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Preface

The present volume contains the papers accepted for presentation at the 6th
International Workshop on Internet and Network Economics (WINE), an inter-
disciplinary forum devoted to the analysis of algorithmic and economic problems
arising in the context of the Internet and the World Wide Web.

WINE 2010 was held December 13–17 in Stanford University. It was co-
located with the 7th Workshop on Algorithms and Models for the Web Graph
(WAW 2010).

In response to call for papers, the Program Committee received 95 submis-
sions. The committee conducted a thorough evaluation and electronic discussion
and eventually selected 52 papers (33 regular and 19 short papers) for inclusion
in the proceedings.

This volume contains all the accepted papers. The workshop program also in-
cludes six distinguished lectures of Daron Acemoglu (Massachusetts Institute of
Technology), Jennifer Chayes (Microsoft Research), Michael Kearns (University
of Pennsylvania), Jon Kleinberg (Cornell University), Nimrod Megiddo (IBM
Research), and Rakesh Vohra (Northwestern University).

We wish to thank the creators of EasyChair, a free conference management
system, which significantly assisted the work of the Program Committee. We
would also like to thank Google, Microsoft Research, and Yahoo! Research for
supporting WINE. Finally, we wish to thank Stanford University, especially the
staff of Stanford Computer Forum and the department of Management Science
and Engineering.

December 2010 Amin Saberi
Yinyu Ye



Conference Organization

Program Chairs

Amin Saberi
Yinyu Ye

Program Committee

Daron Acemoglu, Christina Aperjis, Moshe Babaioff, Kostas Bimpikis, Jennifer
Chayes, Ning Chen, Costis Daskalakis, Xiaotie Deng, Nikhil Devanur, Edith
Elkind, Jason Hartline, Nicole Immorlica, Ramesh Johari, Jon Kleinberg, Robert
Kleinberg, Stefano Leonardi, Mohammad Mahdian, Vangelis Markakis, Aranyak
Mehta, S. Muthukrishnan, Hamid Nazerzadeh, David Pennock, Maria Polukarov,
Tim Roughgarden, Amin Saberi, Adam Szeidl, Eva Tardos, Rakesh Vohra, and
Yinyu Ye

Local Organization

Mohammad Mahdian, AranyakMehta, Amin Saberi, Yoav Shoham, and Yinyu Ye

External Reviewers

Saeed Alaei, Adam Kalai, Ioannis Caragiannis, Aleksandrs Slivkins, Angelo
Fanelli, Ariel Procaccia, Azarakhsh Malekian, Balasubramanian Sivan, Brendan
Lucier, Bumin Yenmez, Chinmay Karande, Chris Wilkens, David Thompson,
Felix Fischer, Georgios Chalkiadakis, Georgios Piliouras, Guido Schaefer, Heiko
Roglin, Hu Fu, Ilan Lobel, Itai Ashlagi, Jiajin Yu, Jie Zhang, John Augustine,
Josh Letchford, Kejun Wang, Mahyar Salek, Michael Schapira, Mohamed Mosta-
gir, Nikolai Gravin, Nima Haghpanah, Omer Tamuz, Orestis Telelis, Paul Har-
renstein, Paul Spirakis, Pinyan Lu, Piotr Faliszewski, Qiqi Yan, Radhika Arava,
Renato Paes Leme, Samuel Ieong, Shaddin Dughmi, Shahar Dobzinski, Shayan
Oveis Gharan, Sven Seuken, Tian-Ming Bu, Utku Ozan Candogan, Vahab Mir-
rokni, Victor Naroditskiy, Viet Le Truc, Vincent Conitzer, Xia Hua, Xiaorui
Sun, Yajun Wang, Yashodhan Kanoria, Yoram Bachrach, and Yossi Azar



Table of Contents

Regular Papers

Efficient Computation of the Shapley Value for Centrality in
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Karthik V. Aadithya, Balaraman Ravindran,
Tomasz P. Michalak, and Nicholas R. Jennings

On Approximate Nash Equilibria in Network Design . . . . . . . . . . . . . . . . . . 14
Susanne Albers and Pascal Lenzner

The Efficiency of Fair Division with Connected Pieces . . . . . . . . . . . . . . . . 26
Yonatan Aumann and Yair Dombb

Collusion in VCG Path Procurement Auctions . . . . . . . . . . . . . . . . . . . . . . . 38
Yoram Bachrach, Peter Key, and Morteza Zadimoghaddam

Sequential Item Pricing for Unlimited Supply . . . . . . . . . . . . . . . . . . . . . . . . 50
Maria-Florina Balcan and Florin Constantin

The Cost of Moral Hazard and Limited Liability in the Principal-Agent
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Felipe Balmaceda, Santiago R. Balseiro, Jose R. Correa, and
Nicolas E. Stier-Moses

Specializations and Generalizations of the Stackelberg Minimum
Spanning Tree Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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Abstract. The Shapley Value is arguably the most important normative solution
concept in coalitional games. One of its applications is in the domain of networks,
where the Shapley Value is used to measure the relative importance of individual
nodes. This measure, which is called node centrality, is of paramount significance
in many real-world application domains including social and organisational net-
works, biological networks, communication networks and the internet. Whereas
computational aspects of the Shapley Value have been analyzed in the context of
conventional coalitional games, this paper presents the first such study of the Shap-
ley Value for network centrality. Our results demonstrate that this particular ap-
plication of the Shapley Value presents unique opportunities for efficiency gains,
which we exploit to develop exact analytical formulas for Shapley Value based
centrality computation in both weighted and unweighted networks. These formu-
las not only yield efficient (polynomial time) and error-free algorithms for com-
puting node centralities, but their surprisingly simple closed form expressions also
offer intuition into why certain nodes are relatively more important to a network.

1 Introduction

The Shapley Value (SV) is a fundamental normative solution concept in coalitional
games. Given a scenario where agents are allowed to realize collective payoffs through
mutual co-operation, the SV postulates a fair method to evaluate each agent’s individual
contribution. One of the many applications of the SV is in the domain of networks,
where it is used to measure the importance of individual nodes, which is known as game
theoretic network centrality [1, 2]. Although centrality plays a key role in many real-
life network applications, efficient algorithms for its measurement via the SV remain
unknown.

We now introduce the concept of “centrality”. In the networks context, it is often
paramount to determine which nodes and edges are more critical than others. Classic
examples include identifying the most important highways in a road network, the most
influential people in a social network or the most critical functional entities in a protein
network. For such applications, the concept of centrality aims to quantify the impor-
tance of individual nodes/edges in a network.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 1–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 K.V. Aadithya et al.

Conventional centrality measures1 usually work by assigning a score to each node in
the network, which in some way corresponds to the importance of that node for the ap-
plication at hand. For instance, if the application is to design an infrastructure network
(such as a power transmission network or communication network) with minimum vul-
nerability to random node failures, a conventional centrality measure might work by
analysing the consequences of failure at each individual node. The more adverse the
consequences of failure, the higher the node centrality.

Such a conventional centrality metric, however, suffers from the following
drawbacks:
1. By considering only the failure of individual nodes, it completely ignores real-world

situations where multiple nodes can fail simultaneously. For example, if the network
is so designed that no single node’s failure carries any consequence, but the failure
of certain specific pairs of nodes can bring down the entire network, the above cen-
trality metric would fail to give a higher centrality score to the nodes belonging to
these critical pairs.

2. Because each node is treated separately, the hidden assumption is that node failures
occur independently of each other. As a result, real-world phenomena such as cas-
cading node failures, that have been known to precipitate widespread disruption in
a very short time [4], are outside the scope of this centrality analysis.

In short, conventional centrality measures fail to recognize that in many network ap-
plications, it is not sufficient to merely understand the relative importance of nodes as
stand-alone entities. Rather, the key requirement is to understand the importance of each
node in terms of its utility when combined with other nodes [5]. For instance, in the above
infrastructure network, an ideal centrality measure would assign a score to a node vbased
on the failure probabilities (and consequences thereof) of every subset of nodes contain-
ing v, rather than just failure of the single node v. This approach would automatically
allow the ideal centrality measure to give due consideration to real-world failure pat-
terns such as cascading failures and simultaneous multiple node failures. On the other
hand, this flexibility, which comes from the ability to take into account the contributions
of all possible combinations of nodes (rather than just one node at a time), is absent in
conventional centrality measures, which is a crucial limitation in many applications.

Game theoretic network centrality [1, 2] has been proposed as a framework that
would address this limitation. Given the network to be analysed, the idea is to define a
co-operative game where the agents (players) are the nodes of the network. Then the
SV of each agent (node) in this game is interpreted as a centrality measure because it
represents the average marginal contribution made by each node to every possible com-
bination of the other nodes. This paradigm of SV-based network centrality thus confers
a high degree of flexibility (which was completely lacking in traditional centrality met-
rics) to model real-world network phenomena. Indeed, this new paradigm has already
been proved to be more useful than traditional centrality measures for certain real-life
network applications [1, 6].

From a computational perspective, however, evaluating game theoretic network cen-
trality using the original SV formula involves an analysis of the marginal contribution

1 An overview of conventional centrality measures (such as degree centrality, betweenness cen-
trality, closeness centrality and eigenvalue centrality) can be found in [3].
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of every node (i.e. player) to every coalition. Thus, given a network G(V,E), a direct
application of the SV formula involves considering O(2|V (G)|) coalitions. Such an ex-
ponential computation is clearly prohibitive for bigger networks (of, e.g., 100 or 1000
nodes). For such networks, the only feasible approach currently outlined in the literature
is Monte-Carlo sampling, which is not only inexact, but also very time-consuming.

The above problem of exponential complexity in the number of agents is a fun-
damental challenge associated with computing the SV. As a result, for conventional
coalitional games, this issue has received considerable attention in the literature. As an
alternative to the straightforward (but exponential) listing of all possible coalitions,
some authors [7, 8] have proposed more efficient representations for coalitional games.
In addition to being concise for many games, these representations are expressly de-
signed to possess desirable computational properties, including efficient SV computa-
tion. Thus, the choice of representation has been the foremost consideration for efficient
SV computation in the context of conventional coalitional games.

The networks domain, by contrast, poses a very different set of challenges:

1. Unlike conventional coalitional games, conciseness is usually not an issue in the
networks context. This is because the games that aim to capture network centrality
notions are completely specified by (a) the underlying network compactly repre-
sented as a graph, and (b) a concise closed-form characteristic function expression
for evaluating coalition values (please see next section for an example).

2. Rather, the fundamental issue in the networks context is that: because the games are
designed to reflect network centrality, the characteristic function definition often de-
pends highly non-trivially on the underlying graph structure. Specifically, the value
assigned by the characteristic function to each subset of nodes depends not just on
the subgraph induced by those nodes, but also on the relationship between that sub-
graph and the rest of the network. For example, the value assigned to a coalition of
nodes may be based on shortest path lengths to nodes outside the coalition, or it may
depend non-trivially on the relationship between the coalition and its neighbors.

Therefore, the challenge we face in this paper is to efficiently compute the SV, given a
network and a game defined over it, where coalition values for this game are given by a
closed-form expression that depends non-trivially on the network. The key question here
is how to take advantage of (a) the network structure, and (b) the functional form for the
coalition values, so as to compute SVs efficiently, i.e., without the need to enumerate
all possible coalitions.

Against this background:

[1] Our key contribution in this paper is to demonstrate that it is possible to exactly and
efficiently compute SV-based network centralities of practical interest defined on
large networks which exceed thousands of nodes! By contrast, the only previously
known method that scaled to such large networks was Monte-Carlo simulation,
which was neither exact nor particularly efficient.

[2] For four different measures of network centrality, we develop exact closed-form
formulas for the SVs. We present pseudo-codes of linear and polynomial time
algorithms to implement these formulas.

The remainder of the paper is organized as follows. Section 2 presents an example
of how a coalitional game may be used to capture the notion of network centrality.
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Section 3 analyses four types of centrality-related coalitional games and presents poly-
nomial time SV algorithms for all of them. Conclusions follow.

2 SV as a Centrality Measure

As mentioned in the introduction, the paradigm of game theoretic network centrality
based on the SV has been proposed in [1, 2] and further explored in [6]. This section
presents an example to illustrate the advantages of this paradigm over conventional
centrality measures.

Consider the notion of “closeness centrality” of a node in a graph G(V,E), which
is traditionally defined as the reciprocal of the average distance of that node from other
(reachable) nodes in the graph [3]. This definition captures the intuitive idea that a
node “in close proximity to many other nodes” is more valuable by virtue of its central
location, and hence should be assigned a higher centrality score.

The above measure, however, fails to recognize the importance of combinations of
nodes. For example, consider a typical real-world application of closeness centrality:
that of disseminating a piece of information to all nodes in the network. At any time
point t in the dissemination process, define the random variable Ct to be the subset of
nodes most actively involved in propagating the information. In this situation, a new
node added to Ct would make maximum contribution to the diffusion of information
only if it is “in close proximity to nodes that are not currently in close proximity to
any node in Ct”. Thus, while conventional closeness centrality only takes into account
average proximity to all other nodes, the actual importance of a node in the real-world
application is based on a very different measure: proximity to nodes that are not in close
proximity to the random variable Ct.

We now show how coalitional game theory can be used to construct a centrality
measure that faithfully models the above real-world importance of a node. Let C be
any subset of nodes from the given network G(V,E). Then, for every such C, assign a
value ν(C) given by

ν(C) =
∑

v∈V (G)

1
1 + min{d(u, v)|u ∈ C}

where d(u, v) is the distance between nodes u and v (measured as the shortest path
length between u and v in graphG).

The map ν defined above captures a fundamental centrality notion: that the intrinsic
value of a subset of nodes C in the context of a real-world application (such as infor-
mation dissemination) is proportional to the overall proximity of the nodes in C to the
other nodes in the network. In effect, the map ν carries the original definition of close-
ness centrality to a global level, where a measure of importance is assigned to every
possible combination of nodes.

The map ν above is therefore a characteristic function for a coalitional game, where
each vertex of the network is viewed as an agent playing the game. It follows that if a node
v has a high SV in this game, it is likely that v would “contribute more” to an arbitrary
randomly chosen coalition of nodesC in terms of increasing the proximity ofC to other
nodes on the network. Thus, computing the SVs of this game yields a centrality score for
each vertex that is a much-improved characterization of closeness centrality.
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The only difficulty in adopting such a game-theoretically inspired centrality measure
is the previously mentioned problem of exponential complexity in the number of agents.
In the next section, we show how to overcome this difficulty and compute the SV for
many centrality applications (including the above formulation) in time polynomial in
the size of the network.

3 Algorithms for SV-Based Network Centrality

In this section, we present 4 characteristic function formulations ν(C), each designed
for a different real-world application. While each formulation captures a different fla-
vor of centrality, they all embrace one fundamental centrality idea: that the definition
for ν(C) must somehow quantify the sphere of influence of the coalition C over the
other nodes. For instance, in our first game formulation, we start with the simplest pos-
sible idea that the sphere of influence of a coalition of nodes C is the set of all nodes
immediately reachable (within one hop) from C. Subsequent games further general-
ize this notion of sphere of influence. For example, the second formulation specifies a
more sophisticated sphere of influence: one that includes only those nodes which are
immediately reachable in at least k different ways from C. The other two formulations
extend the notion of sphere of influence to weighted graphs. The third game, for in-
stance, defines sphere of influence as the set of all nodes within a cutoff distance of
C (as measured by shortest path lengths on the weighted graph). The fourth and final
formulation is an extreme generalization: it allows the sphere of influence of C to be
specified by an arbitrary function f(.) of the distance between C and the other nodes.

Throughout this section, we assume the reader is familiar with concepts of graph the-
ory, including weighted and unweighted graphs, vertex degrees, neighboring vertices
and shortest paths. We do not define these concepts here but suggest the reference [9].
The terms “network” and “graph” are used interchangeably in this paper, as are the
terms “node” and “vertex”. All the weighted graphs considered in this paper are pos-
itive weighted. We do not use digraphs in this paper, so all graphs are assumed to be
undirected.

We also assume familiarity with the concepts of co-operative game theory, includ-
ing the definition of coalitional games in characteristic function form and the Shapley
Value. We do not define these concepts here but suggest the reference [10].

We now set the notation for a general coalitional game played on a network. Given a
graphG(V,E) with vertex set V and edge set E, we useG to define a coalitional game
g(V (G), ν) with set of agents V (G) and characteristic function ν. Here the agents of
the coalitional game are the vertices of the graph G. Thus a coalition of agents C is
simply any subset of V (G). The characteristic function ν : 2V (G) → R can be any
function that depends on the graph G as long as it satisfies the condition ν(∅) = 0. We
use the phrase “value of coalition C” to informally refer to ν(C).

3.1 Game 1: ν1(C) = #Agents At-Most 1 Degree Away

Given an unweighted, undirected networkG(V,E). We first define “fringe” of a subset
C ⊆ V (G) as the set {v ∈ V (G) : v ∈ C (or) ∃u ∈ C such that (u, v) ∈ E(G)}, i.e.,
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the fringe of a coalition includes all nodes reachable from the coalition in at most one
hop.

Based on the fringe, we define the coalitional game g1(V (G), ν1) with respect to the
networkG(V,E) by the characteristic function ν1 : 2V (G) → R given by

ν1(C) =

{
0 if C = ∅
size(fringe(C)) else

This coalitional game has been extensively discussed in [1], where the authors motivate
the game by arguing that the SVs of nodes in this game constitute a centrality metric
that is superior to degree centrality for some applications. It is therefore desired to com-
pute the SVs of all nodes for this game. We shall now present an exact formula for this
computation rather than obtaining it through Monte-Carlo simulation as was done in [1].

To evaluate the SV of node vi, consider all possible permutations of the nodes in
which vi would make a positive marginal contribution to the coalition of nodes occur-
ring before itself. Let the set of nodes occurring before node vi in a random permutation
of nodes be denoted Ci. Let the neighbors of node vi in the graph G(V,E) be denoted
NG(vi) and the degree of node vi be denoted degG(vi).

The key question to ask is: what is the necessary and sufficient condition for node vi
to marginally contribute node vj ∈ NG(vi) ∪ {vi} to fringe(Ci)? Clearly this happens
if and only if neither vj nor any of its neighbors are present in Ci. Formally (NG(vj)∪
{vj}) ∩ Ci = ∅.

Given that permutations are chosen uniformly at random for computing the SV, com-
binatorial arguments can be used to show that the above condition is satisfied with prob-
ability 1

1+degG(vj)
. Denote by Bvi,vj the Bernoulli random variable that vi marginally

contributes vj to fringe(Ci). Thus:

E[Bvi,vj ] = Pr[(NG(vj) ∪ {vj}) ∩Ci = ∅] =
1

1 + degG(vj)

Therefore, the Shapley Value SVg1(vi), which is the expected marginal contribution of
vi, is given by:

SVg1(vi) =
∑

vj∈{vi}∪NG(vi)

E[Bvi,vj ] =
∑

vj∈{vi}∪NG(vi)

1
1 + degG(vj)

which is an exact closed-form expression for computing the SV of each node on the
network.

Algorithm 1 describes an O(V +E) procedure that directly implements the above
equation to compute the exact SVs of all nodes in the network. By contrast, Monte-
Carlo simulation requiresO(V+E) operations for every iteration. Moreover, the results
obtained using Monte-Carlo are statistical in nature and may not be sufficiently accurate
unless a large number of iterations are carried out.
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Algorithm 1. Computing SVs for
Game 1

Input: Unweighted graphG(V,E)
Output: SVs of all nodes in V (G) for

game g1

foreach v ∈ V (G) do
ShapleyValue[v] = 1

1+degG(v) ;

foreach u ∈ NG(v) do
ShapleyValue[v] += 1

1+degG(u) ;

end
end
return ShapleyValue;

It is possible to derive some intuition
from the above formula. If a node has a
high degree, the number of terms in its
SV summation above will also be high.
But the terms themselves would be in-
versely related to the degree of neighbor-
ing nodes. This gives the intuition that a
node will have high centrality not only
when its degree is high, but also when-
ever its degree tends to be higher in com-
parison to the degree of its neighboring
nodes. In other words, power comes from
being connected to those who are power-
less, a fact that is well-recognized [11] by
the centrality literature.

3.2 Game 2: ν2(C) = #Agents with At-Least k Neighbors in C

We now consider a more general game formulation for an unweighted graph G(V,E),
where the value of a coalition includes the number of agents who are either in the
coalition or are adjacent to at least k agents who are in the coalition. Formally, we
consider game g2 characterised by ν2 : 2V (G) → R, where

ν2(C) =

{
0 if C = ∅
|{v : v ∈ C (or) |NG(v) ∩ C| ≥ k}| else

Note that this game reduces to game g1 for k = 1.
The motivation for this generalization is that in many real-life networks, the value

of a coalition is interpreted as the number of agents who can be “influenced” by the
coalition. For instance, in a viral marketing or innovation diffusion analysis [12], it is
usually assumed that an agent will “be influenced” only if atleast k of his neighbors
have already been convinced, which suggests such a game formulation.

Adopting notation from the previous subsection, we again ask: what is the necessary
and sufficient condition for node vi to marginally contribute node vj ∈ NG(vi) ∪ {vi}
to the value of the coalition Ci?

Clearly, if degG(vj) < k, we have E[Bvi,vj ] = δ(vi, vj), i.e, E[Bvi,vj ] = 1 for
vi = vj and 0 otherwise.

For degG(nj) ≥ k, we split the argument into two cases. If vj 
= vi, the condition
for marginal contribution is that exactly (k − 1) neighbors of vj already belong to Ci

and vj /∈ Ci. On the other hand, if vj = vi, marginal contribution happens if and only
if Ci originally consisted of at most (k − 1) neighbors of vj .

So for degG(vj) ≥ k and vj 
= vi, we have

E[Bni,nj ] =

(
degG(vj) − 1

k − 1

)
(k − 1)!(1 + degG(vj) − k)!

(1 + degG(vj))!
=

1 + degG(vj) − k

degG(vj)(1 + degG(vj))
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And for degG(vi) ≥ k and vj = vi,
we have

E[Bvi,vi ] =
k

1 + degG(vi)

As before, the SVs are given by sub-
stituting the above formulas into:

SVg2(vi) =
∑

vj∈NG(vi)∪{vi}
E[Bvi,vj ]

Although this game is a generalization
of game g1, it can still be solved to ob-
tain the SVs of all nodes inO(V +E)
time, as formalised by Algorithm 2.

Algorithm 2. Computing SVs for Game 2

Input: Unweighted graph G(V,E), positive
integer k

Output: SVs of all nodes in V (G) for game g2

foreach v ∈ V (G) do
ShapleyValue[v] = min(1, k

1+degG(v) );
foreach u ∈ NG(v) do

ShapleyValue[v] +=
max(0, degG(u)−k+1

degG(u)(1+degG(u)) );
end

end
return ShapleyValue;

An even more general formulation of the game is possible by allowingk to bea function
of the agent, i.e, each node vi ∈ V (G) is assigned its own unique attribute k(vi). This
translates to an application of the form: agent i is convinced if and only if atleast ki of his
neighbors are convinced, which is a frequently used model in the literature [12].

The above proof does not use the fact that k is constant across all nodes. So this gener-
alized formulation can be solved by a simple modification to the original SV expression:

SV (vi) =
k(vi)

1 + degG(vi)
+

∑
vj∈NG(vi)

1 + degG(vj)− k(vj)
degG(vj)(1 + degG(vj))

The above equation (which is also implementable in O(V + E) time) assumes that
k(vi) ≤ 1 + degG(vi) for all nodes vi. This condition can be assumed without loss of
generality because all cases can still be modeled (we set k(vi) = 1 + degG(vi) for the
extreme case where node vi is never convinced no matter how many of its neighbors
are already convinced).

3.3 Game 3: ν3(C) = #Agents At-Most dCutoff Away

Hitherto, our games have been confined to unweighted networks. But in many applica-
tions, it is necessary to model real-world networks as weighted graphs. For example,
in a co-authorship network, each edge is often assigned a weight proportional to the
number of joint publications the corresponding authors have produced [13].

This subsection extends the game g1 to the case of weighted networks. Whereas
game g1 equates ν(C) to the number of nodes located within one hop of some node
in C, our new formulation in this subsection equates ν(C) to the number of nodes
located within a distance dcutoff of some node in C. Here, distance between two nodes
is measured as the length of the shortest path between the nodes in the given weighted
graphG(V,E,W ), whereW : E → R+ is the weight function.

Formally, we define the game g3, where for each coalition C ⊆ V (G),

ν3(C) =

{
0 if C = ∅
size({vi : ∃vj ∈ C | distance(vi, vj) ≤ dcutoff}) else
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We shall now show that even this highly general centrality game g3 is amenable to
analysis which yields an exact formula for SVs. However, in this case the algorithm
for implementing the formula is not linear in the size of the network, but has O(V E +
V 2log(V )) complexity.

Let us introduce some extra notation. Define the extended neighborhood NG(vj ,
dcutoff) = {vk 
= vj : distance(vk, vj) ≤ dcutoff}, i.e, the set of all nodes whose distance
from vj is at most dcutoff. Denote the size of NG(vj , dcutoff) by degG(vj , dcutoff).

With this notation, the necessary and sufficient condition for node vi to marginally
contribute node vj to the value of coalition Ci is: distance(vi, vj) ≤ dcutoff and distance
(vj , vk) > dcutoff ∀vk ∈ Ci. That is, neither vj nor any node in its extended neigh-
borhood should be present in Ci. But from the discussion of previous subsections, we
know that the probability of this event is exactly 1

1+degG(vj ,dcutoff)
. Therefore, the exact

formula for SV of node vi in game g3 is:

SVg3(vi) =
∑

vj∈{vi}∪NG(vi,dcutoff)

1
1 + degG(vj , dcutoff)

Algorithm 3 works as follows: for each
node v in the network G(V,E), the
extended neighborgood NG(v, dcutoff)
and its size degG(v, dcutoff) are first
computed using Dijkstra’s algorithm in
O(E+V log(V )) time [14]. The results
are then used to directly implement the
above equation, which takes maximum
time O(V 2). In practice this step runs
much faster because the worst case sit-
uation only occurs when every node is
reachable from every other node within
dcutoff. Overall the complexity of the al-
gorithm is O(V E + V 2log(V )).

We make one final observation:
that the above proof does not de-
pend on dcutoff being constant across all
nodes. Indeed, each node vi ∈ V (G)
may be assigned its own unique value
dcutoff(vi), where ν(C) would be the
number of agents vi who are within
a distance dcutoff(vi) from C. For this
case, the above proof gives:

Algorithm 3. Computing SVs for Game 3

Input: Weighted graphG(V,E,W ),
dcutoff > 0

Output: SVs of all nodes in G for game g3

foreach v ∈ V (G) do
DistanceVector D = Dijkstra(v,G);
extNeighbors(v) = ∅; extDegree(v) = 0;
foreach u ∈ V (G) such that u 
= v do

if D(u) ≤ dcutoff then
extNeighbors(v).push(u);
extDegree(v)++;

end
end

end
foreach v ∈ V (G) do

ShapleyValue[v] = 1
1+extDegree(v) ;

foreach u ∈ extNeighbors(v) do
ShapleyValue[v] +=

1
1+extDegree(u) ;

end
end
return ShapleyValue;

SV (vi) =
∑

vj :distance(vi,vj)
≤dcutoff(vj)

1
1 + degG(vj , dcutoff(vj))
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3.4 Game 4: ν4(C) =
∑

vi∈V (G) f(Distance(vi, C))

This subsection further generalizes game g3, again taking motivation from real-life net-
work problems. In game g3, all agents at distances dagent ≤ dcutoff contributed equally
to the value of a coalition. However, this assumption may not always hold true because
in some applications, we intuitively expect agents closer to a coalition to contribute
more to its value. For instance, we expect a Facebook user to exert more influence over
his immediate circle of friends than over “friends of friends”, even though both may
satisfy the dcutoff criterion. Similarly, we expect a virus-affected computer to infect a
neighboring computer more quickly than a computer two hops away.

In general, we expect that an agent at distance d from a coalition would contribute
f(d) to its value, where f(.) is a positive valued decreasing function of its argument.
More formally, we define the game g4 where the value of a coalition C is given by:

ν4(C) =

{
0 if C = ∅∑

vi∈V (G) f(d(vi, C)) else

where d(vi, C) is the minimum distance min{distance(vi, vj)|vj ∈ C}.
It is possible to solve for SVs in the above formulation by constructing a marginal

contribution network (MC-Net) [8]. However, the MC-Net so constructed would have
O(V 3) rules. In the discussion below, we give a more efficient algorithm that runs
in O(V E + V 2log(V )). This is a considerable improvement because most real-world
networks for which this formulation computes centralities are sparse, i.e, E ∼ O(V ).

The key question to ask is: what is the expected value of the marginal contribution
of vi through node vj 
= vi to the value of coalition Ci? Let this marginal contribution
be denotedMC(vi, vj). Clearly:

MC(vi, vj) =

{
0 if distance(vi, vj) ≥ d(vj , Ci)
f(distance(vi, vj))− f(d(vj , Ci)) else

Let Dvj = {d1, d2...d|V |−1} be the distances of node vj from all other nodes in the
network, sorted in increasing order. Let the nodes corresponding to these distances be
{w1, w2...w|V |−1} respectively. Let kij+1 be the number of nodes (out of these |V |−1)
whose distances to vj are≤ distance(vi, vj). Let wkij+1 = vi (i.e, among all nodes that
have the same distance from vj as vi, vi is placed last in the increasing order).

We use literal wi to mean wi ∈ Ci and the literal wi to mean wi /∈ Ci. Define a
sequence of boolean variables pk = vj ∧w1 ∧w2 ∧ ...∧wk for each 0 ≤ k ≤ |V | − 1.
Finally denote expressions of the formMC(vi, vj |F ) to mean the marginal contribution
of vi to Ci through vj given that the coalition Ci satisfies the boolean expression F .

MC(vi, vj |pkij+1 ∧ wkij+2) = f(dkij+1)− f(dkij+2)
MC(vi, vj |pkij+2 ∧ wkij+3) = f(dkij+1)− f(dkij+3)

...
...

...

MC(vi, vj |p|V |−2 ∧ w|V |−1) = f(dkij+1)− f(d|V |−1)
MC(vi, vj |p|V |−1) = f(dkij+1)
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With this notation, we obtain expressions for MC(vi, vj) by splitting over the above
mutually exclusive and exhaustive (i.e, covering all possible non-zero marginal contri-
butions) cases.

The probabilities Pr(pk∧wk+1) are found by elementary combinatorics which gives:

Pr(pk ∧ wk+1) =
k!

(k + 2)!
=

1
(k + 1)(k + 2)

∀ 1 + kij ≤ k ≤ |V | − 2

Using theMC(vi, vj) equations and the probabilities Pr(pk ∧ wk+1):

E[MC(vi, vj)] =

⎡⎣ |V |−2∑
k=1+kij

f(distance(vi, vj))− f(dk+1)
(k + 1)(k + 2)

⎤⎦+
f(distance(vi, vj))

|V |

=
f(distance(vi, vj))

kij + 2
−

|V |−2∑
k=kij+1

f(dk+1)
(k + 1)(k + 2)

For vi = vj , a similar analysis produces:

E[MC(vi, vi)] = f(0)−
|V |−2∑
k=0

f(dk+1)
(k + 1)(k + 2)

Finally the exact SVs are given by:

SVg4(vi) =
∑

vj∈V (G)

E[MC(vi, vj)]

Algorithm 4 implements the above
formulas. For each vertex v, a
vector of distances to every other
vertex is first computed using Di-
jkstra’s algorithm [14]. This yields
a vector Dv that is already sorted
in increasing order. This vector is
then traversed in reverse, to com-
pute the backwards cumulative sum∑ f(dk+1)

(k+1)(k+2) . At each step of the
backward traversal, the SV of the
appropriate node w is updated ac-
cording to the E[MC(w, v)] equa-
tion. After the traversal, the SV of
v itself is updated according to the
E[MC(v, v)] equation. This pro-
cess is repeated for all nodes v so
that at the end of the algorithm, all
SVs have been computed exactly in
O(V E + V 2log(V )) time.

Algorithm 4. Computing SVs for Game 4

Input: Weighted graphG(V,E,W ), function
f : R+ → R+

Output: SVs of all nodes in G for game g4

Initialise: ∀v ∈ V (G) set ShapleyValue[v]=0;
foreach v ∈ V (G) do

[Distances D, Nodes w] = Dijkstra(v,G);
sum = 0; index = |V|-1; prevDistance = -1,
prevSV = -1;
while index > 0 do

if D(index) == prevDistance then
currSV = prevSV;

else
currSV = f(D(index))

1+index − sum;
end
ShapleyValue[w(index)] += currSV;
sum += f(D(index))

index(1+index) ;
prevDistance = D(index), prevSV =
currSV;
index--;

end
ShapleyValue[v] += f(0) − sum;

end
return ShapleyValue;
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4 Summary and Conclusions

Game Graph ν(C) Complexity

g1 UW ≤ 1 degree away V + E
g2 UW ≥ k neighbors ∈ C V + E
g3 W ≤ dcutoff away V E + V 2logV
g4 W

∑
vi
f(d(vi, C)) V E + V 2logV

{W = weighted, UW = unweighted}

The table to the left presents a brief
summary of the SV algorithms dis-
cussed in this paper. These algorithms
enable efficient centrality computa-
tion for many real-world applications
including the analysis of social net-
works, information diffusion, spread

of epidemics, biological and biochemical networks, viral marketing and internet/web
phenomena. The conclusion is that many centrality-related co-operative games of inter-
est played on real-life networks can in fact be solved for SVs analytically. The resulting
algorithms are not only error-free but also run in polynomial time and in practice, much
faster than Monte-Carlo methods.2
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Abstract. We study a basic network design game where n self-interested

agents, each having individual connectivity requirements, wish to build

a network by purchasing links from a given set of edges. A fundamental

cost sharing mechanism is Shapley cost sharing that splits the cost of an

edge in a fair manner among the agents using the edge. In this paper we

investigate if an optimal minimum-cost network represents an attractive,

relatively stable state that agents might want to purchase. We resort to

the concept of α-approximate Nash equilibria. We prove that for single

source games in undirected graphs, any optimal network represents an

H(n)-approximate Nash equilibrium, where H(n) is the n-th Harmonic

number. We show that this bound is tight. We extend the results to coop-

erative games, where agents may form coalitions, and to weighted games.

In both cases we give tight or nearly tight lower and upper bounds on the

stability of optimal solutions. Finally we show that in general source-sink

games and in directed graphs, minimum-cost networks do not represent

good states.

1 Introduction

Today many networks are not built and maintained by a central authority but
rather by a large number of economic agents that usually have selfish interests. As
a result, game-theoretic approaches for modeling network formation and agent
behavior have received considerable research interest over the past years, see
e.g. [2,4,5,6,7,8,9,10,11,13,16,19,21].

We study a very basic network design game that has received a lot of atten-
tion [1,4,5,6,7,12,14,17]. Let G = (V,E, c) be a graph with a non-negative cost
function c : E �→ IR0

+. The graph may be directed or undirected. There are n self-
ish agents, each having to connect a set of terminals in G. A strategy Si ⊆ E of
an agent i is an edge set connecting the desired terminals. Considering all agents,
we obtain a combination S = (S1, . . . , Sn) of strategies. Edges used by the agents
have to be paid for. A fundamental cost sharing mechanism is Shapley cost shar-
ing, proposed by Anshelevich et al. [4] for network design games. In Shapley cost
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sharing the cost of an edge is split in a fair manner among the agents using the
edge. More specifically, in an unweighted game, if k agents use an edge e, then
each of them pays a share of c(e)/k. Thus, given a combination S of strategies,
the cost of an agent i, 1 ≤ i ≤ n, is costi(S) =

∑
e∈Si

c(e)/|{j : e ∈ Sj}|. In a
weighted game, each agent i has a positive weight wi and pays a share propor-
tional to its weight. For any edge e ∈ Si, agent i pays a share of c(e)wi/We, where
We =

∑
j:e∈Sj

wj is the total weight of the agents j using e in their strategies.
The cost of agent i is costi(S) =

∑
e∈Si

c(e)wi/We.
Previous work has analyzed stable states in which agents have no incentive to

deviate from their strategies. In a standard non-cooperative game a combination
S of strategies forms a Nash equilibrium if no agent has a better strategy with a
strictly smaller cost if all other agents adhere to their strategies. In cooperative
games, where coordination among agents is allowed, one is interested in strong
Nash equilibria that are resilient to deviations of coalitions of agents [3]. A
combination S of strategies forms a strong Nash equilibrium if there exists no
coalition of agents that can jointly change strategy such that every agent of the
coalition achieves a strictly smaller cost. There exist two performance measures
evaluating Nash equilibria relative to globally optimal solutions. The price of
anarchy is the maximum ratio of the total cost incurred by any Nash equilibrium
to the cost paid by an optimal solution [18]. The price of stability is the minimum
ratio, i.e. the cost ratio of the best Nash equilibrium relative to the optimum [4].
Anshelevich et al. [4] showed that, for unweighted non-cooperative games, the
price of anarchy is n while the price of stability is H(n). Here H(n) =

∑n
i=1 1/i

is the n-th Harmonic number, which is closely approximated by the natural
logarithm, i.e. ln(n+ 1) ≤ H(n) ≤ lnn + 1. For unweighted cooperative games
the price of anarchy is H(n) [1,12].

In this paper we study if an optimal solution – which is a minimum-cost net-
work establishing the required connections – represents an attractive, relatively
stable state that agents might want to purchase. If the n agents buy an optimal
solution, which extra cost does any agent incur compared to a strategy devia-
tion? The motivation for our study is twofold. (1) In Nash equilibria there exist
agents that pay a high cost compared to the average agent cost in an optimal so-
lution. In a worst-case equilibrium this cost factor can be as high as n; even in a
best-case equilibrium the factor can be H(n). With this information in mind the
agents might be interested in purchasing an optimal solution provided that the
incentive of a strategy deviation is not too high. (2) The only known protocol to
reach a good equilibrium, attaining a price of stability of H(n), relies on optimal
solutions. Anshelevich et al. [4] showed that if the agents start in an optimal
solution, then a sequence of improving moves converges to a Nash equilibrium
whose cost is at most H(n) times the optimum cost. Hence, if agents start in an
optimal solution, they might as well consider remaining in this solution provided
that the state has favorable properties.

We address the above issues by studying approximate Nash equilibria in which
the equilibrium constraint is relaxed [5,7]. In a non-cooperative game a com-
bination S of strategies forms an α-approximate Nash equilibrium, for some
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α ≥ 1, if no agent can improve its cost by a factor of more than α assum-
ing that all the other agents adhere to their strategies. Formally, for no agent
i exists a strategy change S′

i such that costi(S1, . . . , S
′
i, . . . , Sn) < costi(S)/α.

In cooperative games a combination S of strategies is an α-approximate strong
Nash equilibrium if no coalition of agents can change strategy such all agents of
the coalition improve their cost by a factor of more than α. More specifically,
for no non-empty coalition I of agents exists a strategy change S′

I such that
costi(S′

I ,S−I) < costi(S)/α holds for all i ∈ I. Here S−I is the vector of the
original strategies of agents i /∈ I.

We evaluate the quality of optimal solutions for a variety of settings. The
main conclusion is that optimal solutions represent good states for single source
games in undirected graphs. This holds true for unweighted games, considering
both non-cooperative and cooperative agent behavior, as well as for weighted
games. On the other hand, in general source-sink games and in directed graphs,
optimal solutions do not represent satisfying states.

Previous work. Research on the network design game defined above was initi-
ated by Anshelevich et al. [5]. In this first paper the authors considered general
cost sharing schemes that are not restricted to Shapley cost sharing. The cost
of an edge may be split in an arbitrary way among agents. Anshelevich et al. [5]
considered undirected graphs. First they studied single source games in which
each agent i has to connect one terminal ti to a common source s, 1 ≤ i ≤ n.
They showed that the cost of an optimal solution can be shared among the
agents such that the resulting strategies form a Nash equilibrium. Anshelevich
et al. [5] also studied general source-sink games where each agent has to connect
an arbitrary set of terminals. Here the cost on an optimal solution can shared
such that the agents’ strategies form a 3-approximate Nash equilibrium.

In a second paper Anshelevich et al. [4] investigated network design with
Shapley cost sharing. They first focused on unweighted games and showed that
in directed and undirected graphs the price of anarchy is n while the price of
stability is upper bounded by H(n). This upper bound of H(n) is tight for
directed graphs. Additionally Anshelevich et al. [4] studied weighted games and
showed a lower bound of Ω(max{n, logW}) on the price of stability, where W
is the total weight of all the agents.

Further work on unweighted games was presented by Chekuri et al. [6] and
Fiat et al. [14]. Both papers address single source games in undirected graphs.
Chekuri et al. [6] showed that the price of anarchy is O(

√
n log2 n) if agents join

the game sequentially and perform best-response moves. Fiat et al. [14] proved
that the price of stability is O(log logn) if each vertex of the graph is the ter-
minal of some agent. Chen and Roughgarden [7] further investigated weighted
games in directed graphs. They assume that each agent has to connect a termi-
nal pair (si, ti) and proved that, for any α = Ω(logwmax), the price of stability
of O(α)-approximate Nash equilibria is O((logW )/α). Here wmax is the maxi-
mum weight of any agent. In particular, there exists an O(logW )-approximate
Nash equilibrium whose cost is within a constant factor of optimal. Cooperative
network design games were studied in [3,12]. It shows that the price of anarchy
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drops to H(n). Finally, approximate pure Nash equilibria for a different class of
graphical games were recently studied by Nguyen and Tardos [20].

Our contribution. We evaluate the stability of optimal solutions in network
design games with Shapley cost sharing, complementing the existing results for
this classical cost sharing mechanism. In Section 2 we present a comprehensive
study of unweighted games. We focus mostly on single source games in undirected
graphs. First, for non-cooperative games, we prove that any optimal solution
represents an H(n)-approximate Nash equilibrium. We show that this bound
is tight. There exist games in which an optimal solution does not form an α-
approximate Nash equilibrium for any α < H(n).

Then, in Section 2, we investigate cooperative games where agents may co-
ordinate their actions. We consider a general scenario where coalitions of up to
c agents may be formed, for any 1 ≤ c ≤ n. We prove that any optimal solu-
tion is a 2c(ln(n/c) + 2)-approximate strong Nash equilibrium. The analysis is
considerably more involved than that for non-cooperative games. More specifi-
cally we show that, given any tree establishing the required connections and any
coalition I of agents, there exists one agent i ∈ I whose cost shares along the
path from ti to the source do not grow too much. For cooperative games, allow-
ing coalitions of up to c agents, we give a nearly matching lower bound: There
exist games in which an optimal solution does not represent an α-approximate
strong Nash equilibrium for α < c′ ln(n/c′), where c′ = min{c, �n/e�}. Hence,
for c < �n/e� the bound is α < c ln(n/c); for large coalitions of size c ≥ �n/e�,
the bound is �n/e� and hence linear in n. This behavior is consistent with our
upper bound. Moreover, in Section 2, we consider general source-sink games, in
which each agent has to connect an individual set of terminals, as well as di-
rected graphs. In both cases we show negative results, even for non-cooperative
games. There are general source-sink games for which an optimal solution is
an Ω(n)-approximate Nash equilibrium. In directed graphs the approximation
guarantee α can even be unbounded.

In Section 3 we study weighted games. We consider single source games in
undirected graphs. We show that in non-cooperative games, any optimal solution
is an α-approximate Nash equilibrium, where α = wmax

∑n−1
k=0 1/(wmax+k). This

bound is again tight. Optimal solutions generally do not form α-approximate
Nash equilibria, for α < wmax

∑n−1
k=0 1/(wmax + k). The latter expression is up-

per bounded by wmax(ln(W/wmax) + 1). Here wmax and W denote again the
maximum and total weight of the agents.

Here we finally relate our results to those of Chen and Roughgarden [7] men-
tioned above for non-cooperative games. In this paper we evaluate the quality
of optimal solutions, which are solutions of specific interest, and develop explicit
bounds not resorting to O-notation. On the other hand, Chen and Roughgarden
develop asymptotic trade-offs. For unweighted games these trade-offs imply the
existence of an O(log n)-approximate Nash equilibrium whose cost is within a
constant factor of the optimum cost. The protocol starts in an optimal solution
and then performs a sequence of improving deviations. Our results show that
the protocol can, and indeed will, remain in the optimal solution.
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2 Unweighted Games

In this section we study games with classical Shapley cost sharing, i.e. agents
have uniform weights. If an edge e is used by k agents, then each agent has to
pay a share of c(e)/k. We first consider the standard setting where agents are
non-cooperating entities. Then we consider the setting where agents cooperate
and may form coalitions. For both scenarios we focus on single source games in
undirected graphs. More specifically given an undirected graph G = (V,E, c),
each agent i, 1 ≤ i ≤ n, has to connect a terminal ti to a common source s, where
ti, s ∈ V . Finally we address general source-sink games and games in directed
graphs.

2.1 Non-cooperative Games

We first prove an upper bound on the quality of optimal solutions and then give
a matching lower bound.

Theorem 1. In single source games, any optimal solution represents an H(n)-
approximate Nash equilibrium.

Proof. Let EOPT be the edge set used by an optimal solution to establish the
required connections. As we study single source games, EOPT forms a tree.
Consider the combination S of strategies in which every agent i connects its
terminal ti to the common source s using only edges of EOPT . Let Pi be the
simple path used by agent i and let costi(Pi) denote the corresponding cost paid
by i within SOPT . We observe that path Pi is unique in EOPT .

Now suppose that an agent i changes strategy and selects a different path
Qi, Qi 
= Pi, in order to connect ti to s. Let costi(Qi) be the associated cost
incurred by agent i when performing this strategy change. We will show

costi(Pi) ≤ H(n)costi(Qi), (1)

which establishes the theorem.
Let v1, . . . , v�, � ≥ 2, be the vertices where Pi and Qi separate and merge

again; Figure 1 shows an example. More specifically, starting at ti, paths Pi

and Qi first traverse a common subpath Pi(1) = Qi(1) until reaching vertex v1
where the two paths separate. Vertex v1 may be equal to ti, in which case paths
Pi(1) = Qi(1) are empty. After v1 path Pi traverses a subpath Pi(2) while Qi

uses a subpath Qi(2). These subpaths use disjoint edge sets and meet again only
at vertex v2. In general, suppose that Pi and Qi merge at a vertex vj , with j
being even. Then Pi and Qi traverse a common subpath Pi(j + 1) = Qi(j + 1)
until reaching vj+1, where Pi and Qi separate into disjoint subpaths Pi(j + 2)
and Qi(j + 2), meeting again at vj+2. Finally, let Pi(� + 1) = Qi(� + 1) be the
subpath between v� and s. For any odd number j, the subpath Pi(j) = Qi(j)
may be empty. For any even j, the subpath Qi(j) contains at least one edge that
does not belong to EOPT because the optimal solution does not contain cycles.
Let Q′

i(j), with Q′
i(j) ⊆ Qi(j), be the set of edges not contained in EOPT .
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s
Pi(� + 1) = Qi(� + 1)
v�

Pi(�)

v�−1

v4

Pi(4)

v3

Pi(3) = Qi(3)

v2

Pi(2)

v1

Pi(1) = Qi(1)

agent i
ti

Qi(2)

Qi(4)

Qi(�)

Fig. 1. Paths Pi and Qi

Pi(j + 1) = Qi(j + 1)

Pi(j − 1) = Qi(j − 1)

Qi(j)

Pi(j, �j) used by ni(j, �j) agents

Pi(j, 2) used by ni(j, 2) agents

Pi(j, 1) used by ni(j, 1) agents

Fig. 2. Subpaths Pi(j) and Qi(j)

Let costi(Pi(j)) and costi(Qi(j)) denote the costs paid by agent i on Pi(j)
and Qi(j), respectively, 1 ≤ j ≤ � + 1. We have costi(Pi) =

∑l+1
j=1 costi(Pi(j))

and costi(Qi) =
∑l+1

j=1 costi(Qi(j)), where costi(Pi(j)) = costi(Qi(j)) for any
odd index j. We will prove costi(Pi(j)) ≤ H(n)costi(Qi(j)), for any even j,
which implies inequality (1).

Consider a fixed even j and partition Pi(j) into a sequence of maximal sub-
paths Pi(j, 1), . . . , Pi(j, �j) such that, for any 1 ≤ k ≤ �j , the number of agents
using a given edge e of Pi(j, k) in EOPT is the same for all the edges of this
subpath, cf. Figure 2. Let ni(j, k) be the number of agents using the edges of
Pi(j, k) within EOPT , for any 1 ≤ k ≤ �j. Since the subpaths are maximal
we have ni(j, 1) < . . . < ni(j, �j). As EOPT is a minimum cost tree we have
cost(Pi(j, k)) ≤ cost(Q′

i(j)), where cost(Pi(j, k)) and cost(Q′
i) denote the total

edge costs of subpath Pi(j, k) and edge set Q′
i(j), respectively, 1 ≤ k ≤ �j . If

we had cost(Pi(j, k)) > cost(Q′
i(j)), then in EOPT we could replace Pi(j, k)

by Q′
i(j) obtaining a solution with a strictly smaller cost. The connectivity re-

quirements would still be maintained as agents using Pi(j, k) in EOPT could
traverse subpaths Pi(j, k − 1), . . . , Pi(j, 1) and Qi(j) to reach vj , from where
they could again follow their original path to source s. In EOPT agent i pays a
share of cost(Pi(j, k))/ni(j, k) for Pi(j, k), where cost(Pi(j, k)) is the total cost
of edges on Pi(j, k). Summing over all k and making use of the fact that the
sequence ni(j, k) is strictly increasing with ni(j, 1) ≥ 1, we obtain that the total
cost paid by agent i on Pi(j) is costi(Pi(j)) =

∑�j

k=1 cost(Pi(j, k))/ni(j, k) ≤
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∑�j

k=1 cost(Pi(j, k))/k ≤ H(n)cost(Q′
i(j)). As Q′

i(j) is not part of EOPT , agent
i has to fully cover its edge cost when traversing Qi(j) and hence cost(Q′

i(j)) ≤
costi(Qi(j)). We conclude costi(Pi(j)) ≤ H(n)costi(Qi(j)). �

Theorem 2. There exists a single source game in which the unique optimal
solution does not represent an α-approximate Nash equilibrium, for any α <
H(n).

Proof. Consider a graph consisting of n + 1 vertices v1, . . . , vn+1 and n edges
ei = {vi, vi+1}, 1 ≤ i ≤ n, cf. Figure 3. Associated with each vi, 1 ≤ i ≤ n, is
one agent that wishes to connect this vertex to the source s = vn+1. Each edge
ei, 1 ≤ i ≤ n, has cost 1. Additionally there is an edge e0 = {v1, vn+1} of cost
1 + ε, where ε > 0 is an arbitrarily small constant. The unique optimal solution
consists of the set of edges ei, 1 ≤ i ≤ n. In this solution, agent 1 pays a cost of
H(n). On the other hand choosing edge e0, agent 1 incurs a cost of only 1+ ε. �

1 + ε

v2

v1

vn

vn+1 = s

1

1

Fig. 3. A single source game with-

out cooperation

w1 w2

u1 u2 un−1

2 + ε

11
wn−1

v0

v1 v2
1 1 1

vnvn−1

vn+1

Fig. 4. A source-sink game

2.2 Cooperative Games

We study general cooperative games in which coalitions of up to c agents may
be formed, for any 1 ≤ c ≤ n.

Theorem 3. In single source games, any optimal solution represents an α-
approximate strong Nash equilibrium, where α = 2c(ln(n/c) + 2), if coalitions
up to size c are allowed.

In order to establish the theorem, we first prove a property of trees T in which
agents connect terminals to the root of T using the edges of the tree. The prop-
erty holds for any tree T but when using the property in the proof of Theorem 3,
T will be an optimal solution of a single source game. So let T be an arbitrary
tree with root s. There are n agents, each of which has to connect a terminal of
T to s using the edges of T . Let A denote the set of agents i whose terminal ti
is different from s. For any agent i ∈ A, let Pi be the path from ti to s in T . We
partition Pi into maximal subpaths Pi(1), . . . , Pi(li) such that, for any subpath,
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the number of agents using the edges of the subpath does not vary. Let ni(j) be
the number of agents using the edges of Pi(j), 1 ≤ j ≤ li. Define

Ni(T ) =
li∑

j=1

1
ni(j)

,

which intuitively is the sum of the fractions paid by agent i on Pi(1), . . . , Pi(li),
ignoring edge costs. The following lemma states that in any non-empty coalition
I ⊆ A there exists an agent i whose value Ni(T ) is logarithmic in |A|/|I|.

Lemma 1. Let T be an arbitrary tree and A be the set of agents whose terminal
is not equal to the root of T . For any I ⊆ A, I 
= ∅, there exists an i ∈ I

satisfying Ni(T ) ≤ 2 ln(2|A|
|I| ) + 1.

Proof. Due to space limitations we present the main ideas of the proof. A com-
plete proof is given in the full version of the paper.

We prove a slightly stronger bound on Ni(T ). Given T and A, a vertex v 
= s
in T is called a branching vertex if v has at least two children rooting subtrees
both of which contain terminals. Let B be the set of branching vertices. We will
prove

Ni(T ) ≤ 2 ln
(

|A|+|B|
|I|

)
+ 1. (2)

The lemma then follows because |B| < |A|.
We prove (2) by induction on the number m of edges of T . In the base case we

have m = 1. The tree consists of a single edge {v, s} and A is the set of agents
that have to connect v to s. For any I ⊆ A, I 
= ∅, and any i ∈ I there holds
Ni(T ) = 1/|A| ≤ 1 ≤ 2 ln( |A|+|B|

|I| ) + 1.
Next consider a tree T with m > 1 edges. If there is an agent i ∈ I whose

terminal ti is equal to a child of s, then the analysis is simple. For this agent
we have Ni(T ) ≤ 1 and as above we conclude Ni(T ) ≤ 2 ln((|A| + |B|)/|I|) + 1
because |A| ≥ |I| and |B| ≥ 0. In the following we assume that, for no agent
i ∈ I, the terminal ti is equal to a child of s. We distinguish two cases depending
on whether s has a degree of 1 or a degree larger than 1.

Suppose that s has degree 1. Let {s′, s} be the edge adjacent to s in T , and
let T ′ be the tree rooted at s′. Let A′ ⊆ A, be the set of agents i whose terminal
ti is a vertex of T ′ but not equal to the root s′. There holds I ⊆ A′ because
we assume that, for no agent of I, the terminal is equal to a child of s. For any
i ∈ I, consider the path Pi from ti to s and the path P ′

i from ti to s′. Obviously
Pi consists of P ′

i followed by edge {s′, s}. Partition both Pi and P ′
i into maximal

subpaths Pi(1), . . . , Pi(li) and P ′
i (1), . . . , P ′

i (l
′
i), respectively, such that the edges

of a subpath are used by a non-varying number of agents. Let ni(j) and n′i(j) be
the number of agents using Pi(j) and P ′

i (j), respectively. We have Pi(j) = P ′
i (j)

and hence ni(j) = n′i(j), for j = 1, . . . , l′i − 1. If the number n′i(l
′
i) of agents

using P ′
i (l

′
i) is equal to the number of agents using edge {s′, s}, then li = l′i

and Pi(li) consists of P ′
i (li) followed by {s′, s}. Otherwise li = l′i + 1 as well as

Pi(l′i) = P ′
i (l

′
i) and Pi(li) = {s′, s}.
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By induction hypothesis, there exists an agent i ∈ I satisfying Ni(T ′) ≤
2 ln((|A′|+ |B′|)/|I|) + 1, where B′ is the set of branching vertices in T ′. In the
following we consider this fixed agent i. If n′i(l

′
i) is equal to the number of agents

using {s′, s}, then we are done: As argued in the last paragraph ni(j) = n′i(j),
for j = 1, . . . , l′i − 1, and li = l′i which implies ni(li) = n′i(l

′
j). Hence Ni(T ) =

Ni(T ′) ≤ 2 ln((|A′|+ |B′|)/|I|) + 1 ≤ 2 ln((|A|+ |B|)/|I|) + 1 because |A′| ≤ |A|
and |B′| ≤ |B|.

If on the other hand n′i(l
′
i) is not equal to the number of agents using {s′, s},

then (a) there exists an agent in A whose terminal is equal to s′ or (b) s′ is
a branching vertex. In case (a) we have |A| > |A′| and in case (b) we have
|B| > |B′|. Hence in both cases |A|+ |B| > |A′|+ |B′|. Again ni(j) = n′i(j), for
j = 1, . . . , l′i − 1, Since li = l′i + 1 and Pi(l′i) = P ′

i (l
′
i), there holds ni(l′i) = n′i(l

′
i)

and ni(li) = 1/|A| because edge {s′, s} is used by all the agents of A. We obtain

Ni(T ) = Ni(T ′) + 1
|A| ≤ 2 ln

(
|A′|+|B′|

|I|
)

+ 1 + 2
2|A|

≤ 2
(
ln
(

|A′|+|B′|
|I|

)
+ 1

|A|+|B|
)

+ 1

≤ 2
(
ln(|A′|+ |B′|) + 1

|A′|+|B′|+1 − ln(|I|)
)

+ 1.

The second inequality holds because |A| > |B| and hence 2|A| > |A|+ |B|. The
third inequality follows since |A|+ |B| ≥ |A′|+ |B′|+1. For any positive integer
K there holds lnK + 1/(K + 1) ≤ ln(K + 1). Setting K = |A′|+ |B′| we obtain
as desired Ni(T ) ≤ 2(ln(|A′|+ |B′|+ 1)− ln(|I|)) + 1 ≤ 2 ln((|A|+ |B|)/|I|) + 1.

The analysis of the case that the root s of T has a degree larger than 1 is
omitted here. The main idea is to partition T into two trees T1 and T2 such that
for any agent i whose terminal is in Tj , j ∈ {1, 2}, there holds Ni(T ) = Ni(Tj).
Using induction hypothesis one can then show that there exists an agent i with
Ni(T ) ≤ 2 ln((|A|+ |B|)/|I|) + 1. �

Proof (of Theorem 3). Consider any optimal solution and let EOPT be the cor-
responding edge set. Moreover, let S be the combination of strategies in which
every agent i connects its terminal ti to the common source s using only edges
of EOPT . In order to prove the theorem we show that if any non-empty coalition
I of at most c agents changes strategy, then there exist an agent i ∈ I whose
cost before and after strategy change satisfies 1

αcosti(S) ≤ costi(SI ,S−I), where
α = 2c(ln(n/c) + 2).

If a coalition I contains an agent i whose terminal ti is equal to the source
s, then there is nothing to show because for this agent costi(S) = 0 and the
desired inequality trivially holds. Hence in the following we consider non-empty
coalitions I not containing an agent i whose terminal is equal to s.

Let A be the set of agents whose terminal is not equal to s. Consider any
non-empty coalition I ⊆ A of size at most c. The optimal solution EOPT forms
a tree and hence by Lemma 1 there exists an agent i ∈ I with Ni(EOPT ) ≤
2 ln(2|A|/|I|)+1. Fix this agent i. We will prove that if I performs any strategy
change, for this agent i the desired inequality holds.
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For agent i let Pi be the path connecting ti to s in EOPT . Let Qi be the path
used by the agent when I changes strategy. As in the proof of Theorem 1 we
partition Pi and Qi into subpaths Pi(1), . . . , Pi(l + 1) and Qi(1), . . . , Qi(l + 1)
along the vertices v1. . . . , vl where Pi and Qi separate and merge. Let costi(P (j))
be the cost incurred by agent i for Pi(j) before strategy change, 1 ≤ j ≤ l + 1.
Similarly, let costi(Q(j)) be the cost paid by the agent for Qi(j) after strategy
change, 1 ≤ j ≤ l + 1. We have Pi(j) = Qi(j), for any odd number j, and
hence 1

|I|costi(P (j)) ≤ costi(Q(j)) because at most |I| − 1 additional agents
of I can join edges of Pi(j) after strategy change. Since |I| ≤ c this implies
1
αcosti(P (j)) ≤ costi(Q(j)) for any odd number j. In the following we show
that the last inequality also holds for any even j.

For any even j we partition Pi(j) into maximal subpaths Pi(j, 1), . . . , Pi(j, lj)
such that all the edges of a subpath Pi(j, k) are used by the same number
ni(j, k) of agents, 1 ≤ k ≤ lj , considering the time before strategy change. Let
Q′

i(j) ⊆ Qi(j) be the non-empty set of edges not contained in EOPT . For any
path π let cost(π) be the total cost of the edges of π. There holds cost(Pi(j, k)) ≤
cost(Q′

i(j)), for any 1 ≤ k ≤ lj and cost(Q′
i(j)) ≤ cost(Qi(j)). Hence

costi(Pi(j)) =
lj∑

k=1

cost(Pi(j, k))/ni(j, k) ≤ cost(Q′
i(j))

lj∑
k=1

1/ni(j, k).

Consider the partitioning of Pi into maximal subpaths such that the edges of
a subpath are used by the same number of agents. Paths Pi(j, 1), . . . , Pi(j, lj)
are a subsequence of this partition and hence

∑lj
k=1 1/ni(j, k) ≤ Ni(EOPT ).

Moreover costi(Q′
i(j)) ≥ cost(Q′

i(j))/|I| because the cost of the edges of Q′
i(j),

which are not part of EOPT , must be fully covered by the coalition I and agent
i pays a share of at least 1/|I|. Thus cost(Pi(j)) ≤ |I|costi(Q′

i(j))Ni(EOPT ) ≤
|I| ·Ni(EOPT )costi(Qi(j)). By our choice of agent i and Lemma 1, Ni(EOPT ) ≤
2 ln(2|A|/|I|) + 1 ≤ 2 ln(2n/|I|) + 1. We obtain cost(Pi(j)) ≤ |I|(2 ln(2n/|I|) +
1)costi(Qi(j)) ≤ c(2 ln(2n/c)+1)costi(Qi(j)). The last inequality holds because
|I|(2 ln(2n/|I|) + 1) is increasing in |I|. We conclude cost(Pi(j)) ≤ 2c(ln(n/c) +
2)costi(Qi(j)) and, as desired, 1

αcost(Pi(j)) ≤ cost(Qi(j)). �

Theorem 4. There exists a single source game, allowing coalitions of size up
to c, in which the unique optimal solution does not represent an α-approximate
strong Nash equilibrium, for any α < c′ ln(n/c′), where c′ = min{c, �n/e�},

The proof is given in the full version of the paper.

2.3 Source-Sink Games and Directed Graphs

A natural question is if the results of the previous sections can be extended to
(a) general source-sink games in which each agent has to connect an individual
set of terminals or (b) to directed graphs. Unfortunately, this is not the case. Even
for non-cooperative games we can show high lower bounds on the approximation
factor α.
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Theorem 5. There exists a general source-sink game in which the unique opti-
mal solution represents an α-approximate Nash equilibrium with α = Ω(n).

Proof. Consider the graph depticted in Figure 4, shown at the end of Section 2.1.
There are n vertices v1, . . . , vn which are connected by edges ei = {vi, vi+1}, 1 ≤
i ≤ n − 1. Furthermore, there are vertices u1, . . . , un−1, and w1, . . . , wn−1 with
corresponding edges {ui, vi} and {vi+1, wi}, 1 ≤ i ≤ n−1. Agent i, 1 ≤ i ≤ n−1,
has to connect ui and wi. There are two additional vertices v0 and vn+1 with
associated edges e0 = {v0, v1} and en = {vn, vn+1}. Agent n has to connect
terminals v0 and vn+1. All edges mentioned so far have a cost of 1. Finally, there
is an edge e′ = {v0, vn+1} of cost 2 + ε. The unique optimal solution purchases
all the edges ei, 0 ≤ i ≤ n, in addition to {ui, vi} and {vi+1, wi}, 1 ≤ i ≤ n− 1.
In this solution agent n pays a cost of 2 + (n− 1)/2 ≥ n/2, whereas purchasing
edge e′ incurs a cost of 2 + ε. �

Theorem 6. For any C, there exist single source games in directed graphs in
which an optimal solution does not form a C-approximate Nash equilibrium.

The proof is given in the full version of the paper.

3 Weighted Games

We scale the agents’ weights such that the minimum weight is equal to 1 and
hence wi ≥ 1, for all the agents. Let wmax = max1≤i≤n wi be the maximum
weight of any agent. We consider single source games in undirected graphs and
extend Theorems 1 and 2. Again we give tight upper and lower bounds on the
value of α such that any optimal solution represents an α-approximate Nash
equilibrium. The proofs of the following Theorems 7 and 8 are presented in the
full version of this paper. The expression α = wmax

∑n−1
k=0 1/(wmax + k) is upper

bounded by wmax(ln(W/wmax) + 1).

Theorem 7. In single source games, any optimal solution represents an α-
approximate Nash equilibrium, where α = wmax

∑n−1
k=0 1/(wmax + k).

Theorem 8. There exists a single source game in which the unique optimal
solution does not represent an α-approximate Nash equilibrium, for any α <
wmax

∑n−1
k=0 1/(wmax + k).
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Abstract. We consider the issue of fair division of goods, using the

cake cutting abstraction, and aim to bound the possible degradation

in social welfare due to the fairness requirements. Previous work has

considered this problem for the setting where the division may allocate

each player any number of unconnected pieces. Here, we consider the

setting where each player must receive a single connected piece. For this

setting, we provide tight bounds on the maximum possible degradation

to both utilitarian and egalitarian welfare due to three fairness criteria

— proportionality, envy-freeness and equitability.

1 Introduction

Cake Cutting. The problem of fair division of goods is the subject of extensive
literature in the social sciences, law, economics, game theory and more. The
famous “cake cutting” problem abstracts the fair division problem in the fol-
lowing way. There are n players wishing to divide between themselves a single
“cake”. The different players may value differently the various sections of the
cake, e.g. one player may prefer the marzipan, another the cherries, and a third
player may be indifferent between the two. The goal is to obtain a “fair” division
of the cake amongst the players. There are several possible definitions to what
constitutes a “fair” division, with proportionality, envy-freeness and equitabil-
ity being the major fairness criteria considered (these notions will be defined
in detail later). Much previous work considered the problem of obtaining a fair
division under these (and other) criteria.

Social Welfare. While fairness is clearly a major consideration in the division
of goods, another important consideration is the social welfare resulting from
the division. Clearly, a division may be envy-free but very inefficient, e.g. in the
total welfare it provides to the players. Accordingly, the question arises what, if
any, is the tradeoff between these two desiderata? How much social welfare does
one have to sacrifice in order to achieve fairness? The answer to this question
may, of course, depend both on the exact definition of fairness, and on the social
welfare of interest.

The first analysis of such questions was provided in [CKKK09], where Cara-
giannis et al. consider the three leading fairness criteria — proportionality, envy-
freeness and equitability — and quantify the possible loss in utilitarian social
welfare due to such fairness requirements. Here we continue this line of research,

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 26–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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extending the results in two ways. Firstly, the [CKKK09] analysis allows dividing
the cake into any number of pieces, possibly even infinite. Thus, each player may
get a collection of pieces, rather than a single one. While this may be acceptable
in some cases, it may not be so in others, or at least highly undesirable, e.g.
in the division of real estate, where players naturally prefer getting a connected
plot. Similarly, in the cake scenario itself, allowing unconnected pieces may lead
to a situation where, in Stromquist’s words [Str80], “a player who hopes only
for a modest interval of the cake may be presented instead with a countable
union of crumbs”. Accordingly, in this work, we focus on divisions in which each
player gets a single connected piece of the cake. In addition, we consider both
the utilitarian and the egalitarian social welfare functions, whereas Caragiannis
et al. considered only utilitarian welfare. For each of these welfare functions, we
give tight bounds on the possible loss in welfare due to the three fairness criteria.

1.1 Definitions and Notations

We consider a 1-dimensional cake, represented by the interval [0, 1], and so each
cut is some point p ∈ [0, 1]. The cake has to be shared between n players (we
denote [n] = {1, . . . , n}), each having a valuation function vi(·) assigning a non-
negative value to every possible interval of the cake. As customary, we require
that for all i, vi(·) is a nonatomic measure on [0, 1] having vi(0, 1) = 1.1 A set of
valuation functions {vi(·)}n

i=1 defines an instance of the cake cutting problem.
Since we consider only divisions in which every player gets a single connected

interval, a division of the cake to n players can be represented by a vector

x = (x1, . . . , xn−1, π) ∈ [0, 1]n−1 × Sn

with 0 ≤ x1 ≤ · · · ≤ xn−1 ≤ 1. Here, xi determines the position of the i-th cut,
and π is a permutation that determines which piece is given to which player. For
convenience, we denote x0 = 0 and xn = 1, so we can write that player i ∈ [n]
receives the interval (xπ(i)−1, xπ(i)). We use the notation ui(x) for the utility
that player i gets in the division x, i.e. ui(x) = vi(xπ(i)−1, xπ(i)). We denote by
X the set of all possible division vectors, and note that X is a compact set.

Fairness Criteria. We say that a division x ∈ X is:

– Proportional. If every player gets at least 1
n of the cake (by her own valu-

ation). Formally, x is a proportional division if for all i ∈ [n], ui(x) ≥ 1
n .

– Envy-Free. If no player prefers getting a piece alloted to another player.
Formally, x is an envy-free division if for all i, j ∈ [n], i values j’s piece as
most as her own, i.e. ui(x) = vi(xπ(i)−1, xπ(i)) ≥ vi(xπ(j)−1, xπ(j)).

– Equitable. If all the players get the exact same utility in x (by their own
valuations). Formally, x is equitable if for all i, j ∈ [n], ui(x) = uj(x).

1 The assumption of vi(0, 1) = 1 for all i normalizes the utilities of the players, im-

plying, e.g. that 50% for one player is worth to society exactly as 50% for any other

player. When this assumption is removed, some of the bounds we provide here for

the Price of Fairness change; we discuss this further in a the full version of the paper.
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It is well known that proportional divisions with connected pieces exist for every
cake-cutting instance; Stromquist [Str80] showed (by a non-constructive argu-
ment) that connected envy-free divisions also always exist. In this paper we show
(Theorem 3) that connected equitable divisions are also guaranteed to exist (for
non-connected pieces this is already known from [DS61]).

Social Welfare Functions. For a division x ∈ X , we denote by u(x) the utilitarian
social welfare of x, i.e. u(x) =

∑
i∈[n] ui(x). Likewise, we denote by eg(x) the

egalitarian social welfare of x, which is eg(x) = mini∈[n] ui(x). Note that both
these social welfare functions are continuous and thus have maxima in X .

The Price of Fairness. As described above, we aim to quantify the degradation
in social welfare due to the different fairness requirements. This is captured by
the notion of Price of Fairness, in its three forms — Price of Proportionality,
Price of Envy-freeness and Price of Equitability, defined as follows. The Price of
Proportionality (resp. Envy-Freeness, Equitability) of a cake-cutting instance I,
with respect to some predefined social welfare function, is defined as the ratio
between the maximum possible social welfare for the instance, taken over all
possible divisions, and the maximum social welfare attainable when divisions
must be proportional (resp. envy-free, resp. equitable). When considering divi-
sions with connected pieces, this restriction is applied to both maximizations.
For example, if XEF ⊆ X is the set of all (connected) envy-free divisions of an
instance, the egalitarian Price of Envy-Freeness for this instance is

maxx∈X eg(x)
maxy∈XEF eg(y)

.

In this work we show bounds on the maximum utilitarian and egalitarian Price
of Proportionality, Envy-Freeness and Equitability of any instance.

1.2 Results

We analyze the utilitarian and egalitarian Price of Proportionality, Price of Envy-
Freeness and Price of Equitability for divisions with connected pieces. We provide
tight bounds (in some cases, up to an additive constant factor) for all six resulting
cases. The results are summarized in Table 1; the last row presents the relevant
previous results of [CKKK09] for comparison. The upper bounds mean that the
respective price of fairness of any instance in the class is never greater than the
bound; the lower bounds mean that there exists an example of an instance with
at least this price of fairness.

Utilitarian Welfare. For the utilitarian social welfare, we show an upper bound of√
n

2 +1−o(1) on the price of envy-freeness. This, we believe, is the first non-trivial
upper bound on the Price of Envy-Freeness. It seems that such bounds are hard
to obtain since we need to consider the “best” possible envy-free division, while
no efficient method for explicitly constructing any envy-free divisions is known.
We show that the same bound also applies to the Price of Proportionality. This
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Table 1. Summary of results

Price of: Proportionality Envy-Freeness Equitability

Utilitarian
UB:

√
n

2
+ 1 − o(1) UB: n connected

LB:
√

n
2

LB: n − 1 + 1
n

pieces

Egalitarian
1 n

2
1

(this work)

(tight)

Utilitarian
UB: 2

√
n − 1 UB: n − 1

2
UB: n non-connected

LB:
√

n
2

LB:
√

n
2

LB:
(n+1)2

4n
pieces [CKKK09]

upper bound is (nearly) matched by a lower bound presented in [CKKK09] that
also applies to the connected case.

For the Price of Equitability, we show that it is always bounded by n (though
simple, this does require a proof since an equitable division need not even give
each player 1/n). We also provide an almost matching lower bound, showing that
for any n there exists an instance with utilitarian Price of Equitability arbitrarily
close to n− 1 + 1

n .

Egalitarian Welfare. When considering the egalitarian social welfare, we show
that there is no price for either proportionality or equitability. That is, for any
instance there exist both proportional and equitable divisions for which the min-
imum amount any player gets is no less than if there were no fairness require-
ments. While perhaps not surprising, the proof for the Price of Equitability is
somewhat involved; we note that we are not aware of any previous proof that al-
together establishes the existence of an equitable division with connected pieces.
For the Price of Envy-Freeness, we show that it is bounded by n/2, and provide
a matching family of instances that exhibit this price, for any n.

Trading Fairness for Efficiency. The price of fairness is a measure that charac-
terizes the trade-off between fairness and social welfare, and does so by quan-
tifying the amount of welfare we need to give up to achieve fairness. However,
we may also be interested in the “reverse” question: measuring the amount of
fairness that may have to be sacrificed to achieve social optimality. To answer
this question, we define natural measures that quantify the “unfairness” of dif-
ferent divisions (one for each fairness criterion). We then prove that in order
to achieve utilitarian optimum, we may have to give up infinite fairness (by all
three measures), and that to achieve egalitarian optimum, we may have to ac-
cept divisions in which a player may think that some other player received a
piece worth (n − 1)-times more than his own. However, as the results for the
price of fairness indicate, there is no conflict between egalitarian optimality and
proportionality or equitability.

1.3 Related Work

The problem of fair division dates back to the ancient times, and takes many
forms. The property to be divided may be divisible or indivisible: Divisible goods
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can be “cut” into pieces of any size without destroying their value (like a cake, a
piece of land, or an investment account), while indivisible goods must be given
in whole to one person (e.g. a car, a house, or an antique vase). Since such
items cannot be divided, the problem is usually to divide a set of such goods
between a number of players. Fair division may also relate to the allocation of
chores (of which every party likes to get as little as possible); this problem is of a
somewhat different flavor from the allocation of goods, and also has the divisible
and indivisible variants.

Modern mathematical treatment of fair division started at the 1940s [Ste49],
and was initially concerned mainly with finding methods for allocation of di-
visible goods. Different algorithms — both discrete and continuous (“moving
knife algorithms”) — were presented (e.g. [Str80, EP84] and [BT95], which also
surveys older algorithms), as well as non-constructive existence theorems [DS61,
Str80]. Several books have also appeared on the subject [BT96, RW98, Mou04].
Following the evaluation and cut queries model of Robertson and Webb [RW98],
much attention was given to finding lower bounds on the number of steps re-
quired for fair divisions [MIBK03, SW03, EP06, Str08, Pro09]. In particular,
Stromquist [Str08] proves that no finite protocol (even unbounded) can be de-
vised for an envy-free division of a cake among three or more people in which
each player receives a connected piece. However, we note that this result applies
only to the model presented in that work (which resembles that of Robertson
and Webb), and not for cases where, for example, a mediator has full informa-
tion of the players’ valuation functions and proposes a division based on this
information.

Unlike most of the work on cake cutting, the different notions of the price
of fairness are not concerned with procedures for obtaining divisions, but rather
with the existence of divisions with different properties (relating to social opti-
mality and fairness). These notions, namely the Price of Proportionality, Envy-
Freeness, and Equitability, were first presented in a recent paper by Caragiannis
et al. [CKKK09]. This line of work somewhat resembles the line of work on the
Price of Stability [ADK+04], which attracted much attention in the past decade.
The work in [CKKK09] analyzes the price of fairness (via the above three mea-
sures) with the utilitarian welfare function for divisible and indivisible goods
and chores, giving tight bounds (up to a constant multiplicative factor) in most
cases. However, unlike in this work, no special attention was given to the case of
connected pieces in divisible goods, and egalitarian welfare was not considered.

Due to the strict page limit in these proceedings, some of the proofs are
omitted from this extneded abstract; these proofs can be found in the full version
of the paper.

2 The Price of Envy-Freeness and Proportionality

2.1 Utilitarian Welfare

Theorem 1. The utilitarian Price of Envy-Freeness for cake-cutting instances
with n players and connected pieces is bounded from above by

√
n

2 + 1− o(1).
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In fact, we prove an even stronger claim: The distance of any envy-free division
(and not just the “best” one) from utilitarian optimality is never greater than
the above bound.

Proof. Let x be an envy-free division of the cake, and u(x) =
∑

i∈[n] ui(x) its
utilitarian welfare. We show that any other division to connected pieces y has
u(y) ≤

(√
n

2 + 1− n
4n2−4n+2

√
n

)
· u(x). Our proof is based on the following key

observation:

Assume that for some i ∈ [n], ui(y) ≥ α ·ui(x). Since i values any other
piece in the division x at most as much as her own, it has to be that in
y, i gets an interval that intersects pieces that belonged to at least �α�
different players (possibly including i herself).

We will say that in the division y, player i gets the j-th cut of x if in y, i
is given a piece starting at a point p < xj and ending at the point p′ > xj . A
more formal statement of our observation is therefore that if in y, i gets at most
α cuts of x, it holds that ui(y) ≤ (α + 1) · ui(x). We can thus bound the ratio
u(y)
u(x) by the solution to the following optimization problem, which aims to find
values {ui(x)}n

i=1 and {αi}n
i=1 (the number of cuts of x each player gets) that

maximize this ratio.

maximize
∑n

i=1 (αi + 1)ui(x)∑n
i=1 ui(x)

(1)

subject to
n∑

i=1

αi = n− 1 (2)

ui(x) ≥
1
n

∀1 ≤ i ≤ n (3)

(αi + 1)ui(x) ≤ 1 ∀1 ≤ i ≤ n (4)
αi ∈ {0, . . . , n− 1} ∀1 ≤ i ≤ n (5)

(3) is a necessary condition for the envy-freeness of x that provides a lower bound
for the denominator, and (4) is equivalent to ui(y) ≤ 1.

We therefore concentrate on bounding the solution to the above optimization
problem. To this end, the following observations are useful:

1. For any choice of values {ui(x)}n
i=1, the optimal assignment for the αi vari-

ables is greedy, i.e. giving each player i, in non-increasing order of ui(x),
the maximum possible value for αi that does not violate any constraints.
(Otherwise, there are players i, j with ui(x) > uj(x) and αj ≥ 1 such that
increasing αi by one at the expense of αj is feasible and yields an increase of
ui(x) − uj(x) > 0 in the numerator of (1), without affecting the denomina-
tor.) We thus can divide the players into two sets: Those with “high” ui(x)
values, who receive strictly positive αi values, and those with “low” ui(x)
values, for which αi = 0.
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2. Since the players with low ui(x) values add the same amount to both the nu-
merator and the denominator in the objective function, maximum is obtained
when these values are minimized; i.e. in the optimal solution ui(x) = 1

n for
all these players.

3. The solution to the problem above is clearly bounded from above by the
solution to the same problem where the αi variables need not have integral
values. Clearly, in the optimal solution to such a problem, all the players
with αi > 0 have (αi + 1)ui(x) = 1.

We can thus bound the solution to our optimization problem by the solution to
the following problem. Let K be a variable that denotes the number of play-
ers that will have αi > 0; by observation (3) above, for every such player,
(αi + 1)ui(x) = 1, and thus their total contribution to the numerator is K.
We therefore seek a bound for:

maximize
K + (n−K) · 1

n∑K
i=1 ui(x) + (n−K) · 1

n

(6)

subject to
K∑

i=1

(
1

ui(x)
− 1
)

= n− 1 (7)

K ≤ n (8)

where (7) follows from (2) in the original program, combined with αi = 1
ui(x) −1

for all i, which follows from our observation that (αi + 1)ui(x) = 1.
It can be verified (e.g. using Lagrange multipliers) that for any value of K ≤ n

this is maximized when ui(x) = uj(x) for all i, j ∈ [K], i.e. when ui(x) = K
n−K+1

for all i ∈ [K]. We thus conclude that the maximum solution to the above
problem maximizes the ratio

K + (n−K) · 1
n

K · K
n+K−1 + (n−K) · 1

n

;

by elementary calculus this is maximized at K =
√
n, where the value is

(n
√
n+ n−

√
n)(n+

√
n− 1)

n2 + (n−
√
n)(n+

√
n− 1)

=
√
n

2
+ 1− n

4n2 − 4n+ 2
√
n

as stated.

Since every envy-free division is in particular proportional, we immediately get
that the bound on the utilitarian Price of Envy-Freeness also applies to the Price
of Proportionality:

Corollary 1. The utilitarian Price of Proportionality for cake-cutting instances
with n players and connected pieces is bounded from above by

√
n

2 + 1− o(1).

We conclude by showing that these bounds are essentially tight (up to a small
additive factor). The construction we use is identical to the one in [CKKK09].
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Proposition 1. The utilitarian Price of Proportionality (and thus also the util-
itarian Price of Envy-Freeness) with n players and connected pieces is bounded
from below by

√
n

2 .

2.2 Egalitarian Welfare

The following proposition is straightforward.

Proposition 2. The egalitarian Price of Proportionality is 1.

Theorem 2. The egalitarian Price of Envy-Freeness for cake-cutting instances
with n players and connected pieces is upper bounded by n

2 , and this bound is
tight. Furthermore, the upper bound holds also for the case of non-connected
pieces.

Proof. Note that if an instance admits a division y with eg(y) ≥ 1
2 , this y is

envy-free, and thus the Price of Envy-Freeness for this instance is 1. If this is
not the case, then for every division y, eg(y) < 1

2 . However, the instance at hand
has an envy-free division x and this division is in particular proportional and
thus has eg(x) ≥ 1

n ; the upper bound follows immediately.
It remains to show that this bound is tight for the connected case. Let ε >

0 be an arbitrarily small constant, and consider n players with the following
valuation functions. For i = 1, . . . , (n − 1), player i assigns a value of 1

2 + ε

to the piece ( i
n − ε,

i
n + ε) (her “favorite piece”), a value of 1

2 − ε to the piece
(1 − 2i+1

2n − ε, 1 − 2i+1
2n + ε) (her “second-favorite piece”), and value of 0 to the

rest of the cake. Finally, player n assigns a uniform value to the entire cake.
Any piece worth at least 1

n +2ε to player n has a physical size at least 1
n +2ε,

and thus contains the “favorite piece” of some other player, making this player
envy player n. Thus, in any envy-free division of the cake, player n has utility of
less than 1

n + 2ε. On the other hand, a division in which every player has utility
of at least 1

2 − ε can be achieved by giving players i = 1 . . . �n−1
2 � their favorite

pieces, players i = (�n−1
2 �+1) . . . (n−1) their second-favorite pieces, and player

n the interval (1
2 + ε, 1) (the remaining parts of the cake can be given to any of

the players closest to them). Tightness follows as ε approaches zero.

3 The Price of Equitability

To talk about the Price of Equitability, we first have to make sure that the con-
cept is well-defined. When non-connected pieces are allowed, it is known that
every cake cutting instance has an equitable division [DS61]. However, the proof
of Dubins and Spanier allows a “piece” of the cake to be any member of the σ-
algebra of subsets, which is quite far from our restricted case of single intervals.
Another result by Alon [Alo87] establishes the existence of an equitable division
giving every player exactly 1

n by each measure; however, such a division may re-
quire up to n2−1 cuts. The question thus arises whether equitable divisions with
connected pieces always exist; to the best of our knowledge, this question has not
been addressed before, and we answer it here to the affirmative. Furthermore,
we show that such a division requires no sacrifice of egalitarian welfare.
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Theorem 3. For every cake-cutting instance there exists an equitable division of
the cake with connected pieces. Furthermore, there always exists such a division
in which the egalitarian social welfare is as high as possible in any division with
connected pieces.

This holds even for cake cutting instances for which players’ valuation of the
entire cake need not be 1.

Proof. Recall that eg(·) has a maximum in X ; we denote OPT = maxx∈X eg(x).
Let Y ⊂ X be the set of divisions with egalitarian value OPT , i.e. Y =

{
y =

(y1, . . . , yn−1, π) ∈ X | eg(y) = OPT
}
.

We note that Y is a compact set; this follows from the fact that it is a closed
subset of X (which is compact itself). To show that Y is closed, we show that
Y = X \ Y is open. Let z ∈ Y be some division having egalitarian welfare
smaller than OPT . In particular, there must exist a player i and ε > 0 such
that ui(z) ≤ OPT − ε. Since player i’s valuation of the cake is a nonatomic
measure, there must exist δ > 0 such that extending i’s piece to the interval
(zπ(i)−1 − δ, zπ(i) + δ) increases i’s utility (compared to the original division z)
by less than ε. Therefore, in the ball of radius δ around z (e.g. in L∞), every
division still gives i utility smaller thanOPT , and thus this ball does not intersect
Y . It thus follows that Y is an open set, and so Y is closed and compact.

Recall that our aim is to show that Y has an equitable division. We first define
a function Δ : Y → R, measuring the distance of a division from equitability:

Δ(y) = max
i,j∈[n]

{
ui(y)− uj(y)

}
= max

i∈[n]

{
ui(y)−OPT

}
.

We complete the proof by showing that for any ε, there exists a devision y(ε) ∈ Y ,
such thatΔ(y(ε)) ≤ ε. Since Y is a compact set and Δ(·) is continuous, the image
of Y is also compact and thus necessarily contains zero (as it is a closed subset
of R containing a point p < ε for every ε > 0). We therefore conclude that there
exists some y∗ ∈ Y with Δ(y∗) = 0; such y∗ is clearly equitable.

It remains to prove that for any ε, y(ε) exists; we prove this by induction on
the number of players n. For n = 1 there is only one possible division, which
obtains exactly OPT for the single player. Assume for n−1, we prove for n. Let
y be any division in Y , and assume w.l.o.g. that y uses the identity permutation.
We first construct a division y′ such that for i = 1, . . . , n − 1, ui(y′) = OPT ,
by sequentially moving the border y′i (between players i and i + 1) to the left
as far as possible while keeping that ui(y′) ≥ OPT . This is possible since in
y, ui(y) ≥ OPT and the borders only need to move to the left. Consider the
resulting y′. If un(y′) ≤ OPT+ε we are finished; otherwise, let y′′ be the division
obtained from y′ by moving the border y′′n−1 (between players n − 1 and n) as
far right as necessary so that un(y′′) = OPT + ε. Now, omit the rightmost piece
(that of player n), and consider the (n− 1)-player cake cutting problem, on the
remaining cake. (Note that the players’ valuation of the entire new cake need
not be identical to their valuation of the original cake, and that the new cake
has a different set Y ′ of egalitarian-optimal divisions.)

Now, in this new problem the egalitarian maximum cannot exceed OPT , as
that would induce an egalitarian maximum greater than OPT for the entire
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problem. On the other hand, an egalitarian value of OPT is clearly attainable,
as it is obtained by y′′ (reduced to the first n − 1 players). Hence, OPT is
also the egalitarian maximum for the new (n − 1)-player problem. Thus, by
the inductive hypothesis, there exists a division for this problem that obtains
egalitarian welfare OPT and such that no player gets more than OPT + ε.
Combining this solution with the piece (y′′n−1, 1) given to player n, we obtain
y(ε) ∈ Y , such that no player gets more than OPT + ε.

The proof for the bound on the utilitarian Price of Equitability can be found in
the full version of the paper.

Theorem 4. The utilitarian Price of Equitability for cake-cutting instances with
n players and connected pieces is bounded from above by n, and for any n there
is an example in which it is arbitrarily close to n− 1 + 1

n .

4 Trading Fairness for Efficiency

The work on the Price of Fairness is concerned with the trade-off between two
goals of cake division: Fairness, and efficiency (in terms of social welfare). How-
ever, the results we presented so far, as well as the results in [CKKK09], concen-
trate on one direction of this trade-off, namely how much efficiency may have
to be sacrificed to achieve fairness. We now turn to look at the analogue ques-
tion of how much fairness may have to be given up to achieve social optimality.
Sadly, it seems that at least for the connected-pieces case, most of the results
are somewhat pessimistic.

To answer such questions, one must first provide a way to quantify unfairness.
We suggest the following definitions. For α ≥ 1, we say that a division x:

– is α-unproportional if some player i ∈ [n] has ui(x) ≤ 1
α·n .

– has envy of α if there exist players i, j ∈ [n] for which

vi(xπ(j)−1, xπ(j)) ≥ α · vi(xπ(i)−1, xπ(i)) = α · ui(x) ,

i.e. if some i feels that j 
= i received a piece worth α-times more than the
one she got.

– is α-inequitable if there are players i, j ∈ [n] with ui(x) ≥ α · uj(x).

Using these “unfairness” notions, we can obtain the following simple results.

Proposition 3. There are cake-cutting instances where a utilitarian-optimal di-
vision is necessarily infinitely unfair, by all three measures above.

We already know (Proposition 2 and Theorem 3) that egalitarian optimality is
not in conflict with neither proportionality nor equitability. However, this is not
the case for envy:

Proposition 4. There are cake-cutting instances where an egalitarian-optimal
division necessarily has envy arbitrarily close to n− 1, and this is the maximum
possible envy for such divisions.
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5 Conclusions and Open Problems

In this work we analyzed the possible degradation in social welfare due to fairness
requirements, when requiring that each player obtains a single connected piece.
We obtain that the results vary considerably, depending on the fairness criteria
used, and the social welfare function in consideration. The bounds range from
provably no degradation for proportionality and equitability under the egalitar-
ian welfare, through an O(

√
n) degradation for envy-freeness and proportionality

under the utilitarian welfare, to an O(n) degradation for equitability under the
utilitarian welfare and for envy-freeness under the egalitarian welfare. We have
also seen that if we seek to trade fairness to achieve social optimality, the “ex-
change rate” may (at the worst case) be infinite for utilitarian welfare (for all
three fairness criteria), or linear for egalitarian welfare and envy-freeness.

Many open questions await further research, including:

– Small number of connected pieces. Most works on cake cutting either require
that each player gets a single connected piece (as we do in this work), or
allow giving a player any union of intervals. A natural middle ground is
to require that each player receives only a small number of pieces, e.g. a
constant number. The question thus arises to bound the degradation to
the social welfare under such requirements. In such an analysis it would
be particularly interesting to see how the bounds on degradation behave as
a function of the number of permissible pieces.

– The Egalitarian Price of Fairness with non-connected pieces. [CKKK09] pro-
vide bounds on the Price of Fairness using the utilitarian welfare function,
for the setting in which non-connected pieces are permissible. Bounding the
egalitarian Price of Fairness in this setting remains open. A trivial upper
bound on the Price of Envy-freeness is n

2 , and we have examples of instances
where this price is strictly larger than 1, but obtaining tight bounds seems
to require additional work and techniques.

– The egalitarian Price of Proportionality and Equitability for indivisible goods.
[CKKK09] provide analysis for the utilitarian Price of Fairness for such
goods. A simple tight bound of n

2 can be shown for the egalitarian Price
of Envy-Freeness for this case; it thus remains open to determine the egali-
tarian Price of Proportionality and Equitability for such goods.

– The Price of Fairness for connected chores. As we already mentioned, fair
division of chores has a somewhat different flavor from division of goods,
and may require different techniques. One possible motivation for requiring
connected division of chores may be, for example, a case in which a group
of workers have to maintain the cleanliness of a (heterogeneous) beach strip,
and so would like to give each worker a connected area to be responsible for.

Acknowledgement. We thank Ariel Procaccia for providing helpful comments on
an earlier draft of this work.
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Abstract. We consider collusion in path procurement auctions, where payments
are determined using the VCG mechanism. We show that collusion can increase
the utility of the agents, and in some cases they can extract any amount the pro-
curer is willing to offer. We show that computing how much a coalition can gain
by colluding is NP-complete in general, but that in certain interesting restricted
cases, the optimal collusion scheme can be computed in polynomial time. We ex-
amine the ways in which the colluders might share their payments, using the core
and Shapley value from cooperative game theory. We show that in some cases
the collusion game has an empty core, so although beneficial manipulations ex-
ist, the colluders would find it hard to form a stable coalition due to inability to
decide how to split the rewards. On the other hand, we show that in several com-
mon restricted cases the collusion game is convex, so it has a non-empty core,
which contains the Shapley value. We also show that in these cases colluders can
compute core imputations and the Shapley value in polynomial time.

1 Introduction

Collusion is an agreement between agents to defraud in order to obtain an unfair advan-
tage [22]. We examine collusion in path procurement auctions (PPAs), where a buyer
procures a path from a source s to a target t in a graphG = 〈V,E〉. Each edge ei ∈ E
is owned by ai, who incurs a cost ci when her edge is used. The cost ci is known
only to ai. The buyer must compensate edges on the chosen path for their costs. Given
the private costs, a mechanism can find the minimal cost s − t-path. The mechanism
can ask each ai for the minimal amount it would be willing to receive to allow us-
ing ei. If ai answers (bids) truthfully, this is her cost ci. However, the costs are the
agents’ private information and they may bid strategically to increase their payment.
VCG mechanisms [23,10,13] are used to incentivise agents to reveal their true costs.
VCG has desirable properties, but is susceptible to collusion. Though any single agent
is incentivised to bid truthfully, several agents may coordinate bids and split the gains
from manipulating. We show how agents might collude and share the gains in VCG
PPAs. Our model follows the collusion game of [4], but applied to PPAs.

1.1 Preliminaries

In VCG mechanisms we have an agent setN = {1, . . . , n}. The mechanism chooses an
alternative from the set K . Agents report a type θi ∈ Θi, representing her preferences

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 38–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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overK , and each agent i has a valuationwi(k, θi) depending on the chosen k ∈ K . The
mechanism uses the choice rule k : Θ1 × ...×Θn → K , and agent i must also make a
payment ri to the mechanism, according to a payment rule ti : Θ1× ...×Θn → R. We
assume quasi-linear utility ui(k, pi, θi) = wi(k, θi)−ri. An agent imay manipulate and
report type θ′i = si(θi), according to its strategy si. Groves mechanisms use k∗(θ′) =
argmaxk∈K

∑
i wi(k, θ′i) and payment rule: ri(θ′) = hi(θ′−i) −

∑
j 
=i wj(k∗, θ′j),

where hi : Θ−i → R only depends on the reported types of agents other than i. We
consider the case of VCG, where: hi(θ′−i) =

∑
j 
=i wj(k∗−i(θ

′
−i), θ

′
j).

Our collusion analysis uses coalitional game theory. A transferable utility coalitional
game is composed of a set N of n agents, and a characteristic function mapping any
agent subset (coalition) to a value v : 2N → R, indicating the total utility these agents
achieve together. The function only defines the gains a coalition achieves, not how to
distribute them. An imputation (p1, . . . , pn) divides the the gains among the agents,
where pi ∈ R, such that

∑n
i=1 pi = v(N). We call pi the payoff of agent i, and de-

note p(C) =
∑

i∈C pi. A key issue is choosing the appropriate imputation. A basic
imputation requirement is individual rationality: for any i ∈ N , pi ≥ v({i}). Other-
wise, agent i is incentivized to work alone. Similarly, coalition B blocks imputation p
if p(B) < v(B), since B’s members are better off working on their own. A solution
concept focusing on this is the core [12]: the set of all imputations p not blocked by any
coalition, so for any C ⊆ N we have: p(C) ≥ v(C).

Another solution concept is the Shapley value [20] which defines a single value
division. It focuses on fairness, rather than stability. The Shapley value fulfills im-
portant fairness axioms [20,25] and has been used to fairly share gains or costs. The
Shapley value of an agent depends on its marginal contribution to possible coalition
permutations. We denote by π a permutation (ordering) of the agents, and by Π the
set of all possible such permutations. Given permutation π ∈ Π = (i1, . . . , in), the
marginal worth vector mπ[v] ∈ Rn is defined as mπ

i1 = v({i1}) and for k > 1
as mπ

ik
[v] = v({i1, i2, . . . , ik}) − v({i1, i2, . . . , ik−1}). The convex hull of all the

marginal vectors is called the Weber Set. Weber showed [24] that the Weber set of any
game contains its core. The Shapley value is the centroid of the marginal vectors.

Definition 1. The Shapley value is the payoff vector: φ[v] = 1
n!

∑
π∈Π m

π[v].

Our analysis is based on the notion of convex games. For convex games it is known [21]
that the core is non-empty, and that the Weber Set is identical to the core. The Shapley
value is a convex combination of the marginal vectors and lies in the Weber Set, so in
convex games, the Shapley value lies in the core.

Definition 2. A game is convex if: ∀A,B ⊆ I , v(A∪B) ≥ v(A) + v(B)− v(A ∩B).

2 Collusion in VCG Path Procurement Auctions

Consider a PPA in a graphG = 〈V,E〉, where the buyer procures edgesP ⊆ E forming
an s − t-path from a set of agents, each owning an edge in the graph. We identify an
agent ai with her edge ei ∈ E. Each agent has a cost ci associated with her edge and the
mechanism asks each ai to provide a bid bi for using the edge. If the agent is truthful,
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she would report ci. Given the edges’ true costs, one can find the minimal cost s − t-
path, but the costs are private information. The canonical solution to induce truthfulness
is the VCG mechanism. As discussed in Section 1.1, using VCG prices makes truthful
cost revelation the dominant strategy, and results in procuring the cheapest path. Given
the edge costs, this path can easily be computed in polynomial time.

Observation 1 (Computing VCG Prices). Let G = 〈V,E〉 be a path procurement
domain, with cost ci for edge ei ∈ E, and let bi be the bid of ei. Denote the minimal
cost path (according to the declared bi’s) as (ei1 , ei2 , . . . , eix) (of x edges), and let the
optimal path not including ei be ej1 , ej2 , . . . , ejy (of y edges). If ei is on the chosen
path, the payment to ei’s owner is pi =

∑y
s=1 bjs −

∑x
s=1 bis + bi, otherwise pi = 0.

2.1 Colluding in VCG Path Procurement Auctions

We begin with collusion examples. Denote the payment to agent ai when all the agents
bid truthfully (i.e. ai bids her true cost so bi = ci) as pi. Given a set of edgesC ⊆ E, we
denote the VCG payments of all of them under truthful revelation as p(C) =

∑
ei∈C pi.

Fig. 1. Left: domain for Examples 1, 2, 3. Right: domain for Example 4.

Example 1 (Collusion on the cheapest path). Consider the graph on the left of Figure 1,
with two s − t-paths: r1 = 〈s, u, w, t〉 with costs c3 = 1, c4 = 1, c5 = 1 and r2 =
〈s, q, t〉 with edge costs c1 = 2, c2 = 2. The cheapest path is r1 with cost cr1 =
1+1+1 = 3, and the second cheapest path is r2 with cost cr2 = 2+2 = 4. Consider the
agents on r1: C = 〈e3, e4, e5〉. If all the edges truthfully declare their costs (so ai bids
bi where bi = ci), applying Observation 1 we obtain payments: p3 = 2, p4 = 2, p5 = 2.
Thus, we have p(C) = 2 + 2 + 2 = 6. Suppose each of the agents in C reports having
no cost, bidding b′3 = b′4 = b′5 = 0. This manipulation does not change the chosen
path, as the cheapest path remains r1. However, the payments do change. Denote the
payments when the agents in C bid untruthfully (so b′3 = b′4 = b′5 = 0) and the agents
in I \ C bid truthfully (so b′1 = c1 = 2, b′2 = c2 = 2) as p′ = 〈p′1, p′2, . . . , p′6〉.
Recomputing VCG payments for b′ we obtain p′3 = p′4 = p′5 = 4. Thus each member
ofC benefits from this manipulation, and the total payments for theC become p′(C) =
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ei∈C p

′
i = 12. Note the actual costs of the agents in C have not changed, but total

payments increased by 12 − 6 = 6. The cost of the coalition C when r1 is chosen is
c1 + c2 + c3 = 1 + 1 + 1 = 3, so through this manipulation, the coalition moves from
a utility of p(C)−

∑
i∈C ci = 6− 3 = 3 to p′(C) −

∑
i∈C ci = 12− 3 = 9.

Example 2 (Collusion on a s-t cut). Examine the left of Figure 1 again, but consider
the case where C = 〈e1, e3〉 collude, and e2, e4, e5 bid truthfully. Under truthfully
declarations, the chosen path is r1 with payments: p1 = p2 = 0, p3 = p4 = p5 = 2.
We have p(C) = p1 + p3 = 2, and since r1 is chosen, e3 incurs a cost c3 = 1 so
the utility of the coalition C is p(C) −

∑
i∈C∩r1

ci = 2 − c3 = 2 − 1 = 1. Now
suppose the colluders in C manipulate and bid b′1 = h (for a high number h > 2, say
h = 100), and b′3 = 01, while e2, e4, e5 bid truthfully. Again, the manipulation does
not change the chosen path which is still r1, but the payments do change. Again, we
denote the payments when the agents in C bid untruthfully (b′1 = h, b′3 = 0) and the
agents in I \C bid truthfully as p′ = 〈p′1, p′2, . . . , p′5〉. Recomputing the VCG payments
under p′ we get p′1 = 0, p′3 = h + 2 − 2 = h. Thus, p(C) = h. Since r1 is still
the chosen path, e3 still incurs the cost c3. Thus the new utility of the coalition C is
p(C)−

∑
i∈C∩r1

ci = h− 1. Since the payment of the coalition depends on its chosen
value for h, its utility is unbounded. One might claim that since a1 did not increase her
utility, she might not be willing to collude (lie for a3). To get a1 to cooperate, a3 can
easily compensate a1 via a monetary transfer. Without such a monetary transfers, all
the payment goes to e3. However, using such a transfer, the utility of the coalition of
colluders, p(C)−

∑
i∈C∩r1

ci = h− 1, can be shared between e1 and e3 in any.

Example 3 (Collusion on the non-optimal path). Consider the left of Figure 1, with
the optimal path r1 and the second cheapest path r2. Suppose C = 〈e1, e2〉 collude
(edges of a non-optimal path), and e3, e4, e5 bid truthfully. Under truthful declarations
the chosen path is r1, and p1 = p2 = 0 (as r1 = 〈e3, e4, e5〉 is chosen and not r2 =
〈e1, e2〉), so we have p(C) = 0, and the utility of C is 0. If C manipulates by bidding
b′1 = b′2 = 0, the chosen path is r2 rather than r1, and the payments are p′1 = p′2 = 3,
so we have p′(C) = 6. However, since r2 is chosen, edges e1, e2 incur the costs of
c1 = c2 = 2, so the coalition’s utility is p(C) −

∑
i∈C ci = 6 − 4 = 2. Thus, this

manipulation givesC a utility of 2, rather than 0. Without transfers, this utility is shared
equally between e1 and e2, but it can be shared in any way using transfers.

Example 2 is troublesome, as the colluders achieve unbounded payment from the mech-
anism2. Example 3 shows that even agents on a non-optimal path can manipulate. We
now show an example where beneficial manipulations exist, but due to the network
structure, the colluders cannot find a stable way to share the gains from manipulating.

Example 4 (Empty Core). Consider Figure 1 on the right. The cheapest path is r1 =
〈e1, e2〉 with cost 8, the second cheapest path is r2 = 〈e5〉 with cost 10, and the third
cheapest is r3 = 〈e3, e4〉 with cost 12. Under truthful declarations r1 is chosen, and

1 For this case, e3 may as well report its true cost. However, if the coalition has other edges on
the cheapest path (e.g. e4 or e5), this increases their payment as well.

2 Colluders who can disconnect s and t get any amount the procurer has. This is not surprising
as the good sold is s − t connectivity, and the colluders’ cartel controls all the supply.
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the payments are p1 = p2 = 6 (other payments are 0). Coalition Ct = 〈e1, e2〉 can
manipulate similarly to Example 1 by bidding b′1 = b′2 = 0 to achieve p′(Ct) = 10 +
10 = 20. This raises the utility of Ct from 12 − 8 = 4 to 20 − 8 = 12. However,
Coalition Cb = 〈e3, e4〉 can manipulate similarly to Example 3 by bidding b′3 = b′4 = 0
to achieve a p′(Cb) = 8 + 8 = 163. This raises the utility of Cb from 0 to 16− 12 = 4.

Consider the case where C = Ct ∪ Cb = {e1, e2, e3, e4} collude. C doesn’t control
e5 so its payment cannot exceed 10 per edge. Either 〈e1, e2〉 or 〈e3, e4〉 or 〈e5〉 is chosen,
so the total payment for C cannot exceed 20. The minimal cost C incurs to get any
payment is 4+4 (routing through 〈e1, e2〉). ThusC’s utility is bounded by 20−8 = 12,
similarly to Ct, and achievable the same way. Thus, Cb adds no value to coalition Ct.
Consider what happens when C = {e1, e2, e3, e4} try to agree on what to bid and how
to share the gains. The optimal collusion bids for them get them a utility of 12. Edges
e1, e2 (of Ct) might claim they deserve all this utility, as they can achieve this utility on
their own. However, e3, e4 (of Cb) would claim they deserve at least 4, as they achieve
4 on their own. This results in an unstable coalition and in threats between the coalition
members4. Section 3 characterizes this as a collusion game with an empty core.

In Example 4 , though the colluders have a beneficial manipulation, they find it hard to
form a coalition due to inability to decide how to share the reward. We characterize such
situations using the collusion game. Despite hopes of having such instability mitigate
collusion, we show that for natural coalitions the colluders can always share the gains
in a stable way. We focus on coalitions where all colluders are on the cheapest path (as
in Example 1) or a non-optimal path (as in Example 3).

2.2 Collusion Schemes

We consider optimal manipulations in VCG PPAs. Such collusion requires trust among
the colluders, as they must coordinate and since in many domains collusive behavior is
forbidden (the colluders face dire consequences if caught). We first show that in general,

3 These are the payments where only e3, e4 collude, so e1, e2 truthfully declares their cost,
so under the collusion, the VCG mechanism chooses 〈e3, e4〉 as the “cheapest” path, and
computes the payments using the alternative path 〈e1, e3〉 of cost 8.

4 Agents e3, e4 might threaten to bid b′3 = b′4 = 0 creating two zero cost paths, so the result
would depend on how the mechanism breaks ties. In this case, the agents on the winning path
would get a zero payment. If coalition {e1, e2, e3, e4} breaks down into two coalitions {e1, e2}
and {e3, e4} (each pair bidding in a coordinated manner), we have a normal form game. Each
pair chooses the total cost of the path, the pair with lower cost winning and obtaining a total
reward of the difference between the paths’ costs plus its declared cost. A pure strategy Nash
equilibrium is where the truly cheap path bids zero, and the truly expensive path bids highly
enough to guarantee the cheap path a positive utility: the total payment to the cheap path is
k(h − l) + l where k is the number of edges on it and h and l are the declared path prices, so
when h is high enough this exceeds the cheap path’s true cost. If these are the only two paths,
there is another Nash equilibrium: the cheap path bids highly, H , and the expensive path bids
zero: the expensive path has a positive utility when winning and the cheap path can only win
by bidding zero, in which case it would have a negative utility. When analyzing the core of the
collusion game, we assume members dropping out do not form a new cartel and bid truthfully.
Even under this easier assumption, some collusion games have empty cores.
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given a colluder coalition C, finding the optimal collusion or the utility of a colluder
coalition when it optimally manipulates for a coalition is NP-complete.

Theorem 1. Computing the optimal coalition manipulation in a VCG PPA is
NP-Complete.

Proof. Computing the optimal manipulation value is in NP (up to any desired degree
of numerical accuracy), since we can non-deterministically choose bids and check if
we have a manipulation achieving the target utility. To show NP-hardness, we reduce
from LONGEST-PATH (LP), where we are given a graph G = 〈V,E〉 and are asked
to return the length of the longest simple path in it, known to be NP-Complete. Given
the LP instance G = 〈V,E〉, we create a graph G′ = 〈V ∪ {s, t}, E′〉, which contains
a copy of G and two other vertices: s which serves as the source and t which serves
as the target of the PPA. All of G’s edges are also replicated. Also, the source s is
connected to the all the vertices in G, and any vertex is G is connected to the target t.
We denote all edges (s, v) where v ∈ V as S, and all edges (u, t) where u ∈ V as T .
We create an edge eH , connecting s and t. All edges have a cost of ce = 1 except edges
in S ∪ T ∪ {eH}. Edges in S ∪ T have zero cost, and eH has a cost H where H is a
very high number (for example H > |E|2). The target coalition for which we find an
optimal manipulation is C = E′ \ eH = S ∪ T ∪ E, all edges except eH .

Denote by L = (l1, . . . , lq) the longest simple path in G, and its length by q. Coali-
tion C contains L, and so it can have all the edges in L ∪ S ∪ T bid zero, and all the
other edges in C bidH + 1. Then, the cheapest path is (s, l1, . . . , lq, t) with a declared
cost of zero, so this path is chosen. Under this manipulation, the second cheapest path
is (s, t) with costH , so each edge is paidH , and the coalition is paid p(C) = (q+2)H
(there are q edges on the longest path in G, and the edges (s, l1) and (lq, t)). The coali-
tion incurs the true cost of 1 on its q edges in L, so C has a total cost of q. Thus, this
manipulation obtains C a utility of u∗(C) = (q + 2)H − q. It is easy to see that u∗(C)
is the maximal utility C can obtain: the cheapest path must have a total cost of at most
H or eH would be the chosen path, so any edge can be paid at most H , and since L is
the longest simple path inG it is impossible to have more than q edges ofG on the path
the mechanism chooses. Since u∗(C) = (q + 2)H − q and since we choose the value
of H in the reduction, given u∗(C) we can extract q, the length of the longest simple
path in G. This proves we cannot compute the optimal manipulation bids, since given
this manipulation we can compute the chosen path and VCG prices and since we know
the true edge costs this allows computing u∗(C).

The hardness result of Theorem 1 forces us to examine restricted cases of the manipu-
lation problem. In the extreme case where all the edges collude, they can guarantee any
payment the procurer can pay5. In typical domains, the set of colluders is unlikely to
be all the edges or an arbitrary edge subset. A more reasonable colluder set can be a set
of neighboring or close edges, or several edges that are all on a single s − t path. We
examine cases where we can tractably compute the optimal manipulation. Example 1 is
an example of a simple case, where all colluders are on the cheapest s− t path, and the
second cheapest path runs in parallel to the cheapest path. Example 3 shows the second

5 We later show that it suffices for the colluders to be able to disconnect s and t.
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simple case, where all colluders are on a non-optimal s− t path, which runs in parallel
to the cheapest path, and can underbid the truly optimal path.

Consider the case where all colluders are on the cheapest path.C is a simple coalition
on the cheapest path if these hold for all ei ∈ C: edge ei is on the cheapest s− t path;
when removing ei, the cheapest s − t-path contains no edge ej ∈ C. Similarly, C is
a simple coalition on a non-optimal path if the following hold: all edges ei ∈ C are a
non-optimal s − t path, r; the cheapest path r∗ does not intersect r, so r∗ ∩ r = ∅; r
becomes cheapest when b′i = 0 for all ei ∈ C:

∑
ei∈r\C ci <

∑
ei∈r∗ ci.

The following theorems are regarding a VCG PPA, where edge ei bids bi and has
cost ci, and where C is a simple coalition on the cheapest path r1. We assume that all
non-coalition members bid truthfully, so for ei ∈ I \ C we have bi = ci.

Theorem 2 (Simple Cheapest Path Collusion). Let C be a simple coalition of col-
luders on the cheapest path r1. The optimal collusion, maximizing payments pi of any
ei ∈ C (and C’s payment p(C) =

∑
ei∈C pi) is zero bids: bi = 0 for all ei ∈ C.

Proof. Denote the cheapest path under truthful declarations as r1, and the cheapest path
under truthful declarations that does not contain any edge in C as r2. Consider an edge
ei ∈ C that increases its bid beyond ci. This increases the cost of r1 under declared
bids. If several agents in C declare such increased costs so that the cost of r1 under
these modified costs is more than the cost of r2, the path r2 will be chosen, resulting in
a payment of 0 to all agents in C. Since VCG is individually-rational, this manipulation
is not beneficial to the colluders. Thus, it suffices to focus on manipulations where the
bids of edges in C are such that the cost of r1 is at most the cost of r2, so the procured
path is r1. Eliminating any edge ei ∈ C disallows the use of r1, and for any ei ∈ C we
denote by r−i the cheapest path when eliminating ei. Since C is a simple coalition on
the cheapest path we have r−i ∩C = φ. Thus for ei, ej ∈ C we have r−i = r−j . Since
ei, ej are arbitrary edges in C, this means that the cheapest path after eliminating any
edge in C is the same path r. This path r cannot contain any edge ei ∈ C, so it is simply
the cheapest path that does not contain any edge in C, r2. Denote the edges in r = r2
as r2 =

〈
ej1 , ej2 , . . . , ejy

〉
(y edges). Denote the edges of r1 as r1 = 〈ei1 , ei2 , . . . , eix〉

(x edges, containing the edges of C). We assume all agents in r2 bid truthfully, and
denote the total cost of r2 as c(r2). Thus, the formula of Observation 1 can be written
as: pi =

∑y
s=1 bjs −

∑x
s=1 bis + bi = c(r2) −

∑x
s=1,eis 
=i bis . Note that the agents

in C control the bids {bi|ei ∈ C}, and since each bi must be non-negative (the cost
of using edge ei), each pi is maximized when the bids are minimal. Thus, the optimal
manipulation is bidding bi = 0 for all ei ∈ C.

Theorem 3 (Simple Non-Optimal Path Collusion). Let C be a simple coalition of
colluders on the non optimal path r. The optimal collusion, which maximizes all the
payments pi of any coalition member (and C total payment p(C) =

∑
ei∈C pi) is zero

bids: bi = 0 for all ei ∈ C.

Proof. The proof is almost identical to Theorem 3. We denote the non optimal path r
which contains all the colluders as 〈ei1 , ei2 , . . . , eix〉, denote the cheapest path (under
true costs) as r∗, and obtain: pi = c(r∗)−

∑x
s=1,eis 
=i bis .
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Theorem 4 (Cut Collusion). Let C be a coalition whose removal disconnects s and t,
and h > 0 be some value. The colluders can bid so that

∑
ei∈C pi > h.

Proof. At least one ex ∈ C must be used in the chosen s− t path, as C is an s− t cut.
VCG is individually rational so if all e ∈ C bid b′i = h, for ex we have pi > h.

3 The Collusion Game

Consider a PPA over G = 〈V,E〉 with source s and target t. We examine a sub-
set C ⊆ N , who may decide to collude. Under truthful bidding, VCG chooses path
r1 = 〈ei1 , ei2 , . . . , eix〉 and payments pt

1, . . . , p
t
n

6. If the agents in C decide to collude,
they can form a coalition and use a collusion scheme, such as those of Section 2.1.
Denote the chosen path under the optimal manipulation as r∗ = 〈e∗1, . . . , e∗z〉 and the
payments under the manipulation p∗1, . . . , p

∗
n. Some manipulations, such as the optimal

manipulation for simple collusion on the cheapest path, do not change the chosen path,
so r∗ = r1, but increase the payments to coalition members so p∗i ≤ pt

i for any i ∈ C.
Other schemes, such as collusion on a non-optimal path, change the selected path, so
r∗ 
= r1. The coalition members gain payments, but the members on the chosen path,
C ∩ r∗, also incur the cost of their edges. Thus, the utility of the colluder coalition C
is: u∗(C) =

∑
i∈C p

∗
i −
∑

i∈C∩r∗ ci. Using monetary transfers, the coalition’s utility
can be distributed among its members in any way they choose. We define a coalitional
game, based on the total utility a coalition of colluders generates its members.

Definition 3 (Path Procurement Collusion Game). Given a VCG PPA, the value
v(C) of a coalition C ⊆ N is: v(C) = u∗(C). In order to manipulate the collud-
ers must trust each other, or sign a certain enforceable contract, so the coalition C is
typically be restricted to only a certain subset of the agents.

Given the above definition, Theorem 1 simply says that in general it is hard to even com-
pute the value of a coalition in the collusion game. However, Theorem 2, Theorem 3
and Theorem 4 all show that for important restricted cases, finding the optimal ma-
nipulation is trivial. The above definition of the game also allows us to apply solution
concepts to decide how the colluders might share their rewards. The core character-
izes stability, where no subset of the coalition is incetivised to operate on its own. The
Shapley value characterizes a fair allocation of the reward, reflecting each member’s
contribution. Having defined the collusion game, the theme of Example 4 is simple —
this network structure results in the collusion game having an empty core7.

One might hope that most network structures result in empty cores, so the colluders
would not have a stable way of sharing the reward. If this were the case, the problem
of collusion would be mitigated since despite the existence of profitable manipulations,
the colluders would fight amongst themselves regarding the monetary transfers, and
never form a lasting coalition. Unfortunately, we show that for the common cases of

6 The subscript t stands for truthful.
7 Example 4 has disjoint Ct and Cb where v(Ct∪Cb) = v(Ct) but v(Cb) > 0 so p(Ct∪Cb) =

p(Ct) + p(Cb) ≤ v(Ct). One core constraint is p(Ct) ≥ v(Ct) so p(Ct) = v(Ct) =

v(Ct ∪ Cb) and p(Cb) = 0. Another is p(Cb) ≥ v(Cb) > 0, so some core constraints fail.
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simple collusion (along the cheapest path or along a non-optimal path), the game always
has a nonempty core, and there is a polynomially computable core imputation. Also,
regarding fairness, we show that the Shapley value, considered “fair”, is also in the
core and easy to compute. Thus, the colluders can share the gains in a stable and fair
manner8, making collusion a significant problem in such auctions. Our results are based
on showing the game is convex. We show convexity by examining the payment of a
simple coalitionC (on the cheapest path or on a non-optimal path). Denote the cheapest
path as r1 and the cheapest path that contains no edges in C as r2. Denote the non
colluders on the cheapest path r1 as Tr1 = r1 \ C. Denote the cost of a path r as
c(r) =

∑
i∈r ci, and the cost of the edges in Tr1 as c(Tr1) =

∑
i∈Tr1

ci.

Lemma 1 (Shortest Path Collusion Payments). Let C be a simple coalition of col-
luders on the cheapest path. The total payment to the colluders under the optimal ma-
nipulation is P ∗(C) = |C|(c(r2)− c(Tr1)).

Proof. From Theorem 2, any colluder i ∈ C would bid bi = 0. Thus, the formula
of Observation 1 is simplified to pi = c(r2) − c(Tr1) (independent of the colluder’s
identity). Since there are |C| colluders we obtain P ∗(C) = |C|(c(r2)− c(Tr1)).

For collusion on a non-optimal path, we denote the optimal (cheapest) path as r1 and
non optimal path that contains C as r. We denote the non colluders on r as Tr = r \C.
The total cost of the edges in Tr is c(Tr) =

∑
i∈Tr

ci.

Lemma 2 (Non-Optimal Path Collusion Payments). Let C be a simple coalition of
colluders on a non-optimal path. The total payment to the colluders under the optimal
manipulation is P ∗(C) = |C|(c(r1)− c(Tr).

Proof. The proof is similar to Lemma 1.

Theorem 5 (Convexity of the Collusion Game). The collusion game is convex for
simple coalitions (along the cheapest path or a non-optimal path).

Proof. We give the proof for a simple coalition along the cheapest path (the other case
is almost identical). An alternative definition of convex games is: ∀S′ ⊆ S ⊆ I , ∀i /∈ S:
v(S′ ∪ {i}) − v(S′) ≤ v(S ∪ {i}) − v(S). We show this for simple coalition on the
cheapest path, S. Consider any S′ ⊂ S, denote S \ S′ = B, and let a be any agent in
r1 \ S. Denote T = r1 \ S \ {a}. Denote |S| = h and |S′| = l (where l ≤ h), and
denote c(r2) = x. Using Lemma 1 we can write v(S), v(S ∪ {a}), v(S′), v(S′ ∪ {a}).
We have: v(S ∪ {a}) = v(S′ ∪B ∪ {a}) = (h+ 1)(x− c(T ))− c(S′)− c(B)− ca;
v(S) = v(S′ ∪ B) = h(x − ca − c(T )) − c(S′) − c(B); v(S′ ∪ {a}) = (l + 1)(x −
c(B) − c(T )) − C(S′) − Ca; v(S′) = l(x − c(B) − ca − c(T )) − c(S′). Opening
parentheses and canceling terms we get: v(S ∪{a})− v(S) = x+h ·Ca− c(T )−Ca;
v(S′ ∪ {a})− v(S′) = x+ l · Ca − c(T )− Ca − c(B). However, l · Ca ≤ h · Ca and
c(B) is non-negative, so we have v(S′ ∪ {i})− v(S′) ≤ v(S ∪ {i})− v(S).

Convexity of the collusion game has implications regarding how the colluders can share
the gains. Collusion causes the prices paid to the agents to rise, and monetary transfers

8 “Fairness” here is for the colluders — the manipulations are devastating for the auctioneer.
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allow the colluders to share the utility in any way they desire. Under unstable utility
distributions the colluders’ coalition is likely to disintegrate, but convexity guarantees a
stable distribution, so the colluders can distribute the gains so no subset of the colluders
would benefit from leaving the coalition. The colluders may also want to share the
utility in a fair manner, using the Shapley value. In general, even if there are stable
allocations, the Shapley value may be unstable. Unfortunately, for simple coalitions, a
stable allocation always exists, and the Shapley value is also stable.

Corollary 1. For simple coalitions (on the cheapest path or on a non-optimal path),
the collusion game has a non-empty core, containing the Shapley value.

Proof. The collusion game is convex (Theorem 5), so it has a non-empty core coincid-
ing with the Weber set. The Shapley value is in the Weber set so it is in the core.

A final barrier against collusion is computational complexity. Theorem 1 shows that
finding the optimal collusion is hard, but it is trivial for simple coalitions. Corollary 1
guarantees the colluders a fair and stable allocation but it might be hard to compute, even
for simple coalitions. We show that for simple coalitions, the colluders can tractably
compute a simple core imputation or the Shapley value. Since the game is convex, the
Weber set is identical to the core. Given a permutation π = 〈π1, . . . , πn〉 of the agents
and an agent ei, denote the predecessors of i in π as F i

π . Denotemπ
i = v(F i

π ∪{ei})−
v(Fi), and note this can be computed in polynomial time using Lemma 1 (or Lemma 2).
The imputation 〈mπ

1 ,m
π
2 , . . . ,m

π
n〉 is in the Weber set (the Weber set is the convex hull

of all these vectors for different permutations π), and so is a core imputation. A naive
way of computing the Shapley value, the centroid of such vectors, requires perform-
ing this process for all agent permutations π, requiring exponential time. We show a
polynomial algorithm to compute Shapley value.

Theorem 6. For simple coalitions (on the cheapest path or on a non-optimal path), the
Shapley value can be computed in polynomial time.

Proof. The contribution of edge ei to coalition C (where ei /∈ C), v(C ∪ {ei})− v(C)
only depends on |C|, not on who the specific members of C are. Due to Lemma 1, we
have p∗(C) = |C|(c(r2) − c(TC

r1
)) where TC

r1
= r1 \ C are the non-colluders on the

cheapest path. Denote c(r1) = x, c(r2) = y and
∑

i∈C ci = z. We have p∗(C∪{ei})−
p∗(C) = (|C|+1)(y− c(r1 \C \ {ei}))−|C|(y− c(r1 \C)) = (|C|+1)(y−x+ z+
ci)− |C|(y−x+ z) = |C|(y−x+ z+ ci− y+x− z)+ (y−x+ z+ ci) = |C| · ci +
y− x+ z+ ci). Collusion on the cheapest path does not change the chosen path, so we
have: v(C ∪ {ei})− v(C) = −

∑
j∈C∪{ei} cj + p∗(C ∪ {ei}) +

∑
j∈C cj − p∗(C) =

−ci + |C| · ci + y − x+ z + ci = |C| · ci + y − x+
∑

i∈C ci.
Consider computing the Shapley value for ei, φi(v) = 1

n!

∑
π∈Π v(F

i
π ∪ {ei}) −

v(F i
π) (whereF i

π are the predecessors of i in π). Denoteψi(v) =
∑

π∈Π v(F
i
π∪{ei})−

v(F i
π). We can compute ψi by iterating over the possible numbers of predecessors i has

in π, |F i
π|. Let Πj be all permutations π ∈ Π such that |F i

π | = j (i.e. permutations
where i has exactly j predecessors. We can denote the total contribution that i has for
coalitions of size j as Mj =

∑
π∈Πj

v(F i
π ∪ {ei}) − v(F i

π). Thus we have ψi(v) =∑n−1
j=0 Mj . Thus we only need to computeMj in polynomial time (for 0 ≤ j ≤ n− 1).
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To compute Mj =
∑

π∈Πj
v(F i

π ∪ {ei}) − v(F i
π) we can sum over all possible

predecessor sets for i where i has exactly j predecessors, F = {F i
π ⊆ N |π ∈ Πj},

where |F | =
(
n−1

j

)
. Under this notation Mj =

∑
C∈F v(C ∪ {ei}) − v(C). We’ve

shown that v(C ∪ {ei}) − v(C) = |C| · ci + y − x +
∑

i∈C ci, so we have: Mj =∑
C∈F |C| ·ci +y−x+

∑
i∈C ci. Since anyC ∈ F have the same size |C| = j, we get:

Mj = |F | · (j · ci + y− x) +
∑

C∈F

∑
i∈C ci. We denote q =

∑
C∈F

∑
i∈C ci. Thus,

Mj =
(
n−1

j

)
· (j · ci + y− x) + q. Consider computing q. Given the coalition C of size

|C| = m, denote the weights ci for all i ∈ C asW = 〈c1, . . . , ci−1, ci+1, . . . , cm〉 (W
is the set of the costs of all colluders except ei). Thus, q is simply the sum of weights
in all subsets of W of size j, i.e. q =

∑
S⊂W ||S|=j

∑
s∈S s. Any weight wi ∈ W

appears in q exactly
(
n−1
j−1

)
times, so q =

(
n−1
j−1

)∑
cx∈W cx =

(
n−1
j−1

)∑
ex∈C\{ei} cx.

Given a colluder ei, we can easily compute
∑

ex∈C\{ei} cx in polynomial time, and thus

compute q in polynomial time. This allows us to computeMj =
(
n−1

j

)
·(j·ci+y−x)+q

in polynomial time, for any j. We can thus compute ψi(v) =
∑n−1

j=0 Mj in polynomial
time, and thus compute the Shapley value of any agent in polynomial time.

4 Related Work

Auctions face untruthful selfish agents, so due to strategic behavior, a mechanism try-
ing to maximize welfare may reach a sub-optimal decision. Proper payment rules ince-
tivize agents to bid truthfully. A prominent scheme for doing so is the VCG mechanism
[23,10,13]. Despite its advantages, VCG has many shortcomings [3], including vulner-
ability to collusion [17]. Collusion can occur in many domains and many of its forms
are illegal [17]. Our model follows an analysis of multi-unit auctions [4], but for the
PPA domain [1]. We examine coalitional deviations, but as opposed to strong Nash
equilibrium [2], we convert the normal-form game to a cooperative game. We provide
an internal model of collusion, as opposed to external interventions models [18,6,19].
We focus on the core [12] and Shapley value [20]. The Shapley value and other power
indices are typically hard to compute [16,8], so our result for computing it in some
collusion games is interesting. For general collusion games, the colluders can approxi-
mate [7,16] the Shapley value in order to share their gains. Collusion is also related to
shills and false-identity attacks [26,9,5,27], where a single agent pretends to be several
agents. A single edge in a VCG PPA can pretend to be several edges to increase pay-
ments. Our work is also related to of bidding rings and clubs [15,14], but we assume
the colluders have full information on each other’s costs. Core selecting auctions [11]
are also related to our work, but we do not consider the auctioneer a participating agent,
and the core in our collusion game can be empty.

5 Conclusion

We analyzed collusion in VCG PPAs, and showed that such a domain is vulnerable to
collusion. Some questions remain open for future research. First, similar analysis can be
done for other auctions, such as combinatorial auctions or sponsored search auctions.
Second, due to the drawbacks of VCG for PPAs, what alternative mechanisms should
be used? Finally, what bids are likely to occur for domains with an empty core?
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games. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 636–650.
Springer, Heidelberg (2009)

20. Shapley, L.S.: A value for n-person games. Cont. Theory of Games (1953)
21. Shapley, L.S.: Cores of convex games. Internat. J. Game Theory 1, 12–26 (1971)
22. Sullivan, A., Sheffrin, S.: Economics: principles in action. Prentice-Hall, Englewood Cliffs

(2003)
23. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of

Finance 16(1), 8–37 (1961)
24. Weber, R.J.: Probabilistic values for games. Technical Report, Cowles (1977)
25. Winter, E.: The Shapley Value. Game theory with economic applications (2002)
26. Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., Iwasaki, A.: Coalitional games in open

anonymous environments. In: AAAI (2005)
27. Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota in weighted

voting games. In: AAAI (2008)



Sequential Item Pricing for Unlimited Supply

Maria-Florina Balcan and Florin Constantin

College of Computing, Georgia Institute of Technology

{ninamf,florin}@cc.gatech.edu

Abstract. We study prior-free revenue maximization for a seller with

unlimited supply of n item types facing m myopic buyers present for

k < log n days. We show that a certain randomized schedule of posted

prices has an approximation factor of O( log m+log n
k

). This algorithm re-

lies on buyer valuations having hereditary maximizers, a novel natural

property satisfied for example by gross substitutes valuations. We obtain

a matching lower bound with multi-unit valuations. In light of existing

results [2], k days can thus improve the approximation by a Θ(k) factor.

We also provide a posted price schedule with the same factor for positive

affine allocative externalities, despite an increase in the optimal revenue.

1 Introduction

In most transactions, prices are set on items (not on bundles of items) to simplify
buyers’ and sellers’ decisions. Arguably, a seller’s main objective is to maximize
profit– this basic problem has received tremendous attention in the optimization
literature, often assuming poor information about uncertain demand.

Given a set of buyer valuations for bundles, the optimum revenue is the op-
timal allocation’s total value. Posted prices yielding such a high revenue do not
usually exist, because buyers’ valuations are private and may be quite complex.
A standard compromise [2,3] is then to aim for revenue that is at least (possibly
in expectation) a fraction 1/c of the optimum for any set of buyers, i.e., more
formally, to design algorithms with a low revenue approximation factor c > 1.

We focus on unlimited supply [2,3], a setting relevant to digital media (e.g.
DVDs or software programs). A seller has unlimited supply of n item types if
the marginal cost of producing an additional copy of any item is negligible. For
unlimited supply, the highest possible revenue equals the sum of the maxima of
buyers’ valuations. Assuming only an upper bound on the m buyers’ arbitrary
valuations, Balcan et al. [2] provide a one-shot randomized price (the same for
each item) that yields revenue a Θ(1/(logm+ logn)) fraction of the optimum.
Like [2], we price all items equally, i.e. we use linear uniform prices. This involves
the least price discrimination possible under static pricing: no buyer or item
is favored over another. In fact, some online movie retailers have very limited
variability in prices – e.g. iTunes offers only two prices for movies, older movies
having a discount.

In practice buyers purchase more than once from the same seller. It is then
natural to investigate improved approximation factors if all buyers are present

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 50–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for k<n time periods, that we call days. In general, the seller may update prices
“on the fly” based on realized demand. For simplicity we only use, like [2,3],
price sequences decided ahead of time, but only revealed gradually to buyers.
A buyer starts with no items and accumulates them over time. We assume that
any buyer is forward-myopic, i.e. greedily purchases a preferred set in each day.1

We are now ready to state the central question in this paper

Question : What revenue approximation factor Cm,n,k is achievable with
m forward-myopic buyers, n items in unlimited supply and k equal item prices?

Balcan et al. [2]’s results yield Cm,n,1 =O(logm+logn) and C1,n,1 =Θ(logn).
We provide a general lower bound and an upper bound on the revenue factor

achievable (we introduce in detail these results and define these classes shortly).

Answer :

{
Even for concave multi-unit valuations, Cm,n,k =Θ( log m+log n

k )
For valuations with hereditary maximizers, Cm,n,k=O(log m+log n

k )

We show that no scheme with k successive prices can approximate revenue to
a factor lower than Θ( log m+log n

k ), even for concave multi-unit (i.e. that do not
differentiate items) valuations, some of the most basic combinatorial valuations.

Our main result however is a matching upper bound. We show that generat-
ing k independent random prices and offering them in decreasing order approx-
imates revenue to no worse than a Θ( log m+log n

k ) fraction, thus improving [2]’s
approximation by a Θ(k) factor. Our technical contribution is to generalize a
guarantee on the expected profit from one random price to k such prices. While
the bound for one price uses a standard technique for worst-case bounds, the
only improvement for general k that we are aware of (by Akhlaghpour et al. [1])
is exponentially worse than ours as their recursive construction only yields a
Θ(log k) factor improvement. We connect revenue from a valuation v with the
joint area of k rectangles, determined by prices, under v’s demand curve F .
While each such rectangle covers in expectation a logarithmic fraction of the
area under F , we are able to limit the overlaps of rectangles by carefully ana-
lyzing the k prices as order statistics. If all valuations have the same maximum
(or obviously if m = nO(1)), then we can improve our two bounds to Θ( log n

k ).
Our upper bound (in particular our connection between revenue and area

under demand curve covered by price-based rectangles) relies on the natural suf-
ficient condition (that we identify) of buyer valuations having hereditary max-
imizers (HM). The HM property essentially states that an algorithm greedily
selecting items by their marginal value has at each step a set of maximum value
among sets with the same size. In particular, multi-unit valuations and gross
substitutes valuations (a classical model in economics, see e.g. [5,7]) have HM.

1 If buyers chose the lowest price p in a sequence P , then p would be equivalent

to P . Steve Jobs, CEO of Apple, Inc., writes about the cut of iPhone prices: “If

you always wait for the next price cut [. . .], you’ll never buy any technology prod-

uct because there is always something better and less expensive on the horizon”.

http://www.apple.com/hotnews/openiphoneletter, September 2007.

http://www.apple.com/hotnews/openiphoneletter
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Submodular valuations may not have HM, leading to a counter-intuitive phe-
nomenon: the revenue from offering a high price followed by a low one may be
less than the revenue from the low one only. Consider three movies: a very good
science-fiction (S) one and an animation (A) movie and a drama (D), both of
slightly inferior quality. A typical family prefers S to A or D, but A and D (for
variety) to any other pair; the family does not strategize about price schedules.
If a greedy movie retailer starts with high prices and reduces them afterwards
(on all movies) then, despite good revenue on S, it loses the opportunity of more
revenue by selling A and D instead. This (submodular) valuation, formalized in
Section 2.1, does not have HM. S is preferred to each of the other two, whose pair
is preferred to the other pairs. For HM valuations however, this counter-intuitive
reversal does not occur, which is critical, as we show, for good sequential revenue.

Finally, we initiate the study of revenue maximization given allocative exter-
nalities (i.e. influences) between buyers with combinatorial valuations. We pro-
vide a rather general model of positive influence of others’ ownership of items
on a buyer’s valuation. For affine, submodular externalities and base valuations
with HM we present an influence-and-exploit [8] marketing strategy based on
our algorithm for private valuations. This strategy preserves our approximation
factor, despite an affine increase (due to externalities) in the optimum revenue.

Related work. The prior-free, unlimited supply domains studied for revenue
maximization have been less general than the one in this paper. Balcan et al. [2]
present structural results for one-shot pricing and achieve a tight Θ(logm+logn)-
factor revenue approximation via a single random price. Bansal et al. [3] study
buyers with values in [1, H ] for one item type and arrival–departure intervals.
They obtain almost matching upper and lower bounds on the approximation
factor: O(logH) and O(log logH) for deterministic and randomized schemes.

While externalities are natural and well-studied in social networks [9], the
corresponding revenue maximization problem has been recently introduced by
Hartline et al. [8], who investigate approximation via single-item distribution-
based influence-and-exploit marketing strategies. Akhlaghpour et al. [1] study
this problem for a seller that cannot use price discrimination amongst buyers.

Paper structure. After introducing notation in Section 2, we review known
bounds on Cm,n,k and provide a new lower bound in Section 3. Section 4 analyzes
hereditarymaximizers,apropertyofvaluations leading to aCm,n,kupper boundes-
tablished in Section 5. Finally, in Section 6, we model externalities, where a buyer’s
valuation depends on others’ items, and extend Section 5’s approximation. Due to
space constraints, we defer some proofs and examples to the full version2.

2 Preliminaries

We consider a seller with n item types in unlimited supply. The seller can thus
profit from selling copies of an item at any price but aims to maximize its revenue.
The seller has k < n sale opportunities called days. There are m customers with
2 Available at http://arxiv.org/abs/1009.4606 and from the authors’ webpages.

http://arxiv.org/abs/1009.4606
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quasilinear utilities present in all k days. Customers have valuations over bundles
of items (not more than one per type); we denote a generic such valuation3 by
vi :21..n→R and its maximum by Hi. We assume that the seller knows only the
highest maximum across customers H= maxiHi =maxi∈1..m,S⊆1..nvi(S).

We treat static pricing first and then dynamic pricing in Section 2.1. We only
use the simplest form of pricing, with no item or buyer discrimination. A price
vector p∈Rn is linear uniform4 if pj =p, ∀ j=1..n.
Given a price vector, a customer buys a preferred (utility-maximizing) bundle.

Definition 1. For price vector p ∈ Rn, the demand correspondence [7] Dv(p)
of valuation v is the set of utility-maximizing bundles at prices p:

Dv(p) = argmaxS⊆1..n{v(S)−
∑

j∈S pj} (1)

For linear uniform price p=p · 1, let Dv(p)=Dv(p) and Fv(p)=minS∈D(p·1)|S|
be the least number of items in a bundle demanded (by valuation5 v) at prices p.

As one would expect, a higher price cannot increase the least quantity bought.

Lemma 1. [2] For an arbitrary valuation v and p>p′, F (p)≤F (p′).

2.1 Sequential Pricing

Assume the seller offers equal item prices rd∈R+ in day d=1..k, with r1>. . .>rk.
We now define buyers’ behavior over time, starting with no items before day 1.

We model any buyer as forward-myopic: assume that before day d he buys
sets S1, . . . ,Sd−1. His utility for itemsS⊆1..n\(S1∪. . .∪Sd−1)he does not own is

ud,...,1(S1,. . ., Sd−1, S, r
1 . . . rd) = v(S1∪. . .∪Sd−1∪S)−(

∑d−1
l=1 r

l|Sl|)−rd|S| (2)

i.e. a customer does not anticipate price drops but does take into account past
purchases (accumulating items) and payments to decide a utility-maximizing set
S to buy today. In this model, a customer buys nothing in a day where the price
increases6, hence our focus on decreasing price sequences: the seller starts with
a high price and then gradually reveals discounts, a common retail practice.

Following Def. 1, we denote preferred bundles outside S1∪. . . ∪ Sd−1 at rd by

DS1,...,Sd−1
v (r1 . . . rd) = argmax

S⊆1..n\(S1∪···∪Sd−1)

ud,...,1(S1, . . . , Sd−1, S, r
1 . . . rd)

We briefly consider incentive properties before focusing on revenue only.
3 Only in Section 6 does a valuation vary over time (with others’ items).
4 Different (non-uniform) item prices are also (e.g. [5]) called linear prices.
5 Except for Section 6, v will be clear from context and omitted from D and F .
6 We sketch a proof for d=2: let r1 < r2 and Si bought in day i=1, 2 with S1∩S2 =∅.

Suppose S2 
= ∅; then v(S1∪∅)−r1|S1|−r2|∅| ≤ v(S1 ∪ S2)−r1|S1|−r2|S2|< v(S1 ∪
S2)−r1|S1|−r2|S2|, i.e. S1 ∪ S2 is preferred to S1 at price r1, contradiction.
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Incentive considerations. A buyer’s utility cannot decrease in any day: there
is always the option of not buying anything. Thus, any sequence of prices defines
an individually rational mechanism. Furthermore, within a day, as each buyer
faces the same prices, buyers have no envy and no profitable item swaps.

Our goal is revenue maximization via (possibly randomized) price sequences
decided ahead of time (but only revealed gradually to buyers).

Definition 2. A pricing scheme P is a sequence7 of k (possibly random) de-
creasing prices. RevP(v1,. . ., vm) denotes P’s revenue (in expectation for ran-
domized P), for valuations v1,. . ., vm and least favorable tie-breaking decisions by
buyers.

A standard [2,8] revenue benchmark is customers’ total willingness to pay. We
study worst-case guarantees, that hold regardless of buyer valuations.

Definition 3. A (possibly randomized) pricing scheme P is a c-revenue approx-
imation (where c ≥ 1) if

∑
i∈1..m maxS⊆1..n vi(S) ≤8 c ·E[RevP(v1, . . . , vm)] for

all valuations v1 . . . vm, where the expectation is taken over P’s random choices.

Recall our main question: assessing what revenue approximation factors Cm,n,k

are achievable. Clearly, Cm,n,k+1≤Cm,n,k and Cm,n,k≤Cm+1,n,k. Next section
formally states known values of Cm,n,k for particular (m,n, k) triples, provides
some intuition for sequential pricing and presents our lower bound Cm,n,k =
Ω( log m+log n

k ). Section 5 presents the upper bound Cm,n,k = O( log m+log n
k ).

3 Existing Bounds for Cm,n,k and a New Lower Bound

Motivated by worst-case pricing bounds [2,3], we use prices ql = H/2l for l ≥ 0.
Algorithm Random

H
D outputs one-shot price ql where the scaling exponent l is

chosen uniformly at random in 0..D−1.Despite its simplicity, Random
H
D is quite

effective in general and as effective as any other algorithm for one buyer.

Lemma 2. [2] For9 t=1+logm+logn, Random
H
t is a 4t-revenue approximation.

For one buyer, i.e. m=1, this factor is tight (modulo a constant factor). Thus,
Cm,n,1 =O(logm+logn) and C1,n,1 =Θ(log n).

For n=1, Random
H
1+log H is [3] a 2-approximation, i.e. Cm,1,1+log H=2.

For the rest of this section we assume that the seller fully knows buyers’ valu-
ations. This strong assumption will allow us to understand two special settings.

The first setting is concerned with one buyer m=1 with a known monotone
(H=v(1..n)) valuation v and many days k=n. In this setting, full revenue can
be obtained from v i.e. C1,n,n = 1. Assume that items are numbered in the order
a greedy algorithm on marginal values would choose them, i.e. for all i = 1..n,
7 We can expand, without changing revenue, any shorter sequence P to k prices by

appending to P copies of its last price.
8 This benchmark is at leastmaxS⊆1..n

∑
i∈1..mvi(S),i.e.the highest joint value of a set.

9 This paper only uses base 2 logarithms.
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v({1..i}) ≥ v({1..(i− 1), x}), ∀x ∈ i..n. Then, at price ri =v({1..i})−v({1..(i−
1)}) in day i ∈ 1..n, exactly10 item i is bought (ignoring ties). The sum of all
days’ revenues telescopes to v(1..n)=H .

The second setting yields the first half of the answer to our main question: a
lower bound on achievable Cm,n,k, showing the effect of limited (k) price updates
and buyer differences, even with known valuations and identical items.

Theorem 1 (lower bound). Define vs(x) =

{
x/2s−1, if x ≤ 2s−1

1, if x > 2s−1
∀ 1≤ s ≤

N+1 (for N = logn ∈ Z) to be 1 + logn concave multi-unit valuations, each
with maximum 1: v1(x) = 1, ∀x = 1..n and vN+1(x) = x/2N = x/n, ∀x = 1..n.
Then the revenue of any sequence of k< logn prices is at most 2k. Thus, even
if valuations have the same maximum, any k-day pricing algorithm must have
a higher revenue approximation factor than 1+log n

2k , even for 1 + log n buyers:
1+log n

2k ≤ Cequal maxima
1+log n,n,k . In general, Cm,n,k = Ω( log m+log n

k ).

Informally, each vs has a constant non-zero marginal value (MV) for one item
in [1/n, 1]. A low price is effective for low MV buyers but could profit more
from high MV buyers. A high price fails to sell any item to low MV buyers
despite getting good revenue from high MV buyers. This reasoning extends to
short (k< logn) sequences of prices. For k=1, we get Cm,n,1 =Θ(logm+logn),
showing that [2]’s bound Cm,n,1 =O(logm+logn) is tight for all m.

After this section we will provide positive results only. In preparation we require
another piece of bad news highlighting the importance of sequential consistency.
Even the seemingly innocuous assumption of decreasing prices can hurt revenue.
We now provide a submodular valuation consistent with the movie example in the
introduction exhibiting a counterintuitive revenue non-monotonicity.

Example 1. Let a be the science-fiction movie, and b, c be the animation and
drama. Define a valuation v by v(a) = 3, v(b) = v(c) = 2.1, v(a, b) = v(a, c) =
3.8, v(b, c)= v(a, b, c)= 4.2. For r1 =1.5, D(r1)= {{a}} and for r2 =1,D(r2) =
{{b, c}}. Neither b or c is worth $1 given a: D{a}(r1, r2) = {∅}. Less revenue
($1.5) is obtained from offering r1 followed by r2 than from r2 alone ($2).

4 Hereditary Maximizers

We now define hereditary maximizers, a new property of valuations and establish
it for multi-unit and gross substitutes valuations. In Section 5 we will show that
it is sufficient for good sequential revenue: in particular, unlike in Example 1,
the revenue from any price sequence is at least that from its lowest price.

Definition 4. Valuation v has hereditary maximizers (HM) if given any size j
value-maximizing bundle Sj, one item can be added to it to obtain a size j+1
such bundle. Letting Mv

j=argmax|S|=j v(S), v has HM if

10 Assumingv submodular; if not, we can set ri to v’s steepest slope given items owned.
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∀n≥j≥1, ∀Sj ∈ Mv
j , ∃Sj+1 ∈Mv

j+1 with Sj ⊂ Sj+1 (HM)

implying ∀n≥j′>j≥1, ∀Sj ∈ Mv
j , ∃Sj′ ∈ Mv

j′ with Sj ⊂ Sj′ (HM∗)

Thus, a valuation has hereditary maximizers if a greedy algorithm selecting the
highest marginal value item at each step always maintains, regardless of its
tie-breaking decisions, a set of maximum value among sets of the same size.
Example 1’s valuation v does not have HM: Mv

1 ={{a}} but Mv
2 ={{b, c}}.

Several well-studied valuation classes are HM as we show shortly. A multi-unit
valuation v, a basic combinatorial valuation, treats all items identically. Hence,
for any j, Mv

j is the collection of all sets of size j and v trivially has HM.

Lemma 3. A multi-unit valuation has hereditary maximizers.

A valuation is gross substitutes, a well-studied condition in assignment prob-
lems [5,7], if raising prices on some items preserves the demand on other items.

Definition 5. A valuation v is gross substitutes (GS) if for any price vectors11

p′ ≥ p, and any A ∈ D(p) there exists A′ ∈ D(p′) with A′ ⊇ {i ∈ A : pi = p′i}.

Remarkably [7], for any set of GS buyers with public valuations, there exists
a Walrasian (or competitive) equilibrium with one-shot item (possibly non-
uniform) prices, i.e. at which buyers’ preferred bundles form a partition of all
items. Among GS valuation classes (see [10] for more examples) are unit demand
valuations (that define the value of a set as the highest value of an item within
the set) and concave multi-unit valuations. We know from Lemma 3 that the
latter valuations have HM – this is not a coincidence.

Theorem 2. [4] A gross substitutes valuation has hereditary maximizers.

Bertelsen [4] implicitly proves Theorem 2, without defining HM. The full version
provides a simpler proof for it via a basic graph-theoretic fact starting, like [4],
from Lien and Yan’s [10] GS characterization.

Lemma 4. [10] v is gross substitutes if and only if v is submodular and

∀ items a, b, c,set S, vS(ab) + vS(c) ≤ max{vS(ac) + vS(b), vS(bc) + vS(a)} (3)

i.e. no unique maximizer among vS(ab) + vS(c), vS(ac) + vS(b), vS(bc) + vS(a)
where vS(A)=v(S ∪A)−v(S), ∀A⊆1..n\S denotes A’s marginal value over S.

The high-level idea of Theorem 2’s proof is as follows. We define a (bipartite)
directed graph among certain sets of equal size; an edge from set S to set S′

shows that S has a strictly higher certain marginal value in v than S′. If v did
not have HM, then this graph would have a directed cycle which is impossible.

We now exhibit a rich class of valuations that are HM, but not GS (see the
full version for other classes and proofs). They attest to the richness of our HM
11 We compare price vectors p, p′∈Rn component-wise: p′≥p ⇐⇒ p′

j ≥ pj ∀ j = 1..n.
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class, even when compared to the well-studied GS class. In an order-consistent
valuation, for any L ∈ 1..n and any sets {j1, . . . , jL} and {j′1, . . . , j′L}, whenever
v({jl}) ≥ v({j′l}), ∀ l = 1..L then v({j1, . . . , jL}) ≥ v({j′1, . . . , j′L}), with strict
inequality if at least one single item inequality is strict.

We proceed with a quantity guarantee for HM valuations, that will be critical
for guarantees on sequential revenue. No fewer items are sold for price sequence
r1, . . . , rd (regardless of which preferred bundles are bought) than in the worst-
case for rd alone, i.e. F (rd). This guarantee follows from a strong structural
property, that we highlight for d = 2. Any set S1 ∈ D(r1) (i.e. preferred at a
higher linear uniform price r1) can serve as base to create sets preferred at the
lower price r2 < r1 via joining any set S2∈DS1(r1, r2) (i.e. preferred sequentially
at r2 after buying S1): formally, S2 ∪ S1∈D(r2).

Theorem 3. Fix an HM valuation v, a day d ≤ k and prices r1 > · · · > rd.
Let Sδ∈DS1,...,Sδ−1(r1, . . . , rδ) preferred at rδ given sets S1,. . . ,Sδ−1 sequentially
bought at r1,. . ., rδ−1 ∀ δ=1..d. Then

⋃d
δ=1Sδ∈D(rd) and thus

∑d
δ=1|Sδ|≥F (rd).

We first state a property used in Theorem 3’s proof.Clearly, a size j set (if any)
preferred at a uniform price cannot have a higher value than another size j set.

Lemma 5. For all prices r and sizes j, D(r)∩{|S| = j} is either empty or Mv
j .

Proof (of Theorem 3). We treat the case d = 2; the proof for general d is similar.
Let S1∈D(r1) be a set preferred at price r1 and assume |S1| < F (r2) (other-

wise the claim is immediate). Let S2∈DS1(r1, r2) be a set preferred at price r2

after having bought S1 at price r1. By Lemma 5, S1 ∈M∅,|S1|. As F (r2)> |S1|,
by (HM∗), ∃S′

2∈M∅,F (r2) a minimal set preferred at price r2 with S1 ⊂ S′
2. As

M∅,F (r2) ∩ D(r2) 
= ∅ (it contains S′
2), by Lemma 5, S′

2 ∈ D(r2).
Let uS = v(S ∪S1)− r1|S1| − r2|S| be the utility from buying S ⊆ 1..n\S1 at

r2 after buying S1 at r1. As S2∈DS1 (r1, r2), uS′
2\S1 − uS2 = (v(S′

2)− r2|S′
2|)−

(v(S2 ∪ S1)− r2|S2 ∪ S1|) ≤ 0. If uS′
2\S1<uS2 then S2 ∪ S1 is preferred to S′

2 at
r2, contradicting S′

2∈D(r2). Thus uS′
2\S1 =uS2 implying S2 ∪ S1∈D(r2).

5 Revenue Approximation for Independent HM
Valuations

We now leverage Theorem 3 towards an upper bound matching (up to a constant
factor) our Cm,n,k = Ω( log m+log n

k ) lower bound. Let L = 1 + logm+ logn.

Theorem 4 (upper bound). Consider m HM valuations with maxima H1. . .
Hm and let H = maxi∈1..mHi. Consider k prices qx1 = H

2x1 ≥ · · · ≥ qxk
= H

2xk

where x1 ≤ · · · ≤ xk are the first (lowest), . . . , k-th (highest) order statistics of
k iid U [0, L] continuous random variables u1, . . . , uk. These prices yield expected
revenue Ω( k

log m+log n )
∑

i∈1..mHi. Thus Cm,n,k =O(log m+log n
k ).

If all vi’s have the same maximum (Hi =H, ∀ i∈ 1..m) then, as in [2], the ap-
proximation factor can be improved to Ω( log n

k ) by using L = log(2n). Recalling
Theorem 1’s lower bounds, our bounds are tight modulo a constant factor.
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Before proceeding with Theorem 4’s proof, we review, motivated by Lemma 1,
a natural analogue of a well-studied economic concept and relate it to H .

A valuation v’s demand curve [2] is a step function given by (pl, F (pl))l=0..nv+1

(with nv ≤ n) where threshold prices 0 = p0<p1< .. < pnv ≤ pnv+1 =H satisfy
F (pl) = F (p) > F (pl+1), ∀ p ∈ [pl, pl+1), ∀ l = 0..nv. That is, for any l and any
price p in [pl, pl+1] the lowest size of a (preferred) bundle in Dv(p) is F (pl). The
area AF under v’s demand curve is defined as

∑nv

l=1 pl(F (pl)− F (pl+1)).

Lemma 6. [2] AF = H = maxS⊆1..n v(S), i.e. v’s maximum willingness to pay.

The (worst-case) revenue pF (p) from a single price p equals the part of AF

covered by p. We now generalize this to a sequence of prices: e.g., prices r1>r2

cover a F (r1)r1 + (F (r2)−F (r1))r2 part of AF , i.e. the area of the union of two
rectangles with opposite corners (0, 0) and (ri, F (ri)). No pricing scheme can
cover more than AF itself. However, as seen in Example 1, the area covered by a
two-price sequence may be less than its revenue even for a submodular valuation.

Definition 6. The fraction of AF covered by a pricing scheme P with prices
p′1>. . .>p′k is (1/AF )

∑k
d=1 p

′
d(F (p′d)− F (p′d−1)) where F (p′0) = 0.

We are now ready for Theorem 4’s high-level proof, establishing that for HM
valuations a pricing scheme P ’s revenue is at least the part of AF covered by P .

Proof (of Theorem 4). We proceed with one buyer; linearity of expectation will
then yield the claim. Let qx1≥ . . .≥qxk

be Theorem 4’s prices for H . Let set S′
d∈

DS′
1,...,S′

d−1(qx1 . . . qxd
) be bought in day d. By Theorem 3,

∑d
δ=1 |S′

δ|≥F (qxd
).

Via Lemma 8 below with d0 = 1, d = k, qδ = qxδ
and xδ = F (qxδ

), revenue
is at least

∑d
δ=1 qxδ

(F (qxδ
) − F (qxδ−1)), i.e. the area covered by these prices.

Theorem 5, our approximation’s technical core, will yield the factor: it shows
that the k random12 prices cover well in expectation the area under the demand
curve.

Theorem 5. Consider k prices qx1 = H
2x1 ≥ . . .≥qxk

= H
2xk

where x1 ≤ · · · ≤ xk

are the first (smallest), . . . , k-th (largest) order statistics of k iid continuous
random variables u1, . . . , uk chosen uniformly at random in [0, L]. Then these
prices cover in expectation an Ω( k

log m+log n ) fraction of AF .

Akhlaghpour et al. [1]’s recursive construction can be used to cover in expecta-
tion only an Ω( log k

log m+log n ) fraction of AF , much lower than our Ω( k
log m+log n ).

We proceed with Theorem 5’s proof. Let AC1 = El∼U [0,L][F (ql)ql] be the
part of AF covered by a price ql = H

2l with l distributed uniformly on 0..L.
We know [2] AC1 =

∫ L

0 F ( H
2x ) H

2xL
−1dx ≥ L−1

∑L
x=1 F ( H

2x ) H
2x ≥ H

4(1+log m+log n)

(note F (H) = 0). We recall the following facts (see e.g. [6, Chapter 2]) about
order statistics.
12 While prices of form qx = H

2x also achieve the Θ(log m+log n) factor for k=1 day [2],

we can reason more easily about continuous, instead of integer, x’s (scaling factors).
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Lemma 7. Let X be a continuous random variable in [0, L] with cumulative
distribution function F and probability density function (pdf) f=F ′. Let xd:k be
its dth highest order statistic out of k independent trials. Then

• xj:k’s pdf is k
(
k−1
j−1

)
F (x)j−1(1 − F (x))k−jf(x). Thus xd = xd:k’s (F (x) =

x
L , f(x) = 1

L) pdf is k
(
k−1
d−1

)
xd−1 (L−x)k−d

Lk .
• xd+1:k’s distribution conditioned on the next lowest xd:k’s value xd is the

same as the distribution of the lowest order statistic xk−d:k−d out of k − d
trials of variable X truncated below xd, i.e. with pdf f(x)

1−F (xd) for x ∈ [xd, L].

Proof (of Theorem 5). The expected area covered (recall Def. 6) by all prices is

ACk = Ex1...xk [

k∑
d=1

(F (qxd)−F (qxd−1))qxd ] = E[

k∑
d=1

F (qxd)qxd ] − E[

k−1∑
d=1

F (qxd)qxd+1]

= Eu1...uk [

k∑
d=1

F (qud)qud ] −
k−1∑
d=1

Sd
k = kAC1 −

k−1∑
d=1

Sd
k (4)

where Eq. (4) follows from the fact that the sets {x1, . . . , xk} and {u1, . . . , uk} co-
incide and we denoted Sd

k = Ex1...xk
[F (qxd

)qxd+1 ]. We continue by upper bound-
ing each Sd

k and then summing them up.
Using Lemma 7 (the first fact for Eqs. (5) and (6) and the second fact for

Eq. (5)),

Exd+1|xd
[qxd+1] =

∫ L

xd

(k−d)(L−y)k−d−1

(L−xd)k−d
H
2y dy ≤

∫ L

xd

k−d
L−xd

H
2y dy ≤ 2 k−d

L−xd

H
2xd

(5)

Thus Sd
k = Ex1...xk

[F (qxd
)qxd+1 ] = Exd

[F (qxd
) · Exd+1|xd

[qxd+1]]

≤
∫ L

0
k
(
k−1
d−1

)
xd−1

d (L− xd)k−dL−kF ( H
2xd

)2 k−d
L−xd

H
2xd

dxd (6)

≤ 2k(k − 1)
(
k−2
d−1

)
L−k

∫ L

0 x
d−1
d (L− xd)k−1−dF ( H

2xd
) H
2xd

dxd (7)

By summing up for all days d = 1..k−1, we get

ACk ≥ kAC1 − 2k(k − 1)L−k
k−1∑
d=1

(
k − 2

d − 1

)∫ L

0

xd−1
d (L − xd)

k−1−dF (
H

2xd
)

H

2xd
dxd

≥ kAC1 − 2k(k − 1)L−k

∫ L

0

F (
H

2x
)
H

2x

k−1∑
d=1

(
k − 2

d − 1

)
xd−1

(L − x)
(k−2)−(d−1)

dx

≥ kAC1 − 2k(k − 1)L−k

∫ L

0

F (
H

2x
)
H

2x
Lk−2

dx

≥ kAC1 − 2k(k − 1)L−1
2AC1 ≥ k(1 − 4(k − 1)

1 + log m + log n
)

H

4(1 + log m + log n)

We conclude with a revenue bound given guarantees on total quantities bought.
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Lemma 8. If, at prices qd0>. . .>qd, at least xδ items (xd≥xd−1≥ . . .≥xd0≥
xd0−1 = 0) are sold in total up to each day δ = d0..d (e.g. at least xd0+1 items in
days d0 and d0 + 1 together) then the revenue is at least

∑d
δ=d0

qδ(xδ − xδ−1).

Proof. The lowest revenue is for exactly xδ items sold in day δ = d0..d and for
as few items as possible sold early, i.e. for xδ−xδ−1 items sold in day δ=d0..d.

In practice, buyers do not only have patience, but also have an influence on other
buyers. We allow now a buyer’s value (for any bundle) to increase depending on
others’ acquired bundles (but not on others’ valuations). We will preserve the
revenue approximation factor, despite an increased optimum revenue.

6 Positive Allocative Externalities

We now investigate revenue maximization in the presence of positive externali-
ties, i.e. a buyer’s valuation being increased by other buyers’ ownership of certain
items. Such influences can be subjective, e.g. resulting from peer pressure, or ob-
jective, e.g. resulting from ownership of a certain social network application.
We define a new influence model via a predicate I : 1..m→{false, true} such
that I(i0) only depends on seller’s assignment of items to buyer i0, e.g.

• I(i0) = true iff buyer i0 owns all (or, instead, at least two) items
• I(i0) = true iff buyer i0 owns his preferred bundle at current prices

Let Id be the buyers i0 satisfying I(i0) before day d. I is monotone if Id ⊆ Id+1.
We model the valuation in day d of a buyer i as a linear mapping (depending

on d only through its argument Id\{i}) of i’s base value

vd
i (S|1..m\{i}) = (ai(Id\{i})vi(S))⊕ bi(Id\{i}), ∀ set S ⊆ 1..n (8)

where αvi(S)⊕ β = {αvi(S) ifS=∅ and13 αvi(S) + β ifS 
=∅} for α, β ∈ R.
Thus, ai(I) and bi(I) measure the multiplicative and additive influences that

a buyer set I (satisfying I) have on buyer i. Say i’s value for any DVD of a TV
series doubles as soon as one other friend (in a set Fi) has the entire series (the
predicate I) and is then constant. Then ai(I) = 2⇐⇒ |I∩Fi| ≥ 1 and bi(I) = 0.

Without any influence, a valuation reduces to the base value: ai(∅) = 1, bi(∅) =
0. Assume ai and bi are non-negative, monotone and submodular14. Also assume
that ai, bi, vi are bounded: maxI⊆1..m\{i} ai(I) = ai(1..m\{i})=Ha, maxI bi(I)=
bi(1..m\{i}) = Hb, maxS⊆1..n vi(S) = Hi with maxi∈1..mHi = H .

Our influence model is a distribution-free extension of single-item models [1,8].
It does not require or preclude symmetry, anonymity or a neighbor graph.
13 Eq. (8) excludes the additive increase for S =∅ so that vd

i (∅|·)=0. Also, if bi is much

larger than ai maxS vi(S) then a multiplicative revenue approximation is impossible:

prices close to bi are needed, rendering ∅ the preferred set, i.e. zero revenue.
14 Submodularity (non-increasing marginal influence) is often assumed for externali-

ties [1,8]. Positive, monotone externalities are an instance of “herd mentality”.
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For ai = 1, bi = 0 we recover the model before this section. Buyers are still
forward-myopic and do not strategize about which items to buy today so that
other buyers’ values increase, thus increasing their own value etc.

With positive externalities, a natural revenue maximization approach [8] is
providing certain items for free to some buyers and then charging others accord-
ingly.

Definition 7. The influence-and-exploit IEk marketing strategy for k ≥ 2 sat-
isfies I (at no cost) for each buyer with probability 0.5, in day 1. Let A1 be the
set of buyers chosen in day 1. Independently of A1, k−1 prices qx1 = H+Hb/Ha

2x1 ≥
. . .≥qxk−1 = H+Hb/Ha

2xk−1 where x1 ≤ · · · ≤ xk−1 are the first (smallest), . . . , (k−1)-
th (largest) order statistics of k−1 iid continuous random variables u1,. . ., uk−1

chosen uniformly at random in [0, L]. Each buyer i∈1..m\A1 is offered uniform
item price Ha/3 · qxd−1 in day d≥2.

Theorem 4’s factor carries over, despite the affine increase in optimum revenue.

Theorem 6.The IEk strategy is an O( log m+log n
k )-revenue approximation to the

optimal marketing strategy for a monotone I over IEk and HM base valuations.

The price schedule qx1 ≥ . . .≥ qxk−1 is (by Theorem 4) a O( log m+log n
k )-revenue

approximation given buyers’ base valuations (translated by Hb/3
Ha/3 ). The proof

establishes that the influence of other buyers (an affine mapping of a buyer’s
value in each day) does not result in fewer items being bought in the worst case.

7 Conclusions and Future Directions

In this paper we study prior-free revenue maximization with sequences of equal
item prices. We are the first to consider combinatorial valuations for more than
one item in unlimited supply in the sequential setting. We provide a sufficient
condition and an algorithm improving the revenue approximation factor of an
existing one-shot pricing scheme complemented by a lower bound that leverages
the limited availability of price updates. We also initiate the study of revenue
maximization for allocative externalities between combinatorial valuations. Sev-
eral open directions appear promising to us.

The hereditary maximizers property guarantees consistency of bundles bought
sequentially. We deem it of interest to find an alternative assumption, perhaps
related to sequential revenue instead, that still allows revenue bounds.We assume
fully patient, as opposed to instantaneous, buyers. Other patience models, e.g.
arrival-departure intervals [3], may yield alternative approximations. Finally,
widespread externalities in applications present many exciting open questions,
both practical and theoretical, notably in multiple-item settings.

Acknowledgments. We thank Avrim Blum and Malvika Rao for detailed com-
ments on earlier drafts of this paper, Mark Braverman for helpful discussions
and Daniel Lehmann for providing us with a copy of [4].



62 M.-F. Balcan and F. Constantin

References

1. Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mahini, H., Mirrokni, V., Nikzad,

A.: Optimal iterative pricing over social networks. In: Fifth Workshop on Ad Auc-

tions (2009)

2. Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In:

Proc. ACM Conf. on Electronic Commerce, pp. 50–59 (2008)

3. Bansal, N., Chen, N., Cherniavsky, N., Rudra, A., Schieber, B., Sviridenko, M.:

Dynamic pricing for impatient bidders. ACM Trans. Algorithms 6(2), 1–21 (2010)

4. Bertelsen, A.: Substitutes valuations and M �-concavity. Master’s thesis, Hebrew

University of Jerusalem (2004)

5. Bikhchandani, S., Ostroy, J.M.: Ascending price Vickrey auctions. Games and Eco-

nomic Behavior 55(2), 215–241 (2006)

6. David, H., Nagaraja, H.: Order Statistics. Wiley, Chichester (2003)

7. Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. Journal of

Economic Theory 87(1), 95–124 (1999)

8. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing over social net-

works. In: Conference on the World Wide Web, WWW 2008 (2008)

9. Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues.

Cambridge University Press, Cambridge (2007)

10. Lien, Y., Yan, J.: On the gross substitutes condition. Working paper (July 2007)



The Cost of Moral Hazard and Limited Liability in the
Principal-Agent Problem

Felipe Balmaceda1, Santiago R. Balseiro2,
Jose R. Correa1, and Nicolas E. Stier-Moses2

1 Departamento de Ingenierı́a Industrial, Universidad de Chile, Santiago, Chile
{fbalmace,jcorrea}@dii.uchile.cl

2 Graduate School of Business, Columbia University, New York, USA
{sbalseiro13,stier}@gsb.columbia.edu

Abstract. In the classical principal-agent problem, a principal hires an agent to
perform a task. The principal cares about the task’s output but has no control over
it. The agent can perform the task at different effort intensities, and that choice af-
fects the task’s output. To provide an incentive to the agent to work hard and since
his effort intensity cannot be observed, the principal ties the agent’s compensa-
tion to the task’s output. If both the principal and the agent are risk-neutral and
no further constraints are imposed, it is well-known that the outcome of the game
maximizes social welfare. In this paper we quantify the potential social-welfare
loss due to the existence of limited liability, which takes the form of a minimum
wage constraint. To do so we rely on the worst-case welfare loss—commonly re-
ferred to as the Price of Anarchy—which quantifies the (in)efficiency of a system
when its players act selfishly (i.e., they play a Nash equilibrium) versus choosing
a socially-optimal solution. Our main result establishes that under the monotone
likelihood-ratio property and limited liability constraints, the worst-case welfare
loss in the principal-agent model is exactly equal to the number of efforts available.

1 Introduction

In this paper we analyze the classical principal-agent problem as put forward by Gross-
man and Hart [4]. The problem entails the following contracting situation: a principal
hires an agent to perform a task. The principal cares about the task’s output but cannot
control it directly. Instead, the output is influenced by the agent’s choice of effort inten-
sity. The principal would like to induce the agent to choose the (in his view) optimal
effort intensity but since the agent incurs a cost when making effort, the principal has to
compensate the agent. Because the principal cannot observe the effort intensity chosen
by the agent—this is the prevailing assumption in this type of models and leads to moral
hazard—the principal can only tie the agent’s compensation to the task’s output, used
as a proxy of effort. This compensation scheme entails a loss since the task’s output is a
random variable whose distribution depends on the effort chosen by the agent. Hence,
the output is not completely determined by the agent’s effort intensity. If the two were
perfectly correlated, the principal could infer the effort by observing the outcome.

This class of principal-agent problems has been the workhorse to understand many
interesting economic phenomena such as, to name a few, the theory of insurance under

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 63–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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moral hazard [12], the theory of managerial firms [1, 8], optimal sharecropping con-
tracts between landowners and tenants [13], the efficiency wage theory [11], financial
contracting [6], and job design and multi-tasking [5].

When both the principal and the agent are risk-neutral, the provision of a limited
liability clause that restricts the exposure of the agent gives rise to an agency problem.
If the principal wants to provide an incentive to the agent to work hard, he has to com-
pensate the agent better when the realization of the task’s output suggests that the effort
intensity chosen by the agent was high. This imposes a gap between the marginal cost
of the effort intensity experienced by the principal and the social marginal cost. Thus,
the equilibrium contract will not maximize social welfare, meaning that a first-best out-
come cannot be attained; instead, the constrained contract will be second-best.

In order to quantify the maximum social-welfare loss due to the existence of moral
hazard and limited liability in a principal-agent setting, we rely on the concept of worst-
case welfare loss, which quantifies the efficiency of a system when its players act self-
ishly (i.e., they play a Nash equilibrium) versus choosing a socially-optimal solution.
The idea of using worst-case analysis to study non-cooperative games was introduced
by Koutsoupias and Papadimitriou [7], and it is commonly referred to as the Price of
Anarchy [9]. In our setting, the worst-case welfare loss is defined as the largest possible
ratio between the social welfare of a socially-optimal solution—the sum of the prin-
cipal’s and agent’s payoffs when the first-best effort intensity is chosen—and that of
the sub-game perfect equilibrium. The worst ratio is with respect to the parameters that
define an instance of the problem.

In the principal-agent setting, Babaioff, Feldman, and Nisan [2, 3] introduced a com-
binatorial agency problem with multiple agents performing two-effort-two-outcome
tasks. The authors studied the combinatorial structure of dependencies between agents’
actions, and analyzed the worst-case welfare loss for a number of different classes of ac-
tion dependencies. Our model, instead, deals with a single agent and its complexity lies
in handling more sophisticated tasks, rather than the interaction between agents. The
goal of this article is to evaluate the worst-case welfare loss with respect to the outcome
vector, the vector of agent’s costs of effort, and the probability distribution of outcomes
for each level of effort. The main result, shown in Theorem 1, establishes that under
the monotone likelihood-ratio property and when the principal and an agent protected
by limited liability are risk-neutral, the worst-case welfare loss is exactly equal to the
number of efforts available. In other words, for any instance of the problem the worst-
case welfare loss cannot exceed the number of efforts available and there are instances
where that loss is achieved.

Our result suggests that the worst equilibrium that may arise in the finite principal-
agent problem with limited liability for the agent depends on the complexity of the
delegated task, as measured by the number of available efforts. When the delegated
task requires the choice between two different effort intensities (e.g., shirk or work)
the worst-case welfare loss is 2, while when the delegated task demands the choice
of one effort intensity among E possibilities, the worst-case welfare loss is E. Thus,
the worst-case welfare loss increases with the complexity of the delegated task. Our
result suggests that the principal-agent paradigm that studies the consequences of moral
hazard for the efficiency of contracting and organizational design is sound. The potential
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consequence of not dealing with a moral-hazard problem may have a non-negligible
impact in the welfare of the system. For another interpretation, our results also quantify
the impact of limited-liability in the utility of the principal, which is a way of measuring
the inefficiency introduced by protecting the agent from carrying all the burden of the
risk in the task’s output.

Because the complexity of a principal-agent relationship is usually related to the
number of tasks or projects rather than to the number of efforts or actions, we also
study the worst-case welfare loss in an extension where there are multiple tasks. Here,
the agent has to choose between working and shirking in each of several independent
tasks. Surprisingly, we find that the worst-case welfare loss again equals 2, the number
of efforts in each task, independently of how many tasks the agent has to work on.
This confirms that, in terms of the potential welfare loss, the complexity of an agency
relationship is better captured by the number of actions or efforts available rather than
the number of tasks. Furthermore, it suggests that the incentive problem created by
moral hazard is a natural source of economies of scope; that is, it is better to have one
agent working in several different tasks than several agents working in one task each.

Most of our results arise from a characterization of the optimal wages that we pro-
vide. Working with the geometry of both the primal and the dual linear programs, we
uncover the structure of the ‘important’ efforts, which we call relevant, and use them to
bound the welfare of the solution to the principal-agent model with that arising when
the agent chooses the socially-optimal effort.

The rest of the paper is organized as follows. In Sect. 2, we introduce the model with
its main assumptions. Section 3 presents the main technical results. We start with the
study of the two-effort-two-outcome case for an illustration of our techniques, continue
with the general case, and present an example that shows that the lower bound is at-
tained. We conclude with extensions in several directions in Sect. 4. For the missing
proofs and details on the extensions, we refer the reader to the full version of the paper.

2 The Principal-Agent Model

In this section we describe the basic principal-agent model with E ≥ 2 effort levels
and S ≥ 2 outcomes [4]. (Later on, in Sect. 4, we relax some of the assumptions
presented below.) The agent chooses an effort e ∈ E � {1, . . . , E}, incurring a personal
nonnegative cost of ce. Efforts are sorted in increasing order with respect to costs; that
is, ce ≤ cf if and only if e ≤ f . Thus, a higher effort demands more work from the
agent. The task’s outcome depends on a random state of nature s ∈ S � {1, . . . , S}
whose distribution in turn depends on the effort level chosen by the agent. Each state
has an associated nonnegative dollar amount that represents the principal’s revenue. We
denote the vector of outcomes indexed by state by y = {y1, . . . , yS}. Without loss of
generality, the outcomes are sorted in increasing order: ys ≤ yt if and only if s ≤ t;
hence, the principal’s revenues are higher under states with a larger index. Finally, we
let πs

e be the common-knowledge probability of state s ∈ S when the agent chooses
effort e ∈ E . The probability mass function of the outcome under effort e is given by
πe =

{
π1

e , . . . , π
S
e

}
.

The principal can contract wages to the agent that depend on the outcome y but can-
not observe the agent’s chosen effort e. Indeed, the principal offers a take-it-or-leave-it
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contract to the agent that specifies a state-dependent wage schedulew = {w1, . . . , wS}.
The agent decides whether to accept or reject the offer, and if accepted, then he chooses
an effort level before learning the realized state. The rational agent should accept the
contract if the individual rationality (IR) and limited liability (LL) constraints are sat-
isfied. The former specifies that the contract must yield an expected utility to the agent
greater than or equal to that of choosing the outside option. The latter specifies that
the wage must be nonnegative in every state occurring with positive probability. After
accepting a contract specifying a wage schedule w, the risk-neutral agent has to choose
an effort e ∈ E . He does so by maximizing the expected payoff, which is given by
πew − ce, the difference between the expected wage and the cost incurred in the effort
chosen.

Putting it all together, the principal’s problem consists on choosing a wage schedule
w and an effort intensity e for the agent that solve the following problem:

uP � max
e∈E,w

πe(y − w) (1)

s.t. πew − ce ≥ 0 (IR) (2)

e ∈ arg max
f∈E

{πfw − cf} (IC) (3)

w ≥ 0 . (LL) (4)

The objective measures the difference between the principal’s expected revenue and
payment, hence computing his expected profit. Constraints (IR) and (LL) were de-
scribed earlier. The incentive compatibility (IC) constraints guarantee that the agent
will choose the principal’s desired effort since he does not find it profitable to deviate
from e.

Equivalently, one can formulate the principal’s problem as uP = maxe∈E {πey − ze}
= maxe∈E{uP

e}. Here, we have defined ze to be the minimum expected payment in-
curred by the principal so the agent accepts the contract and picks effort e. In addi-
tion, we denote by uP

e � πey − ze the principal’s maximum expected utility when
effort e is implemented, and by EP the set of optimal efforts for the principal, EP �
argmaxe∈E{uP

e}. Exploiting that the set of efforts is finite, we can write the IC con-
straint (3) explicitly to obtain the minimum payment linear program corresponding to
effort e, which we denote by MPLP(e):

ze = min
w∈RS

πew (5)

s.t. πew − ce ≥ 0 (6)

πew − ce ≥ πfw − cf ∀f ∈ E \ e (7)

w ≥ 0 . (8)

Notice that this problem is independent of the output y.
We say that the principal implements effort e ∈ E when the wage schedule w is con-

sistent with the agent choosing effort e. For a fixed effort e, (2), (3), and (4) characterize
the polyhedron of feasible wages that implement e. The principal will choose a wage
belonging to that set that achieves ze by minimizing the expected payment πew. We
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are only interested in efforts that are attainable under some wage schedule, which we
refer to as feasible efforts. An effort is feasible if the polyhedron corresponding to it is
nonempty.

2.1 The Monotone Likelihood-Ratio Property

We make the assumption that the probability distributions πe satisfy the well-known
monotone likelihood-ratio property (MLRP). That is, {πe}e∈E verifies πs

e/π
s
f ≥ πt

e/π
t
f

for all states s < t and efforts e < f . The assumption of MLRP is pervasive in the
literature of economics of information, and in particular in the principal-agent literature.
The intuition behind it is that the higher the observed level of output, the more likely it
is to come from a distribution associated with a higher effort level.

An important property of MLRP is that distributions that satisfy it also satisfy first or-
der stochastic dominance (FOSD). For instance, [10] proved that

∑s
s′=1 π

s′
e ≥
∑s

s′=1 π
s′
f

for all states s and efforts e < f . A simple consequence of this that plays an important
role in our derivations is that probabilities for the highest outcome S are sorted in in-
creasing order with respect to efforts; i.e., πS

e ≤ πS
f for e ≤ f . Note that in the case of

two outcomes, MLRP and FOSD are equivalent.

2.2 Worst-Case Welfare Loss

The goal of a social planner is to choose the effort level e that maximizes the social
welfare, defined as uSW

e � πey − ce, the sum of the welfare of the principal and the
agent. The social planner is not concerned about wages, since risk neutrality ensures
that wages are a pure transfer of wealth between the principal and the agent. Thus, the
optimal social welfare is given by uSO � maxe∈E{uSW

e } . We denote the set of first-
best efficient efforts by ESO � argmaxe∈E{uSW

e }. For analytical tractability, we will
assume that the harder the agent works, the higher the social welfare in the system. In
the two-outcome case, this assumption can be relaxed. In the general case, we believe
that our results continue to hold without it.

Assumption 1. The sequence of prevailing social welfare under increasing efforts is
non-decreasing; i.e., uSW

e ≤ uSW
f for all efforts e ≤ f .

For a given instance of the problem, we quantify the inefficiency of an effort e using the
ratio of the social welfare under the socially-optimal effort to that under e. The main
goal of the paper is to compute the worst-case welfare loss for arbitrary instances of the
problem. This is defined as the smallest upper bound on the efficiency of a second-best
optimal effort, which is commonly referred to as the Price of Anarchy1 [9]. Therefore,
the worst-case welfare loss, denoted by ρ, is defined as

ρ = sup
π,y,c

uSO

mine∈EP uSW
e

, (9)

1 Actually, the price of anarchy for a maximization problem such as the one we work with in
this article is often defined as the inverse of the ratio in (9). We do it in this way so ratios and
welfare losses point in the same direction.
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where the supremum is taken over all valid instances as described at the beginning of
this section. Of course, the previous ratio for an arbitrary instance of the problem is
at least one because the social welfare of an optimal solution cannot be smaller than
that of an equilibrium, guaranteeing that ρ ≥ 1. Next, we state the main result of our
article that shows that under MLRP the worst-case welfare loss is bounded above by
the number of efforts, and that this bound is tight.

Theorem 1. Suppose that MLRP holds. Then, in the risk-neutral principal-agent prob-
lem with limited liability, the worst-case welfare loss ρ is exactly E.

2.3 Preliminaries

In this section, we consider the principal’s problem and reformulate it in a way that is
more amenable to understand its properties, which will be useful to prove our worst-
case bounds. The dual of MPLP(e), displayed in (5)-(8), is given by

max
p∈RE

∑
f 
=e

(cf − ce)pf − cepe (10)

s.t.
∑
f 
=e

(πs
f − πs

e)pf − πs
epe ≤ πs

e ∀s ∈ S, (11)

p ≤ 0 .

Here, pe is the dual variable for the IR constraint (6), while pf is the dual variable for
the IC constraint (7) for effort f 
= e. Notice that the null vector 0 is dual-feasible, and
hence the dual problem is always feasible. Furthermore, since we only consider feasible
efforts the primal is also feasible and by strong duality we have that the solution to the
dual program is ze. Notice that summing constraints (11) over s ∈ S and using that∑

s∈S π
s
f = 1 for all f ∈ E , we get that pe ≥ −1. We now state some useful results.

Lemma 1. The social welfare is at least the principal’s utility; i.e., uSW
e ≥ uP

e for all
efforts e ∈ E .

Proof. Notice that since ze solves MPLP(e), we have that ze ≥ ce for all e ∈ E . Thus,
πey − ze ≤ πey − ce. ��
The next result stresses the importance of the agent’s limited liability in the model.
It is a well-known result that we state for the sake of completeness. Without the LL
constraint (4), it is optimal for the principal to implement the socially-optimal effort
and he captures the full social surplus, leaving no utility to the agent. As a consequence,
the worst-case welfare loss is 1 meaning that, albeit unfair to the agent, the contract is
efficient.

Lemma 2. If the principal and the agent are risk-neutral and there is no limited li-
ability constraint, the minimum expected payment ze incurred by the principal when
inducing a feasible effort e is ce, that is, ce = minw∈RS{πew s.t. (6), (7)}.
Proof. Since the effort e is feasible there exists a vector w satisfying (6) and (7). As-
sume for a contradiction that (6) is not tight and consider w′ = w − 1ε, where 1 is
the all-ones vector. Clearly w′ still satisfies (7) so we can select ε so that the objective
function is smaller and (6) is still feasible. ��
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3 Bounding the Welfare Loss

3.1 The Case of Two Efforts and Two Outcomes

In this section we look at the case with 2 efforts (such as shirk and work) and 2 states
(such as fail and success), and show that the worst-case welfare loss is at most 2. This
simple case is a useful exercise to gain intuition and improve the understanding of
the general case. First, we provide a geometric characterization of the minimum-cost
wage schedule implementing a given effort level, and compute the associated expected
payments. Then, we proceed to bound the worst-case welfare loss.

Consider MPLP(2), corresponding to the agent working hard. The feasible set of
wages is defined by the IR, IC and LL constraints. The IC constraint (7) ensures that the
agent prefers effort 2 over 1, which can also be written asw2−w1 ≥ (c2−c1)/(π2

2−π2
1).

Notice that both the numerator and denominator are nonnegative. Hence, the boundary
of this constraint is given by a 45◦ line, as shown by Fig. 1 which plots the feasible
regions for the two efforts. The IC constraint for e = 1 is the same with the inequality
reversed. An implication of FOSD is that the IR constraint for effort 1 is steeper than
that for effort 2.

w1

w2

π
2w ≥ c

2

π
1 w ≥ c

1

π 2
w - c

2
 =  π 1

w - c
1

w1,2

(a) w1,2 in the first quadrant.

w1

w2

π
2w ≥ c

2

π
1 w ≥ c

1

π 2
w - c

2
 =  π 1

w - c
1

w1,2

(b) w1,2 in the second quadrant.

Fig. 1. Feasible regions of MPLP(e) for e ∈ {1, 2} (light and dark shade, respectively), according
to the location of w1,2. Optimal solutions are denoted with a bold point or segment, depending on
whether they are unique or not. Arrows indicate the negative gradient of the objective function.

It will be useful to introduce the pointw1,2, defined as the intersection point between
the IC constraint and the IR constraints for both efforts. This point is given by

w1,2 =
(
c1π

2
2 − c2π2

1

π2
2 − π2

1

,
c1π

2
2 − c2π2

1

π2
2 − π2

1

+
c2 − c1
π2

2 − π2
1

)
.

The second component of this vector is nonnegative and larger than the first component
because c2 ≥ c1, π2

2 ≥ π2
1 , and π1

1 ≥ π1
2 .
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If w1,2 lies in the first quadrant, as in Fig. 1a, the situation is very similar to the case
without liability constraints discussed earlier. Indeed, the wages w1,2 are optimal be-
cause they satisfy all constraints and minimize the objective of MPLP. This implies that
the optimal expected payment is equal to the effort’s cost, and because of Assumption
1 the principal chooses e = 2 leaving the agent with zero surplus. The case of greater
interest is when w1,2 lies in the second quadrant, as in Fig. 1b. This occurs either when
the cost of working hard is too high, or the probability of a good outcome when work-
ing hard is too low. In this case, the incentive compatible wage schedule that induces
participation at the lowest cost for the principal does not satisfy the limited liability con-
straint. Thus, the optimal solution, attained at the intersection of the IC constraint and
the vertical axis, is w2 =

(
0, (c2 − c1)/(π2

2 − π2
1)
)
. The minimum expected payment

for effort 2 is z2 = π2
2(c2 − c1)/(π2

2 − π2
1), which is strictly larger than c2 because

the IR constraint is not binding, leaving the agent with a positive rent. The analysis for
effort 1 is simpler. Under the assumption of nonnegative costs, any point that is non-
negative and for which the IR constraint is binding is optimal and attains the value c1.
Thus, the minimum expected payment equals the effort’s cost, and the agent obtains
zero surplus.2

The previous analysis will enable us to bound the worst-case welfare loss. Under As-
sumption 1, effort 2 is socially-optimal: uSO = uSW

2 ≥ uSW
1 . If the second-best optimal

effort is 2, the worst-case welfare loss is 1. So we consider that it is second-best optimal
to induce effort 1; i.e, uP

1 ≥ uP
2. Since the principal prefers effort 1, it must be that

z2 > c2. Hence, w1,2 must lie in the second quadrant, and z2 = (c2− c1)π2
2/(π2

2−π2
1).

Then, we have that

uSW
1 ≥ uP

1 ≥ uP
2 = π2y − z2 = uSW

2 + c2 − π2
2

c2 − c1
π2

2 − π2
1

= uSW
2 + c1 − π2

1

c2 − c1
π2

2 − π2
1

≥ uSW
2 + c1 − π2

1

(π2 − π1)y
π2

2 − π2
1

≥ uSW
2 + c1 − π1y = uSW

2 − uSW
1 , (12)

where the inequalities follow, respectively, from Lemma 1, the principal’s choice of
e = 1, Assumption 1, and FOSD. Reshuffling terms, we have that uSW

2 ≤ 2uSW
1 from

where the optimal social welfare cannot be better than twice the social welfare under
the effort chosen by the principal. We conclude that the worst-case welfare loss is at
most the number of efforts.

3.2 The General Case

We now consider the general case of an arbitrary finite number of efforts and outcomes.
Here, we need to study the primal and the dual of the MPLP simultaneously. As in the
previous case, we first attempt to characterize the minimum expected payments for each
effort level, and then prove that the worst-case welfare loss is bounded by E.

We saw earlier that in the case of 2 efforts both of them play a role in the worst-
case bound. However, in the general case only some efforts will be relevant. There are
some other efforts, referred to as dominated, that although feasible will not participate

2 This might not be the case if the limited liability constraint requires w2 ≥ �, where � is large.
This is discussed in the full version of the paper.
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in the analysis. Relevant efforts are always preferred to dominated efforts and thus the
principal will choose just from among them. This is equivalent to discarding dominated
efforts from any instance and does not affect the utilities of other efforts and the effi-
ciency metric.

In Theorem 2, we characterize the relevant efforts. We do this by observing that
effort E is always relevant. From this first relevant effort, we obtain a sequence in-
ductively observing that for any relevant effort, in the optimal solution to MPLP only
the IC constraint of another relevant effort is binding. Afterwards, we prove that when
a dominated effort is chosen, the principal’s utility is always dominated by that of a
relevant effort (hence the name ‘relevant’). As before, we define the wage vector we,f

as the intersection of IC constraints (7) for efforts e and f with the S axis. Hence,
we,f =

(
0, . . . , 0, (ce − cf )/(πS

e − πS
f )
)
, which is a nonnegative vector.

Theorem 2. There exists a subsequence of relevant efforts, denoted byR = {er}R
r=1 ⊆

E with eR = E, such that the minimum expected payments for the principal are

ze1 = ce1 , and zer = πS
er

cer − cer−1

πS
er
− πS

er−1

≥ cer for r = 2, . . . , R.

Moreover, the optimal wage wer corresponding to effort er is wer ,er−1 if r > 1 and
(0, . . . , 0, ce1/π

S
e1

) if r = 1.

For a dominated effort f /∈ R, let r(f) � min{e ∈ R : e > f} be the smallest
relevant effort greater than f . The next corollary shows that relevant efforts are sorted
with respect to ze − ce and that dominated efforts violate this order.

Corollary 1. Relevant efforts are sorted in non-decreasing order with respect to ze −
ce; that is, zer−cer ≤ zer+1−cer+1 for all 1 ≤ r < R. Moreover, zf−cf ≥ zr(f)−cr(f)

for any dominated effort f /∈ R.

Proof. For the first claim observe that zer − cer = πerwer − cer ≤ πerwer+1 − cer =
πer+1wer+1 − cer+1 = zer+1 − cer+1 , where the inequality follows from the fact that
wer+1 is feasible for MPLP(er) and that wer is the optimal solution. The second equal-
ity holds because the IC constraint between efforts er and er+1 is binding at wer+1 .

For the second claim, let f be a dominated effort. If f < er1 , the result is trivial
because zer1

− cer1
= 0. So, suppose that er < f < er+1. Using the dual of MPLP, as

done previously, it is easy to observe that p = −Ierπ
S
f /(π

S
f − πS

er
) is dual feasible for

effort f , and its objective value is (cf −cer)πS
f /(π

S
f −πS

er
) = πS

f w
S
er ,f , which by weak

duality is a lower bound on zf . Hence, zf ≥ πS
f w

S
er ,f = πS

er
wS

er ,f + wS
er+1,f (πS

f −
πS

er+1
)+wS

er+1
(πS

er+1
−πS

er
). Rearranging the terms, the last expression equals zer+1 +

cf − cer+1 + πS
er

(wS
er ,f − wS

er+1
) ≥ zer+1 + cf − cer+1 , where the inequality follows

because wer ,f ≥ wer+1 . Indeed,

wS
er ,f =

cf − cer+1

πS
f − πS

er

+
cer+1 − cer

πS
f − πS

er

=wS
er+1,f

πS
f − πS

er+1

πS
f − πS

er

+wS
er+1

πS
er+1

− πS
er

πS
f − πS

er

≥wS
er+1

,

because wer+1,f ≤ wer+1 (this follows from Theorem 2) and πS
f − πS

er+1
≤ 0. ��



72 F. Balmaceda et al.

Relevance is central to the analysis of the principal-agent problem. Under Assumption
1, a social planner chooses effort E, a relevant effort, to maximize the social welfare.
Furthermore, as a consequence of Corollary 1, there is always a relevant effort that is
optimal for the principal.

Proposition 1. There is always a relevant effort that is optimal for the principal; i.e.,
EP ∩R 
= ∅.
Proof. We prove this claim by contradiction by supposing that no relevant effort is
optimal for the principal. Let f be an optimal dominated effort, and consider the first
next relevant effort r(f). Using Corollary 1,

0 < uP
f−uP

r(f) = (πf−πr(f))y+zr(f)−zf ≤ (πf−πr(f))y+cr(f)−cf = uSW
f −uSW

r(f),

which is a contradiction because Assumption 1 implies that f cannot have a larger social
welfare than r(f). ��
Notice that the previous proposition together with Theorem 2 imply that the equilibrium
of the principal-agent problem can be computed inO(E2+ES) time, instead of solving
E linear programs. The quadratic term comes from finding the relevant efforts while the
second term comes from evaluating the principal’s utilities for all relevant efforts.

We are now in position to prove the main result.

Theorem 3. Assume that MLRP and Assumption 1 hold. The worst-case welfare loss
for the risk-neutral principal-agent problem with limited liability is at most E.

Proof. Under Assumption 1, it is optimal for the system that the agent chooses effort
E, so uSO = uSW

E . Furthermore, by Proposition 1 the optimal strategy for the principal
is to implement a relevant effort e ∈ R. Note that if we remove all efforts lower than
e, a consequence of Theorem 2 is that uP

f does not change for any effort f > e and
uP

e may only increase. This is because after removing the lower efforts, ze is reduced
to ce if they were not already equal. Notice also that a dominated effort cannot become
relevant after removing the efforts lower than e. Therefore, this new instance has the
same the worst-case welfare loss. Thus, we do not lose any generality if we consider
that it is optimal for the principal to implement effort 1; i.e., uP

1 ≥ uP
e for all e ∈ E .

To lower bound the total welfare of the lowest effort, uSW
1 , we proceed as in (12),

working exclusively with relevant efforts. To simplify notation, in the remainder of this
proof we drop the r subscript and assume that all efforts are relevant. Lemma 1 and
Theorem 2 imply that for any effort e > 1,

uSW
1 ≥uP

1 ≥ uP
e =πey−ze = uSW

e +ce−πS
e

ce − ce−1

πS
e − πS

e−1

=uSW
e +ce−1−πS

e−1

ce − ce−1

πS
e − πS

e−1

.

Since uSW
e ≥ uSW

e−1 implies that ce−ce−1 ≤ πey−πe−1y, the last expression is bounded
by

uSW
e + ce−1 −

πS
e−1

πS
e − πS

e−1

(πe − πe−1)y ≥ uSW
e + ce−1 − πe−1y = uSW

e − uSW
e−1 , (13)

where the inequality in (13) follows from MLRP because πe−1π
S
e ≥ πeπ

S
e−1. Summing

over e > 1 and rearranging terms we conclude that EuSW
1 ≥ uSW

E . ��
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This result shows that when the agent is covered against unfair situations in which he
has to pay money to the principal even after having invested the effort, the fact that the
principal induces the agent to implement the effort of his choice instead of a socially-
optimal one is costly for the system. Indeed, the welfare loss due to limited liability and
the impossibility of observing the effort exerted by the agent is bounded by the number
of efforts. If we are willing to accept the number of efforts as a metric of the complexity
of a principal-agent relationship, then the cost of coordination in the system is bigger
for more complex relationships.

3.3 A Tight Instance

To wrap-up this section we construct a family of instances with 2 outcomes and E
efforts whose worst-case welfare loss is arbitrarily close to the bound of E.

Fixing 0 < ε < 1, we let the probabilities of the outcomes associated to each effort
be πe =

(
1− εE−e, εE−e

)
for e ∈ E . Clearly, these distributions verify that π2

1 ≤
. . . ≤ π2

E , and thus they satisfy MLRP. (Recall that in the case of two outcomes MLRP
and FOSD are equivalent.)

Furthermore, we let cE = ε−E , and then set the remaining efforts so that ze − ce =
e− 1 for all e ∈ E . Since ze = (ce − ce−1)πS

e /(π
S
e − πS

e−1), we obtain ce−1 = ceε−
(e − 1) (1− ε) for e = 2, . . . , E. Notice that this implies that w2

e+1 − w2
e = 1/εE−e,

where we =
(
0, (ce− ce−1)/(π2

e −π2
e−1)

)
is the optimal solution to MPLP(e). Finally,

let the output be y = (0, w2
E + 1). One can prove inductively that the social utility is

uSW
e = e +

∑E−e
i=1 ε

i, and that principal’s utility is uP
e =

∑E−e
i=0 ε

i, for e ∈ E . Hence,
the instance fulfills Assumption 1 because uSW

1 ≤ . . . ≤ uSW
E and the principal’s utilities

satisfy uP
1 ≥ . . . ≥ uP

E , so it is optimal for the principal to implement effort 1.
The welfare loss corresponding to this instance is given by uSW

E /u
SW
1 = E/(1 +∑E−1

i=1 ε
i), which converges to E as ε→ 0+. Therefore, Theorem 3 is tight because we

found a series of instances converging to a matching lower bound.

4 Generalizations of the Basic Model

The results we have provided hold true for generalizations of the basic problem in-
troduced in Sect. 2. First, the main result is valid when the agent can incur arbitrary
(potentially negative) costs for any effort, and when the utility for the outside option
is arbitrary (so far it was assumed to be zero). Second, more general limited liability
constraints and imposing a minimum output do not have an impact in the worst-case
bounds presented earlier. In this context, we can provide more accurate bounds that de-
pend on some other characteristics of the instance. Third, MRLP is not needed for the
case of two efforts. All results remain valid without it. Fourth, considering the problem
from the perspective of the principal, we can show how to adapt the worst-case bounds
provided earlier and express them with respect to the principal’s payoff. Fifth, in the
case with two outcomes we relax Assumption 1 by showing that the sequence of social
welfare utilities is unimodal, and that any effort violating that order is infeasible. Fi-
nally, when the principal hires an agent to perform multiple identical and independent
tasks that follow the two-effort-two-outcome model, we can show the the worst-case
welfare loss is independent of the number of tasks and equal to 2.
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Abstract. The Stackelberg Minimum Spanning Tree (StackMST) game

is a network pricing (bilevel) optimization problem. The game is played

by two players on a graph G = (V, E), whose edges are partitioned into

two sets: a set R of red edges (inducing a spanning tree of G) with a fixed

non-negative real cost, and a set B of blue edges which are instead priced

by a leader. This is done with the final intent of maximizing a revenue

that will be returned for their purchase by a follower, whose goal in turn

is to select a minimum spanning tree of G. StackMST is known to be

APX-hard already when the number of distinct red costs is 2, as well as

min{k, 1+lnβ, 1+ln ρ}-approximable, where k is the number of distinct

red costs, β is the number of blue edges selected by the follower in an

optimal pricing, and ρ is the maximum ratio between red costs. In this

paper we analyze some meaningful specializations and generalizations of

StackMST, which shed some more light on the computational complex-

ity of the game. More precisely, we first show that if G is complete, then

the following holds: (i) if there are only 2 distinct red costs, then the

problem can be solved optimally (this contrasts with the corresponding

APX-hardness of the general problem); (ii) otherwise, the problem can

be approximated within 7/4 + ε, for any ε > 0. Afterwards, we define a

natural extension of StackMST, namely that in which blue edges have

a non-negative activation cost associated, and the leader has a global

activation budget that must not be exceeded, and, after showing that

the very same approximation ratio as that of the original game can be

achieved, we prove that if the spanning tree induced by the red edges

has radius h (in terms of number of edges), then the problem admits a

(2h + ε)-approximation algorithm.
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1 Introduction

Leader-follower games, which were introduced by von Stackelberg in the far 1934
[12], have recently received a considerable attention from the computer science
community. This is mainly due to the fact that the Internet is a vast electronic
market composed of millions of independent end-users, whose actions are by
the way influenced by a limited number of owners of physical/logical portions
of the network (e.g., service providers). In particular, in a scenario in which
the leaders can set the price for using a subset of network arcs, knowing that
the followers will allocate a communication subnetwork obeying some criteria, a
natural problem is that of analyzing how the leaders can optimize their pricing
strategy. Games of this latter type are widely known as Stackelberg Network
Pricing Games (SNPGs).

When only 2 players (i.e., a leader and a follower) are involved, a SNPG can
be formalized as follows: We are given an either directed or undirected graph
G = (V,E), whose edge set is partitioned into a set R of red edges and a
set B of blue edges, and an edge cost function c : R → R+. The edges in B
need to be priced by the leader. In the following, we assume that n = |V | and
m = |R| + |B|. Then, the leader moves first and chooses a pricing function
p : B → R+ for her1 edges, in an attempt to maximize her objective function
f1(p,H(p)), where H(p) denotes the decision which will be taken by the follower,
consisting in the choice of a subgraph of G. This notation stresses the fact that
the leader’s problem is implicit in the follower’s decision. Once observed the
leader’s choice, the follower reacts by selecting a subgraph H(p) = (V ′, E′) of G
which minimizes his objective function f2(p,H), parameterized in p. Note that
the leader’s strategy affects both the follower’s objective function and the set of
feasible decisions, while the follower’s choice only affects the leader’s objective
function. Quite naturally, we assume that f1 is price-additive, i.e., f1(p,H(p)) =∑

e∈B∩E′ p(e). This means, the leader decides edge prices having in mind that
her revenue equals the overall price of her selected edges.

The most immediate SNPG is that in which we are given two specified nodes in
G, say s, t, and the follower wants to travel along a shortest path in G between s
and t (see [11] for a survey). This problem has been shown to be APX-hard [8], as
well as O(log |B|)-approximable [10]. For the case of multiple followers (each with
a specific source-destination pair), Labbé et al. [9] derived a bilevel LP formula-
tion of the problem (and proved NP-hardness), while Grigoriev et al. [7] presented
algorithms for a restricted shortest path problem on parallel edges. Furthermore,
when all the followers share the same source node, and each node inG is a destina-
tion of a single follower, then the problem is known as the Stackelberg single-source
shortest paths tree game. In this game, the leader’s revenue for each selected edge is
given by its price multiplied by the number of paths – emanating from the source
– it belongs to, and in [1] it was proven that finding an optimal pricing for the
leader’s edges is NP-hard, as soon as |B| = Θ(n).

1 Throughout the paper, we adopt the convention of referring to the leader and to the

follower with female and male pronouns, respectively.
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Another basic SNPG, which is of interest for this paper, is that in which the
follower wants to use a minimum spanning tree (MST) of G (now considered
as undirected). For this game, known as Stackelberg MST (StackMST) game, in
[5] the authors proved the APX-hardness already when the number of red edge
costs is 2, and gave a min{k, 1+lnβ, 1+lnρ}-approximation algorithm, where k
is the number of distinct red costs, β is the number of blue edges selected by the
follower in an optimal pricing, and ρ is the maximum ratio between red costs.
In a further paper [6], the authors proved that the problem remains NP-hard
even if G is planar, while it can be solved in polynomial time once that G has
bounded treewidth.

Notice that all the above examples fall within the class of SNPGs handled by
the general model proposed in [3], which encompasses all the cases where each
follower aims at optimizing a polynomial-time network optimization problem in
which the cost of the network is given by the sum of prices and costs of contained
edges. Nevertheless, SNPGs for models other than this one have been studied
in [2,4].

Our results. In this paper we analyze some meaningful specializations and
generalizations of StackMST, which shed some more light on the computational
complexity of the game. For the sake of presenting our results in a unifying frame-
work, we start by defining the aforementioned generalized version of StackMST.
First of all, notice that given any instance of StackMST, this can be simplified
into an equivalent instance in which we compute a red MST of G, and then we
discard all the red edges not belonging to it (see also [5]). Then, the budgeted
StackMST game is a 2-player game defined as follows. We are given a red tree
T = (V,E(T )) of n nodes where each edge e ∈ E(T ) has a fixed cost c(e). More-
over, we are given an activation cost γ(e) for each edge e = (u, v) /∈ E(T ), and
a budget Δ. The game, denoted by StackMST(γ,Δ), consists of two phases. In
the first phase the leader selects a set F of edges to add to T such that the
budget is not excedeed, i.e.

∑
e∈F γ(e) ≤ Δ, and then prices them with a price

function p : F → R+. In the second phase, the follower takes the weighted
graph G = (V,E(T ) ∪ F ) resulting from the first phase, and computes a MST
M(F, p) of G. Throughout the paper, as usual we assume that when multiple
optimal solutions are available for the follower, then he selects an optimal so-
lution maximizing the leader’s revenue. Then, the leader collects a revenue of
r(M(F, p)) =

∑
e∈F∩E(M(F,p)) p(e). Our goal is to find a strategy for the leader

which maximizes the revenue.
Using this notation, the original StackMST game on a graph G = (V,R ∪B)

can be rephrased as a StackMST(γ,Δ) game in which T is any red MST of G,
Δ is equal to 0, and the activation cost for an edge not in E(T ) is equal to 0
if it belongs to B, otherwise it is equal to any positive value. In this paper, we
prove the following results:

1. StackMST(0, 0) with only 2 distinct red costs can be solved optimally, where
the first 0 in the argument is used to denote the fact that γ is identically
equal to 0;
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2. StackMST(0, 0) can be approximated within 7/4+ε, for any ε > 0, in general;
3. StackMST(γ,Δ) admits a min{k, 1 + lnβ, 1 + ln ρ, 2h + ε}-approximation

algorithm, for any ε > 0, where k, β and ρ are as previously defined for
StackMST, and h denotes the radius of T w.r.t. the number of edges.

We point out that all the above problems have an application counterpart, since
the StackMST(0, 0) class of problems models the case in which the leader re-
tains the potentiality to activate (at no cost) any missing connection in the
network, while clearly result (3) complements the approximation ratio given in
[5] whenever the radius of the red tree is bounded, which might well happen
in practice. Finally, notice also that StackMST(0, 0) is a specialization of the
general StackMST, for which however we were not able to prove whether the
problem is in P or not. Therefore, this remains a challenging open problem.

The rest of the paper is organized by providing each of the above results in
a corresponding section. Due to space limitations, some proofs are omitted and
result (1) is given within the paper only for the special case in which T is a path.

2 Exact Algorithm for StackMST(0, 0) with Costs in {a, b}
In this section we present an exact polynomial time algorithm for StackMST(0, 0)
when the cost of any red edge belongs to the set {a, b}, with 0 < a ≤ b. Notice
that this case is already APX-hard for StackMST. For the sake of clarity, we will
present the algorithm and the analysis when the red tree is actually a path. The
extension to the general case can be derived easily.

Before providing the result, we need to introduce some basic notation we
will use in the rest of the paper. Let H be an undirected graph. For an edge
e ∈ E(H) we will denote by cycle(H, e) the set of (simple) cycles in H con-
taining edge e. Let w : E(H) → R be a function on the edges of H . We define
w(H) :=

∑
e∈E(H) w(e). Consider an instance 〈T, c, γ,Δ〉 of StackMST(γ,Δ).

In [5], the authors proved that finding an optimal solution to the problem in-
stance is equivalent to determining the set F of blue edges contained in the MST
bought by the follower. In fact, under the assumption that F is a set of blue
edges such that (V, F ) is a forest and

∑
e∈F γ(e) ≤ Δ, then activating only edges

in F and pricing each edge e ∈ F with

pF (e) := min
H∈cycle(G,e)

max
e′∈E(H)∩E(T )

c(e′), (1)

implies that F is contained inM(F, pF ) as well as r(M(F, pF )) ≥ r(M(F, p′)) for
every other pricing p′ such that F is contained in M(F, p′). As a further remark,
the authors in [5] observed that pF can be computed in polynomial time. As
a consequence, in the rest of the paper, we will focus on determining the set
of leader’s edges that have to be contained in the MST bought by the follower.
Therefore, with a little abuse of notation, given a set F such that

∑
e∈F γ(e) ≤ Δ

and (V, F ) is acyclic, we will denote by r(F ) the revenue yielded by the pricing
pF , i.e., r(F ) := r(M(F, pF )).
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Now, we present an exact algorithm for StackMST(0, 0) on a red path P with
costs in {a, b}, with 0 < a ≤ b. We call a subpath P ′ of P an a-block if P ′ has
all edges of cost a, and P ′ is maximal (w.r.t. inclusion). We say that an a-block
is good if its length is greater than or equal to 3, bad otherwise. Let σ be the
number of bad blocks of P . The following lemma shows an upper bound to the
maximum revenue r∗:

Lemma 1. r∗ ≤ c(P )−min
{
σa,
⌊

σ
2

⌋
(b − a) +

(
σ − 2

⌊
σ
2

⌋)
min{a, b− a}

}
.

Proof. Let na be the number of red edges of cost a. Let T ∗ be the tree com-
puted by the follower w.r.t. an optimal solution. Moreover, let B1, . . . , Bσ and
B̂1, . . . , B̂σ′ be the bad and the good blocks of P , respectively. We denote by
mi and m̂j the number of edges of Bi and B̂j , respectively. Moreover, for an
edge e = (x, y), T ∗(e) will denote the unique path in T ∗ between x and y (ob-
serve that T ∗(e) may be the path containing only edge e). For each i = 1, . . . , σ
and j = 1, . . . , σ′, consider Ti =

⋃
e∈E(Bi)

T ∗(e) and T̂j =
⋃

e∈E(B̂j)
T ∗(e).2 Let

T = {T1, . . . , Tσ} ∪ {T̂1, . . . , T̂σ′}. Observe that for each i, j, we have: (i) Ti and
T̂j are trees and every edge has cost a, (ii) V (Bi) ⊆ V (Ti) and V (B̂j) ⊆ V (T̂j),
and (iii) E(T ∗) ∩ E(Bi) 
= ∅ or Ti contains at least mi + 1 edges.

Let us consider the following graph H = (
⋃

i V (Ti) ∪
⋃

j V (T̂j),
⋃

i E(Ti) ∪⋃
j E(T̂j)) and let N be the number of nodes of H . Clearly, H is a forest; more-

over, N ≥
∑σ

i=1mi +
∑σ′

j=1 m̂j + σ + σ′ = na + σ + σ′ as blocks are pairwise
vertex disjoint. Consider the set C of the connected components of H , and let
X = {Ti | Ti ∈ C, i = 1, . . . , σ, ∀T ′ ∈ T , E(Tj) 
⊆ E(T ′) and E(T ′) 
⊆ E(Tj)}.
Let � = |X | and let �1 = |{Ti | Ti ∈ X,E(T ∗) ∩E(Bi) 
= ∅}|. Notice that �1 is a
lower bound to the number of red edges in H . Finally, let t = |C \X |. We have
that the number of connected components ofH is �+t, and hence H has N−�−t
edges. Now, let Y = {T1, . . . , Tσ} \ X . We have |Y | = σ − �. Moreover, since
each Ti ∈ Y has “merged” with at least one other tree, we have t ≤ σ′ +

⌊
σ−�
2

⌋
.

Therefore,

r∗ ≤
(
N − �− t

)
a− �1a+

(
n− 1−

(
N − �− t

))
b

≤ (na + σ + σ′ − �− t)(a− b) + (n− 1)b− �1a
= c(P )−

(
σ + σ′ − �− t

)
(b − a)− �1a

≤ c(P )−
(

(σ − �)−
⌊
σ − �

2

⌋)
(b− a)− �1a

≤ c(P )−min
{
σa,
⌊σ

2

⌋
(b− a) +

(
σ − 2

⌊σ
2

⌋)
min{a, b− a}

}
. ��

Now we present an exact algorithm achieving revenue equal to the upper bound
of Lemma 1. The algorithm uses the following four rules. Each rule considers
a subpath of P and specifies a feasible solution for the subpath, i.e. a set of
blue edges within the subpath with a corresponding pricing. The solutions cor-
responding to the rules are shown in Figure 1.
2 Here the union symbol denotes the union of graphs.



80 D. Bilò et al.
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Rule 1

Rule 4

P1 P2

Rule 2
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Fig. 1. Rules used by the algorithm to solve subpaths. We denote by σδ a path of δ
edges each having a cost of σ. An edge with label [i]σ represents i blue edges each

having a price of σ. Observe that, except for Rule 2, if we run Kruskal’s algorithm by

giving priority to blue edges, all red edges with cost a will be discarded. Concerning

Rule 2, Kruskal’s algorithm selects a single red edge of cost a (of the shown subpath).

Rule 1: Let P ′ be a subpath of P containing only one a-block, and this a-block
is good. We can obtain revenue c(P ′) from P ′ by adding blue edges only
within P ′.

Rule 2: Let P ′ be a subpath of P containing only one a-block and this a-block
is bad. We can compute a solution with revenue c(P ′)− a from P ′.

Rule 3: Let P ′ be a subpath of P containing only one a-block, this a-block
is bad, and P ′ contains a red edge of cost b. We can obtain a revenue of
c(P ′)− (b− a) from P ′.

Rule 4: Let P1, P2 be two edge-disjoint subpaths of P each containing only one
a-block. Assume that both a-blocks are bad and P1 contains an edge of cost
b whose removal separates the two a-blocks. We can obtain a revenue of
c(P1) + c(P2)− (b− a) from P1 and P2.

Our algorithm is as follows. If b ≥ 3a then we split P into subpaths each of
them containing exactly one a-block. Then we apply rule 1 or rule 2 to each
subpath, depending on the a-block in the subpath is good or bad. By Lemma 2,
this solution yields a revenue of c(P )− σa.

Now, consider the case b < 3a. Let B1, . . . , Bσ be the bad a-blocks contained
in P from left to right. The algorithm splits P into subpaths such that (i) each
subpath contains exactly one a-block, (ii) for every i = 0, . . . , �σ/2�, subpath
containing B2i+1 has an edge of cost b incident to its right endvertex, and (iii)
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if σ is odd, the subpath containing Bσ has an edge of cost b incident to its left
endvertex.

Let Pi be the subpath containing Bi. The algorithm uses rule 4 for every pairs
of subpaths P2i+1, P2i+2, i = 0, . . . , �σ/2�, rule 1 for every subpath containing
a good a-block. Finally, if σ is odd, we apply rule 3 for Pσ when b ≤ 2a, while
we use rule 2 when b > 2a. It is easy to see that the revenue of this solution
coincides with c(P )−min

{
σa,
⌊

σ
2

⌋
(b− a) +

(
σ − 2

⌊
σ
2

⌋)
min{a, b− a}

}
. Hence,

from Lemma 1, we have:

Theorem 1. StackMST(0, 0) can be solved in polynomial time when red edge
costs are in {a, b}.

3 StackMST(0, 0) Can Be Approximated within 7/4 + ε

In this section we design an algorithm that achieves an approximation ratio
of 7/4 + ε. The idea of the algorithm is to partition the red tree into suitable
subtrees that can be solved optimally and such that we can guarantee a revenue
of at least 4/7 of the cost of each subtree. Let T = (V,E(T )) be the red tree.
We say that T1 = (V1, E1), . . . , T� = (V�, E�) is a partition of T into � subtrees
if (i) each Ti is a subtree of T , (ii) V =

⋃
i Vi, E(T ) =

⋃
iEi, and (iii) for each

i, j, i 
= j, Ei ∩ Ej = ∅. As a consequence of Equation (1), we can immediately
derive the following:

Lemma 2. Let T1 = (V1, E1), . . . , T� = (V�, E�) be a partition of T into � sub-
trees. For each i, let Fi be a feasible solution for the tree Ti. Then F =

⋃�
i=1 Fi

is a feasible solution for T . Moreover, r(F ) =
∑�

i=1 r(Fi).

Lemma 3. Let T be a tree rooted at a node s. There always exists a partition
of T into � subtrees T1, . . . , T� such that

– T� has at most 2 edges and at least one of them is incident to s;
– for every 1 ≤ j ≤ �− 1, Tj is either (i) a path of 3 or 4 edges; or (ii) a star

with at least 3 edges.

Moreover, this partition can be found in polynomial time.

Proof. We provide a polynomial time algorithm that finds the partition of the
lemma. Let h be the height of T and let d(v) denote the depth of v in T , i.e.
the number of edges of the path (in T ) between s and v. We denote by S(v) the
set of the children of v. Moreover, we use v̄ to denote the parent of v and ¯̄v to
denote the parent of v̄. We proceed in phases. In phase j, we find a subtree Tj

by applying one of the rules below (we consider them in order), then we remove
Tj and we move to the next phase. We stop when no rule can be applied. Let L
be the set of leaves of T with depth equal to h. The rules are the following (see
Figure 2):

Rule 1: if there exists a node v ∈ L with d(v) ≥ 2 and such that v has at least
one sibling, then Tj is the star with edge set {(v̄, ¯̄v)} ∪ {(v̄, u) | u ∈ S(v̄)};
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Rule 2: if there exists a node v ∈ L with d(v) ≥ 2 such that v̄ has a sibling u
and u is a leaf, then Tj is the path with edge set {(v, v̄), (v̄, ¯̄v), (¯̄v, u)};

Rule 3: if there exists a node v ∈ L with d(v) ≥ 2 such that v̄ has a sibling
u and u is not a leaf, then let u′ be the unique child of u (u′ must be
unique otherwise rule 1 would apply). Then, Tj is the path with edge set
{(v, v̄), (v̄, ¯̄v), (¯̄v, u), (u, u′)};

Rule 4: if there exists a node v ∈ L with d(v) ≥ 3, then Tj is the path with
edge set {(v, v̄), (v̄, ¯̄v), (¯̄v, ¯̄̄v)};

Rule 5: if T is a star with at least 3 edges, then Tj = T .

Now, assume that the last phase is phase � − 1, then we set T� equal to the
remaining tree T . If there is no edge left, we set T� equal to the empty subtree.
It is easy to see that if T� is not empty, it must have at most 2 edges and one of
them must be incident to s. Moreover, since each phase takes polynomial time
and each Tj with j < � contains at least one edge, the claim follows. ��

v

u

u′
vv v

u

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

. . .
. . .

Fig. 2. The five rules of the decomposition algorithm

The following lemma holds

Lemma 4. Let T be a star with at least 3 edges. Then we can obtain a revenue
of at least 2

3c(T ).

Proof. Let s be the center of the star, and let u1, . . . , ut be the leaves ordered
such that c(s, u1) ≤ c(s, u2) ≤ · · · ≤ c(s, ut). The set of blue edges F = {(u1, uj) |
j = 2, . . . , t} yields a revenue of r(F ) =

∑t
j=2 c(s, uj) ≥ 2

3c(T ), since t ≥ 3. ��

The following lemma can be proved using case analysis

Lemma 5. Let P be a path of 3 or 4 edges. Then we can obtain a revenue of
at least 4

7c(P ).

We are now ready to prove the following:

Theorem 2. StackMST(0, 0) can be approximated within a factor of 7/4 + ε,
for any constant ε > 0.

Proof. W.l.o.g., we can restrict ourselves to the case n ≥ 7
2ε + 2, as for the

other case we can always use the exhaustive search algorithm that tries all
the possible sets of blue edges to find an optimal solution. For each v, let
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μ(v) = maxu|(u,v)∈E(T ) c(u, v).3 We root T at a node s minimizing μ. Then
we decompose T using the algorithm given in Lemma 3 and we solve optimally
each Tj with j < �. Let F ∗

j be an optimal solution for each tree Tj, for every
j = 1, . . . , �. Let F =

⋃�
j=1 F

∗
j and observe that r(F�) ≥ c(T�)−mine∈E(T�) c(e).

Let e = (s, z) be an edge in T� and let T ′ the forest obtained from T by removing
e. Clearly, c(T ) ≤ c(T ′)+μ(s). Let F ∗ denote an optimal solution for T . Clearly,
r(F ∗) ≤ c(T ). As Lemma 2 together with Lemma 4 and Lemma 5 implies that
r(F ) ≥ 4/7c(T ′) and since c(T ′) ≥ 1

2

∑
v∈V \{s,z} μ(v) ≥ n−2

2 μ(s), we obtain
r(F∗)
r(F ) ≤

c(T )
r(F ) ≤

c(T ′)+μ(s)
r(F ) ≤

(
1 + 2

n−2

) c(T ′)
r(F ) ≤ 7/4 + 7

2n−4 ≤ 7/4 + ε. ��

4 StackMST(γ, Δ) on Trees of Bounded Radius

In this section, we study the general StackMST(γ,Δ). First, we observe that
for this generalized version, the very same approximation ratio as that of the
original game can be achieved as the single-price algorithm defined in [5] can
be easily adapted to provide an approximation of min{k, 1 + lnβ, 1 + ln ρ} for
StackMST(γ,Δ) as well, where k is the number of distinct red costs, β is the
number of blue edges selected by the follower in an optimal solution, and ρ is
the maximum ratio between red costs.

In the remaining of the section, we focus on the case in which T is a tree of
radius h measured w.r.t. the number of edges. For this case, we show that the
problem remains APX-hard even for constant values of h as well as approximable
within a factor of 2h+ ε.

We now study StackMST(γ,Δ) when T is a tree of radius h. In the remaining
of this section, we will assume that T is rooted at v0 and has height h (corre-
sponding to its radius). First, we observe that the reduction in [5] proving that
StackMST is APX-hard even if T is a path can be modified to show that

Theorem 3. StackMST is APX-hard even if T is a star.

In the remaining of the section we will show the existence of a (2h + ε)-
approximation algorithm. The main idea of the algorithm is to reduce the prob-
lem instance into h instances in which the red trees are stars. With a little abuse
of notation, in each of the h instances, the leader is sometimes allowed to activate
edges which are parallel to red edges. We denote by Vi = {v1, . . . , v�i} the set of
vertices at level i and by Ei the set of edges in T going from vertices in Vi to their
parents. Let Ti be a red star obtained by identifying all red edges in T but those
in Ei. With a little abuse of notation, when edge (u, v) is identified, and w.l.o.g.
u is the parent of v, we assume that the corresponding vertex is labeled with u.
Thus, according to this assumption, we have that Ti is a star centered at v0 with
v1, . . . , v�i as leaves. The cost of a red edge e = (v0, v) in Ti is ci(e) = c(u, v),
where u is the parent of v in T . Let T̂0, T̂1, . . . , T̂�i be the connected components
in T − Ei. W.l.o.g., assume vi ∈ V (T̂i). Let ej,q be a blue edge connecting T̂j

3 With a slight abuse of notation, we will write c(u, v) instead of c((u, v)) in the rest

of the paper.
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and T̂q with cheapest activation cost. Let bluei := {ej,q | j, q = 0, . . . , �i, j 
= q}
and let Bi := {ēj,q := (vj , vq) | ej,q ∈ bluei} be the set of blue edges the leader
is allowed to activate in Ti. The activation cost of ēj,q ∈ Bi is γi(ēj,q) := γ(ej,q).

Let F ∗ be an optimal solution for the leader on input instance T and let
F ∗

i := {(vj , vq) | (u, v) ∈ F ∗, u ∈ V (T̂j), v ∈ V (T̂q), j 
= q}. Let G∗
i :=

({v0, . . . , v�i}, F ∗
i ) and denote by comp(G∗

i ) the set of the connected components
of G∗

i . We start proving an upper bound on the revenue yielded by F ∗.

Lemma 6. r(F ∗) ≤ c(T )−
h∑

i=1

∑
H∈comp(G∗

i )

min
v∈V (H)

ci(v0, v).4

Proof. Observe that for every H ∈ comp(G∗
i ) not containing vertex v0, at least

one red edge (v0, v), for some v ∈ V (H), has to be contained in any MST of
(V (Ti), E(Ti)∪F ∗

i ). Thus, for some v ∈ V (H), at least one edge (u, v) where u is
the parent of v in T has to be contained in any MST of G = (V (T ), E(T )∪F ∗).
As ci((v0, v)) = c(u, v), the claim follows by summing over all components H ∈
comp(G∗

i ) for all i’s. ��

The key idea of our algorithm is to find a set F of blue edges whose overall
activation cost does not exceed the budget and such that (V, F ) is a forest of
stars. More precisely, for every i = 1, . . . , h, the algorithm finds a set F̂i ⊆ Bi

such that
∑

e∈F̂i
γi(e) ≤ Δ and Ĝi := (V (Ti), F̂i) is a forest of stars. Let Fi :=

{ej,q | ēj,q ∈ F̂i}. Observe that (i) Gi := (V (T ), Fi) is a forest of stars and (ii)
the overall activation cost of the edges in Fi equals the one of the edges in F̂i.
Furthermore, using Equation (1), we can derive the following

Lemma 7. Let Li := {v | v ∈ V (Ti), v is a leaf of some star in Ĝi}.5 Then,
r(F̂i) ≥

∑
v∈Li

ci(v0, v).

Lemma 8. r(Fi) ≥ r(F̂i).

Lemma 9. Let B′⊆Bi and let U={v | v is an endvertex of some edge in B′}.
There exists a polynomial time algorithm that finds two sets F 1 and F 2 such
that (i) F 1, F 2 ⊆ B′, (ii) both (V (Ti), F 1) and (V (Ti), F 2) are forests of stars,
and (iii) r(F 1) + r(F 2) ≥

∑
v∈U ci(v0, v).

Proof. Let D be the graph induced by edge set B′. Let Dj be any of the t
connected component in D and let T j be any spanning tree in Dj . As T j is a
bipartite graph, it is possible to partition the set of its vertices into two sets V j

1

and V j
2 in polynomial time. Moreover, by the connectivity of T j, every vertex

v ∈ V j
� (� ∈ {1, 2}) is adjacent to some vertex in V j

3−�, and thus it is easy to find
a set Ej

� of edges in T j such that (V (Dj), Ej
� ) is a forest of stars with centers in

V j
� and leaves in V j

3−�. Therefore, for � = 1, 2, F � =
⋃t

j=1 E
j
� are two sets of edges

satisfying (i) and (ii). Furthermore,
⋃t

j=1(V
j
1 ∪ V

j
2 ) =

⋃t
j=1 V (Dj) = V (D). As

a consequence, from Lemma 7, (iii) is also satisfied. ��
4 With a slight abuse of notation, we assume ci(v0, v0) = 0.
5 If a star contains only one edge, then choose exactly one of its endvertices as a leaf.
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To compute F̂i, the algorithm does the following. Let eij be a leader’s edge in
Bi incident to vj with cheapest activation cost. Our algorithm uses the well-
known FPTAS for the knapsack problem to compute a (1 + ε/(2h))approximate
solution Si for the instance of knapsack where each edge eij is an object of profit
ci(v0, vj) and volume γi(eij), and the volume of the knapsack is Δ. Denote by
Ki the input instance of knapsack. Let B′ = {ej | eij ∈ Si}. The algorithm
uses the decomposition algorithm described in Lemma 9 to find two subsets of
edges F 1 and F 2, and then it sets F̂i to F 1 if r(F 1) ≥ r(F 2), F 2 otherwise. The
pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1
1: for i = 1 to h do
2: compute a (1 + ε/(2h))-approximate solution Si for the knapsack instance Ki

3: B′ := {ei
j | ei

j ∈ Si}
4: compute F 1 and F 2 w.r.t. B′ as explained in Lemma 9

5: if r(F 1) ≥ r(F 2) then F̂i := F 1 else F̂i := F 2 end if
6: Fi := {ej,q | ēj,q ∈ F̂i}
7: end for
8: return the best of the Fi’s

Theorem 4. Algorithm 1 computes a (2h+ ε)-approximate solution in polyno-
mial time for StackMST(γ,Δ), for any constant ε > 0.

Proof. Let Ḡ1, . . . , Ḡ� be the connected components contained in G∗
i . Let F̄ ∗

i =⋃�
t=1E(Ḡt). Let νt be a vertex of V (Ḡt) such that ci(v0, νt) ≤ ci(v0, v) for every

v ∈ V (Ḡt). As γi(eij) ≤ γi(e) for every e ∈ F̄ ∗
i with e incident to vj , we have

that S∗ =
⋃�

t=1{eij | vj ∈ V (Ḡt), vj 
= νt} is a feasible solution of the knapsack
instance Ki. Furthermore, the total profit profit(S∗) of edges in S∗ is

profit(S∗) ≥ c(Ti)−
�∑

t=1

ci(v0, νt).

Let Si be the (1 + ε/(2h))-approximate solution of the knapsack instance Ki

computed by the algorithm and let B′ := {eij | eij ∈ Si}. Let F 1 and F 2 be
computed as explained in Lemma 9. As F 1, F 2 ⊆ B′, then

∑
e∈F j γi(e) ≤ Δ, for

every j = 1, 2. Moreover, as r(F̂i) = max{r(F 1), r(F 2)}, we have that

(2 + ε/h)r(F̂i) ≥
(
1 + ε/(2h)

)(
r(F 1) + r(F 2)

)
≥ c(Ti)−

�∑
t=1

ci(v0, νt).

As a consequence, because of Lemma 6 and Lemma 8, we have that

(2h+ ε) max
i=1,...,h

r(Fi) ≥ c(T )−
h∑

i=1

∑
H∈comp(H∗

i )

min
v∈V (G)

ci(v0, v) ≥ r(F ∗).

This completes the proof. ��
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Abstract. Trust propagation is a fundamental topic of study in the

theory and practice of ranking and recommendation systems on net-

works. The Page Rank [9] algorithm ranks web pages by propagating

trust throughout a network, and similar algorithms have been designed

for recommendation systems. How might one analogously propagate dis-

trust as well? This is a question of practical importance and mathemat-

ical intrigue (see, e.g., [2]). However, it has proven challenging to model

distrust propagation in a manner which is both logically consistent and

psychologically plausible. We propose a novel and simple extension of the

Page Rank equations, and argue that it naturally captures most types

of distrust that are expressed in such networks. We give an efficient al-

gorithm for implementing the system and prove desirable properties of

the system.

1 Introduction

Trust-based recommendation and ranking systems are becoming of greater signif-
icance and practicality with the increased availability of online reviews, ratings,
hyperlinks, friendship links, and follower relationships. In such a recommenda-
tion system, a “trust network” is used to give an agent a personalized recommen-
dation about an item in question, based on the opinions of her trusted friends,
friends of friends, etc. There are many recommendation web sites dedicated to
specific domains, such as hotels and travel, buyer-seller networks, and a number
of other topics. In several of these sites, users may declare certain agents whose
recommendations they trust or distrust, either by directly specifying who they
dis/trust or indirectly by rating reviews or services rendered. We show how trust
or distrust may be naturally propagated in a manner similar to Page Rank [9],
extending the work of Andersen et al. [1], which was for trust alone. For sim-
plicity, we focus on personalized recommendation systems, though our approach
applies to ranking systems as well. We take, as a running example, a person that
asks their trusted friends if they recommend a certain specialist. Some friends
might have personal experience, while others would ask their friends, and so
forth. The agent may then combine the feedback using majority vote or an-
other aggregation scheme. Such personalized recommendations may better serve
a person who does generally agree with popular opinion on a topic and may be

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 87–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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less influenced by people of poor taste and spammers. Figure 1 illustrates two
distrust networks, formally defined as follows. Among a set of nodes, N , there
is a designated source s ∈ N that seeks a positive, neutral, or negative recom-
mendation. For u, v ∈ N , weight wuv ∈ [−1, 1] indicates the amount of trust
(or distrust if negative) node u places in v, and we require

∑
v |wuv | ≤ 1 for

each node u. Following Andersen et al., for simplicity we consider two disjoint
sets V+, V− ⊆ N ,, of positive and negative voters, who are agents that have fixed
positive or negative opinions about the item in question, respectively. In the case
of a doctor, these may be the agents that have visited the doctor themselves.
We assume that wuv = 0 for any voter u, e.g., if they have first-hand experience
they will not ask their trusted friends about the doctor. The simple random walk
system [1] suggests that one consider a random walk starting at s and terminat-
ing at a voter. The recommendation is based upon whether it is more likely that
the random walk terminates in a positive voter or a negative voter. In Figure 1,
in case (b) clearly the recommendation should be negative, because the total
trust in the positive voter is less than that in the negative voter, due to node
z’s distrust. However, in complex networks such as Figure 1, in case (c) it is not
obvious whom to trust and distrust. It could be that w and z are trustworthy
and y is not (hence y’s distrust in w and z should be disregarded), or the oppo-
site could be the case. It is not clear if there is any psychologically plausible and
mathematically consistent recommendation system in general graphs.

–

s

–

+

w

x

y

z

x

y

z

a)

+

–

s

x

y

b)

z

+

–

s

c)

Fig. 1. Examples of (dis)trust networks. In each case, node s seeks a recommendation in

{−, 0, +}. A solid/dashed edge from u to v indicates that u trusts/distrusts v. A +/ −
indicates a voter has a fixed positive/negative opinion of the doctor (perhaps based

upon first-hand experience). a) The recommendation is +. b) The recommendation is

−. c) Typical networks may be cyclic and more complex.

We propose a simple solution, and justify it both through examples and the
axiomatic approach, arguing that it satisfies a number of reasonable properties
that one might like in a recommendation system. Moreover, it is the only system
satisfying these properties. Before delving into the details, we point out that
there are several types of people one might want to distrust in such a network:

1. Bad guys. Self-serving people, such as spammers, will recommend things
based upon their own personal agendas. Distrust links can decrease their
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influence on such a system. One has to be careful, however, not to simply
negate whatever they suggest, since they may be strategic and say anything
to achieve their goal.

2. Careless big mouths. Say, in your social circle, there is a vocal and opin-
ionated person who you have discovered is careless and unreliable. Even
without a trust link from you to them, that person’s opinions may be highly
weighted in a recommendation system if several of your trusted friends trust
that person. Hence, it may be desirable for you to explicitly indicate distrust
in that person, while maintaining trust links to other friends so that you can
take advantage of their opinions and those of their other friends.

3. Polar opposites. On some two-sided topics (e.g., Democrats vs. Repub-
licans), a graph may be largely bipartite and distrust links may indicative
that one should believe the opposite of whatever the distrusted person says.

We model distrusted people as behaving in an arbitrary fashion, and seek to
minimize their influence on a system. This includes the possibility that they
may be self-serving adversaries (bad guy), but it is also a reasonable approach
for people whose opinions do not generally agree (careless). Our approach fails to
take advantage of the opinions of distrusted people (polar), in two-sided domains.
However, many real-world topics in which people seek recommendations are
multi-faceted.

We believe that it is important for trust and distrust to be propagated natu-
rally in such a system. For example, in case of careless above, the distrust you
indicate will not only affect the system’s recommendations to you but also to
people that trust you. As we argue below, propagating distrust is a subtle issue.
In this paper, we present a novel and simple solution which we feel is the natu-
ral extension of the random-walk system of Andersen et al. [1] (similar to Page
Rank [9] and other recommendation system) to distrust.

The focus of the present paper is distrust propagation in domains where there
is typically little overlap in personal experiences: it is unlikely that any two
people have seen a number of doctors in common or been to a number of common
hotels. Ideally, one might combine collaborative filtering with trust and distrust
propagation, but we leave that to future work.

1.1 The Propagation of Trust and Distrust

Figure 2 gives simple examples showing how trust and distrust may be used in
recommendation systems. These examples illustrate why it is important to keep
track not only of who is distrusted, but also who it is that distrusts the person.
Roughly speaking, by trust propagation, we mean that if u trusts v and v trusts
w, then it is as if u trusts w directly, though the weight of the trust may be
diminished. Matters are more complicated in the case of distrust, which is the
focus of the paper.

The ancient proverb, “the enemy of my enemy is my friend,” immediately
comes to mind when considering distrust propagation. In our context, it sug-
gests that if u distrusts v and v distrusts w, then u should trust w However,
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Fig. 2. Our recommendation to s is − due to diminished trust in the + voter. b) Our

recommendation is 0 because z is untrusted, and hence we ignore z’s outgoing edges.

A system whose recommendation was influenced by z could be swayed arbitrarily by

a careless or adversarial z.c) Here z is connected to the + voter by a chain of distrust

links. Again our recommendation to s is 0. The recommendation of systems obeying

“the enemy of my enemy is my friend,” would depend on whether n is even or odd.

this principle is inappropriate in most multifaceted domains. For example, you
would probably not necessarily select a doctor on the basis that the doctor is
heavily distrusted by people you distrust. Figure 2 case (c) illustrates how this
maxim may lead to a recommendation that depends on whether the number of
nodes in a network is even or odd, an effect of questionable psychological plau-
sibility. Analogously, “the friend of my enemy is my enemy” would suggest that
in Figure 2 case (b), one should give a negative recommendation. However, in
many cases such as the medical specialist domain, it seems harsh to criticize a
doctor on the basis that someone you distrust also likes that doctor. Hence, the
two principles that we do recognize are: “the friend of my friend is my friend,”
and, “the enemy of my friend is my enemy.” Other principles which we adopt
are that equal amounts of trust and distrust should cancel. These principles are
formalized through axioms, described later. As mentioned, a random walk is a
nice toy model of how one might ask for recommendations: you ask a random
friend, and if he doesn’t have an opinion, then he asks a random friend, and
so forth. A second justification for these systems might be called an equilibrium
justification based upon trust scores. Namely, imagine each node has a trust
score tu ≥ 0, which indicates how trusted the node is. One should be able to
justify these scores based on the network. One easy way to do this is to have
the trust in an agent be the trust-weighted sum of the declared trust from other
agents. Formally,

ts = 1, tu =
∑

v

tv · wvu∀u 
= s, and recommendation is sign(
∑

u∈V+

tu −
∑

u∈V−

tu)

(1)

The trust scores represent self-consistent beliefs about how trusted each node
should be.
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1.2 Prior Work on Distrust Propagation

We first argue why existing work fails to achieve our goals in the simple exam-
ples in Figure 2. Of course, each of these algorithms may have other appealing
properties that our algorithm lacks, and may be more appropriate for other
applications. In seminal work, Guha et al. [2] consider a number of different ap-
proaches to propagating distrust. None of them matches our behavior on simple
examples like those of Figure 2. The first approach is to ignore distrust edges.
(A similar approach is taken by the Eigentrust algorithm [5], where any node u
which has more negative than positive interactions with a node v has the edge
weight wuv rounded up to 0). Of course, this approach fails to handle example
2a. Their second approach is to consider distrust at the end: after propagating
trust only as in the first approach, a certain amount of distrust is “subtracted
off,” afterwards, from the nodes based on the steady-state trust-only scores. This
is a reasonable and practical suggestion, and does agree with our behavior on
the three examples in Figure 2. However, on the simple example in Figure 3 case
(a), it would provide a neutral recommendation to s, since the distrust comes
“too late,” after equal amounts of trust have already been propagated to both
voters.

+

–

s

b)a)

+

–

s

+

–

Fig. 3. Two further simple examples where our recommendation to s is −

The third approach of Guha et al. is to model distrust by negative weights so
that wvu ∈ [−1, 1](now

∑
u |wvu| ≤ 1) and simply use the equations given above

without change. This follows the “enemy of my enemy is my friend” dictim and
hence has a parity dependence on n in Figure 2 case (c). It also gives a negative
recommendation in Figure 2 case(b). Several others have adopted this “Plus-
Minus Page Rank” approach. However, Guha et al. also consider more powerful
notions of trust propagation via “co-citation,” which would be interesting to add
into our setting.

The PageTrust system [6], considers a random walk which traverses trust
edges but “remembers” the list of all distrusted nodes seen thus far, and makes
sure never to visit such a node in the remainder of the walk. Such an algorithm
would assign a neutral recommendation to node s in the example of Figure 3
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case(b), because of the fact that nodes taking the middle path have necessarily
not observed the distrust edge. The differences in recommendations between
our system and theirs can be made more dramatic. While the random walk
perspective is appealing, it is not obvious how to naturally extend it to distrust
because it strongly depends on the order in which nodes are visited.

1.3 Our System

Adopting the “equilibrium trust score” view of the random walk system, we
propose the following modification of the Page Rank equations:

ts = 1; tu = max(0,
∑

v

tv · wvu), ∀u 
= s;R = sgn(
∑

u∈V+

tu −
∑

u∈V−

tu) (2)

In particular, nobody can have a negative trust score: negative trust becomes
0 trust and hence a node that has a net negative incoming amount of trust is
completely ignored: neither its vote nor its outgoing edges affect the system in
any manner. This is consistent with our view that distrusted nodes are either to
be viewed as adversarial or arbitrary, and they should be ignored. Determining
which nodes should be distrusted is one challenge we face.

There are examples that show that the equations we propose need not have a
unique solution. However, we show that the trust scores of the voters are unique
and hence the recommendation of the system is unique. Note that in the case
where

∑
v |wuv | < 1 for each node (or equivalently where each node has a posi-

tive weight pointing back to s), a simple fixed-point argument implies a unique
solution for trust scores. Also, if all weights are nonnegative, then it is straight-
forward to show that the voters have unique scores, by fixed-point theorems. In
the case of trust only, the system is simply the random walk system of Andersen
et al., hence it is a proper generalization. In fact, it is somewhat surprising that
no one has previously suggested this simple signed generalization of the Page
Rank equations. The contributions of this paper are (1) introducing this simple
modification and proving that it leads to a unique recommendation, (2) giving
an efficient algorithm for computing recommendations, and (3) justifying the
system using the axiomatic approach.

2 Notation and Definitions

We follow the notation and definitions of Andersen et al. [1] when possible.
Since we consider the slightly more general case of a weighted multigraph, a
voting network is a partially labeled weighted graph. The nodes represent agents
and edges represent either trust or distrust between the agents. A subset of
nodes, called voters, is labeled with votes of + or −. The remaining nodes are
nonvoters. The recommendation system must assign, to each source nonvoter, a
recommendation in {−, 0,+}.
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Definition 1. A voting network is a directed, weighted graph G = (N,V+, V−,
E) where N is a set of nodes, V+, V− ⊆ N are disjoint subsets of positive and
negative voters, E is a multiset of weighted edges over the underlying set N ×
N × (R \ {0}). (Parallel edges and self-loops are allowed.) For each node u, the
total outgoing weight magnitude is at most 1,

∑
e=(u,v,w) |w| ≤ 1.

An edge e = (u, v, w) from u to v, of weight w > 0, indicates that u allocates
a w fraction of its say to trusting v, and we say u trusts v. If w < 0, then u
allocates a −w fraction of its say to distrusting v. Since we allow parallel edges,
technically an agent may trust and distrust someone, and these may cancel as
covered in Axiom 1. We also allow self-loops, i.e., self-trust, which is covered in
Axiom 5. We say that edge (u, v, w) is a trust (distrust) edge if w is positive
(negative). We say that there is a trust path from u to v if there is a sequence
of edges (u, a1, w1), (a1, a2, w2), . . . , (ak, v, wk) ∈ E such that wi > 0. A path
(or u can reach v) exists if such a sequence exists regardless of the sign of wi.

We denote the weight of an edge by ω(e), so that ω(u, v, w) = w. With slight
abuse of notation, we also define ωuv =

∑
(u,v,w)∈E w to be the total weight

from u to v. A node u is a sink if ωuv = 0 for all v ∈ N , and u is a partial sink
if
∑

v |ωuv| < 1.
A weight of 1 from u to v means that u places complete trust in v and only

v, while a weight of −1 indicates that u’s influence is completely invested in
diminishing v’s trustworthiness. The bound on the total absolute value weight
leaving a node u bounds u’s total (dis)trust expressed in the system. Note that we
allow the total to be strictly less than 1. This allows an agent who, for example,
does not know many people on the network, to express limited (dis)trust in some
agents without expressing complete trust. How much node u trusts another node
v is a relative measure which is defined with respect to how much u trusts other
nodes. For each node u, the weights on the outgoing edges show the fraction of
his trust that u puts on each of its neighbors via the outgoing edges. As a result
the total sum of these fractions should not be more than 1.

Let n = |N | be the number of nodes. We denote by V = V+ ∪ V− the set of
voters and V c = N \V the set of nonvoters. We write (N,V±, E) as syntactic
shorthand for (N,V+, V−, E).

Definition 2. A recommendation system R takes as input a voting network
G and source s ∈ V c and outputs recommendation R(G, s) ∈ {−, 0,+}.

We denote by sgn : R → {−, 0,+} the function that computes the sign of its
input. We denote by (x)+ the nonnegative part of x, i.e., (x)+ = max{0, x}.

3 The System

In addition to outputting the final recommendation r ∈ {−, 0,+}, the system
outputs further information r+, r− ∈ [0, 1]. These numbers indicate the fraction
of personalized recommendations that were positive and negative. The summary
r = sgn(r+−r−) may be sufficient information, but it may also be useful to know
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the magnitude of the recommendations. For example, a neutral recommendation
r = 0 may be arrived at because essentially no trusted parties voted, or because
r+ = r− = 1/2, meaning that all trust resolved in votes, half positive and half
negative. This distinction may be useful. Note that r+ + r− ≤ 1.

The main idea behind the system is to compute trust scores for each node u,
tu ≥ 0. The source, s, is defined to have trust ts = 1. For the remaining u 
= s,
the following equation must be satisfied.

tu =
(∑

v∈N
ωvutv

)
+

(3)

For real z > 0, recall that (z)+ = z, and (z)+ = 0 otherwise. A trust score of 0
means a node is mistrusted. The above equations determine a unique finite value
tv for any voter v (and more generally, any node v which can reach a voter).
The remainder of the nodes are irrelevant for the recommendation. The trust
in positive voters is r+ =

∑
v∈V+

tv and similarly r− =
∑

v∈V− tv. The final
recommendation is r = sgn(r+ − r−).

Input: G = (N, V±, E), s ∈ V c.

Output: positive and negative fractions r+, r− ∈ [0, 1], and overall recommendation, r ∈ {−, 0, +}.
1. For each voter v ∈ V , remove all outgoing edges. Also remove all incoming edges to s. This makes ωvu = 0 and

ωus = 0, for all u ∈ N, v ∈ V .

2. Remove all nodes v ∈ N \ {s} which have no path to a voter, and remove the associated edges. That is, N =

{s} ∪ V ∪ {u ∈ N | ∃ path e1, . . . , ek ∈ E from u to a voter v}.
3. Solve for x ∈ RN : xu = 1 +

∑
v |ωuv|xv for all u ∈ N .(xu represents the expected number of steps until a walk

halts when started at node u considering |ωuv| as the probability of going from u to v.)

4. Solve the following linear program for t:

minimize
∑

u

xu

(
tu −

∑
v

ωvutv

)
subject to, (4)

ts = 1

tu ≥ 0 for all u ∈ N

tu −
∑

v

ωvutv ≥ 0 for all u ∈ N

5. Output r+ =
∑

v∈V+
tv, r− =

∑
v∈V− tv, and final recommendation r = sgn(r+ − r−).

Fig. 4. Abstract description of the system. Recall that V = V+∪V− is the set of voters.

Lemma 2 shows that (4) gives a solution to (3), and Lemma 1 shows uniqueness.

In the case of both positive and negative weights, it is not obvious whether
equations (3) have any solution, one solution, or possibly multiple solutions.
Moreover, it is not clear how to compute such a solution. The remainder of this
section shows that they do in fact have a unique solution, which the algorithm
of Figure 4 computes. It is clear that the algorithm is polynomial-time because
solving linear programs can be achieved in polynomial time.

Lemma 1. Let G = (N,V±, w) be a weighted voting network in which there is
a path from each node to a partial sink. Then there is a unique solution t ∈ RN

satisfying ts = 1 and, for each u 
= s, tu = (
∑

v ωvutv)+.
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In order to prove Lemma 1, it is helpful to understand self-loops, ωuu 
= 0. Any
self loop can be removed with very simple changes to the trust scores.

Observation 1. Let N be a set of nodes, and let w ∈ RN2
be such that∑

v |wuv| ≤ 1 and wuu ∈ (−1, 1) for each u. Let w ∈ RN2
be defined so that

ωuv = wuv/(1 − wuu) and ωuu = 0 for all u 
= v. Then t ∈ RN satisfies
tu = (

∑
v ωvutv)+ if and only if the vector t ∈ RN , where tu = tu/(1−wuu) for

each u, satisfies tu =
(∑

v wvutv
)
+
.

Proof. We have that,

tu =

(∑
v

ωvutv

)
+

⇔

tu(1− wuu) =

⎛⎝∑
v 
=u

wvu

1− wvv
· tv(1− wvv)

⎞⎠
+

⇔

tu(1− wuu) =

(
−wuutu +

∑
v

wvutv

)
+

⇔

tu =

(∑
v

wvutv

)
+

.

The last two equalities are equivalent by considering two cases: tu = 0 and
tu > 0. The first case is trivial, and the second case follows from the fact that
tu > 0 iff

∑
v 
=uwvutv > 0.

Proof ((Lemma 1)). By Observation 1, all self loops may first be removed. The
proof is by induction on n = |N |. In the case where n = 1 or n = 2, there
is trivially a unique solution. Now, consider n > 2. Suppose for the sake of
contradiction that there are two different solutions, t and t′. Consider three
cases.
Case 1. There is some node u such that tu = t′u = 0. Imagine removing u (and
its associated edges) from the graph. The graph will still have the property that
there is a path from each node to a partial sink, because if such a path formerly
passed through u, then the node linking to u is now a partial sink. By induction
hypothesis, the resulting graph has a unique solution, t. However, it is easy to
see that the solutions t and t′ restricted to N \ {u} will both remain solutions
to the equations of the lemma statement. This is a contradiction because t and
t′ agree on N \ {u} and on u as well.
Case 2. There is some node u 
= s such that tu > 0 and t′u > 0. Similarly, we will
remove the node and apply the induction hypothesis. However, in this case, when
we remove the node, we will propagate trust through the node as follows. We
consider the graph G with nodes N = N \{u} and weights wvw = ωvw +ωvuωuw.
Note that this transformation preserves

∑
v |wwv| ≤ 1 but does not necessarily

preserve ωww = 0 for each w.
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We now (tediously) argue that, in G, every node can reach a partial sink. In
G, consider a path u1, u2, . . . , uk to a partial sink uk. Now, one difficulty is that
some edge which has ωuiui+1 may have wuiui+1 = 0. However, if this happens,
we claim that ui must be a partial sink in G. To see this, consider |w| ∈ RN

+ to
be the vector where |w|v = |wv| for all v. If we had used the weights |w| instead
of w in G, then after propagation it would still have been the case that the sum
of the weights leaving ui is at most 1. In the signed version, after propagation
the weight magnitudes are only smaller, and the weight magnitude of ωuiui+1

is strictly smaller, so ui must be a partial sink. Hence, the “zeroing out” of
edges does not create a problem in terms of removing a path from a node to
partial sink. Similarly, if u = ui for some i, then either the path to the partial
sink remains (deleting ui) after propagating of trust or the node ui−1 must have
become a partial sink.

We would like to apply the induction hypothesis to G. However, this graph
may have self-loops and therefor is not a valid voting network. By Observation
1, though, we can remove any self loops and change the solution to the equations
of the lemma by a simple predictive scalar. Hence, by induction hypothesis, the
resulting graph has a unique solution, t. However, it is not difficult to see that
the solutions t and t′ restricted to N \ {u} will both remain solutions to the
equations of the lemma statement. This follows because the new equations of
the lemma are simply the same as the old equations along with the substitution
tu =

∑
v ωvutv, which holds in both t and t′ since both tu, t′u > 0. However, since

they both agree with t on v 
= u and satisfy tu =
∑

v ωvutv, they must be the
same which is a contradiction.

Case 3. For each node u 
= s, sgn(tu) 
= sgn(t′u)

Case 3a. There are at least two nodes u, v 
= s for which sgn(tu) = sgn(tv).
The idea is to (carefully) merge nodes and use induction. WLOG, say tu, tv > 0
and t′u = t′v = 0. Now, we consider merging the two nodes into one node a.
That is consider a new graph with node set N = {a} ∪ N \ {u, v} and weights
the same as in G except, wxa = ωxu + ωxv for each x ∈ N \ {u, v}, wax =
(tuωux + tvωvx)/(tu + tv). It is relatively easy to see that if u or v is a partial
sink, then so is a. Consider the scores t, t′ ∈ RN which are identical to t and t′

except that ta = tu + tv and t′a = t′u + t′v = 0. It is also relatively easy to see
that the conditions of the lemma are satisfied by both of these scores. However,
by induction hypothesis (again we must first remove self-loops, as above, using
Observation 1), this again means that t′ = t, which contradicts t 
= t′.
Case 3b. There are exactly three nodes s, u, v, and tu = t′v = 0, t′u, tv > 0. If
we remove all the outgoing edges of u, t should still be a valid scoring for the
new network. Since we have only 3 vertices, the only incoming edge to v is from
s and as a result, tv should be equal to ωsv. With the same argument, we have
t′u = ωsu. Since t′v, tu = 0, we can conclude that:

ωsu · ωuv + ωsv ≤ 0
ωsv · ωvu + ωsu ≤ 0
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Since |we| ≤ 1, it is not hard to argue that the only way to satisfy both these
equations, is to have: ωsu = ωsv > 0 and ωuv = ωvu = −1. But this means that
u and v are not partial sinks and also they don’t have a path to a partial sink
since all their weight is pointed to the other one.

Lemma 2. The solution to step 4 of the algorithm in Figure 4 is also a solution
to eq. (3).

Proof. We first claim that the equations in step 3 have a unique (finite) solution.
To see this, consider a discrete random walk which, when at node u, proceeds
to each node v with probability |ωuv|, and with probability 1 −

∑
v |ωuv| halts.

Hence, once the walk reaches a voter, it halts on the next step. The equations
for xu in step 3(a) represent the expected number of steps until the walk halts
when started at node u. Hence there is a unique solution, and clearly xu ≥ 1.
To see that xu is not infinite, note that each node has a path to some voter. Let
wmin = minuv:ωuv 
=0 |ωuv| denote the smallest nonzero weight. Then, starting at
any node, after n steps, there is a probability of at least wn

min of reaching a voter
within n steps. Hence, the expected number of steps, i.e., “time to live,” is at
most n/wn

min <∞.
Consider a third optimization problem.

minimize
∑

u

xu

∣∣∣∣∣tu −∑
v

ωvutv

∣∣∣∣∣ subject to: ts = 1, ∀u : tu ≥ 0 (5)

We first claim that the solution to the above optimization problem is also
a solution to eq. (3). Suppose for contradiction that the solution to (5) has
tu − (

∑
v ωvutv)+ = Δ 
= 0 for some node u. Next we claim that changing tu

to tu − Δ will decrease the objective by at least |Δ|. The term in the objec-
tive corresponding to u decreases by xu|Δ|. (That term will become 0 unless∑

v ωvutv < 0, but it will still decrease by Δ nonetheless.) The term in the ob-
jective corresponding to any other v can increase by at most xv|ωuvΔ|. Hence
the total decrease is at least |Δ|(xu −

∑
v xv|ωuv|) = |Δ|, by definition of xu.

Next, note that (5) is a relaxation of (4) in the sense that: (a) the feasible set
of (5) contains the feasible set of (4), and (b) the objective functions are exactly
the same on the feasible set of (4). Also notice that a solution to (3) is a feasible
point for (4). Hence, the fact that the optimum of (5) is a solution to (3) implies
that any solution to (4) is also a solution to (3).

The above two lemmas show that the output of the system is unique.

4 Axioms

The following axioms are imposed upon a recommendation system, R. Two
edges, e = (u, v, w) and e′ = (u, v, w′) are parallel if they connect the same
pair of nodes (in the same direction). The first axiom states that parallel edges
can be merged, if they are the same sign, or canceled if they have opposite signs.
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Axiom 1 (Cancel/merge parallel edges). Let G = (N,V±, E) be a voting
network. Let e1 = (u, v, w1), e2 = (u, v, w2) be parallel edges. If the two edges
have opposite weights, w1 + w2 = 0, then the two edges can be removed without
changing the recommendation of the system. Formally, let G′ = (N,V±, E \
{e1, e2}). Then R(G, s) = R(G′, s) for all s ∈ N . If the two edges have the
same sign, then the two edges can be removed and replaced by a single edge of
weight w1 + w2 without changing the recommendation of the system. Formally,
let G′ = (N,V±, {(u, v, w1 + w2)} ∪ E \ {e1, e2}). Then R(G, s) = R(G′, s) for
all s ∈ N .

It is worth noting that this axiom (and in fact almost all of our axioms), may be
used in reverse. For example, rather than merging two edges of the same sign, a
single edge may be split into two edges of the same sign and same total weight,
without changing the system’s recommendation.

Along these lines, an easy corollary of the above axiom is that, if ω(e1) +
ω(e2) 
= 0, then the two edges can be merged into a single edge of weight ω(e1)+
ω(e2), regardless of sign.

For clarity of exposition, in the further axioms, we will make statements like “
changing the graph in this way does not change the systems recommendation.”
Formally, this means that if one considered the different graph G′ changed in
the prescribed manner, then R(G, s) = R(G′, s).

Axiom 2 (Independence of irrelevant/distrusted stuff). For voting net-
work G = (N,V±, E),

1. Let s ∈ N . Removing an incoming edge to s doesn’t change the recom-
mendation of the system for s. Similarly, removing outgoing edges from voters
doesn’t change the recommendation of the system.

2. Let u ∈ N be a node which is not reachable from s by a path of trust edges.
Then removing u (and its associated edges) doesn’t change the recommendation
of the system for s.

3. Let u ∈ N be a nonvoter which has no path to a voter (through any type
of edges). Then removing u (and its associated edges) doesn’t change the recom-
mendation of the system for s.

The first part simply states that it doesn’t matter who trusts or distrusts the
source, since the source is the one looking for a recommendation. Note that the
second part implies if a node has only distrust edges pointing to it, then the
node is ignored as it may be removed from the system. This crucial point can
also be viewed as a statement about manipulability. In particular, if a node is
in no manner trusted, it should not be able to influence the recommendation in
any manner. For the third part, if a node and all of its trust can never reach a
voter, then it is irrelevant whom the edge trusts.

Axiom 3 (Cancelation). Consider the voting network G = (N,V±, E) with
two edges e1, e2, one trust and one distrust, that terminate in the same node.
Suppose that there is a constant c ∈ {−, 0,+} such that for any of the following
modifications to G, the system’s recommendation is c: (1) the two edges are both
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removed; (2) the endpoint of two edges are both redirected to a new positive voter
(with no other incoming edges) without changing any weights; (3) the endpoint
of two edges are both redirected to a new negative voter (with no other incoming
edges) without changing any weights; and (4) these two edges are both redirected
to a new voter node (whose vote may be positive or negative), and the weights
of edges are both negated. Then the recommendation of the system (without
modification) is c.

Note that the stronger the conditions on when a pair of edges may be canceled,
the weaker (and better) the above axiom is. The above axiom states that, if a
pair of edges wouldn’t change the system’s recommendation if they were directed
towards a positive or negative voter, or negated, then they cancel or are at least
irrelevant. In regards to this axiom, we also would like to mention the possibility
of axiomatizing the system with real-valued output r ∈ R (we chose discrete
recommendations for simplicity). In this latter case, the conditions under which a
pair of edges is said to cancel would be even stronger, since the recommendation
must not change by any amount, arbitrarily small. The same axiomatization
we have given, with the real-valued variant of the last axiom, Axiom 6, again
uniquely implies our recommendation system (now with final recommendation
r = r+ − r− instead of r = sgn(r+ − r−)).

Axiom 4 (Trust Propagation). Let G = (N,V±, E) be a network of trust
and distrust edges. Consider nonvoter u 
= s with no incoming distrust edges
and no self-loop. Let e = (u, v, w) be a trust edge (w > 0). We can remove edge
e and make the following modifications, without changing the recommendation
R(G, s):

– Renormalizaiton: replace each other edge leaving u, e′ = (u, v′, w′) by
(u, v′, w′/(1− w)).

– Propagation: For each edge e′ = (x, u, w′), replace this edge by two edges,
(x, u, w′(1− w)) and (x, v, w′ · w) directly from x to v.

The above axiom, is somewhat subtle. The basic idea behind trust propagation
is that an edge from u to v of weight w > 0 together with an edge from x to u
of weight w′ > 0 are equivalent to an edge from x to v of weight w′ ·w, because
x assigns a w′ fraction of its trust in u and u assigns as w fraction of its trust in
v. Andersen et al. [1] perform this propagation by removing edge (x, u, w) and
adding in the direct edge (x, v, w ·w′) and, of course, when they remove (x, u, w)
they must add a new edge for each outgoing edge from u (actually, their graphs
are unweighted so it is slightly different).

The additional difficulty we face, however, is that umay have outgoing distrust
edges, which we do not want to specify how to propagate. Instead, we peel off the
trust going from u to v, and replace it directly by an edge from x to v. However,
since the edge leaving u only accounts for a w fraction of the total possible
trust assigned by u, the remaining edges must remain in tact and rescaled.
While the above axiom is admittedly involved, it is satisfied by the Random
Walk system of Andersen et al., and is very much in line with the notion of
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propagation in a random walk. It has the advantage that it provides a description
of how to (carefully) propagate trust in the midst of distrust edges. We also note
that a simpler axiom is possible here, more in the spirit of Andersen et al., in
which trust-distrust pairs can be propagated (e.g., “an enemy of my friend is my
enemy”).

Axiom 5 (Self trust). Let G = (N,V±, E) be a voting network. Let u be a
nonvoter vertex in N and e be an edge from u to itself of weight ω(e) > 0.
Then e can be removed and the weights of all other edges leaving u scaled by a
multiplicative factor of 1/(1 − ω(e)), without changing the recommendation of
the system.

Axiom 6 (Weighted majority). Let G = (N,V±, E) be a star graph centered
at s 
∈ V , N = {s} ∪ V , with exactly |V | edges, one trust edge from s to each
voter, then the recommendation of the system is sgn

(∑
v∈V+

ωsv −
∑

v∈V− ωsv

)
.

Note that the above axiom can be further decomposed into more primitive ax-
ioms, as is common in social choice theory. For example, Andersen et al. [1] use
Symmetry, Positive Response, and Consensus axioms, which imply a majority
property similar to the above.

5 Analysis

Lemma 3. The system of Figure 4 satisfies Axioms 1−6.

In order to prove Lemma 3, we need to show that Equation 3 or Figure 4 satisfies
each of the Axioms 3− 6. Because of the lack of space, we only present the proof
for Axiom 3. The rest of the proofs can be found in the full version of the paper.
In the rest of the proof we assume that G = (N,V±, E) is given and tv is a valid
score for v using Equation (3).

Cancelation: Consider e1 = (u1, v, w1) and e2 = (u2, v, w2) and call the new
voter vertex z. First note that the trust scores obtained for any network does
not depend on the sign of the votes by voters. As a result, if we direct e1
and e2 to a positive or a negative voter, we should obtain the same vector of
scores, t′, for all the vertices (by uniqueness). Let G− = (N,V+, V∪{z}, E ∪
{(u1, z, w1), (u2, z, w2)}\{e1, e2}) when z has a negative vote and G+ defined
the same way but z has a positive vote. It is easy to see that t′z = (w1 · t′u1

+
w2 · t′u2

)+. We consider 3 cases here:
Case 1. w1 · t′u1

+ w2 · t′u2
= 0.

In this case, t′ is a valid set of scores for G as well. By uniqueness, it means
that t = t′ and as a result, w1 · tu1 + w2 · tu2 = 0. So if we remove e1 and
e2,t is a valid solution to the new graph and the recommendation will not
change.
Case 2. w1 · t′u1

+ w2 · t′u2
= p > 0.

First, one can prove that, because p > 0, R(G−, s) ≤ R(G, s) ≤ R(G+, s).
The idea is as follows: consider the set of scores t′ for G. It is easy to see
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that all vertices except v satisfy Equation 3. Define the infeasibility value
of a vertex v for a given scoring t′ by ιt′(v) = |

(∑
u∈Nωuvt

′
u

)
+
− t′v| and

define the potential function φ(t′) =
∑

v∈N ιt′(v).It is also easy to see that
ιt′(v) ≤ p. Now starting from t′, we can reach to a feasible set of scores t as
follows: Iteratively find v that has the maximum infeasibility value. Find a
path from v to a sink vertex. Update the scores one by one from v to the
sink vertex along this path. Call the new set of scores t. Initialize t to t′ and
update it as follows: First set the score of v such that ιt(v) = 0. Now, go to
the next vertex along the path and based on the new scores of t update the
score of the vertex such that its infeasibility value is set to 0. Note that during
this score updating, φ(t) only decreases at each update. Also when we reach
to a voter vertex u, if the score has been updating during this process and t′u
is changed to tu, the sum of infeasibility values will be decreased by at least
|tu−t′u|. As a result, after our iterative procedure converges, the change in the
score of the voters

∑
v∈V± |tv − t

′
v| ≤ p or in other words, it does not exceed

the current infeasibility value over all vertices that is not more than p for t′.
Now, the recommendation score for G− is simply

∑
v∈V+

t′v −
∑

v∈V− t
′
v − p

which is less than or equal to
∑

v∈V+
tv −

∑
v∈V− tv(recommendation score

for G) and that is less than or equal to
∑

v∈V+
t′v −

∑
v∈V− t

′
v + p which is

the recommendation score for G+.
Since R(G−, s) = R(G+, s), we should have R(G−, s) = R(G, s) = R(G+, s).
Now, consider removing e1 and e2 from G( call the new graph G′), first note
that t′ is a valid set of scores for G′ as well. So the recommendation score
for G′ is

∑
v∈V+

t′v −
∑

v∈V− t
′
v − p ≤

∑
v∈V+

t′v −
∑

v∈V− t
′
v ≤

∑
v∈V+

t′v −∑
v∈V− t

′
v + p. As a result, R(G−, s) = R(G, s) = R(G′, s) = R(G+, s).

Case 3. w1 · t′u1
+w2 · t′u2

= −p < 0. Imagine negating the weights of e1 and
e2 (the axiom is invariant to this operation). Note that t′ is still a valid set
of scores for the new graph and by uniqueness it is the only feasible set of
scores. Now, we have −w1 · t′u1

− w2 · t′u2
= p > 0 and now, we can argue as

above.

The main theorem is the following.

Theorem 1. The system of Figure 4 is the unique system satisfying Axioms
1−6.

Proof. Let G be a voting network and s ∈ N be a node. It suffices to show that
the axioms imply that there is at most one value for R(G, s), since we know,
by Lemma 3 that the system of Figure 4 satisfies the axioms. The idea of the
proof is to apply a sequence of changes to the graph, none of which change the
recommendation R(G, s). The sequence will eventually result in star graph to
which we can apply Axiom 6.

First, we simplify the graph by Axiom 2: eliminating all edges to s, all edges
leaving voters, and all nodes that are not reachable by trust edges from s, as
well as all nodes that have no path (trust/distrust) to any voter. We then apply
axiom 5 to remove any trust self-loops. We finally apply axiom 1 to merge all
parallel edges.
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In the body of this proof (this part), we change the graph so that there are no
distrust edges pointing to nonvoters. Lemma 4, following this proof, then implies
the theorem. We proceed by induction on the total number of edges to nonvoters
(trust or distrust), call this k. The induction hypothesis is that, if there are at
most k − 1 edges to nonvoters, then there is a unique recommendation for the
system. Say k ≥ 1. If there are no distrust edges between nonvoters, then we are
done by Lemma 4. Otherwise, let (u, v) be a distrust edge between u, v ∈ V c

(possibly u = v). If v = s, we can apply Axiom 2 to eliminate the edge, and then
use the induction hypothesis. Now there must be at least one trust edge from
a nonvoter, say a, to v, otherwise v would have been eliminated. Now, imagine
running the system through the algorithm of Figure 4. The simplifications we
have already executed mean that no edges or nodes will be removed during Steps
1 or 2. Step 4 assigns a unique trust score to each node in the system. Now, the
plan is to eliminate either edge (a, v) or edge (u, v) (or both).

Consider three cases.

Case 1: taωav + tuωuv = 0. In this case, we will argue that Axiom 3 implies
a unique recommendation. The reason is as follows. Consider any modification
of the graph in which these two edges have been moved (and possibly negated)
to a new voter. By induction hypothesis, since there are now ≤ k − 1 edges to
nonvoters, the recommendation on this graph is unique and hence is equal to
the recommendation given by the system of Figure 4. Also note that this system
computes the unique solution to the equations (3). However, note that the same
solution vector t satisfies equations in the modified graph, because moving both
edges causes a change by an amount taωav + tuωuv = 0 in the right hand side
of any of these equations, regardless of where the edges are moved to, or even
if they are both negated. Hence, the recommendation of the system is identical
regardless of which voter they are moved to. Axiom 3 thus implies that there is
a unique recommendation for the system.

Case 2: taωav + tuωuv > 0. In this case, we can use Axiom 1 in reverse to split
the edge (a, v) into two edges, one of weight −tuωuv/ta and the other of weight
ωav + tuωuv/ta. Now we can apply the same argument above on the edge (u, v)
and the first of these two edges.

Case 3: taωav + tuωuv < 0. In this case, we will split edge (u, v) into two, and
move one of its part and edge (a, v) to a voter, thus again decreasing the total
number of edges to non-voters by one. This time, we use Axiom 1 in reverse
to split the edge (u, v) into two edges, one of weight −taωav/tu and the other
of weight ωuv + taωav/tu. Now, exactly as above, the pair of edges (a, v) and
the (u, v) edge of weight ωuv + taωav/tu exactly cancel in the system. Exactly
as argued above, the recommendation of the system must be unique no matter
which voter they are directed towards. Therefore, the recommendation of the
system is unique.

Lemma 4. Let G = (N,V±, E) be a voting network, and let s ∈ N . Suppose,
further, that all negative edges point to voters, i.e., ωuv ≥ 0 for all u ∈ N and
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nonvoters v ∈ V c. Let R be a recommendation system that satisfies Axioms
Axiom 1−Axiom 6. Then there is one unique possible value for R(G, s).

Proof. First apply Axiom 2 so that the source has no incoming links. Let S =
V c \ {s} be the set of nonvoters, excluding the source. In the first part of the
proof, we will simplify the graph so that there are no links between members of
S, and that all negative edges point to voters. To do this, we will repeatedly
apply propagation and self-propagation, as follows. Choose any ordering on the
nonvoters (besides s), {u1, u2, . . . , uk} = V c\{s}. In turn, for each i = 1, 2, . . . , k,
we will remove all links from ui to S. First, if ui contains a self-loop, we apply
Axiom 5 to remove it. Next, for j = 1, 2, . . . , k, if there is a trust edge from ui to
uj, then we remove it using Axiom 4. This will remove all outgoing trust edges
from ui to S. The key observation here is that once all trust edges are removed
from ui to S, further steps in the above iteration will not create any edges from
ui to S. Hence, after iteration i = k, there will be no edges between members of
S. It remains the case that all negative edges point to voters.

The graph now has some number of trust links from s to S, as well as trust
and distrust links from V c = S ∪ {s} to V . We now propagate all trust links
from S to V c, using Axiom 4. As a result, the only edges are trust links from s
to N \{s}, distrust links from S to V , and distrust links from s to V . We further
simplify by merging any parallel edges (Axiom 1). We now proceed to remove
all distrust edges. First, consider any distrust edge from s to voter v ∈ V . Since
we have merged parallel edges, there cannot be any trust edges from s to v, and
we have already altered the graph so that there are no other trust edges to v.
Hence, by Axiom 2, we can remove v (and the edge from s to v) entirely. Next,
consider any distrust edge from u ∈ S to v ∈ V . If there is no trust edge from s
to v, then again by Axiom 2, we can remove v. If there is no trust edge from s
to u, then we can remove u and edge (u, v). Otherwise, there is a distrust edge
from u to v and trust edges from s to u and from s to v.

Consider three cases.

Case 1: ωsv + ωsuωuv = 0. Now we will completely eliminate the distrust edge.
We apply Axiom 4 in reverse to the edge from s to v, to create a trust edge
from u to v and increase the weight of the edge from s to u. Now, we merge the
parallel edges from u to v using Axiom 1. A simple calculation shows that the
trust and distrust will exactly cancel, and no edge will remain. Hence, we have
eliminated the negative edge (u, v) without creating further negative edges.

Case 2: ωsv +ωsuωuv > 0. Then we apply Axiom 1 in reverse to split edge (s, v)
into two edges, one of weight −ωsuωuv > 0 and one of weight ωsv +ωsuωuv > 0.
We then proceed as in Case 1 to cancel the edge from u to v with the edge from
s to u of weight −ωsuωuv.

Case 3: ωsv + ωsuωuv < 0. In this case, we eliminate the trust edge from s
to v, as follows. We again apply Axiom 4 in reverse to the edge from s to v,
again to create a trust edge from u to v and increase the weight of the edge
from s to u. Then we merge the parallel edges from u to v using Axiom 1 (in
fact, we must first split the negative edge from u to v into two parts so that one
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may cancel the trust edge). What remains is a distrust edge from u to v, and
there is no longer any trust in v. Hence, we can finally remove the node v and
the associated distrust edge. Thus, in all three cases, we were able to eliminate
the distrust edge without creating a new distrust edge, maintaining the special
structure of the graph.

After eliminating all distrust edges, we remain with trust edges from s to
S ∪ V . By Axiom 2, we can eliminate all edges in S and any edges in V that do
not have trust coming from S. Finally, we can apply Axiom 6 to get that the
recommendation of the system is unique.

6 Conclusion

In conclusion, we have suggested a simple set of principles to address trust and
distrust in recommendation systems. A guiding principle, which is apparent in
Axiom 2, is that of non-manipulability by untrusted agents. This is apparent in
the design of our system and axioms, and also in the features we did not include.
For example, it is also natural to consider a notion of co-trust, which may be
described as follows. Consider two agents that trust the same people. They may
be viewed as similar. If one of them then votes, say, positively then a system
might be inclined to give a positive recommendation to the other [2]. However,
such systems would tend to be manipulable in the sense that an adversarial
agent, who is completed distrusted, could influence recommendations.

Without getting into interpretation of what distrust means (such as the dif-
ference between distrust and mistrust), the key beliefs we ascribe to are that
distrust should be able to cancel with trust, and that distrusted agents should
be ignored. Combined with trust propagation, this gives a unique, simple rec-
ommendation system.
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Abstract. Online auctions in which items are sold in an online fashion

with little knowledge about future bids are common in the internet en-

vironment. We study here a problem in which an auctioneer would like

to sell a single item, say a car. A bidder may make a bid for the item

at any time but expects an immediate irrevocable decision. The goal of

the auctioneer is to maximize her revenue in this uncertain environment.

Under some reasonable assumptions, it has been observed that the on-

line auction problem has strong connections to the classical secretary

problem in which an employer would like to choose the best candidate

among n competing candidates [HKP04]. However, a direct application

of the algorithms for the secretary problem to online auctions leads to

undesirable consequences since these algorithms do not give a fair chance

to every candidate and candidates arriving early in the process have an

incentive to delay their arrival.

In this work we study the issue of incentives in the online auction

problem where bidders are allowed to change their arrival time if it ben-

efits them. We derive incentive compatible mechanisms where the best

strategy for each bidder is to first truthfully arrive at their assigned time

and then truthfully reveal their valuation. Using the linear programming

technique introduced in Buchbinder et al [BJS10], we first develop new

mechanisms for a variant of the secretary problem. We then show that

the new mechanisms for the secretary problem can be used as a building

block for a family of incentive compatible mechanisms for the online auc-

tion problem which perform well under different performance criteria. In

particular, we design a mechanism for the online auction problem which

is incentive compatible and is 3/16 ≈ 0.187-competitive for revenue, and

a (different) mechanism that is 1
2
√

e
≈ 0.303-competitive for efficiency.

1 Introduction

Online auctions in which items are sold in an online fashion with little knowledge
about future bids are common in the modern environment. Consider a problem in
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which a seller would like to put his car, a Honda civic in an excellent condition, on
an auction1. As a first step he publishes an advertisement for the car, and defines
a time frame for the sale. Assume that at future time t a potential buyer reads the
advertisement, and would like to participate in the auction. The potential buyer
has her value vi for the car. However, her knowledge about the values of other
potential buyers is very limited. Therefore, a reasonable assumption for her is that
other buyers evaluating the car similarly to her. In particular, she believes that in
a random subset of k potential buyers her value is the highest with probability
1/k. Based on her beliefs she may now choose to arrive at any time t′ ≥ t and
then report some value v′i, possibly different than vi if it benefits her.

Consider next the seller side of the story. The seller’s knowledge about values
of the potential buyers is also very limited. In particular, different people may
value his Honda civic very differently. A natural model that captures such limited
knowledge is an adversarial setting in which the set of values buyers have for the
car are chosen arbitrarily, but that the arrival times of the buyers is a random
permutation. The seller would like to design a mechanism which is incentive
compatible and achieves good performance. In this work, we devise mechanisms
for such an auction scenario where for any bidder, bidding truthfully and arriving
at their assigned time maximizes its expected profit. Moreover, these mechanisms
perform well under the criteria of both efficiency and revenue as compared to
the offline VCG mechanism that sells the item to the highest bidder but charges
a price of the second highest bidder [Vic61].

1.1 Auction Model

We model the online auction problem as the following mechanism design ques-
tion. An auctioneer would like to sell a single item to a collection of n bidders
C = {1, 2, . . . , n}. Each bidder i has an arrival time ai ∈ [0, T ] and a valuation vi
both of which are private information. The information given to the mechanism
is only the number of bidders and the time horizon. The bidder may arrive at
any time ti ≥ ai. When the bidder arrives, it bids bi for the item which may
be distinct from her valuation vi. The mechanism must then make a decision
of whether to allocate the good to the bidder and at what price. All allocation
decisions are irrevocable. We assume that the utility function for bidder i is the
quasilinear function vi − pi where pi is the price faced by bidder i.

Now, we explain how the valuation and the arrival times are selected. First,
an adversary chooses a set of arrival times {a1, a2, . . . , an} and assigns them
adversarially. Then it chooses a set of values {v1, v2, . . . , vn} and the values are
matched with the arrival times using a random permutation. From the above
model, each bidder makes the following reasonable assumption.

Assumption 1. Each bidder believes that if all the bidders are sorted by their
valuations then each permutation of bidders is equally likely.

1 The first author of this paper owns a Honda civic 2004 that he would like to sell

shortly. The rest of the details may be fictional.
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Unconditionally, if all the bidders are sorted by their valuations then each per-
mutation of bidders is equally likely. What the above assumption states is that
any bidder, conditioned on her information, still believes the above claim.
Informally, this means that each bidder believes her valuation (or any other
bidder’s valuation) is equally likely to be the jth largest valuation for any j.
Observe that the assumption is inherently ordinal and we contrast it with typ-
ical assumptions in such scenarios where it assumed that valuations are drawn
independently from a fixed distribution.

We evaluate any mechanism by two criteria, efficiency and revenue. We define
the outcome of a mechanism to be efficient if it allocates the good to the high-
est bidder and efficiency of a mechanism to be the probability with which the
outcome is efficient. The revenue of a mechanism is defined to be the expected
price charged by the mechanism. In the spirit of online algorithms, we compare
its performance to the offline VCG mechanism that sells the item to the highest
bidder but charges a price of the second highest bidder [Vic61]. We are interested
in designing Bayesian incentive compatible mechanisms which ensure truthful-
ness with respect to both the arrival time as well as the bid. In particular, we
design a mechanism where for any bidder arriving truthfully on their assigned
time maximizes the expected profit given their beliefs and that other bidders are
also truthful. Moreover, we also show that reporting the true valuation for the
item is a dominant strategy for the bidders.

We note that ensuring truthfulness with respect to valuation is a well un-
derstood phenomenon in an offline setting [Vic61] and generalizes easily to our
online model as well. The main contribution of our paper is to design an incen-
tive compatible mechanism where arriving at their assigned time is a dominant
strategy.

1.2 Results

We design a family of incentive compatible mechanisms where each mechanism
in the family gives a different efficiency and revenue. Specifically, we prove the
following main theorem.

Theorem 1. For any 0 ≤ τ ≤ 1, there exists a incentive compatible online
auction mechanism that is:

– τ
4 + τ

2 ln 1
τ -competitive for efficiency.

– τ
2 −

τ2

3 -competitive for revenue.

In particular, there exists a mechanism that is 3/16 ≈ 0.187-competitive for rev-
enue, and a (different) mechanism that is 1

2
√

e
≈ 0.303-competitive for efficiency.

Our results are illustrated in Figure 1. The dashed lines mark the interesting
values of τ which define a set of Pareto optimal mechanisms with respect to
efficiency and revenue.
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Fig. 1. The performance of the online auction mechanism as a function of τ

Techniques and connections with secretary problems. Our results are closely re-
lated to better understanding of variants of the secretary problem. In the classical
secretary problem an employer would like to choose the best candidate among n
competing candidates. The candidates are assumed to arrive in a random order.
The secretary problem as well as many variants of it have been studied exten-
sively in the past (See Section 1.3 for more details). Our auction mechanism is
based on designing an underlying mechanisms for a variant of the secretary prob-
lem where we want to ensure that the probability that the mechanism selects the
ith candidate is at least the probability of selecting the i+1th candidate for each
i, where probability is taken over all permutations. This property in a secretary
mechanism captures the inherent combinatorial structure of the auction problem
where any bidder would not delay her arrival since the probability of acceptance
decreases over time. We also modify our performance goals in secretary problem
to mimic the goals of the auction problem. The goal of efficiency of a mechanism
in the auction setting corresponds to maximizing the probability of accepting
the best candidate. The other goal of maximizing revenue corresponds to maxi-
mizing the probability of hiring the best candidate while having the second best
candidate appear before the best candidate. For formal definitions of the secre-
tary model see Section 2. To obtain such mechanisms for the secretary problem,
we use a recently introduced linear programming technique by Buchbinder et
al [BJS10]. Buchbinder et al [BJS10] also designed new mechanisms for the sec-
retary problem which ensure that the probability of hiring in each position is
the exactly equal. In our setting, mapping the online auction problem to the
secretary problem, we design new mechanisms for the probability of hiring is
an non-increasing function of the position. Moreover, we also evaluate a mecha-
nism based on its revenue apart from its efficiency. Thus the set of mechanisms
obtained here differ in performance from those in Buchbinder et al [BJS10].

Finally, we believe that our novel truthfulness assumption that each bidder
believes “her valuation is as good as anyone else” is very reasonable in many
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scenarios of lack of information, and may be useful in designing mechanisms for
various other settings.

1.3 Previous Results

Recently, there has been significant work on using generalizations of secretary
problems as a framework for online auctions [HKP04, Kle05, BIKK07, BIK07,
BIKK08]. Incentives issues in online mechanisms have been studied in several
models [LN00,HKP04,AAM03]. These works designed mechanisms where incen-
tive issues were considered for both value and time strategies. The closest to our
model is a model studied in Hajiaghayi et al [HKP04]. They studied a similar
model in which an item is sold online. Bidders in their model have arrival and
departure time, and the item must be allocated to a bidder by their reported
departure time. The main difference of their model from our model is that they
make the assumption that bidders do not receive any utility from the item if
they get the item outside their arrival/departure interval. This makes the design
easier since bidders who arrive early have no incentive to delay their arrival later
than their departure time since they will get no utility.

The secretaryproblem is awell-studiedproblem introducedbyGardner [Gar60].
We refer the reader to the survey by Ferguson [Fer89] on the history of the
problem. For our results on the secretary problem, we use the linear programming
technique introduced by Buchbinder et al [BJS10] who apply the technique to
the secretary problem and some of its generalizations.

2 Secretary Problem and Linear Programming

In this section, we give new mechanisms for variants of the secretary problem
which form the basis for the mechanisms for the online auction problem. In the
secretary problem we have a set of candidates C = {1, 2, . . . , n} that arrive in a
random order. There is total order R over the set of candidates which specifies
the quality of the candidates with respect to each other. The rank of the candi-
date is the position of the candidate in the total order R. After interviewing a
candidate, the mechanism designer learns her rank in relation to the candidates
that have already been interviewed. The mechanism designer then has to take
an irrevocable decision whether to hire the interviewed candidate. We study two
objectives which the mechanism designer needs to maximize. The first, which we
call efficiency, is the probability of hiring the best candidate. This goal closely
relates to efficiency in the online auction scenario. The second objective, which
we call revenue, is the probability of the event of hiring the best candidate while
having the second best candidate appear before the best candidate. This ob-
jective is closely related to the revenue in the auction model. Since we want to
map mechanisms for the secretary problem to incentive compatible mechanisms
for the online auction problem, we want the following property to be satisfied
by the secretary mechanisms. For any position 1 ≤ i ≤ n − 1, probability that
a candidate is selected at position i is more than the probability a candidate
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(P ) (Efficiency) max 1
n
·∑n

i=1 fi

(Revenue) max 1
n(n−1)

·∑n
i=1(i − 1) · fi

s.t.

∀ 1 ≤ i ≤ n fi ≤ i · pi

∀ 1 ≤ i ≤ n fi ≤ 1 −∑i−1
j=1 pi

∀ 1 ≤ i ≤ n − 1 pi ≥ pi+1

∀ 1 ≤ i ≤ n fi ≥ 0, pi ≥ 0

(D) min
∑n

i=1 xi

s.t.

∀ 2 ≤ i ≤ n − 1
∑n

j=i+1 xj − zi + zi−1 ≥ iyi∑n
j=2 xj − z1 ≥ y1

zn−1 ≥ nyn

(Efficiency) ∀ 1 ≤ i ≤ n xi + yi ≥ 1
n

(Revenue) ∀ 1 ≤ i ≤ n xi + yi ≥ i−1
n(n−1)

∀ 1 ≤ i ≤ n xi ≥ 0, yi ≥ 0, zi ≥ 0

Fig. 2. (P ) is an LP for Maximizing efficiency/revenue with pi ≥ pi+1. (D) is the

corresponding dual LP of (P ).

is selected at position i + 1. The above property will be crucial in establishing
incentive compatibility of mechanisms for the online auction problem and there-
fore, we call an interview mechanism incentive compatible if it satisfies the above
mentioned property.

In this section, we give incentive compatible mechanisms for the secretary
problem and prove the following Theorem 2.

Theorem 2. There is a mechanism Mτ for each 0 ≤ τ ≤ 1 which is incentive
compatible. The mechanism picks the best candidate with probability τ

4 + τ
2 ln(1/τ)

(efficiency) and picks the best candidate and the second best candidate appeared
before the first with probability τ

2 −
τ2

3 (revenue). In particular, there exists a
mechanism that is 3/16 = 0.1875-competitive for revenue, and a (different)
mechanism that is 0.303-competitive for efficiency and these are optimal.

The proof the theorem follows from mapping the feasible mechanisms for the
secretary problem to feasible solutions to a linear program and then optimizing
the desired objective function of efficiency or revenue. This follows the technique
introduced by Buchbinder et al [BJS10]. We state the following two lemmas
which will prove Theorem 2.

Lemma 1 (Mechanism to LP solution). Let π be any incentive compatible
mechanism for the secretary problem. Let pπ

i denote the probability of selecting
the candidate at position i and fπ

i denote the probability of selecting the candidate
at position i given that the best candidate is at position i. Then (pπ, fπ) is a
feasible solution to the linear program (P). Moreover the efficiency of π is at
least 1

n ·
∑n

i=1 f
π
i and the revenue is at least 1

n(n−1) ·
∑n

i=1(i− 1) · fπ
i .



112 N. Buchbinder, K. Jain, and M. Singh

Proof. We first show that the solution (pπ, fπ) is a feasible solution to the linear
program (P ). The first two set of constraints are satisfied follows from Lemma
3.1 from Buchbinder et al [BJS10]. The last set of constraints is satisfied since
π is incentive compatible for delay only strategies. Thus, probability that π of
accepting a candidate at position i must be decreasing function of i.

Lemma 1 shows that the optimal solution to (P) is an upper-bound on the per-
formance of the mechanism. The following lemma shows that every LP solution
actually corresponds to a mechanism which performs as well as the objective
value of the solution.

Lemma 2 (LP solution to Mechanism). Let (pi, fi) for 1 ≤ i ≤ n be
any feasible LP solution to (P). Then there is a mechanism π with efficiency
1
n

∑n
i=1 fi and revenue 1

n(n−1) ·
∑n

i=1(i− 1) · fi.

Proof. Consider the mechanism π defined as follows. Let ri = � ipi

1−∑ i−1
j=1 pj

�. Then

the mechanism selects the candidate at position i with probability 1 if the rank
of ith candidate among the candidates 1, . . . , i is less than or equal to ri. If the
rank of the candidate i is ri + 1 then it selects the candidate with probability

ipi

1−∑ i−1
j=1 pj

− ri. A simple calculation shows that the probability the mechanism

accepts the ith candidate is exactly pi and probability of selecting the best can-
didate given that it is best over all, fπ

i , is at least fi. Hence, the efficiency
of the mechanism is at least 1

n

∑n
i=1 fi. Moreover, the mechanism is incentive

compatible for delay only strategies since pi ≥ pi+1 for each i.
Let fπ

ij denote the probability that the mechanism accepts the candidate at
position i given that it is the best and the jth candidate is the second best. Then
we have the following claim.

Claim. For each i > 1: fπ
i = 1

i−1

∑i−1
j=1 f

π
i,j.

Proof. First, by the definition of fπ
i and fπ

i,j ,

fπ
i =

1
n− 1

⎡⎣i−1∑
j=1

fπ
i,j +

n∑
j=i+1

fπ
i,j

⎤⎦
We claim that for each j > i, fπ

i,j = fπ
i . The reason is that given that when j > i

is second best the probability the algorithm accepts i only depends on the first
i numbers and doesn’t use their values at all. The argument follows since the
first i− 1 numbers forms a random permutation. Thus we get:

fπ
i =

1
n− 1

i−1∑
j=1

fπ
i,j +

n− i
n− 1

· fπ
i

and so we get our claim.
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Using this claim it is easy to derive the lemma since the total revenue of the
mechanism is:

1
n(n− 1)

n∑
i=2

i−1∑
j=1

fπ
i,j =

1
n(n− 1)

n∑
i=1

(i− 1) · fπ
i ≥

1
n(n− 1)

n∑
i=1

(i− 1) · fi

since fπ
i ≥ fi for each i.

Thus solving the primal program we can derive a family of mechanisms for the
problem. The mechanisms are parameterized by a real number 0 ≤ τ ≤ 1 and
are as follows.

Incentive Compatible Mechanism Mτ :

– Let 0 ≤ τ ≤ 1. For each 1 ≤ i ≤ n, while no candidate is selected, do
• If 1 ≤ i ≤ τn, select the ith candidate with probability i

2τn−i+1 if
she is the best candidate so far.

• If τn < i ≤ n, select the ith candidate if she is the best candidate
so far.

The following claim shows that each of the mechanisms Mτ is incentive
compatible.

Lemma 3. For each 1 ≤ i ≤ n− 1, we have pi ≥ pi+1.

Proof. A simple calculation shows that pi = 1
2τn for each 1 ≤ i ≤ τn and

pi = τn
2i(i−1) for each τn < i ≤ n and hence the claim holds.

By selecting τ , we obtain mechanisms with different values of efficiency and
revenue. A simple calculation then yields the following lemma about the perfor-
mance of the mechanisms.

Lemma 4. The mechanism Mτ for any 0 ≤ τ ≤ 1,

– (Efficiency) Picks the best candidate with probability τ
4 + τ

2 ln(1/τ).
– (Revenue) Picks the best candidate when the second best candidate appeared

before the first with probability τ
2 −

τ2

3 .

Optimizing for τ , the best efficiency of 1
2
√

e
is obtained when τ = 1√

e
while the

best revenue of 3
16 is obtained when τ = 3

4 . Moreover, all values of τ are in the
range [ 1√

e
, 3/4] = [0.606, 0.75] results in a mechanism with efficiency and revenue

that is Pareto optimal.
We also show that the mechanism for efficiency and revenue are optimal by

giving dual solutions to the dual linear program (D) of the corresponding value.

Lemma 5. Let π be any mechanism which is incentive compatible. Then the
efficiency of π cannot be better than 1

2
√

e
and the revenue of π cannot be better

than 3/16.
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Proof. We give two dual solutions to the linear program (D) in figure 2 where
the corresponding constraint for the efficiency and revenue are present. Observe
that each dual solution is an upper bound on performance of any mechanism.

Efficiency. Let τ = 1√
e
. Let xi = 0 and yi = 1

n and zi = iτ
∑n

j=(τn+1)
1
j −

i(i+1)
2n

for 1 ≤ i ≤ τn and xi = 1
n (1 −

∑n−1
j=i

1
j ) and yi = 1

n

∑n−1
j=i

1
j , zi = 0 for

τn < i ≤ n. We now show that the above dual solution is feasible and has
an objective value of ≈ 1

2
√

e
. A simple calculation shows that xi, yi, zi ≥ 0 for

each 1 ≤ i ≤ n. We now calculate the objective value before verifying all the
constraints.

s =
n∑

i=1

xi =
1
n

n∑
i=τn+1

(1−
n−1∑
j=i

1
j
)

=
1
n

(n− τn−
n−1∑

j=τn+1

j∑
i=τn+1

1
j
) =

1
n

(n− τn−
n−1∑

j=τn+1

(1− τn
j

))

=
1
n

(1 + τn ln
n

τn
) ≈ τ ln

1
τ

=
1

2
√
e

Observe that the constraint xi+yi ≥ 1
n is satisfied at equality for each 1 ≤ i ≤ n.

We now verify the constraint
∑n

j=i+1 xj − zi + zi−1 ≥ iyi. For 1 ≤ i ≤ τn,
observe that zi = is+ i(i+1)

2n . Thus we have

n∑
j=i+1

xj − zi + zi−1 = s− zi + zi−1 =

= s− s+
i(i+ 1)− (i− 1)i

2n
=
i

n
= iyi

as required. For τn+ 2 ≤ i ≤ n− 1, we have

n∑
k=i+1

xk − zi + zi−1 =
1
n

n∑
k=i+1

(1 −
n−1∑
j=k

1
j
) =

i

n

n−1∑
j=i

1
j

= iyi

The constraints for boundary cases i = �t� and i = n can be verified similarly.

Revenue. Due to lack of space we defer the proof to the full version of the paper.

3 The Online Auction Mechanism

Given the family of mechanisms in Section 2, we design mechanisms for the online
auction problem which prove Theorem 1. The family of mechanisms, parame-
terized by parameter τ is given below. The mechanism Aτ selects two random
permutations π1 and π2 on bidders. The permutation π1 is used to break ties
among bidders who arrive at the same time and the permutation π2 is used to
break ties among bidders who have the same valuation.
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Auction mechanism Aτ : Let Bt be the set of agents arriving at time t.

– Order the bidders in Bt by permutation π1. Use the valuation to define
the ranks of the bidders while breaking ties according to permutation
π2.

– Feed the bidders one-by-one according to their order in Bt along with
their rank to the mechanism Mτ in Section 2.

– If the mechanism decides to accept the bidder then allocate the item to
that bidder.

– Set the price p for the bidder to be the highest value of any bid that
arrived prior to this bidder.

Observe that the mechanism indeed satisfies the online requirement of allo-
cating the item and setting a price for it immediately at the arrival time of
the bidder. We now prove that for every τ , the mechanism Aτ given above is
incentive compatible.

Lemma 6. For any 0 ≤ τ ≤ 1, the mechanism Aτ is incentive compatible for
both valuation and time arrival.

Proof. First, we prove that the online mechanism is incentive compatible for val-
uation. This follows simply since the price a bidder has to pay, in case she wins the
item, is the maximum price seen so far by the mechanism and is independent of her
bid. Moreover, the mechanism gives the item only to the person with the highest
valuation so far, therefore the mechanism is incentive compatible for valuation.

We now show that the mechanism is incentive compatible for time strategies.
For simplicity, we assume that no two bidders arrive at the same time. We prove
that for any bidder, conditioned on her beliefs, the expected utility of the bidder
is a decreasing function of the position. Thus, the bidder has no incentive to
delay her arrival time.

Consider a bidder with valuation v. Let S be a random variable of the values
of the n−1 bidders (except the bidder we currently consider) arranged according
to their arrival time. For each i, let Si be the first i values in S, and let v(Si)
be the maximal value in Si. Let Xi be the indicator random variable that the
bidder that arrived at the ith position is assigned the item. First observe that the
mechanism allocates the item only to the highest bid seen so far and thus Xi = 0
if v is not the highest until the ith position. Therefore, the expected profit of the
bidder had she arrived just before the ith arrival time is E[(v − v(Si−1)) ·Xi].
We next prove that the expected profit for any bidder conditioned on her beliefs
is a decreasing function of the position at which the bidder appears. Since,
all expectations are evaluated conditioned on the bidder’s beliefs, we omit this
conditioning from the notation. Formally, for each 1 ≤ i ≤ n− 1, we prove that

E[(v − v(Si−1)) ·Xi] ≥ E[(v − v(Si)) ·Xi+1] (1)

Observe that we have the following.

E[(v − v(Si−1)) ·Xi] = E[(v − v(Si−1)) ·Xi|v > v(Si−1)] · Pr[v > v(Si−1)]
= E[(v − v(Si−1))|v > v(Si−1)] · Pr[Xi = 1|v > v(Si−1)] · Pr[v > v(Si−1)]
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The second equality follows by the fact that given the event that v > v(Si−1),
i.e. the bidder has the highest valuation so far, the probability of allocating the
item to bidder i is independent of v− v(Si−1). This follows since the underlying
mechanism Mτ , and thus Aτ , does not look at the actual values but only the
relative ordering when deciding whether to give the item or not to a bidder.

Conditioned on the beliefs of the bidder, we have Pr[v > v(Si−1)] = 1/i
and that the set of valuations in Si−1 when ordered by position form a random
permutation. Thus,

Pr[Xi = 1|v > v(Si−1)] · Pr[v > v(Si−1)] = pi

where pi is the probability of accepting the ith candidate by Mτ . But for
mechanism Mτ , pi is a decreasing function of i. Thus, it suffices to show that
E[v(Si−1)|v ≥ v(Si−1)] is a non-decreasing function of i. Before we prove this,
we prove the following technical claim which is crucial in comparing the expected
profit if the bidder arrives in position i or i+1. Here vi is the random valuation
of the ith bidder by arrival order excluding the bidder with valuation v.

Claim. For each i, we have

E[v(Si−1)|v > v(Si−1) & v < vi] ≤ E[v(Si−1)|v > v(Si)]

Proof. Let v2(Si) be a random variable for the second maximal value in Si.

E[v(Si−1)|v > v(Si−1) & v < vi]
= E[v(Si−1)|vi > max{v(Si−1), v} & v > v(Si−1)]
= E[v(Si−1)|v > max{Si−1, vi} & vi > v(Si−1)] (2)
= E[v2(Si)|v > v(Si) & vi > v(Si−1)] = E[v2(Si)|v > v(Si)] (3)
≤ E[v(Si−1)|v > v(Si)] (4)

Where equality (2) follows by the symmetry arguments on v and vi. This is done
by pairing each permutation in which vi > v to a permutation in which v > vi.
Second equality in (3) follows since for any permutation on v1 to vi the second
highest value is the same. Equality (4) follows since for any permutation on the
values the second highest value among the first i values is at most the highest
value among the first i− 1 values.

Now we prove the following claim which shows that E[v(Si−1)|v > v(Si−1)] is a
non-decreasing function of i. This will complete the proof. Observe that

E[v(Si−1)|v > v(Si−1)]
= E[v(Si−1)|v > v(Si−1), v > vi] · Pr[v > vi|v > v(Si−1)]
+E[v(Si−1)|v > v(Si−1), v < vi] · Pr[v < vi|v > v(Si−1)]
≤ E[v(Si−1)|v > v(Si−1), v > vi] · Pr[v > vi|v > v(Si−1)]
+E[v(Si−1)|v > v(Si−1),v > vi] · Pr[v < vi|v > v(Si−1)] (5)
= E[v(Si−1)|v ≥ v(Si)] ≤ E[v(Si)|v ≥ v(Si)] (6)
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Inequality (5) follows by Claim 3. Inequality (6) follows since in every term we
maximize over more elements.

Now, we prove the main theorem which follows directly from Lemma 6.

Proof. of Theorem 1 Given that the mechanism is incentive compatible for time
strategies (Lemma 6), we get that the dominant strategy of the bidders is not
to delay their arrival time. Thus, the rank given to the underlying mechanism is
a random permutation of the bidders. Thus, the performance of the mechanism
follows directly by Lemma 4.
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Abstract. We study the optimal pricing strategies of a monopolist sell-

ing a divisible good (service) to consumers that are embedded in a social

network. A key feature of our model is that consumers experience a

(positive) local network effect. In particular, each consumer’s usage level

depends directly on the usage of her neighbors in the social network

structure. Thus, the monopolist’s optimal pricing strategy may involve

offering discounts to certain agents1, who have a central position in the

underlying network. Our results can be summarized as follows. First, we

consider a setting where the monopolist can offer individualized prices

and derive an explicit characterization of the optimal price for each con-

sumer as a function of her network position. In particular, we show that

it is optimal for the monopolist to charge each agent a price that is pro-

portional to her Bonacich centrality in the social network. In the second

part of the paper, we discuss the optimal strategy of a monopolist that

can only choose a single uniform price for the good and derive an al-

gorithm polynomial in the number of agents to compute such a price.

Thirdly, we assume that the monopolist can offer the good in two prices,

full and discounted, and study the problem of determining which set of

consumers should be given the discount. We show that the problem is

NP-hard, however we provide an explicit characterization of the set of

agents that should be offered the discounted price. Finally, we describe

an approximation algorithm for finding the optimal set of agents. We

show that if the profit is nonnegative under any feasible price allocation,

the algorithm guarantees at least 88 % of the optimal profit.

1 Introduction

Inarguably social networks, that describe the pattern and level of interaction of
a set of agents, are instrumental in the propagation of information and act as
conduits of influence among its members. Their importance is best exemplified
by the overwhelming success of online social networking communities, such as
Facebook and Twitter. The ubiquity of these internet based services, that are

1 We use the terms “agent” and “consumer” interchangeably.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 118–132, 2010.
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built around social networks, has made possible the collection of vast amounts of
data on the structure and intensity of social interactions. The question that arises
naturally is whether firms can intelligently use the available data to improve their
business strategies.

In this paper, we focus on the question of using the potentially available data
on network interactions to improve the pricing strategies of a seller, that offers a
divisible good (service). A main feature of the products we consider is that they
exhibit a local (positive) network effect : increasing the usage level of a consumer
has a positive impact on the usage levels of her peers. As concrete examples of
such goods, consider online games (e.g., World of Warcraft, Second Life) and
social networking tools and communities (e.g., online dating services, employ-
ment websites etc.). More generally, the local network effect can capture word of
mouth communication among agents: agents typically form their opinions about
the quality of a product based on the information they obtain from their peers.

How can a monopolist exploit the above network effects and maximize her
revenues? In particular, in such a setting it is plausible that an optimal pricing
strategy may involve favoring certain agents by offering the good at a discounted
price and subsequently exploiting the positive effect of their usage on the rest of
the consumers. At its extreme, such a scheme would offer the product for free
to a subset of consumers hoping that this would have a large positive impact
on the purchasing decisions of the rest. Although such strategies have been used
extensively in practice, mainly in the form of ad hoc or heuristic mechanisms,
the available data enable companies to effectively target the agents to maximize
that impact.

The goal of the present paper is to characterize optimal pricing strategies as a
function of the underlying social interactions in a stylized model, which features
consumers that are embedded in a given social network and influencing each
other’s decisions. In particular, a monopolist first chooses a pricing strategy and
then consumers choose their usage levels, so as to maximize their own utility. We
capture the local positive network effect by assuming that a consumer’s utility
is increasing in the usage level of her peers. We study three variations of the
baseline model by imposing different assumptions on the set of available pricing
strategies, that the monopolist can implement.

First, we allow the monopolist to set an individual price for each of the con-
sumers. We show that the optimal price for each agent can be decomposed into
three components: a fixed cost, that does not depend on the network structure,
a markup and a discount. Both the markup and the discount are proportional to
the Bonacich centrality of the agent’s neighbors in the social network structure,
which is a sociological measure of network influence. The Bonacich centrality
measure, introduced by [2], can be computed as the stationary distribution of
a random walk on the underlying network structure. Hence, the nodes with
the highest centrality are the ones that are visited by the random walk most
frequently. Intuitively, agents get a discount proportional to the amount they
influence their peers to purchase the product, and they receive a markup if they
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are strongly influenced by other agents in the network. Our results provide an
economic foundation for this sociological measure of influence.

Perfect price differentiation is typically hard to implement. Therefore, in the
second part of the paper we study a setting, where the monopolist offers a sin-
gle uniform price for the good. Intuitively, this price might make the product
unattractive for a subset of consumers, who end up not purchasing, but the mo-
nopolist recovers the revenue losses from the rest of the consumers. We develop
an algorithm that finds the optimal single price in time polynomial in the number
of agents. The algorithm considers different subsets of the consumers and finds
the optimal price provided that only the consumers in the given subset purchase
a positive amount of the good. First, we show that given a subset S we can find
the optimal price pS under the above constraint in closed form. Then, we show
that we only need to consider a small number of such subsets. In particular, we
rank the agents with respect to a weighted centrality index and at each iteration
of the algorithm we drop the consumer with the smallest such index and let S
be the set of remaining consumers.

Finally, we consider an intermediate setting, where the monopolist can choose
one of a small number of prices for each agent. For exposition purposes, we
restrict the discussion to two prices, full and discounted. We show that the
resulting problem, i.e., determining the optimal subset of consumers to offer the
discounted price, is NP-hard2. We also provide an approximation algorithm that
recovers (in polynomial time) at least 88 % of the optimal revenue.

As mentioned above, a main feature of our model is the positive impact of a
consumer’s purchasing decision to the purchasing behavior of other consumers.
This effect, known as network externality, is extensively studied in the economics
literature (e.g., [8], [15]). However, the network effects in those studies are of
global nature, i.e., the utility of a consumer depends directly on the behavior
of the whole set of consumers. In our model, consumers interact directly only
with a subset of agents. Although interaction is local for each consumer, her
utility may depend on the global structure of the network, since each consumer
potentially interacts indirectly with a much larger set of agents than just her
peers.

Given a set of prices, our model takes the form of a network game among
agents that interact locally. A recent series of papers studies such games, e.g., [1],
[3], [7], [9]. A key modeling assumption in [1], [3] and [7], that we also adopt in our
setting, is that the payoff function of an agent takes the form of a linear-quadratic
function. Ballester et al. in [1] were the first to note the linkage between Bonacich
centrality and Nash equilibrium outcomes in a single stage game with local payoff
complementarities. Our characterization of optimal prices when the monopolist
can perfectly price differentiate is reminiscent of their results, since prices are
inherently related to the Bonacich centrality of each consumer. However, both
the motivation and the analysis are quite different, since ours is a two-stage
game, where a monopolist chooses prices to maximize her revenue subject to
equilibrium constraints. Also, [3] and [7] study a similar game to the one in

2 The hardness result can be extended to the case of more than two prices.
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[1] and interpret their results in terms of public good provision. A number of
recent papers ([5], [10] and [18]) have a similar motivation to ours, but take a
completely different approach: they make the assumption of limited knowledge of
the social network structure, i.e., they assume that only the degree distribution is
known, and thus derive optimal pricing strategies that depend on this first degree
measure of influence of a consumer. In our model, we make the assumption that
the monopolist has complete knowledge of the social network structure and, thus,
obtain qualitatively different results: the degree is not the appropriate measure
of influence but rather prices are proportional to the Bonacich centrality of the
agents. On the technical side, note that assuming more global knowledge of the
network structure increases the complexity of the problem in the following way: if
only the degree of an agent is known, then essentially there are as many different
types of agents as there are different degrees. This is no longer true when more
is known: then, two agents of the same degree may be of different type because
of the difference in the characteristics of their neighbors, and therefore, optimal
prices charged to agents may be different.

Finally, there is a recent stream of literature in computer science, that stud-
ies a set of algorithmic questions related to marketing strategies over social
networks. Kempe et al. in [16] discuss optimal network seeding strategies over
social networks, when consumers act myopically according to a pre-specified rule
of thumb. In particular, they distinguish between two basic models of diffusion:
the linear threshold model, which assumes that an agent adopts a behavior as
soon as adoption in her neighborhood of peers exceeds a given threshold and
independent cascade model, which assumes that an adopter infects each of her
neighbors with a given probability. The main question they ask is finding the
optimal set of initial adopters, when their number is given, so as to maximize
the eventual adoption of the behavior, when consumers behave according to one
of the diffusion models described above. They show that the problem of influ-
ence maximization is NP-hard and provide a greedy heuristic, that achieves a
solution, that is provably within 63 % of the optimal.

Closest in spirit with our work, is [13], which discusses the optimal marketing
strategies of a monopolist. Specifically, they assume a general model of influence,
where an agent’s willingness to pay for the good is given by a function of the
subset of agents that have already bought the product, i.e., ui : 2V → R+, where
ui is the willingness to pay for agent i and V is the set of consumers. They restrict
the monopolist to the following set of marketing strategies : the seller visits the
consumers in some sequence and makes a take-it-or-leave-it offer to each one
of them. Both the sequence of visits as well as the prices are chosen by the
monopolist. They provide a dynamic programming algorithm that outputs the
optimal pricing strategy for a symmetric setting, i.e., when the agents are ex-
ante identical (the sequence of visits is irrelevant in this setting). Not surprisingly
the optimal strategy offers discounts to the consumers that are visited earlier
in the sequence and then extracts revenue from the rest. The general problem,
when agents are heterogeneous, is NP-hard, thus they consider approximation
algorithms. They show, in particular, that influence-and-exploit strategies, that
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offer the product for free to a strategically chosen set A, and then offer the
myopically optimal price to the remaining agents provably achieve a constant
factor approximation of the optimal revenues under some assumptions on the
influence model. However, this paper does not provide a qualitative insight on
the relation between optimal strategies and the structure of the social network.
In contrast, we are mainly interested in characterizing the optimal strategies as
a function of the underlying network.

The rest of paper is organized as follows. Section 2 introduces the model. In
Section 3 we begin our analysis by characterizing the usage level of the consumers
at equilibrium given the vector of prices chosen by the monopolist. In Section 4
we turn attention to the pricing stage (first stage of the game) and characterize
the optimal strategy for the monopolist under three different settings: when the
monopolist can perfectly price discriminate (Subsection 4.1), when the monopo-
list chooses a single uniform price for all consumers (Subsection 4.2) and finally
when the monopolist can choose between two exogenously given prices, the full
and the discounted (Subsection 4.3). Finally, we conclude in Section 5. Due to
space constraints all proofs are omitted and can be found in [6].

2 Model

The society consists of a set I = {1, . . . , n} of agents embedded in a social network
represented by the adjacency matrix G. The ij-th entry of G, denoted by gij , rep-
resents the strength of the influence of agent j on i. We assume that gij ∈ [0, 1]
for all i, j and we normalize gii = 0 for all i. A monopolist introduces a divisi-
ble good in the market and chooses a vector p of prices from the set of allowable
pricing strategies P. In its full generality, p ∈ P is simply a mapping from the
set of agents to Rn, i.e., p : I → Rn. In particular, p(i) or equivalently pi is the
price that the monopolist offers to agent i for one unit of the divisible good. Then,
the agents choose the amount of the divisible good they will purchase at the an-
nounced price. Their utility is given by an expression of the following form:

ui(xi,x−i, pi) = fi(xi) + xihi (G,x−i)− pixi,

where xi ∈ [0,∞) is the amount of the divisible good that agent i chooses to pur-
chase. Function fi : [0,∞)→ R represents the utility that the agent obtains from
the good, assuming that there are no network externalities, and pixi is the amount
agent i is charged for its consumption. The function hi : [0, 1]n×n × [0,∞)n−1 →
[0,∞) is used to capture the utility the agent obtains due to the positive network
effect (note the explicit dependence on the network structure).

We next describe the two-stage pricing-consumption game, which models the
interaction between the agents and the monopolist:

Stage 1 (Pricing) : The monopolist chooses the pricing strategy p, so as to
maximize profits, i.e., maxp∈P

∑
i pixi − cxi, where c denotes the marginal cost

of producing a unit of the good and xi denotes the amount of the good agent i
purchases in the second stage of the game.
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Stage 2 (Consumption) : Agent i chooses to purchase xi units of the good,
so as to maximize her utility given the prices chosen by the monopolist and x−i,
i.e.,

xi ∈ arg max
yi∈[0,∞)

ui(yi,x−i, pi).

We are interested in the subgame perfect equilibria of the two-stage pricing-
consumption game.

For a fixed vector of prices p = [pi]i chosen by the monopolist, the equilibria
of the second stage game, referred to as the consumption equilibria, are defined
as follows:

Definition 1 (Consumption Equilibrium). For a given vector of prices p,
a vector x is a consumption equilibrium if, for all i ∈ I,

xi ∈ arg max
yi∈[0,∞)

ui(yi,x−i, pi).

We denote the set of consumption equilibria at a given price vector p by C[p].

We begin our analysis by the second stage (the consumption subgame) and
then discuss the optimal pricing policies for the monopolist given that agents
purchase according to the consumption equilibrium of the subgame defined by
the monopolist’s choice of prices.

3 Consumption Equilibria

For the remainder of the paper, we assume that the payoff function of agent i
takes the following quadratic form:

ui(xi,x−i, pi) = aixi − bix2
i + xi ·

∑
j∈{1,··· ,n}

gij · xj − pixi, (1)

where the first two terms represent the utility agent i derives from consuming
xi units of the good irrespective of the consumption of her peers, the third term
represents the (positive) network effect of her social group and finally the last
term is the cost of usage. The quadratic form of the utility function is essential for
keeping the analysis tractable, but also serves as a second-order approximation
of the broader class of concave utility functions.

For a given vector of prices p, we denote by G = {I, {ui}i∈I , [0,∞)i∈I} the
second stage game where the set of players is I, each player i ∈ I chooses her
strategy (consumption level) from the set [0,∞), and her the utility function,
ui has the form in (1). The following assumption ensures that in this game the
optimal consumption level of each agent is bounded.

Assumption 1. For all i ∈ I, bi >
∑

j∈I gij.

The necessity of Assumption 1 is evident from the following example: assume that
the adjacency matrix, which represents the level of influence among agents, takes
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the following simple form: gij = 1 for all i, j such that i 
= j, i.e., G represents
a complete graph with unit weights. Also, assume that 0 < bi = b < n − 1 and
0 < ai = a for all i ∈ I. It is now straightforward to see that given any vector
of prices p and assuming that xi = x for all i ∈ I, the payoffs of all agents go
to infinity as x→∞. Thus, if Assumption 1 does not hold, in the consumption
game, consumers may choose to unboundedly increase their usage irrespective
of the vector of prices.

Next, we study the second stage of the game defined in Section 2 under As-
sumption 1, and we characterize the equilibria of the consumption game among
the agents for vector of prices p. In particular, we show that the equilibrium is
unique and we provide a closed form expression for it. To express the results in
a compact form, we define the vectors x, a,p ∈ Rn such that x = [xi]i, a = [ai]i,
p = [pi]i. We also define matrix Λ ∈ Rn×n as:

Λi,j =

{
2bi if i = j

0 otherwise.

Let βi(x−i) denote the best response of agent i, when the rest of the agents
choose consumption levels represented by the vector x−i. From (1) it follows
that:

βi(x−i) = max

⎧⎨⎩ai − pi

2bi
+

1
2bi

∑
j∈I

gijxj , 0

⎫⎬⎭ . (2)

Our first result shows that the equilibrium of the consumption game is unique
for any price vector.

Theorem 1. Under Assumption 1, the game G = {I, {ui}i∈I , [0,∞)i∈I} has a
unique equilibrium.

Intuitively, Theorem 1 follows from the fact that increasing one’s consumption
incurs a positive externality on her peers, which further implies that the game
involves strategic complementarities and therefore the equilibria are ordered. The
proof exploits this monotonic ordering to show that the equilibrium is actually
unique.

We conclude this section, by characterizing the unique equilibrium of G. Sup-
pose that x is this equilibrium, and xi > 0 only for i ∈ S. Then, it follows that

xi = βi(x−i) =
ai − pi

2bi
+

1
2bi

∑
j∈I

gijxj =
ai − pi

2bi
+

1
2bi

∑
j∈S

gijxj (3)

for all i ∈ S. Denoting by xS the vector of all xi such that i ∈ S, and defining
the vectors aS , bS , pS and the matrices GS , ΛS similarly, equation (3) can be
rewritten as

ΛSxS = aS − pS +GSxS . (4)

Note that Assumption 1 holds for the graph restricted to the nodes in S, hence
I − Λ−1

S GS is invertible (see [6]). Therefore, (4) implies that

xS = (ΛS −GS)−1(aS − pS). (5)
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Therefore, the unique equilibrium of the consumption game takes the following
form:

xS = (ΛS −GS)−1(aS − pS),
xI−S = 0, (6)

for some subset S of the set of agents I. This characterization suggests that
consumptions of players (weakly) decrease with the prices. The following lemma,
which is used in the subsequent analysis, formalizes this fact.

Lemma 1. Let x(p) denote the unique consumption equilibrium in the game
where each player i ∈ I is offered the price pi. Then, xi(p) is weakly decreasing
in p for all i ∈ I, i.e, if p̂j ≥ pj for all j ∈ I then xi(p̂) ≤ xi(p).

4 Optimal Pricing

In this section, we turn attention to the first stage of the game, where a monopo-
list sets the vector of prices. We distinguish between three different scenarios. In
the first subsection, we assume that the monopolist can perfectly price discrimi-
nate the agents, i.e., there is no restriction imposed on the prices. In the second
subsection, we consider the problem of choosing a single uniform price, while in
the third we allow the monopolist to choose between two exogenous prices, pL

and pH , for each consumer. In our terminology, in the first case P = R|I|, in the
second P = {(p, · · · , p)}, for p ∈ [0,∞) and finally in the third P = {pL, pH}|I|.

4.1 Perfect Price Discrimination

For the remainder of the paper, we make the following assumption, which ensures
that, even in the absence of any network effects, the monopolist would find it
optimal to charge individual prices low enough, so that all consumers purchase
a positive amount of the good.

Assumption 2. For all i ∈ I, ai > c.

Given Assumption 2, we are now ready to state Theorem 2, that provides a
characterization of the optimal prices. We denote the vector of all 1’s by 1.

Theorem 2. Under Assumptions 1 and 2, the optimal prices are given by

p = a− (Λ−G)
(
Λ− G+GT

2

)−1 a− c1
2

. (7)

The following corollary is an immediate consequence of Theorem 2.

Corollary 1. Let Assumptions 1 and 2 hold. Moreover, assume that the inter-
action matrix G is symmetric. Then, the optimal prices satisfy

p =
a + c1

2
,

i.e., the optimal prices do not depend on the network structure.
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This result implies that when players affect each other in the same way, i.e.,
when the interaction matrix G is symmetric, then the graph topology has no
effect on the optimal prices.

To better illustrate the effect of the network structure on prices we next
consider a special setting, in which agents are symmetric in a sense defined
precisely below and they differ only in terms of their network position.

Assumption 3. Players are symmetric, i.e., ai = a0, bi = b0 for all i ∈ I.

We next provide the definition of Bonacich Centrality (see also [2]), and using
it obtain an alternative characterization of the optimal prices.

Definition 2 (Bonacich Centrality). For a network with (weighted) adja-
cency matrix G and scalar α, the Bonacich centrality vector of parameter α is
given by K(G,α) = (I − αG)−11 provided that (I − αG)−1 is well defined and
nonnegative.

Theorem 3. Under Assumptions 1, 2 and 3, the vector of optimal prices is
given by

p =
a0 + c

2
1 +

a0 − c
8b0

GK
(
G+GT

2
,

1
2b0

)
− a0 − c

8b0
GTK

(
G+GT

2
,

1
2b0

)
.

The network G+GT

2 is the average interaction network, and it represents the av-
erage interaction between pairs of agents in network G. Intuitively, the centrality
K
(

G+GT

2 , 1
2b0

)
measures how “central” each node is with respect to the average

interaction network.
The optimal prices in Theorem 3 have three components. The first component

can be thought of as a nominal price, which is charged to all agents irrespective
of the network structure. The second term is a markup that the monopolist can
impose on the price of consumer i due to the utility the latter derives from her
peers. Finally, the third component can be seen as a discount term, which is
offered to a consumer, since increasing her consumption increases the consump-
tion level of her peers. Theorem 3 suggests that it is optimal to give each agent
a markup proportional to the utility she derives from the central agents. In con-
trast, prices offered to the agents should be discounted proportionally to their
influence on central agents. Therefore, it follows that the nodes which pay the
most favorable prices are the ones, that influence highly central nodes.

Note that if Assumption 3 fails, then Theorem 3 can be modified to relate
the optimal prices to centrality measures in the underlying graph. In particular,
the price structure is still as given in Theorem 3, but when the parameters {ai}
and {bi} are not identical, the discount and markup terms are proportional to a
weighted version of the Bonacich centrality measure, defined below.

Definition 3 (Weighted Bonacich Centrality). For a network with
(weighted) adjacency matrix G, diagonal matrix D and weight vector v, the
weighted Bonacich centrality vector is given by K̃(G,D,v) = (I −GD)−1v pro-
vided that (I −GD)−1 is well defined and nonnegative.
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We next characterize the optimal prices in terms of the weighted Bonacich cen-
trality measure.

Theorem 4. Under Assumptions 1 and 2 the vector of optimal prices is given
by

p =
a + c1

2
+GΛ−1K̃

(
G̃, Λ−1, ṽ

)
−GTΛ−1K̃

(
G̃, Λ−1, ṽ

)
,

where G̃ = G+GT

2 and ṽ = a−c1
2 .

4.2 Choosing a Single Uniform Price

In this subsection we characterize the equilibria of the pricing-consumption
game, when the monopolist can only set a single uniform price, i.e., pi = p0
for all i. Then, for any fixed p0, the payoff function of agent i is given by

ui(xi,x−i, pi) = aixi − bix2
i + xi ·

∑
j∈{1,··· ,n}

gij · xj − pixi,

and the payoff function for the monopolist is given by

maxp0∈[0,∞) (p0 − c)
∑

i xi

s.t. x ∈ C[p0],

where p0 = (p0, · · · , p0). Note that Theorem 1 implies that even when the mo-
nopolist offers a single price, the consumption game has a unique equilibrium
point. Next lemma states that the consumption of each agent decreases mono-
tonically in the price.

Lemma 2. Let x(p0) denote the unique equilibrium in the game where pi = p0
for all i. Then, xi(p0) is weakly decreasing in p0 for all i ∈ I and strictly
decreasing for all i such that xi(p0) > 0.

Next, we introduce the notion of the centrality gain.

Definition 4 (Centrality Gain). In a network with (weighted) adjacency ma-
trix G, for any diagonal matrix D and weight vector v, the centrality gain of
agent i is defined as

Hi(G,D,v) =
K̃i(G,D,v)
K̃i(G,D,1)

.

The following theorem provides a characterization of the consumption vector at
equilibrium as a function of the single uniform price p.

Theorem 5. Consider game Ḡ = {I, {ui}i∈I , [0,∞)i∈I}, and define

D1 = arg min
i∈I

Hi

(
G,Λ−1, a

)
and p1 = min

i∈I
Hi

(
G,Λ−1, a

)
.

Moreover, let Ik = I − ∪k
i=1Di and define

Dk = argmin
i∈Ik

Hi

(
GIk

, Λ−1
Ik
, aIk

)
and pk = min

i∈Ik

Hi

(
GIk

, Λ−1
Ik
, aIk

)
,

for k ∈ {2, 3 . . . n}. Then,
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(1) pk strictly increases in k.
(2) Given a p such that p < p1, all agents purchase a positive amount of the good,

i.e., xi(p) > 0 for all i ∈ I, where x(p) denotes the unique consumption
equilibrium at price p. If k ≥ 1, and p is such that pk ≤ p ≤ pk+1, then
xi(p) > 0 if and only if i ∈ Ik. Moreover, the corresponding consumption
levels are given as in (6), where S = Ik.

Theorem 5 also suggests a polynomial time algorithm for computing the optimal
uniform price popt. Intuitively, the algorithm sequentially removes consumers
with the lowest centrality gain and computes the optimal price for the remaining
consumers under the assumption that the price is low enough so that only these
agents purchase a positive amount of the good at the associated consumption
equilibrium. In particular, using Theorem 5, it is possible to identify the set of
agents who purchase a positive amount of the good for price ranges [pk, pk+1],
k ∈ {1, . . . }. Observe that given a set of players, who purchase a positive amount
of the good, the equilibrium consumption levels can be obtained in closed form
as a linear function of the offered price, and, thus, the profit function of the
monopolist takes a quadratic form in the price. It follows that for each price
range, the maximum profit can be found by solving a quadratic optimization
problem. Thus, Theorem 5 suggests Algorithm 1 for finding the optimal single
uniform price popt.

Algorithm 1. Compute the optimal single uniform price popt

STEP 1. Preliminaries:

- Initialize the set of active agents: S := I.

- Initialize k = 1 and p0 = 0, p1 = mini∈I Hi(GI , Λ−1
I ,aI)

- Initialize the monopolist’s revenues with Reopt = 0 and popt = 0.

STEP 2.

- Let p̂ =
1T (ΛS−GS )−1aS−c1T (ΛS−GS)−11

1T ((ΛS−GS)−1+(ΛS−GT
S

)−1)1

- IF p̂ ≥ pk, let p = pk.

ELSE IF p̂ ≤ pk−1, let p = pk−1 ELSE p = p̂.

- Re = (p − c)1T · (ΛS − GS)−1(aS − p1).

- IF Re > Reopt THEN Reopt = Re and popt = p.

- D = arg mini∈S Hi(GS , Λ−1
S ,aS) and S := S − D.

- Increase k by 1 and let pk = mini∈S Hi(GS, Λ−1
S ,aS).

- Return to STEP 2 if S 
= ∅ ELSE Output popt.

The algorithm solves a series of subproblems, where the monopolist is con-
strained to choose a price p in a given interval [pk, pk+1] with appropriately
chosen endpoints. In particular, from Theorem 5, we can choose those end-
points, so as to ensure that only a particular set S of agents purchase a
positive amount of the good. In this case, the consumption at price p is
given by (ΛS − GS)−1(aS − p1) and the profit of the monopolist is equal to
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(p−c)1T ·(ΛS−GS)−1(aS−p1). The maximum of this profit function is achieved
at p̂ = 1T (ΛS−GS)−1aS−c1T (ΛS−GS)−11

1T ((ΛS−GS)−1+(ΛS−GT
S )−1)1 , as can be seen from the first order op-

timality conditions. Then, the overall optimal price is found by comparing the
monopolist’s profits achieved at the optimal solutions of the constrained sub-
problems. The complexity of the algorithm is O(n4), since there are at most n
such subproblems (again from Theorem 5) and each such subproblem simply
involves a matrix inversion (O(n3)) in computing the centrality gain and the
maximum achievable profit.

4.3 The Case of Two Prices: Full and Discounted

In this subsection, we assume that the monopolist can choose to offer the good in
one of two prices, pL and pH (pL < pH) that are exogenously defined. For clarity
of exposition we call pL and pH the discounted and the full price respectively.
The question that remains to be studied is to which agents should the monopolist
offer the discounted price, so as to maximize her revenues. We state the following
assumption that significantly simplifies the exposition.

Assumption 4. The exogenous prices pL, pH are such that pL, pH < mini∈I ai.

Note that under Assumption 4, Equation (2) implies that all agents purchase
a positive amount of the good at equilibrium, regardless of the actions of
their peers. As shown previously, the vector of consumption levels satisfies
x = Λ−1(a − p + Gx), and hence x = (Λ − G)−1(a − p). An instance of the
monopolist’s problem can now be written as:

(OPT ) max (p− c1)T (Λ−G)−1(a− p)
st. pi ∈ {pL, pH} for all i ∈ I,

where Λ ! 0 is a diagonal matrix, G is such that G ≥ 0, diag(G) = 0 and
Assumption 1 holds.

Let pN � pH+pL

2 , δ � pH − pN , â � a − pN1 and ĉ � pN − c ≥ δ. Using
these variables, and noting that any feasible price allocation can be expressed as
p = δy + pN1, where yi ∈ {−1, 1}, OPT can alternatively be expressed as

max (δy + ĉ1)T (Λ −G)−1(â− δy)
s.t. yi ∈ {−1, 1} for all i ∈ I.

(8)

We next show that OPT is NP-hard, and provide an algorithm that achieves an
approximately optimal solution. To obtain our results, we relate the alternative
formulation of OPT in (8) to the MAX-CUT problem (see [11,12]).

Theorem 6. Let Assumptions 1, 2 and 4 hold. Then, the monopolist’s optimal
pricing problem, i.e., problem OPT, is NP-hard.

Theorem 7. Let Assumptions 1 and 4 hold and WOPT denote the optimal prof-
its for the monopolist, i.e., WOPT is the optimal value for problem OPT. Then,
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there exists a randomized polynomial time algorithm, that outputs a solution with
objective value WALG such that E[WALG] +m > 0.878(WOPT +m), where

m = δ21TA1 + δ1T
∣∣Aâ −AT ĉ1

∣∣− ĉ1TAâ− 2δ2Trace(A),

and A = (Λ−G)−1.

In the remainder of the section, we provide a characterization of the optimal
prices in OPT. In particular, we argue that the pricing problem faced by the
monopolist is equivalent to finding the cut with maximum weight in an appro-
priately defined weighted graph. For simplicity, assume that bi = b0 for all i and(
(Λ−G)−1â− ĉ(Λ−G)−T 1

)
= 0 (which holds, for instance when â = ĉ1, or

equivalently a− pN1 = (pN − c)1, and G = GT ). Observe that in this case, the
alternative formulation of the profit maximization problem in (8), can equiv-
alently be written as (after adding a constant to the objective function, and
scaling):

max α− y(Λ −G)−1y

s.t. yi ∈ {−1, 1} for all i ∈ I,
(9)

where α =
∑

ij(Λ − G)−1
ij . It can be seen that this optimization problem is

equivalent to an instance of the MAX-CUT problem, where the cut weights are
given by the off diagonal entries of (Λ − G)−1 (see [11,12]). On the other hand
observe that (Λ − G)−11 = 1

2b0
(I − 1

2b0
G)−11, hence, the ith row sum of the

entries of the matrix (Λ−G)−1 is proportional to the centrality of the ith agent
in the network. Consequently, the (i, j)th entry of the matrix (Λ−G)−1, gives a
measure of how much the edge between i and j contributes to the centrality of
node i. Since the MAX-CUT interpretation suggests that the optimal solution
of the pricing problem is achieved by maximizing the cut weight, it follows that
the optimal solution of this problem price differentiates the agents who affect
the centrality of each other significantly.

5 Conclusions

The paper studies a stylized model of pricing of divisible goods (services) over
social networks, when consumers’ actions are influenced by the choices of their
peers. We provide a concrete characterization of the optimal scheme for a mo-
nopolist under different restrictions on the set of allowable pricing policies when
consumers behave according to the unique Nash equilibrium profile of the corre-
sponding game. We consider a setting of static pricing: the monopolist first sets
prices and then the consumers choose their usage levels. Moreover, the game
we define is essentially of complete information, since we assume that both the
monopolist, as well as the consumers, know the network structure and the utility
functions of the population. Extending our analysis by introducing incomplete
information is an interesting direction for future research. Concretely, consider
a monopolist that introduces a new product of unknown quality to a market.
Agents benefit the monopolist in two ways when purchasing the product; directly
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by increasing her revenues, and indirectly by generating information about the
product’s quality and making it more attractive to the rest of the consumer pool.
What is the optimal (dynamic) pricing strategy for the monopolist?

Finally, note that in the current setup we consider a single seller (monopolist),
so as to focus on explicitly characterizing the optimal prices as a function of the
network structure. A natural departure from this model is studying a competitive
environment. The simplest such setting would involve a small number of sellers
offering a perfectly substitutable good to the market. Then, pricing may be even
more aggressive than in the monopolistic environment: sellers may offer even
larger discounts to “central” consumers, so as to subsequently exploit the effect
of their decisions to the rest of the network. Potentially one could relate the
intensity of competition with the network structure. In particular, one would
expect the competition to be less fierce when the network consists of disjoint
large subnetworks, since then sellers would segment the market at equilibrium
and exercise monopoly power in their respective segments.
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Abstract. We present a new technique for analyzing the rate of con-

vergence of local dynamics in bargaining networks. The technique re-

duces balancing in a bargaining network to optimal play in a random-

turn game. We analyze this game using techniques from martingale and

Markov chain theory. We obtain a tight polynomial bound on the rate

of convergence for a nontrivial class of unweighted graphs (the previous

known bound was exponential). Additionally, we show this technique

extends naturally to many other graphs and dynamics.

1 Introduction

In a network bargaining game, nodes in a graph are involved in pairwise trans-
actions with their neighbors. This type of game was introduced by Cook and
Yamagishi [14] to capture the “power” of a node derived from its position in a
network, and has also been used in economics to model two-sided markets [33,31].
Recently these games have been analyzed from a computational point of view,
first in a centralized model [23] and later in a distributed model [3]. Analyzing
simple, local dynamics that converge quickly to an equilibrium in such games
was an important open problem that attracted much interest [18,22,21].

We draw a connection between network bargaining games and random-turn
games. Random-turn games are a well-studied class of two-player combinato-
rial games in which the outcome of a coin flip determines which player moves
next [25,24]. Combinatorial games can be represented as a game on a directed
graph where players move a token along edges until one reaches their goal state.
We transform the network bargaining game into an equivalent random-turn game
which we can analyze using martingale techniques to obtain bounds on the rate
of convergence. In particular, the convergence rate for the dynamics is related
to the absorption time of the corresponding random-turn game.

We obtain a tight polynomial bound on the convergence rate for a variety of
natural dynamics on a certain class of graphs. This class includes unweighted
bipartite graphs with unique balanced outcomes, and the exposition is conducted
in this setting for clarity. The previous bound known for any class of graphs
(other than paths) was exponential.
� Research supported by a NASA Graduate Fellowship.
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Network Bargaining Game

A network bargaining game is defined on a weighted graph G = (V ′, E′) with
w′ : E′ → R+.1 Every node in the graph is a player, and the weight of an edge
represents the dollar amount available to be shared between the two adjacent
players. However, each player is constrained to make at most one such sharing
agreement. An outcome of this game is a matching in the graph M ⊆ E and an
allocation describing each player’s profit, f ′ : V ′ → R+ where for all (uv) ∈ M ,
we have f ′(u) + f ′(v) = w′(uv), and for all unmatched u ∈ V ′, f ′(u) = 0.

We consider two notions of equilibrium in this game. The first (weaker) notion
is that of a stable outcome: an outcome is stable if for all unmatched edges
(uv) /∈M we have f ′(u) + f ′(v) ≥ w′(uv), that is, no two adjacent players have
incentive to deviate from their current matches. The second notion is that of a
balanced outcome: an outcome is balanced if matched players divide the surplus
equally amongst themselves. To be precise, let the best alternate of a node u be

αf ′(u) := max{0, max
v:(uv)∈E′\M

{w′(uv)− f ′(v)}},

i.e. the maximum profit a player could get from a neighbor she is not currently
matched to. For every matched edge (uv) define the surplus as

sf ′(uv) = w′(uv)− (αf ′(u) + αf ′(v)).

An outcome is balanced if it is stable and for all matched edges (uv), f ′(u) =
αf ′(u) + sf ′(uv)/2 and f ′(v) = αf ′(v) + sf ′(uv)/2, or equivalently, f ′(u) −
αf ′(u) = f ′(v)−αf ′ (v). This can be seen as a generalization of Nash’s bargaining
solution for two players [28]. It is known that the following are equivalent: (1)
a balanced outcome exists, (2) a stable outcome exists and (3) the matching
polytope has no integrality gap [23].

Edge Balancing Dynamics

Balanced outcomes can be computed by centralized polynomial time algo-
rithms [23], but the game is by nature distributed; individual players working on
individual deals. An important open problem was to show there exist simple and
natural local dynamics that converge quickly to a balanced outcome. We now
define such dynamics with respect to a matching M and initial allocation f ′.

For our dynamics, the matchingM is fixed throughout. This may seem counter
to the solution concept of a balanced outcome since the premise is the threat of
switching partners. However, once such a threat is acknowledged, the players do
not need to switch in order to bargain for their fair share. Moreover, there are
distributed dynamics that find matchings [6,32] which also have a bargaining
flavor in their dynamics. One can imagine a two phase approach, where in the
first phase the players find a matching and in the second find a balanced outcome
with the matching fixed.
1 We reserve the notation (V, E) and w for a graph which will be used more prevalently

in the random-turn game framework.
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The allocations are updated synchronously, and the updates proceed in
rounds. The allocation in round t is denoted by B′

f ′(u, t), the best alterna-
tives by αf ′(u, t) and the surpluses by sf ′(uv, t).2 The initial allocation is
B′

f ′(v, 0) = f ′(v). Synchronous Edge Balancing is defined by the following
update rule: for all u ∈ V ′, (uv) ∈M and t ≥ 1,

B′
f ′(u, t+ 1)← αf ′(u, t) + sf ′(uv, t)/2.

Thus, the allocation for the next round is determined by “balancing” each
matched edge using the allocation in the current round.

We say that an allocation f ′ is ε-close to balanced if there exists a balanced
outcome B′ such that |B′(v) − f ′(v)| ≤ ε for all v, i.e. we get ε-close to a bal-
anced outcome. Note that this is stronger than a common alternate notion of
ε-balanced where |B′

f ′(u, t+1)−B′
f ′(u, t)| ≤ ε, i.e. each edge is locally balanced.

We wish to show Synchronous Edge Balancing converges rapidly to a bal-
anced outcome. This means that for all f ′, after polynomially many3 time steps
t, the allocation Bf ′(u, t) is ε-close to a balanced outcome.

Random-Turn Games

Every two-player game from Tic-Tac-Toe to Chess can be formalized as a com-
binatorial game on a directed graph where each turn consists of moving a token
from one vertex to another along an edge [7]. Random-turn games are combina-
torial games where the turns are determined by a coin flip.

We consider the following version in the main body of this paper: A Random-

Turn Game consists of a directed graph D = (V,E), payoff function f : V →
[0, 1], initial vertex v0, and horizon T ∈ N. The set V of game states contains
two terminal states s and r and all payoff functions set f(s) = 0 and f(r) = 1.
The game is played by Max and Mini where Max’s goal is to maximize the
value of the end state, and Mini’s goal is to minimize it. Game play for horizon
T is as follows: a token is initially placed at v0 and at every step a fair coin is
tossed to determine who gets to move the token. Max must always move to a
predecessor of v and Mini to a successor (as determined by the edge set E).
We repeat until either T moves have been made, or we reach an absorbing state
{s, r}. At the end of the game, Mini pays Max $f(v) if the game terminates
at node v. Since this is a full-information game, for any finite horizon, one can
compute the optimal strategies for the two players. This defines a value of the
game, which is the expected payoff for Max under optimal play.

Related Work and Motivation

Network bargaining games have a long history in two communities: sociology and
game theory. In sociology, they are studied under the name network exchange
theory, where the goal is to understand the power of a node as a function of its
2 The subscript f ′ may be dropped when it is clear from context.
3 Where the polynomial is in |V |, |E| and 1/ log(ε).
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position in the network (see the overview by Willer [35]). Network bargaining
games as we define here were introduced by Cook and Yamagishi [14], who also
introduced the notion of balanced outcomes. In fact, they also introduced local
dynamics similar to what we consider in this paper, but without a theoretical
analysis of the convergence of their dynamics. There have also been experimental
results [13,8] which validate the relevance and applicability of this work.

In game theory, the study of bargaining can be traced back to Nash’s bargain-
ing solution [28]. Many results in this field focus on two-sided markets, which
naturally give rise to the bipartite version of the network bargaining game as was
introduced by Shapley and Shubik [33]. This version, known as the assignment
game, can also be viewed as the classic Gale-Shapley stable marriage problem [19]
with the addition transferable utilities. Rochford [31] defined balanced outcomes
for assignment games under the name symmetrically pairwise-bargained allo-
cations. She also showed that they are the intersection of the core and the
kernel, two common solution concepts in co-operative game theory. Other so-
lution concepts such as the nucleolus [27] have also been considered. In fact, the
computability of these solution concepts has been much studied [34,29]. Other
related models consider price setting as a result of a bargaining process [15].

Network bargaining games were introduced to the theoretical computer sci-
ence community by Kleinberg and Tardos [23]. They gave a polynomial time
algorithm to compute the set of balanced outcomes. Since then, there has been
a flurry of activity: Azar, et al. [3] considered an asynchronous version of edge
balancing dynamics and showed (exponential time) convergence. Other aspects
of network bargaining have also been studied in the recent past [5,10,9,4,21].

We give the first polynomial time bound on local dynamics converging to a
balanced outcome for any non-trivial class of graphs. The only polynomial time
bound known previously was for paths. Moreover, the bounds are tight for a
variety of dynamics. Independently and concurrently with our work, Kanoria,
et al. [22] considered the same problem and showed convergence of a (different)
dynamics to a balanced outcome. The dynamics they consider has the advantage
that it does not need a matching to be known and fixed; rather, the dynamics
also finds a matching. One drawback is that the outcome their process converges
to is weaker (it is ε-balanced as opposed to ε-close to a balanced outcome).
Additionally, the rate of convergence of their dynamics is weaker and of the
form n4/g2 where no bounds on g are given. In fact, on many graphs where our
result is tight, g could be zero.4 Also independently and concurrently, Draief and
Vojnovic [17] showed quadratic convergence of the edge balancing dynamics for
the following graphs: a path, a cycle, a blossom and a bicycle. Faigle, Kern and
Kuipers [18] also considered similar local dynamics for a more general class of
games, but do not show bounds on the rate of convergence.

In general, analysis of the convergence of local dynamics to an equilibrium
of a game is a common theme. Examples include analysis of random best re-
sponse dynamics for the Gale-Shapley stable matching game [2,19]. In fact, a

4 For instance, this occurs on any unweighted even length path.
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major philosophical hypothesis of algorithmic game theory [20,12,16] is that the
existence of such dynamics is crucial to validate a solution concept.

Random-turn games are natural, and many variants have been analyzed
[24,25]. Most interestingly, a variant called the tug-of-war game has been found
to be related to partial differential equations such as the infinity Laplacian and
the p-Laplacian [30], due to which these games have received considerable at-
tention [11,37,1].

Organization

In Section 2 we introduce our theorems, techniques and extensions. Section 3
contains a detailed analysis for unweighted bipartite graphs with unique balanced
outcomes. We conclude and suggest future work in Section 4.

2 From a Bargaining Game to a Random-Turn Game

We now give a reduction from a network bargaining game to a random-turn
game, the concept that lies at the heart of our results. We first restrict ourselves
to unweighted bipartite graphs for clarity.

Consider a graph G = (V ′, E′) where w′(uv) = 1 for all (uv) ∈ E′ and V ′ is
bipartitioned as {L,R}. Create a directed graph D as follows: let D = (V,E)
where V is the subset of matched vertices in L along with two special vertices,
s and r. Let the set of vertices other than s and r be denoted by V̇ . Add an
edge (uv) ∈ E if (M(u)v) ∈ E′. Additionally, place an edge from s to all vertices
in V̇ and an edge from all vertices in V̇ to r. Finally, add an (rv) edge in E if
there exists an edge (vu) ∈ E′ where u /∈M . Similarly, add a (vs) edge if there
is a (M(v)u) edge with u 
∈ M . We also give an allocation f : V → [0, 1] on
D, given the allocation f ′ on G. Define f(v) = f ′(v) if v ∈ V̇ , f(s) = 0 and
f(r) = 1. See Figure 1 for an example of this reduction. Note that an allocation
f ′ on G takes values between 0 and 1 since the edge weights all have weight 1.
Thus, the definition of an allocation allows us to reconstruct f ′ from f , since
f ′(M(v)) = 1− f ′(v) and f(u) = 0 when u 
∈M .
The concepts (from the bargaining game described earlier) translate as follows.

– An allocation is stable if for all edges (uv) ∈ E, f(u) ≤ f(v).
– Let the best predecessor and successor of a node v be v+f =

arg maxu:(uv)∈E{f(u)} and v−f = arg minu:(vu)∈E{f(u)} respectively. An
allocation is balanced if it is stable, and for all vertices v ∈ V̇ , f(v) =
1
2 (f(v+f ) + f(v−f )).

– Let the allocation in round t of Synchronous Edge Balancing be Bf (v, t)
where Bf (v, 0) = f(v). Then, balancing is equivalent to Bf (v, t + 1) =
1
2 (Bf (v+, t) +Bf (v−, t)).

An interesting aspect of this reduction is the time reversal. By that we mean
that if one considers a T -horizon Random-Turn Game and T steps of Syn-

chronous Edge Balancing, then the first step of Synchronous Edge Bal-

ancing actually corresponds to the last step in the Random-Turn Game. In
general, the tth balancing step corresponds to t steps remaining in the game.
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Fig. 1. An unweighted bipartite graph G and its corresponding digraph D with bal-

anced allocations

Throughout this paper, we say a graph D is weakly acyclic if the only directed
cycles it contains go through s or r. If a graph G reduces to a digraph D that
is weakly acyclic then the balanced outcome on G is unique. The converse also
holds for unweighted bipartite graphs.

Consider the Random-Turn Game defined by the digraph D = (V,E) and
the payoff function f as above. The following theorem relates the value of the
Random-Turn Game to Synchronous Edge Balancing, and shows it is
sufficient to analyze the convergence of the Random-Turn Game.

Theorem 1. The value of a Random-Turn Game with starting vertex v and
horizon T is exactly B(v, T ) when the directed graph is weakly acyclic.

Let the balanced outcome be denoted by B(v). For such games, we give the
optimal rate of convergence, which is as follows. Let h be the maximum length
of a path from s to r in D.

Theorem 2. There exists a T ∈ O(h2 log(1/ε)) such that for all t ≥ T the value
of the Random-Turn Game starting at vertex v with horizon t is within ε of
B(v), given that D is weakly acyclic.

The proof of this theorem is the most technical part of the paper, and uses
techniques from the theory of martingales. Recall that an allocation f ′ is ε-close
to balanced if there exists a balanced outcome B′ such that |B′(v)−f ′(v)| ≤ ε for
all v. We can now restate the result and the corresponding rate of convergence
in Synchronous Edge Balancing. The proofs are the focus of Section 3.

Theorem 3. Synchronous Edge Balancing on unweighted bipartite graphs
with a unique balanced outcome results in an allocation that is ε-close to a bal-
anced outcome after at most O(|M |2 log(1/ε)) rounds of the balancing process.

This result follows directly from Theorem 2 and the fact that h ≤ |V | = |M |+2.
Lastly, we show our result is tight.

Theorem 4. There exist graphs G with matchings M and initial allocations
such that the balancing process requires Ω(|M |2 log(1/ε)) time to be ε-close to a
balanced outcome.
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Sketch of Convergence Proof

We now give a brief sketch of the proof of Theorem 2 for the case when M is
a perfect matching in G. Observe that if a game with finite horizon ends in an
absorbing state, then the vertex payoffs don’t matter. Thus one approach is to
show that with high probability, a Random-Turn Game with a sufficiently
large horizon ends in an absorbing state. To be precise, let {Xt} be a sequence
of vertices in a run of the Random-Turn Game under optimal play. We wish
to show that for a game with sufficiently large horizon T , XT ∈ {s, r} with high
probability. However, it is unclear how to analyze the behavior of Xt. Instead
we show it is sufficient to analyze the related sequence of vertices {Yt} obtained
when Max plays optimally, but Mini plays as if the payoff function was B. We
show B(Yt), the value of the balanced outcome of vertex Yt, is a supermartingale.
Moreover, we know that it is bounded in [0, 1] and show that its conditional vari-
ance is at least 1/h2. These suffice to prove the desired bound on the absorption
time.

Extensions

To summarize, the approach outlined to prove convergence of Synchronous

Edge Balancing is as follows: reduce it to convergence of a Random-Turn

Game (Theorem 1) and show bounds on this game (Theorem 2). The first part
of this approach can be extended naturally to show convergence (but not rates)
for may variants of the dynamics and general graphs. For non-bipartite graphs we
maintain a vertex in D for each matched vertex in G. If the graph is weighted we
use running payoffs in the random-turn game. Damped dynamics correspond to
lazy random-turn games. And if we wish vertices to be individual rational, then
the corresponding capped dynamics are captured by a random-turn game where
the players are allowed to quit. This list is far from exhaustive, but illustrates
the flexibility and robustness of our technique and is discussed further in the full
version of this paper.

3 Rate of Convergence

We begin with the proof of Theorem 1. We recall some notation: given an al-
location f , v+f = arg maxu:uv∈E{f(u)} and v−f = argminu:vu∈E{f(u)}. The
allocation in round t of Synchronous Edge Balancing is Bf (v, t) (we
now drop the subscript f for convenience). The updates are, B(v, t + 1) =
1
2 (B(v+, t) + B(v−, t)) where v+ and v− are defined with respect to B(v, t).
Theorem 1 says that B(v, T ) is the value of the Random-Turn Game starting
at vertex v with horizon T . The proof is by induction on T . We first strengthen
the inductive hypothesis to assume the optimal strategies for Max and Mini
are to choose v+ and v− respectively. We refer to this strategy as the balancing
strategy.

Theorem 5. Given a Random-Turn Game with horizon T , the optimal strat-
egy for either player is the balancing strategy.
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Proof (Theorems 1 and 5). The proof is by a joint induction on the horizon t
to prove (a) B(v, t) is the value of the game and (b) the optimal strategy when
t+ 1 moves remain is the balancing strategy.

In the base case, t = 0. To show (a), note that the expected payoff of the
game for Max at node v is exactly Bf (v, 0) = f(v) since there are no moves to
be made. To show (b), consider the horizon t+ 1 = 1 at a given node v. In this
case, optimal moves for Max andMini are clearly v+f and v−f respectively, since
the payoff at the end of this turn will be the terminal payoff of the game.

For the inductive step, let us assume that for all v and some t ∈ N, the value of
the game of horizon t−1 is Bf (v, t−1), and in the t horizon game the bargaining
strategy is optimal. To prove (a) we note that the latter statement implies Max
will move to v+B(v,t−1) if he wins the coin toss and Mini will move to v−B(v,t−1) if
she wins the coin toss. From the first part of the inductive hypothesis we know
B(v, t− 1) is the expected payoff for Max in the t− 1 horizon game. Thus, the
expected payoff of the game forMax under optimal play in the t horizon game is
1
2 (B(v+, t− 1)+B(v−, t− 1)) = B(v, t). To prove (b), consider the t+1 horizon
game. Under optimal play, Max wishes to maximize his expected payoff, and
Mini wishes to minimize the expected amount she has to pay. Assume we are
at vertex u, and recall that Max must move to a predecessor of u and Mini to
a successor. Since there are t steps remaining after the initial step, an optimal
strategy forMax (Mini) will maximize (minimize) the expected payoff Bf (v, t).
Thus, if Max wins the toss he will move to v+B(v,t) and if Mini wins it she will
move to v−B(v,t), which is precisely the balancing strategy. ��

We now give the proof of Theorem 2 for the case where we have a perfect
matching. Note that with the assumptions of the theorem, this implies D is
strongly acyclic; i.e. it does not contain cycles of any kind. We briefly explain
the technical extension for non-perfect matchings at the end of this section. The
main idea behind the proof is to first reduce the analysis to showing that a
particular sequence {Yt} (of vertices in V ) gets absorbed at {s, r} with high
probability, and then show this happens in polynomial time using techniques
from the theory of martingales.

Proof (Theorem 2). Consider two allocations, f and g such that f(v) ≤ g(v)
for all v. We show in Lemma 1 that Bf (v, t) ≤ Bg(v, t) for all v, t. Hence, if we
consider the initial allocations

0(v) =
{

0 if v 
= r;
1 otherwise. and 1(v) =

{
1 if v 
= s;
0 otherwise. ,

we have B0(v, t) ≤ Bf (v, t) ≤ B1(v, t) for all v, t, and f . Thus, it suffices to
prove that B0(v, T ) ≥ B(v)− ε and B1(v, T ) ≤ B(v)+ ε for T ∈ O(h2 log(1/ε)).
We will prove the latter, and the proof for the former follows exactly with the
roles of Mini and Max reversed and the payoff function 0 instead of 1.

Consider the game with payoff function 1 and horizon T where T ∈
O(h2 log(1/ε)). Consider the sequence of vertices {Xt} with X0 = v that oc-
curs if Mini and Max play optimally. From Theorem 1,
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B1(v, t) = E1(Xt). (1)

Now consider the half-optimal sequence {Yt} with Y0 = v, where Max plays
optimally for the payoff function 1 and Mini plays optimally for the payoff
function B. For the game with payoffs 1 Max’s expected payoff is only higher.
That is

E1(Xt) ≤ E1(Yt). (2)

Our key result in Lemma 3 shows that for any function f , Ev[|f(YT )−B(YT )|] ≤
ε. (The proof of this lemma follows by showing convergence of the sequence {Yt}.)
If we take f = 1 and note that 1(Yt) ≥ B(Yt), we get

E1(YT ) ≤ EB(YT ) + ε. (3)

Now consider the sequence {Zt} with Z0 = v that occurs when Mini and Max
play optimally for the payoff function B. The expected payoff for Max with
payoff function B is higher in {Zt} than in {Yt}. Thus

EB(YT ) ≤ EB(ZT ). (4)

Finally, we show in Lemma 2 that

EB(ZT ) = B(v). (5)

From (1) – (5), it follows that B1(v, T ) ≤ B(v) + ε as desired. ��

Lemma 1. The balancing process is monotonic, namely if f(v) ≤ g(v) for all
v ∈ V , then Bf (v, t) ≤ Bg(v, t) for all v, t.

Lemma 2. The value of a Random-Turn Game with function f = B is equal
to B for all horizons T ∈ N.

This Lemma follows from Theorem 1 and the observation that B is a fixed point
of Synchronous Edge Balancing. A detailed proof of both lemmas can be
found in the full version of this paper.

Lemma 3. Consider the expected payoff for Max in the half-optimal chain {Yt}
defined in the proof of Theorem 2. For sufficiently large t, the expected payoff
for Max with payoff function f is close to the balanced outcome B. Specifically,
Ev[|f(YT )−B(YT )|] ≤ ε when T ≥ 4h2 log(1/ε).

Proof. Clearly if Yt ∈ {s, r}, then the game has ended and f(Yt) − B(Yt) = 0.
Additionally, the difference |f(Yt)−B(Yt)| is at most 1 since f(v), B(v) ∈ [0, 1]
for all v ∈ V . Thus, the expected difference Ev[|f(Yt) − B(Yt)|] is at most the
probability that Yt has not been absorbed.

Let us now show this probability is bounded by ε, namely Prv[Yt 
∈
{s, r} for t ≥ 4h2 log(1/ε)] ≤ ε for all v ∈ V . The main convergence is shown in
Lemma 4 which says that the probability that Yt 
∈ {s, r} for t = 4h2 is at most
1
4 . Since the statement holds for all v ∈ V , if we are not at s or r after 4h2 time
steps we can simply apply the lemma again. Thus, after 4h2 log(1/ε) time steps,
the probability that we are not at s or r is (1

4 )log(1/ε) = 4log ε ≤ ε. ��
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Lemma 4. Prv[Yt 
∈ {s, r} for t ≥ 4h2] ≤ 1
4 for all v ∈ V where h is the height

of D5 and {Yt} is the half-optimal chain defined above.

Proof. Let the absorption time be τ = min{t : Yt ∈ {s, r}}. Note that Pr[Yt 
∈
{s, r} for some t ≥ 4h2] = Pr[τ ≥ 4h2]. We show that E[τ ] ≤ h2. Then by
Markov’s inequality, Pr[τ ≥ 4h2] ≤ 1

4 as desired.
Consider the sequence {Ψt} = {B(Yt)}. In the half-optimal chain {Yt}, Max

plays suboptimally and Mini plays optimally according to payoff function B
(see the proof of Theorem 2). Hence B(Yt) is an upper bound on the expected
payoff for Max at time t, and therefore {Ψt} is a supermartingale.6

Now consider the quadratic chain Φt = 2Ψt − Ψ2
t + tσ2 where σ2 is a lower

bound on the conditional variance of Ψt. We show that Φt is also a supermartin-
gale (Lemma 5). Therefore, since Φt ≥ 0, the optional stopping theorem7 gives
E[Φτ ] ≤ Φ0 ≤ 1. The bounds on Ψt also imply that 2Ψt − Ψ2

t ≥ 0, and hence
we get E[Φτ ] ≥ E[τ ]σ2,and E[τ ] ≤ 1

σ2 . By Lemma 6, we know that we can take
σ2 = 1

h2 , so E[τ ] ≤ h2 as required. ��

Lemma 5. Given a supermartingale 0 ≤ Ψt ≤ 1 with conditional variance at
least σ2, the quadratic chain Φt = 2Ψt − Ψ2

t + tσ2 is a supermartingale.

Lemma 6. The variance of a step in {Ψt} is at least σ2 = 1/h2.

The proofs of these lemmas can be found in the full version of this paper.
When M is not a perfect matching, D is a weakly acyclic digraph with a

cycles through s and/or r. Any vertex in such a cycle must take value exactly
0 or 1 in the balanced outcome, thus these cycles can be treated as absorbing
states. Hence, we can first analyze the mixing time of the cycle using spectral
techniques8, and then apply the theorems above to get the same time bound.

4 Conclusion and Future Work

We reduced the problem of analyzing the convergence of local dynamics for a
network bargaining game to that of a random-turn game. With this reduction
we bring all the machinery from the analysis of random processes, especially the
theory of Markov chains and martingales, to the analysis of local dynamics. We
used these techniques to give the optimal bound on unweighted graphs with a
unique balanced outcome. Prior to this work, there was no effective technique
known to analyze such dynamics, and the best bound known on any non-trivial
class of graphs was exponential.

Our work opens up a promising line of approach to analyze many variants of
local dynamics on general graphs. The most immediate is perhaps to bound the
convergence rate for weighted graphs. The difficulty with our current analysis is
5 The height is the length of the longest path from s to r.
6 Recall that a supermartingale is a sequence {at} in which at ≥ E[at+1|at].
7 See Theorem 10.10 (d) in [36].
8 See Chapter 12 in Peres, et al. [26] for an exposition on spectral techniques.
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that the supermartingale Ψt we used in the unweighted case is unbounded when
there are weights. We believe a different supermartingale that does not suffer
from this drawback could give the appropriate bound.

The most significant technical hurdle arises when D is cyclic. In this case, the
game may never end, since it might get stuck in a stalemate, where the players
travel in a cycle indefinitely. Thus, a bound on the absorption time of the game
does not suffice – we must analyze the behavior on the cycle separately by
internally considering its mixing time, and externally treating it as an absorbing
state.9 However, the details of such an analysis remain unclear.

A final important direction is to obtain tight polynomial bounds for dynamics
which find both the matching and the balanced outcome simultaneously. One
approach would be to combine the dynamics by Kanoria et. al. [22] with our
techniques to attain a tight polynomial rate of convergence.
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Abstract. Ads on the Internet are increasingly sold via ad exchanges

such as RightMedia, AdECN and Doubleclick Ad Exchange. These ex-

changes allow real-time bidding, that is, each time the publisher contacts

the exchange, the exchange “calls out” to solicit bids from ad networks.

This solicitation introduces a novel aspect, in contrast to existing lit-

erature. This suggests developing a joint optimization framework which

optimizes over the allocation and well as solicitation.

We model this selective call out as an online recurrent Bayesian de-

cision framework with bandwidth type constraints. We obtain natural

algorithms with bounded performance guarantees for several natural op-

timization criteria. We show that these results hold under different call

out constraint models, and different arrival processes. Interestingly, the

paper shows that under MHR assumptions, the expected revenue of gen-

eralized second price auction with reserve is constant factor of the ex-

pected welfare. Also the analysis herein allow us prove adaptivity gap

type results for the adwords problem.

1 Introduction

A dominant form of advertising on the Internet involves display ads; these are
images, videos and other ad forms that are shown on a web page when viewers
navigate to it. Each such showing is called an impression. Increasingly, display
ads are being sold through exchanges such as RightMedia, AdECN and Dou-
bleClick Ad Exchange. On the arrival of an impression, the exchange solicits
bids and runs an auction on that particular impression. This allows real time
bidding where ad networks can determine their bids for each impression indi-
vidually in real time (for an example, see [24]), and more importantly where
the creative (advertisement) can be potentially produced on-the-fly to achieve
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better targeting [22]. This potential targeting comes hand in hand with several
challenges. The Exchange and the networks face a mismatch in infrastructure
and capacities and objectives. From an infrastructure standpoint, the volume
of impressions that come to the exchange is very large comparison to a smaller
ad network limited in servers, bandwidths, geographic location preferences. This
implies a bound on the number of auctions the network can participate in ef-
fectively. A network would prefer to be solicited only on impressions which are
of interest to it, and in practice use a descriptive languages to specify features
of impressions (say, only impressions from NY). However this is an offline fea-
ture and runs counter to the attractiveness of real time bidding. Therefore the
exchange has to “call out” to the networks selectively, simultaneously trying to
balance the objective of soliciting as many networks as possible and increasing
total value, as well as not creating congestion. This leads to a host of interesting
questions in developing a joint optimization framework that optimizes over the
allocation objective as well as the decisions to solicit the bids.

1.1 Selective Call Out: The Model

Let n be the number of ad networks 1, 2 . . . n. We assume that impressions arrive
from a fixed (unknown) distribution over a finite set UI , and that there exists
a finite set of bid values UB, where L = max{u| u ∈ UB}. In the following, ad
networks will be indexed by i ∈ {1, 2 . . . n}, impressions by j ∈ UI and bid values
by k ∈ UB. The problem setting involves several steps:
1. An impression (or keyword) j, assumed drawn from a distribution D, comes

to the exchange. There may be multiple slots associated with a single impres-
sion, corresponds to text ads being blocked together, different locations in
the page, which are often characterized by different discount rate. Let there
be M slots, with discount rates 1 ≥ �1 ≥ �2 . . . ≥ �M ≥ 0. If a bidder bids
v, then it is assumed that the bid for the �th slot is v��. The case of M = 1
is common and correspond to a basic pay-per-impression mechanism with
discount rate 1.

2. Given an impression j, the bid of ad network i for impression j is drawn
from a fixed distribution Vij such that the bid is v with probability pijv .
Note that the bids of different networks are likely to be correlated based
on the perceived value of the impression, however, conditioned on j, the
specific dynamics of different bidders can be construed to be independent.
We assume that the exchange has learned or can predict these pijv given the
impression j. This is an assumption similar to estimation processes used by
search engines to predict click through rates.

3. The exchange decides on the subset Sj of networks to call out, subject to the
Call-Out constraints, which roughly bounds the rate at which the exchange
can send impressions to solicit bid from an ad network. This decision is
executed before seeing the next impression.

To define a specific problem in the above framework, we need to specify (i) an
objective function (ii) a model for call out constraints, and (iii) the comparison
class. The goal is to design a call-out policy that satisfies (ii) and is near optimal
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in the objective function (i), when compared to other algorithms in class (iii).
We discuss the instantiations of (i),(ii), and (iii) in the following.

(i) Objective Functions. We consider three different objective functions. (a)
Total Value: The sum of the maximum bids in Sj over the arriving impressions j.
(b) GSP-Reserve (defined above) and (c) Revenue under posted price mechanism
(take-it-or-leave-it prices). All the quantities are in expectation. Total value cor-
responds to the welfare. The GSP with an uniform reserve price is a common
mechanism used in these settings. Posted Prices (different networks may get dif-
ferent prices) are also used in this context. Note, unlike [8,4], the mechanism is
parallel posted price because all the prices are posted first.

(ii) Call Out Constraint Models. The simplest model for the call out con-
straints is a model where one impression arrives at the exchange at each time
step and if the total number of arrivals ism, ad network i can be solicited at most
times for some known ρi ≤ 1. We will refer to this as time average model under
uniform arrival – which describes the constraints at the outgoing and incoming
sides of the exchange respectively. Most of the paper will focus on this model –
primarily because we can show that other common models reduce to this variant.
The non-initiated reader can skip the description of these models and proceed
to (iii). On the incoming side of the exchange, standard practice is to assume
bursty (Poisson) arrivals. We consider this generalization. On the outgoing side,
the simple model allow the possibility that the call-outs to a network are made
on contiguous subset of impressions. This misses the original goal that the ad
network would receive the impressions at a “smooth” rate. A common model
used for behavior is the token bucket model [26]. A token bucket has two param-
eters, bucket size σ and token generation rate ρ. The tokens represent sending
rights, and the bucket size is the maximum number of tokes we can store. The
tokens are generated at a rate of ρ per unit time, but the number of tokens never
exceeds σ. In order to send, one needs to use a token, and if there are no tokens,
one can not send. The output stream of a (σ, ρ) token bucket can be handled
by a buffer of size σ and a time average rate of ρ – the buffer is initially full.
Unlimited buffer size corresponds to the time average model.

(iii) Comparison Class. Given the call out constraints, we define the class of
admissible policies. An admissible call out policy specifies (possibly with random-
ization), for each arriving impression j, the subset Sj of ad networks to call out,
while satisfying all call out constraints over the entire sequence of impressions.
The policy bases its decision on the prior information about the bid distribu-
tions, and has no knowledge of the actual bid values. In the case of GSP-Reserve
mechanism, the call out policy also decides the reserve price for each impression
(and likewise for the case of a posted price mechanism). Our comparison class
is the set of all admissible call out policies which know the bid distributions for
every impression, but do not know the actual realization of the bids. The per-
formance of a policy is measured as the expected (over the bid distributions and
the impression arrivals) objective value obtained per arriving impression, when
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impressions are drawn from D. A policy is α-approximate if it achieves at least
α times the performance of the optimal policy for the corresponding objective.

1.2 Our Results, Roadmap and Related Work

We provide three algorithms LP-Val, LP-GSP, and LP-Post for the objectives
discussed for the time average uniform arrival model. We then prove that the
results translate naturally to other constraint models. Recall, L is the largest
possible bid. The algorithms will have a natural two-phase approach where we use
the t initial impressions as a sample as exploration and subsequently use/exploit
this algorithm (see Section 2 for more discussion). We show that:

Theorem 1. Suppose the optimal policy has expected total value at least δ >
0. For any ε > 0, LP-Val with a sample of t = Õ(n2L

δε ) impressions gives a
(1− 1

e − ε)-approximate policy.

Theorem 2. Suppose the optimal GSP-Reserve policy has expected revenue at
least δ > 0. For any ε > 0, LP-GSP with a sample of t = Õ(n2L

δε ) impressions
gives a O(1)-approximate policy, if all bid distributions satisfy the monotone
hazard rate (MHR) property. Moreover, the call outs of the policy derived from
LP-GSP are identical to those of the policy derived from LP-Val.

Theorem 3. Suppose the optimal posted price policy has expected revenue at
least δ > 0. For any ε > 0, LP-Post with a sample of t = Õ(n2L

δε ) impressions
gives a (1− 1

e − ε)-approximate policy.

In particular, we show that when every bidder is solicited – GSP-Reserve achieves
a revenue that is O(1) factor of optimal welfare, when all bid distributions satisfy
the MHR property. This is a common distributional assumption in economic
theory, and is satisfied by many distributions [3]. This result is in the same
spirit as (but immediately incomparable to) the result in [4], which relates the
optimum sequential posted price revenue to the optimal welfare under the same
assumptions. We are unaware of such results about GSP-Reserve. We do not
need the MHR assumption unlike the result in [4] for sequential posted prices,
since the comparison classes are different (the prices are posted in parallel). We
discuss the realization of the above algorithms for different network models next.

Theorem 4. For a given distribution on impressions D, suppose we have an
α-approximate policy for an objective which is additive given the allocations and
the realizations (and is at least δ > 0) in the time average uniform arrival call out
model. Let σi > σ ∀i. Then we can convert the policy to a (α− 1

σ−1 )-approximate
policy in the token bucket model. The result extends to Poisson arrivals.

Comparison with the Adwords Model: The call out optimization frame-
work is similar to the online ad allocation framework for search ads, or the
Adwords problem [19,5,7], and its stochastic variants [9,27]. However there are
significant differences which we discuss below. The Adwords problem is posed
in the deterministic setting where the expected revenue is treated as a known
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deterministic reward of allocating an impression j to an advertiser i. The call
out framework has no deterministic analogue; the rationale of the exchange is
that the bids and the participation are not known. In this regard, the call-out
framework is similar to the Bayesian mechanism design [21].

This unknown participation has broad conceptual implications, first of which
is the notion of “adaptivity gap”. An ad-allocation policy may choose to react to
realization of the random variables. This aspect is central in the exchange setting.
Interestingly, the analysis in this paper also allows us to consider adaptivity gap
for in the Adwords setting, if the allocation policy is allowed to adapt to the
occurence or absence of a click (instead of using a deterministic quantity which is
the product of the click-through-rate and the cost of a click). This is a significant
issue for low click through rates and large bids, such that a payout affects the
budget substantially. To the best of our knowledge, no analysis of adaptivity gap
existed for the adwords problem previously,

Second, many objective functions such as generalized second price with reserve
(henceforth GSP-Reserve), for one or multiple slots, have very different behav-
iors in the Bayesian and deterministic settings. Consider running Myerson’s (or
similar) mechanism on the expected bids instead of the distributions. For known
deterministic bids, reserve prices can be made equal to the bid, and are not useful.
Strong lower bounds hold for GSP without reserves [1]. Note that in GSP-Reserve
we announce an uniform reserve price, before the bids are solicited.

Third, the notion of a comparison class in case of call out optimization frame-
work requires more care than the Adwords framework. In the setting of these
large exchanges, a comparison class with full foreknowledge of all information
(in particular, the realization of the bids) is unrealistic. Moreover, the realiza-
tions of the bids depends on the networks which are called out, and two different
strategies that call out to two different subsets will have completely different in-
formation. Thus to compare two algorithms, we should compare their expected
outcome – but each algorithm is allowed to be adaptive.

We use Lagrangian decoupling techniques for separable convex optimization
pioneered by Rockafellar [25]. This has been used in the stochastic variants of
the Adwords problem in [9,27]. But the similarity ends there. The different pos-
sible objectives of the call-out framework are not convex. In fact, in the case of
optimizing revenue in GSP (with reserve) or in posted price mechanisms, the ob-
jective is not submodular for all prices (as in welfare maximization). Submodular
maximization with linear constraints has been studied, and while good approx-
imation algorithms exist [6,17], they are inherently offline – the key aspect of
call out optimization is that the decision has to be made in an online fashion.
The same is true for sequential posted price mechanisms analyzed in [8,4] (albeit
with more general matroid setting), the posted prices in the call out setting need
to be announced in parallel (and the eventual allocation is sequential).

Other Related Work: A combination of stochastic and online components ap-
pear in many different settings [14,15,2,13] which are not immediately relevant
to the call-out problem. We note that the bandwidth-like constraints (where the
constraint is on a parameter different than the obtained value, as is the case for
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call-outs) has not been studied in the bandit setting (see [16,23]). Finally, bidding
and inventory optimization problems [11,10,20], are not immediately relevant.

Roadmap: We summarize the results on online stochastic convex optimization
in Section 2. We subsequently discuss the the total value problem in Section 3.
We discuss the GSP-Reserve problem in Section 4. The posted price problem is
discussed in the full version. The token bucket model and other arrival assump-
tions are also discussed in the full version.

2 Preliminaries
Consider a maximizing a “separable” linear program (LP) L defined on Q global
constraints with right hand side bi, such that the Lagrangian relaxation produced
by the transferring these constraints to the objective function decouples into a
collection of independent non-negative smaller LPs Lj over n′ variables and local
constraints. This implies that the objective function of L is a weighted linear
combination of Lj . The uniqueness of the optimum solutions for Lj implies that
L reduces to finding the Lagrangian multipliers. The unique solution is achieved
by adding “small perturbations”, see Rockafellar [25]. However, this approach
only provides a certificate of optimality and a solution, once we are given the
Lagrangians. The approach does not give us an algorithm to find the Lagrangian
multipliers themselves. Devanur and Hayes [9] showed that if the smaller LPs
could be sampled with the same probability as their contribution to the objective
of L, and the derivatives of the Lagrangian can be bounded, then the Lagrangians
derived from a small number of samples (suitably scaled) can be used to solve the
overall LP. The weighted sampling reduces to the prefix of the input if the Ljs
arrive in random order (see [12]). This was extended to convex programs in [27].
The number of sample bound requires several (easy) Lipschitz type properties:

1. The optimum value of L is at least δ > 0 and the optimum solution of Lj is
at most R.

2. For each setting of the Lagrangians, every Lj has a unique optimum solution.
3. Reducing bi by a factor of 1− ε reduces L by at most (1− ε).
4. L does not change by more than a constant times 1 + ε if we alter the value

of the optimum Lagrangian multipliers by a factor of 1 + ε.

Theorem 5. Sample t = Õ(n′QR
δε ) of the smaller linear programs and consider

the linear program L′ which corresponds to the union of these smaller linear pro-
grams and suitably scaled global constraints. If we use the optimum Lagrangian
multipliers corresponding to the global constraints of L′ to solve the decoupled
instances of Lj as they are available (in an online fashion) then we produce a
1 + ε approximation to the optimum solution of L.

In the setting of Adwords, the smaller LPs correspond to the arrival of an im-
pression, and the associated assignment. Thus the stochastic framework of the
Adwords problem is obviously of relevance to the call out optimization frame-
work. However the focus shifts on solving the smaller LPs which encode the call
out decision. A nice outcome of the approach is a simple two phase algorithm;
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an Exploration phase where the samples are drawn, and an Exploitation phase
where the Lagrangian multipliers are used. If Q,n′, R are small, then the ex-
ploration phase can be (relatively) short and this yields a natural algorithm.
Thus the goal of the rest of the paper would be to formulate separable convex
relaxations and achieve the mentioned properties.

3 The Total Value Problem

In this section, we prove Theorem 1, and describe LP-Val. Let qj denote the
probability that impression j arrives. We shall add infinitesimal random pertur-
bations to pijv which shall not affect the performance of any policy but ensure
pijv are in general positions, that is, any combination of them will almost surely
create a non-singular matrix.

The LP Relaxation: Let xij be the (conditional) probability that advertiser i
was called out on impression j. Let yijv� be the probability that advertiser i bid
the value t and was assigned the slot � (also conditioned on j). The constraints
are named as A(x, y) and B(x, y) as shown.

LP1 = max
∑

j

qj

∑
v

∑
i

∑
�

v��yijv� s.t.

∑
j qjxij ≤ ρi∑

i

∑
v yijv� ≤ 1

xij ≤ 1∑
� yijv� ≤ pijvxij

xij , yijv� ≥ 0

⎫⎬⎭B(x, y)

⎫⎪⎪⎬⎪⎪⎭A(x, y)

Decoupling: Let λ∗i be the optimum Lagrangian variable for the constraint∑
j qjxij ≤ ρi. LP1 then decouples to smaller LPs, LP2(j,λ∗

i ) subject to the
constraintsA(x, y), that is, LP1 = LP1(λ∗

i ) =
∑

i λ
∗
i ρi+

∑
j qjLP2(j,λ∗

i ) where
LP2(j,λ∗

i ) = max (
∑

v

∑
i

∑
� v��yijv� −

∑
i λ

∗
i xij)

Solving LP2(j,λ∗
i ). We begin by considering the dual. Let τj� be the dual of

the constraint
∑

i

∑
v yijv� ≤ 1. Let ξijv correspond to the dual of the constraint∑

� yijv� ≤ pijvxij . Let ζij correspond to the dual of xij ≤ 1.

DualLP2(j, λ∗
i ) = min

∑
i

ζij +
∑

�

τj� s.t.

τj� + ξijv ≥ v��

ζij −
∑

v ξijvpijv ≥ −λ∗
i

τj�, ξijv, ζij ≥ 0

Lemma 1. Let τ∗j� be the optimum dual variables for LP2. Then (i) For all �
there exists i and v ≥ τ∗j�/�� s.t. ξ∗ijv = v�� − τ∗j� (ii) τ∗j�/�� is non-increasing.

Proof. For every � there must be some i, v such that we have τ∗j� + ξ∗ijv = v��.
Otherwise we can keep decreasing τ∗j�, keeping all other variables the same and
contradict the optimality of the dual solution. Now ξ∗ijv ≥ 0 and the condition
on t follows. The condition corresponds to the set of points (v, ξ∗ijv) in the two
dimensional (x, y) plane being above the lines {y = ��x − τ∗j�}. For the second
part, consider τ∗j� and the i, v such that we have τ∗j� + ξ∗ijv = v��. Define t to
be the support of �. Let v ≥ τ∗j�/�� be the largest such support of �. Consider
τ∗j(�−1). We have (τ∗j(�−1) + ξ∗ijv)/��−1 ≥ v = (τ∗j� + ξ∗ijv)/��. But ��−1 ≥ �� and
thus τ∗j�/�� are non-increasing in �. Moreover, if �� = ��−1 then τ∗j� = τ∗j(�−1).
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Decoupling LP2(j,λ∗
i ) itself. Consider LP2(j,λ∗

i ) with the Lagrangians
τ∗j�. The problem decomposes under the constraints B(x, y), to
LP2(j,λ∗

i ) =
∑

� τ
∗
j� +

∑
i LP3(j,λ∗

i , τ
∗
j�, i) where LP3(j,λ∗

i , τ
∗
j�, i) =

max
(∑

�

∑
v

[
v�� − τ∗j�

]
yijv� − λ∗i xij

)
.

Lemma 2. Define �(v) = argmax�′
{
��′v − τ∗j�′ |��′v > τ

∗
j�′

}
and �(t) = M+1 if

the set is empty. Set y∗ijv� = pijv if � = �(v) and 0 otherwise. If
∑

v

∑
� v��y

∗
ijv� ≥

λ∗i we set xij = 1 and yijv� = y∗ijv�. Otherwise we set xij = yijv� = 0.

Proof. LP3(j,λ∗
i , τ

∗
j�, i) is optimized at xij = 1 or xij = 0. This is because if

0 < xij < 1 and
∑

�

∑
v

[
v�� − τ∗j�

]
yijv� − λ∗i xij > 0 then we can multiply all

the variables by 1/xij and have a better solution. If the latter condition is not
true then xij = 0 is an equivalent solution. If xij = 1 the optimal setting for
yijv� is y∗ijv�. (Note that y∗ijv� is uniquely determined for a fixed t.) Thus the
overall optimization follows from comparing the xij = 1 and xij = 0 case.

Interpretation and the Call Out Algorithm: Given {τ∗j�}M
�=1, the distribu-

tion {pijv} for i, is divided into at most M + 1 pieces (some of the pieces can
be a single point) given by the upper envelope (the constraint max) of the lines
{��x−τ∗j�}M

�=1 and the line y = 0, in the x–y coordinate plane. Intuitively, seeing
the value x = t, if the upper envelope corresponds to the equation ��x− τ∗j� then
we are “interested” in the slot �. If the weighted (by ��) sum of interests, given
by
∑

v v��y
∗
ijv� exceeds λ∗i , then it is beneficial to call out i. We call out based

on this condition and allocate the slots in decreasing order of bids.

Analysis: The LP2 solution satisfies: LP1 =
∑

i,v vpijv��(v) and∑
i,v:�(v)=� pijv = 1. For each slot �, let wi(�) =

∑
v:�(v)=� vpijv and ui(�) =∑

v:�(v)=� pijv . Order the i in non-increasing order of wi(�)/ui(�) inside the slot.
If we call out to i and get t, then for the sake of analysis we will consider its
contribution to slot �(t) only. Moreover, we stop the contribution to a slot � if
any any of the i return a value t with �(t) = �. The best M ordered bids outper-
form the analyzed contribution in every scenario. Therefore it suffices to bound
the contribution.

Lemma 3. Suppose we are given a set of independent variables Yi such that
Pr[Yi 
= 0] = ui and E[Yi] = wi. Consider the random variable Y corresponding
to the process which orders the variables {Yi} in non-increasing order of wi/ui,
and stops as soon as the first non-zero value is seen. Then E[Y ] =

∑
i

∏
i′<i(1−

ui′)wi ≥
∑

i wi

(
1− e−1

)
.

Proof. Let F ({(wi, ui)}) =
∑

i

∏
i′<i(1 − ui′)wi. Let λ =

∑
iwi/

∑
i ui. Given

the sequence {(wi, ui)} where wi/ui are non-increasing, if there exists an i such
that wi/ui 
= wi+1/ui+1, then define a new sequence {(w′

i, ui)} as follows:

w′
i′ =

⎧⎨⎩
wi′ if i′ 
= i, i + 1

wi − Δ if i′ = i
wi+1 + Δ if i′ = i + 1

where Δ =

wi
ui

− wi+1
ui+1

1
ui

+ 1
ui+1
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Note that
∑

iwi =
∑

iw
′
i and w′

i/ui remains non-increasing. Now
F ({(wi, ui)})−F ({(w′

i, ui)}) =
∏

i′<i(1−ui′)Δ−
∏

i′<i+1(1−ui′)Δ =
∏

i′<i(1−
ui′)uiΔ > 0. Thus, we can repeatedly perform the above steps till we get a se-
quence such that w′

i/ui remains the same for all i and
∑

i wi =
∑

i w
′
i. Clearly

w′
i = λui in this case. The function F continues to decrease, F ({(wi, ui)}) ≥
F ({(w′

i, ui)}) and

F ({(w′
i, ui)}) =

∑
i

∏
i′<i

(1 − ui′)λui = λ

(
1 −

∏
i

(1 − ui)

)
≥ λ

(
1 − e−

∑
i ui

)
But 1

x(1 − e−x) is decreasing over [0, 1] and the worst case is x = 1.

In slot � (renumbering the advertisers in the order of wi(�)/ui(�)) we get an
expected reward of wi(�) if we reach i. But the events are independent in a
particular slot. Thus the expected reward in a slot is bounded by (using inde-
pendence and Claim 3) to be (1− e−1) times

∑
i wi(�). We now apply linearity

of expectation across the slots – observe that the events across the slots are quite
correlated. The expected reward is at least (1− e−1) times

∑
�

∑
i wi(�) = LP1.

Theorem 1 follows from Lemmas 2 and 3 and the application of Theorem 5.

4 Generalized Second Price with Reserve (GSP-Reserve)

The call outs for this problem would be exactly the same as the algorithm in
Section 3. We will however adjust the reserve prices. The reserve price will be
the same for all the advertisers being called out on that impression. In fact
either we will run a single slot auction with a reserve price, or simply GSP for
the M slots. The decision will depend on the LP solution found for this specific
impression (and the contributions of different parts of the LP). Recall that the
bid distribution Vij of advertiser i on impression j is assumed to satisfy the
MHR property. We use the following:

Lemma 4. (Lemma 3.3 in [4]) For any random variable V following an MHR
distribution, let v∗ = argminv{v|vPr[V ≥ v] ≥ 1

2

∑
v′≥v v

′ Pr[V = v′]}. Then
Pr[V ≥ v∗] ≥ e−2.

The next lemma is a restatement of Lemma 2 and the subsequent analysis.

Lemma 5. Given an impression j(t), and define v1(t) = max�:�1 
=��
(τ∗j1 −

τ∗j�)/(�1− ��). The call out to a set S(t) 
= ∅, ensures that
∑

i

∑
v≥v1(t) pijv ≥ 1.

Definition 1. Given an impression j(t), and the call out decision to a set S(t) 
=
∅ at time t, let v∗m(i, t) = min{v|2vPr[Vij ≥ v] ≥

∑
v′≥v v

′pijv′} and Ψ(t) =
{i|i ∈ S(t) and v1(t) ≤ v∗m(i, t)}. Note that using Lemmas 4, and 5, we have
|Ψ(t)| ≤ �e2� = 7 since i ∈ Ψ(t) contributes a probability mass of at least e−2.

Lemma 6. Given an impression j(t), and the call out decision to a set S(t) 
= ∅
at time t, we can set a single threshold v∗(t) ≥ v1(t) such that if we set a reserve
price v∗(t) for a single slot then the revenue (ignoring the multiplicative discount
factor �1) is at least 1

4(7e2+1)

∑
i∈S(t)

∑
v≥v1(t) vpijv .



154 T. Chakraborty et al.

Proof. Let
∑

i∈S(t)

∑
v≥v1(t)

vpijv = Z. We have two cases, (i)∑
i∈Ψ(t)

∑
v≥v1(t)

vpijv ≥ 7e2Z/(7e2 + 1) or (ii) otherwise. In case (i), pick the
i ∈ Ψ(t) such that

∑
v≥v1(t) vpijv is maximized, which is at least e2Z/(7e2 + 1)

since |Ψ(t)| ≤ 7. Let Vij be the random variable that corresponds to the bid of
advertiser i on impression j. Now since v∗m(i, t) ≥ v1(t) we have that∑

v≥v∗
m(i,t)

vpijv ≥ Pr [Vij ≥ v∗
m(i, t)|Vij ≥ v1(t)]

∑
v≥v1(t)

vpijv

≥ Pr [Vij ≥ v∗
m(i, t)]

∑
v≥v1(t)

vpijv ≤ 1

e2

∑
v≥v1(t)

vpijv

which is at least Z/(7e2 + 1). Now, if we set v∗(t) = v∗m(i, t) then just from i we
have

∑
i∈S(t)

∑
v≥v∗(t) pijv ≥ 1

2

∑
v≥v∗

m(i,t) vpijv and therefore in this case the
lemma is true.

In case (ii), we have
∑

i∈S(t)\Ψ(t)

∑
v≥v1(t) vpijv ≥ Z/(7e2+1). But for each i ∈

S(t) \ Ψ(t) we have v1(t)
∑

v≥v1(t) pijv ≥ 1
2

∑
v≥v1(t)

vpijv and as a consequence,
v1(t)

∑
i∈S(t)\Ψ(t)

∑
v≥v1(t) pijv is at least Z/(2(7e2+1)). Consider setting v∗(t) =

v1(t). Let p =
∑

i∈S(t)\Ψ(t)

∑
v≥v1(t) pijv. Since p ≤ 1 (from definition of v1(t),

see Lemma 5) the probability of sale is at least (1− 1
e )p which is bounded below

by p/2. The Lemma follows in this case as well.

Lemma 7. Given an impression j(t), and the call out decision to a set S(t) 
= ∅
at time t, consider (i) If

∑
i∈S(t)

∑
v v��(v)y

∗
ijv�(v) ≥ 3

∑
i∈S(t)

∑
v≥v1(t) v�1y

∗
ijv1

then call-out to S(t) and run regular GSP. (ii) Otherwise call-out to S(t) and run
a single slot auction with the threshold v∗(t) given by Lemma 6. This algorithm
gives a revenue which is Ω(1) factor of the LP bound on efficiency which is
given by

∑
v

∑
i∈S(t)

∑
v v��y

∗
ijv�(v). Note that the call out decisions are based on

optimizing the total value/ efficiency of the slots, and thus are feasible.

Proof. Let the non-increasing ordered list of values that are returned for a time
step be a1(t). Suppose we are in case (i). Then the revenue of GSP is at least∑M

r=1 �rar+1(t). Now since �r are decreasing, and ar(t) are non-increasing, we
have

∑M
r=1 �rar+1(t) ≥

∑M
r=1 �rar(t)− �1a1(t), which implies that

E

[
M∑

r=1

�rar+1(t)

]
≥ E

[
M∑

r=1

�rar(t)

]
− �1E [a1(t)] (1)

We know from Section 3 that E
[∑M

r=1 �rar(t)
]
≥
(
1− 1

e

)∑
i∈S(t)

∑
v v��y

∗
ijv�(v).

We observe that E [a1(t)] ≤
∑

i∈S(t)

∑
v≥v1(t) vy

∗
ijv1. This is easily seen if we write

an LP for the maximum value seen (this LP is for analysis only). Let xiv be the
probability that i ∈ S(t) is the maximum with value v. Then (we drop the index
j for convenience):

E [a1(t)] ≤ LPMAX = max
∑

i

∑
v

vxiv s.t.

∑
i

∑
v xiv ≤ 1

xiv ≤ piv

xiv ≥ 0
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The optimum solution of LPMAX is x∗iv = piv for v > τ and x∗iv ≤ piv

for one i and v = τ . Here τ is the optimum dual variable for the constraint∑
i∈S(t)

∑
v xiv ≤ 1. Note that

∑
i∈S(t)

∑
v x

∗
iv = 1. For v > v1(t) we have

y∗ijv1 = pijv and v < v1(t) we have y∗ijv1 = 0. Moreover
∑

i∈S(t)

∑
v≥v1(t) y

∗
ijv1 =

1. Likewise for v > τ we have x∗iv = piv and v < τ we have x∗iv = 0 and∑
i∈S(t)

∑
v≥τ x

∗
iv = 1.

Suppose that τ < v1(t). We arrive at a contradiction because
∑

i∈S(t)

∑
v≥τ

x∗iv >
∑

i∈S(t)

∑
v≥v1(t) y

∗
ijv1 = 1 which implies that we are exceeding the proba-

bility mass of 1 for the maximum. On the other hand if τ > v1(t), then we again
have a contradiction that

∑
i∈S(t)

∑
v≥v1(t) y

∗
ijv1 >

∑
i∈S(t)

∑
v≥τ x

∗
iv = 1 which

implies {y∗ijv1} were not feasible.
As a consequence, τ = v1(t) and for v > τ = v1(t) we have x∗iv = y∗ijv1 = pijv =

piv. For v < τ = v1(t) we have x∗iv = y∗ijv1 = 0. Therefore E [a1(t)] ≤ LPMAX =∑
i∈S(t)

∑
v vx

∗
iv =

∑
i∈S(t)

∑
v vy

∗
ijv1 as claimed. Applying this claim to Equa-

tion 1, and the fact that
∑

i∈S(t)

∑
v vy

∗
ijv1 ≤ 1

3

∑
i∈S(t)

∑
v v��y

∗
ijv�(v), we get

E

[
M∑

r=1

�rar+1(t)

]
≥
(

1 − 1

e
− 1

3

) ∑
i∈S(t)

∑
v

v��y
∗
ijv�(v)

Thus in this case the expected revenue is Ω(1) of the LP bound on the efficiency.
Suppose we are in case (ii). By Lemma 6 we are guaranteed an expected

revenue of Ω(1) times �1
∑

i∈S(t)

∑
v≥v1(t) vpijv ≥

∑
i∈S(t)

∑
v≥v1(t) v�1y

∗
ijv1 ≥

1
3

∑
i∈S(t)

∑
v v��(v)y

∗
ijv�(v). In this case also the expected revenue is Ω(1) of the

LP bound; the lemma follows.

Proof. (Of Theorem 2). Let App be the policy that approximately maximizes
the efficiency. Let OPTG be the optimum GSP-Reserve policy. Let OPTB

be the optimum policy which maximizes the total value. Given a policy P
let Gsp(P ) denote the expected revenue of the policy if the charged as GSP,
BestKW(P ) denote the expected (weighted) efficiency. Then for any policy
Gsp(P ) ≤ BestKW(P ). Let R(App) be the revenue of the policy in Lemma 7.
Therefore, for some absolute constant α ≥ 1,

Gsp(OPTG) ≤ BestKW(OPTG) ≤ BestKW(OPTB) ≤ LP1 ≤ α R(App)

The theorem follows (again appealing to Theorem 5).
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Abstract. We design algorithms for computing approximately revenue-

maximizing sequential posted-pricing mechanisms (SPM) in K-unit auc-
tions, in a standard Bayesian model. A seller has K copies of an item to

sell, and there are n buyers, each interested in only one copy, and has

some value for the item. The seller posts a price for each buyer, using

Bayesian information about buyers’ valuations, who arrive in a sequence.

An SPM specifies the ordering of buyers and the posted prices, and may

be adaptive or non-adaptive in its behavior.

The goal is to design SPM in polynomial time to maximize expected

revenue. We compare against the expected revenue of optimal SPM, and

provide a polynomial time approximation scheme (PTAS) for both non-

adaptive and adaptive SPMs. This is achieved by two algorithms: an

efficient algorithm that gives a (1 − 1√
2πK

)-approximation (and hence a

PTAS for sufficiently large K), and another that is a PTAS for constant

K. The first algorithm yields a non-adaptive SPM that yields its approx-

imation guarantees against an optimal adaptive SPM – this implies that

the adaptivity gap in SPMs vanishes as K becomes larger.

1 Introduction

We consider the following Sequential Posted Pricing problem in a K-unit
auction. There is a single seller with K identical copies of a single item to sell,
to n prospective buyers. Each buyer is interested in exactly one copy of the
item, and has a value for it that is unknown to the seller. The buyers arrive in a
sequence, and each buyer appears exactly once. The arrival order may be chosen
by the seller. The seller quotes a price for the item to each arriving buyer, and
may quote different prices to different buyers. Assuming that buyers are rational,
a buyer buys the item if the price quoted to him is less than his value for the
� Part of this work was done while the authors were visiting Google Research.

�� Part of this work was done while the author was at Google Research.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 158–169, 2010.
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item, and pays the quoted price to the seller. This process stops when either K
buyers have bought the item or when all buyers have arrived and left.

We focus on pricing and ordering strategies in the above model, called se-
quential posted-price mechanisms (SPMs), that maximize the seller’s expected
revenue. Posted price mechanisms are clearly incentive compatible, and com-
monly used in practice. We design strategies in a Bayesian framework, where
each buyer draws his value of the item from a distribution. These value distri-
butions are known to the seller, and are used in designing the mechanism.

SPMs were recently studied in the general context of Bayesian single-parameter
mechanism design (BSMD), which includes ourK-unit auction, by Chawla et. al.
[7]. They designed efficiently computable SPMs for various classes of BSMD prob-
lems and compared their expected revenue to that of the optimal auction mecha-
nism, which was given by Myerson [13]. For theK-unit auction, they showed that
their SPM guarantees (1−1/e)-fractionof the revenue obtained by Myerson’s auc-
tion. Bhattacharya et. al. [4] (as well as [7]) also used sequential item pricing to ap-
proximate optimal revenue, when the seller has multiple distinct items. However,
the SPM computed by their algorithms may not be the optimal SPM, i.e. there may
exist SPMs with greater expected revenue. Given that SPMs are quite common in
practice, we focus in this paper on efficiently computing an optimal SPM.

Our Results. The results in [7] immediately imply a (1−1/e)-approximation for
the problem of computing optimal SPMs in K-unit auction. We strictly improve
this bound. We design two different algorithms – the first is a polynomial time
algorithm that gives (1 − 1√

2πK
)-approximation, and is meant for large values

of K, and the second is a polynomial time approximation scheme (PTAS) for
constant K. Combining these two algorithms yield a polynomial time approxi-
mation scheme for the optimal SPM problem, for all values of K: if K > 1

2πε2 ,
run the first algorithm, else run the second algorithm. Recall that a PTAS is
an algorithm that, for any given constant ε > 0, yields (1− ε)-approximation in
polynomial time (the exponent of the polynomial should be a function of ε only,
and independent of input size).

Note that a sequential posted pricing strategy can be adaptive – it can alter
its prices and the ordering of the remaining buyers based on whether the current
buyer buys the item. We shall call such strategies as Adaptive SPMs, or ASPMs,
while SPM shall refer to a non-adaptive pricing and ordering strategy. Clearly,
the expected revenue from an optimal ASPM is at least that from an optimal
SPM. Our first algorithm outputs an SPM, but our proof shows that it gives the
same approximation guarantee of (1 − 1√

2πK
) against an optimal ASPM. This

yields a corollary that the adaptivity gap asymptotically vanishes as K increases.
On the other hand, it is easy to construct instances with K = 2, such that there
is a constant factor adaptivity gap, i.e. gap in expected revenue between optimal
SPM and ASPM. We design a third algorithm that outputs an ASPM, and is
a PTAS for computing an optimal ASPM, for constant K. Again, combining
this result with our first algorithm, we obtain a PTAS for the optimal ASPM
problem, for all values of K. Adaptive PTAS with multiplicative approximation
is rare to find in stochastic optimization problems. For example, an adaptive
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PTAS for the stochastic knapsack problem has been developed very recently [3].
The theorem below summarizes our results.

Theorem 1. There is a PTAS for computing a revenue-maximizing SPM in
K-unit auctions, for all K. The same result holds for ASPMs.

Our Techniques. The first algorithm is based on a linear programming (LP)
relaxation of the problem, such that the optimal solution to the LP upper bounds
the expected revenue from any ASPM. We show that this LP has an optimal
integral solution, from which we construct a pricing for the buyers. The buyers
are ordered simply in decreasing order of prices – it is easy to see that this is
an optimal ordering policy given the prices. The LP formulation implies that if
there were no limit on the number of copies the seller can sell, then the expected
revenue obtained from this pricing would be equal to the LP optimum, and at
most K copies of the item are sold in expectation. However, the algorithm is
restricted to selling at most K copies in all realizations, and the result follows
by bounding the loss due to this hard constraint. The interesting property we
find is that this loss vanishes as K increases. It should be noted that an LP-
based approach is used in [4]; however, they consider a more general problem
with multiple distinct items, and their analysis yielded no better than constant
approximation factors.

The second algorithm uses a dynamic programming approach, which is com-
mon in the design of approximation schemes. We make some key observations
that reduce the problem to an extended version of the generalized assignment
problem (GAP) [14] with constant number of bins, which has polynomial time
algorithm (polynomial in the size of bins and number of items) using dynamic
programming [8]. The main observation is that in any SPM, if we pick a contigu-
ous subsequence of buyers to whom there is very small probability of selling even
a single copy, and arbitrarily permute this subsequence, the resulting SPM will
have almost the same expected revenue as the original SPM. This observation
drastically cuts down the number of configurations that we have to check before
finding a near-optimal SPM.

The third algorithm for computing ASPM is a generalization of the second
algorithm, but it must now approximate a decision tree, that may branch at
every step based on whether a copy is bought, instead of an SPM sequence. The
key observation in this case is that there exists a near-optimal decision tree that
does not branch too often, and the problem again reduces to an extension of
GAP with constant number of bins.

Other Related Work. Sequential item pricing for combinatorial auctions has
also been studied in prior-free settings, where no knowledge about the buyers’
valuation is assumed (eg. [1,6]). These results compare the revenue obtained to
the optimal social welfare, primarily due to lack of a better upper bound, and
get no better than logarithmic approximation results. Maximizing welfare via
truthful mechanisms in prior-free settings have been studied for K-unit auctions
[9,10] and other combinatorial auctions [11,12]. Bayesian assumptions provide
better upper bounds, and has led to constant approximation against optimal
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revenue for any auction [4,7]. Independently, a result similar to ours for large K
in K-unit auctions has been recently proved [15]. But Bayesian assumptions can
lead to tighter upper bounds on optimal sequential pricing, and that is our main
contribution. A parallel posted-price approach has been used in a more complex
repeated ad auction setting to get constant approximation [5].

2 Preliminaries

In a K-unit auction, there is a single seller who has K identical copies of a single
item, and wish to sell these copies to n prospective buyers B1, B2 . . . Bn. Each
buyer Bi is interested in one copy of the item, and has value vi for it. vi is drawn
from a distribution specified by cumulative distribution function (cdf) Fi that
is known to the seller. The values of different buyers are independently drawn
from their respective distributions. Without loss of generality, we assume that
K ≤ n.

Definition 1. Let piv denote the probability that Bi has value v for the item.
Let p̃iv denote the probability that Bi has value at least v. We shall call it the
success probability when Bi is offered price v. Clearly p̃iv =

∑
v′≥v piv′ .

We assume, for all our results, that each value distribution is discrete, with at
most L distinct values in its support (i.e. these values have non-zero probability
mass). Let UVi be the support set of values for the distribution of Bi, and let
UV =

⋃n
i=1 UVi . We shall also assume that L is polynomial in n, and that p̃iv

is an integral multiple of 1
10n2 for all i, v. These assumptions are without loss of

generality for obtaining PTAS for optimal SPM or ASPM (discussion deferred
to full version).

Definition 2. A sequential posted-price mechanism (SPM) is a mechanism which
considers buyers arrive in a sequence, and offers each of them a take-it-or-leave-it
price: the buyer may either buy a copy at the quoted price or leave, upon which the
seller makes an offer to another buyer. Each buyer is given an offer at most once,
and the process ends when either all K copies have been sold, or there is no buyer
remaining.

An SPM specifies the entire sequence of buyers and prices before the process
begins. In contrast, an adaptive sequential posted-price mechanism (ASPM) may
decide the next buyer based on which of the current and past buyers accepted
their offered prices.

Note that there can be no adaptive behavior whenK = 1, since the process stops
with the first accepted price. Thus an ASPM can be specified by a decision tree:
each node of the tree contains a buyer and a price to offer. Each node may
have multiple children. The selling process starts at the root of the tree (i.e.
offers the price at the root to the buyer at the root), and based upon whether a
sale occurs at the root, moves to one of the children of the root, and continues
inductively. The process stops when either K items have been sold, or n buyers
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have appeared on the path in the decision tree traversed by the process – the
latter nodes are the leaves of the decision tree.

It is easy to see that the decision of an optimal ASPM at any node of the tree
should depend only on the number of copies of the item left and the remaining
set of buyers (the latter is solely determined by the node reached by the process).
Thus, each node has at most K children, at most one each for the number of
copies left. Note that an ASPM may not adapt immediately to a sale – it may
move to a fixed buyer regardless of the outcome. Such a node will only have a
single child. Without loss of generality, we shall represent an ASPM such that
each non-leaf node either has a single child or K children (some of which may
even be infeasible). The latter nodes are called branching nodes. In this context,
an SPM is simply an ASPM whose decision tree is a path.

SPM and ASPM are incentive compatible: a buyer Bi buys the item if and
only if its value vi is equal to or greater than the price offered to it, and pays
only the quoted price to the seller.

Definition 3. The revenue R(v1, v2 . . . vn) obtained by the seller for a given
SPM is the sum of the payments made by all the buyers, which is a function
of the valuations of the buyers. The expected revenue of an SPM or ASPM is
computed over the value distributions Evi∼FiR(v1, v2 . . . vn). An optimal SPM or
ASPM is an SPM (respectively, ASPM) that gives the highest expected revenue
among all SPMs (respectively, ASPMs).

Let the expected revenue of an optimal SPM (or ASPM) be OPT. An α-
approximate SPM (or ASPM, respectively), where α ≤ 1, has expected revenue
at least αOPT.

2.1 Basic Results

An SPM must specify an ordering of the buyers as well as the prices to offer to
them. It is worth noting that if either one of these tasks is fixed, the other task
becomes easy. Proofs of many lemmas have been deferred to the full version due
to lack of space.

Lemma 1. Given take-it-or-leave-it prices to offer to the buyers, a revenue-
maximizing SPM with these prices simply considers buyers in the order of de-
creasing prices. Given an ordering of buyers, one can compute in polynomial
time a revenue-maximizing ASPM that uses this ordering (and only adapts the
offered prices).

3 LP-Based Algorithm for Large K

In this section we present our first algorithm that yields us an approximation
factor that improves as K increases, and implies a vanishing adaptivity gap. The
following theorem summarizes our result.

Theorem 2. For all K ≥ 1, if a seller has K units to sell, there exists an SPM
whose expected revenue is at least 1− KK

K!eK ≥ 1− 1√
2πK

fraction of the optimal
ASPM. This SPM can be computed in polynomial time.
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As a first step to our algorithm, we add random infinitesimal perturbation to
the values v ∈ UVi and the associated probability values piv, so that almost
surely, UVi are disjoint, and further, all the values and probabilities are in general
position. Intuitively, this property is used in our algorithm to break ties.

Consider any ASPM P , that may even be randomized. Consider the event
Eiv that Bi is offered the item at price v, and accepts the offer. Let yiv denote
the probability of that Eiv occurs when P is implemented. Let xiv denote the
probability that Bi was offered price v when P is implemented. Note that both
probabilities are taken over the value distributions of the buyers, as well as inter-
nal randomization of P . Naturally, we must have yiv ≤ p̃ivxiv . Also, by linearity
of expectation, the expected revenue obtained by P is

∑n
i=1

∑
v∈UV

vyiv. More-
over,

∑n
i=1

∑
v∈UV

yiv is the expected number of copies of the item sold by the
seller, and this quantity must be at most K. Finally, the mechanism enforces
that each buyer is offered a price at most once in any realization, and hence in
expectation,i.e.

∑
v∈UV

xiv ≤ 1.
Viewing xiv and yiv as variables depending upon the selected ASPM, optimum

of the following linear program Lp-K-SPM provides an upper bound to the
expected revenue from any ASPM, since any ASPM provides feasible assignment
to the variables. Our algorithm involves computing an optimal solution to this
program with a specific structure, and use the solution to construct an SPM.

Lp-K-SPM = max

n∑
i=1

∑
v∈UV

vyiv

yiv ≤ p̃ivxiv ∀i ∈ [1, n], v ∈ UV∑
v∈UV

xiv ≤ 1 ∀i ∈ [1, n]∑n
i=1

∑
v∈UV

yiv ≤ K

yiv, xiv ≥ 0

Lemma 2. Assuming that the points in UVi and the probabilities p̃iv have been
perturbed infinitesimally, and so are in general position, there exists an optimal
structured solution x∗iv , y

∗
iv of Lp-K-SPM, computable in polynomial time, such

that:

1. for all i, v, yiv = p̃ivxiv .
2. for each i there is exactly one v such that xiv > 0. Let v(i) denote the value

for which xiv(i) > 0.
3. There exists at most one i such that 1 ≤ i ≤ n and 0 < xiv(i) < 1. If such
i = i′ exists, then v(i′) = minn

i=1 v(i).

Our algorithm for computing an SPM is as follows: Compute an optimal struc-
tured solution of Lp-K-SPM. Then construct an SPM where we offer price v(i)
to Bi, and consider buyers in order of decreasing v(i).

3.1 Approximation Factor

It remains to analyze the approximation factor of our algorithm. Let the order
of decreasing prices be Bπ(1), Bπ(2) . . . Bπ(n). For 1 ≤ i < n, let Zi be a two-
valued random variable that is v(π(i)) = zi with probability p̃π(i)v(π(i)) = ui,
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and 0 otherwise. To define Zn, note that x∗π(n)v(π(n)) in the structured opti-
mal solution may not have been 1, so let Zn be v(π(n)) = zn with probability
x∗π(n)v(π(n))p̃π(n)v(π(n)) = un and 0 otherwise. If Z =

∑n
i=1 Zi, then E[Z] is

the optimum of the LP solution mentioned in Lemma 2. The revenue of the
algorithm, however, is at least equal to the sum of the first K variables in the
sequence Z1, Z2 . . . Zn that are non-zero. Let this sum be denoted by the ran-
dom variable Z ′. Note that z1 ≥ z2 ≥ . . . ≥ zn, and

∑n
i=1 ui ≤ K. The following

lemma immediately implies Theorem 2.

Lemma 3. E[Z ′] ≥ (1− KK

K!eK )E[Z] ≥ (1− 1√
2πK

)E[Z].

Proof. Let α(i) = ziui. Let the probability that we reach Zi in the sequence
before finding K non-zero variables, be given by the function f(i,u) (this func-
tion is independent of z1, z2 . . . zn), where u = (u1, u2 . . . un). Then E[Z ′] =∑n

i=1 f(i,u)α(i), while E[Z] =
∑n

=1 α(i). Observe that f(i,u) is monotonically
decreasing in i. We shall narrow down the the instances on which E[Z ′]/E[Z] is
minimized.

Claim. Given an instance comprising variables Z1, Z2 . . . Zn such that zi >
zi+1, one can modify it to construct another instance Z̃1, Z̃2 . . . Z̃n such that
E[Z ′]/E[Z] decreases.

Thus, we can restrict our attention to instances where z1 = z2 = . . . = zn = z∗

(say). Without loss of generality, we let z = 1, so that Z1, Z2 . . . are Bernoulli
variables, and Z ′ = min{Z,K}. Note that the ordering of the variables do not
influence Z ′. The next step is to show that if we split the variables, keeping E[Z]
unchanged, E[Z ′] can only decrease.

Claim. Let Z1, Z2 . . . Zn be Bernoulli variables, such that the success probabil-
ity is Pr [Zj = 1] = uj . Suppose that we modify the set of variables by re-
moving Zi from it and adding two Bernoulli variables Z̃i and Ẑi to it, where
Pr
[
Z̃i = 1

]
= ũi > 0 and Pr

[
Ẑi = 1

]
= ûi > 0, and ũi + ûi = ui. Then

E[Z ′] = E[minZ,K] decreases or remains unchanged due to this modification,
while E[Z] = K remains unchanged.

Assume that the success probabilities of the Bernoulli variables are all rational –
since rational numbers form a dense set in reals, this shall not change the lower
bound we are seeking. Then, there exists some large integer N such that all the
probabilities are integral multiples of 1/N . Further, we can choose an arbitrarily
large N for this purpose. Now, split each variable that has success probability
t/N into t variables, each with success probability 1/N . The above claim implies
that E[Z ′]/E[Z] can only decrease due to the splitting. Thus, it remains to lower
bound E[Z ′]/K for the following instance, as N →∞: KN Bernoulli variables,
each with success probability 1/N .

For this final step, we use the well-known property that the sum of Bernoulli
variables with infinitesimal success probabilities approach the Poisson distribu-
tion with the same mean. In particular, if P is a Poisson variable with mean
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K, then the total variation distance between Z and P is at most (1 − e−K)/N
(see e.g. [2]), which tends to zero as N → ∞. Thus, we simply need to find
E[minP,K]/K, and this is the lower bound on E[Z ′]/E[Z] that we are seeking.
It can be verified that E[minP,K] = K(1− KK

K!eK ) which proves the lemma.

4 PTAS for Constant K

We now define an optimization problem called ExtGAP, and our PTAS for both
SPM and ASPM for constant K will reduce to solving multiple instances of this
problem.

ExtGAP: Suppose there are n objects, and each object has L versions. Let
version j of object i have profit pij and size sij ≤ 1. Also, suppose there are C
bins 1, 2 . . . C, where bin � has size s� and a discount factor γ� . The goal is to
place versions of objects to bins, such that:

1. Each object can be placed into a particular bin at most once, as a unique
version. If object i is placed as version j into bin �, then it realizes a profit
of γ�pij and a size of sij .

2. Each object can appear in multiple bins, as different versions. However, there
is a given collection FC of feasible subsets of bins 1, 2 . . .C. The set of bins
that an object is placed into must be a feasible subset.

3. The sum of realized sizes of objects placed into any bin �must be less than s�.

The profit made by an assignment of object version to bins, that satisfy all the
above conditions, is the sum of realized profits by all objects placed in the bins.
The goal is to find an assignment that maximizes the profit.

Lemma 4. For all objects and versions i, j, let sij be a multiple of 1/M for
some fixed M ≥ 2. Then an optimal solution to ExtGAP can be found in time
(ML)O(C)n.

4.1 PTAS for Computing SPM

Theorem 3. There exists a PTAS for computing an optimal SPM for constant

K, yielding (1− ε)-approximation in running time
(

nk
ε

)poly(k,ε−1)
,.

We shall, without loss of generality, give a (1− ckε)-approximation, and this will
imply the above theorem: putting ε = ε′/ck will yield a (1 − ε′)-approximation.

We first establish some definitions that we shall use. Let a segment refer to
a sequence of some buyers and prices offered to these buyers – we shall refer
to parts of an SPM as segments. Let the undiscounted contribution V(Bi) of a
buyer Bi, when offered price x(Bi), be α(Bi) = x(Bi)p̃ix(Bi), while its weight
be p̃ix(Bi), its success probability. Undiscounted contribution V(S) of a segment
S is the sum of undiscounted contributions of buyers in the segment, and the
weight of the segment is the sum of their weights.
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Given an SPM, let dis(B) denote the probability that the selling process
reaches buyer B. The real contribution of a buyer to the expected revenue is
α(B)dis(B), and the expected revenue of the SPM is the sum of the real con-
tributions of all the buyers. More generally, let γ�(B) denote the probability
that Bi is reached with at least � items remaining. Then dis(B) = γ1(B). The
discount factor dis(S) of a segment S, whose first buyer is B, is defined to be
dis(B). Similarly, we define γ�(S) = γ�(B).

We present our algorithm through a series of structural lemmas, each of which
follows quite easily from the preceding lemmas. The first step towards our algo-
rithm is that we can restrict our attention to truncated SPMs.

Lemma 5. There exists an SPM of total weight at most K log K
ε , where each

buyer has discount factor at least ε, that gives an expected revenue of at least
(1− ε)OPT. We shall refer to SPMs that satisfy this condition as truncated.

We can now restrict ourself to approximating an optimal truncated SPM. The
following definition of a permutable segment will be crucial to the description of
our algorithm.

Definition 4. We shall call an SPM segment permutable if either:

1. its weight is at most δ = ε3

20K3 . We shall refer to such a permutation segment
as a small buyers segment.

2. it has a single buyer, possibly of weight more than δ. In this case, we shall
refer to this buyer as a big buyer.

Any SPM can clearly be decomposed into a sequence of permutable segments and
big buyers. Moreover, any truncated SPM can be decomposed into a sequence of
at most C = O(K log K

ε

δ ) permutable segments. This is because if the permutable
segments are maximally chosen, then two consecutive permutable segments in
the decomposition either have at least one big buyer between them, or their
weights must add up to more than δ (otherwise, the two segments can be joined
to create one permutable segment).

Lemma 6. The probability of selling at least one copy of the item in a small
buyers permutable segment that has weight s is at least s− s2. The probability of
selling at least t ≥ 1 copies (assuming that at least t copies are left as inventory)
in such a segment is at most st. So the probability of selling exactly one copy is
at least s− 2s2.

Lemma 7. Consider a permutable segment of weight s appearing in an SPM,
and let its discount factor be γ. Then the discount factor of the last buyer in the
segment is at least γ(1 − s). If the undiscounted contribution of the segment is
α, then the real contribution of buyers in this segment to the expected revenue is
at least αγ(1 − δ) and at most αγ.

The above lemma shows that the real contribution of a segment can be approx-
imated by the product of its discount factor and its undiscounted contribution,
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which does not depend on the exact buyers, their relative ordering or prices in
that segment. We next show that the discount factor of a segment, given a de-
composition of an SPM into permutable segments, can also be approximated as
a function of the approximate sizes of preceding segments.

Lemma 8. Given an SPM, that can be decomposed into an ordering of per-
mutable segments S1, S2 . . .. Let Si be a small buyers segment. Let s be the weight
of Si.

Then γ�(Si)(1− s)+γ�+1(Si)s+4s2 ≥ γ�(Si+1) ≥ γ�(Si)(1− s)+γ�+1(Si)s−
2s2.

Lemma 9. Given any SPM decomposed into Q ≤ C permutable segments
S1, S2 . . ., such that the weight of Si is between si+τ and si−τ for all 1 ≤ i ≤ n′,
where τ = δ/20C. Consider an alternate SPM (with possibly different buyers),
that has n′ buyers, and the ith buyer in the segment has weight si. Let ρ(�, i) be
the probability that the ith buyer is reached in the alternate SPM with at least �
items remaining. Then

ρ(�, i)− 12(δ2 + τ)i) ≤ γ�(Si) ≤ ρ(�, i) + 12(δ2 + τ)i).

If the SPM is truncated, then dis(Si) = γ1(Si) ≥ ε, and since i ≤ Q ≤ C,
δ = ε3

20K3 and τ ≤ δ/20C, so we can get a multiplicative guarantee ρ(1, i)(1−ε) ≤
dis(Si) ≤ ρ(1, i)(1 + ε).

We shall refer to the following as a configuration: An ordering of up to C
permutable segments, where each permutable segment is specified only by the
weight of the segment and big buyer respectively, each weight being a multiple
of τ = δ

20C . Note that the configuration does NOT specify which buyer belongs
to which segment, or the individual weights of the buyers. This is because a con-
figuration is specified by at most C positive integers (weight of each segment is
specified by a positive integer z < 1

τ , which indicates that the weight is zτ). We
shall represent a configuration z as an ordered tuple of integers (z1, z2, z3 . . .).
Note that there are at most ( 1

τ )O(C) = (K
ε )O(K) distinct configurations. We say

that an SPM has configuration z if it can be decomposed into an ordering of
permutable segments S1, S2 . . . such that Si has weight at least (zi − 1)τ and at
most ziτ .

For any given configuration z, the expected revenue of an SPM with con-
figuration z can be approximated, up to a factor of (1 − δ)(1 − 2ε) by a linear
combination of the undiscounted contribution of the permutable segments, where
the coefficients of the linear combination depend only on z. The coefficients are
the discount factors, which can be computed by looking at an alternate SPM
with a buyer for each segment, such that the ith buyer has weight ziτ . This is a
direct conclusion of Lemma 9 and Lemma 7. The discount factors of each buyer
in the alternate SPM can be easily computed in O(CK) time using dynamic pro-
gramming. Let Az(i) denote the discount factor of the ith buyer in the alternate
SPM corresponding to z.

For any configuration z, we compute prices for the buyers, and a division of
buyers into permutable segments S1, S2 . . . such that Si has weight at most ziτ ,
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and
∑

iAz(i)V(Si) is maximized (it is not necessary to include all buyers). This
is precisely an instance of ExtGAP, where each buyer is an object, the different
possible prices and the corresponding success probabilities create the different
versions, and the sizes of the bins are given by z, and the feasible subsets for
an object simply being that each object can get into at most one bin. This can
be solved as per Lemma 4. The solution may not saturate every bin, and hence
may not actually belong to configuration z. However, for any two configurations
z = (z1, z2, zt) and z′ = (z′1, z′2 . . . z′t), such that zi ≤ z′i ∀1 ≤ i ≤ t, we have
Az(i) > Az′(i). So the SPM formed by concatenating S1, S2 . . . in that order
generates revenue at least (1 − 3ε) times the revenue of the optimal sequence
that has configuration z.

Thus our algorithm is to find an SPM for each configuration, using the algo-
rithm for ExtGAP, and output the best SPM among them as the solution.

4.2 PTAS for Computing ASPM

Theorem 4. There exists a PTAS for computing an optimal SPM, for any con-

stant K. The running time of the algorithm is
(

nk
ε

)(kε−1)O(k)

, and gives (1− ε)-
approximation.

As mention in Section 2, an ASPM is specified by a decision tree, with each
node containing a buyer and an offer price. We extend some definitions used for
SPMs to ASPMs. The weight of a node is the success probability at this node
conditioned on being reached. A segment in an ASPM is a contiguous part of
a path (that the selling process might take) in the decision tree. A segment is
called non-branching if all but possibly the last node are non-branching. Other
definitions such as weight and contribution of a segment are identical. A per-
mutation segment is a non-branching segment satisfying properties as defined
earlier (Definition 4). The discount factor of a node (or a segment starting at
this node, or a subtree rooted at this node) is the probability that the node is
reached in the selling process.

Consider any ASPM whose tree is decomposable into D non-branching seg-
ments, each of weight at most H . (Note that D = 1 for an SPM.) Then the
entire tree of a truncated ASPM decomposes into C = O(DH/δ) permutable
segments. We shall refer to such ASPMs as C-truncated ASPMs. A configura-
tion for a C-truncated ASPM shall now list the weights of at most C permutable
segments and also specify a tree structure among them, i.e. the parent segment
of each segment in the decision tree. Moreover, since each path can have no more
than C segments, it is sufficient to specify the weights to the nearest multiple of
τ = δ/20C, to get the discount factor of each segment with sufficient accuracy.
So there are (C/τ)O(C) = CO(C) configurations for C-truncated ASPMs.

For each configuration, we can use ExtGAP (with C bins) to compute an
ASPM that is at least (1 − ε) times the revenue of an optimal ASPM with
that configuration, as before. The discount factor of each permutable segment in
the configuration can be computed with sufficient accuracy, similar to Lemma 9.
Iterating over all possible configurations, we can find a near-optimal C-truncated
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ASPM. Solving ExtGAP requires time exponential in the number of bins (see
Lemma 4), so the entire running time of the above algorithm is

(
nkC

ε

)O(C)
).

Lemma 10 gives the required non-trivial characterization.

Lemma 10. There exists an ASPM with the following properties:
1. Its expected revenue is at least (1 − ε) times the expected revenue of the

optimal ASPM.
2. The decision tree is decomposable into D = (K/ε)O(K) non-branching seg-

ments.
3. Each non-branching segment in the tree has weight at most H = (K/ε)O(1).
4. Each path in the tree consists of at most (K/ε)O(1) permutable segments.
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Abstract. We consider the following combinatorial auction: Given a

range space (U,R), and m bidders interested in buying only ranges in

R, each bidder j declares her bid bj : R → R+. We give a deterministic

truthful mechanism, when the valuations are single-minded: when R is

a collection of fat objects (respectively, axis-aligned rectangles) in the

plane, there is a truthful mechanism with a 1 + ε- (respectively, �log n�)-
approximation of the social welfare (where n is an upper bound on the

maximum integral coordinate of each rectangle). We also consider the

non-single-minded case, and design a randomized truthful-in-expectation

mechanism with approximation guarantee O(1) (respectively, O(log m)).

1 Introduction

In a combinatorial auction, there are m bidders competing on a finite set of k
items for sale. The preferences of a player over the different subsets of items
are expressed via a valuation function, that assigns to every subset of items a
non-negative real value. An important, well-studied objective is to allocate the
items to the bidders in a way that maximizes the social welfare, i.e., the sum of
the valuations of the players on the allocated subsets.

We consider auctions where the bundles of items of interest have a geometric
interpretation, i.e., they form connected geometric objects. Our work is inspired
by the following applications: An owner of a space considers renting her land to
exhibitors who will participate in a certain exhibition (say a computer show). The
exhibitors bid on certain subsets of the space, and the owner has to decide which
parts of the land she should allocate to which bidder, and how she should charge
each winner. Typically, the owner may only allow bidders to bid on regions of
certain shape (say squares or rectangles), and each bidder has a bid that depends
on the location of the region (for instance, central regions or regions close to the
entry of the whole exhibition can be more valuable to the bidder). A similar
situation arises in advertisements: there is a certain space on a screen that can
be used for displaying ads. A number of bidders compete for the total space,
and have their individual valuations for each region on the screen1. Again, it is
natural to expect the regions of interest to be squares or rectangles.
1 See, for instance, “http://www.milliondollarhomepage.com”

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 170–181, 2010.
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In order to capture the above scenarios, we consider the following combinato-
rial auction: Let U ⊆ R2 be a set of points in the plane. Given m customers who
are interested in buying subsets of U , each customer declares her bids on certain
subsets of U (called ranges). Based on the bids, the auctioneer has to decide a
feasible allocation of subsets to customers, and a payment to be charged to every
winner (who gets allocated a non-empty subset).

In the above applications, it is natural to consider the situation where the
possible subsets are connected regions in the plane, and moreover, those that
are axis-aligned, or have some sort of fatness, such as squares or discs.

All the participants in an auction are selfish agents whose only goal is to max-
imize their utility, i.e., they want to obtain the bundle of items that maximizes
the value minus the price. Therefore, they will try to manipulate the mechanism
by misreporting their true values if this will increase their utility. In order to neu-
tralize the effects of selfishness, a standard desired property of a mechanism that
determines the allocation and payment is truthfulness, or incentive-compatibility.
We look for truthful mechanisms, where the best strategy of each bidder is to
report his true valuation. At the same time, we are interested in maximizing the
social welfare, i.e., the sum of the valuations of the winners on their allocated
subsets. The celebrated VCG mechanism [7, 9, 18], achieves both goals, but it
runs in exponential time for most interesting scenarios. We consider polynomial-
time mechanisms that approximate the optimal social welfare. The quality of an
allocation is measured by the ratio of its total value to the optimal total value.

An important, well-studied special class of valuation functions, is the class of
single-minded valuations (SM), where each bidder is interested in obtaining a
particular subset of items. Lehmann et al. [14] showed that when the bidders
are single-minded, there exists a truthful auction with approximation ratio

√
k,

where k is the number of items. They also proved that this is the best ratio
possible, even disregarding strategic issues, like truthfulness, unless NP = ZPP.

Our main contribution is the design of truthful mechanisms with approxi-
mation guarantees for two natural geometric settings of single-minded bidders;
where the regions are either axis-aligned rectangles or fat objects. Intuitively, fat
objects do not contain long and skinny parts; they are a well-known generaliza-
tion of many common geometric objects like discs and squares. For instance, in
the aforementioned motivating example on exhibitions, the regions of interest
are usually rectangular with bounded width-to-height ratio; hence, they are fat.
Apart from these results for the single-minded case, we also provide randomized
truthful-in-expectation mechanisms for the non-single-minded case (non-SM).

The paper is organized as follows. We discuss related work in Section 1.1, and
we give an overview of our results along with a comparison to previous work
in Section 1.2. In Section 2, we give a precise problem formulation and describe
some preliminaries. Finally, in Sections 3 and 4, we describe our results in detail.

1.1 Related Work

The work that is most related to ours is that by Babaioff and Blumrosen [2]. Mo-
tivated by similar applications, the authors in [2] study the single-minded version
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of the above problem. They generalize the greedy mechanism of Lehmann et al.
[14] to obtain truthful mechanisms whose approximation guarantees are parame-
terized by the aspect ratio of the regions under interest, defined as the maximum
ratio between the diameter and width of any object2. Two different informational
settings are considered in [2]. In the Known Single-Minded model (KSM), the
auctioneer knows the actual range of each bidder but not the true valuation. In
the more general Unknown Single-Minded model (USM), both the ranges and
valuations are private information of each bidder. The truthful mechanisms ob-
tained in [2] have approximation guarantees O(R4/3) in the USM model and
O(R) in the KSM model, where R is the maximum aspect ratio of the objects.
These approximation guarantees are improved to O(R) in case of arbitrary rect-
angles in the USM model, and O(logR) in case of axis-parallel rectangles in the
KSM model. The latter result is obtained by using the bid-monotonic algorithms
of Khanna et al. [12], which we discuss below.

In [12], the authors consider the rectangle packing problem. Here, given a
set of m weighted rectangles in the plane, the problem is to find a disjoint
collection of at most p rectangles and maximum weight. Note that without the
restriction on the cardinality of the set, the problem corresponds to assigning
disjoint rectangles to customers such that the social welfare is maximized. The
authors of [12] assume that n rectangles are given on an n×n grid (i.e., they have
integral coordinates) and obtain an O(log n) approximation algorithm that runs
in time O(n2p+np logn). In contrast, our approach (which is similar to the one in
[1]) for rectangles in the SM case only assumes that the rectangles have integral
x-coordinates in [0, n]3. It achieves an approximation ratio of �logn�, and runs
(with a slight modification for the stated variant) in time O(m logm+mp logn),
where m is the number of rectangles. Note that m could be much smaller than
the ‘width’ n of the plane.

Our approach for the non-SM case is based on rounding the LP-relaxation for
the social welfare maximization (SWM) problem and then resorting to the gen-
eral results of Lavi and Swamy [13]. Motivated by secondary spectrum auctions,
and independently from our work, Hoefer et al. [10] considered a more general
setting for the non-SM case, in which the feasible allocations are determined
by a conflict graph, which is assumed to have a small inductive independence
number4. They obtain randomized truthful mechanisms based also on an LP
formulation of an extension of the SWM problem, combined with the results
in [13]. We note that the intersection graph of a set of fat objects has a small

2 More precisely, the aspect ratio of an object is the ratio between the maximum dis-

tance between any two points in the object and the minimum length of a projection

of the object along any direction; equivalently, it is the ratio between the diameters

of the minimum enclosing and maximum enclosed disc.
3 Actually, it is already sufficient to assume that the rectangles lie in [0, n] × R and

have a minimum width of at least 1.
4 A graph is said in [10] to have an inductive independence number ρ if there exists an

ordering on the vertices s.t., for each vertex v, the subgraph induced on the neighbors

of v, that precede v in the order, has independence number at most ρ.
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inductive independence number, and hence some of the results in [10] can also
be adapted to our setting.

1.2 Results and Techniques

Our main results concern single-minded valuations. We show that there is a
truthful mechanism with a (1 + ε)-approximation of the social welfare, provided
that the interesting regions (that the customers bid on) are fat ranges in [0, 1]d.
This result is best possible since the SWM problem is already NP-hard for
the setting of fat ranges [8, 11]. When the interesting regions are axis-aligned
rectangles with integral x-coordinates, the approximation ratio will be �logn�,
assuming an upper bound of n on the maximum integral x-coordinate for each
rectangle. We remark that, when n = poly(m), getting a better bound than
O(log n) will mean to get a better approximation guarantee than O(logm) for
the SWM problem for rectangle ranges, which is a standing open problem5.

Theorem 1. Let ε > 0 be an arbitrary constant. There is a polytime determin-
istic truthful mechanism, in the single-minded case, with approximation ratio
1 + ε for β-fat ranges with β = O(1) and running time mO(ε−d+1). For axis-
aligned rectangles, there is a truthful mechanism, in the single-minded case, with
approximation guarantee �logn� and O(m log(mn)) running time.

Here, β-fatness is a measure for how fat the object is [6]; for instance, a disc
has a constant fatness, while a line segment has unbounded fatness. A precise
definition is given in Section 2.

The results of Theorem 1 improve some of the results in [2]. For the case
of constant aspect ratio R = O(1), the mechanism of [2] achieves a constant
approximation for the KSM information model, while we are able to show a
truthful PTAS in the more general case of the USM model. It is important to
emphasize that we consider only the USM model here; the mechanism is not
aware of neither the true sizes and places of the objects nor their true values.
In particular, for the fat ranges case, we assume that we are given a priori a
square of size L in which all figures are guaranteed to lie inside. We also assume
that the fatness parameter β is a known constant. For axis-parallel rectangles,
we assume that all possible rectangles have integral coordinates, ranging from 1
to n along one of the principal directions. In that sense, our USM model is a bit
weaker than the USM model in [2], but much stronger than the KSM model, as
once we know the exact sizes and positions of the rectangles, we can compute
the premises required in our model. It is not hard to see that the definition we
use for fatness, given precisely below, is more general than bounding the aspect
ration; in other words, R = O(1) implies O(1)-fatness. Thus, we get a truthful
PTAS when R = O(1). For the case of axis-parallel rectangles, we strengthen
the O(logR) result for the KSM model in [2]. In particular, in the above USM
model, we get a truthful mechanism with a �logn�-approximation ratio.
5 Recently, Chalermsook and Chuzhoy [5] gave an O(log log m)-approx. algorithm for

unit valuations. However, their result does not seem to extend to general valuations.
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For the analysis of the algorithms in the single-minded case, we introduce
a general framework for mechanism design and give sufficient conditions for
the monotonicity of mechanisms that follow the framework. Roughly speaking,
monotonicity is essentially a sufficient condition for truthfulness and ensures that
when a range is shrunk or its value increased, then it remains in the solution
if it was there before the change. The framework captures all algorithms that
first decompose the instance into several (smaller) instances, solve each instance
independently, and then return the best of all these solutions. Both for the fat
ranges and the rectangles, the algorithms presented fit the framework and are
shown to satisfy the sufficient conditions for monotonicity. The framework might
also be of independent interest to show monotonicity of other mechanisms.

For the fat-ranges case, we modify Chan’s algorithm [6] for packing d-dimen-
sional fat ranges to get a monotone PTAS. For the rectangles case, we use a
natural decomposition technique to partition the set of rectangles into different
‘levels’. An instance is then formed by taking all rectangles of one level and,
in addition, extensions of all rectangles of higher levels. Each instance is then
solved by projecting all its rectangles to one line and solving the corresponding
interval packing problem by dynamic programming to optimality. Although in
[12], the authors also decompose the problem to instances of the interval packing
problem, the decomposition we use is simpler and yields a better running time.

For the case of general valuations, that we refer to as the non-single-minded
(non-SM) case, the results of Lavi and Swamy [13] allow us to derive randomized
truthful-in-expectation mechanisms from LP-rounding algorithms for approxi-
mating the optimum social welfare. By developing such rounding algorithms, we
obtain truthful-in-expectation mechanisms with the following guarantees.

Theorem 2. There is a polytime truthful-in-expectation mechanism, in the non-
SM case, with approx. ratios 4β for β-fat ranges, and 4 logm for rectangles.

2 Problem Definition and Preliminaries

There is an extensive literature on the design of truthful mechanisms for combi-
natorial auctions. In this section, we will only give the basic definitions needed
in this paper. For an excellent introduction, we refer the reader to the book by
Nisan et al. [15] and the references therein.

Let [m] = {1, . . . ,m}. Let (U,R) be a range space, defined by a set U and a
collectionR of subsets of U , called ranges. Givenm bidders, we assume that bid-
der j declares her bid bj(r) over every possible range r ∈ R. The true valuation
of the bidder j on range r will be denoted by vj(r). It is naturally assumed that
the empty range ∅ ∈ R, and that vj(∅) = 0 for all j. In the single-minded case,
each bidder is only interested in a single range rj ∈ R, that is, vj(r) = vj(rj)
for all r ⊇ rj and vj(r) = 0 for all r 
⊇ rj .

In this paper, U will be a set of points in d-dim. Euclidean space, and R a
collection of connected regions. By the size of a region, we mean the side length
of its smallest enclosing hypercube. More specifically, we will consider rectangles
with integral x-coordinates ranging from 1 to n and fat objects in [0, 1]d.
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There are several definitions of fatness in the literature [3, 6, 17]. We use the
following definition by Chan [6]. Recall that a box is the generalization of a square
to higher dimensions. In what follows we assume that boxes are axis-aligned.

Definition 1 ([6]). Let β > 0 be a constant. A collection C of ranges is β-fat
if for any � and any box B of size �, we can choose β points H(B) s.t. every
range intersecting B and has size at least � contains one point in H(B).

E.g., axis-aligned squares have fatness of β = 4 since for any box B of size � and
any such square S of size at least � that intersects B, S must contain one of the
four corners of B. On the other hand, line segments have unbounded fatness.

The social welfare maximization problem (SWM) is to find the optimum in-
teger solution of the following linear program:

max
∑

j∈[m]
r∈R

vj(r)xj,r (P)

s.t.
∑

j∈[m]
r∈R:u∈r

xj,r ≤ 1 for all u ∈ U (1)

∑
r∈R

xj,r = 1 for all j ∈ [m] (2)

xj,r ≥ 0 for all j ∈ [m], r ∈ R.

Informally, we want to find an allocation that maximizes the total valuations
(i.e., the social welfare) while making sure that (1) each item is only assigned to
one bidder and (2) each bidder is only assigned at most one range.

A mechanism takes as an input the set of bids {bj : j ∈ [m]} and outputs (i)
a feasible allocation, that is, a 0/1-vector x̃ (or in other words an assignment of
a (possibly empty) range rj to each bidder j ∈ [m]) satisfying (1) and (2); and
(ii) a payment p : [m]→ R+, that is, an amount pj ≥ 0 that is charged to bidder
j, for all j ∈ [m]. The mechanism is said to satisfy individual rationality if it
results in a non-negative utility for each bidder, that is, vj(rj) − pj ≥ 0, if the
mechanism allocates rj to bidder j, for j = [m]. For that, we assume that the
bids are also single-minded, i.e., similar to the valuations, for all bidders j ∈ [m]
there exists a range r′j ∈ R such that for all r ⊇ r′j we have bj(r) = bj(r′j)
and for all r 
⊇ r′j , bj(r) = 0. Thus, we can specify bj by a range rj and bj(rj)
and can write (rj , bj(rj)) for a bid. The mechanism is said to be truthful if a
bidder cannot improve his utility, under the mechanism, by bidding something
different from his true valuation, regardless of the other players’ bids. Formally,
if the mechanism outputs the allocation-payment (rj , pj) for bidder j ∈ [m],
given the vector of bids (bj , b−j), and it outputs (r̂j , p̂j) given the vector of bids
(vj , b−j), where b−j denotes the vector of bids of all other bidders j′ 
= j, then
the mechanism will be truthful if it satisfies vj(r̂j) − p̂j ≥ vj(rj) − pj, for all j
and all vj , bj, b−j .

For the single-minded case, a sufficient condition for truthfulness is mono-
tonicity and critical payment. The following formulation is adopted from [15,
Lemma 11.9] and slightly adjusted to our notation.
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Lemma 1 ([15]). A mechanism for single-minded bidders in which losers pay 0
is incentive compatible if it satisfies the following two conditions: (i) Monotonic-
ity: A bidder j who wins with bid (rj , bj(rj)) keeps winning for any b′j > bj and
for any r ⊂ rj (for any fixed settings of the other bids); (ii) Critical Payment:
A bidder j who wins pays the minimum value needed for winning: the infimum
of all values b such that (rj , b) still wins.

We note that usually it is easy to define prices that satisfy the critical payment
condition. Thus, the main difficulty in obtaining truthful mechanisms lies in
ensuring monotonicity.

For randomized mechanisms, the mechanism is said to be truthful-in-expect-
ation if E[vj(r̂j) − p̂j ] ≥ E[vj(rj) − pj] for all j ∈ [m] and all vj , bj, b−j , where
the expectation is taken over the random choices made by the algorithm.

The approximation guarantee of the mechanism is the ratio between the social
welfare given by the mechanism

∑
j∈[m] vj(rj) and the optimal social welfare,

defined as the optimal integral solution of LP (P). Lavi and Swamy [13] showed
that an ”LP-based” approximation algorithm for SWM can be used to get a
truthful-in-expectation mechanism of the same approximation guarantee.

Theorem 3 ([13]). An LP-based α-approximation algorithm for the SWM prob-
lem can be used to obtain a truthful-in-expectation mechanism with approximation
guarantee α.

3 The Single-Minded Case

In this section, we introduce a general framework for mechanism design in the
single-minded case and give sufficient conditions for monotonicity of such mech-
anisms. We will then apply our framework to the two cases where the ranges are
fat objects and rectangles.

3.1 A General Framework for Monotone Mechanisms

The SWM problem can be thought of as finding a maximum-weight packing
among a set of ranges with given weights b(1), . . . , b(m). Several existing algo-
rithms for solving the packing problem can be put into the following framework:

(F1) k ordered instances R1, . . . ,Rk are obtained from the original input R;
(F2) an algorithm A is used to solve each instance Ri independently, returning

a packing R′
i;

(F3) the packing R′ = argmaxi{b(R′
i)} with maximum weight is returned, where

ties are broken according to the order of the instances.

The following lemma describes sufficient conditions for such an algorithm to
be monotone. In these conditions, we will consider changing one range or its
corresponding bid, while all other ranges and bids are kept the same.

Lemma 2. An algorithm that satisfies (F1)-(F3) is monotone if it satisfies fur-
ther the following conditions (with A denoting the algorithm from (F2)):
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(C1) If a range is shrunk or its bid increased, the order of the instances is
unaffected and no new instances are created.

(C2) Algorithm A is monotone.
(C3) If a range r is shrunk or its bid increased, then for all instances Ri, the total

weight of the solution returned by A on Ri can not decrease if r is contained
in the solution (after the change) and remains the same otherwise.

Remark 1. Note that (C3) is always satisfied if we assume that the algorithm A
is (1) monotone in its output value, i.e., if a range is shrunk or its bid increased,
A returns a solution of total weight at least as large as the weight of the solution
returned before the change, and (2) for all instances Ri, changing range r can
only result in the addition or drop of r from instance Ri, i.e., all other ranges
remain in exactly the same instances as before.

In the next subsections, we apply this general framework to the special cases of
ranges of bounded fatness and axis-aligned rectangles, to prove Theorem 1.

3.2 The Fat Ranges Case

We describe now how to modify Chan’s algorithm [6] for packingm d-dimensional
fat ranges to get a monotone PTAS for this case. By scaling, we can assume that
all objects lie in [0, 1]d. We define the size of a range r to be the size of the
smallest bounding box B(r). We first sketch Chan’s algorithm, which follows
the framework (F1)-(F3). The idea is to choose the instances Rj such that they
can be solved to optimality using dynamic programming. For that, the space is
divided recursively by the following procedure: start with a hypercube contain-
ing all the ranges, then partition every non-empty hypercube recursively into
2d equally sized hypercubes. Such a division is represented by means of a 2d-
dimensional tree (for d = 2 it is called a quadtree). Each instance Rj is obtained
from a (different) shifted version of this basic division by including all ranges
into Rj that are ‘large’ w.r.t. the smallest cell in which they are contained. Each
instance is then solved to optimality and the one of maximum value is returned.

The dynamic program (DP) introduces for each cell C and disjoint subcol-
lection B of the ranges crossing the boundary of C the table entry pack[C,B],
which is defined as the maximum weight of a subcollection B′ of ranges that lie
completely inside C, such that B∪B′ is a disjoint collection. For a collection B′ of
ranges, let B′|∂C be the subsets of ranges from B′ crossing the boundary of C. Let
C1, . . . , C2d denote the children of cell C in the tree. The table is filled bottom-up
by the easily verifiable formula: pack[C,B] = maxB′

(∑2d

i=1 pack[Ci, (B′∪B)|∂Ci ]+

b(B′)
)
, where b(B′) is the sum of bids of all ranges in B′, and where the max-

imum is over all disjoint subcollections B′ ⊆
⋃

iR|∂Ci \ R|∂C s.t. B′ ∪ B is a
disjoint collection.

The problem with such a straightforward approach is that the size of the table
might be too large since we might have to consider an exponential number of
disjoint subcollections B for some cell C. To overcome this problem, we only
consider ranges that are large with respect to their (smallest) enclosing cell.
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Definition 2 ([6]). A range of size � is k-aligned if it is inside a tree cell of
size at most k�.

The key observation now is that when all objects are β-fat and k-aligned, the
packing problem can be solved exactly in polytime using dynamic programming.
The reason is that any feasible solution to the packing problem can have at most
K = 2βdkd−1 objects that intersect the boundary of any cell and there are only
O(m) many relevant cells in the bottom-up approach. Thus, for every such cell
we consider only collections B′ with |B′| ≤ 2dK ranges. Hence, the table will
have at most mO(K) entries. Note that K is a constant if k and d are constants.
In summary, we have the following lemma.

Lemma 3 ([6]). If all ranges in C are β-fat and k-aligned, then the packing
problem can be solved in mO(βdkd−1) time.

Chan now considers O(k) shifts of the basic division, each of which defines an
instance Rj by removing all ranges that are not k-aligned w.r.t. that shift. Each
instance is solved to optimality by the above DP, and the packing of maximum
value is returned. Choosing k to be roughly d/ε, a 1+ε-approximation is achieved.

Theorem 4 ([6]). Given a collection of m O(1)-fat objects in Rd, the above
algorithm gives a 1+ ε-approximation to the packing problem in mO(ε−d+1) time.
A truthful algorithm. In order to make the algorithm monotone, we show how
to ensure that all conditions of Lemma 2 are met. First, we order the instances
given by the shifts in an arbitrary, but fixed order. Second, we need to ensure
that, for each shifted instance, the (quadtree) partitioning is independent of the
ranges. This can be achieved by assuming that all ranges in the instance lie in
a fixed range, say [0, 1)d. So the initial cell will be the unit hypercube. We keep
partitioning a cell until it does not contain any range in its interior. Even though
the number of cells is not polynomial in m, it is easy to see that one can still
implement the DP in polytime (assuming fixed d), by ‘zooming’ into the relevant
cells (those that are intersected by at least one range).

Since the partitioning of the instances is independent from the ranges, (C1)
is immediately satisfied. In order to satisfy (C2) and (C3) we do not drop any
ranges from the instances even if they are not k-aligned, and modify the DP
accordingly. In particular, we now have a table entry pack[C,B] for every cell C
and every disjoint subcollection B ⊆ R|C of ranges that either cross the boundary
of C or are completely inside C, and have cardinality at mostK. In contrast to the
DP before, the maximum in the above recurrence is now over all subcollections
of ranges in H(C,B), where H(C,B) is the set of disjoint subcollections of ranges
B′ ⊆ R|C \ R|∂C such that B′ ∪ B is a disjoint collection and |B′| ≤ K:

pack[C,B] = max
B′∈H(C,B)

( 2d∑
i=1

pack[Ci, (B′ ∪ B)|Ci ] + b(B′)
)
. (3)

Note that in contrast to the original DP we do not only consider ranges that lie
on the boundary of the child cells of C but all ranges that lie (completely) in C.
Despite these modifications, we still have mO(K) relevant table entries.
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Clearly, the solution computed by the modified DP is no worse than the
solution computed by the original DP (since we just search over a larger space).
Still, we have to ensure that the DP is monotone (i.e., satisfies (C2)). For that we
specify how to break ties during the computation of pack[C,B] in (3). Consider
an arbitrary but fixed order on all ranges: r1, . . . , rm. Note that during the
computation (3), we consider all optimal subcollections B′ ∈ H(C,B). Whenever
there is more than one such subcollection we return the subcollection that forms
the lexicographically smallest ordered sequence of ranges.

Lemma 4. Let ε > 0. The modified algorithm for fat ranges returns a 1 + ε-
approximate, monotone solution and runs in time mO(ε−d+1).

In order to ensure that the algorithm is truthful, we still have to specify the
critical payment of each winner. We use a similar payment as in the VCG mech-
anism (see e.g. [15]). Let Wj be the maximum value returned by the DP over
all instances if we remove the object rj and W ′

j the value if in addition to rj
we also remove all objects that intersect rj . Clearly, W ′

j ≤Wj . Then define the
payment of bidder j to be pj = Wj − W ′

j . To see why this definition indeed
yields the critical value for bidder j, note that if bidder j bids less, no solution
of maximum value over all instances contains rj , so bidder j does not win. On
the other hand, if bidder j bids pj + ε for any ε > 0, every solution of maximum
value must contain rj , so bidder j wins for sure. Finally, individual rationality
follows as in the VCG mechanism, since for a winner j, bj +W ′

j ≥Wj .

3.3 The Rectangles Case

We now consider the case when the given objects are axis-aligned rectangles
with integral x-coordinates assuming values from 1 to n. We assume that n is a
power of 2; otherwise we can extend the interval to the nearest power of 2. In
that case, it is easy to verify that we achieve an approximation ratio of �logn�.

Any set of rectangles r1, . . . , rm can be partitioned into at most k = logm sets,
which can be interpreted as lying at different ”levels”. The rectangles at level � ∈
[k] can be further partitioned into h = 2�−1 sets, such that all rectangles in one
set intersect one vertical line, while every pair of rectangles from two different sets
are disjoint (see, e.g., [1]). We will denote by L� the set of these 2�−1 vertical lines
at level �. To make this decomposition independent of the rectangles themselves,
which is needed for monotonicity, we give the decomposition explicitly. We define
Li to be the set of vertical lines x = n/2i, x = 3 · n/2i, . . . , x = (2i − 1) · n/2i.
Clearly, we get k = logn levels. We assign each rectangle to the smallest level
such that one of its lines intersects the rectangle. Note that each rectangle is
intersected by exactly one vertical line of its level.

Given a set of rectangles {r1, . . . , rm}, we iterate the following two steps,
for � ∈ [k]: First, we project every rectangle whose level is at least � onto the
nearest vertical line at level �. This gives a set of intervals on each vertical
line in L�. The bid of a bidder j on a given projection is the same as on the
original rectangle. Second, we apply a monotone DP for the maximum weight-
independent set problem on the set of intervals on each vertical line in L�. The
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resulting independent set of intervals corresponds to a disjoint set of rectangles
R�. At the end we output the set of rectangles R� that achieves the highest
total bid, i.e., maximizes

∑
r∈R�

bj(r). In case of ties, we choose the R� at the
lowest level. It is straightforward to verify that this algorithm is a special case
of the general framework described in Section 3.1, so monotonicity follows from
Lemma 2. Finally each winner is charged the critical payment of the projection
that made him a winner.

Lemma 5. The above procedure for rectangles is monotone, gives an approxi-
mation guarantee of logn and has a running time of O(m log(mn)).

4 The Non-Single-Minded Case

In this section, we show that in the non-single-minded case, we get a truthful-
in-expectation mechanism with approximation guarantee O(1) (resp., O(logm))
for fat objects (resp., axis-aligned rectangles.) The idea is to use Theorem 3. For
that, we show that the integrality gap of the LP (P) is O(1) for fat objects and
O(logm) for rectangles (and there is an algorithm verifying this).

We give a randomized algorithm that with high probability returns an inte-
gral solution x̃ such that bT x̃ = Ω(bTx), where b denotes the (column) vector
of bids and x denotes the optimal fractional solution This algorithm can be
derandomized using the work of [16]. Combining the results yields Theorem 2.
The fat ranges case. Assume all ranges are β-fat. We apply randomized rounding
with alteration (see, e.g., [4]). Let (xj,r : j ∈ [m], r ∈ R) be any feasible solution
for (P). Let γ ∈ (0, 1) be a constant to be specified later. We define the rounded
solution x̃ by its winner set W , obtained by the following procedure. First, for
every bidder j, we choose a range r = rj with probability γxj,r if r is non-empty
and with probability 1−γ(1−xj,r) if r = ∅. Second, letW = ∅, and r1, r2, . . . , rm
be the ranges selected in Step 1 in non-increasing order of size. For j = 1, . . . ,m,
if rj does not intersect any range ri with i ∈W , add j to W .

By construction, the set (rj : j ∈ W ) is a valid allocation. It remains to
prove the approximation guarantee of O(1).

Lemma 6. E[
∑

j∈W bj,rj ] ≥ 1
4β

∑
j∈[m],r∈R bj,rxj,r.

The rectangles case. We use a similar technique as in the previous section.
However, since rectangles can have unbounded fatness, we refine the previous
technique by using the levelwise decomposition described in Section 3.3. Let
(xj,r : j ∈ [m], r ∈ R) be any feasible solution for (P), and γ = 1

2 . We define the
rounded solution x̃ by its winner set W , obtained by the following procedure.

1. For every bidder j, we choose a rectangle r = rj with probability γxj,r if r
is non-empty and with probability 1− γ(1− xj,r) if r = ∅.

2. Let r1, r2, . . . , rm be the rectangles selected in Step 1, ordered from top to
bottom (breaking ties arbitrarily).

3. Consider a levelwise decomposition of these rectangles into logm levels. Pick
a level i ∈ {1, 2, . . . , logm} at random. Let S be the set of rectangles in level i.
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4. Let W = ∅. For j ∈ S, if rj does not intersect any ri, i ∈W , add j to W .

Lemma 7. E[
∑

j∈W bj,rj ] ≥ 1
4 log m

∑
j∈[m],r∈R bj,rxj,r.
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Abstract. Designing truthful mechanisms for scheduling on related machines is
a very important problem in single-parameter mechanism design. We consider the
covering objective, that is we are interested in maximizing the minimum comple-
tion time of a machine. This problem falls into the class of problems where the
optimal allocation can be truthfully implemented. A major open issue for this
class is whether truthfulness affects the polynomial-time implementation.

We provide the first constant factor approximation for deterministic truthful
mechanisms. In particular we come up with a 2 + ε approximation guarantee,
significantly improving on the previous upper bound of min(m, (2 + ε)sm/s1).

1 Introduction

Algorithmic Mechanism Design studies scenarios where there is an optimization prob-
lem at hand, but selfish agents control some input parameters. These parameters are
unknown to the optimizer and are private values of the agents. Moreover, the agents
might be only interested in satisfying their own interests and therefore they might have
incentive to misreport their values, if this can lead to an output or solution that they
prefer. In order to elicit the missing information, the mechanism design approach uses
side payments to motivate the agents to reveal their true values. Roughly speaking, a
mechanism consists of two components: an algorithm that takes as input the reported
values, and returns a solution of the optimization problem, and a payment algorithm
that hands out payments to the agents. Each agent’s goal is to maximize her utility, that
is the payment she gets minus her actual value on the solution. A mechanism is truthful
if it is in the best interest of each agent to report truthfully.

Given a class of problems, the challenge is to characterize the objective functions
that one can truthfully optimize/approximate. Under this framework, scheduling is a
very natural and well-studied setting to explore the boundaries of truthful implemen-
tation. On the one hand, the algorithmic techniques that have been developed are very
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broad, and the question is to what extent those techniques can be applied to the design
of truthful mechanisms. On the other hand scheduling is conceptually similar to a com-
binatorial auction, a setting that is very important in economics, and therefore insights
can be transfered from one problem to the other. In a scheduling setting, there are m
machines and n tasks, and each machine is controlled by an agent that has as private
values the processing times it needs to execute the tasks. The algorithmic goal is to al-
locate the jobs to the machines so that some objective (most commonly the makespan)
is optimized. In the unrelated machines setup the processing times for each machine are
expressed via a vector of sizem, while for the related machines setup they are expressed
via a single parameter, the speed of the machine.

A natural question that arises in many single-parameter settings is: what is the ap-
proximability of polynomial-time truthful mechanisms? Taking a problem that one can
solve exactly with a truthful mechanism, can one also achieve the best possible approx-
imation guarantee, or does truthfulness have a negative computational impact? Is the
class of polynomial-time truthful mechanisms less powerful with respect to approxima-
tion, compared to the class of polynomial-time non-truthful algorithms? For makespan
minimization such a separation does not exist. Dhangwatnotai et al. [8] showed a ran-
domized truthful-in-expectation PTAS and later Christodoulou and Kovács [7] showed
a deterministic truthful PTAS that is the best one can achieve even with non-truthful
approximation algorithms [13,10].

In order to explore further the performance of truthful mechanisms in single-para-
meter problems, we focus on the covering objective for scheduling on related machines,
that is we are interested in maximizing the minimum completion time over all ma-
chines. This objective is important in settings where a system is only alive if all of its
components are alive. One can think of the jobs as batteries with varying capacities, or
hard-drives of various sizes that we want to use as a backup medium [16]. The cover-
ing problem is also closely related to the max-min fairness problem, where we want to
distribute indivisible goods to players so as to maximize the minimum valuation.

Mu’alem and Schapira [14] showed that maximizing the minimum load for unrelated
machines cannot be approximated within a constant factor by a deterministic truthful
mechanism.1 On the other hand, using the arguments in [1], one can show that for
related machines the optimal allocation is truthful, although not efficient. For the non-
strategic version, Epstein and Sgall showed a PTAS [10].

The question we address in this paper is: ‘What is the best deterministic, polynomial-
time, truthful approximation mechanism that one can design for the covering problem?’
We provide the first deterministic truthful mechanism with constant approximation for
the covering objective. In particular, we obtain an approximation guarantee of 2 + ε.

Related work. The non-strategic version of the problem has been extensively studied
in the past in various contexts for online and approximations algorithms. For iden-
tical machines, Woeginger [17] designed a polynomial time approximation scheme
(PTAS) and gave tight results for deterministic online algorithms. Azar and Epstein [3]

1 In fact the authors showed this for the combinatorials auctions setup where the agents are
utility maximizers, while in the scheduling setting the agents are cost minimizers. However, a
simple modification of their argument works for scheduling as well.
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studied the randomized online setting. Furthermore, for the case where jobs arrive in
non-increasing order and also the optimal value is known in advance, they gave a deter-
ministic 2-competitive online algorithm NEXT COVER.

In [4], a PTAS was designed for related machines, and later this was generalized to
capture a large class of objective functions in [10]. Epstein and van Stee [11] provide a
PTAS and also an FPTAS for constant number of related machines which they then use
as a subroutine for a truthful FPTAS, while Efraimidis and Spirakis [9] show an FPTAS
for the more general case of unrelated machines. Dhangwatnotai et al. [8] provide a ran-
domized truthful-in-expectation PTAS. Epstein and van Stee [11] also give a monotone
approximation algorithm with approximation ratio min(m, (2+ ε)sm/s1) where ε > 0
can be chosen arbitrarily small and si is the (real) speed of machine i.

The max-min fairness problem has been studied intensively in recent years, see for
instance [2,5,6,12] and references therein.

Our results and techniques. For any positive ε < 1/5,we show a (2+5 ε)-approxima-
tion, monotone algorithm for the covering problem. Monotonicity of a scheduling al-
gorithm means that whenever a single machine (agent) increases his reported speed
(asuming that the other speeds are unchanged), the machine receives not less total job-
size, than with the original speed. As known from the classic work of Myerson [15],
and completed with the payment scheme given there, this yields a truthful mechanism,
that is computable in polynomial running time for constant ε.With this result we signif-
icantly improve upon the previous best approximation ratio of min(m, (2 + ε)sm/s1)
given in [11].

As a standard technique applied in all approximation schemes for related schedul-
ing [13,10,8,7], we define a directed acyclic graph with vertices representing possible
job-sets allocated to single machines. Relative to the total size of any given set, we
distinguish normal and tiny jobs in the set. We consider a special form of schedules,
where the whole sequence of machines is partitioned into segments, each segment hav-
ing either sets of (nearly) only normal jobs, or sets of only tiny jobs. The allocation
of jobs within segments must adhere to strict regulations, which allow for both good
approximation and polynomial-time optimization.

We could exploit some of the ideas used for the monotone PTAS for related machine
scheduling (with the makespan objective) [7], while defining an essentially different
type of allocation. We point out that the current result is not a straightforward adaptation
of [7]. In fact, we were unable to find such an adaptation for maximizing the cover:
although in many aspects the setting is symmetric to that of makespan minimization,
this symmetry breaks when handling the tiny jobs.2 On the positive side, striving for
the weaker approximation ratio admits a very simple and technically less demanding
construction than in [7].

2 The difficulty lies roughly in the fact that in case of makespan minimization a machine that
becomes bottleneck loses (many or all of) its tiny jobs, while in case of maximizing the cover,
a bottleneck machine might collect all tiny jobs from faster machines. This makes exact op-
timization with our methods impossible, since the exact workload of a set of tiny jobs is not
known.
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2 Preliminaries

The input is given by a set PI of n input jobs, and a vector σ of input speeds σ1 ≤ . . . ≤
σm. We round up every input speed to the nearest integral power of 1 + ε. Denoting
the respective rounded speeds by si, we have s1 ≤ . . . ≤ sm. We use the interval
notation (e.g., [1,m]) for a set of consecutive machine indices. The letters p or q are
used to denote jobs, as well as the respective job sizes in a given formula. We fix a
nondecreasing order p1 ≤ p2 ≤ . . . ≤ pn of all input jobs. If Q = {q1, q2, . . . , qj} is
an arbitrary job set, then the weight or workload of Q is |Q| =

∑j
r=1 qr. An allocation

of the jobs to the machines is an (ordered) partition (P1, P2, . . . , Pm) of the jobs intom
sets. We search for an output where the workloads |Pi| are in non-decreasing order. We
assume w.l.o.g. that n ≥ m, since otherwise the cover is trivial. We are only interested
in allocations where Pi 
= ∅ for i ∈ [1,m] (otherwise the approximation ratio is∞).

Our graph-algorithm outputs a schedule of optimum cover over a restricted type
of job partitions. We name these partitions segmented partitions, because the output
partition can be subdivided into segments, each consisting of consecutive job sets of
the partition. Every job allocated in some earlier segment precedes all jobs allocated
in any later segment, with respect to the fixed job order. The allocation of jobs within
a partition segment will have to adhere to one of two forms: smooth allocation, or
canonical allocation.

A smooth allocation of a set of consecutive jobs P = {pj, pj+1, . . . , pk} into r sets
is the partition segment output by the following smoothing procedure: We construct a
fractional allocation into r sets of equal workloads of size |P |/r (we assume pk #
|P |/r). We start with the smallest job pj , add jobs in the fixed order, and cut a job into
two whenever the total workload reached |P |/r.We continue with the next set, and the
remaining part of the divided job, and so on. Next, we allocate each job that was cut
into two, to the first one of its two sets. Finally, we order the job partition in increasing
order of workloads.

Before we turn to canonical allocations, we need to fix the constants δ and ρ, and
classify the input job sizes accordingly. For a desired approximation bound of 2 + 5ε,
we choose a δ # ε.3 For ease of exposition, we will assume that (1 + δ)t = 2 for some
t ∈ N. Furthermore, we define ρ as the unique integer power of 2 in (δ/8, δ/4].

Definition 1. If p denotes (the size of) a job, then p denotes this job rounded up to the
nearest integral power of (1 + δ). A job p is in the job class Cl, iff p = (1 + δ)l.

A canonical allocation within a segment means that the sets have non-decreasing work-
loads, moreover that jobs that belong to the same job class appear in increasing or-
der over the sets of the segment. Given an arbitrary partition (Q1, Q2, . . . , Qr) of
some subset Q ⊆ PI of the jobs, the canonization procedure constructs a partition
(Q′

1, Q
′
2, . . . , Q

′
r) of Q with canonical allocation.4 In effect, this procedure

(A) permutes jobs within job classes, and thus perturbs each set Qi, so that the per-
turbed set Q̃i has a workload in [|Qi|/(1 + δ), |Qi|(1 + δ)]; and then

(B) sorts the perturbed Q̃i sets by increasing workloads to obtain (Q′
1, . . . , Q

′
r).

3 12δ < ε suffices.
4 The procedure appeared in the full version of [7].
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3 Segmented Partitions

In the following we introduce magnitudes, and make the definition of segmented parti-
tions exact. As the main result of the section, we show in Theorem 1 that for arbitrary
input with rounded speeds, a segmented partition of cover within a factor of 1−ε

2 of
the optimum exists. As done previously in [10,8,7], we associate a magnitude wi, an
integer power of 2, with each set Pi in the partition. The set with the associated mag-
nitude will also be denoted by (Pi, wi). Magnitudes are used to focus on the relevant
job sizes when representing job sets with the help of integer arrays. We will require
wi/5 < |Pi| ≤ wi (i ∈ [1,m]), and w1 ≤ w2 ≤ . . . ≤ wm.

Definition 2. A job p is tiny wrt. magnitudewi, if p ≤ ρ ·wi. A jobset (Pi, wi) is sandy,
if all jobs in Pi are tiny wrt.wi. A jobset (Pi, wi) is normal, if it has at least one non-tiny
job, and a (possibly empty) consecutive sequence of the largest tiny jobs wrt. wi.

Note that the property of being a tiny job for some magnitude either holds for a whole
class of jobs or for none of them, as ρ · wi is an integer power of 2. Next we define the
two allowed sorts of partition segments: one for sandy sets, and another one for normal
sets.

Definition 3. A sandy segment consists of sandy sets of equal magnitude (Pi, w), (Pi+1,
w), . . . , (Ph, w) with a smooth allocation of consecutive jobs (of size at most ρ · w).

Definition 4. A normal segment of a partition consists of normal sets of nondecreasing
magnitudes (Pi, wi), (Pi+1, wi+1), . . . , (Ph, wh), with a canonical job allocation. The
union of the sets contains consecutive jobs of the ordered input.

Definition 5. A segmented partition is a partition of the input jobs intom jobsets Pi of
non-decreasing workloads |Pi|. It is subdivided into partition segments each of which
is either sandy or normal; if job p precedes job q in the fixed ordering, then p belongs
to the same segment as q, or to an earlier segment.

Theorem 1. Let 0 < ε < 1/5 and δ # ε be fixed. Given an arbitrary set of n input
jobs in a fixed non-decreasing order, and m non-decreasing input speeds that are in-
tegral powers of (1 + ε), there exists a segmented partition having a cover of at least
(1− ε) OPT

2 , where OPT means the optimum cover.

Proof. Let both the machine speeds and the job sizes be indexed in non-decreasing
order. It is easy to show (see the full paper for details) that the greedy procedure that
takes the (integral) jobs in the given order, and fills each machine until it has finish time
at least OPT/2, will not run out of jobs before the last machine is filled. Obviously, the
same holds, if each machine i is filled up to some given finish time fi ≤ OPT/2.

Now we construct the segmented partition for the given input. We start by a greedy
integral allocation which is shown in Figure 1. Note that the pre-magnitudes defined in
Step 1 are increasing in i.Observe that those machines that were filled up toC = OPT/2
have normal jobsets (call them normal machines), and those filled only to (1− ε/2) ·C
have sandy sets (call them sandy machines), with respect to the pre-magnitudesw′

i. The
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Input: job set PI , machine speeds s1 ≤ · · · ≤ sm, optimal cover OPT.

1. Let C = OPT/2. For machine i of speed si let the pre-magnitude w′
i (a power of 2) be

uniquely defined so that 2siC ≤ w′
i < 4siC.

2. Allocate jobs in the fixed increasing order as follows.
For i = 1 to m − 1 do

(a) Assign jobs to the current machine until the finish time is at least (1 − ε/2)C.
(b) If the last (largest) job on the machine has size more than ρw′

i, continue assigning
jobs until the finish time is at least C.

3. Assign the remaining jobs to machine m.

Output: job assignment Q1, . . . , Qm with cover of at least (1 − ε/2)OPT/2.

Fig. 1. Greedy integral allocation procedure

only possible exception to this is machinem, which is always filled up to at least C, but
might contain a sandy set (in this case it is a sandy machine).

Within machines of equal speed, zero or more sandy machines are followed by zero
or more normal machines, since such machines have the same pre-magnitude. Each
such sequence of sandy machines (i.e., of the same machine speed) will be a sandy
segment. The remaining maximal sequences of normal machines, possibly spanning
over different machine speeds will be the normal segments. Next, we redistribute the
jobs within each segment in order to fulfill the conditions of Definitions 3 and 4 and
prove the approximation bound of (1 − ε) · C = (1 − ε) · OPT

2 . The sets of this final
allocation will be denoted by P1, P2, . . . , Pm.

Sandy segments. Consider first a segment consisting of all the sandy machines of the
same speed s and having the same pre-magnitude w′ < 4Cs. Using ρw′ < 4ρCs ≤
δCs, such machines have a workload of at least (1− ε/2) ·C · s and at most (1− ε/2+
δ) ·C · s.We now apply the smoothing procedure (see Section 2) to these machines and
the jobs assigned to them. Then for each machine i of the segment we have

(1 − ε/2− δ) · C · s ≤ |Pi| ≤ (1− ε/2 + 2δ) · C · s. (1)

The obtained partition on the segment adheres to Definition 3, and the cover is higher
than (1− ε) ·C; the pre-magnitudes can remain the valid magnitudeswi of the jobsets.

An exceptional case occurs when machinem is (sandy and) is part of the segment. In
this case the upper bound in (1) might fail, and the common magnitude of the segment
needs to be increased acccordingly. However, then the segment is the very last one, and
Claim 3 and the theorem still holds.

Normal segments. Consider now an arbitrary normal segment (Qs, . . . , Qt). We create
a canonical allocation by running the canonization procedure (see the last lines of 185).
Since sorting cannot decrease the cover [10], the cover remains above C/(1 + δ) >
(1− ε)C.We also need to find proper magnitudes for machines in the normal segment.
Before doing this, we conclude the main line of the proof by showing that the workloads
|Pi| are increasing in i. All other conditions of Definition 5 hold by construction.
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Claim. The workloads |Pi| are increasing in i.

Proof. Clearly, the workloads within each segment are increasing, since the segments
have either a canonical or a smooth allocation. Next we show that they are increasing
over the whole schedule. First, we compare a normal set Pi with a sandy set Pj of a
preceding sandy segment. Assume that Pi = Q̃i′ , for some sj ≤ si′ , where i′ and i are
in the same normal segment. We saw in (1) that for the sandy set |Pj | ≤ (1 − ε/2 +
2δ) · C · sj , whereas for the normal set 1

(1+δ) · C · si′ ≤
1

(1+δ) · |Qi′ | ≤ |Q̃i′ | = |Pi|.
Using 1− ε/2 + 2δ < 1− δ < 1

1+δ , this proves |Pj | < |Pi|.
Assume now that Pi is a sandy set, and Pj is either a jobset in a preceding sandy

segment, or the perturbed Q̃j ′ set of a preceding normal segment. Let s = sj in the
first, and s = sj ′ in the second case, respectively. In both cases, by construction s ≤
si/(1 + ε). Furthermore, all the jobs in Pi, and in sets of previous segments have size
of at most ρwi ≤ δCsi, which implies the bound

|Pj | ≤ (C · s+ δCsi)(1 + δ) ≤ C · si ·
(

1
1 + ε

+ δ
)

(1 + δ)

for both cases. Using the lower bound for |Pi| from (1) and the fact that ( 1
1+ε + δ)(1 +

δ) < 1− ε/2− δ for δ < ε/12, we obtain |Pj | < |Pi|. �
Finally, we define magnitudes wi. Fix a normal segment, and let w′

0 be the smallest
pre-magnitude in this segment. For each set Pi of the segment, we define the magnitude
as wi = max{w′

0, 2
�log |Pi|�}. For these magnitudes wi/5 < |Pi| ≤ wi holds.

Claim. The magnitudes are increasing over the whole schedule, and the (Pj , wj) are
normal sets.

Proof. The magnitudes are increasing within the segment because the workloads are
increasing. Furthermore, if the magnitude wj of some set Pj = Q̃i is larger than the
pre-magnitude w′

i of Qi, then 2siC ≤ w′
i ≤ wj/2 < |Q̃i| < (1 + δ)|Qi|, whereas

|Qi| had to reach (only) a workload of siC. Thus, the last job in Qi is at least as big as
(roughly) the sum of all other jobs in Qi, and in particular for δ < 1/5 we obtain:

(∗) If wj > w
′
i then Qi contains a job of size at least wi

5(1+δ) .

Since in the subsequent sandy segment (of magnitude w) this jobsize is tiny by defi-
nition, we have wi/[5(1 + δ)] < ρw. Therefore, the magnitudes are increasing over the
whole partition.

We show that the (Pj , wj) are normal sets. Let Pj = Q̃i. Recall that (Qi, w
′
i) is

normal by the definition of normal machines. With respect to the new magnitude wj ,
there is at least one normal job in the set. This is clear ifwj ≤ w′

i, and follows from (∗)
if wj > w

′
i. Assume now that the machine also contains tiny jobs with respect to wj .

Note that since the jobs are consecutive (disregarding perturbation) in each set, every
other set has either only tiny jobs or only normal jobs with respect to wj . However, any
set in the same normal segment that has only tiny jobs with respect to wj , must have a
magnitude less than wj (since each set does have a normal job for its own magnitude)
and so (since magnitudes are increasing) it is a set Pk for some k < j. By the definition
of canonical allocations and normal sets, this proves the normality of Pj . �
This proves the existence of a segmented partition with cover at least (1 − ε) OPT

2 . �
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4 Graph Construction

In this section we construct a directed acyclic graph, depending on the set of input jobs
PI . The vertices represent either normal jobsets, or sandy partition segments. An arc
between two vertices should indicate that the corresponding sets or segments can be
neighbors in the partition (e.g., that some normal set Pi can be followed by a certain
sandy segment (Pi+1, . . . , Pk)). A given input speed vector (s1, . . . , sm), determines a
weight on each graph vertex, meaning the (minimum) finish time induced by the work-
load(s) |Pi|. A path, leading over some P1, P2, . . . , Pm, that maximizes the minimum
weight over its vertices, represents an optimal solution among all segmented partitions.

The above outlined technique was introduced by Hochbaum and Shmoys [13] for a
PTAS for related scheduling, and has been used for (monotone) approximation schemes
for related scheduling [10,4,8,7]. Based on this previous work, our graph construction
(adapted for segmented partitions) is straightforward. As a difference to all of the known
PTAS algorithms, the notion of segmented partitions allows for a pure and exact rep-
resentation of the jobsets, and a very plain graph structure. Of course, we pay for this
simplification with a loss of a factor 2 in the approximation ratio.

Set configurations. Set configurations are used to represent normal jobsets. Each set
configuration α is a triple α = (w,no,n1), where w is the magnitude of the set, and
the vectors n are size vectors. If the configuration is supposed to define the set Pi, this
is done by the two size vectors defining the cumulative jobsets

⋃i−1
k=1 Pk, and

⋃i
k=1 Pk,

respectively. Thus, size vectors represent sets of jobs of size between ρw andw (in fact,
a prefix set of each job class), and a prefix subset of the tiny jobs of size at most ρw.
They are indexed by the integers from λ = log ρw to Λ = logw, and have nonnegative
integer coordinates. The entry nl for some l ∈ (λ,Λ] means that the cumulative jobset
contains exactly the first nl jobs of the class Cl. Observe that this is an adequate rep-
resentation of canonical allocations, where jobs within each class appear in the fixed
order. Finally, the coordinate nλ stands for some prefix subset {p1, p2, . . . , pnλ

} of all
the jobs of size at most ρw. We can speak of a valid set configuration only if a handful
of conditions are fulfilled. For instance, by the definition of normal sets it is required
that either no

λ = n1
λ (no tiny jobs), or that n1

λ is the number of jobs of size at most
ρw (the largest tiny jobs are all in the set). Also, w/5 < |P | ≤ w must hold, and can
be easily checked. The rest, like no ≤ n1, and other bounds on the coordinates, are
straightforward, and will not be detailed here. For an illustration see Figure 2.

We bound the number of different valid set configurations. Every size vector has

log1+δ w − log1+δ ρw = log1+δ 1/ρ = O(1/δ · log(1/ρ))

integer coordinates between 0 and n. Each possible pair of size vectors determines a
set, which has at most 3 possible valid magnitudes. Therefore, for constant δ there is a
polynomial number of different set configurations.

Segment configurations. A segment configuration β = (w, r, no, n1) stands for a sandy
segment, and has altogether four positive integer entries. This tuple defines a smooth
allocation of the jobs {pno+1, pno+2, . . . , pn1} into r sets of magnitude w. Notice that
the jobs are distributed evenly over the segment, regardless of the machine speeds.
Moreover, at any point of the calculation, the sets of the segment Pi, Pi+1, . . . , Pi+r−1
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λ, λ+1, λ+2,.... Λjob class

job size

Fig. 2. A set configuration: the thin rectangles represent job classes; the solid part belongs to
the set

⋃i−1
k=1 Pk, and the striped part to set Pi. Note that Pi has a contiguous set of the largest

tiny jobs. The sets Pi which we construct in Theorem 1 (see Figure 1) always contain jobs of
consecutive classes, where each class except the first and last class is completely contained in Pi.

(of increasing workloads) can easily be computed. In order to have a valid configuration,
the conditions pn1 ≤ ρw, and w/5 < |P | ≤ w (for each set P ) must hold. The number
of different valid segment configurations is bounded by 3mn2.

The directed graph G(V,A). The vertex set V of G has m + 2 layers. Each layer
i ∈ [1,m] contains a vertex (i, α) for every valid set configurationα, and a vertex (i, β)
for every valid segment configuration β = (w, r, no, n1) for which i + r ≤ m + 1.
Recall that for any configuration on level i, the entry no (or no) uniquely determines the
cumulative jobset

⋃i−1
k=1 Pk. Similarly, the entry n1 (resp. n1), encodes the cumulative

set
⋃i

k=1 Pk (resp.
⋃i+r−1

k=1 Pk)). We add a source vertex s on layer 0, that stands for
the empty jobset (say, with n1 = 0), and a sink vertex t on layerm+1 for the complete
jobset (say, with no = n).

Next we define the arc set A. There is an arc between two configurations if and only
if they satisfy all of the following conditions. From a set configuration (i, α) all arcs
lead into (set or segment) configurations of layer i+ 1. From a segment configuration
(i, β), all arcs lead into (set or segment) configurations of layer i + r. Obviously, a
necessary condition for an arc between two configurations is that the n1 or n1 entry
of the first one should represent the same jobset as the no or no entry of the second
one. Finally, it is required that the magnitudes w are nondecreasing along every arc,
and similarly, the workloads of the represented sets must be nondecreasing (here for
set configurations |Pi| is meant, and for segment configurations we consider |Pi| for
incoming arcs, and |Pi+r−1| for outgoing arcs).

The first two arc conditions ensure that any (s, t)-path of the graph induces a parti-
tion of the input jobs into m sets. Due to the fact that here the graph vertices represent
jobsets exactly, (as opposed to different rounding techniques applied in previous work),
the following statement is straightforward:

Proposition 1. There is a one-to-one correspondence between segmented partitions of
the input jobs PI intom sets, and the directed (s, t)-paths in graph G.
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Finish times. Note that both segmented partitions and the graph G(V,A) were defined
independently of the speed vector. Now for given (rounded) input speeds s1 ≤ s2 ≤
. . . ≤ sm, we can assign a finish time f(v) (a weight) to every vertex v ∈ V of the
graph. For a vertex v = (i, α) with a set configuration α representing set Pi, the finish
time is f(v) = |Pi|

si
. If v = (i, β) with induced jobsets Pi, . . . , Pi+r−1, the (minimum)

finish time is defined as

f(v) = min
{
|Pk|
sk

| i ≤ k < i+ r
}
.

5 Monotone Algorithm for Covering

Once the graph G is constructed, the problem boils down to finding an (s, t)-path of
maximum cover. This can be done by a standard dynamic programming algorithm
which we call MAXPATH. Because tie-breaking rules are crucial for monotonicity, we
fix an arbitrary (e.g., lexicographical) linear order ≺ over all valid (set and segment)
configurations.

The monotone algorithm MONCOVER is presented in Figure 3. Since for constant
ε the number of different configurations is polynomial in n and m, the size of G is
polynomial, and the algorithm runs in polynomial time. Let OPTσ and OPTs denote the
optimal cover values with the original and the rounded speeds, respectively. Clearly, we
have OPTσ/(1+ε) ≤ OPTs, since this ratio holds for the cover of every fixed allocation.
Moreover, by Theorem 1 and Proposition 1, the output of MONCOVER has a cover of
at least OPTs(1− ε)/2. Altogether we obtain that the cover of the output is at least

OPTσ

2
· (1 − ε)
(1 + ε)

≥ OPTσ

2 + 5ε
.

Theorem 2. Algorithm MONCOVER is monotone.

Proof. The proof is analogous to part of the monotonicity proof in [7]. With given
input speed vector σ1, σ2, . . . , σm, let the output of MONCOVER be P1, P2, . . . , Pm.
We assume that for some machine i ∈ [1,m], the speed σi is increased to σ′ > σi, the

Input: job set PI , machine speeds σ1 ≤ · · · ≤ σm, and ε ∈ (0, 1/5).

1. Fix an appropriate δ < ε/12, fix a nondecreasing order of the jobs,
determine the job classes Cl, and construct the graph G(V, A).

2. Round up each speed σi to si, the nearest integral power of (1 + ε).
3. Using the rounded speeds, compute the finish time f(v) of every graph vertex v ∈ V .
4. Compute the optimal (s, t)-path (of maximum cover) of G with procedure MAXCOVER.
5. Output the job partition P1, P2, . . . , Pm determined by the path.

Output: a partition of the input jobs with a cover within a factor 2 + 5ε of the optimum cover.

Fig. 3. The algorithm MONCOVER
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new rounded speed being s′, and show that with this new input the algorithm allocates
at least as much workload to the machine, as with speed σi.

We start with a couple of simple observations. Since the machines are indexed in
increasing order of speed (breaking ties by some fixed machine order), the new index
i′ of the machine is at least i. If s′ = si (the rounded speed remains the same), then
the output of the algorithm is exactly the same, and the allocated workload will be
|Pi′ | ≥ |Pi|, and the theorem holds. Further, it is enough to prove the theorem for the
case when s′ = (1+ε)si, and the machine index does not change, i.e., iwas the highest
index of speed si, and becomes the lowest index of speed s′i = s′ = (1 + ε)si. For all
other cases the proof easily follows by ’continuously’ increasing σi to σ′.

Observe that the graph G(V,A) constructed in step 1 does not change, and f ′(v) ≤
f(v) holds for the new finish time f ′(v) of each vertex v ∈ V.Now we turn to procedure
MAXPATH. Because the finish times cannot increase, the minimum of the finish times
over any path in G cannot increase. In particular, for every vertex v the optimum cover
opt(v) over all (v, t)-paths cannot increase either, i.e., opt′(v) ≤ opt(v) holds, where
opt′() denotes the new optimum. Note that the optimal (v, t)-path itself might change.

If the path which is output by MAXPATH is the same for both input speeds, then
the theorem holds. So, let s, v1, v2, . . . , vr = t be the output path with speed si, and
s, v′1, v′2, . . . , v′r′ = t be the output path with speed s′i, and k be the minimum index
s.t. vk 
= v′k. That is, vk = succ(vk−1) for the first, and v′k = succ′(vk−1) for the
second input. Since no vertex could increase its opt() value, in the second input v′k
could improve its relative position to vk only due to opt′(vk) < opt(vk). In particular,
the path vk, vk+1, . . . , vr, decreased its cover from opt(vk) to at most opt′(vk) when si
increased. That is, i must have become a bottleneck machine, and the minimum finish
time over vk, vk+1, . . . , vr became |Pi|/s′i = f ′(vq), where machine i is represented
by the configuration of vertex vq in the path. So, we have |Pi|/s′i = f ′(vq) ≤ opt′(vk).
On the other hand, opt′(vk) ≤ opt′(v′k), since v′k was selected over vk, and opt′(v′k) ≤
|P ′

i |/s′i, because P ′
i is determined by the new optimal path. Putting it together, we

obtain |Pi| ≤ |P ′
i |. �

6 Conclusions

The question whether there is a monotone PTAS for related scheduling with cover opti-
mization, remains open. The same holds for minimizing the Lp-norm of finish times for
any p > 1. While for the respective (non-strategic) problems the classic PTAS, as well
as the randomized monotone PTAS are easy to adapt [10,8], the same does not seem to
hold concerning the deterministic monotone PTAS.
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Abstract. Braess’s paradox, in its original context, is the counter-

intuitive observation that, without lessening demand, closing roads can

improve traffic flow. With the explosion of distributed (selfish) routing

situations understanding this paradox has become an important concern

in a broad range of network design situations. However, the previous the-

oretical work on Braess’s paradox has focused on “designer” graphs or

dense graphs, which are unrealistic in practical situations. In this work,

we exploit the expansion properties of Erdős-Rényi random graphs to

show that Braess’s paradox occurs when np ≥ c log(n) for some c > 1.

Keywords: Braess’s paradox, price of anarchy, random graphs, selfish

routing.

1 Introduction

In 1968 Dietrich Braess observed that there were road networks such that if the
travellers were behaving selfishly it was possible to improve everyone’s travel time
by removing roads, even roads with extremely fast travel times. Specifically, he
considered the situation illustrated in Figure 1 in the case of routing one unit of
flow from s to t. As we can see in Figure 1(a) when the users behave selfishly all
of the flow passes through the zero latency central edge and the total latency is
2. However, as we can see in Figure 1(b), by removing the central zero latency
edge, the selfish routing will spread the flow uniformly over the paths between
s and t, resulting in an overall latency of 3

2 .
Since its discovery Braess’s paradox has spawned a significant amount of

work aimed at understanding the full implications of the paradox, both the-
oretically [3,5,11,12] and via anecdotal observations [2,7]. In many ways the
recent trend towards studying the “Price of Anarchy” [8,10] has its roots in the
discovery of Braess’s paradox. However, these “worst case” analyses via designer
instances give little insight into the practical consequences of Braess’s paradox.
Although the anecdotal evidence indicates that Braess’s paradox can occur in
real world, it gives little to no feeling for how prevalent or severe the paradox
can be in real world networks. Recently, Valiant and Roughgarden [16] began
to answer this question by providing the first proof that Braess’s paradox could

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 194–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Braess’s Paradox

occur in a large class of non-designer graphs. Specifically, they showed that in
sufficiently dense instances of Erdős-Rényi random graphs with affine latency
functions satisfying certain mild conditions, Braess’s paradox occurs with high
probability (that is, with probability 1 −O(n−c) for some c > 0). In this work
we extend their results to almost all conected Erdős-Rényi random graphs. That
is, with similar mild conditions on the latency function, Braess’s paradox occurs
with high probability in Erdős-Rényi random graphs with expected degree at
least a c′ log(n) for some c′ > 1.

We consider a single commodity flow on an undirected Erdős-Rényi ran-
dom graph G with a designated sink s and source t with latency functions
� = {�e}e∈E(G) associated to each edge. Letting P be the set of simple s-t paths
in G, a flow is a function f : P −→ R≥0. The flow on an edge e with respect to
a flow f is fe =

∑
P∈Pe

f(P ), where Pe is the set of paths in P containing the
edge e. We will say an edge is flow carrying if fe > 0, similarly, we will say a
vertex v is flow carrying if it is incident to some flow carrying edge. The traffic
rate, or value, of a flow f , is R =

∑
P∈P f(P ). The latency of a path P with

respect to a flow f , which we will denote as �P (f), is
∑

e∈E(P ) �e(fe). Notice
that the latency of a path depends on the value of the flow on an edge, not the
value of the flow on the particular path under consideration.

We concern ourselves with the case of routing an infinitely divisible flow
from s to t such that each “unit” of flow behaves selfishly. That is, given a fixed
traffic rate R we are interested in the properties of those flows such that there is
no incentive for any “unit” of flow to change the path it is on. Alternatively, we
may say that such a flow is at Nash equilibrium. One way of characterizing such
flows is that for every pair P1, P2 ∈ P , if f(P1) > 0, then �P1(f) ≤ �P2(f) [17].
In particular, this implies that all flow carrying paths have the same latency at
Nash equilibrium. It has been shown that every selfish routing network has a
Nash equilibrium flow and further, all flow carrying paths in all possible Nash
equilibrium flows have the same latency [1]. Thus, we may define L(G, �,R) as
the common latency of all flow carrying paths at Nash equilibrium in the graph
G with the latency functions � at the traffic rate R. Given this notation, Braess’s
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paradox may be restated as the observation that there exists an instance (G, �,R)
and a subgraph G′ of G, such that L(G′, �, R) < L(G, �,R). For a given instance,
define the Braess ratio of the instance, denoted ρ(G, �,R), as

max
G′⊆G

L(G, �,R)
L(G′, �, R)

. (1)

Note that the Braess ratio is specification of the price of anarchy to the context
of this context.

1.1 Previous Work

Recently, driven by the obvious practical applications there has been some work
attempting to answer the question of whether networks can be designed to avoid
Braess’s paradox. A, perhaps, more important question is whether Braess’s para-
dox can be exploited to improve the performance of already existent real world
networks. Roughgarden emphatically answers these questions in the negative in
[13], by showing that unless P = NP there is not an n

2 approximation algorithm
to determining a subnetwork which achieves a Braess ratio larger than 1. Fur-
ther, even if the latency functions are restricted to be affine, there is still not
a 4

3 approximation algorithm, and this result is tight [14]. This leads naturally
to the following important practical question: Is Braess’s paradox a prevalent
phenomenon or, like the exponential examples for the simplex method [6,15],
is it an academic curiosity that can be ignored in practice? The recent work of
Valiant and Roughgarden [16] has begun to address this fundamental question.
In order to state and understand their results, we need the following definition.
A pair of distributions A and B is reasonable if

– A has bounded support [Amin, Amax] with Amin > 0,
– there is some closed interval IA of positive length, such that for every non-

trivial subinterval J ⊆ IA, P(A ∈ J) > 0, and
– there is some interval IB = [0, η], with η > 0, such that for every nontrival

subinterval J ⊆ IB, P(B ∈ J) > 0.

Within this context they were able to show the following theorem.

Theorem 1 ([16]). Let p = Ω
(
n−

1
2+ζ
)

be an edge sampling probability with
ζ > 0 and let A and B be reasonable distributions. Let G be an Erdős-Rényi
random graph with edge probability p and let �e = aefe + be for all edges, where
(ae, be) is distributed as A×B. There is a constant ρ = ρ(ζ,A,B) > 1 such that,
with high probability the instance (G, �), admits a choice of traffic rate R such
that the Braess ratio of the instance is at least ρ.

Given the importance and self evident “correctness” of Nash equilibrium flows
in a practical context (especially in the context of automobile traffic) it is unsur-
prising that there has been significant previous work on the properties of such
flows. We collect a few of the more useful results in the following lemma.
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Lemma 2. Given an instance (G, �,R) and an Nash equilibrium flow f for each
vertex v define ds(v) as the shortest path from v to s with respect to the latencies
�(f). Define dt(f) analogously. The following properties then hold for all Nash
equilibrium flows f .

1. If f is a Nash equilibrium flow for traffic rate R on the network G with
latencies �, then for every vertex v we have ds(v) + ds(t) ≥ L(G, �,R) with
equality if v is a flow carrying vertex.

2. [13] If f is a flow achieving traffic rate r for the instance (G, �) then for all
edges e = {u, v}, ds(v) − ds(u) ≥ �e(fe) with equality if and only if equality
holds whenever fe > 0.

3. [4,9] For every network G and strictly increasing latency functions �,
L(G, �,R) is continuous and strictly increasing function of R.

4. [13] There is a Nash equilibrium flow f so that the set of edges with fe > 0
is acyclic when considered as a directed graph.

Now by part (3) of this lemma, if the latency functions are all strictly increasing,
there is a function RG

� (L) which gives the unique value R so that the latency of
a Nash equilibrium flow on the network G with latencies � is precisely L. When
the underlying graph is clear, we will denote this simply as R�(L).

1.2 Our Contribution

In the work of Valiant and Roughgarden the critical structural property they use
in their proofs is that if p& n−

1
2 +ζ for some ζ > 0, then G(n, p) has polynomially

many disjoint paths of length two between any two vertices. Whereas if p is
O
(
n−

1
2+o(1)

)
there are clearly not even polynomially many paths of length two

between any two vertices. More importantly, very few, if any real world networks
share this property. The primary contribution of our work is to generalize their
methodology to rely on a more prevalent real world property, expansion.

In Section 2 we analyze an idealized network and reveal two key properties
of Nash equilibria that will be used in our proof. Specifically, we observe that
at particular traffic rate in this idealized network every internal vertex is at the
same latency distance from s and further, every internal vertex is equidistant
from s and t. In the more general case, this breaks down into two claims. The
first, which we prove in Section 3, is that for any two internal vertices u and
v, their latency distance to s differs by at most a fixed constant δ. Valiant and
Roughgarden prove a similar result for dense Erdős-Rényi random graphs in
their δ-lemma using a specialized case of our expansion based argument. The
second claim is that the internal vertices are equidistant from s and t. Clearly,
this cannot hold if the internal vertices do not all have the same latency distance
to s, however, as we show in Section 4 the latency distance for internal vertices
is roughly balanced between exiting s and entering t. We note that Valiant and
Roughgarden’s proof of the balance lemma would suffice at this point, however,
their proof depends on a somewhat unnatural and cumbersome discretization
argument which we are able to completely avoid. Finally, in Section 5 we show,
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to our knowledge, the first proof that Braess’s paradox can occur in sparse,
non-designer graphs with the following theorem.

Theorem 3. Let G be an Erdős-Rényi random graph on n vertices with edge
probability p. Let A and B be reasonable distributions and let all latency functions
have the form �e(fe) = aefe + be where (ae, be) is distributed according to A×B.
There are constants δ > 0, c > 1, and ρ > 1 such that, if P

(
B ≤ δ

log(n)

)
pn ≥

c log(n), then there is a flow rate R such that the instance (G, �,R) has Braess’s
ratio at least ρ with high probability.

2 Sketch of Ideas via a Motivating Example

In many ways the ideas behind the our proofs are motivated by the following
example. Let G be a graph consisting of s, t, and a complete bipartite graph
Kn,n such that s and t are each adjacent to every vertex on opposite sides of
the bipartition. That is, (Γ(s) , Γ(t)) forms the bipartition of Kn,n. Define the
latency function such that every edge in the Kn,n has latency 0 and every edge
adjacent to s or t has latency function ax+b where (a, b) is distributed as A×B.
See Figure 2(a). Since the latencies in Kn,n are all 0, we can explicitly calculate
the flow given two values, c and L, where c is the value of ds(v) for any vertex
in the Kn,n and L is the overall latency of the network. Specifically, the total
flow is

R =
∑

v∈Γ(s)
b{s,v}≤c

c− b{v,s}
a{v,s}

=
∑

u∈Γ(t)
b{s,u}≤L−c

L − c− b{u,s}
a{u,s}

. (2)

We note that this implies that, up to lower order terms, c = L − c with high
probability.

Now, if A and B are reasonable, then let IA and IB be the two intervals
witnessing their reasonableness. As in [16] choose A1 < A2 arbitrarily in the

Kn,n

s

t

�(f) = Af + B

�(f) = Af + B

�(f) = 0

(a) Original Network

s

t

G1 G2G3

1-type

X-type

X-type

1-type

(b) Modified network

Fig. 2. Motivating Example
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interior IA and B in the interior of IB. Letting B≤B be B restricted to be at
most B, we then have that in our motivating example

R�(2B) =
B − E [B≤B]

E [A]
P(B ≤ B)n (3)

up to low order terms. Now we want to partition Kn,n into three parts, yielding
graphs G1, G2, and G3 so that RG1

� (2B) + RG2
� (2B) + RG3

� (2B) > RG
� (2B). If

we succeed in this, then the graph G′ = G1 ∪ G2 ∪ G3 is a proper subgraph
of G which can route more flow than G at the same latency. Then, since the
latency function is strictly increasing by Lemma 2, this implies that Braess’s
paradox occurs. In order to do that we will again mimic the work of Valiant
and Roughgarden [16] and partition the vertices into three classes based on
the latency function of the edge adjacent with s or t. Specifically, fix ε > 0
so that (1 − ε)A2 > A1 and let E1 be the edges with latency function ax + b
such that a ≤ A1 and b ∈ (B, (1 + ε)B). These are the 1-type edges. Similarly,
define the X-type edges as those where the latency function ax+ b is such that
a ∈ ((1− ε)A2, A2) and b ≤ εB and denote the set of such edges by EX . We will
then choose the partition of the Kn,n to force the use of 1-type edges which are
underutilized in the routing in G. To that end, define G1 as the graph induced by
{s, t} ∪ {v ∈ Γ(s) | {v, s} ∈ E1} ∪ {u ∈ Γ(t) | {u, t} ∈ EX}. Further define G2 as
the graph induced by {s, t}∪{v ∈ Γ(s) | {v, s} ∈ EX}∪{u ∈ Γ(t) | {u, t} ∈ E1}.
Finally, G3 is the graph induced by {s, t} and the vertices not in G1 or G2. In
other words, G1 contains all the 1-type edges adjacent to s and all the X-type
adjacent to t, G2 contains all the X-type edges adjacent to s and all the 1-type
adjacent to t, and the remaining edges are in G3. See Figure 2(b). Now if the
probability of being a 1-type edge is greater than the probability of being a X-
type edge, randomly move 1-type edges (and their associated vertices) to G3 so
that the expected degrees of s and t are the same in G1 and G2. By performing
the analogous operation if the probability of being an X-type edge is greater
than the probability of being a 1-type edge, we may assume that the expected
degrees of s and t in the same in each of G1, G2, and G3. That is, letting D be the
expected degree of s in G1, we have D = E [ΓG1(s)] = E [ΓG2(s)] = E [ΓG1(t)] =
E [ΓG2(t)] .

Now consider RG3
� (2B). Since the distribution of latencies are the same at

s and t in G3, for every v ∈ ΓG3({s, t}), ds(v) = B up to lower order terms.
Similarly, when considering RG

� (2B) we have for every vertex v ∈ ΓG({s, t}),
ds(v) = B up to lower order terms as well. Thus, the flow on edges in
present in G3 is the same (again, up to low order terms) as the flow on
the corresponding edges in G. Furthermore, this also implies that the 1-type
edges in G have asymptotically zero flow. Hence, we have that asymptotically
RG

� (2B) − RG3
� (2B) ≤ B

(1−ε)A2
D. Now we return to G1. By similar arguments

as above there exists some constant c such that for every 1-type edge e in G1,
aefe + be = c and for every X-type edge e′, ae′fe′ + be′ = 2B− c. Summing over
all 1-type and X-type edges in G1 we have, asymptotically,
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2BD =
∑

v∈ΓG1(s)

a{v,s}f{v,s} + b{v,s} +
∑

u∈ΓG1(t)

a{u,t}f{u,t} + b{u,t} (4)

≤
∑

v∈ΓG1(s)

A1f{v,s} + (1 + ε)B +
∑

u∈ΓG1(t)

A2f{u,t} + εB (5)

= (A1 +A2)RG1
� (2B) + (1 + 2ε)BD. (6)

Solving, we have that RG1
� (2B) ≥ (1−2ε)B

A1+A2
D. Similarly, RG2

� (2B) ≥ (1−2ε)B
A1+A2

D
and thus, if

2(1− 2ε)B
A1 +A2

D >
B

(1− ε)A2
D. (7)

then Braess’s paradox occurs with high probability in this example. By rear-
ranging, we get that this condition is equivalent to

2(1− 2ε)(1− ε) > 1 +
A1

A2
. (8)

Since A1 < A2, there is some ε > 0 which makes this inequality true and thus
Braess’s paradox occurs.

We notice that there are two key observations that allow Braess’s paradox
to occur in this example. The first is that for any internal vertices u and v,
ds(u) = ds(v). This observation is mimicked by the δ-lemma, which will be
proved in Section 3, which says that |ds(u)− ds(v)| ≤ δ for some small δ > 0.
The next key observation is that L−c = c and so the latency is balanced exiting
s and entering t, which corresponds naturally to the balance lemma which we
prove in Section 4.

3 Small Latency Separates Interior Vertices

The basis for Valiant and Roughgarden’s proof of the δ-lemma is that if p is
Ω
(
n−

1
2 +ζ
)

with ζ > 0, then there are many paths of length two between any
pair of vertices. This structural property allows the flow to be spread out among
many internally disjoint paths, yielding a relatively small increase in latency
between any two internal vertices. Although no similar property holds for sparser
Erdős-Rényi graphs, the following expansion property will provide a sufficient
analog.

Lemma 4. Let G be an Erdős-Rényi random graph on n vertices with edge proba-
bility p. There is some c > 1 such that, if np > c log(n), then with high probability
every subset U of the vertices is such that |Γ(U)| ≥ ( e−1

e − o(1))min {np|U |, n}

Roughly speaking, this lemma allows us to view the graph through the lens of a
series of s-t cuts, each of which has a relatively large number of edges crossing
the cut. This large number of edges crossing the cut allows for the flow from s to
t to be spread out and guarantees that there are some low latency edges crossing
the cut. Then, by moving the endpoints of these low latency edges across the
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cut, we get a new s-t cut and can repeat this procedure. However, there are two
primary difficulties in applying this methodology. The first is that the initial cut
can have a relatively small number of edges compared to the subsequent cuts,
and the second is that at the some point the number of edges crossing the cut
begins to decline. We deal with first by allowing the first cut to use edges with
higher latency in order to get an initial “core” of vertices with which to start
the method. The second difficulty is dealt with by building cuts from s and from
t, and recognizing that when those cuts are close to colliding there are a large
number of short (in fact, length at most two) internally disjoint paths between
the two sets. This last step is the only step needed in the denser case dealt with
in [16].

Lemma 5. Let G be an Erdős-Rényi random graph on n vertices with edge
probability p. Let A and B be reasonable distributions and let all latency functions
have the form �e(fe) = aefe + be where (ae, be) is distributed according to A×B.
For any sufficiently small fixed δ > 0, there are some constants c > 1 and n0 > 0
such that, if n > n0, np > c log(n) and P

(
B ≤ δ

log(n)

)
pn ≥ 4, then for any two

flow carrying vertices u, v other than s and t in the instance (G, �,R�(2B)), we
have |ds(u)− ds(v)| ≤ 7δ and |dt(u)− dt(v)| ≤ 7δ with high probability.

Proof. Since the case where p is a constant was resolved by Valiant and Rough-
garden in [16] we may assume without loss of generality that p→ 0. Let vs be a
flow carrying vertex that minimizes ds(vs) and let vt be a flow carrying vertex
that maximizes ds(vt). Since, for flow carrying vertices v, ds(v) + dt(v) = 2B,
in order to show the lemma it suffices to show that ds(vt) − ds(vs) ≤ 7δ for
sufficiently large n. We note that the amount of flow entering vs is at most
ds(vs)
Amin

≤ 2B
Amin

. Further, since by Chernoff bounds the deg(s) ≤ 3
2np with high

probability, R�(2B) ≤ 3Bnp
Amin

. Additionally, by Chernoff bounds, with high prob-
ability there are least 2

3P(B ≤ δ)np edges e adjacent to vs with be ≤ δ. At
most half of these have flow more that 2 2B

Amin

1
2
3 P(B≤δ)np

, thus there are at least
1
3P(B ≤ δ)np vertices v such that ds(v) ≤ ds(vs) +Amax

6B
P(B≤δ)np + δ. With this

in mind, let c0 = ds(vs)+Amax
6B

P(B≤δ)np +δ and let U0 = {v ∈ V (G) | ds(v) ≤ c0}
and note that |U0| ≥ 1

3P(B ≤ δ)np.
We now will inductively define a sequence Ui and ci such that Ui ⊂ Ui+1

and ci < ci+1, stopping when |Γ(Ui)| ≥ 3n
5 . Suppose then that Ui and ci are

defined and that |Γ(Ui)| < 3n
5 and let γ = δ

log(n) . Then, by Lemma 4 and noting
that 3

5 < 1 − 1
e , with high probability |Γ(Ui) \Ui| ≥ 3

5np |Ui| for sufficiently
large n. Furthermore, (again by Chernoff bounds) with probability at least 1−
e−

5
24 P(B≤γ)np|Ui| > 1− e−

P(B≤γ)np|Ui|
5 there are at least 1

2P(B ≤ γ)np |Ui| vertices
in Ui (the compliment of Ui) that are connected to a vertex in Ui by an edge e
with be ≤ γ. Let U ′

i be the set of such vertices and let Ei be a set of witnesses
for membership in U ′

i . That is, for every vertex v ∈ U ′
i there is a unique edge

e ∈ Ei so that e ∈ Ui × {v} and be ≤ γ. Now since (Ui, Ui) is a cut and we may
assume that the Nash equilibrium flow is cycle free, there is R�(2B) ≤ 3Bnp

Amin
flow
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crossing the cut from Ui to Ui. But then at most half of the edges in Ei have
flow greater than 2 3Bnp

Amin|U ′
i| and in particular at least half of the vertices v ∈ U ′

i

have

ds(v) ≤ ci+γ+Amax
6Bnp
Amin |U ′

i |
≤ ci+γ+

12AmaxBnp

Aminnp |Ui|
= ci+γ+

12AmaxB

Amin |Ui|
. (9)

Thus we define ci+1 = ci + γ + 12AmaxB
Amin|Ui| and Ui+1 = {v ∈ V (G) | ds(v) ≤ ci+1}.

By the above we have that

|Ui+1| ≥
(

1
4

P(B ≤ γ)np+ 1
)
|Ui| ≥

(
1
4

P(B ≤ γ)np+ 1
)i

|U0| . (10)

If i∗ is the first i such that |Γ(Ui)| ≥ 3n
5 , then this implies that

i∗ ≤
log( 3n

5|U0|)

log(1
4P(B ≤ γ)np+ 1)

≤
log( 9

5P(B≤δ)p )

log(1
4P(B ≤ γ)np+ 1)

. (11)

Since, by assumption P(B ≤ γ)np ≥ c log(n) for some c > 1, we have 1
p ≤

n
log(n) ,

and thus i∗ ≤ log(n) for sufficiently large n. As a consequence, we have that

ci∗ ≤ c0 + γi∗ +
i∗∑

i=0

12AmaxB

Amin |Ui|
(12)

≤ c0 +
δ

log(n)
log(n) +

log(n)∑
i=0

12AmaxB

Amin

(
1
4P(B ≤ γ)np+ 1

)i |U0|
(13)

= c0 + δ +
12AmaxB

Amin |U0|

log(n)∑
0

(
1
4

P(B ≤ γ)np+ 1
)−i

(14)

≤
(
ds(vs) +

6BAmax

P(B ≤ δ)np + δ
)

+ δ +
36AmaxB

AminP(B ≤ δ)np

∞∑
i=0

2−i (15)

= ds(vs) + 2δ +
BAmax (6Amin + 72)
AminP(B ≤ δ)np . (16)

At this point it worth noting that the failure probability in the recursive con-
struction of Ui∗ is at most

i∗∑
i=0

e−
P(B≤γ)np|Ui|

5 =
i∗∑

i=0

e−
P(B≤γ)np( 1

4 P(B≤γ)np+1)i|U0|
5 ≤

i∗∑
i=0

e−
2i+2|U0|

5 (17)

≤
i∗∑

i=0

e−
4
15 2i

P(B≤δ)np (18)

≤ log(n)e−
4
15 P(B≤δ)np. (19)
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Thus, with high probability, this construction method succeeds.
In a similar way, we can define c′j∗ = ds(vt)− 2δ− BAmax(6Amin+72)

AminP(B≤δ)np and Vj∗ ={
v | ds(v) ≥ c′j∗

}
and have that |Γ(Vj∗)| ≥ 3n

5 . Without loss of generality, we may
assume that c′j∗ − ci∗ > 0 and Vj∗ ∩Ui∗ = ∅. Now since |Γ(Ui∗)|+ |Γ(Vj∗)| ≥ 6n

5
there are at least n

10 edge disjoint paths of length at most 2 between Ui∗ and
Vj∗ . Furthermore, by Chernoff bounds, this implies that with high probability
there are at least 1

12P(B ≤ δ)2 n such paths where all edges e on the path have
be ≤ δ. Now, at most half of those paths have flow more that 2 12R�(2B)

P(B≤δ)2n
and thus

c′j∗ − ci∗ ≤ 2δ +
48AmaxR�(2B)

P(B ≤ δ)2 n
≤ 2δ +

144AmaxBp

AminP(B ≤ δ)2
. (20)

Putting all the pieces together we have that ds(vs)− ds(vt) ≤ 6δ+ 144BAmax
P(B≤δ)2

p+
BAmax(12Amin+144)

AminP(B≤δ)np , which, for sufficiently large n, is at most 7δ. ��

This control on the spread of flow carrying vertices leads to the following control
on the spread of all vertices other than s and t.

Corollary 6. Let G be an Erdős-Rényi random graph on n vertices with edge
probability p. Let A and B be reasonable distributions and let all latency functions
have the form �e(fe) = aefe + be where (ae, be) is distributed according to A×B.
For any sufficiently small fixed δ > 0 there are some constants c > 1 and n0 > 0
such that, if n > n0 and P

(
B ≤ δ

log(n)

)
np ≥ c log(n), then for any two vertices u,

v other than s and t in the instance (G, �,R�(2B)), we have |ds(u)− ds(v)| ≤ 8δ
and |dt(u)− dt(v)| ≤ 8δ with high probability.

Proof. Let u and v be arbitrary vertices in G(n, p)−{s, t}. Now if c is large enough
then G(n, p)−{s, t} restricted to those edges e where be ≤ δ

log(n) is connected and
has diameter at most log(n) with high probability. Let P be a path from u to v in
the restricted graph and suppose without loss of generality that ds(u) ≤ ds(v).
If the path P contains at most one flow carrying vertex, then none of the edges
along the path carry any flow and thus ds(v) ≤ ds(u)+log(n) δ

log(n) = ds(u)+δ by
Lemma 2, and the claim follows. Thus there are at least two flow carrying vertices
on the path P . Let uf be the closest (in terms of the path) flow carrying vertex
to u and similarly for vf . Let gu be the number of edges on P between u and uf

and similarly for gv. Since none of the first gu edges carry flow there is a path
from u to t of length at most gu δ

log(n) +dt(uf ) = gu
δ

log(n) +2B−ds(uf ). Further,
since ds(u) + dt(u) ≥ 2B we have 2B − ds(u) ≤ dt(u) ≤ gu δ

log(n) + 2B − ds(uf).
Arguing analogously ds(v) ≤ gv

δ
log(n) + ds(vf ). Combining the inequalities we

have
2B + ds(v)− ds(u) ≤ (gu + gv)

δ

log(n)
+ ds(vf )− ds(uf ). (21)

By assumption ds(u) ≤ ds(v) and by Lemma 5, |ds(vf )− ds(uf )| ≤ 7δ, thus
|ds(v)− ds(u)| ≤ (gu + gv) δ

log(n) + 7δ ≤ 8δ. A similar argument shows that
|dt(v) − dt(u)| ≤ 8δ. ��
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At this point it is worth noticing that the condition that P

(
B ≤ δ

log(n)

)
pn is

likely necessary for this method to work as otherwise L(G, �,R)→∞ even when
R = 0.

4 Equal Distance Separates the Interior from s and t

In order to prove the balance lemma, Valiant and Roughgarden discretize the
space of latency functions aefe + be into collections where ae ∈ [iτ, (i + 1)τ)
and be ∈ [jτ, (j + 1)τ) for some pair (i, j) and a fixed small constant τ . They
then show that if the latency cost for leaving s is significantly more than the
latency cost for entering t, this implies that the flow on an edge in collection
(i, j) leaving s is at least a constant factor larger (independent of i and j) than
the flow entering t on an edge in collection (i, j). As this implies that more flow
leaves s than enters t, this clearly is a contradiction yielding the balance lemma.
We proceed in a similar manner, except we note that the random variables under
consideration are all bounded and thus by applying the law of large numbers, we
may side step the discretization argument in favor of a more direct argument.

Lemma 7. Let G be an Erdős-Rényi random graph on n vertices with edge
probability p. Let A and B be reasonable distributions and let all latency functions
have the form �e(fe) = aefe + be where (ae, be) is distributed according to A×B.
For any sufficiently small fixed δ > 0 there are some constants c > 1 and n0 > 0
such that, if n > n0 and P

(
B ≤ δ

log(n)

)
np ≥ c log(n), then for any vertex v other

than s and t in the instance (G, �,R�(2B)), we have ds(v) ≤ B + 10δ with high
probability.

Proof. We proceed by contradiction. Suppose that v is a vertex, other than s
and t, and that ds(v) > B + 10δ. By Corollary 6, we have that for every vertex
u other then s and t, ds(u) > B+ 2δ. Furthermore, since for every flow carrying
vertex w, ds(w) + dt(w) = 2B, this implies that every flow carrying vertex has
dt(w) < B − 2δ. Now consider the flow leaving s. Let e an edge adjacent to s,
then we have that aefe + be > B + 2δ. Further, this implies that if be ≤ B + 2δ,
then fe >

B+2δ−be

ae
> 0. Let Es be the set of such edges. Now for any constant

ε′ > 0, we have by Chernoff bounds that |ES | ≥ (1 − ε′)P(B ≤ B + 2δ) pn with
high probability (since B + 2δ is a constant and pn ≥ c log(n)). Furthermore,
since the range of A is bounded and we are concerned only with a bounded range
of B, we may apply the law of large numbers to get convergence. In particular, if
we let B[x,y] be the random variable B conditioned on x ≤ B ≤ y, we have that

R�(2B) ≥
∑
e∈Es

B + 2δ − be
ae

(22)

=
(
B + 2δ − E

[
B[0,B+2δ]

]
− o(1)

)(
E

[
1
A

]
+ o(1)

)
|Es| (23)

≥ (1− ε′)
B + 2δ − E

[
B[0,B+2δ]

]
− o(1)

E [A] + o(1)
P(B ≤ B + 2δ) pn. (24)
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Applying a similar argument to the edges adjacent to t we have that with high
probability,

R�(2B) ≤ (1 + ε′)
B − 2δ − E

[
B[0,B−2δ]

]
+ o(1)

E [A]− o(1)
P(B ≤ B − 2δ) pn. (25)

Thus in order to provide the contradiction, it suffices to show that for sufficiently
large n

(1− ε′)B+2δ−E[B[0,B+2δ]]−o(1)

E[A]+o(1) P(B ≤ B + 2δ) pn

(1 + ε′)
B−2δ−E[B[0,B−2δ]]+o(1)

E[A]−o(1) P(B ≤ B − 2δ) pn
> 1. (26)

Observing that ε′ is arbitrary, this is equivalent to showing(
B + 2δ − E

[
B[0,B+2δ]

])
P(B ≤ B + 2δ)(

B − 2δ − E
[
B[0,B−2δ]

])
P(B ≤ B − 2δ)

> 1. (27)

We note that, for positive a, b, c, a+c
b+c > 1 if and only if a

c > 1. Thus, by adding
E
[
B[0,B−2δ]

]
P(B ≤ B − 2δ) to the numerator and denominator, we have that

demonstrating Equation 27, is equivalent to showing that

(B + 2δ) P(B ≤ B + 2δ)− E
[
B[B−2δ,B+2δ]

]
P(|B −B| ≤ 2δ)

(B − 2δ) P(B ≤ B − 2δ)
> 1 (28)

Observing that (B + 2δ) P(B ≤ B + 2δ) ≥ (B − 2δ) P(B − 2δ), we can rearrange
this to

0 <
(
B + 2δ − E

[
B[B−2δ,B+2δ]

])
P(|B −B| ≤ 2δ) + 4δP(B ≤ B − 2δ) . (29)

But this follows immediately from the choice of B and δ, and the reasonableness
of B. ��

5 Braess’s Paradox Occurs in Erdős-Rényi Graphs

As in Section 2 and in Valiant and Roughgarden’s work [16], in order to form
the more efficient subnetwork we will classify edges adjacent to s and t as either
1-type, X-type or unclassified. We will then use these classifications to create a
graph G′ so that RG′

� (2B(1− μ)) > RG
� (2B) for some μ. In the construction that

follows it will be convenient to suppose that p # 1√
n
, and in particular, that

Γ(s)∩Γ(t) = ∅ with high probability. We will now construct G′ be partitioning
the internal vertices of G into three sets and considering only edges that are
induced by one of the sets or are incident to one of s and t.

To that end, let p1 be the probability that an edge is 1-type, that is, the
latency function aefe+be satisfies that be ∈ (B, (1+ε)B) and ae ≤ A1. Similarly,
define pX as the probability that an edge is X-type, in other words, be ≤ εB
and ae ∈ ((1 − ε)A2, A2). Now define p∗ = min {p1, pX}. With this notation we
create three collections of vertices as follows:
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– For each v ∈ Γ(s) − {t} if the edge {s, v} is 1-type assign v to the set V1X

with probability p∗

p1
. If it is X-type assign v to the set VX1 with probability

p∗

pX
. Otherwise assign v to VU .

– For each u ∈ Γ(t)− {s}, if the edge {u, t} is 1-type assign u to the set VX1

with probability p∗
p1

. If it is X-type assign u to the set V1X with probability
p∗

pX
. Otherwise assign u to VU .

– For each v /∈ Γ(s) ∪ Γ(t) − {s, t} assign v uniformly at random to one of
V1X , VX1, or VU .

Define the graph G1X as the subgraph of G induced by V1X ∪ {s, t} excluding
the edge {s, t}. Similarly define GX1 and GU with the edge {s, t} allowed to be
present in GU . It is important to note that each edge adjacent to s or t appears
in precisely one of the three graphs. Thus, letting G′ = G1X ∪ GX1 ∪ GU , we
have degG′(s) = degG(s) and degG′(t) = degG(t).

Now in a similar manner as Lemma 5, Lemma 7 and Corollary 6 we have the
following results

Lemma 8. Let G be an Erdős-Rényi random graph on n vertices with edge
probability p. Let A and B be reasonable distributions and let all latency functions
have the form �e(fe) = aefe + be where (ae, be) is distributed according to A×B.
For any sufficiently small fixed δ > 0 there are some constants c > 1 and n0 > 0
such that if n > n0, P

(
B ≤ δ

log(n)

)
np ≥ c log(n), and G1X , GX1, GU are defined

as above, then the instance
(
G′, �, RG′

� (2B(1− μ))
)

satisfies that:

1. For any vertices v and u other than s and t, both in one of G1X , GX1, or
GU , |ds(v)− ds(u)| ≤ 8δ, and

2. for any vertex v other than s and t in GU , B − 10δ ≤ ds(v),

with high probability.

With this lemma in hand we can proceed to the proof of our main theorem.

Proof (Theorem 3). Our goal will be to show that there is some δ > 0 and
μ ∈ (0, 1) such that RG′

� (2B(1− μ)) > R�(2B). Since the latency of a Nash equi-
librium flow is strictly increasing in the flow if all the latency functions are affine
by Lemma 2, this implies that L

(
G′, �, RG′

� (2B)
)
≤ (1−μ)L

(
G, �,RG

� (2B)
)

and

thus the Braess’s ratio is at least (1− μ)−1 at the flow rate RG
� (2B). First, we

will consider the difference in flow between G and G′ over the subgraph GU and
then we will consider the differences in flow over G1X and GX1. For a given edge
e (adjacent to s or t), denote by fe the flow on the edge in G and denote by f ′e
the flow on the edge in G′.

Since, for ε sufficiently small p∗ is a constant that is strictly less than 1
2 , there

is some constant c∗ such that p∗pn and (1− 2p∗)pn are at least c∗ log(n). Thus,
we have that for any fixed constant ε∗ > 0, if N is the neighbor of s or T in G1X

or GX1, then ||N | − p∗pn| ≤ εp∗pn. Similarly, if N is the neighborhood of s or t
in GU , then ||N | − (1− 2p∗)pn| ≤ ε∗(1− 2p∗)pn with high probability.
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Suppose e is adjacent to s in Gu. Then by the Lemma 7, we have that aefe +
be ≤ B + 10δ, and in particular fe ≤ B+10δ−be

ae
. Similarly, by Lemma 8 we have

aef
′
e + be ≥ B − 10δ and f ′e ≥ B−10δ−be

ae
and thus

fe − f ′e ≤
B + 10δ − be

ae
− B − 10δ − be

ae
=

20δ
ae

≤ 20δ
Amin

. (30)

Summing over the neighbors of s in GU we have that there is at most (1+ε∗)(1−
2p∗)pn 20δ

Amin
more flow along those edges in G than in G′.

Now let es be adjacent to s in G1X and let et be adjacent to t in G1X . Then
we have that

2B(1− μ) ≤ aesf
′
es

+ bes + 8δ + aetf
′
et

+ bet (31)
≤ A1f

′
es

+ (1 + ε)B + 8δ +A2f
′
et

+ εB. (32)

Thus B − 2μB − 2εB − 8δ ≤ A1f
′
es

+A2f
′
et

. Summing over all choices of es and
et we get

|ΓG1X (s)| |ΓG1X (t)| (B − 2εB − 2μB − 8δ)
A1 |ΓG1X (t)|+A2 |ΓG1X (s)| ≤ RG1X

� (2B(1− μ)) . (33)

In particular, (1−ε∗)2

1+ε∗
B−2μB−2εB−8δ

A1+A2
p∗pn ≤ RG1X

� (2B(1− μ)). Similarly, we have

that (1−ε∗)2

1+ε∗
B−2μB−2εB−8δ

A1+A2
p∗pn ≤ RGX1

� (2B(1− μ)).
Finally, consider the flow in G on the edges adjacent to s that appear in either

G1X or GX1. For the edges in that appear in G1X the flow is at most 10δ
Amin

by
Lemma 7. Similarly, the flow in G for an edge that appears in GX1 is at most
B+10δ
(1−ε)A2

.
Thus. letting ε, ε∗, δ, μ→ 0, we have that in this limit

RG′
� (2B(1− μ))−RG

� (2B)
pn

≥ 2B
A1 +A2

− B

A2
> 0. (34)

where the last inequality follows from the fact that A1 < A2. Thus, by continuity,
for ε, ε∗, μ, δ sufficiently small, RG′

� (2B(1− μ)) > RG
� (2B) and Braess’s paradox

occurs with Braess ratio (1− μ)−1. ��

Now the proof of Valiant and Roughgarden [16] deals with the case where p &
n−

1
2+ζ for some ζ > 0 and our proof deals with the case where p# n−

1
2 , leaving

a small gap between these results. The only difficulty in extending our results
to cover the gap is dealing with that fact that within this range of p there is a
positive probability of Γ(s)∩Γ(t) 
= ∅. However, this gap can be closed by using
the more complicated partitioning scheme used by Valiant and Roughgarden
which appropriately deals with vertices in Γ(s)∩Γ(t). Thus, with an appropriate
choice of distribution for the latency function, there is a flow for which Braess’s
paradox occurs with high probability in G(n, p) almost down to the connectivity
threshold. In fact, it is plausible that this work could be expanded to a broader
class of expanders than G(n, p) under certain degree conditions.
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Abstract. In mechanism design, the goal is to create rules for making a decision
based on the preferences of multiple parties (agents), while taking into account
that agents may behave strategically. An emerging phenomenon is to run such
mechanisms on a social network; for example, Facebook recently allowed its
users to vote on its future terms of use. One significant complication for such
mechanisms is that it may be possible for a user to participate multiple times by
creating multiple identities. Prior work has investigated the design of false-name-
proof mechanisms, which guarantee that there is no incentive to use additional
identifiers. Arguably, this work has produced mostly negative results. In this pa-
per, we show that it is in fact possible to create good mechanisms that are robust
to false-name-manipulation, by taking the social network structure into account.
The basic idea is to exclude agents that are separated from trusted nodes by small
vertex cuts. We provide key results on the correctness, optimality, and computa-
tional tractability of this approach.

1 Introduction

Recently, Facebook, Inc. decided to allow its users to vote on its future terms of use [19].
While the result was not binding,1 this vote represents a new phenomenon that is likely
to become more prominent in the future: agents participating in an election or other
mechanism through a social networking site. Holding an election among the users of
a social networking site introduces some issues that do not appear in regular elections.
Perhaps the foremost such issue, and the one that we will focus on, is that it is generally
easy for a user to create additional accounts/identities, allowing her to vote multiple
times. This can compromise the legitimacy of the election and result in a suboptimal
alternative being chosen.

The topic of designing elections or other mechanisms for settings where it is easy
to create multiple identities and participate multiple times has already received some
attention. The primary approach has been to design mechanisms that are false-name-
proof [15,16], meaning that an agent never benefits from participating more than once.

1 The result would have been binding if at least 30% of all active users had voted, a seemingly
impossibly high turnout in this context.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 209–221, 2010.
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(This is analogous to the better-known concept of strategy-proofness, meaning that an
agent never benefits from misreporting her preferences. In fact, false-name-proofness
is often defined in a way that subsumes strategy-proofness.) Unfortunately, existing re-
sults on false-name-proofness are quite negative, especially in voting contexts. For the
case where additional identities can be created at zero cost, a general characterization
of false-name-proof voting mechanisms has been given [5]; this characterization im-
plies that for the special case where there are only two alternatives, the best we can do
is the unanimity mechanism. This mechanism works as follows: if all voters agree on
which alternative is better, that alternative is chosen; but if there is any disagreement
(no matter in which proportions), then a fair coin is flipped to decide between the alter-
natives. This is an extremely negative result, since the mechanism is almost completely
unresponsive to the votes.2 Several ways to circumvent such negative results have been
proposed, such as assuming that creating additional identities comes at a small cost [14]
or considering a model in which it is possible to verify some of the identities [4].

These prior results do not consider any social network structure that may hold among
the identities. Rather, these earlier results can be thought of as applying to settings
where a user creates an account for the sole purpose of casting a vote (or bid, etc.), so
that no social network structure is specified. We will show in this paper that by using the
social network structure in the mechanism, it is possible to obtain much more positive
results, because fake identities will look suspect in the social network (graph) structure.
To give some intuition, consider John Doe, who has a legitimate account on the social
networking site. In order to cast more votes, he can create several other identities (false
names), such as Jane Jones and Jimmy Smith. Among the accounts that he controls, he
can create any network structure by linking them to each other. However, if the other
users behave legitimately, then he will not be able to link his additional accounts to any
of the other users’ identities (since, after all, they have never heard of Jane Jones or
Jimmy Smith); he will only be able to get his friends to link to his legitimate identity
(John Doe). This results in an odd-looking social network structure, where his legitimate
identity constitutes a vertex cut in the graph, whose removal separates the fake identities
from the rest of the graph.

In the remainder of this paper, we generalize the intuition afforded in the above
scenario, giving a notion of when a node is “suspect” based on small vertex cuts that
separate it from the trusted nodes. In Section 2, we formally define the setting that we
will focus on. In Section 3, we discuss false-name-proofness and provide a sufficient
condition for guaranteeing it. In Section 4, we discuss how to find all suspect nodes
when trusted nodes are given exogenously to the algorithm. Then, in Section 5, we
extend our analysis to settings in which we do not have trusted nodes initially, but we
can actively verify nodes. We give both correctness and optimality results. The full
version of this paper includes all the proofs and some additional examples, as well as

2 The literature on false-name-proof voting mechanisms is quite recent: earlier work on false-
name proofness considered other settings, such as combinatorial auction mechanisms, where
multiple items are for sale at the same time. Unfortunately, here, too, there are strong impossi-
bility results, including a result that states that under certain conditions, from the perspective of
a worst-case efficiency ratio, it is impossible to significantly outperform the simple mechanism
that sells all items as a single bundle [8].
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simulation results for random graph models, in which we investigate how many vertices
will typically be regarded as suspect (exogenous case) or how many need to be verified
(endogenous case).

Related Work. The basic intuition that the creation of false identities in a social net-
work results in suspiciously small vertex cuts has previously been explored in several
papers, in peer-to-peer networks [18,17] and web spam detection [2,3,6,7,13].

The work on fraud in peer-to-peer networks attempts to thwart Sybil attacks in which
one or more malicious users obtain multiple identities in order to out-vote legitimate
users in collaborative tasks like Byzantine failure defenses. These papers propose pro-
tocols that ensure that not too many false identities are accepted. While this may be
sufficient to thwart certain Sybil attacks in decentralized distributed systems, it can still
leave incentives for an agent to create multiple identities, especially in applications such
as elections in which the electorate is about evenly divided. Furthermore, a major hur-
dle in the Sybil attack research is that any protocol must be decentralized. In contrast,
in this paper, we follow the stricter approach of guaranteeing that the creation of false
identities is always weakly suboptimal, corresponding to the standard approach in the
mechanism design literature. On the other hand, we allow our mechanisms to be cen-
tralized, as we envision them being run by the proprietor of the social network who has
access to the network structure.

Fraud is also prevalent in the world wide web where users sometimes create fake
webpages and links with the sole intent of boosting the PageRank of given website(s).
Several researchers have considered using link structure to combat spam [2,3,6,7,13].
In SpamRank [2,3], the authors assume that a node is suspect if the main contribution
to its PageRank is generated from a small set of supporting nodes (see also [6]). Our
focus on small vertex cuts can be interpreted as an extreme version of the conditions
proposed in SpamRank. An alternative approach, as taken by TrustRank [7] and Anti-
TrustRank [13], assumes the existence of an oracle (e.g., a human being) which is able
to determine the legitimacy of any given website. Calls to the oracle are, however, ex-
pensive, and so the main task in the protocol is to select a seed set of pages. The protocol
then guesses the legitimacy of the remaining pages based on their connectivity to the
seed set. In particular, the protocol assumes that legitimate pages rarely point to illegiti-
mate ones, and hence the illegitimate pages are those that are “approximately isolated.”
Again, this approach is similar to our approach at a high level; the selection of the seed
set corresponds to our verification policy (discussed later in the paper), and the condi-
tion of approximate isolation corresponds to the condition of small vertex cuts in our
work. Despite these similarities, the particulars of the model and definitions are quite
different, as these protocols are designed to combat fraudulent attacks in PageRank,
whereas our goal is to prevent fraudulent attacks in voting or other mechanisms.

2 Setting

Our results can be applied to any mechanism design domain, but for the sake of con-
creteness, it may be helpful to think about the simple setting in which m agents must
select between two alternatives. Each agent has a strict preference for one alternative
over the other. The mechanism designer wishes to make a socially desirable choice,
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i.e., select an alternative that is beneficial for society as a whole. The majority rule, in
which the alternative preferred by more voters wins, would be ideal; unfortunately, the
majority rule will result in incentives to create false names, if naı̈vely applied.

Agents are arranged in a social network consisting of n nodes where m ≤ n. Each
agent i has a legitimate account in the social network, corresponding to a node vt

i ,
as well as a (possibly empty) set of illegitimate accounts V f

i . There is an arbitrary
graph structure among the legitimate nodes in the social network—that is, we impose
no structure on the subgraph induced by the legitimate nodes {vt

i}i∈{1,...,m}.
In the most basic version of our model, we assume that no two manipulating agents

can work together, so that an agent can only link her illegitmate nodes to each other
and to her own legitimate node. Hence, for any i 
= j, there are no edges between V f

i

and {vt
j} ∪ V

f
j . However, for each agent i, we allow an arbitrary graph structure on

{vt
i} ∪ V

f
i .

In the more general version of our model, we assume that up to k agents can collude
together. (The basic model is the special case where k = 1.) That is, the agents 1, . . . ,m
are partitioned into coalitions Sj ⊆ {1, . . . ,m}, with |Sj | ≤ k for each j. Let V f

Sj
be

the set of all illegitimate nodes used by Sj , that is, V f
Sj

=
⋃

i∈Sj
V f

i , and let V t
Sj

be

the set of all legitimate nodes used by Sj , that is, V t
Sj

=
⋃

i∈Sj
{vt

i}. Two distinct
coalitions cannot link their illegitimate nodes to each other, so that for any i 
= j, there
are no edges between V f

Si
and V t

Sj
∪ V f

Sj
. However, for each coalition Si, we allow an

arbitrary graph structure on V t
Si
∪ V f

Si
.

To summarize, our social network setting consists of

– a set ofm agents denoted {1, . . . ,m},
– a set ofm legitimate nodes, one for each agent, denoted V t = {vt

1, . . . , v
t
m},

– a collection of m (possibly empty) sets of illegitimate nodes, one for each agent,
denoted {V f

1 , . . . , V
f
m},

– a partition of the agents {1, . . . ,m} into subsets Sj , where |Sj | ≤ k (the no-
collusion case corresponds to k = 1), such that for any i, j, there are no edges
between V f

Si
and V t

Sj
∪ V f

Sj
(apart from this, the graph structure can be arbitrary).

Some of the nodes in the graph will be trusted. For example, the mechanism designer
may personally know the agents corresponding to these nodes in the real world. This
is a case in which trust is exogenous, that is, we have no control over which agents
are trusted: the trusted agents are given as part of the input. Later in the paper, we will
consider settings where we can, with some effort, verify whether any particular node is
legitimate (for example, by asking the node for information that confirms that there is
a corresponding agent in the real world). Nodes that pass this verification step become
trusted nodes; this is a case of endogenous trust. It should be noted that, in either case,
we do not assume that a trusted node will refrain from creating additional identifiers.
That is, the only sense in which the node is trusted is that we know it corresponds to a
real agent.

The mechanisms that we consider in this paper operate as follows. A suspicion policy
is a function that takes as input the social network graph G = (V,E) as well as a set T
of trusted nodes, T ⊆ V t ⊆ V ; and as output labels every node in V as either “deemed
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legitimate” or “suspect.” Generally, all the nodes in T will be deemed legitimate, but
others may be deemed legitimate as well based on the network structure. Subsequently,
all the nodes that have been deemed legitimate get to participate (e.g., vote) in a standard
mechanism f (e.g., the majority rule), and based on this an outcome is chosen. (In
this context, we only consider anonymous mechanisms that treat all nodes that get to
participate identically.) In the case where nodes become trusted through verification,
we also have a verification policy that takes G as input and determines which nodes to
verify.

We consider a game played between the mechanism designer and the agents (more
precisely, the coalitions Sj). First, the mechanism designer announces her mechanism,
consisting of f and the suspicion policy (and, in the case where trust is obtained through
verification, a verification policy). Then, each coalition Sj creates its illegitimate nodes
V f

Sj
, as well as the edges that include these nodes (they can only have edges to other

nodes in V f
Sj

, and to V t
Sj

). Note that the coalitions do not strategically determine edges
between legitimate nodes in this game: in order to focus on false-name manipulation,
only the creation of false nodes and their edges is modeled in the game. Also note that
the mechanism designer, when announcing her mechanism, is unaware of the true graph
as well as which agents are in coalitions together.

After obtaining the social network graph (and, possibly, some exogenously trusted
nodes), the mechanism designer runs (1) (possibly) the verification policy and (2) the
suspicion policy. The designer subsequently asks the nodes that have been deemed le-
gitimate to report their preferences, and then finally runs (3) the standard mechanism f
on these reported preferences, to obtain the outcome.

Whether this results in incentives for using false names depends on all of the com-
ponents (1), (2), and (3), and each one individually can be used to make the whole
mechanism false-name-proof. For example (for component 3), if f is by itself false-
name-proof, then even if we verify no nodes and deem every node legitimate, there is
still no incentive to engage in false-name manipulation. The downside of this approach
is that we run into all the impossibility results from the literature on designing false-
name-proof mechanisms. Similarly (for component 1), if we verify all nodes and then
only deem the trusted nodes (the ones that passed the verification step) legitimate, there
is no incentive to use false names. Of course, this generally results in far too much over-
head. In this paper, we will be interested in suspicion policies (component 2) that by
themselves guarantee that there is no incentive to use false names. For this, we heavily
rely on the social network structure. In the first part of the paper, we do not consider
verification policies—we take which nodes are trusted as given exogenously.

3 False-Name-Proofness

To define what it means for a suspicion policy to guarantee false-name-proofness, we
first need to define some other properties. The next two definitions assume that a coali-
tion can be thought of as a single player with coherent preferences; this is reasonable in
the sense that if there is internal disagreement within the coalition, this will only make
it more difficult for them to manipulate the mechanism.
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Definition 1. A standard mechanism f is k-strategy-proof if it is a dominant strategy
for every coalition of size at most k to report truthfully.

Definition 2. A standard (anonymous) mechanism f satisfies k-voluntary participation
if it never helps a coalition of size at most k to use fewer identifiers.

Because the coalitions play a game with multiple stages, it is important to specify what
we assume the coalitions learn about each other’s actions in earlier stages—that is,
what are the information sets in the extensive form of the game? Specifically, when a
coalition reports its preferences to f , what does the coalition know about the nodes and
edges created by other coalitions? We assume that a coalition learns nothing about other
coalitions’ actions, except that the coalition can (possibly) make inferences about what
others have done based on which of its own nodes have been deemed legitimate. Thus,
it is assumed that each coalition is rational and has perfect recall, but also that it does
not have any other way of observing what other coalitions have done.

Definition 3. We say that the Limited Information Assumption (LIA) holds if, for ev-
ery coalition Sj , for every two nodes3 ν1, ν2 in the extensive form of the game (where
Sj is about to report preferences to f ), the following holds. If Sj has taken the same
node-and-edge creation actions at ν1 and ν2, and the same nodes have been deemed
legitimate for Sj at ν1 and ν2, then these nodes are in the same information set—that
is, Sj cannot distinguish them.

It should be emphasized that LIA does not specify the information sets exactly—it is
merely an upper bound on how much the coalitions learn about each other’s actions.
Specifically, we can also require the coalitions to report preferences for nodes before
informing them exactly which of these nodes have been deemed legitimate. In an ex-
treme special case of this (for which our results still hold), we can consider the situation
where a coalition must create nodes and edges and report preferences for its nodes at
the same time, making the game a single-stage game. In this case, when a coalition
is reporting preferences, it clearly knows nothing about what the other coalitions have
done at all, since they are moving at the same time. This is equivalent to saying that
a coalition first creates nodes and edges, and then reports preferences for these nodes
but without learning anything (including which of these nodes have been deemed legit-
imate). This is consistent with LIA: it just means that even more nodes in the game tree
are in the same information set than is strictly required by LIA.

We now define what it means for a suspicion policy to guarantee false-name-proofness.

Definition 4. A suspicion policy Π guarantees false-name-proofness for coalitions of
size at most k if, under the LIA assumption, the following holds. For any standard
(anonymous) mechanism f that is k-strategy-proof and satisfies k-voluntary participa-
tion, if we combine Π with f , then for any true social network structure on V t, for
any initial trusted nodes T ⊆ V t, and for any partition of V t into coalitions Sj of size
at most k each, it is a dominant strategy for each coalition to set V f

Sj
= ∅ and report

truthfully.

3 These are not to be confused with the nodes in the network.
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A Sufficient Condition for Guaranteeing False-Name-Proofness. We now provide a
sufficient condition for guaranteeing false-name-proofness.

Definition 5. A suspicion policyΠ is k-robust if, for any true social network structure
on V t, for any initial trusted nodes T ⊆ V t, and for any partition of V t into coalitions
Sj of size at most k each, we have the following. For every coalition Sj , for every profile
of actions taken by the other coalitions:

1. The actions of Sj (in terms of creating new nodes and edges) do not affect which of
the other coalitions’ identifiers (V \ (V t

Sj
∪ V f

Sj
)) are deemed legitimate.

2. The number of identifiers in V t
Sj
∪ V f

Sj
that are deemed legitimate is maximized by

setting V f
Sj

= ∅.

Theorem 1. If a suspicion policyΠ isk-robust, then it guarantees false-name-proofness
for coalitions of size at most k.

4 Exogenously Given Trusted Nodes

We begin by studying the case where the trusted nodes T are given exogenously. This
could correspond to the case where the mechanism designer personally knows the own-
ers of some of the nodes on the network, or perhaps these nodes have already been
successfully verified in an earlier stage. Later in the paper, we will study the case where
there are no exogenously given trusted nodes, so that we have to decide which nodes to
verify. Given G and T , the next step is to determine which nodes to label as “suspect,”
based on the fact that they are not well connected to trusted nodes. We will make our
suspicion policy precise shortly, but first we illustrate the basic idea on a small example.
We recall that k denotes the maximum size of a coalition of colluding agents. Figure 1
gives an example of a network with two exogenously given trusted nodes, for the case
where k = 1. As the figure illustrates, nodes that are separated from the trusted nodes
by a vertex cut of size 1 could be false identities created by the node on the vertex cut
in order to manipulate the outcome of the mechanism. Hence, they are deemed suspect.

In the following subsections, we first define our suspicion policy precisely and prove
that it has several nice properties, including guaranteeing false-name-proofness. We
then prove that this policy is optimal in the sense that any other suspicion policy with
these properties would label more nodes as suspect. Finally, we give a polynomial-time
algorithm for determining whether nodes are deemed legitimate or not under this policy.

The Suspicion Policy. One natural approach is to label as suspect every node v that
is separated from all the trusted nodes by a vertex cut of size at most k (this cut may
include some of the trusted nodes). After all, such a node v may have been artificially
created by a coalition of nodes corresponding to its vertex cut. On the other hand, for a
node v that is not separated from the trusted nodes by any vertex cut of size at most k,
there is no coalition of nodes that could have artificially created v. While this reasoning
is correct, it turns out that, to guarantee false-name-proofness, it is not sufficient to
label only the nodes separated from the trusted nodes by a vertex cut of size at most k
as suspect. The reason is that this approach may still leave an incentive for a coalition to
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Fig. 1. Example network. The nodes correspond to identities (user accounts), and the edges corre-
spond to (say) friendship relations between the identities. The mechanism designer, at this point
for exogenous reasons, considers certain nodes “trusted” (marked by squares), that is, she is sure
that they are not false names. The nodes marked with triangles are separated from the trusted
nodes by a vertex cut of size one (indicated by the dotted ellipse). As a result, it is conceiv-
able that these nodes are false names, created by the agent corresponding to the vertex-cut node;
hence, they are labeled suspect. The remaining nodes are not separated from the trusted nodes by
a vertex cut of size one, and as a result they are deemed legitimate (marked by circles).

create false nodes: not because these false nodes will be deemed legitimate, but rather
because it may prevent other nodes from being labeled as suspect. We first observe a
fundamental property of nodes being separated from the trusted nodes by a vertex cut
of size at most k.

Lemma 1 (cf. Menger [11]). For an initially untrusted node v, the following two state-
ments are equivalent.

1. v is not separated from the initially trusted nodes by a vertex cut of size at most k
(which may include initially trusted nodes).

2. There exist k + 1 vertex-disjoint paths from (distinct) initially trusted nodes to v.

The problem with the approach above is that a coalition may use false nodes that will be
labeled suspect, but that help create paths to other nodes that will be deemed legitimate
as a result. The solution is to apply the procedure iteratively, in each stage removing
the nodes that are separated from all the trusted nodes by a vertex cut of size at most k,
until convergence.

Definition 6. Let r take as input G = (V,E) and T ⊆ V , and as output produce the
subgraph G′ of G that results from removing those nodes in V − T that are separated
from the trusted nodes T by a vertex cut of size at most k (as well as removing the
edges associated with these nodes). These vertex cuts are allowed to include nodes
in T . Let G = G(0), G′ = G(1), G(2), . . . , G(nG,T ) be the sequence of graphs that
results from applying r iteratively on (G(i), T ), where nG,T is the smallest number
satisfying G(nG,T ) = G(nG,T −1) (note this sequence must converge as the set of nodes
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in successive iterations is nonincreasing). Then our suspicion policyΠ∗
k , when applied

to (G, T ), deems all the nodes in G(nG,T ) legitimate, and all the other nodes in G
suspect.

In each iteration, the procedure for computing Π∗
k removes all the nodes that are at

that point separated from all the trusted nodes by a vertex cut of size at most k. This
corresponds to eliminating nodes in a particular order. One may wonder if the result
would be any different if we eliminated nodes in a different order, for example, in one
iteration removing only a subset of the nodes that are at that point separated from all the
trusted nodes by a vertex cut of size at most k, before continuing to the next iteration.
This is analogous to the notion of path independence of iterated strict dominance in
game theory: no matter in which order we eliminate strictly dominated strategies, in
the end we obtain the same set of remaining strategies [10]. (This is in contrast to
iterated weak dominance, where the order of elimination does affect the final remaining
strategies.) We will show a similar path independence result for removing nodes in our
setting. To do so, we first define the class of suspicion policies that correspond to some
order; then we show that the class has only one element, namely,Π∗

k .4

Definition 7. Let Πk be the class of all suspicion policies that correspond to a proce-
dure where:

– In each iteration, some subset of the nodes that are at that point separated from all
the trusted nodes by a vertex cut of size at most k is eliminated from the graph;

– This subset must be nonempty when possible;
– When no additional nodes can be eliminated, the remaining nodes are exactly the

ones deemed legitimate.

Lemma 2. The class Πk consists of a singleton elementΠ∗
k , i.e., Πk = {Π∗

k}.

We now show that our policyΠ∗
k guarantees false-name-proofness for coalitions of size

at most k.

Lemma 3. Let G = (V,E) be a graph and let T ⊆ V be the trusted nodes. Let
G′ be a graph that is obtained from G by adding additional nodes V ′ and additional
edges E′ that each have at least one endpoint in V ′—in such a way that every node
in V ′ is separated from T by a vertex cut of size at most k. Then, applying Π∗

k to
G′ = (V ∪ V ′, E ∪ E′) and T results in the same nodes being deemed legitimate as
applyingΠ∗

k to G and T .

Theorem 2. Π∗
k isk-robust (and hence, by Theorem 1, guarantees false-name-proofness

for coalitions of size at most k). Moreover, under Π∗
k , a coalition Sj’s actions also do

not affect which of its own legitimate nodes V t
Sj

are deemed legitimate. Finally, Π∗
k is

guaranteed to label every illegitimate node as suspect.

4 The different orders of course correspond to different procedures for computing which nodes
are deemed legitimate, but we will show that as a function that determines which nodes are
finally deemed legitimate, they are all the same.
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Optimality. We now show that Π∗
k is the best possible suspicion policy in the sense

that any other policy satisfying the desirable properties in Theorem 2 must label more
nodes as suspect.

Theorem 3. Let Π ′ be a suspicion policy that (1) is k-robust, (2) is such that a coali-
tion Sj’s actions also do not affect which of its own legitimate nodes V t

Sj
are deemed

legitimate, and (3) is guaranteed to label every illegitimate node as suspect. Then, if
Π∗

k labels a node as suspect, then so mustΠ ′.

Polynomial-time Algorithm for Determining Whether a Node is Suspect. In this
subsection, we give a polynomial-time algorithm for determining whether nodes are
deemed legitimate or suspect according to Π∗

k . The key step is to find an algorithm for
figuring out which nodes are separated from the trusted nodes by a vertex cut of size at
most k; then we can simply iterate this in order to executeΠ∗

k (and by Lemma 2 we do
not need to be careful about the order in which we eliminate nodes). It turns out that by
Lemma 1, we can do this by solving a sequence of maximum flow problem instances.

Theorem 4. Given G = (V,E) and T ⊆ V , we can determine in polynomial time
which nodes are not separated from T by a vertex cut of size at most k. As the number
of iterations ofΠ∗

k is bounded by |V |, we can runΠ∗
k in polynomial time.

5 Choosing Nodes to Verify (Endogenous Trust)

Our methodology requires some nodes to be trusted. So far, we have considered settings
where some nodes are trusted for exogenous reasons (for example, the organizer’s own
friends may be the only trusted nodes). However, we can also endogenize which nodes
are trusted, by assuming that the organizer can invest some effort in verifying some
of the identities to establish their legitimacy (for example, by asking these identities
for information that identifies them in the real world). This is an approach that has been
considered before in the context of false-name-proofness [4], but that prior work paid no
regard to social network structure. The social network structure can drastically reduce
the amount of verification required, because, as we have seen earlier in this paper, once
we have some nodes that are trusted, we can infer that others are legitimate.

There are (at least) two approaches to consider here: verify enough nodes so that no
suspect nodes remain at all (and try to minimize the number of verified nodes under this
constraint), or try to maximize the number of nodes deemed legitimate, given a budget
of verifications (say, at most b verifications). In this paper, we focus on the former.

Technically, a verification policy consists of a contingency plan, where the next node
to verify depends on the results of earlier verifications of nodes (which can either fail or
succeed). If a node fails the verification, that node is classified as illegitimate, and the
verification continues. The verification continues until no nodes remain suspect (other
than ones that failed the verification step)—that is, until no unverified nodes are sepa-
rated by a vertex cut of size at most k from the nodes that were successfully verified.
(This vertex cut can include successfully verified nodes. We note that in this context
there is no longer a reason to iteratively remove nodes in the procedure that computes
the trust policy (Π∗

k ): because our goal is for all remaining nodes to be deemed legiti-
mate, we simply need to check whether any nodes are removed in the first iteration.)
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Optimally Deciding Which Nodes to Verify. We now turn to the following optimiza-
tion problem: how do we minimize the number of nodes that we verify before reaching
the point where all the remaining nodes are deemed legitimate? To answer this ques-
tion, we first note that, since there will be no incentive to create illegitimate nodes, we
can assume that all nodes will in fact be legitimate. (This does not mean that we can
afford to not do the verification, because if we did not, then there would be incentives to
create illegitimate nodes again.) Hence, the problem becomes to find a minimum-size
subset of nodes so that no other node is separated from these nodes by a vertex cut of
size at most k (which may include nodes in this subset)—or, equivalently, by Lemma 1,
to find a minimum-size subset of nodes so that every other node is connected by k + 1
vertex-disjoint paths to (distinct nodes in) this subset.

This problem is a special case of the source location problem. A polynomial-time
algorithm for this problem is given in a paper by Nagamochi et al. [12]. They show that
the problem has a matroidal property, as follows. Instead of thinking about minimizing
the number of verified nodes, we can think about maximizing the number of unverified
nodes. Say a subset U ⊆ V is feasible if, for every v ∈ U , there exist k + 1 vertex-
disjoint (apart from v) paths to (distinct) nodes in V \ U .

Theorem 5 ([12]). The feasible sets satisfy the independence axioms of a matroid.

Finding an independent set of maximum size in a matroid is easy: start with an empty
set, and attempt to include the elements one at a time, being careful not to violate the
independence property. In the context of trying to find a minimum-size set of nodes to
verify, this corresponds to starting with the set of all nodes, and attempting to exclude
the nodes one at a time, being careful that it will still result in all the excluded nodes
being deemed legitimate. To check the latter, we only need to consider the current node:

Lemma 4. Suppose S ⊆ V is such that from every u ∈ V −S, there exist k+1 vertex-
disjoint paths to (distinct nodes in) S, and suppose that for some v, S − {v} does not
have this property. Then, there do not exist k+1 vertex-disjoint paths from v to (distinct
nodes in) S − {v}.

This results in the following simple polynomial-time algorithm Φk for finding a
minimum-size set of nodes to verify.

Definition 8. Φk takes as input a graph G = (V,E) and proceeds as follows to deter-
mine the nodes S to verify:

1. Initialize S ← V .
2. For each node v ∈ S: if there are k + 1 vertex-disjoint paths from S − {v} to v,

then remove v from S.
3. Return S.

6 Conclusions and Future Research

From the above, it becomes clear that false-name-proofness, while achievable in social
networking settings, does not come for free: we either cannot let all agents participate,
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or we must spend significant effort verifying identities. How severe these downsides are
depends on the exact structure of the social network. If we have a sufficiently densely
connected social network, then almost everyone can participate even when there are
relatively few trusted identities, or, alternatively, we only need to verify a small number
of identities to let everyone participate. But, is this likely to be the case in realistic social
networks? The full version of our paper has some simulation results. Future research
may also be devoted to considering some changes in the basic model and their effect
on our results. What happens if agents can decide to drop edges (that is, not declare
friendships) for strategic reasons? What happens if agents can get other agents to link
to their fake identities at a cost? Results here may be reminiscent of those obtained
in existing models where additional identifiers can be obtained at a cost [14]. What
happens when we can only verify a limited number of nodes and try to maximize the
number of nodes deemed legitimate?
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Abstract. We consider the Network Design game introduced by An-

shelevich et al. [1] in which n source-destination pairs must be connected

by n respective players equally sharing the cost of the used links. By

considering the classical Sum social function corresponding to the total

network cost, it is well known that the price of anarchy for this class of

games may be as large as n. One approach for reducing this bound is that

of resorting on the Stackelberg model in which for a subset of �αn� coor-

dinated players, with 0 ≤ α ≤ 1, communication paths inducing better

equilibria are fixed. In this paper we show the effectiveness of Stackel-

berg strategies by providing optimal and nearly optimal bounds on the

performance achievable by such strategies. In particular, differently from

previous works, we are also able to provide Stackelberg strategies com-

putable in polynomial time and lowering the price of anarchy from n to

2
(

1
α

+ 1
)
. Most of the results are extended to the social function Max,

in which the maximum player cost is considered.

1 Introduction

Congestion games [15] are a well established approach to model resource sharing
among selfish players. In such games a set of resources is available to a set of n
players. Each player comes along with a set of strategies, each corresponding to
the selection of a subset of the resources. A state of the game is any combination
of strategies for the players. The cost incurred by a player in a given state is
defined as the sum of the costs associated with each selected resource, which
depends on the number of players choosing that resource. The total cost of a
state denotes its quality from a global perspective, which is typically defined
as the sum of the players’ costs or the maximum among the players’ costs.
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Rosenthal [15] has shown that the natural decentralized mechanism known as
Nash dynamics, in which at each step some player performs an improvement
step switching his strategy to a better alternative, is guaranteed to converge to
a pure Nash equilibrium [14], i.e., a fixed point of such dynamic in which no player
can perform an improvement step. The Nash equilibrium may not necessarily
minimize the total cost. The main tool for quantifying the quality of equilibria
and thus the performance degradation due to the players’ selfish behavior is
the price of anarchy (PoA), introduced by Koutsoupias and Papadimitriou [12],
which is formally defined as the worst-case ratio of the total cost of a Nash
equilibrium to the optimal total cost.

Network Design games with fair cost allocation, introduced by Anshelevich et
al.[1], are one of the most interesting subclass of congestion games. In the sequel
we will refer to this class as Network Design games. In a Network Design game
we are given an undirected graph with non-negative costs on the edges and, for
each player, a source and a destination node. The goal of each player is to choose
a path connecting his source and destination node. Thus the edges of the graph
corresponds to the resources of the game and the strategy set of each player is
given by the set of paths connecting the source and destination node associated
to the player. The cost of each edge e is shared equally by the set of all players
whose selected paths contain e. It is well known that the price of anarchy for
this game may be as large as the number of players even for a simple game with
two parallel edges.

A few natural approaches for reducing the price of anarchy in non-cooperative
games have been investigated. An interesting one is the Stackelberg model [11],
which consists in assuming that a central authority exploits a small fraction of
coordinated players for improving the quality of the Nash equilibrium reached by
the remaining selfish players. The central authority selects a fraction of players,
called coordinated players, and assigns them to appropriately selected strategies.
The algorithm adopted by the authority in selecting the coordinated players and
assigning them to strategies is called Stackelberg strategy. Given the strategy for
the coordinated players, each of the remaining players, called the selfish players,
selects his strategy selfishly trying to minimize his cost. The behavior of selfish
players leads to a (Stackelberg) Nash equilibrium in which none of the selfish
players can improve his cost. The goal is to determine an effective Stackelberg
strategy which improves the price of anarchy of the game.

Related Work. Network Design with fair cost allocation has been introduced
by Anshelevich et al. [1]. In this seminal paper the authors raised the problem of
the bad performance, in terms of price of anarchy, of the game due to the selfish
behavior of the players. Motivated by this issue, they started to explore the
middle ground between centrally enforced solutions and completely unregulated
anarchy by proposing the notion of price of stability, that is the ratio of the cost
of the cheapest Nash equilibrium to the cost of the optimal solution.

Korilis et al. [11] have been the first to consider the use of the Stackelberg model
as a mean of improving the performance of a system. Subsequently, Roughgarden
[16] considered the problem of improving the price of anarchy of non-cooperative
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games by means of Stackelberg strategies. Stackelberg strategies have been in-
vestigated in the context of congestion games with non-decreasing latency func-
tions. In particular, all previous research focused on the non-atomic setting (e.g.,
[2,9,10,13,16,17,18]) and just recently Fotakis [7] considered atomic congestion
games.

To the best of our knowledge, no work has investigated the effectiveness of
Stackelberg strategies for congestion games with decreasing delay functions and
in particular for Network Design games. Despite of that, several works dealt
with the problem of improving the price of anarchy of Network Design games. In
particular, Chen et al. [6] studied the problem of designing a different mechanism
for sharing the cost of each edge to optimize the equilibrium behavior. Chekuri
et al. [5] observed that the price of anarchy strongly depends on the initial state
from which the players start to play. In particular they proved that the price of
anarchy strongly decreases by considering only dynamics starting from “empty”
states, that is a state in which no player has selected any strategy. All the results
in [5] have been subsequently improved by Charikar et al. [4].

Our Contribution. In this paper we investigate Stackelberg strategies for Net-
work Design games. To the best of our knowledge, this is the first work on
Stackelberg strategy for congestion games with decreasing latency functions. In
particular, we show the effectiveness of Stackelberg strategies in reducing the
price of anarchy by providing optimal and nearly optimal bounds on the per-
formance achievable for the two main social cost functions, i.e., the sum of all
the players’ costs (Sum) and the maximum players cost (Max). More precisely,
given a subset of �αn� coordinated players with 0 < α ≤ 1, in the case of a
single source node, the price of anarchy becomes 1

α + 1
2 for Sum and 2

α for Max.
Moreover, in the general multiple sources case, it is at most 1

α + 1 for Sum, that
is only a subtle additive constant apart from the lower bound induced by single
source, and 4

α for Max.
Differently from previous works [7], we finally address the question of the se-

lection of good Stackelberg strategies in polynomial running time. Namely, given
ρ-approximation algorithms for the minimization of the two social functions, we
show that in the single source case it is possible to determine in polynomial time
communication paths for the coordinated players inducing a price of anarchy
at most ρ

(
1
α + 1

2

)
for Sum and 2ρ

α for Max, and in the general case at most
ρ
(

1
α + 1

)
for Sum and 4ρ

α for Max. While to the best of our knowledge the ex-
istence of good approximation algorithms for the Max function is still an open
question, for Sum this gives a polynomial time selection inducing price of anar-
chy at most 1.39

(
1
α + 1

2

)
for the single source case and 2

(
1
α + 1

)
in the general

case, by exploiting the Steiner tree and Steiner forest approximation results in
[3] and [8], respectively.

The paper is structured as follows. In the next section we define the model
and introduce some useful definitions. In Section 3 we show that there exist
Stackelberg strategies dramatically lowering the price of anarchy from n to a
value proportional to 1

α , both under the Sum and the Max social function.
Section 4 is devoted to provide efficient, i.e., polynomial, strategies having such
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properties. Due to space limitations, some proofs are omitted and will appear in
the full version of the paper.

2 Model and Definitions

A Network Design game is defined by a tuple G =(
N,G = (V,E), (we)e∈E ,

(
(ri, ti) ∈ V 2

)
i∈N

)
, where N is the set of play-

ers, G is an undirected graph having for each edge e ∈ E a non-negative cost
we and each player i ∈ N has a pair of nodes (ri, ti) ∈ V 2 that he wants
to connect, ri and ti being the source and the destination node, respectively.
Notice that if ri is the same node for every players, we are in the special case
of Single Source Network Design game. Let Σi denote the strategy set of player
i, with any strategy si ∈ Σi of i consisting of a path connecting ri and ti. Let
S = (s1, s2, . . . , sn) ∈ ×i∈NΣi be the strategy profile (state) in which player i
chooses his strategy si ∈ Σi. We denote by G(S) the subgraph of G composed
by all edges used by all players in state S, i.e., G(S) =

⋃
i∈N si. Given a strategy

profile S = (s1, . . . , sn) and an edge e ∈ E, let ne(S) be the number of players
using e in S, i.e., ne(S) = |{i ∈ N |e ∈ si}|. We assume that all players using an
edge equally share its cost, i.e., for each edge e and each player i using e in state
S, the cost charged to player i for e is cei (S) = we

ne(S) . The total cost incurred by
player i in S is defined as the sum of the shared costs of all edges used by i, i.e.,
ci(S) =

∑
e∈si

cei (S) =
∑

e∈si

we

ne(S) . The social cost of a strategy profile S can
be defined either as the sum of all the players’ costs, i.e., Sum(S) =

∑
i∈N ci(S),

or as the maximum among the players’ costs, i.e., Max(S) = maxi∈N ci(S).
Obviously Sum(S) =

∑
e∈G(S) we, that is the cost of all the edges used by the

players in S. An optimal strategy profile is one with minimum social cost, that
we denote by OptSum and OptMax with respect to the cost functions Sum

and Max respectively. Obviously, if S∗ is a strategy profile minimizing the
function Sum, then G(S∗) denotes an optimal Steiner forest, that is a forest
with minimum cost connecting all nodes {ri, ti}i∈N . Finally, there always exists
a strategy profile S∗ which minimizes Max such that G(S∗) is a Steiner forest;
in fact, it is easy to check that, given an optimal strategy profile S′∗ such that
G(S′∗) contains one or more cycles, they can be eliminated by obtaining a new
strategy profile S∗ with equal social cost such that G(S∗) is a Steiner forest.

A Stackelberg strategy is an algorithm performed by a centralized authority
that selects a subset M ⊆ N of m players, called coordinated players, and assign
them to determined strategies. We denote by Stack(i) the strategy assigned to
player i ∈M . Thus, given an instance of the game, the output of a Stackelberg
strategy is a pair (M ⊆ N, (Stack(i))i∈M ). We assume that α is the fraction
of coordinated players, that is m = �αn� with α ∈ (0, 1]. The subset of players
N \M is the set of the selfish players. Each player in N \M acts selfishly and
aims at choosing the strategy lowering his cost, given the strategy choices of
other players. Given a strategy profile S and a strategy s′i ∈ Σi, let (S ⊕ s′i) =
(s1, . . . , si−1, s

′
i, si+1, . . . , sn), i.e., the strategy profile obtained from S if player

i changes his strategy from si to s′i. A state S is a Stackelberg Nash equilibrium
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if for every player i ∈ N \M and all strategy s′i ∈ Σi, ci(S) ≤ ci(S ⊕ s′i), i.e.,
no player in N \M can improve his individual cost by unilaterally changing his
strategy. The price of anarchy (PoA) is the ratio Sum(S)/OptSum (respectively
Max(S)/OptMax), where S is the Stackelberg Nash equilibrium of maximum
cost with respect to the considered function. The goal is to design Stackelberg
strategies able to lower the price of anarchy.

3 Existence of “Good” Strategies

In this section, we prove the existence of “good” Stackelberg strategies, i.e.,
strategies lowering the price of anarchy from n to a value proportional to 1

α , for
Network Design games.

We first show a lower bound to the performance of any Stackelberg strategy
controlling at most �αn� players.

Theorem 1. For any ε > 0 and arbitrarily small values of α, there exists a
(Single Source) Network Design game for which no Stackelberg strategy inducing
a price of anarchy lower than 1

α + 1
2 − ε and 2

α − ε, under social functions Sum

and Max respectively, exists.

A natural class of strategies that we define is the (α, β, S)-deterministic scale
(DS) class with α, β ∈ (0, 1] and S ∈ ×i∈NΣi, in which given a configuration S
the goal is to control at most �αn� = |M | players such that, for every resource
e ∈ E, at least �βne(S)� players in M use e.

Lemma 1. The PoA induced by any strategy in the (α, β, S)-DS class is at most
ρ
(

1
β + 1

2

)
and 2ρ

β under social functions Sum and Max, respectively, where ρ is

equal to Sum(S)
OptSum

for Sum and to Max(S)
OptMax

for Max.

We first show that there exists a strategy in the DS class for the Single-Source
Network Design game.

Algorithm 1. DS for Single Source Network Design games
1: procedure DS-SS(state S = (s1, s2, . . . , sn) such that G(S) is a tree)

2: M ← ∅
3: Let T = G(S) be the tree induced by S
4: Visit the edges of T in reverse order with respect to the Breadth First Search

5: for every visited edge e do
6: Let n′

e(S) = |{i ∈ M |e ∈ si}|
7: Let Q be a subset of �αne(S)� − n′

e(S) players in N \ M using edge e
8: M ← M ∪ Q
9: end for

10: For all i ∈ M , Stack(i) = si

11: end procedure
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Theorem 2. For the Single Source Network Design game, the strategy defined
by Algorithm 1 on input S belongs to the (α, α, S)-DS class.

The following corollary is an immediate consequence of Lemma 1 and Theorem 2.

Corollary 1. In the Single Source Network Design game, let S∗ denote the
optimal state with respect to function Sum, the strategy defined by Algorithm 1
on input S∗ is optimal, i.e., it induces games with PoA at most 1

α + 1
2 under the

social function Sum.

Corollary 2. In the Single Source Network Design game, let S∗ denote the
optimal state with respect to function Max, the strategy defined by Algorithm 1
on input S∗ is optimal, i.e., it induces games with PoA at most 2

α , under the
social function Max.

r

a

bc

Fig. 1. The subgraph of G induced by an optimal solution.

Unfortunately, a strategy belonging to the (α, α, S)-DS class cannot be obtained
for general (not only single source) Network Design games. In fact, by Figure 1
we show that it is not always possible to control at least αne(S) players for each
resource e by controlling at most αn players in the whole instance. In Figure 1 we
consider the subgraph G(S) induced by a state S in a game with 3 players having
requests (a, b),(b, c) and (c, a), respectively. Every edge is used by 2 players, thus
if we consider α = 1

2 we must select a subset of the players such that every edge
is covered by at least one of them. In order to do that, it is easy to see that
we must pick at least 2 out of the 3 players, that is more than half of the total
number of players.

In order to obtain an optimal deterministic strategy for the general case under
the Sum social function, let us introduce another strategy, the (α, S)-Probabilistic
Scale (PS) strategy, in which the αn players to be controlled are uniformly
randomly selected and the strategy they use in the initial solution S is chosen
for them.

Theorem 3. In the Network Design game the (α, S)-PS strategy induces games
with expected PoA at most ρ

(
1
α + 1

)
under the Sum social function, where ρ =

Sum(S)
OptSum

.

Proof. Let Ŝ be any Nash equilibrium for the game. We are interested in upper
bounding the expected cost in Ŝ of every player i ∈ N \M . In fact, players in
M pay at most the cost of the initial solution S, i.e.,

∑
i∈M ci(Ŝ) ≤ Sum(S).



228 A. Fanelli, M. Flammini, and L. Moscardelli

For the sake of simplicity, we will consider all the already defined quantities
(e.g. ci(S), cei (S), Sum(S), etc.) also as random variables; it will be clear from
the notation when they denote a random variable because they will be always
used with the E[·] expectation operator.

We first upper bound E[cei (Ŝ)] for any i ∈ N \M . To this aim, we introduce
the random variable ae

i indicating how much player i would pay on edge e if
only coordinated players (and himself) use such an edge. Clearly, E[cei (Ŝ)] ≤
E[ae

i ]. Since Pr
(
ae

i = we

x+1

)
induces an hypergeometric probability distribution,

Pr
(
ae

i = we

x+1

)
=

(ne(S)
x )(n−ne(S)

�αn�−x )
( n
�αn�)

and we obtain

E[cei (Ŝ)] ≤ we

�αn�∑
x=0

Pr
(
ae

i = we

x+1

)
x+ 1

=
we(
n

�αn�
) �αn�∑

x=0

(
ne(S)

x

)(n−ne(S)
�αn�−x

)
x+ 1

=
we(

n
�αn�
)
(ne(S) + 1)

�αn�∑
x=0

(
ne(S) + 1
x+ 1

)(
n− ne(S)
�αn� − x

)

=
we(

n
�αn�
)
(ne(S) + 1)

�αn�+1∑
y=1

(
ne(S) + 1

y

)(
n− ne(S)
�αn�+ 1− y

)

≤
we

(
n+1

�αn�+1

)(
n

�αn�
)
(ne(S) + 1)

=
we(n+ 1)

(�αn�+ 1)(ne(S) + 1)

≤ wen

αnne(S)
=

we

αne(S)
.

By summing over all players i ∈ N , since
∑

i∈M ci(Ŝ) ≤ C(S), we obtain

E[Sum(Ŝ)] =
∑
i∈M

E[ci(Ŝ)] +
∑

i∈N\M

E[ci(Ŝ)] ≤ Sum(S) +
∑

i∈N\M

∑
e∈si

E[cei (Ŝ)]

≤ Sum(S) +
∑

i∈N\M

∑
e∈si

we

αne(S)
= Sum(S) +

∑
i∈N\M

∑
e∈si

cei (S)ne(S)
αne(S)

= Sum(S) +
1
α

∑
i∈N\M

∑
e∈si

cei (S) = Sum(S) +
1
α

∑
i∈N\M

ci(S)

≤ Sum(S) +
1
α

Sum(S) =
(

1 +
1
α

)
Sum(S).

The claim follows by recalling that Sum(S) ≤ ρOptSum. ��

Let S∗ be the optimal state with respect to function Sum, by considering the
(α, S∗)-PS strategy, the following corollary directly follows.

Corollary 3. In the Network Design game there exists a probabilistic strategy
controlling αn players and inducing games with expected PoA at most 1

α + 1
under the Sum social function.
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Moreover, since the expected PoA is at most 1
α + 1, there must exist a deter-

ministic strategy with PoA greater than the expected one, and the following
corollary holds.

Corollary 4. In the Network Design game there exists an almost optimal deter-
ministic strategy controlling αn players and inducing games with PoA at most
1
α + 1 under the Sum social function.

Let us remark some interesting points. Clearly, the almost optimal deterministic
strategy of Corollary 4 also holds for the particular case of Single-Source Network
Design game, but unfortunately it holds only for the Sum social function. In
fact, it heavily exploit the linearity of expectation property of random variables.
Moreover, strategies in the (α, α, S)-DS class ensure a stronger property: every
selfish player i pays at equilibrium at most 1

αci(S), and any coordinated player i
at most 2

αci(S). Therefore, such strategies also work for the Max social function,
and they ensure a sort of fairness between the players. Moreover, as it will be
discussed in Section 4, the computational cost of Algorithm 1 is much lower than
the one of the strategy described in the proof of Theorem 5.

Therefore, in the following we focus on the existence of a (sub-optimal) Stack-
elberg strategy for the general Network Design game, by requiring such a strategy
being “fair” and also inducing a constant PoA under the Max social function.

In order to describe the desired strategy, we need an additional definition.
Given a strategy profile S = (s1, . . . , sn) such that G(S) is a tree, we define the
split instance of the considered game as the same instance in which we have
a new split player set N ′. In particular, consider the tree G(S) rooted at a
generic node u; in order to build the player set N ′, we split each player (ri, ti),
i = 1, . . . , n in at most two players (ri, vi) and (ti, vi), where vi is the common
ancestor in tree G(S) of ri and ti (notice that if vi ≡ ri or vi ≡ ti player i is
not split). Therefore, |N | ≤ |N ′| ≤ 2|N |, and the split player strategy profile S′

corresponding to S is built by associating to each player (ri, vi) (respectively
(ti, vi)) in N ′ the strategy corresponding to the unique path connecting ri and
vi (respectively ti and vi) in tree G(S).

For the sake of simplicity, we will assume 2
α being an integer. A more involved

version of the Algorithm works for general values of α; all the details will be
given in the full version of the paper.

Theorem 4. For the Network Design game, the strategy defined by Algorithm
2 on input S belongs to the (α, α

2 , S)-DS class.

The following corollary is an immediate consequence of Lemma 1 and Theorem 4.

Corollary 5. In the Network Design game, let S∗ denote the optimal state with
respect to function Sum (respectively Max); the strategy defined by Algorithm 2
on input S∗ induces games with PoA at most 2

α + 1
2 (respectively 4

α) under the
social function Sum (respectively Max).
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Algorithm 2. DS for Network Design games
1: procedure DS(state S = (s1, s2, . . . , sn) such that G(S) is a tree)

2: M ′ ← ∅
3: R ← ∅
4: j ← 0

5: Let T = G(S) be the tree induced by S rooted at a generic node u.

6: Let N ′ and S′ be the split player set and the split player strategy profile with

respect to the tree T rooted at u, respectively. We will denote a generic player in

N ′ as x.

7: Visit the edges of T in reverse order with respect to the Breadth First Search

8: for every visited edge e do
9: Let ne(S

′) = |{x ∈ N ′|e ∈ s′x}|
10: Let n′

e(S
′) = |{x ∈ R|e ∈ s′x}|

11: while ne(S
′) − n′

e(S) ≥ 2
α

do
12: j ← j + 1

13: Let Qj be a subset of 2
α

players in N ′ \ R using edge e.
14: Let x ∈ Qj be a player whose strategy in S′ has the endpoint closest to

u as close as possible to u.

15: R ← R ∪ Qj

16: M ′ ← M ′ ∪ {x}
17: end while
18: end for
19: Put in M all the players i ∈ N such that (ri, vi) ∈ M ′ or (ti, vi) ∈ M ′ (or both)

20: For all i ∈ M , Stack(i) = si

21: end procedure

4 Efficient Strategies

In this section we focus on the efficient determination of good Stackelberg strate-
gies for Network Design games under the Sum social function.

Most of the results of Section 3 can be exploited in order to obtain efficient
Stackelberg strategies that, although being sub-optimal, are able to lower the
price of anarchy to a value proportional to 1

α .
The basic idea is that of considering a ρ-approximation S̄ instead of an optimal

solution S∗. Such an approximated solution is known to be efficiently computable
in the case of the Sum social function, in which the social optimization problem
is basically a minimum Steiner Forest problem and a constant approximation is
easily obtainable.

In fact, given an edge-weighted graph G = (V,E) and a set of couple of nodes
{si, ti}, si, ti ∈ V , the Steiner Forest Problem consists in finding a minimum-
cost forest such that all the couple of nodes of the instance are connected. In [8]
a 2-approximation algorithm for such a problem has been provided, running in
time O(|V |2 ln |V |). Let S̄ denote such a 2-approximated solution.

We remark that similar results can be obtained also for the Max social func-
tion, as soon as the important open question of finding an algorithm efficiently
approximating an optimal solution will be solved.
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By Lemma 1 and Theorem 2, since, as it is easy to verify, Algorithm 1 has a
worst case time complexity O(n|E|), the following proposition holds.

Proposition 1. In the Single Source Network Design game the strategy defined
by Algorithm 1 on input Ŝ induces games with PoA at most 2

α +1 under the Sum

social function. The time complexity of determining such a strategy is O(n|E|+
|V |2 ln |V |).

Notice that by exploiting the 1.39-approximation algorithm for the Steiner Tree
problem by Byrka et al. [3], the PoA can be lowered to 1.39

(
1
α + 1

2

)
, but the

running time of such an approximation algorithm fast increases as the guaranteed
ratio approaches 1.39.

Now we turn our attention to the (α, S)-PS probabilistic strategy. The fol-
lowing proposition is an immediate consequence of Theorem 3.

Proposition 2. In the Network Design game the (α, S̄)-PS is a probabilistic
polynomial strategy controlling �αn� players and inducing games with expected
PoA at most 2

α + 2 under the Sum social function. The time complexity of de-
termining such a strategy is O(|V |2 ln |V |).

Starting from the (α, S)-PS strategy and applying standard derandomization
arguments (in particular the Method of Conditional Probabilities, as Algorithm
3 does), it is possible to obtain a new deterministic strategy for Network Design
games, realizing the properties claimed in Corollary 4.

We perform the derandomization with respect to a random variable, Ŝum,
being an upper bound to the cost of any Nash equilibrium. In particular, such
an upper bound is given by the costs ae

i , e ∈ si, that the player i would experience
on the resources he selects in S, assuming that the cost of such resources are
shared only with the coordinated players: Ŝum =

∑
i∈N

∑
e∈si

ae
i .

Theorem 5. For Network Design games, the strategy defined by Algorithm 3 on
input S is a deterministic strategy controlling �αn� players and inducing games
with PoA at most ρ

(
1
α + 1

)
under the Sum social function, where ρ = Sum(S)

OptSum

.

Algorithm 3. Derandomization
1: procedure Derand(state S = (s1, s2, . . . , sn))

2: Let q(d1, . . . , di) be the conditional expectation E[Ŝum|(j ∈ M ⇔ dj = 1) ∧
Stack(j) = sj , 1 ≤ j ≤ i]

3: for i ← 1, n do
4: if q(d1, . . . , di−1, 0) < q(d1, . . . , di−1, 1) then
5: di ← 0

6: else
7: di ← 1

8: end if
9: end for

10: Put in M all and only the players i for which di = 1

11: For all i ∈ M , Stack(i) = si

12: end procedure
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Proof. By the proof of Theorem 3 we know that the expected value of Ŝum

is at most
(

1
α + 1

)
Sum(S). Therefore, there must exist a deterministic choice

of d1, . . . , dn inducing a worst case equilibrium Ŝ such that Sum(Ŝ) ≤ Ŝum ≤
ρ
(

1
α + 1

)
OptSum.

It is easy to check that at any iteration of the for block, di is always chosen
in such a way that the expected value of Ŝum is at most

(
1
α + 1

)
Sum(S). Notice

that this is always possible because for any i = 1, . . . , n, starting from a situation
in which the expected value of Ŝum conditioned to the choice of d1, . . . , di−1 is at
most x, there must exist a choice for di (di = 0 or di = 1) for which the expected
value of Ŝum, conditioned also by the new choice of di, is at most x. ��

Notice that the time complexity of Algorithm 3 depends on the computational
cost of the conditional expectations q. In order to compute such expectations,
techniques similar to the one exploited in the proof of Theorem 3 can be used,
i.e., letting γ ≡ (i ∈ M ⇔ di = 1) ∧ Stack(i) = si, D = |i ∈ N |di = 1| and
De = |i ∈ N |di = 1 ∧ e ∈ Stack(i)|,

E[Ŝum|γ] =
∑
i∈N

∑
e∈si

E[ae
i |γ]

=
∑
i∈M

∑
e∈si

�αn�−D∑
x=0

we

De + x
Pr

(
ae

i =
we

De + x
|γ
)

+
∑

i∈N\M

∑
e∈si

�αn�−D∑
x=0

we

De + x+ 1
Pr

(
ae

i =
we

De + x+ 1
|γ
)
,

where for any i ∈M and j ∈ N\M ,Pr
(
ae

i = we

De+x |γ
)

= Pr
(
ae

j = we

De+x+1 |γ
)

=

(ne(S)−De
x )(n−D−ne(S)+De

�αn�−D−x )
( n−D
�αn�−D) .

It is easy to verify that the computation of E[ae
i |γ] can be performed in time

O(n2). Since the number of edges used in S is O(|E|) and Algorithm 3 has n
iterations, its worst case time complexity is O(n3|E|).

Therefore, by running Algorithm 3 on input S̄, we obtain the following result.

Proposition 3. In the Network Design game the Strategy induced by Algorithm
3 on input Ŝ is a deterministic polynomial strategy controlling �αn� players and
inducing games with PoA at most 2

α +2 under the Sum social function. The time
complexity of determining such a strategy is O(n3|E|+ |V |2 ln |V |).

Finally, by exploiting Algorithm 2, it is possible to reduce the time complexity
of the Stackelberg strategy by paying a factor almost equal to 2 in the PoA. In
fact, by Lemma 1 and Theorem 4, since, at it is easy to verify, Algorithm 2 has
a worst case time complexity O(n|E|), the following proposition holds.

Proposition 4. In the Network Design game the strategy defined by Algorithm 2
on input Ŝ induces games with PoA at most 4

α +1 under the Sum social function.
The time complexity of determining such a strategy is O(n|E|+ |V |2 ln |V |).
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Abstract. We study Facility Location games, where a number of facilities are
placed in a metric space based on locations reported by strategic agents. A mech-
anism maps the agents’ locations to a set of facilities. The agents seek to minimize
their connection cost, namely the distance of their true location to the nearest fa-
cility, and may misreport their location. We are interested in mechanisms that are
strategyproof, i.e., ensure that no agent can benefit from misreporting her location,
do not resort to monetary transfers, and approximate the optimal social cost. We
focus on the closely related problems of k-Facility Location and Facility Location
with a uniform facility opening cost, and mostly study winner-imposing mecha-
nisms, which allocate facilities to the agents and require that each agent allocated
a facility should connect to it. We show that the winner-imposing version of the
Proportional Mechanism (Lu et al., EC ’10) is stategyproof and 4k-approximate
for the k-Facility Location game. For the Facility Location game, we show that
the winner-imposing version of the randomized algorithm of (Meyerson, FOCS
’01), which has an approximation ratio of 8, is strategyproof. Furthermore, we
present a deterministic non-imposing group strategyproof O(log n)-approximate
mechanism for the Facility Location game on the line.

1 Introduction

We consider Facility Location games, where a number of facilities are placed in a met-
ric space based on the preferences of strategic agents. Such problems are motivated by
natural scenarios in social choice, where the government plans to build a number of
public facilities in an area. The choice of the locations is based on the preferences of
local people, or agents. So each agent reports her ideal location, and the government
applies a mechanism mapping the agents’ preferences to a set of facility locations. The
government’s objective is to minimize the social cost, namely the total distance of the
agents’ locations to the nearest facility plus the construction cost, in case where the
number of facilities is not fixed and may depend on the agents’ preferences. On the
other hand, the agents seek to minimize their connection cost, namely the distance of
their ideal location to the nearest facility. In fact, an agent may report a false prefer-
ence in an attempt of manipulating the mechanism. Therefore, the mechanism should
be strategyproof, i.e., should ensure that no agent can benefit from misreporting her
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location, or even group strategyproof, i.e., should ensure that for any group of agents
misreporting their locations, at least one of them does not benefit. At the same time, the
mechanism should achieve a reasonable approximation to the optimal social cost.

In this work, we consider two closely related facility location problems, and present
computationally efficient strategyproof approximate mechanisms for both. In the k-
Facility Location game, we place k facilities in a metric space so as to minimize the
agents’ total connection cost. In the Facility Location game, there is a uniform facility
opening cost, instead of a fixed number of facilities, and we place a number of facilities
in a metric space so as to minimize the sum of the agents’ total connection cost and
the total facility opening cost. This problem is motivated by natural scenarios where
the social planner is willing to trade off the agents’ connection cost against its own
construction cost, so that a socially more desirable solution is achieved, and has been
widely used as a natural relaxation of the k-Facility Location problem (see e.g. [6,14]).

Related Work. The problems of Facility Location and k-Facility Location, a.k.a. k-
Median, are classical and have received considerable attention in Operations Research
(see e.g. [14]), Approximation and Online Algorithms (see e.g. [6,21,8,13,2]), Social
Choice (see e.g. [16,5,22,15,20,4,9]), and recently, Algorithmic Mechanism Design
(see e.g. [19,1,11,10,18]). The related work in Social Choice mostly focuses on lo-
cating a single facility on the real line, where the agents’ preferences are single-peaked.
A classical result due to Moulin [16], Barberà and Jackson [5], and Sprumont [22]
characterizes the class of generalized median voter schemes as the only strategyproof
mechanisms when agents have single-peaked preferences on the line (see also [3,23]
and [17, Chapter 10]). Schummer and Vohra [20] extended this result to tree metrics,
where the class of extended median voter schemes are the only strategyproof mech-
anisms. On the negative side, Schummer and Vohra proved that for non-tree metrics,
only dictatorial rules can be both strategyproof and onto. The problem of designing
mechanisms with desirable properties for multiple facility location games has also been
considered (see e.g. [15,4,9]). This line of work however does not address the issue of
designing strategyproof mechanisms that approximate the optimal social cost.

Our work fits in the framework of approximate mechanism design without money, re-
cently initiated by Procaccia and Tennenholtz [19]. They suggested that for optimization
problems, such as 2-Facility Location on the line and 1-Facility Location on non-tree
metrics, where computing the optimal solution is not strategyproof, approximation can
circumvent impossibility results and yield strategyproof mechanisms that do not resort
to monetary transfers. Procaccia and Tennenholtz [19] applied this approach to sev-
eral location problems on the real line, and obtained strategyproof approximate mecha-
nisms and lower bounds on the best approximation ratio achievable by a strategyproof
mechanism. For the 2-Facility Location game on the line, they presented a determinis-
tic (n − 1)-approximate mechanism, where n is the number of agents, proved a lower
bound of 3/2 on the approximation ratio of any deterministic strategyproof mechanism,
and conjectured that the lower bound for deterministic mechanisms is Ω(n).

Subsequently, Lu, Wang, and Zhou [11] improved the lower bound for deterministic
mechanisms to 2, established a lower bound of 1.045 for randomized mechanisms, and
presented a simple randomizedn/2-approximate mechanism. For locating two facilities
on the line, Lu, Sun, Wang, and Zhu [10] improved the lower bound for deterministic
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mechanisms to (n−1)/2, thus settling the conjecture of [19]. Moreover, they presented
a deterministic (n − 1)-approximate mechanism for locating two facilities on the cir-
cle, and proved that a natural randomized mechanism, the Proportional Mechanism,
is strategyproof and achieves an approximation ratio of 4 for 2-Facility Location on
any metric space. Unfortunately, Lu et al. observed that the Proportional Mechanism is
not strategyproof for more than two facilities. For 1-Facility Location, Alon, Feldman,
Procaccia, and Tennenholtz [1] gave an almost complete characterization of the approx-
imation ratios achievable by randomized and deterministic strategyproof mechanisms.

Following a more general agenda, McSherry and Talwar [12] suggested the use of
differentially private algorithms as almost-strategyproof approximate mechanisms. Any
agent has a limited influence on the outcome of differentially private algorithm, and
thus a limited incentive to lie. McSherry and Talwar presented a general (randomized
exponential-time) differentially private mechanism that approximates the optimal so-
cial cost within an additive logarithmic term. Subsequently, Gupta et al. [7] presented
computationally efficient differentially private algorithms for several combinatorial op-
timization problems, including (k-)Facility Location.

Building on [12], Nissim, Smorodinsky, and Tennenholtz [18] developed the only
known general technique for the design of strategyproof approximate mechanisms with-
out money. Nissim et al. consider imposing mechanisms, namely mechanisms able to
restrict how agents exploit their outcome. Restricting the set of allowable post-actions
for the agents, the mechanism can penalize liars. For Facility Location games in particu-
lar, an imposing mechanism requires that an agent should connect to the facility nearest
to her reported location, thus increasing her connection cost if she lies. Despite being
stronger, imposing mechanisms do not circumvent the lower bounds of [11]. Nissim
et al. combined the differentially private mechanism of [12] with an imposing mecha-
nism that penalizes lying agents, and obtained a general imposing strategyproof mech-
anism. As a by-product, Nissim et al. obtained a randomized imposing mechanism for
k-Facility Location with a running time exponential in k. The mechanism approximates
the optimal average connection cost, namely the optimal connection cost divided by n,
within an additive term of roughly 1/n1/3. Even though the error term is diminishing
as n grows, it may happen that the optimal average cost decreases much faster. In fact,
for the class of instances in [11, Theorem 3], the optimal average cost is 1/n and the
mechanism’s error is at least 1/n1/3. Thus, the additive approximation guarantee of
[18] does not imply any constant approximation ratio for k-Facility Location.

Contribution. Our work is motivated by the absence of any positive results on the ap-
proximability of multiple facility location games by non-imposing mechanisms, and by
the recent striking result of [18] on their approximability by imposing mechanisms. In
fact, the only work prior to ours that addresses approximate mechanism design for lo-
cation problems with more than two facilities is [18]. Throughout this work, we restrict
our attention to computationally efficient strategyproof mechanisms without money1

and to the standard multiplicative notion of approximation. We suggest two orthogonal

1 We consider the problems of Facility Location and k-Facility Location, with k being part of
the input, which are NP-hard. Thus one cannot directly apply VCG payments (see e.g. [17,
Chapter 9]) and obtain a computationally efficient strategyproof mechanism that minimizes
the social cost.
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ways of relaxing approximate mechanism design for the k-Facility Location game, and
show that both lead to strong positive results.

We mostly consider a natural class of imposing mechanisms, which we call winner-
imposing mechanisms. Such a mechanism operates by allocating facilities to the agents.
If an agent is allocated a facility, the facility is placed to her reported location, and the
agent should connect to it. Agents not allocated a facility connect to the facility closest
to their ideal location. Thus a winner-imposing mechanism penalizes a lying agent only
if she succeeds in manipulating the mechanism. Moreover, the “penalty” a lying agent
receives equals the distance of her ideal location to her misreported location.

In contrast to the observation of [10] that the Proportional Mechanism is not strat-
egyproof for more than two facilities, we prove that its winner-imposing version is
strategyproof for any number of facilities (cf. Lemma 1). Establishing that its approx-
imation ratio is at most 4k (cf. Lemma 2), we obtain a randomized winner-imposing
strategyproof 4k-approximate mechanism for k-Facility Location, for any k.

Next we consider the Lagrangian relaxation of the k-Facility Location game, namely
the Facility Location game with a uniform facility opening cost, instead of a hard con-
straint on the number of facilities. In fact, considering the Facility Location problem as
a relaxation of k-Facility Location, a.k.a. k-Median, has been a standard and quite suc-
cessful approach in the fields of Operations Research (see e.g. [14]) and Approximation
Algorithms (see e.g. [6,8]).

For the Facility Location game, we first show that the winner-imposing version
of Meyerson’s randomized algorithm for Facility Location [13] is strategyproof (cf.
Theorem 2). Combining this with [13, Theorem 2.1], we obtain a randomized winner-
imposing strategyproof 8-approximate mechanism for the Facility Location game.

Moreover, we present a deterministic non-imposing mechanism for the Facility Lo-
cation game on the line. The mechanism is based on a hierarchical partitioning of the
line, and is motivated by the online algorithm for Facility Location on the plane by
Anagnostopoulos, Bent, Upfal, and van Hentenryck [2]. We prove that the mechanism
is group strategyproof (cf. Lemma 4) and O(log n)-approximate (cf. Lemma 5). No-
tably, its approximation ratio is exponentially better than the lower bound of [10, The-
orem 3.7] on the best ratio achievable by deterministic strategyproof mechanisms for
the 2-Facility Location game on the line. Thus, our results demonstrate that the Facility
Location game allows for some significantly (even exponentially) better approximation
guarantees (by non-imposing strategyproof mechanisms) than the k-Facility Location
game, and may suggest a potential connection between approximate mechanism design
without money and online optimization.

We also consider (randomized) oblivious winner-imposing mechanisms, and derive a
natural condition for them to be strategyproof. A mechanism is oblivious if conditional
on the event that an agent is not allocated a facility, her presence has no impact on
the mechanism’s outcome. The Proportional Mechanism and Meyerson’s algorithm are
oblivious. We show that an oblivious winner-imposing mechanism for the (k-)Facility
Location game on a continuous metric space is strategyproof iff it is locally strate-
gyproof, i.e., no agent can benefit by reporting a location arbitrarily close to her true
location (cf. Lemma 3). On the other hand, we note that local strategyproofness does
not imply strategyproofness for the non-imposing version of Meyerson’s algorithm.
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2 Model, Definitions, and Notation

For an integerm ≥ 1, we let [m] = {1, . . . ,m}. For an event E in a sample space, we
let IPr[E] be the probability of E happening. For a random variableX , we let IE[X ] be
the expectation ofX .

We assume an underlying metric space (M,d), where d : M ×M �→ IR is the dis-
tance function, which is non-negative, symmetric, and satisfies the triangle inequality.
For x ∈M and a non-emptyM ′ ⊆ M , we let d(x,M ′) = inf{d(x, y) : y ∈M ′}. For
a location x ∈ M and a positive real r, we let Ball(x, r) = {y ∈ M : d(x, y) ≤ r}.
A metric space (M,d) is continuous if for any x, y ∈ M with d(x, y) ≤ 2r, there is a
z ∈ Ball(x, r) ∩ Ball(y, r) such that d(x, y) = d(x, z) + d(z, y).

For a tuple x = (x1, . . . , xn), we let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the tu-
ple without xi. For a non-empty S ⊂ [n], we let xS = (xi)i∈S and x−S = (xi)i∈[n]\S .
We write x = (xi,x−i) and x = (xS ,x−S).

Mechanisms. Let N = {1, . . . , n} be a set of agents. Each agent i ∈ N has a location
xi ∈ M , which is i’s private information. Next we refer to x = (x1, . . . , xn) as the
location profile. A deterministic mechanism F maps a location profile x to a tuple
of non-empty sets (C,C1, . . . Cn), where C ⊆ M is the facility set of F and each
Ci ⊆ C contains the facilities where agent i should connect. We write F (x) to denote
the facility set of F and F i(x) to denote the facility subset of each agent i. For the
k-Facility Location game, |F (x)| = k, while for the Facility Location game, |F (x)|
can be any positive number. A randomized mechanism is a probability distribution over
deterministic mechanisms.

A mechanism F is non-imposing if for all location profiles x and all agents i,
F i(x) = F (x), and imposing otherwise. We only consider imposing mechanisms
where each agent i can connect to the facility in F (x) closest to her reported location,
namely where {z ∈ F (x) : d(xi, z) = d(xi, F (x))} ⊆ F i(x) for all i. A mecha-
nism F is said to allocate facilities to the agents2 if F (x) ⊆ {x1, . . . , xn}. A mech-
anism F that allocates facilities to the agents is winner-imposing if for every agent i,
F i(x) = {xi} if xi ∈ F (x), and F i(x) = F (x) otherwise. For a winner-imposing
mechanism F and some location profile x, we write either that F allocates a facility
to agent i or that F places a facility at xi to denote that F adds xi in its facility set
F (x). Moreover, we write that F connects agent i to the facility at xi to denote that
F i(x) = {xi}, as a result of xi ∈ F (x).

Individual and Social Cost. Given a deterministic mechanism F and a location profile
x, the cost of agent i is cost[xi, F (x)] = d(xi, F

i(x)). If F is a randomized mecha-
nism, the expected cost of agent i is cost[xi, F (x)] = IECi∼F i(x)[d(xi, C

i)].
The social cost for the k-Facility Location game of a deterministic mechanism F

for a location profile x is SCk[F (x)] =
∑n

i=1 d(xi, F (x)), subject to the constraint
that |F (x)| = k. For the Facility Location game, there is a uniform facility opening

2 To simplify and unify the presentation, we implicitly assume here that all locations xi are
distinct. This assumption does not affect the generality of our model and our results, and can
be removed by letting the mechanism map each location profile to a tuple (C, C1, . . . Cn),
with C ⊆ N and Ci ⊆ C, Ci 
= ∅, and place a facility at xi for each i ∈ C.
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cost f > 0, and the social cost of a deterministic mechanism F for a location profile
x is SC[F (x)] = f |F (x)| +

∑n
i=1 d(xi, F (x)). Scaling the distances appropriately,

we assume that the facility opening cost is equal to 1. The expected social cost of a
randomized mechanism F for a location profile x is defined by taking the expectation
of SCk[F (x)] (resp. SC[F (x)]) over the distribution of F (x).

A (randomized) mechanism F achieves an approximation ratio of ρ ≥ 1, if for
all location profiles x, the (resp. expected) social cost of F (x) is at most ρ times the
optimal social cost for x.

Strategyproofness and Group Strategyproofness. A mechanism F is strategyproof
if for any location profile x, any agent i, and any location y, cost[xi, F (x)] ≤
cost[xi, F (y,x−i)]. A mechanism F is group strategyproof if for any location pro-
file x, any non-empty set of agents S, and any location profile yS for them, there exists
some agent i ∈ S such that cost[xi, F (x)] ≤ cost[xi, F (yS ,x−S)].

3 The Winner-Imposing Proportional Mechanism

We consider the winner-imposing version of the Proportional Mechanism [10] for the
k-Facility Location game. Given a location profile x = (xi)i∈N , the Winner-Imposing
Proportional Mechanism, or WIProp in short, works in k rounds, fixing the location of
one facility in each round. For each � = 1, . . . , k, let C� be the set of the first � facilities
of WIProp. Initially, C0 = ∅. WIProp proceeds as follows:

1st Round: WIProp selects i1 uniformly at random fromN , places the first facility at
xi1 , connects agent i1 to it, and lets C1 = {xi1}.

�-th Round, � = 2, . . . , k : WIProp selects i� ∈ N with probability
d(xi�

,C�−1)∑
i∈N d(xi,C�−1)

,

places the �-th facility at xi�
, connects agent i� to it, and lets C� = C�−1 ∪ {xi�

}.

The output of the mechanism isCk, and every agent not allocated a facility is connected
to the facility in Ck closest to her true location. The proof of the following theorem
follows from Lemma 1 and Lemma 2 below.

Theorem 1. WIProp is a strategyproof 4k-approximation mechanism for the k-
Facility Location game on any metric space.

Strategyproofness. Even though the non-imposing version of the Proportional Mecha-
nism is not strategyproof for k ≥ 3 [10], WIProp is strategyproof for any k.

Lemma 1. For any k ≥ 1, WIProp is a strategyproof mechanism for the k-Facility
Location game.

Proof. For each � = 0, 1, . . . , k, we let cost[xi, F (y,x−i)|C�] be the expected connec-
tion cost of an agent i at the end of WIProp, given that i reports location y and that the
facility set of WIProp at the end of round � is C�. For � = k, cost[xi, F (y,x−i)|Ck] =
d(xi, Ck). For each � = 1, . . . , k− 1, with probability proportional to d(y, C�) the next
facility of WIProp is placed at i’s reported location, in which case i is connected to y
and incurs a connection cost of d(xi, y), while for each agent j 
= i, with probability
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proportional to d(xj , C�) the next facility of WIProp is placed at xj , in which case the
expected connection cost of i is cost[xi, F (y,x−i)|C� ∪ {xj}]. Therefore:

cost[xi, F (y,x−i)|C�] =

=
d(xi, y) d(y, C�) +

∑
j 
=i d(xj , C�) cost[xi, F (y,x−i)|C� ∪ {xj}]

d(y, C�) +
∑

j 
=i d(xj , C�)
(1)

Similarly, for � = 0, the expected connection cost of agent i is:

cost[xi, F (y,x−i)] =
d(xi, y) +

∑
j 
=i cost[xi, F (y,x−i)|{xj}]

n
(2)

By induction on �, we show that for any y, any � = 0, 1, . . . , k, and any C�,

cost[xi, F (y,x−i)|C�] ≥ cost[xi, F (x)|C�] (3)

Thus agent i has no incentive to misreport her location, which implies the lemma.
For the basis, we observe that (3) holds for � = k. Indeed, if i’s location is not in

Ck, her connection cost is d(xi, Ck) and does not depend on her reported location y,
while if i’s location is in Ck her connection cost is d(xi, y) ≥ d(xi, xi). We inductively
assume that (3) holds for �+ 1 and any facility set C�+1, and show that (3) holds for �
and any facility set C�. If � ≥ 1, we use (1) and obtain that:

cost[xi, F (y,x−i)|C�] ≥

≥
d(xi, y) d(y, C�) +

∑
j 
=i d(xj , C�) cost[xi, F (x)|C� ∪ {xj}]

d(y, C�) +
∑

j 
=i d(xj , C�)

=
d(xi, y) d(y, C�) +

(
d(xi, C�) +

∑
j 
=i d(xj , C�)

)
cost[xi, F (x)|C�]

d(y, C�) +
∑

j 
=i d(xj , C�)
(4)

The inequality follows from (1) and the induction hypothesis. For the equality, we apply
(1) with y = xi. If d(xi, C�) ≥ d(y, C�), (4) implies that cost[xi, F (y,x−i)|C�] ≥
cost[xi, F (x)|C�]. Otherwise, we continue from (4) and obtain that:

cost[xi, F (y,x−i)|C�] ≥
d(xi, y) + d(xi, C�) +

∑
j 
=i d(xj , C�)

d(y, C�) +
∑

j 
=i d(xj , C�)
cost[xi, F (x)|C�]

≥ cost[xi, F (x)|C�]

For the first inequality, we use that d(y, C�) > d(xi, C�) ≥ cost[xi, F (x)|C�]. For the
second inequality, we use that d(xi, y) + d(xi, C�) ≥ d(y, C�).

If � = 0, using (2) and the induction hypothesis, we obtain that:

cost[xi, F (y,x−i)] ≥
1
n

∑
j 
=i

cost[xi, F (x)|{xj}] = cost[xi, F (x)] (5)

Thus we have established (3) for any location y, any � = 0, 1, . . . , k, and any C�. ��
Approximation Ratio. To establish the approximation ratio, we extend the ideas of
[10, Theorem 4.2] to the case where k ≥ 3.

Lemma 2. For any k ≥ 1, WIProp achieves an approximation ratio of at most 4k for
the k-Facility Location game.
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4 A Randomized Mechanism for Facility Location

Next we consider the winner-imposing version of Meyerson’s randomized algorithm
for Facility Location [13], and show that it is strategyproof. Meyerson’s algorithm, or
OFL in short, processes the agents one-by-one in a random order, and places a facility
at the location of each agent with probability equal to her distance to the nearest facility
divided by the facility opening cost (which we assume to be 1). For simplicity, we
assume that the agents are indexed according to the random permutation chosen by
OFL. Also we let Ci denote the facility set of OFL just after agent i is processed.

Formally, given the locations x = (xi)i∈N of a randomly permuted set of agents,
the (winner-imposing) OFL mechanism first places a facility at x1, connects agent 1 to
it, and lets C1 = {x1}. Then, for each i = 2, . . . , n, with probability d(xi, Ci−1), OFL
opens a facility at xi, connects agent i to it, and letsCi = Ci−1∪{xi}. Otherwise, OFL
lets Ci = Ci−1. The output of the mechanism is Cn, and every agent not allocated a
facility is connected to the facility in Cn closest to her true location.

Theorem 2. The winner-imposing version of OFL is a strategyproof 8-approximation
mechanism for the Facility Location game on any metric space.

Proof. The approximation ratio follows from [13, Theorem 2.1]. Next, we show that
the winner-imposing version of OFL is strategyproof for any permutation of agents.

Let i be any agent, and let xi be i’s true location. If i = 1 or d(xi, Ci−1) ≥ 1, OFL
places a facility at xi with certainty, so i has no incentive to lie about her location. So
we restrict our attention to the case where d(xi, Ci−1) < 1.

Let cost[xi, F (y, xi+1, . . . , xn)|C] be the expected connection cost of agent i at
the end of OFL, given that i reports location y, and that just before i’s location is
processed, the set of facilities is C. Similarly, let cost[xi, F (xi+1, . . . , xn)|C] be the
expected connection cost of agent i at the end of OFL, given that just after i’s location
is processed, the set of facilities is C. To establish the strategyproofness of OFL, we
have to show that for any agent i located at xi, for any location y, and for any Ci−1,

cost[xi, F (xi, xi+1, . . . , xn)|Ci−1] ≤ cost[xi, F (y, xi+1, . . . , xn)|Ci−1] (6)

Calculating i’s expected connection cost for xi and y, we obtain that (6) holds iff

(d(y, Ci−1)− d(xi, Ci−1)) cost[xi, F (xi+1, . . . , xn)|Ci−1] ≤ d(xi, y) d(y, Ci−1)

If d(y, Ci−1) ≤ d(xi, Ci−1), (6) holds because the lhs of the inequality above becomes
non-positive. Otherwise, (6) holds because d(y, Ci−1) − d(xi, Ci−1) ≤ d(xi, y) and
cost[xi, F (xi+1, . . . , xn)|Ci−1] ≤ d(xi, Ci−1) < d(y, Ci−1). ��
Remark. The argument above fails to establish that the non-imposing version of OFL is
strategyproof. This is demonstrated by a simple instance with n agents on the real line.
The first agent is located at −1/2, the second at 0, the third at 1/2− ε, for some small
ε > 0, and the remaining n− 3 agents are located at 0. For appropriately chosen n and
ε and the particular permutation, the second agent can improve her expected connection
cost in the non-imposing version of OFL by reporting 1/2. On the other hand, no agent
has an incentive to lie if the expectation of their connection cost is also taken over all
random agents’ permutations. Thus, our example does not exclude the possibility that
the non-imposing version of OFL is strategyproof for the Facility Location game. ��
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5 Oblivious Winner-Imposing Mechanisms

Next we consider the class of oblivious winner-imposing mechanisms for (k-)Facility
Location, and show that they are strategyproof iff they are locally strategyproof.

A randomized mechanism F that allocates facilities to the agents is oblivious if for
any location profile x = (xi)i∈N , any agent i, and any location y (y may be xi),

cost[xi, F (y,x−i)|i 
∈ F (y,x−i)] = d(xi, F (x−i)) ,

where d(xi, F (x−i)) is the expected distance of xi to the nearest facility in F (x−i),
i.e., F ’s outcome on the locations of all agents other than i. Namely, F is oblivious if
conditional on the event that an agent i is not allocated a facility, her presence has no
impact on F ’s outcome. WIProp and OFL are oblivious mechanisms.

A mechanism F is locally strategyproof for the (k-)Facility Location game if there
exists an r > 0, such that for any location profile x = (xi)i∈N , any agent i, and any
y ∈ Ball(xi, r), cost[xi, F (x)] ≤ cost[xi, F (y,x−i)].

Lemma 3. LetF be an oblivious winner-imposing mechanism for (k-)Facility Location
on a continuous metric space. Then F is locally strategyproof iff it is strategyproof.

Proof. Clearly, any strategyproof mechanism is locally strategyproof. For the other di-
rection, let x = (xi)i∈N be any location profile. For any agent i and any location x,
we let p(x) = IPr[i ∈ F (x,x−i)] be the probability that i is allocated a facility by
F if she reports location x. Similarly to the proof of Theorem 2, we observe that F is
strategyproof iff for any agent i with true location xi and any location y,

p(y) (d(xi, F (x−i))− d(xi, y)) ≤ p(xi) d(xi, F (x−i)) (7)

We show that if F is locally strategyproof for some r > 0, (7) holds for any location y.
Let i be any agent. If r ≥ d(xi, F (x−i)), (7) holds for any location y, since any

y 
∈ Ball(xi, r) makes its lhs non-positive. Otherwise, we show that (7) holds for any
location y ∈ Ball(xi, 2r). Let y ∈ Ball(xi, 2r) \ Ball(xi, r). Since the metric space is
continuous, there is a z ∈ Ball(xi, r) ∩ Ball(y, r) with d(xi, y) = d(xi, z) + d(z, y).
If d(xi, y) ≥ d(xi, F (x−i)), (7) holds because its lhs is non-positive. Otherwise,

p(y) ≤ p(z)
d(z, F (x−i))

d(z, F (x−i))− d(z, y)
≤ p(z) d(xi, F (x−i))− d(xi, z)

d(xi, F (x−i))− d(z, y)− d(xi, z)

= p(z)
d(xi, F (x−i))− d(xi, z)
d(xi, F (x−i))− d(xi, y)

≤ p(xi)
d(xi, F (x−i))

d(xi, F (x−i))− d(xi, y)

For the first inequality, we use that F is locally strategyproof for r, and apply (7)
for locations z, y. For the first two inequalities, since d(xi, F (x−i)) > d(xi, y), we
have that d(z, F (x−i)) − d(z, y) > 0, that d(xi, F (x−i)) − d(xi, z) > 0, and that
d(xi, F (x−i))− d(z, y)− d(xi, z) > 0. For the last inequality, we use that F is locally
strategyproof for r, and apply (7) for locations xi, z. ��
Remark. OFL is locally strategyproof for any permutation of agents and r equal to the
minimum distance separating two different locations. On the other hand, we presented
an instance where for certain permutations, the non-imposing version of OFL allows
an agent to improve her expected cost by misreporting her location. Thus local strate-
gyproofness does not imply strategyproofness for non-imposing OFL. ��
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6 A Deterministic Mechanism for Facility Location on the Line

We present a deterministic non-imposing group strategyproof O(log n)-approximate
mechanism for Facility Location on the real line. To simplify the presentation, we as-
sume that the facility opening cost is 1, and that the agents are located in IR+ = [0,∞).

The Line Partitioning mechanism, or LPart in short, is motivated by the online al-
gorithm of [2] for Facility Location on the plane. LPart assumes a hierarchical parti-
tioning of [0,∞) with at most 1 + log2 n levels. The partitioning at level 0 consists of
intervals of length 1. Namely, for p = 0, 1, . . ., the p-th level-0 interval is [p, p + 1).
Each level-� interval [p 2−�, (p+ 1)2−�), � = 0, 1, . . . , �log2 n� − 1, is partitioned into
two disjoint level-(�+ 1) intervals of length 2−(�+1), namely [p 2−�, p 2−� + 2−(�+1))
and [p 2−� + 2−(�+1), (p + 1) 2−�). A level-0 interval is active if it includes the (re-
ported) location of at least one agent. A level-� interval, � ≥ 1, is active if it includes
the locations of at least 2�+1 agents, and inactive otherwise. Intuitively, an interval is
active if it includes so many agents that the optimal solution opens a facility nearby.

LPart opens three facilities, two at the endpoints and one at the midpoint, of each
level-0 active interval, and one facility at the midpoint of each level-� active interval,
for each � ≥ 1. In particular, for each level-0 active interval [p, p + 1), LPart opens
three facilities at p, at p+ 1

2 , and at p+1. For each � ≥ 1 and each level-� active interval
[p 2−�, (p+ 1)2−�), LPart opens a facility at p 2−� + 2−(�+1). LPart is non-imposing,
so each agent is connected to the open facility closest to her true location.

Theorem 3. LPart is a group strategyproof O(log n)-approximate mechanism for the
Facility Location game on the real line.

Proof. We start with some observations regarding the structure of the solution produced
by LPart. We observe that if an interval q is active, any interval containing q is active,
while if an interval q is inactive, any interval included in q is inactive as well. Moreover,
all level-�log2 n� intervals are inactive, since each of them contains less than 2�log2 n�+1

agents. So each agent is included in at least one active and at least one inactive interval.
In the following, each agent i is associated with the maximal (i.e., that of the smallest
level) inactive interval, denoted qi, that contains her true location. The maximal inactive
intervals qi, qj of two agents i, j either coincide with each other or are disjoint.

A simple induction shows that each active interval q has three open facilities, two at
its endpoints and one at its midpoint. Moreover, if an active level-� interval contains an
inactive level-(�+1) subinterval q′, q′ has two open facilities at its endpoints. Therefore,
the connection cost of each agent i is equal to the distance of her true location to the
nearest endpoint of her maximal inactive interval qi. Furthermore, i’s connection cost
is at least as large as the distance of her true location to the nearest endpoint of any
inactive interval containing her true location.

Group Strategyproofness. The above properties of LPart immediately imply that:

Lemma 4. LPart is group strategyproof.

Proof. Let S ⊆ N , S 
= ∅, be any coalition of agents who misreport their locations so
as to improve their connection cost, and let xS = (xi)i∈S and yS = (yi)i∈S be the
profiles with their true and their misreported locations respectively. If for some agent i,



244 D. Fotakis and C. Tzamos

i’s maximal inactive interval qi contains the same number of agents in LPart(xS ,x−S)
and in LPart(yS ,x−S), qi is inactive in LPart(yS ,x−S) as well, and i’s connection
cost does not improve. On the other hand, if qi contains more agents in LPart(yS ,x−S)
than in LPart(xS ,x−S), there are some agents in S whose maximal inactive interval is
disjoint to qi in LPart(xS ,x−S) and is included in qi in LPart(yS ,x−S). Therefore,
there is some agent j ∈ S whose maximal inactive interval qj contains less agents in
LPart(yS ,x−S) than in LPart(xS ,x−S). Thus qj is inactive in LPart(yS ,x−S) as
well, and j’s connection cost does not improve due to the deviation of S. ��

Approximation Ratio. We proceed along the lines of [2, Theorem 1]. We first show
that the optimal solution has a facility close to each active interval.

Proposition 1. Let q = [p 2−�, (p+1)2−�) be an active level-� interval, for some � ≥ 0.
Then, the optimal solution has a facility in [(p− 1)2−�, (p+ 2)2−�).

Proof. Let ql = [(p − 1)2−�, p 2−�) be the interval next to q on the left, let qr =
[(p+ 1)2−�, (p+ 2)2−�) be the interval next to q on the right, and let nq be the number
of agents in q. For sake of contradiction, we assume that the optimal solution does not
have a facility in ql ∪ q ∪ qr. Then the connection cost of the agents in q is greater than
nq2−�. If � = 0, placing an optimal facility at the location of some agent in q costs 1
and decreases the connection cost of the agents in q to at most nq − 1. If � ≥ 1, placing
an optimal facility at the midpoint of q decreases the connection cost of the agents in q
to at most nq2−(�+1). Since q is active and nq ≥ 2�+1 (nq ≥ 1 for � = 0), the total cost
in the later case is less than the connection cost of the agents in q to a facility outside
ql ∪ q ∪ qr, a contradiction. ��

Lemma 5. LPart has an approximation ratio of O(log n).

Proof. Let k be the number of facilities in the optimal solution. By Proposition 1, there
are at most 3 active intervals per optimal facility at each level � = 0, 1, . . . , �logn� −
1. The total facility cost for the three (neighboring) active level-0 intervals is 7, and
the facility cost for each active level-� interval, � ≥ 1, is 1. Therefore, the number
of active intervals is at most 3k log2 n, and the total facility cost of LPart is at most
4k + 3k log2 n.

To bound the connection cost of LPart, we consider the set of maximal inactive
intervals that include the location of at least one agent (i.e., they are non-empty). This
accounts for the connection cost of all agents, since each agent i is associated with her
maximal inactive interval qi. Each maximal inactive interval q at level �, � ≥ 1, contains
less than 2�+1 agents and has two facilities at its endpoints. Thus the total connection
cost for the agents in q is at most 2�+12−�/2 = 1. Furthermore, q is included in some
active level-(� − 1) interval. Thus, the total number of non-empty maximal inactive
intervals, and thus the total connection cost of LPart, is at most 6k log2 n. Overall, the
total cost of LPart is at most 4k+ 9k log2 n, i.e. O(log2 n) times the optimal cost. ��

Acknowledgements: We wish to thank Angelina Vidali for helpful discussions and for
bringing [18] to our attention.



Winner-Imposing Strategyproof Mechanisms for Multiple Facility Location Games 245

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approximation of
the minimax on networks. Mathematics of Operations Research (to appear, 2010)

2. Anagnostopoulos, A., Bent, R., Upfal, E., van Hentenryck, P.: A simple and deterministic
competitive algorithm for online facility location. Information and Computation 194, 175–
202 (2004)
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Abstract. Constrained submodular maximization problems have long been stud-
ied, most recently in the context of auctions and computational advertising, with
near-optimal results known under a variety of constraints when the submodular
function is monotone. In this paper, we give constant approximation algorithms
for the non-monotone case that work for p-independence systems (which gener-
alize constraints given by the intersection of p matroids that had been studied
previously), where the running time is poly(n, p). Our algorithms and analyses
are simple, and essentially reduce non-monotone maximization to multiple runs
of the greedy algorithm previously used in the monotone case.

We extend these ideas to give a simple greedy-based constant factor algo-
rithms for non-monotone submodular maximization subject to a knapsack con-
straint, and for (online) secretary setting (where elements arrive one at a time
in random order and the algorithm must make irrevocable decisions) subject to
uniform matroid or a partition matroid constraint. Finally, we give an O(log k)

approximation in the secretary setting subject to a general matroid constraint of
rank k.

1 Introduction

We present algorithms for maximizing (not necessarily monotone) non-negative sub-
modular functions satisfying f(∅) = 0 under a variety of constraints considered earlier
in the literature. Lee et al. [28,29] gave the first algorithms for these problems via local-
search algorithms: in this paper, we consider greedy approaches that have been suc-
cessful for monotone submodular maximization, and show how these algorithms can be
adapted very simply to non-monotone maximization as well. Using this idea, we show
the following results:

– We give an O(p)-approximation for maximizing submodular functions subject to a
p-independence system. This extends the result of Lee et al. [28,29] which applied
to constraints given by the intersection of p matroids, where p was a constant. (In-
tersections of p matroids give p-indep. systems, but the converse is not true.) Our
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greedy-based algorithm has a run-time polynomial in p, and hence gives the first
polynomial-time algorithms for non-constant values of p.

– We give a constant-factor approximation for maximizing submodular functions
subject to a knapsack constraint. This greedy-based algorithm gives an alternate
approach to solve this problem; Lee et al. [28] gave LP-rounding-based algorithms
that achieved a (5 + ε)-approximation algorithm for constraints given by the inter-
section of p knapsack constraints, where p is a constant.

Armed with simpler greedy algorithms for nonmonotone submodular maximization,
we are able to perform constrained nonmonotone submodular maximization in several
special cases in the secretary setting as well: when items arrive online in random order,
and the algorithm must make irrevocable decisions as they arrive.

– We give an O(1)-approximation for maximizing submodular functions subject to a
cardinality constraint and subject to a partition matroid. (Using a reduction of [4],
the latter implies O(1)-approximations to e.g., graphical matroids.) Our secretary
algorithms are simple and efficient.

– We give an O(log k)-approximation for maximizing submodular functions subject
to an arbitrary rank k matroid constraint. This matches the known bound for the
matroid secretary problem, in which the function to be maximized is simply linear.

No prior results were known for submodular maximization in the secretary setting, even
for monotone submodular maximization; there is some independent work, see §1.3 for
details.

Compared to previous offline results, we trade off small constant factors in our approx-
imation ratios of our algorithms for exponential improvements in run time: maximizing
nonmonotone submodular functions subject to (constant) p ≥ 2 matroid constraints cur-
rently has a ( p2

p−1 +ε) approximation due to a paper of Lee, Sviridenko and Vondrák [29],
using an algorithm with run-time exponential in p. For p = 1 the best result is a 3.23-
approximation by Vondrák [34]. In contrast, our algorithms have run time only linear in
p, but our approximation factors are worse by constant factors for the small values of p
where previous results exist. We have not tried to optimize our constants, but it seems
likely that matching, or improving on the previous results for constant p will need more
than just choosing the parameters carefully. We leave such improvements as an open
problem.

1.1 Submodular Maximization and Secretary Problems in an Economic Context

Submodular maximization and secretary problems have both been widely studied in
their economic contexts. The problem of selecting a subset of people in a social net-
work to maximize their influence in a viral marketing campaign can be modeled as a
constrained submodular maximization problem [21,30]. When costs are introduced, the
influence minus the cost gives us non-monotone submodular maximization problems;
prior to this work, online algorithms for non-monotone submodular maximization prob-
lems were not known. Asadpour et al. studied the problem of adaptive stochastic (mono-
tone) submodular maximization with applications to budgeting and sensor placement
[2], and Agrawal et al. showed that the correlation gap of submodular functions was
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bounded by a constant using an elegant cost-sharing argument, and related this result to
social welfare maximizing auctions [1]. Finally, secretary problems, in which elements
arriving in random order must be selected so as to maximize some constrained objective
function have well-known connections to online auctions [23,5,3,18]. Our simpler of-
fline algorithms allow us to generalize these results to give the first secretary algorithms
capable of handling a non-monotone submodular objective function.

1.2 Our Main Ideas

At a high level, the simple yet crucial observation for the offline results is this: many of
the previous algorithms and proofs for constrained monotone submodular maximization
can be adapted to show that the set S produced by them satisfies f(S) ≥ βf(S ∪ C∗),
for some 0 < β ≤ 1, and C∗ being an optimal solution. In the monotone case, the
right hand side is at least f(C∗) = OPT and we are done. In the non-monotone case,
we cannot do this. However, we observe that if f(S ∩ C∗) is a reasonable fraction of
OPT, then (approximately) finding the most valuable set within S would give us a
large value—and since we work with constraints that are downwards closed, finding
such a set is just unconstrained maximization on f(·) restricted to S, for which Feige
et al. [13] give good algorithms! On the other hand, if f(S ∩ C∗) ≤ εOPT and f(S)
is also too small, then one can show that deleting the elements in S and running the
procedure again to find another set S′ ⊆ Ω \S with f(S′) ≥ βf(S′ ∩ (C∗ \S)) would
guarantee a good solution! Details for the specific problems appear in the following sec-
tions; we first consider the simplest cardinality constraint case in Section 2 to illustrate
the general idea, and then give more general results in Sections 3.1 and 3.2.

For the secretary case where the elements arrive in random order, algorithms were
not known for the monotone case either—the main complication being that we can-
not run a greedy algorithm (since the elements are arriving randomly), and moreover
the value of an incoming element depends on the previously chosen set of elements.
Furthermore, to extend the results to the non-monotone case, one needs to avoid the
local-search algorithms (which, in fact, motivated the above results), since these algo-
rithms necessarily implement multiple passes over the input, while the secretary model
only allows a single pass over it. The details on all these are given in Section 4.

Due to space, this manuscript is missing many of the details and even some of the
exposition. We would recommend the reader to the full version of this paper.

1.3 Related Work

Monotone Submodular Maximization. The (offline) monotone submodular optimization
problem has been long studied: Fisher, Nemhauser, and Wolsey [31,15] showed that the
greedy and local-search algorithms give a (e/e − 1)-approximation with cardinality
constraints, and a (p+1)-approximation under p matroid constraints. In another line of
work, [20,25,19] showed that the greedy algorithm is a p-approximation for maximiz-
ing a modular (i.e., additive) function subject to a p-independence system. This proof
extends to show a (p+1)-approximation for monotone submodular functions under the
same constraints (see, e.g., [8]). A long standing open problem was to improve on these
results; nothing better than a 2-approximation was known even for monotone maxi-
mization subject to a single partition matroid constraint. Calinescu et al. [7] showed
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how to maximize monotone submodular functions representable as weighted matroid
rank functions subject to any matroid with an approximation ratio of (e/e−1), and soon
thereafter, Vondrák extended this result to all submodular functions [33]; these highly
influential results appear jointly in [8]. Subsequently, Lee et al. [29] give algorithms
that beat the (p + 1)-bound for p matroid constraints with p ≥ 2 to get a ( p2

p−1 + ε)-
approximation.

Knapsack constraints. Sviridenko [32] extended results of Wolsey [35] and Khuller et
al. [22] to show that a greedy-like algorithm with partial enumeration gives an (e/e−1)-
approximation to monotone submodular maximization subject to a knapsack constraint.
Kulik et al. [27] showed that one could get essentially the same approximation subject
to a constant number of knapsack constraints. Lee et al. [28] give a 5-approximation for
the same problem in the non-monotone case.

Mixed Matroid-Knapsack Constraints. Chekuri et al. [10] give strong concentration re-
sults for dependent randomized rounding with many applications; one of these appli-
cations is a ((e/e − 1) − ε)-approximation for monotone maximization with respect
to a matroid and any constant number of knapsack constraints. [17, Section F.1] ex-
tends ideas from [9] to give polynomial-time algorithms with respect to non-monotone
submodular maximization with respect to a p-system and q knapsacks: these algorithms
achieve an p+q+O(1)-approximation for constant q (since the running time is npoly(q)),
or a (p+ 2)(q + 1)-approximation for arbitrary q; at a high level, their idea is to “emu-
late” a knapsack constraint by a polynomial number of partition matroid constraints.

Non-Monotone Submodular Maximization. In the non-monotone case, even the uncon-
strained problem is NP-hard (it captures max-cut). Feige, Mirrokni and Vondrák [13]
first gave constant-factor approximations for this problem. Lee et al. [28] gave the first
approximation algorithms for constrained non-monotone maximization (subject to p
matroid constraints, or p knapsack constraints); the approximation factors were im-
proved by Lee et al. [29]. The algorithms in the previous two papers are based on local-
search with p-swaps and would take nΘ(p) time. Recent work by Vondrák [34] gives
much further insight into the approximability of submodular maximization problems.

Secretary Problems. The original secretary problem seeks to maximize the probability
of picking the element in a collection having the highest value, given that the elements
are examined in random order [12,16,14]. The problem was used to model item-pricing
problems by Hajiaghayi et al. [18]. Kleinberg [23] showed that the problem of max-
imizing a modular function subject to a cardinality constraint in the secretary setting
admits a (1 + Θ(1)√

k
)-approximation, where k is the cardinality. (We show that max-

imizing a submodular function subject to a cardinality constraint cannot be approxi-
mated to better than some universal constant, independent of the value of k.) Babaioff
et al. [5] wanted to maximize modular functions subject to matroid constraints, again
in a secretary-setting, and gave constant-factor approximations for some special ma-
troids, and an O(log k) approximation for general matroids having rank k. This line of
research has seen several developments recently [3,11,26,4].

Independent Work on Submodular Secretaries. Concurrently and independently of
our work, Bobby Kleinberg has given an algorithm similar to that in §4.1 for monotone



250 A. Gupta et al.

secretary submodular maximization under a cardinality constraint [24]. Again inde-
pendently, Bateni et al. consider the problem of non-monotone submodular maximiza-
tion in the secretary setting [6]; they give a different O(1)-approximation subject to a
cardinality constraint, an O(L log2 k)-approximation subject to L matroid constraints,
and an O(L)-approximation subject to L knapsack constraints in the secretary setting.
While we do not consider multiple constraints, it is easy to extend our results to obtain
O(L log k) and O(L) respectively using standard techniques.

1.4 Preliminaries

Given a set S and an element e, we use S+e to denoteS∪{e}. A function f : 2Ω → R+

is submodular if for all S, T ⊆ Ω, f(S)+ f(T ) ≥ f(S ∪T )+ f(S ∩T ). Equivalently,
f is submodular if it has decreasing marginal utility: i.e., for all S ⊆ T ⊆ Ω, and for all
e ∈ Ω, f(S+e)−f(S) ≥ f(T+e)−f(T ). Also, f is called monotone if f(S) ≤ f(T )
for S ⊆ T . Given f and S ⊆ Ω, define fS : 2Ω → R as fS(A) := f(S ∪ A) − f(S).
The following facts are standard.

Proposition 1. If f is submodular with f(∅) = 0, then
• for any S, fS is submodular with fS(∅) = 0, and
• f is also subadditive; i.e., for disjoint setsA,B, we have f(A)+f(B) ≥ f(A∪B).

Matroids. A matroid is a pair M = (Ω, I ⊆ 2Ω), where I contains ∅, if A ∈ I and
B ⊆ A then B ∈ I, and for every A,B ∈ I with |A| < |B|, there exists e ∈ B \ A
such that A+ e ∈ I. The sets in I are called independent, and the rank of a matroid is
the size of any maximal independent set (base) inM. In a uniform matroid, I contains
all subsets of size at most k. A partition matroid, we have groups g1, g2, . . . , gk ⊆ Ω
with gi∩gj = ∅ and ∪jgj = Ω; the independent sets are S ⊆ Ω such that |S∩gi| ≤ 1.

Unconstrained (Non-Monotone) Submodular Maximization. We use FMVα(S) to
denote an approximation algorithm given by Feige, Mirrokni, and Vondrák [13] for
unconstrained submodular maximization in the non-monotone setting: it returns a set
T ⊆ S such that f(T ) ≥ 1

α maxT ′⊆S f(T ′). In fact, Feige et al. present many such
algorithms, the best approximation ratio among these is α = 2.5 via a local-search
algorithm, the easiest is a 4-approximation that just returns a uniformly random subset
of S.

2 Submodular Maximization Subject to a Cardinality Constraint

We first give an offline algorithm for submodular maximization subject to a cardinality
constraint: this illustrates our simple approach, upon which we build in the follow-
ing sections. Formally, given a subset X ⊆ Ω and a non-negative submodular func-
tion f that is potentially non-monotone, but has f(∅) = 0. We want to approximate
maxS⊆X:|S|≤k f(S). The greedy algorithm starts with S ← ∅, and repeatedly picks an
element e with maximum marginal value fS(e) until it has k elements.

Lemma 1. For any set |C| ≤ k, the greedy algorithm returns a set S that satisfies
f(S) ≥ 1

2 f(S ∪ C).
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Proof. Suppose not. Then fS(C) = f(S ∪ C) − f(S) > f(S), and hence there is
at least one element e ∈ C \ S that has fS({e}) > f(S)

|C\S| >
f(S)

k . Since we ran the
greedy algorithm, at each step this element e would have been a contender to be added,
and by submodularity, e’s marginal value would have been only higher then. Hence the
elements actually added in each of the k steps would have had marginal value more
than e’s marginal value at that time, which is more than f(S)/k. This implies that
f(S) > k · f(S)/k, a contradiction.

This theorem is existentially tight: observe that if the function f is just the cardinality
function f(S) = |S|, and if S and C happen to be disjoint, then f(S) = 1

2f(S ∪ C).

Lemma 2 (Special Case of Claim 2.7 in [28]). Given setsC, S1 ⊆ U , letC′ = C\S1,
and S2 ⊆ U \ S1. Then f(S1 ∪ C) + f(S1 ∩ C) + f(S2 ∪C′) ≥ f(C).

Proof. By submodularity, it follows that f(S1 ∪C)+ f(S2 ∪C′) ≥ f(S1 ∪S2 ∪C)+
f(C′). Again using submodularity, we get f(C′)+ f(S1 ∩C) ≥ f(C)+ f(∅). Putting
these together and using non-negativity of f(·), the lemma follows.

1: letX1 ← X
2: for i = 1 to 2 do
3: let Si ← Greedy(Xi)
4: let S′

i ← FMVα(Si)
5: letXi+1 ← Xi \ Si.
6: end for
7: return best of S1, S

′
1, S2.

Fig. 1. Submod-Max-Cardinality(X, k, f)

We now give our algorithm Submod-Max-
Cardinality (Figure 1) for submodular maxi-
mization: it has the same multi-pass structure
as that of Lee et al., but uses the greedy analy-
sis above instead of a local-search algorithm.

Theorem 1. The algorithm Submod-Max-
Cardinality is a (4 + α)-approximation.

Proof. Let C∗ be the optimal solution with
f(C∗) = OPT. We know that f(S1) ≥
1
2f(S1 ∪ C∗). Also, if f(S1 ∩ C∗) is at least
εOPT, then we know that the α-approximate algorithm FMVα gives us a value of at
least (ε/α)OPT. Else,

f(S1) ≥ 1
2f(S1 ∪ C∗) ≥ 1

2f(S1 ∪ C∗) + 1
2f(S1 ∩C∗)− εOPT/2 (1)

Similarly, we get that f(S2) ≥ 1
2f(S2 ∪ (C∗ \ S1)). Adding this to (1), we get

2max(f(S1), f(S2)) ≥ f(S1) + f(S2)

≥ 1
2

(
f(S1 ∪ C∗) + f(S1 ∩ C∗) + f(S2 ∪ (C∗ \ S1))

)− εOPT/2
(2)

≥ 1
2
f(C∗) − εOPT/2 (3)

≥ 1
2
(1 − ε)OPT.

where we used Lemma 2 to get from (2) to (3). Hence max{f(S1), f(S2)} ≥ 1−ε
4 OPT.

The approximation factor now is max{α/ε, 4/(1 − ε)}. Setting ε = α
α+4 , we get a

(4 + α)-approximation, as claimed.
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Using the known value of α = 2.5 from Feige et al. [13], we get a 6.5-approximation
for submodular maximization under cardinality constraints. While this is weaker than
the 3.23-approximation of Vondrák [34], or even the 4-approximation we could get
from Lee et al. [28] for this special case, the algorithm is faster, and the idea behind the
improvement works in several other contexts, as we show in the following sections.

3 Fast Algorithms for p-Systems and Knapsacks

In this section, we show our greedy-style algorithms which achieve an O(p)-
approximation for submodular maximization over p-systems, and a constant-factor ap-
proximation for submodular maximization over a knapsack. Due to space constraints,
many proofs are deferred to the full version of this paper.

3.1 Submodular Maximization for Independence Systems

Let Ω be a universe of elements and consider a collection I ⊆ 2Ω of subsets of Ω.
(Ω, I) is called an independence system if (a) ∅ ∈ I, and (b) if X ∈ I and Y ⊆ X ,
then Y ∈ I as well. The subsets in I are called independent; for any set S of elements,
an inclusion-wise maximal independent set T of S is called a basis of S. For brevity,
we say that T is a basis, if it is a basis of Ω.

Definition 1. Given an independence system (Ω, I) and a subset S ⊆ Ω. The rank
r(S) is defined as the cardinality of the largest basis of S, and the lower rank ρ(S)
is the cardinality of the smallest basis of S. The independence system is called a p-
independence system (or a p-system) if maxS⊆Ω

r(S)
ρ(S) ≤ p.

See, e.g., [8] for a discussion of independence systems and their relationship to other
families of constraints; it is useful to recall that intersections of p matroids form a p-
independent system.

The Algorithm for p-Independence Systems. Suppose we are given an independence
system (Ω, I), a subset X ⊆ Ω and a non-negative submodular function f that is
potentially non-monotone, but has f(∅) = 0. We want to find (or at least approximate)
maxS⊆X:S∈I f(S). The greedy algorithm for this problem is what you would expect:
start with the set S = ∅, and at each step pick an element e ∈ X \ S that maximizes
fS(e) and ensures that S+e is also independent. If no such element exists, the algorithm
terminates, else we set S ← S + e, and repeat. (Ideally, we would also check to see if
fS(e) ≤ 0, and terminate at the first time this happens; we don’t do that, and instead
we add elements even when the marginal gain is negative until we cannot add any more
elements without violating independence.) The proof of the following lemma appears
in the full version of the paper, and closely follows that for the monotone case from [8].

Lemma 3. For a p-independence system, if S is the independent set returned by the
greedy algorithm, then for any independent set C, f(S) ≥ 1

p+1f(C ∪ S).
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1: X1 ← X
2: for i = 1 to p+ 1 do
3: Si ← Greedy(Xi, I, f)
4: S′

i ← FMVα(Si)
5: Xi+1 ← Xi \ Si

6: end for
7: return S ← best among
{Si}p+1

i=1 ∪ {S′
i}

p+1
i=1 .

Fig. 2. Submod-Max-p-System(X, I, f)

The algorithm Submod-Max-p-Systems
(Figure 2) for maximizing a non-monotone
submodular function f with f(∅) = 0 over
a p-independence system now immediately
suggests itself. The theorem is proven in the
full version of the paper.

Theorem 2. The algorithm Submod-Max-
p-System is a (1 + α)(p + 2 + 1/p)-
approximation for maximizing a non-
monotone submodular function over a
p-independence system, where α is the
approximation guarantee for unconstrained
(non-monotone) submodular maximization.

Note that even using α = 1, our approximation factors differ from the ratios in Lee et
al. [28,29] by a small constant factor. However, the proof here is somewhat simpler and
also works seamlessly for all p-independence systems instead of just intersections of
matroids. Moreover our running time is only linear in the number of matroids, instead
of being exponential as in the local-search: previously, no polynomial time algorithms
were known for this problem if p was super-constant. Note that running the algorithm
just twice instead of p+1 times reduces the run-time further; we can then use Lemma 2
instead of the full power of [28, Claim 2.7], and hence the constants are slightly worse.

3.2 Submodular Maximization Over Knapsacks

The paper of Sviridenko [32] gives a greedy algorithm with partial enumeration that
achieves a e

e−1 -approximation for monotone submodular maximization with respect
to a knapsack constraint. In particular, each element e ∈ X has a size ce, and we
are given a bound B: the goal is to maximize f(S) over subsets S ⊆ X such that∑

e∈S ce ≤ B. His algorithm is the following—for each possible subset S0 ⊆ X of at
most three elements, start with S0 and iteratively include the element which maximizes
the gain in the function value per unit size, and the resulting set still fits in the knapsack.
(If none of the remaining elements gives a positive gain, or fit in the knapsack, stop.)
Finally, from among these O(|X |3) solutions, choose the best one—Sviridenko shows
that in the monotone submodular case, this is an e

e−1 -approximation algorithm. One can
modify Sviridenko’s algorithm and proof to show the following result for non-monotone
submodular functions. (The details are in the full paper).

Theorem 3. There is a polynomial-time algorithm that given the above input, outputs
a polynomial sized collection of sets such that for any valid solution C, the collection
contains a set S satisfying f(S) ≥ 1

2f(S ∪ C).

Note that the tight example for cardinality constraints shows that we cannot hope to do
better than a factor of 1/2. Now using an argument very similar to that in Theorem 1
gives us the following result for non-monotone submodular maximization with respect
to a knapsack constraint.
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Theorem 4. There is an (4 + α)-approximation for the problem of maximizing a sub-
modular function with respect a knapsack constraint, where α is the approximation
guarantee for unconstrained (non-monotone) submodular maximization.

4 Constrained Submodular Maximization in the Secretary Setting

We will give algorithms for submodular maximization in the secretary setting: first sub-
ject to a cardinality constraint, then with respect to a partition matroid, and finally an
algorithm for general matroids. Much of this section has been omitted for space restric-
tions, and the reader is referred to the full version of the paper. The main algorithmic
concerns tackled in this section when developing secretary algorithms are: (a) previous
algorithms for non-monotone maximization required local-search, which seems diffi-
cult in an online secretary setting, so we developed greedy-style algorithms; (b) we need
multiple passes for non-monotone optimization, and while that can be achieved using
randomization and running algorithms in parallel, these parallel runs of the algorithms
may have correlations that we need to control (or better still, avoid); and of course
(c) the marginal value function changes over the course of the algorithm’s execution
as we pick more elements—in the case of partition matroids, e.g., this ever-changing
function creates several complications.

We also show an information theoretic lower bound: no secretary algorithm can ap-
proximately maximize a submodular function subject to a cardinality constraint k to
a factor better than some universal constant greater than 1, independent of k (This is
ignoring computational constraints, and so the computational inapproximability of of-
fline submodular maximization does not apply). This is in contrast to the additive sec-
retary problem, for which Kleinberg gives a secretary algorithm achieving a 1

1−5/
√

k
-

approximation [23]. This lower bound is found in the full version of the paper. (For a
discussion about independent work on submodular secretary problems, see §1.3.)

4.1 Subject to a Cardinality Constraint

The offline algorithm presented in Section 2 builds three potential solutions and chooses
the best amongst them. We now want to build just one solution in an online fashion, so
that elements arrive in random order, and when an element is added to the solution, it is
never discarded subsequently. We first give an online algorithm that is given the optimal
value OPT as input but where the elements can come in worst-case order (we call this
an “online algorithm with advice”). Using sampling ideas we can estimate OPT, and
hence use this advice-taking online algorithm in the secretary model where elements
arrive in random order.

To get the advice-taking online algorithm, we make two changes. First, we do not use
the greedy algorithm which selects elements of highest marginal utility, but instead use a
threshold algorithm, which selects any element that has marginal utility above a certain
threshold. Second, we will change Step 4 of Algorithm Submod-Max-Cardinality to use
FMV4, which simply selects a random subset of the elements to get a 4-approximation
to the unconstrained submodular maximization problem [13]. The Threshold Algorithm
with inputs (τ, k) simply selects each element as it appears if it has marginal utility at
least τ , up to a maximum of k elements.
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Lemma 4 (Threshold Algorithm). Let C∗ satisfy f(C∗) = OPT. The threshold al-
gorithm on inputs (τ, k) returns a set S that either has k elements and hence a value of
at least τk, or a set S with value f(S) ≥ f(S ∪ C∗)− |C∗|τ .

Theorem 5. If we change Algorithm Submod-Max-Cardinality from §2 to use the
threshold algorithm with threshold τ = OPT

7k in Step 3, and to use the random sam-
pling algorithm FMV4 in Step 4, and return a (uniformly) random one of S1, S

′
1, S2 in

Step 7, the expected value of the returned set is at least OPT/21.

Observation 6. Given the value of OPT, the algorithm of Theorem 5 can be imple-
mented in an online fashion where we (irrevocably) pick at most k elements.

Observation 7. In both the algorithms of Theorems 1 and 5, if we use some value Z ≤
OPT instead of OPT, the returned set has value at least Z/(4 + α), and expected
value at least Z/21, respectively.

Finally, it will be convenient to recall Dynkin’s algorithm: given a stream of n numbers
randomly ordered, it samples the first 1/e fraction of the numbers and picks the next
element that is larger than all elements in the sample.

Let Solution← ∅.
Flip a fair coin
if heads then

Solution←most valuable item using Dynkin’s-
Algo

else
Let m ∈ B(n, 1/2) be a draw from the bino-
mial distribution
A1 ← ρoff-approximate offline algorithm on the
firstm elements.
A2 ← ρon-approximate advice-taking online
algorithm with

f(A1) as the guess for OPT.
Return A2

end if

Fig. 3. Algorithm SubmodularSecretaries

The Secretary Algorithm
for the Cardinality Case
For a constrained submod-
ular optimization, if we are
given (a) a ρoff-approximate
offline algorithm, and also (b) a
ρon-approximate online advice-
taking algorithm that works
given an estimate of OPT,
we can now get an algorithm
in the secretary model thus:
we use the offline algorithm to
estimate OPT on the first half
of the elements, and then run the
advice-taking online algorithm
with that estimate. The formal
algorithm appears in Figure 3.
Because of space constraints,
we have deferred the proof of
the following theorem to the full
paper.

Theorem 8. The above algorithm is an O(1)-approximation algorithm for the
cardinality-constrained submodular maximization problem in the secretary setting.

4.2 Subject to a Partition Matroid Constraint

The full version of the paper additionally exhibits and proves a constant factor approx-
imation for online setting with a partition matroid constraint.
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4.3 Subject to a General Matroid Constraint

The full version of the paper additionally exhibits and proves a log(k) factor approxi-
mation for on-line setting with a general matroid constraint of rank k.
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Abstract. In this paper we consider a large variety of strategic cost sharing
games with so-called arbitrary sharing based on various combinatorial optimiza-
tion problems, such as vertex and set cover, facility location, and network de-
sign problems. We concentrate on the existence and computational complexity of
strong equilibria, in which no coalition can decrease the cost of every member.

Our main result reveals a connection between strong equilibrium in strategic
games and the core in traditional coalitional cost sharing games studied in eco-
nomics. For set cover and facility location games this results in a tight character-
ization of the existence of strong equilibrium using the integrality gap of suitable
linear programming formulations. In addition, we are able to show that in general
the strong price of anarchy is always 1, whereas the price of anarchy is known to
be Θ(n) for Nash equilibria. Finally, we indicate that the LP-approach can also
be used to compute near-optimal and near-stable approximate strong equilibria.

1 Introduction

How can a set of self-interested actors share the cost of a joint investment in a fair
and stable way? This fundamental question has motivated a large amount of research
in economics in the last decades. More recently, this question has been studied in com-
puter science to understand the development of the Internet and questions arising in
e-commerce.A classic framework to study cost sharing problems without centralized
control are cost sharing games, in which cost can be specified as an abstract parame-
ter for each player and/or each coalition. Relevant to real-world optimization problems
are cost sharing games, where the cost is tied to the investment into specific resources.
There is a set of players, and each coalition of players has an associated cost value com-
ing from an optimal solution to an optimization problem for the coalition. For example,
consider a multicast network design game, in which players strive to establish connec-
tions to a common source vertex s. This scenario can be formulated as a MST game, in
which each vertex v 
= s is a player, and the edges have costs. The cost of a coalition in
this game is the cost of the MST for the set C ∪s. In the literature many interesting cost
sharing games have been studied, e.g., based on MST and Steiner tree [8, 18, 26, 19],
covering and packing problems [13], or facility location [15].

Coalitional cost sharing games are usually transferable utility (TU) games, which
allows for the largest level of generality in the bargaining and coalition formation pro-
cess. The foremost concept of stability and fairness in TU cost sharing games is the

� Supported by DFG through UMIC Research Centre at RWTH Aachen University and grant
Ho 3831/3-1.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 258–269, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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core. The core is a set of imputations, i.e., of distributions of the cost for the complete
player set to the players. To be in the core an imputation has to fulfill the additional
property that no coalition of players in sum pays more than its associated cost value. A
problem is that the cost shares represent a strong abstraction. The game does not take
into account who pays how much for which resource. This, however, is crucial when
studying the incentives of players in large unregulated settings such as the Internet. The
need to understand cost sharing on a strategic level prompted computer scientists to
study strategic cost sharing scenarios. On the one hand, there is recent work on design-
ing strategic cost sharing games to obtain favorable Nash equilibrium properties [12].
Here a central authority dictates cost shares for each player. This is close to cost shar-
ing mechanisms, which have received a lot of attention [22, 23]. Designing cost shares,
e.g., using Shapley value cost sharing [4, 11, 14], can yield favorable conditions for ex-
istence and cost of Nash equilibria. In contrast, such a model is unsuitable when there
is very little control over players and their bargaining options. A model that allows for
general cost sharing between players is sometimes referred to as arbitrary cost sharing,
and it has been studied, e.g., in [5, 3, 10, 20, 14]. In these games the strategy of a player
is a payment function that specifies his exact contribution to the cost of each resource.
The outcomes of such strategic cost sharing games based on combinatorial optimization
problems will be the subject of this paper.

The most prominent stability concept in strategic games is the Nash equilibrium
(NE). While a NE (in mixed strategies) always exists, a drawback is that it is only re-
silient to unilateral deviations. In many reasonable scenarios agents might be able to
coordinate their actions, and to address this issue we consider the strong equilibrium
(SE) in this paper. A SE [7] is a state, from which no coalition (of arbitrary size) has a
deviation that lowers the cost of every member of the coalition. This resilience to coali-
tional deviations is highly attractive, but SE might not exist. This may be the reason
they have not received an equivalent amount of interest despite their attractive proper-
ties. We partly circumvent this problem by studying approximate SE that are guaranteed
to exist. However, a deeper treatment of these aspects is mostly left for future work.

Our main interest is to characterize the existence, social cost, and computational com-
plexity of SE in strategic cost sharing games based on combinatorial optimization prob-
lems. A set of simple but striking observations reveals that a SE in a strategic cost sharing
game can always be turned into a core imputation of the corresponding coalitional game.
Hence, a SE is a strategic refinement of a core solution, and existence of a SE implies
non-emptiness of the core. It also implies that the strong price of anarchy (SPoA) [1] is
1. In addition, SE are equivalent to seemingly stronger coalitional equilibrium concepts
in these games. This motivates us to furhter explore the connection between core and SE
and to examine machinery developed for core solutions to obtain SE, as well.

Contribution and Outline. In Section 2 we consider games based on vertex and set
cover, facility location, MST and Steiner tree problems, for which we show an equiva-
lence result. Whenever the core in the coalitional game is nonempty, there is a SE for
the strategic game. Our main proof technique relies on LP duality and allows to tightly
characterize the existence and cost of SE in all these games. As a byproduct, this yields
simple proofs of all known results for SE in strategic cost sharing games with arbitrary
sharing, which were previously shown [14] via complicated combinatorial arguments.
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The equivalence between SE and core solutions is an interesting and notable fact.
However, for non-transferable utility (NTU) games and appropriate extensions to strate-
gic games a similar equivalence is obvious. Thus, it may be more surprising that the
relation between SE and core solutions in cost sharing games can be more complicated.
In Section 3 we explore equivalence without relying on linear programming. In some
cases like Terminal Backup Games [3] we can resort to combinatorial arguments. For
other interesting games such as connection games or network cutting games the core
might be non-empty but a SE is absent. A similar result is established in Section 4 even
for simple vertex cover games when we allow resources to be purchased fractionally
or in mulitple units. Characterizing SE in these games remains as an intriguing open
problem. We observe in Section 5 that linear programming can be used to obtain ap-
proximate (α, β)-SE in vertex and set cover, as well as factility location games. Finally,
we conclude in Section 6 with some interesting questions for further research. Due to
spacial reasons parts of the paper are omitted. A full version of this paper is available
online [21].

Our main conceptual contribution is to reveal a non-trivial and close relation be-
tween coalitional and strategic games defined on the same instance of the optimization
problem. We believe that this connection between traditional coalitional games from
economics and strategic cost sharing games from computer science should stimulate
further research on cost sharing with rational agents.

Preliminaries. We consider classes of cost sharing games based on combinatorial op-
timization problems. In each of these games there is a set R of resources. Resource
r ∈ R can be bought if the associated cost c(r) ≥ 0 is paid for. For R′ ⊆ R let
c(R′) =

∑
r∈R′ c(r). We assume that there is set of players K . Each player k ∈ K

strives to satisfy a certain constraint on the bought resources. For example, in the case
of the set cover problem the player set is the element set K = E. The resources are
sets R = S ⊆ 2E over E. The constraint of player e states that there must be at least
one bought set S with e ∈ S. In a similar way we can base our construction on various
cost minimization problems like facility location or network design. We will describe
them in more detail in the corresponding sections. However, a common assumption in
our problems is a free disposal property, i.e., if for a set of bought resources all player
constraints are satisfied, then a superset of bought resources can never make a player
constraint become violated.

For a given set of players, resources, and constraints we define two games - a coali-
tional and a strategic cost sharing game. The coalitional game Δ = (K, c) is given by
the set of players K and a cost function c : 2K → R+

0 that specifies a cost value for
every subset of players. For a coalition C ⊆ K , the cost is c(C) =

∑
r∈R(C)∗ c(r) for

an optimum solution R(C)∗ ⊆ R for C. In particular, R(C)∗ is a minimum cost set of
resources that must be bought to satisfy all constraints of players in C. For example,
in a set cover game R(C)∗ is the minimum cost set cover for the elements in C. We
denote the special case R∗ = R(K)∗ as the social optimum.

The goal in a coalitional game is to find a cost sharing of c(K) for the so-called grand
coalition K . A vector of cost shares γ1, . . . , γk is called an imputation if

∑
i∈K γi =

c(K). The game Δ is a transferable utility (TU) game, i.e., we are free to choose
0 ≤ γi ≤ c(K). The central concept of stability and fairness in coalitional games
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is the core. The core is the set of imputations γ, for which c(C) ≥
∑

i∈C γi. Intuitively,
when sharing the cost according to a member of the core, no subset of players has an
incentive to deviate from the grand coalition and make a separate investment - depend-
ing on the underlying optimization problem, e.g., purchase different sets or construct
an independent network.

The strategic game Γ = (K, (Si)i∈K , (ci)i∈K) is specified by strategies and in-
dividual cost for each player. The strategy space Si of player i ∈ K consists of all
functions si : R→ R+

0 . Strategy si allows him to specify for each resource r ∈ R how
much he is willing to contribute to r. A resource r is bought if

∑
i∈K si(r) ≥ c(r). A

vector of strategies s is a state of the game. For a state s we define |si| =
∑

r∈R si(r)
and the individual cost of player i as ci(s) = |si| if the bought resources satisfy his
constraint. Otherwise, ci(s) =∞ or a different value that is prohibitively large.

In this paper we consider coalitional incentives and resort to strong equilibria [7]. A
state s has a violating coalition C ⊆ K if there are strategies s′C = (s′i)i∈C such that
ci(s′C , s−C) < ci(s) for each i ∈ C. A violating coalition has a deviation, in which
all players in C strictly pay less. A strong equilibrium (SE) is a state s that has no
violating coalition. Note that in a SE a set of resources is bought such that all player
constraints are satisfied. Each resource r is either paid for exactly or not contributed to
at all. Thus, a SE represents a cost sharing of a feasible solution for the grand coalition.
In addition, we briefly consider the concept of a (α, β)-SE. These are strategy profiles,
which constitute an approximate solution concept. In a (α, β)-SE no coalition of players
can reduce the cost of every member by strictly more than a factor of α, and the cost of
the bought solution represents a β-approximation to c(K).

For a strategic game Γ , it is a simple to observe that in every SE a social optimum
R∗ is bought. Otherwise, a suitable player set could deviate to buyR∗, thereby reducing
the contribution of each player proportionally and strictly. A similar trick shows that SE
are resilient to stronger improving moves, in which only one player strictly improves
but no player gets worse, or even against moves where only the sum of all player costs
decreases. More importantly, SE can be turned into core solutions for the corresponding
coalitional gameΔ. While the total payment in both cases is c(R∗), optimal deviations
for a coalition C are cheaper in Γ than in Δ, because in Δ we assume that all players
outside C stop contributing. These insights are formally proved in the full version [21].

2 Strong Equilibria Using Linear Programming

Vertex and Set Cover Games. The insights in the last section imply that non-emptiness
of the core is necessary for existence of SE. In the following we consider various classes
of games, in which it is also sufficient. In these cases the SE is a strategic refinement
of the core, as it allows to specify a strategic allocation of payments to resources. We
can relate SE existence to the core via linear programming duality. For simplicity we
outline the general argument in the setting of set cover games. In a set cover game, we
are given a set of players as elements E and a set system S ⊆ 2E , where each S ∈ S
has a cost c(S) ≥ 0. The constraint of player e is that at least one set S with e ∈ S must
be bought.
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Theorem 1. If a set cover game Δ has a non-empty core, then the strategic game Γ
has a SE.

Proof. We consider the integer programming formulation of set cover. In particular, we
consider the following linear relaxation, which employs xS ≥ 0 instead of xS ∈ {0, 1}
and thus allows sets to be included fractionally in the solution. We also consider the
corresponding LP dual.

Min
∑
S∈S

xSc(S)

s.t.
∑

S:e∈S

xS ≥ 1 ∀ e ∈ E

xS ≥ 0 ∀ S ∈ S.

Max
∑
e∈E

γe

s.t.
∑
e∈S

γe ≤ c(S) ∀ S ∈ S

γe ≥ 0 ∀ e ∈ E.

It has been shown by Deng et al. [13] that the core of Δ is non-empty if and only
if the integrality gap of the underlying set cover problem is 1, i.e., if the LP has an
integral optimal solution. This is a prerequisite for existence of a SE in Γ . We strengthen
this result by showing that core solutions can also be turned into SE, i.e., an integral
optimum is also sufficient.

For the above programs consider the optimum primal solution x∗ and the optimum
dual solution γ∗, where x∗ is integral and defines a feasible cover. Both x∗ for the
primal and γ∗ for the dual yield the same objective value. Now assign each player e to
pay se(S) = γ∗ex

∗
S . The theorem follows if every set in the cover is purchased exactly

and no coalition C can reduce their total payments
∑

e∈C |se|. The first condition is
clearly necessary for a SE, the second one implies that no coalition can be sum violating
(and thus violating). We first show that the sets are exactly paid for. If x∗S > 0, then due
to complementary slackness the inequality

∑
e∈E γ

∗
e ≤ c(S) is tight, hence by this

assignment all the purchased sets get exactly paid for.
We now show that no coaltion can reduce the total payments. Suppose a coalition

C is violating. We consider an adjusted game derived by iteratively removing elements
and payments of other players e 
∈ C. Upon removing an element e, we remove its
contribution from the costs of sets S including e. This yields the cost function cC(S)
with cC(S) = c(S) −

∑
e
∈C,e∈S γ

∗
ex

∗
S . It captures the reduced problem of finding a

minimum cost cover for coalitionC with costs adjuted by the payments of other players
e 
∈ C. Note that for this reduced problem the solution x∗ is still feasible. By obtaining
the dual we can set the covering requirement to 0 for every removed element e 
∈ C.
Then γ∗ still represents a feasible solution to the LP-dual of the reduced problem. It
yields the same objective value as x∗ for the primal. By strong duality both x∗ and γ∗

must be optimal solutions to the reduced primal and dual problems. This proves that the
total payments of C are optimal. Hence, C cannot be sum violating and not violating, a
contradiction. This proves that s is a SE. ��

For the special case of vertex cover games we can use results from [13] to efficiently
compute SE. In particular, a game allows a core solution (and thus a SE) if and only if
a maximum matching in the graph has the same size as the minimum vertex cover. This
condition can be checked in polynomial time by computing corresponding vertex covers
and matchings [13, Theorem 7 and Corollary 7]. Hence, we can check in polynomial
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time whether a SE exists. If it exists, we can use the computed vertex cover as primal
solution for our LP and compute cost shares for a SE with the corresponding dual
solution.

In addition, we can check in polynomial time whether a given strategy profile is a
SE. If the state is a SE, it must exactly pay for a vertex cover of the instance. This
yields a primal solution for the LP. In addition, the accumulated cost shares of players
must yield a corresponding dual solution. Finally, both primal and dual solutions must
generate the same value of the objective function. This is a sufficient and necessary
condition for being a SE, which can be checked in polynomial time.

Corollary 1. In a vertex cover game Γ we can decide in polynomial time if a SE exists.
If it exists, we can compute a SE in polynomial time. Given a state s for Γ we can verify
in polynomial time if it is a SE.

Another interesting case are edge cover games. Here players are the vertices of a graph
and resources are the edges. Each vertex wants to ensure that at least one incident edge
is bought. Using the characterization of the non-emptiness of the core in [13, Theorem
8 and Corollary 8] we can obtain similar results for this game as well.

Corollary 2. In an edge cover game Γ we can decide in polynomial time if a SE exists.
If it exists, we can compute a SE in polynomial time. Given a state s for an edge cover
game Γ we can verify in polynomial time if it is a SE.

Facility Location Games. Another class of games that can be handled via similar
arguments are facility location games. We outline the arguments on the simple class of
uncapacitated facility location games (UFL games) and show below how to extend this
approach to a more general class of games considered in [15, 10]. In a UFL problem
there is a set T of terminals and a set F of facilities. We set nt = |T | and nf = |F |.
Each facility f ∈ F has an opening cost c(f) ≥ 0, for each terminal t ∈ T and each
facility f ∈ F there is a connection cost c(t, f) ≥ 0. The goal is to open a subset of
facilities and buy a set of connections of minimum total cost, such that each terminal
is connected to an opened facility. In the UFL game each player owns a terminal, i.e.,
K = T . The constraint of player t is satisfied if there is a bought connection (t, f)
to some opened facility f . We can formalize the UFL problem by the standard integer
program (see [21]).

Theorem 2. If a UFL game Δ has a non-empty core, then the strategic game Γ has a
SE.

This result can be combined with insights from [15] to characterize computational prop-
erties of SE. In particular, we can decide in polynomial time if a given strategy profile
for Γ is a SE. We first check if the payments of players are made only to their own
connection and opening costs. Then we accumulate contributions to cost shares and
check if this yields a core solution - i.e., if the primal solution (given by the purchased
solution to the facility location problem) and the dual solution (given by the cost shares)
correspond to each other and yield the same optimal value for primal and dual LPs.

Corollary 3. Given a strategy vector for a UFL game Γ we can verify in polynomial
time if it is a SE.
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This implies that the problem of computing a SE is in NP. In fact, in [15] it is shown
for a class of UFL games that deciding the existence of a core solution is NP-complete.

Corollary 4. It is NP-complete to decide if a given UFL game Γ has a SE.

In the full version [21] we show how to extend these results to connection-restricted
facility location games (CRFL games) from [15], in which access to a facility f can be
obtained only by certain allowed coalitionsAf ⊆ 2T .

Connection Games. We can also use LPs to formulate network design games in di-
rected and undirected graphs. Perhaps the most frequently studied variant is a connec-
tion game [5], in which there is a graphG = (V,E), resources are the edges with costs
c(e) ≥ 0. Each player k ∈ K has a source-sink pair (sk, tk) in G. A player is satisfied
if there is a path of bought edges connecting his pair. The game is based on the Steiner
Network problem [16]. A variant based on Steiner Tree is called single-source game,
where every player has the same source s. We characterize existence of SE based on a
Flow-LP previously studied, e.g., in [26].

Theorem 3. If the Flow-LP has an integral optimum solution, then the strategic con-
nection game Γ has a strong equilibrium.

The Flow-LP for single source games on directed series-parallel graphs has integrality
gap 1 (a proof can be derived from [25]). Solving this LP then allows us to obtain one
of the main results from [14] in a simple and compact way.

Theorem 4. [14] Every single source connection game Γ on a directed series-parallel
graph has a SE that can be computed in polynomial time.

In addition, consider MST games, i.e., single source games with every vertex of G
being a sink node for at least one player. For directed graphs, a SE can be computed
from dual solutions of the LP [26]. In particular, a simple rule due to Bird [8] (i.e.,
each player k pays exactly for the unique arc of the tree leaving sink tk) is a SE, even
for the undirected MST game. In general connection games, however, we can interpret
UFL games as single source connection games on directed graphs. Hence, deciding the
existence of SE is generally NP-hard.

Theorem 5. Every MST game Γ has a SE that can be computed in polynomial time.

Corollary 5. It is NP-hard to decide if a given single source connection game Γ on a
directed graph has a SE.

3 Strong Equilibria beyond Linear Programming

Connection Games. For set cover and facility location games the integrality gap condi-
tion provides a complete characterization of gamesΔ having core solutions. We obtain
a complete characterization also for the existence of SE in strategic games Γ . For net-
work design games like the connection game, the LP argument is sufficient to show
non-emptiness of the core but not necessary. A tight characterization of games with
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Fig. 1. Left: A single source connection game with 3 players, a non-empty core, but without a
SE. R∗ is an MST of G and consists of all edges of cost 20. Right: A multicut game on a directed
graph with 2 players and a non-empty core. The game has no NE.

non-empty core has not been obtained so far. For strategic games and SE a single source
connection game without SE is given in [14], but coaltional game in their example has
an empty core. Coalitional connection games with an empty core (and thus without SE)
have already been presented in [19]. We here show that even a spanning property of the
optimum solution R∗ is not sufficient to guarantee SE existence or to obtain SE from
core solutions. The relation between core and SE here is not as robust as for games
considered previously.

Lemma 1. There are corresponding strategic and coalitional single source connection
games Γ and Δ such that R∗ is a MST of G and Δ has a core solution but Γ has no
SE.

Proof. Our example game is shown in Fig. 1. It is based on a game presented in [19],
which consisted only of the three lower layers up to node s′. It was shown that this
game has an empty core, butR∗ passes through all vertices ofG. This also implies that
there can be no SE.

To obtain our game in Fig. 1, we added the new source s and an edge of cost 20 to
the old source s′. Then the constraints for the contributions of the coalitions allow a
feasible cost sharing by assigning each player a share of 160/3 ≈ 53.33. This removes
the incentives to deviate on a global scale, which is sufficient for non-emptiness of
the core. On a local scale, however, the instable structure up to s′ is still intact. The
additional contributions towards (s′, s) do not change the strategic incentives within
the lower parts of the graph. It can be verified that in this game no SE exists. This
proves the lemma. ��

Terminal Backup Games. In terminal backup games [3, 6] there is a graph G =
(V,E), each player is a vertex (K ⊂ V ), and resources are the edges with costs c(e) ≥
0. Each player strives to be connected to at least d− 1 other player vertices, for d ≥ 2.
The terminal backup problem can be solved in polynomial time for d = 2 [6]. Here we
show that every core solution can be turned into a SE for these games. In addition, we
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show how to decide if a game has a SE and how to obtain SE in polynomial time if they
exist.

Theorem 6. A terminal backup gameΔ with d = 2 has a non-empty core if and only if
the strategic game Γ has a SE. In the case of d = 2 there is a polynomial time algorithm
to determine Γ has a SE and to compute one in polynomial time if it exists.

For d ≥ 4, a core solution cannot be turned into a SE. In fact, an example game can
be derived directly from the single source connection game in Fig. 1 above. We simply
replace the source s by a clique of 4 or more terminals and 0-cost edges.

Lemma 2. For any d ≥ 4 there is a coalitional terminal backup game Δ with a core
solution and a corresponding strategic game Γ without a strong equilibrium.

Network Cutting Games. In this section we briefly treat network cutting games, in
which there is a graph G = (V,E) and each player i strives to disconnect Si ⊂ V
from Ti ⊂ V . Each edge e ∈ E has a cost c(e) > 0 for disconnection. This approach
yields coalitional and strategic games based on a variety of minimum-cut problems like
s-t-cut, multicut, mulitway cut, etc. It is introduced and studied with respect to NE in
the special cases of mulitway cut and multicut in [2]. More formally, for each player
i denote by Pi the set of all paths in G from a node in Si to a node in Ti. When we
introduce a variable xe for each edge e ∈ E, then for each path P ∈ Pk player k has
the constraint

∑
e∈P xe ≥ 1. The resulting integer program is a special case of the set

cover integer program presented above. This implies that if the integrality gap is 1, we
have existence of core solutions and SE – e.g., for directed and undirected graphs and
single-source games with Si = {s} for every i ∈ K .

Theorem 7. If the Covering-LP has an integral optimum solution, then the strategic
network cutting game Γ has a SE.

There is a subtle twist to this result. While in the set cover game every element (i.e.,
every path) is a player, in the cutting game players strive to cover multiple elements
(i.e., cut multiple paths). By clustering elements we simply reduce the granularity of
possible coalitions to those, which can be obtained by the union of sets Pi. Thereby, we
enlarge the sets of games that allow a SE and a core solution.

Proposition 1. There are network cutting games Γ with SE, for which the underlying
network cutting problem has an integrality gap of more than 1.

A similar observation can be made for multiway cut games, in which geometric LP
relaxations [9] have an integrality gap of more than 1. In fact, it can be observed that the
arguments from [2] for existence of optimal NE can be extended in a straightforward
way to show that every mutiway cut game on an undirected graph admits a SE. In
general network cutting games, however, the set of strategic games with a SE is not
equivalent to the set of cooperative games with a non-empty core.

Lemma 3. There are corresponding coalitional and strategic network cutting games
Δ and Γ such thatΔ has a core solution but Γ has no SE.
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Proof. For undirected graphs we consider two players and a star graph. We set S1 =
{s1}, S2 = {s2}, T1 = {t1} and T2 = {s1, t1}. The edge costs to the center node u
are c(s1, u) = c(t1, u) = 2 and c(s2, u) = 3. The set of core solutions is γ1 = 2 − ε
and γ2 = 2 + ε for 0 ≤ ε ≤ 1. Note that the unique optimum solution is to cut (s1, u)
and (t1, u). In such a solution, however, if |s1| > 0, player 1 can unilaterally improve
by removing the larger of his payments. Player 2 does not pay for both edges, because
paying only for (s1, u) is cheaper.

For directed graphs we can even leave T2 = {t2} as a singleton. We transform the
graph to the one shown in Fig. 1. A similar argument shows non-existence of SE. ��

This implies that relaxing the assumption that every element or terminal is a player
in a set cover or facility location game harms the equivalence between core and SE.
On another note, the proof shows absence of NE in general strategic network cutting
games on undirected games. For directed graphs the absence of NE holds true even for
minimum multicut games, in which Si and Ti are singleton sets for all players i ∈ K .

4 Fractional and Non-binary Resources

Apart from equivalence of core and SE, another issue is to see when we can derive SE
from core solutions, which is possible with an integrality gap of 1 in all games described
above. All LPs studied here consist of linear constraints of the following type. One type
is
∑

i xi ≥ 1, i.e., a simple covering constraint with 0/1 coefficients. The other type
is yi −

∑
j xij ≥ 0, i.e., a coordination constraint that requires a resource to become

bought when at least one player uses it. This second type allows to treat facility location
and network design games. What happens if we slightly generalize these constraints?

Let us first consider dropping the integrality requirement. It is simple to show, for
instance, that vertex cover games always allow a core solution if vertices can be bought
fractionally. Does a SE also exist for strategic games in these cases? The obvious ad-
justment in the strategic game is to define the bought fraction proportional to the total
payment. In a state s of the strategic fractional vertex cover game a vertex v is bought
to the degree xv =

∑
k∈K sk(e)/c(v). For a player k corresponding to edge e = (u, v)

the individual cost is |sk| if xu + xv ≥ 1 and prohibitively large otherwise.
A second, closely related variant is to increase the covering requirements and allow

multiple integer units of a resouce to be bought. Here the constraints become
∑

i xi ≥ b,
where b > 0 and xi ∈ N. Again, the total payments of the players determine the number
of units bought of a resource. We term these games non-binary vertex cover games.
More formally, in a state s we have xu = �

∑
k∈K sk(u)�. Player k corresponding to

edge (u, v) has a required coverage of bk ∈ N and individual cost ck(s) = |sk| if
xu + xv ≥ bk and prohibitively large otherwise.

For both classes SE being core solutions and an SPoA of 1 continue to hold. In
contrast, we show that there might be no SE – although non-emptiness of the core can
be established via the same linear programming machinery that was used before.

Theorem 8. There are corresponding strategic and coalitional fractional or non-binary
vertex cover gamesΔ and Γ such thatΔ has a core solution but Γ has no SE.
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Proof. For both variants we use a triangle, vertex costs c(u) = 3, c(v) = 5, and c(w) =
7, and players 1 to 3 corresponding to edges (u,w), (u, v) and (v, w), respectively.

In the fractional game the unique optimum solution to the underlying vertex cover
problem is x∗u = x∗v = x∗w = 1/2, and the unique core solution is γ1 = 2.5, γ2 = 0.5
and γ3 = 4.5. Note that x∗ has to be purchased in every SE, and obviously s2(w) = 0.
If s1(w) > 0, player 1 can deviate unilaterally and achieve the amount s1(w)/7 of
coverage by contribution to u with less payments. The same holds for player 2 and
vertex v. This proves that there is no SE.

For the non-binary version, we set all covering requirements to b1 = b2 = b3 = 4.
Then the unique optimum x∗ to the underlying vertex cover problem and the unique
core payments γ are the same as before scaled by factor 4. Observe that we have an
integrality gap of 1 in this game. The core solution is unique, so we know that in every
SE |s1| = 10 and |s2| = 2. This implies 4 ≤ s1(w) ≤ 6. By removing this payment
from w, player 1 reduces the number of units bought of w by exactly 1. However, he
can obtain an additional unit of u at a cost of 3. This proves the theorem. ��

5 Approximate Equilibria

A disadvantage of the concept of SE is that they might not exist in a game. However, our
LP approach proves to be applicable even for obtaining approximate SE. With primal-
dual algorithms we can compute (α, β)-SE with small (constant) ratios in polynomial
time for vertex cover, set cover, and facility location games.

Theorem 9. There are efficient primal-dual algorithms to compute (2, 2)-SE for vertex
cover, (f, f)-SE for set cover (where f is the maximum frequency of any element in the
sets), and (3, 3)-SE for metric UFL games in polynomial time.

6 Open Problems

We believe that the linkage between core and SE could be present in other cost shar-
ing games, which go beyond the classes of games treated in this paper. Exploring
these classes of games is an interesting avenue for further research. More concretely,
our games have LP formulations within Owens linear production model [24]. Non-
emptiness of the core, however, can also be shown within a more general class of prob-
lems termed generalized linear production model in [17]. It has a non-additive struc-
ture, and it encompasses for instance the cut-based LP-formulation for Steiner Network
problems. It is a fascinating open problem to see if this framework can also be used to
derive exact and approximate SE in strategic cost sharing games.

Acknowledgement. The author would like to thank Elliot Anshelevich and Bugra
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Abstract. Non-cooperative game theory purports that economic agents

behave with little regard towards the negative externalities they im-

pose on each other. Such behaviors generally lead to inefficient outcomes

where the social welfare is bounded away from its optimal value. How-

ever, in practice, self-interested individuals explore the possibility of cir-

cumventing such negative externalities by forming coalitions. What sort

of coalitions should we expect to arise? How do they affect the social

welfare?

We study these questions in the setting of Cournot markets, one of

the most prevalent models of firm competition. Our model of coalition

formation has two dynamic aspects. First, agents choose strategically

how to update the current coalition partition. Furthermore, coalitions

compete repeatedly between themselves trying to minimize their long-

term regret. We prove tight bounds on the social welfare, which are

significantly higher than that of the Nash equilibria of the original game.

Furthermore, this improvement in performance is robust across different

supply-demand curves and depends only on the size of the market.

1 Introduction

It is a basic tenet of algorithmic game theory that agents act selfishly in the
pursuit of their own interests. Borrowing from economics, the literature purports
that these agents will take actions that lead to a Nash equilibrium (or a related
solution concept). Hence the actions could be potentially far from the social
optimum. For example, in a road network, each driver, observing traffic patterns,
selects the route which minimizes his own delay. The resulting total delay can
be much greater than that of the optimal flow.

� Partially supported by the EU FP7 Network of Excellence Euro-NF.
�� Supported by NSF grants CCF-0325453, AF-0910940, AFOSR grant FA9550-09-1-

0420 and ONR grant N00014–09-1-0751.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 270–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Coalition Formation and Price of Anarchy in Cournot Oligopolies 271

In a seminal paper in 1999, Koutsoupias and Papadimitriou [16] initiated the
investigation of the so-called price of anarchy which measures the ratio of the
social value in the worst-case equilibrium to the optimal social value. Recent
years have seen a profusion of results exploring the price of anarchy of various
non-cooperative games. The traffic example mentioned above, known as selfish
routing in the literature, has a bounded price of anarchy of 4/3 for linear latency
functions [21]. This can be viewed as a positive result. However, many settings
have a drastically large price of anarchy, e.g., Cournot oligopoly games, which
model competition between firms, have a linear price of anarchy for certain
production functions [15].

The pursuit of self-interest however may very well encourage cooperation be-
tween agents. Such cooperation will almost certainly alter the set of stable out-
comes. In an attempt to understand the implications of these issues on the price
of anarchy, recent papers have studied the quality of outcomes which are sta-
ble against either all possible coalitions [2] or against arbitrary but exogenously
defined coalition structures[14],[10] (e.g., the worst possible partitioning of the
agents). The effect of coalition formation on social welfare has been shown to be
extremely unpredictable ranging anywhere from significant improvements [2], to
slight changes [10], all the way to vast degradation [14].

Tackling the issue of cooperation is pivotal in making accurate predictions
about the quality of stable outcomes, especially in settings where coalitions are
likely to arise. However, the theoretical models that have been introduced so far,
focus mostly on the extreme cases, where either any coalition is enforceable or an
arbitrary, static coalition structure is exogenously defined. Here, we introduce a
model that allows for strategically evolving coalition structures and we examine
how endogenously formed coalitions affect the quality of stable outcomes.

We focus on the setting of oligopolistic (Cournot) markets, where coalitions
are known to arise in practice and we define a coalition formation game on
top of the market that captures the dynamic evolution of cooperation. In our
coalition formation game actions correspond to changes in the current coalition
structure, hence the strategy space of the game evolves over time. Specifically, a
new coalition can be created by a merger between two or more existing coalitions.
An existing coalition can also be destroyed due to a deviation of a subset of its
current players who decide either to form a coalition by themselves or join an
existing coalition. For a new coalition to be formed, it must be the case that its
creation benefits all its members.

Given a current coalition structure, we treat each coalition as a super-player
who, as in [14], acts on behalf of its members and tries to maximize its aggregate
utility. Any such game between the super-players (coalitions) has Nash equilibria
and in the case of Cournot oligopolies we show that the utilities of the super-
players at Nash equilibria are unique. This defines the value of a coalition given
the current partition, which is reminiscent of the approach in [20]. Finally we
divide this utility equally among the members of a coalition, since in symmetric
Cournot games all players have equal production costs.
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Given the rules of the game described above, we are interested in stable coali-
tion configurations, i.e., partitions where no profitable deviating actions exist
with regard to the allowed actions we have defined. We analyze the social wel-
fare of the worst such stable partition and compare it to the cost of the optimum
and refer to this ratio as the price of anarchy of our coalition formation game.
We find that the price of anarchy of our coalition formation game for Cournot
oligopolies is Θ(n2/5), where n is the number of firms that participate in the
market, implying a significant improvement of the actual price of anarchy of
Cournot oligopolies which is Θ(n).

The value assignment to coalitions, as described in the previous paragraphs
relies on the assumption that if a coalition structure is stable and hence not
transient, then the super-players coalitions will reach a Nash equilibrium. We
show that we can weaken this assumption considerably. Specifically, we can show
that if the coalitions participate in the Cournot oligopoly repeatedly in a fashion
that minimizes their long term regret then the average utility of the super-players
(coalitions) will converge to their levels at Nash equilibria. Regret compares the
average utility of a player to that of the best fixed constant action with hindsight.
Having no-regret means that no deviating action would significantly improve the
firm’s utility. Several learning algorithms are known to provide such guarantees
([3,23] and references therein). More importantly, the assumption is not tied
to any specific algorithmic procedure, but instead captures successful long-term
behavior. Finally, since the setting of oligopolies markets is in its nature repeated,
this observation significantly strengthens the justification of our model.

Paper Structure. Section 2 offers the definition of Cournot oligopolies and a
detailed exposition of our coalition formation model. In Section 3 we prove tight
bounds for the price of anarchy of the Cournot coalition formation game. Finally,
Section 4 extends our analysis to the case of no-regret behavior.

1.1 Related Work

Quantifying the inefficiency of outcomes when coalitions are allowed to form has
been the subject of much recent work. In [14], the authors initiate the study of
the price of collusion, which is a measure of the inefficiency of the worst possible
partition of the set of players. In [10], both the quality and tractability of stable
outcomes is examined in atomic congestion games with coalitions. The models
above do not raise any strategic issues in the formation of the coalitions, which
are essentially exogenously enforced upon the game. In contrast, we focus on
a strategic setting, where we study only stable partitions, i.e., partitions where
agents have no incentive to deviate, as we define in Section 2.

Other notions of inefficiency have also been analyzed. In [2], the authors ana-
lyze the price of strong anarchy, i.e., the inefficiency of Nash equilibria which are
resilient to deviations by coalitions1. In [5], a different measure is introduced,
namely the price of democracy. This notion captures the inefficiency of a given
1 Unfortunately, for several classes of games including Cournot markets, strong Nash

equilibria do not exist.
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coalition formation process (e.g. a bargaining process) with respect to a coop-
erative game. The authors study this notion in the context of weighted voting
games for certain intuitive bargaining processes. Hence the inefficiency is mea-
sured with regard to the arising partitions in the subgame perfect equilibria of
the corresponding bargaining game.

Regarding Cournot games, it has been long known that the loss of efficiency
at Nash equilibria can be quite high. Earlier studies focused on empirical anal-
ysis [12] whereas more recently, price of anarchy bounds have been obtained
in [11,15]. Collusion and cartel enforcement in Cournot games have been studied
experimentally, see e.g., [22]. Mechanism design aspects of collusion have also
been explored, see [7]. For more on Cournot games and their variants, we refer
the reader to [17].

Dynamic coalition formation has been studied extensively both in the eco-
nomics as well as in the computer science literature. We refer the reader
to [8,4,13,19] and [1][Section 5.1] as well as the numerous references therein.
The main goals of these works have been to provide appropriate game theoretic
solution concepts (both from a cooperative and noncooperative point of view)
and to design intuitive procedures that converge experimentally or theoretically
to such solution concepts.

Conceptually, the closest example to our approach that we know of, is the
work of Ray and Vohra in [20]. The authors propose a solution concept (”binding
agreement”) that allows for the formation of coalition structures and examine
the inefficiency of stable partitions. Unlike in our work, their deviations can
only make the existing coalition structure finer- never coarser. In the case of
symmetric Cournot games, it is shown that there always exists a stable partition
with social welfare O(

√
n) worse than the optimal. However, the social welfare of

the worst stable partition is always at least as bad as that of the worst Nash. In
follow-up work [19], Ray analyzes a class of bargaining processes which assumes
players with infinite foresight and shows that in symmetric Cournot games the
only coalition structure that is stable for all of them, has social welfare Θ(

√
n)

worse than the optimal.
Finally, there has been some recent work on the behavior of no-regret algo-

rithms in Cournot oligopolies. In [9], [18] several convergence results are shown
for different classes of Cournot oligopolies. To our knowledge our paper is the
first to consider the behavior of coalitions which are behaving in a no-regret
fashion in any kind of setting.

2 The Model

We will demonstrate the main point of our work in the context of Cournot games.
The definitions presented in this Section can be easily generalized and applied
to other contexts but we postpone a more general treatment for an extended
version.

Cournot games describe a fundamental model of competition between firms.
They were introduced by Cournot in his much celebrated work [6]. In Cournot
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games, firms control their production levels and by doing so influence the market
prices. In the simplest Cournot model all the firms produce the same good; the
demand for this product is linear in the total production (i.e. the price decreases
linearly with total production); the unit cost of production is fixed and equal
across all firms. The revenue of a firm is the product of the firm’s part of the
market production times the price. Finally, the utility of a firm is equal to its
revenue minus its total production cost. Overproducing leads to low prices, while
at the same time an overly cautious production rate leads to a small market share
and reduced revenue. The balancing act between these two competing tendencies
is known to give rise to a unique Nash equilibrium. More formally:

Definition 1. A linear and symmetric Cournot oligopoly is a noncooperative
game between a set N = {1, 2, ..., n} of players (firms), all capable of produc-
ing the same product. The strategy space of each firm is R+, corresponding to
the quantity of the product that the firm decides to produce. Given a profile of
strategies, q = (q1, ..., qn), the utility of firm i is ui(q) = qip(q)− cqi, where p(q)
is the price of the product, determined by p(q) = max{0, a− b

∑
i qi}, for some

parameters a, b, and c is a production cost, with a > c.

Proposition 1 ([6]). In the unique Nash equilibrium of a Cournot oligopoly
with n players, the production level is the same for all players and equal to
qi = q∗ = (a−c)

b(n+1) . The utility of each player is equal to ui = (a−c)2

b(n+1)2 and the

social welfare is equal to (a−c)2n
b(n+1)2 .

2.1 Cournot Games with a Fixed Partitioning of the Players

Suppose now that the players are given the opportunity to form coalitions and
sign agreements with other firms, as a means of reducing competition and im-
proving on their welfare. Given a partition of the players into coalitions, we can
think of the new situation as a super-game whose super-players are the coali-
tions themselves. The strategy for a coalition, or super-player, is now a vector
assigning a strategy to each of its members. The payoff to the super-player is
the aggregate payoff its members would achieve with their assigned strategies
in the original game. This definition can be used to model coalitions in general
games as in [10,14].

Definition 2. Let G be a game of n players, with Aj being the set of avail-
able actions and uGj (a1, . . . , an) the utility function for each player j. Given a
partitioning Π = (S1, ..., Sk) of the players, then the corresponding super-game
consists of the following:

– k super-players
– The strategy set for super-player Si is the set of vectors −→a Si ∈

∏
j∈Si

Aj.
– The utility of super-player Si is uSi(

−→a S1 , . . . ,
−→a Sk

) =
∑

j∈Si
uGj (a1, . . . , an)

where aj is the strategy assigned to player j by his coalition Si in the coali-
tion’s strategy −→a Si .
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It is straightforward to check that for Cournot games, the super-game with k
super-players is essentially equivalent to a Cournot game with k players2.

Lemma 1. Consider a Cournot oligopoly super-game for a fixed partitioning
Π = (S1, ..., Sk) of players. The players’ utilities and the social welfare in
this game under any strategy profile −→q S1

, . . . ,−→q Sk
(where −→q Si

∈ R|Si|
+ ) are

equal to the corresponding utilities and social welfare of a linear and symmetric
Cournot game with k players where each player i produces the aggregate pro-
duction

∑
j∈Si

(−→q Si)j of the corresponding coalition Si. Furthermore, a strategy
profile for the super-game with the fixed partitioning is a Nash equilibrium if and
only if the k-tuple of the aggregate levels of productions for each coalition is the
unique Nash equilibrium for the Cournot game on k players (without coalitions).

Lemma 1 allows us to use theorems regarding Cournot games to study the Nash
equilibria and welfare of Cournot games with coalitions. Specifically, it implies
that the social welfare is the same in all Nash equilibria of the Cournot game
with a fixed partitioning. Hence we can define the price of anarchy as the ratio
of this social welfare over the optimal social welfare, which is realized when all
agents unite into a single coalition. By combining proposition 1 with lemma 1
we derive:

Lemma 2. The price of anarchy of a Cournot oligopoly with a fixed partition
Π = (S1, ..., Sk) is (k+1)2

4k .

As a consequence, the price of anarchy in the original noncooperative Cournot
oligopoly with n players is very high, namely linear in the number of players, as
has been observed previously [15].

Corollary 1. The price of anarchy in the original Cournot game with n players,
where no coalitions are allowed to form is Θ(n).

2.2 Cournot Coalition Formation Games

Next, we move away from the fixed coalition structure assumption and instead
we will allow the players to dynamically form coalitions. We will call this game
the Cournot coalition formation game. Given some initial partition, players or
sets of players can consider deviations according to the rules that we define
below. As we have seem by Lemma 1, for any resulting partition, say with k
coalitions, the utility of each coalition is unique in all Nash equilibria of the
Cournot game with fixed coalitions, and equal to the utility of a player in the
unique Nash equilibrium of a symmetric Cournot game with k players. In the
coalition formation game, each of the n players, when evaluating a possible action
of hers, estimates her resulting utility to be equal to her equiproportional share
of the Nash equilibrium utility of the coalition to which she belongs, given the
resulting coalition structure. More formally:
2 Henceforth, when it is clear from the context, we will use game instead of super-game

and player instead of super-player.
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Definition 3. We define a coalition formation game on top of a symmetric
Cournot game to consist of the following:

– n players and a current partitioning of them into k coalitions Π = (S1, ..., Sk)
– Given the current partition Π, the allowed moves (deviations) that players

can use along with the consequences for the coalition left behind (i.e., the
non-deviators) are as follows:
Type 1: A subset S′

i of a current coalition Si decides to deviate and form a
new coalition. The rest of the members, if any, of the original coalition (i.e.
Si/S

′
i) dissolve into singletons.3

Type 2: A strict subset S′
i of a current coalition Si decides to leave its current

coalition Si and join another coalition of Π, say Sj. The rest of the members
of the original coalition (i.e. Si/S

′
i) dissolve into singletons.

Type 3: A set of coalitions of Π decide to unite and form a coalition. The
rest of the coalitions remain as they were.

– Given a partition Π and a player i in coalition Sj of Π, denote by uSj(Π),
the uniquely defined Nash utility of coalition Sj in the symmetric Cournot
game with fixed coalition structure Π. The utility of player i in this case, is
defined to be equal to uSj (Π)/|Sj |.

In terms of our assumptions about allowable actions, unlike the work of [20],
we allow both the creation as well as the destruction of coalitions. Furthermore,
we assume that in some of the deviating actions (Type 1 and 2), the leftover
coalition from where the deviation emerged, dissolves into singletons. This is
reminiscent of past approaches[7,13]. Essentially, our assumption encodes that
non-deviators will react cautiously.

We will be interested in analyzing the price of anarchy for partitions in which
no player or set of players has an incentive to change the current coalition struc-
ture. In order to characterize stable coalitions, we need to define when a deviation
is successful. A deviation is successful if and only if the utility of all the players
that induce this deviation strictly increases as a result. More formally:

Definition 4. A deviation is successful iff all the players that facilitate the de-
viation strictly increase their payoff by doing so. Specifically, a deviation of

– Type 1 is successful iff all the players in S′
i increase their payoffs.

– Type 2 is successful iff all the deviating players in S′
i as well as all the

members of the coalition Sj who accept them increase their payoffs.
– Type 3 is successful iff all the members of all the merging coalitions increase

their payoffs.

Definition 5. A partition Π is stable if there exists no successful deviation of
any type.

3 This type of actions also includes the non-action option (i.e. the coalition structure

remains unaltered), when S′
i = Si.
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In the usual manner of the ”price of anarchy” literature, we are interested in
bounding the ratio of the social welfare of the worst stable outcome (i.e. coali-
tion partition) divided by the optimal social welfare. In our setting, the stable
outcomes do not correspond exactly to Nash, since we allow bilateral moves
(e.g. type 3). Nevertheless, we will still use the term price of anarchy to refer
to this ratio, since it characterizes the loss in performance due to the lack of a
centralized authority that could enforce the optimal (grand) coalition.

Definition 6. Given a Cournot coalition formation game, we define the price
of anarchy as the ratio of the social welfare that is achieved at the worst stable
partition divided by the optimal social welfare.

3 The Main Result

The starting point of our work is the observation of Corollary 1 that without
coalition formation the price of anarchy is Θ(n). Hence our goal is to understand
the quality of the worst stable partition structure and compare it to the optimal.
The optimal partition structure is trivially the one where all players have united
in a single coalition, as there is no competition in such a setting. Our main result
is that the price of anarchy is significantly reduced when coalition formation is
allowed. Formally:

Theorem 1. The price of anarchy of the coalition formation game is Θ(n2/5).

3.1 The Proof of the Upper Bound

We begin by proving that the price of anarchy is O(n2/5). We will first establish
this upper bound on a restricted version of our model. In particular, we restrict
each type of the allowed deviations of Definition 3 as follows:
Type 1: A member of a coalition of Π , decides to form a singleton coalition on
his own. The coalition from which the player left dissolves into singleton players.
Type 2: A member of a coalition of Π decides to leave its current coalition Si

(where |Si| ≥ 2), and join another coalition of Π , say Sj. The rest of coalition
Si dissolves into singleton players.
Type 3: A set of singleton players of Π decide to unite and form a coalition.

We will refer to this game as the restricted coalition formation game. Once
we establish the upper bound in the restricted model, it is trivial to extend it
to the general model since the set of stable partitions only gets smaller in the
general model. To analyze the price of anarchy, we will derive a characterization
of the stable partitions. Throughout the analysis we will normally denote the
cardinality of a coalition Si by si = |Si|. The first Lemma below says that for
coalitions of size at least 2, its members need only consider Type 1 deviations.

Lemma 3. Consider a partition Π = (S1, ..., Sk), with k ≥ 2. For a player
that belongs to a coalition of Π of size at least 2, the most profitable deviation
(though not necessarily a successful one) is the deviation where the player forms
a singleton coalition on his own.
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Proof. Consider a coalition Si of Π of size si. Suppose si ≥ 2 and consider a
player j ∈ Si. The available deviations for j are either to form a coalition on
his own or to join an existing coalition. In the former case, the coalition Si will
dissolve and the total number of coalitions in the new game will be k + si − 1.
Hence the payoff of j will be u = (a−c)2

b(k+si)2
. On the other hand, if j goes to an

existing coalition, then Si again dissolves but the total number of coalitions is
now k+ si− 2. Since j will be in a coalition with at least 2 members, the payoff
to j will be at most: u′ ≤ (a−c)2

2b(k+si−1)2 .
We wish to have u ≥ u′. It suffices to show that (k + si)2 ≤ 2(k + si − 1)2,

which is equivalent to (k + si)2 − 4(k + si) + 2 ≥ 0. For this it suffices to show
that (k+ si) ≥ 2 +

√
2. But we have assumed that k ≥ 2 and that si ≥ 2, hence

the proof is complete. ��

The next lemma is based on Lemma 3 and characterizes coalitions of size at least
2, for which there are no successful deviations for its members.

Lemma 4. Consider a partition Π = (S1, ..., Sk), with k ≥ 2. For a coalition
Si with si ≥ 2, there is no successful deviation for its members iff si ≥ k2.

Proof. Consider a coalition of partition Π , say Si with si ≥ 2. The payoff that
a player in Si now receives is u = (a−c)2

sib(k+1)2 . By Lemma 3 the most profitable
deviation for any player of Si is to form a singleton coalition, in which case he
would receive a payoff of u = (a−c)2

b(k+si)2
. In order that no player has an incentive to

deviate, we need that (k + si)2 ≥ si(k + 1)2, which is equivalent to si ≥ k2. ��

We now deal with deviations of players that form singleton coalitions in a parti-
tion Π . By definition, we only need to consider Type 3 deviations for singleton
players.

Lemma 5. Consider a partition Π = (S1, ..., Sk), with k ≥ 2. Suppose that Π
contains k1 singleton coalitions with k1 ≥ 2, and k2 non-singleton ones (k1+k2 =
k). The merge of the k1 singletons is not a successful deviation iff k1 ≤ (k2 +1)2.

Proof. The k1 singletons receive in Π a payoff of (a−c)2/(b(k1 +k2 +1)2). After
the merge, their payoff will be (a − c)2/(k1b(k2 + 2)2). Hence, the merge will
not be successful, iff (a − c)2/(b(k1 + k2 + 1)2) ≥ (a − c)2/(k1b(k2 + 2)2). By
manipulation of terms this is shown to equivalent to (k2 + 1)2 ≥ k1. ��

Finally we show that for ensuring stability there is no need to consider any other
Type 3 deviation of smaller coalitions.

Lemma 6. Consider a partition Π = (S1, ..., Sk), with k ≥ 2 and suppose that
it contains k1 singleton coalitions with k1 ≥ 2, and k2 non-singleton ones. There
is a successful Type 3 deviation iff the merge of all k1 singletons is a successful
deviation.

Proof. One direction is trivial, namely if the merge of all k1 singletons is a
successful deviation. For the reverse direction, suppose there is a successful type
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3 deviation which is not the merge of all the k1 singletons. Let m be the number
of players who merge and suppose 2 ≤ m < k1. By arguing as in Lemma 5, we get
that in order for the deviation to be successful, it should hold that (k1+k2+1)2 >
m(k1 +k2−m+2)2. Let λ = k2 +1 and θ = λ+k1−m. Restating the condition
in terms of λ and θ we get (k1 + λ)2 = (θ + m)2 > m(θ + 1)2, which via a
rearranging of terms can be shown to be equivalent to m > θ2.

However, we have that k1 > m > (λ+k1−m)2 > λ2 = (k2+1)2. By Lemma 5,
this means that the merge of all k1 singletons is also a successful deviation. ��

All the above can be summarized as follows:

Corollary 2. Consider a partition Π. For n ≤ 2, Π is stable iff it is the grand
coalition. For n ≥ 3, suppose Π = (S1, ..., Sk) with k1 singleton coalitions and
k2 non-singleton ones. Then Π is stable iff it is either the grand coalition or the
following hold:

– k1 ≤ (k2 + 1)2.
– For every non-singleton coalition Si, si ≥ k2.

Having acquired a characterization of the stable partitions, we can now analyze
the (pure) price of anarchy of the restricted coalition formation game on top of
a symmetric Cournot oligopoly. We omit the proof due to lack of space.

Theorem 2. The price of anarchy of the restricted coalition formation game
under symmetric Cournot oligopoly is O(n2/5), where n is the total number of
players.

Finally, we come back to the original coalition formation game of Definition 3.
Since in that game we have only enlarged the set of possible deviations with
regard to the restricted coalition formation game, the set of stable partitions
can only decrease. As a result, the price of anarchy for the original game is also
O(n2/5). This completes the proof for the upper bound of Theorem 1.

3.2 The Construction of the Lower Bound

The lower bound is obtained by the construction in the following lemma whose
proof appears in the extended version of our paper:

Lemma 7. For any N , let n be the number: n = �4N4/5��N1/5� + �N2/5�.
Consider a game on n players and a partition of the n players consisting of
k1 = �N2/5� singletons and k2 = �N1/5� coalitions of size s = �4N4/5� each.
This coalition structure is stable for the Cournot coalition formation game.

Since the total number of coalitions in the construction is k = k1 + k2 ≥ N2/5 =
Ω(n2/5), by Lemma 2, we obtain the desired lower bound.

Theorem 3. For any number of players n, there exist stable partitions with cost
Ω(n

2
5 ) the cost of the optimal partition.
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4 Coalition Formation under No-Regret

So far, given a partition Π , we assign to each coalition Si value equal to its
uniquely defined utility at the Nash equilibria of the Cournot game with a fixed
coalition partition Π . The reasoning behind this is that if the coalition partition
Π is not transient, then the players/coalitions will hopefully reach a Nash equi-
librium and hence their uniquely defined utility at it, is a good estimator of how
much they value their current coalition partition.

Here, we argue that we can significantly weaken the assumption that the
players/coalitions will reach an equilibrium. In fact, we will establish that if
the coalitions participate in the Cournot oligopoly repeatedly in a fashion that
minimizes their long term regret then their average utility will converge to their
levels at Nash equilibria. The regret of an online learning algorithm4 is defined as
the maximum over all input instances of the expected difference in payoff between
the algorithms actions and the best action. If this difference is guaranteed to grow
sublinearly with time, we say it is a no-regret learning algorithm [3,23].

This notion captures successful long-term behavior and can be achieved in
practice by several natural learning algorithms [3,23]. Putting all these together,
we have that the values assigned to coalitions by our model, are in excellent
agreement with the average utilities they would actually receive by participating
repeatedly (and successfully) in the market.

Theorem 4. Consider a Cournot oligopoly game with a fixed partitioning of
the n players in k coalitions Π = (S1, ..., Sk). If all k (super-)players employ
no-regret strategies, then their average utilities converge to their Nash levels.

5 Discussion and Future Work

We have introduced a model of coalition formation and have identified tight
bounds on the inefficiency of stable coalitions in oligopolistic markets. Our
approach combines elements of cooperative game theory (e.g. payoff distribu-
tion amongst the members of the coalition) and noncooperative game theory
(e.g. coalitions compete against each other). Such balancing acts of cooperation-
competition are common in real-life economic settings and we believe that this
work opens up a promising avenue for future research. The natural next step
would be to examine the sensitivity of our results to changes in the underlying
coalition formation process, as well as extensions to different classes of games.
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Abstract. Bargaining networks model social or economic situations in
which agents seek to form the most lucrative partnership with another
agent from among several alternatives. There has been a flurry of re-
cent research studying Nash bargaining solutions (also called ‘balanced
outcomes’) in bargaining networks, so that we now know when such so-
lutions exist, and that they can be computed efficiently, even by market
agents behaving in a natural manner.

In this work we study a generalization of Nash bargaining, that mod-
els the possibility of unequal ‘bargaining powers’. This generalization
was introduced in [12], where it was shown that the corresponding ‘un-
equal division’ (UD) solutions exist if and only if Nash bargaining so-
lutions exist, and also that a certain local dynamics converges to UD
solutions when they exist. However, the convergence time for that dy-
namics was exponential in network size for the unequal division case.
Other approaches, such as the one of Kleinberg and Tardos, do not gen-
eralize to the unsymmetrical case. Thus, the question of computational
tractability of UD solutions has remained open.

In this paper, we provide an FPTAS for the computation of UD so-
lutions, when such solutions exist. On a graph G = (V, E) with weights
(i.e. pairwise profit opportunities) uniformly bounded above by 1, our
FPTAS finds an ε-UD solution in time polynomial in the input and 1/ε.
We also provide a fast local algorithm for finding ε-UD solution.

1 Introduction

Bargaining networks serve as a model for various social or economic interactions
where agents seek to form pairs for mutual benefit (e.g. [7,21,14]). Situations
which can be modeled as such include a housing market with buyers and sellers,
a job market with job seekers and employers, or individuals seeking to form rela-
tionships and pair up. Bargaining networks are also referred to in the literature
as ‘assignment markets’ [16] or ‘exchange networks’ [19,13].

A bargaining network is an undirected graph, with weights on the edges rep-
resenting potential profits if the corresponding pair of agents ‘trade’ with each
� Part of this work was done while the author was visiting Microsoft Research New
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other (see Section 1.1 for formal definitions). Profit from a trade is split between
the participating agents as per a mutual agreement. Agents are constrained on
the number of trades they can participate in. A natural postulate in this setting
is that an outcome should be stable, i.e. no pair of agents should be able to do
better by each abandoning a current partner and trading with each other in-
stead. The solution concept of ‘balanced outcomes’ [16,7,13] postulates further
that each pair of agents that trade must play the pairwise Nash bargaining so-
lution, given the behavior of the rest of the network. Thus, the ‘edge surplus’
(cf. Eq. (1)), or the excess over the sum of ‘best alternatives’ for each of the two
parties, is postulated to be split equally. This is called the balance condition.

However, it is natural to expect that such symmetry is rare in practice, and
that some players tend to have greater ‘bargaining power’ than others. Such
bargaining power can arise due to a variety of reasons. For example, a more
patient player has more bargaining power, all else being equal. This phenomenon
is well known in the Rubinstein game [17] where nodes alternately make offers
to each other until an offer is accepted – the node with less time discounting
earns more in the subgame perfect Nash equilibrium.

Empirical findings confirm that there is a lack of symmetry. A recent experi-
mental study of bargaining networks [6] found that individual differences played
a part in determining outcomes, including the observation that patience corre-
lated positively with earnings. A previous study even estimates and ‘corrects’
for the effects of particular subject pairs to better uncover network structure
effects [19]. This leads us to ask if the concept of ‘balanced outcomes’ can be
suitably generalized to account for such asymmetry. It turns out that there is, in
fact a simple generalization to the unsymmetrical case. Our previous work [12]
introduced the generalized concept of unsymmetrical ‘unequal division’ (UD)
solutions, and also characterized the existence of such solutions.

Somewhat surprisingly, the various algorithms devised to compute solutions in
the symmetric setting fail to generalize to the unequal division setting (see also
Section 1.2). For example, the algorithm of Kleinberg and Tardos [13] proceeds
via a sequence of linear programs that maximize the minimum ‘slack’. This does
not seem to have a simple generalization to the asymmetric case. Thus, the
question of computational tractability of solutions for the unsymmetrical case
in bargaining networks has been open. We address this question.

Besides computational tractability, another important question is “Can a mar-
ket find the solution concept on its own?" In this context, one looks for simple,
local mechanisms that converge to a solution concept. Azar et al [1] and our
recent work [12] do this for the bargaining networks problem. However, a cru-
cial issue (see Section 4 of this paper) leads to a worst case exponential time to
convergence in the unsymmetrical case for the algorithms proposed in [1,12]. In
this paper we resolve this issue, providing a new efficient local algorithm for the
unsymmetrical case.

Contributions. This work makes the following contributions in the context of
bargaining networks:
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– We establish computational tractability for bargaining networks with un-
equal bargaining powers by providing the first FPTAS for the corresponding
‘unequal division’ solutions.

– We provide a simple local algorithm and show that it converges fast to
approximate unequal division solutions. Specifically, it is a two phase algo-
rithm: (i) The first phase consists of finding the maximum weight matching
and a stable allocation using belief propagation [4]. (ii) The second phase
consists of unsymmetrical edge balancing of the allocation, converging to an
approximate solution in polynomial time.

We note that the local algorithm we provide is similar to the one given by Azar
et al [1] for the symmetric case. However, critical differences in both the design
and the analysis of the algorithm enable us to overcome limitations of their
approach.

1.1 Model

A bargaining network consists of an undirected graph G = (V,E) with positive
weights on the edges, denoted by (we, e ∈ E) ∈ (0,W ]|E| (where W > 0 denotes
an arbitrary bound on weights). Edges represent potential ‘trades’, and weights
are the corresponding ‘profits’. Players are constrained on the number of trades
they are allowed to participate in. For simplicity, we will work with the one
exchange rule, i.e. each player is allowed to participate in at most one trade.
All our results easily generalize to the case of arbitrary integral constraints on
number of trades for each player.

If a pair of players trade with each other, the profit must be divided between
them. Thus, a trade outcome or just an outcome consists of a matching M
between players, and an allocation γ ∈ R

|V |
+ such that γi + γj = wij for each

pair (i, j) ∈M , and for each node k ∈ V that is unmatched under M , γk = 0.
Given a trade outcome (γ,M), we define implicit offers on all edges not in

M . Let (x)+ ≡ max(x, 0). For any (i, j) ∈ E\M , node i offers node j an amount
(wij − γi)+, the idea being that i should be willing to switch partners if she can
earn even slightly more. Thus, each node has a set of well defined ‘alternatives’
to its current partner in M . A natural postulate is that an outcome should be
stable, i.e. for each node i, γi should be no smaller than the best alternative of
node i (if i is unmatched under M , she should receive no non-zero offers). The
stability condition can be concisely written as γi +γj ≥ wij for all (i, j) ∈ E\M .

Let ∂i denote the set of neighbors of node i in G. For each edge (ij) ∈M , we
define the ‘edge surplus’ as the excess of wij over the sum of best alternatives,
i.e.,

Surpij(γ) = wij − max
k∈∂i\j

(wik − γk)+ − max
l∈∂j\i

(wjl − γl)+ . (1)

Now each node in the network may have an inherent ‘bargaining power’, such
that Surpij should be split in a manner determined by the bargaining powers
of i and j. We adopt a general model where the surplus is postulated to be
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split as per a fraction rij ∈ (0, 1) for each matched edge (ij) ∈ M . We call
this correct division. Each rij can be an arbitrary number in the interval (0, 1),
independently for all edges.

Definition 1 (Problem instance). A problem instance I consists of an undi-
rected graph G = (V,E), with positive weights (we)e∈E and split fractions
(rij)(ij)∈E ∈ (0, 1)|E|. An arbitrary direction is chosen on each edge for pur-
poses of specifying the split fraction. If rij is specified, then it is implicit that
rji = 1− rij .

Definition 2 (Correct division). An outcome (γ,M) is said to satisfy correct
division if, for all (ij) ∈M ,

γi = max
k∈∂i\j

(wik − γk)+ + rijSurpij , (2)

where Surpij is defined by Eq. (1).

Note that it follows from Eq. (2) and Eq. (1) that

γj = wij − γi = max
l∈∂j\i

(wjl − γl)+ + rjiSurpij .

Definition 3 (UD solution). An outcome (γ,M) is said to be an unequal
division (UD) solution if it is stable and satisfies correct division (cf. Defini-
tion 2).

1.2 Related Work

We present here a short review of relevant related work.
Recall the linear programming relaxation of the maximum weight matching

problem

maximize
∑

(i,j)∈E

wijxij ,

subject to
∑
j∈∂i

xij ≤ 1 ∀i ∈ V, xij ≥ 0 ∀(i, j) ∈ E . (3)

The dual problem to (3) is:

minimize
∑
i∈V

yi,

subject to yi + yj ≥ wij ∀(i, j) ∈ E, yi ≥ 0 ∀i ∈ V (4)

Sotomayor [20] characterized the existence of stable outcomes in exchange
networks.
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Lemma 4 ([20,13]). Stable outcomes exist if and only if the LP (3) has an
integral optimum. Further, if (γ,M) is a stable outcome, then γ is an optimum
solution of the dual LP (4) and M is a maximum weight matching. Conversely,
if the LP (3) has an integral optimum, then for any maximum weight matching
M∗ and any optimum y∗ of the dual LP (4), (y∗,M∗) is a stable outcome.

The above lemma follows from the stability condition γi + γj ≥ wij for all
(ij) ∈M . It implies, in particular, that all instances on bipartite graphs possess
stable outcomes.

There have been several recent works on the symmetrical ‘balanced outcome’
solution concept (corresponding to rij = 1/2 for all (ij) ∈ E), following a paper
by Kleinberg and Tardos [13,1,3,12].

Though our previous work [12] focuses on the symmetrical case, it also intro-
duces unequal division solutions. Further, it shows that unequal division solu-
tions exist if and only if Nash bargaining solutions exist.

Theorem 5 ([12]). A problem instance admits a UD solution if and only if it
admits a stable outcome (which occurs iff the LP (3) has an integral optimum).

This generalizes a result of Kleinberg and Tardos on existence of balanced out-
comes [13].

[12] also shows that a certain local dynamics converges to UD solutions, when
such solutions exist. However, the bound on time to convergence is exponential
in the network size (in contrast to the symmetrical case), and this bound turns
out to be tight in worst case (see Section 4). Here, we resolve this issue, providing
a new FPTAS for computing approximate UD solutions.

Relationship to Cooperative games. Rochford [16] and recent work by
Bateni et al [3] show that the bargaining network setting can be viewed as a
cooperative game, making this problem susceptible to a large body of literature.
This literature defines various solution concepts such as nucleolus, kernel and
prekernel, and also describes algorithms to compute these solutions for various
classes of games.1 It is noteworthy that the solution concepts studied are typ-
ically symmetric in the players. Whereas such solution concepts may form a
reasonable predictive framework in the absence of player specific information,
we also want to ask “Can the players find an appropriate ‘solution’ when there is
asymmetry?" To this end, we would like to establish computational tractability
in the asymmetric case.

However, a little investigation reveals that the approaches devised to compute
various (symmetric) solution concepts rely heavily on the symmetry in their
respective definitions. For instance, the polynomial time algorithm in Faigle et al
[8] for finding a point in the least core intersection prekernel uses two components
–a transfer scheme and a linear programming based update– neither of which
work in the unsymmetrical case.

1 [3] shows that stable, balanced outcomes in bargaining networks correspond to the
core intersection prekernel.
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The situation is similar with regard to iterative schemes that converge to a
solution concept. For the general cooperative game problem, Maschler proposed
a simple transfer scheme to approximate points in the prekernel. A version of this
scheme was shown to converge by Stearns, and a simpler proof of convergence was
provided by Faigle et al [8], in the general cooperative game setting. However,
both proofs suffer from two drawbacks: (a) they depend on the symmetry of the
solution concepts, (b) the bound on convergence time (if any) is exponential in
network size. Essentially the same transfer scheme was used in Azar et al [1] for
bargaining networks (see [3] for the connection), and the proof of convergence
suffered from the same drawbacks.

The current work addresses computational tractability for the asymmetric
case in the bargaining network setting, where an appropriate asymmetric solution
concept can be readily defined.

1.3 Outline of the Paper

We present our FPTAS in Section 2, along with a proof that it returns an ε-UD
solution in polynomial time. We present a fast local algorithm for this problem
in subsection 2.1. Each of the algorithms involve an iterative ‘rebalancing’ phase.
Section 3 contains proofs of some key Lemmas used. In Section 4, we demonstrate
the importance of ensuring that we stay within the subset of stable allocations
in our iterative updates. This insight is critically used in our construction of an
FPTAS.

2 Main Results

First we define an approximate version of correct division, asking that Eq. (2)
be satisfied to within an additive ε, for all matched edges.

Definition 6 (ε-Correct division). An outcome (γ,M) is said to satisfy ε-
correct division if, for all (ij) ∈M ,

|γi − max
k∈∂i\j

(wik − γk)+ − rijSurpij(γ)| ≤ ε , (5)

where Surpij(·) is defined by Eq. (1).

We define approximate UD solutions as follows:

Definition 7 (ε-UD solution). An outcome (γ,M) is an ε-UD solution for
ε ≥ 0 if it is stable and it satisfies ε-correct division (cf. Definition 6).

It follows from Lemma 4 that ε-UD solutions exist iff the LP (3) admits an inte-
gral optimum. This is the same as the requirement for existence of UD solutions
(see Theorem 5). Our main result is the following:

Theorem 8. There is an algorithm that is polynomial in the input and 1/ε,
such that for any problem instance with weights uniformly bounded by 1, i.e.,
(we, e ∈ E) ∈ (0, 1]|E|:
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– If the instance admits a UD solution, the algorithm finds an ε-UD solution.
– If the instance does not admit a UD solution, the algorithm returns the mes-

sage unstable.

Our approach to finding an ε-UD solution consists of two main steps:

1. Find a maximum weight matching M∗ and a dual optimum γ (solution to
the dual LP (4)) . Thus, form a stable outcome (γ,M∗). Else certify that
the instance has no UD solution.

2. Iteratively update the allocation γ without changing the matching. Updates
are local, and are designed to converge fast to an allocation satisfying the
ε-correct division solution while maintaining stability. Thus, we arrive at an
ε-UD solution.

As mentioned earlier, this is similar to the approach of [1]. The crucial differences
(enabling our results) are: (i) we stay within the space of stable outcomes, (ii)
our analysis of convergence.

First let us focus on obtaining an FPTAS using the steps above. Later we
describe how to make the algorithm local.

Step 1 can be carried out by finding a maximum weight matching M∗ (see,
e.g., [9]) and also solving the the dual linear program (4). For the dual LP, let v
be the optimum value and let γ be an optimum solution. We now use Lemma 4.
If the weight of M∗ is smaller than v, we return unstable, since we know that
no stable outcome exists, hence no UD solution (or ε-UD solution) exists. Else,
(γ,M∗) is a stable outcome. This completes step 1! The computational effort
involved is polynomial in the input size. All unmatched nodes have earnings
of 0.

In step 2, we fix the matching M∗, and rebalance the matched edges iter-
atively. It turns out to be crucial that our iterative updates preserve stability.
Section 4 demonstrates that the rebalancing procedure can take an exponentially
large time to reach an approximate UD solution if stability is not preserved.

We now motivate the rebalancing procedure briefly, before we give a detailed
description and state results. Imagine an edge (i, j) ∈M∗. Since we start with a
stable outcome, the edge weight wij is at least the sum of the best alternatives,
i.e. Surpij ≥ 0. Suppose we change the division of wij into γ′i, γ′j so that the
Surpij is divided as per the prescribed split fraction rij . Earnings of all other
nodes are left unchanged. Since rij ∈ (0, 1), γ′i is at least as large as the best
alternative of i, as was the case for γi. This leads to γ′i+γk ≥ wik for all k ∈ ∂i\j.
A similar argument holds for node j. In short, stability is preserved !

It turns out that the analysis of convergence is simpler if we analyze syn-
chronous updates, as opposed to asynchronous updates as described above.
Moreover, we find that simply choosing an appropriate ‘damping factor’ allows
us to ensure that stability is preserved even with synchronous updates. We use
a powerful technique introduced in our recent work [13] to prove convergence.

Table 1 shows the algorithm Edge Rebalancing we use to complete step 2.
Note that each iteration of the loop can requires O(|E|) simple operations.
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Table 1. Local algorithm that converts stable outcome to ε-UD solution

Edge Rebalancing
(
Instance I, Stable outcome (γ, M),

Damping factor κ, Error target ε
)

1: Check κ ∈ (0, 1/2], ε > 0, (γ, M) is stable outcome
2: If (Check fails) Return error
3: γ0 ← γ

4: t ← 0

5: Do
6: ForEach (i, j) ∈ M

7: γreb
i ← maxk∈∂i\j(wik − γt

k)+ + rijSurpij(γ
t)

8: γreb
j ← maxl∈∂j\i (wjl − γt

l )+ + rjiSurpij(γ
t)

9: End ForEach
10: ForEach i ∈ V that is unmatched under M

11: γreb
i ← 0

12: End ForEach
13: If

(‖γreb − γt‖∞ ≤ ε
)

Break Do
14: γt+1 = κγreb + (1 − κ)γt

15: t ← t + 1

16: End Do
17: Return (γt, M)

Correctness of Edge Rebalancing
It is easy to check that (γreb,M) and (γt,M) are valid outcomes for all t. We
show that γt computed by Edge Rebalancing is, in fact, a stable allocation
(proof in Section 3):

Lemma 9. If Edge Rebalancing is given a valid input satisfying the ‘Check’
on line 1, then (γt,M) is a stable outcome for all t ≥ 0.

Convergence of Edge Rebalancing
Note that the termination condition ‖γreb − γt‖∞ ≤ ε on Line 13 is equivalent
to ε-correct division. We show that the rebalancing algorithm terminates fast
(sketch of proof in Section 3):

Lemma 10. For any instance with weights bounded by 1, i.e. (we, e ∈ E) ∈
(0, 1]|E|, if Edge Rebalancing is given a valid input, it terminates in T iter-
ations, where

T ≤
⌈

1
πκ(1− κ)ε2

⌉
. (6)

and returns an outcome satisfying ε-correct division (cf. Definition 6). Here π =
3.14159 . . .

Using Lemmas 9 and Lemmas 10, we immediately obtain our main result,
Theorem 8.
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Proof (of Theorem 8). We showed that step 1 can be completed in polynomial
time. If the instance has no UD solutions then the algorithm returns unstable.
Else we obtain a stable outcome and proceed to step 2.

Step 2 is performed using Edge Rebalancing. The input is the instance,
the stable outcome obtained from step 1, κ = 1/2 (for example) and the target
error value ε > 0. Lemmas 9 and 10 show that Edge Rebalancing terminates
after at most �1/(πκ(1 − κ)ε2)� iterations, returning a outcome that is stable
and satisfies ε-correct division, i.e. an ε-UD solution. Moreover, each iteration
requiresO(|E|) simple operations. Hence, step 2 is completed in O(|E|/ε2) simple
operations.

The total number of operations required by the entire algorithm is thus poly-
nomial in the input and in (1/ε).

2.1 A Fast Local Algorithm

Our algorithm Edge Rebalancing for step 2 is local/distributed, with each
matched edge in the graph being updated according to the same, time invariant
rule. This rule is a simple function of the edge parameters (weight, split frac-
tion), and the current earnings of nodes in the 1-hop neighborhood. It is also
worth mention that since stability is preserved, no player ever has incentive to
change her partner. Thus, Edge Rebalancing constitutes a plausible model
for behavior of market participants, after they have attained a stable outcome.

Step 1 can also be accomplished by a fast local algorithm, when the LP (3)
has a unique optimum (this condition is generic, see the discussion in [11]).
The local algorithm we use is belief propagation for maximum weight matching
[4,5,18]. This algorithm yields both the maximum weight matching M and a
stable allocation. We omit a detailed discussion in the interest of space. The
reader is encouraged to look at the full version of the paper [11].

We mention here that [11] includes a proof of the following:

Claim 11. Given a maximum weight matching M∗ for an instance possessing
a UD solution, an ε-UD solution can be constructed by a local algorithm with
computational effort poly(|V |, 1/ε).
Thus, we show a local, polynomial time ‘reduction’ from the problem of finding
an ε-UD solution to the sub-problem of finding a maximum weight matching.

3 Proofs of Lemmas 9 and 10

Proof (of Lemma 9). We prove this lemma by induction on time t. Clearly
(γ0,M) is a stable outcome, since the input is valid. Suppose (γt,M) is a stable
outcome.

Consider any (i, j) ∈ M . It is easy to verify that γreb
i + γreb

j = wij , for γreb

computed from γt in Lines 6-9 of Edge Rebalancing. Also, we know that
γt

i + γt
j = wij . It follows that γt+1

i + γt+1
j = wij as needed. For i ∈ V unmatched

under M , γt
i = 0 by hypothesis and as per Lines 10-12, γreb

i = 0 ⇒ γt+1
i = 0 as

needed.
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Consider any (i, k) ∈ E\M . We know that γt
i + γt

k ≥ wik. We want to show
the corresponding inequality at time t+ 1. Define σt

ik ≡ γt
i + γt

k − wik ≥ 0.

Claim. γreb
i ≥ γt

i − σt
ik.

If we prove the claim, it follows that a similar inequality holds for γreb
k , and hence

γreb
i + γreb

k ≥ γt
i + γt

k − 2σik = wik − σt
ik. It then follows from the definition in

Line 14 that γt+1
i + γt+1

k ≥ wik, for any κ ∈ (0, 1/2]. This will complete our
proof that (γt+1,M) is a stable outcome.

Let us now prove the claim. Suppose i is matched under M . Using the defini-
tion in Line 7 (Line 8 contains a symmetrical definition), γreb

i ≥ maxk′∈∂i\j(wik′−
γt

k′)+ since Surpik(γt) ≥ 0. Hence,

γreb
i ≥ (wik − γt

k)+ ≥ (wik − γt
k) = γt

i − σt
ik ,

as needed. If i is not matched under M , then γt
i = γreb

i = 0, so the claim follows
from σt

ik ≥ 0.

Proof (of Lemma 10, sketch only). This result is proved using the powerful tech-
nique introduced in our recent work [12]. The iterative updates of Edge Re-
balancing can be written as

γt+1 = κTγt + (1 − κ)γt , (7)

where T is a self mapping of the (convex) set of allocations corresponding to match-
ingM ,AM ⊆ [0, 1]|E|. The ‘edge balancing’ operator T essentially corresponds to
Lines 6-9 in Table 1. It is fairly straightforward to show that T is non-expansive
with respect to sup norm. The main theorem in [2] then tells us that

‖Tγt − γt‖∞ ≤ 1√
πκ(1− κ)t

. (8)

The result follows.
For the full proof, see [11].

Remark 11. It we remove the termination condition on Line 12 of Edge Rebal-
ancing (and iterate forever), [10, Corollary 1] tells us that we always converge
to γ∗ such that Tγ∗ = γ∗, i.e., we reach an exact UD solution. (Note that Lemma
9 gives stability of the iterates, and stability of the limit point γ∗ follows.) As a
corollary, we recover Theorem 5 on existence of UD solutions.

4 Stability Is Critical

This section demonstrates that our approach of starting with a stable allocation,
and ensuring that stability is preserved, plays a critical role in our construction
of an FPTAS using iterative edge rebalancing.

It turns out that (unstable) approximate fixed points of the edge balancing
operator T (cf. Eq. (7)) do not correspond to approximate UD solutions in
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general.2 Let n ≡ |V |. We show the following in the full version [11, Appendix
C] via a constructive proof: There is a sequence of instances (In, n ≥ 8), such that
for each instance in the sequence the following holds. (a) The instance admits a
UD solution. (b) There is an outcome (γ,M∗) on a maximum weight matching
M∗ such that:

1. The outcome satisfies ε-correct division for ε = 2−cn.
2. (Stability violation) There is a ‘bad’ edge (i, j) /∈ M∗ such that γi + γj ≤
wij − 1,

where c > 0 is a constant. Split fractions are bounded within [r, 1−r] for arbitrary
desired r ∈ (0, 1/2) (c depends on r). Also, the edge weights are uniformly
bounded by a constant W (r).

We now describe the implications of such a construction. Suppose we perform
edge balancing on the example outcome as per Eq. (7), starting with γ0 ≡ γ.
We know that ‖Tγ0 − γ0‖∞ ≤ ε, since γ0 satisfies ε-correct division. Define
Tκ ≡ κT+(1−κ)I, where I is the identity operator. Eq. (7) simply corresponds to
iterating with Tκ, i.e. γt = Tt

κγ
0. Clearly, ‖Tκγ

0−γ0‖∞ ≤ ε. Also, it follows from
non-expansivity of T that Tκ is non-expansive in sup norm. As a consequence
‖Tκγ

t−γt‖∞ ≤ ε for all t ≥ 0. Thus, successive iterates differ by at most ε in sup
norm, meaning that no coordinate changes by more than ε per iteration. Suppose
we want to reach a configuration that satisfies both (1/2)-stability (γk + γl ≥
wkl − 1/2 for each (k, l) ∈ E) and (1/2)-correct division. One of γi and γj must
change by at least 1/4 for the ‘bad’ edge (i, j) to satisfy (1/2)-stability, i.e.,
γi + γj ≥ wij − 1/2. But this will take at least 1/(4ε) = 2Ω(n) iterations!

Thus, it can take exponential time to reach an approximate UD solution if we
do not stay within the space of stable outcomes while rebalancing.

Remark 12. Essentially the same construction and reasoning shows that the dy-
namics of [12] can take exponential time to reach an ε-UD solution.

5 Further Directions

It remains open whether there is a polynomial algorithm that finds an exact UD
solution. Second, it would be interesting to understand the structure of unequal
division solutions, and how it differs from the structure of balanced outcomes.
Third, it would be interesting to identify other classes of games where solution
concepts that are not symmetrical in the players can be naturally defined and
studied. Finally, though we have found a fast local algorithm for finding ε-UD
solutions, it does not constitute a natural description of market behavior of the
type proposed in [12].

Acknowledgements. The author would like to thank Andrea Montanari,
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2 This is in stark contrast to the situation for the balanced case (cf. [12, Theorem 4]).
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Value of Learning in Sponsored Search Auctions
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Abstract. The standard business model in the sponsored search mar-

ketplace is to sell click-throughs to the advertisers. This involves running

an auction that allocates advertisement opportunities based on the value

the advertiser is willing to pay per click, times the click-through rate of

the advertiser. The click-through rate of an advertiser is the probability

that if their ad is shown, it would be clicked on by the user. This quantity

is unknown in advance, and is learned using historical click data about

the advertiser. In this paper, we first show that in an auction that does

not explore enough to discover the click-through rate of the ads, an ad-

vertiser has an incentive to increase their bid by an amount that we call

value of learning. This means that in sponsored search auctions, explo-

ration is necessary not only to improve the efficiency (a subject which

has been studied in the machine learning literature), but also to improve

the incentive properties of the mechanism. Secondly, we show through

an intuitive theoretical argument as well as extensive simulations that a

mechanism that sorts ads based on their expected value per impression

plus their value of learning, increases the revenue even in the short term.

1 Introduction

Online advertising provides the major revenue source for most online services
today. The most common standard in the online advertising marketplace is Pay-
Per-Click, which means that the publisher sells “click-throughs” to the advertis-
ers. An advertiser is charged only when a user clicks on their ad. The allocation
and pricing of such ads are often done through an auction: each advertiser spec-
ifies the maximum they are willing to pay for a click-through, and the auction
mechanism decides which ad(s) should be shown and how much each of them
should pay in the event of a click. The most prominent example of online ad
auctions is sponsored search auctions, which allocate the ad space on the side of
search results pages of major search engines.

The efficient allocation of ad space in a pay-per-click system is based on the
expected value from each impression of the ad. This expected value is the product
of the advertiser’s value for each click and the probability that if the ad is shown,
it will be clicked on. Estimating the latter parameter, called the Click-Through
Rate (CTR), is a central piece of an ad allocation engine.

The problem of efficiently allocating the ad space and simultaneously esti-
mating the CTR for future is essentially a form of the multi-armed bandits
problem [4]. In this problem, the task is to strike a balance between exploring,

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 294–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Value of Learning in Sponsored Search Auctions 295

i.e., showing an ad to get a better estimate of its CTR, and exploiting, i.e.,
showing ads that have the best performance, according to our current estimates
of the CTRs. There are several papers that give explore-exploit algorithms for
this problem from a machine learning perspective [1,6,7,14,15,16,11]. The goal
of this paper is not to give yet another explore-exploit algorithm for sponsored
search (even though our analysis involves designing an algorithm for a simple
setting). Instead, we seek to make two points in this paper: First, even a second-
price auction, which is incentive compatible in most settings, fails to be incentive
compatible when the mechanism does not perform exploration. Specifically, in
such a mechanism, an advertiser has an incentive to increase their bid by some
amount, which we call their value of learning. This means that performing explo-
ration improves not only the efficiency of the mechanism, but also its incentive
properties. Furthermore, this suggests an exploration-exploitation mechanism
that is quite natural from an economic standpoint: sort the ads based on their
expected value per impression plus their value of learning. Multi-armed ban-
dits algorithms based on Upper Confidence Bounds [3,4] can be considered in
this vein.

Second, despite the intuition that “exploration has some short-term cost”, we
show that incorporating value of learning in the auction mechanism (the way
described above) can lead to a higher revenue even in the short term. In other
words, in a mechanism that performs exploration by incorporating value of learn-
ing, the cost of learning is paid by the advertisers, and not by the seller. This is
based on the intuition that value of learning gives higher boost to advertisers in
lower slots, thereby helping to level the playing field among advertisers compet-
ing for the same ad space and increasing the competition. We show this through
a non-rigorous theoretical argument (as making the statement rigorous requires
arguing about a complex Bayesian model), as well as extensive simulations using
real advertisers’ data.
Previous Work. In addition to the vast literature on the explore-exploit al-
groithms for various forms of the multi-armed bandit problem [1,6,7,14,15,16,11],
the paper by Goel and Munagala [10] is related to our work. They attack the
problem of uncertainty about click-through rates using a different approach, by
allowing the advertiser to make a per-impression as well as a per-click bid.

2 Model and Notations

We consider a setting where n advertisers (or bidders) are competing to be placed
in one of the m slots, numbered 1 through m. Advertiser i has a value vi and
bids bi for a click. We assume a separable model for click-through rates, i.e.,
there is a value γj associated with each slot j = 1, . . . ,m (called the position
bias of slot j) and a value λi for each advertiser (called the clickability of this
advertiser), such that if the ad of advertiser i is displayed in position j, it will
be clicked on with probability γjλi.1 We assume that the slots are numbered
1 This is assumed to be independent of other ads placed on the page; for models that

do not make this assumption see [9,2,12].
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in decreasing order of their position bias, i.e., γ1 ≥ γ2 ≥ . . . ≥ γm. The exact
clickability of advertisers are not known, and the system tries to estimate these
quantities based on the past performance of the ad. We denote the estimate of
the clickability of advertiser i by λ̂i. Note that this value can change as time
progresses.

The most common mechanism for allocating the ad slots to the advertisers
is the so called generalized second price auction (GSP) [8,17]. In this mecha-
nism, the advertisers are ordered in their decreasing order of their λ̂ibi, and slots
1 through m are allocated to the top m advertisers in this order (or are left
empty if the number of advertisers is less than m). The amount the i’th adver-
tiser is charged in the event of a click is the minimum this advertiser could bid
and still win the same slot. This means that if advertiser i is allocated slot i,
the price per click for this advertiser is pi := λ̂i+1bi+1/λ̂i. As shown in [8,17],
bidding truthfully is not an equilibrium in the GSP mechanism, i.e., the adver-
tisers have incentive to submit bids other than their true value per click, but it
has full-information equilibria which coincide with the outcome of the Vickrey-
Clark-Groves (VCG) mechanism, which is a well-knwon incentive compatible
mechanism. In the case that there is only one slot (m = 1), the GSP mechanism
is the same as the second-price auction, which is incentive compatible. In the
next section, we will focus on this case to separate out the strategic issues of
the GSP mechanism from the incentive issues resulting from the uncertainty in
click-through rates.

3 Incentives in Auctions without Exploration

In this section, we look at the second price auction described in the previous
section from the perspective of one advertiser, and show that in a repeated
second-price auction without exploration, when there is uncertainty about the
clickability of the advertiser, it is no longer in the advertiser’s best interest to
bid her value per click. Specifically, the advertiser has the incentive to increase
her bid in order to induce the mechanism to explore her. This is done through
a simple model defined below.

We assume that the advertiser i faces a price per impression distribution
Dp, i.e., the highest bid times click-through rate among other advertisers is
distributed according to Dp. We make the simplifying assumption that this dis-
tribution does not change over time and is independent in each time step. The
advertiser has a value per click vi, and a clickability λi, which is distributed
according to a prior Dλ. Neither the advertiser nor the auctioneer knows the
value of λi. Instead, an unbiased estimate λ̂i of this value is calculated using
Bayesian updating given the current history, i.e., the estimate λ̂i at any point
in time is equal to the expected value of λi given the prior Dλ and the observed
click/no-click history. In each time step, the advertiser decides how much to bid
(the bid bi can change as time progresses); then a price p is picked according
to Dp, and if λ̂i ≥ p, i’s ad is displayed and i is charged p/λ̂i in the event of a
click. Both advertiser i and the auctioneer will observe whether or not the ad
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is clicked on. We assume an infinite time horizon (i.e., an infinite sequence of
auctions) and a discount factor of δ < 1.

In the above model, if there is no uncertainty about the clickability λi (i.e., if
Dλ has a singleton support), the optimal strategy for advertiser i to bid bi = vi
in every round. In the rest of this section, we show that this is not the case
in general where there is uncertainty about λi. To demonstrate this point, we
calculate the advertiser’s optimal strategy as a recurrence and prove that it is
non-negative in general. We will also give a lower bound for the advertiser’s
optimal bid in the case of uniform distributions.

At any point, the state can be described by two numbers (k,N), indicating a
state where the ad of the advertiser has been shown N times and out of these
impressions, k of them have lead to clicks. Based on the prior Dλ, the posterior
distribution of the clickability at this state can be computed. Let λ̂k,N denote
the expected value of this posterior distribution. Let U(k,N) denote the optimal
utility of an infinite sequence of auctions, starting from this posterior distribution
on λ. We obtain a recurrence relation for U as follows: let b denote the bid of
the advertiser in the first round. If p < λ̂k,N b, then the advertiser wins and has
to pay p/λ̂k,N in the event of a click. By the definition of λ̂, this means that the
advertiser pays p per impression in expectation. Therefore, the total utility of
the advertiser in this round can be written as:

Pr[p < λ̂k,N b](vλ̂k,N − E[p|p < λ̂k,N b]).

We denote the above value by g(λ̂k,N , b). Denoting the pdf and the cdf of Dp by
f(.) and F (.) respectively, the above expression can be written as:

g(λ̂k,N , b) =
∫ λ̂k,N b

0

(vλ̂k,N − p)f(p)dp. (1)

If the ad is shown (which happens with probability F (λ̂k,N b)), it is either clicked
on (with probability λ̂k,N ), or not (with probability 1− λ̂k,N ); leading us to one
of the states (k + 1, N + 1) or (k,N + 1). Therefore, the overall utility of the
advertiser can be written as:

U(k,N) = max
b

{
g(λ̂k,N , b)

+ δF (λ̂k,N b)
(
λ̂k,NU(k + 1, N + 1) + (1− λ̂k,N )U(k,N + 1)

)
+ δ(1 − F (λ̂k,N b))U(k,N)

}
. (2)

This implies:

U(k,N) =
1

1− δ max
b

{
g(λ̂k,N , b) + δF (λ̂k,N b)Δ(k,N)

}
, (3)
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where

Δ(k,N) := λ̂k,NU(k + 1, N + 1) + (1− λ̂k,N )U(k,N + 1)− U(k,N). (4)

Intuitively, Δ(k,N) indicates the advertiser’s value for the information she ob-
tains by observing the outcome of one additional impression. We take the deriva-
tive of the expression in Equation (3) with respect to z = λ̂k,nb to compute the
optimal bid. Using (1), this derivative can be written as:

∂(g(λ̂k,N , b) + δF (λ̂k,N b)Δ(k,N))
∂z

= (vλ̂k,N − z)f(z) + δf(z)Δ(k,N),

= f(z)(vλ̂k,N + δΔ(k,N)− z).

Given that f(z) is non-negative, the root of the linear term in the paranthesis
satisfies the second-order condition and is therefore a maximizer of the function.
Thus, the optimal bid of the advertiser can be written as:

b∗ = v +
δ

λ̂k,N

Δ(k,N). (5)

This shows that the optimal bid of the advertiser is not the true value per click
v, but the value per click plus some additional term. This additional term is
proportional to the information value of one additional impression, and can be
expressed with a recurrence relation. In general, this recurrence is hard to solve
explicitly. However, here we prove that the optimal bid of the advertiser is always
greater than or equal to her value per click. Later, we will give a lower bound
on the optimal bid in the special case of uniform distributions.

Theorem 1. In the above model of repeated auctions, the optimal bid of the
advertiser in every state (k,N) is at least v.

Proof. By Equation (5), we need to prove that Δ(k,N) ≥ 0. In other words, we
need to show that the expected optimal revenue starting from the state (k,N)
(which we call scenario 1) is less than the optimal revenue when we first start
from (k,N), observe the outcome of one impression, and then proceed (we call
this scenario 2).2 We prove this inequality by analyzing the strategy for scenario
2 that simulates the optimal strategy of scenario 1. This gives a lower bound on
the optimal strategy in scenario 2.

To simulate the optimal strategy of scenario 1 in scenario 2, in each step we
take the optimal bid b of scenario 1, and submit a bid in scenario 2 that leads
to the same expected bid per impression. For example, in the first step (i.e.,

2 Note that this statement is not trivial, since the additional information (the outcome

of one impression) is observed by both the advertiser and the auctioneer. While

the additional information enables the advertiser to make more informed decisions

to improve her utility, it also enables the auctioneer to allocate and price future

impressions more accurately. It is not clear a priori whether the latter effect helps

or hurts the advertiser.
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when we are in state (k,N) in scenario 1), the corresponding bid in scenario 2
is either bλ̂k,N/λ̂k+1,N+1 or bλ̂k,N/λ̂k,N+1, depending on whether the state is
(k + 1, N + 1) or (k,N + 1). The expected utility of the advertiser in scenario 2
in this step can be written as

λ̂k,Ng(λ̂k+1,N+1, bλ̂k,N/λ̂k+1,N+1) + (1− λ̂k,N )g(λ̂k,N+1, bλ̂k,N/λ̂k+1,N+1)

Using (1), this can be written as:

λ̂k,N

∫ λ̂k,N b

0

(vλ̂k+1,N+1 − p)f(p)dp+ (1− λ̂k,N )
∫ λ̂k,N b

0

(vλ̂k,N+1 − p)f(p)dp

=
∫ λ̂k,N b

0

(
v(λ̂k,N λ̂k+1,N+1 + (1 − λ̂k,N )λ̂k,N+1)− p

)
f(p)dp

Using the definition λ̂k,N as the posterior probability of getting a click condi-
tioned on having had k clicks out of the first N impressions, it is easy to show
that

λ̂k,N λ̂k+1,N+1 + (1− λ̂k,N )λ̂k,N+1 = λ̂k,N . (6)

Therefore, the expected utility in the first step in scenario 2 is equal to∫ λ̂k,N b

0

(vλ̂k,N − p)f(p)dp = g(λ̂k,N , b),

which is the same as the expected utility in the first step in scenario 1. Similarly,
in any step the simulated strategy in scenario 2 obtains the same expected payoff
as in scenario 1. Thus, Δ(k,N) ≥ 0.

The above theorem only shows that the optimal bid of the advertiser is never
smaller than her true value. To show that this bid is sometimes strictly larger
than the value, we focus on the case of uniform distributions: We assume a
uniform prior Dλ = U [0, 1] on the clickability and a uniform price distribution
Dp = U [0, 1]. Straightforward calculations using the Bayes rule and the prior
Dλ shows that the posterior probability density for the clickability λ in a state
(k,N) is

(n+ 1)
(
n

k

)
λk(1− λ)N−k.

The expected value of λ given this posterior is λ̂k,N = k+1
N+2 , and the function

g(.) from (1) can be written as g(λ̂k,N , b) = λ̂2
k,N b(v − b

2 ).

Theorem 2. In the above model of repeated auction, the optimal bid of the
advertiser in every state (k,N) is strictly larger than v. More specifically, we
have Δ(k,N) = Ω(N−2).

Proof (Proof Sketch). As in the proof of Theorem 1, we need to bound the
difference between the optimal expected utility of scenarios 1 and 2. Again, we
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do this by taking the optimal strategy in scenario 1, and simulating it in scenario
2. Unlike the proof of Theorem 1, we simulate a strategy that submits a bid of
b in scenario 1 by submitting the same bid in scenario 2. First, notice that with
this strategy, the probability of winning the first auction in scenario 2 can be
written as

λ̂k,NF (bλ̂k+1,N+1)+(1−λ̂k,N )F (bλ̂k,N+1) = (λ̂k,N λ̂k+1,N+1+(1−λ̂k,N )λ̂k,N+1)b

Using (6), the above probability is equal to λ̂k,N b, which is the same as the
probability of winning in scenario 1. This ensures that the simulated strategy
in scenario 2 has the same branching probabilities as the optimal strategy in
scenario 1. Next, we need to bound the difference between the expected utility
of one auction in the two scenarios. Here we only do this for the first auction.
The inequality for the other auctions can be proved similarly. The difference
between the expected utilities of the advertiser in the first auction in the two
scenarios can be written as:

λ̂k,Ng(λ̂k+1,N+1, b) + (1 − λ̂k,N )g(λ̂k,N+1, b)− g(λ̂k,N , b)

= b(v − b
2
)

(
λ̂k,N λ̂

2
k+1,N+1 + (1− λ̂k,N )λ̂2

k,N+1 − λ̂2
k,N

)

= b(v − b
2
)

(( k + 1
N + 2

)( k + 2
N + 3

)2 +
(
1− k + 1

N + 2
)( k + 1
N + 3

)2 − ( k + 1
N + 2

)2)

= b(v − b
2
)
(k + 1)(N − k + 1)
(N + 2)2(N + 3)2

= Ω(N−2).

4 Value of Learning

Given the result in the previous section, we can define the value of learning of
an advertiser as the difference between the optimal bid of the advertiser and
her value-per-click. More formally, the value of learning is the difference be-
tween the Gittins index in the Markov Decision Process (MDP) defined based
on the auction. If we could compute these indices, we could simply design an
alternative auction mechanism that allocates according to these indices, thereby
achieving the optimal MDP solution and eliminating the incentive to overbid.
Unfortunately, Gittins indices are quite hard to compute.

As a practical alternative, we can use proxies for the value of learning that are
easy to compute. Perhaps the simplest method for doing this is to take the value
of learning of an advertiser to be proportional to the variance of our estimate of
the clickability of this advertiser. This has the advantage that it can be easily
computed, and gives a boost to ads that we currently do not have an accurate
estimate of its clickability.

The strongest theoretical evidence that taking the value of learning of an ad
to be proportional to the variance of its clickability estimate and then sorting the
ads based on their expected value per impression plus their value of learning leads
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to close-to-optimal outcomes comes from the literature on the multi-armed ban-
dits problem. Multi-armed bandits algorithms based Upper Confidence Bounds
are shown to achieve asymptotically optimal regrets [3,4]. These algorithms in
each iteration pick the arm that has the maximum expected value plus an addi-
tional factor that is close to the variance of the performance of the arm so far.
The literature on multi-armed bandits is a vast literature and we do not intend
to add yet another algorithm to this literature. Instead, we describe a practi-
cal method for incorporating the value of learning in sponsored search auctions,
and analyze its revenue and efficiency impacts through simulations with real
advertisers’ bid and click-through rate data.

A practical value-of-learning mechanism. Recall that in sponsored search, a se-
quence of m slots need to be allocated to the advertisers. The position bias of
slot j is denoted by γj. At any point in time, the history for each ad consists
of the number of times this advertiser is shown in each slot, and the number of
such instances that have lead to clicks. We can compute the cumulative expected
clicks eci of advertiser i as the sum of the position biases of the positions this
ad is shown so far. This is essentially the number of clicks we would expect this
ad to receive, if it had a clickability of 1. Our estimate of the clickability is then

λ̂i =
ci
eci
, (7)

where ci is the total number of clicks advertiser i has received. It is not hard to
show that in a reasonable Bayesian setting (e.g., uniform priors), the variance of

this estimate is of the order of
√

λ̂i

eci
. Therefore, we define the value of learning

for this advertiser as θ̂ibi, where

θ̂i = C

√
λ̂i

eci
(8)

for a constant C. We will change the value of C in our simulations to study the
effects of increaseing the value of learning on the efficiency of and revenue of the
auctions. The mechanism computes a score si for each advertiser as follows:

si = bi(λ̂i + θ̂i). (9)

It then sorts the advertisers in decreasing order of their scores, allocates the i’th
position to the i’th advertiser in this order, and in the event of a click, charges
this advertiser an amount equal to

pi =
bi+1(λ̂i+1 + θ̂i+1)

(λ̂i + θ̂i)
(10)

Note that this value is never greater than the bid of the advertiser.



302 S.-M. Li, M. Mahdian, and R.P. McAfee

5 Revenue of Auctions with Value of Learning

Intuitively, one might think that exploration in repeated sponsored search auc-
tions is a costly activity that is done in order to achieve a better outcome in
the long run. In fact, many of the exploration-exploitation algorithms based on
the ε-greedy algorithm for the multi-armed bandits problem give out exploration
impressions to the advertisers for free [7]. However, we will show experimentally
in the next section that the mechanism in the previous section can lead to a
higher revenue even in the short term. In this section, we explain the theoretical
intuition behind this result.

In auction theory [13], it is known that giving an advantage to weaker bidders
(e.g., minority-owned firms participating in spectrum auctions [5]) can increase
the revenue by leveling the playing field between competing bidders. Here, also,
the value of learning added to each advertiser’s bid is inversely proportional
to the square root of the number of times this ad has been clicked on. This
means that an ad that is typically in a lower position has a higher value of
learning, and this can increase the price that the advertisers in higher positions
pay. A formal proof of this fact in the model with repeated auctions is out of
reach, as it would require analyzing optimal strategies in a Bayesian multi-player
version of the model studied in Section 3. Instead, we ignore incentives resulting
from learning by studying a one-shot auction, and then prove that the GSP-like
mechanism that allocates slots to bidders in decreasing order of (λi + θi)vi has a
minimal envy-free equilibrium similar to the VCG-equivalent equilibria of [8,17].
Furthermore, the revenue of this equilibrium at the λi, θi values computed in the
previous section is typically larger than the similar revenue when θi’s are zero.
The result, whose proof is omitted here, can be stated as follows.

Theorem 3. Consider a multi-slot auction between n bidders. Assume that the
i’th bidder has a value of viλ̂iγj for being placed in slot j. The mechanism
Mθ sorts the advertisers based on their (λ̂i + θi)bi, allocates the i’th slot to
the i’th advertiser in this order (which we call advertiser i), and charges her
(λ̂i+1+θi+1)bi+1λ̂iγi

λ̂i+θi
in expectation. This mechanism has a minimal envy-free equi-

librium whose revenue is denoted by R(θ). Furthermore, let λ̂i and θ̂i be the val-
ues calculated in (7) and (8) and assume that the ordering of the values (λ̂i+θ̂i)vi
is the same as the ordering of the values λ̂ivi and that the historical number of
clicks ci of a bidder in a higher slot is higher. Then we have R(θ̂) > R(0).

The main assumption of this theorem (apart from restricting equilibrium analysis
to a 1-shot game) is that the ordering of the advertisers in decreasing order of
(λ̂i + θ̂i)vi is the same as their ordering in decreasing order of λ̂ivi, and their
ordering in decreasing order of ci. Since θi’s are typically small and higher slots
get more clicks, this assumption is often true, except for rare cases where the
mechanism reverses the ordering to do some exploration. The above theorem
guarantees that in normal cases, the mechanism with value of learning has a
higher revenue. Intuitively, this revenue increase can more than make up for
the occasional revenue loss due to exploration. This is why in the simulations
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in the next section we will see that incorporating value of learning leads to a
considerable increase in revenue, averaged over thousands of auctions.

6 Simulation Results

In this section we provide simulation results to illustrate the performance of in-
corporating value of learning in the auction mechanism when applied in a popular
search engine like Yahoo! Search. We collect a representative sample of sponsored
search results from the Yahoo! search log. For each search sample, we collect the
position bias for each position due to the specific page layout used. For each ad,
we also collect the bid and its estimated clickability at the time of sampling.

For the purpose of conducting the simulation study, we assume that the ads
in each search in the dataset are unique, i.e., the same ad cannot appear across
multiple sample searches, hence its clickability estimate only depend on its own
history. We also assume that the page layout remains the same, i.e., the same
position bias as in the search log will be used to simulate click event and effi-
ciency. We use the estimated clickability of each ad at the time of sampling as
their true clickability. The simulation is initialized by simulating a small number
of impressions using the assumed true clickability of each ad, and the position
effect is based on the one at position one. Then the initial clickability estimate
of each ad is computed based on the simulated clicks during those impressions.

After the initialization stage, we simulated the sample searches for 5,000
episodes. Each episode involves simulating all sample searches once. For each
sample search s, the value of learning term θ̂s,i for ad i was determined based
on the current clickability estimate λ̂s,i and cumulative expected clicks as in (8).
The price and rank of each ad was determined by the GSP algorithm using the
ranking score (9) and pricing equation (10). The number of clicks for each ad was
simulated using the probability of click λs,iγs,j , where j is the slot occupied by
ad i. Then we updated the clickability estimate for all ads after every simulated
search according to (7). After each episode, we computed the total revenue and
the total efficiency across the sample searches based on the simulated clicks, the
PPC of the ads that were clicked, and their bids. Specifically, the revenue R and
efficiency E at each episode is defined as

R =
∑
s,i

ps,ics,i, E =
∑
s,i

bs,iλs,iγs,j ,

where ps,i, cs,i, bs,i, λs,i, denote the price per click, number of clicks, bid, and
clickability of ad i in search s respectively, and γs,j denote the position effect of
the slot (j) occupied by ad i in search s. Note that in computing the efficiency,
we made the simplifying assumption that the bid bs,i does not change over time,
and it is the same as the value per click for the advertiser. Nevertheless, we
believe that E serves as a good proxy for the true efficiency of the algorithm
under investigation.

We simulated the auction and click behavior for a range of C to illustrate the
effect of imposing different degree of learning in the mechanism. The case C = 0
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(a) revenue (b) efficiency

Fig. 1. Moving average of revenue and efficiency for different setting of C

(a) revenue (b) efficiency

Fig. 2. Moving average of revenue and efficiency for different setting of C when m = 5

corresponds to the case when there is no value of learning included in the auction.
The higher C is, the more impact value of learning has on price and ranking, and
hence revenue and efficiency. Figure 1 (a) shows the moving average of the total
revenue generated over the duration of the simulation, and figure 1 (b) shows the
moving average of the total efficiency. The moving average window used in the
graphs has width 400. As can be seen in the figures, the revenue is consistently
higher when value of learning is used in the auction. Furthermore, efficiency is
higher in the transient when the appropriate value of learning (C = 2) is used.
It should be noticed that when C is large (C = 6), both the transient and final
efficiency can suffer as too much exploration is being done.

We also simulated the case when not all ads in each sample search are shown in
every auction by reducing the number of slots that can be shown in each auction
m to five (in Yahoo! search this can be as high as twelve). In other words, when
the number of ads available is more than five, the algorithm is forced to select
only five ads to show, with the rest not getting any exposure at all. As can be
seen in Figure 2, the power of incorporating value of learning in the auction is
more evident in this case. The efficiency of the auction with C other than zero is
much higher than when C is zero. This is because the set of ads that are shown
are fixed very early as other ads with high clickability are never given a chance
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to prove themselves. The revenue is also higher when C is non-zero, due to the
price effect of value of learning as well as improved efficiency.
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Abstract. We show how a principal can exploit myopic social learning

in a population of agents in order to implement social or selfish out-

comes that would not be possible under the traditional fully-rational

agent model. Learning in our model takes a simple form of imitation,

or replicator dynamics; a class of learning dynamics that often leads the

population to converge to a Nash equilibrium of the underlying game.

We show that, for a large class of games, the principal can always ob-

tain strictly better outcomes than the corresponding Nash solution and

explicitly specify how such outcomes can be implemented. The meth-

ods applied are general enough to accommodate many scenarios, and

powerful enough to generate predictions that allude to some empirically-

observed behavior.

1 Introduction and Related Work

The assumptions imposed on the traditional rational agent can be too restric-
tive, requiring instantaneous reaction to changes in the environment, perfect
look-ahead and planning skills, and unlimited computational resources. In real-
ity, even if individuals are interested in maximizing their own welfare, they may
be unable to do so because of a myriad of reasons. For example, it maybe the
case that finding an optimal course of action is computationally difficult or even
infeasible. It can also be that agents utilize a decision making process that is
different from what the traditional model dictates. For instance, they may par-
tially or wholly base their decisions on the actions of other agents rather than
carefully charting out their own course. In this paper, we deal with the following
question: if we relax some of the assumptions about rationality and consider
agents that do not act in full compliance with the traditional agent model, can
we leverage the resulting framework to implement better outcomes, either for
society or for the principal designing the system?

This is a question of mechanism design, of course. Some of the concerns above
have been and continue to be addressed by algorithmic mechanism design; a
subfield of mechanism design that concerns itself with computability issues [11],
but it is only recently that behavioral aspects have been taken into consideration
in mechanism design. This is perhaps a little surprising, given the advanced state
of behavioral and experimental game theory, two of the field’s basic building
blocks. One possible reason for this lag in development is the many ways in
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which behavior can deviate from the classical agent model, making it difficult
to develop an all-encompassing behavioral framework. In this paper, we take a
small step in this direction by utilizing a simple form of social learning dynamics
to set up a model that allows a system designer (henceforth referred to as the
principal) to manipulate social learning to his advantage.

The social learning model we employ in this paper is that of replicator dy-
namics [3]. This class of learning dynamics was developed in an attempt to
understand how a population arrives at a steady state of a dynamical system,
and was further pursued in economics as an explanation to how agents arrive at
a Nash equilibrium. Under this model, an infinite pool of agents plays a game
repeatedly. After each round of the game, agents are paired together randomly
to compare and contrast payoffs. If agent i is paired with agent j and agent j has
obtained a better payoff than i in the last round of the game, then i considers
switching to j’s strategy in the next round with a probability that is proportional
to the difference in payoffs between the two. This way the proportion of strate-
gies that are performing better than average grows in the population as the share
of poorly-performing strategies shrink, and more often than not these dynamics
lead to a Nash equilibrium of the underlying game1. What makes replicator dy-
namics particularly appealing is that it is perhaps the most rudimentary form of
learning dynamic that nicely straddles the line between behavioral and rational
models. On one hand, agents are updating their strategies in a myopic fashion
based on simple comparisons with how their peers are doing, but on the other
hand this seemingly simple behavior can and does lead to fully rational equi-
librium outcomes. The canonical selfish-routing model is one example amongst
many where agents converge to a Nash equilibrium by following a replicator dy-
namic [6]. Another nice behavioral aspect captured by the model is the tendency
of human decision makers to fall into habit, as a result of the aversion to try
new strategies if one is unaware of others for whom these strategies have per-
formed well. Even in the case of meeting others with more successful strategies,
the switching is only probabilistic, underlying the fact that switching to a new
strategy is not always costless.

The central idea developed in this paper revolves around the indirect influence
that a principal can exert on agents’ decisions via exploiting the learning dynamic
discussed above. We will focus on games where the principal and the population’s
interests are diametrically opposed, though the methods readily extend to other
settings as we discuss in Section 5. We will give a formal definition of the class of
games we consider in Section 2.1, but an informal description follows. There is
an infinite population where each member has the choice of one out of two pure
actions. For simplicity, we can think about these actions as whether to cheat
or to be honest. There is a multitude of examples that fall under this setting:
agents can decide whether to cheat on their taxes or not, whether to break the
speed limit, put low effort into their work, etc. The principal’s action against
each member of the population is either to audit the agent, at a cost, or to ignore

1 For example, replicator behavior leads to equilibrium in Prisoner’s dilemma, Battle

of the sexes, and a large variety of coordination and routing games (see [7]).
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and run the risk of incurring a higher cost if the agent is cheating. Agents are
interested in maximizing their payoffs, while the principal tries to minimize his
cost. The game is repeated indefinitely. Because the population is infinite, the
principal’s move in each round consists of choosing a fraction of the population
to audit. Under the traditional rationality assumptions this game has a unique
Nash equilibrium where the agents cheat with some fixed probability and the
principal audits the same fraction of the population in each round. Ideally, the
principal would like to do little auditing and have the population stick to his
desired outcome of as little cheating as is reasonable within the payoff structure
of the game

The primary contribution of this paper is twofold. On the conceptual front,
we argue that imperfect decision making –in its various formats– can in some
cases be considered a resource that the system planner should utilize. The second
contribution is methodical, where we take the main idea and build a framework
that implements it in the context of naive social learning. While the abstract idea
behind our framework is simple, the implications can sometimes be quite surpris-
ing. One counter-intuitive outcome of the model is that the principal’s optimal
strategy always makes things temporarily worse for everybody, including possi-
bly the principal himself, in order to achieve better outcomes later. Moreover, as
we discuss later in the paper, the application of the model to some real-life prob-
lems result in findings that correspond to empirically-observed behavior. This
suggests that the approach proposed in this paper not only provides a normative
prescription for optimizing systems with a social learning component, but also
describes how some existing systems actually operate.

There has been a lot of recent work on social learning and when it can lead
a society of agents to converge to the true value of an underlying state of the
world, the so-called ’wisdom of the crowds’ effect (for example, [2], [1]). While it
would be interesting to investigate whether this kind of learning is susceptible to
manipulation by a principal, it is outside our scope of interest since we explicitly
focus on agents in a behavioral setting, unlike the fully-rational Bayesian agents
employed in the work above. Manipulating Bayesian agents, albeit outside of a
social learning setting, has been the recent focus of some work [9]. Other recent
work that aims to explore the boundaries of mechanism design under behavioral
assumptions is auction design for level-k bidders [4]. In this paper, the authors
show that under such an experimentally-plausible model, it is possible to obtain
revenues that are higher than those generated by Myerson’s optimal auction [10].

Finally, repeated games and reputation building is a topic with an extensive
body of work in the economics literature. The main results in this area are
folk theorems that show what outcomes can be obtained if a game is repeated
indefinitely. The traditional approach to proving such results relies on retaliation
and punishment among players, a method that fails in a setting with a large
population, since the identity of a deviator cannot be detected [8]. Indeed, for
the class of games we consider here, the unique equilibrium of the repeated game
is the same as the one-shot version and no better outcomes can be implemented
under the rational model.
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2 Cheat-Audit Games

In this section we consider a class of 2 × 2 games that encompasses a large
number of scenarios. We call this class of games Cheat-Audit games. In these
games, as mentioned in Section 1, a very large population of agents plays an
infinitely repeated game against a principal. In each round of the game an agent
has one of two choices, a ’safe’ choice with low payoffs, and a risky choice with a
higher payoff. For example, in a tax-auditing situation the safe choice would be
to report honestly, whereas cheating is a choice that can provide a higher payoff
if the agent is not audited by the principal. The principal on the other hand
faces a choice between a costly and a costless action when it comes to dealing
with each agent. In the context of the preceding examples, a costly action for
the tax scenario would be to audit an agent, and a costless action would be to
ignore that agent. Of course, it might be the case that auditing leads to catching
a cheating agent, in which case the principal obtains a higher payoff than if
he had chosen the costless action. By the same token, not auditing an honest
agent is a better action for the principal, since auditing an honest agent expends
auditing resources with no useful returns to the principal.

A I

C

H

0,c1

v1,c2

v3,c3

v2,0

Fig. 1. The Cheat-Audit Game

2.1 The Game

To formalize the preceding discussion, the payoffs of the game are as shown
in Figure 1, with the principal being the column player. Each agent is consid-
ered a row player and has the row player’s payoffs. The actions available to an
agent is to either be honest (action H) or cheat (action C). The principal either
audits (action A) or ignores (action I) each agent. An agent’s payoffs satisfy
0 < v1 ≤ v2 < v3. To conserve notation, we will assume that v1 = v2, so that an
agent is indifferent to auditing as long as he is honest. An agent is interested in
maximizing his payoff, while the principal is interested in minimizing his cost,
where the costs satisfy 0 < c1 < c2 < c3. There is thus an implicit constraint on
the principal’s resources, since auditing with no gain (outcome (H,A)) is more
costly than auditing a guilty agent (outcome (C,A)). The principal’s preferred
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outcome is (H, I), where no auditing cost is incurred and no crime is commit-
ted, and the payoff to this outcome is normalized to zero. Similarly, an agent’s
least preferred outcome is (C,A), and is also normalized to zero. Notice that
the principal’s least preferred outcome, (C, I), is also the agent’s most preferred
one. Because of the large population assumption, the principal’s action consists
of choosing a fraction 0 ≤ α ≤ 1 of the population to which he will apply action
A. We will call this fraction the audit rate. The upper bound on α does not have
to be equal to 1, but can instead be set to ᾱ to indicate that it is not possible
to audit the whole population.

This diametric opposition of the principal and agents’ interests suggests that
the game has no pure strategy equilibria, as indeed can be checked from the
figure and the relationship between the various payoffs. In fact, similar to a
game of matching pennies, the single stage game as well as its repeated version
possess only a unique mixed equilibrium. Let the audit rate and the fraction of
C players in the fully rational setting be given by αNash and xNash, respectively.
It is straightforward to verify that

αNash =
v3 − v2
v3

; (1)

xNash =
c2

c3 + c2 − c1

As mentioned, we consider this game in an infinitely-repeated setting. Each
moment in time, the game in Figure 1 is played. We will let the state of the
system at time t be the fraction of the population taking action C at that time,
and we will denote this fraction by x(t). The principal’s choice of audit rate at
time t is denoted by α(t). Given a state x(t), audit rate α(t), and denoting the
payoff to the principal at time t by g(t), we can write

g(x(t), α(t)) = c1α(t)x(t) + c2α(t)(1 − x(t)) + c3(1− α(t))x(t)
= (c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t) (2)

where the terms in (2) correspond to the costs discussed above. The first term
is the cost associated with catching offending agents, the second term represents
the cost of auditing honest agents, and the last term is the cost of ignoring agents
who were in fact playing action C.

2.2 Learning Dynamics

The learning dynamics work as follows. After each round of the game, members
of the population are randomly matched to compare and contrast strategies and
payoffs. Under our model, there are only two possible scenarios that can lead
to switching strategies: an agent who obtained the outcome (C,A) considers
changing his strategy if he meets an agent who playedH . Similarly, an agent who
played H considers changing his strategy to C if he meets an agent who obtained
the outcome (C, I). The probabilities with which these changes in strategy occur
depend on the differences in payoffs between agents, as well as a transmission
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factor k > 0. We will think of k as a ’speed of transmission’: the willingness of an
agent to change their strategy when faced with a potentially better one. Without
loss of generality, we will assume that an agent obtaining payoff u switches to the
strategy of an agent getting payoff v with probability max{0, v−u

v }. From Figure
1, the probability of switching in the first scenario is simply min{k v1−0

v1
= k, 1}.

The probability of switching in the second scenario is given by min{k v3−v1
v3

, 1}. It
is important to stress that the way these probabilities are defined does not affect
any structural results we obtain. Any scheme where the switching probabilities
are proportional to the payoff differences essentially leads to the same results.
We will make the derivations less cumbersome and more general by assuming
that the switch in scenario one happens with probability p and in scenario 2 with
probability q. We can later substitute for p and q with whatever values that are
appropriate for the application under consideration. Utilizing this notation, the
fraction of switchers from C to H at any moment t is equal to the fraction of C
players who were audited, α(t)x(t), multiplied by the probability of meeting an
H player, which is 1 − x(t), times the probability of switching p. Likewise, the
fraction of switchers from H to C is equal to the fraction of H players, 1− x(t),
who meet C players that were not audited, which is x(t)(1−α(t)), multiplied by
the probability q. We can then write the dynamics of the system as a function
of x(t) and α(t)

ẋ(t) = f(x(t), α(t)) = q(1 − α(t))x(t)(1 − x(t)) − pα(t)x(t)(1 − x(t))
= x(t)(1 − x(t))(q − α(t)(q + p)) (3)

2.3 Objective

The principal’s problem is now the following. Given the different values in Figure
1, the parameters of the problem, and the learning dynamics, the principal is
interested in minimizing his long-run discounted cost subject to those dynamics.
This long-run cost is the sum of all costs accrued from playing the game over
time. Recall that the payoff at time t is given by (2). The problem can then be
written as

min
α(t)

∫∞
0
e−rt((c1 − c2 − c3)α(t)x(t) + c2α(t) + c3x(t))dt (4)

s.t. ẋ(t) = x(t)(1 − x(t))(q − α(t)(q + p))
0 ≤ α(t) ≤ 1

where 0 ≤ r < 1 is a discount factor. Thus the principal’s problem involves
finding the function α∗(t) that solves (4). Like any dynamic problem, the diffi-
culty facing the principal is that current decisions affect not only the immediate
cost but also future costs through the dependence of the rate of change of x(t)
on α(t).
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3 Optimal Policy

3.1 Single Round

Before delving into finding the optimal solution to (4), let us first develop an
intuition by considering the solution if the game is played only once. The stage
game cost described by (2) can be factored and rewritten as

g(x, α) = c3x+ α(c2 + (c1 − c2 − c3)x)

and is obviously a linear function in α. This implies that depending on the value
of x, α takes the values of either 0 or 1 in the optimal solution. Specifically, the
optimal solution to the single period problem is given by

α∗ =
{

0, x < c2
c2+c3−c1

;
1, x ≥ c2

c2+c3−c1
. (5)

which is well defined because of the relationship stipulated on the costs. Thus,
assuming that x is known, the optimal solution to a single period problem takes
the form of a threshold rule: if the fraction of C players is low enough, it does
not pay to audit anybody since the cost of auditing honest agents outweighs the
gains from catching C players. Conversely, when the concentration of C players
is over a certain level, then it is always better to audit indiscriminately since
the costs incurred in auditing H players are more than made up for by catching
every single C player in the population. It is easy to see that the optimal cost
g∗(x) is a concave function of x:

g∗(x) =
{
c3x, x < c2

c2+c3−c1
;

c2 + (c1 − c2)x, x ≥ c2
c2+c3−c1

. (6)

We will see that a part of the single period solution, where a crackdown occurs
if the fraction of C players is above a certain threshold and nothing is done
otherwise, is somewhat retained in the solution to the general problem. The
nature of the optimal cost implies that, from a strictly policing viewpoint, the
principal may prefer a higher ratio of cheaters in the population to a lower one,
since it increases the rate of successful audits and incurs a lower overall cost
than scenarios where resources are expended without additional benefit.

3.2 General Policy

We will derive the optimal policy for (4) by formulating the Hamiltonian function
and using the Euler-Lagrange equation. We assume that the principal knows
x(0), the initial state of the system. This is without loss of generality, since if
that was not the case then the large population assumption together with the
law of large numbers and the fact that state transitions happen with probability
1 ensure that the principal can initially determine the state of the system by
auditing a random sample of the population. The current value Hamiltonian
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function for the problem maps triplets (x, α, λ) ∈ [0, 1]×[0, 1]×R to real numbers
and is given by

H(x, α, λ) = g(x, α) + λf(x, α)
= c3x+ α(c2 + (c1 − c2 − c3)x) + λx(1 − x)(q − α(q + p))
= c3x+ λqx(1 − x)+α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1 − x))(7)

where λ is a co-state variable that one can think of as a price attached to the
change induced in x through the decision α. Of course, like the state x and the
control α, λ itself is also a function of time, but the power of the Hamiltonian
approach is that it reduces the general problem to an essentially single period
one. The following lemma utilizes the Hamiltonian to provide necessary (but not
sufficient) conditions on the optimal control trajectories.

Lemma 1. The optimal control for Problem (4) is a bang-bang solution.

Proof. A bang-bang solution implies that α(t) takes on extremal values in its
domain until the solution trajectory reaches a final state. Let us denote by α∗(t)
and x∗(t) the optimal control and state trajectories. By the Minimum Principle,
it must hold at each moment in time that

α∗(t) = arg min
0≤α≤1

H(x∗(t), α, λ(t))

= arg min
0≤α≤1

c3x+ λqx(1 − x) + α(c2 + (c1 − c2 − c3)x− λ(p+ q)x(1 − x))

Similar to the single period problem, the Hamiltonian is a linear function in α.
Minimizing the Hamiltonian w.r.t α, we find that the optimal control trajectory,
α∗(t) satisfies

α∗(t) =

⎧⎪⎨⎪⎩
0, λ(t) < c2+(c1−c2−c3)x(t)

(p+q)x(t)(1−x(t)) ;

1, λ(t) > c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ;

[0, 1] , λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) .

(8)

Thus α assumes values at the boundary except when λ(t) = c2+(c1−c2−c3)x(t)
(p+q)x(t)(1−x(t)) ,

in which case α disappears from the Hamiltonian and can be set to any value
in its domain. However, as we will see shortly, on the optimal control and state
trajectories this case cannot happen except for precisely a single pair (α∗, x∗).

Lemma 1 implies that, except for the third case where the co-state variable is
exactly equal to the R.H.S, the optimal control either audits the whole popula-
tion or does nothing. This provides some information about the structure of the
optimal policy, but not enough to completely characterize it. To do this, let us
formulate (4) as a calculus of variations problem. From (3), we have

α(t) =
1

p+ q

(
p− ẋ(t)

x(t)(1 − x(t))

)
Substituting this into the objective, the problem becomes
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min
x(t)

∫ ∞

0

e−rtg

(
x(t),

1
p+ q

(
p− ẋ(t)

x(t)(1 − x(t))

))
dt

= min
x(t)

∫ ∞

0

e−rt

⎛⎝c3x(t) +
(c2 + (c1 − c2 − c3)x(t))

(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q

⎞⎠ dt (9)

The solution to (9) provides a necessary condition on the optimal state trajectory.
Specifically, the following lemma tells us that there is a constant for which the
integral in (9) is stationary.

Lemma 2. Let x∗(t) be the minimizer to (9), then x∗(t) = C, where C is a
constant that depends on the parameters of the problem.

Proof. See Appendix.

We now fully characterize the optimal policy.

Theorem 1. There is a value x̄ such that the optimal policy audits everybody
whenever x(t) > x̄ and does nothing when x(t) < x̄. If x(t) = x̄ then the optimal
policy sets α∗(t) = q

p+q and the system stays in this state indefinitely.

Proof. We will show that the policy in the statement of the theorem is optimal
by showing that an optimal policy exists and that only the policy given in the
theorem satisfies the necessary conditions for an optimum. That an optimal pol-
icy exists follows from the boundedness of the cost per stage and the continuity
of both g and f in the compact sets x(t) and α(t). The presence of the discount
factor ensures that the value of the optimal solution is <∞.

From Lemma 2, we know that a necessary condition for the optimal path
x∗(t) to minimize (9) (and consequently, (4)), is that x∗(t) is a constant, which
we will denote by x̄ (where x̄ is as given in the proof of Lemma 2). This implies
that as soon as x∗(t) = x̄ there should be no further changes in the system, so
that ẋ∗(t) is equal to zero. Given the system dynamics in (3), this occurs if

f(x∗(t), α∗(t)) = 0
x∗(t)(1 − x∗(t))(q − α∗(t)(q + p)) = 0

For any nontrivial specification of the problem, x̄ is neither equal to zero or one,
and hence the only solution to the above equation is α∗(t) = q

p+q . From (8), we

have to have λ(t) = c2+(c1−c2−c3)x̄
(p+q)x̄(1−x̄) . The R.H.S of this is a constant, and hence

λ̇(t) = 0 and the system remains in the state (x̄, q
q+p ) forever.

Now consider any trajectory that sets α(t) 
= 1 when x∗(t) > x̄. By Lemma
1, if x∗(t) 
= x̄ and α(t) 
= 1 then α(t) = 02 , in which case ẋ(t) > 0 and x(t)
increases. Let x(t1) > x̄ and α(t1) = 0, then for t2 > t1, x(t2) > x(t1), i.e. the

2 The Minimum Principle posits the following condition on λ̇(t); λ̇(t) =

− ∂H(x∗(t),α∗(t),λ(t))
∂x

, so that the third case in (8) cannot hold unless x(t) is a

constant.
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system moves farther from x̄. However, because of Lemma 2, we know that the
system should eventually move towards x̄. Since the system is continuous, the
trajectory going from x(t2) to x̄ has to pass through x(t1) again, at which point
the system returns to the same state it was in at time t1, but with the additional
cost accrued between times t1 and t2 added to the total cost, indicating that
such a scenario cannot be optimal, and that it would have been cheaper to set
α(t1) = 1. The reverse argument applies in the case of x(t) < x̄.

Thus the optimal policy drives the fraction x(t) to its steady state value as
quickly as possible, by not doing anything when x(t) < x̄ or by cracking down on
the population when x(t) > x̄. Once the steady state is reached, the system stays
there forever through fixing the audit rate at the value given in the statement
of the theorem.

4 Discussion

4.1 Comparison with Nash Equilibrium

It is natural to ask how the behavioral solution for the class of games we con-
sidered fares in comparison to the fully rational Nash equilibrium outcome. We
have already discussed in Section 2.1 that the (fully rational) repeated game
possesses a unique equilibrium, given by (1). This equilibrium is also a center
of the repeated behavioral game. This means that, under the replicator assump-
tion, the principal has a strategy such that if the game is played long enough,
the fraction with which each action is played is the same as the corresponding
fraction in the Nash equilibrium [7], i.e. the principal can implement the Nash
outcome in the behavioral setting, if he so desires. However, the optimal solution
that we obtained in this paper is not the Nash equilibrium, indicating that the
Nash solution is dominated by the policy in Theorem 1. Furthermore, as soon
as the game reaches steady state, the optimal policy does less auditing than the
Nash solution. Let us denote the audit rate in the behavioral setting by αB .
From Theorem 1, αB is given by q

p+q . Replacing p and q by the values from
Section 2.2, we have p = k and q = k v3−v1

v3
, and hence

αB =
q

p+ q
=

v3−v1
v3

1 + v3−v1
v3

(10)

which is always strictly less than the Nash audit rate in (1). Because of this, the
Nash solution never coincides with the policy in Theorem 1, so that the optimal
solution always gives a strictly better outcome for the principal while at the
same time reducing the amount of auditing required. It is worth noting that the
speed of transmission k has no effect on αB.

4.2 An Empirical Example

We have analyzed our model in a continuous time framework. In reality however,
many of the games that fit the model take place in discrete time, or the resources
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required by the optimal solution can be infeasible to implement forever. In both
of these scenarios, the level of x(t) inadvertently increases above x̄, and hence the
optimal solution cracks down on the population by setting α∗ to its maximum
possible value, in an attempt to bring x(t) back to x̄. Because of the discreteness,
the crackdowns always bring the value of x(t) below x̄, hence leading to a short
period of low activity on the principal’s part. The whole cycle is then repeated
as x(t) increases again. These periodic crackdowns are widely observed in many
situations. In a recent paper [5], the authors empirically observe crackdowns by
the police on speeders in Belgium. The paper mentions the periodicity of such
crackdowns, but does not provide an explaination for such behavior. It is also
mentioned that crackdowns are planned as early as a month in advance. Both of
these observations are explained by our model. The recurrence of the crackdowns
takes place as the police tries to bring the fraction of speeders to an optimal level,
and since the evolution of the population of speeders can be determined from
the current state and future controls of the system, the time at which such a
crackdown would be necessary can be determined in advance as well.

5 Conclusion

We have shown how a principal can exploit myopic social learning to his ad-
vantage for a wide class of games where the interests of the population and the
principal are directly opposed. In addition to the class of games we presented,
the application domain of the methods we employed in this paper is vast. The
basic idea is to indirectly influence decisions in the population through manipu-
lating the payoffs associated with certain actions. Naturally, since the modified
payoffs are not part of the initial system, such a manipulation comes at a per-
sonal and/or a social cost. In our example the principal had to expend an initial
cost by either over-auditing or by letting the guilty population go unpunished.
At the same time, there is a social cost to increased auditing that comes from
the disutility honest agents obtain from being audited (the case where v2 > v3
in Figure 1). This initial phase however, is justified by later gains: since the
population’s reaction time to changes in the system is not instantaneous, the
principal can revert back to the original game while the population still plays as
if they are in the modified game. During this time, the principal enjoys a period
of improved system performance. Generally, the solution either takes the form
of a policy like the one we saw in this paper, where an initial period of extreme
(in)activity is followed by a steady state, or it can be more cyclical in nature,
with a cycle consisting of a phase that creates, via population learning, a certain
impression about the environment followed by a phase where that impression
is exploited. One obvious application is advertising. In this scenario, periods of
heavy (and costly) advertising are followed by periods of relatively little adver-
tising activity. During these latter periods, the effects from the initial advertising
campaign continues to reverberate through the population, essentially providing
free advertising until the effect dies down, at which time the advertiser starts the
cycle again. A very different example is traffic regulation through periodic clo-
sures of specific roads. Such closures force drivers to change their driving habits.
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Later, when these roads are re-opened, drivers take a while to adjust back to the
initial equilibrium, as can be seen in [6]. Depending on the system’s parameters,
this lag in adjustment can provide the population with an average decrease in
travel latency3. Applying the same approach of exploiting behavioral trends to
other behavioral models would be an interesting next step in this line of research,
with an eventual goal of cataloging the benefits that a principal or a society can
obtain (or lose) as the level of sophistication of the population increases.
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Appendix

A Proof of Lemma 2

Proof. Denoting the function inside the integral in (9) by L(t, x, ẋ), the Euler-
Lagrange equation gives another necessary condition that the optimal x∗(t), if
it exists, satisfies. Writing down the equation, we have

0 =
∂L

∂x
− ∂

∂t

∂L

∂ẋ

= e−rt

(
c3 +

1
p+ q

(c2 + (c1 − c2 − c3)x(t))
(

ẋ(t)
(1− x(t))x(t)2 −

ẋ(t)
(1− x(t))2x(t)

))

+ e−rt

⎛⎝ (c1 − c2 − c3)
(
p− ẋ(t)

(1−x(t))x(t)

)
p+ q

⎞⎠
− e−rt

(
r(−1 + x(t))x(t)(−c2 + (−c1 + c2 + c3)x(t)) +

(
c2 − 2c2x(t) + (−c1 + c2 + c3)x(t)2

)
ẋ(t)
)

((p+ q)(−1 + x(t))2x(t)2)

After some algebra and simplifying the above, we get

e−rt
(
(c2r − (c1 + c2)(p− r) + c3(q + r))x(t) + ((c1 − c2)p+ c3q)x(t)2

)
(p+ q)(x(t) − 1)x(t)

= 0

which is a quadratic function in x(t). Solving that equation and enforcing the
constraint that 0 ≤ x(t) ≤ 1, we obtain the solution

x∗(t) =
(c2 − c1)p− c3q + (c1 − c2 − c3)r +

√
4c2((c2 − c1)p− c3q)r + ((c1 − c2)p+ c3q + (c1r − c2 − c3)r)2

2((c2 − c1)p− c3q)

which is time-independent and only depends on the parameters of the problem.

The difference between x∗(t) and xNash depends on the parameters. For example,
if we set all the parameters to 1 and compare the resulting steady state optimum
with the Nash equilibrium in (1). We get

x∗(t) =
c2

c3 +
√
c23 + c22 − c2(c1 + c3)

which is always less than xNash.
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Abstract. We show a formal duality between certain equilibrium con-

cepts, including the correlated and coarse correlated equilibrium, and

analysis frameworks for proving bounds on the price of anarchy for such

concepts. Our first application of this duality is a characterization of the

set of distributions over game outcomes to which “smoothness bounds”

always apply. This set is a natural and strict generalization of the coarse

correlated equilibria of the game. Second, we derive a refined definition

of smoothness that is specifically tailored for coarse correlated equilibria

and can be used to give improved POA bounds for such equilibria.

1 Introduction

A rigorous way to argue that a system with self-interested participants has good
performance is to prove that every “plausible outcome” of the system has ob-
jective function value close to that of an optimal outcome. For example, one
could model a system as a one-shot game, identify “plausible outcomes” with
the pure-strategy Nash equilibria (PNE) — outcomes in which each player deter-
ministically picks one strategy so that it has no incentive to unilaterally deviate
from it — and prove a relative approximation bound for the PNE of the game.

Such price of anarchy (POA) bounds become increasingly robust and com-
pelling as one increases the set of “plausible outcomes”. For example, a POA
bound that applies only to the pure-strategy Nash equilibria of a game presumes
that the system reaches such a state. This can be a bold assumption, for example
in contexts where it is computationally difficult to compute a PNE (see e.g. [7]).
A POA bound that applies more generally to “easily learned” outcomes, such as
the correlated equilibria [1] or coarse correlated equilibria [8] of a game, presumes
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far less about the game’s participants [2,3]. Of course, worst-case approximation
bounds typically degrade as the assumptions about play are weakened — for
example, the expected performance of the worst coarse correlated equilibrium of
a game is typically worse than that of the worst pure-strategy Nash equilibrium.

This paper shows a precise duality between certain equilibrium concepts, in-
cluding correlated and coarse correlated equilibria, and analysis frameworks for
proving POA bounds for such concepts. This duality makes formal the intuitive
trade-off between the plausibility of the rationality assumptions imposed on the
game participants and the quality of the corresponding worst-case approximation
bound. We offer two applications.

1. Roughgarden [11] showed that every POA bound proved using a “smooth-
ness argument” (see Definition 1) — the most frequently employed method
for establishing POA bounds (e.g. [5,6,9,10,12]) — applies automatically to
(at least) all CCE of the game. A basic problem is to characterize the distri-
butions over outcomes to which smoothness bounds always apply. We solve
this problem (Theorem 1) and show that the answer is a generalization of
CCE in which the average regret of players is non-positive, as opposed to the
CCE condition that every player has non-positive regret (see Definition 2).

2. Applying the duality result in the opposite direction yields analysis frame-
works that are guaranteed to be tight for the corresponding equilibrium
concepts. We illustrate this idea with the set of CCE, where the correspond-
ing multi-parameter analysis framework refines the simpler two-parameter
smoothness paradigm in [11]. This more flexible analysis framework is, by
definition, specifically tailored for CCE and can be used to give improved
POA bounds for such equilibria.

2 The Primal-Dual Framework

Section 2.1 reviews standard definitions of cost-minimization games, equilibrium
concepts, and the price of anarchy. Section 2.2 presents our first contribution and
shows that, for every equilibrium concept that can be expressed as the proba-
bility distributions over outcomes that are solutions to a set of homogeneous
inequalities, there is a corresponding analysis framework that is guaranteed to
prove tight bounds on the price of anarchy for that concept. Our second con-
tribution, described in Section 2.3, is an application of this framework: POA
bounds proved using the “smoothness paradigm” introduced in [11] apply pre-
cisely to a generalization of coarse correlated equilibria that we call “average
coarse correlated equilibria”. Section 2.4 demonstrates how a sharper analysis
method tailored specifically for coarse correlated equilibria, which follows di-
rectly from our primal-dual framework, can be used to prove bounds superior to
those that follow from the standard smoothness paradigm.

2.1 Preliminaries

Cost-minimization games. We denote a cost-minimization game by a tuple Γ =
(N, {Si}i∈N , {Ci}i∈N ), where N = {1, . . . , n} is the set of n players, Si is the
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set of actions of player i, and ci : S �→ R++ is player’s i positive cost function,
where S = S1×S2×· · ·×Sn is the joint action set.1 We use Δ(S) to denote the
set of probability distributions over S and s−i to denote the strategies played
in s by the players other than i.

Equilibrium concepts and the price of anarchy. In this paper, we consider equilib-
rium concepts that can be described as subsets ofΔ(S). In particular, recall that
a correlated equilibrium (CE) is a joint probability distribution σ over outcomes
of Γ with the property that E s∼σ[Ci(s)|si] ≤ E s∼σ[Ci(s′i, s−i)|si] for every i and
si, s′i ∈ Si. Thus a distribution σ over outcomes is a CE if the following holds
for a random sample s ∼ σ: for each player i and “recommended strategy” si,
the player minimizes its expected cost, conditioned on the recommendation si
and assuming that other players play according to s−i, by playing si. CE are
also the limits of sequences of repeated play in which each player has vanishing
per-step swap or internal regret (see [4]). The mixed Nash equilibria of a game
are precisely the CE that are also product distributions.

A coarse correlated equilibrium (CCE) is a joint probability distribution σ
over outcomes of Γ with the property that E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s′i, s−i)] for
every i and s′i ∈ Si. These equilibrium constraints consider only player deviations
that are independent of the recommendation si, so every CE is also a CCE (and,
generally, the converse fails). CCE are also the limits of sequences of repeated
play in which each player has vanishing per-step external regret (see [4]).

We assume that the objective function is to minimize the total cost C(s) =∑
i∈N Ci(s), and use s∗ to denote an optimal outcome. The price of anarchy

(POA) of a game for an equilibrium concept EQ ⊆ Δ(S) is the ratio between
the expected total cost of the worst (i.e., highest-cost) equilibrium σ ∈ EQ and
the social cost of s∗.

2.2 A Primal-Dual Framework for POA Bounds

This section describes our primal-dual framework, which formalizes a duality be-
tween equilibrium concepts that can be represented as solutions of homogeneous
inequalities and analysis methods that are necessary and sufficient to prove tight
bounds on the POA for such concepts.

Fix a game Γ , and an equilibrium concept EQ that can be written as EQ =
{σ ∈ Δ(S) : Aσ ≤ 0}, where A ∈ R|S|×m is a matrix that can depend on players’
cost functions in Γ . For example, the equilibrium concepts CE and and CCE
can be described in this way:

Example 1 (Correlated Equilibria). We can express the CE of a cost-minimization
game as the probability distributions over outcomes that satisfy

CE=

{
σ :
∑

s:si=si

σs(C(s′i, s−i)− C(s)) ≤ 0, for every i∈N, and si, s
′
i ∈ Si, σs≥0

}
.

1 Our results can be reworked without difficulty for payoff-maximization games.
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Example 2 (Coarse Correlated Equilibrium). We can express the CCE of a cost-
minimization game as the probability distributions that satisfy

CCE=

{
σ :
∑
s

σs(C(s′i, s−i)− C(s)) ≤ 0, for every i ∈ N, and s′i ∈ Si, σs ≥ 0

}
.

A third example will arise naturally in Section 2.3.
We now develop our simple primal-dual framework. We can formally write

the POA of a game Γ and an equilibrium concept EQ as

POAEQ(Γ) = sup
σ∈EQ

{
E s∼σ[C(s)]

C(s∗)

}
.

After scaling by C(s∗), this maximization problem can be expressed as the so-
lution of the following linear program:

PRIMAL-EQ : Maximize
∑

s∈S σsC(s)
subject to

∑
s∈S σsC(s∗) = 1

Aσ ≤ 0, σs ≥ 0

The dual problem of PRIMAL-EQ is

DUAL-EQ : Minimize p
subject to C(s∗)p · 1n + zAT ≥ 0,

z ≥ 0, p ≥ 0, p ∈ R, z ∈ Rm

where 1n is the n dimensional vector with all entries 1, and m is the number of
inequalities in A.

We say that a game is p-bounded for the equilibrium concept EQ if there
exists a vector z ∈ Rm such that the pair (p, z) is feasible for DUAL-EQ, or
simply p-bounded when the equilibrium concept is clear. We refer to z as a dual
certificate for Γ and EQ.

Strong linear programming duality immediately implies the following.

Proposition 1. For every cost-minimization game Γ and equilibrium concept
EQ representable as the solution of homogeneous inequalities, POAEQ(Γ) ≤ p if
and only if Γ is p-bounded for EQ.

The following example instantiates Proposition 1 for correlated equilibria. The
next two sections provide further examples.

Example 3 (Primal-Dual Framework for Correlated Equilibria). For a cost-
minimization game Γ , the quantity POACE(Γ) is, by definition, the optimal
solution to the problem PRIMAL-CE:

PRIMAL-CE : Maximize
∑

s∈S σsC(s)/C(s∗)
subject to

∑
s∈S σs = 1∑
s:si=a σs(C(b, s−i)− C(s)) ≤ 0, for every i ∈ N,

and a, b ∈ Si

σs ≥ 0.
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The corresponding DUAL-CE problem is then

DUAL-CE : Minimize p
subject to pC(s∗) +

∑
i

∑
b∈Si

zi
si,b

(Ci(s)− Ci(b, s−i)) ≥ C(s),
for all s ∈ S

z ≥ 0, p ≥ 0.

Hence, to prove an upper bound of p on the POA for correlated equilibrium, it
suffices to show that the game is p-bounded for CE — that is, to find a dual
certificate z = {zi

a,b}i∈N,a,b∈Si so that (p, z) is feasible for DUAL-CE.

2.3 The Limits of (λ, μ)-Smoothness

Roughgarden [11] defined a smooth game as follows.

Definition 1 (Smooth Games). A cost-minimization game with minimum-
cost outcome s∗ is (λ, μ)-smooth if

k∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + μ · C(s) (1)

for every outcome s.

One of the main results in [11] is that POACCE(Γ) ≤ λ/(1 − μ) whenever Γ is
(λ, μ)-smooth.2 In addition, many known POA bounds — often stated only for
pure or mixed Nash equilibria — are or can be recast as smoothness bounds
(see [11]), and thus these bounds “extend automatically” to the more general
concept of CCE.

This section addresses the basic question of characterizing the distributions
over outcomes to which a (λ, μ)-smoothness bound applies. The answer, which
we derive via the primal-dual framework in the previous section, turns out to be a
strict generalization of CCE that we call an average coarse correlated equilibrium,
with respect to s∗ (ACCE∗).

Definition 2 (ACCE∗). For a fixed game and an outcome r ∈ S

ACCEr = {σ ∈ Δ(S) : Es∼σ[C(s)] ≤ Es∼σ[
∑

i

Ci(ri, s−i)]}.

When r is the minimum-cost outcome s∗, we abbreviate ACCEs∗ by ACCE∗.

Conceptually, there are two differences between a CCE and an ACCE∗. In a
CCE, the expected cost incurred by a player is at most that of unconditionally
deviating to an any fixed action — i.e., every player has non-positive “regret”.
ACCE∗ is a more permissive equilibrium concept. First, we measure the regret of
2 In [11] the definition of (λ, μ)-smoothness requires that inequality (1) holds for every

pair s, s∗ outcomes. The weaker requirement stated here still translates, via the same

proofs, to an upper bound on the POA for CCE.
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a player i by comparing its expected cost only to that incurred under a deviation
to s∗i , rather than to an arbitrary (or best) strategy. Second, in an ACCE∗, some
players i can have negative regret with respect to s∗i as long as the average (over
players) such regret is non-positive. Unsurprisingly, many games have ACCE∗

that are not CCE; the proof of Proposition 2 provides one concrete example.
The next theorem shows that every (λ, μ)-smoothness argument bounds the

worst-case expected cost of precisely the set of ACCE∗. This characterization has
both positive and negative implications. First, even the ACCE∗ distributions of
a (λ, μ)-smooth game have good expected cost (and not only the CCE, as proved
in [11]). Second, conversely, the worst-case ACCE∗ constrains the best-possible
upper bound that can be proved via a (λ, μ)-smoothness argument.

Theorem 1 (Duality Between (λ, μ)-Smoothness and ACCE∗). For every
cost-minimization game Γ , the best smoothness upper bound for Γ equals its POA
for the equilibrium concept ACCE∗:

inf
{

λ

1− μ : (λ, μ) s.t. the game Γ is (λ, μ)-smooth
}

= POAACCE∗(Γ).

Proof. We prove that the (λ, μ)-smoothness requirements are equivalent to the
constraints of the DUAL problem for the equilibrium concept ACCE∗. We con-
sider the linear fractional problem for obtaining the best (i.e., least) upper bound
using (λ, μ)-smoothness:

(LFP) : Minimize λ
1−μ

subject to
∑

i∈N Ci(s∗i , s−i) ≤ λC(s∗) + μC(s), for all s ∈ S
μ < 1.

By rearranging terms in the first inequality of problem (LFP) and dividing
through by 1− μ > 0 we obtain

(LFP2) : Minimize λ
1−μ

subject to λ
1−μC(s∗) + 1

1−μ

(
C(s)−

∑
i∈N Ci(s∗i , s−i)

)
≥ C(s)

for all s ∈ S
μ < 1.

Now, re-writing (LFP2) with a change of variables p = λ
1−μ , and z = 1

1−μ gives
the following linear program (LP):

(LP) : Minimize p
subject to pC(s∗) + z (C(s)−

∑
iCi(s∗i , s−i)) ≥ C(s), for all s ∈ S

z > 0.

The dual problem of (LP) is:

(D): Maximize
∑

s∈S σsC(s)
subject to

∑
s∈S σsC(s∗) ≤ 1∑
s σ(s) (

∑
iC(s∗i , s−i)− C(s)) ≥ 0

σs ≥ 0, for all s ∈ S.
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We can replace the first inequality in (D) with an equality since the social cost
function is positive by assumption. Then, after scaling by C(s∗) we get an equiv-
alent linear program that corresponds to the POA for ACCE∗:

(PRIMAL-ACCE∗) : Maximize
∑

s∈S σs
C(s)
C(s∗)

subject to
∑

s∈S σs = 1∑
s σ(s) (

∑
iC(s∗i , s−i)− C(s)) ≥ 0

σs ≥ 0, for all s ∈ S.

2.4 Better Dual Certificates Give Better POA Upper Bounds

Theorem 1 shows that the smoothness analysis framework in [11] corresponds
precisely to worst-case upper bounds on the set of ACCE∗. In this section we
assume that the goal is to prove upper bounds on the quantity POACCE(Γ), and
view the fact that (λ, μ)-smoothness bounds the expected cost of a strictly larger
set of outcome distributions as an “accident”. Motivated by this perspective,
this section uses the primal-dual framework of Section 2.2 to derive a condition
tailored for CCE that is sharper than (λ, μ)-smoothness and that can be used
to prove better upper bounds on POACCE(Γ).

Let CCE∗ denote the equilibrium concept where each player’s expected cost
is at most that of deviating to its action in s∗, i.e., σ ∈ CCE∗, if and only if

E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s∗i , s−i)]

for every i ∈ N . Obviously, CCE ⊆ CCE∗ ⊆ ACCE∗.
Proposition 1 shows that every equilibrium concept that is the solution to

homogeneous inequalities, such as CCE∗, has a corresponding tight analysis
framework. To bound the POA for CCE∗, we only need to find a suitable dual
certificate. The DUAL-CCE∗ problem is

(DUAL-CCE∗) : Minimize p
subject to pC(s∗) +

∑
i∈N zi (Ci(s)− Ci(s∗i , s−i)) ≥ C(s),

for all s ∈ S
zi ≥ 0, for all i ∈ N.

Thus, a dual certificate for CCE∗ is an n-dimensional vector z such that
pC(s∗) +

∑
i∈N zi (Ci(s)− Ci(s∗i , s−i)) ≥ C(s), for all s ∈ S. This is evidently

more flexible than the single-parameter dual certificate one is forced to use for
ACCE∗. Can this flexibility lead to better worst-case upper bounds? The follow-
ing proposition gives an affirmative answer.

Proposition 2. There is a game Γ such that POACCE(Γ) < POAACCE∗(Γ).

Proof (sketch): Consider a load balancing game with two jobs J1, J2, with weights
2 and 1 respectively, and two machines M1,M2 with latency functions

�1(1) = 1, �1(2) = 2, �1(3) = 3;
�2(1) = 1 + ε, �2(2) = 2, �2(3) = 4.
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The optimal outcome s∗ assigns J1 to M1 and J2 to M2, and has a social cost
3. For small enough ε, the best ACCE∗ dual certificate3 is z ≈ 7/9 which cor-
responds to a POA of 16/9 ≈ 1.77. For CCE∗ a dual certificate (z1, z2) ≈
(23/24, 5/12) exists, for a better POA bound of 49/30 ≈ 1.63. �
Remark 1. There are games with an arbitrary gap between POACCE∗ and
POAACCE∗ , e.g., by changing the latency function �2 in the proof of Propo-
sition 2 to �2(3) = H , for a large enough H .

Remark 2. In contrast to Proposition 2, in symmetric games — where all play-
ers have the same strategy set and each player’s cost depends only on its own
strategy and the number of players that choose each strategy — the POA for
ACCE∗ is equal to the POA for CCE∗. We omit the easy argument.
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Abstract. We study online profit-maximizing auctions for digital goods

with adversarial bid selection and uniformly random arrivals. Our goal is

to design auctions that are constant competitive with F(2); in this sense

our model lies at the intersection of prior-free mechanism design and

secretary problems. We first give a generic reduction that transforms

any offline auction to an online one, with only a loss of a factor of 2

in the competitive ratio; we then present some natural auctions, both

randomized and deterministic, and study their competitive ratio; our

analysis reveals some interesting connections of one of these auctions

with RSOP, which we further investigate in our final section.

1 Introduction

The design of mechanisms that maximize the auctioneer’s profit is a well-studied
question in mechanism design. Most of the relevant literature assumes a prior
on the distribution of bidders’ values and aims at maximizing the expected
profit [16]; the question of designing a profitable auction with no assumptions
about the bids’ distribution has only recently been addressed during the past
decade. In prior-free mechanism design [10] we assume that bids are picked by an
adversary and we want to design auctions that are profitable for any such input
bid sequence. To analyze such auctions, prior-free mechanism design adopts the
model of competitive analysis and compares the profit of every auction to some
well-behaved benchmark.

Most of the work in prior-free mechanism design assumes that the bids are
known in advance [10,8,13,14]. Since almost all auctions today are happening
online it makes sense to consider the online setting, where bidders arrive one at
a time with a random order. In this setting, the design of a profitable, truthful
auction reduces to making the “right” offer to every arriving bidder, using bids of
previous bidders as the only information. We call such auctions Online Sampling
Auctions.

This model bears a lot of similarities with the secretary model: the adversary
picks the values of the elements, which are then presented in (uniformly) random

� Supported in part by IST-2008-215270 (FRONTS).

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 327–338, 2010.
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order, and we are called to design an algorithm that maximizes the probability
of picking the largest element. There is an extensive literature about online
auctions and generalized secretary problems (for a survey see [3]). The online
auctions studied there are social-welfare maximizing auctions, and the overall
focus is on the competitive analysis. Given an online algorithm one can turn it
into a truthful mechanism very easily (at least when people cannot misreport
their arrival times) by simply charging every bidder its threshold value; this of
course makes the profit of such auctions very hard to analyze. Our approach
is the opposite one: in order to design online profit-maximizing auctions, we
start with the truthful offline setting of prior-free mechanism design, and turn
it into an online setting. This way we ensure our auctions are both truthful and
constant-competitive with the profit-benchmark.

The work closer in spirit to ours is [11]. This paper studies limited-supply
online auctions, where an auctioneer has k items to sell and bidders arrive and
depart dynamically; the analysis assumes worst-case input bids and random
arrivals and the main result is an online auction that is constant-competitive for
both efficiency and revenue. The profit-benchmark considered for k > 1 items,
is essentially the same as the one here, namely the optimal single price sale
profit that sells at least two items, F (2). The authors present an auction that
acts in two phases, very much in the spirit of secretary algorithms, that is 6338-
competitive with respect to this benchmark. Our auctions achieve much better
competitive ratios (below 10), and are arguably simpler to analyze; however in
our model we do not address the issue of possible arrival times misreports.

Online auctions for digital goods have also been studied before in [5,7,6,4].
Their model is different from ours in that they do not assume random arrivals.
Most of the algorithms presented in these papers are based on techniques from
machine learning, and their performance depends on h, the ratio of the highest
to the lowest bid. Our auctions are arguably more natural, and in most cases
achieve better competitive ratios; however in our model auctions heavily rely on
learning the actual values of past bids, and not just whether a bidder accepted
or rejected the offer (as opposed to some of the auctions in [6]).

Finally, in an earlier work, Lavi and Nisan study worst case social-efficiency
and profitability of online auctions for a different setting (not digital goods),
taking the off-line Vickrey auction as a benchmark [15].

2 Our Model

We are going to study auctions of digital goods, where bidders arrive online. For-
mally we have n bidders with valuations v1, . . . , vn (where we assume v1 ≥ . . . ≥
vn) and n identical items for sale. Bidders arrive with a random order, specified
by the function π : [n] → [n], which is a permutation on [n] = {1, . . . , n}; we
assume uniform distribution over all different permutations of the n bids and
adversarial (worst-case) choice of the values of the bids. In that sense our model
is similar to the secretary model.

As each bidder arrives, we make her a take-it-or-leave-it offer for a copy of the
item, for some price p. We want to make the offer before the bidder declares her
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bid (or equivalently we do not want our offer to depend on her declared bid) so
that our auction is truthful (i.e. it is in the bidder’s best interest to bid her true
value vi); hence, from now on we shall use b1, . . . , bn to refer to both bids and
actual values of the players. Formally we want to make the j-th bidder bπj , an
offer pj = p(bπ1 , . . . , bπj−1); the bidder will accept the offer if bπj ≥ pj and will
pay pj.

Our goal is to maximize the expected profit of our auction, defined as
E
[∑n

i=1 pj · I(bπj ≥ pj)
]
. We are going to consider both deterministic and ran-

domized pricing rules p(bπ1 , . . . , bπj−1); therefore the expectation is over all pos-
sible orderings of the input bids and –in the case of random pricings– over the
randomization in our mechanism.

We are going to use the competitive framework proposed in [10] and compare
the expected profit of our auctions to the profit of the best single price auction
that sells at least two items, namely F (2)(b1, . . . , bn) = maxi≥2 i · bi.1 We say
that an online auction is ρ-competitive if its expected profit is at least F (2)/ρ.
Our goal is to design constant-competitive auctions (i.e. auctions where ρ is a
constant).

3 Online Sampling Auctions

3.1 Randomized Competitive Online Sampling Auctions

Our first result establishes the existence of constant-competitive online sampling
auctions. In fact we show the stronger result that any truthful offline auction
gives rise to a truthful online sampling auction, with competitive ratio at most
twice as large.

We start by noticing that any truthful (offline) auction for digital goods has
the following format: every bidder i is given a take-it-or-leave-it offer pi which is
a function of the bids of the other players f(b−i); if the bidder accepts she pays
pi otherwise nothing (this follows from Myerson’s theorem [16]). Then we notice
that every such truthful offline auction gives rise to an online auction if we simply
set the price offered to the j-th arriving bidder to be pj = f(bπ1 , . . . , bπj−1), for
the same function f ; intuitively this means that we run the offline auction on
the whole set of revealed bids, but actually charge only the bidder that has just
arrived. Because we restrict our attention to truthful offline auctions, we know
that the price offered to pj will not depend on bj and so we can offer the j-th
bidder a price before she even reveals her bid. Our theorem now says that the
resulting online auction has at most twice the competitive ratio of the offline
auction.

Theorem 1. If we turn an offline auction with competitive ratio ρ into an online
auction, the competitive ratio of the online auction is at most 2ρ. More precisely,
if bk is the price of the optimal auction, then the competitive ratio of the online
auction is at most ρ · k/(k − 1).2

1 Notice however that in general our auctions will not be single-price auctions.
2 We note that this looks very much like the 1

4
· k−1

k
approximation ratio of [8], in a

different model of course.
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Proof. Consider the first t bids of the online auction. The online auction runs
the offline auction on them. The expected profit of the offline auction from the
whole set of bids would be at least 1

ρF (2)(bπ1 , . . . , bπt); by the random-order
assumption about the input, the expected profit from every bid is equal and, in
particular, the expected gain from bπt is at least:

1
t

1
ρ
F (2)(bπ1 , . . . , bπt)

With probability
(

t
m

)(
n−t
k−m

)
/
(
n
k

)
the first t bids have exactly m of the highest

k bids which contribute to the optimum. Also, for m ≥ 2, F (2)(bπ1 , . . . , bπt) ≥
mbk.3 So, it follows that when m ≥ 2, with the above probability the expected
gain of the online auction from bπt is at least:

1
t

1
ρ
mbk

So, the expected profit of the online auction is at least:

n∑
t=2

min{t,k}∑
m=2

(
t
m

)(
n−t
k−m

)(
n
k

) 1
t

1
ρ
mbk

=
1
ρ
bk

(
n

k

)−1 n∑
t=2

k∑
m=2

(
t− 1
m− 1

)(
n− t
k −m

)

=
1
ρ
bk

(
n

k

)−1 n−1∑
t=1

k−1∑
m=1

(
t

m

)(
n− 1− t
k − 1−m

)

=
1
ρ
bk

(
n

k

)−1 n−1∑
t=1

((
n− 1
k − 1

)
−
(
n− 1− t
k − 1

))

=
1
ρ
bk

(
n

k

)−1
⎛⎝(n− 1)

(
n− 1
k − 1

)
−

n−2∑
j=k−1

(
j

k − 1

)⎞⎠
=

1
ρ
bk

(
n

k

)−1(
(n− 1)

(
n− 1
k − 1

)
−
(
n− 1
k

))
=
k − 1
ρ
bk,

where in the third equality we used the Chu-Vandermonde identity and in the
second-to-last equality we used the identity

∑n
j=k

(
j
k

)
=
(
n+1
k+1

)
; the Theorem

now follows. ��

3 Notice that when m = 1, there is no decent lower bound for F(2); this is the reason

that the online auction has larger competitive ratio than the offline auction.
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We can now state our main Theorem:

Theorem 2. The competitive ratio of Online Sampling Auctions is between 4
and 6.48.

Proof. The upper bound is given by the online version of the (offline) auction
presented in [12] which achieves a competitive ratio of 3.24.

For the lower bound, consider the case where the input chosen by the ad-
versary consists of two bids: if the price offered to the second bidder is strictly
greater than the first bid the adversary will pick two identical bids and the online
auction will have zero profit. If the auction’s offer to the second bidder is less
than or equal to the first bid the adversary will pick as input the bids h + ε, h
(for sufficiently large ε), in which case the optimal profit is 2h but the auction
has expected profit at most h/2. ��
At this point we note that the above Theorem greatly improves over the previ-
ously known bounds due to [11]. A natural question to ask now is whether we
can bridge the gap between the lower and the upper bound. To this end we first
study the competitive ratio that can be achieved by the online version of the
Sampling Cost Sharing auction (SCS); this auction partitions bidders uniformly
into two parts and extracts the optimal single price sale profit of each side from
the other (if possible, otherwise it extracts no profit) [10]. We have the following:

Corollary 1. The competitive ratio of the online version of SCS is at most 8.
In the special case in which the optimal single-price auction for the whole set of
bids sells the item to at least 5 buyers, the competitive ratio is at most 4.

Proof. Using Theorem 1 and the bound on the competitive ratio of SCS proved
in [10] we get that the online version of SCS will have competitive ratio at most

k
k−1

(
1
2 −
(

k−1
�k/2�

)
2−k
)−1

, which is less than 4 for k ≥ 5. ��

Notice that the worst-case inputs for this auction are when the optimal single
price bk is large, i.e. k is small. In the following section we show that this is not
the case for all auctions.

3.2 A Deterministic Online Sampling Auction: BPSFr

The two online auctions considered in the previous section are randomized, like
their offline counterparts. In this section we shift our focus on deterministic
online sampling auctions. For the offline setting the following theorem from [10]
wipes out all hope for such an auction.

Theorem 3 ([10]). We say an auction is symmetric if its outcome is indepen-
dent of the order of the bids. It then holds that no symmetric, deterministic,
truthful auction is constant-competitive against F (2).

There exist asymmetric, deterministic auctions with constant competitive ratio,
but most of them result from derandomization of randomized ones and are unnat-
ural [1]. In the online setting where order matters anyway, we can hope to design
a constant competitive and deterministic (truthful) auction, that is also natural.
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To this end we define the Best-Price-So-Far auction: BPSFr is the (family of)
auction(s) which offer as price the bid among the highest r of the previous bids
which maximizes the single price sale profit of past requests. We are going to
focus our attention on two representatives of this family, BPSF1 and BPSF∞,
henceforth denoted by BPSF. BPSF1 is an interesting auction which offers as
price the maximum revealed bid. BPSF is an auction that offers the j-th bidder
the price pj = p(bπ1 , . . . , bπj−1) = argmaxi≤j−1 i · bπi .

Theorem 4. The expected profit of BPSF1 is exactly
∑n

i=2
1
i bi. Furthermore, if

bk is the price of the optimal auction, then the competitive ratio of BPSF1 is k
Hk−1

where Hk = 1 + 1/2 + · · ·+ 1/k is the k-th harmonic number, and this is tight.

Proof. Notice that bj is going to be offered as price exactly when bj appears
before b1,. . . ,bj−1. Every such bid is accepted if there is a higher bid after bj ap-
pears. Thus bj is going to be accepted at some point when j ≥ 2. The probability
that bj appears before b1,. . . ,bj−1 is exactly 1/j. It follows that the expected
profit of BPSF1 is

∑n
i=2

1
i bi.

For the second fact, simply observe that when bk is the price of the optimal
auction, the online profit is at least

∑k
i=2

1
i bi ≥

∑k
i=2

1
i bk = (Hk − 1)bk. Since

the optimal profit is kbk, the claim follows.
Finally, it is easy to verify that the above bound is tight for any set of n bids

with b1 > . . . > bn and bn ≥ b1 − ε, for sufficiently small ε. ��

Corollary 2. Let bk, be the optimal single price for the whole set of bids. If
k ≤ 5 then the competitive ratio of BPSF1 is at most 4.

Corollaries 1 and 2 show that if we knew in advance the number of buyers of the
optimal single-price auction, we could achieve competitive ratio 4 against F (2),
thus matching the corresponding lower bound.

We saw that BPSF1 is not constant competitive; it is also easy to see that the
competitive ratio of BPSFr can only decrease for larger r; the natural question to
ask is if it will ever be constant. To this end we examine BPSF, which is arguably a
very natural online auction: BPSF is the online version of the Deterministic Opti-
mal Price (DOP) auction that offers bidder j the optimal single price of the other
bidders, namely pj = p(b−j) = arg maxi
=j i · bi. DOP is known not to be compet-
itive [10]; we conjecture that BPSF on the contrary is constant-competitive:

Conjecture 1. The competitive ratio of BPSF is 4.

The competitive ratio of 4 is the same as the conjectured competitive ratio of
RSOP. This is not a coincidence; in the next section we take a closer look into
the similarities of RSOP and BPSF.

4 On the Competitive Ratio of BPSF and RSOP

One of the simplest competitive auctions, and arguably the most studied [10,9,2]
is the Random Sampling Optimal Price auction (RSOP). In RSOP the bidders
are uniformly partitioned into two parts, and the optimal single price of each
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part (i.e. arg max i · bi) is offered to the bidders of the other part. RSOP is
conjectured to be 4-competitive; to date the best upper bound is 4.68 [2].

In what follows we analyze the competitive ratio of BPSF and RSOP in more
detail. We see that the analyses of the two auctions bear a lot of similarities and
we suggest a possible approach for both auctions. We believe that our approach
may be a promising direction for proving both Conjecture 1 and that RSOP is
4-competitive as well.4

We first introduce some notation. Let B = {b1, . . . , bn} be the set of all bids
and B2 = {b2, . . . , bn}. Given a specific partition of bids b1, . . . , bn in two parts,
we use (bj1 , . . . , bjk

) to denote the side of the partition that does not contain the
highest bid b1, i.e. by writing (bj1 , . . . , bjk

) we assume implicitly that j1 ≥ 2 and
also bj1 ≥ . . . ≥ bjk

. Finally let

y(bj1 , . . . , bjk
) = max{bj1 , 2bj2 , . . . , kbjk

},

the optimal single price sale profit from (bj1 , . . . , bjk
) and let z(bj1 , . . . , bjk

) be
the profit from offering the optimal price of (bj1 , . . . , bjk

) to the other side.
We next show how to write the expected profits of RSOP and BPSF in terms

of z and y.
For RSOP it is straightforward; just notice that the adversary can always pick

a large enough b1 so that the profit from the side of the partition not containing
b1 will always be 0 [9]. We then have:

RSOP =
∑

S⊆B2

z(S)2−n+1

For BPSF the expression is less straightforward. We have:

Lemma 1. The expected profit of BPSF is
∑

S⊆B2
z(S)

(
n−1
|S|
)−1
n−1.

Proof. Let Profit(S, bi) denote the profit we get if we offer the optimal single
price for S to bid bi /∈ S. In what follows, the expectation operator is used to
denote expectation over the non-uniform distribution on the collection of sets
S ⊆ B2 induced by the random arrival order of the bids.5 We have:

BPSF =
∑
bi

ES⊆B2,bi /∈S [Profit(S, bi)]

=
1
n
·
∑
bi

n−1∑
k=0

ES⊆B2,|S|=k,bi /∈S [Profit(S, bi)]

=
1
n
·
∑
bi

n−1∑
k=0

∑
S⊆B2,|S|=k,bi /∈S

Profit(S, bi)(
n−1

k

)
4 The very technical approach of [2], although coming very close, does not seem to be

able to prove the Conjecture.
5 As opposed to expectation taken over a uniformly random choice of a set S ⊆ B2.
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=
1
n
·
∑
bi

∑
S⊆B2,bi /∈S

Profit(S, bi)(
n−1
|S|
)

=
1
n
·
∑

S⊆B2

1(
n−1
|S|
)z(S)

where in the second equality we used the fact that bi will be in the k+1 position
with probability 1/n, in the third equality we used the fact that all orderings
have the same probability and in the last equality we used the fact that z(S) =∑

bi /∈S Profit(S, bi). ��

The next lemma establishes an interesting relation between the y values and the
optimal single price sale profit F (2).

Lemma 2. For any i ∈ [n], i ≥ 2 it holds that:∑
S⊆B2: b2∈S

y(S) ≥ 2n−3 ibi

Proof. Let bi be the optimum single price for the whole set of bids, i.e. F (2) = ibi
(although our result holds for any bid bi).

We will introduce a mapping between the set of sequences X = {S ⊆ B2| b2 ∈
S & bi /∈ S} and the set Y = {S ⊆ B2| b2 /∈ S & bi ∈ S}. Given a sequence
of bids S ∈ X let t = max{j : j < i, bj ∈ S}.6 We then define the following
mapping for each bid bj ∈ S:

f(bj) =
{
bj+i−t : if j < i
bj : if j > i

It is easy to see that the mapping g : X −→ Y defined as g(bj1 , . . . , bjk
) =

(f(bj1), . . . , f(bjk
)) is in fact a bijection. Also note that b1 ≥ . . . ≥ bn implies

that y(S) ≥ y(g(S)). Hence we have:∑
S⊆B2: b2∈S

y(S) =
∑

S⊆B2: b2∈S,bi∈S

y(S) +
∑

S⊆B2: b2∈S,bi /∈S

y(S)

≥
∑

S⊆B2: b2∈S,bi∈S

y(S) +
∑

S⊆B2: b2∈S,bi /∈S

y(g(S))

=
∑

S⊆B2: b2∈S,bi∈S

y(S) +
∑

S⊆B2: b2 /∈S,bi∈S

y(S)

=
∑

S⊆B2: bi∈S

y(S)

= 2n−i
i−2∑
j=0

(
i− 2
j

)
(j + 1) · bi

6 Notice that this is a non-empty set, as it contains j = 2.
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For the last equality consider all possible positions of bi in S. There can be j
bids larger than bi where j ranges from 0 to i− 2; there are

(
i−2

j

)
ways to pick

these bids and 2n−i ways to pick the bids that are smaller than bi and for this
specific position the coefficient of bi is (j + 1).7

A straightforward calculation shows that
∑i−2

j=0

(
i−2
j

)
(j + 1) = i2i−3, and the

claim follows. ��

It is now easy to see that the following claim implies that RSOP is indeed 4-
competitive.

Conjecture 2 ∑
S⊆B2

z(S) ≥
∑

S⊆B2: b2∈S

y(S)

The corresponding claim for BPSF is:

Conjecture 3 ∑
S⊆B2

z(S)
(
n− 1
|S|

)−1

n−1 ≥
∑

S⊆B2: b2∈S

y(S)2−n+1

We believe that Conjectures 2 and 3 both hold and that RSOP and BPSF are
both 4-competitive. We attempted to prove the Conjectures using a number of
relations between the z and y values; analytical and numerical simulations show
that one can sum up individual relations between z(S) and y(S) for any set S
of bids, like the ones presented in Appendix A, in order to get the result.

5 Conclusion

There is a number of open questions from this work: the obvious ones are to
prove that BPSF is indeed 4-competitive and see what this proof implies for the
competitive ratio of RSOP. Proving that BPSF is constant competitive for some
other constant is also interesting, and probably much easier. Finally, it would be
interesting to see if there is a natural online sampling auction with competitive
ratio at most 4, for all values k of the optimal single price bk.

Acknowledgments. We are grateful to an anonymous reviewer for a pointer
to missing literature and for comments that helped us improve the presentation.

References

1. Aggarwal, G., Fiat, A., Goldberg, A.V., Hartline, J.D., Immorlica, N., Sudan, M.:

Derandomization of auctions. In: STOC, pp. 619–625 (2005)

2. Alaei, S., Malekian, A., Srinivasan, A.: On random sampling auctions for digital

goods. In: ACM Conference on Electronic Commerce, pp. 187–196 (2009)

7 If bi is an arbitrary bid with i ≥ 2, rather than the optimum single price as stated

in the beginning of the proof, then the last equality should be replaced with an

inequality, and the claim still goes through.



336 E. Koutsoupias and G. Pierrakos

3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and gen-

eralized secretary problems. SIGecom Exchanges 7(2) (2008)

4. Balcan, M.-F., Blum, A., Hartline, J.D., Mansour, Y.: Reducing mechanism design

to algorithm design via machine learning. J. Comput. Syst. Sci. 74(8), 1245–1270

(2008)

5. Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online auctions for dig-

ital goods. In: SODA, pp. 964–970 (2002)

6. Blum, A., Hartline, J.D.: Near-optimal online auctions. In: SODA, pp. 1156–1163

(2005)

7. Blum, A., Kumar, V., Rudra, A., Wu, F.: Online learning in online auctions. Theor.

Comput. Sci. 324(2-3), 137–146 (2004)

8. Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single

sample. In: ACM Conference on Electronic Commerce, pp. 129–138 (2010)

9. Feige, U., Flaxman, A.D., Hartline, J.D., Kleinberg, R.D.: On the competitive ratio

of the random sampling auction. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS,

vol. 3828, pp. 878–886. Springer, Heidelberg (2005)

10. Goldberg, A.V., Hartline, J.D., Karlin, A.R., Wright, A., Saks, M.: Competitive

auctions. In: Games and Economic Behavior, pp. 72–81 (2002)

11. Hajiaghayi, M.T., Kleinberg, R.D., Parkes, D.C.: Adaptive limited-supply online

auctions. In: ACM Conference on Electronic Commerce, pp. 71–80 (2004)

12. Hartline, J.D., McGrew, R.: From optimal limited to unlimited supply auctions.

In: ACM Conference on Electronic Commerce, pp. 175–182 (2005)

13. Hartline, J.D., Roughgarden, T.: Optimal mechanism design and money burning.

In: STOC, pp. 75–84 (2008)

14. Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. In: ACM

Conference on Electronic Commerce, pp. 225–234 (2009)

15. Lavi, R., Nisan, N.: Competitive analysis of incentive compatible on-line auc-

tions. In: Proc. 2nd ACM Conf. on Electronic Commerce (EC 2000), pp. 233–241

(2000)

16. Myerson, R.B.: Optimal auction design. Discussion Papers 362, Northwestern Uni-

versity, Center for Mathematical Studies in Economics and Management Science

(December 1978)

A Relation of z and y Values

In order to prove Conjectures 2 and 3 we need a strong lemma that captures
the relation of the z and y values. In the appendix we list three such lemmata,
of increasing strength. Numerical and analytical simulations in MAPLE12 have
verified that Lemma 5 is enough to prove Conjecture 2 (by just summing up for
all subsets S ⊆ B2) for up to n = 20 bids.

Lemma 3

z(bj1 , . . . , bjk
) ≥ min

t=1,...,k

(
jt − t
t

)
· y(bj1 , . . . , bjk

)

Proof. Let bjt be the optimal price for (bj1 , . . . , bjk
), i.e.

t · bjt = max{bj1 , 2bj2 , . . . , kbjk
)
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Then

z(bj1 , . . . , bjk
) = (jt − t)bjt

=
jt − t
t

· tbjt

=
jt − t
t

· y(bj1 , . . . , bjk
)

≥ min
t=1,...,k

(
jt − t
t

)
· y(bj1 , . . . , bjk

)

��

Notice that the term
(

jt−t
t

)
is the same quantity as the one minimized in the

random walk of [9] and it also appears in the analysis of [2].
The following relation is stronger, in that by summing up all for all S we

immediately get
∑

S⊆B2: b2∈S y(S) and some more terms, whose sum we then
need to show is positive.

Lemma 4

z(bj1 , . . . , bjk
) ≥ y(bj1 , . . . , bjk

)−max
(

0, max
t=2,...,k

{
2t− jt
t− 1

})
· y(bj2 , . . . , bjk

)

Proof. Let bjt be the optimal price for (bj1 , . . . , bjk
), i.e.

t · bjt = max{bj1 , 2bj2 , . . . , kbjk
)

Then

z(bj1 , . . . , bjk
) = (jt − t)bjt

= tbjt − (2t− jt)bjt

= tbjt −
2t− jt
t− 1

(t− 1)bjt

= y(bj1 , . . . , bjk
)− 2t− jt

t− 1
(t− 1)bjt

≥ y(bj1 , . . . , bjk
)−max

(
0, max

t=2,...,k

{
2t− jt
t− 1

})
· y(bj2 , . . . , bjk

)

where we need 2t−jt

t−1 to be positive for the inequalities to work correctly, which

is why we take max
(
0,maxt=2,...,k

{
2t−jt

t−1

})
. ��

In order to optimally handle the negative terms showing up in the RHS of Lemma
4 we used the following, more elaborate bound.

Lemma 5. Let (bj1 , . . . , bjk
) be a set of at least 2 bids and λ a real in [0, j1−1].

We can bound z(bj1 , . . . , bjk
) with

z(bj1 , . . . , bjk
) ≥ λy(bj1 , . . . , bjk

) + μy(bj2 , . . . , bjk
), (1)
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where μ is defined by

μ =

{
k

k−1 mint=1,...,k{ jt−t−λt
t }}, when mint=2,...,k{jt − t− λt} ≥ 0

mint=2,...,k{ jt−t−λt
t−1 }, otherwise

Proof. Assume that

y(bj1 , . . . , bjk
) = t · bjt

y(bj2 , . . . , bjk
) = (s− 1) · bjs

From these we get that tbjt ≥ sbjs and (s − 1)bjs ≥ (t − 1)bjt . Notice that the
latter holds even when t = 1.

Assume that minr=2,...,k{jr − r − λr} ≥ 0. We will show that inequality (1)
is satisfied for μ = k

k−1 minr=1,...,k{ jr−r−λr
r }}. We will use the fact that μ is

nonnegative and the inequality tbjt ≥ sbjs . Indeed we have,

λy(bj1 , . . . , bjk
) + μy(bj2 , . . . , bjk

) = λtbjt + μ(s− 1)bjs

≤ λtbjt + μ(s− 1)
t

s
bjt

≤ λtbjt + μ(k − 1)
t

k
bjt

≤ λtbjt +
k

k − 1
jt − t− λt

t
(k − 1)

t

k
bjt

= (jt − t)bjt

= z(bj1 , . . . , bjk
)

Now we consider the case of minr=2,...,k{jr−r−λr} < 0. Assume first that t ≥ 2.
We will now show that inequality (1) is satisfied for μ = minr=2,...,k{ jr−r−λr

r−1 }}.
We will use the fact that μ is now negative and the inequality (t − 1)bjt ≤
(s− 1)bjs . Indeed we have,

λy(bj1 , . . . , bjk
) + μy(bj2 , . . . , bjk

) = λtbjt + μ(s− 1)bjs

≤ λtbjt + μ(t− 1)bjt

≤ λtbjt +
jt − t− λt
t− 1

(t− 1)bjt

= (jt − t)bjt

= z(bj1 , . . . , bjk
)

The case t = 1 must be handled separately because t− 1 appears in the denom-
inator in the above. When t = 1 we have that

z(bj1 , . . . , bjk
) = (j1 − 1)bj1
= λbj1 + (j1 − 1− λ)bj1
≥ λy(bj1 , . . . , bjk

)
≥ λy(bj1 , . . . , bjk

) + μy(bj2 , . . . , bjk
).

Notice that we used the fact that λ ≤ j1 − 1 and that μ ≤ 0. ��
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Abstract. We introduce a new solution concept for games, near-strong

equilibrium, a variation of strong equilibrium. Previous work has shown

the existence of 2-strong pure strategy equilibrium for network creation

games with 1 < α < 2 and that k-strong equilibrium for k ≥ 3 does not

exist. In this paper we show that 3-near-strong equilibrium exists, and

provide tight bounds on existence of k-near-strong equilibria for k ≥ 4.

Then we repeat our analysis for correlated mixed strategies, where we

show that, surprisingly, 3-correlated-strong equilibrium exists, and also

show bounds for existence of correlated k-strong equilibria. Moreover,

the equilibrium profile can be arbitrarily close to the social optimum. For

both pure and correlated settings, we show examples where no equilib-

rium exists. On the conceptual level, our work contributes to the recent

literature of extensions of strong equilibrium, while providing positive

results for stability against group deviations in one of the basic settings

discussed in the algorithmic game theory literature.

1 Introduction

The Nash equilibrium is a solution concept most commonly used by game the-
orists. A known drawback of this concept is the assumption that agents do
not cooperate in order to agree on a joint deviation. The strong equilibrium
(SE), introduced in (Aumann, 1959), is an extension of NE that takes care of
this problem: it is a strategy profile which is stable against joint deviations by
coalitions of agents. Having an SE is highly desirable, but most games of inter-
est do not possess such stability. Also, the concept might be too strong, in a
sense: it does not take into account that deviations themselves might be unsta-
ble against sub-deviations. Indeed, if we begin by supposing that an agent will
deviate from a proposed profile if a better choice is available, the same should
hold if the profile is proposed to him by a deviating coalition of other agents.
(Bernheim et al., 1987) suggested the concept of coalition-proof Nash equilibrium
(CPNE), which captures this idea: a profile is CPNE if it has no self-enforcing
profitable group deviations, where self-enforcing means: has no self-enforcing
profitable sub-deviations (recursive definition). A unilateral deviation is always
self-enforcing. Although CPNE captures the above logic perfectly, it goes too far

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 339–353, 2010.
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in a sense: people in real life are extremely unlikely to employ considerations of
such complexity. In a general game, it will be probably computationally impossi-
ble to determine if a given group deviation is self-enforcing. Therefore, a simpler
and stronger solution concept was suggested by (Milgrom and Roberts, 1994):
to require self-enforcing group deviations to be stable only against unilateral
sub-deviations1.

We suggest to concentrate on the following (even stronger) solution concept,
which is a variation of the above definition:

A profile of actions is a near-strong equilibrium (NSE) if for every beneficial
joint deviation by a coalition of players, there exists a player in that coalition
who, given that the rest of the coalition will stick to their deviation, would
strictly prefer to betray them and return to his original strategy.

Our definition differs from (Milgrom and Roberts, 1994) only in that the be-
traying player’s strategy is restricted to equal his original strategy. This differ-
ence is important, because it emphasizes the stability of the original profile from
the agent-centric perspective: suppose a coalitionK of players wishes to convince
a member i of K to participate in a joint deviation. Their arguments are: all of
them (the other players in K) agreed to play their corresponding new actions,
and the new actions will result in a higher payoff for all i ∈ K, compared with
the original profile. In a SE, that argumentation should suffice to convince each
player i ∈ K to join. However, player i might consider the following logic: either
he trusts the rest of the coalition to behave according to the chosen deviation,
or he does not. If he does not trust them to behave as agreed, there is certainly
no incentive for him to deviate from the equilibrium; but if he does trust them,
the equilibrium strategy still gives him a strictly higher payoff than the devia-
tion strategy! So, in both cases, player i will actually be better off not joining
the coalition than joining it. So, although NSE is formally weaker than strong
equilibrium, it is conceptually similar: an agent will prefer the original profile
over all possible deviations, even when coalitions of agents can coordinate a joint
deviation.

The aim of this work is to explore how the concept of NSE can improve over
SE: to show an interesting setting which does not possess SE, but in which NSE
can be shown to exist. The setting we chose is the network creation game, intro-
duced by (Fabrikant et al., 2003) and since appearing in many works, including
(Albers et al., 2006; Andelman et al., 2009). The basic version of the game is as
follows: each player is associated with a vertex in a network, and the aim of
all players is to be connected to all the other players with as small a distance
as possible to each. However, each player controls his outgoing edges and must
choose which edges to buy. Buying an edge has a fixed cost, α. In the simplest
model, which we adopt, a player’s cost is simply a sum of his distances to all
other players in the resulting (undirected) graph, and the total price he paid for
his chosen edges.

1 Independently, the same concept was introduced in (Kaplan, 1992) as semistrong
equilibrium.
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When α ≤ 1, the game is not very interesting, since the socially optimal profile
(a clique) is a strong equilibrium. Similarly, when α ≥ 2, the out-star (the strategy
profile in which one node buys edges to all other nodes, while they buy nothing) is
both socially optimal and an SE (Andelman et al., 2009). However, when 1 < α <
2 even a 3-SE was shown not to exist for n > 5 (Andelman et al., 2009); therefore,
this is the case we concentrate upon in this paper.

We show:

1. The out-star is always a 3-NSE
2. An example where no 4-NSE exists
3. A bound of when the out-star is a k-NSE:

(a) The out-star is a k-NSE if α ≥ 2(1− 1
k′ ), where k′ = 2�k

2 �
(b) Otherwise, if α < 2(1− 1

k′ )
i. For k ≤ �n+1

2 �, the out-star is not a k-NSE
ii. Otherwise, we show examples of n, α where the out-star still is a

k-NSE, and other examples where it is not
4. Some empirical results for small n, e.g. the out-star is an NSE for n ≤ 6

All the above analysis concerned only pure strategies. Next, we turn to the case
when players can also use mixed strategies; since the solution concepts we deal
with allow coordination by coalitions of players, it makes sense to allow the
players to employ correlated mixed strategies. A natural extension of the strong
equilibrium concept to the case of correlated mixed strategies is the correlated
strong equilibrium (CSE), by (Rozenfeld and Tennenholtz, 2006).

Using correlated mixed strategies allows us to concentrate on symmetric strat-
egy profiles – informally, profiles where all players are treated equally (and, in
particular, incur the same costs). We concentrate on two intuitive symmetric
strategy profiles: the ε-clique and the randomized out-star (which we abbreviate
to ”star”). For 0 < ε << 1 the ε-clique is a profile that can get arbitrarily close
to a clique (with probability 1− ε the players form a fair clique), and the star is
a an out-star where the root is chosen with uniform distribution.

We show:

1. The ε-clique is a k-CSE for k < min{n, 1+ α
α−1}. In particular, this implies:

– The ε-clique is a 3-CSE for n ≥ 4.
– The ε-clique is a 4-CSE for α < 3

2 , n ≥ 5.
2. We derive a tight bound on when the star is a k-CSE

– In particular, it implies that the star is a 4-CSE for α ≥ 3
2 , n ≥ 10

3. We present a sound algorithm for proving that no symmetric k-CSE exists
for a given instance
– In particular, using the algorithm we show that no symmetric 4-CSE

exists for n = 5,α = 3
2

4. Monotonicity:
(a) If the ε-clique is a k-CSE for n, k, α, then for all α′ < α it is still a k-CSE

for n, α′

(b) If the star is a k-CSE for n, k, α, then for all α′ > α it is still a k-CSE
for n, α′
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Recall that the clique is the social optimum in our setting (1 < α < 2). Using
only pure strategies, there was no hope to implement any profile with sufficiently
many edges as even a NE. Surprisingly, when we allow correlated mixed strate-
gies, a strong positive result emerges: we can implement a fair profile arbitrarily
close to the social optimum as a k-CSE. Note also that the ε-clique gets more
stable for smaller values of α, which is very good, since it is for small α that
the clique yields a much lower social cost than the star. For big values of α, the
social cost of the star approaches that of the clique; and in these cases, too, the
closer to optimal the star gets, the more stable it becomes.

We can now extend our near-strong equilibrium concept in a similar way to
define a correlated near-strong equilibrium (CNSE). Recall that the aim of this
work is to compare the existence of NSE to that of SE. However, in the correlated
setting it turns out that the concept of CNSE is just as strong as CSE: we show
that a symmetric strategy profile is a CNSE if and only if it is a CSE.

Note: due to lack of space, some of the proofs in the following sections were
omitted.

2 Model and Preliminaries

The network creation game was introduced in (Fabrikant et al., 2003). A player
is associated with a vertex in a network, who wishes to connect to other players.
The set of players is V = {1, ..., n}, and a strategy of a player is to select the
subset of other players to whom he buys an edge: Sv = 2V \{v}. For a set of
players K ⊆ V , let SK =

∏
v∈K Sv, and let S = SV . A strategy profile s ∈ S

induces a directed graph G(s) = (V,E), where E = {(v, u)|u ∈ sv}.
The cost that a player incurs consists of two parts: the price of the edges he

bought (each edge has a fixed cost of α) and his distances to the other players
in the resulting network. Formally, cv(s) = α|sv| + Dist(v), where Dist(v) =∑

u∈V δs(v, u), and δs(v, u) is the length of the shortest path from v to u in the
undirected graph induced by G(s). So, the directions of the edges serve only to
visualize which player is paying for them; network-wise, the network is treated as
an undirected graph. A player has to be connected to all other players; otherwise,
cv(s) =∞. For the remainder of this work, we assume that 1 < α < 2.

We recall that a profile of actions s ∈ S is a strong equilibrium (SE) if for
every coalition K ⊆ V and every joint choice of actions tK ∈ SK there exists
v ∈ K for whom cv(tK , s−K) ≥ cv(s) (Aumann, 1959). For 1 ≤ k ≤ n we say
that s ∈ S is a k-strong equilibrium (k-SE) if the above condition holds for all
K ⊆ V s.t. |K| ≤ k.

A profile of actions s ∈ S is a near-strong equilibrium (NSE) if for every
coalition K ⊆ V and every joint choice of actions tK ∈ SK such that ∀v ∈
K cv(tK , s−K) < cv(s), there exists v ∈ K for whom cv(tK\{v}, s−K∪{v}) <
cv(tK , s−K). For 1 ≤ k ≤ n we say that s ∈ S is a k-near-strong equilibrium
(k-NSE) if the above condition holds for all K ⊆ V s.t. |K| ≤ k.

For a set A, let Δ(A) denote the set of all probability distributions over A.
For a correlated strategy profile s ∈ Δ(S), let Cv(s) denote the expected cost of
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player v in s. We say that s ∈ Δ(S) is a correlated strong equilibrium (CSE) if
for every coalition K ⊆ V and a deviation tK ∈ Δ(SK) there exists v ∈ K s.t.
Cv(tK × s[−K]) ≥ Cv(s) (Rozenfeld and Tennenholtz, 2006). Here, s[−K] means
the marginal probability induced by s on V \ K. For 1 ≤ k ≤ n we say that
s ∈ S is a correlated k-strong equilibrium (k-CSE) if the above condition holds
for all K ⊆ V s.t. |K| ≤ k. Note that this definition means that the deviating
players should be able to gain in expectation, without knowing anything about
the pure realization of s.

A justification of the above version of the definition of CSE is, perhaps, in or-
der. The definition of a correlated Nash equilibrium (Aumann, 1974) presumed
that before deciding on a deviation each player could observe his signal (his
action in the pure realization of the correlated strategy). When defining a cor-
related strong equilibrium, the first instinct is to extend Aumann’s definition of
correlated Nash equilibrium (CNE) and require the profile to be stable against
ex-post deviations by coalitions of players. However, there is a caveat in doing
this. In Aumann’s definition, it is vital that each player is informed only about
his own signal. The underlying assumption of this model could be, for example,
that a trusted authority rolls the dice, and sends to each player his selected strat-
egy over a private channel. But how would this work for a coalition of players,
who need to deviate jointly? Presumably, they would have to share their signals.
But here is the problem: if they do share signals, then each one of them by him-
self possesses more information than he is allowed to by the CNE concept! We
would have to consider situations such as this: a single agent cannot beneficially
deviate knowing his own possible signals, but two agents can each beneficially
deviate alone if each also gets to know the other’s signal – even though the two
of them together do not possess a joint deviation beneficial for both! No matter
how we classify such cases, the justification is not at all intuitive. We are not
saying that such definition is impossible or not interesting (on the contrary, we
are working on it), but we have to be careful and visualize, in detail, the flow of
information in the situation that we are trying to model.

Our definition, much like Aumann’s, presumes the existence of a mediator –
a trusted third party that can roll the dice to select a pure realization of a corre-
lated strategy profile. In our model, the mediator does not output the signals at
all – rather, it selects actions according to a preset correlated profile on behalf of
the players who chose to use it (much like in (Rozenfeld and Tennenholtz, 2007),
only without punishments). Alternatively, one could imagine some other means
to enforce the players to follow through on the selected pure realization, once it
is chosen (e.g. a contract (Kalai et al., 2007)). In the following, we assume that
such means are available to any coalition of players wishing to implement a joint
correlated strategy.

A profile s ∈ Δ(S) is a correlated near-strong equilibrium (CNSE) if for every
coalition K ⊆ V and a deviation tK ∈ Δ(SK) s.t. ∀v ∈ K Cv(tK × s[−K]) <
Cv(s) there exists v ∈ K for whom Cv(t[K\{v}]×s[−K∪{v}]) < Cv(tK×s[−K]). For
1 ≤ k ≤ n we say that s ∈ S is a correlated k-near-strong equilibrium (k-CNSE)
if the above condition holds for all K ⊆ V s.t. |K| ≤ k.
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Now we want to define a symmetric profile. Intuitively, a strategy profile
is symmetric if the names of the players don’t matter. Formally, we will need
some notation. Let π be a permutation of V . For a set K ⊆ V , we let π(K) =
{π(v)|v ∈ K}. For a strategy profile s ∈ S, we denote by π(s) the following
strategy profile: for all v ∈ V , π(s)π(v) = π(sv). For a correlated strategy profile
s ∈ Δ(S), we denote by π(s) the following correlated strategy profile: for all
z ∈ S π(s)(π(z)) = s(z). Let Π be the set of all possible permutations of V .
For a correlated strategy profile s ∈ Δ(S), let Sym(s) ∈ Δ(S) be the following
correlated strategy: first select π ∈ Π with uniform probability, and then play
π(s). We say that a correlated strategy profile s ∈ Δ(S) is symmetric if s =
Sym(s).

3 Pure Strategies

In (Andelman et al., 2009) it was shown that a 2-SE always exists, but even
a 3-SE does not exist for n > 5. In particular, consider the following strategy
profile o∗ (the out-star):

Let one player (the root, denoted by r) purchase an edge to every other player,
while all other players (which we call leaves) purchase no edges. In this profile,
the cost of the root, cr(o∗) = α(n−1)+n−1 = (n−1)(α+1) (he pays for n−1
edges, and his distance to any other node is 1). The cost of every other player
is cv(o∗) = 1 + 2(n− 2) = 2n− 3 (his distance to r is 1, and his distance to any
other node is 2).

It is easy to see that o∗ is a NE: 1 < α < 2 means that no player wishes
to purchase an edge in order to decrease a distance to a single player from 2
to 1. By enumerating the few possible cases one can also verify that the out-
star is a 2-SE. The reason the out-star is not a 3-SE is that any three leaves
can deviate to the following strategy: they form a triangle in which each one
of them purchases one edge. For each one of them, the deviation decreased his
distances from the two other deviators by 1, decreasing his overall distance cost
by 2; since his edge cost increased by α < 2, the player strictly gains from the
deviation.

But is this deviation stable? ”Betraying” the deviators and returning to the
original profile simply means buying no edges at all. Clearly, such strategy is
more beneficial than the deviation – dropping the edge (v, u) decreases the edge
cost of v by α while increasing his distance to u from 1 to 2, not affecting his
distances to other players. So this deviation is not stable. As we will now show,
this holds for every other beneficial deviation as well:

Lemma 1. The out-star is a 3-NSE.

In order to prove that, we first need the following:

Lemma 2. Any stable deviation of k players from the out-star must include the
root.
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Proof: Suppose for contradiction that r does not deviate, and let v be any
node purchasing at least one edge in the deviation. Since r still buys an edge to
every node, v has a path of length 2 to any other node, regardless of his chosen
strategy. Therefore, each edge (v, u) decreases v’s total distance cost by exactly
1, while increasing his edge cost by α > 1. Therefore, v will be strictly better off
not joining the deviation. ��
Now we can prove lemma 1:

Proof: By lemma 2, the set of deviators is K = {r, v, u}. Suppose they have
a beneficial deviation, sK ∈ SK . Now v has to purchase at least one edge –
otherwise, o∗ is not a 2-SE. Since α > 1, v has to reduce his total distance cost
by at least 2 in order to gain from the deviation. That means someone (other
than r) has now to purchase an edge to v. That only leaves u. But then, by the
same logic, u cannot gain from the deviation (there is no one left to purchase an
additional edge to u). ��
Is the out-star a 4-NSE? In general, no. Let n = 7, α = 1.1. Consider the
deviation depicted in Fig.1:

Fig. 1. Here, n = 7, α = 1.1, and K = {0, 1, 2, 3}

Here, the root (1) benefits from the deviation, because he now has a distance of
2 to the nodes 5,6 and 7, instead of buying a direct link, so he saves 3(α−1) > 0.
Obviously, he would not benefit from returning to the original profile, where he
buys edges to all nodes. The other deviators purchase two edges each, while
decreasing their distances by 3. Since α < 1.5, they benefit from the deviation;
since each one of them is responsible for connecting a node to the graph, he
would suffer a cost of ∞ if returned to play his original strategy (not buying any
edges). Therefore, the deviation is stable.

However, for α ≥ 1.5, the out-star is a 4-NSE. In general, we can show:

Theorem 3. Let 2 < k ≤ n, and k′ = 2�k
2�. If α ≥ 2(1− 1

k′ ), the out-star is a
k-NSE.

Thm. 3 raises two questions. Firstly, is the bound tight? Secondly, suppose the
out-star is not a k-NSE. But maybe some other profile is? Are there examples
where it can be proved that no k-NSE exists?



346 O. Rozenfeld and M. Tennenholtz

The following results address the first question:

Theorem 4. Let 4 ≤ k ≤ �n+1
2 �, and let α < 2(1 − 1

k′ ), with k′ = 2�k
2�. Then

the out-star is not a k-NSE.

Proof: It is sufficient to show a beneficial and stable deviation for a coalition
of size k′. Let us denote the root by r and let K ′ = K \ {r}. The deviation is a
generalized version of Fig. 1, and is defined as follows:

– The nodes in K ′ buy a fair clique between themselves; that is, each buys
exactly (k′ − 2)/2 edges to other deviators and they form a clique. It is
possible since the clique size (k′ − 1) is odd.

– Each member of K ′ is assigned a distinct node in N \K, and buys an edge
to it. This is possible, because 2|K ′| ≤ n− 1.

– The root buys edges to all members of K ′, and buys edges to all the nodes
in N \K that are not connected to a node in K ′.

Let us show that the deviation is profitable. For r, the difference is that he
dropped the edges to some of the nodes in N \ K (saving α from each), and
as result, his distance to these nodes increased to 2. Since α > 1, he gained
from the deviation. Each v ∈ K ′ gained k′ − 2 + 1 = k′ − 1 in distances (from
forming a clique and having a direct connection to a node in N \ K). He paid
α
(

k′−2
2 + 1

)
= αk′

2 < k
′ − 1 for his edges. His distance to r stayed 1 and his

distances to N \K stayed 2, therefore he gains by deviating. Now, let us show
that no one would benefit from going back to the original strategy. For r, we
have already seen that he is worse off if he buys edges to all the nodes. For
v ∈ K ′, dropping his edges leaves him disconnected from his appropriate node
in N \K, so he cannot deviate. ��
So for k ≤ �n+1

2 �, the bound of Thm. 3 is tight. Otherwise, it is tight for some
cases and not tight for others:

Example 1. Let n = 15, k = 11, α < 9
5 . Suppose that r = 1. Consider the

following deviation s by {1, ..., 11}: s1 = {2, ..., 11}
The 9 players {2, ..., 10} form a fair clique, with each player purchasing 4 edges,
and in addition they all point to 11. 11 points to V \K :

s2 = {3, 4, 5, 6, 11} s6 = {7, 8, 9, 10, 11}
s3 = {4, 5, 6, 7, 11} s7 = {8, 9, 10, 2, 11}
s4 = {5, 6, 7, 8, 11} s8 = {9, 10, 2, 3, 11}
s5 = {6, 7, 8, 9, 11} s9 = {10, 2, 3, 4, 11}
s10 = {2, 3, 4, 5, 11} s11 = {12, 13, 14, 15}
One can easily verify that the deviation is beneficial and stable. Here, unlike
in the proof of Thm. 4, the deviation is stable not because each deviator is
responsible for connecting a node to the graph (that holds only for node 11),
but because dropping the edge to 11 will increase the player’s total distances by
5, making betrayal not beneficial for him for α < 9

5 .

So in this case, the bound of Thm. 3 is tight.
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Example 2. Let n = 7, k = 7, 3
2 ≤ α <

5
3 . Here, the out-star is an NSE.

Proof: By checking all possible deviations with NSESAT (see below). ��

So in this case the bound of Thm. 3 is not tight.

NSESAT. During the course of this work we often ran into the problem of
classifying small instances. Even for number of agents as small as 5, it was often
not easy to answer questions such as ”Is a given profile a k-NSE (or k-SE)?”.
The question of existence of k-NSE is even more difficult, since even for very
small instances there is a huge number of possible profiles to check. Therefore
we developed a computer program for these tasks, called NSESAT. The main
idea was to reduce the problem of finding a stable beneficial deviation of at
most k players to SAT, and then use a known SAT solver to solve it (we used
MiniSat, introduced in (Eén and Sörensson, 2003)). We also added some simple
optimizations to break symmetry in symmetric strategy profiles. Despite the fact
that the total number of deviations of k players in an n vertex graph is order
of 2(n−1)k, MiniSat handled the decision problem extremely well, allowing us to
solve instances for n as high as 11! Using NSESAT, we quickly established the
following fact:

Fact 5. The out-star is an NSE for n < 7.

But this fact raised a problem – it meant that in order to find an example where
4-NSE does not exist, we had to start with n of at least 7. The number of non-
isomorphic directed graphs on 7 nodes is 882033440 (Sloane, N. J. A. Sequence
A000273 in ”The On-Line Encyclopedia of Integer Sequences”). Even with Min-
iSat deciding on each graph in under 1 second, the straightforward approach of
checking all possible graphs was infeasible. Fortunately, we could use the follow-
ing two necessary conditions for Nash equilibria to narrow the search:

1. The diameter of the undirected graph has to equal 2 (otherwise, if it equals
1, an agent will want to drop an edge, and if there exists a shortest path of
at least 3, an agent will want to add an edge).

2. Lemma B.2 in (Andelman et al., 2009) provided a structural property of NE
for 1 < α < 2, which could be efficiently verified on the underlying undirected
graph.

Using the above conditions, we were able to start with all the simple undirected
graphs of 7 nodes (1044) and reduce the number of potentials for 4-NSE to
only 46. All the possible ways to direct these graphs gave us an order of 120000
strategy profiles, which we were able to check in under 10 hours. Our conclusion:

Fact 6. For n = 7, α = 1.1 a 4-NSE does not exist.

Some additional facts that we were able to establish using NSESAT are: for
α ≥ 1.5 the out-star is an NSE for n ≤ 10. For n = 11, the out-star is an NSE
for α ≥ 5

3 . There are examples where the out-star is not an NSE, but another
profile is (such as the in-star, where all leaves buy edges to the root).
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Overall, it appears impossible to achieve a better bound on existence of NSE
than the one we have with the out-star. Which is unfortunate; not because the
bound is not good enough, but rather because the out-star has several serious
drawbacks, which would probably make it impractical as recommended strategy
profile. Firstly, the profile is extremely unfair – one agent has to incur all the
costs of the network. Secondly, its social cost is very high – with 1 < α < 2, the
clique is the social optimum, and a star is the worst NE possible.

In order to address the first issue, it is intuitive to consider correlated mixed
strategies (if the players can roll a dice to choose the root, then, at least in terms
of expected cost, the profile will be fair). As we will show in the next section,
surprisingly, allowing for correlated mixed strategies addresses the second prob-
lem as well – we will often be able to implement nearly optimal fair strategy
profiles as correlated strong equilibrium.

4 Correlated Mixed Strategies

Let us again recall the problem with implementing good social outcomes as
strong equilibrium. Suppose we recommend the agents to form a clique. What
is the best response of a single agent? It is to buy no edges at all. Since some of
the other agents still connect to him, dropping his edges only increases his cor-
responding distances from 1 to 2, but saves him α. But what if the agents form a
randomized clique? A randomized clique (denoted by r-#) is a symmetric corre-
lated strategy profile where all (undirected) edges are bought with probability 1,
and for each edge (u, v), the buyer of the edge (u or v) is selected independently
and uniformly. Recall that in our model, a deviating agent does not possess the
”signal” to his selected strategy; he only knows what randomized strategy the
other players will play.

Not buying any edges is no longer a best response of a single agent u to a
randomized clique. Why not? Buying an edge (u, v) is now even less beneficial
for u than in a pure clique – now with probability 0.5 v will buy the edge
himself, so the expected distance to v if no edge is bought is 1.5 instead of 2.
It is clearly better to lose 0.5 (increasing the distance from 1 to 1.5) than to
spend α. However, there is one problem. Since the buyer of each edge is selected
independently, there is a small chance that u is selected to buy all his edges.
Since the cost of not being connected to another agent is ∞, then, no matter
how small the chance, u cannot afford to take it! He must purchase at least one
edge (however, one edge will suffice – the randomized clique is not a 1-CSE).

Let us now define a profile we call the randomized out-star (or, simply, the
star, denoted by r∗): the agents select one agent uniformly to be the root. The
root purchases edges to all other agents, while the other agents purchase nothing.

Let 0 < ε << 1. The ε-clique is a symmetric correlated strategy profile (de-
noted by ε-#) defined as follows: with probability 1 − ε, the randomized clique
is played, and with probability ε, the star is played.
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Theorem 7. For k < min{n, 1 + α
α−1}, there exists ε > 0 s.t. ε-# is a k-CSE.

Proof: Firstly, note that ε-#, as well as any other symmetric profile with less
than optimal social cost, can never be is an n-CSE, because the n players could
always deviate to the optimum, r-#. (But, in a sense, this observation does not
take away from the result – the whole point is to implement a socially good
outcome, so if the only problem with it is that the agents can deviate to another
outcome that is even better for everyone, then it is not really a problem).

Let k < n, and K be the set of the deviating agents. Since with positive
probability, ε

(
1− k

n

)
> 0, the agents in V \ K do not buy any edges, any

profitable deviation of K must include links to all the agents in V \ K (since
the deviators do not possess the signals to the chosen pure realization of the
correlated strategy, they must consider the worst case). This is the key idea that
allows us to show that the agents will not be able to reduce their total cost.

Let us denote by COPT the summary cost of k agents in a fair clique:

COPT = α
k(n− 1)

2
+ k(n− 1)

The deviation that minimizes the total cost of the agents (their collective best
response strategy) is to form a clique among themselves and to purchase an edge
to all of V \K. Since we are interested in their summary costs, assume w.l.o.g.
that a single agent buys all the edges to V \K (obviously, the agents can easily
share these costs by selecting this agent uniformly). Let us denote this deviation
by gk, and let us denote by CDEV the total cost the deviating agents incur when
playing gk when the other agents play r-#:

CDEV = α
(
k(k − 1)

2
+ n− k

)
+ n− 1 + (k − 1)(k − 1 + 1.5(n− k))

Here, n−1 are the total distances of the agent who bought the additional edges,
and k − 1 + 1.5(n − k) are the total distances of every other deviator. Recall
that 1.5 is the expected distance to any node in V \K, since they play r-#. The
summary cost of K using the above deviation against the ε-# will be slightly
higher than CDEV . But, as we will now show, CDEV > COPT :

CDEV −COPT = α(
k(k − 1)

2
+n−k)+n− 1+(k− 1)(k− 1+1.5(n−k))−α

k(n− 1)

2
+k(n− 1) =

=
α

2
(n− k)(2− k) +

1

2
(n− k)(k − 1) =

1

2
(n− k)(α(2− k) + k − 1) > 0 ⇔

α(2− k) + k − 1 > 0 ⇔ k < 1 +
α

α− 1

Hence, there exists ε > 0 s.t. the payoff of k players in ε-# will be below CDEV ,
and therefore, the players will not have a beneficial joint deviation. ��
In particular, ε-# is a 3-CSE for all n ≥ 4, and 4-CSE for n ≥ 5, α < 1.5.
Note that the bound on k increases as α approaches 1, meaning that ε-# can be
implemented as a more stable equilibrium. Formally,
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Corollary 8. If the ε-clique is a k-CSE for n, k, α, then for all α′ < α it is still
a k-CSE for n, α′.

But what about when α is big? Turns out that in these cases r∗ (the randomized
star) becomes a k-CSE.

Let us denote by C∗ the total cost of any k players in r∗:

C∗ =
k

n
(α(n − 1) + n− 1 + (n− 1)(1 + 2(n− 2))) =

k(n− 1)
n

(α+ 2n− 2)

Let us denote by CDEV ∗ the total cost of k players in their joint best response
deviation (which is gk, the same as against r-#):

CDEV ∗ = α(
k(k − 1)

2
+n−k)+

k

n
(n−1+(k−1)(k−1+2(n−k)))+

n− k

n
(n−1+(k−1)(k−1+2(n−k))−(k−1)) =

=
α

2
(k2 − 3k + 2n)− k2 − n+ 2nk − k + 1 +

k(k − 1)

n

Theorem 9. The star, r∗, is a k-CSE if and only if CDEV ∗ ≥ C∗.

Unfortunately, unlike in Thm. 7, the bound cannot be simplified to eliminate
one of the variables. However, it can be used to derive various bounds for fixed
values of one or two variables. For example, it is simple to see that for α ≥ 1.5
and n ≥ 10 the star is a 4-CSE. Also, it is easy to derive the following result:

Corollary 10. If the star is a k-CSE for n, k, α, then for all α′ > α it is still a
k-CSE for n, α′.

Note that when α approaches 2, the social cost of star approaches the social
optimum; so Thms. 7 and 9 together imply that as α approaches its bounds, it
becomes easier to implement a near-optimal outcome; the intermediate values
of α are the most problematic. For example, for α = 1.5, 4 < n < 10 neither
ε-# nor r∗ are a 4-CSE. But what about other profiles? Can we prove that no
4-CSE exists? We will now show a way to do this for symmetric profiles.

For s ∈ Δ(s), let edges(s) denote the expected number of bought edges in
s: edges(s) =

∑
z∈S s(z)

∑
v |z(v)|. Let maxEdges = n(n−1)

2 . Let CG(s) denote
the total cost of k agents when they deviate to gk from a symmetric correlated
strategy profile s.

Lemma 11. CG(s) = α(k(k−1)
2 +n−k)+n−1+(k−1)(k−1+(2−0.5p)(n−k)),

where p = edges(s)
maxEdges .

Proof: Consider the expected distance from any node v ∈ K who does not
buy the n − k additional edges to any node u ∈ V \K. We need to show that
Es[−K]δ(v, u) = 2 − 0.5p, and the result will follow. The profile is symmetric,
therefore the edge (v, u) is bought by u with probability 0.5p, in which case the
distance is 1, and is not bought with probability 1 − 0.5p, in which case the
distance is 2. On average, it is 0.5p+ 2(1− 0.5p) = 2− 0.5p. ��
Since CG(s) depends only on edges(s), we will abuse notation and denote it by
CG(t), with t = edges(s).
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Lemma 12. For t ∈ [n − 1,maxEdges], let v(t) = n
k (CG(t) − COPT ), and

t′ = maxEdges− v(t)
2−α . If s ∈ Δ(S) is a symmetric k-CSE then:

1. v(edges(s)) > 0
2. edges(s) ≥ t′

Proof

1. Follows from the fact that the total cost of k players in s is strictly above
COPT (since, as we know, the clique is not a k-CSE), and s is a k-CSE
(therefore k players cannot beneficially deviate to Sym(gk)).

2. Let t = edges(s). Since the deviation to Sym(gk) is not beneficial to K,
Cv(s) ≤ CG(t)

k = COP T

k − v(t)
n , and therefore

∑
v∈V Cv(s) ≤ OPT − v(t)

(where OPT is the optimal social cost). Each edge removed from the optimal
profile (the clique) increases the social cost by at least 2 − α. Therefore, in
order to satisfy the cost bound, s must remove at most v(t)

2−α edges. ��

Now, suppose we want to prove that no symmetric k-CSE exists for given n, k, α.
We know that any CSE has to have at least t0 = n− 1 edges, because the graph
has to be connected; therefore, we can apply Lemma 12 and derive a new lower
bound, t1, for the expected number of edges in a symmetric k-CSE. If t1 ≤ t0,
we don’t have any additional information, and the process stops (we cannot
prove anything). But if t1 > t0, we can apply Lemma 12 again! This gives us a
new bound, t2. So, we can continue the process and keep deriving lower bounds
t3, ..., tj , ... for edges(s) in any symmetric k-CSE s. If, at any point in this process,
it holds that CG(tj) ≤ COPT , we have our proof – a symmetric k-CSE does not
exist (by Lemma 12, part 1). Similarly, if tj ≤ tj+1, the process stops and we
cannot prove anything. The only other option is that the series tj converge. In
this case, if limj→∞tj = maxEdges, we have our proof – no symmetric CSE
exists (because this means that no profile s with edges(s) < maxEdges can be
a k-CSE; and we already know that the clique is not a k-CSE).

Some empirical results: for 5 ≤ n ≤ 20, 4 ≤ k ≤ n, and α ∈ 1, 1.05, ..., 1.95,
we tested which of the following holds in each case: ε-# is a k-CSE, r* is a
k-CSE, both of these profiles are k-CSE, or no symmetric k-CSE exists. In all
these runs, we have not encountered a case where neither ε-# nor r* were a k-
CSE, but the iterative proof that no k-CSE exists failed. These empirical results
strongly suggest the following:

Conjecture. For every n, k, α, if a symmetric k-CSE exists, then at least one
of ε-#, r* is a k-CSE.

Also, although the assumption of symmetry was crucial to our negative result,
we conjecture that in this setting, the existence of k-CSE implies the existence
of a symmetric k-CSE. Whether this conjecture is correct is an interesting open
question for future work.

Now that we have explored the existence of (symmetric) k-CSE, we would
like to find out whether k-CNSE might exist in cases where k-CSE does not.
Unfortunately, the following result implies otherwise:
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Lemma 13. Let s ∈ Δ(S) be a symmetric strategy profile and let tK ∈ Δ(SK)
be a profitable deviation by players K ⊆ V . Then there exists a deviation qK ∈
Δ(SK) which is both profitable and stable.

Proof: Let qK ∈ Δ(SK) be defined as follows: with probability 1−ε the players
play tK , and with probability ε they play the following profile: choose a root
v ∈ K uniformly; the root buys edges to all the other nodes; nodes in K \ {v}
buy no edges. 0 < ε < 1 is selected so that Cv(qK × s[−K]) < Cv(s) for any
v ∈ K (this is possible, since Cv(tK × s[−K]) < Cv(s)). Since every node in K is
now responsible for connecting himself to other nodes with positive probability,
the deviation is stable (the only case where v ∈ K can betray without incurring
a cost of ∞ is if he purchases all edges to K \ {v} in s with probability 1; due
to symmetry of s, this is impossible). ��
The proof uses the same idea that allowed us to implement good outcomes as k-
CSE – using a small probability of having a player disconnected from the graph.
An interesting idea for future work is to try and work with a more realistic
model, where a player does not incur a cost of ∞ for being disconnected.
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Abstract. We study the interaction between network effects and external incen-
tives on file sharing behavior in Peer-to-Peer (P2P) networks. Many current or
envisioned P2P networks reward individuals for sharing files, via financial incen-
tives or social recognition. Peers weigh this reward against the cost of sharing
incurred when others download the shared file. As a result, if other nearby nodes
share files as well, the cost to an individual node decreases. Such positive network
sharing effects can be expected to increase the rate of peers who share files.

In this paper, we formulate a natural model for the network effects of shar-
ing behavior, which we term the “demand model.” We prove that the model has
desirable concavity properties, meaning that the network benefit of increasing
payments decreases when the payments are already high. This result holds quite
generally, for submodular objective functions on the part of the network operator.

In fact, we show a stronger result: the demand model leads to a “coverage
process,” meaning that there is a distribution over graphs such that reachability
under this distribution exactly captures the joint distribution of nodes which end
up sharing. The existence of such distributions has advantages in simulating and
estimating the performance of the system. We establish this result via a general
theorem characterizing which types of models lead to coverage processes, and
also show that all coverage processes possess the desirable submodular prop-
erties. We complement our theoretical results with experiments on several real-
world P2P topologies. We compare our model quantitatively against more naı̈ve
models ignoring network effects. A main outcome of the experiments is that a
good incentive scheme should make the reward dependent on a node’s degree in
the network.

1 Introduction

Peer-to-Peer (P2P) file sharing systems have become an important platform for the dis-
semination of files, music, and other content. The basic idea is very simple: individuals
make files available for download from their own machine. Other users can search for
files they desire and download them from a peer who has made the file available. Nat-
urally, designing systems such that the search and download of files are efficient poses
many research challenges, which have received a lot of attention in the literature [2,19].
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A second, and somewhat orthogonal, issue is how to ensure sufficient participation
(sharing). Unless enough content is provided by individuals, the utility of membership
will be very small. If free-riding [8] is too prevalent, the system may exhibit a quick
decrease in membership common to public-goods type economic settings [20].

Thus, the P2P system must be designed with incentives in mind to encourage file
sharing. These incentives can take the form of monetary payments or redeemable
“points” [10], download privileges, or simply recognition. From the system designer’s
perspective, these payments should be “small,” while ensuring enough participation.

On the other hand, from a peer’s perspective, the payments need to be weighed
against the cost incurred by sharing a file. In this paper, we assume that the content
is shared legally and the system is designed with security in mind: hence, the user’s
main cost is the upload bandwidth used by another peer to download a file from this
node.

Nodes will in general choose to download from nearby peers (in terms of bandwidth
or latency). Therefore, as additional nearby peers share the same files, the load will get
distributed among more nodes, and the cost to each individual node will decrease. Thus,
not only will we expect cascading effects of sharing based on social dynamics [11],
but we would also expect these cascading effects to be based on a network structure
determined by point-to-point latencies and bandwidths.

Our contribution in this paper is the definition and analysis (both theoretical and
experimental) of a natural model for peers’ sharing behavior in P2P systems, in the
presence of economic incentives. In our model, we focus only on sharing one file;
in practice, the model can be applied separately for each file of interest. The basic
premise of the model is that each node has a certain demand for the file. Furthermore,
the network determines which percentage of the demand will be met by downloading
from each peer sharing the file1. The crucial implication of this model is that the more
nearby peers are sharing a file, the more evenly the demand will be distributed among
them.

The upload bandwidth cost is compensated by a payment to the peers who make the
file available. Again, our model is agnostic about whether these payments are monetary,
recognition, or take other forms. In our model, the payments can be explicitly based on
the network degree of peers, since high-degree nodes presumably serve a key role in
propagating sharing behavior.

We argue that this model captures the essential dynamics of P2P systems in which
a peer can join the network and download files without sharing; hence, availability of
files is not the only incentive for sharing. The FastTrack P2P protocol, used by KaZaA,
Grokster, and iMesh, is an example where this assumption holds; hence, our model
should be a reasonable approximation for these services in terms of its incentives.

The network operator is interested in maximizing a social welfare function W , which
grows monotonically as a function of the set of nodes that share the file. This function
could be the total number of sharing nodes, the number of nodes with at least one
uploading neighbor, or the total download bandwidth available to peers under various
natural models of downloading.

1 In practice, we could expect these percentages to correlate strongly with network latency or
available bandwidth, but our model is agnostic about the derivation.
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After defining this model formally (in Section 2), we prove strong and general con-
cavity properties about it (in Section 3). In particular, we show that whenever W is
monotone and submodular, the network’s social welfare as a function of the payments
is monotone and concave. In other words, while increasing payments will always in-
crease social welfare, the rate of increase decreases when payments are already high.

To prove this result, we consider a slightly different model, wherein payments are
combined with giving the network operator the ability to “force” some set S of peers to
share. By first proving certain local submodularity properties for this modified model,
the desired concavity properties are implied by the general result of Mossel and Roch
[15]. However, we derive a similar result to [15] for a broad subclass of submodular
functions which we call coverage functions. It consists of the functions for which in the
underlying process, the distribution of nodes sharing the file is equivalent to the distri-
bution of nodes reachable from S in an appropriately defined random graph model. We
establish this equivalence via a general and non-trivial theorem characterizing all func-
tions that can be obtained by counting reachable nodes under random graph models. As
a corollary, our approach provides a much simpler proof of the main result from [15]
for coverage processes. Moreover, the fact that the propagation of sharing behavior is a
coverage process is useful for the purpose of simulating the process and estimating the
parameters of the system, allowing more efficient algorithms. Finally, our characteriza-
tion can be of independent interest in the study of submodular set-functions.

While the bulk of our paper focuses on a theoretical analysis of the demand model,
we complement the theoretical results by an experimental evaluation of our model (in
Section 4), using two network topologies derived from real-world data sets [12,18,17],
and a regular two-dimensional grid topology. We first show that network effects are
significant by comparing our demand model with one in which peers are not aware
of changes in load due to nearby sharing peers. We then evaluate different payment
schemes, in particular regarding their dependence on nodes’ degrees. We evaluate these
both in terms of the fraction of peers that end up sharing, and the amount paid by the
network operator per sharing node.

1.1 Related Work

There is a large body of work on incentive mechanisms in P2P file-sharing systems.
(See [7] for a thorough overview and [23] for a recent generalized analysis framework.)
Incentive mechanisms can be classified in three categories: barter-based mechanisms,
reputation-based mechanisms, and currency-based mechanisms.

Barter-based methods [1] (e.g., BitTorrent) enforce repeated transactions among
peers by matching each peer to only a small subset of the network, hence raising the
survival chance for strategies based on reciprocation. This method only works when we
have a small and popular set of files.

Reputation-based mechanisms have an excellent track record at facilitating coop-
eration in very diverse settings, from evolutionary biology to marketplaces like eBay.
These systems keep tally of the contribution of each peer; the past contributions deter-
mine which peers obtain more of the system’s resources in the future. However, such
mechanisms are susceptible to sybil and whitewashing attacks [5, 8].
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Inspired by markets, a P2P system can also deploy a currency scheme to facilitate
resource contributions by rational peers. Generally, peers earn currency by contributing
resources to the system, and spend the currency to obtain resources from the system.
Karma [21] is one example of this kind. Depending on the policy toward newcomers,
such systems may also suffer from sybil and whitewashing attacks.

In [8], file sharing is modeled as a social phenomenon, akin to those discussed by
Schelling [20]. Users consider whether or not to contribute files based on the number
of other users who contribute. Our model is different in that it explicitly models the
costs incurred by contributing nodes, rather than simply positing an intrinsic generosity
parameter for each user.

2 Models and Preliminaries

We consider a peer-to-peer network with n servers (or nodes or peers), and focus on the
behavior of sharing one particular file. Thus, each peer v may either choose to share the
file or to not share it. We also call sharing peers active, and the other ones inactive. The
set of all peers who share is denoted by V +.

2.1 The Demand Model

Each peer has a local demand dv for the file: this demand will originate from individual
users on the server v (who themselves might not possess the file or be in a position
to make it available). The demand dv should be served by downloading the file from
other servers u ∈ V +. The quality of the connection between v and u is captured by
a matrix P : the larger pv,u, the larger a fraction of v’s demand will be served by u
(assuming that u shares the file). Specifically, the demand that u ∈ V + will see from
v is dv · pv,u∑

w∈V + pv,w
. The matrix P will in practice depend on network latencies or

bandwidth, as well as explicit download agreements. It need not be symmetric. For the
purpose of the general model, we are agnostic to the derivation of P ; in Section 4, we
will derive P from measured network latencies by positing a latency threshold which
individuals are willing to tolerate.

A node u ∈ V + sharing the file will incur a cost of cu per unit of demand that it
serves; this cost is the result of using upload bandwidth, machine processing time, or
similar resources. To encourage peers to share the file despite this cost, the P2P network
administrator offers payments πu to the nodes u ∈ V +. These payments need not be
the same for all nodes, and can be derived from the network structure, e.g., a node’s
degree.

Different nodes may have different (and unknown) tradeoffs between money and
upload bandwidth. We model this fact by assuming that each node u has a tradeoff
factor λu, drawn independently and uniformly at random from [0, 1], which captures
how many units of bandwidth one unit of money is worth to the node. Thus, the sharing
utility of an active node u ∈ V + is

U(u) = λuπu − cu

∑
v

dvpv,u∑
w∈V + pv,w

,

while the sharing utility of non-sharing nodes is 0. (A non-sharing node does not get
paid and incurs no upload costs.) We assume that agents are rational, and thus choose
whether to share or not to share so as to maximize their own utility.
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2.2 Payment Schemes, Sharing Process, and Administrator’s Objective

The network administrator’s choice is how to set the payment offers πu. In doing so, the
administrator balances two competing goals: low overall payments and high utility for
the participants in the system. In this paper, we study the impact of payment schemes
on these objectives.

In order to provide enough incentives for sharing, the network administrator should
ensure that πu ≥ Cu := cu ·

∑
v dv. Otherwise, even a node u with λu = 1 (i.e., the

highest possible utility for money) would have no incentive to share the file if no other
peers are sharing the file.

The full model is thus as follows: after the administrator decides on the payments πu

for all nodes u, the random tradeoffs λu between money and bandwidth are determined
independently for all nodes u. Subsequently, the process proceeds in iterations. In each
iteration, all peers simultaneously decide whether to share the file or not, based on
the payments, costs, and previous decisions of all other peers. The process continues
until an equilibrium is reached. Notice that because the cost to a peer is monotone
decreasing in the set V + of currently sharing peers, the set of sharing peers can only
become larger from iteration to iteration. In particular, this implies that the process will
eventually terminate with some set V + of active peers. We call this the sharing process
or activation process.

The network administrator is in general interested in increasing access to the file
while keeping the payments low. This general objective may be captured using various
metrics. In general, we allow for any overall social welfare function W which increases
monotonically in the set S of sharing nodes. Notice that since the set S itself is the
result of a random process, the administrator’s goal will be to maximize E [W (S)],
where S is derived from the random activation process in the demand model. Several
social welfare functions W suggest themselves naturally such as the number of active
nodes, the number of serviced nodes (with at least one active neighbor), or the social
utility

∑
v∈V + pu,v. Notice that the social welfare function W may also include the

utilities of the sharing nodes.

3 Theoretical Analysis of the Model

The main analytical contribution of this paper is based on coverage processes2, defined
formally in Definition 2. Informally, a coverage process is a random process such that
the distribution over sets of ultimately active nodes is also the distribution of reachable
nodes under a suitably chosen distribution of random graphs. Our results on coverage
processes are twofold: (1) We give a general characterization of coverage processes,
and show that the activation process for P2P systems is a coverage process. (2) We
give a significantly simplified proof (compared to the general result of [15]) show-
ing that under coverage processes, the expected social welfare is a concave function
of the payments so long as the social welfare is a submodular function of the active
nodes.

2 We thank Bobby Kleinberg for this naming suggestion, and also note here that Theorem 2 was
derived independently by him.
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A set function f is submodular if f(S + v) − f(S) ≥ f(T + v) − f(T ) whenever
S ⊆ T , i.e., if the addition of an element to a larger set causes no larger increase in the
function value than to a smaller set. Submodularity is the discrete analogue of concavity,
and intuitively corresponds to “diminishing returns.” An easy inductive proof (on the
size of X) shows that submodularity is equivalent to the condition that for all sets X ,

f(S ∪ X) − f(S) ≥ f(T ∪ X) − f(T ) whenever S ⊆ T. (1)

The two main contributions of our paper imply the following theorem as a corollary:

Theorem 1. Let W (π1, . . . , πn) = E [W (S)] be the expected social welfare when S is
obtained from the sharing process of the demand model with payments π1, . . . , πn.

If W (S) is submodular, then W (π1, . . . , πn) is a concave function of π1, . . . , πn.

Concavity in payments intuitively means that the additional benefit in social welfare
that can be derived from increasing the payment to a peer u decreases as the peers’
current payments increase.

The proof of Theorem 1 is based on analyzing the following Seed Set Model, which
we define mainly for the purpose of analysis.

Definition 1 (Seed Set Model). For each node, the payment offered is πu = Cu. Be-
sides payments, we have a seed set S of peers that will always share regardless of the
payments. Subsequently, the process unfolds exactly according to the sharing process.

The main technical step is to show that the Seed Set Model is a coverage process, in the
following sense.

Definition 2 (Coverage Process). Let φ(S) be the random variable describing the set
of nodes active at the end of a process starting from the set S of nodes active. The
process is called a coverage process if there exists a distribution D over graphs G such
that for each set T of nodes, Prob[φ(S) = T ] equals the probability that exactly T is
reachable starting from S in G if G is drawn from the distribution D.

Remark 1. Without using our nomenclature, [13] showed submodularity for the Cas-
cade and Threshold models of innovation diffusion [11,9] by establishing that both gave
rise to coverage processes. Subsequently, [14] showed that there are natural diffusion
processes which are not coverage processes, yet have a submodular function E [|φ(S)|].

We prove that the Seed Set Model is a coverage process in two steps. First, in Sec-
tion 3.1, we give a general and complete characterization of coverage processes. This
characterization may be of interest in its own right, as coverage processes have a practi-
cal advantage: they can be simulated easily and efficiently, by first generating a random
graph according to D, and then simply finding the set of reachable nodes.

Then, in Section 3.2, we show that the Seed Set Process satisfies the conditions es-
tablished in Section 3.1. Finally, in Section 3.3, we give a simple proof that for any
coverage process and any submodular social welfare function, the expected social wel-
fare under the process is also submodular. This immediately implies concavity as a
function of the payments.
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Remark 2. The fact that the tradeoffs λu between money and bandwidth are uniformly
random in [0, 1] is important to ensure the submodularity and concavity properties.
If the λu are not random but fixed, then the concavity and submodularity properties
cease to hold. Furthermore in the Seed Set Model, the optimization problem of finding
the best seed set S of at most k nodes becomes inapproximable (via a reduction from
SET COVER); details are in the full version of this paper. (The full version is available
from the authors’ web sites.) This contrasts with Corollary 1 below for the optimization
problem with random tradeoffs.

3.1 Characterization of Coverage Processes

Our setting is exactly as in the recent paper on Viral Marketing in Social Networks by
Mossel and Roch [15]: each node u has an activation function fu, which is monotone
non-decreasing and satisfies fu(∅) = 0. Each node independently chooses a threshold
θu ∈ [0, 1] uniformly at random, and becomes active when fu(S) ≥ θu, where S is the
previously active set of nodes.

In order to express our results concisely, we use the following discrete equivalent of
a derivative (see, e.g., [22]). For a function f defined on sets, we define inductively:

f∅(S) = f(S)
fR∪{v}(S) = fR(S ∪ {v})− fR(S).

It is not difficult to verify that this notion is well-defined, i.e., independent of which
element v is chosen at which stage. Moreover, an easy induction shows that discrete
derivatives can be expressed non-recursively as follows: For all sets T , we have that

fT (W ) =
∑

S⊆T (−1)|T |−|S|f(W ∪ S).

Theorem 2. The following conditions are necessary and sufficient for the process to be
a coverage process.

– For all sets T of odd cardinality |T |, as well as for T = ∅, and each node u, we
have fu

T (T ) ≥ 0.
– For all sets T of positive even cardinality |T |, and each node u, we have fu

T (T ) ≤ 0.
– fu(∅) = 0 for all u.

To prove this theorem, we begin with the following reasoning. Focus on one node u,
and its activation function fu. If there were an equivalent graph distribution D, then it
would have to define a probability qu(T ) for the presence of edges from exactly the set
T of vertices to u. These probabilities need to satisfy the following property: if a set
S of nodes is active, then the probability of u having at least one incoming edge from
S must equal fu(S). Thus, a necessary and sufficient condition for being a coverage
function is that for each node u, there exists a distribution qu(T ) over sets T such that

fu(S) =
∑

T :T∩S 
=∅
qu(T ). (2)

We can express this requirement more compactly. Let fu be the (2n − 1)-dimensional
vector of all entries of fu(S) for S �= ∅. Similarly, let qu be the (2n − 1)-dimensional
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vector of all qu(S) for S �= ∅. Let A be the ((2n − 1) × (2n − 1))-dimensional matrix
indexed by non-empty subsets such that AS,T = 1 if and only if S ∩ T �= ∅, and
AS,T = 0 otherwise. (A is called an incidence matrix [4].) Then, Equation 2 states the
requirement that for each node u, there exists a distribution qu such that A · qu = fu.

For the analysis, it will be useful to fix a canonical ordering of subsets. Specifically,
if the current (sub-)universe consists of k nodes indexed {1, 2, . . . , k}, their canonical
ordering is defined recursively as first containing all subsets of {1, 2, . . . , k − 1} in
canonical order, then the set {k}, followed by the sets T ∪ {k}, where the sets T ⊆
{1, 2, . . . , k − 1} appear in canonical order.

In order to find out when the distribution qu exists, we want to solve the equation
A · qu = fu, or fu = A−1 · qu. While the inverses of some incidence matrices have
been studied before (see, e.g., [3]), we are not aware of any source explicitly giving the
inverse of the matrix A. Hence, we establish here:

Lemma 1. The inverse of A is the matrix B defined by

bS,T :=
{

0 if S ∪ T �= {1, . . . , n}
(−1)|S∩T |+1 otherwise

The next lemma shows that so long as all qu(S) are non-negative, by setting qu(∅)
appropriately, we can always obtain a probability distribution.

Lemma 2. With qu(S) defined as qu = B · fu, we have
∑

S qu(S) ≤ 1.

(Due to space-constraints, the proofs of the above lemmas are deferred to the full ver-
sion of the paper.) By Lemma 1, we know that qu = B ·fu. And by Lemma 2, the entries
sum up to at most 1. Thus, it remains to show that the entries of qu are non-negative if
and only if fu satisfies the conditions of Theorem 2.

Proof of Theorem 2. Fix any node u, and define qu = B · fu. The discrete derivative
of fu at T can be expressed as fu

T (T ) =
∑

S⊆T (−1)|T |−|S|fu(T ∪ S). If |T | is odd,

then (−1)|T |−|S| = (−1)|S|+1, so we can rewrite the above as∑
S⊆T (−1)|S|+1fu(T ∪ S) =

∑
W⊇T (−1)|W∩T |+1fu(W ) = qu(T ).

Similarly, if |T | is even, then (−1)|T |−|S| = (−1)|S|, so we can rewrite the discrete
derivative as∑

S⊆T (−1)|S|fu(T ∪ S) =
∑

W⊇T (−1)|W∩T |fu(W ) = −qu(T ).

Thus, the qu(T ) are all non-negative (and the probability distribution thus well-defined)
if and only if fu

T (T ) ≥ 0 for |T | odd, and fu
T (T ) ≤ 0 for |T | > 0 even.

3.2 Coverage Property of the Seed Set Process

In this section, we establish the following theorem.

Theorem 3. The Seed Set Process is a coverage process.



362 M. Salek, S. Shayandeh, and D. Kempe

Proof. In order to prove this theorem, we want to apply Theorem 2. To do so, we need
show that the local decisions of nodes about sharing can be cast in terms of submodular
threshold functions. Specifically, we define fu(S) = 1 − 1

Cu
· cu ·

∑
v

dvpv,u∑
w∈S∪{u} pv,w

and let θu = 1 − λuπu

Cu
.

A node u becomes active if doing so has positive utility, i.e., if λuπu > cu ·∑
v

dvpv,u∑
w∈S∪{u} pv,w

. Dividing both sides by Cu, and subtracting from 1 shows that this

is equivalent to saying that 1 − λuπu

Cu
< 1 − 1

Cu
· cu ·

∑
v

dvpv,u∑
w∈S∪{u} pv,w

. Since λuπu

is uniformly random in [0, Cu] by the definition of πu in the Seed Set Model, this con-
dition is equivalent to saying that θu < fu(S). Thus, we have shown that the activation
process can be equivalently recast in terms of threshold activations functions.

Finally, we need to show that for every node u, all derivatives fu
T (S) are non-negative

when |T | is odd and non-positive when |T | > 0 is even. (The fact that fu(S) = fu
∅ (S)

is non-negative follows directly by definition.) Let

f̂u(x1, . . . , xn) = 1 − 1
Cu

· cu ·
∑

v
dvpv,u∑

vi∈V pv,vi
xi

be the continuous equivalent of the local influence function fu. For a set S, let y(S)

denote the n-dimensional vector with y
(S)
i = 1 if vi ∈ S∪{u} and y

(S)
i = 0 otherwise.

Then, fu(S) = f̂u(y(S)). Notice that by definition, there is no division by zero.
Writing dYT = dyi1dyi2 · · · dyi|T | , where T = {i1, i2, . . . , i|T |}, an easy inductive

proof first shows that fu
T (S) =

∫ 1

0 . . .|T | ∫ 1

0
df̂u(y(S))

dYT
dYT . It remains to show that each

term inside the integration is non-negative for odd |T | and non-positive for even |T |. We
accomplish this by showing that

df̂u(y(S))
dYT

= (−1)|T |+1|T |! cu

Cu

∑
v

dvpv,u
∏

t∈T pv,t

(
∑

vi∈V pv,vi
y
(S)
i )|T |+1

.

The proof is by induction. The base case |T | = 1 can be verified easily. Assume that
the claim holds for |T | = i − 1. We have

df̂u(y(S))
dYT dyi

= d
dyi

(−1)|T |+1|T |! cu

Cu

∑
v

dvpv,u

∏
t∈T pv,t

(
∑

vi∈V pv,vi
yi)|T |+1

= (−1)(−1)|T |+1|T |! cu

Cu
·
∑

v

(|T |+1)pv,vi
dvpv,u

∏
t∈T pv,t(

∑
vi∈V pv,vi

yi)
|T |

(
∑

vi∈V pv,vi
yi)2|T |+2

= (−1)|T |+2|T + 1|! cu

Cu

∑
v

dvpv,u

∏
t∈T∪{vi} pv,t

(
∑

vi∈V pv,vi
yi)|T |+2 .

This completes the inductive proof, and thus the proof of Theorem 3.

While we defined the Seed Set Process primarily as a tool for analysis, we remark here
that using a theorem of Nemhauser et al. [6, 16], Theorem 3 has a direct consequence
for the optimization problem of maximizing the expected total number of active nodes
at the end of the process, subject to a size constraint on the seed set S.

Corollary 1. The best starting set S for the Seed Set Process can be approximated
within (1 − 1/e − ε) in polynomial time, for any ε > 0.
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3.3 Concavity of Expected Social Welfare

Finally, we use the machinery of coverage processes to show submodularity and con-
cavity of social welfare. Consider an arbitrary coverage process. When the coverage
process starts with the set T , let φ(T ) be a random variable describing the set of nodes
active at the end of the process. Thus, the distribution of φ(T ) for all T precisely char-
acterizes the coverage process. Our main theorem is now the following:

Theorem 4. Let h(S) be any monotone submodular function of S. Then, E [h(φ(T ))]
is a monotone submodular function of T , where the expectation is taken over the ran-
domness in φ(T ).

This theorem follows from the general result of [15], since all coverage processes are
locally submodular, and our utility function is submodular with respect to the set of
sharing neighbors. However, we derive it more simply using reachability in graphs and
the fact that φ is a coverage process. For coverage processes, instead of generating
random thresholds and simulating a dynamic process, we can generate a random graph
and then simply use Dijkstra’s algorithm to find the number of reachable nodes. The
proof of Theorem 4 is in the full version of the paper.

The final piece of the proof of Theorem 1 is to show that monotonicity and submod-
ularity of the Seed Set Model imply concavity for the original model.

Lemma 3. Let f be a non-negative, monotone, submodular function on sets. Con-
sider the function g defined as follows: Each element u is included in S independently
with probability qu(πu), where qu is an increasing and concave function of πu. Define
g(π) = E [f(S)]. Then, g is monotone and concave.

The proof of Lemma 3 is virtually identical to the second half of the proof of Theorem
6.1 in [13], and we therefore omit it here. With Theorem 3 and Lemma 3, we can now
complete the proof of Theorem 1.

Proof of Theorem 1. Consider one node u. The probability that it becomes active ini-
tially is p0

u = Prob[λuπu ≥ Cu] = 1 − Cu

πu
. Recall that Cu = cu ·

∑
v dv , and

πu ≥ Cu in our model, so this number is always non-negative. Clearly, p0
u is also a

monotone increasing function of πu. Moreover, the second derivative is −2Cu

(πu)3 , and thus

non-positive, so p0
u is concave.

Now, consider all the nodes u which did not initially become active. This is equiva-
lent to saying that λuπu ≤ Cu. But subject to this bound, λuπu is uniformly random,
so we are in the situation of having an initially active set S, and for each remaining
node u, the payment is independently and uniformly random in [0, Cu]. By Theorems
3 and 4, the expected social welfare W (S) is a monotone and submodular function of
the seed set S, so long as W is submodular in the set of active nodes. We can therefore
apply Lemma 3 to E [h(φ(T ))], which implies that W (π1, . . . , πn) is concave in its
arguments.

It is not difficult to verify that all of the social welfare functions listed in Section 2
are monotone and submodular in the set of active nodes. (Due to space constraints, we
defer the formal proofs to the full version of this paper.) Thus, for all of these objective
functions, the total social welfare is a monotone concave function of the payments.
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4 Experimental Evaluation

In this section, we summarize our observations based on simulations both on synthetic
and real-world P2P networks. The detailed discussion with plots is relegated to the full
version of the paper due to space constraints.

We defined two other models with no or limited network effects and compared them
against the demand model. In the No-Network Model, the peers completely ignore other
sharing peers. Thus, a node u assumes that if it shares the file, then it will see a fraction
pv,u of the demand originating with node u. In the One-Hop Model, the peers are aware
of network effects in a very limited way: node u assumes that any node v sharing the
file will contribute toward serving both v’s and u’s demand, but not toward serving the
demand of any other node w �= u, v. We developed a simulator for the three models and
evaluated several social welfare functions defined in Section 2.

In addition, we calculated the total payments and the average payment per active and
per serviced node. These numbers are averaged over 1000 iterations, each with different
random λ. Based on the simulations, the following were our main observations:

1. Our results show a significant difference between the models in their prediction of
sharing: while the fraction of sharing nodes is qualitatively similar, the predictions
ignoring network effects can be off by about 15%–25%. This results in up to 10%
depreciation in the number of serviced peers.

2. We observe that the denser the network, the higher the rate of participation, given
fixed incentives. This holds across grid and realistic Internet topologies.

3. Our experiments suggest that the payments πu for realistic topologies should be
proportional to u’s degree to give high overall participation at low cost.

5 Conclusions

There are several natural directions for future work. A very interesting question arises
when taking payments by “reputation” or download priorities into account. While mone-
tary payments can (in principle) be increased arbitrarily, reputation is inherently constant-
sum: if some peers are recognized as outstanding sharers, then others will receive less
recognition. Similarly, download priorities come at the expense of other peers, and can
thus not be arbitrarily increased for all members of the network. As a result, the process
of sharing will not necessarily be monotone: peers may choose to stop sharing once too
many other peers are active. A first question is then whether stable (equilibrium) states
even exist. If so, it would be interesting what fraction of the peers will be sharing, what
the social welfare is, and how these quantities will depend on the network structure.

From a more practical viewpoint, it would be desirable to evaluate how accurately
our model (or a variation thereof) captures the actual behavior of participants in a P2P
system. This would likely be a difficult experiment to perform, as many of the parame-
ters, such as file demands and latency, are inherently transient, and in a realistic system,
payments cannot be changed constantly to evaluate the impact of such changes.

Finally, our work lies among various applications in economics for which there are
positive or negative externalities among agents in a neighborhood. Our results suggest
we should always consider the cascading effects of agents’ strategies over the network
on different economic metrics such as revenue or social welfare.
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Abstract. We study Congestion Games with non-increasing cost func-

tions (Cost Sharing Games) from a complexity perspective and resolve

their computational hardness, which has been an open question. Specif-

ically we prove that when the cost functions have the form f(x) = cr/x
(Fair Cost Allocation) then it is PLS-complete to compute a Pure Nash

Equilibrium even in the case where strategies of the players are paths

on a directed network. For cost functions of the form f(x) = cr(x)/x,

where cr(x) is a non-decreasing concave function we also prove PLS-

completeness in undirected networks. Thus we extend the results of [7, 1]

to the non-increasing case. For the case of Matroid Cost Sharing Games,

where tractability of Pure Nash Equilibria is known by [1] we give a

greedy polynomial time algorithm that computes a Pure Nash Equilib-

rium with social cost at most the potential of the optimal strategy profile.

Hence, for this class of games we give a polynomial time version of the

Potential Method introduced in [2] for bounding the Price of Stability.

Keywords: Cost Sharing, PLS-completeness, Price of Stability, Conges-

tion Games.

1 Introduction

The rapid and overwhelming expansion of the Internet has transformed it into
a completely new economic arena where a large number of self-interested play-
ers interact. The lack of central coordination has rendered classic optimization
problems insufficient to capture Internet interactions and has given rise to new
game-theoretic models. In this work we study a general such model, namely Con-
gestion Games with non-increasing cost functions (Cost Sharing Games), from a
complexity perspective and we resolve the computational hardness of computing
a Pure Nash Equilibrium (PNE) in such games, which has been an open problem.
The computational hardness is an important aspect of an equilibrium concept
since it indicates whether it is a reasonable outcome in real world settings.

We start with a motivating example: a group of Internet Service Providers
(ISP) wants to create a new network on a set of nodes (possibly different set
for each provider). Each ISP’s goal is that any two of his nodes are connected
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by a path. For practical reasons, each provider can build edges only between
two nodes in his set and his clients can use a link only if the ISP helped build
it. Moreover, we assume that ISPs are clever enough and when they decide to
build the same link as others then they all build one link and share the cost. The
moment we add this last specification, the problem faced by an ISP is no longer
an optimization problem and the setting becomes a game which from now on we
will call the ISP Network Creation Game. ISP Network Creation Games can be
easily modeled as Cost Sharing Games.

Congestion Games in general has been a widely studied game theoretic model.
In Congestion Games a set of players allocate some set of shared resources.
The cost incurred from using a resource is a function of the number of players
that have allocated the resource and the total cost of a player is the sum of
his costs on all the resources he has allocated. A reasonable outcome of such
a setting is a Pure Nash Equilibrium (PNE): a strategy profile such that no
player can profit from deviating unilaterally. In a seminal paper, Rosenthal [13]
gives a proof that Congestion Games always possess a PNE. To achieve this,
he introduces a potential function and shows that the change in the potential
induced by a unilateral move of some player is equal to the change of that player’s
utility. Several aspects of the PNE of Congestion Games have been studied in
the literature.

An interesting research area has been the complexity of computing a PNE in
Congestion Games. In a seminal paper Fabrikant et al. [7] proved that the above
problem is PLS-complete even in the case where the strategies of the players
are paths in a directed network. Later, Ackermann et al. [1] extended the above
result to the case of undirected networks with linear cost functions. However,
both results use cost functions on the resources that are non-decreasing (delays)
and do not carry over to Cost Sharing Games. The complexity of computing a
PNE in Cost Sharing Games has been an open question.

Another interesting line of research has been measuring the inefficiency that
arises from selfishness. An important concept in that direction (especially in the
case of Cost Sharing Games) has been the Price of Stability (PoS), which is
the ratio of the quality (sum of players’ costs) of the best PNE over the socially
optimal outcome ([2]). One major motivation for the PoS is that it is the socially
optimal solution subject to the constraint of unilateral stability. If there was a
third-party that could propose to players a solution to their problem, then the
optimal stable solution he could propose would be the best PNE. This motivation
raises an interesting open question: Given an upper bound on the PoS for a class
of games, is there a polynomial-time algorithm for computing a PNE with cost
comparable to that bound?

In this work we make significant progress in both directions described above.
We prove the first PLS-hardness results for Cost Sharing Games. Our results
show that the non-increasing case is not easier than the non-decreasing. More-
over, we give the first polynomial-time algorithm that computes a PNE with
quality equal to the known bound on the PoS for a significant class of Cost
Sharing Games that contains, for example, the ISP Network Creation Game.
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Results

– Our first main result is that a greedy approach leads to a polynomial time
algorithm that computes a PNE of any Matroid Cost Sharing Game, with
cost equal to the potential of the socially optimal solution. The quality of
such a PNE is no worse than any bound on the PoS that can be proved
via the Potential Method. Hence, for this class we give a polynomial time
equivalent to the Potential Method. Matroid Cost Sharing Games are Cost
Sharing Games where the strategy space of each player is exactly the set of
bases of a player-specific matroid. The existence of algorithms like the one
given here has been an interesting open question [18]. From previous work
[5], we know that computing the global potential minimizer is NP-hard even
for Singleton Cost Sharing Games. Also we note here that the same holds
for the minimum social cost PNE. Hence it is surprising that we can achieve
such an efficiency guarantee.

– The above result directly implies the logarithmic bound on the PoS for Ma-
troid Cost Sharing Games with cost functions of the form f(x) = cr(x)/x,
where cr(x) is a nondecreasing concave function.

– For the case of Singleton Cost Sharing Games our algorithm does not output
just a PNE but a Strong Nash Equilibrium. Hence this extends the results
in [6] on the existence of Strong Nash Equilibria in Cost Sharing Games.

– Our second main result is that computing a PNE in the class of Network
Cost Sharing Games where the cost functions come from the Shapley Cost
Sharing Mechanism, f(x) = cr/x (Fair Cost Allocation) is PLS-complete.
The hardness results are based on a tight PLS-reduction from MAX CUT.
The result is not restrictive to Fair Cost Allocation and holds for almost any
reasonable set of decreasing functions.

– The tightness of our reduction also shows that there exist instances of Net-
work Cost Sharing Games with Fair Cost Allocation, where best response
dynamics will certainly need exponential time to reach a PNE. This gives a
negative answer to an interesting open question proposed in [2] of whether
there exist a scheduling of best response moves that lead to a PNE in poly-
nomially many steps.

– For cost functions of the form f(x) = cr(x)/x, where cr(x) is a nondecreasing
concave function we also prove PLS-completeness for the case of Undirected
Network Cost Sharing. This result is not restricted to the above class of
functions but generalizes to any class of cost functions that contains almost
constant functions.

– The new techniques that we introduce can be used to simplify the existing
reductions for the non-decreasing case.

Techniques. To prove our main hardness result we introduce a new class of
Congestion Games called k-Congestable Congestion Games. In a k-Congestable
Congestion Game the resources of any two strategies of a player are disjoint and
each resource is contained in some strategy of at most k players. Thus at most
k players can share a resource in any strategy profile. These games generalize
k-Threshold Games introduced by Ackermann et al. [1].
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We show how to reduce the computation of a PNE in a 2-Congestable Con-
gestion Game with cost functions that satisfy certain assumptions, to the same
problem in a Network Congestion Game with the same set of cost functions. If
the class of cost functions is general enough to contain almost constant func-
tions with arbitrary high cost, then we can reduce 2-Congestable Congestion
Games to Undirected Network Games. We notice that the MAX CUT reduc-
tion of Fabrikant et al [7] constructs a 2-Congestable Congestion Game hence
our techniques can be applied to simplify the PLS-completeness proofs for the
non-decreasing case.

A lot of the proofs of our results had to be omitted due to space limitations.
See the full version of the paper for the proofs that had to get deleted from this
proceedings version.

Related Work

Complexity of Equilibria. Apart from the results mentioned in the introduction
[7, 1], there has been several works on the relation between PLS and PNE.
Skopalik et al [16] proves that even computing an approximate PNE is PLS
complete for Congestion Games. Their techniques can also be used to prove
PLS-completeness of approximate equilibria in Bottleneck Games (player cost is
maximum of cost of allocated resources) as noted independently by Syrgkanis
[17] and Harks et al [9].

For Cost Sharing Games Chekuri et al [5] prove that it is NP-hard to compute
the global potential minimizer for Multicast Games with Fair Cost Allocation.
Hansen et al [8] give an exponential sequence of best response moves for the case
of Metric Facility Location Games and provide a polynomial time algorithm for
computing approximate equilibria in that class.

On the positive side, Ieong et al. [10] give a dynamic programming algorithm
for computing the optimal PNE in the class of Symmetric Singleton Games
with arbitrary cost functions. Moreover, Ackermann et al [1] introduce Matroid
Congestion Games as a class of games where best response dynamics converge
in polynomially many steps.

Quality of Equilibria. Cost Sharing Games in the form studied in this work were
introduced by Anshelevich et al. [2]. One of their main results is that the PoS is
O(log(n)) (where n is the number of players) for Cost Sharing Games where the
cost functions have the form f(x) = cr(x)/x, where cr(x) is a nondecreasing con-
cave function. Their proof introduces the Potential Method, a way of bounding
the PoS by showing that the global minimizer of Rosenthal’s potential (which is
a PNE) has cost close to the optimal.

Several other works have dealt with Cost Sharing Games from the perspective
of bounding the inefficiency that arises from selfishness. Chekuri et al [5] study
Multicast and Facility Location Games when players arrive sequentially and
then perform best response. They prove that the quality of the resulting PNE
is at most O(

√
n log2 n)OPT . Later Charikar et al. [4] improve this bound to

O(log3 n)OPT and also make progress for the case when best response and
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sequential arriving is interleaved. Epstein et al [6] study the quality of Strong
Nash Equilibria of Cost Sharing Games with Fair Cost Allocation. Strong Nash
Equilibria allow for group moves of players, therefore they are a solution concept
robust to collusion. However, they do not always exist in Cost Sharing Games.
When they exist Epstein et al [6] show that their worst case quality matches the
PoS bound of Hn. Balcan et al [3] study Cost Sharing Games with Fair Cost
Allocation under the perspective of Learning Agents. They prove that if players
perform best response but at each step with a small fixed probability chose their
strategy in a nearly optimal outcome, then the expected quality of the resulting
PNE is O(log(n) log(n|F |))OPT , where |F | is the number of resources.

2 Definitions and Notation

Definition 1. A Congestion Game(CG), denoted 〈N, F, (Si)i∈N , (rf )f∈F 〉,
consists of: A set of N players and a set of facilities F . For each player i a
set of strategies Si ⊆ 2F . For each facility f a cost function rf (x). Given a
strategy profile s, the cost of a player i is Ci(si, s−i) =

∑
f∈si

rf (nf (s)), where
nf (s) (congestion) is the number of players using facility f in strategy profile
s. The Social Cost of s is: SC(s) =

∑
i∈[N ] Ci(s) and the Potential of s is:

Φ(s) =
∑

f∈F

∑nf (s)
k=1 rf (k).

Definition 2. A Cost Sharing Game (CSG) is a CG where the facility cost
functions rf (x) are non-increasing. Any Cost Sharing Game may also be aug-
mented by the property of Fair Cost Allocation which means that the cost
functions have the specific form of rf (x) = cf

x .

Definition 3. A Network Cost Sharing Game is a CSG, where the strategy
space of each player i is the set of all possible paths between two nodes (si, ti) on
a directed network G = (V, E). If we assume an undirected network then we have
the class of Undirected Network Cost Sharing Games. If all players share
a common sink then we have the case of a Multicast Cost Sharing Game
either on a directed or undirected network.

Definition 4. A Matroid Cost Sharing Game is a CSG, where for each
player i ∈ [N ], Si is the set of bases of a matroid Mi = (F, li), where li is the
set of independent sets [15]. Additionally we denote by rk(G) = maxi∈[N ]rk(Mi)
the rank of the game G, where rk(Mi) is the rank of matroid rk(Mi).

Definition 5. A Singleton Cost Sharing Game is a CSG, where for each
player i ∈ [N ], Si consists of singleton sets. For this class of games we will use
an equivalent model that consists of: n jobs and m machines and an arbitrary
bipartite graph G on nodes [n] ∪ [m]. The jobs are the players of the game and
their strategies is to choose one of the machines they are connected to in G. We
denote with Mj the set of neighbors of job j, i.e. the set of possible machines job
j can choose from. We denote with Ni the set of neighbors of machine i, i.e. the
set of jobs machine i can be picked by.
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3 Computing a Good Pure Nash Equilibrium

Matroid Cost Sharing Games is a subclass of Matroid Congestion Games, hence
by Ackermann et al. [1] we have that best response dynamics converge to a PNE
in at most n2m rk(G) steps. Thus one polynomial algorithm that gives a PNE
starts from an arbitrary configuration and performs a best response in each step.

However, one interesting question is whether we can find a good quality PNE,
for example the one that globally minimizes the potential function or at least a
PNE with good social cost characteristics. Chekuri et al. [5] prove that computing
the global potential minimizer for the class of Singleton Cost Sharing Games with
cost functions of the form f(x) = 1/x is NP-hard. The proof is based on a gap
introducing reduction by Lund and Yannakakis [12]. We remark here that this
reduction can also be used to prove that computing the socially optimal PNE is
NP-hard.

Nevertheless, these hardness results do not exclude the possibility of comput-
ing a PNE with social cost comparable with the bound on the PoS produced
by the Potential Method. Specifically the Potential Method works as follows:
Suppose that for any profile s: SC(s) ≤ Φ(s) ≤ αSC(s). Then if we find the
global potential minimizer ŝ and denoting with s∗ the optimal, we get that:
SC(ŝ) ≤ Φ(ŝ) ≤ Φ(s∗) ≤ αSC(s∗), hence the PoS is at most α. Now we know
that computing the global potential or social cost minimizer is NP-hard, how-
ever if we manage to find a PNE ŝ′ such that: SC(ŝ′) ≤ Φ(s∗), then we would
have: SC(ŝ′) ≤ αSC(s) and we would get the same upper bound. This is the
guarantee that we will achieve for the algorithms that follow.

3.1 Singleton Cost Sharing Games

In this section we present the polynomial time algorithm that computes a good
PNE for the class of Singleton Cost Sharing Games. We start from Singleton
Cost Sharing Games to give a clear intuition for the case of Matroid Cost Sharing
Games that will be a generalization of the results presented in this section.

Singleton Cost Sharing Games can also be viewed as a Multicast Cost Sharing
Game on a directed network. Given an instance of our model we create a mul-
ticast game as follows: Set a common sink t. Create a machine node vi for each
machine i and connect it with t with an edge of cost ri. Create one source node
sj for each job j. Then for each j ∈ Ni create an edge of cost 0 from source node
sj to machine node vi. It could also be viewed as a Multicast Cost Sharing Game
on an undirected network. Instead of setting the edge costs of edges (sj , vi) to 0
we set it to some huge number q. However, the Price of Anarchy and PoS bounds
do not carry over in this case.

In the special case of Fair Cost Allocation, the social cost is the sum of the
costs of the machines used and the optimization problem of computing a strategy
profile with minimum social cost is a problem equivalent to SET COVER.

Our algorithm (Alg. 1) works as follows: Each time pick the machine that
incurs the minimum player cost if it is assigned all the possible unassigned jobs
and assign to that machine all possible jobs. We iterate until all jobs are assigned.



372 V. Syrgkanis

Algorithm 1. Poly-time algorithm for good PNE
Require: An instance of G = 〈G = ([n] ∪ [m], E), (ri)i∈[m]〉

G1 = G
for t = 1 to m do

Let dt
i = |N t

i | be the degree of machine i in Gt. Let it = arg mini∈[m] ri(d
t
i)

For all j ∈ N t
it set sj = it

Remove nodes N t
it ∪ it from Gt to obtain Gt+1

end for
return Strategy profile s

Theorem 1. For any instance of Singleton Cost Sharing Games, Algorithm (1)
computes a PNE that is as good as the potential of the optimal allocation.

Sketch of Proof. Suppose in the end of the algorithm, some job j wants to move
from his current machine i to some i′. Assume j was assigned to i at time step
t0, i.e. i = it0 . Therefore it was not connected to any machine it for t < t0. Thus
i′ must correspond to some machine it1 for t1 > t0. Since j was not assigned to
i′ it means that at t0, the degree of i′ dropped by at least 1. Moreover, at each
subsequent time step the degree of machine i′ can only drop. Thus dt1

i′ ≤ dt0
i′ −1.

Moreover, since i was selected at t0 it means that: ri(dt0
i ) ≤ ri′(dt0

i′ ) ≤ ri′ (dt1
i′ +1),

where the last inequality holds from the fact that dt0
i′ ≥ dt1

i′ + 1 and ri are non-
increasing functions. In the end of the algorithm ni = dt0

i and ni′ = dt1
i′ , hence

ri(ni) ≤ ri′(ni′ + 1), which is a contradiction.
For the efficiency guarrantee we work with a price scheme. Consider a machine

i in the optimum solution and assume d players are assigned to it in OPT. Order
these players in the order that the algorithm assigns them to some other machine.
When the j-th player was assigned to another machine i′ we know that at least
d − j + 1 players can still be assigned to i. Since we assign all possible players
to i′ and we choose the machine with the smallest possible player cost we know
that j-th player pays a cost of at most ri(d − j + 1) for being assigned to i′.
Iterating this for all j and for all machines in the optimum solution we get the
desired result. �

For the case of Fair Cost Allocation, Algorithm (1) is exactly the greedy Hn-
approximation for SET COVER. Hence we immediately get a good efficiency
guarantee. In addition it is interesting to notice that the tight example for the
Hn-approximation given in Example 2.5 of [19] for the greedy approximation
algorithm for SET COVER is the identical analogue of the tight example for the
PoS given in [2].

We also note that the above algorithm actually computes a Strong Nash Equi-
librium. For Matroid Cost Sharing Games such a guarantee cannot be achieved
since the example of [6] that possesses no Strong Nash Equilibrium can be easily
transformed into a Matroid Game.
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3.2 Matroid Cost Sharing Games

In this section we present a generalization of Algorithm (1) that computes a
good PNE for the class of Matroid Cost Sharing Games.

Algorithm 2. Poly-time algorithm for good PNE in Matroid Cost sharing
Games
Require: An instance of 〈N, F, (Si)i∈[N], (rf )f∈F 〉

∀i ∈ [N ] : s0
i = ∅; ∀f ∈ F : N0

f = {i ∈ [N ] | f ∈ li}, d0
f = |N0

f |, t = 0

while ∃f ∈ F : dt
f > 0 do

f t = arg minf∈F rf (dt
f )

∀i ∈ N t
ft set st

i = st−1
i ∪ {f t}. t = t + 1

N t
f = {i ∈ [N ] | st−1

i ∪ {f} ∈ li}, dt
f = |N t

f |
end while
return Strategy profile st−1

The algorithm (Alg. 2) works as follows: At each point we keep a temporary
strategy for each player, starting from the empty strategy. At each iteration t
we compute for each resource to how many players’ strategy it could be added
(dt

f ). Then we choose the resource that has minimum player cost if added to the
strategy of all possible players (minf∈F rf (dt

f )) and we perform this addition.
This happens until no player’s strategy can be further augmented.

Assuming that checking whether some set is in li takes polynomial time in the
size of the input, then it is clear that the above algorithm runs in polynomial
time since the while loop is executed at most n · rk(G) times and during each
time step we go over all the resources. For example the above property is true
for the case where the strategy space of each player is the set of spanning trees
on a set of nodes, like the ISP Network Creation Game.

Theorem 2. For any Matroid Cost Sharing Game, Algorithm (2) computes a
PNE with social cost at most the potential of the optimal allocation.

Sketch of Proof. To prove that the resulting allocation is a PNE we use the
matroid property that a base is minimum if and only if there is no (1, 1) exchange
of a facility that results to a better strategy. Then we argue that no profitable
(1, 1) exchange can exist in a player’s strategy due to the way the algorithm
works. To prove the efficiency guarantee we construct for every player a 1-1
mapping of the facilities in the algorithm’s allocation and those in the optimal
allocation with the following property: whenever a facility is assigned to the
player then its mapping in the optimal allocation is also still an option at that
time step. In this way we are able to simulate the same logic that we used in the
proof of Theorem 1. �
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4 Intractability of Cost Sharing Games

In this section we provide the PLS-hardness results. For a more detailed exposi-
tion of the class PLS and definitions and properties of PLS reductions the reader
is redirected to the initial papers on PLS [11, 14] and to previous work on PLS
hardness of congestion games [7, 1].

4.1 General Cost Sharing Games

We will prove that finding a PNE in the class of Cost Sharing Games is PLS-
complete via a reduction from MAX CUT under the flip neighborhood.

Definition 6. We say that a class of functions has the property P1 if for arbi-
trary a > 0 it contains a function f(x) such that f(1) = f(2) + a.

Theorem 3. Computing a PNE for the class of Cost Sharing Games with a
class of cost functions that has property P1 is PLS-complete.

Proof. Assume an instance of MAX CUT on weighted graph G=(V, E, (we)e∈E).
Assume that (i, j) /∈ E ⇒ wij = 0. We will create an instance of a Cost Sharing
Game 〈N, F, (Si)i∈[N ], (rf )f∈F 〉 such that from every PNE of the game we can
construct in polynomial time a local maximum cut of the MAX CUT instance.

For each node i ∈ V we add a player Pi ∈ [N ]. We assume an ordering of
the players P1, . . . , PN . For each unordered pair of players {i, j} (i < j) we add
two facilities f1

ij and f2
ij in the set F , each with cost function rij , such that

rij(1) = rij(2) + wij , which can be achieved due to the P1 property.

sA
i = {f2

ji | j ∈ {1 . . . i − 1}} ∪ {f1
ij | j ∈ {i + 1 . . .N}}

sB
i = {f1

ji | j ∈ {1 . . . i − 1}} ∪ {f2
ij | j ∈ {i + 1 . . .N}}

In other words for each pair of players {i, j} if player i has facility f1
ij in his sA

i

strategy then player j has facility f2
ij in his sA

j strategy and correspondingly for
the B strategies.

Now given any strategy profile s we consider the following partition of the
initial graph: If player Pi ∈ N is playing sA

i then place node i in partition
VA(s) and to partition VB(s) otherwise. For every node i ∈ V denote with
wi =

∑
j∈V wij , w(i, VA) =

∑
j∈VA

wij , w(i, VB) =
∑

j∈VB
wij .

Given any strategy profile s the cost of player Pi for playing each strategy is:

Ci(sA
i , s−i) =

∑
j∈VA(s)

rij(1) +
∑

j∈VB(s)

rij(2) = w(i, VA(s)) +
∑
j 
=i

rij(2)

Ci(sB
i , s−i) =

∑
j∈VA(s)

rij(2) +
∑

j∈VB(s)

rij(1) = w(i, VB(s)) +
∑
j 
=i

rij(2)

Thus if s is a PNE and Pi is playing sA
i then: Ci(sA

i , s−i) ≤ Ci(sB
i , s−i) =⇒

w(i, VA(s)) ≤ w(i, VB(s)). Hence, switching node i from partition VA(s) to VB(s)
will not increase the weight of the cut. Similarly if Pi is playing sB

i we get
the opposite inequality. Therefore, for any PNE s the corresponding partition
(VA(s), VB(s)) is a local maximum of the initial MAX CUT instance. �
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Corollary 1. Computing a PNE for the class of Cost Sharing Games with Fair
Cost Allocation is PLS-complete.

4.2 Extending to Network Games

We will introduce k-Congestable Games. We will then notice that the game in-
stance created in the MAX CUT reduction belongs to the class of 2-Congestable
Cost Sharing Games with Fair Cost Allocation. We will then show how from any
instance of a 2-Congestable Game we can create a Network Congestion Game
that preserves the PNE.

Definition 7. A k-Congestable Congestion Game is a Congestion Game where:
(1) Any facility is used by at most k players. (2) The facilities on the different
strategies of a player are disjoint. There is no restriction on the cost functions.

Definition 8. A class of cost functions has property P2 if for arbitrary H > 0
it contains a function f(x) such that mink∈[1..N ] f(k) > H and any member of
the class has bounded maximum in a finite integer range [1..N ].

Theorem 4. Given an instance of a 2-Congestable Congestion Game with cost
functions from a class with property P2, we can create an instance of a Network
Congestion Game on a directed network, where any PNE of the latter corre-
sponds to a PNE of the former and the conversion can be computed in polynomial
time. Moreover, the reduced game contains the same set of cost functions as the
initial.

It is easy to see that the game created in the MAX CUT reduction is a 2-
Congestable Game and that the class of functions of the form f(x) = c/x satisfy
propertyP2 (see full version of the paper). Hence, we have the following corollary:

Corollary 2. Computing a PNE in the class of Network Cost-Sharing Games
with Fair Cost Allocation is PLS complete.

An example of a reduction of MAX CUT on a three node graph to General Cost
Sharing and Network Cost Sharing is depicted in Figure 1.

Now we describe for which classes of functions we can have PLS-completeness
in undirected networks too (see full version for proofs).

Definition 9. A class of functions has property P3 if for any a, ε > 0 it contains
a function f(x) such that f(1) = a and maxk∈[1..N ] f(k) − mink∈[1..N ] f(k) ≤ ε.

Theorem 5. Given an instance of a 2-Congestable Congestion Game with cost
functions from a class that has properties P2 and P3, we can create an instance
of an Undirected Network Congestion Game, where any PNE of the latter corre-
sponds to a PNE of the former and the conversion can be computed in polynomial
time. Moreover, the reduced game contains the same set of cost functions as the
initial.

Corollary 3. Computing a PNE in the class of Undirected Network Cost Shar-
ing Games with functions of the form f(x) = cr(x)/x, where cr(x) is a non-
decreasing concave function, is PLS-complete.
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Fig. 1. Reduction from MAX CUT to Cost Sharing (left) and Network Cost Sharing

(right) with Fair Cost Allocation. The facilities fk
ij have cost the weight of the edge

(i, j). The cost of the rest of the facilities-edges is depicted on the figure. H is a number

much bigger than any cost imposed by facilities fk
ij .

4.3 Tightness of PLS-Reductions

It is easy to observe that all the PLS reductions used in the previous sections are
tight reductions as defined in [14]. From the initial works on PLS [11, 14] we know
that tight reductions do not decrease the distance of an initial solution from a
local optimum through local improvement steps. Moreover, we know that there
exist instances of MAX CUT with initial configurations that have exponential
distance from any local maximum. This directly implies that there exist instances
of the class of games for which we prove PLS-completeness, with strategy profiles
such that any sequence of best response moves needs exponential time to reach a
PNE. Moreover, the tightness of our reductions shows that for the class of games
we cope with it is PSPACE-complete to compute a PNE that is reachable from
a specific initial strategy profile through best response moves.

5 Discussion and Further Results

Another interesting fact that might be useful in other reductions is the following:

Theorem 6. Computing a PNE in General Congestion Games where all players
have two strategies and each facility is used by at most two players can be reduced
to computing a PNE of a 2-Congestable Congestion Game. If the initial game
contains a cost function rf (x) then the reduced game might contain cost functions
of the form rf (x + k) for arbitrary k.

Last, we observe that our reductions from 2-congestable games also show how
one can conclude PLS completeness of Undirected Network Congestion Games
with linear cost functions, directly from the MAX CUT reduction of [7] without
introducing 2-threshold congestion games. It is easy to observe that the Conges-
tion Game created in the reduction of [7] is a 2-Congestable Game and linear
functions is a class that satisfies properties P1, P2 and P3.
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Abstract. It is shown here that the problem of computing a Nash

equilibrium for two-person games can be polynomially reduced to an in-

definite quadratic programming problem involving the spectrum of the

adjacency matrix of a strongly connected directed graph on n vertices,

where n is the total number of players’ strategies. Based on that, a new

method is presented for computing approximate equilibria and it is shown

that its complexity is a function of the average spectral energy of the un-

derlying graph. The implications of the strong connectedness properties

on the energy and on the complexity of the method is discussed and

certain classes of graphs are described for which the method is a polyno-

mial time approximation scheme (PTAS). The worst case complexity is

bounded by a subexponential function in the total number of strategies

n and a comparison is made with a previously reported method with

subexponential complexity.

1 Introduction

The problem of computing an exact Nash equilibrium has been shown to be
PPAD-complete even for two-player games. Furthermore, the seemingly easier
problem of computing an ε-approximate equilibrium in time polynomial in 1/ε
and n is also PPAD-complete. It turns out that there can be no fully polyno-
mial time approximation algorithm (FPTAS) for the problem unless P = PPAD.
These results are established in [5] and [6]. For the definition and insight into
the complexity class PPAD and its connection with the more general Nash equi-
librium problem for more than two players, the interested reader is referred to
[12], [2] and [7].

In view of such complexity results, attention has been focused in the past few
years on the problem of efficiently computing ε-approximate equilibria for fixed
ε. However, despite considerable efforts in this direction, it has not been possible
so far to achieve in polynomial time guaranteed constant approximations better
than ε = 0.3393 for general bimatrix games and ε = 1/4 for win-lose games
([13] and [14]). Computing an ε-approximate equilibrium in polynomial time for
any fixed ε > 0 (i.e. a PTAS) is still open for general problems and for win-lose
problems as well.
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This work is an effort toward the direction of obtaining a PTAS for the game
equilibrium problem. We focus on win-lose game problems (where each entry
of the payoff matrices is either 0 or 1) and we show that it is possible to rep-
resent each such problem by a strongly connected directed graph (digraph) on
n vertices, where n is the total number of players’ strategies. We believe that
the graph representation of win-lose games provides valuable insight into the
complexity of the equilibrium computation problem, not only for win-lose games
but for general games as well.

On the other hand, we show that it is possible to formulate the search for
an equilibrium as an indefinite quadratic optimization problem involving the
eigenvalues and eigenvectors of the adjacency matrix of the graph which is the
undirected version of the underlying digraph. An algorithm for obtaining an ap-
proximate equilibrium is presented, based on searching among stationary points
of a regret function (as described in Section 3), and its complexity is derived
as a function of the energy of the graph. Although the worst case complexity
that we can prove so far (based on the results presented here) is subexponential
in n, there are certain important classes of graphs discussed here for which the
algorithm is a PTAS.

Considering win-lose games is no loss of generality in terms of the complexity
of computing exact Nash equilibria. In [1] it is proven that there is a polyno-
mial time reduction from a two-player game with rational payoffs to a win-lose
game. However, in terms of approximate equilibria, it is not clear that an ε-
approximation for a win-lose problem implies a similar quality of approximation
for the original problem. Nevertheless, the investigation of equilibrium approx-
imation for win-lose games can lead to results that are applicable to general
games as well. In fact, the general game problem can be represented by con-
sidering weighted graphs (with rational weights) following techniques similar to
the ones used to represent win-lose games by ordinary graphs. Also, the method
presented here for approximating an equilibrium is general enough to include all
kinds of payoff matrices and graph structures and the complexity bound that is
derived as a function of the energy of the graph is valid for weighted graphs as
well. The only difference between general games and win-lose ones is that in the
latter case we have better insight and we can make more clear cut structural
characterizations of the underlying graphs.

We adopt the following notation throughout:

– For any positive integer k, [k] denotes the set of integers from 1 to k. Also,
e denotes the column vector of appropriate dimension having all its entries
equal to 1.

– Δk = {u : u ∈ Rk, u ≥ 0, eτu = 1} is the set of k-dimensional probability
vectors (superscript τ denotes transpose).

– supp(u) = {i ∈ [k] : ui �= 0} denotes the subset of integers (indices) in [k]
constituting the support of a vector u ∈ Rk.

– suppmax(u) = {i ∈ [k] : ui ≥ uj ∀j ∈ [k]} is the subset of indices in [k]
for which the corresponding entries of a vector u ∈ Rk are equal to the
maximum entry value of u.
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– max(u) = {ui : ui ≥ uj, for allj} is the value of the maximum entry of a
vector u.

– maxS(u) = {ui, i ∈ S : ui ≥ uj, for all j ∈ S} is the value of the maximum
entry of a vector u within an index subset S ⊂ [k].

– The symbol |.| will denote absolute value of a number or the cardinality of
a set depending on context.

2 Graph Representation

For any two-person win-lose game with row and column payoff matrices R and
C respectively (where R and C have the same dimensions and each entry is
either 0 or 1), the problem of computing a Nash equilibrium can be reduced to
a problem of computing a symmetric equilibrium of a symmetric game of the
form (A, Aτ ), where A is the square matrix defined as:

A =
[

0 Cτ

R 0

]
Actually, this is true not just for win-lose games but for any game (e.g., see [2],
Part I, Ch. 2) with appropriately normalized payoff matrices in the interval [0, 1]
(which can always be done without loss of generality). Furthermore, this result
can be extended (for the general case) to the problem of computing approximate
equilibria as well (e.g., see [16]), in the sense that an ε-approximation of the latter
symmetric problem provides an O(ε)-approximation for the initial problem.

It can be easily verified that the problem of finding a symmetric equilibrium of
the symmetric game (A, Aτ ) is equivalent to finding a probability vector x ∈ Δn

such that supp(x) ⊆ suppmax(Ax). Alternatively, it is equivalent to finding a
probability vector x such that fA(x) = 0, where, the function fA(x) maps Δn

into [0, 1] and is defined as follows:

fA(x) = max(Ax) − xτAx

In fact, the function fA(.) (we call it regret function) provides a measure of
closeness to an equilibrium of any given probability vector. A probability vector
x for which fA(x) ≤ ε is an ε-approximate equilibrium.

Let n be a positive integer and let A be a square n×n matrix defined as above
for a win-lose game. Obviously, the diagonal entries of such a matrix A are all 0
and each off-diagonal entry is either 0 or 1. In order to avoid trivial cases, such as
the existence of pure Nash equilibria (in which case our search for an equilibrium
ends successfully), it is necessary to impose the requirement that for any pair
of pure strategies of the row and column players (say (k, l)) the corresponding
entries of the matrices R and C (i.e. Rkl and Ckl) are not both equal to 1. This
immediately implies that for any i ∈ [n] and j ∈ [n] the entries Aij and Aji of
the matrix A cannot be both equal to 1. Under such a requirement, it can be
easily seen that the matrix A can be considered as the adjacency matrix of a
simple directed graph, or digraph (no loops and no repeated arcs) with n nodes
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representing the total number of pure strategies of both players, and arcs being
the ordered pairs of nodes (strategies) (i, j) for which the corresponding payoff
Aij is equal to 1. Notice that the symmetric matrix A + Aτ is the adjacency
matrix of the undirected version of the digraph A (i.e. the graph obtained by
keeping the same edges but ignoring their directions). Also, notice that the graph
constructed this way is a bipartite graph. However, the bipartite nature of the
graph is not crucial for the derivations and results presented here.

We denote by D = (V, E) the underlying directed graph for a win-lose game,
where, V is the set of nodes with cardinality |V | = n and E is the set of ordered
pairs of nodes representing the arcs. The undirected version of the graph is
denoted by UD = (V, UE), where, UE is the set of the corresponding unordered
pairs of nodes. In the sequel, a game will be characterized either by the adjacency
matrix A of the digraph or by the digraph itself.

Additional requirements should be imposed on the digraph with adjacency
matrix A to avoid other trivial cases (from the standpoint of computing a Nash
equilibrium). In fact, each node should have at least one incoming arc and at
least one outgoing arc. Indeed, if a node has no outgoing arcs (i.e. arcs leaving the
node), then, the corresponding row of A is an all 0’s vector and the node can be
omitted reducing thus the size of the problem. On the other hand, if a node has
no incoming arcs (i.e. arcs entering the node), then, the corresponding column
of A is an all 0’s vector and a trivial equilibrium can be found by considering
that node alone.

All the above requirements on the structure of the digraph representing mean-
ingful nontrivial game problems are special cases of a more general category of di-
graphs, namely, strongly connected digraphs. Theorem 1 below essentially states
that if we are looking for a Nash equilibrium we can restrict attention, without
loss of generality, to win-lose games whose underlying digraph is strongly con-
nected. Before that, we briefly summarize some standard definitions and results
from the theory of graphs (e.g., see [3]).

A digraph D is called simply connected if its undirected version UD is con-
nected, i.e. if there is a path between any two distinct nodes of UD. A digraph
is called strongly connected if there is a directed path between any two distinct
nodes. A standard result here is that any simply connected digraph can be de-
composed into node-disjoint strongly connected subgraphs (components), where,
the connections among the strongly connected components form an acyclic di-
rected graph. In such a decomposition, among all the strongly connected com-
ponents (if there are more than one) there is at least one component that is
a source (i.e. there are only outgoing arcs from it and no incoming arcs), and
at least one component that is a sink (i.e. there are only incoming arcs into it
and no outgoing arcs). The decomposition of any simply connected digraph into
strongly connected components can be performed in polynomial time. Also, if the
digraph is not simply connected (i.e. its undirected version is not connected),
then, it can be decomposed into simply connected components in polynomial
time.



382 H. Tsaknakis and P.G. Spirakis

Some additional considerations are necessary: We say that a node i of a di-
graph D = (V, E) is redundant if the set of its outgoing neighbors (the tails of
the arcs leaving i) is a subset (proper or not) of the set of outgoing neighbors
of some other node of the digraph. It is not difficult to see that such a node
can be removed (reducing thus the size of the game) without affecting the over-
all problem of searching for an equilibrium. In fact, if such a node is removed,
any Nash equilibrium of the resulting reduced (by one) game is also a Nash
equilibrium of the initial game. It is evident that the process of identifying and
removing redundant nodes, one at a time, until no further reduction is possible,
is a polynomial time process.

We now express the following theorem:

Theorem 1. Let D = (V, E) be the underlying digraph of a win-lose game and
let A be its adjacency matrix. Let Ds = (Vs, Es) be a strongly connected compo-
nent of D that is a source subgraph with adjacency matrix As. Then, any Nash
equilibrium of the subgame with adjacency matrix As (and underlying graph the
strongly connected subgraph Ds) is also a Nash equilibrium of the initial game A.

Proof. The adjacency matrix As of the subgraph Ds is a principal submatrix of
A and has dimensions |Vs| × |Vs|. Since the subgraph Ds is a source it has no
incoming arcs, hence the matrix A can be written in block triangular form (via
an appropriate permutation of the nodes) as follows:

A =
[
As F
0 H

]
where, H is some (n−|Vs|)×(n−|Vs|) square matrix and F is some |Vs|×(n−|Vs|)
matrix, both representing the rest of the arcs of the adjacency matrix A. Now,
let x be any probability vector such that supp(x) ⊆ Vs. Then, using the represen-
tation of A above, we should have max(Ax) = maxVs(Ax) = maxVs(Asx). If, in
addition, x is a Nash equilibrium of the subgame with adjacency matrix As, then
we should have maxVs(Asx) = xτAsx = xτAx. Therefore max(Ax) = xτAx
which implies that x is also a Nash equilibrium of the initial game A. �

We conclude this section by summarizing the results in the theorem below.

Theorem 2. The problem of computing a Nash equilibrium for any bimatrix
game can be polynomially reduced to a problem of computing a minimum of a
function of the form fA(x) = max(Ax) − xτAx over x ∈ Δn, where A is the
adjacency matrix of a strongly connected directed graph containing no redundant
nodes.

3 Stationary Points of Descent Algorithms

Since the regret function fA(x) is (in general) non-convex, any gradient descent
procedure that seeks to minimize it will converge to a stationary point that is
not in general a global minimum (recall that any global minimum is a Nash
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equilibrium for which fA(x) = 0). Stationary points and gradient descent al-
gorithms related to game equilibria have been studied in [13] and [14] as well
as in [15]. Following the analysis, results and terminology presented there and
adapted here for the case of symmetric games (which makes things simpler in
terms of notation), we formally define stationary points of the function fA(x)
and summarize their properties in definitions 1, 2 and 3 and theorems 3, 4, 5
and 6 in this section. Proofs of the results summarized in theorems 3, 4 and 5
can be found in the above mentioned references (equivalent versions of them),
while theorem 6 and its corollary are direct consequences of the previous ones.

Definition 1. The gradient DA(x′, x) of the function fA(x) = max(Ax) −
xτAx at x ∈ Δn along a direction x′ ∈ Δn is defined as follows:

DA(x′, x) ≡ lim
ε→0

1
ε
(fA((1 − ε)x + εx′) − fA(x))

Theorem 3. The limit in the above definition always exists for any x ∈ Δn

and x′ ∈ Δn. Furthermore, for given x it defines a convex function DA(x′, x)
of x′ involving the max(.) of an affine function of x′ and given by the following
equation: DA(x′, x) = maxsuppmax(Ax)(Ax′)− xτAx′ − (x′)τAx+ xτAx− fA(x).

Definition 2. A probability vector x ∈ Δn is called a stationary point of the
function fA(x) = max(Ax) − xτAx, if DA(x, x) ≥ 0, ∀x ∈ Δn.

Theorem 4. A stationary point always exists and can be approximated as closely
as desired in polynomial time through an iterative descent algorithm applied to
the function fA(x). The algorithm can start from an arbitrary x0 ∈ Δn and in-
volves solving a linear programming problem of the form minx∈Δn(DA(x, xk)) at
each step k. Furthermore, every Nash equilibrium is a stationary point.

Theorem 5. Let x ∈ Δn be a stationary point and define S(x) ≡ suppmax
(Ax). Then, the following relationship (called here stationarity condition)
holds: maxS(x	)(Ax)− (x)τAx− xτAx + (x)τAx − fA(x) ≥ 0, ∀x ∈ Δn, or,
equivalently:

fA(x) − fA(x) + (max(Ax) − max
S(x	)

(Ax)) ≤ (x − x)τA(x − x), ∀x ∈ Δn (1)

Definition 3. For a given convex set K ⊆ Rn, a probability vector x ∈ K∩Δn

is called a constrained stationary point of the function fA(x) = max(Ax) −
xτAx, if DA(x, x) ≥ 0, ∀x ∈ K ∩ Δn.

A constrained stationary point can be obtained efficiently just like an uncon-
strained one by imposing the additional (convex) constraints x ∈ K at each step
k of the descent process: minx∈K∩Δn(DA(x, xk)). Notice that when dealing with
constrained stationary points x in some convex set K, the stationarity condition
in equation (1) should be modified to hold ∀x ∈ K ∩ Δn.

A direct consequence of the previous relationships involving stationary points
(constrained or not) is summarized in the theorem below.
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Theorem 6. For any two stationary points x
1, x


2, the following relationship

holds:
|fA(x

1) − fA(x
2)| ≤ (x

1 − x
2)

τA(x
1 − x

2)

As a corollary of the last theorem, if one of the two stationary points, say x
2, is

a Nash equilibrium, then:

fA(x
1) ≤ (x

1 − x
2)

τA(x
1 − x

2) (2)

4 Spectral Representation

Consider the spectral representation of the matrix A + Aτ . Since this matrix
is symmetric, all its eigenvalues are real and the eigenvectors are mutually or-
thogonal. Let λ1, λ2, . . . , λm be the m positive eigenvalues of A + Aτ (m < n)
and −|λm+1|,−|λm+2|, . . . ,−|λn| the non-positive ones. Let zi, i = 1, 2, . . . , n
be the corresponding normalized eigenvectors satisfying ‖zi‖ = 1 for all i ∈ [n]
and zτ

i zj = 0 for all i, j such that i �= j. By ‖.‖ we denote the usual Eu-
clidean L2 norm. Assume that the eigenvalues are indexed in descending order,
i.e. λ1 ≥ λ2 ≥ . . . ≥ λn.

Consider the representation of A + Aτ in terms of its eigenvalues and eigen-
vectors: A + Aτ =

∑m
i=1 λiziz

τ
i −

∑n
j=m+1 |λj |zjz

τ
j . Then, the function fA(x)

can be written as follows:

fA(x) = max(Ax) +
1
2

n∑
j=m+1

|λj |(zτ
j x)2 − 1

2

m∑
i=1

λi(zτ
i x)2 (3)

The complexity of finding a solution to the problem minx∈Δn fA(x) is due ex-
clusively to the last term of the above equation that involves the projection of
the probability space Δn on the m-dimensional linear subspace spanned by the
eigenvectors zi, i = 1, 2, . . . , m that correspond to the positive eigenvalues of the
matrix A + Aτ .

The assumptions on matrix A expressed in Section 2 (as the adjacency matrix
of a strongly connected digraph) have some implications on the spectrum of
A+Aτ . In particular, since A+Aτ is a non-negative irreducible matrix (because
A is non-negative and irreducible), by the Perron-Frobenius theorem (e.g. see [4])
we deduce that the largest eigenvalue λ1 has maximum absolute value among
all eigenvalues (i.e. λ1 ≥ maxi∈[n]|λi|), it has multiplicity 1 and, also, all the
entries of the corresponding eigenvector z1 are strictly positive. Therefore, any
other eigenvector (which is orthogonal to z1) should have at least one positive
entry and at least one negative entry as well.

In order to approximate an equilibrium, we will take advantage of the prop-
erties of stationary points, in particular equation (2), as well as the properties
of the eigenvalues and eigenvectors of the spectral representation of the regret
function fA(x).
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5 Approximating an Equilibrium

Consider the linear m-dimensional subspace spanned by the eigenvectors zi, i =
1, 2, . . . , m that correspond to the positive eigenvalues and the metric d(., .):
d2(a, b) =

∑m
i=1 λi(zτ

i (a−b))2 defined on this subspace. Consider the orthogonal
projection of the feasible region Δn on this subspace and denote it by Pm(Δn).
Also, let Pm(x) denote the projection on this subspace of any x ∈ Δn. It can
be easily verified that Pm(Δn) is the convex hull of the projections of all the n
vertices of Δn on the m-dimensional subspace. In general, the number of vertices
of the convex hull should be less than or equal to n. Notice that the projection
of any probability vector in Δn on this subspace is an m-dimensional vector that
can be expressed as a convex combination of at most m+1 vertices of the convex
hull (by Caratheodory’s theorem). Also, notice that the vertices of the convex
hull can all be computed in polynomial time.

Let ε be a positive approximation parameter such that 1/ε < m. Let us
consider a set of regions in Pm(Δn) each consisting of convex combinations
of no more that 1/ε vertices of Pm(Δn). Since each vertex is the projection
of some vertex of Δn, the set of such regions consist of the projections of all
n-dimensional probability vectors with support no more than 1/ε. The total
number of such subsets of vertices of Pm(Δn) is ≤ n1/ε and so is the total
number of the corresponding regions. Let us denote the set of all such regions by
L(ε). The crucial question is how well does L(ε) approximate the entire Pm(Δn),
i.e. what is the largest distance of a point in Pm(Δn) from L(ε) with respect to
the metric d(., .). In regard to the latter question we can express the following
theorem:

Theorem 7. For any y ∈ Δn, the closest (with respect to the metric d(., .))
point x ∈ Δn whose projection Pm(x) belongs to L(ε), satisfies the relationship:
d2(Pm(x), Pm(y)) ≤ εξ(m), where, ξ(m) =

∑m
i=1 λi/n.

Proof. Consider the matrix A+ =
∑m

i=1 λiziz
τ
i . This is a nonnegative definite

symmetric n × n matrix with rank m which represents the positive part of the
spectrum of A + Aτ . For any given y ∈ Δn we should have the relationship:

d2(Pm(x), Pm(y)) = (x − y)τA+(x − y)

Let the scalars z̄i for i = 1, 2, . . . , n be defined as z̄i = zτ
i y. Define a new

symmetric nonnegative definite matrix A′
+ =

∑m
i=1 λi(zi − z̄ie)(zi − z̄ie)τ =

(I−eyτ )A+(I−yeτ ) (e is the all 1’s vector). Then, since x and y are probability
vectors we can write the previous equation as:

d2(Pm(x), Pm(y)) = xτA′
+x

Let μ1, μ2, . . . be the eigenvalues of A′
+. By construction, the sum of μi’s (that is

to say the trace of the matrix A′
+) should be ≤

∑m
i=1 λi (the trace of matrix A+).

Notice that the set supp(x) can be any subset of size |supp(x)| ≤ 1/ε. So, the
minimum of d2(Pm(x), Pm(y)) with respect to x is over all principal submatrices
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of A′
+ of size 1/ε×1/ε. Let S(ε) be a subset of indices in [n] defining such a sub-

matrix and let G(ε) be the submatrix itself. Then, d2(Pm(x), Pm(y)) = xτG(ε)x.
It can be verified that, given an S(ε), the minimum of the latter expression with
respect to x ∈ Δn with supp(x) ⊂ S(ε) is given by an expression of the form
1/eτG−1

ε e, where, e here is the all 1’s vector with support S(ε) and G−1
ε is the

inverse of a principal submatrix of A′
+ of size 1/ε × 1/ε if it exists, or it can be

replaced by the pseudo inverse (generalized inverse) without loss of generality. It
turns out that d2(Pm(x), Pm(y)) can be bounded by an expression of the form
1/
∑

i∈S(ε)
1
μ′

i
, where, μ′

i, i ∈ S(ε) are the eigenvalues of the submatrix G(ε). Us-
ing the harmonic-arithmetic mean inequality, the latter expression is bounded
from above by

∑
i∈S(ε) μ′

i/|S(ε)|2 = ε
∑

i∈S(ε) μ′
i/|S(ε)| = εtr(Gε)/|S(ε)|. Since

all submatrices Gε of size 1/ε × 1/ε are considered, there is one whose aver-
age trace is minimum, which implies tr(Gε)/|S(ε)| ≤ tr(A′

+)/n. So, the bound
becomes:

d2(Pm(x), Pm(y)) ≤ εtr(A′
+)/n ≤ ε

m∑
i=1

λi/n = εξ(m)

Finally, the claim of the theorem follows from the last relationship. �

Based on the above theorem, we have the following result:

Theorem 8. Consider a game whose underlying digraph has adjacency matrix
A. Then, for any ε > 0, there is an algorithm to find an ε-approximate Nash
equilibrium in time nξ(m)/ε, where, ξ(m) =

∑m
i=1 λi/n and λ1, λ2, . . . , λm are

the positive eigenvalues of A + Aτ .

Proof. Since all points y in Pm(Δn) can be covered by balls of the form d2(x, y) ≤
εξ(m), for x ∈ Δn such that Pm(x) ∈ L(ε), we can consider all n1/ε points
of L(ε) as starting points for the descent algorithm and compute constrained
stationary points within each such ball. One of them will be εξ(m)-close to a
Nash equilibrium.

Also, since the parameter ε can be chosen arbitrarily, one can choose ε/ξ(m)
in its place to get an ε-approximation in nξ(m)/ε time. �

As an immediate consequence of the above theorems, we can express the
following:

Theorem 9. There is a PTAS for a class of games for which the positive eigen-
values satisfy the relationship

∑m
i=1 λi/n = constant.

A general upper bound for ξ(m) for all instances of games and corresponding
graphs is given in the theorem below.

Theorem 10. The following relationship holds:

ξ(m) =
m∑

i=1

λi/n ≤
√

m (4)
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Proof. Since the λi’s are the eigenvalues of the adjacency matrix A + Aτ of the
undirected graph, the sum of squares of the λi’s is equal to the trace of the
matrix (A + Aτ )2 which is equal to the total number of walks of length 2 in the
graph, i.e. 2|E|, where |E| is the number of edges. Using this fact and standard
inequalities we obtain the series of relationships: (

∑m
i=1 λi)2 ≤ m(

∑m
i=1 λ2

i ) ≤
m(
∑n

i=1 λ2
i ) = 2m|E|. Finally, in view of the fact that |E| ≤ n(n − 1)/2, we

obtain:
m∑

i=1

λi/n ≤
√

m

√
2|E|
n

≤
√

m

�

As a result of the last theorem, an ε-approximate equilibrium can be computed
in time bounded by n

√
m/ε, where m is the number of positive eigenvalues of

the matrix A + Aτ . Notice that the parameter ξ(m) is related to the energy
of the undirected version of the graph A. The energy of a graph, say Ξ(A),
is defined as the sum of the absolute values of all eigenvalues of the adjacency
matrix A + Aτ (e.g., see [11]). Since A + Aτ has zero trace, the energy of the
graph is twice the sum of the positive eigenvalues, hence, ξ(m) = Ξ(A)/(2n),
i.e. it is proportional to some kind of an ”average energy” of the graph per node.

6 Special Cases

In general, for all game equilibrium problems for which the underlying graphs
have energy of the order of O(n), or equivalently the average energy is a con-
stant, the approach presented here is a PTAS for computing an equilibrium. In
addition, there are other categories of graphs whose energy may or may not be
O(n) but for which, nevertheless, our methodology is either a PTAS or polyno-
mial. The latter categories include graphs for which a stationary point is always
a Nash equilibrium (hence a NE can be computed in polynomial time) and a
sufficient condition for that to happen is that the matrix A is ”almost negative
definite” as defined below:

Definition 4. For an n-node graph, its n×n adjacency matrix A is called almost
negative definite if uτAu ≤ 0 for every u ∈ Rn such that eτu = 0 where e is the
all ones vector.

The most notable examples of almost negative definite adjacency matrices ap-
pear in constant sum games for which the underlying graphs are fully connected.
Also, any graph derived from a fully connected one by removing any number of
node-disjoint links, or, more generally, by removing any number of node-disjoint
cliques, has an almost negative definite adjacency matrix. These statements can
be easily verified by manipulating quadratic expressions of the form uτAu for
vectors u whose sum of entries is equal to 0.

In addition to the above cases, we give below an indicative list of special classes
of games for which our methods are PTAS or polynomial. The characterizations
are given in terms of the underlying graphs (directed or undirected version).
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In all cases, the underlying digraph is assumed to be strongly connected (or,
equivalently, the underlying undirected graph is connected and has no bridge)
with no redundant nodes.

– Sparse graphs. The number of arcs of such graphs is (by definition) O(n),
hence the sum of the positive eigenvalues of the adjacency matrix is also
O(n) which implies that the average energy is a constant and according to
Theorem 9 we have PTAS.

– Graphs consisting of a fixed number of arbitrarily intersecting cycles and
paths. In such graphs the maximum degree is fixed, therefore the number of
arcs is O(n) and we have a sparse graph as above.

– Power law degree distribution graphs with exponent β > 1. For such graphs
the sum of the degrees of the nodes is given by an expression of the form
O(n)

∑
i≥1 i−β which is bounded by O(n), hence we have a sparse graph.

– Highly connected regular graphs with total degree n−k for some fixed integer
k. Indeed, for such graphs the largest eigenvalue λ1 is equal to n−k and the
sum of the two largest eigenvalues λ1 + λ2 is < n (e.g. see [8]). Therefore,
λ2 is bounded by a constant which implies that the average energy of the
graph is also bounded by a constant, so by Theorem 9 we have PTAS.

– Fixed rank games, where, the adjacency matrix A + Aτ of the underlying
(undirected) graph has fixed rank.

Fixed rank games are special cases of games for which the number m of positive
eigenvalues is fixed (hence the average energy of the underlying graph is fixed).
Indeed, the rank of A + Aτ is equal to the number of non-zero eigenvalues and
m is obviously bounded from above by the rank. Such fixed rank games have
been studied in [9] where it is shown that an ε-approximate equilibrium can be
found in polynomial time without, however, giving a formula for the complexity
bound as a function of the rank.

More special cases arise when the matrix A of the underlying directed graph
has fixed rank (which implies that A + Aτ has fixed rank but the reverse state-
ment is not in general true). In such special cases, as shown in [17] where a
similar problem is studied involving Arrow-Debreu-Leontief equilibria, there is
a strongly polynomial time algorithm to compute an exact equilibrium (not just
an approximate one) and a formula for the complexity is also given. A similar re-
mark is made in [10] for bimatrix games where it is shown that low rank implies
small support exact equilibria.

7 Comparison with an Existing Approximation Result

A comparison is made with an existing subexponential scheme presented in [10]
which is based on probabilistic arguments to prove the existence of an algorithm
to find an ε-approximate equilibrium in time nO(ln n/ε2). Considering as perfor-
mance indicators the two parameters representing the approximation to a Nash
equilibrium and the size of the game (i.e. the approximation parameter ε and the
number of strategies n respectively), there is no uniform comparison between the



Practical and Efficient Approximations of Nash Equilibria 389

complexity bound of the latter method and the one presented here: For a given
ε, the result in [10] outperforms the result we present here for arbitrarily large
n, larger than a threshold n0(ε). On the other hand, for a given n our result
outperforms the result in [10] for arbitrarily small ε, smaller than a threshold
ε0(n) = n−1

0 (n). By taking into account also the constants involved in the expo-
nents of the complexity bounds of the two methods (for the former method the
constant multiplying lnn/ε2 is 12 and for the method we present here the cor-
responding constant is less than 1), the threshold curve is given approximately
by the equation ε ≈ 12 lnn/

√
n.

It turns out that even for modest values of ε, the values of the threshold n0

(above which the method of [10] outperforms our method) are simply too large,
large enough to render any subexponential scheme totally unrealistic anyway.
Indicatively, for ε = 1/3 we have n0(1/3) ≈ 2 × 105 and for ε = 0.15 we have
n0(0.15) ≈ 1.2× 106 and this threshold increases very fast when ε becomes even
smaller. So, the method presented here is more efficient than the one presented
in [10] for all practical purposes.

8 Discussion and Future Work

There are some issues whose further investigation along the lines presented here
could lead to improved results. One problem is how to improve the grid used to
approximate the space of probability vectors. Another problem is how to improve
the

√
m bound on the average spectral energy by exploring the connectivity of

the underlying graph and the possibility of further reductions of the equilib-
rium problem. The following two problems appear mostly relevant to further
research for efficient equilibrium computation algorithms in the framework of
the optimization approach:

1. Given a simplex Δ(t0, t1, . . . , tn) in Rn defined by n + 1 points (vertices)
t0, t1, . . . , tn and a positive δ, what is the minimum size of a grid of points in Rn

(as a function of t0, t1, . . . , tn and δ) such that every point of the simplex has
Euclidean distance from some point of the grid no more than δ? How complex
is it to compute such grid points?

2. In addition to the reductions of the general bimatrix game equilibrium
problem presented here, is it possible to obtain further (polynomial) reduction
to a win-lose game whose underlying graph has fixed average spectral energy?
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Abstract. We study the information content of equilibrium prices using

the market communication model of Deng, Papadimitriou, and Safra [4].

We show that, in the worst case, communicating an exact equilibrium

in a production economy requires a number of bits that is a quadratic

polynomial in the number of goods, the number of agents, the number

of firms, and the number of bits used to represent an endowment.

1 Introduction

In the European Union, prices are typically expressed in whole-Euro amounts
(or as “nice” decimals when they are small). In contrast, buyers and sellers in the
United states cling to every penny and advertise prices to the 1

100 -th of a dollar.
Does such accuracy serve a computational purpose? We study this question in
the case of market equilibrium: how many bits of information must prices express
in order to ensure that the economy achieves equilibrium?

The market communication model of Deng et al. [4] highlights the unusual
properties of communication in markets. In standard market models, communi-
cation often comes from central authority, such as a market maker or Walras’s
fictitious auctioneer [14]. This omniscient authority must broadcast enough in-
formation (e.g. prices) for each agent to decide his own behavior without further
communication — because each agent has private information (e.g. an endow-
ment), it may be that agents are ignorant of others’ equilibrium allocations. By
comparison, in Yao’s basic two-party model [15], two players follow a protocol
(where both may send information) to communicate enough information that
both players know the answer to the problem. Here, we study the communica-
tion requirements of reaching equilibrium in the market communication model.

Classical economic treatment of communication costs studies the dimension-
ality of the message space required to communicate a Pareto-efficient outcome.
In standard convex economies, the seminal work of Arrow and Debreu [1] may
be interpreted as a proof that (m− 1) real numbers — i.e. normalized prices —
are sufficient. Subsequent work [6,10] shows that normalized prices are optimal.
A priori, the results for convex economies are powerful because the amount of
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communication is independent of the number of agents and firms. Many subse-
quent works have sharpened and extended these results [7,2,13]. Of particular
relevance, Calsamiglia’s introduction of parametric communication [2] precisely
captures the notion that communication may leverage private information to
reduce communication.

Our work focuses on the bit-wise communication requirements for reaching
equilibrium — while (m − 1) real numbers may be dimensionally optimal, they
may hide many bits. Since most real-world applications communicate a price
with fixed precision, we follow Deng et al. [4] in believing that bit-wise com-
munication bounds are important. Related communication complexity results
[12,11] consider the problem of communicating preferences or complete alloca-
tions, while most research on market equilibria has focused on developing efficient
algorithms (e.g. [5,8,3]). To the best of our knowledge, Deng et al. give the only
result specifically applicable to this model.

Our main result gives a lower bound on the number of bits of information
that must be communicated in an Arrow-Debreu market with production. We
show that the number of bits depends polynomially on the number of agents,
the number of firms, and the amount of private information they hold.

Our bound is significantly stronger than the bound of Deng at al. [4]. First,
Deng et al. need Θ( n

m )-bit numbers to show a poly(n) lower bound, i.e. they give
each agent polynomially many bits of private information. We achieve the same
lower bound with a logarithmic number of such bits. Second, Deng et al. must
relax the standard non-satiation requirement on utility functions;1 we do not.
Thirdly, our bound is more general because it considers a production economy.

The main shortcoming of our bound is that it critically exploits the fact that
real numbers rarely sum to the same value, even if they are very close. Thus, it
is unlikely to extend to approximate equilibria.

2 Markets and Market Communication

Market communication complexity aims to study the amount of information that
prices must encode to induce equilibrium in an Arrow-Debreu economy [1].

2.1 Arrow-Debreu Markets

An Arrow-Debreu market with production consists of n agents, m goods, and l
production firms (indexed by i, j, and k respectively). A bundle of goods is a
vector x ∈ Rm where xj represents a quantity of good j.

Each agent has a utility function and an endowment. The utility function
ui(xi) : RM → R maps bundles of goods to utilities, and the endowment ei ∈ Rm

is a bundle of goods. In order to guarantee the existence of an equilibrium, it is
sufficient to assume that ui is strictly concave in x.

1 They call it “strict concavity.” Nonsatiation is required for Arrow and Debreu’s proof

of the existence of equilibrium [1].
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A production firm is specified by a set of net production possibilities Yk ⊂ RM .
A vector yk ∈ Yk represents the net quantities of goods produced: a positive value
yj,k represents an output of good j, and a negative value yj,k represents an input.
Notice that at prices π, the profit of firm k may be written as π · yk. Again,
the sets Yk must satisfy convexity requirements. In particular, it is sufficient
to assume the following: Yk is closed, convex, and contains the 0 vector, and if
y ∈
⋃

k Yk, then −y ∈
⋃

k Yk if and only if y = 0.
To link production to consumption, a firm is owned by agents. Agent i may

own a share αi,k ∈ [0, 1] of the profits of firm k, i.e. at prices π, agent i’s budget
will be the value of his endowment plus the profit derived from firms he owns,
i.e.

Mi = π · ei +
∑
k∈[l]

σi,kπ · yk . (1)

Since σi,k denotes a share of firm k, it must be that
∑

i∈[n] σi,k = 1. We omit
the precise restrictions on production sets and utility functions for brevity.

The following economic definitions are standard [9]:

Definition 1. An economic allocation is a tuple ({xi}, {yk}) specifying the bun-
dle xi consumed by each agent and the production vector yk chosen by each firm.

Definition 2. An economic allocation is feasible if xi ≥ 0, yk ∈ Yk, and the
total demand is less than or equal to the total supply, i.e.∑

i∈[n]

xi ≤
∑
i∈[n]

ei +
∑

j∈[m]

yk (2)

Definition 3. A competitive equilibrium (hereafter equilibrium) in an Arrow-
Debreu market is a set of prices π ∈ RM and a feasible allocation ({xi}, {yk})
such that agents maximize their utilities and firms maximize their profits at
current prices, i.e.

xi ∈ arg max
x∈{x|x·π≤ei·π}

ui(x) (3)

yk ∈ argmax
y∈Yk

π · y . (4)

2.2 Market Communication

Deng et al. [4] define the market communication model as follows:

Definition 4. Market Communication: n agents [n] have private information
xi ∈ Xi (the sets Xi are common knowledge). Agent i wishes to compute the
function fi(x1, . . . xn). Another agent, agent 0 (the “invisible hand”), knows
(x1, . . . xn).

A protocol is a set of functions (g0(·), g1(·), . . . gn(·)) where g0 : X1× . . .Xn →
X0, gi∈[n] : X0 ×Xi → R, and gi(g0(x1, . . . xn), xi) = fi(x1, . . . xn). The amount
of market communication is the number of bits in x0 = g0(x1, . . . xn).

In essence, the omniscient agent 0 computes x0 = g0(x1, . . . xn) and broadcasts
x0 to agents i ∈ [n]. Next, each agent privately uses xi to compute gi(x0, xi) =
fi(x1, . . . xn).
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The Power of Market Communication. The addition of an omniscient
agent substantially increases the model’s power: it is as powerful as standard
nondeterministic communication.

Theorem 1. Assume communication costs are measured in bits. Then any prob-
lem f(x1, . . . xn) in NPCC has an efficient market communication protocol.

Proof. By assumption, there is a communication sequence σ of poly-logarithmic
length that solves the problem. Let T = {(it, σt)} be a transcript of the commu-
nication, i.e. agent it sent σt at time t.

Note that agent 0 may compute T because she is omniscient. Thus, in the
market communication protocol, agent 0 computes T and broadcasts it to the
agents. Each agent then simulates his behavior based on T to solve the problem.
The size of it is log n, so |T | = Θ(|σ| log n), thus giving an efficient market
communication protocol. �

Market Communication in Arrow-Debreu Markets. We wish to discuss
the number of bits of private information an agent or firm receives; however,
such private information is often given in terms of real numbers or functions. To
generate a meaningful measure of each agent’s private information, we assume
that utility functions and production sets are drawn from finite sets.

Specifically, an agent’s utility function ui is drawn from a finite set U. Also,
an agent’s endowment is a vector of dimension m in which each coordinate is
represented in β bits. Similarly, a firm’s production set Yk is drawn from a finite
set Y. Our bound will be a function of the number of possible utility functions
|U| and the number of possible production sets |Y|.

The goal of an agent or firm is to compute its consumption vector xi or pro-
duction vector yk. Thus, if E represents all private information in the economy,
we have gi = xi(E) for the agents and gk = yk(E) for the firms. (While the
definition of an equilibrium includes prices, we take the position that prices are
merely a communication tool and that, at the end of the day, we only care if each
agent chooses the correct allocation. Thus, we do not explicitly require agents
to compute prices as part of gi.)

For example, a trivial protocol might broadcast each agent’s utility function
and each firm’s production set, using O(n log |U| + l log |Y|) bits of communi-
cation. Agents would then know everything and, therefore, could compute an
equilibrium.

3 A Lower Bound for the Arrow-Debreu Model

Our main result shows that the number of bits is polynomial in the number of
goods, agents, firms, and bits of private information.

Theorem 2. In the worst case, communicating a market equilibrium in the mar-
ket communication model requires at least

m

2
(β + lg(n − 1)) + n + l − O(1) (5)
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bits of communication to reach equilibrium, where n is the number of agents, m
is the number of goods, l is the number of firms, and β is the number of bits used
to represent a value in an agent’s endowment.

The (n+l) term is the most significant — it implies that the number of bits is lin-
ear in the number of agents and production firms. From a practical perspective,
it is unrealistic to believe that prices contain (n + l) bits of information.

The m
2 (β + lg(n − 1)) term corresponds to communicating the total global

endowment of resources. The total endowment of each resource is, in general, a
(β + lg n)-bit number. Thus, this term roughly corresponds to communicating
the total endowment of m

2 goods.
Instead of proving the theorem directly, we prove a more general lemma that

allows us to compare our bound to Deng et al. [4]. They achieve an Ω(n log(m+
n)) lower bound using an exponentially large set of utility functions that require
poly(m, n)-bit numbers, i.e. |U| = Ω

(
2poly(m,n)

)
and β = poly(m, n). By com-

parison, taking the number of utility functions and production functions to be
polynomial in our construction (i.e. |U| = |Y| = poly(m + n)) gives the same
Ω(n log(m + n)) bound.

Moreover, if we allow players and firms to value arbitrary bundles of goods,
then we get |U| = |Y| = Ω(2m) and thus a lower bound of

Ω
(m

2
(β + lg(n − 1)) + m · (n + l) − m

)
. (6)

In this case, each item requires (n + l) bits of information in its price. (While
attributing an arbitrary bundle value to an item is slightly unrealistic, it is a
common worst case setting in areas such as combinatorial auctions.)

Lemma 1. Communicating a market equilibrium in the market communication
model requires at least

m

2
(β + lg(n − 1)) + (n − 1 − |U| 4

m ) lg |U| + (l − 1 − |Y| 4
m ) lg |Y| (7)

bits of communication in the worst case, where |U| is the number of possible
utility functions ui, and |Y| is the number of possible production sets Yk.

Moreover, there are specific sets U and Y such that the economy requires

m

2
(β + lg(n − 1)) + n + l − O(1) (8)

bits of communication to reach equilibrium.

Proof. We construct an economy with m goods, n agents, and l firms. The main
trick is to make each combination of utility functions (or production functions)
correspond to a unique prime factorization. Thus, no two combinations of utility
functions (or production functions) will have the same optimal allocation.

The second trick is to leave one agent (and firm) without any private infor-
mation, so the number of communication sequences is trivially lower-bounded
by the number of possible equilibrium choices she may make.
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The Economy. Assume m is divisible by 4, n ≥ 2, and l ≥ 2.
Partition the goods into four groups modulo 4, i.e.

Ma = {j|j ∈ [m] and j ≡ a mod 4} (9)

The sets will serve the following purposes:

– Goods in M0 are production inputs and goods in M1 are outputs. Nobody
wants goods in M0. Consequently, the entire supply of goods M0 is converted
to goods in M1. Goods in M1 are indistinguishable to the agents, so Pareto-
optimality will imply that producers maximize the total output of goods in
M1.

– Goods in M2 and M3 are traded among agents. Goods are paired such that
an agent balances the quantity of a good m2 ∈ M2 with some good m3 ∈ M3

to match marginal utilities.

Agents i > 1 have utility functions of the form

ui(xi) =
∑

j∈M3

(
2
√

xi,j lg ci,j + xi,j−1

)
+
∑

j∈M1

x1,j (10)

where ci,j ∈ C, and the set C will be determined later. Agents i > 1 are endowed
with goods from M0, M2 and M3 only, i.e.

ei,j =

⎧⎪⎨⎪⎩
ei,j , j ∈ M0 ∪ M3

ē, j ∈ M2

0 otherwise.
(11)

For endowed goods, ei,j ∈ [2β ] is a β-bit integer and ē = n · 2β is a large number
(large enough that, in equilibrium, an agent will always keep a positive quantity
of each good in M2).

Agent 1 has the utility function

u1(x1) =
∑

j∈M3

(
2
√

x1,j + x1,j−1

)
(12)

(the first term is equivalent to setting c1,j = 2). She is endowed with 1 unit each
of goods in M2, and M3, i.e.

e1,j =

{
1, j ∈ M2 ∪ M3

0 otherwise.
(13)

Note that agent 1 has no private information.
The firms have technology to convert goods in M0 to goods in M1. Like agents’

utilities, the production functions are parameterized by coefficients cj,k ∈ C. (We
will take C to be the same for both parts of the economy, but this is certainly not
necessary.) We define the production of firm k in terms of a production function,
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i.e. firm k may transform yj−1,k units of good (j − 1) into yj,k units of good j
according to the following function fj,k:

yj,k = fj,k(yj−1,k) = 2
√

yj−1,k · lg cj,k (14)

This function is translated to a set of vectors to match the model.2 In order to
create a firm with no private information, we require that cj,1 = 2. For simplicity,
we also specify that all firms are owned by agents i > 1.

Analysis. First, we show that agent 1 must be able to select(
(n − 1)2β

)m
4 |U|n−1−|U| 4

m (15)

distinct consumption vectors. A similar proof gives a lower bound for the pro-
duction side of the economy.

Consider a good j ∈ M3. (Note that good (j − 1) is in M2.) Let pj = πj

πj−1

be the relative price of good j compared to good (j − 1). Note that each agent
has a term of the form 2

√
xi,j lg ci,j +xi,j−1 in ui. In equilibrium, we know that

agent i does not wish to sell good j−1 to get good j (or vice-versa). Thus, agent
i must balance her marginal utilities from the 2

√
xi,j lg ci,j and xi,j−1 terms.

This gives the relation

∂
(
2
√

xi,j lg ci,j

)
∂xi,j

=
∂ (pjxi,j−1)

∂xi,j−1
(16)√

lg ci,j

xi,j
= pj (17)

xi,j =
lg ci,j

(pj)2
(18)

(Note that by construction, i.e. by choice of ē, this is always possible.) Since
goods in M2 and M3 do not involve production, we know that∑

i∈[n]

xi,j =
∑
i∈[n]

ei,j . (19)

Let αj =
∑

i∈[n] ei,j . Using this constraint and the equations xi,j = lg ci,j

(pj)2
, it

follows that

p2
j =

1
αj

∑
j∈M3

lg ci,j =
1
αj

lg

⎛⎝ ∏
j∈M3

ci,j

⎞⎠ , (20)

and thus
xi,j =

αj lg ci,j

lg
(∏

j∈M3
ci,j

) . (21)

2 The only trick to converting fj,k to a set is to allow firm k to produce any amount

of good j between 0 and fj,k. In equilibrium, production will always occur on the

boundary defined by fj,k, so this change is inconsequential.
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For agent 1, we get

x1,j =
1

lg
((∏

j∈M3\1 ci,j

) 1
αj

) . (22)

To show a lower bound, we want to show that we can choose the set C such that
the number of possible values for x1,j is large. We take C to be the |C| smallest
primes. (Note that this implies the total number of possible utility functions is
|U| = |C|m

4 .) To count the number of possible values for x1,j , consider the value∏
j∈M3\1

(ci,j)
1

αj . (23)

This represents a fractional prime factorization of a number where the prime
factors are in C. Thus, the number of distinct values is the number of distinct
sets of the form {

kc,j

αj

}
(24)

where kc,j is the number of times a prime c occurs in the factorization and∑
i kc,j = n. Note that if two sets

{
kc,j

αj

}
and

{
k′

c,j

α′
j

}
are the same, then

∑ kc,j

αj
=∑ k′

c,j

α′
j

. Since
∑

i kc,j = n is fixed, the only way for two sets to be the same is if

αj = α′
j . Thus, since there are (n − 1)2β possible values for αj , there are

(n − 1)2β |C|n−1

|C|! ≥ (n − 1)2β|C|n−|C|−1 (25)

possible values for this quantity, and, therefore, the same number of possible
values for x1,j . Counting over all m

4 goods in M3 and assuming that C is the
same for all j (thus |U| = |C|m

4 ), it follows that agent 1 has at least(
(n − 1)2β|C|n−|C|−1

)m
4

=
(
(n − 1)2β

)m
4 |U|n−1−|U| 4

m (26)

possible choices. Moreover, note that we may derive this bound for other sizes
|U| by fixing all cij for some j. Assume that we fix the values of cij for

(
m
4 − k

)
goods (i.e. k goods still have cij drawn from C), then we get

(
(n − 1)2β

)m
4 |U|n−1−|U| 1

k (27)

where |U| = |C|k. (This will be useful when we wish to set |U| = 2.)
The analysis for the firms is similar: firm 1 must be able to select

(
(n − 1)2β

)m
4 |Y|l−1−|Y| 4

m (28)
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distinct production vectors. First, we characterize optimal production. Consider
a single good j ∈ M1 and observe that∑

k∈[l]

yj−1,k =
∑
i∈[n]

ei,j−1 = αj . (29)

Let pj−1 = πj−1
πj

be the equilibrium price of good (j−1) relative to good j. Then
we know that firm k maximizes

yj,k − pj−1yj−1,k = 2
√

yj−1,k · lg cj,k − pj−1yj−1,k (30)

Taking the first derivative with respect to yj−1,k implies that yj,k = lg cj,k

(pj−1)2 , so
we repeat the analysis used for agent 1. This shows that firm 1 must be able to
make at least (

(n − 1)2β
)m

4 |Y|l−1−|Y| 4
m (31)

different choices.
Because the choices of agent 1 and firm 1 are independent, all combinations of

choices are possible. Thus, the total number of communication sequences must
be at least (

(n − 1)2β
)m

2 |U|n−1−|U| 4
m |Y|l−1−|Y| 4

m (32)

and the total number of bits of communication is at least
m

2
(β + lg(n − 1)) + (n − 1 − |U| 4

m ) lg |U| + (l − 1 − |Y| 4
m ) lg |Y| (33)

If we take |U| = |Y| = 2 (i.e. the set C = {2, 3} for one good, fixed at cij = 2
otherwise), then we get a lower bound of

m

2
(β + lg(n − 1)) + n + l − O(1) (34)

bits of communication. �

4 Conclusion

Our main theorem diminishes the power of prices, with the caveat that we de-
mand an exact equilibrium. While (m − 1) prices are sufficient, the amount of
information they contain may be highly dependent on the parameters of the
market.

Most significantly, the number of bits of information they must communicate
is linear in the number of agents and firms in the worst case (the (n + l) term).
This implies that even though a price is supposed to be “universal,”prices must
contain a unique bit of information for every agent in the economy. In the context
of decimal prices, this roughly translates to one digit for every four buyers of a
good. This is quite impractical.

It remains an open problem to give tight bounds. For example, we currently
do not have any nontrivial upper bounds. Also, there are a few reasons why our
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lower bound may not be tight. First, instead of a multiplicative factor of m
2 , one

might expect a multiplicative factor of (m−1) since that is the number of prices
that must be communicated. Second, the multiplicative log(m+n) factor shown
by Deng et al. [4] arises from an effect not present in our construction.

A more significant open problem is to give lower bounds for communicating
approximate equilibria. Since our construction is highly dependent on the fact
that two sets of irrational numbers rarely sum to the same value, it is unlikely
to survive when an approximate equilibrium is sufficient. In particular, it is
plausible that the polynomial dependence on n and l fundamentally requires
poly(n, l)-bit numbers.

Furthermore, lower bounds for approximate equilibria would be more realis-
tic. Because market clearing is also measured to finite precision, a lower bound
approximate equilibria would give a stronger result on the amount of precision
required in prices.
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Abstract. In this paper, we characterize strategy-proof voting rules when the set
of alternatives has a multi-issue structure, and the voters’ preferences are rep-
resented by acyclic CP-nets that follow a common order over issues. Our main
result is a simple full characterization of strategy-proof voting rules satisfying
non-imposition for a very natural restriction on preferences in multi-issue do-
mains: we show that if the preference domain is lexicographic, then a voting rule
satisfying non-imposition is strategy-proof if and only if it can be decomposed
into multiple strategy-proof local rules, one for each issue and each setting of the
issues preceding it. We also obtain the following variant of Gibbard-Satterthwaite:
when there are at least two issues and each of the issues can take at least two val-
ues, then there is no non-dictatorial strategy-proof voting rule that satisfies non-
imposition, even when the domain of voters’ preferences is restricted to linear
orders that are consistent with acyclic CP-nets following a common order over
issues. This impossibility result follows from either one of two more general new
impossibility results we obtained, which are not included in this paper due to the
space constraint.

Keywords: Voting, multi-issue domains, strategy-proofness, lexicographic
domains.

1 Introduction

When agents have conflicting preferences over a set of alternatives, and they want to
make a joint decision, a natural way to do so is by voting. Each agent (voter) is asked to
report his or her preferences. Then, a voting rule is applied to the vector of submitted
preferences to select a winning alternative. However, in some cases, a voter has an
incentive to submit false preferences in order to change the winner to a more preferable
alternative (to her). An instance of such misreporting is called a manipulation, and the
perpetrating voter is called a manipulator. If there is no manipulation under a voting
rule, then the rule is said to be strategy-proof.

Unfortunately, there are some very natural properties that are satisfied by no strategy-
proof voting rule, according to the Gibbard-Satterthwaite theorem [16,27]. The theorem
states that when there are three or more alternatives, and any voter can choose any linear
order over alternatives to represent her preferences, then no non-dictatorial voting rule
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that satisfies non-imposition is strategy-proof. A voting rule is dictatorial if the same
voter’s most-preferred alternative is always chosen; it satisfies non-imposition if for
every alternative, there exist some reported preferences that make that alternative win.

There are several approaches to circumventing this impossibility result. One that has
received significant attention from computer scientists in recent years is to consider
whether finding a manipulation is computationally hard under some rules. If so, then
even though a manipulation is guaranteed to exist, it will perhaps not occur because
the manipulator(s) cannot find it. Indeed, it has been shown that finding a manipula-
tion is computationally hard (more precisely, NP-hard) for various rules, for various
definitions of the manipulation problem (e.g., [6,5,13,17,14,36]). On the other hand,
NP-hardness is a worst-case notion of hardness, so that it may very well be the case
that most manipulations are easy to find. Various recent results suggest that this is in-
deed the case [25,12,24,15,37,31,30,28,34,29,18]. This paper does not fall under this
line of research.

Instead, this paper falls under another, older, line of research on circumventing the
Gibbard-Satterthwaite result. This line, which has been pursued mainly by economists,
is to restrict the domain of preferences. That is, we assume that voters’ preferences
always lie in a restricted class. An example of such a class is that of single-peaked pref-
erences [7]. For single-peaked preferences, desirable strategy-proof rules exist, such as
the median rule. Other strategy-proof rules are also possible in this preference domain:
for example, it is possible to add some artificial (phantom) votes before running the
median rule. In fact, this characterizes all strategy-proof rules for single-peaked prefer-
ences [22]. On the other hand, preferences have to be significantly restricted to obtain
such positive results: Aswal et al. [1] extend the Gibbard-Satterthwaite theorem, show-
ing that if the preference domain is linked, then with three or more alternatives the only
strategy-proof voting rule that satisfies non-imposition is a dictatorship.

In real life, the set of alternatives often has a multi-issue structure. That is, there
are multiple issues (or attributes), each taking values in its respective domain, and an
alternative is completely characterized by the values that the issues take. For example,
consider a situation where the inhabitants of a county vote to determine a government
plan. The plan is composed of multiple sub-plans for several interrelated issues, such
as transportation, environment, and health [10]. Clearly, a voter’s preferences for one
issue in general depend on the decisions taken on the other issues: if a new highway
is constructed through a forest, a voter may prefer a nature reserve to be established;
but if the highway is not constructed, the voter may prefer that no nature reserve is es-
tablished. As another example, in each US presidential election year, the president as
well as members of the Senate and the House must be elected. In principle, a voter’s
preferences for a senator can depend on who is elected as president, for example if the
voter prefers a balance of power between the Democratic and Republican parties. A
straightforward way to aggregate preferences in multi-issue domains is issue-by-issue
(a.k.a. seat-by-seat) voting, which requires that the voters explicitly express their pref-
erences over each issue separately, after which each issue is decided by applying issue-
wise voting rules independently. This makes sense if voters’ preferences are separable,
that is, each voter’s preferences over a single issue are independent of her preferences
over other issues. However, if preferences are not separable, it is not clear how the voter
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should vote in such an issue-by-issue election. Indeed, it is known that natural strategies
for voting in such a context can lead to very undesirable results [10,20].

The problem of characterizing strategy-proof voting rules in multi-issue domains has
already received significant attention. Strategy-proof voting rules for high-dimensional
single-peaked preferences (where each dimension can be seen as an issue) have been
characterized [8,2,3,23]. Barbera et al. [4] characterized strategy-proof voting rules
when the voters’ preferences are separable, and each issue is binary (that is, the do-
main for each issue has two elements). Ju [19] studied multi-issue domains where each
issue can take three values: “good”, “bad”, and “null”, and characterized all strategy-
proof voting rules that satisfy null-independence, that is, if a voter votes “null” on an
issue i, then her preferences over other issues do not affect the value of issue i.

The prior research that is closest to ours was performed by Le Breton and Sen [11].
They proved that if the voters’ preferences are separable, and the restricted preference
domain of the voters satisfies a richness condition, then, a voting rule is strategy-proof
if and only if it is an issue-by-issue voting rule, in which each issue-wise voting rule is
strategy-proof over its respective domain.

Despite its elegance, the work by Le Breton and Sen is limited by the restrictiveness
of separable preferences: as we have argued above, in general, a voter’s preferences on
one issue depend on the decision taken on other issues. On the other hand, one would
not necessarily expect the preferences for one issue to depend on every other issue. CP-
nets [9] were developed in the artificial intelligence community as a natural represen-
tation language for capturing limited dependence in preferences over multiple issues.
Recent work has started to investigate using CP-nets to represent preferences in voting
contexts [26,21,35,32]. If there is an order over issues such that every voter’s prefer-
ences for “later” issues depend only on the decisions made on “earlier” issues, then the
voters’ CP-nets are acyclic, and a natural approach is to apply issue-wise voting rules
sequentially [21]. While the assumption that such an order exists is still restrictive, it
is much less restrictive than assuming that preferences are separable (for one, the re-
sulting preference domain is exponentially larger [21]). Recent extensions of sequential
voting rules include order-independent sequential voting [35], as well as frameworks for
voting when preferences are modeled by general (that is, not necessarily acyclic) CP-
nets [32,33]. However, in this paper, we only study acyclic CP-nets that are consistent
with a common order over the issues.

Our results. In this paper, we focus on multi-issue domains that are composed of at
least two issues with at least two possible values each.1 We first show that over lex-
icographic preference domains (where earlier issues dominate later issues in terms
of importance to the voters), the class of strategy-proof voting rules that satisfy non-
imposition is exactly the class of voting rules that can be decomposed into multiple
strategy-proof local rules, one for each issue and each setting of the issues preceding it.
Technically, it is exactly the class of all conditional rule nets (CR-nets), defined later in
this paper but analogous to CP-nets, whose local (issue-wise) entries are strategy-proof
voting rules. CR-nets represent how the voting rule’s behavior on one issue depends on

1 This is the standard assumption for studying voting in multi-issue domains, because otherwise
either the domain can be simplified (by removing issues that only take one value), or it has no
multi-issue structure (when there is only one issue).
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the decisions made on all issues preceding it. Conceptually, this is similar to how acyclic
CP-nets represent how a voter’s preferences on one issue depend on the decisions made
on all issues preceding it.

Then, we prove an impossibility theorem, which is the following variant of Gibbard-
Satterthwaite. When there are at least two issues with at least two values each, the
only strategy-proof voting rule that satisfies non-imposition is a dictatorship. This result
assumes that each voter is free to choose any linear order that corresponds to an acyclic
CP-net that follows a common order over the issues. This impossibility result follows
from either one of two more general new impossibility results that we do not include in
this paper due to the space constraint.

We are not aware of any previous characterization or impossibility results for
strategy-proof voting rules when voters’ preferences display dependencies across is-
sues (that is, when they are modeled by CP-nets).

2 Preliminaries

In a voting setting (not necessarily one with multiple issues), let X be the set of alter-
natives (or candidates). A linear order V on X is a transitive, antisymmetric, and total
relation on X . The set of all linear orders on X is denoted by L(X ). An n-voter profile
P on X consists of n linear orders on X . That is, P = (V1, . . . , Vn), where for every
1 ≤ j ≤ n, Vj ∈ L(X ). The set of all profiles on X is denoted by P (X ). In this paper,
we let n denote the number of voters. A (voting) rule r is a mapping from the set of
all profiles on X to X , that is, r : P (X ) → X . For example, the plurality rule (also
called the majority rule, when there are only two alternatives) chooses the alternative
that is ranked in the top position in the most votes (with a tie-breaking mechanism, for
example, ties are broken in alphabetical order—in this paper, it does not matter which
tie-breaking mechanism we use). A voting rule r satisfies

• unanimity, if top(V ) = c for all V ∈ P implies r(P ) = c.
• non-imposition, if for any c ∈ X , there exists an n-voter profile P such that

r(P ) = c.
• (strong) monotonicity, if for any pair of profiles P = (V1, . . . , Vn), P ′ = (V ′

1 , . . . ,
V ′

n) such that for any alternative c and any 1 ≤ j ≤ n, we have c �V ′
j

r(P ) ⇒
c �Vj r(P ), then, r(P ′) = r(P ).

• strategy-proofness, if there does not exist a pair (P, V ′
j ), where P is a profile, and

V ′
j is a false vote of voter j, such that r(P−j , V

′
j ) �Vj r(P ). That is, there is no

profile where a voter can misrepresent her preferences to make herself better off.

In this paper, the set of all alternatives X is a multi-issue domain. That is, let I =
{x1, . . . ,xp} be a set of issues, where each issue xi takes values in a local domain,
denoted by Di. An alternative is uniquely identified by its values on all issues, that is,
X = D1 × · · · × Dp.

Example 1. A group of people must make a joint decision on the menu for dinner (the
caterer can only serve a single menu to everyone). The menu is composed of two issues:
the main course (M) and the wine (W). There are three choices for the main course:



406 L. Xia and V. Conitzer

beef (b), fish (f), or salad (s). The wine can be either red wine (r), white wine (w), or
pink wine (p). The set of alternatives is a multi-issue domain:X = {b, f, s}×{r, w, p}.

CP-nets [9] are a compact representation that captures dependencies across issues. In
this paper, we use them not for their representational compactness, but rather as useful
mathematical notation for describing preferences in multi-issue domains, where prefer-
ences over one issue can depend on the values of earlier issues.

A CP-net N over X consists of two parts: (a) a directed graph G = (I, E) and (b)
a set of conditional linear preferences �i

d over Di, for each setting d of the parents of
xi in G. Let CPT (xi) be the set of the conditional preferences of a voter on Di; this is
called a conditional preference table (CPT).

A CP-net N captures dependencies across issues in the following sense. N induces
a partial preorder �N over the alternatives X as follows: for any ai, bi ∈ Di, any
setting d of the set of parents of xi (denoted by ParG(xi)), and any setting z of I \
(ParG(xi) ∪ {xi}), (ai, d, z) �N (bi, d, z) if and only if ai �i

d bi. In words, the
preferences over issue xi only depend on the setting of the parents of xi (but not on any
other issues). For any 1 ≤ i ≤ p, CPT(xi) specifies conditional preferences over xi.
Now, if we obtain an alternative d′ from d by only changing the value of the ith issue of
d, we can look at CPT(xi) to conclude whether the voter prefers d′ to d, or vice versa.
In general, however, from the CP-net, we will not always be able to conclude which of
two alternatives a voter prefers, if the alternatives differ on two or more issues. This is
why N usually induces a partial preorder rather than a linear order.

We note that when the graph of N is acyclic, �N is transitive and asymmetric, that
is, a strict partial order. Let O = x1 > · · · > xp. We say that a CP-net N is compatible
with (or, follows) O, if xi being a parent of xj in the graph implies that i < j. That is,
preferences over issues only depend on the values of earlier issues in O. A CP-net is
separable if there are no edges in its graph, which means that there are no preferential
dependencies among issues.

Example 2. Let X be the multi-issue domain defined in Example 1. We define a CP-net
N as follows: M is the parent of W, and the CPTs consist of the following conditional
preferences: CPT (M) = {b � f � s}, CPT (W) = {b : r � p � w, f : w � p �
r, s : p � w � r}, where b : r � p � w is interpreted as follows: “when M is b, then,
r is the most preferred value for W, p is the second most preferred value, and w is the
least preferred value.” N and its induced partial order �N are illustrated in Figure 1.
N is compatible with M > W. N is not separable.

A linear order V overX extends a CP-net N , denoted by V ∼ N , if it extends the partial
order that N induces. (This is merely saying that V is consistent with the preferences
implied by the CP-net N .) V is separable if it extends a separable CP-net. The set of all
linear orders that extend CP-nets that are compatible with O is denoted by Legal(O).
Throughout the paper, we make the following assumption about multi-issue domains
and the voters’ preferences.

Assumption 1. In this paper, each multi-issue domain is composed of at least two is-
sues (p ≥ 2), and each issue can take at least two values. Moreover, all CP-nets are
compatible with O = x1 > · · · > xp, and the voters’ preferences are always in
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Legal(O) (that is, a voter’s preferences over an issue do not depend on the values of
later issues).

To present our results, we will frequently use notations that represent the projection of a
vote/CP-net/profile to an issue xi (that is, the voter’s local preferences over xi) given the
setting of all issues preceding xi, defined as follows. For any issue xi, any setting d of
ParG(xi), and any linear order V that extends N , we let V |xi:d and N|xi:d denote the
the projection of V (or, equivalently N ) to xi, given d. That is, each of these notations
evaluates to the linear order �i

d in the CPT associated with xi. For example, let N be
the CP-net defined in Example 2. N|W:b = r � p � w. For any O-legal profile P ,
P |xi:d is the profile over Di that is composed of the projections of all votes in P on
xi, given d. That is, P |xi:d = (V1|xi:d, . . . , Vn|xi:d) = (N1|xi:d, . . . ,Nn|xi:d), where
P = (V1, . . . , Vn), and for any 1 ≤ i ≤ p, Vi extends Ni.

The lexicographic extension of a CP-net N , denoted by Lex(N ), is a linear order
V over X such that for any 1 ≤ i ≤ p, any di ∈ D1 × · · · × Di−1, any ai, bi ∈ Di,
and any y, z ∈ Di+1 × · · · × Dp, if ai �N|xi:di

bi, then (di, ai, y) �V (di, bi, z).
Intuitively, in the lexicographic extension of N , x1 is the most important issue, x2 is the
next important issue, etc; a desirable change to an earlier issue always outweighs any
changes to later issues. We note that the lexicographic extension of any CP-net is unique
w.r.t. the order O. We say that V ∈ L(X ) is lexicographic if it is the lexicographic
extension of a CP-net N . For example, let N be the CP-net defined in Example 2. We
have Lex(N ) = br � bp � bw � fw � fp � fr � sp � sw � sr. A profile P
is O-legal/separable/lexicographic, if each of its votes is in Legal(O)/ is separable/ is
lexicographic.

Given a vector of local rules (r1, . . . , rp) (that is, for any 1 ≤ i ≤ p, ri is a voting
rule on Di), the sequential composition of r1, . . . , rp w.r.t. O, denoted by Seq(r1, . . . ,
rp), is defined for all O-legal profiles as follows: Seq(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈
X , so that for any 1 ≤ i ≤ p, di = ri(P |xi:d1···di−1). That is, the winner is selected in p
steps, one for each issue, in the following way: in step i, di is selected by applying the
local rule ri to the preferences of voters over Di, conditioned on the values d1, . . . , di−1

that have already been determined for issues that precede xi. When the input profile is
separable, Seq(r1, . . . , rp) becomes an issue-by-issue voting rule.

M W

CPT (M)

b � f � s

CPT (W)

b : r � p � w
f : w � p � r
s : p � w � r

br bp bw

f w f p f r

sp sw sr

(a) A CP-net N . (b) The partial order induced by N .

Fig. 1. A CP-net N and its induced partial order
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3 Conditional Rule Nets (CR-Nets)

We now move on to the contributions of this paper. In a sequential voting rule, the local
voting rule that is used for a given issue is always the same, that is, the local voting rule
does not depend on the decisions made on earlier issues (though, of course, the voters’
preferences for this issue do depend on those decisions).

However, in many cases, it makes sense to let the local voting rules depend on the
values of preceding issues. For example, let us consider again the setting in Example 1,
and let us suppose that the caterer is collecting the votes and making the decision based
on some rule. Suppose the order of voting is M > W. Suppose the main course is
determined to be beef. One would expect that, conditioning on beef being selected,
most voters prefer red wine (e.g., r � p � w). Still, it can happen that even conditioned
on beef being selected, surprisingly, slightly more than half the voters vote for white
wine (w � p � r), and slightly less than half vote for red (r � p � w). In this case, the
caterer, who knows that in the general population most people prefer red to white given
a meal of beef, may “overrule” the preference for white wine among the slight majority
of the voters, and select red wine anyway. While this may appear somewhat snobbish
on the part of the caterer, in fact she may be acting in the best interest of social welfare
if we take the non-voting agents (who are likely to prefer red given beef) into account.

In this section, we introduce conditional rule nets (CR-nets) to model voting rules
where the local rules depend on the values chosen for earlier issues. A CR-net is defined
similarly to a CP-net—the difference is that CPTs are replaced by conditional rule tables
(CRTs), which specify a local voting rule over Di for each issue xi and each setting of
the parents of xi.2

Definition 1. An (acyclic) conditional rule net (CR-net) M over X is composed of the
following two parts.

1. A directed acyclic graph G over {x1, . . . ,xp}.
2. A set of conditional rule tables (CRTs) in which, for any variable xi and any setting

d of ParG(xi), there is a local conditional voting rule M|x:d over Di.

A CR-net encodes a voting rule over all O-legal profiles (we recall that we fix O =
x1 > · · · > xp in this paper). For any 1 ≤ i ≤ p, in the ith step, the value di

is determined by applying M|xi:d1···di−1 (the local rule specified by the CR-net for
the ith issue given that the earlier issues take the values d1 · · · di−1) to P |xi:d1···di−1

(the profile of preferences over the ith issue, given that the earlier issues take the
values d1 · · · di−1). Formally, for any O-legal profile P , M(P ) = (d1, . . . , dp) is
defined as follows: d1 = M|x1(P |x1), d2 = M|x2:d1(P |x2:d1), etc. Finally, dp =
M|xp:d1···dp−1(P |xp:d1···dp−1).

A CR-net M is separable if there are no edges in the graph of M. That is, the
local voting rule for any issue is independent of the values of all other issues (which
corresponds to a sequential voting rule).

2 It is not clear how a cyclic CR-net could be useful, so we only define acyclic CR-nets.
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4 Restricting Voters’ Preferences

We now consider restrictions on preferences. A restriction on preferences (for a single
voter) rules out some of the possible preferences in L(X ). Following the convention
of [11], a preference domain is a set of all admissible profiles, which represents the
restricted preferences of the voters. Usually a preference domain is the Cartesian prod-
uct of the sets of restricted preferences for individual voters. A natural way to restrict
preferences in a multi-issue domain is to restrict the preferences on individual issues.
For example, we may decide that r � w � p is not a reasonable preference for wine
(regardless of the choice of main course), and therefore rule it out (assume it away).
More generally, which preferences are considered reasonable for one issue may depend
on the decisions for the other issues. Hence, in general, for each i, for each setting di of
the issues before issue xi, there is a set of “reasonable” (or: possible, admissible) prefer-
ences over xi, which we call S|xi:di . Formally, admissible conditional preference sets,
which encode all possible conditional preferences of voters, are defined as follows.

Definition 2. An admissible conditional preference set S over X is composed of mul-
tiple local conditional preference sets, denoted by S|xi:di , such that for any 1 ≤ i ≤ p
and any di ∈ D1 × · · · × Di−1, S|xi:di is a set of (not necessarily all) linear orders
over Di.

That is, for any 1 ≤ i ≤ p and any di ∈ D1 × · · · × Di−1, S|xi:di encodes the voter’s
local language over issue i, given the preceding issues taking values di. In other words,
if S is the admissible conditional preference set for a voter, then we require the voter’s
preferences over xi given di to be in S|xi:di .

An admissible conditional preference set restricts the possible CP-nets, preferences,
and lexicographic preferences. We note that Le Breton and Sen [11] defined a similar
structure, which works specifically for separable votes.

Now we are ready to define the restricted preferences of a voter over X . Let S be
the admissible conditional preference set for the voter. A voter’s admissible vote can be
generated in the following two steps: first, a CP-net N is constructed such that for any
1 ≤ i ≤ p and any di ∈ D1 × · · ·Di−1, the restriction of N on xi given di is chosen
from S|xi:di ; second, an extension of N is chosen as the voter’s vote. By restricting the
freedom in either of the two steps (or both), we obtain a set of restricted preferences for
the voter. Hence, we have the following definitions.

Definition 3. Let S be an admissible conditional preference set over X .

• CPnets(S) = {N : N is a CP-net overX , and ∀i∀di ∈ D1 × · · · × Di−1,N|xi:di

∈ S|xi:di}.
• Pref(S) = {V : V ∼ N ,N ∈ CPnets(S)}.
• LD(S) = {Lex(N ) : N ∈ CPnets(S)}.

That is, CPnets(S) is the set of all CP-nets over X corresponding to preferences that are
consistent with the admissible conditional preference set S. Pref(S) is the set of all lin-
ear orders that are consistent with the admissible conditional preference set S. LD(S),
which we call the lexicographic preference domain, is the subset of linear orders in
Pref(S) that are lexicographic. For any L ⊆ Pref(S), we say that L extends S if for
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any CP-net in CPnets(S), there exists at least one linear order in L consistent with that
CP-net. It follows that LD(S) extends S; in this case, for any CP-net N in CPnets(S),
there exists exactly one linear order in LD(S) that extends N . Lexicographic prefer-
ence domains are natural extensions of admissible conditional preference sets, but they
are also quite restrictive, since any CP-net only has one lexicographic extension.

We now define a notion of richness for admissible conditional preference sets. This
notion says that for any issue, given any setting of the earlier issues, each value of the
current issue can be the most-preferred one.3

Definition 4. An admissible conditional preference set S is rich if for each 1 ≤ i ≤ p,
each valuation di of the preceding issues, and each ai ∈ Di, there exists V i ∈ S|xi:di

such that ai is ranked in the top position of V i.

We remark that richness is a natural requirement, and it is also a very weak restriction
in the following sense. It only requires that when a voter is asked about her (local)
preferences over xi given di, she should have the freedom to at least specify her most
preferred local alternative in Di at will. We note that |S|xi:di | can be as small as |Di|
(by letting each alternative in Di be ranked in the top position exactly once), which is
in sharp contrast to |L(Di)| = |Di|! (when all local orders are allowed).

A CR-net M is locally strategy-proof if all its local conditional rules are strategy-
proof over their respective local domains (we recall that the voters’ local preferences
must be in the corresponding local conditional preference set). That is, for any 1 ≤ i ≤
p, di ∈ D1 × · · · × Di−1, M|xi:di is strategy-proof over

∏n
j=1 Sj |xi:di .

5 Strategy-Proof Voting Rules in Lexicographic Preference
Domains

In this section, we present our main theorem, which characterizes strategy-proof voting
rules that satisfy non-imposition, when the voters’ preferences are restricted to lexi-
cographic preference domains. Our main theorem states the following: if each voter’s
preferences are restricted to the lexicographic preference domain for a rich admissible
conditional preference set, then a voting rule that satisfies non-imposition is strategy-
proof if and only if it is a locally strategy-proof CR-net. We recall that in this paper,
there are at least two issues with at least two possible values each, and the lexicographic
preference domain for a rich admissible conditional preference set S is composed of all
lexicographic extensions of the CP-nets that are constructed from S.

Theorem 1. Under Assumption 1, for any 1 ≤ j ≤ n, suppose Sj is a rich admissible
conditional preference set, and voter j’s preferences are restricted to the lexicographic
preference domain of Sj . Then, a voting rule r that satisfies non-imposition is strategy-
proof if and only if r is a locally strategy-proof CR-net.

Sketch of Proof. The “if” part is easy. The “only if” part is proved by induction on p
(the number of issues). More precisely, suppose the theorem holds for p issues. For p+1

3 This is not the same richness notion as the one proposed by Le Breton and Sen, which applies
to preferences over all alternatives rather than to admissible conditional preference sets.
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issues, let r be a strategy-proof voting rule that satisfies non-imposition. We first prove
that r can be decomposed in the following way: there exists a local rule r1 over D1 and
a voting rule rx−1:a1 over D2 × · · · ×Dp+1 for each a1 ∈ D1, such that for any profile
P , the first component of r(P ) is determined by applying r1 to the projection of P on
x1, and the remaining components are determined by applying rx−1:a1 to the restriction
of P on the remaining issues given x1 = a1, where a1 is the first component of r(P )
(just determined by r1). Moreover, we prove that r1 and rx−1:a1 (for all a1 ∈ D1)
satisfy non-imposition and strategy-proofness. Therefore, by the induction hypothesis,
for each a1 ∈ D1, rx−1:a1 is a locally strategy-proof CR-net over D2 × · · · × Dp+1. It
follows that r is a locally strategy-proof CR-net over D1 × · · · × Dp+1, in which the
(unconditional) rule for x1 is r1, and given any a1 ∈ D1, the sub-CR-net conditioned
on x1 = a1 is rx−1:a1 . �
The proofs of all theorems are omitted due to the space constraint. All proofs can be
found in the long version of this paper on the first author’s website.

It follows from Theorem 1 that any sequential voting rule that is composed of locally
strategy-proof voting rules is strategy-proof over lexicographic preference domains, be-
cause a sequential voting rule is a separable CR-net. Specifically, when the multi-issue
domain is binary (that is, for any 1 ≤ i ≤ p, |Di| = 2), the sequential composition of
majority rules is strategy-proof when the profiles are lexicographic. It is interesting to
view this in the context of previous works on the strategy-proofnessof sequential compo-
sition of majority rules: Lacy and Niou [20] and Le Breton and Sen [11] showed that the
sequential composition of majority rules is strategy-proof when the profile is restricted
to the set of all separable profiles; on the other hand, Lang and Xia [21] showed that this
rule is not strategy-proof when the profile is restricted to the set of all O-legal profiles.

The restriction to lexicographic preferences is still limiting. Next, we investigate
whether there is any other preference domain for the voters on which the set of strategy-
proof voting rules that satisfy non-imposition is equivalent to the set of all locally
strategy-proof CR-nets. The answer to this question is “No,” as shown in the next re-
sult. More precisely, over any preference domain that extends an admissible conditional
preference set, the set of strategy-proof voting rules satisfying non-imposition and the
set of locally strategy-proof CR-nets satisfying non-imposition are identical if and only
if the preference domain is lexicographic.

Theorem 2. Under Assumption 1, for any 1 ≤ j ≤ n, suppose Sj is a rich admissible
conditional preference set, Lj ⊆ Pref(Sj), and Lj extends Sj . If there exists 1 ≤ j ≤ n
such that Lj is not the lexicographic preference domain of Sj , then there exists a locally
strategy-proof CR-net M that satisfies non-imposition and is not strategy-proof over∏n

j=1 Lj .

6 An Impossibility Theorem

In this section, we present an impossibility theorem for strategy-proof voting rules when
voters’ preferences are restricted to be O-legal.
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Theorem 3. When the set of alternatives is a multi-issue domain, if each voter can
choose any linear order in Legal(O) to represent her preferences, then there is no
strategy-proof voting rule that satisfies non-imposition, except a dictatorship.

This impossibility theorem is a variant of the Gibbard-Satterthwaite theorem. We em-
phasize that there are at least two issues with at least two possible values each, and
Legal(O) is much smaller than the set of all linear orders over X . Therefore, the theo-
rem does not follow directly from Gibbard-Satterthwaite. It follows directly from either
of the two stronger impossibility theorems proved in the full version of the paper: one
is for extensions of lexicographic domains, and the other is for extensions of the “rich”
domains defined by Le Breton and Sen [11]. Due to the space constraint and the heavy
technicality and notation of the two impossibility theorems, we omit them.

We recall that Lang and Xia [21] showed that a specific sequential voting rule (the
sequential composition of majority rules) is not strategy-proof when each voter can
choose any linear order in Legal(O) to represent her preferences. Theorem 3 is much
stronger, in that it states that over such a preference domain, not only does the sequential
composition of majority rules fail to be strategy-proof, but in fact all non-dictatorial
voting rules that satisfy non-imposition fail to be strategy-proof; moreover, this holds
for non-binary multi-issue domains as well.

7 Conclusion

In settings where a group of agents needs to make a joint decision, the set of alternatives
often has a multi-issue structure. In this paper, we characterized strategy-proof voting
rules when the voters’ preferences are represented by acyclic CP-nets that follow a
common order over issues. We showed that if each voter’s preferences are restricted
to a lexicographic preference domain, then a voting rule satisfying non-imposition is
strategy-proof if and only if it is a locally strategy-proof CR-net. We then proved that if
the profile is allowed to be any O-legal profile, then the only strategy-proof voting rules
satisfying non-imposition are dictatorships.

Our result for lexicographic preferences is quite positive; however, beyond that, our
results do not inspire much hope for desirable strategy-proof voting rules in multi-issue
domains. Of course, it is well known that it is difficult to obtain strategy-proofness in
voting settings in general, and this does not mean that we should abandon voting as a
general method. Similarly, difficulties in obtaining desirable strategy-proof voting rules
in multi-issue domains should not prevent us from studying voting rules for multi-issue
domains altogether. From a mechanism design perspective, strategy-proofness is a very
strong criterion, which corresponds to implementation in dominant strategies. It may
well be the case that rules that are not strategy-proof still result in good outcomes in
practice—or, more formally, in (say) Bayes-Nash equilibrium.
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Abstract. We study the optimal pricing for revenue maximization over social
networks in the presence of positive network externalities. In our model, the value
of a digital good for a buyer is a function of the set of buyers who have already
bought the item. In this setting, a decision to buy an item depends on its price
and also on the set of other buyers that have already owned that item. The rev-
enue maximization problem in the context of social networks has been studied by
Hartline, Mirrokni, and Sundararajan [4], following the previous line of research
on optimal viral marketing over social networks [5,6,7].

We consider the Bayesian setting in which there are some prior knowledge of
the probability distribution on the valuations of buyers. In particular, we study
two iterative pricing models in which a seller iteratively posts a new price for
a digital good (visible to all buyers). In one model, re-pricing of the items are
only allowed at a limited rate. For this case, we give a FPTAS for the optimal
pricing strategy in the general case. In the second model, we allow very frequent
re-pricing of the items. We show that the revenue maximization problem in this
case is inapproximable even for simple deterministic valuation functions. In the
light of this hardness result, we present constant and logarithmic approximation
algorithms when the individual distributions are identical.

1 Introduction

Despite the rapid growth, online social networks have not yet generated significant rev-
enue. Most efforts to design a comprehensive business model for monetizing such social
networks [9,10], are based on contextual display advertising [12]. An alternative way
to monetize social networks is viral marketing, or advertising through word-of-mouth.
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This can be done by understanding the externalities among buyers in a social network.
The increasing popularity of these networks has allowed companies to collect and use
information about inter-relationships among users of social networks. In particular, by
designing certain experiments, these companies can determine how users influence each
others’ activities.

Consider an item or a service for which one buyer’s valuation is influenced by other
buyers. In many settings, such influence among users are positive. That is, the purchase
value of a buyer for a service increases as more people use this service. In this case,
we say that buyers have positive externalities on each other. Such phenomena arise in
various settings. For example, the value of a cell-phone service that offers extra dis-
counts for calls among people using the same service, increases as more friends buy
the same service. Such positive externality also appears for any high-quality service
through positive reviews or the word-of-mouth advertising.

By taking into account the positive externalities, sellers can employ forward-looking
pricing strategies that maximize their long-term expected revenue. For this purpose,
there is a clear trade-off between the revenue extracted from a buyer at the beginning,
and the revenue from future sales. For example, the seller can give large discounts
at the beginning to convince buyers to adopt the service. These buyers will, in turn,
influence other buyers and the seller can extract more revenue from the rest of the
population, later on. Other than being explored in research papers [4], this idea has
been employed in various marketing strategies in practice, e.g., in selling TiVo digital
video recorders [11].

Preliminaries. Consider a case of selling multiple copies of a digital good (with no cost
for producing a copy) to a set V of n buyers. In the presence of network externality, the
valuation of buyer i for the good is a function of buyers who already own that item,
vi : 2V → R, i.e., vi(S) is the value of the digital good for buyer i, if set S of buyers
already own that item. We say that users have positive externality on each other, if and
only if vi(S) ≤ vi(T ) for each two subsets S ⊆ T ⊆ V . In general, we assume that
the seller is not aware of the exact value of the valuation functions, but she knows the
distribution fi,S with an accumulative distribution Fi,S for each random variable vi(S),
for all S ∈ V and any buyer i. Also, we assume that each buyer is interested only in a
single copy of the item. The seller is allowed to post different prices at different time
steps and buyer i buys the item in a step t if vi(St) − pt ≥ 0, where St is the set of
buyers who own the item in step t, and pt is the price of the item in that step. Note that
vi(∅) does not need to be zero; in fact vi(∅) is the value of the item for a user before
any other buyer owns the item and influence him.

We study optimal iterative pricing strategies without price discrimination during k
time steps. In particular, we assume an iterative posted price setting in which we post
a public price pi at each step i for 1 ≤ i ≤ k. The price pi at each step i is visible to
all buyers, and each buyer might decide to buy the item based on her valuation for the
item and the price of the item in that time step. We consider myopic or impatient buyers
who buy an item at the first time in which the offered price is less than their valuations.
In order to formally define the problem, we should also define each time step. A time
step can be long enough in which the influence among users can propagate completely,
and we can not modify the price when there is a buyer who is interested to buy the item
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at the current price. On the other extreme, we can consider settings in which the price
of the item changes fast enough that we do not allow the influence amongst buyers to
propagate in the same time step. In this setting, as we change the price per time step,
we assume the influence among buyers will be effective on the next time step (and not
on the same time step). In the following, we define these two problems formally.

Definition 1. The Basic(k) Problem. In the Basic(k) problem, our goal is to find a
sequence p1, . . . , pk of k prices in k consecutive time steps or days. A buyer decides to
buy the item during a time step as soon as her valuation is more than or equal to the
price offered in that time step. In contrast to the Rapid(k) problem, the buyer’s decision
in a time step immediately affects the valuations of other buyers in the same time step.
More precisely, a time step is assumed to end when no more buyers are willing to buy
the item at the price at this time step.

Definition 2. The Rapid(k) Problem. Given a number k, the Rapid(k) problem is to
design a pricing policy for k consecutive days or time steps. In this problem, a pricing
policy is to set a public price pi at the start of time step (or day) i for each 1 ≤ i ≤ k.
At the start of each time step, after the public price pi is announced, each buyer decides
whether to buy the item or not, based on the price offered on that time step and her
valuation. In the Rapid(k) problem, the decision of a buyer during a time step is not
affected by the action of other buyers in the same time step1.

One insight about the Rapid(k) model is that buyers react slowly to the new price and
the seller can change the price before the news spreads through the network. On the
other hand, in the Basic(k) model, buyers immediately become aware of the new state
of the network (the information spreads fast), and therefore respond to the new state
of the world before the seller is capable of changing prices. Note that in the Basic(k)
problem, the price sequence will be decreasing. If the price posted at any time step is
greater than the previous price, no buyer would purchase the product at that time step.

A common assumption studied in the context of network externalities is the assump-
tion of submodular influence functions. This assumption has been explored and justi-
fied by several previous work in this framework [3,4,5,7]. In the context of revenue
maximization over social networks, Hartline et. al. [4] state this assumption as fol-
lows: suppose that at some time step, S is the set of buyers who have bought the item.
We use the notion of optimal (myopic) revenue of a buyer for S, which is Ri(S) =
maxp p · (1 − Fi,S(p)). Following Hartline et.al [4], we consider the optimal revenue
function as the influence function, and assume that the optimal revenue functions (or
influence functions) are submodular, which means that for any two subsets S ⊂ T , and
any element j �∈ S, Ri(S∪{j})−Ri(S) ≥ Ri(T ∪{j})−Ri(T ). In other words, sub-
modularity corresponds to a diminishing return property of the optimal revenue function
which has been observed in the social network context [3,5,7].

Definition 3. We say that all buyers have identical initial distributions if there exists a
distribution F0 so that the valuation of a player is the sum of two independent random
variables, one from F0, and another one from Fi,S , with Fi,∅ = 0.

1 We use the terms time step and day interchangeably.
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Definition 4. A probability distribution f with accumulative distribution F satisfies the
monotone hazard rate condition if the function h(p) = f(p)/(1 − F (p)) is monotone
non-decreasing.

Our Contributions. We first show that the deterministic Basic(k) problem is
polynomial-time solvable. Moreover, for the Bayesian Basic(k) problem, we present
a fully polynomial-time approximation scheme. We study the structure of the optimal
solution by performing experiments on randomly generated preferential attachment net-
works. In particular, we observe that using a small number of price changes, the seller
can achieve almost the maximum achievable revenue by many price changes. In addi-
tion, this property seems to be closely related to the role of externalities. In particular,
the density of the random graph, and therefore the role of network externalities in-
creases, fewer number of price changes are required to achieve almost optimal revenue.
We show our experiments in the full version.

Next we show that in contrast to the Basic(k) problem, the Rapid(k) problem is in-
tractable. For the Rapid(k) problem, we show a strong hardness result: we show that
the Rapid(k) problem is not approximable within any reasonable approximation factor
even in the deterministic case unless P=NP. This hardness result holds even if the in-
fluence functions are submodular and the probability distributions satisfy the monotone
hazard rate condition. In the light of this hardness result, we give an approximation
algorithm using a minor and natural assumption. We show that the Rapid(k) problem
for buyers with submodular influence functions and probability distributions with the
monotone hazard rate condition, and identical initial distributions admits logarithmic
approximation if k is a constant and a constant-factor approximation if k ≥ n

1
c for any

constant c.

Related work. Optimal viral marketing over social networks have been studied ex-
tensively in the computer science literature [6]. For example, Kempe, Kleinberg and
Tardos [5] study the following algorithmic question (posed by Domingos and Richard-
son [3]): How can we identify a set of k influential nodes in a social network to influence
such that after convincing this set to use this service, the subsequent adoption of the ser-
vice is maximized? Most of these models are inspired by the dynamics of adoption of
ideas or technologies in social networks and only explore influence maximization in the
spread of a free good or service over a social network [3,5,7]. As a result, they do not
consider the effect of pricing in adopting such services. On the other hand, the pricing
(as studied in this paper) could be an important factor on the probability of adopting a
service, and as a result in the optimal strategies for revenue maximization.

In an earlier work, Hartline, Mirrokni, and Sundararajan [4] study the optimal market-
ing strategies in the presence of such positive externalities. They study optimal adaptive
ordering and pricing by which the seller can maximize its expected revenue. However,
in their study, they consider the marketing settings in which the seller can go to buyers
one by one (or in groups) and offer a price to those specific buyers. Allowing such price
discrimination makes the implementation of such strategies hard. Moreover, price dis-
crimination, although useful for revenue maximization in some settings, may result in a
negative reaction from buyers [8].
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2 The Basic(k) Problem

We define B1(S, p) := {i|vi(S) ≥ p}∪ S. Assume a time step where at the beginning,
we set the global price p, and the set S of players already own the item. So B1(S, p)
specifies the set of buyers who immediately want to buy (or already own) the item.
As B1(S, p) will own the item before the time step ends, we can recursively define
Bk(S, p) = B1(Bk−1(S, p), p) and use induction to reason that Bk(S, p) will own
the item in this time step. Let B(S, p) = Bk̂(S, p), where k̂ = max{k|Bk(S, p) −
Bk−1(S, p) �= ∅}, knowing that all buyers in B(S, p) will own the item before the time
step ends. One can easily argue that the set B(S, p) does not depend on the order of
users who choose to buy the item.

Solving Deterministic Basic(1). In the Basic(1) problem, the goal is to find a price p1

such that p1 · |B(∅, p1)| is maximized. Let βi := sup{p|i ∈ B(∅, p)} and β := {βi|1 ≤
i ≤ n}. WLOG we assume that β1 > β2 . . . > βn. Player i will buy the item if and
only if the price is set to be less than or equal to βi.

Lemma 1. The optimal price p1 is in the set β.

Now we provide an algorithm to find p1 by finding all elements of the set β and con-
sidering the profit βi · B(∅, βi) of each of them, to find the best result. Throughout the
algorithm, we will store a set S of buyers who have bought the item and a global price
g. In the beginning S = ∅ and g = ∞. The algorithm consists of |β| steps. At the i-th
step, we set the price equal to the maximum valuation of remaining players, considering
the influence set to be S. We then update the state of the network until it stabilizes, and
moves to the next step. Our main claim is as follows. At the end of the i-th step, the set
who own the item is B(∅, βi), and the maximum valuation of any remaining player is
equal to βi+1.

Generalization to Deterministic Basic(k). We attempt to solve the Basic(k) prob-
lem by executing the Basic(1) algorithm. We are looking for an optimal sequence
(p1, p2, . . . , pk) in order to maximize

∑k
i=1 |B(∅, pi)−B(∅, pi−1)| · pi. We claim that

an optimal sequence exists such that for every i, pi = βj for some 1 ≤ j ≤ |β|. This
can be shown by a proof similar to that of lemma 1. Thus the problem Basic(k) can be
solved by considering the subproblem A[k′, m] where we must choose a non-increasing
sequence π of k′ prices from the set {β1, β2, . . . βm}, to maximize the profit, and set-
ting the price at the last day to βm. This subproblem can be solved using the following
dynamic program: A[k′, m] = max1≤t<m A[k′ − 1, t] + |B(∅, βm) − B(∅, βt)| · βm.

FPTAS for the Bayesian setting. For the Bayesian (or probabilistic) Basic(k) problem,
we run a similar dynamic program, but the main difficulty for this problem is that the
space of prices is continuous, and we do not have the same set of candidate prices as
we have for the deterministic case. To overcome this issue, we employ a natural idea of
discritizing the space of prices. Then we estimate the expected revenue by a sampling
technique.
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3 The Rapid(k) Problem

As we will see in theorem 2, the Rapid(k) problem is hard to approximate even with
submodular influence functions and probability distributions satisfying the monotone
hazard rate condition. So we consider the Rapid(k) problem with submodular influence
functions and probability distributions satisfying the monotone hazard rate condition,
and buyers have identical initial distributions. For this problem, we present an approx-
imation algorithm whose approximation factor is logarithmic for a constant k and its
approximation factor is constant for k ≥ n

1
c for any constant c > 0 (See Algorithm 1).

Algorithm 1. Approximation algorithm for Rapid(k) problem
1: Compute a price p0 which maximizes p(1 − F0(p)) and let R0 be this maximum value.
2: Compute a price p1/2 such that F0(p1/2) = 0.5.
3: With probability 1

2
, let c = 1, otherwise c = 2.

4: if c = 1 then
5: Set the price to the optimal myopic price of F0 (i.e, p0) on the first time step and terminate

the algorithm after the first time step.
6: else {c = 2}
7: Post the price p1/2 on the first time step.
8: Let S be the set of buyers that do not buy in the first day, and let their optimal revenues be

R1(V − S) ≥ R2(V − S) ≥ . . . ≥ R|S|(V − S).

9: Let pj be the price which achieves Rj(V − S), and Prj be the probability with which j
accepts pj for any 1 ≤ j ≤ |S|. Thus we have Rj(V − S) = pjPrj .

10: Let d1 < d2 < . . . < dk−1 be the indices returned by lemma 6 as an approximation of
the area under the curve R(V − S) maximizing

∑k−1
j=1 (dj − dj−1) · Rdj (V − S).

11: Sort prices
pdj

e
for 1 ≤ j ≤ k − 1, and offer them in non-increasing order in days 2 to k.

12: end if

To analyze the expected revenue of the algorithm, we need the following lemmas:

Lemma 2. Let S be the set formed by sampling each element from a set V indepen-
dently with probability at least p. Also let f be a submodular set function defined over
V , i.e., f : 2V → R. Then we have E[f(S)] ≥ pf(V ) [4].

Lemma 3. If the valuation of a buyer is derived from a distribution satisfying the mono-
tone hazard rate condition, she will accept the optimal myopic price with probability at
least 1/e [4].

Lemma 4. Suppose that f is a probability distribution satisfying the monotone hazard
rate condition, with expected value μ and myopic revenue R = maxp p(1 − F (p)).
Then we have R(1 + e) ≥ μ.

Lemma 5. Let i be the index maximizing iai in the set {a1, a2, . . . , am}. Then we have
iai ≥

∑m
j=1 aj/(�log(m + 1)�).

Lemma 6. For a set {a1 ≥ a2 ≥ . . . ≥ an}, let D = {d1 ≤ d2 ≤ . . . ≤ dk} be the
set of indices maximizing S(D) =

∑k
j=1(dj − dj−1)adj (assuming d0 = 0), over all

sequences of size k. Then we have S(D) ∈ Θ(
∑

i ai

logk n ).
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Proof idea. We present an algorithm that iteratively selects rectangles, such that after
the m-th step the total area covered by the rectangles is at least m/ logn using 4m − 1
rectangles. At the start of the m-th step, the uncovered area is partitioned into 4m−1

independent parts. In addition, the length of the lower edge of each of these parts is
ep which is at most n/(2m−1). The algorithm solves each of these parts independently
as follows. We use 3 rectangles for each part in each step. First, using lemma 5 we
know that we can use a single rectangle to cover at least 1/ log ep of the total area of
part. Then, we cover the two resulting uncovered parts by two rectangles, which each
equally divide the lower edge of the corresponding part.

Theorem 1. The expected revenue of the algorithm 1 is at least 1
8e2(e+1) logk n of the

optimal revenue.

Proof. For simplicity assume that we are allowed to set k + 1 prices. In case c = 1, we
set the optimal myopic price of all players and therefore achieve the expected revenue
of nR0. If c = 2, consider the second day of the algorithm. By lemma 3, we know that
each remaining buyer accepts her optimal myopic price with probability at least 1/e, so
for every j we have Prj ≥ 1/e ≥ Pri/e. In addition, we know that for each j ≤ i,
Rj(V − S) ≥ Ri(V − S) ≥ pi/e. We also know that Rj(V − S) ≤ pj . As a result,
pj ≥ pi/e, for each j ≤ i. Therefore, if we offer the player j ≤ i the price pi/e, she will
accept it with probability at least Pri/e (she would have accepted pj with probability
at least Prj ≥ Pri/e; offering a lower price of pi/e will only increase the probability
of acceptance).

For now suppose that we are able to partition players to k different groups, and offer
each group a distinct price. Ignore the additional influence that players can have on
each other. In that case, we can find a set d1 < d2 < . . . < dk maximizing

∑k
j=1(dj −

dj−1) ·Rdj(V − S). Assume that Di is the set of players y with di−1 < y ≤ di. As we
argued above, if we offer each of these players the price pdi/e, she will accept it with
probability at least Prdi/e. So the expected value of each of the players in Di when
offered pdi/e is at least Prdi/e · pdi/e = Rdi(V − S)/e2. The total expected revenue
in this case will be

∑k
j=1(di −di−1) ·Rdj (V −S)/e2, which, using lemma 6 is at least∑

i Ri(V − S)/(e2 logk n). An important observation is that, if the expected revenue
of a player when she is offered a price p is R, her expected revenue will not decrease
when she is offered a non-increasing price sequence P which contains p . As a result,
we can sort the prices that are offered to different groups, and offer them to all players
in non-increasing order.

Finally, using Lemma 2, and since every player buys at the first day independently
with probability 1/2, we conclude that any buyer i that remains at the second day ob-
serve an expected influence of Ri(V )/2 from all other buyers.

As a result, the expected revenue of our algorithm is nR0/2 (from setting p0 with
probability 1/2 in the first day) plus

∑
i Ri(V ) · (1/8) · (1/(e2 logk n)). Since we set

p1/2 with probability 1/2, a player does not buy at first day with probability 1/2, and we
achieve 1/(e2 logk n) of the value of remaining players in the second day. We also
know that the expected revenue that can be extracted from any player i is at most
E(F0) + E(Fi,V ). Thus, using lemma 4, we conclude that the approximation factor
of the algorithm is 8e2(e + 1) logk n.
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At last, we prove the hardness of the Rapid(k) problem even in the deterministic case
with additive (modular) valuation functions. Specifically, we consider the following
special case of the problem: (i) k = n; (ii) The valuations of the buyers are determinis-
tic, i.e., fi,S is an impulse function, and its value is nonzero only at vi(S); and finally
(iii) The influence functions are additive; ∀i, j, S such that i �= j and i, j /∈ S we have
vi(S∪{j}) = vi(S)+ vi({j}), also each two buyers i �= j, vi({j}) ∈ {0, 1}, and each
buyer has a non-negative initial value, i.e, vi(∅) ≥ 0.

We use a reduction from the independent set problem; We show that using any 1
n1−ε -

approximation algorithm for the specified subproblem of Rapid(k), any instance of the
independent set problem can be solved in polynomial time. We discard details here and
show how to construct an instance of Rapid(k) from an instance of the independent set
problem in the full version.

Theorem 2. The Rapid(k) problem with additive influence functions can not be ap-
proximated within any multiplicative factor unless P=NP.

4 Concluding Remarks

In this paper, we introduce new models for studying the optimal pricing and marketing
problems over social networks. We study two specific models and show a major differ-
ence between the complexity of the optimal pricing in these settings. This paper leaves
many problems for future studies.

– We presented results for myopic buyers, but many problems remain open for strate-
gic buyers. Studying optimal pricing strategies for strategic or patient buyers is an
interesting problem. In fact, one can model the pricing problem for the seller and
the optimal strategy for buyers as a game among buyers and the seller, and study
equilibria of such a game. Two possible models have been proposed in [1,2].

– We studied a monopolistic setting in which a seller does not compete with other
sellers. It would be nice to study this problem in the non-monpolistic settings in
which other sellers may provide similar items over time, and the seller should com-
pete with other sellers to attract parts of the market.
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Abstract. We study the problem of selling an item to strategic buyers in the pres-
ence of positive historical externalities, where the value of a product increases as
more people buy and use it. This increase in the value of the product is the result
of resolving bugs or security holes after more usage. We consider a continuum
of buyers that are partitioned into types where each type has a valuation function
based on the actions of other buyers. Given a fixed sequence of prices, or price
trajectory, buyers choose a day on which to purchase the product, i.e., they have
to decide whether to purchase the product early in the game or later after more
people already own it. We model this strategic setting as a game, study existence
and uniqueness of the equilibria, and design an FPTAS to compute an approxi-
mately revenue-maximizing pricing trajectory for the seller in two special cases:
the symmetric settings in which there is just a single buyer type, and the linear
settings that are characterized by an initial type-independent bias and a linear
type-dependent influenceability coefficient.

1 Introduction

Many products like software, electronics, or automobiles evolve over time. When a con-
sumer considers buying such a product, he faces a tradeoff between buying a possibly
sub-par early version versus waiting for a fully functional later version. Consider, for
example, the dilemma faced by a consumer who wishes to purchase the latest Win-
dows operating system. By buying early, the consumer takes full advantage of all the
new features. However, operating systems may have more bugs and security holes at
the beginning, and hence a consumer may prefer to wait with the rationale that, if more
people already own the operating system, then more bugs will have already been uncov-
ered and corrected. The key observation is, the more people that have already used the
operating system, or any product for that matter, the more inherent value it accrues. In
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1388-2-01).
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other words, the product exhibits a particular type of externality, a so-called historical
externality1.

How should a company price a product in the presence of historical externalities? A
low introductory price may attract early adopters and hence help the company extract
greater revenue from future customers. On the other hand, too low a price will result in
significant revenue loss from the initial sales. Often, when faced with such a dilemma, a
company will offer an initial promotional price at the product’s release in a limited-time
offer, and then raise the price after some time. For example, when releasing Windows
7, Microsoft announced a two-week pre-order option for the Home Premium Upgrade
version at a discounted price of $50; thereafter the price rose to $120, where it has
remained since the pre-sale ended on July 11th, 2009. Additionally, beta testers, who can
be interpreted as consumers who “bought” the product even prior to release, received the
release version of Windows 7 for free (as is often the case with software beta-testers).

We study this phenomenon in the following stylized model: a monopolistic seller
wishes to derive a pricing and marketing plan for a product with historical externalities.
To this end, she commits to a price trajectory. Potential consumers observe the price
trajectory of the seller and make simultaneous decisions regarding the day on which
they will buy the product (and whether to buy at all). The payoff of a consumer is a
function of the day on which he bought the product, the price on that day, and the set of
consumers who bought before him. We compute the equilibria of the resulting sequen-
tial game and observe that the revenue-maximizing price trajectories for the seller are
increasing, as in the Windows 7 example above.

A few words are in order about our model. First, we focus on settings in which the seller
has the ability to commit to a price trajectory. Such commitments are observed in many
settings especially at the outset of a new product (see the Windows 7 example described
above) and have been assumed in prior models in the economics literature on pricing as
well as in other games in the form of Stackelberg strategies [10]. Further, commitment
increases revenue: clearly a seller who commits to price trajectories can extract at least as
much revenue as a seller who does not (or can not). We further observe via example in the
full version of the paper that in fact commitment enables a seller to extract unboundedly
higher revenue than in settings without commitment. Second, we assume a consumer’s
payoff is only a function of past purchases; i.e., consumers have no utility for future
purchases. We motivate this in the Windows 7 example by arguing that bugs are resolved
in proportion to usage rates. Of course, strictly speaking, consumers of Windows 7 benefit
from future purchases as well via software updates and the like. However, this forward-
looking benefit is substantially dampened in comparison to past benefits by safety and
security risks, and time commitments involved in updates. Another justification for our
payoff model comes from consumers’ uncertainties regarding products. In many settings,
consumers have signals regarding the value of a product (say an electronic gadget like
the iPad for example), but do not observe its precise value until the time of purchase. Past
purchases and the ensuing online reviews may help consumers improve their estimates
of their values prior to purchase, an especially important factor for risk-adverse buyers.

1 Note that this is different from the more well-studied notion of externalities in the computer
science literature where a product (e.g., a cell phone) accrues value as more consumers buy it
simply because the product is used in conjunction with other consumers.
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We focus on the non-atomic setting in which we have a continuum of consumers so
that each consumer is infinitesimally small and therefore his own action has a negligi-
ble effect on the actions of others. Consumers are drawn from a (possibly infinite) set
of types. These types capture varying behavior among consumer groups. We study a
sequential game in which the seller first commits to a price trajectory and then the con-
sumers simultaneously choose when and whether to buy in the induced normal-form
game among them. We study subgame perfect equilibria. We first observe that equilib-
ria exist due to a slight generalization of a paper of Mas-Colell [8] (see the full version of
the paper). We then turn to the question of uniqueness. We focus on well-behaved equi-
libria in which consumers with non-negative utility always purchase the product (thus
indifferent consumers purchase the product). In general multiple such equilibria may
exist. However, in an aggregate model in which the value function of each consumer
type depends only on the aggregate behavior of the population (i.e., the total fraction
of potential consumers that have bought the product and not the total fraction of vari-
ous types), then we are able to show that when they exist the well-behaved equilibria
of this game are unique in the sense that the fraction of purchases per-type-per-day is
fixed among all equilibria. This enables us to search for the revenue-maximizing price
trajectory. We address this question in settings in which we either have just one type or
there are multiple types whose valuation functions are linear in the aggregate, both of
which are special cases of the aggregate model discussed above. For each price trajec-
tory, we define its revenue to be the amount of money consumers spend on the product.
We then design an FPTAS to find the revenue-maximizing price trajectory for a monop-
olistic seller in these settings. We do this via a reduction to a novel rectangle covering
problem in which we must find the discounted area-maximizing set of rectangles that
fit underneath a given curve.

As an interesting consequence of our result, we find that the revenue maximizing
price trajectory is an increasing and convex function, matching the intuition that the
seller should attract a few early adopters with a low introductory price and then exploit
the value they add by offering high prices to remaining consumers. We also note that
the distribution of sales in the revenue maximizing equilibrium matches this intuition
as well – it is also increasing and convex.

1.1 Related Work

Our work falls in the long line of literature investigating pricing and marketing of prod-
ucts that exhibit externalities [1,2,3,4,5,6,7,9]. Among these, the paper of Bensaid and
Lesne [2] is most closely related to our own work. Bensaid and Lesne [2] analyzed the
two and infinite period pricing problems in the presence of linear historical externali-
ties and they study equilibria of the induced games both with and without commitment.
They observe, as we do, that optimal price trajectories are increasing. The historical
externalities that we study generalize the externalities of Bensaid and Lesne [2], and in
this more general model, we solve for the optimal price sequence for any fixed number
of price periods. Most of the remaining externalities literature studies externalities in
which consumers care about the total population of users of a product and hence their
utility is affected by future sales as well as past sales. Although the phenomenon stud-
ied is different from ours, some of the modeling assumptions in these papers are similar
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to ours. For example, in the economics literature, Cabral, Salant, and Woroch [3] also
consider a seller that commits to a price trajectory and then observe that the revenue-
maximizing price sequence with fully rational consumers (playing a Bayesian equilib-
rium) is increasing. Similar to our model, they study the pricing problem in the presence
of a continuum of consumers.

In the computer science literature Akhlaghpour et al. [1] and Hartline et al. [5] study
algorithmic questions regarding revenue maximization over social networks for prod-
ucts with externalities. However, their models assume naive behavior for consumers.
Namely, they assume consumers act myopically, buying the product on the first day in
which it offers them positive utility without reasoning about future prices and sales that
could affect optimal buying behavior and long-term utility. Furthermore, Hartline et
al. [5] allow the seller to use adaptive price discrimination. In contrast, we model con-
sumers as fully rational agents that strategically choose the day on which to buy based
on full information regarding all future states of the world and a sequence of public
posted prices. While the correct model of pricing and consumer behavior probably lies
somewhere between these two extremes, we believe studying fully rational consumers
is an important first step in relaxing myopic assumptions.

2 Model

We wish to study the sale of a good by a monopolistic seller over k days to a set
of potential consumers or buyers. We model our setting as a sequential game whose
players consist of the monopolistic seller and a continuum of potential consumers or
buyers b ∈ [0, 1]. In our game, the seller moves first, selecting a price trajectory
p = (p1, . . . , pk) where pi ∈ � assigning a (possibly negative) price pi to each day
i. The buyers move next, selecting a day on which to buy the product given the com-
plete price trajectory, as described below.

The buyers are partitioned into n types T1, . . . , Tn where each Tt is a subinterval
of [0, 1].2 The strategy set A = {1, . . . , k} ∪ {∅} indicates the day on which the prod-
uct is bought (∅ is used to indicate that the product was not purchased). Hence the
strategy profile of the buyer population can be represented by a (k + 1) × n matrix
X = {Xi,t}i=1,...,k+1;t=1,...,n where entry Xi,t indicates the fraction of buyers that
are of type t and buy the product before day i, and we define X1,t = 0 for all t. Note
that by normalization

∑
t Xk+1,t ≤ 1 and 1 −

∑
t Xk+1,t is the fraction of buyers that

don’t buy the product at any time. Corresponding to this matrix X we also define the
marginal strategy profile matrix x = {xi,t}i=1,...,k;t=1,...,n where xi,t = Xi+1,t −Xi,t

is the fraction of buyers who are of type t and buy on day i. In the special case when
there is only 1 type, we use Xi as a scalar to denote the fraction of buyers who bought
before day i and xi as a scalar to denote the fraction of buyers who buy on day i.

Given a strategy profile X , we define the value of buyers of type t buying on day
i by a value function F t

i (Xi) where Xi is the i’th row of X (hence buyers are indif-
ferent to future buying decisions). Note the explicit dependence of F on time, which
allows F t

i (Xi) to be different than F t
j (Xj), for i �= j. The revenue-maximization re-

sults in Section 4 further assume that the dependence of F t
i (Xi) on i is of the form

2 Later, we will generalize this to infinitely many types.
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F t
i (Xi) = βiF t(X) for β ∈ [0, 1]. This special case is of particular interest as the

β factor models settings in which the value degrades over time due to, for example, a
reduction in the novelty of the product.

Given a strategy profile X , the payoff of buyers of type t who buy on day i is defined to
be F t

i (Xi)− pi. We additionally allow buyers to have a discount factor α such that their
payoff is (1 − α)i(F t

i (Xi) − pi). Thus α represents the way in which agents discount
future payoffs with respect to present payoffs. We say that a strategy profile X is a Nash
equilibrium of the induced subgame given by price trajectory p, or equivalently X ∈
NE(p), if for any buyer of type t who buys on day i we have i ∈ arg maxj(F t

j (Xj) −
pj)(1−α)j , and the strategy is ∅ whenever the maximum is negative (in which case the
buyer’s payoff is zero). We call an equilibrium well-behaved if all indifferent buyers buy,
i.e., a buyer does not buy if and only if his payoff (1− α)i(F t

i (Xi)− pi) is negative on
all days 1 ≤ i ≤ k. We say that (p, X) is a (well-behaved) equilibrium if the profile X is
a (well-behaved) Nash equilibrium for the subgame of price trajectory p. Equivalently, a
marginal strategy profile x is a (well-behaved)Nash equilibrium for the subgame of price
trajectory p if for any type t and day i we have xi,t > 0 only if i ∈ arg maxj(F t

j (Xj)−
pj)(1 − α)j and the value of this maximum is non-negative.

Given a price trajectory p and a marginal strategy profile x that arises in the subgame
induced by p, we define the payoff of the seller to be the revenue of x for p, which is
R(p, x) =

∑k
i=1

∑n
t=1 xi,tpi(1−α)i. A subgame perfect equilibrium of the sequential

game is then a price trajectory p∗ and a set of marginal strategy profiles xp for each pos-
sible price trajectory p such that: (1) xp is a Nash equilibrium of the subgame induced
by p, and (2) p∗ maximizes R(p, xp). The outcome of this subgame perfect equilibrium
is (p∗, xp∗) and its revenue is R(p∗, xp∗).

We are interested in computing the outcome in a revenue-maximizing subgame per-
fect equilibrium. To do so, we must compute a price trajectory which maximizes the
revenue of the seller in equilibrium. Note that this is equal to finding the best response
of the seller given the strategies {xp} of the buyers. We solve this problem for special
settings in which there exist revenue-maximizing well-behaved equilibria in NE(p) for
any price trajectory p, allowing us to maximize over them. These settings are as follows.
For the purpose of these definitions, we will allow each buyer to have a unique type and
hence there are infinitely many types. We will use b ∈ [0, 1] to denote type of buyer b.

Definition 1. The Aggregate Model: The value function of each type in this model is a
function of the aggregate behavior of the population and is invariant with respect to the
behavior of each separate type. That is, the value function of buyer b is a function of Xi

only, where Xi is a scalar indicating the total fraction of all buyers who buy before day i.
In this instance, we overload the notation for the value function and let F b

i (Xi) indicate
the value of buyer b (hence F b

i (·) now maps the unit interval to the non-negative reals).

Definition 2. The Linear Model: This is a special case of the aggregate model which is
defined by a function Fi, an initial bias I , and a function C so that the value of buyer
b is F b

i (Xi) = I + C(b) · Fi(Xi). We further define the commonly-known distribution
C : R → [0, 1] such that C(c∗) indicates the fraction of buyers b with C(b) ≤ c∗.

Definition 3. The Symmetric Model: In this version we only have one type, that is,
F b

i = Fi for all b.
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We note that alternatively, one could model this pricing game as a sequential game
with multiple stages where in each day i the seller selects a price pi and then buyers
simultaneously choose whether to buy or not. Such a model is appropriate when it is not
possible for a seller to commit to a price trajectory in advance. Again, in this setting, one
could study the subgame perfect equilibria and analyze the resulting revenue. Clearly
the revenue with commitment is at least as high as that without commitment. Also, there
are examples in which the revenue without commitment can be unboundedly less.

3 Uniqueness of Equilibria

We prove that if there exists a well-behaved equilibrium, that is an equilibrium in which
everyone with non-negative utility buys on some day, then it is unique. We show this
for an infinite number of types in the aggregate model which generalizes both the linear
and symmetric models.

Recall that we allow for each buyer b ∈ [0, 1] to have a unique type in the aggregate
model such that the valuation function of buyer b is F b

i . We will show that in all of
the well-behaved equilibrium points the fraction of people buying on each day is the
same. In turn, it implies that the revenue of all well-behaved equilibrium points is the
same and hence the well-behaved equilibria are revenue-unique. In what follows, we
consider the equilibria of a fixed price sequence p. We start with a definition: Consider
two well-behaved equilibria x and y. Partition the set of k days to two sets as follows:
We call a day i a level 1 day, and denote it by i ∈ D1(x, y), if Xi < Yi. Otherwise, if
Xi ≥ Yi, we call i a level 2 day and denote it by i ∈ D2(x, y).

Lemma 1. Assume that there exist two distinct well-behaved equilibria x and y. Then
there exists a buyer whose strategy in x is a day i such that i ∈ D1(x, y) and whose
strategy in y is j ∈ D2(x, y).

Theorem 1. Let F b
i (X) be a strictly increasing function for each buyer b and day i. For

a price sequence p and two well-behaved equilibrium points x and y, we have Xi = Yi,
i.e. the fraction of buyers who have bought the product before day i is unique.

Proof. Assume for contradiction that we have two well-behaved equilibrium points x
and y and a day i for which Xi �= Yi. Again assume without loss of generality that
Xi < Yi. By lemma 1 we know that there exists a buyer b who buys on a level 1 day in
x and buys on a level 2 day in y. Assume that b buys on day i in x and on day j in y.
Then F b

i (Xi) − pi ≥ F b
j (Xj) − pj and F b

j (Yj) − pj ≥ F b
i (Yi) − pi. Adding the two

inequalities we get: F b
i (Xi) + F b

j (Yj) ≥ F b
j (Xj) + F b

i (Yi). On the other hand since
i is a level 1 day, Xi < Yi; hence by monotonicity F b

i (Xi) < F b
i (Yi). Since j is a

level 2 day, Xj ≥ Yj ; hence F b
j (Yj) ≤ F b

j (Xj). The addition of these two inequalities
contradicts the previous one.

4 Revenue Maximization

In this section, we solve the revenue-maximizing problem in two special cases: the
discounted version of the symmetric model, and the general linear model without dis-
count factors. In both cases, we provide an FPTAS to compute the revenue-maximizing
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price sequence. We do this by first showing that in both cases, the revenue maximiz-
ing equilibria are well-behaved ones, and then considering the problem of maximizing
over well-behaved equilibria. We characterize the set of well-behaved equilibria in each
section, and then use novel reductions of the problem into a new problem, called the
Rectangular Covering Problem (RCP). The RCP is to maximize the discounted area
covered by a certain number of rectangles that are fit under a given curve.

Definition 4. Rectangular Covering Problem (RCP). Given an increasing function F
and an integer k, find a sequence p of size at most k that maximizes the discounted total
area of the rectangles fit under the graph of F , that is, p ∈ arg maxp′

∑
t(F

−1(p′t+1)−
F−1(p′t))p′tγt.

We provide an FPTAS for the RCP in the full version of the paper. Given the reductions
from the revenue maximization problem to rectangular covering problem, this directly
gives us FPTASs for the two versions of the problem.

4.1 Symmetric Setting

We start by characterizing the equilibria. Since all players in this model have the same
valuation function F , the marginal strategy profile matrix will reduce to the vector
x = (x1, . . . , xk). Also, fixing p and x, the utility of buyer b for the item on day i is
F b

i (Xi) = F (Xi)βi(1−α)i−pi(1−α)i, and the revenue R(p, x) =
∑

i xipi(1−α)i.
By renaming qi = pi(1 − α)i and γ = β(1 − α), the utility of buyer b for the item on
day i will be F (Xi)γi − qi, and the revenue becomes

∑
i xiqi. Using this new nota-

tion, we may assume without loss of generality that the only discount factor is γ. For
convenience, we use p for the discounted prices q.

Since we only have one type in this model, we know that the utility of buying in
day i is equal among all players. We use the term utility of a day i, denoted by ui,
for ui = F (Xi)γi − pi. Define u(p, x) = maxi ui. Consider a price sequence and its
equilibrium strategy profile x. We get the following properties immediately from the
facts that players are utility maximizing: (i) players are allowed to choose inaction and
have utility zero, (ii) they choose to buy if there is a day with a strictly positive utility.
First, if there is an i with xi > 0, then u(p, x) ≥ 0 and ui = u(p, x). Second, if there is
a day i with xi > 0, then

∑k
i=1 xi = 1.

Lemma 2. Let p̂ be the revenue-maximizing price vector that results in equilibrium x̂.
Then u(p̂, x̂) = 0.

We use lemma 2 to find a closed form for the revenue of a price sequence. Assume that
there is a price sequence p with equilibrium x and u(p, x) = 0 such that for some day
i, we have xi = 0 and xi+1 > 0. Then we can define a new price sequence p̃ which
is equal to p except that p̃j = pj+1/γ for each j ≥ i. Also define the vector x̃ to be
equal to x except that x̃j = xj+1 for each j ≥ i, and x̃k = 0. One can observe that
the pair (p̃, x̃) is an equilibrium with no less revenue. So we can assume WLOG that
for a revenue maximizing price sequence p̂ associated with x̂, there exists a k′ ≤ k
such that xi �= 0 if and only if i ≤ k′. For such a price sequence, lemma 2 shows that
F (Xi)γi − pi = 0 for each 1 ≤ i ≤ k′. As a result, we have Xi = F−1(pi/γi), which
is well-defined as F is increasing. Now set p′t = pt/γt. The fraction of people buying
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on day i and paying price pi is equal to xi = F−1(p′i+1) − F−1(p′i). So the revenue
is
∑

i xipi =
∑

i(F
−1(p′i+1) − F−1(p′i))p

′
iγ

i. The revenue maximization problem
therefore reduces to the rectangular covering problem.

4.2 Linear Version

Similar to the symmetric model, we reduce the linear model to rectangular covering
problem by first characterizing the set of well-behaved equilibria. The sketch of this
more technical proof is as follows. We show that in each equilibria all the purchases
are sorted by the Cb coefficient, i.e., a player with a lower Cb buys earlier than one
with higher such coefficient. We then argue that each equilibria is characterized by a se-
quence of thresholds (s1, s2, . . . , sk) such that each person b with Cb ∈ [si−1, si] buys
in day i. The problem is then to optimize the sequence (s1, s2, . . . , sk) to maximize
revenue. Using this characterization, we provide a closed form of the optimum revenue
in the following lemma.

Lemma 3. If x and p correspond to the revenue-maximizing equilibrium, the total rev-
enue can be expressed by the following formula R(p, x) = I+

∑k
i=2(1−Xi)C−1(Xi)×

(F (Xi) − F (Xi−1)).

We then show how this problem can be reduced to RCP in the following lemma.

Lemma 4. The problem of maximizing
∑k

i=2(1 − Xi)C−1(Xi)(F (Xi) − F (Xi−1))
can be reduced to the Rectangular Covering Problem.
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Abstract. We study safety level coalitions in competitive games. Given a nor-
mal form game, we define a corresponding cooperative game with transferable
utility, where the value of each coalition is determined by the safety level payoff
it derives in the original—non-cooperative—game. We thus capture several key
features of agents’ behavior: (i) the possible monetary transfer among the coali-
tion members; (ii) the solidarity of the outsiders against the collaborators; (iii) the
need for the coalition to optimize its actions against the worst possible behavior
of those outside the coalition. We examine the concept of safety level coopera-
tion in congestion games, and focus on computing the value of coalitions, the core
and the Shapley value in the resulting safety level cooperative games. We provide
tractable algorithms for anonymous cooperative games and for safety level co-
operative games that correspond to symmetric congestion games with singleton
strategies. However, we show hardness of several problems such as computing
values in games with multi-resource strategies or asymmetric strategy spaces.

1 Introduction

Game theory analyzes interactions of selfish rational agents. An agent may not follow
a “prescribed” behavior if deviating from it improves its utility, so stable outcomes
are central in game theory. In non-cooperative games, where agents take individual ac-
tions, the prominent stability concept is the Nash equilibrium—a strategy profile where
no agent has a beneficial unilateral deviation. However, it does not take into account
collective deviations by groups of agents; The strong equilibrium [2]—a strategy pro-
file with no profitable agent subset deviations—extends Nash equilibrium to coalitions.
Cooperative games consider how coalitions of agents cooperate, focusing on how the
utility is distributed among the agents. In a non-cooperative game, agents act indepen-
dently based on their individual interests. In many scenarios traditionally modeled as
non-cooperative games (e.g., auctions, network and congestion games), a coalition can
jointly decide on a collective action and make monetary transfers to share the gains. This
requires applying tools from cooperative game theory to such domains. Hayrapetyan et
al [10] modeled coalitions in congestion games. In a congestion game [15], a set of
agents shares a set of resources, and an agent’s strategy is to choose a subset of re-
sources to use to minimize the sum of congestion-dependent costs over its selected
resources. In [10], the authors assume that agents may collude to maximize their col-
lective welfare. Their model allows monetary transfers but uses a different perspective

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 432–443, 2010.
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than cooperative game theory, focusing on the negative effect of collusion on the social
welfare. Other papers examine coalition formation in multi-unit auctions [3], assuming
non-colluders bid truthfully or fostering cooperation through external subsidies [4,14].

In contrast, we study safety level coalitions in competitive games. As opposed to
standard cooperative games, the utility of a coalition depends not only on the action
the members take, but also on the actions taken by the non-members. In the worst case,
the outsiders may “punish” the coalition members and take actions that minimize the
collaborators’ utility. A coalition then may decide to maximize its total) utility under the
worst case action of the non-members—we call this a joint safety level strategy. In our
model the collaborators are “good” to each other by coordinating actions and sharing
gains and the non-collaborators are “bad” adversaries who reduce the collaborators’
utility. If the collaborators adopt this view of non-collaborators as adversaries, they must
be “cautious” and prepare for the worst-case choice of the non-collaborators, using their
joint safety level strategy. To do this, they can agree on monetary transfers through an
enforceable contract for distributing the gains. Solution concepts such as the core [9]
and the Shapley value [18] can be used to predict what transfers would occur. Several
works [7,8,21,5] consider computing the core and Shapley value in various domains.

We examine safety level cooperation in congestion games. These games where self-
ish agents choose from a common set of resources and derive individual utilities that
depend on the total congestion on each resource, are fundamental to many applications
[13,15,16]. Such games have Nash equilibria in pure strategies [15], and some restricted
classes have strong equilibria in pure strategies [11,17]. Recent work focuses on spe-
cific subclasses that are computationally tractable [1,12]. One subclass which we also
examine is resource selection games, where each agent chooses a single resource.

We distinguish between symmetric settings where agents choose strategies from a
common space, and asymmetric ones where each agent has its own collection of strate-
gies. While in the non-cooperative context, both symmetric and asymmetric models are
anonymous, asymmetric models lose anonymity when monetary transfers are allowed.
For anonymous settings, we show that testing core emptiness, constructing a core im-
putation and testing whether an imputation is in the core are in P when the computation
of the coalitional values in the game is in P ; we also show that the Shapley value is in
the core if it is not empty, and can be computed in polynomial time. These results hold
for all anonymous cooperative games1—not only those based on safety level coalitions.
For congestion games, we show that computing a coalition’s value is in P for single-
ton strategies and NP-hard for multiple-resource strategies, while for non-anonymous
settings computing the value of even a singleton or the grand coalition are NP-hard.

1.1 Preliminaries

A non-cooperative game in normal form is given by an agent set N = {1, . . . , N}, and
for each agent i ∈ N, a strategy space Si of its pure strategies and a payoff function
Ui : ×i∈NSi → R specifying the reward an agent gets. Denote by SC the set of
partial strategy profiles of a subset of agents C ⊆ N, and by S−C = SN\C the set

1 Not to be confused with the anonymity-proof solutions [20] which are robust under “false
name” manipulations. We refer to games where the characteristic function is not “sensitive” to
the agents’ identities so equal size coalitions get equal values.
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of strategy combinations of all the agents outside C; for a single agent i ∈ N, denote
S−i = SN\{i}. A strategy profile s ∈ S is a Nash equilibrium if for each agent i ∈ N
and for each its strategy s′i ∈ Si the following holds: Ui(s) ≥ Ui(s−i, s

′
i). A strategy

profile is a strong Nash equilibrium if it is stable against deviations by coalitions: for
any C ⊆ N and s′C ∈ SC , there exists i ∈ C such that Ui(s) ≥ Ui(s−i, s

′
i). The safety

level strategy for agent i ∈ N, sSL
i , is the strategy maximizing its guaranteed utility,

no matter what the other agents play: sSL
i ∈ argmaxsi∈Si mins−i∈S−i Ui(si, s−i).

Some utility functions ignore the identities of the agents, and only take into account
the number of times each strategy is played. Settings where identities are irrelevant
are anonymous . Given a set of strategies S = {1, . . . , S}, a strategy s ∈ S and an
agent i ∈ N, the utility of i playing s in an anonymous maps the set of partitions{
(x1, . . . , xS) |xj ∈ {1, . . . , N},

∑S
j=1 xj = N − 1

}
to real numbers. A related im-

portant subclass is symmetric games, where the payoffs for playing a particular strat-
egy are the same for different agents and depend only on the other strategies em-
ployed, so one can change the identities of the agents without changing the payoffs
to the strategies. A game with strategy spaces S1 = . . . = SN = S is symmetric if
for any permutation π over N and agent i ∈ N, we have Ui (s1, . . . , si, . . . , sN ) =
Uπ(i)

(
sπ(1), . . . , sπ(i), . . . , sπ(N )

)
, where sj = sπ(j) for j = 1, . . . , N .

A transferable utility cooperative game has a set N of N agents, and a characteristic
function v : 2N → R mapping any subset (coalition) of agents to a real value, indicating
the total utility these agents achieve together. We denote all agents except i as N−i =
N \ {i}. A coalitional game is monotone if v(C′) ≤ v(C) for any C′ ⊆ C.

The characteristic function only indicates the total gains a coalition can achieve, but
does not specify how these gains are distributed among the agents who formed it. An
imputation (p1, . . . , pN ) defines a division of the gains of the grand coalition among its
agents, where pi ∈ R, such that

∑N
i=1 pi = v(N). We call pi the payoff of agent i, and

denote the payoff of a coalition C as p(C) =
∑

i∈C pi. A basic requirement for a good
imputation is individual rationality: for any agent i ∈ N, pi ≥ v({i}) (otherwise, this
agent is incentivized to work alone). Similarly, we say a coalition B blocks imputation
(p1, . . . , pN) if p(B) < v(B). If a blocked payoff vector is chosen, the coalition is
somewhat unstable. The most prominent solution concept based on such stability is
the core [9]. The core is the set of all imputations (p1, . . . , pN ) not blocked by any
coalition, so that for any coalition C ⊆ N holds p(C) ≥ v(C).

Another solution concept is the Shapley value [18] which focuses on fairness It ful-
fills several important fairness axioms [18] and has been used to fairly share gains or
costs. It depends on the agent’s marginal contribution to possible coalition permutations.
We denote by π a permutation (ordering) of the agents, and by Π the set of all possi-
ble such permutations. Given a permutation π = (i1, . . . , iN ) ∈ Π , the marginal worth
vector, mπ(v) ∈ RN , is defined by mπ

i1 = v ({i1}) and mπ
ik

(v) = v ({i1, i2, . . . , ik})−
v ({i1, i2, . . . , ik−1}) for k > 1. The convex hull of all the marginal vectors is called
the Weber Set, and contains the game’s core. The Shapley value is the centroid of the
marginal vectors: φ(v) = 1

N !

∑
π∈Π mπ(v).

We analyze the core and the Shapley value of cooperative games that arise when
considering safety-level coalitions in a given non-cooperative setting, and demonstrate
this approach on congestion games. In a congestion game (CG) [15], every agent has
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to choose from a finite set of resources. The utility of an agent from using a particular
resource depends on the number of agents using it, and its total utility is the sum of
utilities on its used resources. Formally, a congestion game Γ =

(
N,R, (ur(·))r∈R

)
is described by the following components: a set N = {1, . . . , N} of agents; a set R =
{r1, . . . , rR} of resources; an assignment ur : {1, . . . , N} → R, r ∈ R, of resource
utility functions, where for any resource r ∈ R, ur(k) is the resource utility (cost) for r
when the total number of users of r is k. Each agent i is allowed to choose a (non-empty)
bundle of resources B ⊆ 2R, from a certain set Si = {Bi

1, . . . , B
i
Si
} of allowed bundles

(where each Bi
j ⊆ R). We denote by si ∈ Si the strategy (set of resources) chosen by

agent i. Every N -tuple of strategies—a strategy profile—s = (si)i∈N corresponds to
an R-dimensional congestion vector h(s) = (hr(s))r∈R where hr(s) is the number
of agents who select resource r (we simply write hr when it’s clear what profile we
refer to). The utility of i from s is: Ui(s) =

∑
e∈si

ur(hr(s)). A congestion game is
a resource selection game (RSG) if the strategy space of every agent corresponds to a
set of singletons. That is, agent i chooses a single resource from the given set, and its
payoff from a strategy profile s = (si)i∈N is given by Ui(s) = usi (hsi(s)).

Remark 1. In a congestion game an agent’s utility only depends on the numbers of
agents choosing each resource but not on their identities, so congestion games are
anonymous. Since the utility from each resource is the same for each of its users, the
utility any agent gets from a particular strategy depends only on the other strategies
selected, but not on who has chosen them. Thus a congestion game is symmetric if (and
only if) all agents in the game have identical strategy spaces. We refer to symmetric
congestion and resource selection games as SCGs and SRSGs, respectively.

Congestion games always have a pure strategy Nash equilibrium [15]. Resource selec-
tion games with monotone utility functions also admit strong equilibria [11]. In fact, in
RSGs with decreasing utilities, any Nash equilibrium is strong. However, we show that
coalitional stability is no longer guaranteed if utility transfers are allowed.

2 Safety Level Cooperative Games

Let Γ =
(
N, (Si)i∈N , (Ui)i∈N

)
be a normal-form game, where N is the agent set,

and Si and Ui denote, respectively, strategy spaces and utility functions of individual
agents. We are interested in scenarios where it makes sense to the agents to form coali-
tions and coordinate their actions to optimize their collective gains and take a safety
level approach to analyzing gains of a coalition. We assume that the coalition members
attempt to maximize the minimal utility they would get under any strategy choices of
the non-members. We model coordination in the underlying normal-form game as a
coalitional game, where coalitional values are determined by the safety-level payoffs of
each coalition. We first extend the notion of a safety level to coalitional payoffs.

For coalition C ⊆ N and strategy profile s = (si)i∈N, let UC(s) =
∑

i∈C Ui(s)
be the total utility C achieves under s. The coalition’s utility depends not only on the
strategies chosen by its members, but also on the choices of the non-members. Let
B = N \C denote the set of non-members. A profile s can be written as s = (sB, sC),
where sC = (si)i∈C and sB = (sj)j∈B are partial strategy profiles. Given the non-
members’ strategy sB , the coalition could optimize for the total value it can achieve,
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by choosing s∗C ∈ arg maxsC∈SC UC(sB , sC), where SC = ×i∈CSi is the set of
coalitional strategies of C. This choice maximizes C’s utility for a specific strategy
profile of B. What should coalition C do without knowing how the non-members would
behave? Staying on the “safe” side, C can optimize the utility guaranteed to it, no
matters what the outsiders do, by maximizing its safety level, the worst case utility
the coalition obtains under all possible actions of the non-members. The safety level
of C when it chooses sC is: USL

C (sC) = minsB∈SB UC(sB, sC), and the safety level
strategy of a coalition C is the coalitional strategy s∗C ∈ SC that maximizes the safety
level:

s∗C ∈ arg max
sC∈SC

USL
C (sC) = arg max

sC∈SC

(
min

sB∈SB

UC(sB, sC)

)
The safety level value of C is its minimal utility when using its safety level strategy:

U∗
C = min

sB∈SB

UC(sB , s∗C) = max
sC∈SC

(
min

sB∈SB

UC(sB, sC)

)
A coalition’s safety level value is the utility it can guarantee as a whole when its

members cooperate. A key challenge is determining how the members would share this
value. To answer this, we define a safety level cooperative game (SLC-game) for Γ :

Definition 1 (Safety Level Cooperative Game). Given a (normal-form) game Γ =(
N, (Si)i∈N , (Ui)i∈N

)
with agent set N, strategy space Si and utility function Ui for

each i ∈ N, the induced safety level cooperative game (SLC-game) is a cooperative
game over the same set N of agents, where the characteristic function is the safety level
value of coalitions in Γ : for each C ⊆ N, v(C) = U∗

C .

We write SLCΓ to indicate that an SLC-game is induced by a game Γ . Regardless of
their underlying games Γ , all SLC-games have the following property:

Lemma 1. The SLC-games are monotonically increasing.

Proof. We need to show that for any C′, C such that C′ ⊆ C we have v(C′) ≤ v(C).
Intuitively, as C includes more agents than C′ and the agents in D = C\C′ are coalition
members for C and outsiders for C′, so they “help” the members of C and “punish” the
members of C′. Hence, the safety level value of a larger coalition is greater then that of
a smaller one. Formally, denote B = N \ C, so N \ C′ = B ∪ D. We have:

v(C′
)=U∗

C′ = max
sC′∈SC′

(
min

sB∪D∈SB∪D

UC′(sB∪D, sC′)

)
≤ max

sC′∈SC′

(
min

sB∈SB

UC′(sB, sD, sC′)

)

≤ max
sC′∈SC′

(
min

sB∈SB

UC(sB, sD, sC′)

)
≤ max

sC∈SC

(
min

sB∈SB

UC(sB, sC)

)
= U∗

C′ = v(C)

2.1 Safety Level Coalitions in Congestion Games

We analyze safety level coalitions in congestion games and resource selection games.
We make a distinction between symmetric settings where agents derive strategies from
a common space, and asymmetric settings where each agent has its own collection
of strategies. While in the non-cooperative context both symmetric and asymmetric
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models are anonymous, asymmetric models lose anonymity under monetary transfers.
We show anonymous and non-anonymous SLC-games differ computationally.

Consider a congestion game with agents N and resources R with resource utility
functions ur(·) for r ∈ R, and a coalition C ⊆ N. For any strategy profile s =
(si)i∈N, the congestion on each resource is h(s) = (hr(s))r∈R, and we can compute
the utility Ui(s) for each agent i. C’s total utility under s is UC(s) =

∑
i∈C Ui(s) =∑

i∈C

∑
r∈si

ur (hr(s)). Denote the number of C’s members who use a resource r at a
strategy profile s as hC

r (s) = |{i ∈ C|r ∈ si}|. We can write: UC(s) =
∑

r∈R hC
r (s) ·

ur (hr(s)). The coalitional value of C in the corresponding SLC-game is:

v(C) = U∗
C = max

sC∈SC

(
min

sB∈SB

∑
r∈R

hC
r (s) · ur (hr(s))

)
Recall our notation of (S)CG and (S)RSG for (symmetric) congestion and resource

selection games. Note that SRSGs ⊆ RSGs ⊆ CGs and SRSGs ⊆ SCGs ⊆ CGs.
Similar inclusions hold for the corresponding safety level game classes.

2.2 Anonymous Cooperative Games

We consider the properties of SLC-games induced by symmetric congestion games,
where all agents use a common set of strategies. We start with Lemma 2 showing that
these games satisfy anonymity. We say a cooperative game is anonymous if any two
agents are equivalent—i.e., for every two agents i �= j and any coalition C such that
i /∈ C and j /∈ C we have v(C ∪ {i}) = v(C ∪ {j}).
Lemma 2. All SLCSCG-games are anonymous.

Proof. Consider a coalition C that contains neither i nor j. Since both i and j have iden-
tical strategy spaces, we get the same sets for min and max operators when computing
coalitional safety level values of C ∪ {i} and C ∪ {j}.

In anonymous games the Shapley value can be found in polynomial time and is in the
core when it’s not empty (proofs omitted for lack of space).

Lemma 3 (Core of Anonymous Games). Let v be an anonymous cooperative game
over N agents N, with a non-empty core. Denote q = v(N)

N . Then the symmetric payoff
distribution (q, q, . . . , q) is an imputation in the core.

Lemma 4 (Shapley Value of Anonymous Games). Let v be an anonymous coopera-
tive game over N agents N. Denote q = v(N)

N . Then the Shapley value is the symmetric
payoff distribution (q, q, . . . , q). If the core exists, then the Shapley value is in the core.

Lemmas 3 and 4 require the non-emptiness of the core. Some safety level games have
empty cores (see Examples 1 and 2 below). Empty cores can occur even among the
restricted class of SLC-games induced by symmetric, monotone resource selection
games, which always possess strong equilibria, highlighting the difference between the
cooperative safety level cooperative game’s core and strong equilibrium.

In an anonymous game all agents are equivalent so the value of a coalition only
depends on the number of agents in the coalition and not their identities. Thus, we can
write the characteristic function v as a function mapping the size of a coalition to its
value, so v : {0, 1, . . . , N} → R. We use the standard convention that v(0) = 0.
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Example 1 (there are SLCCG-games with non-empty core). Consider a SLCSRSG-
game with N agents and R resources with identical, constant resource utility functions
ur(k) = x ∈ R for any r ∈ R, k = 1, . . . , N . This game has a non-empty core.

Proof. Note that the value of any coalition in this domain, no matter what the non-
members do, only depends on the size of the coalition, so v(k) = xk. Thus, the simple
payoff vector p = (x, . . . , x) is in the core, since given any coalition C of size |C| we
have p(C) = x|C| = v(C), and all the core conditions hold.

Example 2 (SLCSRSG-games may have empty core). Consider an SLCSRSG-game
with N = 3 agents and two resources {a, b} with identical resource utility functions
ur(1) = 2; ur(2) = ur(3) = 1 for r = a, b. The core of this game is empty.

Proof. We have v(0) = 0. Now compute v(1), the safety level of a single agent (out
of 3 agents). No matter which resource, a or b, the agent chooses, the worst case out-
come is when the other 2 agents also choose the same resource, giving the agent a
utility of ur(3) = 1; thus, we have v(1) = 1. Now consider the safety level of 2
agents. They can either choose to both use the same resource, or to each use a different
resource. If they both are on the same resource, the worst case action of the remain-
ing agent is to also join that resource, and the utility of the coalition is 2ur(3) = 2.
If the collaborators choose different resources, any choice of the remaining agent re-
sults in having 2 agents (one member and one non-member of the coalition) on one
resource and a single coalition member on the other resource, resulting in a utility
of ur(2) + ur(1) = 2 + 1 = 3 for the coalition. Thus, the safety level of any pair
of agents is v(2) = 3. A coalition of 3 agents is the grand coalition, whose best
choice is to assign 2 agents on one resource, and 1 agent on the other resource, and
so v(3) = ur(1) + 2ur(2) = 2 + 2 = 4. Thus, the characteristic function of this
SLC-game is given by v(0) = 0, v(1) = 1, v(2) = 3, v(3) = 4. Due to Lemma 3, if
the game has a non-empty core, the imputation p = (4

3 , 4
3 , 4

3 ) should be in the core.
However, under this imputation the payoff for any two agents is less than the value of a
coalition of the pair: i.e., p({1, 2}) = 8

3 , but v({1, 2}) = v(2) = 3 > 8
3 = p({1, 2}),

which violates the core constraints. Hence, the core is empty.

Moreover, restricting or expanding the sets of the agents’ allowed strategies may cause
the core to change from being empty to being non-empty and vice versa:

Example 3 (Strategy Sets and the Core). Consider the game with 3 agents and 2 re-
sources {a, b} from the previous example, where the resource utility function is given
by ur(1) = 2; ur(2) = ur(3) = 1 for r = a, b. The core of this game is empty. Now
add a third resource c with a constant utility of uc(k) = 10 for k = 1, 2, 3, and expand
each agent’s strategy set to allow selecting {c}. The resulting game is anonymous, with
characteristic function v(1) = 10, v(2) = 20, v(3) = 30, and its core is not empty: the
imputation p = (10, 10, 10) is in the core. On the other hand, if we take this new game,
and restrict each agent’s strategy set to allow selecting only {a} or {b}, we obtain the
original game with an empty core. Thus, extending strategy sets makes the core non-
empty, and restricting them may empty it. Now, consider the game with 3 resources
{a, b, c}, where again ur(1) = 2; ur(2) = ur(3) = 1 for r = a, b, but uc(k) = 0.1 for
k = 1, 2, 3. If the agents are restricted to choosing only c, i.e. S1 = S2 = S3 = {{c}},
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we have an anonymous game where v(1) = 0.1, v(2) = 0.2, v(3) = 0.3 which has a
non-empty core as p = (0.1, 0.1, 0.1) belongs to it. If we extend the strategy sets to
also include a and b, so that S1 = S2 = S3 = {{a}, {b}, {c}}, we get the game where
v(1) = 1, v(2) = 3, v(3) = 3, whose core is empty. Thus, extending strategy sets may
make the core empty, and shrinking them makes it non-empty.

Remark 2. Based on the above examples, one can see that the non-cooperative and co-
operative concepts of coalitional stability are rather different. While strong Nash equi-
libria always exist for (monotone) resource selection games, the core of their corre-
sponding SLC-games may be empty. The reason for that is the following: while for any
coalition there could be no deviation guaranteeing a better payoff to any of the devi-
ators, there might exist a coalition that can improve its total welfare—that is, even if
some agents may obtain worse individual utilities after the deviation, this loss will be
covered by the gains their co-deviators get.

In light of the above observations, testing the (non-)emptiness of the core in safety level
cooperative games is an important issue. It follows from the next Theorem 1 regarding
anonymous cooperative games, that for SLCSCG-games this can be done efficiently
if the computation of coalitional values is easy; moreover, in this case, the construc-
tion of a core imputation and verification if a given imputation is in the core are also
computationally efficient:

Theorem 1 (Core Computation in Anonymous Games). In anonymous cooperative
games, if computing the value of any coalition can be performed in polynomial time,
then the following problems are in P : testing for core emptiness, constructing a core
imputation (if one exists) and testing if an imputation p is in the core.

Proof. In anonymous games the characteristic function is given as v : {0, 1, . . . , N} →
R—the function that maps the size of a coalition to its value. This representation is sim-
ply a table, containing N numbers: therefore, if computing the value of each coalition
can be performed in polynomial time, then finding the characteristic function is also so.

To fulfill the core constraints, the following must hold for an imputation p:
∑N

i=1 pi

= v(N) = v(N), and ∀C, p(C) ≥ v(C). Consider testing whether an imputation
p satisfies this. It is easy to check if

∑N
i=1 pi = v(N) = v(N). However, testing

the condition ∀C, p(C) ≥ v(C) seemingly requires 2N similar tests. Order the agents
according to their payment, so that pi1 ≤ pi2 ≤ . . . ≤ piN . Denote by Ck the coalition
C = {i1, i2, . . . , ik}. Note that if the core constraint p(C) ≥ v(C) holds for Ck =
{i1, i2, . . . , ik}, it must also hold for any coalition of size k, as Ck is the minimally paid
coalition of size k. Thus, to test if p is a core imputation, it is enough to test whether
p(Ck) ≥ v(Ck) for k ∈ {1, 2, . . . , N}. If the core constrains hold for all C1, . . . , CN ,
they hold for any coalition C, and if they do not, we have a violated constraint. Since
there are only N such checks, this can be done in polynomial time.

Now consider testing for core-emptiness and constructing a core imputation. Due to
Lemma 3, if the core is non-empty, the symmetric imputation (q, q, . . . , q) where q =
v(N)

N must be in the core. Since q can be computed in polynomial time, this imputation
can also be computed in polynomial time. We can then test whether it is in the core. If
it is in the core, we have a core imputation, otherwise the core is empty.
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The computation of coalition values in SLC-games, can be difficult as the safety level
strategies of the agents are not even robust to small changes of game parameters. For
instance, we show that even changing only the total number of agents can result in very
different safety level strategies, even in simple anonymous settings.

Example 4 (Number of Agents and Safety Level Strategies). Consider an SLCSRSG-
game with two resources {a, b} with resource utility functions given by ua(k) = ε for
k = 1, . . . , 5 an a small positive ε, and ub(k) = 1 ∀k = 1, . . . , 4, ub(5) = 0. Assume
there are N = 4 agents playing the game and compute the value of a coalition C of
3 agents (out of 4). Since ub(·) is constant up to congestion of 4, any agent in C who
choses b is guaranteed a utility of 1 on that resource. On the other hand, any agent in
C who chooses a only gets a utility of ε on that resource. Thus v(3) = 3 · 1 = 3,
and the safety level strategy of C is to have all its agents choosing the resource b.
Now, consider the same resources and resource utility functions when there are N = 5
agents, and consider again a coalition C of 3 agents. If C places all agents in b, a
possible strategy for the remaining 2 agents is to both join b, resulting in a total utility of
3ub(5) = 3 ·0 = 0 for the coalition. Alternatively, the coalition can have 2 agents using
a and 1 agent using b. For this strategy in SC , any strategy in SN\C of the remaining
2 agents results in all agents on a getting a utility of ε and all those on b getting 1,
resulting in a total coalitional utility of 1 · ε + 2 · 1 = 2 + ε. This is the safety level
strategy for the coalition C, so v(3) = 2 + ε.

However for SLCSRSG-games we can compute a coalition’s value in polynomial time:

Theorem 2. For SLCSRSG-games, computing safety level strategies is in P .

Proof. We provide a dynamic programming algorithm. Given an SLCSRSG-game with
R resources, for any k = 1, . . . , R let vk denote the k-subgame, played on the first k
resources: that is, vk is the restriction of the original game where the agents are only
allowed to select one of the first k resources—i.e., for each i ∈ N we have Si =
{r1, r2, . . . , rk} ⊆ R. Note that vk is also an SLCSRSG-game. We denote by vi,j,k the
value of a coalition of i agents in the k-subgame with i+ j agents: to compute vi,j,k we
must find a safety level strategy for a coalition of i agents when there are additional j
non-members, and the agents are only allowed to select one of the first k resources. We
prove that the following recursive formula holds:

vi,j,k = max
p∈{1,2,...,i}

(
min

q∈{1,2,...,j}
(vi−p,j−q,k−1 + p · uk(p + q))

)
Consider a coalition C of i agents who use the safety level strategy in the (k − 1)-

subgame with additional j agents. The coalition assigns cx agents to use resource x

(where x ≤ k − 1), so that
∑k−1

j=1 cx = i. The worst case response of the non-members
in this subgame is assigning bx resources to use resource x, (where x ≤ k − 1), so that∑k−1

j=1 bx = j. We can describe a strategy for C in the k-subgame in terms of moving
some p agents from the first k − 1 resources and assigning them to the resource k. Any
strategy for C in the k-subgame can be described as having p ≤ i coalition members
using resource k, and a partition of the i−p remaining agents to the first k−1 resources
(which is a strategy for a coalition C′ of i − p agents in the k − 1-subgame), for some
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choice of p ≤ i. Each such a partial strategy profile sC implies a response from the non-
members N \ C which similarly can be described as a choice of q ≤ j non-members
using resource k and a partition of the j − q remaining non-members to the first k − 1
resources (which corresponds to a strategy profile of a non-member agent set B′ of
j − q agents in the k − 1-subgame). The safety level strategy for a coalition C in the k-
subgame is therefore a composition of the safely level strategy for a coalition of |C|−p
in the k − 1-subgame and p agents using resource k for some p ≤ |C|.

By Theorems 1 and 2, for SLCSRSG-games we can efficiently test core non-emptiness,
construct a core imputation or check if an imputation is in the core. These results do not
extend to all SLC(S)CG-games. When agents are allowed multiple-resource strategies
(even if derived from a common set), computing coalitional values is hard.

Theorem 3. Computing the value of a coalition in SLCSCG-games is NP-hard.

Proof. We reduce from Exact-Cover-By-3-Sets (X3C). Consider an X3C instance, with
a set S = {1, 2, . . . , 3m} of 3m elements, and triplets S1, . . . , Sn where Si ⊂ S and
|Si| = 3. We are asked whether there is an exact cover of S that uses exactly m (disjoint)
triplets. We construct an SLCSCG-game, where each element r ∈ S corresponds to
a resource r (that is, S corresponds to R), where each resource r’s utility function
satisfies ur(1) = 1; ur(k) = 0 for k ≥ 2. The SLCSCG-game has N = m agents,
and an agent is allowed to choose any resource triplet, Sj , from the given collection of
triplets—that is, the strategy space of any agent i is given by Si = {S1, . . . , Sn}. This
is an anonymous game. Let v(N) be the value of the grand coalition. We show that if
the X3C is a “yes” instance, v(N) = 3m and if it is a “no” instance then v(N) < 3m.
Suppose the X3C is a “yes” instance, and let Si1 , Si2 , . . . , Sim be the triplets in the
exact cover. Let agent x choose the resources in Sx (for x ∈ {1, . . . , m}). Since S is an
exact cover, each resource r is selected exactly once, so v(N) = 3m. On the other hand,
if the X3C is a “no” instance, any choice of m (or more) triplets Si1 , . . . , Sim results in
choosing at least one of the resources, r, more than once. Thus, the congestion on this
resource results in a utility of 0 for all agents using it, so v(N) < 3m.

2.3 Non-anonymous Settings

We now turn to consider general, asymmetric settings where agents may have differ-
ent strategy spaces. First, we observe that though these settings are anonymous in the
original—non-cooperative—context, their corresponding SLC-games are not such:

Lemma 5. The SLCCG-games are, in general, non-anonymous.

Proof. To see this, consider a single agent i that has an exclusive right to use a special
resource rewarding its user with a very high utility, H . Any coalition C that includes i
guarantees itself a utility of at least H , regardless of what the rest of agents do, while
any C \ {i} ∪ {j}, j ∈ N \ C, cannot achieve this value.

Next, we show that losing anonymity results in high complexity of computing safety
level values even for “degenerate” coalitions consisting of only a single agent:

Theorem 4. Computing values of singleton coalitions in SLCCG-games is coNP-hard.



442 Y. Bachrach, M. Polukarov, and N.R. Jennings

Proof. We reduce from dominating-set (DS). In DS, we are given a graph G = 〈V, E〉,
and have to decide if there is a dominating vertex set of size at most K . In a dominating
vertex set V ′ ⊂ V for every v ∈ V either v ∈ V ′ or (u, v) ∈ E for some u ∈
V ′. Denote |V | = m. We create an SLCCG-game instance as follows: The resources
correspond to the vertices V , and we add a resource, r∗ (so, R = m+1). The congestion
function for resources r ∈ V is given by ur(1) = H where H > 3m is a very high
value; ur(k) = 0 for k ≥ 2, and for the “special” resource we have ur∗(k) = 2m−k+1
for k = 1, . . . , m + 1; ur∗(k) = 0 for k ≥ m + 2. For any vertex resource r ∈ V we
define an agent av, who can choose any single resource which is a neighbour of v or
resource r∗, so Sav = {{u} |u ∈ V, (u, v) ∈ E} ∪ {{r∗}}. There is also additional
agent, a∗, whose only strategy is to select all the resources, so Sa∗ = {R = {v | v ∈
V }∪{r∗}}. Since a∗ must use its only strategy, the value it obtains depends only on the
choices of the other agents. If in a strategy profile s, a∗ there exists a vertex resource r
so that a∗ is its only user, then a∗ obtains a value of at least H from s. Thus, to minimize
a∗’s utility, each of the vertex resources must be used by some other agent. If there is no
dominating set of size K , this requires more than K other agents, so at most m−K−1
other agents can use r∗ in such a profile, so v({a∗}) ≥ 2m−(m−K−1) = m+K+1.
If there is a K dominating set, the K outsiders can choose this dominating set, so a∗

obtains a utility of 0 from the vertex resources, and having m − K outsiders on r∗

results on the utility of 2m− (m−K) = m+K for a∗ from r∗, so v({a∗}) = m+K .
Thus, v({a∗}) > m + K iff the DS instance is a “no” instance.

In non-anonymous settings even equal size coalitions may have different values. While
by Theorems 3 and 4 computing coalition values is hard, one may seek the maximal
value of coalitions of size (at most) k, where 1 ≤ k ≤ N . We show this is also hard.

Theorem 5. Finding the value of the grand coalition in SLCCG-games is NP-hard.

Proof. We reduce from MAX-SAT, where given a Boolean formula we are asked to
find the maximum number of clauses that can be satisfied by any assignment. Given a
MAX-SAT instance, we construct a SLCCG-game. There is a resource for each clause,
and an agent for each variable. An agent for variable x can either choose all clauses
satisfied by x or all clauses satisfied by ¬x (thus choosing an assignment for variable
x). The resource utility function is ur(k) = 1

k , k = 1, . . . , N , for each resource r.
Thus, if k agents choose a clause, each of them gets the utility of 1

k from the clause, and
all of them together get the total utility of 1 from that clause. Thereby, given a strategy
profile, its value to the grand coalition is exactly the number of satisfied clauses.

3 Conclusions

We defined a safety level cooperative game induced by a normal form game, and ex-
amined this concept on the class of congestion games. A number of questions remain
open for future research. First, other solution concepts should be investigated in the
context of safety level cooperative games. Second, the application domain should be
extended to non-congestion scenarios, such as auctions. Finally, an important task is
finding tractable game classes, where the our hardness results do not hold. We intend to
examine games where computing Nash equilibria can be done in polynomial time, such
as matroid congestion games [1] and congestion-averse games [6,19].
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Abstract. We consider the Stackelberg shortest-path pricing problem,

which is defined as follows. Given a graph G with fixed-cost and pricable

edges and two distinct vertices s and t, we may assign prices to the prica-

ble edges. Based on the predefined fixed costs and our prices, a customer

purchases a cheapest s-t-path in G and we receive payment equal to the

sum of prices of pricable edges belonging to the path. Our goal is to

find prices maximizing the payment received from the customer. While

Stackelberg shortest-path pricing was known to be APX-hard before, we

provide the first explicit approximation threshold and prove hardness of

approximation within 2− o(1). We also argue that the nicely structured

type of instance resulting from our reduction captures most of the chal-

lenges we face in dealing with the problem in general and, in particular,

we show that the gap between the revenue of an optimal pricing and the

only known general upper bound can still be logarithmically large.

1 Introduction

The notion of algorithmic pricing encompasses a wide range of optimization
problems aiming to assign revenue-maximizing prices to some fixed set of items
given information about the valuation functions of potential customers [1,13]. In
a line of recent work the approximation complexity of this kind of problem has
received considerable attention.

Without supply constraints, the very simple single-price algorithm, which re-
duces the search to the one-dimensional subspace of pricings assigning identical
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prices to all the items, achieves an approximation guarantee of O(log n+log m),
where n and m denote the number of item types and customers, respectively
[4,7]. Corresponding hardness of approximation results of Ω(logε m) for some
ε > 0 are known to hold (under different complexity theoretic assumptions) even
in the special cases that valuation functions are single-minded (items are strict
complements) [12] or unit-demand (items are strict substitutes) [5,8,11]. In these
cases, it is the potentially conflicting nature of different customers’ valuations
that constitutes the combinatorial difficulty of multi-dimensional pricing.

Another line of researchhas been considering so-calledStackelberg pricing prob-
lems [17], in which valuation functions are expressed implicitly in terms of some
optimization problem. More formally, we are given a set of items, each of which
has some fixed cost associated with it. In addition to these fixed costs, we may
assign prices to a subset of the items. Given both fixed costs and prices, a single
customer will purchase a min-cost subset of items subject to some feasibility con-
straints and we receive payment equal to the prices assigned to items purchased
by the customer. As an example, we may think of items as being the edges of a
graph and a customer aiming to buy a min-cost spanning tree, cheapest path, etc.

Clearly, as there is only a single customer in this type of problem, conflicting
valuation functions can no longer pose a barrier for the design of efficient pricing
algorithms and, indeed, there are several examples of algorithmic results breaking
the logarithmic approximation barrier of the general case in situations where
the optimization problem solved by the customer is of a certain type [7], the
underlying graph is particularly well-structured [10] or the customer is restricted
to applying a specific approximation algorithm solving her cost-minimization
problem sub-optimally [6].

Yet, many central Stackelberg pricing problems - and in particular the afore-
mentioned spanning tree and shortest path versions in their unrestricted form -
have so far resisted all attempts at improving over the single-price algorithm’s
logarithmic approximation guarantee. At the same time, the best known hard-
ness results to date only prove APX-hardness of both the spanning tree [9] and
shortest path [14] cases without even deriving explicit constants.

1.1 Preliminaries

In the Stackelberg shortest-path pricing problem (StackSP), we are given a di-
rected graph G = (V, A), a cost function c : A → R+

0 , a distinguished set of
pricable edges P ⊂ A, |P| = m, and two distinguished nodes s, t ∈ V . We may
assign prices p : P → R+

0 to the pricable edges. Given these prices, a customer
will purchase a shortest directed s-t-path P ∗ in G, i.e.,

P ∗ ∈ argmin
{∑

e∈P

(c(e) + p(e))
∣∣∣P is s-t-path

}
,

and we receive revenue rev(p) =
∑

e∈P∗ p(e). We assume w.l.o.g.1 that in case
of a tie, the customer selects from the above set a path maximizing our revenue.
1 We can make this assumption since decreasing all prices by a factor arbitrarily close

to 1 will break ties in favor of higher revenue paths.
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We want to find a price assignment p maximizing rev(p). Throughout the rest of
this paper, we will w.l.o.g. only consider StackSP instances for which c(e) = 0
for all e ∈ P , i.e., every edge is either pricable or fixed-cost, but never both.

1.2 Contributions

In this paper, we present the first explicit hardness of approximation result for
the shortest path version of Stackelberg pricing, which we show to be hard to
approximate within a factor of 2 − o(1). The result is based on a reduction
that is somewhat similar to the ones previously described in [16] and [14] to
derive NP-hardness and APX-hardness, respectively. Our contribution consists
of identifying the right starting point for the reduction in order to utilize the full
potential of the construction and applying a completely new analysis which yields
the desired gap. This novel analysis parts completely from previous approaches,
as it argues explicitly about the structure of solutions to the resulting path
pricing instances. These results are found in Section 2. Despite their apparent
simplicity, these instances, which we refer to as a shortcut instances, seem to
capture most of the challenges we face in dealing with the problem in general. It
is then a natural question to ask whether we can obtain improved approximation
results by exploiting the special structure of these instances or the insights gained
from our analysis of the structural properties of their solutions. Unfortunately,
it turns out that this might not be an easy task, since we can prove that the gap
between the optimal revenue and the upper bound used in all known algorithmic
results can still be of essentially logarithmic size. These results are presented in
Section 3.

2 Hardness of Approximation

Theorem 1. StackSP cannot be approximated in polynomial time within a
factor of 2 − 2−Ω(log1−ε m) for any ε > 0, unless NP ⊆ DTIME(nO(log n)).

2.1 Proof of Theorem 1

The proof of the Theorem is based on a reduction from the label cover prob-
lem (LabelCover), which is defined as follows. Given a bipartite graph G =
(V, W, E), a set L = {1, . . . , k} of labels and a set R(v,w) ⊆ L × L of satisfying
label combinations for every edge (v, w) ∈ E, we want to find a label assignment
� : V ∪ W → L to the vertices of G satisfying the maximum possible number
of edges, i.e., edges (v, w) with (�(v), �(w)) ∈ R(v,w). The following hardness
result for LabelCover, which is an easy consequence of the PCP theorem [3]
combined with Raz’ parallel repetition theorem [15], is found, e.g., in the survey
by Arora and Lund [2].

Theorem 2. For LabelCover on graphs with n vertices, m edges and label
set of size k = O(n) there exists no polynomial time algorithm to decide whether
the maximum number of satisfiable edges is m or at most m/2log1−ε m for any
ε > 0, unless NP ⊆ DTIME(nO(log n)).
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Reduction. Let an instance G = (V, W, E) with label set L = {1, . . . , k} as in
Theorem 2 be given. Denote E = {(v1, w1) . . . , (vm, wm)}, where the ordering
of the edges is chosen arbitrarily. Note that in our notation, vi, vj with i �= j
may well refer to the same vertex (and the same is true for wi, wj). For ease of
notation we denote by Ri the satisfying label combinations for edge (vi, wi).

We create a StackSP instance as follows. For every edge (vi, wi) we con-
struct a gadget as depicted in Fig. 1. Essentially, the gadget consist of a set of
parallel pricable edges, one for each satisfying label assignment (κ, λ) ∈ Ri and
an additional parallel fixed-cost edge of price 2.
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Fig. 1. Gadget for an edge (vi, wi) in the label cover instance. Each pricable edge

corresponds to one satisfying label assignment (κ, λ) to vertices vi, wi.

These gadgets are joined together sequentially (see Fig. 2). Let i < j and
consider two pricable edges corresponding to label assignments (κ, λ) ∈ Ri and
(μ, ν) ∈ Rj . We connect the endpoint of the first edge with the start point of the
second edge with a shortcut edge of cost j − i − 1, if the two label assignments
are conflicting, i.e., if either vi = vj and κ �= μ or wi = wj and λ �= ν. This
construction is depicted in Fig. 2. Finally, we define the first node in the gadget
corresponding to edge (v1, w1) and the last node in the gadget corresponding to
(vm, wm) as nodes s and t the customer seeks to connect via a directed shortest
path. We will refer to the gadgets by their indices 1, . . . , m and denote the
pricable edge corresponding to label assignment (κ, λ) in gadget i as ei,κ,λ.

Completeness. Let � be a label assignment satisfying all edges in G. We define
a corresponding pricing p by setting for every pricable edge p(ei,κ,λ) = 2 if
�(vi) = κ, �(wi) = λ and p(ei,κ,λ) = +∞ else.

The resulting shortest path from s to t cannot use any of the shortcut edges,
because, as � is a feasible label assignment, out of any two pricable edges corre-
sponding to conflicting assignments, one must be priced at +∞. Consequently,
no path using a shortcut edge can have finite cost. On the other hand, since �
satisfies every edge, there is a pricable edge of cost 2 in each of the gadgets. It is
then w.l.o.g. to assume that the customer purchases the shortest path using the
maximum possible number of pricable edges and, hence, total revenue is 2m.

Soundness. Let p be a given pricing resulting in overall revenue m + c and let
P denote the shortest path purchased by the customer given these prices. We
will argue that there exists a label assignment � satisfying c/4 of the edges in G.
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First note that w.l.o.g. any pricable edge that is not part of path P has price
+∞ under price assignment p. In particular, this means that in every gadget
i there is at most a single pricable edge with a finite price. We call this edge
the P -edge of gadget i. We proceed by grouping gadgets into so-called islands as
detailed below.

Islands. Let σ1 be the first gadget with a P -edge and call σ1 the start point of
an island. Now for each σi find the maximum value of j > σi, such that gadget j
has a P -edge and there exists a shortcut edge between the P -edges of gadgets σi

and j. If such a j exists, define σi+1 = j, else call σi an end point of an island, let
k > σi be the minimum value such that gadget k has a P -edge, define σi+1 = k
and call σi+1 a start point. If no such k exists, call σi an end point and stop.
Let σr be the end point of the final island.

We call σ1, . . . , σr the significant gadgets. Note that by construction every
gadget with a P -edge is covered by some island, i.e., the interval defined by
some consecutive start and end points.
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Fig. 2. Assembling the edge gadgets into a StackSP instance. Conflicting label as-

signments on two edges (vi, wi), (vj , wj) are connected by a shortcut of length j− i−1.

All edges are directed from left to right.

Fact 1. Consider an island σα, . . . , σω. Path P does not enter gadget σα or exit
gadget σω via a shortcut edge.

Proof. If P exits σω via a shortcut edge, then σω could not have been declared
an end point. If σα is entered via a shortcut edge, this shortcut must originate
from a gadget i < σα which lies within the preceding island. As P cannot bypass
the endpoint of the preceding island via a shortcut, i must in fact be the end
point σα−1 and so σα could not have become a start point. �

Consider now a single island σα, . . . , σω. By �i we denote the length of the
shortcut edge between gadgets σi and σi+1 for α ≤ i ≤ ω − 1. Furthermore, by
ini and outi we refer to the lengths of the shortcut edges used by path P to
enter and exit gadget σi, respectively, and set them to 0 if no shortcuts are used.
From Fact 1 above it follows that inα = outω = inα+1 = 0. See Fig. 3 for an
illustration.

For α ≤ i ≤ ω let the cost of path P between shortcut edges outi and ini+1

be ri + ci, where ri denotes the cost due to pricable edges and ci the cost due
to fixed-cost edges, respectively. We are going to bound the expression pσi + ri,
which is the sum of prices paid for the section of path P running from gadget
σi to σi+1 − 1.
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We note that �ω = 0, since by the fact that gadget σω is an endpoint, no
shortcut edge connects its P -edge to the P -edge of another gadget. Similarly,
we have rω = 0, since path P does not use pricable edges between islands, as we
have argued before.

Path P crosses the end node of the P -edge in gadget σi (node v2 in Fig. 3) and
the start node of the P -edge of gadget σi+1 (node v4 in Fig. 3) for α ≤ i ≤ ω−1.
The total cost of path P between these two vertices is outi + ri + ci + ini+1.
An alternative path P1 is obtained by replacing this part of P with the shortcut
edge of length �i between σi and σi+1. By the fact that P is the shortest path
we have outi + ri + ci + ini+1 ≤ �i and, thus,

ri ≤ �i − outi − ini+1 for α ≤ i ≤ ω, (1)

where the bound on rω follows from the fact that for i = ω all summands in the
above expression are 0. Similarly, the cost of path P between the start node of
the shortcut edge into gadget σi (node v1 in Fig. 3) and the end node of the
shortcut edge exiting σi (node v3 in Fig. 3) is ini + pσi + outi for α ≤ i ≤ ω. We
obtain an alternative path P2 by taking only fixed cost edges of cost 2 to bypass
both shortcuts and gadget σi at total cost 2(ini + outi + 1). Again, since P is
the shortest path, we get ini + pσi + outi ≤ 2(ini + outi + 1), or

pσi ≤ 2 + ini + outi for α ≤ i ≤ ω . (2)

Combining (1) and (2) yields

pσi + ri ≤ 2 + �i + ini − ini+1 for α ≤ i ≤ ω . (3)

Finally, we have

ω∑
i=α

(
pσi + ri

)
≤

ω∑
i=α

(
2 + �i + ini − ini+1

)
(4)

= 2(ω − α + 1) +
ω∑

i=α

�i + inα − inω+1 (5)

= 2(ω − α + 1) +
ω∑

i=α

�i, (6)

where (6) holds since start points σα and σω+1 are not entered via shortcuts and,
thus, inα = inω+1 = 0. Recall that σ1, . . . , σr denote the significant gadgets
across all islands. Assume now that there is a total number I of islands with
start and end points σα(1), σω(1), . . . , σα(I), σω(I). Summing over all islands we
get that overall revenue of price assignment p is bounded by

I∑
j=1

ω(j)∑
i=α(j)

pσi + ri ≤
I∑

j=1

(
2
(
ω(j) − α(j) + 1

)
+

ω(j)∑
i=α(j)

�i

)
≤ 2r + m,
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where the last inequality follows from the fact that α(j) = ω(j − 1) + 1 for
2 ≤ j ≤ I, ω(I) = r and

∑r
i=1 �i ≤ m, since all shortcuts defining the �i are

disjoint. Thus, we have m + c ≤ 2r + m, or r ≥ c/2.
So we have established a relation between the revenue of a price assignment

and the number of its significant gadgets. It remains to show that a pricing’s
significant gadgets can be used to construct a label assignment satisfying a large
number of the corresponding edges. Towards this end, consider the P -edges
of the �r/2� gadgets σ1, σ3, σ5, . . . and their corresponding label assignments
(κi, λi). By definition, there are no shortcut edges between the P -edges of any
of these gadgets and, thus, (κ1, λ1), (κ3, λ3), . . . define a non-conflicting label
assignment satisfying at least �r/2� ≥ c/4 edges in G. More precisely, labels
(κ1, λ1), (κ3, λ3), . . . can be extended into a complete label assignment satisfying
c/4 edges by choosing all unspecified labels in an arbitrary fashion.

Finally, consider a label cover instance as in Theorem 2 and the path pric-
ing instance resulting from our reduction above. If all edges can be satisfied,
maximum path pricing revenue is 2m. If no label assignment satisfies more
than m/2log1−ε m edges, maximum path pricing revenue is bounded by (1 +
4/2log1−ε m)m. This completes the proof of Theorem 1. �

v4v3v2v1

... ......

li−1

iin iout

l i

ini+1

σi

... ...

P
1

2P
σi+1

P

Fig. 3. Two consecutive significant gadgets σi, σi+1 inside one island. The length of

the shortcut edges used to enter and exit gadget σi (defined as 0 if no such shortcut

exists) are denoted as ini and outi, respectively.

Tightness. We briefly mention that our analysis is tight in the following sense.
It is easy to check that by assigning price 1 to all pricable edges we can make
sure that w.l.o.g. the shortest s-t-path uses a pricable edge in each of the gadgets
and, thus, we obtain revenue m. Since maximum possible revenue is bounded
above by 2m (there is an s-t-path of that cost that does not use any pricable
edges), it follows that it is trivial to achieve approximation guarantee 2 on the
instances resulting from our reduction.

3 Shortcut Instances

In this section we take a closer look at the type of instances resulting from our
reduction, which we believe present an important milestone in getting a further
improvement in terms of hardness or algorithmic results. We will be interested
in the family of so-called shortcut instances, which we define as follows.
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We say that a gadget H consists of source and sink nodes connected by (i) a
fixed cost edge from source to sink and (ii) node-disjoint paths of length three
where each path is directed from the source to the sink, alternating between
fixed-cost, pricable, and fixed-cost edges. For example, the graph in Figure 1 is
a gadget with three node-disjoint paths of length three. The left and right nodes
are source and sink, respectively. We call an input instance shortcut instance, if
it can be constructed by the following two-step process:

1. Let G1, . . . , Gn′ be gadgets. Sequentially join them together by unifying the
sink of each gadget Gi with the source of Gi+1. The source of G1 is denoted
as s, the sink of Gn′ as t.

2. For each pair of integers i < j, for each pricable edge (u, u′) in Gi and each
pricable edge (v, v′) in Gj , we have a fixed cost edge (u′, v). (Note, that we
allow setting the price of edges to ∞, which is equivalent to removing them
from the instance.) Edges created in this step are called shortcuts. The fixed
cost edge of cost j − i − 1 in Figure 2 is an example of shortcut.

Clearly, the instances resulting from our reduction in the previous section are
examples of shortcut instances. It is a natural question to ask whether one can
exploit the special structure of shortcut instances to beat the O(log n) approx-
imation guarantee known for the general path pricing problem. In fact, getting
a better approximation ratio for shortcut graphs would probably even yield in-
sights into potential approaches to improving the general case.

It is, however, not clear at all how to exploit the structure of these seemingly
simple instances. This is so, because in dealing with the shortcut graphs, one
faces the same main barrier currently encountered in the general case: all known
algorithms for the problem rely on the same upper bounding technique, which
yields bounds as large as Θ(log n ·OPT). Unfortunately, it turns out that this is
also the case for shortcut graphs.

The upper bound used by previous algorithms is the quantity f∞(G)− f0(G)
where fx(G), x ∈ R+

0 , is defined to be the shortest path length in G when
p(e) = x for all pricable edges e.2 It is known that f∞(G) − f0(G) can be as
large as Ω(log n·OPT) and therefore one cannot hope for a better approximation
guarantee using this upper bound. We show that the same problem occurs in
the family of shortcut instances.

Theorem 3. For infinitely many n, there exists a shortcut graph G of n nodes
with

f∞(G) − f0(G) = Ω((log n/ log log n) · OPT) .

We first describe an explicit construction of the shortcut graphs from Theorem 3
and then prove the claim.

Construction. Let α ≥ 2 be any integer and let n = αα. We construct a graph
G of Θ(n) nodes as follows.
2 Intuitively, f∞(G)−f0(G) ≥ OPT follows from the fact that the customer will never

pay more than f∞(G) (and will do so when the pricable edges are very expensive)

and part of this will be paid to the competitor who owns the fixed cost edges; the

latter is at least f0(G) (when the pricable edges are very cheap).
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– Gadgets. There are n gadgets, each of which has (i) a fixed cost edge of
length 1 from source to sink and (ii) a path alternating between two fixed-cost
edges and a pricable edge where fixed cost edges have price 0 (see Fig. 4).

– Shortcuts. For a shortcut from gadget i to gadget j, the price is (j−i)·(k/α)
where k is chosen such that αk−1 ≤ j − i < αk; in this case, we additionally
say that the shortcut is of type k. Observe that 1 ≤ k ≤ α.

We denote by (ai, bi) the pricable edge in gadget i. For the ease of referencing
in the future, we let b0 and bn+1 denote s and t respectively. Moreover, we add
a shortcut of type α (i.e., of cost n) from b0 to bn+1.

Analysis. If all pricable edges have cost ∞ then, since all shortcuts are blocked,
the shortest path will consist of all the gadgets’ fixed cost edges and, thus,
f∞(G) = n. If all pricable edges have cost zero then the shortest path will use
all pricable edges and, hence, f0(G) = 0. Therefore, f∞(G) − f0(G) = n. We
now prove that OPT = O(n/α). This yields the theorem since n = αα implies
that α = Ω(log n/ log log n).

Let p be any pricing and P be the shortest path purchased by the cus-
tomer given this pricing. Let δ1, . . . , δr be the indices of gadgets that con-
tain pricable edges on P (P -edges), so the revenue is collected from edges
(aδ1 , bδ1), . . . , (aδr , bδr). Let δ0 = 0 and δr+1 = n + 1.

The following lemma bounds the price of each pricable edge.

Lemma 1. For any 1 ≤ i ≤ r, p(aδibδi) = O((δi+1 − δi−1)/α).

The fact that OPT ≤ O(n/α) follows as an easy consequence of the lemma, since

r∑
i=1

p(aδi , bδi) ≤
r∑

i=1

O

(
δi+1 − δi−1

α

)
≤ O(n/α).

Proof of Lemma 1. Let P ′ be the subpath of P from bδi−1 to aδi , P ′′ be the
subpath from bδi to aδi+1 . Let k be the type of shortcut (bδi−1 , aδi+1). Notice
that p(aδi , bδi) + c(P ′) + c(P ′′) ≤ (δi+1 − δi−1)k/α, because the customer will
buy shortcut (bδi−1 , aδi+1) instead otherwise. Now proving the following claim
yields the lemma.

Claim. c(P ′) + c(P ′′) ≥
(
(δi+1 − δi−1)(k − 2)

)
/α .

Since both P ′ and P ′′ do not contain pricable edges, there are only two possi-
bilities for each of them: path P ′ either takes the shortcut (bδi−1 , aδi) or takes
a sequence of fixed cost edges in gadgets δi−1 + 1, . . . , δi − 1 (similarly for P ′′),
and since the first option always costs less, we assume that both P ′ and P ′′ take
the first option (i.e., take shortcuts).

Our first simple observation is that at least one of P ′ and P ′′ is of type at least
(k − 1). To see this, note that assuming the contrary, we have that (δi − δi−1) <
αk−2 and (δi+1 − δi) < αk−2, so, adding them up, δi+1 − δi−1 < αk−1 (because
α ≥ 2), contradicting the assumption that the shortcut (bδi−1 , aδi+1) is of type k.
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Fig. 4. Proof idea of Lemma 1

There are two cases to analyze now. The first case is when both P ′ and P ′′

are shortcuts of type at least k − 1. In this case, we have,

c(P ′) + c(P ′′) ≥ (δi − δi−1)(k − 1)/α + (δi+1 − δi)(k − 1)/α

≥ (δi+1 − δi−1)(k − 1)/α .

In the second case, assume w.l.o.g. that P ′ is of type at most k−2. (This means
that P ′′ is of type at least k−1 by our previous observation.) So, δi−δi−1 < αk−2,
while δi+1 − δi−1 ≥ αk−1. Consequently, δi − δi−1 ≤ 1

α (δi+1 − δi−1). Therefore,
we get

δi+1 − δi = (δi+1 − δi−1) − (δi − δi−1)
≥ (1 − 1/α)(δi+1 − δi−1) .

Since P ′′ is of type at least k − 1, we have

c(P ′′) ≥ (1 − 1/α)(δi+1 − δi−1)(k − 1)
α

≥ (δi+1 − δi−1)(k − 2)
α

.

The second inequality follows because (k − 1)(1 − 1/α) = (k − 1 + 1/α − k/α),
and k ≤ α . �

4 Conclusions

We have proven the first explicit approximation threshold for any Stackelberg
pricing problem. Still, the approximation threshold for this kind of problem in
general - and the shortest path version in particular - is far from settled. The
following questions seem to constitute fertile ground for future research:

– Can we prove super-constant hardness of approximation results for any kind
of Stackelberg pricing problem?

– Is it possible to achieve a better than logarithmic approximation guarantee
for the Stackelberg shortest path pricing problem? Is there an interesting re-
stricted set of graphs on which constant approximation factors are possible?
In the context of the first of these questions, our discussion in Section 3 points
to the obvious need of coming up with novel upper-bounding techniques even
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for restricted problem instances. Some progress towards answering the sec-
ond of these questions has recently been made in [10], where polynomial-time
algorithms are presented for the spanning-tree pricing problem in bounded-
treewidth graphs.
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I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg

(2008)

6. Briest, P., Gualà, L., Hoefer, M., Ventre, C.: On Stackelberg Pricing with Computa-

tionally Bounded Consumers. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,

pp. 42–54. Springer, Heidelberg (2009)

7. Briest, P., Hoefer, M., Krysta, P.: Stackelberg Network Pricing Games. In: Proc.

of 25th STACS (2008)

8. Briest, P., Krysta, P.: Buying Cheap is Expensive: Hardness of Non-Parametric

Multi-Product Pricing. In: Proc. of 18th SODA (2007)

9. Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Langerman, S., Newman, I.,

Weimann, O.: The Stackelberg Minimum Spanning Tree Game. In: Dehne, F.,

Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 64–76. Springer,

Heidelberg (2007)

10. Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Newman, I., Weimann, O.: The

Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth

Graphs. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 125–136. Springer,

Heidelberg (2009)

11. Chuzhoy, J., Kannan, S., Khanna, S.: Network Pricing for Multicommodity Flows

(2007) (unpublished manuscript)

12. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.R.: Combination Can

Be Hard: Approximability of the Unique Coverage Problem. In: Proc. of 17th

SODA (2006)

13. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,

F.: On Profit-Maximizing Envy-Free Pricing. In: Proc. of 16th SODA (2005)

14. Joret, G.: Stackelberg Network Pricing is Hard to Approximate. Networks n/a

(2010), doi: 10.1002/net.20391

15. Raz, R.: A Parallel Repetition Theorem. SIAM Journal on Computing 27 (1998)

16. Roch, S., Savard, G., Marcotte, P.: An Approximation Algorithm for Stackelberg

Network Pricing. Networks 46(1), 57–67 (2005)

17. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium).

Verlag von Julius Springer, Vienna (1934)



The Complexity of Determining the Uniqueness
of Tarski’s Fixed Point under the Lexicographic

Ordering�

Chuangyin Dang1 and Yinyu Ye2

1 Dept. of Manufacturing Engineering & Engineering Management,

City University of Hong Kong, Kowloon, Hong Kong SAR, China

mecdang@cityu.edu.hk
2 Dept. of Management Science & Engineering,

Stanford University, Stanford, CA 94305-4026

yinyu-ye@stanford.edu

Abstract. The well-known Tarski’s fixed point theorem asserts that an

increasing mapping from a complete lattice into itself has a fixed point.

This theorem plays an important role in the development of supermodu-

lar games for economic analysis. Let C be a finite lattice consisting of all

integer points in an n-dimensional box and f be an increasing mapping

from C into itself in terms of lexicographic ordering. It has been shown

in the literature that, when f is given as an oracle, a fixed point of f can

be found in polynomial time. The problem we consider in this paper is

the complexity of determining whether or not f has a unique fixed point.

We present a polynomial-time reduction of integer programming to an

increasing mapping from C into itself. As a result of this reduction, we

prove that, when f is given as an oracle, determining whether or not f
has a unique fixed point is Co-NP hard.
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ing Mapping, Fixed Point, Integer Programming, Co-NP Completeness,
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1 Introduction

There are some interesting complexity results in algorithmic game theory re-
search on determining whether or not a game has a unique equilibrium point.
For example, for the bimatrix game Gilboa and Zemel (1989) showed that it
is NP-hard to determine whether or not there is a second Nash equilibrium,
which became a classical result. In all of these problems, computing even one
equilibrium (which is known to exist) is already difficult and no polynomial time
algorithms are known. In this short paper, we consider the well-known Tarski’s
fixed point theorem (Tarski, 1955) that asserts that an increasing mapping from
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a complete lattice into itself has a fixed point. In terms of lexicographic ordering,
it has been shown in Chang et al. (2008) that, when the mapping and lattice are
given as oracles, a fixed point can be found in polynomial time. Here we prove
that determining whether or not the same mapping has a unique fixed point is
Co-NP hard.

The well-known Tarski’s fixed point theorem asserts that, if (S,�) is a com-
plete lattice and f is an increasing from S into itself, then there exists some
x∗ ∈ S such that f(x∗) = x∗. This theorem plays an important role in the
development of supermodular games or games with strategic complementarities
for economic analysis. Supermodular games were formalized in Topkis (1979)
and have been extensively applied for economic analysis in the literature such
as Bernstein and Federgruen (2004, 2005), Cachon (2001), Cachon and Lariviere
(1999), Fudenberg and Tirole (1991), Lippman and McCardle (1997), Milgrom
and Roberts (1990, 1994), Milgrom and Shannon (1994), Topkis (1998), and
Vives (1990, 1999, 2005). To compute a Nash equilibrium of a supermodular
game, a generic approach is to convert it into the computation of a fixed point
of an increasing mapping. Recently, an algorithm was proposed in Echenique
(2007) to find all pure-strategy Nash equilibria of a supermodular game. This
work motivates us to study how difficult the problem is, which leads to the main
results in this paper.

Let N = {1, 2, . . . , n}. For x and y of Rn, x ≤l y if either x = y or xi = yi,
i = 1, 2, . . . , k−1, and xk < yk for some k ∈ N , where ≤l is called a lexicographic
order on Rn. Let C = {x ∈ Zn | a ≤ x ≤ b}, where a and b are two finite vectors
of Zn with a < b. Clearly, (C,≤l) is a finite lattice. Let f be an increasing
mapping from C into itself under the lexicographic ordering. The problem we
consider in this paper is whether or not f has a unique fixed point in C. It was
shown in Chang et al. (2008) that, given f as an oracle, a fixed point of f can
be computed in polynomial time of O(log |C|) queries to f , where |C| denotes
the cardinality of C. We present in this paper a polynomial-time reduction of
integer programming to an increasing mapping from C into itself. As a result of
this reduction, we prove that, given f as an oracle, determining whether or not
f has a unique fixed point in C is Co-NP hard.

2 Polynomial-Time Reduction and Main Results

For any real number α and any x = (x1, x2, . . . , xn)� ∈ Rn, let �α� denote the
greatest integer less than or equal to α, �α� the smallest integer greater than
or equal to α, �x� = (�x1�, �x2�, . . . , �xn�)�, and �x� = (�x1�, �x2�, . . . , �xn�)�.
Let P = {x ∈ Rn | Ax ≤ b} be a full-dimensional polytope, where A is an
m×n integer matrix and b an integer vector of Rm. We assume throughout this
paper that n ≥ 2. Let xmax = (xmax

1 , xmax
2 , . . . , xmax

n )� with xmax
j = maxx∈P xj ,

j = 1, 2, . . . , n, and xmin = (xmin
1 , xmin

2 , . . . , xmin
n )� with xmin

j = minx∈P xj ,
j = 1, 2, . . . , n. Then, xmin ≤ x ≤ xmax for all x ∈ P . Let D(P ) = {x ∈
Zn | xl ≤ x ≤ xu}, where xu = �xmax� and xl = �xmin�. It is obvious that
x ∈ D(P ) for all x ∈ P ∩Zn. We assume without loss of generality that xl < xmin
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(If xl
i = xmin

i for some i ∈ N , let xl
i = xmin

i − 1). For y ∈ Rn and r ∈ N , let
P (y, r) = {x ∈ P | xi = yi, i = 1, 2, . . . , r}.

Definition 1. For y ∈ D(P ), h(y) = (h1(y), h2(y), . . . , hn(y))� ∈ D(P ) is
given as follows:

Step 1: If y1 = xl
1, let h(y) = xl. If y ∈ P , let h(y) = y. Otherwise, let r = 2

and go to Step 2.
Step 2: Solve the linear program

min xr − vr

subject to x ∈ P (y, r − 1) and v ∈ P (y, r − 1)

to obtain its optimal solution (x∗, v∗). Let dmin
r (y) = x∗

r and dmax
r (y) = v∗r .

If yr ≥ �dmin
r (y)�, go to Step 3. Otherwise, go to Step 4.

Step 3: If �dmax
r (y)� < �dmin

r (y)�, go to Step 4. Otherwise, go to Step 5.
Step 4: Let p(y) = r (p(y) is an output parameter and is used in further dis-

cussions). If yr−1 ≤ xl
r−1 + 1, let

hi(y) =
{

yi if 1 ≤ i ≤ r − 2,
xl

i if r − 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Otherwise, let

hi(y) =

⎧⎨⎩
yi if 1 ≤ i ≤ r − 2,
yr−1 − 1 if i = r − 1,
xu

i if r ≤ i ≤ n,

i = 1, 2, . . . , n.
Step 5: If yr > �dmax

r (y)�, let p(y) = r and

hi(y) =

⎧⎨⎩yi if 1 ≤ i ≤ r − 1,
�dmax

r (y)� if i = r,
xu

i if r + 1 ≤ i ≤ n,

i = 1, 2, . . . , n. Otherwise, let r = r + 1 and go to Step 2.

Lemma 1. xl ≤ h(y) ≤l y and h(y) �= y for all y ∈ D(P ) with y �= xl and
y /∈ P .

Proof. Clearly, the lemma holds for all y ∈ D(P ) with y1 = xl
1 and y �= xl.

Let y be any given point in D(P ) with y1 �= xl
1 and y /∈ P . Let k = p(y)

with p(y) being given in the definition. Note that y ∈ P when �dmin
r (y)� ≤

yr ≤ �dmax
r (y)�, r = 1, 2, . . . , n. Thus, p(y) is well defined, 2 ≤ k ≤ n and

xl
i < xmin

i ≤ �dmin
i (y)� ≤ yi ≤ �dmax

i (y)�, i = 1, 2, . . . , k − 1. Therefore, one of
the following five cases must occur.

Case 1: yk ≥ �dmin
k (y)�, �dmax

k (y)� < �dmin
k (y)� and yk−1 ≤ xl

k−1 + 1. It follows
from yk−1 > xl

k−1 and Step 4 that xl ≤ h(y) ≤l y and h(y) �= y.
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Case 2: yk ≥ �dmin
k (y)�, �dmax

k (y)� < �dmin
k (y)� and yk−1 > xl

k−1 + 1. It follows
from yk−1 − 1 < yk−1 and Step 4 that xl ≤ h(y) ≤l y and h(y) �= y.

Case 3: yk ≥ �dmin
k (y)�, �dmax

k (y)� ≥ �dmin
k (y)� and yk > �dmax

k (y)�. It follows
from yk > �dmax

k (y)� and Step 5 that xl ≤ h(y) ≤l y and h(y) �= y.
Case 4: yk < �dmin

k (y)� and yk−1 ≤ xl
k−1 + 1. It follows from yk−1 > xl

k−1 and
Step 4 that xl ≤ h(y) ≤l y and h(y) �= y.

Case 5: yk < �dmin
k (y)� and yk−1 > xl

k−1 + 1. It follows from yk−1 − 1 < yk−1

and Step 4 that xl ≤ h(y) ≤l y and h(y) �= y.

For every case, one can see from the above that it always holds that xl ≤ h(y) ≤l

y and h(y) �= y. This completes the proof.

As a corollary of Lemma 1, we obtain that

Corollary 1. For any given x∗ ∈ D(P ), x∗ ∈ P if and only if h(x∗) = x∗ and
x∗ �= xl.

Theorem 1. Under the lexicographic ordering, h is an increasing mapping from
D(P ) into itself.

A sketch of the proof. Let y1 and y2 be any given two points in D(P ) with
y1 ≤l y2 and y1 �= y2. We only need to consider that y1

1 �= xl
1 and y2 /∈ P . Let q

be the index in N satisfying that y1
i = y2

i , i = 1, 2, . . . , q − 1, and y1
q < y2

q . Let
k1 = p(y1) and k2 = p(y2). Clearly, k2 is well defined and k2 ≥ 2. Thus, one of
the following four cases must occur.

Case 1: 2 ≤ k2 ≤ q − 1. Clearly, h(y1) = h(y2).
Case 2: 2 ≤ k2 = q.

1. Suppose that y2
q ≥ �dmin

q (y2)� and �dmax
q (y2)� < �dmin

q (y2)�. Then, k1 =
k2 = q. Thus, h(y1) = h(y2).

2. Suppose that y2
q > �dmax

q (y2)� and �dmax
q (y2)� ≥ �dmin

q (y2)�.
• Consider that y1 ∈ P . We have h(y1) = y1 ≤ h(y2).
• Consider that y1 /∈ P . We have k1 ≥ q.

(a) Assume that k1 = q. When y1
q > �dmax

q (y1)�, h(y1) = h(y2).
When y1

q < �dmin
q (y1)�, if y1

q−1 ≤ xl
q−1 + 1, then h(y1) ≤l

h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and
hq−1(y1) = xl

q−1 < y2
q−1 = hq−1(y2), and if y1

q−1 > xl
q−1+1, then

h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2,
and hq−1(y1) = y1

q−1 − 1 < y1
q−1 = y2

q−1 = hq−1(y2).
(b) Assume that k1 > q. We have h(y1) ≤ h(y2).

3. Suppose that y2
q < �dmin

q (y2)�. Then, h(y1) = h(y2).
Case 3: 2 ≤ k2 = q + 1.

1. Suppose that y2
q+1 ≥ �dmin

q+1(y
2)�, �dmax

q+1 (y2)� < �dmin
q+1(y

2)� and y2
q ≤

xl
q + 1. Then, y1

q = xl
q and k1 = q ≥ 2. Therefore, if y1

q−1 ≤ xl
q−1 + 1,

then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2,
and hq−1(y1) = xl

q−1 < y2
q−1 = hq−1(y2), and if y1

q−1 > xl
q−1 + 1, then

h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and
hq−1(y1) = y1

q−1 − 1 < y2
q−1 = hq−1(y2).
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2. Suppose that y2
q+1 ≥ �dmin

q+1(y
2)�, �dmax

q+1 (y2)� < �dmin
q+1(y

2)� and y2
q >

xl
q + 1.
• Assume that y1 ∈ P . Thus, h(y1) = y1 ≤ h(y2).
• Assume that y1 /∈ P . Then, k1 ≥ q.

Consider that k1 = q.
(a) Suppose that y1

q > �dmax
q (y1)�. Then, h(y1) ≤l h(y2) follows from

hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, and hq(y1) < y1
q ≤ y2

q − 1 =
hq(y2).

(b) Suppose that y1
q < �dmin

q (y1)�. If y1
q−1 ≤ xl

q−1 +1, then h(y1) ≤l

h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and
hq−1(y1) = xl

q−1 < y2
q−1 = hq−1(y2). If y1

q−1 > xl
q−1 + 1, then

h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2,
and hq−1(y1) = y1

q−1 − 1 < y2
q−1 = hq−1(y2).

Consider that k1 > q. We have h(y1) ≤ h(y2).
3. Suppose that y2

q+1 > �dmax
q+1 (y2)� and �dmax

q+1 (y2)� ≥ �dmin
q+1(y

2)�.
• Assume that y1 ∈ P . Then, h(y1) = y1 ≤l h(y2) follows immediately

from hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, and hq(y1) < hq(y2).
• Assume that y1 /∈ P . Then, k1 ≥ q.

Consider that k1 = q.
(a) Suppose that y1

q > �dmax
q (y1)�. Then, h(y1) ≤l h(y2) follows

from hi(y1) = hi(y2), i = 1, 2, . . . , q− 1, and hq(y1) < y1
q < y2

q =
hq(y2).

(b) Suppose that y1
q < �dmin

q (y1)�. If y1
q−1 ≤ xl

q−1 +1, then h(y1) ≤l

h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and
hq−1(y1) = xl

q−1 < y1
q−1 = y2

q−1 = hq−1(y2). If y1
q−1 > xl

q−1 + 1,
then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q−
2, and hq−1(y1) = y1

q−1 − 1 < y1
q−1 = y2

q−1 = hq−1(y2).
Consider that k1 > q. h(y1) ≤l h(y2) follows immediately from
hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, and hq(y1) ≤ y1

q < y2
q = hq(y2).

4. Suppose that y2
q+1 < �dmin

q+1(y
2)� and y2

q ≤ xl
q + 1. If y1

q−1 ≤ xl
q−1 + 1,

then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2,
and hq−1(y1) = xl

q−1 < y1
q−1 = y2

q−1 = hq−1(y2). If y1
q−1 > xl

q−1 + 1,
then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q− 2, and
hq−1(y1) = y1

q−1 − 1 < y1
q−1 = y2

q−1 = hq−1(y2).
5. Suppose that y2

q+1 < �dmin
q+1(y

2)� and y2
q > xl

k2−1 + 1.
• Assume that y1 ∈ P . Then, h(y1) = y1 ≤ h(y2).
• Assume that y1 /∈ P . Then, k1 ≥ q.

Consider that k1 = q.
(a) Suppose that y1

q > �dmax
q (y1)�. Then, h(y1) ≤l h(y2) follows from

hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, and hq(y1) < y1
q ≤ y2

q − 1 =
hq(y2).

(b) Suppose that y1
q < �dmin

q (y1)�. If y1
q−1 ≤ xl

q−1 +1, then h(y1) ≤l

h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q − 2, and
hq−1(y1) = xl

q−1 < y1
q−1 = y2

q−1 = hq−1(y2). If y1
q−1 > xl

q−1 + 1,
then h(y1) ≤l h(y2) follows from hi(y1) = hi(y2), i = 1, 2, . . . , q−
2, and hq−1(y1) = y1

q−1 − 1 < y1
q−1 = y2

q−1 = hq−1(y2).
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Consider that k1 > q. h(y1) ≤l h(y2) follows immediately from
hi(y1) = hi(y2), i = 1, 2, . . . , q − 1, hq(y1) ≤ y1

q ≤ y2
q − 1 = hq(y2),

and hi(y1) ≤ xu
i = hi(y2), i = q + 1, q + 2, . . . , n.

Case 4: k2 > q + 1. It follows immediately from Lemma 1 that h(y1) ≤l h(y2).

The above results show that, for every case, it always holds that h(y1) ≤l h(y2).
This completes the proof.

From Definition 1, one can see that, for each y ∈ D(P ), it takes at most n linear
programs to compute h(y). Therefore, h(y) is determined in polynomial time for
any given y ∈ D(P ).

The following result is well known in the literature.

Theorem 2. Determining whether there is no integer point in P is a Co-NP
complete problem.

Let C = {x ∈ Zn | a ≤ x ≤ b}, where a and b are two finite vectors of Zn with
a < b, and f be an increasing mapping from C into itself under the lexicographic
ordering. As a corollary of Corollary 1, Theorem 1 and Theorem 2, we obtain
the main result of this paper:

Corollary 2. Determining whether or not f has a unique fixed point in C is a
Co-NP hard problem.
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Abstract. We consider profit-maximization problems for combinatorial auctions
with non-single minded valuation functions and limited supply. We obtain fairly
general results that relate the approximability of the profit-maximization prob-
lem to that of the corresponding social-welfare-maximization (SWM) problem,
which is the problem of finding an allocation (S1, . . . , Sn) satisfying the ca-
pacity constraints that has maximum total value

∑
j vj(Sj). Our results apply

to both structured valuation classes, such as subadditive valuations, as well as
arbitrary valuations. For subadditive valuations (and hence submodular, XOS
valuations), we obtain a solution with profit OPTSWM/O(log cmax), where
OPT SWM is the optimum social welfare and cmax is the maximum item-supply;
thus, this yields an O(log cmax)-approximation for the profit-maximization prob-
lem. Furthermore, given any class of valuation functions, if the SWM problem
for this valuation class has an LP-relaxation (of a certain form) and an algo-
rithm “verifying” an integrality gap of α for this LP, then we obtain a solu-
tion with profit OPTSWM /O(α log cmax), thus obtaining an O(α log cmax)-
approximation. The latter result implies an O(

√
m log cmax)-approximation for

the profit maximization problem for combinatorial auctions with arbitrary val-
uations, and an O(log cmax)-approximation for the non-single-minded tollbooth
problem on trees. For the special case, when the tree is a path, we also obtain an
incomparable O(log m)-approximation (via a different approach) for subadditive
valuations, and arbitrary valuations with unlimited supply.1

1 Introduction

Profit (or revenue) maximization is a classic and fundamental economic goal, and the
design of computationally-efficient item-pricing schemes for various profit-maximiza-
tion problems has received much recent attention [1,11,2,4,3]. We study the algorithmic
problem of item-pricing for profit-maximization for general (multi unit) combinatorial
auctions (CAs) with limited supply. There are n customers and m items. Each item is
available in some limited supply or capacity, and each customer j has a value vj(S) for

� Supported in part by NSERC grant 327620-09 and an Ontario Early Researcher Award.
1 Omitted proofs can be found in the full version of the paper.

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 462–472, 2010.
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each subset S of items specifying the maximum amount she is willing to pay for that
set (with vj(∅) = 0). Given a pricing of the items, a feasible allocation is an assignment
of a (possibly empty) subset Sj to each customer j satisfying (i) the budget constraints,
which require that the price of Sj (i.e., the total price of the items in Sj) is at most
vj(Sj), and (ii) the capacity constraints, which stipulate that the number of customers
who are allocated an item be at most the supply of that item. The objective is to de-
termine item prices that maximize the total profit or revenue earned by selling items
to the customers. Guruswami et al. [11] introduced the envy-free version of the prob-
lem, where there is the additional constraint that the set assigned to a customer must
maximize her utility (defined as value−price). Item pricing has an appealing simplicity
and enforces a basic notion of fairness wherein the seller does not discriminate between
customers who get the same item(s). Our focus on item pricing is in keeping with the
vast majority of work on algorithms for profit-maximization (for example, the above
references; in fact, with unlimited supply and unit-demand valuations, our problem es-
sentially reduces to the Max-Buy model in [1]). Various current trading practices are
described by item pricing, and thus it becomes pertinent to understand what guarantees
are obtainable via such schemes. Profit-maximization problems are typically NP-hard,
even in various specialized settings, so we will be interested in designing approximation
algorithms for these problems.

The framework of combinatorial auctions is an extremely rich framework that en-
capsulates a variety of applications. In fact, recognizing the generality of the envy-free
profit-maximization problem for CAs, Guruswami et al. [11] proceeded to study various
more-tractable special cases of the problem. In particular, they introduced the follow-
ing two structured problems in the single-minded (SM) setting, where each customer
desires a single fixed set: (a) the tollbooth problem where the items are edges of a graph
and the customer-sets correspond to paths in this graph, which can be interpreted as
the problem of pricing transportation links or network connections; (b) a further special
case called the highway problem where the graph is a path, which can also be motivated
from a scheduling perspective. The non-SM versions of such structured problems can
also be used to capture various interesting scenarios.

Our results. We obtain fairly general polytime approximation guarantees for profit-
maximization problems involving combinatorial auctions with limited supply and non-
single-minded valuations. We obtain results for both (a) certain structured valuation
classes, namely subadditive valuations (where v(A) + v(B) ≥ v(A ∪ B)) and hence,
submodular valuations, which have been intensely studied recently (e.g. [14,8,9,3];
and (b) arbitrary valuations. Our results relate the approximability of the profit-
maximization problem to that of the corresponding social-welfare-maximization (SWM)
problem, which is the problem of finding an allocation (S1, . . . , Sn) satisfying the ca-
pacity constraints that has maximum total value

∑
j vj(Sj). Our main theorem, stated

informally below and proved in Section 3, shows that any LP-based approximation al-
gorithm that provides an integrality-gap bound for the SWM problem with a given class
of valuations, can be leveraged to obtain a corresponding approximation guarantee for
the profit-maximization problem with that class of valuations. Let cmax ≤ n denote the
maximum item supply, and OPTSWM denote the optimum value of the SWM problem,
which is clearly an upper bound on the maximum profit achievable.
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Theorem 1. (i) For the class of subadditive (and hence submodular) valuations, one
can obtain a solution with profit OPTSWM

O(log cmax) , thus achieving an O(log cmax)-approxima-
tion; (ii) Given any class of valuations for which the corresponding SWM problem ad-
mits a packing-type LP relaxation with an integrality gap of α as “verified” by an
α-approximation algorithm, one can obtain a solution with profit OPTSWM

O(α log cmax) , thereby
achieving an O(α log cmax)-approximation.

(Part (ii) above does not imply part (i), because for part (ii) we require an integrality-gap
guarantee which, roughly speaking, means that we require an algorithm that returns a
“good” solution for every profile of n valuations; see Definition 1.)

A key notable aspect of our theorem is its versatility. One can simply “plug in” var-
ious known (or easily derivable) results about the SWM problem to obtain approxima-
tion algorithms for various limited-supply profit-maximization problems. For example,
as corollaries of part (ii) of our theorem, we obtain an O(

√
m log cmax)-approximation

for profit-maximization for combinatorial auctions with arbitrary valuations, and an
O(log cmax)-approximation for the non-single-minded tollbooth problem on trees (see
Section 3.1). The first result follows from the various known O(

√
m)-approximation

algorithms for the SWM problem for CAs with arbitrary valuations that also bound the
integrality gap [15,12]. For the second result, we devise a suitable O(1)-approximation
for the SWM problem corresponding to non-SM tollbooth on trees, by adapting the
randomized-rounding approach of Chakrabarty et al. [6].

Notice that with bundle-pricing, which is often used in the context of mechanism de-
sign for CAs, the profit-maximization problem becomes equivalent to the SWM prob-
lem. Thus, our results provide worst-case bounds on how item-pricing (which may be
viewed as a fairness constraint on the seller) diminishes the revenue of the seller versus
bundle-pricing. It is also worth remarking that our algorithms for an arbitrary valua-
tion class (i.e., part (ii) above) can be modified in a simple way to return prices and an
allocation (S1, . . . , Sn) with the following ε-“one-sided envy-freeness” property while
diminishing the profit by a (1 − ε)-factor (for any ε ∈ [0, 1]): for every non-empty Sj ,
the utility that j obtains from Sj is at least ε times the maximum utility j may obtain
from any set (see Remark 2).

The only previous guarantees for limited-supply CAs with a general valuation-class
are those obtained via a reduction in [2], showing that an α-approximation for the SWM
problem and an algorithm for the unlimited-supply SM problem that returns profit at
least OPTSWM /β yield an αβ-approximation. A simple “grouping-by-density” ap-
proach gives β = O(log m + log n); using the best known bound on β [4] yields
an O

(
α(log m + log cmax)

)
guarantee, which is significantly weaker than our guar-

antees. (E.g., we obtain an O(α)-approximation for constant cmax.) The O(log cmax)-
factor we incur is unavoidable if one compares the profit against the optimal social
welfare: a well-known example with one item, n = cmax customers shows a gap of
Hcmax := 1+ 1

2 + · · ·+ 1
cmax

between the optima of the SWM- and profit-maximization
problems. Almost all results for profit-maximization for CAs with non-SM valuations
also compare against the optimum social welfare, so they also incur this factor. Also, it
is easy to see that with cmax = 1, the profit-maximization problem reduces to the SWM
problem, so an inapproximability result for the SWM problem also yields an inapprox-
imability result for our problem. Thus, we obtain an m

1
2 -, or n-, inapproximability for
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CAs with even SM valuations (see, e.g., [10]), and APX-hardness for CAs with subad-
ditive, submodular valuations, and the tollbooth problem on trees.

In Section 4, we consider an alternate approach for the non-SM highway problem that
does not use OPTSWM as an upper bound and achieves an (incomparable) O(log m)-
approximation factor. We decompose the instance via an exponential-size configuration
LP, which is solved approximately using the ellipsoid method and rounded via random-
ized rounding. Here, we use LP duality to handle dependencies arising from the non-SM
setting.

Theorem 2. There is an O(log m)-approximation algorithm for the non-single-minded
highway problem with (i) subadditive valuations with limited supply; and (ii) arbitrary
valuations with unlimited supply.

2 Problem Definition and Preliminaries

The general setup of profit-maximization problems for (multi unit) combinatorial auc-
tions (CAs) is as follows. There are n customers and m items. Let [n] := {1, . . . , n}
and [m] := {1, . . . , m}. Each item e is available in some limited supply or capacity ce.
Each customer j has a valuation function vj : 2[m]  → R+, where vj(S) specifies the
maximum amount that customer j is willing to pay for the set S; equivalently this is j’s
value for receiving the set S of items. We assume that vj(∅) = 0; we often assume for
convenience that vj(S) ≤ vj(T ) for S ⊆ T , but this monotonicity requirement is not
crucial for our results. The objective is to find non-negative prices pe ≥ 0 for the items,
and an allocation (S1, . . . , Sn) of items to customers (where Sj could be empty) so as to
maximize the total profit

∑
j∈[n]

∑
e∈Sj

pe =
∑

e∈[m] pe|{j : e ∈ Sj}| while satisfying

the following two constraints: (i) Budget constraints: p
(
Sj

)
:=
∑

e∈Sj
pe ≤ vj

(
Sj

)
;

and (ii) Capacity constraints: Each element e is assigned to at most ce customers:
|{j ∈ [m] : e ∈ Sj}| ≤ ce.

As is standard in the literature on combinatorial auctions and profit-maximization
problems (see, e.g., [13,9,3]), we assume that a valuation v is specified by a demand or-
acle, which means that given item prices {pe}, the oracle returns a set S that maximizes
the utility v(S) − p(S). We write cmax := maxe ce.

An LP relaxation. We consider a natural linear programming (LP) relaxation (P) of the
SWM problem for combinatorial auctions, and its dual (D). Throughout, we use j to
index customers, e to index items, and S to index sets of items.

max
∑
j,S

vj(S)xj,S (P)

s.t.
∑

S

xj,S ≤ 1 ∀j (1)∑
j

∑
S:e∈S

xj,S ≤ ce ∀e (2)

xj,S ≥ 0 ∀j, S

min
∑

e

ceye +
∑

j

zj (D)

s.t.
∑
e∈S

ye + zj ≥ vj(S) ∀j, S

ye, zj ≥ 0 ∀e, j.
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In the primal LP, we have a variable xj,S for each customer j and set S that indicates if
j receives set S, and we relax the integrality constraints on these variables to obtain (P).
The dual (D) has variables zj and ye for each customer j and element e respectively,
which correspond to the primal constraints (1) and (2) respectively. Although (D) has
an exponential number of constraints, it can be solved efficiently given demand oracles
for the valuations as these oracles yield the desired separation oracle for (D). This in
turn implies that (P) can be solved efficiently. We say that an algorithm A for the SWM
problem is an LP-based α-approximation algorithm for a class V of valuations if for
every instance involving valuation functions (v1, . . . , vn), where each vj ∈ V , A returns
an integer solution of value at least OPT/α. For example, the algorithm in [9] is an LP-
based 2-approximation algorithm for the class of subadditive valuations.

Definition 1. We say that an algorithmA for the SWM problem “verifies” an integrality
gap of (at most) α for an LP-relaxation of the SWM problem (e.g.,(P)), if for every
profile of (monotonic) valuation functions (v1, . . . , vn), A returns an integer solution
of value at least (LP-optimum)/α.

As emphasized above, an integrality-gap-verifying algorithm must “work” for every
valuation-profile. In particular, an LP-based α-approx. algorithm for a given structured
class of valuations (e.g., submodular or subadditive valuations) does not verify the in-
tegrality gap for the LP-relaxation. This is precisely why our guarantee for subadditive
valuations (part (i) of Theorem 1) does not follow from part (ii) of Theorem 1.

In certain cases however, one may be able to encapsulate the combinatorial structure
of the SWM problem with a structured valuation class by formulating a stronger LP-
relaxation for the SWM problem, and thereby prove that an approximation algorithm for
the structured valuation class is in fact an integrality-gap-verifying approximation algo-
rithm with respect to this stronger LP-relaxation. For example, in Section 3.1 we con-
sider the setting where items are edges of a tree and customers desire paths of the tree.
This leads to the structured valuation where v(T ) = max{v(P ) : P is a path in T }
(with v(P ) ≥ 0 being the value for path P ). We design an O(1)-approximation al-
gorithm for such valuations, and formulate a stronger LP for the corresponding SWM
problem for which our algorithm verifies a constant integrality gap.

For a given instance I =
(
m, n, {vj}j∈[n], {c(e)}e∈[m]

)
, our algorithms will con-

sider different capacity vectors k ≤ c. Let (Pk) and (Dk) denote respectively (P) and
(D) with capacity-vector k = (ke), and OPT (k) denote their common optimal value.
Let OPT := OPT (c) denote the optimum value of (P) with the original capacities. We
utilize the following facts, which follow from complementary slackness, and a rounding
result that follows from the work of Carr and Vempala [5], and are made explicit in [13].

Claim 1. Let k = (ke) be any capacity-vector, and let x∗ and (y∗, z∗) be optimal
solutions to (Pk) and (Dk) respectively: (i) If x∗

j,S > 0, then
∑

e∈S y∗
e ≤ vj(S); (ii) If

x∗
j,S > 0, and vj is subadditive, then

∑
e∈T y∗

e ≤ vj(T ) for any T ⊆ S; (iii) If y∗
e > 0,

then
∑

j,S:e∈S x∗
j,S = ke.

Remark 1. As mentioned above, we will sometimes consider a different LP-relaxation
when considering the SWM problem with a structured class of valuations. Roughly
speaking, the only properties we require of this LP are that it should: (a) include a
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constraint similar to (2) that encodes the supply constraints; and (b) be a packing LP,
i.e., have the form Ax ≤ b, x ≥ 0 where A is a nonnegative matrix. Given this, parts
(i) and (iii) of Claim 1 continue to hold with ye denoting (as before) the dual variable
corresponding to the supply constraint for item e, since the dual is then a covering LP.

Lemma 1 ([5,13]). Given a fractional solution x to the LP-relaxation of an SWM
problem that is a packing LP (e.g., (Pk)), and a polytime integrality-gap-verifying α-
approx. algorithm A for this LP, one can express x

α as a convex combination of integer
solutions to the LP in polytime. Thus, one can round x to a random integer solution x̂
satisfying the following “rounding property”: xj,S

α ≤ Pr[x̂j,S = 1] ≤ xj,S for all j, S.

3 The Main Algorithm and Its Applications

Claim 1 leads to the simple, but important observation that if k ≤ c and the optimal
primal solution x∗ is integral, then by using {y∗

e} as the prices, one obtains a feasible
solution to the profit-maximization problem with profit

∑
e key

∗
e . There are two main

obstacles encountered in leveraging this observation and turning it into an approxima-
tion algorithm. First, (Pk) will not in general have an integral optimal solution. Second,
it is not clear what capacity-vector k ≤ c to use, e.g.,

∑
e cey

∗
e could be much smaller

than OPT , and in general,
∑

e key
∗
e could be quite small for a given capacity-vector

k ≤ c. We overcome these difficulties by taking an approach similar to the one in [7].
We tackle the second difficulty by utilizing a key lemma proved by Cheung and

Swamy [7], which is stated in a slightly more general form in Lemma 3 so that it can be
readily applied to various profit-maximization problems. This lemma implies that one
can efficiently compute a capacity-vector k ≤ c and an optimal dual solution (y∗, z∗)
to (Dk) such that

∑
e key

∗
e is

(
OPT − OPT (1)

)
/O(log cmax), where 1 denotes the

all-ones vector (Corollary 1). To handle the first difficulty, notice that part (i) of Claim 1
implies that one can still use {y∗

e} as the prices, provided we obtain an allocation (i.e.,
integer solution) x̂ that only assigns a set S to customer j (i.e., x̂j,S = 1) if x∗

j,S > 0.
(In contrast, in the envy-free setting, if we use {y∗

e} as the prices then every customer j
with z∗j > 0, and hence

∑
S x∗

j,S = 1, must be assigned a set S with x∗
j,S > 0; this may

be impossible with non-single-minded valuations, whereas this is easy to accomplish
with single-minded valuations (as there is only one set per customer).) Furthermore, for
subadditive valuations, part (ii) of Claim 1 shows that it suffices to obtain an allocation
where x̂j,T = 1 implies that there is some set S ⊇ T with x∗

j,S > 0. This is precisely
what our algorithms do. We show that one can round x∗ into an integer solution x̂
satisfying the above structural properties, and in addition ensure that the profit obtained,∑

j,T x̂j,T

(∑
e∈T y∗

e

)
, is “close” to

∑
e key

∗
e (Lemma 4).

So if
∑

e key
∗
e is OPT/O(log cmax) then applying this rounding procedure to the

optimal primal solution to (Pk) yields a “good” solution. On the other hand, Corollary 1
implies that if this is not the case, then OPT (1) must be large compared to OPT , and
then we observe that an α-approximation to the SWM problem trivially yields a solution
with profit OPT (1)/α (Lemma 2). In either case we obtain the desired approximation.

The algorithm is described precisely in Algorithm 1. If we use an LP-relaxation
different from (P) for the SWM problem with a given valuation class that satisfies the
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properties stated in Remark 1, then the only change to Algorithm 1 is that we now use
this LP and its dual (with the appropriate capacity-vector) instead of (P) and (D) above.

Algorithm 1. Non-single-minded profit-maximization

Input: a profit-maximization instance I =
(
m, n, {vj}, {ce}

)
with demand oracle for each vj

1. Define k1, k2, . . . , k� as the following capacity-vectors. Let k1
e = 1 ∀e. For j > 1, let

kj
e = min

{�(1 + ε)kj−1
e �, ce

}
; let � be the smallest index such that k� = c.

2. For each vector k = kj , j ∈ [�], compute an optimal solution (y(k), z(k)) to (Dk) maximiz-
ing
∑

e key
(k)
e among all such solutions. Select u ∈ {k1, . . . , k�} maximizing

∑
e uey

(u)
e .

3. Compute an optimal solution x(u) to (Pu). Use Round(u, x(u)) to get a feasible allocation.
4. Use an LP-based α-approx. algorithm for the SWM problem (with the given valuation class)

to compute an α-approx. solution to the SWM problem with unit capacities, and a pricing
scheme for this allocation that yields profit equal to the social-welfare value of the allocation.

5. Return the better of the following two solutions: (1) allocation computed in step 3 with {y(u)
e }

as the prices; (2) allocation and pricing scheme computed in step 4.

Round(μ = (μe), x∗) (x∗ is an optimal solution to the SWM-LP with capacity-vector μ)
Subadditive valuations: Independently for each customer j, assign j at most one set S by
choosing set S with probability x∗

j,S . If an item e gets allotted to more than μe customers this
way, then arbitrarily select μe customers from among these customers and assign e to these
customers. This algorithm can be derandomized via the method of conditional expectations.
General valuation class: Given an integrality-gap-verifying α-approximation algorithm
(for (Pμ)), use Lemma 1 to decompose x∗

α
into a convex combination

∑�
r=1 λrx̂

r of in-
teger solutions to (Pμ). (Here

∑
r λr = 1 and λr ≥ 0 for each r.) Return x̂(r) with

probability λr . Given item prices, this algorithm can be derandomized by choosing the
solution in {x̂(1), . . . , x̂(r)} achieving maximum profit.

Analysis. The analysis for both subadditive valuations and a general valuation class pro-
ceeds very similarly with the only point of difference being in the analysis of the round-
ing procedure (Lemma 4). First, observe that if we have an allocation (S1, . . . , Sn) that
is feasible with unit capacities, then since the sets Sj are disjoint we can charge each
customer her valuation for the assigned set by pricing one of her items at this value, and
hence, obtain profit equal to the social-welfare value

∑
j vj(Sj) of the allocation.

Lemma 2. Given an LP-based α-approximation algorithm for the SWM problem with
a given valuation class, one can compute a solution that achieves profit at least OPT (1)

α .

Lemma 3 ([7] paraphrased). Let (Ck): min kT y + bT z s.t. (y, z) ∈ P ⊆ Rm+n
+ ,

where k, y ∈ Rm
+ , b, z ∈ Rn

+, P �= ∅. Let (y(k), z(k)) be an optimal solution to (Ck)
that maximizes kT y among all optimal solutions, and opt(k) denote the optimal value.
Let k1, . . . , k�, and u be as defined in steps 1 and 2 respectively of Algorithm 1. Then,∑

e uey
(u)
e ≥

(
opt(c) − opt(1)

)
/
(
2(1 + ε)Hcmax

)
.

Corollary 1. The capacity-vector u computed in step 2 of Algorithm 1 satisfies the
inequality

∑
e uey

(u)
e ≥

(
OPT (c) − OPT (1)

)
/
(
2(1 + ε)Hcmax

)
.
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Lemma 4. Let x̂ be the integer solution returned by Round in step 3 of Algorithm 1.
Then x̂ combined with the pricing y(u) is a feasible solution to the profit-maximization
problem with probability 1, which achieves expected profit at least (i)

(
1− 1

e

)∑
e uey

(u)
e

for subadditive valuations; and (ii)
∑

e uey
(u)
e /α for a general valuation class.

Theorem 3. Algorithm 1 runs in time poly
(
input size, 1

ε

)
and achieves an

(i) O(log cmax)-approximation for subadditive valuations, using the 2-approximation
algorithm for the SWM problem with subadditive valuations in [9];

(ii) O(α log cmax)-approximation for a general valuation class given an integrality-
gap-verifying α-approximation algorithm for the SWM problem.

Remark 2. Note that if the allocation (S1, . . . , Sn) returned by Algorithm 1 is ob-
tained via Round, then Sj is always a subset of a utility-maximizing set of j, and with
a general valuation class, if Sj �= ∅, it is a utility-maximizing set (under the com-
puted prices). Also, if (S1, . . . , Sn) is obtained in step 4, then we may assume that
vj(Sj) > vj(Sj \ {e}) for all e ∈ Sj ; moreover, with a general valuation class, this so-
lution can be modified to yield an approximate “one-sided envy-freeness” property. We
compute (S1, . . . , Sn) by rounding x(1) as described in Lemma 1. Now choose prices
{p′e} (arbitrarily) such that p′ ≥ y(1) and p′(Sj) = max{y(1)(Sj), (1 − ε)vj(Sj)} for
every j. Since any non-empty Sj is a utility-maximizing set under y(1), it follows that
(a) p′ is a valid item-pricing yielding profit at least (1 − ε)

∑
j vj(Sj); (b) if Sj �= ∅,

then the utility j derives from Sj under p′ is at least ε(max utility of j under p′).

3.1 Applications

Arbitrary valuation functions. The integrality gap of (P) is known to be Θ(
√

m), and
there are efficient (deterministic) algorithms that verify this integrality gap [15,12]. So
Theorem 3 immediately yields an O(

√
m log cmax)-approximation algorithm for the

profit-maximization problem for combinatorial auctions with arbitrary valuations.

Non-single-minded tollbooth problem on trees. In this profit-maximization problem,
items are edges of a tree and customers desire paths of the tree. More precisely, let
P denote the set of all paths in the tree (including ∅). Each customer j has a value
vj(S) ≥ 0 for path S ∈ P , and may be assigned any (one) path of the tree. This leads
to the structured valuation function vj : 2[m]  → R+ where vj(T ) = max{vj(S) :
S is a path in T }. We use Algorithm 1 to obtain an O(log cmax)-approximation guaran-
tee by formulating an LP-relaxation of the SWM problem that is tailored to this setting
and designing an O(1)-integrality-gap-verifying algorithm for this LP.

The “new” LP is almost identical to (P), except that we now only have variables xj,S

for S ∈ P . Correspondingly, in the dual (D), we only have a constraint for (j, S) when
S ∈ P . Clearly, this new LP satisfies the properties stated in Remark 1, so parts (i) and
(iii) of Claim 1 hold for this new LP, and so does Lemma 1. Thus, we only need to de-
sign an O(1)-integrality-gap-verifying algorithm for this new LP to apply Theorem 3.
Let {vj : P  → R+}j∈[n] be any instance and x∗ be an optimal solution to this new
LP for this instance. We design a randomized algorithm that returns a (random) inte-
ger solution x̂ of expected objective value Ω(

∑
j,S∈P vj(S)x∗

j,S). This algorithm can
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be derandomized using the work of [16]; this yields an O(1)-integrality-gap-verifying
algorithm for the new LP. Our algorithm is a generalization of the one proposed by [6]
for unsplittable flow on a line. Root the tree at an arbitrary node. Define the depth of an
edge (a, b) to be the minimum of the distances of a and b to the root. Define the depth
of an edge-set T to be the minimum depth of any edge in T . Let α = 0.01.

1. Independently, for every customer j, choose at most one path S, by picking S with
probability αx∗

j,S . Let Sj be the set assigned to j. (If j is unassigned, then Sj = ∅.)
2. Let W = ∅. Consider the sets {Sj} in non-decreasing order of their depth (breaking

ties arbitrarily). For each set T = Sj , if T can be added to {Si : i ∈ W} without
violating any capacities, add j to W , otherwise discard T .

Let x̂ be the (random) integer solution computed. Using a similar argument as in [6],
we can prove that Pr[x̂j,S = 1] ≥ 0.004x∗

j,S, so E
[∑

j,S∈P vj(S)x̂j,S

]
≥ 0.004 ·∑

j,S∈P vj(S)x∗
j,S . We thus obtain the following theorem as a corollary of

Theorem 3.

Theorem 4. There is an O(1)-integrality-gap-verifying algorithm for the above LP,
and thus an O(log cmax)-approx. algorithm for the non-SM tollbooth problem on trees.

Since the above algorithm satisfies the rounding property in Lemma 1, we can use it to
round x(u) (more efficiently) to a feasible allocation in step 3 of Algorithm 1, instead
of using the Carr-Vempala procedure (which relies on the ellipsoid method).

4 Refinement for the Non-single-Minded Highway Problem

In this section, we describe a different approach that does not use OPTSWM as an upper
bound on the optimum profit. Instead our approach is based on using an exponential-size
configuration LP to decompose the original instance into various smaller (and easier)
instances. We use this to obtain an O(log m)-approx. for the non-SM highway problem
with subadditive valuations, and arbitrary valuations but unlimited supply (Theorem 2).

Let P be the set of all intervals on the line (with m edges). As with the non-SM
tollbooth problem on trees, each customer j has a value for each subpath (which is now
an interval). So we view vj as a function vj : P  → R+, and subadditivity means that
vj(A∪B) ≤ vj(A)+vj(B) for any two intervals A, B, where A∪B is also an interval.

We sketch the proof of Theorem 2. First, we use a standard decomposition to partition
the intervals in P into O(log m) disjoint sets, where each set is a union of item-disjoint
“pyramids”. A pyramid is a set of paths that share a common edge; two pyramidsP1 and
P2 are item-disjoint, if A ∩ B = ∅ for all A ∈ P1, B ∈ P2. Thus, to get an O(log m)-
approximation algorithm, it suffices to give an O(1)-approximation algorithm when
the intervals form a union of item-disjoint pyramids. It is unclear how to achieve a
near-optimal solution even in this structured setting, as there are various dependencies
between the pyramids in a set: a customer can only be assigned an interval in one of the
pyramids. We solve this “union-of-pyramids” pricing problem as follows. We first trim
each pyramid Pi in our set randomly to a one-sided half-pyramid Hi by (essentially)
ignoring the items to the left or right of the common edge of Pi. The details of this
truncation are slightly different depending on whether we have subadditive or arbitrary
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valuations, but a key observation is that, in expectation, we only lose a factor of 2 by
this truncation. We formulate an LP-relaxation for the pricing problem involving these
half-pyramids. Let Ri denote the set of all possible solutions for Hi, where a solution
specifies a pricing of the intervals in Hi (rounded to the nearest power of 2) and an
allocation of intervals to customers satisfying the budget and capacity constraints. We
introduce a variable yjp ≥ 0 for each customer j and price p denoting if customer j
buys a path at price p, and a variable xi,R for each R ∈ Ri denoting whether solution
R has been chosen for Hi. Let pj(R) be the price that j pays under the solution R, and
Ri,j,p =

{
R ∈ Hi : pj(R) = p

}
be the set of solutions for Hi where j pays price p.

We consider the following LP: max
∑

j,p p · yjp s.t.
∑

R∈Ri
xi,R = 1 ∀i,

∑
p yjp ≤

1 ∀j,
∑

i,R:R∈Ri,j,p
xi,R ≥ yjp ∀j, p, and xi,R, yjp ≥ 0 ∀i, R, j, p. We solve this LP

using the ellipsoid method on the dual problem; the separation oracle is provided by
the solution to an easier pricing problem, where the half-pyramids are now decoupled.
We devise an algorithm based on dynamic programming to compute a near-optimal
solution to this pricing problem, which then yields a near-optimal solution to the LP.
Finally, we argue that this solution can be rounded to an integer solution losing only
an O(1)-factor. This gives us the desired O(1)-approx. for the “union-of-pyramids”
pricing problem, which in turn yields an O(log m)-approx. for our original non-SM
highway problem.

Lemma 5. There is a 16(1 + 1
m )-approx. algorithm for the non-SM highway problem

when intervals form a union of item-disjoint pyramids for (i) subadditive valuations
with limited supply; (ii) arbitrary valuations with unlimited supply.
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Abstract. We study electoral campaign management scenarios in which

an external party can buy votes, i.e., pay the voters to promote its pre-

ferred candidate in their preference rankings. The external party’s goal

is to make its preferred candidate a winner while paying as little as pos-

sible. We describe a 2-approximation algorithm for this problem for a

large class of electoral systems known as scoring rules. Our result holds

even for weighted voters, and has applications for campaign management

in commercial settings. We also give approximation algorithms for our

problem for two Condorcet-consistent rules, namely, the Copeland rule

and maximin.

1 Introduction

Elections and voting play an important role in the functioning of the modern
society. In the standard model of voting, each voter’s preferences are represented
by a total order over the alternatives (candidates), and some voting rule is used to
determine the election winner(s). However, in practice, the voters’ preferences
are often flexible, and it is possible to affect the outcome of the election by
campaigning for or against a certain candidate. Indeed, campaign management
is a multi-million dollar industry, and there is overwhelming evidence that the
amount of money invested into a candidate’s campaign is strongly correlated
with her chances of winning the election.

The notion of bribery proposed by Faliszewski, Hemaspaandra, and Hemas-
paandra [8] can be viewed as a formal model of electoral campaign management.
In the model of [8], each (possibly weighted) voter is associated with a certain
price, and, by paying the price, the briber can change that voter’s vote in any
way she likes. The briber’s goal, then, is to get a particular candidate elected,
subject to a budget constraint. To connect this description with our original
campaign management scenario, observe that bribing a (weighted) voter can be
interpreted as mounting an election campaign targeted at a particular group of
voters with identical preferences.

However, this interpretation does not take into account that in practice it may
be relatively easy to convince a voter to make small changes to his vote, but hard
or impossible to convince him to adopt an entirely new preference ordering. To
remedy this, several subsequent papers [7,9,6] allow the briber to modify the
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voters’ preferences in a more fine-grained manner. However, Faliszewski [7] and
Faliszewski et al. [9] depart from the assumption that the voters are represented
by the preference orders. We will therefore focus on the framework of Elkind,
Faliszewski, and Slinko [6], which operates in the standard model of voting, and
assumes that the briber can pay each voter to swap any two candidates that are
adjacent in that voter’s ordering; this type of bribery is called swap bribery. In
the context of campaign management, such a swap corresponds to an ad that
compares two particular candidates. A special case of swap bribery that was
also suggested in [6] is shift bribery, where the briber is limited to buying swaps
that involve her preferred candidate; in effect, this is equivalent to allowing the
briber to shift her preferred candidate up in the voters’ preference orderings. The
constraint that a campaign ad should involve the briber’s preferred candidate
is very natural from the ethics perspective; as we will see later, it also leads to
more tractable computational problems.

The complexity-theoretic study of swap and shift bribery was initiated by
Elkind, Faliszewski, and Slinko [6], where the authors show that the associated
computational problem is hard for many voting rules (see also the parametrized-
complexity study of Dorn and Schlotter [4]). However, campaign management
can be naturally viewed as an optimization problem, and hence we can approach
it using the framework of approximation algorithms. This line of research was
first suggested in [6], where the authors give a 2-approximation algorithm for shift
bribery under the Borda rule. We expand the study of approximation algorithms
for shift bribery to voting rules other than Borda, and to weighted voters.

It is straightforward to show that the optimal swap bribery is hard to ap-
proximate up to an arbitrary factor for any voting rule for which the possible
winner problem is NP-hard (in particular, for k-approval for k ≥ 2 [2], Borda [2],
Copeland [12], and maximin [12]): indeed, the reduction from the possible win-
ner problem to the swap bribery problem given in [6] constructs a bribery of cost
0 for a “yes”-instance of the possible winner problem, and a bribery of non-zero
cost for a “no”-instance. Therefore, in this paper we focus on shift bribery.

Our main result is a 2-approximation algorithm for shift bribery under all
scoring rules (a large class of voting rules, which includes Borda); our result
holds even for weighted voters. Under a scoring rule, each candidate gets a cer-
tain number of points from each voter, which is determined by that candidate’s
position in the voter’s preferences, and the winner is the candidate with the max-
imum number of points. Unlike most of the existing algorithms for scoring rules
(see, e.g., [8]), our algorithm does not assume that the number of candidates is
constant, but rather accepts the scoring vector as an input. Our proof has an un-
usual structure: we first design a pseudopolynomial 2-approximation algorithm
for our problem, then convert it into a (2+ε)-approximation scheme, and finally
turn the (2 + ε)-approximation scheme into a 2-approximation algorithm.

Interestingly, shift bribery under scoring rules provides a mathematical frame-
work for campaign management scenarios that are not related to elections. Con-
sider, for example, an advertiser in a sponsored search setting who wants to
ensure that his ads get more clicks than those of the competitors, and is willing
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to make an additional investment in his campaign to achieve that. By associ-
ating the competing ads with candidates, search terms with (weighted) voters,
and scores for position i with clickthrough rates for an ad in position i, we can
reduce the advertiser’s problem to shift bribery with weighted voters. This ex-
ample suggests that our 2-approximation algorithm can be used for campaign
management in a variety of settings, including—but not limited to—voting.

We complement our work on scoring rules by describing approximation algo-
rithms for shift bribery under two voting rules that have the attractive property
of Condorcet consistency, namely, the Copeland rule and maximin.

We omit most proofs due to space restrictions, but missing proofs can be
found in our technical report [5].

2 Preliminaries

We first describe relevant notions from computational social choice and define
the shift bribery problem. We take Z+ to be the set of all nonnegative integers.

Elections. An election is a pair E = (C, V ), where C = {c1, . . . cm} is the
set of candidates and V = (v1, . . . , vn) is a collection of voters. Each voter vi

is described by her preference order �i, which is a strict linear order over C:
c �i c′ means that voter vi prefers c to c′. We will also consider settings where
each voter vi has a weight wi; in this case, her vote is interpreted as wi votes.

A voting rule is a function that given an election E = (C, V ) outputs a
set W ⊆ C of election winners. Note that we do not require the voting rule
to produce a unique winner, i.e., we work in the so-called nonunique-winner
model. This approach is standard in the computational social choice literature.
In practice, a voting rule may have to be combined with a tie-breaking rule.

Voting Rules. We will now describe several well-known voting rules that will be
considered in this paper. All voting rules listed below are defined for an election
E = (C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn). For all rules defined in
terms of scores (points), the winner(s) are the candidate(s) with the maximum
score (highest number of points).

Scoring rules. A scoring rule Rα is described by a vector α = (α1, . . . , αm),
where αi ∈ Z+ for i = 1, . . . , n, and α1 ≥ · · · ≥ αm. Under Rα, each
candidate ci receives αj points from each voter that ranks him in the j-
th position. Note that each scoring rule is defined for a fixed number of
candidates. Thus, we often consider voting rules that are defined by families
of scoring rules (αm)m=1,2,..., with one vector for each number of candidates.
In particular, Borda is the rule given by αm

j = m− j for j = 1, . . . , m, and k-
approval is the rule given by αm

j = 1 for j ≤ k, αm
j = 0 for j > k; 1-approval

is also known as plurality.
Condorcet consistent rules. For any ci, cj ∈ C, let NE(ci, cj) denote the

number of voters in E who prefer ci to cj . If NE(ci, cj) > NE(cj , ci), then
we say that ci wins the pairwise election against cj . A candidate c ∈ C
is called the Condorcet winner if he wins the pairwise elections against all
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other candidates in C. Note that some elections may not have a Condorcet
winner. We say that a voting rule R is Condorcet-consistent if for any election
E that has a Condorcet winner c we have R(E) = {c}. Two examples of
Condorcet-consistent rules are Copeland and maximin, defined as follows.
For any rational α ∈ [0, 1], Copeland α grants one point to a candidate ci ∈
C for each pairwise elections that ci wins, and α points for each pairwise
election that ci ties. The maximin score of ci is the number of votes that ci

receives in her worst pairwise election, i.e., mincj∈C\{ci} NE(ci, cj).

We denote by ScRE (c) the R-score of a candidate c ∈ C in an election E = (C, V );
we omit the superscript R when the voting rule is clear from the context.

The Shift Bribery Problem. This section is based on the definitions from [6].
Consider an election E = (C, V ) with C = {p, c1, . . . , cm−1}, V = (v1, . . . , vn).
Suppose that our goal is to ensure that the designated candidate p is a winner
of the election under a voting rule R. In order to achieve this goal, we can ask
each voter vi to shift p upwards in her vote by a certain number of positions.
This models the fact that we can campaign in favor of p. However, each such
shift has a cost. Specifically, each voter vi has a cost function πi : Z+ → Z+,
where πi(k), k ∈ Z+, is the cost of shifting p upwards by k positions in �i. We
require that each πi, i = 1, . . . , n, satisfies πi(0) = 0 and πi(k) ≤ πi(k + 1) for
k ∈ Z+. Also, when vi ranks p in position t, we require πi(s) = πi(t − 1) for all
s ≥ t; thus, the function πi is fully specified by its values at 1, . . . , t − 1. Note
that we assume that πi(k) < ∞ for all i = 1, . . . , n and k ∈ Z+. However, all
our proofs can be generalized to the case where πi can be +∞ (i.e., some voters
cannot be bribed to move p by more than some given number of positions). We
seek an action that makes p a winner at the minimum cost.

Definition 1. Let R be a voting rule. An instance of R-shift-bribery problem
is a tuple I = (C, V, Π, p), where C = {p, c1, . . . , cm−1}, V = (v1, . . . , vn) is a
collection of preference orders over C, Π = (π1, . . . , πn) is a family of cost
functions, and p ∈ C is a designated candidate. The goal is to find a minimal
value b such that there is a sequence t = (t1, . . . , tn) ∈ (Z+)n with the following
properties: (a) b =

∑n
i=1 πi(ti), and (b) if for each i = 1, . . . , n we shift p upwards

in the i-th vote by ti positions, then p becomes an R-winner of E. We denote
this value of b by opt(I).

In weighted R-shift-bribery, the description of the instance includes a vector
of voters’ weights w = (w1, . . . , wn), i.e., we have I = (C, V, Π, p,w).

We will call the sequence t = (t1, . . . , tn) a shift-action. Let shf (C, V, t) denote
the election obtained from (C, V ) by shifting p upwards by ti positions in the
i-th vote (or placing p on top of that vote, if vi ranks p in position t < ti + 1
before the bribery). A shift-action is successful if p is a winner of shf (C, V, t).
Additionally, let Π(t) =

∑n
i=1 πi(ti).

Let I = (C, V, Π, p) be an instance of R-shift-bribery and let t =
(t1, . . . , tn). Overloading notation, we let shf (I, t) denote an instance Î =
(C, V̂ , Π̂, p) of R-shift-bribery given by (a) (C, V̂ ) = shf (C, V, t), and (b)
Π̂ = (π̂1, . . . , π̂n) where for each i = 1, . . . , n we have π̂i(k) = πi(k + ti)−πi(ti).
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That is, shf (I, t) represents the instance of shift bribery obtained from I by
applying the shift-action t; the costs are modified to reflect the fact that some
shifts have already been performed.

Given an instance I of R-shift-bribery or weighted R-shift-bribery,
we denote by |I| the representation size of I assuming that all entries of Π (and
w, for the weighted case) are given in binary. Similarly, |α| denotes the number
of bits in the binary encoding of a scoring vector α.

3 Scoring Rules

procedure A(C, V, Π, p)
begin

Set m = |C|, n = |V |
Set M =

∑n
i=1 πi(m)

Set b = ∞;
for �1 = 0 to M do

for �2 = 0 to M do
begin

I ′ = buy(I, �1);
I ′′ = buy(I ′, �2);
if p is an Rα-winner in I ′′ and

�1 + �2 < b
then set b = �1 + �2;

end
return b;

end

Fig. 1. Algorithm A

In this section, we describe a 2-
approximation shift-bribery algo-
rithm that works for all scoring
rules.

Theorem 1. There is an algorithm
B that given a scoring rule α =
(α1, . . . , αm) and an instance I =
(C, V, Π, p) of Rα-shift-bribery

with |C| = m, outputs a success-
ful shift-action t for I that satisfies
Π(t) ≤ 2opt(I), and runs in time
poly(|I|, |α|).

We split the proof of Theorem 1 into
three steps. First (Proposition 1)
we describe a pseudopolynomial 2-
approximation algorithm A for our
problem. Then (Proposition 2) we
use A to construct another algo-
rithm A′, which for any ε > 0 pro-
duces a (2 + ε)-approximation and
runs in time polynomial in the instance size and 1

ε . Finally, we convert A′ into
a 2-approximation algorithm by bootstrapping. Throughout the proof, we fix a
scoring rule Rα = (α1, . . . , αm). The next lemma is crucial for demonstrating
the correctness of our algorithm.

Lemma 1. Let s = (s1, . . . , sn) be a successful shift-action for (C, V, Π, p), and
let k = Scshf (C,V,s)(p)−Sc(C,V )(p). Then every shift-action r = (r1, . . . , rn) such
that Scshf (C,V,r)(p) = Sc(C,V )(p) + 2k is successful for (C, V, Π, p).

Proof. When p is shifted from position i + 1 to position i in some vote �j , he
obtains αi−αi+1 extra points, while the candidate c that was in position i in �j

prior to the shift loses αi −αi+1 points; the scores of all other candidates remain
unchanged. Since s increases p’s score by k and p wins in shf (C, V, s), we have
maxc∈C(Sc(C,V )(c) − Sc(C,V )(p)) ≤ 2k. Now, r increases p’s score by 2k points,
and does not increase the score of any other candidate. The lemma follows. �
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We are now ready to implement the first step of our plan. The algorithm A
presented in the next proposition is inspired by the 2-approximation algorithm
for the Borda rule that appears in [6]; however, its analysis is substantially
different. The main idea of the correctness proof is to keep track of the overlap
between, on the one hand, a greedy solution that gives as many points as possible
to our preferred candidate, and, on the other hand, an optimal solution.

Proposition 1. There exists an algorithm A that given a scoring rule α =
(α1, . . . , αm) and an instance I = (C, V, Π, p) of Rα-shift-bribery with
|C| = m, outputs a successful shift-action t for I that runs in time
poly(|I|, |α|,

∑n
i=1 πi(m)) and satisfies Π(t) ≤ 2opt(I).

Proof. Consider an instance I = (C, V, Π, p) of Rα-shift-bribery such that
C = {p, c1, . . . , cm−1} and V = (v1, . . . , vn), and set E = (C, V ). For each
integer � ≥ 0, and each instance J = (C, V ′, Π ′, p) of Rα-shift-bribery, set
buy(J, �) = shf (C, V ′, t�), where t� is chosen so as to maximize p’s score subject
to the constraint Π ′(t�) ≤ �, i.e., t� ∈ arg max{Scshf (C,V ′,t)(p) | Π ′(t) ≤ �}. The
pseudocode for algorithm A is given in Figure 1. The next lemma (proof omitted)
implies that the running time of A is polynomial in |I|, |α| and

∑n
i=1 πi(m).

Lemma 2. For any � ≥ 0, the instance buy(I, �) is computable in time
poly(|I|, |α|, �).

It remains to show that A indeed produces a 2-approximate solution. To this
end, we will show that there exist �1, �2 ≤

∑n
i=1 πi(m) such that I ′ = buy(I, �1),

I ′′ = buy(I ′, �2), p is an Rα-winner in I ′′, and �1 + �2 ≤ 2opt(I).
Let t = (t1, . . . , tn) be an optimal shift-action that ensures p’s victory, that

is, Π(t) = opt(I). Set k = Scshf (C,V,t)(p) − ScE(p).
Consider an instance I ′ obtained from I by spending the total cost of the

optimal shift-action greedily, i.e., so as to maximize p’s score. Formally, let �1 =
Π(t) and set I ′ = buy(I, �1). Let s′ = (s′1, . . . , s

′
n) be the shift-action that

transforms I into I ′ = (C, V ′, Π ′, p), and set E′ = (C, V ′). By construction, we
have ScE′(p) ≥ ScE(p) + k.

Let r = (r1, . . . , rn) be the common part of shift-actions t and s′, i.e., set
ri = min{ti, s′i} for i = 1, . . . , n. Let Ir = shf (C, V, r), where Ir = (C, V r, Πr, p),
and set Er = (C, V r).

Finally, set �2 = Π ′(t − r), I ′′ = buy(I ′, �2), and let s′′ = (s′′1 , . . . , s′′n) be
the shift-action that transforms I ′ into I ′′ = (C, V ′′, Π ′′, p). Let E′′ = (C, V ′′).
Observe that for each i = 1, . . . , n we have either ti − ri = 0, in which case
π′i(ti − ri) = 0, or ti − ri = ti − s′i, in which case π′i(ti − ri) = π′i(ti − s′i) =
πi(ti)−πi(s′i). Therefore, we have Π ′(t−r) ≤ Π(t). Now, the total cost of s′+s′′

is given by �1 + �2 = Π(t) + Π ′(t − r) ≤ 2Π(t). As Π(t) = opt(I), we obtain
�1 + �2 ≤ 2opt(I). It remains to show that p is a winner in shf (C, V, s′ + s′′).

Set kr = ScEr (p) − ScE(p). The shift-actions t − r and s′ − r satisfy

Scshf (C,V r,t−r)(p) = ScEr (p) + (k − kr), (1)
Scshf (C,V r,s′−r)(p) ≥ ScEr (p) + (k − kr). (2)
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We have shf (C, V r, t−r) = shf (C, V, t), so p is an Rα-winner in shf (C, V r, t−r).
Thus, by Lemma 1, any shift-action that increases the score of p in Er by 2(k−kr)
points ensures that p is a winner in the resulting election. We will now show
that this holds for the shift-action s′′ + (s′ − r), and hence p is a winner in
shf (C, V r, s′′ + s′ − r) = shf (C, V, s′′ + s′).

For each i = 1, . . . , n, if ti − ri �= 0, then ri = s′i and the i’th voter ranks p in
the same position both in V ′ and in V r. Thus, Πr(t− r) = Π ′(t− r) = �2, and
applying t− r to I ′ increases p’s score by the same amount as applying t− r to
Ir. By equation (1), this implies

Scshf (C,V ′,t−r)(p) = ScE′(p) + (k − kr). (3)

By definition, s′′ is a shift-action of cost at most �2 = Π ′(t− r) that applied to
E′ increases p’s score as much as possible. Thus, equation (3) implies

ScE′′(p) ≥ ScE′(p) + (k − kr). (4)

Since E′′ = shf (E′, s′′) and E′ = shf (Er, s′−r), by combining (2) and (4) we ob-
tain the following inequality: ScE′′(p) ≥ ScE′(p)+(k−kr) = Scshf (C,V r,s′−r)(p)+
(k − kr) ≥ ScEr(p) + 2(k − kr). Thus, p is a winner of election E′′. �

We will now convert algorithm A into a (2+ε)-approximation scheme. The main
idea of the proof (omitted) is to adaptively scale the bribery price functions.

Proposition 2. There exists an algorithm A′ that given a rational ε > 0, a
scoring rule α = (α1, . . . , αm) and an instance I = (C, V, Π, p) of Rα-shift-

bribery with |C| = m, runs in time poly(|I|, |α|, 1
ε ) and outputs a successful

shift-action t for I that satisfies Π(t) ≤ (2 + ε)opt(I).

Finally, we transform A′ into a 2-approximation algorithm. using a bootstrap-
ping argument.

Proof (of Theorem 1). Let I = (C, V, Π, p) be an instance of Rα-shift-bribery,
and let t = (t1, . . . , tn) be an optimal shift-action for I. By the pigeonhole
principle, for some i ∈ {1, . . . , n} we have πi(ti) ≥ 1

nΠ(t). Assume for now that
we know i and ti (later, we will show how to get rid of this assumption).

Let d = (0i−1, ti, 0m−i), and set I ′ = shf (I,d). We have opt(I ′) = opt(I) −
πi(ti). Let ε = 1

n , and let s = (s1, . . . , sn) be the shift-action produced by A′ on
(I ′, ε). Clearly, p is a winner in shf (I, s+d). Further, by Proposition 2, we have
Π(s) ≤ (2 + ε)(Π(t) − πi(ti)). Therefore, the cost of the shift-action s + d can
be estimated as Π(s + d) = Π(s) + πi(ti) ≤ (2 + ε)(Π(t) − πi(ti)) + πi(ti) ≤
2Π(t)− πi(ti) + εΠ(t) ≤ 2Π(t) + (εΠ(t) − 1

nΠ(t)) = 2Π(t), where we use the
fact that πi(ti) ≥ 1

nΠ(t). Thus, s + d is a 2-approximate solution.
While we do not know the values of i and ti, there are only n possibilities for

the former and m possibilities for the latter, and we can try them all. �

By using algorithm B with α = (m − 1, . . . , 1, 0), we obtain a 2-approximation
algorithm for the Borda rule. This algorithm is different from the one given by
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Elkind, Faliszewski, and Slinko [6], even though they have the same approx-
imation guarantee. Indeed, their algorithm relies on a different dynamic pro-
gramming subroutine, whose running time is polynomial in the instance size
and

∑m
i=1 αi (rather than the instance size and

∑n
i=1 πi(m), as in our construc-

tion). Since for Borda the expression
∑m

i=1 αi is polynomial in the size of the
instance, this immediately produces a polynomial-time algorithm. It is not hard
to see that the algorithm proposed by Elkind, Faliszewski and Slinko [6] can be
adapted to work for any scoring rule with

∑m
i=1 αi = poly(m). Of course, such

an algorithm would be considerably faster than the three-step procedure of The-
orem 1. Indeed, one may wonder if the more complicated algorithm described
above is useful at all, since the scoring vectors used in practice often have small
coordinates. However, an important feature of our algorithm is that it works
even if each voter vi uses his own scoring vector αi. This means that we can
adapt it for weighted voters, by replacing a voter of weight w with a scoring
vector (α1, . . . , αm) by a unit-weight voter with a scoring vector (wα1, . . . ,
wαm).

Corollary 1. There is an algorithm Bw that given a scoring rule α and an
instance I = (C, V, Π, p,w) of weighted Rα-shift-bribery, outputs a suc-
cessful shift-action t for I that satisfies Π(t) ≤ 2opt(I), and runs in time
poly(|I|, |α|).

Note that there does not seem to be an easy way to derive Corollary 1 from
the result of [6]. Indeed, Corollary 1 is quite surprising as it is one of the first
positive, nontrivial algorithmic result that applies to all scoring rules, both for
the weighted case and for the unweighted case (see also the work of Conitzer,
Xia, and Procaccia [13]). The weighted case is particularly important as large
voter weights are ubiquitous in campaign management scenarios where a “voter”
corresponds to a collection of individuals that can be “bribed” by the same
promotional activity (or, in our sponsored search example, where the search
terms may differ in popularity).

One may also wonder if algorithm A can be simplified by using a single for-
loop, which for each value of � finds the best shift-action of cost �. Would such an
algorithm always provide a 2-approximate solution? Similarly, would introducing
further for-loops improve the guaranteed approximation ratio?

4 Copeland and Maximin

Let us now consider shift-bribery for Copeland and maximin. Elkind, Fal-
iszewski, and Slinko [6] have shown that shift-bribery is NP-hard for both
Copeland and maximin. In contrast, we will now provide polynomial-time ap-
proximation algorithms for both Copeland and maximin. Further, we argue that
regarding the approximation ratio, our result for maximin is asymptotically
optimal.

Theorem 2. There exists a poly-time algorithm that given an instance I =
(C, V, Π, p) of weighted Copelandα-shift-bribery with α ∈ [0, 1] ∩ Q and
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|C| = m outputs a shift-action s such that p is a winner in shf (C, V, s) and
Π(s) ≤ m · opt(I).

The proof of this theorem relies on solving carefully crafted instances of the
weighted Copelandα-microbribery problem (see [9] for the description of the
problem). This approach can be used to obtain an analogous m-approximation
algorithm for weighted maximin-shift-bribery. However, using an algorithm
of Caragiannis et al. [3] for Dodgson score, we obtain an O(log m)-approximation
for maximin-shift=bribery.

Given an election E = (C, V ), the Dodgson score of a candidate c ∈ C is the
minimum number of positions by which c needs to be shifted upwards in the
preference orders of the voters in V to become the Condorcet winner. Observe
that the Dodgson score of a candidate is exactly the cost of shift bribery that
makes c the Condorcet winner, assuming that each unit shift has a unit cost.

It is known that determining whether a candidate is a winner in Dodgson elec-
tions is a computationally hard problem [1] (specifically, it is Θp

2 -complete [10]).
Caragiannis et al. [3] gave a polynomial-time O(log m)-approximation algorithm
for computing Dodgson scores. In fact, their algorithm is somewhat more general:
using a part of this algorithm as a crucial subroutine, we provide an O(log m)-
approximation algorithm for maximin-shift-bribery.

Theorem 3. There exists a poly-time algorithm that given an instance I =
(C, V, Π, p) of maximin-shift-bribery with |C| = m outputs a shift-action s
such that p is a winner in shf (C, V, s) and Π(s) = O(log m) · opt(I).

The approximation guarantee given by Theorem 3 is asymptotically optimal.
This follows from the fact that the reduction of exact-cover-by-3-sets to
maximin-shift-bribery given by Elkind, Faliszewski, and Slinko [6] can be
modified to reduce from set-cover, in a way that allows maximin-shift-

bribery to inherit the inapproximability properties of set-cover (see the work
of Raz and Safra [11] for inapproximability results for set-cover).

5 Conclusions

We have presented approximation algorithms for campaign management under a
number of voting rules. Most of our results hold even for weighted voters. We be-
lieve that designing algorithms for the case of weighted voters is important, since
in realistic campaign management scenarios a “voter” to be bribed is usually a
group of voters that can be reached by the same ad. By the same token, it would
be interesting to extend our results to settings where we can reach several non-
identical voters with the same ad; this would correspond to shift bribery with
“bulk discounts”. Another, more applied direction would be to identify commer-
cial campaign management scenarios (where candidates correspond to services
or products) that can be handled using our model; the sponsored search example
in the introduction is the first step in that direction. Finally, a natural direction
for further study is to design efficient algorithms for shift bribery with better
approximation ratios, or to prove that our results are (asymptotically) optimal.
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We remark that, assuming P �= NP, NP-hardness proofs for shift-bribery under
Borda and Copeland given in [6] preclude the existence of FPTASes for these
voting rules. Closing the gap between these hardness results and the easiness
results in this paper would be very interesting.
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Abstract. The envy-free pricing problem can be stated as finding a pric-

ing and allocation scheme in which each consumer is allocated a set of items

that maximize her utility under the pricing. The goal is to maximize seller

revenue. We study the problem with general supply constraints which are

given as an independence system1 defined over the items. The constraints,

for example, can be a number of linear constraints or matroids. This cap-

tures the situation where items do not pre-exist, but are produced in re-

flection of consumer valuation of the items under the limit of resources.

This paper focuses on the case of unit-demand consumers. In the

setting, there are n consumers and m items; each item may be produced

in multiple copies. Each consumer i ∈ [n] has a valuation vij on item

j in the set Si in which she is interested. She must be allocated (if

any) an item which gives the maximum (non-negative) utility. Suppose

we are given an α-approximation oracle for finding the maximum weight

independent set for the given independence system (or a slightly stronger

oracle); for a large number of natural and interesting supply constraints,

constant approximations are available. We obtain the following results.

– O(α log n)-approximation for the general case.

– O(αk)-approximation when each consumer is interested in at most

k distinct types of items.

– O(αf)-approximation when each item is interesting to at most f
consumers.

Note that the final two results were previously unknown even without

the independence system constraint.

1 Introduction

Every company is an entity that has the goal of maximizing revenues, and faces
two fundamental problems, namely producing and pricing items. The limitations
� Supported by a Samsung Fellowship. This work was done while the author was

visiting Microsoft Research Asia.
1 Given a universe of elements U and a collection I of subsets of elements, the pair (U, I)

is said to be an independence system if (1) ∅ ∈ I and (2) (downward closed) if B ∈ I
and A ⊆ B then A ∈ I.
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of resources such as materials or human resources often restricts items that can
be produced. For example, there may be a limit on the maximum number of
items per group of items that can be delivered. Another possibility is that items
may consume different types and amount of resources during production.

Another goal we seek to achieve, together with the maximization of revenue,
when pricing items, is not to disappoint consumers by offering an insufficient
supply. We assume that every consumer will buy certain items that maximize
her happiness, which is defined as her valuation of the items minus their price.
That is, pricing must guarantee that consumers are allocated the items that
they most prefer under the pricing. When the supply of items is pre-given, such
a pricing scheme is known as envy-free pricing [11].

This paper initiates a study of the problem of revenue maximization for pro-
ducing items under given constraints and pricing them in an envy-free fashion.
We assume that there are n consumers and that each consumer’s valuation of
the items is known. There are m distinct types of items that can be produced.
We will use [n] and [m] to denote the set of consumers and the items respec-
tively. We model the supply constraints as an independence system ([m], I). The
downward closure property of the system is natural, i.e., if a multi-set of items
can be produced, so can its subsets. The independence system captures a variety
of interesting constraints such as a number of linear constraints or matroids.

The envy-free pricing problem in the absence of the general supply constraints
has been studied primarily for two special cases. The first case is the unit demand
consumers case (UD) in which each consumer i is allocated at most one item
from among the items Si of interest. This arises when Si consists of similar items,
so one item can fully meet consumer i’s need. The other case is the single-minded
consumers case (SM), in which each consumer is interested in a bundle of items
Bi. The bundle Bi, only as the entire bundle, has some value to consumer i; the
partial acquisition of the bundle has no value to her. This captures the situation
when the items in Bi complement each other.

We will examine the unit demand consumers case which is constrained on
an independence system ([m], I). We consider the general unit demand case
together with two interesting special cases. The first case is where each consumer
is interested in at most k distinct types of items, i.e., |Si| ≤ k for all i, which
we will call the unit demand with bounded set size (UD-BSS). The other case
we call the unit demand with bounded frequency (UD-BF), meaning that each
item is of interest to a maximum of f consumers, i.e. |{i ∈ [n] | j ∈ Si}| ≤ f
for all j ∈ [m]. In other words, this case is where only a small number of users
compete for each item.

Our results. Assuming that we have an α-approximation oracle for finding the
maximum weight independent set X in I, we show how to deal with the envy-
free pricing problem that is constrained on the independence system ([m], I).
We may require a slightly stronger version of the approximation oracle that has
one more matroid constraint, but which still captures many interesting cases
for which good approximations are available. As regards the general unit de-
mand case, the bounded set size case and the bounded frequency case, we give
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O(α log n), O(αk) and O(αf) approximations, respectively. In order to empha-
size the general supply constraints under consideration, we add the suffix “-C”
to each problem name.

Several results were given for pre-existing items, i.e., each item has an indi-
vidual supply limit. Guruswami et al. gave an O(log n)-approximation for UD
by making a clever use of Walrasian equilibrium. Briest [2] showed that for a
certain constant ε > 0, it is unlikely that there exists an approximation better
than O(logε n) under a certain complexity assumption. Table 1 summarizes our
results with and without the supply constraint I, together with the previously
known results. We note that Briest’s inapproximability result for UD-BF case is
is not formally stated in the paper, but is implied by the hardness instance.

Table 1. Summary of our results for the unit demand case. Our results are marked ∗

UD-C UD-BSS-C UD-BF-C

Upper Bound O(α log n)∗ O(αk)∗ O(αf)∗
UD UD-BSS (|Si| ≤ k) UD-BF (|{i ∈ [n] | j ∈ Si}| ≤ f)

Upper Bound O(log(n)) [11] O(k) * O(f) *

Lower Bound Ω(logε(n)) [2] Ω(kε) [2] Ω(fε) [2]

Our algorithms and analysis borrow some ideas from [10,11,1,3]. As is the
case in [11], we make crucial use of the connection between Walrasian Equilibria
and the envy-free pricing for the unit demand case. The random sampling (par-
titioning) technique used in [1,3] will play a role in our algorithms and analysis.
However, it is non-trivial to incorporate the general independence system; the
results in [1,3] are for the unlimited-supplied single-minded consumers case. Due
to space limitations, we omit all proofs here, and the proofs will appear in the
full version of this paper.

Related Works. The revenue that is given by optimal envy-free pricing was
used as a benchmark to study the performance of truthful mechanisms where the
valuations of players are not known to the mechanism [8,9]. The UD problem
was shown to be APX-hard [11]; the instance assumes that each consumer is
interested in a maximum of two items. Given a constant number of types of
items, Hartline and Koltun [12] gave very efficient FPTASes for UD and for the
unlimited supplied SM. Chen et al. [6] gave an optimal algorithm for selling one
item in a network with unlimited supply when each UD consumer’s valuations on
the item selling in different nodes of the network are determined by an underlying
metric. The unlimited supplied SM when all of the bundles have a limited size
was studied in [3,1].

2 Preliminaries

2.1 Envy-Free Pricing

We provide a quick overview of the definition of envy-free pricing for the unit
demand consumers case which this paper will focus on. For the general definition
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of envy-free pricing, see [11]. A unit-demand consumer i has a valuation vij of
item j. She will be interested in acquiring only a single (copy of) item. Achieving
envy-freeness requires that we allocate (if any) an item to her that maximizes
(positive) her utility under the pricing scheme; here the utility of the item j to
the consumer i is defined as vij − pj . We want to maximize the seller’s revenue,
i.e., the total amount of money collected by selling items.

2.2 Supply Constraints

From the consumer point of view, given the prices p, we need an envy-free
allocation A. On the other hand, from the seller’s point of view, some allocations
may not be feasible. One simple constraint may be that the seller can supply at
most cj copies of item j. In general, the constraints could be more complicated
and we could express them as an independent system ([m], I), where I is a
collection of multi-subsets of items. A collection I is said to be an independence
system if it satisfies the conditions that (1) ∅ ∈ I and (2) if A ∈ I and A′ ⊆ A
then A′ ⊆ I. We say that an allocation is feasible if the multi-set of the allocated
items is in I.

In order to simplify our argument, we will sometimes use sets instead of ex-
plicitly using multi-sets. That is, we can create n copies of each item j; this is
well justified because each consumer will acquire at most one copy of each item.
We will use multi-sets or sets depending on which one simplifies our argument.

Our formulation of the constraints as an independent system is very general.
It indeed captures a variety of scenarios, in addition to the simplest constraint
that each item j can be supplied in a possible maximum quantity of cj copies. A
more complicated example is to assume there are K types of resources that can
be used to produce the items and that we have a limited amount of rk for each
resource k ∈ [K]. In order to produce one copy of item j, assume that we need bjk

amount of resource k. Then an allocation which uses xj copies of item j in total, is
feasible iff the following constraints are satisfied:

∑
j∈[m] bjkxj ≤ rk, for all k =

1, 2, . . . , K. This corresponds exactly to a multi-dimensional knapsack constraint.
Our formulation can also express more complicated combinatorial constraints
such as matroid constraints. An independence system is known as a matroid if
it satisfies another property that if X, Y ∈ I and |X | < |Y |, then ∃ y ∈ Y \ X
such that X ∪{y} ∈ I. The independence system can also be the intersection of
a number of matroids or linear constraints.

2.3 Envy-Free Pricing and Supply Constraints

This paper focuses on the revenue maximization problem when the pricing
and allocation are envy-free and the allocation satisfies the independent sys-
tem ([m], I). We will restrict our concern to the unit-demand consumers case,
because the other well-studied single-minded case becomes intractable even when
considered with a simple supply constraint. In general, we assume the availabil-
ity of an α-approximation oracle for finding the maximum weight independent
set in I, when the weights are given. More concretely, when we assign a weight
to each item, the oracle outputs an independent set in I whose total weight is at
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least 1/α of that of the maximum weighted independent set in I. (For different
copies of the same item, we may assign different weights.)

For technical reasons, depending on the particular problem, we will require
an oracle to compute an α-approximate maximum weighted set in I ∩ I′, where
I ′ is an additional matroid. Here I ′ can be a partition matroid or a transversal
matroid. A partition matroid bounds the number of items that can be picked
from each group of items, where the groups are a partition of the items. In a
transversal matroid, a set of nodes in one part is independent when they are
covered by a matching in a given bipartite graph.

We remark that introducing the approximation oracle involves generalizing
the supply constraints. In many interesting cases, even after adding an addi-
tional partition matroid or transversal matroid constraint, good approximation
algorithms are available. For example, in the case of the knapsack constraint
defined in Sec. 2.2, a PTAS is known when K is a constant [7]. In the case of
the intersection of any two matroids, an optimal algorithm exists [15]. When I
is the intersection of y matroids, an O(y)-approximation exists [14]. In the case
of x linear constraints and y matroids, an O(x + y) approximation appears to
follow from some recent results [4]; when y = 2, a PTAS is recently given [5].

2.4 Walrasian Equilibria

It is known that Walrasian equilibria [13] are closely related to the envy-free
pricing for UD. As discussed above, we sometimes treat each copy of an item
distinct for the sake of convenience. An allocation A can then be expressed as
a matching because each consumer acquires at most one item. We will use a
matching M instead of A in most cases. A pair of pricing and allocation (p, M)
is said to be a Walrasian equilibrium if it is envy-free and if any unallocated item
is priced at zero. As pointed out in [11], Gul and Stacchetti’s result character-
izes Walrasian Equilibria for UD. Let MWM(X, Y ) denote a maximum weight
matching on the subgraph of G induced on X ∪ Y , where X ⊆ [n] and Y ⊆ [m].
Notation-wise, if there is no confusion, we allow MWM(A, B) to denote the
weight of the matching. Furthermore, they gave an algorithm that computes the
Walrasian Equilibrium with the highest prices.

Theorem 1. [10] Let (p, M) be a Walrasian Equilibrium. Then M is a max-
imum weight matching in G, i.e. M = MWM([n], [m]). Furthermore, for any
maximum weight matching M ′ in G, (p, M ′) is also a Walrasian equilibrium.

Algorithm MaxWEQ:
Input: G = ([n] ∪ [m], E) with (i, j) having weight vij .
For each item j, let p̂j = MWM([n], [m]) − MWM([n], [m] \ {j}).
Output: p̂ and MWM([n], [m]).

We note that in any example of envy-free pricing, all copies of the same item
have the same price. Note that it is the case with the output of MaxWEQ.

Theorem 2 ([10]). The algorithm MaxWEQ outputs, in polynomial time, a
Walrasian Equilibrium which maximizes the item prices. That is, for any pricing
p of a Walrasian equilibrium, we have pj ≤ p̂j for every item j.



488 S. Im, P. Lu, and Y. Wang

In [11], Guruswami et al. defined a Walrasian equilibrium with reserved prices,
and showed how to compute it by reducing the problem to computing a
Walrasian equilibrium. We will use these results to obtain an O(α log n)-
approximation for the UD with the general supply constraints.

3 General Unit Demand Case

This section will consider the unit demand consumers problem with general sup-
ply constraints (UD-C). Our algorithm Alg-UD-C assumes that an α- approxi-
mation is available for finding the maximum size independent set constrained on
the given independence system I and also on any transversal matroid defined
over the items [m]. Formally, for any E′ ⊆ E, let I ′(E′) denote the collection
of subsets of items that can be covered by a matching from E′. Then the oracle
(α-approximation) outputs Y ∈ I ∩I′(E′) such that |Y | ≥ 1

α maxZ∈I∩I′(E′) |Z|.
Our algorithm is inspired by the O(log n)-approximation for the problem with-
out general supply constraints given in [11]. The analysis is similar to the proof
of Lemma 3.1 in [11].

Algorithm: Alg-UD-C for UD-C:
Input: [m], [n], E, each edge (i, j) ∈ E having weight vij .
Consider the weight of any edge, and say that the weight is λ.
let E′(λ) = {(i, j) ∈ E | vij ≥ λ}.
let I ′(λ) = I ′(E′(λ)) denote a transversal matroid defined by E′(λ) on [m].
let B(λ) denote a set in I ∩ I′(λ) of the maximum size (within a factor of α).
set the reserve prices r = (r1, r2, ..., rm): if j ∈ B(λ) then rj = λ; or rj = ∞.
let (p(λ), M(λ)) be a Walrasian equilibrium with reserve prices r.
Output: the pair (p(λ), M(λ)) for any λ ≥ 0 with the maximum seller profit.

Theorem 3. Suppose that we are given an α-approximation for finding the max-
imum independent set that is constrained on I and a transversal matroid. Then
Alg-UD-C is an O(α log n)-approximation for the UD-C problem.

4 Bounded Set Size (UD-BSS)

This section will relax the oracle used in the previous section. That is, we will
not require a transversal matroid as in the previous section. Before we present
our algorithm for UD-BSS, we first consider a general problem with independent
revenue functions over items, which generalizes the setting that each consumer
is interested in a single item. This, together with a randomized partition as used
in [1], will give the desired result for UD-BSS.

Definition 1 (maximum production vector). Let [m] be the set of items
and ([m], I) an independence system. Let fj(·) : � ∪ {0} → R+ be a function
defined for each j ∈ [m] satisfying fj(�)

� ≥ fj(�+1)
�+1 for all � ≥ 1. For simple

notation, we assume fj(0) = 0. The maximum production vector asks the vector
〈a1, a2, . . . , am〉 with aj ∈ � ∪ {0}, such that

∑
j∈[m] fj(aj) is maximized, and

the production vector satisfies I.
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The maximum production vector problem captures the setting where each con-
sumer is interested in a single item. For item j, let q1, q2, . . . , q� be the set of
consumers interested in j with valuation r1 ≥ r2 ≥ . . . ≥ r�. We can define
fj(x) = xrx for x ∈ [�] and fj(x) = �r� if x > �. The maximum production
vector will give us the maximum revenue in this setting, since envy-freeness is
automatically enforced when each consumer is interested in only a single item.

Theorem 4. Given an α-approximation oracle for the maximum weighted inde-
pendent set of I, the maximum production vector problem can be approximated
within a factor of 2α.

Corollary 1. Given an α-approximation oracle for the maximum weighted in-
dependent set in I, one can obtain a 2α-approximation for UD-BSS with k = 1.

The following pseudocode is our algorithm for UD-BSS. Following the random-
ized partition in [1], for each item, we add all of its copies to Y with probability
1/k. We then consider only those consumers (i.e. X) who are interested in a
single item in Y , in which case Corollary 1 can be applied.

Algorithm Alg-UD-BSS-C for UD-BSS-C:
Input: [n], [m], vij .
let Y ← ∅; for each j ∈ [m], independently add j to Y with probability 1/k.
let X be the set of consumers only interested in a single item in Y .
let (p′, M ′) the optimal envy-free pricing for (X, Y )
let Y ′ be the items matched by M ′.
let (p, M) = MaxWEQ([n], Y ′); for all j ∈ [m] \ Y ′, pj = ∞.
Output: (p, M)

The pricing strategy output by Corollary 1 is an envy-free pricing scheme if only
the consumers in X exist in the market. The next lemma shows that adding
more customers, thus introducing more demands, does not decrease the revenue
under the envy-free condition.

Lemma 1. Consider a subset of consumers X ⊆ [n]. Let p be an envy-free pric-
ing for (X, [m]), where all items in [m] are assigned. One can compute a Wal-
rasian equilibrium (thus envy-free) of pricing p′ for ([n], [m]) such that p′ ≥ p,
i.e. p′j ≥ pj in polynomial time. Furthermore, the total revenue of the Walrasian
equilibrium in ([n], [m]) is at least the revenue of p in (X, [m]).

Theorem 5. Given an α-approximation oracle for the maximum weight inde-
pendent set for I, when |Si| ≤ k for all i, there exists a (2αek)-approximation
for UD-BSS-C.

5 Bounded Frequency (UD-BF)

This section addresses the problem UD-BF, in which each item is of interest to
a possible maximum of f consumers. Let {G1, G2, . . . , G�} denote a partition of
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items [m], and μl ≥ 0 be an integer that is associated with Gl for l ∈ [�]. An
collection of items I′ ⊆ 2[m], with items [m], is said to be a partition matroid
if X ∈ I′ if and only if for all l ∈ [�], |X ∩ Gl| ≤ μl. We assume that for any
partition matroid ([m], I ′) (for our purposes, we only need μl ∈ {0, 1} for all l),
we can use an α-approximation for finding the maximum weight independence
set constrained on I and I′. We give the following randomized algorithm.

Algorithm Alg-UD-BF-C for UD-BF-C:
Input: [n], [m], vij , I.
let X ← ∅; for each i ∈ [n], (independently) add i to X with probability 1/f .
let Y := {j ∈ [m] | there exists only one consumer i ∈ X s.t. j ∈ Si}.
For each j ∈ Y , assign to j weight vij , where i ∈ X s.t. j ∈ Si.
let I ′ = {B ⊆ [m] | ∀i ∈ X, |Si ∩ B ∩ Y | ≤ 1}.
Y ′ ← the maximum weight independent subset of Y constrained on I and I ′

Output: (p, M) ← MaxWEQ([n], Y ′), for any j /∈ Y ′, pj = ∞.

Using a random sampling, the algorithm Alg-UD-BF-C recasts the given instance
to the market (X, Y ) where each item in Y is interesting only to a single consumer
in X . This creates a natural partition matroid on [m]. With the aid of the α-
approximation, the algorithm outputs the desired result.

Theorem 6. Consider any partition matroid ([m], I′). Suppose that we have
an α-approximation for the maximum weight independent set constrained on I
and also I ′. Then the randomized algorithm Alg-UD-BF-C outputs an envy-free
pricing that gives an expected revenue that is optimal within a factor of αef .
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Abstract. A common approach to analyzing repeated auctions, such

as sponsored search auctions, is to treat them as complete information

games, because it is assumed that, over time, players learn each other’s

types. This overlooks the possibility that players may impersonate an-

other type. Many standard auctions (including generalized second price

auctions and core-selecting auctions), as well as the Kelly mechanism,

have profitable impersonations. We define a notion of impersonation-

proofness for the auction mechanism coupled with a process by which

players learn about each other’s type, and show an equivalence to a

problem of dominant-strategy mechanism design.

Keywords: Auctions, Impersonation, Kelly Mechanism, Ad Auctions.

1 Introduction

Most analyses of auctions emphasize uncertainty. While a bidder may know his
value for an item, he is unlikely to know exactly how every other bidder values
it. However, he is likely to have some beliefs about others, and the standard
Bayesian analysis of auctions requires that, in equilibrium, bidders act optimally
based on their beliefs about other bidders.

This approach is natural for a single, stand-alone auction. However, in some
cases (for example in sponsored search auctions) the same bidders will participate
in many auctions. Thus, a notion of equilibrium should take into account that,
over the course of many auctions, bidders will learn about each others valuations.
Unfortunately, as the folk theorem shows, the set of potential equilibria in such
a repeated setting is large and complicated.

One natural class of equilibria are those where players spend some time learn-
ing until they reach an equilibrium of the “stage game,” after which they use the
same strategies forever. If players are no longer learning, then it seems reasonable
that they have complete information about the types of other players.

However, this analysis glosses over a key point. These complete information
equilibria will only be reached if players correctly learn each other’s types. As
the learning process is part of the repeated game, players may have an incentive
to deviate during this process. This could be prevented by finding learning al-
gorithms that are themselves an equilibrium of the repeated game. This is the
approach taken by, for example, Brafman and Tennenholtz [3] and Ashlagi et

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 492–495, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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al. [2]. However, such algorithms require that most or all of the players partici-
pate and that they learn in a particular fashion, so it seems unlikely that they
will be a good predictor of real-world behavior.

Our approach, in the same spirit as complete information analysis, is to as-
sume that players will learn and reach an equilibrium. In particular, we ignore
the possibility that players will do something other than learn the types of other
players. We also ignore their rewards during the learning period and assume
they only care about the long-run behavior that the complete information game
naturally captures. With these assumptions, should we expect to reach a com-
plete information equilibrium? In this paper, we argue that the answer is no. In
particular, players have the option to impersonate another type and participate
in the learning algorithm as if their true type were the type they are imper-
sonating. This causes the other players to believe they are playing a different
complete information game and so a different strategy profile is reached.

Complete information equilibrium analysis has been used for many auctions,
notably Kelly [7] for bandwidth allocation; Edelman, Ostrovsky and Schwartz [5]
for generalized second price auctions; and Day and Milgrom [4] for core-selecting
auctions. All turn out to have profitable impersonation strategies. We define a
notion of impersonation-proofness and show that it is equivalent to selecting
equilibria that implement the outcome of a dominant strategy mechanism for
the incomplete information problem.

2 Model

Consider a Bayesian game G. Each of n players i has a type θi ∈ Θi drawn
according to the joint distribution F (θ1, . . . , θn), which is common knowledge.
Each player chooses an action ai ∈ Ai based on his type. Each player’s utility,
which may depend on the joint action and his type, is ui(a, θi). A Bayesian Nash
equilibrium is then defined in terms of an expectation over the types of players.

If players play this game repeatedly, we expect them to learn about their
opponents. Theorems have been established regarding the Nash equilibria of the
complete information game Gθ for a number of different Bayesian games G,
where Gθ is G with θ = (θ1, . . . , θn) made common knowledge.

We model this learning process as a mediator: players submit a type and the
mediator suggests an action for each player. To keep in mind our intuition of
players learning, we require that if players report θ to the mediator, the mediator
suggests a Nash equilibrium of Gθ, as a goal of most learning dynamics is to reach
equilibrium1 [8]. Formally, given a Bayesian game G, a mediator is a function
M : Θ → A such that M(θ) is a Nash equilibrium of Gθ, where Θ = Θ1×. . .×Θn

and A = A1 × . . . × An.
Given a Bayesian game G and a mediator M , we have the mediated game

GM . First, each player i learns θi and submits some θ′i to M . Then i learns
Mi(θ′) and selects an action ai. This formulation suggests the obvious strategy
1 Our formalism of a mediator is inspired by that of Ashlagi et. al [1], but our moti-

vation and definition are slightly different.
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of lying to the mediator in the first stage. We call such strategies impersonation
strategies because in practice they amount to impersonating some other type for
a period of time to convince other players that the player is actually of that type.
We focus on impersonation strategies in a strong sense: the player not only lies
to the mediator but then follows the mediator’s advice based on that lie. Thus,
the player can continue this impersonation indefinitely. A player has a profitable
impersonation when he can increase his payoff by using an impersonation strat-
egy when all other players report truthfully and follow the mediator’s advice.
Formally, i has a profitable impersonation if there exists some θ′i such that

ui(Mi(θ′i, θ−i), θi) > ui(Mi(θ), θi). (1)

With this in mind, we say a mediated game GM is impersonation-proof if no
player ever has a profitable impersonation. Formally, for all i, θ, and θ′i,

ui(Mi(θ), θi) ≥ ui(Mi(θ′i, θ−i), θi). (2)

3 Example: The Kelly Mechanism

As mentioned in the introduction, many games have profitable impersonations.
In this short paper, we analyze one such example. Suppose the owner of a net-
work wants to allocate bandwidth to users of the network. Kelly [7] introduced
a simple mechanism for this problem. Each player i submits a bid bi. He then
receives a bi/

∑
j bj fraction of the bandwidth and pays a cost of bi. This mecha-

nism has the nice property that each player needs only submit a bid rather than
describe his entire, potentially complicated, utility function. Furthermore, if all
players have concave utility functions, then there is a unique complete informa-
tion Nash equilibrium which can be found using a simple learning algorithm2.
Johari and Tsitsiklis [6] showed that this mechanism has a price of anarchy of
4/3.

The following lemma (whose proof is omitted) shows that it is quite common
for players to have profitable impersonations. In particular, this means that,
despite having a good price of anarchy, actual performance could be poor.

Lemma 1. Consider the Kelly mechanism with two players who have linear
utility functions (ui(xi) = θixi) with θ1, θ2 > 0. Unless θ1 = θ2, both players
have a profitable impersonation.

To illustrate Lemma 1, suppose θ1 = 2 and θ2 = 1. Then the unique equilibrium
has bids (4/9, 2/9) so player 1’s utility is 8/9. Now suppose player 1 impersonates
θ1 = 3. Now the unique “equilibrium” has bids (9/16, 3/16) and player 1’s utility
is 15/16. Thus player 1 has gained by pretending to have a higher valuation.

2 There are different models of how players optimize for this mechanism. We assume

players are price-anticipating: they take into account how their bid affects the price

they pay when determining their optimal bid.
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4 Impersonation-Proofness

In this section, we examine when mediated games are impersonation-proof and
thus it is plausible that players would be willing to participate as their true type.
Consider a Bayesian game G in which each player i chooses an action ai and then
his utility is determined by the vector of actions a and his type θi. For example,
in a first price auction an action is a bid and the vector of bids determines the
winner and each player’s payment. In problems of interest, G is induced as the
result of a designed mechanism, with a set of outcomes O, a set of joint actions
A, a mapping o : A → O, and utility functions ui(a, θi) = ui(o(a), θi). We refer
to S = (Θ, O, u) as the social choice problem domain.

Any mediator M for G is a function from type vectors to action vectors, and
thus when combined with the mapping o : A → O is itself a mechanism. In fact,
this is a direct revelation mechanism. A mediator coupled with a game defines a
subset of the space of possible direct revelation mechanisms, insisting that M(θ)
be a complete information Nash equilibrium for all θ.

Theorem 1. Let G be a Bayesian game that is a mechanism (not necessarily
incentive compatible) for a social choice problem domain S = (Θ, O, u). There
exists an impersonation-proof mediator M for G iff there exists a dominant
strategy mechanism D for S such that for all θ there exists an a(θ) that is a
Nash equilibrium for Gθ and D(θ) = o(a(θ))

Theorem 1 suggests a general approach to finding impersonation-proof media-
tors: take a dominant strategy mechanism D for the same problem domain and
find equilibria that implement D(θ) in each game Gθ. For example, the bidder-
optimal locally envy-free equilibrium of a generalized second price auction im-
plements the VCG outcome [5], so the mediator that selects this equilibrium is
impersonation-proof.
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Abstract. Identical products being sold at different prices in different

locations is a common phenomenon. To model such scenarios, we supple-

ment the classical Fisher market model by introducing transaction costs.
For every buyer i and good j, there is a transaction cost of cij ; if the price

of good j is pj , then the cost to the buyer i per unit of j is pj + cij . The

same good can thus be sold at different (effective) prices to different buy-

ers. We provide a combinatorial algorithm that computes ε-approximate

equilibrium prices and allocations in O
(

1
ε
(n + log m)mn log(B/ε)

)
op-

erations - where m is the number goods, n is the number of buyers and

B is the sum of the budgets of all the buyers.

1 Introduction

Identical products being sold at different prices in different locations is a common
phenomenon. Price differences might occur due to different reasons such as

– Shipping costs. Oranges produced in Florida are cheaper in Florida than
they are in Alaska, for example.

– Trade restrictions. A seller with access to a wider market might sustain a
higher price than one that does not.

– Price discrimination. A good might be priced differently for different people
based on their respective ability to pay. For example, conference registration
fees are typically lower for students than for professors.

To capture such scenarios, we supplement the classical Fisher model of a market
by introducing transaction costs. For every buyer i and every good j, there is a
transaction cost of cij ; if the price of good j is pj, then the cost to the buyer i
per unit of j is pj + cij . The same good can thus be sold at different effective
prices to different buyers. Apart from non-negativity, the transaction costs are
not restricted in any way and in particular, do not have to satisfy the triangle
inequality.

Fisher’s Market Model with Transaction Costs. In Fisher’s model, a mar-
ket M has n buyers and m divisible goods. Every buyer i has budget Bi. We
� Part of the work done during the author’s internship at Microsoft Research.
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consider linear utility functions, i.e., the utility of a buyer i on obtaining a bun-
dle of goods xi = (xi1, xi2, . . .) is

∑
j uijxij where uij are given constants. Each

good has an available supply of one unit (which is without loss of generality).
In addition to its price, a buyer also pays a transaction cost cij per unit of good
j. The allocation bundle for buyer i is a vector xi such that xij denotes the
amount of good j allocated to buyer i. A price vector p is an equilibrium of M
if there exists allocations xi such that

– xi maximizes the utility of i among all bundles that satisfy the budget
constraint, i.e. xi ∈ arg maxy

i
{
∑

j uijyij :
∑

j(pj + cij)yij ≤ Bi}
– Every good is either fully allocated or is priced at zero, i.e. ∀j, either

∑
i xij =

1 or pj = 0.

Characterization of Market Equilibrium. We now characterize the equilib-
rium prices and allocations in our model. The ratio uij/(pj + cij) denotes the
amount of utility gained by buyer i through one dollar spent on good j. At given
prices, a bundle of goods that maximizes the total utility of a buyer contains only
goods that maximize this ratio. Let αi = maxj uij/(pj + cij) be the bang-per-
buck of buyer i at given prices. We will call the set Di = { j |uij = αi(pj + cij) }
the demand set of buyer i. Hence, xij > 0 ⇒ j ∈ Di. The conditions charac-
terizing these equilibrium prices and allocations appear in table A below.

An ε-approximate market equilibrium is characterized by relaxing the market
clearing condition (Equation (3)) and optimal allocation condition (Equation
(4)). Refer to equations (7) and (8) in table B.

A: Market Equilibrium

∀i
∑

j

(pj + cij)xij = Bi (1)

∀j
∑

i

xij ≤ 1 (2)

∀j pj > 0 ⇒
∑

i

xij = 1 (3)

∀i, j xij > 0 ⇒ uij

αi
= pj + cij (4)

.

B: ε-Approximate Market Equilibrium∑
j

(pj + cij)xij = Bi (5)

∑
i

xij ≤ 1 (6)

pj > ε ⇒
∑

i

xij ≥ 1/(1 + ε) (7)

xij > 0 ⇒ uij

αi
≥ pj + cij

1 + ε
(8)

The relaxation of exact equilibrium conditions can be achieved in other ways. For
example, [7] use a definition of ε-approximate market equilibrium that relaxes
the budget constraints. Our algorithm can be easily adapted to this definition
by simple modifications to the termination conditions.

Our Result

Our main result is a combinatorial algorithm that computes ε-approximate
equilibrium prices and allocations in O

(
1
ε (n + log m)mn log(B/ε)

)
operations

- where m is the number goods, n is the number of buyers and B is the sum of
the budgets of all the buyers. This algorithm is a generalization of the auction
algorithm of Garg and Kapoor [7] to our model with the transaction costs. This
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generalization is not straight forward; the presence of transaction costs intro-
duces new challenges. The term ‘auction algorithm’ is used to describe ascending
price algorithms (such as the one in [7]) which maintain a feasible allocation at
all times. The algorithm makes progress by revoking a portion of goods currently
assigned to a buyer and reallocating it to another buyer offering a higher price.
Our method of reallocating goods is similar in spirit to the path auctions used
by [9]. The auction algorithms in both [7] and [9] crucially use the properties
of monotonic decrease in surplus and acyclicity of the demand graph. However,
these properties cease to exist when transaction costs are introduced. The main
technical contribution of this paper is in dealing with the absence of these prop-
erties (and yet getting almost the same results). A more detailed discussion of
the same is presented in the full version of this paper [1].

Related Work

The computation of economic and game theoretic equilibria has been an active
area of research over the past decade. Hardness results and algorithmic results
[10] have been delineating the boundary between what is efficiently computable
and what is not.

Convex programming has been one of the main tools in designing algorithms
for market equilibrium. A simple modification of the convex program introduced
by [6,5] captures the equilibria of our problem as its optimal solution. (Refer to
[1] for details) This proves existence and uniqueness of equilibria. It also implies
that the ellipsoid algorithm can be used to get a polynomial time algorithm to
compute the equilibrium1. The auction algorithm is combinatorial, runs faster
and provides a simple alternative that can be implemented efficiently in practice.
It is not clear if one can construct an interior point algorithm to solve the convex
program. Ye [12] gave one such algorithm for the Eisenberg-Gale convex program.

A strongly polynomial time algorithm for the Fisher linear market was given
by Orlin [11]; it does not seem like his ideas can be adapted directly to our
setting. Chen et al [2] study a model similar to ours, in the context of profit-
maximizing envy-free pricing (for a single commodity but at different locations).

Codenotti et al [3] studied transaction costs that are a fixed fraction of the
price, and hence can be interpreted as taxes. The taxes could be uniform, that
is, depend only on the good, or non-uniform, that is, depend on the good and
the buyer. In the Fisher’s model, our algorithm can also handle per-dollar taxes,
with minimum modifications.

Extensions and Open Problems

All of our results can be easily extended to quasi-linear utilities, that is, the
buyers have utility for money as well, which is normalized to 1. So the utility of
the bundle xi is

∑
j(uij − pj)xij . Extending the results to other common utility

functions is an open problem. In particular, Garg, Kapoor and Vazirani [8] extend

1 Since the equilibrium could be irrational, the ellipsoid algorithm would compute an

equilibrium with precision δ in time proportional to log(1/δ).
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the auction algorithm to separable weak gross substitute utilities. The potential
function they use is the total surplus, and we don’t know a combinatorial bound
on the number of events in their algorithm. As mentioned earlier, this potential
function cannot be used in the presence of transaction costs, and therein lies the
difficulty in extending our results to this case.

The auction algorithm for the traditional models can be made to be dis-
tributed and even asynchronous, with a small increase in the running time. We
show that a similar distributed/asynchronous version of the algorithm may not
converge in the presence of transaction costs. An interesting open question is if
there is some other asynchronous/distributed algorithm that also converges fast.
In particular, is there a tattonnement process that converges fast (like in [4])?

Outline. We provide an overview, followed by the details of our algorithm in
Section 2. Section 3 contains the analysis of the running time. The proofs of
lemmas in Section 2 and 3 have been omitted due to space constraints and can
be found in the full version of this paper [1].

2 Algorithm

Theorem 1. We can find ε-approximate equilibrium prices and allocations in
O
(

1
ε (n + log m)mn log(B/ε)

)
operations where B = (1 + ε)

∑
i Bi.

Overview. Our algorithm maintains a set of prices and allocations and modifies
them progressively. To initialize, we set all the prices pj = ε and all the alloca-
tions are empty. The algorithm is organized in rounds. At the end of each round,
we raise the price of one good by a multiplicative factor of 1+ ε. Any allocations
made before the price raise continue to be charged at the earlier, lower price.
Therefore at any point in the algorithm, a good may be allocated to buyers at
two different prices, pj and pj/(1+ε). During a round, we take a good away from
a buyer at the lower price and allocate it to a buyer (possibly the same buyer)
at the current, higher price. We find a sequence of such reallocations such that
we eventually find a buyer with positive surplus and a good in her demand set
such that all of that good is allocated at the current price. When we find such
a buyer-good pair, we increase the price of that good and end the round. The
algorithm terminates when the budgets of all the buyers are exhausted.

Following invariants are maintained throughout the algorithm:

I1: Buyers have non-negative surplus i.e. no buyer exceeds her budget.
I2: All prices are at least ε.
I3: Every good is either priced ε or is fully allocated.
I4: Any good j allocated to a buyer i must be approximately most desirable.

(As in Equation (8))
I5: A good j is allocated at price either pj or pj/(1+ε) where pj is the current

price.

Invariant I3 is a tighter version of equation (7). We maintain I3 and I5 until
the end of the algorithm whence we merge the two price tiers. This may lead
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to some goods being undersold, but we prove that equation (7) still holds. Also
note that invariant I4 holds for any allocations, whether at the higher or lower
price tier. Unless mentioned otherwise, the statements of all the lemmas that
follow are constrained to maintain these invariants.

We now present the details of our algorithm. Each round consists of roughly
two parts: 1) We construct a demand graph G on the set of buyers and 2) We
perform multiple iterations of a reallocation procedure - which we call a transfer
walk. At the end of each round, we increment the price of some good. The
sequence of rounds ends when the surplus of all the buyers reduces to zero. At
the end, we readjust the allocations to merge the two price tiers. In what follows,
we explain our algorithm in three parts: a) Construction and properties of the
demand graph, b) Transfer walks and c) Readjustment of allocations.

Notation. We denote the allocations of good j to buyer i at prices pj and
pj/(1 + ε) as hij and yij respectively. We denote by zj = 1 −

∑
i (hij + yij) the

amount of good j unassigned at any point in the algorithm. Given any prices
and allocations, the surplus ri of buyer i is the part of her budget unspent:

ri = Bi −
∑

j

(pj + cij)hij −
∑

j

(
pj

1 + ε
+ cij

)
yij

Notice that since the prices remain constant throughout a round except at
the end, the demand sets of all the buyers are well defined. In each round we fix
a function π(i) = min{ j | j ∈ Di }. Intuitively, we will attempt to allocate the
good π(i) to i in this round, ignoring all the other goods in Di for the moment.
Any choice of a good from Di suits as π(i), but we fix a function for ease of
exposition.

Construction and properties of the demand graph. We construct a di-
rected graph G on the set of buyers. An edge exists from buyer i to k if and
only if ykπ(i) > 0. A node i in this graph with (1) no out-edges (i.e. a sink), (2)
ri > 0 and (3) zπ(i) = 0 will be defined to be ‘unsatisfiable’.

Lemma 1. For an unsatisfiable node i, the price of the good π(i) can be in-
creased by a multiplicative factor of 1 + ε.

But the graph G may not contain an unsatisfiable node to start with. Hence we
perform a series of reallocations until we create and/or find such a node.

The reallocation involves the following step: For an edge i → k in G with
ri > 0, we take away the lower price allocation of good π(i) for k and allocate it
to i at the current price. In short, we perform the operations ykπ(i) ← ykπ(i) − δ
and hiπ(i) ← hiπ(i) + δ for a suitably chosen value of δ. This process reduces ri,
ykπ(i) and increases rk. If ykπ(i) reduces to zero, we drop the edge (i, k) from the
graph. When we make such a reallocation, we say that we transfer surplus from
i to k. Note that the surplus is not conserved. This is because the price paid by
i for the same amount of the good, including the transaction costs, could even
be lower than the price paid by k.
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Lemma 2. If the edge from i to k exists in G with ri > 0, then we can transfer
surplus from i to k such that either the surplus of i becomes zero or the edge
(i, k) drops out of G.

We can repeatedly apply Lemma 2 to transfer surplus along a path in G.

Corollary 1. If there exists a path from i to k in G and ri > 0, then we can
transfer surplus from i to k such that either the surplus of all the nodes on the
path except k becomes zero or an edge in the path drops out of G.

Finally, G may contain cycles. Consider the edges (i1, i2) and (i2, i3) in G and
let j1 = π(i1) and j2 = π(i2). If the transaction costs are all zero, then it can be
argued that the last price raise for j1 must have taken place before the last price
raise for j2. Repeating this argument, one can preclude the existence of cycles in
G in absence of transaction costs. This acyclicity of G forms a pivotal argument
in the algorithm of Garg and Kapoor [7]. In the full version of this paper [1],
we provide a sketch of how a cycle can emerge in G when transaction costs are
present. We also show that the algorithm of [7] can slow down indefinitely if
G contains cycles. Therefore, we need to be able to transfer surplus around a
cycle.

Lemma 3. If there exists a cycle in G and exactly one node in the cycle has
positive surplus, then we can transfer surpluses in such a way that either all the
node in the cycle have zero surplus or an edge in the cycle drops out.

In a round, we use the above lemmas to perform multiple iterations of the transfer
walk.

Transfer Walk

Step 1. Find a node i0 with a positive surplus. If there are no such nodes,
then terminate the round and jump to readjustment of allocations.

Step 2. Follow a path going out of i0 in G in a depth-first-search fashion.
We look at the first edge in the adjacency list of the last visited node i on the
path. Let (i, k) be this edge. If node k is yet unvisited, we follow that edge to
extend the path. If k is already on the path, then we have found a cycle in G.
Finally if i has no out-edges, then we have found a sink. Whichever the case, we
now transfer surplus along the current path from i0 to i as in Corollary 1. If an
edge along the path drops out, we trigger event 2d. Otherwise, we trigger events
2a-2c depending upon case. The transfer walk must end in a finite number of
operations in one the of following events:

Event 2a - The path reaches a sink i with zπ(i) = 0: Let j = π(i). By
Corollary 1, we must have transferred a positive surplus to i even if ri was
zero at the begining of the walk. Hence i is an unsatisfiable node. Raise
pj ← (1 + ε)pj . Terminate the walk and the round.
Event 2b - The path reaches a sink i with zπ(i) > 0: Let j = π(i). By
invariant I3, pj = ε. We let δ = min( ri/ε, zj ). We then assign hij ← hij+δ.
If δ = ri/ε then the surplus of i goes to zero otherwise zj goes to zero. In
either case we end this transfer walk.
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Event 2c - The path finds a cycle: Let i be the last node visited on the path
and an edge (i, k) in G reaches a node k already visited on the path. By
Corollary 1, all the nodes in the cycle except i have zero surplus. Therefore,
we apply Lemma 3 until the surplus of i becomes zero or an edge in the cycle
drops out. We terminate the current walk.
Event 2d - An edge drops out during path transfer: In this case we terminate
the current walk.

If a transfer walk ends in event 2a, we terminate the current round and start the
next one. Otherwise if events 2b-2d are triggered, we start a new transfer walk.
If the surplus of all buyers is found to be zero in Step 1, we move to the last
phase, which is readjustment of allocations.

Readjustment of allocations. At the end of the transfer walks, all the required
invariants are satisfied, but the same good may be allocated to the same or
different buyers at different prices: pj and pj/(1 + ε). Therefore in this phase,
we merge the two tiers of allocation for every buyer-good pair to create the final

allocations. For all i, j such that yij > 0, we assign xij ← hij +
pj
1+ε +cij

pj+cij
yij .

The final equilibrium prices are the prices at the termination of the algorithm.

Theorem 2. The algorithm produces ε-approximate equilibrium prices and al-
locations.

3 Analysis

Lemma 4. If R is the number of rounds in the algorithm, then the number of
transfer walks that end in an edge dropping out of G is at most nR.

Proof of Theorem 1

Initialization and readjustment. Both the initialization and final adjustment
of allocations can be performed in mn operations.

The number of rounds. The price of exactly one good is raised by multi-
plicative factor of 1 + ε in each round except the last round. Starting at ε, the
maximum value to which a price may be raised is B = (1 + ε)

∑
i Bi. Therefore,

there can be at most R = 1 + m
ε log(B

ε ).

Constructing the graph. For each buyer, we maintain all the goods in a
balanced tree data structure that sorts the goods first by the bang-per-buck
uij/(pj + cij) and then by the index j. In this manner, we can compute the
function π(i) in O(log m) time. Given π(i), every node may have an edge to
every other node. Therefore, the graph G can be constructed in O(n2 + n logm)
operations. After the price increase at the end of the round, the sorted trees can
be maintained in time O(n log m) while the transfer of allocations from higher
to lower price tier can be completed in O(n) operations.
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Number of transfer walks. All the remaining computation in the algorithm
takes place within the transfer walks. Since we follow the first edge going out of
each vertex, the depth-first-search requires only O(n) operations. The surplus
transfer along a path and a cycle can similarly be performed in O(n) operations.
When an edge drops out, updating G involves simply incrementing a pointer.
Therefore, overall a transfer walk requires O(n) operations.

We will now bound the number of transfer walks that happen throughout the
algorithm, including all the rounds. We will classify them by the event that ends
the walk. At most R transfer walks can terminate the round. At most m walks
can end with zj going zero. Lemma 4 bounds the number of walks that end with
an edge dropping out of the graph. The only remaining case is that the walk
ends when the surplus of the last visited node on the path vanishes. A transfer
walk ending in this case leaves one less node in G with a positive surplus. To
see this, observe that a transfer walk starts with a node on the same path with
positive surplus and by the time it ends in this case, all the nodes on the path
have zero surplus by Corollary 1 and Lemma 3.

Let r+ denote the number of nodes in G with positive surplus. After initial-
ization we have r+ = n. The only event which may increase r+ is event 2d. If an
edge (i, k) drops out during surplus transfer along the path, node k may be left
with some positive surplus that was absent at the start of the walk. Therefore
r+ increases by at most one in this event. Combined with Lemma 4, this implies
a bound of n + nR on the number of times r+ reduces.

It is clear from the above analysis that the algorithm performs at most O(nR)
transfer walks. Combined with the other computation bounds, this yields an up-
per bound of O

(
1
ε (n + log m)mn log(B/ε)

)
on the running time of the algorithm.
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Abstract. Most existing market maker mechanisms for prediction mar-

kets are designed for events with a finite number of outcomes. All known

attempts on designing market makers for forecasting continuous-outcome

events resulted in mechanisms with undesirable properties. In this pa-

per, we take an axiomatic approach to study whether it is possible for

continuous-outcome market makers to satisfy certain desirable properties

simultaneously. We define a general class of continuous-outcome market

makers, which allows traders to express their information on any continu-

ous subspace of their choice. We characterize desirable properties of these

market makers using formal axioms. Our main result is an impossibility

theorem showing that if a market maker offers binary-payoff contracts,

either the market maker has unbounded worst case loss or the contract

prices will stop being responsive, making future trades no longer prof-

itable. In addition, we analyze a mechanism that does not belong to our

framework. This mechanism has a worst case loss linear in the number of

submitted orders, but encourages some undesirable strategic behavior.

Keywords: Prediction markets, continuous-outcome events, combinato-

rial prediction markets, expressive betting.

1 Introduction

A ubiquitous need in organizations and societies is to obtain and aggregate dis-
persed information of uncertain events so that informed decisions can be made.
Predictionmarkets havebeen designed for this goal of information aggregationand
have been shown to provide remarkably accurate forecasts in practice [1,2,3,4,5,6].

A prediction market is a betting intermediary that offers contracts whose pay-
offs are tied to outcomes of future events. Participants reveal their information
about the event through buying and selling contracts. To facilitate information
aggregation, many automated market maker mechanisms [7,8,9,10,11,12] have
been designed to ensure that a participant can always conduct trades with the
market maker and reveal his information whenever he finds it profitable.

Many events of interests, from carbon dioxide emission level to hurricane
landing location, are naturally perceived as continuous random variables with
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continuous outcome spaces. However, most existing market makers, including
the popular logarithmic market scoring rule (LMSR) [7,8] and the dynamic
parimutuel markets (DPM) [9,13], are designed for finite-outcome random vari-
ables, and cannot handle continuous outcome spaces directly. For forecasting
continuous-outcome events, these mechanisms rely on discretizing the contin-
uous outcome space into a finite number of subsets and treat the event as a
finite-outcome random variable. This approach poses the significant challenge
of determining the level of discretization to be used in advance. Choosing too
coarse-grained discretization could hurt information aggregation, since market
participants may not be able to easily express their information with the pre-
specified subsets. If the chosen discretization is too fine-grained, certain market
makers like LMSR may suffer from a large worst case loss. In general, commit-
ting to an inappropriate discretization in advance may create unnecessary psy-
chological burden for traders. In practice, Crowdcast1, Yoopick [14], and Gates
Hillman [15] prediction markets allow traders to wager on intervals through their
user-friendly interfaces, although the underlying mechanisms still use some sort
of discretization. Therefore, for predicting events that are naturally perceived
as continuous, it is desirable to design market mechanisms that can handle the
continuous-outcome spaces directly and provide sufficient expressiveness for par-
ticipants to easily reveal their information on the continuous-outcome spaces.

Gao, Chen and Pennock [16] proposed the continuous-outcome LMSR and
DPM. Although these continuous-outcome mechanisms offer considerable flexi-
bility for participants to reveal their information, they suffer from some undesir-
able properties. In particular, the continuous-outcome LMSR can potentially lose
an infinite amount of money, whereas the finite-outcome LMSR is guaranteed
to have bounded worst case loss. The continuous DPM suffers from a different
problem – even if a trader bets on a subspace that contains the realized outcome,
he can potentially incur a loss. The intellectual quest that motivates this paper
is to understand which set of desirable properties are possible or impossible to
satisfy simultaneously for continuous-outcome market makers.

In this paper, we take an axiomatic approach to analyzing market makers for
continuous-outcome events. We first define cost functional based market mak-
ers for continuous-outcome events. Then, we characterize desirable properties of
these market makers as formal axioms. Our main contribution is an impossibil-
ity result showing that no market maker of this class can satisfy these axioms
simultaneously. Specifically, for a market maker offering binary-payoff contracts,
it either has unbounded worst-case loss or the contract prices will become un-
responsive to trades being conducted. We also analyze a mechanism which does
not fit into our axiomatic framework. This mechanism has a worst case loss linear
in the number of orders, but encourages some undesirable strategic behavior.

Related Work. There have been a significant amount of efforts on designing
and analyzing market maker mechanisms for finite-outcome events, including

1 http://www.crowdcast.com
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market scoring rules [7,8], dynamic parimutuel markets [9], cost function based
market makers [10,17], and sequential convex parimutuel mechanisms [12]. The
focus has been on analyzing the various properties of the market makers and
establishing connections among them. In the context of designing combinatorial
prediction markets, research has been focusing on the computational tractability
of pricing expressive bets in the finite-outcome LMSR [18,19]. The work of Gao,
Chen, and Pennock [16] is the closest to this paper. It generalized LMSR and
DPM to handle continuous outcome spaces and analyzed the properties of the
resulting mechanisms.

2 Background

In this section, we first describe a class of cost function based market makers for
finite-outcome events. We then introduce and the discuss the properties of the
continuous-outcome LMSR market maker.

For finite-outcome events, Chen and Pennock [10] introduced a general class
of automated market maker mechanisms, called the cost function based market
makers. It has been shown that this class of market makers is equivalent to most
of the known finite-outcome market makers under mild conditions [10,12,17]2.

A cost function based market maker offers N contracts, each corresponding to
one of N mutually exclusive and exhaustive outcomes of an event. Each contract
pays off $1 if and only if the corresponding outcome occurs. The market maker
uses a differentiable cost function C(q) : RN → R to capture the total amount of
money wagered in the market, where the vector q represents the number of shares
purchased by all traders. If a trader changes the quantity vector from q to q ′, he
pays C(q′)−C(q) to the market maker and acquires q′ − q shares of contracts.
The instantaneous price of the i-th contract, defined as pi(q) = ∂C(q)/∂qi,
represents the price per share of an infinitesimal number of shares.

Chen and Vaughan [17] formalized that a cost function is valid if the instan-
taneous prices pi(q) are non-negative and form a probability distribution over
the outcome space. They proved that the sufficient and necessary conditions for
a cost function C to be valid are: differentiability (to ensure that prices are well-
defined), increasing monotonicity (to ensure that prices are non-negative), and
a translation invariance condition C(q + k1) = C(q) + k, ∀q, k (to ensure that
prices sum to 1 and there is no arbitrage).

It has been shown that many valid market makers based on convex cost func-
tions have bounded worst case loss [12,17]3, where the loss of the market maker is
seen as a subsidy to promote information aggregation. For instance, the popular
LMSR mechanism has bounded worst-case loss given by b logN .

For continuous-outcome events, Gao, Chen and Pennock [16] generalized the
finite-outcome LMSR for the interval betting setting. Even though the result-
ing continuous-outcome LMSR can handle interval bets for continuous-outcome
2 DPM is an exception to this.
3 This is because a valid convex cost function based market maker is equivalent to a

strictly proper market scoring rule under mild conditions. Any market scoring rule

with a regular proper scoring rule has bounded worst case loss.
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events, it suffers from unbounded loss – the market maker could potentially lose
an infinite amount of money to the traders.

3 An Axiomatic Framework

In this section, we will define a general class of automated market maker mech-
anisms for continuous-outcome events, the cost functional based market mak-
ers. These market makers generalize the cost function based market makers for
finite-outcome events to handle continuous-outcome spaces. We then propose
three axioms to characterize desirable properties for these market makers.

3.1 Cost Functional Based Market Makers for Continuous-Outcome
Events

Consider a continuous random variable X with domain (L, U) = {x : x ∈ R, L ≤
x ≤ U, L ∈ R ∪ {−∞}, U ∈ R ∪ {+∞}}. Let x ∈ (L, U) represent a particular
outcome and let x∗ denote the realized outcome in hindsight. We define a class
of cost functional based market makers for predicting the realized value of X .

Cost functional based market makers are operated based on trading shares of
contracts. First, we define the quantity function q(x) ∈ L1(L, U), representing
the number of shares purchased for outcome x ∈ (L, U), which is analogous to
the quantity vector q in the finite-outcome case4. The value q(x) can be thought
as the total number of shares purchased for contracts that will pay off when x
is the realized outcome.

A cost functional based market maker uses a differentiable cost functional,
C[q(x)] : L1(L, U) → R, to capture the total amount of money wagered in
the market as a functional of the current quantity function q(x). If a trader
changes the quantity function from q(x) to q′(x), he obtains q′(x) − q(x) shares
for each outcome x and must pay C[q′(x)] − C[q(x)] to the market maker. We
use p[q(x), q′(x)] to denote the cost of such a transaction, i.e. p[q(x), q′(x)] =
C[q′(x)]−C[q(x)]. The market maker starts the market with some initial quantity
function q0(x) such that the value of C[q0(x)] is finite.

For any q(x), the price density functional p[q(x)] is defined as the func-
tional derivative of the cost functional with respect to q(x), that is, p[q(x)] =
δC[q(x)]/δq(x). The functional p[q(x)] maps the quantity function to a proba-
bility density function over (L, U). It is analogous to pi(q) in the finite-outcome
setting. According to the calculus of functionals, we can express the cost of a
transaction in terms of an integral of the price density functional, that is

p[q(x), q′(x)] = C[q′(x)] − C[q(x)] (1)

=
∫ 1

0

∫ U

L

p[q(x) + k(q′(x) − q(x))](q′(x) − q(x)) dx dk

4 L1(L, U) denotes the space of Lebesgue integrable functions on (L, U) with norm

‖q(x)‖ =
∫ U

L
|q(x)|dx.
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If a trader changes the quantity function from q(x) to q′(x), then the future payoff
of this transaction o[q(x), q′(x), x∗] is a nonzero real number if q′(x∗) �= q(x∗)
(i.e. the trader is buying or selling winning contracts), and $0 otherwise where
x∗ is the realized outcome. Negative payoff encodes loss from selling the winning
contracts. Other than this, we put no restriction on the value of o[q(x), q′(x), x∗]
and leave the definition of this value to specific mechanisms.

In our framework, a cost functional is valid if and only if the corresponding
market maker satisfies two simple conditions:

1. For every x ∈ (L, U), and every q(x) ∈ L1(L, U), p[q(x)] ≥ 0.
2. For every q(x) ∈ L1(L, U),

∫ U

L p[q(x)]dx = 1.

These are the minimum requirements for the price density functional to represent
a valid probability distribution over the outcome space. The following theorem
gives the sufficient and necessary conditions for the cost functional to be valid.

Theorem 1. A cost functional C is valid if and only if it satisfies the following
properties:

1. Differentiability: The functional derivative δC[q(x)]/δq(x) exists for all q(x)
∈ L1(L, U) and all x ∈ (L, U).

2. Increasing Monotonicity: For any q(x), q′(x) ∈ L1(L, U), if q′(x) ≥ q(x), ∀x
∈ (L, U), then C[q′(x)] ≥ C[q(x)].

3. Positive Translation Invariance: For any q(x) ∈ L1(L, U) and any constant
k, C[q(x) + k] = C[q(x)] + k.

The above concepts define a general class of market maker mechanisms for
forecasting continuous-outcome events5. These market makers can potentially
support many different betting languages. In this paper, we focus on the sim-
ple and intuitive interval betting language [16]. For interval betting, traders
are restricted to purchasing a constant s shares of a contract on an interval
(a, b) ⊆ (L, U) of their choice, where a < b. Such a transaction increases q(x) by
s for every x ∈ (a, b). We denote the quantity function after the transaction by
q′(x) = {q(x) + s}(a,b) where q′(x) is defined by q′(x) = q(x) + s, ∀x ∈ (a, b) and
q′(x) = q(x), ∀x ∈ (L, U)\(a, b). For such a transaction, we define the instanta-
neous contract price p(a,b)[q(x)] to be the integral of the price density functional
over (a, b), that is, p(a,b)[q(x)] =

∫ b

a p[q(x)]dx, This is intuitively the price per
share for buying an infinitesimal share of (a, b). Note that we still do not put
explicit restrictions on the transaction payoff for an interval contract (a, b), i.e.
o[q(x), q′(x), x∗] where q′(x) = {q(x) + s}(a,b).

In the rest of the paper, we only consider cost functional based market makers
for interval betting. Below we define an Interval Cost Continuity condition for
interval betting market makers.

5 We note that the continuous-outcome DPM is not a valid market maker in our

framework because its price density function does not correspond to a probability

distribution.
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Definition 2 (Interval Cost Continuity). A cost functional C[q(x)] satisfies
the Interval Cost Continuity condition if for any x∗ ∈ (L, U), q(x) ∈ L1(L, U),
s ∈ R, and q′(x) = {q(x) + s}(x∗−δ,x∗+δ), C[q′(x)] is right continuous at δ = 0
and continuous for all δ > 0.

The Interval Cost Continuity property specifies that, for each interval bet, the
cost functional value for the final quantity function must be continuous for any
change δ in the size of the betting interval. As δ approaches 0 (i.e. the size of
the interval approaches 0), C[q′(x)] approaches to C[q(x)].

3.2 Desirable Properties

We propose three formal axioms to characterize some desirable properties of the
cost functional based market makers for continuous-outcome events. We only
consider interval bets.

Axiom 1 (Responsive Price). If q(x) and q′(x) satisfy three conditions: (1)
q′(x) = q(x), ∀x ∈ (L, U)\(a, b), (2) q′(x) ≥ q(x), ∀x ∈ (a, b), and (3) ∃(c, d) ⊆
(a, b) s.t. q′(x) > q(x), ∀x ∈ (c, d), then

p(a,b)[q′(x)] > p(a,b)[q(x)]

for any contract (a, b) ⊂ (L, U).

The Responsive Price axiom specifies that the instantaneous contract price is
strictly monotonically increasing as the quantity over one of its subintervals
strictly increases. This axiom is desirable since it guarantees that the change in
the instantaneous contract prices will always respond to trades conducted and
traders are always able to conduct trades irrespective of the current prices.

Axiom 2 (Domain Consistency). The payoff and cost of purchasing shares
of (L, U) are always equal, that is, for all q(x), q′(x) = {q(x) + s}(L,U), and
x∗ ∈ (L, U), we have o[q(x), q′(x), x∗] = p[q(x), q′(x)].

Intuitively, any bet on the entire domain (L, U) should earn zero profit as the
bet is not revealing any useful information about X . This axiom is required
for a cost functional based market maker to be arbitrage free. For instance,
the continuous-outcome LMSR satisfies this axiom. Moreover, we will show in
the next section that this axiom is a sufficient and necessary condition for the
contracts offered to be exclusively binary-payoff contracts.

Axiom 3 (Bounded Loss). There exists B ∈ R, such that, for any sequence
of n transactions where the quantity functions satisfy qi(x) = {qi−1(x)+si}(ai,bi)

and (ai, bi) ⊆ (L, U), we have

max
x∗∈(L,U)

(
n∑

i=1

(o[qi(x), qi+1(x), x∗] − p[qi(x), qi+1(x)])

)
≤ B.

This axiom gives a sufficient and necessary condition for the market maker to
have bounded worst case loss. The market maker’s loss is the difference between
the total money he pays out and the total money he collects. The worst outcome
for the market maker is when this difference is maximized.
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4 Impossibility Result

In this section, we present our main impossibility theorem. We first prove con-
ditions for a valid market maker mechanism to offer exclusively binary-payoff
contracts. For these market makers, we prove in Theorem 5 that the Responsive
Price and Bounded Loss axioms cannot be satisfied simultaneously.

Lemma 3 (Binary Contract Lemma). A valid market maker mechanism
satisfies the Domain Consistency axiom if and only if it offers binary-payoff
interval contracts, that is, the future payoff of any contract is fixed to be $1 per
share if the realized outcome x∗ falls within the interval and $0 otherwise.

Lemma 3 shows that if a valid market maker satisfies the Domain Consistency
axiom, the payoff of the contract has to be binary regardless of the interval
chosen. We also note that with binary-payoff contracts, the Responsive Price
axiom implies that the price of any contract never reaches 0 or 1. Next, we
present Lemma 4 to facilitate the proof of our main impossibility result.

Lemma 4 (Responsive Price Lemma). For a valid market maker satisfying
the Interval Cost Continuity condition, if it satisfies the Responsive Price axiom,
then for any winning contract (a, b), any number of shares s ∈ Z+, any quantity
function q(x), and any ε > 0, there exists a winning contract (a′, b′) ⊂ (a, b),
such that

C[q′′(x)] − C[q(x)] ≤ ε(C[q′(x)] − C[q(x)])

where q′(x) = {q(x) + s}(a,b) and q′′(x) = {q(x) + s}(a′,b′).

Based on Lemma 4, if an interval (a, b) is a winning contract, there exists a
subinterval of (a, b) which is also winning such that the cost of buying a constant
number of shares over the subinterval is an arbitrarily small fraction of the cost
of buying the same number of shares over (a, b).

Theorem 5 (Impossibility Result). For a valid market maker satisfying the
Interval Cost Continuity condition, if it allows traders to bet on intervals of any
nonzero size and satisfies the Domain Consistency axiom, then it cannot satisfy
the Responsive Price and Bounded Loss axioms simultaneously.

Proof Sketch. By Lemma 3, the contracts offered must pay off $1 per share if
they are winning, and $0 otherwise. Consider a trader who knows x∗ and has a
fixed budget of $m. Using the following procedure, this trader could potentially
get an arbitrarily large profit.

To get $s payoff, the trader can start by calculating the cost of buying s
shares of an arbitrary winning contract (a, b), denoted by T . If T ≥ m, then by
Lemma 4, the trader can choose ε = m

T and find a winning contract (a′, b′) ⊂
(a, b) such that the cost of buying s shares over (a′, b′) is no more than m

T · T =
m dollars and the corresponding profit is at least s − m dollars. Because s is
arbitrary, the trader’s profit, hence the market maker’s loss, is not bounded. �
Even though Theorem 5 allows traders to bet on intervals of any nonzero size, we
now show that even if we restrict the size of the smallest betting interval to be
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at least z > 0, with certain assumptions, the trader could still bet on arbitrarily
small intervals of their choice.

Corollary 6. For a valid market maker satisfying the Interval Cost Continuity
condition and restricting the size of the smallest betting interval to be z ∈ R

where 0 < z < (U −L)/2 6, if it satisfies the Domain Consistency axiom, then it
cannot simultaneously satisfy the Responsive Price and Bounded Loss axioms.

The key insight for proving the above corollary is that a trader can perform a
sequence of transactions which is equivalent to purchasing shares of an arbitrarily
small interval even with the restriction on the size of the smallest betting interval.
It is worth noting that these transactions can be potentially completed in any
order, and multiple traders can collude to complete them. Thus, it would be very
challenging in general to detect such trading patterns in practice.

The unbounded worst case loss of the continuous-outcome LMSR is a special
case of our impossibility result. However, compared with finite-outcome market
makers, this impossibility result is rather surprising since the finite-outcome
LMSR essentially satisfies the finite-outcome versions of all three axioms.

We could possibly relax the Responsive Price axiom to derive mechanisms
with bounded worst case loss, although the resulting market maker may be
trivial and less interesting. For example, a market maker can quickly increase
the price of contracts to 1 once the quantity for the contracts increases beyond a
certain value. Beyond this point, purchasing more shares will not earn the trader
any more profit and bounded worst case loss can be achieved.

5 Discussion and Conclusion

While the class of market makers we considered is quite general, there exist other
continuous-outcome mechanisms outside of this class that can achieve bounded
worst case loss and responsive price simultaneously. In particular, we can operate
the finite-outcome LMSR over the continuous-outcome space by discretizing the
outcome space on the fly given the submitted orders. By violating our definition
of instantaneous contract price and the Interval Cost Continuity condition, this
mechanism achieves the worst case loss linear in the number of orders submitted,
but also encourages certain undesirable strategic behaviors.

To operate the finite-outcome LMSR over a continuous-outcome space, we
split the existing intervals in the state space for every submitted order on (c, d)
whenever c or d falls within the existing intervals. Then the order is traded via
LMSR with the state space after splitting. For every splitting of this kind, the
outstanding quantities and instantaneous prices need to satisfy the following
consistency constraints for the mechanism to remain arbitrage free.
• The sum of the instantaneous prices of the subintervals must be equal to the

instantaneous price of the original interval.

6 This assumption is reasonable since the size of the smallest betting interval should

be much smaller than the size of the domain of the random variable.
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• The number of shares of each subinterval held by all traders must be equal
to the number of shares of the original interval held by all traders.

The first consistency constraint allows considerable freedom in splitting the prob-
ability estimates among the subintervals. If the probability estimates are split
equally among the subintervals, then the resulting mechanism violates our defini-
tion of instantaneous contract price and the Interval Cost Continuity condition.
However, this market maker has worst case loss given by M log 3, where M is
the number of orders submitted. However, this mechanism does not provide the
incentive for traders to reveal their information truthfully. Given several subin-
tervals with equal prices, a trader could maximize his probability of winning by
betting on the largest interval regardless of his subject probability estimates for
these intervals.

If the market maker splits the probability estimates in proportion to the
lengths of the subintervals, it satisfies all the axioms proposed and the worst case
loss becomes unbounded according to Theorem 5. Intuitively, the unbounded loss
is due to the market maker assigning arbitrarily small initial probability to the
smallest interval containing the realized outcome. If the traders drive the price
of this interval to be $1, then the market maker is destined to lose an infinite
amount of money to the traders.

In conclusion, we take an axiomatic approach to study automated market
maker mechanisms for forecasting continuous-outcome events. In our axiomatic
framework, we consider a general class of cost functional based market makers
and define formal axioms to characterize desirable properties of these mecha-
nisms. We then prove that it is impossible for a valid cost functional based
market maker mechanism to satisfy a certain set of properties simultaneously.
Our results suggest that future efforts on designing continuous-outcome market
makers should focus on finding the right tradeoffs among the desirable proper-
ties. In particular, it may be fruitful to investigate whether a market maker can
be designed such that the Interval Cost Continuity condition or the Responsive
Price axiom is relaxed to a reasonable degree so that other desirable properties
can be achieved for practical applications.
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Abstract. In recent years, a number of online labor markets have

emerged that allow workers from around the world to sell their labor

to an equally global pool of buyers. The creators of these markets play

the role of labor market intermediary by providing institutional sup-

port and remedying informational asymmetries. In this paper, I explore

market creators’ choices of price structure, price level and investment

in platforms. I also discuss competition among markets and the busi-

ness strategies employed by market creators. The paper concludes with

a discussion of the productivity and welfare effects of online labor.

1 Introduction

In the late 1990s, a number researchers began studying the effects that the Inter-
net was having—or might yet have—on the labor market. One question examined
was whether we might see the emergence of entirely online labor markets, where
geographically dispersed workers and employers could make contracts for work
sent “down a wire.” Such markets would be an unprecedented development, as
labor markets have always been geographically segmented.

Researchers were of mixed opinions: Malone predicted the emergence of such
an “E-lance” market [9], while Autor was skeptical, arguing that informational
asymmetries would make such markets unlikely [3]. Instead, Autor predicted
the emergence of third-party intermediaries that could use their own reputation
to convey “high bandwidth” information about workers—such as ability, skills,
reliability and work ethic—to buyers who would be unwilling to hire workers
based solely on demographic characteristics and self-reports.

In the approximately 10 years since, we have witnessed the emergence of a
number of truly global online labor markets, as Malone predicted. By 2009, over
2 million worker accounts had been created across different markets, with over
$700 million in gross wages paid to workers [7]. However, consistent with Autor’s
position, these markets have emerged not “in the wild,” but within the context
of highly structured platforms created by for-profit intermediaries.

The ultimate success and trajectory of these markets remains to be seen. If
they become more important, they will raise policy questions, particularly about
labor laws and taxation. They might spur the already large shift towards part-
time employment [10] and have implications for inequality and development.

The purpose of this paper is to describe the key economic features of online
labor markets. In addition to a positive examination, this paper highlights fea-
tures of the markets likely to be relevant for welfare and productivity. Special

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 515–522, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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attention is given to the ability of these markets to give workers in developing
countries access to buyers in rich countries.

2 Overview

Online labor markets (OLMs) fall into two broad categories: “spot” and “con-
test.” No labor market is truly “spot” in the sense of a commodity market,
but certain OLMs feature buyer/seller agreements to trade at agreed prices for
certain durations of time. Examples of spot markets include oDesk, Elance, iFree-
lance and Guru. Workers create online profiles and buyers post jobs and wait
for workers to apply and/or actively solicit applicants.

In contest markets, buyers propose contests for informational goods such as
logos (e.g., 99Designs and CrowdSPRING), solutions to engineering problems
(e.g., InnoCentive) and legal research (e.g., Article One Partners). Workers cre-
ate their own versions of the good and the buyer selects a winner from a pool of
competitors. In some markets, the buyer must agree to select (and pay) a winner
before they can post a contest; in other high-stakes markets where a solution
may be unlikely, the buyer is under no obligation to select a winner.

2.1 Definition

Not all people working online do so through markets: some work is unpaid (e.g.,
open-source software and Wikipedia) and other work products are transferred
within a firm, such as through conventional off-shoring. Even within clearly
identifiable markets, there is great diversity. I propose a definition of OLMs
that captures the essential common features of all markets and yet distinguishes
the markets from other examples of online work: a market where (1) labor is
exchanged for money, (2) the product of that labor is delivered “over a wire”
and (3) the allocation of labor and money is determined by a collection of buyers
and sellers operating within a price system.

2.2 Nature of Labor Markets and Role for Intermediation

Labor markets are fundamentally different from other kinds of markets in at
least two ways. First, there is no single “commodity” of labor with an immedi-
ately observable quality and single prevailing price—both jobs and workers are
idiosyncratic. This makes it difficult for firms and workers to find a good match,
and even when matches are formed, it is difficult for either party to know pre-
cisely what they are getting when they enter into contracts. Buyer/seller infor-
mation asymmetries, when combined with opportunities for strategic behavior,
can impede markets; if sufficiently severe, they can prevent markets from existing
[2][13]. Second, labor is a service that is delivered over time, often accompanied
by relationship-specific investments in human capital (e.g., learning a particular
skill for a particular job), which creates a number of the incentive issues that
make it hard for parties to fully cooperate [14].

In traditional labor markets, third-party intermediaries such as temp agencies,
unions and testing services profit from supplying information [4]. The creators

http://www.oDesk.com
http://www.Elance.com
http://www.Guru.com
file:99Designs.com
http://www.crowdspring.com/
http://www.innocentive.com/
http://www.articleonepartners.com/
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of online labor markets do the same thing, though their scope is wider and
more comprehensive. They also provide infrastructure like payment and record-
keeping systems, communications infrastructures and search technology—
functions typically provided by a government or by parties themselves.

2.3 What the Market Creators Provide

In order to increase the information on the demand side, OLMs often offer
worker skills tests, manage reputation systems and provide worker data from
prior within-OLM employment, such as hours worked and wages. Making buyer
feedback public not only prevents adverse selection, but also serves to reduce
moral hazard, as workers make decisions about effort “in the shadow” of the
evaluations that they will likely receive. To increase supply-side information,
OLM creators verify buyers’ abilities to pay and reports on their past behav-
ior in the market. For example, oDesk guarantees that workers will be paid
for hourly work, putting the impetus on the buyer to interrupt an unprofitable
relationship.

The influence of the market creator is so pervasive that their role in the mar-
ket is closer to that of a government: they determine the space of permissible
actions within market, such as what contractual forms are allowed and who is
allocated decision rights.1 Presumably they design their “institutions” to maxi-
mize expected profits. For example, they design rules to reduce the probability of
disputes (subject to the constraint imposed by reducing flexibility). If disputes
do arise, the market creators are likely to be able to settle them quickly using
clear rules or unambiguous assignments of decision rights, such as making buyers
the arbiters of contract compliance.2

3 Price and Price Structure

Market creators have at least three ways to earn revenue: they can charge mem-
bership fees, levy ad valorem charges on payments and charge buyers and sellers
for using the market (e.g., for listing a job, taking a skills test or applying for
a job).3 These different structures are not mutually exclusive and many market
creators use a hybrid structure.

A market creator has to attract both buyers and sellers to a market and facil-
itate valuable interactions. There is a growing literature on “two-sided” markets
[12] that tries to understand price structure in the presence of membership exter-
nalities. This research focuses on scenarios where the identity of the party that
1 Their software even serves a weights-and-measures function traditionally performed

by governments by keeping universal time for logging worker hours.
2 Although there are obvious drawbacks to such an assignment of rights, it radically

reduces the space for disputes. This is in fact the precise rule used by Amazon

Mechanical Turk.
3 Typical usage fees appear to be modest and may serve as a kind of Pigouvian “tax,”

since some of the activities seem to be over-supplied in the markets. The costs of

applying for jobs are so low that there is a good deal of application “spam.”
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pays the fees (or receives subsidies) matters. In online labor markets, buyers and
sellers independently arrive at prices after negotiation, strongly suggesting that
the Coase theorem applies, which permits a conventional one-sided analysis.4

Suppose that potential buyer/seller pairs would get value v from complet-
ing a project and would pay a cost c, not including any fees, if the work were
intermediated. The outside option is 0. The market creator’s marginal interme-
diation costs are assumed to be zero. If an ad valorem charge γ is leveled, the
project goes forward if v− (1 + γ)c > 0, whereas if a lump sump fee τ is leveled,
v − c − τ > 0. With the lump sum fee, the buyer/seller pair makes use of the
market so long as the fee is less than the surplus: τ < v−c. With the ad valorem
charge, the pair makes use of the market so long as γ < 1− c

v . In the lump sum
case, absolute surplus matters, whereas in the ad valorem case, project efficiency
matters.

Depending on the distributions of c and v, either price structure might be
optimal or some hybrid might be best, but the ad valorem charge appears to
have several practical advantages. First, it short-circuits the chicken-and-egg
dynamics of any platform with a two-sided nature [5]. No OLM sprang forth
fully formed with contingents of buyers and sellers. To be useful, the markets
needed members; to attract members, they needed to be useful. An ad valorem
charge avoids this problem. Second, setting an optimal lump sum charge requires
knowledge of project surplus, and surplus could change dramatically as different
kinds of work become more or less popular, or as firms shift more work onto
the market. A firm can change membership fees, but this introduces menu costs.
Finally, groups of buyers can bundle their projects under a single account and
amortize their membership costs over many transactions, but this strategy offers
no benefits when using usage fees. While membership fees can be important and
are used in some markets, the rest of this analysis focuses on the ad valorem
price structure.

3.1 Setting the Optimal ad Valorem Price Level

Perhaps because of the advantages enumerated above, ad valorem charges seem
to be nearly universally applied, even in the contest markets. Assume that the
buyers are purchasing efficiency units of labor from homogeneous workers and
that there is a single market clearing price. The market clearing price is p and
the quantity of units bought and sold is Q. Figure 1 depicts the problem in terms
of intersecting supply and demand curves determining the market clearing price
and quantity for a given γ. The market creator’s revenue is indicated by the box
with height pγ (the side runs from p to p(1 + γ)) and width Q0. As γ grows
larger, the quantity is lowered, but the height of the rectangle increases. The
nested revenue box shows that as supply and demand become more elastic (S′

and D′), the same size γ, even if it leads to the same market clearing price, would
lead to a decrease in the quantity (and hence revenue), which is now at Q′

0.
4 For example, if buyers have to pay a membership fee, there will be fewer buyers.

This lowers the demand and therefore the price of labor, transferring some of the

cost of the membership fee to sellers.
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Fig. 1. Market creator profits and market clearing price

The market creator’s profit maximization problem is:

max
γ

p(γ)Q(γ)γ (1)

where γ is the ad valorem charge and p(γ) and Q(γ) are the resultant prices
and quantities in the market. The profit-maximizing first-order condition is
(p′Q + Q′p)+pQ = 0, which implies that profits are a maximum when εp

γ +εQ
γ =

−1. The market creator increases the ad valorem charge until a small change in
γ, say x% is offset by a combined x% decrease in some percentage combination
of market price and quantity. Of course, the quantities εQ

γ and εp
γ are not known

and are not parameters that usually receive attention in economics. However, if
we make some assumptions about the functional form of the supply and demand
curves, we can solve for γ∗ as a function of the relevant elasticities. Assume that
both the supply and demand curves have constant elasticity of substitution,
s(p) = Qsp

α and d(p) = Qdp
β. In the absence of a market creator, assuming the

market could function, the efficient price for labor would be pe = e
log Qd−log Qs

α−β .
Under intermediation, for the market to clear, Qsp

α
I = Qd(pI(1 + γ))β . We can

solve for the intermediation market clearing price, pI , and write it in terms of
the efficient market price: pI = pe(γ + 1)

β
α−β . Because γ > 0, β < 0 (downward

sloping demand curve) and α > 0 (upward sloping supply curve), in order for
the market to still clear with the ad valorem charge, the price received by sellers
must be lower than in the efficient market case.5 The market creator’s profits
are:

π =

⎡⎢⎣ (Qsp
α
e )pe︸ ︷︷ ︸

efficient wage bill

⎤⎥⎦×
[
γ (γ + 1)

β(α+1)
α−β

]
(2)

5 Note, however that this “distortion” from the efficient market price is not necessarily

an inefficiency, as it is the actions of the market creator that make the market

possible.
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Solving for the optimal charge, we have:

γ∗ =
β − α

α(β + 1)
(3)

If we assume that the supply and demand elasticities have the same magnitude,
i.e., α = |β|, then in order to give the highest observed ad valorem charge of
25% employed by BitWine6, α = |β| = 9; in order to give the more standard
≈ 10% used by oDesk, Amazon Mechanical Turk and others, α = |β| = 21.
These are remarkably high elasticities. It is not clear whether constant elasticity
of substitution is a reasonable assumption, but if it is, and assuming that the
market creators know their business and are not radically undercharging, it seems
likely that implied elasticities are large for the simple reason that workers and
buyers have ready and close substitutes for their intermediated transactions:
they can make use of other online labor markets or traditional labor markets, or
they can take their chances and disintermediate.

4 Competition and Specialization

It is well beyond the scope of this paper to try to model the market of interme-
diation markets, never mind make predictions about the likely market structure,
product types, prices, etc. However, it is possible to discuss some of the key eco-
nomic factors and sketch out areas for future research. The factors likely to affect
ultimate market structure include whether there are economies or diseconomies
of scale in providing intermediation services, barriers to entry and the potential
for product differentiation.

5 Market Creator Strategy

Even after picking a price structure and level, the market creator can still increase
revenues by increasing the size of the wage bill. This can be done by increasing
the extent of the market, such as by recruiting more buyers and sellers, increasing
worker productivity or preventing buyers and sellers from working outside the
market.

5.1 Recruitment that Affects Supply and Demand

Let the market creator’s initial revenues be r0 = p0Q0. The market creator
is considering changing supply and demand in the market via recruitment of
more buyers and sellers, such as through advertising. After the change, the new
revenue will be r1 = p1Q1. Define Δx as a percentage change in x. We can write
r1 = p0Q0(1 + Δp)(1 + ΔQ). It is worth making the change from r0 to r1 if

ΔQ + Δp + ΔpΔQ > 0 (4)
6 BitWine is a network of freelance advisers who charge clients per-minute rates for

consultations. Advisers are self-styled experts in fields such as nutrition, travel,

coaching, technology and psychic prediction.

http://www.bitwine.com
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We can see that increasing within-market demand unambiguously raises profits
because as ΔQ increases, so does Δp, as positive demand shocks raise both price
and quantity. For supply increases, price and quantity will move in opposite
directions. For small changes in supply or demand, two elasticity formulas must
hold: ΔQ = ΔS + εSΔp and ΔQ = ΔD + εDΔp. Because we are considering
only a supply increase, ΔQ = εDΔp, which allows us to re-write the profit-
maximizing condition as εDΔp + Δp + ΔpΔQ > 0. Dividing through by Δp
(which is negative) and reversing the sign, we have: εD + ΔQ < −1, and since
(εD − εS)Δp = ΔS, the market creator finds it revenue-maximizing to increase
supply so long as:

εD

(
1 +

ΔS

εD − εS

)
< −1 (5)

If supply and demand are highly elastic, |εD − εS | is large, meaning that small
positive changes in supply are likely to increase revenue.

6 Productivity and Welfare Implications

Online work offers the cost-saving benefits of telecommuting, such as reduced
congestion and increased flexibility, as well as some advantages unique to the
way such markets appear to be structured. First, global labor markets permit
greater specialization in human capital. Second, the rapid mixture of workers
across and between firms might speed up innovation spillovers, creating a kind
of pseudo geographic co-location, which has been shown to increase productivity
in other contexts [8]. Third, OLMs allow firms to buy small amounts of labor as
needed, lowering the barriers to entrepreneurship.

OLMs also permit a kind of virtual migration that offers many of the benefits
of physical migration. Assuming that increased virtual labor mobility will gen-
erate effects similar to those of increased real labor mobility, the potential gains
to welfare are enormous [6]. Further, these markets create incentives for people
otherwise disconnected from the global labor market to invest in their human
capital [11].

Given the central role that a country’s institutions play in its economic de-
velopment [1], it is remarkable how little these markets demand from the in-
stitutions of the worker’s home country. Prospective workers need only to be
able to get online and have some way of receiving remittances. Workers do not
need functioning courts, developed finance sectors, work visas, information about
commodity prices, local reputations or race, class or social backgrounds required
for employment in local labor markets.
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Abstract. We study formally discrete bidding strategies for the game

induced by the Generalized Second Price keyword auction mechanism.

Such strategies have seen experimental evaluation in the recent literature

as parts of iterative best response procedures, which have been shown not

to converge. We give a detailed definition of iterative best response un-

der these strategies and, under appropriate discretization of the players’

strategy spaces we find that the discretized configurations space contains
socially optimal pure Nash equilibria. We cast the strategies under a new

light, by studying their performance for bidders that act based on local

information; we prove bounds for the worst-case ratio of the social cost

of locally stable configurations, relative to the socially optimum cost.

1 Introduction

We study discrete bidding strategies for repeated keyword auction games, in-
duced by the Generalized Second Price (GSP) mechanism. Sponsored search
auctions have received considerable attention in the recent literature, as the pre-
miere source of income for search engines that allocate advertisement slots. The
GSP mechanism is implemented in different forms by Google, Yahoo!, and Bing.
Other online enterprises also use flavors of GSP; e.g. Google exports its slot al-
location and pricing system as a service. In the simplest form of the mechanism,
advertisers are ranked in order of non-increasing bids and each of the first k is
matched to one of k available slots, paying the next highest bid to his. In the
current version bids are weighted by relevance parameters of advertisers. For
one slot the GSP mechanism coincides with the VCG mechanism. For at least
two slots however, the GSP auction does not retain the features of VCG, e.g.,
truthful reporting of valuations, and encourages strategic behavior.

Strategic behavior in GSP auctions raises the question of how should an ad-
vertiser decide on his bidding. A best response of a player i under a current
� This work was partly funded by the EU FP7 Network of Excellence Euro-NF,

through the specific joint research project AMESA. A full version with all omit-
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bidding configuration is any bid value within the interval defined by the bids
of at most two other players, that grants i his desired slot; but how should the
exact value be decided? In practice bidders may hire consultants to design bid-
ding strategies for them. Phenomena of competition have been observed in the
adopted strategies, ranging from modest budget investment to aggressive bid-
ding, inducing large prices for competitors. These issues have received attention
in the recent literature [3,11]. Most of the existing works concern iterative best
response procedures, viewing a GSP auction as a repeated game. Cary et al. [3]
studied strategies where players adjust their bid iteratively, synchronously or
asynchronously – in a randomly chosen order – always targeting the slot that
maximizes their profits. They introduced 3 bidding strategies and proved con-
vergence for one of them to a single fixed point, the equilibrium described in [4].

We focus on the other two simple strategies introduced in [3], that have
seen less theoretical treatment, but have been used in experimental compar-
isons [3,9,11]. The first is Altruistic Bidding (AB), where every player takes a slot
by minimally outbidding the player who currently owns it. The second is Com-
petitor Busting (CB), where a player minimally underbids the player who owns the
slot above the one aimed for. Both require discretization of the players’ strategy
spaces by a bidding unit ε. This may change the original game entirely. Iterative
AB and CB procedures have been observed not to converge for fixed ε [3,9]; can we
expect the best response state space to even have pure Nash equilibria (PNE)?
How should ε be tuned so that the game in discrete strategies retains properties
of the original game? The relevance of AB and CB is amplified for bidders that,
due to lack of complete information, perform local best responses.

Contribution. We study iterative AB and CB best response procedures that
differ from previous work [3] in that bidders only update their bid when they
have incentive to target a different slot. We provide a detailed description of AB
and redefine CB differently than it has appeared previously, to ensure its consis-
tency with developments to follow (Section 3). We decide an upper bound on
the discretization parameter ε to ensure that the induced discretized configura-
tions space has a socially optimum locally envy-free PNE, analogous to the one
identified in [4], that is also a PNE for the game in continuous strategies. We
ensure that if iterative AB or CB converge to a socially optimum configuration,
then this is a PNE even in continuous strategies. Subsequently we examine the
case of bidders that take only local steps upwards or downwards due to incom-
pleteness of available information (Section 4). We study the social inefficiency of
locally stable configurations of the GSP auction and produce upper bounds on
the inefficiency of configurations reached by local iterative AB/CB (L-AB/L-CB).

Related Work. A considerable amount of work in sponsored search auctions
concerns the strategic behavior of the bidders. As mentioned above, Cary et al. [3]
defined and studied three bidding strategies, Altruistic Bidding (AB), Competitor
Busting (CB) and Balanced Bidding (BB). CB has been observed often in prac-
tice [2,13]. Using CB advertisers try to exhaust the budget of their competitors
by placing the highest possible bid that will guarantee them the slot they decide
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to target. Altruistic bidding is the opposite of CB, whereas BB balances between
these two extremes. For BB the authors showed that, under some conditions, it
converges to the efficient locally envy-free equilibrium characterized in [4]. For AB
and CB it was shown that they do not generally converge. Experimental analysis
of AB and CB revealed low and high revenue respectively.

The performance of these strategies is analyzed in Bayesian settings in [12,10].
In [9], vindictive strategies are studied for games where bidders are either vin-
dictive or cooperative. Regarding efficiency of equilibria, the first upper bounds
on the Price of Anarchy with respect to the social welfare in GSP Auctions were
obtained by Lahaie [7]. Tighter upper bounds were obtained for conservative
bidders (that do not outbid their valuation) by Leme and Tardos in [8]. It was
shown that the price of anarchy is at most equal to the golden ratio for the
complete information game and at most 8 for the Bayesian setting.

2 Definitions and Preliminaries

An instance of the GSP Auction game has a set of n players (bidders), a set of
k slots and a tuple 〈{θj}k

j=1, {ρi}n
i=1, {vi}n

i=1〉. θj ∈ [0, 1] is the probability that
a link displayed in slot j is clicked (Click-Through Rate - CTR), ρi ∈ [0, 1] is
the probability that an advertisement by player i is clicked (relevance of i) and
vi is the valuation of i. We use v̂i for ρivi, the expected revenue of i. Assume
θ1 ≥ · · · ≥ θk > 0, v̂1 ≥ · · · ≥ v̂n and define γj = θj/θj−1, γ = maxj γj for j ≥ 2.

The GSP Mechanism. Players issue collectively a bid vector b = (b1, . . . , bn);
they are ranked in order of non-increasing declared expected revenue b̂i = ρibi and
matched to slots in order of non-increasing CTR. This is the Rank-By-Revenue
(RBR) rule. When all bidders’ relevances are equal, the players are ranked by
non-increasing bid bi (Rank-By-Bid rule - RBB). Under RBB, a player i receiving
a slot j pays the bid of the (j + 1)-th player. Under RBR, i pays the declared
expected revenue of the bidder i′ receiving slot j + 1 divided by ρi, i.e. ρi′bi′/ρi.

Given a bid configuration b, we denote by b(j), ρ(j), v(j), the bid, relevance and
valuation of the player occupying slot j. b−i is the strategy profile b without the
bid of player i and b−(j) denotes exclusion of the bid of the player occupying slot
j. Define b(j) = b(j), and b−i(j), b−(i)(j) will be the bid of the player occupying
slot j in b−i and b−(i) respectively. We use b̂ for the vector of declared expected
revenues as above. The utility of a player occupying slot j under b is:

u(j)(b) = θjρ(j)

(
v(j) −

ρ(j+1)b(j+1)

ρ(j)

)
= θj(v̂(j) − b̂(j+1)).

The social welfare SW (b) of b is SW (b) =
∑k

j=1 θj v̂(j) =
∑k

j=1 θjρ(j)v(j). We
assume a deterministic tie-breaking rule in case there are ties in the ranking.
Edelman et al. [4] identified a PNE configuration b∗ for the GSP auction game
with optimum social welfare SW (b∗) =

∑
j θjρjvj and payments equal to the

ones in the efficient dominant strategy equilibrium of the VCG mechanism. This
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equilibrium is also locally envy-free, i.e. every bidder i under b∗ is indifferent of
receiving at price ρib

∗
i the slot right above the one he occupies under b∗.

Local Stability. In Section 4, motivated by the costs incurred to players for
learning the competitors’ bids, we assume that a player only learns the price
of the slots right above/below the slot he currently occupies and only considers
these local deviations. In case of ties, i.e., other players above/below him bidding
the same, we assume that he learns the price of the first slot below the ties. This
inspires a definition of local stability, which is a relaxation of Nash equilibrium.

Definition 1. Let b be a bid configuration of the Generalized Second Price
Auction game with k slots and n ≥ k players. Fix any slot j0 ∈ {1, . . . , k}
and let j1 = j0 + 1, j2 = j0 − 1. Define j′1 = min

(
{n} ∪ {j|b̂(j) < b̂(j1)}

)
and

j′2 = max
(
{1} ∪ {j|b̂(j) > b̂(j2)}

)
. The bid configuration b is locally stable if:

1. For any slot j0

if j0 �= k and j′1 ≤ k + 1, θj0(v̂(j0) − b̂(j0+1)) ≥ θj′1−1(v̂(j0) − b̂(j′1)), (1)
if j0 �= 1, θj0(v̂(j0) − b̂(j0+1)) ≥ θj′2+1(v̂(j0) − b̂(j′2+2)), (2)

2. For any player i who does not win a slot under b, v̂i ≤ b̂(k).

The definition states that no player has an incentive to move to the next feasible
slot upwards or downwards under b. j′1 and j′2 determine the slot that the bidder
at slot j0 can target, in case that due to ties he cannot aim for the one right
above/below him. The condition j′1 ≤ k+1 in (1) states that a bidder may not be
able to deviate downwards if all the remaining bidders have equal score. For non-
winning players, we assume they know the bidding entry level to competition,
b̂(k) = ρ(k)b(k). The last constraint prescribes that no such bidder has incentive to
target slot k. In analogy to the Price of Anarchy [6], we quantify the inefficiency
of locally stable configurations by the following worst-case ratio:

Definition 2. The Local Stability Ratio of a GSP Auction game is defined as
Λ = supb

∑
j θj v̂j

SW (b) , where the supremum is over all locally stable configurations.

We note that the notion of a locally stable configuration and hence the notion
of the Local Stability Ratio can be defined for a much wider context. They are
applicable to any game where the outcome is a ranking, and for every action
profile b any player is allowed, in a well defined manner, to deviate upwards
or downwards in the ranking and determine his new payoff. Ranking Games [1]
constitute one such interesting class of games. (GSP Auctions differ from games
studied in [1] in that a player’s payoff does not depend only on his rank).

3 Discrete Bidding Strategies

We focus on conservative bidders [8] that never outbid their valuation vi in fear
of receiving a negative payoff. Our discussion throughout the paper is in terms
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of equal relevances and the RBB ranking rule. All results extend for RBR. We
assume a discretization of the continuous strategy space [0, vi] of player i, in mul-
tiples of bidding step ε > 0; i.e., the strategy space of i is Σi = {0, ε, 2ε, . . . , �vi�ε},
where �x�ε will henceforth denote the maximum multiple of ε that is at most x.

We view sponsored search auctions as repeated games, and we study the
bidding strategies AB and CB in the context of iterative best response procedures.
In each iteration, given a current configuration b = (b1, . . . , bn), a player i is
chosen at random to respond to b−i by choosing a bid b′i, so as to optimize
his utility ui(b−i, b

′
i). To do so, player i aims for the most profitable slot, j∗(i),

which he may win by a bid b′i ∈ (b−i(j∗(i)),b−i(j∗(i) − 1)]; i.e., b′i strictly beats
b−i(j∗(i)) and equals at most b−i(j∗(i)−1), the bid issued by a player occupying
slot j∗(i)−1. Due to discretization and possible ties, it may occur that no b′i ∈ Σi

grants the desired slot to i. Hence we define j∗(i) = argmaxj [θj(vi − b−i(j))],
where the max is taken over slots j for which Σi ∩ (b−i(j(i)),b−i(j(i) − 1)] �= ∅.
If there is no such slot, then the bidder does not alter his bid. If bidder i is not
occupying any slot under the current configuration b, it may be the case that
there is no slot giving him positive utility, in which case the bidder does not
alter his bid either. Finally, if j∗(i) equals the currently occupied slot by i, then
i does not alter his bid. We consider two simple ways of selecting an extremal
bid in this range, namely Altruistic Bidding (AB) and Competitor Busting (CB).

Altruistic Bidding. AB [3] dictates that player i first computes his optimal
slot j∗(i) and then submits the most altruistic bid that is feasible and beats
b−i(j∗(i)). Hence if j∗(i) = 1, he issues the bid b−i(j∗(i))+ ε, otherwise he bids:

b′i = min[(Σi ∩ {b−i(j∗(i)) + ε, . . . ,b−i(j∗(i) − 1)}) \ {bi}]

Competitor Busting. CB expresses competitive behavior of player i, in that i
incurs the highest possible payment to the player receiving the slot right above
j∗(i). We define the bid b′i issued by i to be the maximum feasible bid that grants
i slot j∗(i), except if j∗(i) = 1. In this case set b′i = b−i(1) + ε, otherwise:

b′i = max[(Σi ∩ {b−i(j∗(i)) + ε, . . . ,b−i(j∗(i) − 1)}) \ {bi}]

Generally, b′i equals (if feasible) b−i(j∗(i)−1), except for when b−i(j∗(i)−1) = bi,
in which case b′i = b−i(j∗(i) − 1) − ε. This definition of CB differs from the one
in [3], where b′i = b−i(j∗(i)−1)−ε always. Note that, assuming that j∗(i) differs
from currently occupied slot by i under b, we forbid b′i = bi.

We need a tie-breaking rule, for when a newly submitted bid ties with an
existing bid of another player. If bidder i best-responds by b′i = b−i(j′) for slot
j′ then bidding b′i grants i slot j′+1 (or lower if there are more ties). For iterative
best response this rule facilitates dynamic temporal tie-breaking, i.e. bidding the
same bid as some player i′, but later than i′, may only grant a lower slot than i′.

Discretization of the players’ strategy spaces in multiples of ε may introduce
stable configurations that are not PNE in continuous strategies. Although AB
and CB have seen experimental study in the recent literature [3], it is not known
whether their induced state spaces maintain any PNE of the original game in
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continuous strategies. By conditioning on ε, we establish existence of a socially
optimum locally envy-free PNE, which is a discretized version of the PNE iden-
tified by Edelman et al. in [4]. Our result is additionally strengthened by the fact
that, if our iterative best response procedures converge to a socially optimum
configuration b, then b is a PNE of the game even with continuous strategies1

Let Δv denote the minimum among the distances between two valuations or the
distance of a valuation from 0: Δv = min{{|vi − vj | : i, j ∈ N}∪{|vi| : i ∈ N}}.

Theorem 1. For any bidding step ε ≤ ε∗ = (γ−1−1)Δv, the configuration space
of the GSP Auction game with discrete strategies contains at least one config-
uration b, that is socially optimum and locally envy-free pure Nash equilibrium
for the GSP Auction game even with continuous strategies, given by:

bj =

⎧⎨⎩ b2 + ε, if j = 1
�(1 − γj)vj + γjbj+1�ε , if 2 ≤ j ≤ k
�vj�ε, if j ≥ k + 1

Also, if iterative AB or CB converges to a socially optimum configuration, then this
is a pure Nash equilibrium of the GSP Auction game in continuous strategies.

Regarding the convergence of iterative AB/CB, we found examples showing that
AB does not always converge, even for bidding step ε ≤ ε∗ and geometrically
decreasing (well separated) CTRs. We were not able to prove or disprove con-
vergence of CB, despite extensive experimentation (reported in the full version).
Resolving convergence for CB is therefore an interesting open problem. Conver-
gence of local versions of these strategies – discussed next – also remains open.

4 Locally Aware Bidders and Local Stability

It is commonly assumed in the literature that bids of other players are observable.
In principle one could apply learning techniques to estimate all the other bids
as shown in [2]. Such a practice incurs however costs in time and money and,
given the dynamic nature of these games, the game may have switched to a
different bid vector by the time one estimates all remaining bids. Modeling the
uncertainty about other bidders’ offers is one approach to this issue [11]. Here
we take a different approach and assume that bidders have only local knowledge
about the bid vector and make only local moves, adhering to the following rules:

1. They estimate the prices only for the slots right above or below their current
slot and – in the absence of ties – will only move one slot upwards or downwards.
In case of ties, a bidder learns the price of the first slot above or below him that
he can actually target. If none of these moves are beneficial, no deviation occurs.

2. Bidders not receiving a slot only learn the price of the last slot or – in case
of ties – the price of the first slot from the end that they can target.
1 More accurately, there is a tie-breaking rule for the one-shot game in continuous

strategies that renders b a PNE. However, the socially optimum locally envy-free

PNE described in Theorem 1 is independent of choice of tie-breaking rules.
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The restrictions of AB/CB for such locally aware bidders (L-AB/L-CB) are natural
strategies in this setting. If iterative L-AB or L-CB converge, they will converge to
a locally stable configuration (in ε-discrete strategies), as in Definition 1. We ana-
lyze first the inefficiency of locally stable configurations in continuous strategies.
Subsequently, we consider the performance of iterative L-AB and L-CB.

Theorem 2. The GSP Auction game in continuous strategies with conservative
bidders has Local Stability Ratio at least Ω(

√
αk), for any constant α > 1.

In the proof of this result we used a game instance with γ = 1. However, fitting of
real data in previous works [5] has shown that CTRs are well separated (γ < 1),
by following a power law distribution. Geometrically decreasing CTRs θj ∝
α1−j for α = 1.428, were observed in [5]. Other authors [10] have used a Zipf
distribution, where θj = j−α, for α ≥ 1. For such cases with γ < 1 we obtain:

Theorem 3. The GSP Auction game in continuous strategies with conservative
bidders has Local Stability Ratio at most (1 − γ)−1, assuming γ < 1.

Corollary 1. For geometrically decreasing click through rates with decay factor
α > 1 and conservative bidders, Λ ≤ α

α−1 . For click-through rates following the
Zipf distribution with θj = j−α, for α ≥ 1, Λ ≤ [1 − (1 − 1/k)α]−1 ≤ k.

Corollary 1 and empirical observations [5] imply a constant upper bound on Λ
for geometrically decreasing CTRs. We were not able to find matching lower
bounds for Theorem 3 or Corollary 1. We give experimental results in figure 1,
for the inefficiency of “reverse” assignments of players to slots, in games with
k = n slots, n = 2, 3, . . . , 20. The depicted results were found by solving non-
linear programs (one for each curve), that express local stability of the reverse
assignment and have Λ as objective function. Tightness of Λ ≤ k is evident
for Zipf-distributed CTRs. Finally, our analysis for Theorem 3 can be used in
bounding the inefficiency of stable configurations of iterative L-AB and L-CB:
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Theorem 4. For γ < 1 and ε ≤ ε∗, the Local Stability Ratio of stable config-
urations with respect to iterative L-AB and L-CB is at most (1 − γ)−1 + γ−1.
Moreover, this bound applies to stable configurations with respect to AB and CB.
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Abstract. We characterize the performance of strategyproof and group-

strategyproof social choice rules, for placing a facility on the nodes of a

metric network inhabited by N autonomous self-interested agents. Ev-

ery agent owns a set of locations and caters to minimization of its cost

which is the total distance from the facility to its locations. Agents may

misreport their locations, so as to manipulate the outcome. A central

authority has a set of allowable locations where the facility could be

opened. The authority must devise a mechanism that, given the agents

reports, places the facility in an allowable location that minimizes the

utilitarian social cost — the sum of agents costs. A mechanism is strate-

gyproof (SP) if no agent may misreport its locations and be better off; it

is group-strategyproof (GSP) if no coalition of agents benefits by jointly

misreporting their locations The requirement for (G)SP in this setting

makes optimum placement of the facility impossible and, therefore, we

consider approximation (G)SP mechanisms.

For SP mechanisms, we give a simple 3-approximation randomized

mechanism and also provide asymptotic lower bounds for different vari-

ants. For GSP mechanisms, a (2N +1)-approximation deterministic GSP

mechanism is devised. Although the mechanism is simple, we showed

that it is asymptotically optimal up to a constant. Our Ω(N1−ε) lower

bound that randomization cannot improve over the approximation factor

achieved by the deterministic mechanism, when GSP is required.

1 Introduction

In a metric space inhabited by N agents, we consider the problem of using
agents’ reports for their positions to select a facility location in order to mini-
mize aggregatively the agents’ distances from their locations to the facility. Each
agent owns a set of locations. Agents are self-interested and each one aims at
minimizing its individual cost, i.e. total distance from its locations to the fa-
cility. To this end, agents may manipulate by strategically misreporting their
locations. We study the power and limitations of strategyproof (SP) and group-
strategyproof mechanisms (GSP), that approximate the optimum aggregate cost
� This work is supported by French National Agency (ANR), project COCA ANR-

09-JCJC-0066-01 and Danish Center for Algorithmic Game Theory, funded by the

Carlsberg Foundation.
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over all agents within a bounded factor. In the paper, we consider the aggregate
cost function as the utilitarian social cost, i.e. the sum of all agents’ costs. A
SP mechanism ensures that no agent may misreport its locations and be strictly
better off. A GSP mechanism is resilient to coalitional misreports. In effect, the
mechanism constitutes a rule for placing the facility, that renders truthful re-
port of the agents’ positions a dominant strategy for each agent regardless of the
other agents’ actions.

Contribution. Our two main results in this paper concern performance char-
acterization of SP and GSP mechanisms for placing a single facility on arbi-
trary metric graphs. It is known that deterministic SP mechanisms are Ω(N)-
approximation due to the characterization of [4]. Hence for SP mechanisms, we
turn our attention to randomized ones. We give a simple 3-approximation mech-
anism that is randomized over a set of preferential locations of agents. We also
provide an asymptotic lower bound of 2 for any randomized SP mechanism. For
GSP mechanisms, a deterministic GSP mechanism which is inspired from the
dictatorship mechanism is devised, which is (2N + 1)-approximation. Although
that mechanism is simple, we showed that it is asymptotically optimal up to a
constant. Our Ω(N1−ε) lower bound that randomization cannot improve over
the approximation factor achieved by the deterministic mechanism, when group-
strategyproofness is required. Our result also confirms affirmatively a conjecture
posed by [1].

Related Work. There has been some early work on characterizing strategyproof
facility location mechanisms without payments on lines [2] and on circles [4].
However, [3] initiated in the study of approximating the optimum social cost
under the constraint of (group) strategyproofness. The authors considered facil-
ity location problems on metric spaces that are lines. A classical result by [4]
dictates that the only deterministic SP mechanism that one may hope for a circle
is a dictatorship (i.e. a mechanism that fixes an agent and always opens the facil-
ity as the preference of the agent, while totally ignore the reported locations of
other agents). Such a mechanism has approximation ratio Ω(N). The model in
[1] is closest to ours. [1] considered the problem on circles and on general metric
networks in which each agent owns only one location and the set of allowable
locations where the facility could be opened is the set of all vertices of the graph.
They show that the randomized dictatorship mechanism that selects a location
uniformly at random, is SP and approximates the social cost within a factor of
2− 2

N for any metric network. The authors conjectured that no GSP randomized
mechanism may achieve o(N) approximation ratio. This conjectured is settled
in the present paper. Our model can be considered as a generalization of the one
in [1].

2 Preliminaries

We consider a metric space (Ω, d), where d : Ω × Ω → R is the metric function.
Let N be the set of N agents and each agent i ∈ N owns a set xi of wi locations
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{xi1, . . . , xiwi} where xij ∈ Ω for 1 ≤ j ≤ wi. A location profile (or strategy
profile) is a vector x = (x1, . . . , xN ) where xi is a set of locations of agents i for
i = 1, . . . , N . Let F ⊆ Ω be a set of allowable locations where the facility can
be opened. A deterministic mechanism is a mapping f from the set of location
profiles to a location in F . Given a reported location profile x the mechanism’s
output is f(x) and the individual cost of agent i ∈ N under mechanism f and
profile x is the total distance from its locations to the facility, denoted by ci(f,x),
ci(f,x) =

∑wi

j=1 d(f(x), xij). A randomized mechanism is a function f from the
set of location profiles to Δ(F) where Δ(F) is the set of distribution over F .
The cost of agent i now is the expected total distance from its locations to the
facility over such distribution: ci(f,x) = E

[∑wi

j=1 d(f(x), xij)
]
.

The social cost of a mechanism f is the sum of individual costs of agents:
C(f,x) =

∑
i∈N ci(f,x). We say that a mechanism f is r-approximation if for

any profile x, C(f,x) ≤ r · OPT (x) where OPT (x) is the optimal social cost.
We will be concerned with strategyproof (SP) and group-strategyproof (GSP)
mechanisms, which render truthful revelation of the agents’ location a dominant
strategy for the agents.

Definition 1. (Group-Strategyproofness) Let x denote the location pro-
file of a set N of N agents, over the metric space (Ω, d). A mechanism f is
group-strategyproof if for every non-empty subset of agents I ⊆ N and for ev-
ery location profile x′ with x′

j = xj for j �∈ I, there is an agent i ∈ I with
ci(f,x′) > ci(f,x).

Similarly, a mechanism f is strategyproof if it satisfies the definition above in
which every subset of agents I in the definition is restricted to be singleton.
Given a subset U ⊂ Ω in the metric space, we define med(U) as med(U) :=
argmin{v ∈ F :

∑
u∈U d(v, u)}, break tie arbitrarily.

3 Strategy-Proof Mechanisms

Randomized mechanism. Given a location profile x = (x1, . . . , xN ) where xi =
{xi1, . . . , xiwi} for 1 ≤ i ≤ N . Let yi = med(xi). Open the facility at yi with
probability wi/W where W =

∑N
i=1 wi.

Theorem 1. The mechanism is strategy-proof and that yields 3-approximation.
Moreover, no randomized SP mechanism has approximation ratio better than
(2− ε) even if either each agent possesses only one location or agents have many
locations and F = Ω.

4 Group Strategy-Proof Mechanisms

Deterministic mechanism. Given a location profile x = (x1, . . . , xN ) where xi =
{xi1, . . . , xiwi} for 1 ≤ i ≤ N . Let yi = med(xi). Let i∗ := argmax1≤j≤N wj ,
break tie according to agents’ index. Open the facility at yi∗ .
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Theorem 2. The deterministic mechanism is GSP that yields (2N+1)-approxi-
mation. Moreover, no randomized GSP mechanism has approximation ratio bet-
ter than N1−3ε for arbitrarily small ε > 0 even if each agent possesses one loca-
tion and the facility could be opened everywhere in the metric space, i.e F = Ω.

The theorem follows Lemma 1 and Lemma 4.

Lemma 1. The mechanism is GSP that yields (2N + 1)-approximation.

In the remaining of section, we prove the tight bound for any randomized GSP
mechanism. Our lower bound works even in a restricted variant in which each
agent owns only one location and the set of allowable facility locations F (where
the facility could be opened) is the set of all vertices in a given network. Hence,
until the end of the section, we consider and prove lower bound on this restricted
variant.

Starting point. The lower bound Ω(N) for deterministic GSP mechanisms is
devised from the characterization of [4]. As dictatorship is the only deterministic
GSP mechanism for cycle graph, the lower bound is straightforwardly deduced.
However, there is no similar characterization for randomized GSP mechanisms.
In our approach, we start looking for a game which induces the same lower
bound for deterministic GSP mechanisms without using the characterization in
[4]. Consider the following instance. A network graph G(U ∪ V, E) consists of
2N vertices, where U = {u1, . . . , uN} and V = {v1, . . . , vN}. Vertices in U form
a complete graph with edge of distance 1. Each vertex vi connects to all vertices
in U \ {ui} by edge of cost 1− ε. Consider an initial location profile x0 in which
there are N agents, agent i locates on vertex ui for 1 ≤ i ≤ N . We study two
cases.

Suppose that in profile x0 the facility is opened in U , w.l.o.g in u1. Consider
location profile x1 in which agents 2, . . . , N locate at vertex v1 and agent 1
locates at u1. In this profile, the facility is not opened at v1 since otherwise,
agents 2, . . . , N have incentive to collaborate and move to vertex v1 in the initial
profile (they decrease their cost from 1 to (1 − ε)). Hence, the social cost is at
least (N − 1)(1 − ε) while the OPT is 2 − ε by opening the facility at v1.

Suppose that in profile x0 the facility is open in V , w.l.o.g in v1. The cost
of agent 1 is 2 − ε and the cost of the other is 1 − ε. Consider location profile
x2 in which agents 1, . . . , N − 1 report vertex vN and agent N reports uN .
In this profile, the facility is not opened at vN since otherwise in profile x0

agents 1, . . . , N − 1 have incentive to collaborate and report vertex vN (agent 1
decreases strictly her cost while the cost of the other in the cooperation remains
unchanged). Again, the approximation ratio is larger than (N − 1)/2 in this
profile.

Idea for lower bound of randomized mechanisms. The previous argument does
not carry for randomized mechanisms. Consider the second case of the analysis
in the previous paragraph. In profile x2, a randomized mechanism may open a
facility with probability arbitrarily close to 1 at vertex vN and with the remaining
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probability (small but positive), open a facility in other vertex, for example v2, in
order to increase the cost of one agent in the cooperation and so prevent agents
from collaborating. An idea to circumvent is the following. We modify the edge
costs between U and V to break the symmetry. Then, argue that in some profiles
with a bunch of agents in a vertex, any randomized GSP mechanism will open
the facility at that vertex with large probability but there is still gap between
this probability and 1. Using the gap, we amplify the approximation ratio.

Let 0 < ε < 1 be an arbitrarily small constant. Let n be a large integer and m
be also an integer such that (2m + 1)m = nε/2, i.e m = Θ(ε log n/ log log n). We
can choose n, m such that � = n/m is integer. We define a sequence with useful
property.

Lemma 2. Consider a sequence (βi)m
i=1 defined as follows:

βm = n−3ε/2, βi = mβi+1 + (m + 1)βm ∀1 ≤ i ≤ m − 1.

Then, sequence (βi)m
i=1 is a decreasing, β1 ≤ n−ε and βi+1+2βm = m−1

m βm+ 1
mβi

U1

U2
U3
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v1

β′
m

β′
m−1

β′
1

β′
3

β′
m−1

β′
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β′
m−2

β′
m

β′
3

β′
2

β′
m

v2

v3

vm

β′
4

β′
1

β′
1

β′
1

β′
2

Fig. 1. A part of graph G where

β′
i = 1 + βi ∀1 ≤ i ≤ m

Consider a graph G(U ∪ V, E) consisting
of (n + m) vertices U = U1 ∪ . . . ∪ Um

where Ui = {ui1, . . . , ui�}, for 1 ≤ i ≤ m,
and V = {v1, . . . , vm}. Vertices in U form
an independent set. Each vertex vj is con-
nected with all vertices in U such that the
distances from vj to any vertex in Ui are
the same. Denote this distance as d(vj , Ui)
(i.e d(vj , Ui) = d(vj , ui1) = . . . = d(vj , ui�)).
We define the distances between vertices in
U and V as follow. For all 1 ≤ i, j ≤ m,
d(vj , Ui) = 1+βt(i,j) where t(i, j) = 1+ (i− j

mod m) and (βi)m−1
i=1 is defined in Lemma 2.

As the distance from any vertex in Ui to
any one in Uj is the same, we also denote
such distance as d(Ui, Uj). Note that d(Ui, Ui)
means the distance between two different ver-
tices in Ui. By definition, the diameter of the graph is at most 2 + 2β1 and
2 + 2βm ≤ d(Ui, Uj) ≤ 2 + 2β1 ∀i, j.

Let f be a randomized GSP mechanism. Let x0 be a location profile in which
there is one agent on each vertex in U . We prove the following main lemma.

Lemma 3. There exists a location profile x in which at least (n− �− 1) agents
locate on a vertex vi ∈ V for some i, and the others’ locations are the same as in
x0 such that P[f(x) = vi] < 1−βm. Moreover, among all agents whose locations
are the same as in x0, at most three agents do not stay in Ui (in other words,
almost such agents have locations in Ui).

Proof. In profile x0, let pi be the probability that the facility is opened at agent
i’s location for 1 ≤ i ≤ n. Let q be the total probability that the facility is
opened in U . We consider two cases where q ≥ 3β1 and q < 3β1.
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Case 1: q ≥ 3β1. Without loss of generality assume that p1 ≤ . . . ≤ pn. So
pk ≤ q/(n− k + 1). In profile x0, the expected cost of agent k is at least (1− q) ·
(1 + βm) + q · (1 − 1

n−k+1 ) · (2 + 2βm). Consider the profile x1 in which agents
1, . . . , n − 3 locate at vertex vi for some arbitrary i, and the others’ locations
are the same as in profile x0. Let zk be the location of agent k in profile x0.
By group-strategyproofness, the mechanism f must guarantee the existence of
k ∈ [1, n − 3] such that E[d(f(x1), zk)] > E[d(f(x0), zk)] since otherwise agents
1, 2, . . . , n − 3 may collaborate, report together their locations as vi and all get
better off. Denote α1 := P[f(x1) = vi]. We have:

E[d(f(x1), zk)] ≤ α1 · (1 + β1) + (1 − α1) · (2 + 2β1) ∀ 1 ≤ k ≤ n − 3

Hence, if there exists 1 ≤ k ≤ n − 3 such that E[d(f(x1), zk)] > E[d(f(x0), zk)]
then:

α1 ·(1 + β1)+(1−α1)·(2 + 2β1) > (1−q)·(1+βm)+q ·(1− 1
n − k + 1

)·(2+2βm)

As k ≤ n − 3 and q ≥ 3β1, we deduce α1 < 1 − q− 2q
(n−k+1)−β1+βm

1+β1
< 1 − βm.

Thus, x1 is a profile that satisfies conditions of the lemma.

Case 2: q < 3β1. Without loss of generality assume that in profile x0, the
probability that the facility is opened at v1 is largest among all vertices in V . So
P[f(x0) = v1] ≥ (1 − q)/m. Let a1, . . . , an−� be agents in U1 ∪ . . . ∪ Um−1 such
that pa1 ≤ pa2 ≤ . . . ≤ pan−�

. Remark that pak
≤ q/(n − � − k + 1). First, we

bound the cost of agent ak in profile x0. Let zk be the location of agent ak and
let i(k) be an index such that zk ∈ Ui(k). The cost of agent ak is:

P[f(x0) = v1] · d(Ui(k), v1) +
m∑

j=2

P[f(x0) = vj ] · d(Ui(k), vj) +
m∑

j=1

P[f(x0) ∈ Uj ]·

· d(Ui(k), Uj) >

(
1 +

m − 1
m

βm +
1
m

βi(k)

)
(1 − q) + 2q − 2q

n − � − k + 1

Consider location profile x2 in which agents a1, . . . , an−�−1 locate at vm and the
other agents’ locations are the same as in profile x0. Denote α2 := P[f(x2) =
vm]. By group-strategyproofness, there exists k such that E[d(f(x2), zk)] >
E[d(f(x0), zk)] since otherwise in profile x0, agents a1, . . . , an−�−1 have incentive
to move together to vm and all get better off. Note that distance d(Ui(k), vm) =
1 + βi(k)+1. Then in profile x2, we have E[d(f(x2), zk)] < α2(1 + βi(k)+1) + (1−
α2)(2+2β1). As E[d(f(x2), zk)] > E[d(f(x0), zk)] holds for some k ∈ [1, n−�−1],
we have:

α2

(
1 + βi(k)+1

)
+ (1 − α2) (2 + 2β1) >

(
1 +

m − 1
m

βm +
1
m

βi(k)

)
(1 − q) + q

Therefore, α2 < 1 − (m−1
m βm+ 1

m βi(k))(1−q)−βi(k)+1

1+2β1−βi(k)+1
< 1 − βm, where the last in-

equality is due Lemma 2, the case assumption q < 3β1 and βi(k) ·β1 is dominated
by βm for any i(k). Thus, profile x2 satisfies conditions of the lemma. �
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m) where in the picture β′
i = 1 + β1

i ∀1 ≤ i ≤ m

Lemma 4. There exits an instance with N agents in which any randomized
GSP has approximation ratio at least N1−3ε for ε > 0 arbitrarily small.

Proof. First, we construct recursively a family of graphs Hj(γ1, . . . , γm) for
j ≥ 0 where vertices are (U j ∪ V j) and γ1, . . . , γm are variables. In graph
Hj(γ1, . . . , γm), the lengths of edges are taken from the set {1+γ1, . . . , 1+γm}.
Denote nj be the number of vertices in graph Hj. Let n, m be large con-
stant that are defined in the construction of graph G previously. Define graph
H0(γ1, . . . , γm) is the same as graph G described previously where U0 = U
and V 0 = V except that now the lengths of edges are taken from the set
1 + γ1, . . . , 1 + γm. For example, if we assign variable γi = βi for 1 ≤ i ≤ m
(where βi is defined in Lemma 2) then H0(γ1, . . . , γm) = H0(β1, . . . , βm) = G.

Intuitively, graph Hj contains m copies of graphs Hj−1 and each of such
copies plays similar role as vertices Ui∪vi in the description of G. Formally, graph
Hj(γ1, . . . , γm) consists of nj = mnj−1 vertices that we can partition the vertices
as U j = U j

1 ∪ . . .∪U j
m and V j = V j

1 ∪ . . .∪V j
m. For each 1 ≤ i ≤ m, the restricted

graph of Hj(γ1, . . . , γm) on U j
i ∪ V j

i is the same graph as Hj−1(γ1, . . . , γm).
Moreover, each vertex in V j

i connects with a vertex in U j
i′ by an edge of length

1 + γt(i′,i) (where t(i′, i) = 1 + (i′ − i mod m)) for 1 ≤ i, i′ ≤ m. Note that
in graph Hj(γ1, . . . , γm), all edges have length in {1 + γ1, . . . , 1 + γm} and the
diameter of the graph is at most 2+2 max{γ1, . . . , γm}. Additionally, an invariant
in any graphs is |U j | > |V j |.

Let t be a large constant to be defined later. Let βt
1, . . . , β

t
m be a sequence

defined in Lemma 2 in which parameter n in the lemma is replaced by nt/2.
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Consider graph Ht(βt
1, . . . , β

t
m) (see Figure 2 for an illustration) and initial lo-

cation profile x in which there is one agent on each vertex in U t. Let N be
the number of agents (N = |U t|). We have N > nt/2 as |U t| > |V t|. Therefore,
βt

m > N−2ε. By Lemma 3, there exists a profile x1 in which at least (N−N/m−1)
agents locate on a vertex v ∈ V t

i1
for some i1 and the others’ locations are the

same as in x0 such that P[f(x1) = v] < 1−βt
m < 1−N−2ε. By the symmetry of

the graph Ht, the statement is valid for any vertex v ∈ V t
i1

. We denote A1 the
set of agents whose locations in x and x1 are different.

Now consider graph Ht and profile x restricted on vertices U t
i1

∪ V t
i1

. By
construction, this is a graph Ht−1 and we denote x′ the profile restricted on
this graph. Apply again Lemma 3 on the graph Ht−1 and profile x′, there exists
there exists a profile x2 in which at least (N/m−N/m2 − 1) agents locate on a
vertex v ∈ V t−1

i2
for some i2 and the others’ locations are the same as in x′ such

that P[f(x2) = v] < 1 − βt
m < 1 − N−2ε. By the symmetry of the graph Ht−1,

the statement is valid for any vertex v ∈ V t−1
i2

. Remark that V t
i1

⊃ V t−1
i2

. We
denote A2 the set of agents whose locations in x′ and x2 are different.

We apply the same argument by considering graph Ht and profile x restricted
on vertices U t−1

i2
∪ V t−1

i2
and so on. In the last round, we end up with a profile

in which at least (N/mt−1 − N/mt − 1) agents locate on a vertex v ∈ V 0
it+1

.
Let v∗ ∈ V t

i1 ∩ V t−1
i2

∩ . . . ∩ V 0
it+1

. Consider graph Ht and a location profile
x∗ in which agents in (A1 ∪ . . . ∪ At) locate at v∗ and the others have the same
locations as in x. We have P[f(x∗) = v∗] < 1 − βt

m < 1 − N−2ε since otherwise,
in x, all agents in (A1 ∪ . . . ∪ At) will get better off by reporting together their
location as v∗. Hence, the social cost is at least N−2ε(N − N/mt+1 − t). The
optimal solution opens facility at v∗ with cost at most 2N/mt + 3t where 3t
comes from the fact that at each round r for 1 ≤ r ≤ t, in the considered profile
of round r, there are at most three agents neither in Ar nor located in V t−r−1

it−r

(Lemma 3). Choose t large enough, say t = (1−ε) logm N−1, the approximation
ratio is at least N1−3ε. �
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Abstract. The problem of influence maximization deals with choosing

the optimal set of nodes in a social network so as to maximize the re-

sulting spread of a technology (opinion, product-ownership, etc.), given

a model of diffusion of influence in a network. A natural extension is a

competitive setting, in which the goal is to maximize the spread of our

technology in the presence of one or more competitors.

We suggest several natural extensions to the well-studied linear-

threshold model, showing that the original greedy approach cannot be

used.

Furthermore, we show that for a broad family of competitive influence

models, it is NP-hard to achieve an approximation that is better than a

square root of the optimal solution; the same proof can also be applied

to give a negative result for a conjecture in [2] about a general cascade

model for competitive diffusion.

Finally, we suggest a natural model that is amenable to the greedy

approach.

1 Introduction

The problem of influence maximization has long been the focus of study in
social science (e.g. [5]). It has been formally defined and addressed in [6,3] as
follows: given a social-network as a directed graph, and a prescribed number
k, pick the k most “influential” nodes that will function as early adopters of a
particular influence, so as to maximize the final number number of infected, or
activated nodes (the two terms are used in this paper interchangeably), subject
to a specified model of influence diffusion.

This problem begs the natural extension of a competitive version: given the
competitor’s choice of early adopters of technology B, maximize the spread of
technology A by choosing a set of early adopters such that the expected spread
of technology A will be maximal. Indeed, this problem has been the subject of
interest in subsequent papers ([2,7,1]) which present competitive extensions for
the independent cascade model presented in [6].

In this paper we suggest several natural extensions to a well-studied model
that was also given in [6] for the diffusion of social influence in a social network
— the linear threshold model. Formally, an instance of the problem would be
composed of a directed, edge-weighted graph G = (V, E), a set of technology

A. Saberi (Ed.): WINE 2010, LNCS 6484, pp. 539–550, 2010.
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B’s initial adopters IB ⊆ V , and an integer k. The computational problem is
how to choose a set IA ⊆ V − IB of k nodes such that the expected number
of A-active nodes at the end of the process, σ(IA, IB), is maximized, given the
specific model for competitive diffusion of technologies (when IB is known from
context we omit it and simply write σ(IA)). It is important to note that all of
the presented models can be motivated by natural processes. Our models reduce
to the original linear threshold model formalized in [6] whenever IB is the empty
set. For simplicity of notation, the models presented are stated in terms of only
two competing technologies. However, all of the models and results can be easily
extended for when there are several competing technologies.

A well-known greedy (1− e−1)-approximation given in [4] is used extensively
for problems of maximizing set-functions, and in particular has been applied to
both the original problem and competitive extensions ([2,1]). The approximation
algorithm requires that the set function σ(·) at hand, which assigns a real-value
to subsets of a ground set U , uphold two basic properties.

– Monotonicity: the value of the function increases as more items are added
to the set: σ(S) ≤ σ(T ) for any two sets S ⊆ T ;

– Submodularity: the impact of adding an element to a set decreases as the
set is extended (diminishing returns): σ(S∪{x})−σ(S) ≥ σ(T ∪{x})−σ(T ),
for any S ⊆ T ⊆ U and x ∈ U − T ;

Except for the last model, described in section 6 — the OR model, all of the
models do not satisfy submodularity. In fact, one of them is not even monotone.

Outline. The remainder of this document is organized as follows. Sections 2
and 3 describe two competitive threshold models. Section 4 shows that even
when applying a final step that A-activates more nodes, the process remains
non-submodular. Section 5 shows that the last two models are in general hard to
approximate. On a more positive note, in section 6 we suggest a fairly natural and
simple model for which the approximation algorithm given in [4] is applicable.
Finally, section 7 summarizes our main results along with a few open problems
and possible directions for future research.

2 The Weight-Proportional Competitive Linear
Threshold Model

As in the non-competitive case, the process unfolds in discrete steps, during
which new nodes become “activated” for a single technology1 The infection of
a node by a technology represents an individual in the social network that has
assumed the influence of that technology. The process is progressive: a node that
is infected by a technology remains infected by it. As in the non-competitive case,
every edge (u, v) is assigned a weight wu,v ∈ [0, 1] which roughly characterizes

1 The term “technology” stands for any concept or influence that spreads in the social-

network (car ownership, club membership, voting preference, etc.).
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the weight of influence that u has over v (i.e the impact that u’s infection will
have over v’s likelihood to be infected with the same technology as u). Also, the
total weight of incoming edges to every node is bounded: for every v ∈ V we have:∑

u wu,v ∈ [0, 1]. Each node u initially chooses a threshold θu which represents
the minimum fraction of active neighbours necessary for u’s activation. As in [6],
in order to make up for our lack of knowledge about each node we assume that
θu ∈R [0, 1] (uniformly at random), or θu ∈R [a, a′] for 0 ≤ a ≤ a′ ≤ 1 to reflect
partial knowledge about a node.

In order to describe the process itself, we will use the following notation:

Definition 1. For a given step t in the process, let Φt denote the set of active
nodes at the beginning of step t. Furthermore, let Φt

A and Φt
B be the sets of

A-active and B-active nodes in step t, respectively.

Given the sets IA, IB of early technology adopters, the process unfolds as follows.
First, each node chooses its threshold value at step 0. Then, in each step t, every
inactive node v checks the set of edges incoming from its active neighbours. If
their collective weight exceeds the threshold values by having

∑
u∈Φt wu,v ≥ θv,

the node becomes active. In that case, the node will adopt technology A with
probability equal to the ratio between the collective weight of edges outgoing
from A-active neighbours and the total collective weight of edges outgoing from
all active neighbours; that is,

Pr[v ∈ Φt
A|v ∈ Φt\Φt−1] =

∑
u∈Φt

A
wu,v∑

u∈Φt wu,v
(1)

Otherwise, it will adopt technology B. Since this problem can be reduced to the
single-technology linear threshold model whenever IB is the empty set, we notice
that this problem is NP-hard — as proved in [6].

Intuitively, it appears that by adding a new node to the set of initial A-
adopters, the spread of technology A in the social network can only increase (or
remain unchanged). However, this is in fact not always the case, even for some
binary rooted trees. We will formalize this somewhat counter-intuitive behaviour.

Theorem 1. There exists an instance of the weight-proportional competitive
linear threshold problem for which monotonicity does not hold.

Also, it can be shown that submodularity fails to hold in some cases, as the
following theorem shows:

Theorem 2. There exists a graph G, for which the expected influence of tech-
nology A is not submodular.

The proof of the above two theorems is given in appendix A.

3 The Separated-Threshold Model for Competing
Technologies

In the previous model, the node activation step regarded active nodes as equal,
so that a given node is activated by its active neighbours regardless of their
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technologies. That is, the sum of generally active nodes was used for activating
a node. However, one could model the following notion of a spread process. Each
individual has separate criteria for becoming active for each technology. A node
can be activated by either its A-active or B-active neighbours whenever the sums
of their respective edge-weights exceed the required thresholds specified for their
technologies.

Formally, consider the following model. For a given network G = (V, E), every
edge (u, v) ∈ E is assigned a real-valued weight corresponding to each technology
wA

u,v, wB
u,v ∈ [0, 1] such that

∑
u wA

u,v,
∑

u wB
u,v ∈ [0, 1], which reflects node u’s

impact on v. Two disjoint sets I0
A, I0

B ⊆ V denote the sets of initially A-active
and B-active nodes, respectively. At step 0, each node v ∈ V picks two threshold
values θA

v , θB
v ∈R [0, 1]. For step t, denote It−1

A , It−1
B as the sets of A-active and

B-active nodes. During every step t, an inactive node v will become A-active if∑
u∈It−1

A
wA

u,v ≥ θA
v , and will become B-active if

∑
u∈It−1

B
wB

u,v ≥ θB
v . If for the

node v both thresholds are exceeded during the same step t, then a technology
would be picked uniformly at random (we can either use a simple coin-flip or
employ a more involved tie-breaking function).

In contrast to the previous model, this model is monotone. Its key property,
which distinguishes it from the previous model, is that the probability that tech-
nology B will propagate cannot increase as a result of A-activating additional
nodes. This stems from the definition of the model, in which each set of technol-
ogy specific neighbours relate to a separate threshold value.

Let us use the following notation:

Definition 2. Given the sets IA and IB, and a node x /∈ IB , define αt
v, α̂t

v as
the probabilities that a given node v will adopt technology A by step t for the
initial sets of early adopters (IA, IB) and (IA ∪ {x}, IB), respectively. Similarly,
define similar probabilities βt

v, β̂
t
v for technology B.

Theorem 3. For a given instance of the problem and a choice of early adopters:
IA, IB and node x, α̂t

v ≥ αt
v for any node v and for any step t ≥ 0.

The proof of theorem 3 is fairly straightforward, and is given in appendix B for
completeness. The process is not submodular in general.

Theorem 4. There exist instances of the competitive influence problem where
the separated-threshold competitive model is not submodular.

A corresponding counter-example for this theorem is fairly easy to construct. It
appears in the full version of this paper located on the authors’ personal websites.

4 Competitive Threshold Model with Forcing

We now introduce a modification which changes the concept of influence in a
network: forcing. Specifically, at the end of the previous model, each inactive
node v will choose a technology randomly (say, it will choose technology A with
probability δ). This step is natural for cases where individuals have to eventually
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decide which influence to adopt (e.g. voting when abstentions are not allowed).
For convenience we will assume that the “forcing” step occurs at step n (the
spread can take up to n − 1 steps), whether or not the spread took n − 1 steps.
Clearly this does not have any effect on the outcome of the process. We show that
regardless of the forcing step, this variant does not help us achieve submodularity.
However, the process remains monotone as the following theorem can be proven
by extending lemma 3 (in appendix B) with an additional case analysis for the
forcing step.

Theorem 5. For a given instance of the competitive influence with forcing prob-
lem, a choice of early adopters IA, IB and node x, α̂t

v ≥ αt
v, β̂t

v ≤ βt
v for any node

v and for any t.

The following theorem shows that not only is the given model non-submodular,
but also regardless of the tie-breaking rule and the forcing rule (if any is used),
the model remains non-submodular.

Theorem 6. For any tie-breaking rule, and any forcing rule, the separated-
threshold competitive model is non-submodular.

A corresponding counter-example is given in appendix C.

5 Hardness of Approximation

We show that in any model with separate edge-weights and separate threshold
values for each technology the problem is hard to approximate.

Theorem 7. It is NP-hard to give an approximation with a ratio better than
Ω(N

1
2−ε), for all ε > 0, for the Separated-Threshold Competitive Influence prob-

lem, where N is the number of nodes in the graph.

The proof is supplied in appendix D. It is important to note the proof of theorem
can be applied to similar competitive cascade models as well. Namely, in [2] it
was conjectured that when allowing 2 sets of edge weights for each edge — one
for each technology, the process will remain monotone and submodular. The
above hardness of approximation result can be modified in order to apply for
the separate edge-weights case of the Wave Propagation model suggested by
Carnes et al., thereby giving a negative answer to their conjecture.

Theorem 8. It is NP-hard to give an approximation with a ratio better than
Ω(N

1
2−ε), for all ε > 0, for the Wave Propagation Competitive Influence problem

given by Carnes when edges are allowed to have technology-specific probabilities.

6 The OR Model

We now introduce a different way of extending the original threshold model, in
which each technology diffuses unhindered by the competing technology. Here,
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the tie-breaking stage will take place after all technologies finish spreading. This
model can be considered natural for cases in which individuals have the liberty
of being influenced separately and independently by different technologies, but
have to choose a single technology eventually.

We will define the OR model as follows. As before, an instance of the model
is a graph G = (V, E), a set of edge weights for each technology: WA =
{wA

u,v}(u,v)∈E , WB = {wB
u,v}(u,v)∈E (with the same constraints as before), and

initial adopters: IA, IB ⊆ V . Additionally, for each node v ∈ V two “deci-
sion” functions fA

v : 2V × 2V → [0, 1], fB
v : 2V × 2V → [0, 1] are assigned. Let

each technology propagate separately throughout the graph w.r.t the original
non-competitive linear threshold propagation process, and let RA, RB ⊆ V be
the sets of nodes reached by the technologies (independently). As a final step,
a node v /∈ IA ∪ IB will assume technology A with probability fA

v (RA, RB),
technology B with probability fB

v (RA, RB), and no technology with probability
1 − fA

v (RA, RB) − fB
v (RA, RB), respectively (fA

v (RA, RB) + fB
v (RA, RB) ≤ 1).

We only require the functions fA
v (·, ·), for every v ∈ V , to be monotone and

submodular with respect to the set of initial A nodes.
The following theorem shows that one can efficiently find an approximation for

the set that maximizes the spread of one’s own technology, given a competitor[s]
choice of initial adopters:

Theorem 9. Given technology B’s early adopters IB , one can find an (1 −
e−1 − ε)-approximation for the competitive OR process in a polynomial number
of steps, for any ε > 0.

The proof follows immediately from the following two lemmas which prove the
properties required in [4]. We will show that this process is monotone and sub-
modular whenever the function fv(·, ·) is monotone and submodular w.r.t. tech-
nology A, for all v ∈ V .

Lemma 1. The OR model is monotone with respect to the number of nodes
influenced by technology A.

Proof. Let rA(IA), rB(IB) denote an outcome for a run of the independent prop-
agation processes of the two technologies. Monotonicity w.r.t technology A is
satisified if for any two sets S ⊆ T ⊆ V − IB:

E[fA
v (rA(S), rB(IB))] ≤ E[fA

v (rA(T ), rB(IB))] (2)

Since until the decision step the two technologies’ propagations are independent,
we can fix the outcome of technology B, and show that the expected propagation
of technology A is monotone. This is immediate since first, the propagation of
technology A until the decision step is clearly monotone (follows from the non-
competitive threshold model in [6]). Second, the decision functions fA

v (·, ·) and
fB

v (·, ·) are monotone with respect to technologies A and B, which along with
the previous argument yields monotonicity.



Threshold Models for Competitive Influence in Social Networks 545

Lemma 2. The OR model is submodular with respect to the number of nodes
influenced by technology A.

Proof. In order to prove this, we will use a technique given in [6] that suggests
an alternative and equivalent model for the propagation of a single technology.
For each node v ∈ V , instead of choosing a threshold in [0, 1], choose an in-
coming edge (u, v) with respective probability wu,v, and no incoming edge with
probability

∑
u wu,v. A node will become infected if and only if there is a path

from the initially infected nodes that consists strictly of such chosen edges.
Fix an instantiation RB of the outcome of the propagation of technology B

(independent of the propagation of technology A) and a set of chosen edges for
the propagation process of technology A. For a set IA of initial A nodes, as before,
let RA(IA) denote the set of nodes reachable from IA in the sub-graph induced
by the set of chosen edges. In order to show that the process is submodular, we
need to show that for all S ⊆ T ⊆ V − IB:

fA
v (RA(S∪{x}), RB)−fA

v (RA(S), RB) ≥ fA
v (RA(T∪{x}), RB)−fA

v (RA(T ), RB),
(3)

for all v ∈ V . We will simply use the monotonicity property of the indepen-
dent propagation process and the submodularity of fA

v (·, ·). Let RA(S ∪ {x}) =
RA(S)∪Δ1, and similarly, RA(T ∪ {x}) = RA(T )∪Δ2. From the monotonicity
and submodularity we get that RA(S) ⊆ RA(T ) and Δ2 ⊆ Δ1. Therefore:

fA
v (RA(S) ∪ Δ1, RB) − fA

v (RA(S), RB)
≥ fA

v (RA(T ) ∪ Δ1, RB) − fA
v (RA(T ), RB)

≥ fA
v (RA(T ) ∪ Δ2, RB) − fA

v (RA(T ), RB) (4)

The first inequality and second inequality follow from the submodularity and
the monotonicity of fA

v (·, ·), respectively. Taking all possible instantiations gives
submodularity since a positive linear combination of submodular functions is
submodular.

Mossel et al. [8] show that if we generalize the propagation process by replacing
the linear sum (used to decide whether an uninfected node exceeds its threshold)
with an arbitrary monotone submodular function, then the resulting process
(under any monotone submodular objective function) is again monotone and
submodular. This result generalizes to the corresponding competitive process,
which we call the generalized OR process.

Theorem 10. Given technology B’s early adopters IB , one can find an (1 −
e−1−ε)-approximation for the generalized competitive OR process in a polynomial
number of steps, for any ε > 0.

Proof. Use the objective function ϕ(RA) = ERB

∑
v fA

v (RA, RB) in the main
result of [8]. The function ϕ counts the expected number of A-adopters at the
end of the process. It is monotone and submodular because the fA

v are.
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6.1 Repeating OR Processes

Finally, we give a natural extension of the OR model. There are cases in which
the independent propagation process will repeat several times (e.g. every day,
for � days). The process can be thought of as being run iteratively, where during
each iteration i the previous iteration’s turnouts RA and RB are used as the
initial adopters for each technology. At the end of the �’th iteration, and only
then, the decision step is invoked by using the functions fA

v (·, ·) and fB
v (·, ·), for

all v ∈ V . One may notice that this formulation simply defines a composition of
� OR processes (with a single execution of the decision step at the end).

We can give a natural motivation for such a process: during the course of an
election race, voters will spread the word each day. However, once in while, an
unaffected voter may change her mind (her threshold value) and thus the process
of “rumor spread” and social-based recommendation will run again, infecting
additional voters as a result.

With this in mind, the following general theorem follows from a simple gen-
eralization of the proof in [8].

Theorem 11. A process based on the repetitive execution of the generalized OR
process with a single decision step at the end is monotone and submodular.

Note that theorem 11 holds even if the edge weights are modified between each
iteration.

7 Conclusions

We have presented a number of fairly natural and general approaches for mod-
elling competitive diffusion of influence in a social network, extending the known
threshold model for the spread of a single technology. However, most of our sug-
gested approaches have been shown to be unfit for the Nemhauser et al. [4]
approximation technique. For some models, we can show NP-hardness of ap-
proximation, while for others we only show that they are not submodular (and
not even monotone in one case), leaving open the question to whether an efficient
approximation algorithm can be found.

We emphasize that all of the suggested models in this paper have reasonable,
natural motivations, which implies that there is no single “true” model. Also,
as suggested in [2], we believe that these models can be used in a more game
theoretic setting, where players are the competing companies, who place bids on
strategic nodes in hope for maximizing their outcome. We suggest the following
directions for future research:

– Can the hardness-of-approximation result be extended to other models?
– Are there any other natural competitive models which are approximable in

polynomial time?
– Study some natural game-theoretic setting for the competitive models.
– Suggest models for cases where nodes may adopt more than one technology.
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A Counter Examples for the Weight-Proportional
Competitive Linear Threshold Model

In section 2 we gave two theorems concerning the monotonicity and submodu-
larity of the model described. These theorems will be proven in this appendix.
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Fig. 1. Counter-examples for (a) monotonicity (b) submodularity
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Theorem 12. There exists an instance of the weight-proportional competitive
linear threshold problem for which monotonicity does not hold.

Proof. Consider the tree in figure 1(a). One can verify that α4
r = 11

40 , whereas
α̂4

r = 103
400 , which violates monotonicity.

Theorem 13. There exists a graph G, for which the expected influence of tech-
nology A is not submodular.

Proof. Consider the tree depicted in figure 1(b). It can be easily shown that for
S = {w}, T = {w, y} (the set of early adopters of technology B is denoted in
the diagram) submodularity does not hold as α4

r(S) = 3
10 , α̂4

r(S) = 17
60 , α4

r(T ) =
7
10 , α̂4

r(T ) = 17
50 .

B Proof of Monotonicity of Separated Threshold Model

Theorem 14. For a given instance of the problem and a choice of early adopters:
IA, IB and node x, α̂t

v ≥ αt
v for any node v and for any step t ≥ 0.

In order to prove the theorem, we will fix the set IB of early technology B
adopters and consider a set of early technology A adopters IA and a node x not
in IB.

We prove the monotonicity by fixing an arbitrary instantiation of the thresh-
olds, and by choosing for every node technology A or B with equal probability;
these choices will be revealed in cases where the two thresholds chosen for a par-
ticular node are exceeded simultaneously. Notice that this defines a deterministic
instantiation of the process.

Denote by π1, π2 the deterministic processes using the same instantiations
of the threshold values and coin-flips, and using (IA, IB) and (IA ∪ {x}, IB),
respectively. Furthermore, let N t

A(π), N t
B(π) denote the set of A and B active

nodes at step t in process π, respectively. The following lemma implies theorem 3.

Lemma 3. The following holds for each node v ∈ V and every step t ≥ 0:

1. If v is not B-active at step t in π1, then it isn’t B-active at any step t′ ≤ t
in π2.

2. If v is A-active at step t of π1, then v is activated in some step t′ ≤ t in π2.

Proof. The straightforward proof by induction is omitted for lack of space. It
can be found in the full version.

C Counter-Examples for the Competitive Threshold
Model with Forcing

Theorem 15. For any tie-breaking rule, and any forcing rule, the separated-
threshold competitive model is non-submodular.
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Fig. 2. A Counter-example for submodularity when applying a forcing step

Proof. We will give a counter-example in which there are no ties, and the node
in question does not remain inactive. Consider the rooted tree in figure 2. Let
S = {u}, T = {u, y}. The initially B-activated nodes are given in the diagram.

One can check that there are no ties, and that forcing never applies to the
root. Also, when using S, α6

r = α̂6
r = 0. On the other hand, when using T , we

get α6
r(T ) = 0 and α̂6

r(T ) = 1, contradicting submodularity.

D Proof of the Hardness of Approximation Result

Theorem 16. It is NP-hard to approximate the Seperated-Threshold Competi-
tive Influence problem with a ratio better than Ω(N

1
2−ε), for all ε > 0, where N

is the number of nodes in the graph.

Proof. We are motivated by the counter-example in theorem 6, constructing a
reduction from Vertex Cover.

The reduction. We are given an instance of Vertex Cover, a graph G = (V, E) and
a number k. Let α, β be constants defined later. Our new graph contains a special
vertex A0, a vertex Av for each node v ∈ V , nα vertices Be,t

0 , Xe,t
0 , Xe,t

1 , Me,t for
each edge e ∈ E, and an extra nα vertices Bt

1, P
t
0 , P t

1 ; here 1 ≤ t ≤ nα. The rest
of the graph appears in figure 3, where

– Dotted edges have A-weight 1 and B-weight 0.
– Dashed edges have A-weight 0 and B-weight 1.
– Plain edges have both weights set to 1.
– Edges with a length annotation are paths of that length of the given type.

Finally, IB is composed of the set of nodes Be,t
0 and Bt

1 for every e ∈ E and t.
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Fig. 3. The reduction. Diagram repeated for each t (except for the Ax).

Claim. If there exists a k-cover for the original graph G there exists a set IA ⊆
V −IB of size k+1 that yields σ(IA) ≥ nα+β . Otherwise, for every IA ⊆ V −IB,
σ(IA) = O(max{nα+3, nβ+1}).

Proof. Assume first that there is a k-cover S for G. Let IA = {Av|v ∈ S}∪{A0}.
Since S is a vertex-cover, the spread of technology B emanating from the vertices
Bt

0 is completely blocked. Thus, every node on the path from A0 to P t
0 , for all

t, will be A-infected. Hence every node on the path from P t
0 to P t

1 will be A-
infected. Thus, we have at least nα+β A-active nodes, as required.

For the second part of the claim, for any set IA of k + 1 initial A-adopters,
either A0 /∈ IA or IA ∩{Av}v∈V is not a vertex cover. Therefore the best choices
for vertices in IA are: choosing A0, which contributes at most (|E|+5)nα nodes;
and choosing P t

0 , which contributes nβ nodes. The contribution of vertices of the
first type is at most O(s · nα+2) = O(nα+3), and the vertices of the second type
contribute at most O(s · nβ) = O(nβ+1).

Set β = α + 2. The total number of vertices in the reduced graph is N =
O(nα+β + |E| ·nα) = O(n2α+2). Thus we get that if there is a k-cover for G then
the optimal IA yields σ(IA) = Ω(N), whereas any IA that does not correspond
to a k-cover yields σ(IA) = O(N (α+3)/(2α+2)). Hence, any algorithm that gives
an approximation ratio of o(N1−(α+3)/(2α+2)) can solve the NP-complete vertex
cover problem. Therefore the approximation ratio of any poly-time algorithm is
Ω(N1/2−ε), for all ε > 0, unless P = NP .
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Abstract. We propose a new proxy bidding mechanism to allocate

courses to students given students’ reported preferences. Our mechanism

is motivated by a specific strategic downgrading manipulation observed

in the course allocation mechanism currently used at Harvard Business

School (HBS). The proxy bidding mechanism simplifes students’ deci-

sions by directly incorporating downgrading into the mechanism.

Our proxy bidding mechanism is Pareto efficient with respect to lexi-

cographic preferences and can be extended to allow for a more expressive

preference language which allows complementarity, substitutability, and

indifference. Simulations suggest that the proxy bidding mechanism is

robust to the manipulations observed in the HBS mechanism and may

yield welfare improvements.

1 Introduction

Course allocation is a combinatorial assignment problem that assigns students
to courses, given students’ preferences over course schedules. Unfortunately, any
strategyproof and efficient mechanism for this problem must be dictatorial ([6]),
with poor outcomes ([3]).1

One course allocation system is the Bidding Points mechanism, in which stu-
dents “bid” for courses using an artificial currency ([4] [7]). Although these mech-
anisms are commonly used in practice, they require strategic play by students
and have meager welfare guarantees.

An alternative course allocation mechanism is the draft, in which students
take turns selecting individual courses from those with available seats, follow-
ing in a “draft order.” Such a mechanism is used by Harvard Business School
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(HBS). The draft mechanism offers strong welfare guarantees under truthful
play, but is easily manipulable: Budish and Cantillon [3] demonstrated that stu-
dents successfully and substantially manipulate the HBS draft, to the benefit of
sophisticated students at the expense of social welfare.2

We reinterpret the HBS draft as a game amongst näıve proxy agents who
act on behalf of students. We develop a proxy bidding mechanism for course
assignment in which students’ proxies pick strategically, unlike in the draft,
obviating the need for certain types of manipulations. Our proxies’ behaviors
are inspired by the desire to have a mechanism play optimal draft strategies on
students’ behalves.

We prove that the proxy bidding mechanism is Pareto efficient when students
have lexicographic preferences over schedules. We present simulations that show
that the proxy bidding mechanism performs favorably relative to the HBS draft
in the presence of the manipulations identified by Budish and Cantillon [3].
Finally, we extend our mechanism to allow a bidding language in which com-
plementarity, substitutability and indifference can be expressed. For brevity,
most proofs are deferred to the Appendix, which is available on the authors’
websites.

2 The Proxy Bidding Mechanism

Our proxy bidding mechanism provides a course allocation for a problem con-
sisting of a set of courses C, a vector of course capacities (qc)c∈C, a set of players
N , as well as a set of strict ordinal preferences over courses, (≺i)i∈N , specified
by the players.

The mechanism takes as input a set of bidding priorities Bi for each player i;
these will typically be allocated randomly for reasons of fairness. The bid sets
{Bi}i∈N form a partition of a finite global bid set B ⊂ R. The maximum number
of courses a player can be allocated is |Bi|. In principle the choice of bid sets
may be arbitrary, but for our purposes we only consider bids in correspondence
with turns of the HBS draft, choosing

Bi = {−i,−(2N − i),−(2N + i + 1), . . .}.

The mechanism maintains a set of multi-unit auctions (Ac)c∈C (interpreted as
sets of winning bids, for convenience) for course seats.

Note that agents’ bids are indivisible. We think of the set B as representing a
sequence of course selection opportunities; the set Bi is the set of opportunities in
B at which i may select a course. In this notation the HBS draft is the mechanism
in which students choose courses in the sequence B, with each student i selecting
a course at each opportunity b ∈ Bi.

2 In a separate work, Budish [2] introduces the effective but complex Approximate
Competitive Equilibrium from Equal Incomes mechanism which ameliorates many

of the issues discussed above.
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Our proxy bidding mechanism proceeds in rounds, with players’ bids being re-
allocated in response to the current profile of course “prices” (p(Ac))c∈C , where3

p(Ac) :=

{
0 |Ac| < qc,

min Ac |Ac| = qc.

The formal proxy bidding mechanism specification is given in Algorithm 1. We
take this opportunity to explain where our mechanism diverges from the draft
mechanism. The inner loop of our mechanism (lines 9- 29) allows players’ proxies
to place the lowest sufficient bid into an auction to avoid overpaying for a course.
In the language of the draft mechanism, overpaying for a course means selecting
that course too early. If we were to replace this inner loop with a simpler pro-
cedure that places the maximum available bid into each successful course, then
we would recover something closer to the draft mechanism.

We now give an example of the proxy bidding mechanism on simple input.
Consider the following input: N = {1, 2, 3}, C = {c1, c2, c3}, qc1 = qc2 = qc3 = 2,

c3 ≺1 c2 ≺1 c1, B1 = {6, 1},
c3 ≺2 c2 ≺2 c1, B2 = {5, 2},
c1 ≺3 c3 ≺3 c2, B3 = {4, 3}.

The mechanism will run as illustrated below.4

Round i State
1 1 Ac1 = {1}, Ac2 = {1}, Ac3 = ∅
2 2 Ac1 = {2, 1}, Ac2 = {2, 1}, Ac3 = ∅
3 3 Ac1 = {2, 1}, Ac2 = {3, 2}, Ac3 = {3}
4 1 Ac1 = {2, 1}, Ac2 = {6, 3}, Ac3 = {3}
5 2 Ac1 = {2, 1}, Ac2 = {6, 5}, Ac3 = {3}
6 3 Ac1 = {3, 2}, Ac2 = {6, 5}, Ac3 = {3}
7 1 Ac1 = {6, 3}, Ac2 = {5, 1}, Ac3 = {3}
8 2 Ac1 = {6, 5}, Ac2 = {2, 1}, Ac3 = {3}
9 3 Ac1 = {6, 5}, Ac2 = {3, 2}, Ac3 = {3}
10 1 Ac1 = {6, 5}, Ac2 = {3, 2}, Ac3 = {3, 1}

In the first round, the price of every course is 0, so player 1 bids for his two most-
preferred courses. Notice that he uses his lowest sufficient bid in both auctions
but that his biding is consistent with his actual bid set. That is, he only needs
to bid 1 to win each course, but could win both courses as he has bids of 6 and
1 available. In the third round, player 3 sees that his most-preferred course has
a price of 1 and his second most-preferred course has a price of 0; he therefore

3 Our auction procedure has a cleanup step to guarantee that 0 ≤ |Ac| ≤ qc for every

c ∈ C, hence it is only necessary to define the price function on this range.
4 Each row of the right column represents the states of the auctions after player i has

had a chance to update his bids.
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bids 3 on each. But then, player 1 no longer has a winning bid in Ac2 . In the
fourth round, player 1 observes that the price of c2 is now 2, so he bids 6 in Ac2 .
The mechanism continues in this fashion until it terminates six rounds later.5

The final allocation C is given by C1 = {c1, c3}, C2 = {c1, c2}, C3 = {c2, c3}.
Our mechanism preserves some of the draft’s positive properties. In particu-

lar our simultaneous auction is guaranteed to converge and results in a Pareto
efficient allocation.

Proposition 1 (Convergence). Algorithm 1 terminates.

If bids fail to converge there must be a “cycle,” that is, a series of auction states
which is repeated over the course of the mechanism. Since bids are discrete and
unique, there is for any such cycle a highest bid b∗ cast in any stage of the bid
cycle. Moreover, at some point in the cycle the student i ∈ N holding bid b∗ must
cast b∗ for some course c which i ranks most highly among all courses i bids for
during the course of the cycle. But since b∗ is maximal among all cast during the
cycle, it cannot be displaced once made in the course-c auction Ac; this would
contradicts the involvement of b∗ in the cycle. Note that this argument directly
uses the fact that the bidding mechanism disallows the withdrawl of undisplaced
bids.

Proposition 2 (Pareto Efficiency). The allocation produced by Algorithm 1
is Pareto efficient with respect to the lexicographic preferences induced by input
preferences (≺i)i∈N .

For any Pareto inefficient allocation, there is (by definition) a sequence of course
trades which consitute a Pareto improvement. Of the students participating in
these trades, one student i∗ buys the course ci∗ he wishes to trade away with the
largest bid bci∗ used to buy a course in the Pareto-improving trade. But under
the bidding mechanism, i∗ should instead have bid bci∗ in the course for which
i seeks to trade. Thus, the outcome of the proxy bidding mechanism must be
Pareto efficient.

3 Welfare Properties

In this section we use simulations to analyze the welfare properties of the proxy
bidding mechanism. Our simulation environment produces correlated preferences
for 1000 students over a set of 110 courses. Each student demands 10 courses and
each course offers 100 seats. This problem is roughly the size of that of Harvard
Business School. Full details of our simulation environment are deferred to the
Appendix.

We use two welfare measures averaged over the population to evaluate as-
signments: average rank, the average preference rank of the courses allocated to
each student; lexicographic rank, the highest-ranked course received. Note that

5 Technically, the auction will not terminate until all players have declined the chance

to change their bids.
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Algorithm 1
Input: C, (qc)c∈C , N , (≺i)i∈N , {Bi}i∈N
Output: (Ci)i∈N
1: for c ∈ C do
2: Ac := ∅
3: end for
4:

5: repeat
6: active := false
7: for i ∈ N do
8: B′

i = ∅
9: for c in order of ≺i do

10: if Bi ∩ Ac = ∅ then
11: b∗ := minb∈Bi\B′

i
{b > p(Ac)}

12: if b∗ exists then
13: add b∗ to B′

i

14: add minb∈Bi{b > p(Ac)} to Ac

15: if |Ac| > qc then
16: remove minb∈Ac from Ac

17: end if
18: active := true
19: end if
20: else
21: b∗ := Bi ∩ Ac

22: b∗∗ := minb∈Bi\B′
i
{b ≥ b∗}

23: if b∗∗ exists then
24: add b∗∗ to B′

i

25: else
26: remove b∗ from Ac

27: end if
28: end if
29: end for
30: end for
31: until active = false
32:

33: for i ∈ N do
34: Ci := {c | Bi ∩ Ac 
= ∅}
35: end for

since we interpret preferences as rank-order lists from 0-th to (|Bi|−1)-st in the
example presented in the previous section, the average rank of the allocation is
2/3 and the lexicographic rank is 0.6

6 In the example, one student received his first- and third-most-preferred courses and

two received their first- and second-most-preferred courses. Considering the most-

preferred course to have rank 0, the lexicographic rank is 0 (all students received their

most-preferred courses). The average rank is ((0+2)/2+(0+1)/2+(0+1)/2)/3 = 2/3.
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Fig. 1. A simulation of downgrading in the HBS draft (left) and proxy bidding (right)

mechanisms. The solid and dotted lines respectively represent the average welfare levels

of truthful and downgrading students.

3.1 Comparison with the HBS Draft

First we demonstrate that the HBS draft mechanism is susceptible to strate-
gic play in our environment by simulating the downgrading manipulation high-
lighted by Budish and Cantillon [3], in which (some) students partially reorder
their preferences in correspondence with course popularity levels. In Figure 1,
average rank outcomes are plotted for both the HBS draft and the proxy bidding
mechanism. The dotted and solid line respectively plot the outcome to strategic
and non-strategic students. In Figure 1 (and in Figure 1, below), the horizontal
axis indicates the fraction of students playing the manipulative strategy and the
vertical axis indicates the outcome.

As expected, students who play the downgrading manipulation in the HBS
draft receive substantially lower-ranked courses on average than students who
report their preferences straightforwardly. In the proxy bidding mechanism, how-
ever, the opposite result obtains, demonstrating resilience of the proxy bidding
mechanism to this manipulation. These results hold regardless of the fraction of
strategic students.

Figure 2 plots cross-population welfare statistics in the presence of downgrad-
ing by part of the population. The solid line charts the performance of the proxy
bidding mechanism; the dashed line charts the HBS draft. While both popula-
tions’ welfare decreases as more students manipulate and at any point the welfare
of proxy bidding is lower, the downgrading manipulation only benefits students
in the draft, as shown in Figure 1. Once over 30% of students play downgrading
strategies, average welfare in the HBS draft is worse than would be achieved in
the proxy bidding mechanism under truthful play.

3.2 Strategic Play in the Proxy Bidding Mechanism

Although our proxy bidding mechanism is apparently robust to the downgrading
manipulation, it is not strategyproof.
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Fig. 2. Simulated average welfare levels of the entire population when part of the

population plays the downgrading strategy. The dotted line is the HBS draft and

the solid line proxy bidding. While at any point on the curve proxy bidding lags the

draft, its resilience to this manipulation, as seen in Figure 1, suggests it will be played

truthfully

Consider the following input: N = {1, 2}, C = {c1, c2, c3, c4}, qc1 = qc2 =
qc3 = qc4 = 1,

c4 ≺1 c3 ≺1 c2 ≺1 c1, B1 = {4, 1},
c1 ≺2 c4 ≺2 c3 ≺2 c2, B2 = {3, 2}.

The final allocation will be C given by C1 = {c1, c2}, C2 = {c3, c4}. If player 2
reports the preferences c4 ≺′

2 c3 ≺′
2 c2 ≺′

2 c1, then the final allocation C′ given
by C′

1 = {c1, c4}, C′
2 = {c2, c3} is obtained. Thus a player with preferences ≺2

receives a more-preferred allocation by reporting ≺′
2 than by reporting honestly.

4 Extended Preference Support

Lexicographic preferences over single courses provide an elegant model and allow
quick computation but are unlikely to represent students’ true preferences. To
partially address this problem, we extend the input space of the proxy bidding
mechanism to allow players to express conditional demand for courses. Specifi-
cally, we introduce ANY, IF, and NOTIF statements, which we illustrate in Figure 3
and define formally in the Appendix.

The ANY statement is an exclusive-or over a set of courses. This feature allows
players to indicate indifference over a set of courses, such as identical sections
of a course, or equally-preferred courses that meet at the same time. Such a
feature seems especially important, as in current bidding systems it is sometimes
possible ex-post for students to obtain a section of every course offered.7 The IF
(respectively, NOTIF) statement is a conditional which allows a player to demand
a course c if he holds (respectively, does not hold) a more-preferred course c′.

7 This ironic situation occurs as an outcome of the University of Michigan bidding

points mechanism, which has been studied by Krishna and Unver [4].
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Order Modifier Course name

0 Modern Art

1 IF Modern Art Modern Art Criticism

2 NOTIF Modern Art Criticism Renaissance Art

3 ANY {Ancient History, Modern History Classical History}

Fig. 3. A student’s extended preferences. The student’s most-preferred courses are

Modern Art and Modern Art Criticism, but she can only take the latter if she takes

the former. If she does not receive Modern Art Criticism, she would like Renaissance

Art instead. She also must take one art history course but is indifferent between three

choices.

Our proxy bidding mechanism suitably extends to accommodate this more-
expressive preference language, however the outcome produced may not be Pareto
efficient if ANY statements are used (see the Appendix).

5 Conclusion and Future Work

We have introduced a new proxy bidding mechanism for course allocation which
offers attractive welfare possibilities. It is relatively simple and extends naturally
to allow for a more expressive preference language than is typically used in course
allocation. Although our mechanism is resistant to the strategic manipulations
that have been observed in the HBS draft, a full analysis of strategic play under
the proxy bidding mechanism requires further study.

It seems likely that our approach of replacing agents by proxies who strategize
on the agents’ behalves would find applications in other domains. A general
theory of proxy mechanisms seems appropriate for future work.
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6. Pápai, S.: Strategyproof and nonbossy multiple assignments. Journal of Public Eco-

nomic Theory 3(3), 257–271 (2001)

7. Sonmez, T., Unver, U.: Course bidding at business schools. International Economic

Review 51(1), 99–123 (2010)



False-Name-Proofness in Facility Location Problem
on the Real Line

Taiki Todo, Atsushi Iwasaki, and Makoto Yokoo

Department of Informatics,
Kyushu University

Fukuoka, Japan
todo@agent.is.kyushu-u.ac.jp, iwasaki@is.kyushu-u.ac.jp,

yokoo@is.kyushu-u.ac.jp

Abstract. Recently, mechanism design without monetary transfers is attracting
much attention, since in many application domains on Internet, introducing mon-
etary transfers is impossible or undesirable. Mechanism design studies how to
design mechanisms that result in good outcomes even when agents strategically
report their preferences. However, in highly anonymous settings such as the In-
ternet, declaring preferences dishonestly is not the only way to manipulate the
mechanism. Often, it is possible for an agent to pretend to be multiple agents,
and submit multiple reports using different identifiers, e.g., different e-mail ad-
dresses. Such false-name manipulations are more likely to occur in a mechanism
without monetary transfers, since submitting multiple reports would be less risky
in such a mechanism. In this paper, we formalize false-name manipulations in
facility location problems on the real line and discuss the effect of such manipu-
lations.

1 Introduction

Facility location problems have traditionally been studied in economics and operations
research. In facility location problems, a mechanism designer plans to locate facilities,
while agents report their locations. A facility location mechanism, or a social choice
rule, is a function that maps a reported location profile into the locations of facilities.
The goal is to design facility location mechanisms that satisfy the well-known incentive
property of strategy-proofness; for each agent, reporting his/her location truthfully is a
dominant strategy regardless of the strategies of other agents.

In social choice theory, there have been a lot of works on facility location problems
on the real line. Moulin [5] characterized strategy-proof facility location mechanisms on
the real line under the natural assumptions of Pareto efficiency and anonymity. Further-
more, he proposed a generalized median voter scheme to characterize Pareto efficient
and strategy-proof mechanisms on the real line. Schummer and Vohra [8] extended the
generalized median voter scheme to facility location problems on any graphs.

Recently, facility location problems have also been discussed in the field of mechanism
design without money, in which an mechanism designer plans to develop mechanisms
that do not involve monetary transfers. In several domains such as the Internet, introduc-
ing monetary transfers is impossible or undesirable, mainly due to security/banking or
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ethical/legal issues. Thus, mechanism design without money has attracted considerable
attention of computer scientists.

Procaccia and Tennenholtz [7] presented a case study in approximate mechanism
design without money and established tight bounds for the approximation ratio achieved
by strategy-proof facility location mechanisms on the real line. They also proposed two
extension of facility location problems: a domain where two facilities must be located
and a domain where each agent owns multiple locations. Lu et al. [4] improved the
approximation ratio for the social cost in both domains.

However, in highly anonymous settings such as the Internet, reporting location in-
sincerely is not the only way to manipulate a facility location mechanism. Often, it
is possible for an agent to pretend to be multiple agents and report multiple locations
using different identifiers, e.g., by creating different e-mail accounts. Such false-name
manipulations are more likely to occur in a mechanism without monetary transfers,
since submitting multiple reports is less risky in such a mechanism. To the best of our
knowledge, there has been virtually no work on false-name-proofness in facility loca-
tion problems.

False-name manipulations have also been widely studied in combinatorial auctions.
Yokoo et al. [9] pointed out the effects of false-name manipulations in combinato-
rial auctions and showed that the Vickrey-Clarke-Groves (VCG) mechanism is vul-
nerable against false-name manipulations. Besides combinatorial auctions, false-name-
proofness and its relatives have been discussed in other mechanism design fields, such
as voting [3], coalitional games [1], and cost sharing [6]. In particular, Conitzer [3]
proposed an extended property called anonymity-proofness in voting and characterized
anonymity-proof voting rules.

2 False-Name-Proofness

In this paper, we deal with a facility location problem in which a mechanism locates
one facility on the real line. Let n denote the number of agents (identifiers) joining
a mechanism and N(|N | = n) the set of agents. Note that the number of agents n
is defined to be variable in N to discuss the change of the number of agent joining
a mechanism. Each agent i ∈ N has a true location xi on R. The cost of an agent
is defined by the distance between her true location and the location of a facility. If a
facility is located at y, the cost of agent i who has a location xi is cost(xi, y) = |xi−y|.
This cost function is a special case of single-peaked preferences [5].

A (direct revelation, deterministic) facility location mechanism is a function that
maps a reported location profile x = (x1, . . . , xn) by the set of agents to a location
of a facility y on the real line. A mechanism must locate a facility with respect to
any number of agents n, since we consider an environment where each agent may use
multiple identifiers. For this reason, we define a facility location mechanism f as a set of
functions, where each function fn is a mapping from a set of location profiles reported
by n identifiers to the real line. We assume that a mechanism is anonymous; i.e., the
obtained results are invariant under permutation of identifiers. With this assumption,
we assume without loss of generality that x1 ≤ x2 ≤ . . . ≤ xn.
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Definition 1 (Facility Location Mechanism). For any natural number n ∈ N, a fa-
cility location mechanism f assigns an outcome fn(x) to any reported location profile
x = (x1, . . . , xn) : f = {fn|n ∈ N, fn : Rn → R}
In facility location problems, each agent reports her location x′

i, which is not necessarily
her true location xi, to the mechanism. However, in a strategy-proof mechanism, it is
guaranteed that each agent reports her true location xi to the mechanism if she behaves
to minimize her cost. A facility location mechanism f is said to be strategy-proof if
∀n ∈ N, ∀i ∈ N , ∀x−i, ∀xi, ∀x′

i, cost(xi, f
n(xi, x−i)) ≤ cost(xi, f

n(x′
i, x−i)). Here

let x−i denote the reported location profile by agents except i. That is, fn(x′
i, x−i) is

the location of a facility when agent i reports x′
i and other agents report x−i. In other

words, strategy-proofness requires that for each agent, reporting her true location is a
dominant strategy.

In the history of facility location problems, several strategy-proof facility location
mechanisms have been developed. One of the well-known strategy-proof mechanism
is the median mechanism, which locates a facility at the median location among the
reported locations (if the number of agents n is even, locates at the n/2-th smallest
location). Furthermore, it has been known that the median mechanism always locates a
facility at the oprimal location with respect to the social cost [7].

Next we formalize false-name-proofness in the facility location problem. First, let
us introduce some notations for discussing false-name manipulations. Let φi denote the
set of identifiers used by agent i. This is also the private information of agent i. Let xφi

denote a location profile reported by a set of identifiers φi and x−φi a location profile
reported by identifiers except for φi. In this definition, xφi is considered as a false-name
manipulation by i.

Definition 2 (False-name-proofness). A facility location mechanism f is false-name-
proof if ∀n ∈ N, ∀i ∈ N , ∀x−φi , ∀xi, ∀φi, ∀xφi , the following holds:

cost(xi, f
n(xi, x−φi)) ≤ cost(xi, f

n−1+|φi|(xφi , x−φi)) (1)

In other words, a mechanism is false-name-proof if for each agent, reporting her true
location by using a single identifier is a dominant strategy, although she can use multiple
identifiers. This is an extension of strategy-proofness to open, anonymous environments
such as the Internet. The following example shows that the median mechanism does not
satisfy false-name-proofness; an agent can reduce her cost by using multiple identifiers.

Example 1. Consider the median mechanism and N = {1, 2, 3}. Assume that x1 = 1,
x2 = 2, and x3 = 3. If they report their locations truthfully, the mechanism locates a
facility at 2. However, if agent 1 adds two false identifiers and reports xφ1 = (1, 1, 1),
the mechanism locates a facility at 1. By this false-name manipulation, agent 1 can
strictly reduce her cost.

One trivial solution to prevent such false-name manipulations is to use the leftmost
mechanism, which locates a facility at the smallest location among the reported loca-
tions. Obviously, the leftmost agent (agent 1 in Example 1) has no incentive to ma-
nipulate in the leftmost mechanism, since the facility is located at her true location.
Furthermore, the other agents (agents 2 and 3 in Example 1) cannot move the location
closer to their true locations by any false-name manipulations.
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3 Future Works

In this paper, we first formalized false-name manipulations in the facility location prob-
lem on the real line. Now let us summarize the open questions about false-name manip-
ulations in facility location problems.

– As we stated in this paper, the leftmost mechanism is false-name-proof, while
the median mechanism is not. One open question is to characterize false-name-
proof facility location mechanisms. More precisely, to obtain a necessary and suf-
ficient condition for a facility location mechanism to be false-name-proof. Since
false-name-proofness is a generalization of strategy-proofness, the condition must
be a stronger condition than the necessary and sufficient condition for strategy-
proofness proposed by Moulin [5].

– In facility location problems, designing mechanisms which achive good approxi-
mation ratios with respect to the optimal location is one of the important works,
especially from the viewpoint of computer scientists. To the best of our knowledge,
no bound of the approximation ratios has been obtained for false-name-proof facil-
ity location mechanisms. We would like to obtain a bound of approximation ratios
and design an optimal mechanism which achieves the bound.

– In the literatures of social choice and mechanism design, several properties related
to false-name-proofness have been introduced so far, e.g., anonymity-proofness,
group-strategyproofness, rename-proofness [6], and population monotonicity [2]. It
would also be interesting to clarify the connections between false-name-proofness
and these properties.
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Abstract. Recent results, establishing evidence of intractability for such

restrictive utility functions as additively separable, piecewise-linear and

concave, under both Fisher and Arrow-Debreu market models, have

prompted the question of whether we have failed to capture some es-

sential elements of real markets, which seem to do a good job of finding

prices that maintain parity between supply and demand.

The main point of this paper is to show that even non-separable,

quasiconcave utility functions can be handled efficiently in a suitably

chosen, though natural, realistic and useful, market model; our model

allows for perfect price discrimination. Our model supports unique equi-

librium prices and, for the restriction to concave utilities, satisfies both

welfare theorems.

1 Introduction

The celebrated Arrow-Debreu theorem [AD54], which establishes the existence
of equilibria in a very general model of the economy, has been deemed to be
“highly non-constructive” since it crucially uses Kakutani’s fixed point theorem;
as shown by Uzawa [Uza62], the existence of general equilibrium is equivalent
to fixed point theorems. The conditions imposed on utility functions of buyers
in the Arrow-Debreu theorem are very weak: continuity, quasiconcavity, and
non-satiation.

Over the last decade, there has been a surge of interest within theoretical com-
puter science on studying the question of efficient computability of market equi-
libria – not only to provide an algorithmic ratification of Adam Smith’s “invisible
hand of the market” but also because of potential applications to new markets on
the Internet. This study started with highly restricted utility functions, i.e., lin-
ear [DPSV08, Jai04], and gradually moved to more general functions. However,
in terms of positive results, this did not go very far – the most notable case being
Fisher’s model under Leontief utilities [CV04, Ye07]). Recently it was shown that
computing equilibria under additively separable, piecewise-linear, concave util-
ity functions (plc utilities) is PPAD-complete [CDDT09, CT09, VY10], thereby
� Research supported by NSF Grants CCF-0728640 and CCF-0914732, ONR Grant

N000140910755, and a Google Research Grant.
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dealing this program a serious blow – assuming P �= PPAD, this effectively rules
out the existence of efficient algorithms for almost all general and interesting
classes of “traditional” market models.

On the other hand, markets in the West, based on Adam Smith’s free market
principle, seem to do a good job of finding prices that maintain parity between
supply and demand1. This has prompted the question of whether we have failed
to capture some essential elements of real markets in our models, see [Vaz10].
Some progress has been made on this latter question: polynomial time algorithms
were given for spending constraint utilities [Vaz10] and for plc utilities in the
Fisher model, provided perfect price discrimination is introduced in the model
[GV10]. Both these works deal with additively separable utility functions.

Clearly, the gap between these “positive” algorithmic results in the traditional
market models and the generality of the Arrow-Debreu Theorem is rather large.
The main point of this paper is to show that even non-separable, quasiconcave
utility functions, with the additional restrictions of continuous differentiabil-
ity and non-satiation, can be handled efficiently in a suitably chosen, though
natural, realistic and useful, market model; our model allows for perfect price
discrimination.

Additionally, our work provides insights into the widely used practice of price
discrimination. [GV10] give an application of market model to online display
advertising marketplaces. We note that extending their market model from sep-
arable to non-separable utilities makes it even more relevant to this application,
since the utility to an advertiser from placing ads on multiple web sites would
typically be an involved, non-separable function because the web sites may be
substitutes, complements, etc.

1.1 Price Discrimination and Our Results

Most businesses today charge different prices from different consumers for es-
sentially the same goods or services in order to maximize their revenues. This
practice, called price discrimination, is not only good for businesses but also cus-
tomers – without it, some customers will simply not be able to avail of certain
goods or services. It is not only widespread [Var85] but is also essential for the
survival of certain businesses, e.g., in the airline industry.

Price discrimination is particularly important in new industries, such as
telecommunications and information services and digital goods. Traditional eco-
nomic analysis, which assumes decreasing returns to scale on production, rec-
ommends pricing goods at marginal cost. However, this is not relevant to the
new industries, since they have very high fixed costs and low marginal costs,
and hence such prices will not even recover the fixed costs. In these situations,
product differentiation and price discrimination are an important recourse. Moti-
vated by these considerations, price discrimination has been extensively studied
in economics from many different angles; see [WMT88, Var85, Var96, Sun04,
Edl98, EEH94, BT04] for just a small sampling of papers on this topic.
1 For example, in the West, it is hard to see a sight that was commonplace in the

Soviet Union, with massive surpluses of some goods and empty shelves of others.
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A monopolistic situation in which the business separates the market into
individual consumers and charges each one prices that they are willing and able
to pay is called perfect price discrimination, sometimes also called first degree
price discrimination [Var96]. More formally, a consumer’s marginal willing to
pay is made equal to the marginal cost of the good. Of course, to do this, the
business needs to have complete information about each consumer’s preferences.

For the restriction to concave utilities, we give a convex program, a general-
ization of the classic Eisenberg-Gale convex program, that captures equilibrium
for this model. For this case, we prove both welfare theorems.

For quasiconcave utilities, we give a nonlinear program that captures equi-
libria. Similar to the convex program mentioned above, an optimal solution to
this program also satisfies KKT conditions; moreover, this program also lends
itself to a polynomial time solution using the ellipsoid algorithm. For this case,
the first welfare theorem holds but the second welfare theorem fails; an example
with 2 buyers and one good is very easy to construct, and will be provided in
the final paper.

2 The Market Model

Our market model is based on the Fisher setting and consists of a seller with a
set G of divisible goods, a set B of buyers each with money and a middleman.
Assume that |G| = g and |B| = n, and the goods are numbered from 1 to g and
the buyers are numbered from 1 to n. Let mi ∈ Q+ dollars be the money of
buyer i. For each buyer i we are specified a function fi : Rg

+ → R+ which gives
the utility derived by i as a function of allocation of goods. We will assume that
fi is polynomial time computable.

The middleman buys goods from the seller, who charges the middleman in the
usual manner, i.e., depending on the prices of goods and the amounts bought.
However, in selling goods, the middleman charges buyers on the basis of the
utility they accrue rather than the amount of goods they receive, i.e., he price-
discriminates. The rate ri at which buyer i should get utility per dollar charged
from her, at any given prices p, is determined by buyer i herself. Each buyer has
no utility for money but wants to maximize the utility she accrues. The only
restriction is that the middleman refuses to sell any part of a good at a loss – the
fact that the middleman knows buyers’ utility functions enables him to do this
(we will specify in Section 2.1 what this restriction means mathematically). We
show in Lemma 2 that under these circumstances, there is a rate, as a function
of prices, at which buyer i is able to maximize her utility. This is also the rate
at which each buyer’s marginal willingness to pay equals the marginal prices of
goods she gets, as required under perfect price discrimination. At this rate ri,
the total utility buyer i is able to get will be ri · mi.

In our model, the elasticity among consumers leads to profit for the mid-
dleman; in particular, if the utility functions of all buyers are linear, then the
middleman will make no profit. We will study the following two cases of utility
functions; clearly, the first is a special case of the second, but it has stronger
properties.
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– Case 1 utility functions: Non-separable, continuously differentiable, con-
cave functions satisfying non-satiation.

– Case 2 utility functions: Non-separable, continuously differentiable, qua-
siconcave functions satisfying non-satiation.

We will use the following notation and definitions throughout. x will denote al-
locations made of all goods to all buyers. xi will denote the restriction of x to
allocations made to buyer i only, and xij will denote the amount of good j allo-
cated to buyer i. For the sake of ease of notation, let us introduce the following
w.r.t. a generic buyer: y, a vector of length g, will denote allocation and its jth
component, yj , will denote the allocation of good j. f : Rg

+ → R+ will denote her
utility function. Function f is concave if for any allocations y and y

′
,

f

(
y + y

′

2

)
≥ f(y) + f(y

′
)

2
.

Function f is quasiconcave if each of its upper level sets is convex, i.e., ∀a ≥ 0,
the set Sa = {y ∈ Rg

+ | f(y) ≥ a} is convex. We will say that f satisfies non-
satiation if for any allocation y, there is an allocation y

′
that weakly dominates

y component wise and such that f(y
′
) > f(y).

The overall objective is to find prices for goods such that under these transac-
tions, the market clears, i.e., there is no surplus or deficiency of any good. These
will be called equilibrium prices. More formally, let p be prices of goods and r
be the corresponding rates of buyers, as given by Lemma 2. Assume that each
buyer i is charged at rate ri and is allocated a bundle of goods. We will say that
prices p are equilibrium prices if they satisfy the following conditions:

1. Each good having positive price is completely sold.
2. The money spent by each buyer i equals mi.
3. The middleman never allocates any portion of a good at a loss (the implica-

tion of this condition on allocations is given in Section 2.1).

2.1 Determining Buyers’ Rates

W.r.t. any prices, we will give a closed-form definition of each buyer i’s rate, ri;
for ease of notation, we will do this for the generic buyer, i.e., we will define her
rate r∗. For this section, assume that prices of goods are set to p. In Lemma
2 we will show r∗ is indeed her optimal rate, i.e., it maximizes her utility. In
Section 3 we will show that the solution of the convex (nonlinear) program will
assign utilities to a buyer at precisely this rate w.r.t. equilibrium prices. Hence,
there is no need to explicitly compute buyers’ rates.

Assume that the middleman is charging the buyer at the rate of r units of
utility per dollar. We now formally state the restriction imposed by Condition 3
of equilibrium. Conceptually, assume that the middleman is making an allocation
to the buyer gradually and continuously. Clearly, the effective price at which he
is selling her good j depends on the allocation made already. If the latter is y,
then the marginal price of good j at allocation y is
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∂f

∂yj
(y) ÷ r.

Therefore, at this point the middleman is selling good j at a loss iff the above-
stated quantity is less than pj , since then he is charging the buyer less for good
j than he what the seller charged him. Given two allocations y and y′, we will
say that y′ weakly dominates y if for each good j, y′

j ≥ yj . The next lemma
gives the mathematical condition that an allocation needs to satisfy in order to
satisfy Condition 3.

Lemma 1. An allocation y made by the middleman at rate r satisfies Condition
3 iff

∀y′ s.t. y weakly dominates y′, ∀j :
(

∂f

∂yj
(y′) ÷ r

)
≥ pj .

Let us say that an allocation y is feasible for rate r if it satisfies the condition
given in Lemma 1. We next define the set of maximal, under the relation “weakly
dominates”, allocations that are feasible. For r > 0, this set is:

S(r) =
{

y |
(

∂f

∂yj
(y) ÷ pj

)
= r if yj > 0 and ≤ r otherwise

}
.

Observe that if f is strictly concave, S(r) will be a singleton for each r. The
function U : R+ → R+ gives the largest utility attained by a feasible allocation
at rate r:

U(r) = sup{f(y) | y ∈ S(r)}.

Clearly, U is a decreasing function of r. Observe that because of the non-satiation
condition, limr→0 U(r) is unbounded.

Finally, we define rate r∗ as follows

r∗ = argmax
r

{U(r) ≥ m · r},

where m is the money of the generic buyer. Since function U(r) is unbounded
as r → 0, r∗ is well defined for all m.

Lemma 2. r∗ maximizes the utility accrued by the generic buyer.

3 The Convex/Nonlinear Program

The program (1) given below is a convex program for Case 1 utility functions and
simply a nonlinear program for Case 2 utility functions. Besides non-negativity,
the only constraint is that at most 1 unit of each good is sold. We will denote
the Lagrange variables corresponding to these constraints as pj ’s and will show
that at optimality, they will be equilibrium prices of the corresponding market.



568 V.V. Vazirani

maximize
∑
i∈B

mi log(fi(xi)) (1)

subject to ∀j ∈ G :
∑
i∈B

xij ≤ 1

∀i ∈ B, ∀j ∈ G : xij ≥ 0

The KKT conditions for this program are:

1. ∀j ∈ G : pj ≥ 0.

2. ∀j ∈ G : pj > 0 =⇒
∑
i∈B

xij = 1.

3. ∀i ∈ B, ∀j ∈ G : pj ≥ mi

fi(xi)
· ∂fi

∂xij
(xi).

4. ∀i ∈ B, ∀j ∈ G : xij > 0 =⇒ pj =
mi

fi(xi)
· ∂fi

∂xij
(xi).

Theorem 1. For both cases of utility functions, the optimal primal and dual
solutions to program (1) give equilibrium allocations and prices, and the latter
are unique. Moreover, both can be computed in polynomial time.

Proof. Because utility functions are assumed to be continuously differentiable,
for an optimal solution to program (1) there is a unique dual, i.e., prices, that
satisfies the KKT conditions stated above. From these, we will derive the 3
conditions defining equilibrium. For Case 1 utility functions, (1) is a convex
program and for Case 2 utility functions, the upper level sets are convex, and for
both cases a separation oracle can be implemented in polynomial time. Moreover,
since the constraints are all linear, by [GLS88], the optimal solutions can be
computed in polynomial time to any required degree of accuracy.

The first equilibrium condition is implied by the KKT conditions 1 and 2.
Consider buyer i. Because of non-satiation, xij > 0 for some j. For this j, let

ri =
(

∂fi

∂xij
(xi) ÷ pj

)
.

By KKT condition 4, any good j with xij > 0 must satisfy this equality, and if
for some good j, xij = 0, then by KKT condition 3,

ri ≥
(

∂fi

∂xij
(xi) ÷ pj

)
.

This proves that the middleman does not sell any part of a good at a loss.
Substituting ri back in KKT condition 4, we get mi = ri ·fi(xi), thereby proving
that all money of buyer i is spent and ri is the rate whose existence is established
in Lemma 2.
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4 The Welfare Theorems

The first welfare theorem states that allocations made at equilibrium prices are
Pareto optimal and the second welfare theorem states that for any Pareto optimal
utilities u∗, there is a way of setting the initial moneys of buyers in such a
way that an equilibrium obtained for this instance gives precisely u∗ utilities to
buyers.

Theorem 2. The first welfare theorem is satisfied by both cases of utility func-
tions and the second welfare theorem is satisfied by Case 1 utility functions.
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Abstract. Mechanism design provides a useful practical paradigm for

competitive resource allocation when agent preferences are uncertain.

Vickrey-Clarke-Groves (VCG) mechanism offers a general technique for

resource allocation with payments, ensuring allocative efficiency while

eliciting truthful information about preferences. However, VCG relies on

exact computation of optimal allocation of resources, a problem which

is often computationally intractable. Using approximate allocation algo-

rithms in place of exact algorithms gives rise to a VCG-based mecha-

nism, which, unfortunately, no longer guarantees truthful revelation of

preferences. Our main result is an average-case bound, which uses infor-

mation about average, rather than worst-case, performance of an algo-

rithm. We show how to combine the resulting bound with simulations

to obtain probabilistic confidence bounds on agent incentives to misre-

port their preferences and illustrate the technique using combinatorial

auction data. One important consequence of our analysis is an argument

that using state-of-the-art algorithms for solving combinatorial alloca-

tion problems essentially eliminates agent incentives to misreport their

preferences.

1 Introduction

Mechanism design provides a useful practical paradigm for competitive resource
allocation when agent preferences are uncertain. The field of mechanism design
has received considerable attention in academic literature in the last several
decades. Great technological advances, coupled with a rather mature under-
standing of the field, have recently brought much of this theory to bear on real
resource allocation problems faced by the government and industry. Perhaps of
greatest practical significance has been the field of auction theory [8], and, in
particular, the design of combinatorial auctions [2]. In a combinatorial auction,
bidders are allowed to submit bids on all subsets of a given set of items.1 The auc-
tioneer must then solve the winner determination problem (WDP), computing
1 Items could be actual goods for sale, slots on a schedule, locations and times of

banner ads displayed on a website, etc.
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which subsets of the goods will be allocated to which bidders, with the objective
of maximizing allocative efficiency.

The field of mechanism design has historically occupied itself primarily with
the issue of incentives, while mostly ignoring the computational aspects of the
problem. As it turns out, computational impediments can be devastating for
incentives. For example, while VCG [13] is the central mechanism used to incen-
tivize bidders to report their true valuations, using VCG-based payment schemes
together with an approximate algorithm for the WDP nearly universally fails
to incentivize truthful revelation of values [15]. However, it is well known that
the combinatorial auction WDP is NP-Hard [10]—indeed, even hard to approx-
imate [16]—and, consequently, an approximation algorithm must, in general, be
used.

Promptly, Computer Scientists went to work to fix the incentive problem
in combinatorial auctions with approximate allocation algorithms. Sanghvi and
Parkes [18] demonstrate that computing an improving deviation in VCG-based
combinatorial auctions is NP-Hard, although this worst-case result is difficult
to rely on in practice. Lavi and Swamy [9] present a truthful (in expectation)
mechanism when the approximation algorithm bounds the integrality gap of
LP relaxation, while Lehmann, O’Callaghan, and Shoham [11] and Mu’alem
and Nisan [14] obtain general truthful mechanisms for combinatorial auctions
when bidders are “single-minded” (i.e., each has positive value for exactly one
bundle of items). Dobzinski, Nisan, and Shapira [5] present a framework for
designing truthful approximation algorithms, and demonstrate instances with
an asymptotically optimal worst-case bound for the general WDP. Nisan and
Ronen [15] develop a second-chance mechanism in which players are not capable
of computing a beneficial lie.

This extensive literature addressing the incentive problems of approximate
WDP implicitly suggests that such problems are critical. Field practitioners of
combinatorial auctions, however, seem to rarely, if ever have come up against the
worst-case complexity issues [4,3]. Furthermore, the majority of combinatorial
auction problems that have been studied in simulation can be solved very fast
using modern algorithms [12,16,17], and, indeed, the general-purpose CPLEX
integer programming tool is usually very effective [17]. How can we explain this
gap between theory, which views the incentive problem of VCG-based mecha-
nisms as severe, and practice, which ignores it almost entirely? We believe that
the reason for this gap is that theoretical literature tends to offer worst-case anal-
yses, whereas practitioners (be it designers of combinatorial auctions or bidders)
are usually most concerned about typical cases.

We present a framework for average-case incentive analysis results as an at-
tempt to bridge the gap between theory and practice, which provide evidence that
the incentive problem with VCG-based mechanisms is not very severe. Specif-
ically, we offer general techniques to empirically assess incentive effects of spe-
cific algorithms based on average-case bounds. For example, if an algorithm can
solve the allocation problem exactly in almost every instance, there are no incen-
tives to deviate from truthfulness in the Bayes-Nash sense. We operationalize this
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bound in combinatorial auctions, illustrating how a use of simulation-based model
of bidder valuation distribution allows the designer to obtain precise probabilistic
confidence bounds on agent incentives to lie. One side-effect of this approach is
some qualitative evidence that the incentives to misreport decrease with increas-
ing problem size—yet another piece of evidence arguing that in practice incentive
compatibility of VCG with approximate allocation algorithms is often not very
severe.

2 Preliminaries

In our setting, each player i ∈ I submits to a central designer his utility function,
as indexed by his type ti ∈ Ti. Let O be the set of outcomes (e.g., feasible
allocations), I be a set of n players and let T = T1 × · · · × Tn be the joint type
set. Let F (·) be a probability distribution over joint player types and ui(ti, o)
player utility functions where o ∈ O typically depends on joint player report
t. While we may hope that all players submit their types honestly, they may
choose to lie, submitting some t′i instead of ti, and these lies could, in general,
be a function of true type ti.

We allow players to submit and accept payments pi, and assume that their
utility functions are quasi-linear in these, that is ui(ti, o, pi) = vi(ti, o)+pi, where
vi(ti, o) is the underlying value that player i with type ti has for outcome o, and
pi is his payment (which is negative when the agent is paying the designer). A
mechanism is a function that chooses an outcome o and assigns the payments pi

for all players i given a joint report of types t ∈ T . Thus, we use o(t) and pi(t)
to indicate such choices as made by some specified mechanism.

A central aspect of mechanism design is the prediction of agent play for a
given choice of a mechanism. Typically the role of such predictions is played
by equilibrium concepts. We appeal to two such concepts below (defined with
respect to direct revelation mechanisms, that is, mechanisms which attempt
to truthfully elicit player preferences). Under a dominant strategy equilibrium
each player is (weakly) best off reporting his true type no matter what other
players do. Under a Bayes-Nash equilibrium, on the other hand, each player
maximizes his expected utility by reporting his true type ti, assuming that all
other players are honest. Both equilibrium concepts admit natural notions of
approximation: in an ε-dominant strategy equilibrium, a player can gain no more
than ε by deviating, no matter what the opponents do, whereas an ε-Bayes-Nash
equilibrium guarantees that the expected gain to any player from deviation is at
most ε, with expectation taken with respect to the joint type distribution.

A useful measure of strategic stability is that of game-theoretic regret. While
in general this measure can be defined for any joint strategy profile, we use it
only to gauge the regret of truthful reporting. Hence, we use a simpler definition,
with ε̃ = EF [ε(t)] = EF [maxi εi(ti)], where

εi(ti) = max
t′i∈Ti

EF [ui(ti, o(t′i, t−i), pi(t′i, t−i)) − ui(ti, o(t), p(t))|ti].
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In words, it is the maximum expected benefit any player can obtain from re-
porting untruthfully.

A widely studied goal of mechanism design, and one we focus on here, is that
of maximizing social welfare, or the sum of player valuations. Formally, define
social welfare to be V (t, o) =

∑
i∈I vi(ti, o), where o is an outcome and t is a

joint type profile. Let o∗ : T → O denote the welfare optimal (efficient) outcome
(allocation) and let

V ∗(t) =
∑
i∈I

vi(ti, o∗(t)) = max
o∈O

∑
i∈I

vi(ti, o)

be the maximum welfare achieved for a type profile t. Let V ∗ = supt∈T V ∗(t). It is
well known that optimal allocation can be achieved as a truthful dominant strat-
egy equilibrium by using Groves payments [13], with pi(t) =

∑
j 
=i vj(tj , o∗(t))+

hi(t−i). Here hi is an arbitrary function of the types reported by other players;
for simplicity of exposition, we set it to 0.2

The algorithmic problem in mechanism design has been explored extensively
in Computer Science literature, particularly in the context of combinatorial
auctions [2]. In general, it is recognized that computing optimal welfare is a
hard problem. However, the literature has generated a plethora of algorithms
for computing approximately optimal allocation. Let g : T → O be an al-
gorithm for computing approximately efficient allocation.3 Since g may com-
pute only a suboptimal allocation, we let Vg(t) be the welfare at the allo-
cation g(t), that is Vg(t) =

∑
i∈I vi(ti, g(t)). Define VCG-based payments by

pg
i (t) =

∑
j 
=i vj(tj , g(t))+hi(t−i). Hence, the VCG-based mechanism will select

an outcome according to g, and the players will receive payments pg
i (t).

Approximation algorithms typically include a guarantee with respect to the
quality of approximation they provide. We say that g(·) is an α-approximation
if V ∗(t) ≤ αVg(t) for any t ∈ T .

3 Connecting Approximation and Incentives

To begin, suppose that, somehow, we have an approximation bound for g that is
a known function of α(t) for all t ∈ T . In the most trivial case, it could be just
a fixed α, reducing the setup to the worst-case analysis above. Alternatively,
we may be able to split the set of type profiles into subsets T 1, T 2, . . ., and
obtain much better uniform bounds on some of these subsets than the worst
case analysis would allow; for example, perhaps we know that for some large
subset of combinatorial auction problems we can compute optimal allocation
fast exactly, or nearly so. In any case, presently we will see that we need not

2 VCG extends the Groves scheme by specifying hi(t−i) to guarantee individual ra-
tionality, that is, that every player obtains positive net value from participation.

Since the subject of our inquiry is the incentive structure, setting hi(t−i) to 0 has

no impact on any of the arguments we make.
3 Our results can be extended rather directly to randomized allocation algorithms.
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even construct α(t) for all possible type profiles, but can obtain probabilistic
bounds based on a sample of a finite subset of these.

Our first key result presents an average-case bound on incentives of play-
ers to deviate, measuring the incentives in terms of approximate Bayes-Nash
equilibria.

Theorem 1. Suppose that the algorithm g is an α(t)-approximation. Then a
player i can gain at most εi(ti) when others are playing truthfully, where εi(ti) =
Et−i

[
α(t)−1

α(t) V ∗(t)|ti
]
.

The proofs of this and other results are in the appendix of the extended version
of the paper.

Corollary 1. Suppose that the algorithm g is an α(t)-approximation. Then
truthful reporting constitutes an ε-Bayes-Nash equilibrium for

ε = nEt

[
α(t) − 1

α(t)
V ∗(t)

]
.

To illustrate an application of these results, suppose that the space of joint types
T can be partitioned into “easy” and “hard” type profiles, that is, T = T ∪ T .
Let α = supt∈T α(t) and α = supt∈T α(t) and assume that α ≤ α. Then, after
some algebraic manipulation we obtain

Et

[
α(t) − 1

α(t)
V ∗(t)

]
≤α − 1

α
Et∼F |T [V ∗(t)] +

(
1
α
− 1

α

)
V ∗F (T ).

Note that since
(

1
α − 1

α

)
V ∗ is just a constant, as the probability measure of

“hard” instances becomes small, the incentives for players to deviate approach
α−1

α Et∼F |T [V ∗(t)]. Hence the following corollary.

Corollary 2. Suppose that F (T ) = 0. Then truthful reporting constitutes an
ε-Bayes-Nash equilibrium for ε = nα−1

α Et∼F |T [V ∗(t)].

In the special case when α = 1 (that is, easy instances can be solved fast exactly)
as is the case in many combinatorial auction settings, and when F (T ) = 0, that
is, when the probability of drawing a hard problem is 0, truthful reporting is a
Bayes-Nash equilibrium. Hence the following direct corollary.

Corollary 3. Suppose that α = 1 and F (T ) = 0. Then the strategy si(ti) =
ti—that is, truthfully reporting actual preferences—is a Bayes-Nash equilibrium
under the allocation algorithm g.

4 Applying the Non-uniform Incentive Bound

A key question that stems from the above analysis is how a mechanism designer
would determine an incentive bound for his algorithm in practice. We would not,
for example, want to require the designer to obtain a non-trivial α(t) for every
t ∈ T . Rather, we offer the following empirical approach.
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1. Obtain or construct a simulator that allows one to sample joint player types
t ∈ T according to F

2. Collect a set of K joint type samples t1, . . . , tK

3. For each tk, compute Vg(tk) and V ∗(tk) (or an upper bound on V ∗(tk))
4. Compute α(tk) = V ∗(tk)

Vg(tk)
, let Ẑ(tk) = α(tk)−1

α(tk)
V ∗(tk), and define

Ẑ =
1
K

K∑
k=1

Ẑ(tk)

5. Compute a probabilistic bound based on Ẑ

The first step requires a designer to either obtain or construct a simulator. This
seems rather demanding, but may be necessary to do for a high-stakes problem
anyway. Moreover, in the case of combinatorial auctions, a state-of-the-art sim-
ulator to generate realistic problem instances is already publicly available [12].

For the last step, we have a few options. A most general option would be to use
a distribution-free bound (e.g., Hoeffding inequality), but these tend to be very
loose. Instead, we assume that Ẑ is Normally distributed (an assumption that
is justified by the Central Limit Theorem when K is large), using s2(Ẑ(tk))/K
(where s2(·) is the sample variance) as an estimate of the variance of Ẑ. Then,

Et

[
α(t) − 1

α(t)
V ∗(t)

]
≤ Ẑ + zδ

√
s2(Ẑ(tk))

K
(1)

with probability at least 1 − δ, where zδ is the value of Normal distribution at
1 − δ.

4.1 Example: Combinatorial Auctions

To illustrate a concrete example applying the techniques introduced above, we
now offer an incentive analysis of combinatorial auctions based on auction in-
stances (in our notation, tk) generated by CATS [12]. Since the absolute values
of the bounds are not very meaningful, we give them as fraction of V ∗. While
V ∗ is actually unknown, note that Ẑ/V ∗ ≤ Ẑ/ maxk V ∗(tk), so below we report
Ẑ ′ = Ẑ/ maxk V ∗(tk). Additionally, CATS generates a set of bids, but does not
specify the number of players (which could therefore be arbitrary). Consequently,
we ultimately report bounds as multiples of nV ∗.

The data set we used is composed of (a) a set of samples with 1000 bids on
144 goods (1K − 144), (b) a set with 1000 bids on 256 goods (1K − 256), (c)
a set with 2000 bids on 64 goods (2K − 64), and (d) a set with varying prob-
lem sizes (varsize). Each set contains 5000 samples, 500 for each of 10 different
distributions. The data includes the result obtained by CPLEX which ran to op-
timality, the results obtained by CASS [6] after about 7500 seconds for 1K−144
and 1K − 256, or 44000 seconds for the other datasets, and, for the dataset
1K − 256, also the result obtained by the Gonen-Lehmann (GL) algorithm [7].4

4 A small fraction of the problems for which CPLEX reported an optimal result are not

in fact optimal, because the results by CASS and GL are higher. On these problems

we use the maximum value of the three algorithms as the “true” optimum.
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Fig. 1. Upper bound on regret, as a fraction of nV ∗, left : for several data set sizes, and

right : for the union of all data

We computed the bound on regret for each dataset, as well as for the union
set (named all). For each one we include the data for all CATS distributions
except “arbitrary”. For g(t) we used the following combination: we used the
result returned by CPLEX for a sampled profile tk if it was obtained in at most
S seconds; otherwise the result returned by CASS was used. We varied the time
limit S is between 500 and 60000 seconds (about 16.6 hours). The longer time
limits are reasonable for high volume auctions in which a lot of money is at
stake.5

In Figure 1 (left), we show the resulting bound for each dataset as a function
of the time limit. It also quantifies the tradeoff between the amount of time
given to the algorithm and regret (incentives for players to lie). The bounds are
computed as explained above, with confidence level 1 − δ = 0.95. The results
are particularly encouraging for the union set (Figure 1, right), and 1K − 256,
for which the regret approaches zero when the time limit increases. Note that
the chart for the dataset of 1K − 144 is omitted because the Ẑ is zero. In this
case, we can obtain an upper bound of 0.0006 on the proportion of suboptimally
solved instances (giving a regret bound of 0.0006nV ∗) with 0.95 confidence using
the Clopper-Pearson bound [1].

5 Conclusion

We presented results that allow construction of average-case bounds on agent
incentives to lie about their preferences for VCG-based mechanisms. Concep-
tually, this deviates from the more traditional worst-case analysis which often
fails to provide meaningful bounds. Practically, we introduce a simple method
for assessing incentive properties of specific approximation algorithms in the
context of economic resource allocation problems. We illustrate the resulting
empirical incentive analysis for a specific approximation algorithm in the con-
text of several combinatorial auction problems. Our results here suggest that

5 Since the data is relatively old, our bounds are likely excessively pessimistic.
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using state-of-the-art algorithms for solving combinatorial allocation problems
essentially eliminates agent incentives to misreport their preferences.
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