of cache.

Fig. 8.18. The Service Discovery Diagram

8 Service Engineering 307

Fig. 8.19. The Service Level Agreement Negotiation Diagram

Service Level Agreement Negotiation

Service Level Agreements (SLAs) are contracts between a service provider
and their customers that describe the service, terms, guarantees, responsibil-
ities and level of the service to be provided. They have been widely used by
network operators and their customers. The process that leads to the defini-
tion of a SLA between consumer and provider is called an SLA Negotiation.
The SLA Negotation cannot be referred to a specific phase of the service
lifecycle because an SLA can be negotiated either at design time or at run-
time. For example, during service execution an SLA can be negotiated or even
re-negotiated if the quality parameters defined in the previous SLA aren’t sat-
isfied. If the provider is unable to meet the SLA conditions, instead of stopping
the service provisioning, the provider and consumer can decide to re-negotiate
the SLA. The end of the process of SLA negotiation consists of the stipulation
of a contract in the form of an SLA: this contract contains what user expects
from service execution, and what the provider guarantees. Figure 8.19 focuses
on the entities and the activities characterizing the process of SLA Negotia-
tion. The negotiation process consists of two or more Negotiation Agents, each
acting on behalf of a Service Provider or a Service Consumer, formulating,
exchanging and evaluating a number of SLA Proposals in order to reach an
SLA Contract for the provision/consumption of a service. A SLA Proposal
can be an SLA Offer or an SLA Request that a Negotiation Agent formulates
enacting a certain Strategy. An SLA Proposal specifies negotiation values for
a number of Service Properties, such as QoS attributes. When the negotiation
process leads to an agreement between the involved parties, an SLA Contract
enclosing the agreed SLA Proposal is subscribed between these subjects.

The following chapter discusses more traditional software engineering tech-
niques, and which lessons can be drawn from them for the purposes of SBA
engineering.

308 V. Andrikopoulos et al.

8.4 Software Engineering Practices Relevant to
Service-Based Applications

This section covers “classical” design and development methodologies and
issues, some of which have been established as industry-wide accepted stan-
dards in the last decades. More specifically, Section 8.4.1 presents established
methods and theories for software process quality and assurance. Further-
more, Section 8.4.1 discusses the predecessor of service orientation, i.e., the
component-based paradigm; Section 8.4.1 provides some insight into the issue
of legacy system re-engineering and how it affects SBA engineering. Conse-
quently, Section 8.4.1 discusses the issues of software maintenance and evo-
lution and how they are related to SBA adaptation. Finally, Section 8.4.2
summarizes some of the dominant methodologies for business processes in or-
der to illustrate the challenges and expectations for any SBA methodology
that has to be applied in the Business Process Management area.

8.4.1 Classical Software Engineering

Software Process Quality

Software quality within software engineering is often considered to be only
testing. However, the software process community argues that quality should
be built into a product, not just ’tested for’ at the end of the development
process. In this section we discuss the overall concept of software process
quality.

Humphrey [49] defines a software process as “the set of tools, methods and
practices we use to produce a software product”. Paulk et al. [78] expand this
definition to “a set of activities, methods, practices and transformations that
people use to develop and maintain software and the associated products”.

When organisations consider their software process it is usually with a
view to improving that process to improve the quality of their product. As an
example, improvement of the process can be based on the Plan-Do-Check-Act
cycle which is a common technique used in manufacturing quality improve-
ment strategies as shown in Figure 8.20. To be useful, the improvement must
be continuous, and the process continually assessed. Specific cycles are stated
within some of the process models.

The purpose of implementing software processes within an organisation
is to improve the quality of the final product through building in quality
throughout the process rather than discovering, either at testing phase or
following release, that there are problems with the product.

There are many proprietary process improvement and assessment frame-
works used in industry. Such frameworks normally contain process areas
within which specific practices are performed. Two internationally recognised
models are ISO/IEC 15504 and the Capability Maturity Model Integrated

8 Service Engineering 309

Fig. 8.20. Plan-Do-Check-Act for Software Process

(CMMITM) [82, 107]. ISO/IEC 15504 is designed so that other process mod-
els can be ratified by the ISO standard. For organisations using CMMI, for
example, they can demonstrate a maturity level with respect to both CMMI
and within ISO/IEC15504. In the following section, to illustrate the meaning
of a process area, we chose to discuss those process areas within the Capability
Maturity Model Integrated as within CMMI Version 1.2 [107].

Process Management areas contain the cross-project activities related to
defining, planning, deploying, implementing, monitoring, controlling, apprais-
ing, measuring, and improving processes. More specifically they are:

Organizational Innovation and Deployment is designed to ensure that incre-
mental and innovative improvements improving the organisation’s pro-
cesses and technologies are implemented.

Organizational Process Definition requires that the process is developed and
defined within the organization.

Organizational Process Focus ensures that process improvements are planned
and implemented based on an understanding of the strengths and weak-
nesses of the organisation’s process and process assets.

Organizational Process Performance establishes and maintains a quantita-
tive understanding of the organisation’s process, focusing on quality and
process-performance objectives.

Organizational Training is focused on the development of skills and knowl-
edge of people.

Project Management process areas cover the project management activities
related to planning, monitoring, and controlling the project. They are:

Integrated Project Management establishes and manages the project and
stakeholders according to a defined process.

Project Monitoring and Control is undertaken to ensure that corrective ac-
tions can be taken if and when required.

310 V. Andrikopoulos et al.

Project Planning establishes and maintains plans that define project activi-
ties.

Quantitative Project Management ensures that the project achieves quality
and process-performance levels through quantitative measures.

Risk Management allows the organisation to identify potential risks, and to
implement a strategy to mitigate these risks where possible.

Supplier Agreement Management manages the acquisition of product from
suppliers.

Engineering process areas cover the development and maintenance activities
that are shared across engineering disciplines and are:

Product Integration ensures that the product’s sub-components are inte-
grated correctly to provide a final working product.

Requirements Development ensures that customer, product and component
requirements are produced correctly.

Requirements Management manages the requirements of the product and
components, ensuring that they are consistent with the project plans and
the work products.

Technical Solution enables the design, development and implementation of
solutions to requirements.

Validation allows the organisation to demonstrate that a product or compo-
nent fulfils its intended use in its intended environment.

Verification ensures that the work products meet the requirements.

Support process areas cover the activities that support product development
and maintenance. The Support process areas address processes that are used
in the context of performing other processes. They are:

Causal Analysis and Resolution allows the organisation to identify the causes
of defects in products and to prevent their re-occurrence.

Configuration Management implements configuration identification, configu-
ration control, configuration status accounting and configuration audits.

Decision Analysis and Resolution enables the analysis of possible decisions
against a formal evaluation process.

Measurement and Analysis enables the development of a measurement capa-
bility which supports management information needs.

Process and Product Quality Assurance involves evaluating performance of
process and process assets against pre-defined standards and ensuring
that non-compliance issues are addressed.

While there have been arguments that implementing planned processes de-
crease rather than increase the efficiency of the software development pro-
cess [79, 52, 57] there is also evidence that there have been increases in
productivity and efficiency due to the implementation of planned processes
[19, 104, 24, 50, 41].

8 Service Engineering 311

Agile Development is a software process which has gained recognition in
recent years. Having introduced concepts such as Scrum, Test Driven Devel-
opment (TDD) and Extreme Programming (XP), it is distinctly different. The
agile approach thrives on the lack of stable requirements and uses small self-
managed teams to frequently produce reliable software that meets customer
requirements.

The reported success of the use of agile development was instantaneous
[98]. Key benefits reported include the faster delivery of higher quality prod-
ucts that better matched customer requirements due to their close involvement
throughout the project. Leszak et al. [65] have argued that the transition to
agile methodologies was initiated as a way of achieving a positive return on
investment in quality early in the development life cycle. However, not all
reports of these agile development techniques described positive experiences
[62]. Despite the fact that they are “simple” and “quick” [55], most are very
difficult to get right and require extensive training, discipline and managerial
support.

The ever increasing number of agile methods that are available also
presents a problem: not every technique is suitable for every type of project.
This factor must be given serious consideration before a specific development
methodology is chosen for a project.

In particular industries, such as the Medical Device industry, through
governance by the Food and Drugs Administration (FDA) and International
Standards Organisation (ISO), and the Automotive industry, who follow Au-
tomotive SPICE (derivative of ISO/IEC 15504), documented processes are
still required. The Financial sector has also commenced an initiative to im-
plement Banking SPICE as they also have to deal with regulations such as
Sarbanes-Oxley.

While there may be an argument for service developers not to consider the
implementation of software processes due to their restrictiveness, the commu-
nity needs to consider that software development within specific industries
such as those mentioned above is a growth area. For example, the cycle on
the left-hand side of Figure 8.4 does not currently exist within software engi-
neering process models, and, therefore, existing models need to be developed
to ensure that service-based software can be used successfully within the reg-
ulated industry. In doing this, organisations can work on becoming players
within these markets and software developers need to become process aware,
seriously considering how quality can be improved through the implementa-
tion of software processes for services.

Quality Assurance

Software process models are designed to ensure that the quality of the product
is built in from the start of software development, therefore, in this section, we
discuss further the service life-cycles already discussed in section 8.3.1 from
the perspective of software engineering quality. It is imperative that, for the

312 V. Andrikopoulos et al.

future, as services move into regulated industry in particular, good quality
assurance systems are implemented. While there are a number of such qual-
ity models available we chose to look specifically at the Capability Maturity
Model IntegratedTM(CMMITM[107]) as it is an accepted exemplar contain-
ing process areas relevant to the development of systems and software. The
CMMITMcontains twenty-two process areas which focus on Process Manage-
ment, Project Management, Engineering and Support Process. While it is
imperative that the Engineering process areas are implemented successfully
to develop product, it is equally important that, for a quantitatively-managed,
defined and repeatable life-cycle, process areas under the other three headings
are also implemented.

1. The SLDC appears to cover all the aspects of the CMMI technical solution
process areas but seems lacking in some of the other process areas of the
model, such as project management and process management.

2. In order to compare the RUP for SOA framework to the CMMI capability
model we will first have to look at its components. The RUP framework
consists of nine disciplines, six engineering disciplines and three support
disciplines. The engineering disciplines are Business Modelling, Require-
ments, Analysis and Design, Implementation, Testing and Deployment.
The remaining three support disciplines are Configuration Management,
Project Management and Development Environment. When we compare
the RUP for SOA to the CMMI model, the RUP for SOA activities work
flow seem to cover the majority of the CMMI process areas. The RUP
model however, does not implement most of the support process areas
or some of the important project management processes such as Supplier
Agreement management. In a survey carried out by the Software Engi-
neering Institute, there was a comprehensive comparison made between
RUP and CMMI, which highlighted some of these weaknesses [42]. [76]
discusses the implementation of new process elements that allow RUP to
overcome these weaknesses.

3. When we compare SOMA and CMMI it is evident that SOMA puts suffi-
cient emphasis on an organisation’s processes and it also covers the soft-
ware’s engineering processes in detail. SOMA does not however put a lot
of emphasis on project management or the support processes required to
deliver software.

4. The comparison between SOAD and CMMI bears resemblance to the com-
parison between CMMI and RUP for SOA. SOAD puts a lot of emphasis
on process management and SOA engineering processes; however there
are still gaps in the support process and project management aspects. In
addition to that, the fact that SOAD is not yet fully defined as a pro-
cess for delivering quality SOA based applications, makes it appear even
further from being able to provide compatibility with the CMMI model.

5. When we compare ASTRO and CMMI, we can see that the ASTRO
tools are primarily focused on using business process input in the form of

8 Service Engineering 313

BPEL to generate a technical solution. The WS-animator tool, which is
an EclipseTMIntegrated Development Enjoinment plug-in, can be used in
order to visually execute the business process. This can be used to verify
and validate the generated business process. The ASTRO methodology
makes no attempt to provide support processes or project management
techniques.

6. Many aspects of the BEA lifecycle are compatible with the CMMI model.
The BEA lifecycle also contains many SOA centric components that can-
not me measured using the CMMI. The BEA lifecycle describes in detail
the processes around creating, composing and reusing service components.
This however seems at the expense of describing a lot of the CMMI key
process areas in the process management, project management and sup-
port process disciplines.

Comparing Lifecycles and CMMITM

All of the lifecycles we have looked at appear to have been developed with
varying goals in mind. Some of the lifecycles such as RUP for SOA and the
BEA lifecycle make attempts to cover all of the required lifecycles stages to
analyse, design, build, test, deploy and monitor service based applications. On
the other hand, the ASTRO life cycle focuses on combining and orchestrat-
ing third party Web services. Figure 8.21 shows the varying levels of CMMI
compatibility that exists between each of the life cycles and CMMI.

At a glance it appears that most of the life cycles are more focused on the
technical engineering process areas than any of the other process area. In order
to make these lifecycles more compatible with the software engineering view
of quality they will need to focus more on the areas of support and project
management in particular. In addition, direct implementation of a software
process model such as the CMMITMinto services development does not take
into account the left-hand side of the reference lifecycle shown in Figure 8.4.
Software process models will need to be adjusted to cope with the adaptation
phases of the reference life-cycle.

Component-Based Software Engineering

In the world of software engineering, software reuse has long been one of the
major issues; it is seen as the key for increased productivity, improved reli-
ability, and ease of maintenance. The development of software starting from
existing components draws on analogy with the way that hardware is designed
and built, using “off-the-shelf” modules. In fact, Component-Based Software
Development (CBSD) approach is based on the idea to develop software sys-
tems by selecting appropriate off-the-shelf components and then to assemble
them with a well-defined software architecture. The process leading to com-
ponent based systems is integration-centric rather than development-centric.
The idea behind the engineering concept is that components can easily be

314 V. Andrikopoulos et al.

Fig. 8.21. SBA Lifecycles vs. CMMI

reused in other systems since they are autonomous units, free of the context
in which they are deployed. Components are black box, providing an external
interface to their functionality hiding all internal details. CBSD aims to reduce
development cost and time to market since ready-made and self-made com-
ponents can be used and re-used. These Commercial Off-The-Shelf (COTS)
components can be made by different developers using different languages and
different platforms.

The idea behind CBSD makes the life cycle and software engineering model
of CBSD much different from that of the traditional ones. Component-based
software systems are developed by selecting various components and assem-
bling them together rather than programming an overall system from scratch;
thus the life cycle of component-based software systems is different from that
of the traditional software systems. Boehm et al. [21] retain that both the
waterfall model and the evolutionary development are unsuitable for COTS-
based development. Since in the waterfall model requirements are identified at
an earlier stage and the COTS components chosen at a later stage, it’s likely
to choose COTS components not offering the required features. The evolu-
tionary development on the other hands assumes that additional features can
be added if required. However, COTS components cannot be upgraded by one
particular development team. The frequent lack of code availability hinders
developers to adapt them to their needs. Therefore, Boehm et al. proposed
that development models which explicitly take risk into account are more

8 Service Engineering 315

suitable for COTS-based development than the traditional waterfall or evolu-
tionary approaches. A possible life cycle of component-based software systems
consists of the following activities:

• requirements analysis;
• architecture selection, creation, analysis, and evaluation;
• component evaluation, selection, and customization;
• integration;
• system testing;
• and software maintenance.

The focus of CBSD is on composing and assembling components often de-
veloped separately, and even independently. Component identification, cus-
tomization and integration is a crucial activity in the life cycle of component-
based systems; component selection addresses the issue of browsing and indi-
viduating the component to use satisfying the desired functionality. The se-
lection of COTS products is a challenging process that utilizes and generates
a lot of information, aiming to find software components among the compo-
nents that are previously built. When the number of component grows, the
complexity of the choice becomes greater. Hence, management of the existing
components is required. For COTS selection activity, information repositories
play a crucial role; repositories contain the object code of the components, and
they should have features that allows for convenient access to reusable compo-
nents and provide reuse functionality such as selection, analysis, adaptation,
test, and deployment. Lee et al. [64] proposed a component repository for fa-
cilitating EJB (Enterprise JavaBeans) component reuse. An EJB component
is available as class files packaged in a Java ARchive (JAR) file. The class files
contained in the JAR are separated into interfaces and beans. The beans are
designed to execute their business logic through their interfaces. Among the
component infrastructure technologies that have been developed, three have
become somewhat standardized: OMGs CORBA, Microsoft’s Component Ob-
ject Model (COM) and Distributed COM (DCOM), and Sun’s JavaBeans and
Enterprise JavaBeans.

Issues in the Use of Components Software

Component users develop component-based systems by integrating their appli-
cations with independently-developed components. Typically, the source code
of the components is not available to the component users. Consequently, tra-
ditional program analysis and techniques requiring access to the source code,
such as alias analysis, static analysis, control dependence computation, and
testing techniques, such as data flow, cannot be applied. One way to perform
the analysis without the source code is to analyze relations that hold in the
components and the relations caused in the application by the code in the
components, but unfortunately these analyses are often too imprecise, and
therefore useless. It’s interesting to notice that the use of high quality compo-
nents doesn’t guarantee the quality of the resulting component based system,

316 V. Andrikopoulos et al.

but its quality depends on the quality of its components and the framework
and integration process used. Hence, techniques and methods for quality as-
surance and assessment of a component-based system would be different from
those of the traditional software engineering methodology [73], requiring adap-
tation to this context. The Quality Assurance (QA) of the overall system is a
critical issue: it is important to certificate the quality of a component and the
quality of software systems based on components. To this aim Cai et al. [27]
proposed a QA model for component-based software development, which cov-
ers both the component QA and the system QA as well as their interactions.
One problem that CBSE currently faces is the lack of a universally accepted
terminology. Even the most basic entity, a software component, is defined in
many different ways; it would be useful to have a clarified and unified termi-
nology. To this aim Lau et al. [61] proposed a taxonomy of component models
(JavaBeans, EJB, COM.).

CBSE and SBAs

SBAs are developed composing available functionalities exposed by the ser-
vices; in this context services can be considered very similar to a reusable
components, and approaches developed in CBSE could be adapted to services.
However, service-oriented architectures introduce some important issues that
need to be considered: in a service-oriented scenario, users acquire just the
use of a service without integrating physically it in their applications . Each
service of a service-based system ideally represents a component executing a
business task and provides an interface that is invoked through a data format
and protocol that is understood by all the potential clients of that service.
Services can be distributed across organizations and can be reconfigured into
new business processes as organizations evolve. Users can discover a Web ser-
vice by querying a service registry and retrieving the service description of
the service they want. The service description contains enough information
for the service requestor to bind to the service he wants to use. While in the
component repository the physical component is contained, in the service reg-
istry only the description of the service is contained: using a service means
invoking it and not owning it. Another important difference is about the com-
position. While component composition is made assembling component using
connectors or glue code, service compositions are obtained composing the ser-
vice descriptions. Consequently, since services are bound only at runtime, the
realization of service composition is known only at execution time [88].

Legacy Systems Re-engineering

Legacy systems constitute the enterprise’s heritage of software and hardware
systems. Often, legacy systems are relatively old, mainframe-based systems
that were optimized to accommodate the memory, disk, and other operational
constraints of archaic software and hardware platforms. A vast majority of

8 Service Engineering 317

them is older than twenty years and written in COBOL, PL/I or Assembly/370
using transactions management systems like Customer Information Control
System (CICS), although this certainly does not have to be the case.

Legacy systems pose an Amphitryon dilemma for enterprises. On the one
hand, enterprises perceive them as bottlenecks to implement new or rein-
vented business processes as they are notably hard to adapt to new business
requirements. Disruptions to these systems, even those as short as a couple
of seconds, may cause catastrophic losses. On the other hand, legacy systems
typically lock valuable, and in many cases indispensable, business knowledge.
This business knowledge contains not only explicit knowledge about business
processes, policies and data that is codified in a shared formal language, but
also tacit knowledge that is employed implicitly to smoothen daily business
operations (e.g., know-how).

Devising a balanced strategy for handling legacy systems and (re-)aligning
them with new process requirements has proven a particularly challenging is-
sue. Over the past decades, a number of strategies, methodologies and tools
have been touted by the industry as the next silver bullet to overcome the
legacy dilemma, ranging from non-intrusive approaches such as screen scrap-
ing and legacy wrapping, to more invasive ones like grafting new designs into
the outdated parts of the architecture of legacy systems.

Approaches for Dealing with Legacy Applications

The following evolution strategies have been proposed during the past decades
([23], [117], [116], [109]): maintenance, modernization, replacement and phase-
out. The impact of these strategies on the enterprise applications ranges from
minimal to large: maintenance activities entail a contained type of evolution
implying marginal changes and extensions, whilst phasing-out is the most
disruptive approach involving retirement of (parts of) the legacy systems.

These strategies can be classified as follows:

• Continued Maintenance. This evolution strategy is applicable in case a
legacy system is still relatively well-functioning. As no intrusive changes
are accompanied with this strategy, it is by far the most optimal category
of legacy evolution strategies from a cost and risk perspective.
Continued maintenance involves nurturing the application without making
fundamental changes to the code and breaking its underlying architecture.
The strategy basically comes in three variants ([116], [117]): adaptive main-
tenance, corrective maintenance, and perfective maintenance. Adaptive
maintenance pertains to making minor changes in the system’s functional-
ity to ensure that it stays in flux with new business requirements. Besides
these activities, maintenance activities can be directed towards eliminating
fixed errors in the code (corrective maintenance), and optimizing the code
for both the functional and the non-functional requirements (perfective
maintenance).

318 V. Andrikopoulos et al.

• Modernization. Modernization through service-enablement of legacy appli-
cations and/or repository systems usually becomes desirable after several
years of continued maintenance, weakening the technical quality, e.g., flex-
ibility, of the legacy systems.
Basically, legacy system modernization can be achieved in two orthogo-
nal manners. Firstly, legacy system may be renovated by firstly packaging
them as services (encapsulation), and subsequently integrating it with new
applications. Some authors refer to this approach to as access/integration
in place [110], or black-box modernization [117]. The second, fundamen-
tally different, way of modernizing the legacy system is to transform it
into a new service-enabled application. Transformation requires a detailed
understanding of the legacy system to allow legacy code and data to be
converted, whereas integration merely demands abstract knowledge about
the external services of a legacy system to integrate them with modern sys-
tem components. Hence, transformation is considered to be an invasive,
and integration a non-invasive strategy.
In particular, transformation of legacy systems constitutes moving a source
(the legacy system) to a new, target application. As such, transformation
involves the examination and reconstitution of an enterprise information
system according to state-of-the-art engineering techniques. Transforma-
tion may be realized with (a combination of) several techniques, including:
source code translation, program and data restructuring, reverse engineer-
ing, and re-targeting. Source code translation involves transforming old
code into a new version that is written in another, contemporary pro-
gramming language, or a newer version of the same language. For ex-
ample, systems may be converted from COBOL-II into Object-Oriented
COBOL [66]. Program restructuring refers to correcting structural flaws
to the code, e.g., infinite loops in code whilst data restructuring involves
refreshing the data-structure of legacy data files and/or databases. Reverse
engineering entails the recovery and analysis of a legacy system to extract
an abstract description of the system components and their relationships.
Lastly, re-targeting of legacy systems constitutes the transformation of the
systems to another platform. An in-depth treatment of these transforma-
tion techniques falls outside the scope of this report, but may be found
in [99].
To implement the encapsulation and integration strategy it suffices to re-
create shallow understanding of the abstract services that are offered by
legacy systems, databases or user interfaces. In particular, legacy applica-
tions and database repositories may be encapsulated and accessed using
adapters, allowing new application components to co-exist with encapsu-
lated legacy systems. Screen scrapers constitute an encapsulation tech-
nique to reface archaic, mostly textual, user interfaces.

• Replacement. Replacement implies rebuilding an application from scratch.
Assembling third party components, customizing standard packages (e.g.,

8 Service Engineering 319

ERP solutions), in-house development or a mixture of these development
practices may be employed to realize this strategy.
Despite the fact that this strategy may at first sight seem very attrac-
tive to management as it holds the promise of one shared corporate data
model using the newest technologies and leads to a fast discontinuation of
redundant applications and repository systems, practice has taught that
the replacement strategy bears large risks and many unpredictable pit-
falls. Firstly, costly and complex data and code conversions have to be
made in order to save past investments in legacy systems. Avoiding ex-
pensive downtime of the existing enterprise application is often a difficult
hurdle. Secondly, upfront it is usually not possible to guarantee that the
new system will outperform the existing application in terms of both func-
tionality and extra-functional properties such as security and robustness
(transactions). Nascent technologies may at first seem to offer tantalizing
possibilities, but may not yet be ready for prime-time implementations.

• Phase Out. The most rigorous enterprise application approach possible
is to discontinue the enterprise application. This imposes the supporting
business process also to cease to exist.

Service-Enabling Legacy Applications

A key challenge of service design is to be able to resurrect and rehabilitate
preexisting enterprise assets into modern services that can smoothly operate
with novel business processes. In that sense, service-enabling legacy applica-
tion falls under the category of modernization, as discussed in the previous
section. Nevertheless, the challenges and opportunities created by the intro-
duction of SOA into the enterprise level require further examination of the
interaction between legacy systems and services. In particular, service enable-
ment of these systems can be achieved through two key techniques:

Firstly, redevelopment requires re-engineering the existing asset from
scratch, which is unfortunately in many cases a too expensive and risky en-
deavour, if not unfeasible. This is especially the case for legacy systems that
should be modernized into service-oriented systems, having critical charac-
teristics such as continuous availability. Wrapping is a technique to surround
existing data, programs and interfaces with new interfaces. Wrapping entails
a rather popular approach towards modernization since it is conceptually sim-
ple, requiring limited development costs and preserving past investments in
pre-existing assets. On the downside, it unfortunately comes with some serious
drawbacks such as decreased performance and architectural erosion. There-
fore, wrapping as a legacy modernization should be applied carefully, pre-
serving the architecture and maintaining the overall quality of the migrated
system. Still, wrapping techniques can be successfully applied, e.g., to export
the functionalities of interactive systems towards SOAs [28].

The second modernization technique involves migration of the legacy sys-
tem into an updated and/or extended target software (application) system

320 V. Andrikopoulos et al.

designed, architected and coded in a modern development and deployment en-
vironment. Migration of legacy software has caught a lot of attention in the re-
search and industrial community. E.g., an approach tailored for the migration
of supervisorymachine control architectures has been presented in [45]. Model-
driven architecture migration is defined by transformation rules in terms of
patterns associated with the source and target meta-models. Further work
at the architecture level, but aimed at the migration towards web-based sys-
tems is provided in [120]. Further examples are [39, 51]. These approaches are
mainly based on implementation-level architecture reconstruction and/or on
the documentation of the technical solution. These techniques assume that the
architectural decisions, drivers and rationale are directly accessible by asking
people. Unfortunately, and especially for legacy systems that live for decades,
have deteriorated, and lack any documentation, such invaluable know-how is
either forgotten or has left the company [96]. The necessary know-how must
be rebuilt, and existing legacy components must be analyzed in a disciplined
way to assess if their functionality can be successfully exposed as services [67].

In current business practices, modernization of pre-existing enterprise as-
sets is leveraged with SOA by placing a thin SOA/WSDL veneer around them,
while leaving the underlying code and data untouched. Though this may work
for simple and small enterprise applications, this is by no means sufficient for
developing large-scale, industrial applications. Unless the existing enterprise
assets are naturally suitable for use as a Web service – and most are not –
it takes serious thought and redesign to properly deliver an enterprise assets
functionality through a Web service.

In ([112], [111]), a meet-in-the-middle legacy modernization methodology
is introduced that allows to selectively integrate those parts of legacy appli-
cations that are still in line with the modern business policies and objectives,
while constructing new services that are not sufficiently supported by ex-
isting enterprise assets in general, and legacy applications in particular. The
suggested SOA-enabled methodology combines forward engineering of service-
enabled business processes with reverse engineering of legacy applications, for
the purpose of selective encapsulation/integration. This methodology, named
BALES, has been validated and explored by a comprehensive case study that
has been drawn from a real-world project at the Dutch Department of De-
fense that integrated fragments of an existing proprietary material resource
planning package into a modern service-enabled application.

Evolution and Maintenance

In the lifecycle of software the development of the first version is only a minor
part: evolution and maintenance cover the majority of the software lifecycle.
System maintenance is the process of providing service and maintenance ac-
tivities needed to use the software effectively after it has been delivered. The
objectives of system maintenance are to provide an effective product or ser-
vice to the end-users while correcting faults, improving software performance

8 Service Engineering 321

or other attributes, and adapting the system to a changed environment. All
changes for the delivered system should be reflected in the related documents.
Lientz and Swanson [69] categorized maintenance activities into four classes
(the classification is in the Standard IEEE 610.12[38]):

Adaptive adapting software to changes in the software environment
Perfective managing new or changed user requirements
Corrective fixing errors
Preventive preventing problems in the future

Only corrective is ’traditional’ maintenance, the others can be considered soft-
ware ’evolution’. Often, new technologies are proposed and introduced with-
out consideration of what happens when the software has to be changed. If
such innovations are to be exploited successfully, the full lifecycle needs to
be addressed, not just the initial development. For example, object oriented
(OO) technology was considered to be ’the solution to software maintenance’
[18], but empirical evidence shows that OO created its own new maintenance
problems, and has to be used with care (e.g., by keeping inheritance under
control) to ensure that maintenance is not even more difficult than for tradi-
tional systems.

Evolution and Maintenance in CBSE

Development of a software system from commercial components involves new
issues in maintenance, evolution, and management system. Component-based
systems must deal evolving user requirements, react to failures in the system
or to changes in the operation environment, and managers must be able to
monitor and control the deployed system. Traditional maintenance involves
observing and modifying lines of source code. However, in component-based
systems, the primary unit of construction is often a black-box component; the
custom developed source code is typically used to tailor the components and
integrate them together: maintenance of these systems is restricted to recon-
figuring and reintegrating components. Wu and Offut [119] proposed the use
of UML diagram, for corrective maintenance of component based software, to
represent the changes on a component. The research of Casanova et al. [29]
illustrates the use of multi-dimensional libraries to manage the versions; more-
over to track the dependencies among the components in a system is proposed
to use a configuration model; the use of metrics on the models and the doc-
umentation for the component is a support for maintenance and evolution of
the components. One of the advantages of using components is that their cost
is amortized over many users. Although this provides many advantages, it also
means that the system builder is just one of many voices requesting changes
or modification to the underlying components. When building a component-
based system, system builders must consider maintainability and evolvability
during two important phases of construction. The first is during evaluation
and selection because the components used to build the system directly im-
pact the maintainability of the system. The second phase is the design of the

322 V. Andrikopoulos et al.

component infrastructure. The approach used to integrate components deter-
mines the flexibility of the system, which directly impacts its evolvability.

Evolution and Maintenance in SOA

Service oriented systems differ from traditional systems so new issues have
to be addressed in maintenance and evolution activities. Service oriented sys-
tems are applications satisfying the needs of a wide variety of customers and
businesses. Examples of their use may be found in B2B and B2C applica-
tions, e-learning, and so on. Web services are highly vulnerable and subject to
constant change. Hence, they offer a novel challenge to software engineering.
From the evolution and maintenance perspective, there are many things that
must be examined. The diversity of service provider and consumer often using
different programming languages in their applications, the presence of third
party services, the high dynamicity of the environment and the shorter cycle
releases needed to react to changing business needs open new challenges in
the process of maintenance and evolution. In particular, since a service may
be shared by different consumers, it must have been identified the responsible
for the maintenance, moreover could be happen that different requirements
are desired from different business unit. In a service-oriented scenario, users
just invoke a service, without having control on it. So, the service provider can
decide to maintain the service, and the user could not be aware of that. For
example if inputs and outputs are not affected, the service provider could add
new features without advertising the changes. However, the change made could
alter the service behavior. Moreover, the service provider could optimize the
source code of the service causing a variation in the service’s non-functional
properties. An optimization could improve a non-functional property while
worsening another; even an improvement of some Quality of Service (QoS)
attributes (e.g., the response time) may not be desirable since it may cause
unwanted effects in the whole system behavior. Moreover, any optimization
could introduce faults, thus varying the service functional behavior as well.

Obviously the maintenance process has to be slightly adapted to manage
investigation of problems and impact analysis which have made across several
collaborating applications belonging to different organizations. For example
corrective maintenance has in SOA different implications: when an error oc-
curs in a service based application, a maintenance activity could be the selec-
tion of a different service in the composition, but this could not be desirable
by all the users. Moreover, while roles that are derived from the standard
maintenance offer a starting point, a number of tasks in SOA environments
are different from those of traditional maintenance tasks and therefore require
a different set of roles. Kajko et al. [53] proposed to create a new role of a ser-
vice owner responsible for evolving and maintaining high level Web services.
Finally, it must be considered that the failure of a Web service may affect the
productivity of other organizations. To this aim Kaijko et al. [53] proposed
a general framework (SERVIAM Maintenance Framework) for evolving and
maintaining Web services.

8 Service Engineering 323

Adaptation and Evolution

Evolution is related to the adaptation aspects: adaptation is a process of mod-
ifying Service-Based Application in order to satisfy new requirements and to
fit new situations dictated by the environment on the basis of Adaptation
Strategies designed by the system integrator. If an application is designed to
be adaptable, adaptation can be fired by user requirement changes or envi-
ronment changes without requiring change in the source code. Evolution on
the other hand in the context of SBAs [86], refers to the continuous process
of development of a service through a series of consistent and unambiguous
changes (created by adaptation or the environment of the SBA), expressed
through the creation and decomission of different versions of the SBA.

8.4.2 Business Process Methodologies

A business process methodology (please refer to section 2 for further details) is
a formal and structured description of a comprehensive approach to organizing
companies around processes that can be applied to the incremental design and
improvement of business processes. An important characteristic of a business
process methodology is that it focuses only on the design or improvement of
a business process, and on measuring processes and redefining processes and
not on the development of a software system. A business process methodology
is used for business process centric projects ranging from incremental process
improvement to full functional transformation.

There are several established business process methodologies, which in-
clude the Rummler-Brache-PDL Methodology [95], the Define, Measure, An-
alyze, Improve, and Control methodology http://www.isixsigma.com/me/

dmaic/ and the various methodologies of the various vendors, e.g., ARIS which
is heavily focused on software development, but it is also widely used by busi-
ness process analysts, especially when they are working on company ERP-
centric projects.

DMAIC Methodology

Probably the best known and most widely used methodology is Six Sigma’s
DMAIC (Define, Measure, Analyze, Improve, and Control) which is widely
used by Six Sigma practitioners today. The five steps of the DMAIC method-
ology are briefly described below:

Define During this first step in the DMAIC methodology, it is important to
define specific goals in achieving outcomes that are consistent with both
an organization’s customer’s demands and with its own business’ strategy.
In essence, you are laying down a road map for accomplishment.

Measure In order to determine whether or not defects have been reduced,
base measurement is needed. In this step, accurate measurements must
be made and relevant KPIs must be collected so that future comparisons
can be measured to determine whether or not defects have been reduced.

http://www.isixsigma.com/me/dmaic/
http://www.isixsigma.com/me/dmaic/

324 V. Andrikopoulos et al.

Analyze Analysis determines the relationships and the factors of causality.
When trying to understand how to fix a problem related to a business
process, cause and effect is extremely necessary and must be considered.

Improve Improvement relies on upgrading or optimizing an organization’s
business processes, based on measurements and analysis that can ensure
that defects are lowered and processes are streamlined.

Control This is the last step in the DMAIC methodology. Control ensures
that any variances stand out and are corrected before they can influence
a process negatively by causing defects. Controls can be in the form of
pilot runs to determine if the processes are capable and then, once data
are collected, a process can transition into standard production. However,
continued measurement and analysis must ensue to keep processes on
track and free of defects below the Six Sigma limit.

All steps rely on analysing each new business process as if it were unique. One
begins by defining the scope of the process to be analysed, and then proceeds
to decompose the process, identifying its major sub-processes, and then the
sub-processes of those, identifying their major activities, and so on down to
whatever level of granularity the designer chooses. Once the process is laid
out in detail, the business analyst usually considers how to change it.

Supply Chain Operations Reference Methodology

A second-generation approach to business process redesign began to emerge
a few years ago. This approach was proposed by the Supply Chain Coun-
cil www.supply-chain.org who combined the expertise of supply-chain pro-
fessionals across a broad cross-section of industries to develop best-in-class
business practices and design a specific methodology tailored to the analy-
sis of supply chain processes. Second generation software is usually tailored
for specific industries or niche markets. The SCC named this second gener-
ation methodology the Supply Chain Operations Reference (SCOR) Frame-
work [46]. SCOR is a business process methodology built by, and for, supply
chain analysis and design. SCOR is a cross-industry, standardized, supply-
chain reference model that enables companies to analyze and improve their
supply chain operations by helping them to communicate supply chain in-
formation across the enterprise and measure performance objectively. SCOR
also assists enterprises with identifying supply chain performance gaps and im-
provement objectives and influences the development of future supply chain
management software. SCOR provides standard definitions of measures and
procedure for calculating the metrics. SCOR as a business process reference
model contains [54]:

• Standard descriptions of management practices.
• A framework of relationships among the standard processes.
• Standard metrics to measure process performance.
• Management practices that produce best in class performance.

www.supply-chain.org

8 Service Engineering 325

• Standard alignment to features and functionality.

The SCORmodel depicts the supply-chain from a strategic perspective. It pro-
files the enterprise-wide business scope, it establishes the process boundaries,
and it portrays the interrelationship of activities within the SCOR structure.
This end-to-end business process model includes the primary activities by
which business partners provide exceptional service to their customers, and it
serves as a navigational tool and starting point to access all lower-level work-
flow models. The SCOR model consists of five basic processes: Plan, Source,
Make, Deliver and Return [46]. In addition to these basic processes, there are
three process types or categories: Enable, Planning and Execute. The SCOR
modelling approach starts with the assumption that any supply chain process
can be represented as a combination of the five basic processes. The Plan pro-
cess balances demand and supply to best meet the sourcing, manufacturing
and delivery requirements. The Source process procures goods and services
to meet planned or actual demand. The Make process transforms product to
a finished state to meet planned or actual demand. The Deliver process pro-
vides finished goods and services to meet planned or actual demand, typically
including order management, transportation management and distribution
management. The Return process is associated with returning or receiving
any returned products.

At the core of the SCOR model comprises four levels of processes that
guide supply chain members on the road to integrative process improvement
[46]. These are shown in Figure 8.22. Level 1 describes supply chain processes
at the most general level. It consists of the four key supply chain process
types Plan, Source, Make, and Deliver, and assumes that all supply chains are
composed out of these four basic processes. In other words, complex supply
chains are made up of multiple combinations of these basic processes.

Level 2 defines 26 core supply chain process categories that were estab-
lished by the SCC with which supply chain partners can jointly present their
ideal or actual operational structure. Level 2 provides for variations in the
Level 1 processes. These are not in fact sub-processes, but variations in the
way the processes can be implemented. Each of the Level 1 processes cur-
rently has three variations. In analysing a process, an analyst first decides
that there is a sourcing process (Level 1 process), and then decides which of
three (Level 2) variations of sourcing process it is. For example, in the case of
Level 1 Source process, the Level 2 variations are S1: Source Stocked Prod-
ucts, S2: Source Made-to-Order Products, or S3: Source Engineered-to-Order
Product. Figure 8.22 shows all of the four basic SCOR Level 1 processes with
current Level 2 variations inside their respective Level 1 process. Each Level
2 process is further defined by a set of sub-processes or activities that define
the basic sequence of steps involved in implementing the process. In fact, in
SCOR, the Level 3 processes are sub-processes of the Level 1 processes, and
are the same, no matter the variation. Level 3 provides partners with infor-
mation useful in planning and setting goals for supply chain improvement.

326 V. Andrikopoulos et al.

Fig. 8.22. Levels of SCOR Processes (Source: [46])

Processes in the first three levels of the SCOR framework serve as the foun-
dation for the development of Level 4 processes. Level 4 processes focus on
implementation of supply chain process improvement efforts and are company
specific practices designed to achieve and maintain competitive advantage in
the industry. Level 4 processes are beyond the scope of the SCOR framework.

The SCOR methodology is divided in six broad phases:

1. Define the Supply Chain Process: During the first phase existing processes
are analyzed. This effort includes decisions about the number and scope
of the supply chain processes to be examined.

2. Determine the Performance of the Existing Supply Chain: Once the ex-
isting supply chain process is scoped, it can use historical data to define
how the existing supply chain is performing. In addition, the performance
of a supply chain can be compared with benchmarks to determine how its
processes measure up against similar processes in similar industries.

3. Establish Supply Chain Strategy, Goals and Priorities: Once the perfor-
mance of an existing supply chain is determined, business analysts are in
a position to consider if the supply chain strategy is reasonable, and how
it might be improved.

4. Redesign the Supply Chain as Needed: SCOR provides tools for identifying
problems and gaps and suggests the best practices used by enterprises
within superior supply chains.

5. Enable the Redesign and Implement: Once the design is complete, the
redesign must be implemented using software and human performance

8 Service Engineering 327

improvement techniques. Then the new supply chain must be implemented
and data must be gathered to determine if the new targets are met.

The use of a framework-based business process methodology such as the SCOR
model is only possible in cases where a high-level analysis of the processes to
be analysed already exists, and where measures of process success have already
been standardized.

Evaluation of DMAIC and SCOR

In general it is possible to divide business process methodologies, such as the
ones described in the previous, into two broad categories:

1. bottom-up approaches: where analysts focus narrowly on redesigning and
improving business processes, and

2. top-down approaches: where analysts focus more broadly on reorganizing
an entire end-to-end process chain (network) and establishing a context
for business process management.

Consider for example the difference between Six Sigma’s DMAIC and the
Supply Chain Council’s SCOR methodology: DMAIC focuses on a single,
narrowly defined process - usually a sub-process or sub-sub-process. The an-
alyst measures the process and proceeds to focus on improving the quality
of the output of the process and there is little focus on how the process fits
within the larger context of an end-to-end process chain, or how the pro-
cess is managed, or measured and monitored. On the other hand, the SCOR
methodology begins by defining an enterprise’s entire supply chain, compris-
ing an end-to-end processes. Once the supply chain is defined, measures and
benchmarks are applied to determine which specific business processes within
the supply chain would yield the greatest performance improvement for the
supply-chain, as a whole.

8.5 Gaps

This chapter wants to offer an overview of the issues behind the service engi-
neering focusing on the aspects inherited by the classical software engineering.

In summary, section 8.3 classified Service Oriented Computing methods,
techniques and tools according to a proposed service lifecycle model (Figure
8.4). This model can be viewed in two stages: the development stage on the
right hand side, and the adaptation stage on the left-hand side. Moreover,
the various SBA life-cycles are, in summary, discussed. It has to be noted
that each of these can cope with the full-blown development of a service,
but due to the fact that the life-cycle of the service model clearly requires an
adaptation phase we questioned whether the adaptation phase is identified and
included in these models. In addition to that, we also need to ensure that the

328 V. Andrikopoulos et al.

requirements, design, construction, deployment, provisioning, operation and
management phases take the potential adaptation of services into account
when they are being undertaken in the first place. Furthermore, there are
governance, quality assurance, discovery and SLA negotiation issues that need
to be considered, and these also need to be included in the life-cycle model.

Two major conclusions can be drawn after the presentation of the various
life cycle methodologies:

1. Almost all methodologies have phases that correspond to right hand cycle
of Figure 8.4. In that sense, our proposed life cycle is a fit model for
representing the various stages of the service life cycle.

2. Most of the existing methodologies lack either partially or completely in
providing for the left hand part of our life cycle, i.e., the adaptation phases
of the SBA. This creates a number of opportunities in research towards
that direction.

Section 8.4 on the other hand presented in brief some of the major approaches
in classical software engineering that have been applied with various degrees of
success to SBA engineering. One of the most obvious candidates towards this
direction is CBSE (component-based software engineering) due to the fact that
services are the evolution of (software) components, and approaches developed
in CBSE can be easily adapted to services. However, SOAs introduce some
important issues that need to be considered: the ownership, physical location,
description, discovery, and usage models of a service are drastically different
than those of a component.

Quality assurance is an important issue for both SBA and Software Engi-
neering. Essentially, the purpose of implementing planned software processes,
following a standard like CMMI or ISO/IEC 15504, is to ensure the qual-
ity of the final product through building in quality throughout the process -
rather than discovering either at testing phase or after its release that there
are problems with the product. While it is recognized that there are many
valid reasons for not implementing the process models prescribed by these
standards, there are also efficiencies and increases in quality to be gained in
doing so, and, in particular, there are markets who require planned processes
to be in place. For example, the financial sector has commenced an initiative
to implement Banking SPICE as they have to deal with regulations such as
Sorbonnes-Oxley. In any case, SBAs as software artifacts can definitely benefit
from lessons learned in software process quality approaches.

The need for standardized processes in developing products has also been
prevalent in business process methodologies like the Rummler-Brache-PDL
Methodology, DMAIC, SCOR, and vendor specific methodogies. An impor-
tant difference though is that business process methodogies focus on the design
or improvement of a business process, and on measuring and redefining pro-
cesses, and not on the development of a software system. Nevertheless, the
challenges addressed and the solutions proposed in the business process do-

8 Service Engineering 329

main have to be taken seriously into account for the service-based computing
domain if the synergy between them is to be exploited.

In addition, due to the wide adoption of SOAs in the enterprise domain,
and the intrinsic relation between business processes and SBAs, SBA engineer-
ing should also consider the existing assets of each organization while provid-
ing solutions for leveraging its business processes. One of the major assets
that have to be taken into account is the legacy systems of the organization,
that is the relatively old, mainframe-based systems that were optimized to
accommodate the memory, disk, and other operational constraints of archaic
software and hardware platforms. Devising a balanced strategy for handling
legacy systems and (re-)aligning them with new process requirements is a
very challenging issue. A number of strategies, methodologies and tools have
been proposed by the industry, ranging from non-intrusive approaches such as
screen scraping and legacy wrapping, to more invasive ones like grafting new
designs into the outdated parts of the architecture of legacy systems. None of
them though proved to be a silver bullet that could be applied in each situ-
ation, and that is a lesson also for SBA engineering: different approaches in
developing and managing SBAs have to be examined, and the criteria based
on which the decision to apply one or more of them have to be investigated.
Finally, the service development has a set of implications for system develop-
ment and maintenance processes, in particular with respect to the necessity
of constant change driven by the shifting business needs they have to fullfil.
There are a number of issues pertaining to the effect of the evolution and/or
the maintainance of SBAs, sometimes with unforseen consequences, to their
clients.

The classical SE methodologies such as the ones that we presented do
not directly address three key elements of an SOA: services, service assem-
blies (composition), and components realizing services. These methodologies
can only address part of the requirements of service-oriented computing ap-
plications. These practices fail when they attempt to develop service-oriented
solutions while being applied independently of each other. Service-oriented de-
sign and development requires an inter-disciplinary approach fusing elements
of techniques like object-oriented and component-based design with elements
of business modeling. The challenge of SOA [85], and of SBA engineering by
extension, is to elevate service enablement beyond just technology functions.
The reality is that an SOA has limited value unless it encompasses disparate
applications and platforms, and most importantly, it moves beyond technol-
ogy and is orchestrated and controlled in the context of business processes.
Developers need to be offered a variety of different services and functions that
they can combine at will to create the right set of automated one-of-a-kind
processes that can distinctly differentiate themselves from those of competi-
tors. New processes and alliances need to be routinely mapped to services
that can be used, modified, built or syndicated. In addition, there is also a
clear need for SOA design methods that allow an organization to avoid the
pitfalls of deploying an uncontrolled maze of services and provide a solid foun-

330 V. Andrikopoulos et al.

dation for service enablement in an orderly fashion so that Web services can
be efficiently used in SBAs.

8.6 Conclusion

In the previous sections we presented in brief some of the major approaches
in ‘classical’ SE that have been applied with various degrees of success to
SBA engineering. More specifically, we discussed component-based software
engineering since approaches developed for components can be easily adapted
to services. However, SOAs introduce some important issues that need to be
considered: the ownership, physical location, description, discovery, and us-
age models of a service are drastically different than those of a component.
Consequently, quality assurance was elaborated on as an important issue for
both SBA and Software Engineering. Essentially, the purpose of implement-
ing planned software processes is to ensure the quality of the final product
by building in quality throughout the process. The need for standardized
processes in developing products has also been prevalent in business pro-
cess methodologies. The challenges addressed and the solutions proposed in
the business process domain have to be taken seriously into account for the
service-based computing domain if the synergy between them is to be ex-
ploited. Finally, the service development has a set of implications for system
development and maintenance processes, in particular with respect to the ne-
cessity of constant change driven by the shifting business needs they have to
fullfil.

References

1. jBPM Process Definition Language (JPDL), http://docs.jboss.org/jbpm
2. SeCSE Project, http://www.secse-project.eu/
3. Uddi white papers, http://www.uddi.org/whitepapers.html
4. UNSPSC. http://www.unspsc.org/
5. Web Services Distributed Management (WSDM)
6. Business process execution language for web services (2003), ftp://www6.

software.ibm.com/software/developer/library/ws-bpel11.pdf

7. Ardagna, D., Cappiello, C., Fugini, M.G., Mussi, E., Pernici, B., Plebani, P.:
Faults and recovery actions for self-healing web services, 2006. In: www 2006,
Edinburg, UK (2006)

8. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Fault tolerant
web service orchestration by means of diagnosis. In: Gruhn, V., Oquendo, F.
(eds.) EWSA 2006. LNCS, vol. 4344, pp. 2–16. Springer, Heidelberg (2006)

9. Arkin, A.: Business Process Modeling Language (BPML) (November 2002)
10. Arkin, A.: Web Service Choreography Interface (WSCI) 1.0 (Aug. 2002)
11. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern

based SOA deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

http://docs.jboss.org/jbpm
http://www.secse-project.eu/
http://www.uddi.org/whitepapers.html
http://www.unspsc.org/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf

8 Service Engineering 331

12. Arsanjani, A.: Service-oriented modeling and architecture (November 2004)
13. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.:

SOMA: A method for developing service-oriented solutions. IBM Systems Jour-
nal 47(3) (2008)

14. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and
challenges. Computer 39(10), 36–43 (2006)

15. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dy-
namo and the JBoss rule engine. In: ESSPE ’07: International workshop on
Engineering of software services for pervasive environments, pp. 11–20 (2007)

16. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 269–282. Springer, Heidelberg (2005)

17. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Devel-
oping Adapters for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

18. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap.
In: Conference on The Future of Software Engineering, New York, NY, USA,
pp. 73–87. ACM (2000)

19. Bergman, B., Klefsjo, B.: Quality From Customer Needs to Customer Satis-
faction. Studentlitteratur (1994)

20. Bieberstein, N., et al.: Service-Oriented Architecture (SOA) Compass: Business
Value, Planning, and Enterprise Roadmap. IBM Press (2006)

21. Boehm, B., Abts, C.: Cots integration: Plug and pray? Computer 32(1), 135–
138 (1999)

22. Bohmann, T., Junginger, M., Krcmar, H.: Modular service architectures: a
concept and method for engineering it services. In: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, Jan. 2003, p. 10
(2003)

23. Brodie, M.L., Stonebraker, M.: Migrating Legacy Systems: Gateways, Inter-
faces and the Incremental Approach. Morgan Kaufmann, San Francisco (1995)

24. Brodman, J.G., Johnson, D.L.: A software process improvement approach tai-
lored for small organisations and small projects. In: 19th International Confer-
ence on Software Engineering, Boston, Massachusetts, USA (1997)

25. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer,
Heidelberg (2006)

26. Brown, A.W., Johnston, S.K., Larsen, G., Palistrant, J.: SOA Development
Using the IBM Rational Software Development Platform: A Practical Guide
(2005)

27. Cai, X., Lyu, M.R., Wong, K.f., Ko, R.: Component-based software engineer-
ing: Technologies, development frameworks, and quality assurance schemes. In:
Lecture Notes, pp. 372–379. IEEE Computer Society (2000)

28. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: A wrapping ap-
proach for migrating legacy system interactive functionalities to service ori-
ented architectures. J. Syst. Softw. 81(4), 463–480 (2008)

29. Casanova, M., Van Der Straeten, R., Jonckers, V.: Supporting evolution in
component-based development using component libraries. In: CSMR ’03: Pro-
ceedings of the Seventh European Conference on Software Maintenance and
Reengineering, Washington, DC, USA, p. 123. IEEE Computer Society (2003)

332 V. Andrikopoulos et al.

30. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services
Description Language (WSDL) 1.1. W3C (2001), http://www.w3.org/TR/wsdl

31. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Smith, N., Yunker, J.,
Riemer, K.: ebXML Business Process Specification Schema Version 1.01. Tech-
nical report, UN/CEFACT and OASIS (May 2001), http://www.ebxml.org/
specs/ebBPSS.pdf

32. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kin-
caid, G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Iden-
tifying and measuring quality in a software requirements specification. In: First
International Software Metrics Symposium, Proceedings, May 1993, pp. 141–
152 (1993)

33. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime
software-fault monitoring tools. IEEE Trans. Software Eng. 30(12), 859–872
(2004)

34. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to
highly dynamic, self-adaptive service-based applications. Automated Software
Engineering 15(3-4), 313–341 (2008)

35. Dialani, V., Miles, S., Moreau, L., De Roure, D.C., Luck, M.: Transparent
fault tolerance for web services based architectures. In: Monien, B., Feldmann,
R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 889–898. Springer, Heidelberg
(2002)

36. Durvasula, S., et al.: SOA Practitioner’s Guide. Published: BEA Systems
(2007)

37. Dustdar, S., Treiber, M.: A view based analysis on web service registries. Dis-
tributed and Parallel Databases 18(2), 147–171 (2005)

38. Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard
Glossary of Software Engineering Terminology. IEEE Computer Society (1990)

39. Erradi, A., Maheshwari, P., Tosic, V.: Policy-driven middleware for self-
adaptation of web services compositions. In: van Steen, M., Henning, M. (eds.)
Middleware 2006. LNCS, vol. 4290, pp. 62–80. Springer, Heidelberg (2006)

40. Fensel, D., Bussler, C.: The web service modeling framework wsmf (2002)
41. Galin, D., Avrahami, M.: Are cmm program investments beneficial? analyzing

past studies. IEEE Software, 81–87 (2006)
42. Gallagher, B., Brownsword, L.: The rational unified process and the capability

maturity model – integrated systems/software engineering. In: RUP/CMMI
Tutorial – ESEPG (2001)

43. Ganci, J., Acharya, A., Adams, J., Diaz de Eusebio, P., Rahi, G., Strachan, D.,
Utsumi, K., Washio, N.: Patterns: SOA Foundation Service Creation Scenario.
IBM Redbooks (2006)

44. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-
based modeling of dynamically adaptive system requirements. In: 15th Annual
IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, 2008. ECBS 2008. 31 2008-April 4 2008, pp. 36–45 (2008)

45. Graaf, B., Weber, S., van Deursen, A.: Model-driven migration of supervisory
machine control architectures. J. Syst. Softw. 81(4), 517–535 (2008)

46. Harmon, P.: Second generation business process methodologies. Business Pro-
cess Trends: Newsletter 1(5) (2003)

47. Harney, J., Doshi, P.: Speeding up adaptation of web service compositions
using expiration times. In: WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pp. 1023–1032 (2007)

http://www.w3.org/TR/wsdl
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf

8 Service Engineering 333

48. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for
proactive self-adaptation of service-based applications based on online testing.
In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377,
pp. 122–133. Springer, Heidelberg (2008)

49. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading
(1989)

50. Humphrey, W.S.: Three dimensions of process improvement, part i: Process
maturity. CROSSTALK The Journal of Defense Software Engineering (1998)

51. Hutchinson, J., Kotonya, G., Walkerdine, J., Sawyer, P., Dobson, G., Onditi,
V.: Evolving existing systems to service-oriented architectures: Perspective and
challenges. In: ICWS, pp. 896–903. IEEE Computer Society (2007)

52. Jones, C.: Patterns of Software Systems Failure and Success. International
Thompson Computer Press (1996)

53. Kajko-Mattsson, M., Tepczynski, M.: A framework for the evolution and main-
tenance of web services. In: ICSM ’05: Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance, Washington, DC, USA, pp. 665–
668. IEEE Computer Society (2005)

54. Kasi, V.: Systemic assessment of scor for modeling supply chains. In: HICSS
’05: Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS ’05) - Track 3, Washington, DC, USA,
IEEE Computer Society (2005)

55. Kent, B.: Extreme Programming Explained: Embrace Change. Adison-Wesley,
Reading (2000)

56. Graham, S., Holley, K., Palistrant, J.: Effective SOA Governance (2006)
57. Kolind, J.P., Wastell, D.G.: The sei’s capability maturity model: a critical

survey of adoption experiences in a cross-section of typical uk companies. In:
McMaster, T., Mumford, E., Swanson, E.B., Warboys, B., Wastell, D. (eds.)
IFIP TC8 WG8.6 International Working Conference on Diffusion, Adoption
and Implementation of Information Technology, Ambleside, Cumbria, U.K,
pp. 305–319 (1997)

58. Küster, U., König-Ries, B., Stern, M., Klein, M.: Diane: an integrated approach
to automated service discovery, matchmaking and composition. In: WWW ’07:
Proceedings of the 16th international conference on World Wide Web, New
York, NY, USA, pp. 1033–1042. ACM (2007)

59. Lambers, L., Ehrig, H., Mariani, L., Pezze, M.: Iterative Model-Driven Devel-
opment of Adaptable Service-Based Applications. In: ASE ’07, pp. 453–456
(2007)

60. Lara, R., Corella, M., Castells, P.: A flexible model for web service discovery. In:
1st International Workshop on Semantic Matchmaking and Resource Retrieval:
Issues and Perspectives, Seoul, Korea (September 2006)

61. Lau, K.-K., Wang, Z.: A taxonomy of software component models. In: EU-
ROMICRO ’05: Proceedings of the 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, Washington, DC, USA, pp. 88–95.
IEEE Computer Society (2005)

62. Law, A., Learn, S.: Waltzing with Changes. In: Proceedings of the Agile Devel-
opment Conference, pp. 279–288. IEEE Computer Society Press, Washington,
DC (2005)

63. Lazovik, A., Aiello, M., Papazoglou, M.P.: Associating Sssertions with Business
Processes and Monitoring their Execution. In: Service-Oriented Computing -
ICSOC 2004, Second International Conference, pp. 94–104 (2004)

334 V. Andrikopoulos et al.

64. Lee, J., Kim, J., Shin, G.-S.: Facilitating reuse of software components using
repository technology. In: APSEC ’03: Proceedings of the Tenth Asia-Pacific
Software Engineering Conference Software Engineering Conference, p. 136,
Washington, DC, USA, IEEE Computer Society (2003)

65. Leszak, M., Perry, D.E., Stoll, D.: A Case Study in Root Cause Defect Analysis.
In: Proceedings of the 22 nd international conference on Software engineering,
vol. 4, pp. 428–437 (2000)

66. Levey, R.: Reengineering COBOL with Objects: Step by Step to Sustainable
Legacy Systems. McGraw-Hill, New York (1996)

67. Lewis, G., Morris, E., Smith, D., O’Brien, L.: Service-oriented migration and
reuse technique (smart). In: STEP ’05: Proceedings of the 13th IEEE Interna-
tional Workshop on Software Technology and Engineering Practice, pp. 222–
229, Washington, DC, USA, IEEE Computer Society (2005)

68. Lichtenstein, S., Nguyen, L., Hunter, A.: Issues in it service-oriented require-
ments engineering. Australasian Journal of Information Systems 13(1) (2007)

69. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-
Wesley Longman Publishing Co., Inc., Boston (1980)

70. Ma, J., Cao, J., Zhang, Y.: A probabilistic semantic approach for discovering
web services. In: WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pp. 1221–1222, New York, NY, USA, ACM (2007)

71. Macaulay, L.A.: Requirements engineering. Springer, London (1996)
72. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An Event

Calculus-Based Approach. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis
of Web Services, pp. 265–306. Springer, Heidelberg (2007)

73. Mahmood, S., Lai, R., Kim, Y.-S., Kim, J.H., Park, S.C., Oh, H.S.: A survey
of component based system quality assurance and assessment. Information &
Software Technology 47(10), 693–707 (2005)

74. Maiden, N.: Servicing your requirements. Software, IEEE 23(5), 14–16 (2006)
75. Marks, E.A., Bell, M.: Service Oriented Architecture (SOA): A Planning and

Implementation Guide for Business and Technology. Wiley, Chichester (2006)
76. Melo, W.: Rup for cmmi compliance: A methodological approach (July 2008)
77. Mitra, T.: Business-driven Development (2005), http://www-128.ibm.com/

developerworks/webservices/library/ws-bdd/index.html

78. Paulk, M., Curtis, B., Chrissis, M., Weber, C.: The capability maturity model
for software. Technical report, SE Institute Carnegie Mellon (1993)

79. Lizuka, Y., Fenton, N., Whitty, R.: Software Quality Assurance Measurement
Perspective. International Thomson Computer Press, UK (1995)

80. Business Process Modeling Notation (BPMN) Specification, Final Adopted
Specification. Technical report, OMG (Feb. 2006), http://www.bpmn.org

81. Oppenheimer, D., Patterson, D.A.: Studying and using failure data from large-
scale internet services. In: EW10: Proceedings of the 10th workshop on ACM
SIGOPS European workshop, pp. 255–258, New York, NY, USA, ACM (2002)

82. International Standards Organisation. Information technology - software pro-
cess assessment. 2, International Standards Organisation, Parts 1-9 (1998)

83. Web Services Business Process Execution Language Version 2.0 – OASIS Stan-
dard. Technical report, Organization for the Advancement of Structured Infor-
mation Standards (OASIS) (Mar. 2007)

84. Osterweil, L.: Strategic directions in software quality. ACM Comput.
Surv. 28(4), 738–750 (1996)

http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-bdd/index.html
http://www.bpmn.org

8 Service Engineering 335

85. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented
Computing: State of the Art and Research Challenges. Computer 40(11), 38–
45 (2007)

86. Papazoglou, M.P.: The challenges of service evolution. In: Bellahsène, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Hei-
delberg (2008)

87. Pautasso, C., Alonso, G.: The jopera visual composition language. Journal of
Visual Languages and Computing (JVLC) 16, 119–152 (2005)

88. Pei-Breivold, H., Larsson, M.: Component-based and service-oriented software
engineering: Key concepts and principles. In: 33rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Component Based
Software Engineering (CBSE) Track, IEEE (August. 2007)

89. Pilioura, T., Kapos, G.-D., Tsalgatidou, A.: Seamless federation of heteroge-
neous service registries. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web
2004. LNCS, vol. 3182, pp. 86–95. Springer, Heidelberg (2004)

90. Pistore, M., Marconi, A., Traverso, P., Bertoli, P.: Automated Composition of
Web Services by Planning at the Knowledge Level. In: Proc. IJCAI ’05 (2005)

91. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services
by Planning in Asynchronous Domains. In: Proc. ICAPS ’05 (2005)

92. Pistore, M., Traverso, P.: Assumption-Based Composition and Monitoring of
Web Services. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web
Services, pp. 307–335. Springer, Heidelberg (2007)

93. Reichert, M., Dadam, P.: Adeptflex: Supporting dynamic changes of workflow
without loosing control. Journal of Intelligent Information Systems 10, 93–129
(1998)

94. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Ref-
erence Manual. Pearson Higher Education, London (2004)

95. Rummler, G.A., Brache, A.P.: Improving Performance: How to Manage the
White Space on the Organization Chart, 2nd edn. Jossey-Bass, San Francisco
(1995)

96. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE
Software 19(3) (2002)

97. Santos, G.T., Lung, L.C., Montez, C.: Ftweb: A fault tolerant infrastructure
for web services. In: EDOC ’05: Proceedings of the Ninth IEEE International
EDOC Enterprise Computing Conference, pp. 95–105, Washington, DC, USA,
IEEE Computer Society (2005)

98. Schatz, B., Abdelshafi, I.: Primavera gets agile: a successful transition to agile
development. Software, IEEE 22(3), 36–42 (2005)

99. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems.
Addison-Wesley, Reading (2003)

100. Yu, S., Liu, J., Le, J.: Intelligent web service discovery in large distributed
system. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS,
vol. 3177, pp. 166–172. Springer, Heidelberg (2004)

101. Sivashanmugam, K., Verma, K., Sheth, A.: Discovery of web services in a
federated registry environment. In: ICWS ’04: Proceedings of the IEEE Inter-
national Conference on Web Services, p. 270, Washington, DC, USA, IEEE
Computer Society (2004)

102. Sommerville, I., Kotonya, G.: Requirements Engineering: Processes and Tech-
niques. John Wiley & Sons, Inc., New York (1998)

336 V. Andrikopoulos et al.

103. Stollberg, M., Hepp, M., Hoffmann, J.: A caching mechanism for semantic web
service discovery. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 480–493. Springer, Heidelberg (2007)

104. Strader, L.B., Beim, M.A., Rodgers, J.A.: The motivation and development of
the space shuttle onboard software (obs) project. Software Process ’ Improve-
ment and Practice 1, 107–113 (1995)

105. Sycara, K., et al.: OWL-S 1.0 Release. OWL-S Coalition (2003), http://www.
daml.org/services/owl-s/1.0/

106. Talwar, V., Wu, Q., Pu, C., Yan, W., Jung, G., Milojicic, D.: Comparison of
approaches to service deployment. In: 25th IEEE International Conference on
Distributed Computing Systems, 2005, ICDCS 2005, Proceedings, pp. 543–552
(June 2005)

107. CMMI Product Team. Capability maturity modelTMintegration for develop-
ment. Technical report, S. E. Institute (2006)

108. Tsai, W.T., Jin, Z., Wang, P., Wu, B.: Requirement engineering in service-
oriented system engineering. In: ICEBE ’07: Proceedings of the IEEE Interna-
tional Conference on e-Business Engineering, pp. 661–668, Washington, DC,
USA, IEEE Computer Society (2007)

109. Ulrich, W.M.: Legacy Systems Transformation Strategies. Prentice-Hall, Upper
Saddle (2002)

110. Umar, A.: Application (Re) Engineering: Building Web-Based Applications
and Dealing with Legacies. Prentice-Hall, Englewood Cliffs (1997)

111. van den Heuvel, W.-J.: Aligning Modern Business Processes and Legacy Sys-
tems: A Component-Based Perspective (Cooperative Information Systems).
MIT Press, Cambridge (2006)

112. van den Heuvel, W.-J., van Hillegersberg, J., Papazoglou, M.P.: A methodology
to support web-services development using legacy systems. In: Proceedings of
the IFIP TC8 / WG8.1 Working Conference on Engineering Information Sys-
tems in the Internet Context, Deventer, The Netherlands, pp. 81–103. Kluwer,
B.V, Dordrecht (2002)

113. Verna, K., Sivashanmugam, K., Shet, A., Patil, A., Oundhakar, S., Miller, J.:
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publica-
tion and discovery of web services. Information Technology and Management 6,
17–39 (2005)

114. Lemahieu, W.: Web Service decription, advertising and discovery: WSDL and
beyond. In: New Directions in Software Engineering, pp. 135–152. Leuven Uni-
versity Press, Leuven (2001)

115. W3C. Web Services Choreography Description Language Version 1.0 (2005),
http://www.w3.org/TR/ws-cdl-10/

116. Warren, I.: The Renaissance of Legacy Systems: Method Support for Software-
System Evolution. Practitioner Series. Springer, London (1999)

117. Weiderman, N., Northrop, L., Smith, D., Tilley, S., Wallnau, K.: Implications of
distributed object technology for reengineering. Technical Report CMU/SEI-
97-TR-005 / ESC-TR-97-005 (1997)

118. WS-Diamond. Characterization of diagnosability and repairability for self-
healing web services. Technical report, WS-DIAMOND Project IST-516933,
Deliverable D5.1 (2007)

http://www.daml.org/services/owl-s/1.0/
http://www.daml.org/services/owl-s/1.0/
http://www.w3.org/TR/ws-cdl-10/

8 Service Engineering 337

119. Wu, Y., Pan, D., Chen, M.-H.: Techniques of maintaining evolving component-
based software. In: IEEE International Conference on Software Maintenance,
0:236 (2000)

120. Zdun, U.: Reengineering to the web: A reference architecture. In: CSMR ’02:
Proceedings of the Sixth European Conference on Software Maintenance and
Reengineering, p. 164, Washington, DC, USA, IEEE Computer Society (2002)

121. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of service-oriented analysis
and design, Published: IBM developerWorks White Paper (2005)

9

Architecture Views Illustrating the Service
Automation Aspect of SOA

Qing Gu1, Félix Cuadrado2, Patricia Lago1, and Juan C. Duenãs2

1 Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
2 Dept. de Ingenieŕıade Sistemas Telemáticos, Universidad Politécnica de Madrid,
Spain

Chapter Overview. Earlier in this book, Chapter 8 provided a detailed analysis of
service engineering, including a review of service engineering techniques and method-
ologies. This chapter is closely related to Chapter 8 as shows how such approaches
can be used to develop a service, with particular emphasis on the identification of
three views (the automation decision view, degree of service automation view and
service automation related data view) that structure and ease elicitation and doc-
umentation of stakeholders’ concerns. This is carried out through two large case
studies to learn the industrial needs in illustrating services deployment and config-
uration automation. This set of views adds to the more traditional notations like
UML, the visual power of attracting the attention of their users to the addressed
concerns, and assist them in their work. This is especially crucial in service oriented
architecting where service automation is highly demanded.

9.1 Introduction

Service-oriented architecture (SOA) as an architectural style has drawn the
attention from both industry and academia. SOA-based systems (i.e., Service-
Based Applications or SBA) are constructed by integrating heterogeneous
services that are developed using various programming languages and run-
ning on different operating systems from a range of service providers. Services
are loosely coupled entities, often designed under open-world assumptions,
distributed across organizational boundaries and executed remotely at their
service providers’ environment. They require a smoother transition from de-
velopment to operation than traditional applications.

Consequently, the architecting of SBAs pose additional concerns as com-
pared to traditional software applications. Some examples of these concerns
include how to reason about a SOA design and how to represent the charac-
teristics of SOA that the design delivers, how to architect the SBA to operate
in an unknown environment, or how business processes can be supported by
means of the collaboration of multiple services.

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, pp. 339–372, 2010.

c© Springer-Verlag Berlin Heidelberg 2010

340 Q. Gu et al.

Clearly, traditional software engineering and architecting techniques, meth-
ods and tools are no longer sufficient to deliver SBAs, as they do not take into
account specificities of services, such as the need for smooth transition from de-
velopment to operation, the need to integrate third-party components, or the
possibility to be hosted by a different organization. Therefore, it is necessary
to propose new techniques that supplement the traditional models, enabling
the capture at design time of all the relevant information about those new
concerns and improving the usefulness of the architecture description.

We have chosen as the aspect under study the degree of automation of
SBAs. The current situation is that the design decisions on whether a service
can be possibility automated, its benefits and limitations, or the degree of au-
tomation are often left implicit in the architectural design and its description.
Our goal in this paper is to make them explicit and to find a notation useful
for this purpose, able to be understood for most stakeholders (including the
user if relevant to the domain).

We carried out two large case studies to learn the industrial needs in il-
lustrating services deployment and configuration automation, from now on
service automation. As a result, we broke down service automation into three
important sub-aspects, and we developed a corresponding set of architecture
views (automation decision view, degree of service automation view and ser-
vice automation related data view) that expresses the different concerns of
stakeholders who share interest in service automation.

The first perspective (the decision view) conveys the decisions about ser-
vice automation by making explicit which architecture constraints may impact
the degrees of automation, and which services are affected by each constraint.
The second perspective (the degree view) shows the degree of service automa-
tion that the service flow is expected to achieve, but not the details on how to
get it. Last, the automation-related data view contains explicit information
about the generation, management and provision of additional input that are
required from either human actors or policies.

In addition to constructing these views, we highlighted the added-value
of the graphic notations we used. We argue that this set of views adds to
the more traditional notations like UML, the visual power of attracting the
attention of their users to the addressed concerns, and assist them in their
work. Moreover, we also reflected on the relationship between the degree of
automation and the granularity of services and the applicability of these views
to SOA in general.

The reminder of the chapter is organized as follows. In Section 9.2, we
provide some background information on architecture views and management
systems for SBAs. In Section 9.3, we discuss the need of documenting SOA
design decisions and rationale in effective illustrations and present a set of
concerns that we elicited from the case studies, which points out what needs
to be illustrated in SOA architecture description. With these requirements
in mind, we present the three service automation views in Sections 9.4, 9.5

9 Architecture Views Illustrating the Service Automation Aspect of SOA 341

and 9.6. We highlight the power of visualization in Section 9.7 and we discuss
our observations in Section 9.8. We conclude the chapter in Section 8.6.

9.2 Background Information

9.2.1 Architecture Views

The architecture of a software system should be documented with the purpose
of capturing early design decisions, providing re-useable abstractions of soft-
ware systems and enabling communication of the software architecture among
stakeholders [4]. To produce relevant documentation for a software system, one
has to decide what information needs to be documented and which notations
or diagrams are suitable for representing this information. These decisions
heavily depend on who is the target reader of the documentation.

A software system typically involves multiple stakeholders that have differ-
ent concerns. For instance, the architect is concerned about the structure of
the system; the project manager is concerned about the resources (e.g., cost,
time, number of developers) needed for developing the system; and the devel-
oper has concerns about the implementation of the system. The architectural
design of the system therefore should be documented in such a way that the
concerns of each stakeholder are addressed.

Following the separation of concerns principle, software architects have
already been using multiple views for years to represent the software systems
of interest from multiple perspectives. These views facilitate the management
of the complexity of software engineering artifacts. For instance, a structure
view can be used to describe the construction of a software system (including,
e.g., components and connectors); while a data view can be used to describe
the data flow between the components. By representing the architecture of
the system in these two separate views, the software architect may focus on
the construction design of the system by using the structure view, while the
data manager may concentrate on the management of data by using the data
view.

One of the original goals behind IEEE 1471 and ISO/IEC 42010 was to
“establish a frame of reference of terms and concepts for architectural de-
scription” [5]. This frame of reference provides a basis for the community
to develop a collection of views which addresses concerns that occur com-
monly across software projects. Practitioners may directly benefit from the
application of these viewpoints in that they enable an effective architecture
description.

However, the existing reusable views are limited in the sense that they ad-
dress concerns that often appear in traditional software architectures. With
the wide adoption of recently emerged software architecture styles (like SOA),
additional concerns (often specific to the architecture styles) challenge the

342 Q. Gu et al.

reusability of the existing viewpoints. The lack of available views make prac-
titioners face difficulties to find an effective way to illustrate any new charac-
teristics introduced by any architecture style. As a result, views that enable
the illustration of specific concerns introduced by modern software architec-
ture styles are needed.

9.2.2 Management System for SBAs

Hegering has described the management of networked systems as the set of
measures necessary to ensure the effective and efficient operation of a system
and its resources, according to an organization’s goals [7]. In service-based ap-
plications the functionality is not provided by individual, monolithic elements,
but is achieved by collaboration between multiple services. In order to get this
collaboration, the management system must be aware of the participating el-
ements, deploy and configure them if necessary. This is a complex process,
because as the number of services grows, the possible combinations that must
be considered by the management system increase exponentially. On top of
that, the distribution of the participating elements over a computing network
further complicates the process. Those are common characteristics for every
SBA. However, they are not the only relevant factors. The domain-specific
characteristics of each SBA, such as the characteristics of the services, the
capabilities of the runtime resources, or the organization’s business aspects
must also be supported by the management system. It is clear that the po-
tential variation of all the factors complicates defining a general solution for
SBAs deployment and configuration.

In the field of systems management, there are two opposite approaches
for controlling the deployment and configuration process: traditional manage-
ment processes and autonomic management [9]. In traditional processes, a
human administrator is continuously in control of the change process. He or
she performs diagnostics on the system, manually defines the required changes
and controls every aspect of the execution. This approach is very costly and
cumbersome, because it implies that every activity executed by the architec-
ture must be performed or at least validated by a human actor. On the other
hand, autonomic computing promotes to automate as much as possible the
operation of the system. Ideally, completely automated closed control loops
are implemented, where the system reacts automatically to a change in the
environment, diagnoses its severity and implications and applies the required
corrections in order to restore the environment functionality. This approach
eliminates the bottleneck inherent to human operation, consequently improv-
ing scalability and efficiency of the management system.

Although autonomic control would be the most desirable approach, it is
not always feasible to achieve it, because of either technical factors (e.g., a
monitoring interface from a managed server does not provide information
about service faults so a human administrator has to manually diagnose the

9 Architecture Views Illustrating the Service Automation Aspect of SOA 343

incidences by inspecting the server and system logs) or, organizational as-
pects (e.g., manual control is preferred because the service update process
is considered critical for the organization, so an automated system cannot
have complete control over the process). For most cases an adequate balance
between traditional and autonomic management will be the right approach.
Management systems should pursue the autonomic approach to the greatest
extent possible, while respecting the requirements derived from the domain
of application.

Supporting the diversity of managed services, operation environments and
organizational aspects with the same management architecture demands a
high level of flexibility, which is pushed forward adopting a service-oriented
approach. Service orientation can offer great flexibility and agility so that the
architecture can easily adapt to the characteristics of different environments
with reduced required configuration. The Service Deployment and Configura-
tion Architecture (from this point onwards SDCA) [11] is an example of such
an approach, which is described further in Section 9.3.1.

9.3 The Requirements for Illustrating the Automation
Aspect of SBAs

The SOA paradigm promotes creating new functionality from the dynamic
combination of services provided by different stakeholders. A SBA can be
viewed as a set of dynamically combined services.

While automation in a traditional software system refers to the degree
to which the execution of the software process can be automated without
human intervention, automation in SOA systems refers to the degree to which
services, comprising the system of interest, can be executed automatically
without any human intervention. While the two definitions are quite similar,
due to a set of characteristics that differentiate SBAs from traditional software
systems [6], in service-oriented development the decision on the degree of
automation of each service is heavily influenced by (and has impact on) at
least two quality attributes.

The first quality attribute is trust, i.e., confidence (especially from the
users perspective) on the truth of what delivered or promised. SBAs are typ-
ically not fully controlled by the company: some integrated services execute
in the domain of remote, dynamically determined service providers, and can
be discovered and integrated at runtime. This means that if something goes
wrong, malfunctions might decrease the satisfaction of ones customers, and
hence influence the overall company business. Especially in traditional busi-
ness domains (like banking and services to the public) the tendency is to de-
velop applications with service-oriented technologies, but with the properties
of “old fashion” software systems: low level of automation, static integration
of services, no dynamic discovery and no dynamic composition. In the case of

344 Q. Gu et al.

required interaction with third-party services, the requirements – both func-
tional as non functional – of these and the penalties for failure, are governed
by Business Level Agreements (BLA) or Services Level Agreements (SLA).

The second quality attributes is reliability, i.e., the ability of a software
system to perform its required functions under stated conditions for a specified
period of time [3]. By automatically integrating services during execution,
reliability of the whole execution depends on various unpredictable factors, like
the correct specification of the requirements of the services to be dynamically
integrated, availability of such services, or their correct execution. If third-
party service discovery & composition is automated, the company does not
have anymore full control on the software products delivered to its customers.

It is often claimed that SBAs have the agility to adapt to customer needs
by automatically reacting to continuous changes in business processes. Con-
sequently, the more services in a SOA system can be automated (i.e., do not
need humans to make decisions for execution), the higher agility a SBA can
achieve.

Users of highly automated SBAs clearly benefit from less human interven-
tion and thus less labor costs. However, automating the execution of services
and delivering agile and reliable SBAs is not always possible (as we explained
above in the examples of trust and reliability) and poses additional concerns.
Some of the concerns relate to the decisions on the degree of service au-
tomation; while some of the concerns are related to the realization of these
decisions.

However, design decisions and their associated rationale on whether a ser-
vice can be possibility automated, the benefits and limitations of automating
a service, or how to automate a service are often either ignored or left im-
plicit in the architectural design and its description. In spite of the evidence
for the need of documenting design decisions and rationale in effective illus-
trations [10, 1] little work exists so far in the area of SOA [6]. This need
has been further highlighted in the S-Cube analysis of the state of the art
in [2], where one major challenge is in identifying and representing relevant
concerns in SBA engineering, like monitoring, self-organization and adapta-
tion. Viewpoints are mentioned as means to capture multiple perspectives on
a given SBA. Though, they are meant to aid engineering of specific systems,
whereas the corresponding architecture descriptions have not been sufficiently
addressed yet. This motivated us to investigate what the stakeholders are con-
cerned about with respect to service automation and how to address these
concerns in the architecture description.

To answer this question, we analyzed the service automation aspect of the
SDCA as well as two concrete industrial case studies where the SCDA has
been applied to. The first case study (BankFutura) describes the deployment
and configuration system of a banking organization. As for most enterprise
systems, in this case the non-functional requirements such as the criticality
of the delivered services, guaranteed performance levels, and organizational
aspects are the dominating factors for driving the decisions on the degree of

9 Architecture Views Illustrating the Service Automation Aspect of SOA 345

Obtain
Possible

Mappings

Generate
Plan

Get Available
Services

Evaluate Required
Changes

Select
Unit

Resolve
Unit

Map Units
To Nodes

Validate
Plan

Schedule Plan
Execution

Fig. 9.1. The SDCA Deployment Service Execution Flow

automation of the service execution flow. In the second case (HomeFutura)
the implementation of SDCA provides the services of multiple third-party
providers, which are presented to the end users through a service catalog,
allowing them to select the functionality they require. While the same service
execution flow is adopted in both cases, there are significant variations in the
automation related aspects, due to the impact of their domain-specific and
organization-specific constraints.

In the remaining of this section, we present an overview of the SDCA
and its industrial case studies (BankFutura and HomeFutura), focusing on
the concerns related to service automation that we have elicited from the
cases. These concerns serve as the requirements for illustrating the automation
aspect of SOA in the architecture description.

9.3.1 The Service Deployment and Configuration Architecture

The Service Deployment and Configuration Architecture (SDCA) is a flexible,
service-oriented management architecture that can address the requirements
of distributed, heterogeneous SBAs (a.o. dynamic discovery, dynamic compo-
sition, adaptation, runtime evolution). The management functions are pro-
vided by a set of services, which collaborate to identify the required changes
to the environment in order to fulfill the SBA business objectives (a.o. service
availability). SDCA Services are automated, reasoning over models represent-
ing the characteristics of the managed services and the runtime environment.
Finally, in order to adapt to the domain-specific characteristics, the specific
behavior of the services can be customized through the definition of policies
that govern the decisions taken over the process.

The objective of the SCDA is to provision new functionality (in the form
of services) by identifying and applying a set of changes to the managed
environment. This function is achieved by an execution flow consisting of the
combined invocation of nine deployment services, as shown in Figure 9.1.

A typical execution starts when an external change to the system is trig-
gered (e.g., an updated version of a service has been released and must be
deployed, or a hardware malfunction caused a server to stop working, and the
affected services must be redeployed at another node). After it is decided that

346 Q. Gu et al.

a change is necessary, the deployment service Get Available Units is invoked.
This first step retrieves the complete list of units and services currently avail-
able. The second step is the deployment service Select Unit, where one of those
available units is selected, in order to be deployed to the environment. The
unit selection criteria will be provided to the service as an external input.
After that, the deployment service Resolve Unit is invoked, where the deploy-
ment unit containing the service is analyzed, in order to find a closed set
of units satisfying all their dependencies. There might be multiple candidate
units satisfying one dependency (e.g., multiple units with minor, compatible
versions) and for those cases a criteria for selecting among them must be pro-
vided as external input. Once the complete set of units that will participate
in the operation has been identified, the deployment service Obtain Possible
Mappings evaluates the available resources from the container, and returns
for each unit the potential nodes of the environment where those can be de-
ployed. Starting with that input, the deployment service Map Units To Nodes
decides on the final destination for each one of the involved units, according
to external distribution criteria. After those mappings have been established,
the deployment service Evaluate Required Changes compares the current envi-
ronment status with the desired changes in order to obtain the set of required
changes that must be applied to it (e.g., install selected deployment units if
they are not currently running at the environment). Those changes are packed
and sorted into a deployment plan in the deployment service Generate Plan,
whose purpose is to ensure a correct execution of the list of changes, by adding
restrictions to their execution order. Defined plans can either be instantly ap-
plied to change the environment, or can be temporarily stored at a change
repository. Before being applied to the environment, plans must pass through
the deployment service Validate Plan. This step checks that the automatically
obtained plan is coherent with the environment state, and will obtain the de-
sired result. Finally, the deployment service Schedule Plan Execution receives
the accepted plan and schedules it for execution at some point in the future,
which will be also determined by an external schedule agenda.

Some of the deployment services can be completely automated as they
do not require any external intervention, such as Get Available Service and
Obtain Possible Mappings; whereas some others cannot be completely auto-
mated as external input (i.e., additional input external to the service invoca-
tion flow)(e.g., distribution criteria, unit selection criteria) are required during
the deployment process. The architect of SDCA provided services requiring
external input with certain degree of flexibility, supporting two alternatives
for their implementation. One of the solutions is to create a user interface so
that a dedicated human actor can provide the required input to those ser-
vices. Another solution is to formalize the necessary knowledge for providing
the required input in terms of policies, which can be automatically consumed
bt the deployment service. SDCA services with the format approach are called
semi-automated services whereas the latter are called policy-driven automated
services.

9 Architecture Views Illustrating the Service Automation Aspect of SOA 347

The stakeholders of the SDCA that are concerned about service automa-
tion include the SOA architect, who is responsible for defining a deployment
service flow that can support the automated provisioning of services, adapting
to the hardware characteristics of each environment; the SOA manager, who
governs the design and implementation of the SDCA, and the users of the
SDCA, who are often the SOA architects that intend to apply the SDCA to
specific domains.

Being the designer of the SDCA, the SOA architect is mainly concerned
about how to provide enough flexibility with the degree of automation, in order
to allow adaptation of the flow to specific domain requirements. Additionally,
the SOA architect is concerned about how to support the other stakeholders
in terms of service automation. SDCA users are mainly concerned about how
to customize the SDCA in such a way that domain specific constraints are
fulfilled.

The complete list of concerns of each stakeholder is presented in Table 9.1,
where each concern is described by its associated stakeholder, a description,
and a concern ID.

Table 9.1. Concerns Relevant to Service Automation in the SDCA

Stakeholder Concern ID Concern description

SOA
architect

SDCACon1 Justify whether their decisions on the degree of service
automation are reasonable.

SDCACon2 Provide enough flexibility with the degree of automation,
in order to allow adaptation of the deployment service flow
to specific domain requirements.

SDCACon3 Suggest policies that are required for assisting the deploy-
ment service flow.

SOA
manager

SDCACon4 Trace, verify and control the decisions on the degree of
service automation.

SDCACon5 Gain an overview of the degree of service automation sup-
ported by the SDCA.

SDCACon6 Gain an overview of the re-configurability of the SDCA.
SDCA Users SDCACon7 Be aware of which deployment services are domain specific

(hence customization is needed) and which ones are do-
main independent (hence no customization is necessary).

9.3.2 BankFutura: An Application of the SDCA to an Enterprise
Domaina

A Spanish banking company, called from this point on BankFutura, with sev-
eral millions of clients over the world, and more than two thousand branches,
renovates its services portfolio, which includes client services (internet bank-
ing, cashiers), internal services (for company workers at the bank offices) and
B2B services for inter-bank transactions. As those services capture the com-
pany knowledge, they are internally developed and provided, with no third
party dependencies. This is understandable, as they constitute the core of the

348 Q. Gu et al.

company business and consequently must be under full control of the com-
pany. The company services have been architected following the SOA / BPM
paradigm, in order to cope with the complexity.

The services runtime infrastructure that will replace the legacy systems
and mainframes is composed by artifacts such as relational databases, JEE ap-
plication servers, and BRM (Business Rule Managers) systems. Each artifact
of the system is presented as a banking service, hiding its implementation de-
tails and providing a uniform high-level view. Banking services are published
in directories and connected through an ESB (Enterprise Service Bus). The
complete runtime infrastructure is dimensioned and defined beforehand, in
order to support the strict non-functional requirements for the service opera-
tion, as well as adequately support the types of services that will provide the
core banking functionality.

In BankFutura, every deployed banking service must be always available,
respecting the requirements defined at the SLA, while dispatching the requests
from a potentially enormous number of consumers. Neither hardware and
software malfunction, or denial of service attacks from ill-intended actors,
should be able to disrupt the service operation, as service downtime would
imply huge monetary costs. The stability of the banking system becomes one
of the most important non-functional requirements.

Another non-functional requirement for the banking system is security.
The exchanged information of banking services is very sensible, as it contains
the financial status and personal data of the clients, so it is not only critical
for their trust but also legally protected by the personal data confidentiality
regulations. Because of that, it is fundamental to safeguard the security of
the underlying systems, and provide complete logging and traceability of the
performed operations. This way, change initiation, approval and execution
must be registered and supported by the change management architecture,
including a responsibility chain for any identified incidences.

In order to respect all these restrictions and facilitate at the same time sys-
tem evolution, the BankFutura infrastructure is replicated into several, tiered
environments (integration, pre-production and production) which present a
balance between agility of changes and criticality. The complexity and pre-
defined structure of the deployment and configuration architecture justifies
that BankFutura employs specialized staff, such as Environment adminis-
trators, for watching over the runtime health, diagnosing malfunctions and
controlling the execution of planned changes to the environment, despite the
costs the bank is incurring by keeping this staff.

The stakeholders who are concerned about service automation in Bank-
Futura include the SOA architect, the banking deployment plan creator, the
environment administrator, and the service deployment manager.

The SOA architect is responsible for applying and customizing the SDCA
so that the resulting deployment service flow can support the complete pro-
visioning of the released services to the several tiered environments of the in-
frastructure of the company. He or she is mainly concerned about automating

9 Architecture Views Illustrating the Service Automation Aspect of SOA 349

the deployment services as much as possible (moving away from handcrafted
scripts) while at the same time integrating human control and responsibility
over the complete process.

The banking deployment plan creator and the environment administra-
tor are both deployment actors in the banking deployment service flow. The
former is responsible for creating a deployment plan which will provide the
desired functionality when applied to the environment; while the latter is re-
sponsible for the correct configuration of the managed infrastructure and the
selection of the right physical node for each newly deployed service, taking
into account the additional resources consumption by each new service. Both
of them are mainly concerned about how to perform their roles in the banking
deployment service flow.

The deployment manager is in charge of supervising the execution of bank-
ing deployment service flow and ensuring that the deployed banking system
is aligned with the business objectives of BankFutura.

The detailed concerns of each stakeholder are listed in Table 9.2, where
each concern is presented with its associated stakeholder, a description, and
a concern ID.

9.3.3 HomeFutura – An Application of the SDCA to a Personal
Domain

The service aggregator of this case study (called from this point on Home-
Futura) wants to offer subscribers a large catalog of services that can be
consumed from the devices available at the digital home. The digital home
is the house of the near future, an always connected entity, provided with
network and devices to access Internet resources. It allows users to consume
a wide range of services; multimedia entertainment services, surveillance ser-
vices, e-learning services or consumer electronics control, just to mention a
few. Services are provisioned over the Internet and accessed through multiple
home devices. The specific hardware elements that will be available are con-
trolled by the end users, which can dynamically decide to acquire additional
equipment.

The ultimate goal is to create an environment that benefits end users, ser-
vice providers, and service aggregators. End users should be able to browse all
available services and subscribe to those they are interested in, automatically
accessing them without technical skills. Service providers develop and offer
services to be consumed by the end users. Service aggregators are the point
of contact with the users, managing their subscription, interacting with the
service providers, and ensuring correct and seamless service provisioning.

In this case study the deployment architecture plays a fundamental role. In
order for those services to be available, it is necessary to execute deployment
and configuration activities over the home infrastructure. The general charac-
teristics of the environment are similar to the previous case, with the required

350 Q. Gu et al.

Table 9.2. Concerns Relevant to Service Automation in BankFutura

Stakeholder Concern ID Concern description

SOA
architect

BankCon1 Justify whether their decisions on the degree of service
automation are reasonable given the specific constraints
in the BankFutura.

BankCon2 Understand what specific constraints affect each deploy-
ment services and how each constraint influences the de-
gree of service automation.

BankCon3 Analyze the possible alternatives on the degree of ser-
vice automation in order to evaluate how the deployment
service flow can react to changing requirements or con-
straints.

The
deployment
manager

BankCon4 Trace, verify and control the decisions on the degree of
service automation.

BankCon5 Gain an overview of the degree of service automation in
the BankFutura deployment service flow.

BankCon6 Ensure that the environment administrator and banking
deployment plan creator carry out the assigned tasks as
expected and are able to trace responsibility in case an
error occurs.

BankCon7 Ensure the availability of required policies that are re-
quired for the deployment services in time.

BankCon8 Ensure that the required policies for the deployment pro-
cess are aligned with the organizational goals and regula-
tions.

Environment
administrator

BankCon9 Ensure the stability of the managed environment after ex-
ecuting the deployment services.

BankCon10 Define the role and responsibility in preparing policies.
BankCon11 Define the role and responsibility in the deployment service

flow.
Banking
deploy-
ment plan
creator

BankCon12 Select the right physical node for each newly deployed ser-
vice, taking into account the reasons that led to the initial
definition of the environment topology

BankCon13 Know which services (and what version of the service)
must be made available in each environment.

BankCon14 Define the role and responsibility in the deployment pro-
cess.

operations consisting of managing services running over a distributed, hetero-
geneous infrastructure. However, the specific characteristics of this scenario
lead to a different solution. In contrast with the case study of BankFutura,
environment stability is not the dominating constraint. This is because the
domain is personal, and the services are consumed and used without warran-
tee of performance nor agreed Quality of Service expressed through BLAs or
SLAs. On top of that, guaranteeing stability is much harder, because of the
high degree of uncertainty about the specific equipment that will be available
at every moment.

Instead, the fundamental goal in HomeFutura is being able to provide the
end user with a seamless experience in the process of acquiring new services.
The user is not concerned about the technical details behind the services or
the installation process. Those aspects must be correctly managed by the
architecture, while the user is only informed about the relevant information,
like functionality, or pricing.

9 Architecture Views Illustrating the Service Automation Aspect of SOA 351

The stakeholders who are concerned about service automation in Home-
Futura include the SOA architect, the service aggregator, and the end user.

The SOA architect is responsible for defining the architecture of the digital
home service deployment system by applying the SDCA. The main concern
consists of how to provide a flexible deployment system that is able to adapt
to the available infrastructure at each home while at the same time hiding all
the technical details from the end user.

The role of a service aggregator is to manage the service catalog available
to the different users and handle the signed contracts with service providers,
ensuring that the portfolio of services offered to the users can have all their
technical dependencies correctly satisfied. The service aggregator is also re-
sponsible for providing selection policies which determine what providers /
versions for the services can be accessed by each different client.

The end user consumes the available services offered by HomeFutura, de-
manding as much variety in the services catalog as possible. The end user is
mainly concerned about the simplicity of the process of accessing the desired
functionality.

The detailed concerns of each stakeholder are listed in Table 9.3, where
each concern is presented with its associated stakeholder, a description, and
a concern ID.

Table 9.3. Concerns Relevant to Service Automation in HomeFutura

Stakeholder Concern ID Concern description

SOA
architect

HomeCon1 Justify whether the decisions on the degree of service au-
tomation are reasonable given the specific constraints in
HomeFutura.

HomeCon2 Understand what specific constraints affect each deploy-
ment service and how each constraint influences the degree
of service automation.

HomeCon3 Analyze the possible alternatives on the degree of ser-
vice automation in order to evaluate how the deployment
service flow can react to changing requirements or con-
straints.

HomeCon4 Design a highly automated deployment process, with a
minimal requirement on human intervention

The
deployment
manager

HomeCon5 Trace, verify and control the decisions on the degree of
service automation

HomeCon6 Gain an overview of the degree of service automation in
the HomeFutura deployment service flow.

HomeCon7 Ensure the policies that are required in the deployment
process are ready in time

HomeCon8 Ensure the policies that are required in the deployment
process are aligned with the organizational goals and reg-
ulations

Service
aggregator

HomeCon9 Define the role and responsibility in preparing policies.

End user HomeCon10 Participate in the deployment process the simplest way
possible

352 Q. Gu et al.

9.3.4 Summary

From the analysis of the SDCA and two industrial case studies, we observed
that service automation is especially important during design and is relevant
to multiple stakeholders in that we identified a considerable number of service
automation related concerns. Being considered, designed and implemented,
however, those concerns have not been explicitly addressed in the architecture
description.

Instead, the current architecture description of the SDCA (as well as the
two case studies) addresses the service automation related concerns in a very
abstract way. For instance, it is stated that the SDCA provides a flexible so-
lution that can be easily customized in various domain applications. However,
the information about how flexible the solution is, how easy the solution can
be applied, and how to customize the SDCA in specific domains is lacking.
Hence, there is a need to find an effective way to illustrate how the concerns
related to service automation are addressed in the architecture description.

In other words, we face the questions of what information should be docu-
mented in the architecture description and how to document it in an effective
way so that the stakeholders can easily understand it. To answer the first
question, we synthesized the concerns listed in Tables 9.1, 9.2, and 9.3. The
reason for doing so is that we noticed that a reasonable numbers of concerns
are overlapping and demanding for the same type information. For instance,
the concerns with ID SDCACon1, BankCon1 and HomeCon1 are all about
justifying the decisions on service automation but in different cases (hence
overlapping); and concerns with ID SDCACon3, BankCon7, BankCon10,
BankCon13, HomeCon7, HomeCon9 all demand for illustrating the informa-
tion that is related to generate and access policies.

After the synthesis, we identified eight main concerns that are represen-
tative for the complete set elicited from the SDCA and its two case studies.
Decision on the degree of automation covers all the concerns that are related
to the decisions on service automation and their justification ; Reconfigura-
bility in terms of automation covers all the concerns related to alternatives
on the degree of service automation; The impact of architecture constraints
on the degree of automation covers all the concerns related to domain-specific
constraints; Degree of automation covers all the concerns related to the de-
gree of automation a SBA can achieve; Accountability covers all the concerns
related to the responsibility of stakeholders; The preparation of policies cov-
ers all the concerns related to the readiness of policies; The specification of
policies covers all the concerns related to the content of policies; and Human
participation covers all the concerns related to human actors with regards to
their involvement in the deployment service flow.

Further, we noticed that some of these main concerns are inter-related.
More specifically, the first three main concerns are about decisions, alterna-
tives and constraints, which form a cause-effect-rationale relation. As such, we
decided to address all these concerns using a decision view. The next two

9 Architecture Views Illustrating the Service Automation Aspect of SOA 353

main concerns are about the degree of automation resulted from the design
and the impact of such a degree on the execution of the deployment service
flow. As such, we decided to address these concerns using a degree view.
The last three main concerns are about the policies and human participation
for enabling different degrees of service automation. Since policies and input
from human actors can both be considered as data, we decided to use a data
view to address the concerns. Hence the automation decision view, degree of
service automation view and service automation related data view illustrate
the service automation aspect for the architecting of SDCA.

The mapping between the elicited concerns, synthesized concerns and
views for addressing these concern is presented in Table 9.4.

Table 9.4. Mapping between the Elicited Concerns, Synthesized Concerns and
Views

View Main concern Concerns in
the SDCA

Concerns in
BankFutura

Concerns in
HomeFutura

Automation
decision
view

Decision on the degree of
automation

SDCACon1,
SDCACon4

BankCon1,
BankCon4

HomeCon1,
HomeCon5

Reconfigurability in terms
of automation

SDCACon2,
SDCACon6

BankCon3 HomeCon3

Impact of architecture
constraints on the degree
of automation

SDCACon7 BankCon2 HomeCon2

Degree of
service
automation
view

Degree of automation SDCACon5 BankCon5 HomeCon4,
HomeCon6

Accountability - BankCon6,
BankCon11,
BankCon14

HomeCon10

Service
automation
related data
view

The preparation of poli-
cies

- BankCon10,
BankCon7

HomeCon7,
HomeCon9

The specification of poli-
cies

SDCACon3 BankCon8,
BankCon9,
BankCon11,
BankCon13

HomeCon8

Human participation - BankCon11,
BankCon14

HomeCon10

9.4 The Automation Decision View

The automation decision view is designed to illustrate all the decisions that
have been made on the degree of service automation, the rationale behind
them, and the impact of domain specific constraints on the decisions. With
these requirements in mind, we created a set of graphic notations for con-
structing the automation decision view, as no other notation in the literature
fits to our purposes. These graphic notations are presented in Figure 9.2.

In this figure, services are represented by ovals; the three ones in the first
column represent the three different degrees of service automation that have

354 Q. Gu et al.

Rationale

Architecture
constraint

Leads to

Justifies

Domain
dependent

Domain
independent

Service that is
decided to be Policy-

driven automated

Service that is
decided to be semi-

automated

Policy-driven
automated

Semi-automated

Completely
automated

service

Decision on
automation is left

open Scope

Fig. 9.2. The Graphic Notations for the Automation Decision View

been decided. Moreover, they also indicate that alternative degrees of service
automation are not feasible or reasonable. The services in the second column
represent a decision has been made or left open among alternative degrees
of service automation. These services indicate that they can be re-configured
to an alternative degree of service automation if necessary. These two sets
of notations are meant to address the concerns of decision on the degree of
automation and reconfigurability in terms of automation.

The two notations in the third column indicate the dependency between
a degree of service automation and a specific domain. The notations in the
last column are used to illustrate the relation between decisions, architecture
constraints, and associated rationale, as well as the scope of services where
architecture constraints may have impact on. These two set of notations are
meant to address the concerns of the impact of architecture constraints on the
degree of automation.

9.4.1 The Automation Decision View for the SDCA

The automation decision view for the SDCA is presented in Figure 9.3. This
view aids the SOA architect in taking design decisions on service automation
by making explicit which architecture constraints may impact the degrees of
automation, and which services are affected by each constraint.

This view differentiates the degrees of service automation that are domain-
dependent from the ones that are domain-independent. More specifically, the
four services that are completely automated are circled with a straight edge
line, indicating that they are domain-independent in terms of automation
(SDCACon7). The other five services, however, are designed being both semi-
automated and policy-automated. As such, the SDCA offers its users the
flexibility to decide on which degree of service automation to be configured
for specific domains, based on domain-specific constraints, such as quality
attributes or characteristics of the execution environment (SDCACon7).

As an example of domain-independent decision, the deployment service
Generate Plan automatically sorts a list of operations, ensuring they are ex-

9 Architecture Views Illustrating the Service Automation Aspect of SOA 355

ecuted in a correct order. The execution of this service only requires the in-
put provided by the previous deployment service Evaluate Required Changes.
Hence, the deployment service Generate Plan can be completely automated,
independent with any domain specific constraints.

As an example of domain-dependent decision, the service Map Units to
Nodes decides the physical distribution of the participating services, among a
list of potential mappings provided by the service Obtain Possible Mappings.
Depending on the specific domain characteristics, the criteria for making those
decisions will be different, as well as the relevance of this decision (ranging
from any solution is acceptable to only one distribution is correct). Because
of those factors, this service has been designed with flexibility on its degree
of automation.

From these examples, we can see that the SOA architect can use this view
to explain why some of the services have been designed to be completely
automated while others have been designed for both semi-automated services
and policy-driven automated services (SDCACon1) and the SOA manager is
able to use this view to trace, verify and control these decisions (SDCACon4).

Highlighting the links between the architecture constraints and the deci-
sions, this view facilitates the SOA architect to show the flexibility of adapting
the SDCA to specific domain applications. It is obvious from the view that the
services whose decisions on service automation are left open, require further
re-configuration when architecture constraints become specific (SDCACon2,
SDCACon6). The users of the SDCA also benefit from this view by being aware
of the impact of certain architecture constraints on the degree of service au-
tomation.

For instance, the deployment service Select Unit aims at selecting the main
service to be deployed to the environment (and the enclosing deployment
unit). The decision on the degree of automation is mainly driven by quality
attributes of the deployed system and the technical capabilities of the deploy-
ment actor. An automated solution results in less human control; whereas a
non-automated solution requires certain skills from a deployment actor.

To give another example, the deployment service Map Units To Nodes de-
cides which physical node among the candidates will host each participating
unit. Whether such a decision can be obtained from a certain policy or has to
be controlled by a human actor is influenced by the characteristics of the envi-
ronment and the domain quality attributes. Strictly defined environments will
generally impose stricter distribution requirements, which need to be provided
by a human actor, whereas the environments defined on-the-fly generally lead
towards programmatic distribution policies such as round robin or even load
balancing.

9.4.2 The Automation Decision View for BankFutura

When applying the SDCA to BankFutura, the four completely-automated
services whose automation state is domain-independent require no further de-

356 Q. Gu et al.

cisions and hence remain being completely-automated. On the other hand,
the five services implemented as both semi-automated and policy-driven au-
tomated in the SDCA require further decisions on re-configuration based on
the BankFutura specific architecture constraints. The outcome of those deci-
sions is illustrated in the automation decision view for BankFutura, presented
in Figure 9.4.

The view shows how the domain non-functional requirements such as crit-
icality or reliability limit the degrees of service automation that BankFutura
actually can operate with, in spite of the advantages of a completely auto-
mated service execution flow. As a result, the SOA architect decided to semi-
automate most of the services to guarantee a certain degree of control over
the deployment process (BankCon1, BankCon2). The only service that was de-
cided be policy-driven automated is the deployment service Resolve Unit. An
exception was made in that case because BankFutura services are developed
and provided by the internal IT department, satisfying the business needs of
the organization and are developed according to internal policies. This sug-
gests a simpler and predictable dependency resolution activity and hence it
was decided to be automatically driven by policies rather than human actors.

As we can see the requirements of criticality or reliability as well as
their impact on the degree of service automation are highlighted in the view
(BankCon2). Not only the SOA architect can use this view to justify their
decisions on the degree of service automation satisfying the requirements of
criticality or reliability, but also the deployment manager can use it to trace,
verify and control the decisions that the SOA architect made (BankCon4).

Explicitly documenting the rationale for the decisions on the degrees of
service automation also enables the analysis of the possible alternatives on
the degree of service automation, allowing to evaluate how the deployment
service flow can react to changing requirements or constraints (BankCon3). If
BankFutura intends to reconfigure the degrees of service automation, it will be
useful to know the automation alternatives and the trade-off among them. For
instance, the services presented in Figure 9.4 are marked with a shadow if they
can be either semi-automated or policy-driven. Although the services have
been decided to implemented with either of the degrees of service automation,
they could be reconfigured to another degree if the organization deemed it
necessary (e.g., after a time of operation the organization increased its trust
in the automation capabilities of the BankFutura, and opted to increase the
degree of automation for a more efficient operation).

9.4.3 The Automation Decision View for HomeFutura

Specialized from the degree of automation view for SDCA (presented in Fig-
ure 9.5), this view presents the implemented degree of automation for Home-
Futura services.

Similar to BankFutura, the degree of automation view for HomeFutura
(presented in Figure 9.5) does not display the four completely automated

9 Architecture Views Illustrating the Service Automation Aspect of SOA 357

services that are domain independent and need no further decisions. This
view emphasizes the decisions on the degree of automation for the other five
services that are domain-dependent, as well as the domain specific constraints
that lead to these decisions.

Whereas in BankFutura environment stability is the dominant constraint,
HomeFutura aims at providing end users the flexibility to experience new
services available on the network. Consequently, HomeFutura opted for a de-
ployment solution with higher degree of automation, not only because end
users are not capable of providing technical input to the deployment pro-
cess but also because agility in the execution is required. The view presents
this rationale and shows its link with the architecture constraints(HomeCon2
influencing the decisions.

As a result, only two services that require input from end users are semi-
automated. The service Select Unit requires the end users to select the services
that they would like to experience; and the other service Validate Plan requires
the end users to approve the execution of the deployment plan (e.g., the
cost of news service, the changes to multimedia player device). The rest of
the services in the deployment process are all automated and do not require
human intervention . Similar with the decision view for BankFutura, this view
enables the SOA architect to justify the decisions and supports the deployment
manager in governing the decisions (HomeCon1, HomeCon5).

It is worth to note that three services are marked with a shadow, which
indicates that a choice has been made between semi-automation and policy-
driven automation for these services. Although policy-driven automation has
been chosen for the current deployment solution for HomeFutura, the shadow
reminds the architect that this service could be re-configured to be semi-
automated if needed (HomeCon3). For instance, after a time of operation it
turns out the service Map Units To Nodes does not provide the most optimal
mapping of the selected services to devices (due to e.g., too complicated depen-
dency graph that Map Units To Nodes cannot interpret correctly or incomplete
policy that is not able to provide sufficient information for the mapping), the
architect could decide to let a technical expert decides the mapping and hence
make Map Units To Nodes to be semi-automated. However, involving another
deployment actor (other than the end user) in the process would cause that
the user cannot instantly start to experience the new service, having to wait
for the required input from the technical expert. This way, usability and agility
of HomeFutura would be challenged.

9.5 The Degree of Service Automation View

Whereas the automation decision view emphasises the domain-specific con-
straints that lead to the decisions on the degree of service automation, the
degree view focuses on the decided degrees of service automation for the ser-
vice execution flow. As a result, only the degree of service automation that

358 Q. Gu et al.

the service flow is expected to achieve is relevant in this view, while the details
of how the decisions are made are irrelevant and should not be presented in
this view.

As denoted by the graphic notations presented in Figure 9.6, the degrees
of automation are graphically rendered by the darkness of the color assigned
to each service: the darker is the color, the higher is the degree of automa-
tion. In addition, human actors are associated to semi-automated services
with the purpose of highlighting who are expected to provide input to which
services. The sequence between services indicates the order in which the de-
ployment services are invoked. With this additional information, the period
during which human intervention is (and is not) required becomes explicit.
By illustrating that external inputs are expected to be provided by whom and
when, this view also addresses the accountability.

9.5.1 The Degree of Service Automation View for the SDCA

Applying the graphic notations presented in Figure 9.6, we constructed the
degree of service automation view for the SDCA shown in Figure 9.7.

Using this view, the SOA manager can gain an overview of the degree of
service automation supported by the SDCA, as a result of the decisions illus-
trated in Figure 9.3. More specifically, two different degrees of automation are
designed for the SDCA (SDCACon5). Deployment services that do not require
additional information are completely automated, while those needing exter-
nal information are designed to retrieve the external information either from
human actors or from policies.

9.5.2 The Degree of Automation View for BankFutura

Analogous to the SDCA, we also used the described notation to construct
the degree of service automation view for BankFutura, as it can be seen in
Figure 9.8.

The deployment manager can see from this view the three degrees of service
automation designed for the BankFutura (BankCon5). More specifically, four
services are completely automated, one is policy-driven automated and four
are semi-automated. In other words, this view shows that nearly half of the
services require human intervention, meaning that the automation degree of
the deployment process for BankFutura is relatively low.

In addition, as the semi-automated services are associated with a banking
deployment plan creator and an environment administrator, the manager may
use this view to trace the responsibility of these two human actors who are
expected to provide input during the services execution (BankCon6).

Similarly, this view points out directly for the banking deployment plan
creator and environment administrator which services are expecting their in-
put. As shown in Figure 9.8, the role of the banking deployment plan creator
is associated to the deployment services Select Unit and Map Units To Nodes,

9 Architecture Views Illustrating the Service Automation Aspect of SOA 359

indicating that as soon as the deployment service flow is initiated and the
banking deployment creator should be prepared to first make a selection on
the available units and later on to establish mapping between selected units
and physical nodes (BankCon14). On the other hand, the environment admin-
istrator is only involved in the validation and execution of the deployment
plan (BankCon11).

9.5.3 The Degree of Automation View for HomeFutura

Similar with the degree of automation view created for BankFutura, Figure 9.9
shows the designed degree of automation for each service in the deployment
process of HomeFutura.

The view visually highlights the fact that a higher degree of automation
has been designed for HomeFutura as compared to BankFutura (HomeCon4,
HomeCon6). As shown in Figure 9.9, most of the services are illustrated with
dark color (indicating that the services can execute without any human inter-
vention); while two services are in light color (indicating that human inter-
vention is needed).

The degree of service automation view for HomeFutura can also be used
to explain to the end users how they are expected to participate in the deploy-
ment process. End users can see hwo their participation consists of selecting
the home services that they would like to experience using service Select Units
and eventually to agree on the corresponding costs of consuming these services
by using service Validate Plan. This way, it can be seen how the end users are
presented only the relevant information for them, while the low level, technical
details are hidden(HomeCon10).

9.6 The Automation-Related Data View

While the degree of service automation view highlights the degree of service
automation designed for the deployment service flow, the automation-related
data view details the design from the data perspective. This way, the questions
related to the generation, management and provision of additional input (from
either human actors or policies) can be answered by the automation-related
data view.

The graphic notations that we created to construct the automation-related
data view is presented in Figure 9.10. Besides the notations for the three de-
grees of service automation, we distinguish the guidelines/rules from formal-
ized policies. While both guidelines/rules and formalized policies are relevant
to service automation, the former are used by the deployment actors to drive
the decision and the latter are directly accessed by deployment services to
achieve policy-driven automation.

The most right hand side of Figure 9.10 shows the graphic notation denot-
ing the relationships between elements in the automation-related data view.

360 Q. Gu et al.

More specifically, a deployment actor is responsible for providing an input;
such input assists the execution of semi-automated services; guidelines / rules
guide the provision of such an input; formalized policies directly assists the ex-
ecution of policy-driven automated services; and sequence between services is
also denoted. Given these details on the relationships between policies, deploy-
ment actors, and deployment services, the deployment actors can tell which
services are expecting what information from them. Moreover, it explicitly
points out which organizational guidelines or rules should this information
comply with. In this way, the deployment actors can be prepared to trans-
form this organizational knowledge to their input to services, hence facilitating
human participation.

In addition to the graphic notation, we also constructed a table template
(shown in Table 9.5) for listing the policies that are relevant to service au-
tomation in the deployment service flow. This table aids the specification of
policies in presenting all the information relevant to the policies in a structured
manner. As such, this table also aids the preparation of the policies.

Table 9.5. The Template for Automation-Related Policy Table

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of
format

9.6.1 The Automation-Related Data View for the SDCA

As the SDCA is a reference deployment management system, it does not define
concrete deployment actors or policies, as they will be specialized in specific
applications. However, in order to guide the application of the SDCA, the
SOA architect is concerned about identifying the required policies for provid-
ing the additional input to the deployment service flow. For this reason, we
constructed the automation-related policy table, using the template presented
in Table 9.5.

The automation-related policy table (presented in Table 9.6) provides de-
tailed information about all the policies, including the ones for guiding human
actors and the ones for policy-driven automated services. Using this table, the
SOA architects in specific domains can gain an overview on what type of poli-
cies might be relevant and should be prepared, as well as which format should
they be expressed when applied to the SDCA (SDCACon3).

9.6.2 The Automation-Related Data View for BankFutura

Applying the graphic notation presented in Figure 9.10, we constructed the
automation-related data view for BankFutura (shown in Figure 9.11). This
information is complemented with the BankFutura policy table, presented
in 9.7)

9 Architecture Views Illustrating the Service Automation Aspect of SOA 361

Name: string
Type: ServiceType
Provided by: Service provider
Developed by: Service developer

Service

The service retrieves all
the available service
definitions from the

repository.
It needs neither a decision
nor additional inputs, thus
is completely automated

Name: String

Quality attributes

Operator:
stakeholder

Deployment
actor

This service is able to
find a closed set of units

satisfying all the
transitive dependencies

originating from the
selected service

received as input.
However, over the
execution in some

cases it needs to decide
among several

candidate units (e.g.
multiple compatible

services). Therefore,
the degree of service

automation depends on
the characteristics of
these services (e.g.

number of developers,
number of available
services or service

complexity).

This service decides which
physical node among the
candidates will host each

participating unit. Whether
such a decision can be
obtained from a certain

policy or has to be controlled
by a human actor is

influenced by the
characteristics of the

environment and the domain
quality attributes. Strictly
defined environments will
generally impose stricter
distribution requirements,

which should be provided by
a human actor, whereas on

the fly environments
generally lead towards

general distribution policies
such as round robin or even

load balancing.

This service
determines
whether the

generated plan
achieves the

desired results
and keeps

system stability.
Depending on the

pre-dominant
quality attributes,

as well as
whether the

deployment actor
can actively

participate in the
deployment
process, a

different degree
of automation

should be
decided.

Domain specific
concerns can

affect the degree
of service

automation. In
particular, the pre-
dominant quality

attributes poses a
balance between
automation and
human control;

whereas
deployment actor

technical skills
restrict their

potential
participation over

the process. These
two constraints

impact the whole
deployment
service flow.

The service decides
the exact time that

the deployment plan
will be applied to the
environment. Based
on the characteristics
of the environment,

the relative impact of
applying the changes
differs. The greater

the number of users,
or the more critical
the environment is,
the more restrictive
scheduling will be

applied. On the other
hand, on non-critical,

low-user base
environments, plans

can be instantly
executed, removing
even the need for
additional input.

Obtain
Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

This service decides
the main service to
be deployed to the

environment (and the
enclosing

deployment unit).
The decision on the

degree of automation
is mainly driven by
quality attributes of

the deployed system
and the capability of

the deployment
actor. An automated

solution results in
less human control;

whereas a non-
automated solution

requires certain skills
from a deployment

actor.

Given the elements from the logical graph
(generated from Resolve Unit) and the
runtime nodes, this service is able to

identify all the possible physical mappings
for the participating services. There is no
decision or additional parameter required,

thus it is completely automated.

Given the mappings selected by the
service Map Units To Nodes, and
comparing them with the current
environment state, this service is

able to generate a list of deployment
actions. It can be automated as no

decision is neccesary.

Given the list of deployment
actions, this service generates a
deployment plan by evaluating

dependencies among the actions
(E.g. don’t start a service before

deploying it). No decision is
neccesary so it is automated.

Topology: Topology type
Number of tiers: string
Number of users: string
Application domain: name

Environment

 Select Unit

Resolve
Unit

Validate
Plan

Schedule Plan
Execution

Map Units
To Nodes

Fig. 9.3. The Automation Decision View for the SDCA

Table 9.6. The Automation-Related Policy Model for the SDCA

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of
format

P01 System
requirements

Describes the functionality
(services) that the target en-
vironment must provide

Select Unit - Formal/Text

P02 Unit selection
policy

Provides criteria for select-
ing among multiple candi-
date units that satisfy the
same dependency

Resolve Unit - Formal/Text

P03 Unit
distribution
policy

Provides criteria for selecting
the physical place of the envi-
ronment where each deploy-
ment unit will be installed

Map Units To
Nodes

- Formal/Text

P04 Plan
Validation
Rules

Defines a set of checks that
can identify fatal errors in
the plan definition or poten-
tial risks expressed as warn-
ings

Validate Plan - Formal/Text

P05 Environment
update policy

Controls at what periods of
time plans can be applied to
the environment

Schedule Plan
Execution

- Formal/Text

362 Q. Gu et al.

Name: Credit concession
service
Type: Composite service

Service

Stability
Criticality

Quality
attributes

Topology: Pre-
defined

Environment

Banking
deployer

Deployment
Actor

Security

Quality
attributes

Name: Financial health
service: Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Name: Retrieve client
profile
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Name: Evaluate client
financial status
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Banking
services are

developed and
provided by

the internal IT
department,
according to

internal
policies.

Because of
their

homogeneity,
it is decided to

automate
through

policies this
service since

the
dependency
resolution
activity is

simpler and
predictable.

As banking
environment topology

is predefined, the
decisions taken in

this service must take
into account the

specific objectives
and guidelines

behind the definition
of the environment

topology. Because of
the criticality of these

decisions, and the
complexity to express
the underlying criteria
for the environment

definition, it is
decided that the

deployment
plan creator should
control the service

execution.

Due to the predefined
characteristics of the
environment a human
validator with profound
environment knowledge

can provide a better
verdict than an

automated analysis.
He /She can consider
additional factors (e.g.,
organizational culture).
That factor, as well as

the critical nature of this
service, have lead to

decide that the
validation should be

controlled by a human
actor other than the plan

creator for a better
control check).

The correct time to
apply the plan differs

with the type of
environment (e.g.

changes to the
integration environment

should be applied as
soon as possible,

whereas production
can only be changed
on few reserved time

slots) and the nature of
the change. The
balance between

criticality and
immediacy of the

change can be hard to
express formally.

Therefore, this service
cannot be automated
and will be controlled

by a human actor.

Stability and
criticality

requirements
impose the

environment to be
stable and operate

correctly.
Automatic

initialization implies
allowing that the

deployment system
dynamically reacts
on changes, which

may result in
unexpected errors

that lead to
unstable

configuration.
Therefore, it is

decided that the
service selection is

controlled by a
human actor.

Deployment
actors are

familiar with
the domain
knowledge
and have
technical
expertise.
Therefore,
they are

capable of
making

technical
decisions
over the

deployment
process.

Therefore,
critical

activities can
be manually
controlleD.

The system
restricts the
access for

each type of
operation. It
is required

that the
operations
that take

place at each
step can be
traced and

responsibility
can be

assigned to
staff

members.
Therefore,

critical
activities
should be
manually

controlled.

Number of tiers: Multiple, tiered
environments (integration, pre-
production, production)
Number of users: Variable number of
system users for each tier
Application domain: Business domain

Environment

 Select Unit

Resolve
Unit

Map Units to
Nodes

Validate
plan

Schedule plan
execution

Fig. 9.4. The Automation Decision View for BankFutura

From this view the two human actors, the banking deployment plan creator
and the environment administrator, can see what types of information they
are expected to provide to which services during the service execution flow
(BankCon11, BankCon14). In addition, they can see which organization poli-
cies (or guidancerules) can be referred in order to provide the required infor-
mation (BankCon9, BankCon11, BankCon12, BankCon13).

We will use an example scenario to illustrate how BankCon10 is supported
by the data view, guiding the participation of the deployment plan creator in
the service Map Units to Nodes. In an specific environment, the environment
design document mentioned in the data view informs that only one server from
the environment infrastructure is configured in the network firewall to be re-
motely accessible from the outside; the remaining elements being protected
from outer clients. In this case, by analyzing that information, the human
will decide to assign units containing final services (which must be remotely
accessible) to the visible server, whereas the remaining elements will be dis-
tributed over the other elements, regardless of whether those servers might
also be technically capable of hosting the same types of services.

Figure 9.11 shows that the policy-driven automated service is explicitly
linked to the corresponding policy. For instance, service Resolve Unit is linked

9 Architecture Views Illustrating the Service Automation Aspect of SOA 363

Name: Multimedia Resource Center
Type: composite service

Service

Usability
Flexibility

Quality attributes

Topology: On the fly

Environment

End user

Deployment
actor

Name: Rss news reader
Type: atomic
Provided by: multiple known
external providers

Service

Name: Multimedia player
Type: atomic
Provided by: single
external provider

Service
Name: Content
downloader
Type: atomic
Provided by: multiple
external providers

Service

HomeFutura Services
are licensed by the
service aggregator

from multiple
providers. The

aggregator knows the
terms of use and

selects compatible
services with different

SLA levels,
depending on the

user profile. As the
process must

minimize human
intervention the

aggregator captures
his/her knowledge
into well-defined

policies and
implements the

service with policy-
driven automation.

The environment is
composed by home
devices without a

predetermined role,
thus imposing no

additional
restrictions over the

component
mapping. As the end

user cannot
participate in this

service because of
its technical nature,

the service is
decided to be policy-

driven automated,
applying an even
load-balancing

policy to distribute
the units.

The end
user must
approve
the plan
before its
execution.
Instead of
technical

details, the
informatio
n relevant
to the user

will be
presented

for its
approval.
Therefore,

this
service

cannot be
automated

.

The limited number of
simultaneous system

users and the low critical
nature of personal

services greatly reduces
the impact of system

changes. On top of that,
the process should be
completed as soon as

possible in order to
provide the functionality
to the user (improving

usability). Therefore, the
plan should be instantly

applied after its
approval. Since no
additional input is

required during the
execution of this service,

it is completely
automated.

HomeFutura
services are

from
different

nature and
functionality.
Since only

the end user
knows the

functionalitie
s that the
system
should

provide, this
service

cannot be
automated
and should
be carried
out by the
end user
manually.

The end
user is only
concerned
about the

functionalit
y, and is

not aware
about the
technical
details.

Therefore,
he/she

expects the
process to

be as
automated

as
possible.

Number of tiers: 1
Number of users: low
Domain: personal

Environment

Plan
Execution Select Unit

Validate Plan:
user confirmation

Map Units to
Nodes

Resolve
Unit

Validate Plan:
Technical
Validation

As the user
does not
know the
technical

details of the
deployment,

a set of
validation

rules Can be
applied to

check
whether the
operations

contained in
the

deployment
plan are

technically
correct for the

home
environment.

Human
intervention

would
create

bottlenecks
tn the

execution
of the

deployment
service.

Therefore,
in order to
improve
Usability,

the process
should be

as
automated

as
possible.

Fig. 9.5. The Automation Decision View for HomeFutura

Policy-driven
automated

Deployment Actor

Sequence between
services

 Semi-automated

Completely
automated service

Decision on
automation is left

open

Fig. 9.6. The Graphic Notation for Constructing the Degree of Automation View

Obtain Possible
Mappings

Generate Plan

Get Available
Services

Evaluate Required
Changes

Select Unit

Resolve Unit

Map Units To
Nodes

Validate Plan

Schedule Plan
Execution

Fig. 9.7. The Degree of Automation View for the SDCA

364 Q. Gu et al.

Obtain Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

Banking deployment
plan creator

Environment administrator

 Select Unit

Resolve
Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Fig. 9.8. The Degree of Automation View for BankFutura

 Select Unit

Obtain
Possible
Mappings

Generate
Plan

Validate plan: user
confirmation

Plan
Execution

Evaluate
Required
Changes

End user

Map Units to
Nodes

Resolve
Unit

Get Available
Services

Validate plan:
Technical

Correctness Check

Fig. 9.9. The Degree of Automation View for the HomeFutura

Guidelines
or rules

Formalized
policy

Guides

Sequence between
services

Assist the execution of

Policy-driven
automated

 Semi-automated

Completely
automated service

Human
Input

Deployment
actor

Fig. 9.10. The Graphic Notation for Constructing the Automation-Related Data
View

9 Architecture Views Illustrating the Service Automation Aspect of SOA 365

Obtain
Possible

Mappings

Generate
Plan

Get Available
Services

Evaluate
required
changes

Select Unit

 Resolve Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Unit
selection

policy:
latest

version

System
Requirements

Unit distribution
policy: optimize
performance,

ensure reliability

Plan
Validation

Rules

Environment
update policy:

minimize runtime
impact

Banking deployment
plan creator

Identification
of the desired

service

Selection among
the possible

candidate units Environment
administrator

Verdict on
Plan

Correctness

Decide when to
execute the

deployment plan

Fig. 9.11. The Automation-Related Data Flow View for BankFutura

to Unit selection policy indicating that the criteria for selecting among mul-
tiple candidate units defined by the policy directly influences the output of
Resolve Unit. Explicitly visualizing the dependency between the services and
their corresponding policies, the automation-related data flow model aids the
deployment manager in obtaining an overview on when certain policies are
required and which services require them during the deployment service flow
(BankCon7).

Complementary to the data view, the automation-related policy table fur-
ther details each policy presented in Figure 9.11 by noting its description, the
role that is in charge of it and the type of format for documenting the policy.
This table aids the preparation of policies as it can be used as a check list for
the deployment manager to assign tasks to some specific personnel, making
sure that the policies are in place and are expressed in the right format before
the execution of the deployment process (BankCon7).

9.6.3 The Automation-Related Data View for HomeFutura

Applying the graphic notation shown in Figure 9.10, the automation-related
data view for HomeFutura is presented in Figure 9.12. From this view, the end
users can see that they are only required to initiate the deployment process
when they want to experience new services and confirm the operation when
the selected services are ready to be deployed. More importantly, the end
users will be confident in providing this information as the data view shows
that the former is based on their own functional requirements and the latter
on their own non-functional requirements. With limited involvement in the
deployment process, the end user has full control over the selection of new
home services and the acceptance of any associated cost (HomeCon10).

As the deployment process for HomeFutura has much higher degree of au-
tomation than our previous case, it is more critical that the policies are in place
before the deployment process starts as compared to the case of BankFutura.

366 Q. Gu et al.

Table 9.7. The Automation-Related Policy Model for BankFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of format

PB01 System
requirements

Describes the business pro-
cesses that must be sup-
ported by the environment

Select
Unit

Managers Textual
Document

PB02 Unit selection
policy: Latest
version

Selects the unit with the
most recent version among
the potential candidates

Resolve
Unit

SOA
Architects

Formal/SQL
Sorting Query

PB03 Unit
distribution
policy

Defines the rationale behind
the environment definition
and the quality levels to be
sustained by the deployed
services

Map Units
To Nodes

SOA
Architect

Textual
Environment
design / SLA
Document

PB04 Plan
Validation
Rules

Checks whether the plan is
coherent with the current
state of the environment

Validate
Plan

Environment
Administra-
tor

Formal/RETE-
based rules +
Guidelines
Textual
Document

PB05 Environment
update policy:
Minimize
runtime
impact

Controls the reserved time
slows for applying changes,
and avoids overlap in the
execution of concurrent
changes

Schedule
Plan
Execution

Environment
Administra-
tor

Environment
Operation
Guidelines
Textual
Document +
Environment
Calendar

Unit selection
policy: subscription
terms, agreements

with providers.

Functional
requirements

Unit
distribution
policy: even

load balancing

Non-
functional

requirement
s

Service
selection

Confirm
operation

End user

Select Unit

Obtain
Possible

Mappings

Generate
Plan

Validate plan:
user

confirmation

Plan
Execution

Evaluate
Required
Changes

Map Units to
Nodes

Resolve Unit

Get
Available
Services

Validate plan:
Technical

Correctness Check

Plan
Validation

Rules

Fig. 9.12. The Automation-Related Data Flow View for HomeFutura

In BankFutura, there is only one policy-driven service requiring direct access
to its associated policy. The other semi-automated services require the associ-
ated policies to be well documented enough so that the deployment actors are
able to provide the required input. In HomeFutura, as shown in Figure 9.12,
there are three policy-driven services, which means that the three associated
policies should all be accessible before the deployment process starts (Home-
Con7).

Complementary to the data view, the automation-related policy table for
HomeFutura presented in Table 9.8 provides detailed information about the

9 Architecture Views Illustrating the Service Automation Aspect of SOA 367

policies illustrated in the data view. From this table, the service aggregator
can see that he or she is the main role who is in charge of the formalized
policies (HomeCon9).

Services available to HomeFutura come from different service providers,
after being licensed by the service aggregator. The aggregator knows about
their use licenses and selects compatible services with different SLA levels,
depending on the user profile. With the aggregator defining policies for solving
dependency conflicts based on the user profile, the technical knowledge of the
aggregator is transferred to formalized documents that the three deployment
services can directly access to. This not only enables these services to be
policy-driven automated, but also ensures the alignment between them and
technical requirements that are specific to HomeFutura (HomeCon8).

Table 9.8. The Automation-Related Policy Model for HomeFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled
by

Type of format

PH01 Functional
Requirements

Functionality that must be
provided from the HomeFu-
tura platform to the end
user

Select
Unit

End User Undocumented
knowledge

PH02 Unit selection
policy

Selects among the candidate
units based on the agree-
ments with service providers
and the user subscription
terms

Resolve
Unit

Service
aggregator

Subscription
Terms
Document,
Agreements
with providers
document

PH03 Unit
distribution
policy: Even
load balancing

Distributes the affected
units over the home en-
vironment attempting to
balance the load on the
computing nodes

Map Units
To Nodes

Service
aggregator

Formal: Linear
Programming
coding

PH04 Plan
Validation
Rules

Checks whether the plan
is coherent with the cur-
rent state of the environ-
ment and the subscription
terms of the end user

Validate
Plan:
Technical
Correct-
ness
Check

Service
aggregator

Subscription
Terms +
Formal/
RETE-based
rules

PH05 Non-
functional
requirements

Checks whether the con-
sumption of the selected
service complies the non-
functional requirements of
the end user

Validate
Plan: User
Confirma-
tion

End user Undocumented
knowledge

PH06 Environment
update policy:
Instant
execution

Instantly applies the plan to
the home environment

Schedule
Plan
Execution

Service
aggregator

Formal: code

9.7 The Power of Visualization

Visualization is a common technique to convey abstract information in intu-
itive ways. Representing information in terms of (a set of) graphics often more
easily draws readers’ attention and improves understandability, as compared

368 Q. Gu et al.

to pieces of text. That is why visualization has been considered as one of the
most effective ways for communication. In the same vein, effectively applying
the technique of visualization in architecture description improves the com-
munication between stakeholders; in our experience the range of stakeholders
involved in services engineering is broader than in the development of tradi-
tional applications, rendering the usage of visualization techniques as a key to
get effective communication. On the other hand, the usage of diagrams (such
as UML) well-known in the field of software architecture, while useful for tech-
nical stakeholders, results to be difficult to understand and reason with for
non-technical ones (such as users in HomeFutura).

When constructing the service automation views, we consciously design
the graphic notation to make the views intuitively understandable and to hold
readers attention steady. Some of these graphic notation have been commonly
used in architecture description, like using a symbol of person to stand for a
human actor, or using a symbol of document to stand for a policy.

In addition to these commonly used notation, we created a set of color
schema representing the different degrees of service automation. The moti-
vation behind this schema is that from the human perception point of view,
objects with dark color often make one feel heavy in weight (and easy to
sink), whereas objects with light color make on feel light (as easy to float).
As shown in the views, the degree of automation is graphically rendered by
the darkness of the color assigned to each service: the darker the color, the
higher s the degree of automation. This representation resembles an iceberg
immersed in the sea: only the top (white is the lightest color) is visible (i.e.,
the user is aware of the service and manually participates in its execution),
while the deeper the iceberg is sunk in water, the lesser visible it becomes
(i.e., accessible by users, or in other words, increasingly automated).

In the same vein, the graphic notation for the policies inherit the same
color schema. As shown in Figure 9.10, the policies for providing guidance
for deployment actors are in light color; whereas the policies for assisting
the execution of policy-driven automated services are in dark color. As such,
from the color of the policies shown in Figure 9.11, and 9.12, the reader
can have the perception of the correspondence between the degree of service
automation and policies. In addition, in both the degree of service automation
view (shown in Figure 9.7, 9.8, and 9.9) and automation-related data view
(shown in Figure 9.11, and 9.12, the completely-automated services with dark
color “sink” at the bottom, implying that they are loosely coupled with human
actors. Whereas the semi-automated services with light color “float” at the
top, implying that they are tightly coupled with human actors. As such, these
visualization techniques enable the views become self-explaining.

9 Architecture Views Illustrating the Service Automation Aspect of SOA 369

9.8 Observation

By studying the SDCA, and in particular its two industrial cases, we have
identified a set of concerns that are particularly relevant to service automation.
By constructing views to illustrate the service automation aspect, we gained
insight into the way in which service automation has been designed under
different contexts. In addition, during the course of this work, we made several
observations.

First, we noticed that the degree of service automation is also relevant to
the level of service granularity, which was not foreseen in this study. In the de-
sign of SBAs, the appropriate level of granularity of services is often regarded
of great importance and challenging. The alignment between business and IT
is often the (only) main driver for service identification due to the benefits it
might bring [8], such as the ease of comprehension of the design, the increase
of potential reuse, just to name a few. Since service granularity in nature does
not share common interests with service automation, it was not identified as
one of the concerns to be addressed by the views. However, in this work we
noticed that the service granularity, to certain extent, is also influenced by
service automation, which again makes the relevance of service automation to
SOA more evident.

In the case of HomeFutura, we noticed that the deployment service Val-
idate Plan was decomposed to two services, one is Validate plan: Technical
Correctness Check and another is Validate plan: user confirmation. The main
driver for this decomposition is that Validate Plan consists of two types of
validation that can be implemented with two different degrees of automation.
The technical validation aims to check whether the operations contained in
the deployment plan are technically correct for the home environment. This
can be done automatically, provided that the policy Plan Validation Rules
is available. Whereas the user validation aims to get approval from the end
users if they agree with the non-functional attributes associated to the select
home service. Since the end users are the only ones that have the knowledge
on their own preferences and these preferences vary from person to person, it
is not feasible to embrace this knowledge into a policy and it has to be con-
trolled directly by the end users. As a result, the deployment service Validate
plan: Technical Correctness Check validates the deployment plan from a tech-
nical perspective and is designed to be policy-driven automated; whereas the
deployment service Validate plan: user confirmation validates the deployment
plan from a user perspective and is designed to be semi-automated.

In the case of BankFutura, the deployment service Validate Plan was not
decomposed although it also consists of the technical validation and user (sys-
tem) validation. Similar with HomeFutura, Plan Validation Rules can be for-
malized as a policy that Validate Plan can directly access. The difference lies
in the fact that the non-functional requirement of the system is known by the
environment administrator and hence can also be formalized as a policy. In
this way, Validate Plan can be designed as policy-driven automated, accessing

370 Q. Gu et al.

Plan Validation Rules that consists of both the rules for technical validation
and the non-functional requirements.

From these two examples, we can see that the identification of the de-
ployment services or the level of service granularity is not only driven by the
business functionalities that they represent, but also influenced by the degree
of service automation. Despite the benefits that the business-IT alignment
may achieve, an architect sometime would decompose a coarse-grained ser-
vice into multiple fine-grained services due to different service automation
requirements. The result of decomposition might lead to a SBA with higher
maintainability and adaptability in terms of service automation but tightly-
coupled services and decreased reusability. As such, in the design of SBAs, an
SOA architect has to make a trade-off between the alignment with business
functionalities and the level of service automation.

The second observation we made is on the applicability of the views to
architecture descriptions of SBA in general. As explained by Shull et al. [12],
the sources of variability may influence the result, such as the types of projects
for which a technique is effective. For this reason, we did an analysis on the
variability of the domain and the type of architecture that we studied.

More specifically, the design of the SDCA aims at providing a reference
architecture for service configuration and management while the same time fo-
cuses on its applicability in industrial domains. We also studied the application
of the SDCA in an enterprise domain and a personal domain with completely
different characteristics. The difference between these domains contributes to
the variability of this study. Although the concerns elicited from the SDCA
and its two case studies are somehow different and represent domain-specific
interests, addressing these concerns in architecture description demands for
similar types of information. When illustrating all these types of information
in terms of the same set of graphic pictures and tables (or views), we are able
to show that all the concerns identified from each case have been addressed
in the corresponding architecture design. As a result, we are confirmed that
the views can be applied to three different domains.

However, the concerns that we identified are all related to the SDCA, both
its own design and its applications in different industrial domains. The lack of
variability in terms of the type of architecture that we studied might threat
the validity of the views in illustrating the service automation aspect of SOA
in general. For this reason, we plan to replicate the study by analyzing the
service automation aspect of various types of SOA in our future work.

9.9 Conclusion

In this chapter we have studied the different degrees of automation suitable
for services configuration and deployment on different domains (business and
home). While the initial goal was just the development of a system able to

9 Architecture Views Illustrating the Service Automation Aspect of SOA 371

perform these functions -a Services Deployment and Configuration Architec-
ture or SDCA- we discovered that the architectural concerns were affected
by the specific domain of application it was to be used for; in fact there are
several quality attributes that must be covered, but the balance between trust
and reliability for example, is specific to the domain.

The key contribution of this paper is the identification of three views that
structure and ease elicitation and documentation of stakeholders’ concerns.
The application of these three views onto the bank and the home domain
case studies clearly reflects the differences on the degree of automation for a
similar set of basic functions (provided by the services); with a lower degree
of automation at the bank domain when compared to the home domain. The
notation we have used for the description of views and decisions is simplified
with respect to available notations. This allows for a better representation
of the concepts involved in the architectural decision making by stakehold-
ers, while remaining intuitive even for non-technical ones. The expression of
usually implicit architectural knowledge allowed us getting a hint on the re-
lationship between the degree of automation and the granularity of services.
Also, the usage of the same description technique across domains revealed
commonalities between them.

The results obtained seem promising, but in order to better capture the
wide variability of service automation we plan as future work to to apply the
same process to additional Service-Based Applications, as well as applying
the approach to several more unconnected domains. This way, it would also
be interesting to validate whether different SBAs belonging to the same do-
main share specific constraints, which affect their decisions on the degree of
automation the same way.

References

1. Babar, M.A., Dingsoyr, T., Lago, P., van Vliet, H. (eds.): Software Architecture
Knowledge Management: Theory and Practice. Springer, Heidelberg (July 2009)

2. Andrikopoulos, V., Bertoli, P., Bindelli, S., Di Nitto, E., Gehlert, A., Ger-
manovich, L., Kazhamiakin, R., Kounkou, A., Pernici, B., Plebani, P., Weyer,
T.: State of the art report on software engineering design knowledge and sur-
vey of HCI and contextual knowledge. Technical Report PO-JRA-1.1.1, S-Cube
Network of Excellence (2008)

3. ANSI/IEEE. Standard glossary of software engineering terminology, std-729-
1991. ANSI/IEEE (1991)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

5. Emery, D., Hilliard, R.: Updating ieee 1471: architecture frameworks and other
topics. In: WICSA ’08: Proceedings of the Seventh Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2008), pp. 303–306. IEEE Computer
Society (2008)

372 Q. Gu et al.

6. Gu, Q., Lago, P.: On service-oriented architectural concerns and viewpoints.
In: 8th Working IEEE/IFIP Conference on Software Architecture (WICSA),
Cambridge, UK, IEEE (2009)

7. Neumair, B., Hegering, H.-G., Abeck, S.: Integrated management of networked
systems: concepts, architectures, and their operational application. Morgan
Kaufmann, San Francisco (1998)

8. van den Heuvel, W.-J., Yang, J., Papazoglou, M.P.: Service representation, dis-
covery, and composition for E-marketplaces. In: Batini, C., Giunchiglia, F.,
Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, p. 270. Springer,
Heidelberg (2001)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer
Magazine, IEEE 36(1), 40–49 (2003)

10. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about archi-
tectural knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA
2006. LNCS, vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

11. Ruiz, J.L., Dueñas, J.C., Cuadrado, F.: Model-based context-aware deployment
of distributed systems. Communications Magazine, IEEE 47(6), 164–171 (2009)

12. Shull, F.J., Carver, J.C., Vegas, S., Juristo, N.: The role of replications in em-
pirical software engineering. Empirical Software Engineering 13(2) (2008)

Correction to: Modeling andNegotiating Service Quality

Salima Benbernou, Ivona Brandic, Cinzia Cappiello, Manuel Carro,
Marco Comuzzi, Attila Kertész, Kyriakos Kritikos, Michael Parkin,
Barbara Pernici, and Pierluigi Plebani

Correction to:

and Solutions for the Future Internet, LNCS 6500,
https://doi.org/10.1007/978-3-642-17599-2_6

In the original version of this chapter, the affiliation of Barbara Pernici was incorrectly
indicated as “Tilburg University, The Netherlands”. It was corrected to “Politecnico di
Milano, Italy”

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-642-17599-2_6

M. Papazoglou et al. (Eds.): Service Research Challenges and Solutions, LNCS 6500, p. E1, 2010.
Springer-Verlag Berlin Heidelberg 2018©

Chapter “Modeling and Negotiating Service Quality”
in: M. Papazoglou et al. (Eds.): Service Research Challenges

https://doi.org/10.1007/978-3-642-17599-2__6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-642-17599-2_10&domain=pdf

	Title Page
	Foreword
	Preface
	List of Contributors
	Contents
	1 The S-Cube Research Vision
	1.1 The Internet of Services
	1.2 Cross-Cutting Research Challenges
	1.2.1 Considering Contextual Information for Service-Based Systems
	1.2.2 Cross-Layer and Pro-active Monitoring and Adaptation
	1.2.3 End-to-End Quality Provision
	1.2.4 Autonomic Service Infrastructure
	1.2.5 Concepts, Languages and Mechanisms for Agile Service Networks
	1.2.6 Fragmentation of Service Compositions and Their Coordination
	1.2.7 Coherent Lifecycle for Adaptable and Evolvable Service-Based Systems

	1.3 The S-Cube Research Framework
	1.4 The Interaction View
	1.4.1 SED Interactions with Technology Layers
	1.4.2 SED Interactions with Service Techniques & Methods Planes
	1.4.3 SAM Interactions with Technology Layers
	1.4.4 SAM Interactions with Service Techniques & Methods Planes
	1.4.5 SQ Interactions with Technology Layers
	1.4.6 SQ Interactions with Technology Planes

	1.5 The Lifecycle & Runtime Views
	1.5.1 The Lifecycle View
	1.5.2 The Runtime View

	1.6 Adaptive Services in Context
	1.6.1 Case Studies for SBA and Their Documentation Process
	1.6.2 Validation Methodology

	1.7 Chapter Conclusions
	References

	2 Business Process Management
	2.1 Introduction: Towards Business Transaction Management
	2.2 Essential Characteristics of Business Transactions
	2.2.1 Business Transaction Overview

	2.3 Requirements of a Business Transaction Language
	2.4 Illustrating Scenario
	2.5 Business Transaction Model
	2.5.1 High-Level Concepts
	2.5.2 Business Transaction Model Overview

	2.6 Initial Design of Business Transaction Language (BTL)
	2.7 Summary and Outlook
	References

	3 Service Composition
	3.1 Introduction
	3.2 Service Composition Models and Languages
	3.2.1 Service Orchestration
	3.2.2 Service Choreography
	3.2.3 Service Coordination
	3.2.4 Service Assembly
	3.2.5 Semantic Web Service Composition

	3.3 Service Composition Synthesis Approaches
	3.3.1 Model-Driven Service Composition
	3.3.2 QoS-Aware Service Composition
	3.3.3 Automated Service Composition

	3.4 Summary
	References

	4 Architectures & Infrastructure
	4.1 Introduction
	4.2 Service Infrastructures for Adaptation, Monitoring & Management of Services
	4.2.1 Introduction
	4.2.2 Self-Adaptation
	4.2.3 Self-Management
	4.2.4 Monitoring Infrastructure
	4.2.5 Adaptation Infrastructure
	4.2.6 Management Infrastructure

	4.3 Future Challenges
	4.3.1 Self-* Properties: Main Research Directions
	4.3.2 Bio-inspired Decentralized Self-Organization in Service Infrastructures
	4.3.3 Nature Inspired Models for Service Management

	4.4 Chapter Summary
	References

	5 Adaptation of Service-Based Systems
	5.1 Introduction
	5.1.1 Aims and Focus of the Chapter

	5.2 Adaptation Taxonomy
	5.2.1 Conceptual Model
	5.2.2 Adaptation Taxonomy

	5.3 Survey Results
	5.3.1 Adaptation in Business Process Management
	5.3.2 Adaptation in Service-Oriented Architectures
	5.3.3 Comparison of the Adaptation Approaches

	5.4 RelatedWorks on Adaptation in Software Systems
	5.4.1 Adaptation in Component-Based Systems
	5.4.2 Adaptation in Software Product Line Engineering

	References

	6 Modeling and Negotiating Service Quality
	6.1 QoS Specification
	6.1.1 Main QoS Artifacts
	6.1.2 QoS Taxonomies
	6.1.3 Formalisms for Modeling and Specifying QoS Characteristics
	6.1.4 Trust and Security QoS Models and Formalisms

	6.2 QoS Negotiation
	6.2.1 QoS Negotiation in Web Services and Semantic Web Services
	6.2.2 Negotiation Protocols in Grid Computing
	6.2.3 QoS Negotiation in Security

	6.3 General Observations
	6.3.1 QoS Specification Observations
	6.3.2 QoS Negotiation Observations

	References

	7 Analytical Quality Assurance
	7.1 Motivation
	7.2 Review Methodology
	7.3 Fundamentals
	7.4 Classification Framework
	7.5 Testing
	7.5.1 Test Case Generation
	7.5.2 Test Execution
	7.5.3 Testing Frameworks and Tools
	7.5.4 Online Testing
	7.5.5 Classification of Testing Techniques

	7.6 Monitoring
	7.6.1 Web Service Monitoring
	7.6.2 Process Monitoring and Mining
	7.6.3 Grid Monitoring
	7.6.4 Classification of Monitoring Techniques

	7.7 Analysis
	7.7.1 Modelling and Simulation
	7.7.2 Verification of Service Compositions
	7.7.3 Classification of Analysis Techniques

	7.8 Observations and Future Research Directions
	References

	8 Service Engineering
	8.1 Context
	8.2 Preliminary Definitions
	8.2.1 Agents and Actors
	8.2.2 Service Based Applications
	8.2.3 Types of Services

	8.3 Engineering Service Based Application
	8.3.1 SBA Life Cycles
	8.3.2 Life Cycle Phases

	8.4 Software Engineering Practices Relevant to Service-Based Applications
	8.4.1 Classical Software Engineering
	8.4.2 Business Process Methodologies

	8.5 Gaps
	8.6 Conclusion
	References

	9 Architecture Views Illustrating the Service Automation Aspect of SOA
	9.1 Introduction
	9.2 Background Information
	9.2.1 Architecture Views
	9.2.2 Management System for SBAs

	9.3 The Requirements for Illustrating the Automation Aspect of SBAs
	9.3.1 The Service Deployment and Configuration Architecture
	9.3.2 BankFutura: An Application of the SDCA to an Enterprise Domaina
	9.3.3 HomeFutura – An Application of the SDCA to a Personal Domain
	9.3.4 Summary

	9.4 The Automation Decision View
	9.4.1 The Automation Decision View for the SDCA
	9.4.2 The Automation Decision View for BankFutura
	9.4.3 The Automation Decision View for HomeFutura

	9.5 The Degree of Service Automation View
	9.5.1 The Degree of Service Automation View for the SDCA
	9.5.2 The Degree of Automation View for BankFutura
	9.5.3 The Degree of Automation View for HomeFutura

	9.6 The Automation-Related Data View
	9.6.1 The Automation-Related Data View for the SDCA
	9.6.2 The Automation-Related Data View for BankFutura
	9.6.3 The Automation-Related Data View for HomeFutura

	9.7 The Power of Visualization
	9.8 Observation
	9.9 Conclusion
	References

	Correction to: Modeling and Negotiating Service Quality

