State of the Art in Wireless Sensor Networks Operating
Systems: A Survey

Muhammad Omer Farooql, Sadia Azizz, and Abdul Basit Dogar3

! Transmission Systems Research Group, Jacobs University Bremen, Germany
% Computer Engineering Department, CASE, Islamabad, Pakistan
? Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
m. faroog@jacobs-university.de, sadia.aziz@case.edu.pk,
abasitl26@yahoo.com

Abstract. This paper, presents a survey on current state of the art in Wireless
Sensor Networks (WSNs) Operating Systems (OSs). WSN is composed of
miniature senor and resource constraint devices. WSN is highly dynamic
network because nodes die out due to severe environmental conditions and
battery power depletion. Stated characteristics of WSN impose additional
challenges on OS design for WSN. Therefore; OS design for WSN deviates
from traditional OS design. The purpose of this survey is to point out strengths
and weaknesses of contemporary OS for WSNs, keeping in view the
requirements of emerging WSNs applications. State of the art, in operating
systems for WSNs has been examined in terms of Architecture, Scheduling,
Threading Model, Synchronization, Memory Management, and Communication
Protocol support. The examination of these features is performed for both real
time and non real time operating systems for WSNs. We believe that this survey
will help the network designers and programmers to choose the right OS for
their network and applications. Moreover, pros and cons of different operating
systems will help the researchers to design more robust OSs for WSNss.

Keywords: Wireless Sensor Networks (WSN), Operating System (OS),
Embedded Operating Systems.

1 Introduction

Advances in Micro-Electro Mechanical System (MEMS) based sensor technology has
led to the development of miniaturized and cheap sensor nodes, capable of wireless
communication, sensing and performing computations. Wireless Sensor node is
composed of micro-controller, transceiver, timer, memory and analog to digital
converter. Figure 1 shows the block diagram of a typical sensor node. Sensor nodes
are deployed to monitor multitude of natural and unnatural phenomenon i.e., habitant
monitoring, wild life monitoring, patient monitoring, industrial process monitoring,
battle field monitoring, traffic control, home automation to name a few. Sensor nodes
have constraint resources i.e., small amount of battery, few kilobytes of memory and a
microcontroller that operates at very low frequency compared to traditional
contemporary processing units. These resource constraint tiny sensors are an example

T.-h. Kim et al. (Eds.): FGIT 2010, LNCS 6485, pp. 616}631] 2010.
© Springer-Verlag Berlin Heidelberg 2010

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 617

of System on Chip (SoC). Dense deployment of sensor nodes in sensing field and
distributed processing through multi-hop communication among sensor nodes is
required to achieve high quality and fault tolerance in WSN. Application areas for
sensors are growing and new applications for sensor networks are emerging rapidly.

T .
ranceiver Sensing Unit

B A
a
t
A,
! A,
e Micro Controller ADC
r]
y

External
Memory

Fig. 1. Sensor Node Architecture

OS acts as a resource manager for complex systems. In a typical system these
resources include processors, memories, timers, disks, mice, keyboard, network
interfaces etc. The job of OS is to manage allocation of these resources to users in an
orderly and controlled manner. An OS multiplex system resources in two ways i.e., in
time and in space. Time multiplexing involves different programs taking turn in using
the resources. Space multiplexing involves different programs getting part of the
resource possibly at the same time.

Literature exist that survey the application, transport, network and Medium Access
Control (MAC) protocols for WSN, one such effort was made in [11]. A survey on
Operating Systems for WSN also exists and published in [10]. Since [10] was
published, new features like Architecture, Execution Model, Reprogramming,
Scheduling and Power Management have been introduced in contemporary operating
systems for WSN, hence the need for this survey remains important.

In this survey, we have examined the core OS features like Architecture,
Scheduling, Threading Model, Synchronization, Memory Management, and
Communication Protocol Support in both real time and non-real time WSN operating
systems. We have discussed different design approaches taken by different WSN
operating systems with their relative pros and cons.

Section 2 presents major design concern for WSNs OS. TinyOS has been
investigated in Section 3. In Section 4, we investigate the Contiki operating system
and Section 5 presents MANTIS operating System. We have identified future
research directions in Section 6. Finally, this paper is concluded in Section 7.

2 Major Concerns in WSN OS Design

This section, gives details of major issues related to an OS design for WSN.

618 M.O. Farooq, S. Aziz, and A.B. Dogar

2.1 Architecture

Organization of an OS constitutes its structure. In an OS perspective, architecture of
the OS kernel makes up its structure. Architecture of an OS has an influence on the
size of the OS kernel as well as on the way it provides services to the application
programs. Some of the well known OS architectures are Monolithic Architecture,
Micro-Kernel Architecture, Virtual Machine Architecture and Layered Architecture.

A monolithic architecture in-fact does not have any structure. Services provided by
an OS are implemented separately and each service provides an interface for other
services. Such architecture, allows bundling of all the required service together into a
single system image thus, results in larger OS footprint. Advantage of monolithic
architecture is that cost of module interaction is low. Disadvantages associated with
this architecture are: system is hard to understand, modify, and to maintain.
Disadvantages associated with monolithic kernels make them as a bad OS design
choice for sensor nodes.

Alternate choice for an OS design is Microkernel architecture. In microkernel
minimum functionality is provided inside the kernel. Thus, kernel size is significantly
reduced. Most of the OS functionality is provided in user level servers like file server,
memory server, time server etc. If one server crashes down whole system does not
crash. Microkernel kernel architecture provides better reliability, ease of extension
and customization. The disadvantage associated with microkernel is poor
performance because of user kernel boundary crossing. Microkernel is the design
choice for many embedded OS due to the small kernel size secondly; context switches
are far less in embedded systems. Thus, boundary crossing is less compared to
traditional systems.

Virtual machine architecture is another design alternative for an OS. Main idea is
to export virtual machines to user programs, which resemble hardware. A virtual
machine has all hardware features. Advantage is portability. Disadvantage is poor
system performance.

Layered OS architecture implements services in the form of layers. Advantages
associated with layered architecture are: more manageability, understandability, and
reliability. The disadvantage is that it is not flexible.

An OS for Wireless Sensor Network should have an architecture that results in a
small kernel footprint. Architecture must allow extensions to the kernel if required.
Architecture must be flexible i.e., only application required services get loaded onto
the system.

2.2 Resource Sharing

Responsibility of an OS includes resources allocation and resource sharing is of
immense importance when multiple programs are concurrently executing. Majority of
sensor network OS now provide some sort of multithreading therefore, there must be
a resource sharing mechanism available. This can be performed in time e.g.,
scheduling of a process on the CPU and in space e.g., writing data to system memory.
In some cases we need a serialized access to resources and this is done through the
use of synchronization primitives.

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 619

2.3 Protection

In traditional operating system, protection refers to protecting of one process from
another. In early sensor network operating systems like TinyOS [1] there was no
memory management available. Early, operating systems for sensor networks
assumed that only a single thread executes on a process therefore; there is no need for
memory protection. Latest WSN involves multiple threads of execution therefore;
memory management becomes an issue for WSN OS.

2.4 Performance

In OS, how we make the system all go fast is called performance. Performance of a
system can be measured by throughput, access time, and response time. The ultimate
responsibility of an OS designer is to enhance the overall performance of the system,
keeping in view the kind of application that runs on the system.

2.5 Communication

In OS context, communication refers to inter-process communication within the
system as well as with other nodes in the network. Sensor networks operate in a
distributive environment therefore; senor nodes communicate with other nodes in the
network. The job of sensor network OS is to provide Application Programming
Interface (API) that provides easy and energy efficient way of communication. It is
possible that sensor network is composed of heterogeneous sensor nodes therefore;
communication protocol provided by the OS must also consider heterogeneity. In
network based communication, OS should provide transport layer, network layer and
MAC layer protocol implementation.

2.6 Scheduling

Central Processing Unit (CPU) scheduling determines the order in which tasks are
executed on CPU. In traditional computer systems, the goal of a perfect scheduler is
to minimize latency, maximize throughput, maximize resource utilization, and
fairness.

The type of scheduling algorithm for sensor network typically depends on the
nature of the application. For applications having real time requirements we need to
use real time scheduling algorithm and for other applications we can use non-real time
scheduling algorithms.

Sensor networks are being used in both real time and non-real time phenomenon
therefore, a sensor network OS must provide scheduling algorithm that can
accommodate the application requirements. Moreover, scheduling algorithm should
be memory and energy efficient.

2.7 Multithreading

Multithreading provides a convenient application development environment. In
threaded systems, context switching and scheduling are the source of major overhead
[8]. We know that sensor nodes are battery operated, memory limited and have low

620 M.O. Farooq, S. Aziz, and A.B. Dogar

computational power. Therefore, sensor network operating system should support
high concurrency with minimal memory usage and low energy consumption.

3 TinyOS

TinyOS [1] is an open source flexible component based, and application specific
operating system designed for sensor networks. TinyOS can support concurrent
programs with very low memory requirements. The OS has footprint that fits in 400
bytes. TinyOS component library includes network protocols, distributed services,
sensor drivers, and data acquisition tools. Following subsections survey TinyOS
design in more detail.

3.1 Architecture

TinyOS fall under the monolithic architecture. TinyOS uses the component model and
according to the requirements of an application different components are glued
together with the scheduler to compose a static image that runs on the mote. A
component is an independent computational entity that exposes one or more
interfaces. Components have three computational abstractions: commands, events,
and tasks. Mechanisms for inter-component communication are commands and
events. Tasks are used to express intra-component concurrency. A command is a
request to perform some service, while the event signals the completion of the service.

TinyOS provides single shared stack and there is no separation between kernel
space and the user space. For program execution TinyOS uses an event driven model.
Following figure shows the TinyOS architecture.

/_[Domain-Specific Application Components]7

Service
Interface
Persistent Device
Attributes & Attributes &
Event Streams Event Streams
OS & Met (E
Intarface Network Collection,
Dissemination, &
Routing
Device Links
& :
Intoitace Flash Radio / Serial Sensor / Actuator
Microcontra_lter
Ab;f.x:;;z: Microcontroller Core, Timers, Buses, Onboard ADCs
Hardware ~i8
al
TelosB MicaZ Intel Mote2

Fig. 2. TinyOS Architecture

3.2 Scheduling

Earlier versions of TinyOS support non preemptive First In First Out (FIFO)
scheduling algorithm. Therefore; those versions of TinyOS does not support real time
application. This prevents TinyOS usage in real time systems. The core of the

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 621

execution model in TinyOS is task that runs to completion in FIFO manner. Since,
TinyOS supports only non preemptive scheduling therefore, task must obey run to
completion semantics. Tasks run to completion with respect to other task but they are
not atomic with respect to interrupt handlers and commands and events they invoke.
Since TinyOS uses FIFO scheduling therefore, disadvantages associated with FIFO
scheduling are also associated with the TinyOS scheduler. The wait time for a task
depends on the tasks arrival time. FIFO scheduling can be unfair to latter tasks
especially when short tasks are waiting behind the longer ones.

In [1], authors have claimed that they have added support for Earliest Deadline
First (EDF) scheduling algorithm in TinyOS, to facilitate real time application. EDF
scheduling algorithm does not produce a feasible schedule when tasks content for the
resources. Thus, TinyOS does not provide a good real time scheduling algorithm if
different threads content for resources.

3.3 Threading Model and Synchronization

Earlier versions of TinyOS do not provide any multithreading support. TinyOS
version 2.1 provides support for multithreading and these TinyOS threads are called
TOS Threads. In [3], authors pointed out the problem that given the motes resource
constraints, an event based OS permits greater concurrency. However, preemptive
threads offer an intuitive programming paradigm. TOS threading package provides
ease of a threading programming model with the efficiency of an event driven kernel.
TOS threads are backward compatible with existing TinyOS code. TOS threads use
cooperative threading approach, i.e., TOS threads rely on applications to explicitly
yield the processor. This adds on an additional burden on the programmer to manage
the concurrency explicitly. Application level threads in TinyOS can preempt other
application level threads but they cannot preempt tasks and interrupt handlers. High
priority kernel thread is dedicated to run the TinyOS scheduler. For communication
between the application threads and kernel, TinyOS 2.1 provides the mechanism of
message passing. When an application program makes a system call, it does not
directly execute the code rather it posts a message to the kernel thread by posting a
task. Afterwards, kernel thread preempts the running thread and executes the system
call. This mechanism ensures that only kernel directly executes TinyOS code. System
calls like Create, Destroy, Pause, Resume and Join are provided by the TOS
threading library.

TOS threads dynamically allocate Thread Control Blocks (TCB) with space for
fixed size stack that does not grow over time. TOS Threads context switches and
system calls introduce an overhead of less than 0.92% [3].

Earlier versions of TinyOS impose atomicity by disabling the interrupts i.e., telling
the hardware to delay handing the external events until aftersystem is done with the
atomic operation. This scheme works well on uni-processor systems. Secondly,
critical section can occur in the user level threads and the designer of OS does not
want user to disable the interrupts due to system performance and usability issues.
This problem is circumvented in TinyOS version 2.1. It provides synchronization
support with the help of condition variables and mutexes. These synchronization
primitives are implemented with the help of special hardware instructions e.g., test &
set instruction.

622 M.O. Farooq, S. Aziz, and A.B. Dogar

3.4 Memory Management and Safety

In [2], efficient memory safety for TinyOS is presented. In sensor nodes, hardware
based memory protection is not available and the resources are scarce. Resource
constraints necessitate the use of unsafe, low level languages like nesC [17]. In
TinyOS version 2.1 memory safety is incorporated. The goals for memory safety as
given in [2] are: trap all pointer and array errors, provide useful diagnostics, and
provide recovery strategies. Implementations of memory safe TinyOS exploits the
concept of Deputy. Deputy is a resource to resource compiler that ensures type and
memory safety for C code. Code compiled by Deputy relies on a mix of compile and
run time checks to ensure memory safety. Safe TinyOS is backward compatible with
earlier version of TinyOS. Safe TinyOS tool chain inserts checks into the application
code to ensure safety at run time. When a check detects that safety is about to be
violated, code inserted by Safe TinyOS take remedial action.

3.5 Communication Protocols Support

Earlier versions of TinyOS use two multi-hop protocols: dissemination [14] and
TYMO [15]. Dissemination protocol, reliably delivers data to every node in the
network. This protocol enables administrators to reconfigure query and reprogram a
network. Dissemination Protocol provides two interfaces: DisseminationValue and
DisseminationUpdate. A producer should call the DisseminationUpdate. The
command DisseminationUpdate.chage() should be called each time the producers
wants to disseminate a new value. On the other hand DisseminationValue is for the
consumer. The event DisseminationValue.changed() is signaled each time the
dissemination value s changed. TYMO is the implementation of the DYMO protocol,
a routing protocol for mobile ad hoc networks. In TYMO, packet formats have
changed and it has been implemented on top of the active messaging stack.

K. Lin et al [16], presents DIP a new dissemination protocol for sensor networks.
DIP is a data discovery and dissemination protocol that scales to hundreds of values.
At MAC layer TinyOS provide implementation of the following protocols: a single
hop TDMA protocol, a TDMA/CSMA hybrid protocol which implements Z-MAC’s
slot stealing optimization, and an optional implementation of 802.15.4 complaint
MAC is available.

4 Contiki

Contiki [5], is a lightweight open source OS written in C language for WSN sensor
nodes. Contiki is highly portable OS and it is build around an event driven kernel.
Contiki provides preemptive multitasking that can be used at the individual process
level. A typical Contiki configuration consumes 2 kilobytes of RAM and 40 kilobytes
of ROM. A full Contiki installation includes features like: multitasking kernel,
preemptive multithreading, proto-threads, TCP/IP networking, IPv6, Graphical User
Interface, web browser, personal web server, simple telnet client, screensaver, and
virtual network computing. In the following subsections, we shall explore Contiki OS
in more detail.

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 623

4.1 Architecture

Contiki OS, follows the hybrid architecture i.e., it combines advantages of events and
threads. At the kernel level it follows the event driven model but it provides optional
threading facility to individual processes. Contiki kernel comprises of a lightweight
event scheduler that dispatches events to the running processes. Process execution is
triggered by the events dispatched by the kernel to the processes or by the polling
mechanism. Polling mechanism is used to avoid race conditions. Any scheduled event
will run to completion however, event handlers can use internal mechanism for
preemption.

There are two kinds of events supported by Contiki OS: asynchronous events and
synchronous events. The difference between two is that synchronous events are
dispatched immediately to the target process that causes it to be scheduled, on the
other hand asynchronous events are more like deferred procedure calls that are
enqueued and dispatched later to the target process.

Polling mechanism used in Contiki can be seen as high priority events that are
scheduled in between each asynchronous event. When a poll is scheduled all
processes that implement a poll handler are called in order of their priority.

All OS facilities e.g., senor data handling, communication, and device drivers are
provided in the form of services. Each service has its interface and implementation.
Application using a particular service needs to know its interface. Application is not
concerned about the implementation of a service. Following is the block diagram of
Contiki OS architecture, as given in [18].

Contiki Operating Node Management
System _
= —
- =
= g B
= 5 2
— o = = = =
= = P = o = =
= = 2 = = 3 <
k=] =
B B g 5 S = E
= = = = = =
o L) o =

Contiki Core

| ulP | | Loader | | ProtoThreads |
Diriver
| Radio | | cPu | | Sensors | | Oscillator |

Hardware
A b A

| Radio | | CPu || Sensors || Oscillator | 2

Fig. 3. Contiki Architecture [18]

4.2 Scheduling

Contiki is an event driven OS therefore, it does not employ any sophisticated
scheduling algorithm. Events are fired to the target application as they arrive. In case
of interrupts, interrupt handlers of an application runs w.r.t. its priority.

624 M.O. Farooq, S. Aziz, and A.B. Dogar

4.3 Threading Model and Synchronization

Contiki supports preemptive multithreading. Multi-threading is implemented as a library
on top of the event driven kernel. The library can be linked with the applications that
require multithreading. Contiki multithreading library is divided in two parts: a platform
independent part and a platform specific part. The platform independent part interfaces
to the event kernel and the platform specific part of the library implements stack
switching and preemption primitives. Since, preemption is supported therefore;
preemption is implemented using the timer interrupt and the thread state is stored on a
stack. Available threading system calls are: mt_yield(), mt_post(id,event dataptr),
mt_wait(event,dataptr), mt_exit(), mt_start(thread,funptr,dataptr), mt_exec(thread) .

For multithreading Contiki uses protothreads [19]. Protothreads are designed for
severely memory constraint devices because they are stack less and lightweight. Main
features of protothreads are: very small memory overhead only two bytes per
protothreads, no extra stack for a thread, highly portable, can be used with or without
OS, provides blocking wait without full multithreading and stack switching, and
freely available under BSD like open source license.

Since, events run to completion and Contiki does not allow interrupt handlers to
post new events therefore; there is no process synchronization provided in Contiki.

4.4 Memory Management

Contiki supports dynamic memory management apart from this it also supports
dynamic linking of the programs. In-order to guard against memory fragmentation
Contiki uses Managed Memory Allocator [22]. Contiki’s managed memory allocator
makes sure that memory fragmentation does not occur. The primary responsibility of
managed memory allocator is to keep the allocated memory free from fragmentation
by compacting the memory when blocks are free. Therefore, a program using the
memory allocator module cannot be sure that allocated memory stays in place.

For dynamic memory management Contiki also provide memory block management
functions [22]. This library provides simple but powerful memory management
functions for blocks of fixed length. A memory block is statically declared using the
MEMB() macro. Memory blocks are allocated from the declared memory by the
memb_alloc() function, and are deallocated using memb_free() function.

4.5 Communication Protocol Support

Contiki supports rich set of communication protocols. In Contiki, we can use both
versions of IP i.e., IPv4 and IPv6. Contiki provides the implementation of uIP TCP/IP
protocol stack which makes it possible to communicate with TCP/IP protocol suite
even on small 8 bit micro-controllers. uIP does not require its peers to have full size
stacks, but it can communicate with peers running a similar lightweight stack.

ulP implementation have the minimum set of features needed for a full TCP/IP
stack. uIP is written in C language, it can only support one network interface, and it
supports TCP, UDP, ICMP, and IP protocols.

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 625

Since, memory is a scare resource in embedded devises therefore; ulP uses
memory efficiently by using memory management mechanisms. u#IP stack does not
use explicit dynamic memory allocation. It uses a global buffer to hold the incoming
data packets. Whenever, a packet is received Contiki places it in the global buffer and
notifies the TCP/IP. If it’s a data packet, TCP/IP notifies the appropriate application.
Application needs to copy the data in the secondary buffer or it can immediately
process the data. Once the application is done with the received data, Contiki
overwrites the global buffer with new incoming data. If application delays data
processing, then data can be overwritten by new incoming data packets.

Contiki provides implementation of RPL (IPv6 routing protocol for low power and
lossy networks) [21] by the name ContikiRPL [20]. ContikiRPL operates on low
power wireless links and lossy power line links.

S MANTIS

MANTIS, MultimodAl system for NeTworks of In-situ wireless sensors provides a
new multithreaded operating system for wireless sensor networks. MANTIS is a
lightweight and energy efficient operating system and it has a footprint of 500 bytes,
which includes kernel, scheduler, and network stack. MANTIS Operating System
(MOS), key feature is that it is portable across multiple platforms i.e., we can test
MOS applications on PDA, and on x86 personal computers afterwards, application
can be ported to the sensor node. MOS also supports remote management of sensor
nodes through dynamic programming. MOS is written in C and it supports application
development in C. Following subsection discusses the design features of MOS in
more detail.

5.1 Architecture

MOS follows the layered multithreading design as shown in Figure 4. In layered
architecture, services provided by an OS are implemented in layers. Each layer acts as
an enhanced virtual machine to the layers above. Following are the different services
implemented at each layer of MOS.

Layer 3: Network Stack, Command Server, and User Level
Threads

Layer 2: MANTIS system API

Layer 1: Kernel/Scheduler, Communication Layer (MAC and
PHY), and Device Drivers

Layer 0: Hardware

Layering structure imposes a hierarchical structure and fixed layering is not flexible.
Crossing a layering boundary has associated overheads. Due to the layered approach
an OS gets more reliable, manageable, understandable, and easily modifiable. Since,
senor networks OS are not that complex as compared with traditional OS therefore;
it’s not a bad idea to use layering architecture.

626 M.O. Farooq, S. Aziz, and A.B. Dogar

Network Comman d
Stack - T1 T2 T3

! ! !

| MANTIS system API |

! ! !

Kernel/Scheduler COMM DEV

A

A 4

Hardware

Fig. 4. MANTIS OS Architecture. Kernel Scheduler, COMM, DEV, MANTIS System API,
Network Stack, and Command Server comprises MOS

MOS supports rich set of Application Programming Interface (API), written in C
language. The choice of C language API simplifies cross platform support [4]. The C
code developed for MANTIS sensor can be compiled to X86 PCs with little or no
modification.

MOS kernel only handles the timer interrupt all other interrupts are directly sent to
associated device drivers. When a device driver receives an interrupt, it posts a
semaphore in order to activate a waiting thread, and this thread handles the event that
has caused the interrupt.

5.2 Scheduling

MOS uses preemptive priority based scheduling. MOS uses a UNIX like scheduler
with multiple priority classes and it uses round robin within each priority class. The
length of time slice is configurable, by default it is set to 10 milliseconds (ms). The
scheduler uses a timer interrupt for context switches. Context switches are also
triggered by system calls and semaphore operations. Energy efficiency is achieved by
the MOS scheduler by switching microcontroller to sleep mode when application
threads are idle.

The ready queue of the MOS scheduler comprises of five priorities ranging from
high to low: Kernel, Sleep, High, Normal, and Idle. The scheduler schedules the
highest priority task in the ready queue. The task either runs to completion or gets
preempted if its time slice expires. For time slicing MOs scheduler uses 16 bit timer.
When there is no thread in the ready queue, system gets to the sleep mode. If the
system is suspended on I/O, then the system enters the moderate idle sleep mode. If
the application threads have called sleep system call, then system gets to deep power
save sleep mode. A separate queue maintains the ordered list of thread that have
called the sleep(), and is ordered by sleep time from low to high. The sleep priority in
the ready queue enables newly woken threads to have the highest priority so that they
can be serviced first after wake up.

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 627

The MOS kernel maintains ready list head and tail pointers for each priority level.
There are 5 priority levels and these pointers consume 20 bytes in total. These two
pointers helps in fast addition and deletion of threads from a ready queue hence,
improved performance in manipulating thread lists. It also uses a current thread
pointer of 2 bytes, an interrupt status byte, and one byte of flags. The total static
overhead for scheduling is 144 bytes.

MOS scheduler uses round robin scheduling within the each priority class. This
means threads of highest priority class can make lower priority class threads to strave.
MOS use priority scheduling that may support real time task better than TinyOS
scheduler. But it still needs real time schedulers like Rate Monotonic and Earliest
Deadline First in-order to accommodate real time tasks.

5.3 Threading Model and Synchronization

MOS supports preemptive multitasking. MOS team designed a multithreaded OS
because of the facts presented in [23], i.e., “A thread driven system can achieve the
high performance of event based systems for concurrency intensive applications, with
appropriate modification to the threading package.” Memory of the sensor node is a
scare resource therefore, MOS maintains two logically distinct sections of RAM: the
space for global variables that is allocated at the compile time, and the rest of the
RAM is managed as a heap. Whenever a thread is created, stack space is allocated by
the kernel out of heap. The stack space is returned to heap once the thread exit.
Thread table is the main data structure that is being handled by the MOS kernel. In
thread table, there is one entry per thread. MOS statically allocates memory for the
thread table therefore, there can be fixed maximum number of threads hence fixed
overhead. The maximum number of threads can be adjusted at the compile time. By
default it is 12. Thread table entry comprises of 10 bytes and it contains: current stack
pointer, stack boundary information (base pointer and size), pointer to thread starting
function, thread priority level, and pointer to next thread. Once a thread is suspended
its context is saved on the stack. Since, each thread table entry comprises of 10 bytes
and by default 12 threads can be created therefore, associated overhead in terms of
memory is 120 bytes. By default each thread gets a time slice of 10 ms and context
switch happens with the help of timer interrupt. System calls and posting of a
semaphore operation can also trigger context switch.

Multithreading support in MOS comes at the cost of context switching and stack
memory overhead. In [4], the argument presented in favor of context switching
overhead is that it is only a moderate issue in WSNSs. It has been observed that each
context switch incurs 60 microseconds overhead in comparison to this default time
slice is much larger i.e., 10 ms which is less than 1% of the microcontroller cycles.
Second cost is of stack memory allocation. The default thread stack in MOS is 128
bytes and MICA2 motes have a 4 KB RAM. Since, MOS kernel occupies 500 bytes
therefore considerable space is available to support threading.

MOS avoids race conditions using binary mutex and counting semaphores.
Semaphore in MOS is a 5 byte structure and it is declared by an application as
needed. Semaphore structure contains a lock or count byte along with head and tail
pointers.

628 M.O. Farooq, S. Aziz, and A.B. Dogar

5.4 Memory Management and Security

MANTIS allows dynamic memory management but it discourages to do so because
dynamic memory management incurs lot of overhead. Since, memory is a scarce
resource in senor nodes therefore; MANTIS OS discourages the dynamic memory
management mechanisms. MANTIS manages different threads memory using the
thread table that has already been discussed. MANTIS does not provide any
mechanism for memory security.

5.5 Communication Protocol Support

MOS implements network stack in two parts. The first part of the network protocol
stack is implemented in user space as shown in Figure 4. First part contains the
implementation of layer 3, layer 2 and layer 1 protocols. While second part contains
the implementation of the MAC and PHY layer operations. The rational behind
implementing the layer 3 and above layers functionality in user space is to provide
flexibility. If an application wants to use its own data driven routing protocol, then it
can implement its routing protocol in the user space and can check its functionality.
The downside of the approach is performance i.e., network protocol stack has to use
API’s provided by MANTIS instead of communication directly with the device driver
and hardware. This results in many context switches that involves computational and
memory overheads.

The second part of the networking protocol stack is implemented in a COMM
layer. COMM layer primarily implements synchronization and MAC layer
functionalities. COMM layer provides a unified interface for communication device
drivers, for interfaces such as serial, USB, and radio devices. The COMM layer also
performs packet buffering functionality. It is possible that packets arrive from the
network for a thread that is not currently scheduled. In such scenarios COMM layer
will buffer packets. Once the thread gets scheduled COMM layer passes a pointer to
the data to the concerned thread.

% Features B WSN Operating Systems %

Small Memory Footprint — ¢

Power Efficient @
Efficient Modularity S p———————
Concurrency Intensive Operations @

Real Time Support #—m7————
L]

Fig. 5. WSN OS Grading

6 Future Research Directions

Plenty of research has been done on WSN OS but still it’s not an out dated research
domain. It’s relatively new research domain therefore; there are some issues that need

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 629

to be resolved. Following are the some issues that must be taken up for future
research.

6.1 Support for Real Time Applications

There are many real time application areas for WSN e.g., in industry automation,
chemical processes, and multimedia data processing and transmission. Schedulers
have been designed to support soft real time operations in some operating systems but
the effort is far from complete. In future, we need scheduling algorithms that can
accommodate both soft and hard real time requirements of applications.

6.2 Secondary Storage Management

With the passage of time new application areas for WSN are emerging and
applications are requiring more and more memory. Typical databases application
requires a secondary storage with sensor nodes. According to the best of authors
knowledge, there exist no work on secondary storage and file management in sensor
nodes. Secondary storage management can be an active area of research for WSN OS
in future.

6.3 Virtual Memory

Since, sensor node has very limited RAM and applications are requiring more and
more RAM. Therefore, in future we need to introduce a virtual memory concept in
sensor networks OSs. We need to device virtual memory management techniques that
are power as well as memory efficient.

6.4 Memory Management and Security

Little work has been done on memory management in WSN OS. The primary reason
behind this is that, it has been assumed that only single application runs on a WSN
OS. In future, we can have sensor nodes that can sense different phenomenon’s
therefore, it is possible that multiple application runs on sensor node. In such a
scenario we need to manage node’s memory and we need to protect one process
memory from another. Research needs to be done in memory management and
security keeping in view the limitations of the sensor nodes.

7 Conclusions and Future Work

In this paper, we have investigated the most widely used operating systems for WSNs.
This paper helps to understand the characteristics of an OS for WSNs in particular and
embedded devices in general. Design strategies for various components of an OS for
WSN has been explained, investigated along with their relative pros and cons. Target
application areas of different WSN OS has been pointed out. We believe that presented
pros and cons of different design strategies presented here will motivate the researcher
to design more robust OSs for WSNs. Moreover, this survey will help the application
and network designer to select an appropriate OS for their WSN applications.

630 M.O. Farooq, S. Aziz, and A.B. Dogar

In future, we plan to investigate other OSs for WSN i.e, SensorOS [6], A Dynamic

Operating System for sensor nodes [7], and Nano-RK [9].

References

10.

11.

12.

13.

14.

15.

. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill,

J., Welsh, M., Brewer, E., Culler, D.: Tinyos: An operating system for sensor networks,
pp- 115-148 (2005), http://dx.doi.org/10.1007/3-540-27139-2_7
Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J.: Efficient memory safety for
tinyos. In: 5th international conference on Embedded networked sensor systems. SenSys
2007, pp. 205-218. ACM, New York (2007)

Klues, K., Liang, C.J.M., Paek, J., Musaloiu, R., Levis, P., Terzis, A., Govindan, R.:
TOSThread: Thread-safe and Non-Invasive Preemption in TinyOS. In: 7th ACM
conference on Embedded Networked Sensor Systems, pp. 127-140 (2009)

Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C.,
Torgerson, H.R.: Mantis os: an embedded multithreaded operating system for wireless
micro sensor platforms. Mob. Netw. Appl. 10(4), 563-579 (2005)

Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system
for tiny networked sensors. In: 29th Annual IEEE International Conference on Local
Computer Networks, pp. 455-462. IEEE Computer Society, Washington (2004)
Kuorilehto, M., Alho, T., Hannikainen, M., Hamalainen, T.D.: SensorOS: A New
Operating System for Time Critical WSN Applications. In: Vassiliadis, S., Berekovi¢, M.,
Hiamaldinen, T.D. (eds.) SAMOS 2007. LNCS, vol. 4599, pp. 431-442. Springer,
Heidelberg (2007)

Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A Dynamic Operating System
for Sensor Nodes. In: 3rd International Conference on Mobile systems, applications and
services, pp. 163—176 (June 2005)

Kim, H., Cha, H.: Multithreading Optimization Techniques for Sensor Network Operating
Systems. In: 4th European conference on Wireless Sensor Networks, pp. 293-308 (January
2007)

Eswaran, A., Rowe, A., Rajkumar, R.: Nano-RK: an Energy-aware Resource-centric
RTOS for Sensor Networks. In: 26th IEEE International Real Time Systems Symposium,
pp- 256-265 (December 2005)

Reddy, V., Kumar, P., Janakiram, D., Kumar, G.A.: Operating Systems for Wireless
Sensor Networks: A Survey. International Journal of Sensor Networks 5(4), 236-255
(2009)

Akyildiz, L.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a
survey. Computer Networks 38(4), 393-422 (2002)

Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless
Communication 11(6), 54-61 (2004)

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.S.J.: System architecture
directions for networked sensors. In: Architectural Support for Programming Languages
and Operating Systems, pp. 93-104 (2000)

TinyOS Network Working Group, Web page,
http://docs.tinyos.net/index.php/

TinyOS_Tutorials#Network_ Protocols

Network Protocols- TinyOS documentation Wiki. Web page,
http://docs.tinyos.net/index.php/Network_Protocols

16.

17.

18.

19.

20.

21.

22.
23.

State of the Art in Wireless Sensor Networks Operating Systems: A Survey 631

Lin, K., Levis, P.: Data Discovery and Dissemination with DIP. In: 7th International
Conference on Information Processing in Sensor Networks, pp. 433—444 (2008)

Gay, D., Levis, P.,, Von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nes C
language: A holistic approach to networked embedded systems. In: SIGLAN 2003 (2003)
Dwivedi, A.K., Tiwari, M.K., Vyas, O.P.: Operating Systems for Tiny Networked Sensors:
A Survey. International Journal of Recent Trends in Engineering 1(2) (May 2009)
Protothreads- Lightweight, Stackless Threads in C,
http://www.sics.se/~adam/pt/

Tsiftes, N., Eriksson, J., Dunkels, A.: Low-Power Wireless Ipv6 Routing with
ContikiRPL. In: ACM/IEEE IPSN (2010)

Winter, T., Thubert, P.: RPL: Ipv6 Routing Protocol for Low Power and Lossy Networks,
July 28 (2010) draft-ietf-roll-rpl-11

Contiki Documentation, http://www.sics.se/~adam/contiki/docs/

Von Behren, R., Condit, J., Brewer, E.: Why Events are a Bad Idea (for High Concurrency
Servers). In: 9th Workshop on Hot Topic in Operating Systems, HOTOS IX (2003)

	State of the Art in Wireless Sensor Networks Operating Systems: A Survey
	Introduction
	Major Concerns in WSN OS Design
	Architecture
	Resource Sharing
	Protection
	Performance
	Communication
	Scheduling
	Multithreading

	TinyOS
	Architecture
	Scheduling
	Threading Model and Synchronization
	Memory Management and Safety
	Communication Protocols Support

	Contiki
	Architecture
	Scheduling
	Threading Model and Synchronization
	Memory Management
	Communication Protocol Support

	MANTIS
	Architecture
	Scheduling
	Threading Model and Synchronization
	Memory Management and Security
	Communication Protocol Support

	Future Research Directions
	Support for Real Time Applications
	Secondary Storage Management
	Virtual Memory
	Memory Management and Security

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

