Studies in Computational Intelligence 331

Athena Vakali
Lakhmi C. Jain (Eds.)

New Directions
in Web Data
Management 1

@ Springer

Athena Vakali and Lakhmi C. Jain (Eds.)

New Directions in Web Data Management 1

Studies in Computational Intelligence, Volume 331

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 310. Dipti Srinivasan and Lakhmi C. Jain (Eds.)
Innovations in Multi-Agent Systems and
Applications - 1, 2010

ISBN 978-3-642-14434-9

Vol. 311. Juan D. Veldsquez and Lakhmi C. Jain (Eds.)
Advanced Techniques in Web Intelligence, 2010
ISBN 978-3-642-14460-8

Vol. 312. Patricia Melin, Janusz Kacprzyk, and

Witold Pedrycz (Eds.)

Soft Computing for Recognition based on Biometrics, 2010
ISBN 978-3-642-15110-1

Vol. 313. Imre J. Rudas, J4nos Fodor, and

Janusz Kacprzyk (Eds.)

Computational Intelligence in Engineering, 2010
ISBN 978-3-642-15219-1

Vol. 314. Lorenzo Magnani, Walter Carnielli,and
Claudio Pizzi (Eds.)

Model-Based Reasoning in Science and Technology, 2010
ISBN 978-3-642-15222-1

Vol. 315. Mohammad Essaaidi, Michele Malgeri, and
Costin Badica (Eds.)

Intelligent Distributed Computing IV, 2010

ISBN 978-3-642-15210-8

Vol. 316. Philipp Wolfrum

Information Routing, Correspondence Finding, and Object
Recognition in the Brain, 2010

ISBN 978-3-642-15253-5

Vol. 317. Roger Lee (Ed.)
Computer and Information Science 2010
ISBN 978-3-642-15404-1

Vol. 318. Oscar Castillo, Janusz Kacprzyk,
and Witold Pedrycz (Eds.)

Soft Computing for Intelligent Control
and Mobile Robotics, 2010

ISBN 978-3-642-15533-8

Vol. 319. Takayuki Ito, Minjie Zhang, Valentin Robu,
Shaheen Fatima, Tokuro Matsuo,

and Hirofumi Yamaki (Eds.)

Innovations in Agent-Based Complex

Automated Negotiations, 2010

ISBN 978-3-642-15611-3

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)
Fusion Methods for Unsupervised Learning Ensembles, 2010
ISBN 978-3-642-16204-6

Vol. 323.Yingxu Wang, Du Zhang, and Witold Kinsner (Eds.)
Advances in Cognitive Informatics, 2010
ISBN 978-3-642-16082-0

Vol. 324. Alessandro Soro, Vargiu Eloisa, Giuliano Armano,
and Gavino Paddeu (Eds.)

Information Retrieval and Mining in Distributed
Environments, 2010

ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)
Advances in Practical Multi-Agent Systems, 2010
ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 5, 2010

ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and

Ewa Napieralska-Juszczak (Eds.)

Computational Methods for the Innovative Design of
Electrical Devices, 2010

ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)
Nonlinear Dynamics in Human Behavior, 2010
ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham (Eds.)
Intelligent Networking, Collaborative Systems and
Applications, 2010

ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle
Context-Aware Ranking with Factorization Models, 2010
ISBN 978-3-642-16897-0

Vol. 331. Athena Vakali and Lakhmi C. Jain (Eds.)
New Directions in Web Data Management 1, 2011
ISBN 978-3-642-17550-3

Athena Vakali and Lakhmi C. Jain (Eds.)

New Directions in Web Data
Management 1

@ Springer

Prof. Athena Vakali
Department of Informatics
Aristotle University

54124 Thessaloniki

Greece

E-mail: avakaliQcsd.auth.gr

Prof. Lakhmi C. Jain

School of Electrical and Information Engineering
University of South Australia

Adelaide

Mawson Lakes Campus

South Australia SA 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

ISBN 978-3-642-17550-3 e-ISBN 978-3-642-17551-0
DOI 10.1007/978-3-642-17551-0
Studies in Computational Intelligence ISSN 1860-949X

© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Printed on acid-free paper

987654321

springer.com

Preface

In the past few years we have all witnessed tremendous changes and innovations
in the way we deal with data on the Web. The major shift from navigating to
content regulating has posed new challenges in a way data is circulated, dissemi-
nated and publicized. New technologies have emerged under the Web 2.0 um-
brella and we’re already progressing on a Web 3.0 reality. It certainly is a rather
active and emerging period for Web data management and it is important to un-
derstand and clarify current practices and methodologies towards moving to a
more effective and productive Web future.

This book addresses the major issues in the Web data management in order to
highlight issues dealing with technologies and infrastructures, methodologies and
techniques as well as applications and implementations. Emphasis is placed on
Web engineering and technologies, on Web graph managing, on searching and
querying. The importance of social Web is also acknowledged with inclusion of
both social and semantic aspects.

The editors express their gratitude to all the authors of this book for their in-
sights and excellent contributions to the book. Moreover, the editors acknowledge
the help of all involved in the collation and review process, without their support
this project could not have been satisfactorily completed. Certainly special thanks
are due to the Springer-Verlag for their assistance during the preparation of the
manuscript. Finally, we thank our families for their love and support throughout
this project.

We hope that the readers will this research book informative and enlightening.
Comments from readers will be greatly appreciated. Please contact us at Athena
Vakali <avakali@csd.auth.gr> and Lakhmi Jain <Lakhmi.Jain@unisa.edu.au>.

Athena Vakali
Greece

Lakhmi C. Jain
Australia

Editors

—= Athena Vakali is an associate professor at the Depart-
ment of Informatics, Aristotle University of Thessalo-
niki, Greece. She is the head of the Operating Systems
Web/INternet Data Storage and management research
group and her research activities focus on topics of Web
information systems such as Web data management
(clustering techniques), content delivery on the Web,
Web data clustering, Web caching, text mining and mul-
timedia data management. Her publication record is now
at more than 100 research publications which have ap-
peared in several journals, book chapters and in scien-
tific conferences and she is also co-editor of the book
"Web Data Management Practices: Emerging Techniques and Technologies" pub-
lished by Idea Group Publishing. She is a member of the editorial board of the
Computers and Electrical Engineering Journal (Elsevier) and since March 2007,
she is the coordinator of the IEEE TCSC technical area of Content Management
and Delivery Networks and she has scientifically leaded more than 15 European
and national research projects.

Professor Lakhmi C. Jain is a Director/Founder of the
Knowledge-Based Intelligent Engineering Systems (KES)
Centre, located in the University of South Australia. He is
a fellow of the Institution of Engineers Australia.

His interests focus on the artificial intelligence paradigms
and their applications in complex systems, art-science
fusion, e-education, e-healthcare, unmanned air vehicles and
intelligent agents.

Contents

Chapter 1

Innovations and Trends in Web Data Management
Athena Vakali

1 Communities and Open Problems in the Web 2.0

Environment
2 Capturing Groups of Data over the Web Graph
3 Discovery of User Groups and Communities in Social

Networks . ..o
4 Motivation for Community Identification and Indicative

Application Areas
5 The Aims of This Book
References

Chapter 2

Massive Graph Management for the Web and Web 2.0
Maria Giatsoglou, Symeon Papadopoulos, Athena Vakali

1
2
3

Introduction
Handling Massive Graphs on the Web
Transactional Graph Databases
3.1 RDBMS-Based Frameworks.......................
3.2 Object Database-Based Frameworks
3.3 Native Graph Stores
3.4 Custom
3.5 Distributed Transactional Databases
Data Mining-Oriented Solutions
4.1 Compression-Based Databases
4.2 Streaming Solutions
4.3 Distributed Data Mining-Oriented Solutions
A Case for Web 2.0 Graph Stores: Social Tagging

SYStemso
5.1 Introduction to Social Tagging Systems
5.2 Social Tagging Systems: Analysis Tasks
5.3 Application Setting i

—_

X Contents

6 STS Data Management Framework Benchmark............
6.1 Participating Framework Description
6.2 Benchmark Tests Description
6.3 Benchmark Results
7 Conclusions and Outlook
References
Chapter 3
Web Engineering and Metrics
Emilia Mendes
1 Introduction
2 Measurement Scales i
2.1 Nominal Scale Type
2.2 Ordinal Scale Type ... i
2.3 Interval Scale Type,
2.4 Ratio Scale Type ...
2.5 Absolute Scale Type ...
2.6 Summary of Scale Types
3 Overview of Empirical Investigations.....................
4 Issues to Consider When Conducting Empirical Studies
5 Detailing Formal Experiments............
5.1 Typical Design 1 i i
5.2 Typical Design 1: One Factor and One Confounding
Factor
5.3 Typical Design 2
5.4 Typical Design 3
5.5 Typical Design 4 i i
5.6 Summary of Typical Designs
6 Detailing Case Studies
7 Detailing Surveys.o
8 ConcluSionS . . .« ottt
References
Chapter 4
Modern Web Technologies
Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis
1 Introduction
2 The Client-Server Model
3 The Peer-To-Peer (P2P) Model
4 Hypertext
5 Hypertext Transfer i
6 Hypertext Markup.........
T XML

7.1 RSSFeeds.........o i

Contents XI
8 SCIIPEING « .« vt e 90
9 Asynchronous Transfers and AJAX 91
10 Application Deployment 94

10.1 Database Serversc..iiiiiiiiiii.. 94
10.2 Hypertext Preprocessor- PHP 95
10.3 Active Server Pages - ASP/ASP.NET 96
10.4 Java Server Pages- JSP 97
11 SOAP . 97
12 Distributed Applications 99
13 Cloud Computingc.iiiuiininnenen.. 99
14 The Mobile Web 101
15 Web 2.0 Applicationsoiiiiiiiiii... 102
15.1 Web Communitiesoiieinen.... 103
15.2 Social Networks i 103
15.3 Office Suites 104
15.4 File and Media Sharing Services................... 105
15.5 Real-Time Web 105
16 DisCUSSION . .t oot 106
Referenceso 106
Chapter 5

Federated Data Management and Query Optimization for
Linked Open Data i 109
Olaf Gorlitz, Steffen Staab

1
2
3

Introduction 109
Example 111
Linked Open Data Search 112
3.1 Requirements i 113
3.2 Architecture Variations 113
3.3 Federation Challenges.............. 114
Related Work 115
Federation Infrastructure for Linked Open Data 116
5.1 Federator......... i 119
5.2 Data Catalog ... 122
5.3 Data Statistics i 122
Query Optimization i . 126
6.1 Data Source Mappingsooiuiinianaen... 126
6.2 Query Execution Plans.......... 127
6.3 Optimization Fundamentals 128
6.4 Optimization Strategies 129
6.5 Dynamic Programming 130
Improvements for Federation............................ 131
7.1 Streaming Results 132
7.2 Result Ranking i 132

7.3 VIEWS . ot 132

XII

8 Performance Evaluation
8.1 Real World Datasets
8.2 Artificial Datasets
8.3 Data Partitioning
9 SUIMMATY « .« o ettt et
References
Chapter 6
Queries over Web Services.,
Efthymia Tsamoura, Anastasios Gounaris, Yannis Manolopoulos
1 Introduction
1.1 Optimization Problems of Queries over WSs
1.2 Chapter Contributions and Structure
2 Different Aspects of the Problem of Optimizing WS
QUETIES ottt
2.1 Execution Environment
2.2 Input Queries
2.3 Input Operators.........,
2.4 Optimization Criteria
3 Optimization Approaches..........
3.1 Operator Ordering Problems in a Static
Environment.......... i
3.2 Operator Ordering Problems in Dynamic
Environments
3.3 Tuple Routing and Scheduling Problems
3.4 Data Transfer Planning Problems
3.5 Other Problems Related to Queries over WSs
3.6 Discussion and Open Issues....................
4 Conclusion
Referencesco
Chapter 7

Towards Adaptively Approximated Search in Distributed

Architectures.
Barbara Catania, Giovanna Guerrini

1 Introduction

2 Examples.

3 Query Approximation.......... i

3.1 An Introduction to Query Approximation

3.2 Query Rewriting

3.3 Preference-Based Methods

3.4 Recommendation Systems

3.5 Approximate Query Processing.................

Contents

Contents XIII

4 Adaptive Query Processing i 187
4.1 An Introduction to Adaptive Query Processing. 187
4.2 Styles of Adaptation 188

4.3 Adaptive Approaches for Local Query Processing 191
4.4 Adaptive Approaches for Distributed Query

Processing........ ... o 192
4.5 Adaptive Approaches for Query Processing on
Streaming Data i . 193
5 Requirements for ASAP Systems 194
5.1 Application Contexts, 195
5.2 User Participation 196
5.3 Frequency of Adaptation 197
5.4 Properties Monitored 198
5.5 Re-optimization L 198
5.6 COTTECEIESS -+« o vttt et e e 201
5.7 Reusability 0o 202
6 Related Worko 203
7 Concluding Remarks i 204
References 205
Chapter 8
Online Social Networks: Status and Trends 213
George Pallis, Demetrios Zeinalipour-Yazti, Marios D. Dikaiakos
1 Introduction 213
2 Architecture of OSNs 216
3 Taxonomy of OSNs 218
4 Case StUdIes . . oo v e 220
4.1 Facebook 221
4.2 MyYSPACE o vt et 222
4.3 Hib . 223
4.4 FLHCKr ..o 223
4.5 LinkedIn i 224
4.6 Twittero 224
47 YouTube 225
5 Future Research Challenges........... 227
5.1 Overlay Networking 227
5.2 Privacy and Trust 228
5.3 Knowledge Discovery and Search 228
5.4 Business and Social Impact, 230
6 Conclusioniitit i 231

References 232

XIV Contents

Chapter 9

Enhancing Computer Vision Using the Collective

Intelligence of Social Media............ 235
Elisavet Chatzilari, Spiros Nikolopoulos, loannis Patras,

loannis Kompatsiaris

1 Introduction 236
2 Learning and Web 2.0 Multimedia 237
2.1 Learning in Computer Vision 237
2.2 Social Tagging Systems and Web 2.0 Multimedia 239
3 Multimedia Analysis and Management 240
3.1 The Need for Semantics 240
3.2 Visual Features Extraction and Regions
Identification 241
3.3 Learning Mechanisms 242
3.4 Annotation Cost for Learning 245
4 Leveraging Social Media for Training Object Detectors 247
4.1 Problem Formulation 248
4.2 Framework Description........................... 250
4.3 Implementing the Framework 253
4.4 Experimental Study 258
5 Related Methods i 263
6 ConCluSIONS oottt 266
References i 267
Chapter 10
From Extensional Data to Intensional Data: AXML
for XML . ..o 273
Viet Binh Phan, Eric Pardede, J. Wenny Rahayu
1 Introduction 273
2 eXtensible Markup Language (XML)..................... 274
2.1 Why XML?. . 275
2.2 Basic Concepts of XML 276
2.3 XPathand XQuery ..., 281
3 Intensional XML Data i . 285
4 Active XML Solution 290
4.1 AXML Basic Conceptsovvvveiiiii.. 291
4.2 AXML Projectsoove 294
4.3 ARAXA Project ... 299
4.4 AXML for J2ME Platform 302
4.5 Summary AXML Projects 304
5 Alternative Solutions to Intensional XML Data............ 306
6 Conclusion i 309

References 309

Contents XV

Chapter 11

Migrating Legacy Assets through SOA to Realize Network
Enabled Capability 311
David Webster, Lu Liu, Duncan Russell, Colin Venters,

Zongyang Luo, Jie Xu

1 Introduction 312
2 Service Oriented Architecturesin NEC 314
2.1 Service Oriented Architectures 314
2.2 Web Services 315
2.3 NEC Requirements and Realizing NEC through an
SOA L 317
2.4 SOA and Workflows to Realize NEC 318
2.5 An SOA Integration Model for Realizing NEC 319
3 Incremental Service Delivery within the NEC System of
SYSEEMS . o .ot 321
3.1 Introduction to Constraints of Developing Service
Systems for NEC 321
3.2 Existing Approaches to Reuse Legacy Systems as
(Web) Servicesooviiiiiieiiii . 322
3.3 Abstract Decision Process Model for Wrapping
Legacy Componentsooouuinninnan... 325
4 NECTISE SOA Demonstration and Critical Evaluation 327
4.1 Makeup of the Demonstrator Implementation 328
4.2 Life-Cycle Aspects of the Demonstrator 331
4.3 Exposing a Legacy Sensor Application to an SOA
Network.o 334
5 Conclusions of Legacy System Migration towards SOA 337
5.1 Challenges in Legacy System Migration towards
SOA for NEC 337
5.2 Maintenance Life-Cycle of Wrappers 339
6 Conclusion and Opportunities for Future Work 340
References 342

Author Index e 347

Chapter 1
Innovations and Trends in Web Data Management

Athena Vakali

Department of Informatics
Aristotle University
54124 Thessaloniki, Greece
avakali@csd.auth.gr

The growing influence and resulting importance of the Web 2.0 applica-
tions has changed the daily practices in the areas of research, education, fi-
nance, entertainment and an even wider range of applications in work and
personal life. Such a development in the roles of users such as navigators,
content creators and regulators has had a major impact. This impacts on the
amount and type of data and the sources that are now circulated and dis-
seminated over the Web. It has posed new and interesting research ques-
tions and problems in Web data management.

1 Communities and Open Problems in the Web 2.0
Environment

Considerable interest has developed both in the analysis and description of Web
user activities. Such applications, allow users to create their own content and to
form communities having these interests. Graph structures which can use these
techniques have been widely used to model users problems and their relationships.
The amount of data generated by today's Web systems produces very large and
complex graphs that are difficult both to analyze and to interpret. Consequently,
several methods for community detection and graph compression have been de-
veloped. These can identify groups of users which are based on the topology and
the properties of graphs that contain them as nodes.

In Web usage the term community is used to describe a group of pages that can
depict common interests and are able to share many hyperlinks (Kumar, Ragha-
van, Rajagopalan, and Tomkins, 1999). The community has been defined as a set
of Web objects both users and pages similar with their own logical and semantic
structures. This is done in order to facilitate Information Retrieval and Data Man-
agement (Zhang, Xu Yu, and Hou, 2006). In the context of Web 2.0, communities
and often a community are defined with reference to certain sets of users and re-
sources. These may involve factors such as articles, images, videos and tags.
Combinations (Cattuto and others, 2008) would also be included.

Considering the structure of the graphs, a community has been defined as a set
of nodes having common properties and playing similar roles within the graph.
For example, groups of websites having similar topics such as Fortunato and

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 1
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

2 A. Vakali

Castellano, 2008. In order to model the concept of communities and to identify
communities using algorithmic methods, it is necessary to utilize concepts of
graph theory. These include areas such as clique, cycle, k-clique (Palla, Derényi,
Farkas, & Vicsek, 2005), N-clique (Alba, 1973), k-core (Batagelj & Zaversnik,
2002) and k-plex (Seidman & Foster, 1978). These correspond to coherent sub-
graph structures and have also been used. In the development of techniques to
model the concept of a community based on these structures, and concepts which
include (i) density, which indicates the coherence of the subgraph, (ii) Degree
Centrality, which refers to the number of edges connecting a given node to other
nodes, (iii) Betweenness Centrality, which has high values for nodes that are in-
cluded in many the determination of the shortest paths between nodes, and (iv) the
edge “betweenness”, which refers to the number of shortest paths between the
different pairs of nodes containing an edge, are all of particular significance.
These concepts are used to describe the significance of a node or an edge in a
graph. They have been used in various techniques used to detect communities in
networks.

Web 2.0 applications and social networks allow users to create virtual personali-
ties that are represented by the users’ profiles, and to create social connections. The
user profiles include information about: Their characteristics and interests (e.g.
Facebook"), Sites that interest them (e.g. Delicious’), or about any other type of
information that is described in a given Web 2.0 application and reflects their pref-
erences. The social connections can be represented either by explicit friendship
links or they can be inferred through the analysis of the users’ activity. This may be
comments in a blog service or references to a research repository. The analysis of
the above types of links contributes to the identification of communities in a net-
work. This is important for analyzing the features of individual communities, and
for understanding the structure and properties of the overall network (Milo &
Itzkovitz, 2002) (Vazquez, Dobrin , Sergi, Eckmann, Oltvai, and Barabdsi, 2004).

The problem of community identification, despite having been investigated for
many years, requires finding effective methods for graph partitioning which can
be applied to complex and large-scale networks. Some open questions still requir-
ing further investigation are the following:

e Data Collection problems which can occur and are related to the
common reference of data: Users can interact with existing Web 2.0 ap-
plications such as Wikis, Blogs, Social Tagging Systems, and Social Net-
works. This can provide information about participants interests, dependant
on the particular activity or the data in question. A problem which is as yet
unsolved is the collection and integration of data from different data
sources. This is necessary for the uniform reporting and analysis of data.
The solution of this particular problem can lead to radical conclusions con-
cerning the interests of users as well as to provide a more complete image
of their data profile. It is possible to identify any multiple relationships that
may exist between two or more users. These may be friends or associates.

! http://www. facebook.com/
2 http://delicious.com/

Innovations and Trends in Web Data Management 3

e Size and heterogeneity of the data: Different types of data collected from
existing Web 2.0 applications and their huge volume require the definition
of new representations and indexing structures that will assemble as much
information as possible about the data described and contribute to the de-
velopment of efficient and scalable methods of analysis. Due to the huge
volume of data, new data representation approaches are required. These
should contemplate the use of an external memory (Chiang, Goodrich,
Grove, Tamassia, Vengroff, and Vitter, 1988). In addition, distributed envi-
ronments may be used (Panconesi & Rizzi, 2001). Problems may be con-
sidered as data streams (Zelke, 2009). Another important factor which
should be considered is the nature of the data. This varies depending on the
application for which they are acquired. For example, in blogs users tend to
generate mostly text data. In the case of social tagging systems multimedia
data such as images, videos, for example will dominate.

e Assessing the relationships between users: In most networks, the com-
munities that are identified will have overlaps between their members
due to the many different kinds of relationships that often connect the
community members (Palla, Derényi, Farkas, and Vicsek, 2005). For ex-
ample, users can belong to different groups depending on their: Level of
Education, Working Environment, Hobbies and Family. Consequently,
the overlap between the communities constitutes an important factor in
the design of methods for community identification. A particular chal-
lenge is the definition of dynamic models that can reflect the features of
community members in time, as well as their evolution time.

e Requirement for metrics that will incorporate semantic features
related to the content. This is in addition to the behavior and the psy-
chology of the users. Most methods of finding the communities in social
networks are based on the study and exploitation of the properties of the
graphs that illustrate the relationships among the members of a social
network. The features that are often exploited are the power and the type
of relationships between users, their profile, and the interaction between
them. That is the comments to one another. That is the exchange of data
for example. The data that are used in the network and their content. That
is bookmarks, tags, reviews, pictures, video, for example can also contain
important information which may contribute to the discovery of commu-
nities. Specifically, the semantic analysis of the data provides important
information about, the users, their profiles, interests and preferences.
Also it contains information about the respective social networks and
their structure (Mika, 2005). Such analysis is done on different types of
content such as tags, text, images. Therefore the derived multi-
dimensional results can be utilized in the definition of metrics which will
contribute to the discovery of unexpected groups of users with common
interests and behaviors.

4 A. Vakali

o Effective clustering methods for the detection of communities: The
nature and vast sizes of data available from Web 2.0 applications necessi-
tate the existence of more effective and scalable methods that can
highlight the capacity and special characteristics of communities. For ex-
ample the temporal and social trends that appear in these communities,
and the relationships between the community members. Special attention
should be given to the development of universal methods able to be ap-
plied to different types of networks. These may differ either on how the
users access the data. That is whether it is fixed or mobile networks, or in
the nature of the social or the Web 2.0 network. Dependant on whether it
is a blog or a social recommendation system for example.

2 Capturing Groups of Data over the Web Graph

Recently there has been rising research interest in complex data networks obtained
from various scientific fields which include biology, sociology and information
technology and are primarily obtained from the Web. The networks derived from
real-world data for example the Web, generally present a non-random organiza-
tion. For example, the degree of the nodes in real-world networks often follows
the power law distribution. This is according to whether there are many nodes
which have large connectivity or a few nodes with little connectivity or degree.
The uneven distribution of nodes is observed at the global level, but also locally
(Fortunato & Castellano, 2008). There are groups of densely connected nodes cre-
ating groups or communities of data.

The existence of typical densely connected structures in many modern data
networks has contributed to the emergence and evolution of a new research field.
This is dedicated to the identification and capturing groups of data in complex
networks. We will now give a summary of some of the most important method-
ologies that have so far been proposed or implemented. Given the large number of
relevant methods in literature, only a selection of some of the most important
methods will be included. These may be considered as indicative of some of the
general categories. Typically, the approach is followed by finding groups of data
and communities in complex networks. The implementation of the algorithms
traditionally used in similar problems is considered. The algorithms used for graph
partitioning and the algorithms used for node clustering are now considered:

Review of graph partitioning and node clustering methods

i. Graph partitioning

The first types of methods used for finding communities in complex networks
were those which were related to the problem of graph partitioning. This re-
quired the segmentation of a graph into a number of subgraphs. This enabled the
number of edges connecting nodes of different subgraphs to be mini-
mized. Some of the important methods for graph partitioning are: the method
used in the Kernighan-Li algorithm (Kernighan and Lin, 1970). The spectral

Innovations and Trends in Web Data Management

partitioning method (Barnes, 1982) (Pothen, Simon, and Liou, 1990), and meth-
ods that do partitioning in levels. These are applied for example to the Multi-
level Recursive-Bisection family of algorithms METIS (Karypis and Kumar,
1999). Other methods used to partition the graph are based on the minimization
of measures such as conductance (Bollobas, 1998) (§ima and Schaeffer, 2006)
and cut ratio (Chan, Schlag, and Zien, 1993) (Wei and Cheng, 1989).

In general, graph partitioning methods require the prior definition of the
number of subgraphs that occur after the graph is partitioned. In some cases
even to define the size. Techniques that are applied to do graph bisection are
recursively repeated for each resulting partition. These characteristics, com-
bined with the lack of an appropriate metric to assess the quality of the final
partitioning, render these methods inadequate for the identification of commu-
nities in complex networks (Newman, 2004).

ii. Clustering

Another early approach used to identify communities in networks adopted clus-
tering techniques from the field of data mining. Namely, these are hierarchical
clustering techniques were used for networks where the nodes appear to be
organized hierarchically into groups (Hopcroft, Khan, Kulis, & Selman, 2004)
(Jain & Dubes, 1988) (Scott, 2000). In addition as partitional clustering algo-
rithms, with k-means (MacQueen, 1967) these are the most prominent algo-
rithms representatives of this category. In hierarchical clustering algorithms, a
node similarity metric is defined. This is used to compute the similarity for
every pair of graph nodes to create a similarity matrix. Divisive clustering algo-
rithms require the definition of a parameter k in advance, map each node to a
point of a metric space and define a distance measure between points, =and
then, the graph nodes are assigned to k groups so that a cost function based on
the given metric distance is optimized. Despite the fact that the identification
of groups of “similar” nodes is accomplished by either merging or divisive
techniques, there are often cases when some nodes are not assigned to any
group and they end up as isolated individuals.

More recent approaches to the problem of community identification have been
based on the observation of the algorithms on these categories. Because of the
types of restrictions they impose based on the prior definition of the number of
groups, cannot usually be practically and efficiently applied to find communities
from the complex networks. This observation highlights the need for algorithms
designed exclusively to solve the problem of community identification in complex
networks. Various approaches have been developed to solve this problem. For
most of the categories a large number of representative algorithms have been de-
veloped. The most significant methodologies based on the classifications listed
above are summarized in the following table. Some representative algorithmic
approaches are also included.

A. Vakali

. . Representati L
Methodology | Emphasis/Main idea epresentative Characteristics
approaches
Divisive Divisive algorithms follow Girvan & Newman, | e Edge removal based on the edge
algorithms the approach of repetitively 2002 betweenness metric
removing edges that are) o Selection of the best partitioning
considered to connect nodes | Girvan & Newman, from the derived hierarchy based on
belonging to the different 2004 the modularity metric
communities, on the basis of e Hish com: ut':itional complexity
some metric. Using this ¢ P P
technique communities are Tyler, Wilkinson, & | e Extension to (Girvan and Newman,
gradually separated, whilea | Huberman, 2003 2002)
community hierarchy is o Reduction of computational
created. complexity
Pinney and e Extension to (Girvan & Newman,
Westhead, 2006 2002)
e Support for overlapping
Gregory, 2007 communities
Radicchi, Castellano, | o Edge removal based on the edge
Cecconi, Loreto, and clustering coefficient metric
Parisi, 2004
Fortunato, Latora, o Edge removal based on the
and Marchiori, 2004 information centrality metric
Modularity- The methods of this category | Newman, 2004a o Agglomerative hierarchical
based methods use the modularity metric as

a community evaluation
function and attempt to
optimize it.

algorithm
o Greedy technique

Clauset, Newman, &
Moore, 2004

e Extension to (Newman, 2004a)
¢ Complexity reduction

Blondel, Guillaume,
Lambiotte, and
Lefebvre, 2008

e Greedy technique
¢ Low computational complexity

Newman, 2006a

® Modularity optimization via spectral
bisection

e Not very accurate for networks with
more than two communities

White and Smith,
2005

e Approach the community
identification task as a spectral
relaxation problem

o Fast algorithm for large sparse
graphs

Massen and Doye,
2005

o Modularity optimization via
simulated annealing

e Requirement for initial
parameterization
o Slow method applied to small graphs

Duch and Arenas,
2005

o Uses the heuristic search technique
extremal optimization
o Relatively fast and accurate method

Tasgin, Herdagdelen,
and Bingol, 2007

o Modularity optimization using
genetic algorithms

Innovations and Trends in Web Data Management

Spectral Spectral algorithms exploit Donetti and Mufioz, Exploitation of the eigenvectors of
algorithms the algebraic properties of the | 2004 the Laplacian matrix
matrices that can be derived Mapping of the nodes to a metric
from a graph, such as the space using the eigenvector
Laplacian and Adjacency components as coordinates
matrices,. Theaim is to Calculation of similarity via the
cluster the nodes based on the Fuclid e dist
o s, uclidean or angle distance
similarity of the matrices
eigenvectors. Capocci, Servedio, Similarity calculation via the
Caldarelli, and Pearson correlation coefficient of
Colaiori, 2004 the eigenvectors of the right
stochastic matrix
Zarei and Samani, Identification of “anti-community”
2009 structures in the complement graph
(Its edges are the edges that the
initial graph lacks in order to be
complete)
Application of a spectral algorithm
in the Laplacian matrix of the
network
Ability to find small communities in
small networks
Methods based In general, Statistical Hastings, 2006 Techniques based on Bayesian
on statistical Inference (Mackay, 2003) Newman & Leicht, inference, where the model is
inference uses statistics and model 2007 adjusted based on the maximization
hypothgsis to infer the Hofman & Wiggins, of a likelihood
properties of a given 2008
population. That is the - -
topology of a given graph. Reichardt & White, Techniques based on blockmodeling
This approach to graph 2007
clustering is based on the
assumption that the nodes are | Rosvall & Techniques based on model selection
clustered in communities Bergstrom, 2008
glgl;?a;?lnl?nek:jgeen;?jgz}é‘ ZiY, Middendorf, & Techniques based on information
Wiggins, 2005 theory
Dynamic Algorithms based on spin Reichardt and Usage of the g-states Potts model
algorithms models Bornholdt, 2004 (Wu, 1982) which describes a
system of spins that can be in one
out of ¢ different states
Definition of a spin state for each
node and the study of the
interactions among the spins of
neighboring nodes
Evolution of the system via
simulating annealing and the
identification of communities of
nodes characterized by similar spin
states
Ability of identifying overlapping
communities
Fast method, as most calculations
require local information
Son, Jeong, and Noh, U§es th§ Ferromagnetic Random
2006 Field Ising (FRFI) model

A. Vakali

Algorithms based on random
walks (Hughes, 1995). They
utilize the fact that a random
walker will be for longer time
inside a community, as
communities are
characterized by dense
structure of high

Zhou, 2003

Utilizes random walks to define a
distance between pairs of nodes,
and later a measure of dissimilarity

Pons & Latapy, 2005

Calculates the distance between
nodes based on the possibility of
moving from one node to the other
within a predetermined number of

connectivity. steps
van Dongen, 2000 o The Markov Cluster Algorithm
(MCL) algorithm is used in many
applications due to its simplicity
o It applies expansion and inflation
techniques at the graph’s right
stochastic matrix
Algorithms based on the Arenas, Diaz- o The existence of an oscillator with
synchronization phenomenon | Guilera, & Peréz- random phase at each node is
which appears in every Vicente, 2006 assumed., The synchronization of the
system with interactions Boccaletti, oscillators of nodes belonging to the
(Pikovsky, Rosenblum, & Ivanchenko, Latora, same community is expected to
Kurths, 2001) and is Pluchino, & happen before full synchronization is

characterized by similar
states of the system’s
members

Rapisarda, 2007 observed

3 Discovery of User Groups and Communities in Social
Networks

The discovery of groups of users from Web 2.0 social networks has emerged as a
particularly interesting field of application for community identification methods.
These groups consist mainly of users who have common interests or goals, ac-
cording to similar behavior patterns. They may be linked together by bonds of
friendship. That is, if when supported by the requisite social network. The behav-
ioral patterns of users refer to the way in which they participate in a Web 2.0 so-
cial network. This includes:

e creating new content

e commenting on existing content

e appending to content metadata (fags) so as to provide a description,

e creating bonds of friendship and providing cooperation with other
users,

e Discussions between users,

e creating and / or participating in teams or groups that relate to
specific topics.

Data that can be derived from a Web 2.0 social network to share the information
between users, provide the relational information that indicates the way in which
users connect to the content, and the interactions between users. It soon becomes

Innovations and Trends in Web Data Management 9

apparent if this information can be utilized for discovery by other user communi-
ties. The resulting communities can prove particularly useful in applications such
as recommender systems. Changing the composition of the recommendations
according to the thematic group to which each user belongs in order to improve
the accuracy. An important motivation for user community identification is the
large number of users who choose to participate in social Web 2.0 applications.
For example, according to statistical data, Facebook, a popular social network, has
more than 400 million active registered users. Of these half connect to the network
on any given day. The average Facebook user has 130 friends in the network.
More than 25 billion pieces of information, such as web links, news stories, blog
posts, notes, photo albums, for example, are shared between users monthly3.

In the following paragraphs, a short review of the research that deals with the
issue of finding communities in which users by means of on-line social networks
share information.

One of the first published research works (Ohsawa, Soma, Matsuo, Matsumura,
and Usui, 2002) dealt with the analysis of data from message boards. It depicts the
relationships between users and between users and subjects as a graph structure
using text co-occurrences. The topological structure of graph was then studied in
relation to three factors: (i) how centralized is the graph’s structure. Data on
dominant users or topics and links, (ii) A measure of the coherence of the commu-
nication context, (iii) the orientation towards the formation of creative decisions.
The defining of the respective metrics. The values of these metrics were associ-
ated with a classification of 'communities' using the following categories:

e topic-based,

e problem solving,

e focused on product / service evaluation,

e mutual supporting forums for the use of users,

e focus on the establishment of friendly relations between the
participants,
e interested in taking part in discussions,

These have a degree of specific characteristics. The term “community” was used to
represent the graph resulting from a discussion group. The existence of groups hav-
ing a different orientation within a “community” was also considered. Special ref-
erence was made to user roles. This distinguished some of the users as “leaders”
who can propose new ideas, drive discussion within a group, or circulate ideas of
interest between the different groups. This research work is important from a theo-
retical standpoint. It does not suggest that an algorithm for the automatic extraction
of groups has a different orientation from that of the “community’.

A subsequent research paper (Zhou, Manavoglu, Li, Giles, and Zha, 2006) aims
at discovering user communities in social networks using an analysis of semanti-
cally rich text documents. This can include e-mails, instant messaging and message

3 Facebook Statistics:
http://www. facebook.com/press/info.php?statistics.
Last-access date: 19/05/2010

10 A. Vakali

boards. This method creates a Bayes network in order to model the formation of
such documents in a social network. It uses the author or the recipient of the docu-
ment and the topic as variables. The community is a latent variable. It should be
noted that this method requires setting the number of communities and topics in
advance. One of the proposed approaches leads to a polynomial distribution of user
communities. There is also the possibility of finding a polynomial distribution of
topics in the communities. The advantage of this method is that a semantic descrip-
tion is obtained for each community, through fopic tags that define the topics. The
proposed method was tested in the data/set that consists of the e-mails of the Enron
company” and it produced results similar to those obtained by applying an algo-
rithm based on Modularity Optimization (Clauset, Newman, and Moore, 2004).

Another research topic that relates to the problem of finding communities of
users is the identification of users who have played the most active role in a com-
munity. The work of Zhang, Ackerman, and Adamic (Zhang, Ackerman, and Ad-
amic, 2007) focused on systems for finding experts (expertise finders). This is
used to find the users who have the necessary expertise on a topic. The on-line
Java Forum community served as application field for this research work. The
users pose and answer questions about the Java programming language. Applying
appropriate ranking algorithms to the graph of the corresponding social network.
Examples are ExpertiseRank,which is based on PageRank (Page, Brin, Motwani,
& Winograd, 1999). A variant of HITS (Kleinberg, 1999), was used on simple
metrics. It was proved that the graph structure can be used to evaluate the users of
an on-line network of experts. The emergence of more experienced users can be
observed. In addition, according to this study, the choice of an appropriate algo-
rithm will result in a more accurate ranking also depends on the network structure.

A research paper dealing with a similar issue (Shin, Xu, and Kim, 2008) uses
the term POWER USERS to characterize users of on-line communities. These are
very popular and have a good reputation regarding their activities. It aims to de-
sign a method for identifying them. Several statistical features have been defined
based on the comments and mail of the users. It also provides information on the
features based on the relationships existing between users. After experimenting
with the proposed features, Cross Reference (CR) emerges as the feature that pro-
vides the greatest precision in the identification of power users. This is provided
that an appropriate threshold value has been defined. This feature is based on the
number of comments exchanged between a given user and the other members. The
research results were utilized in the development of a search engine for users. It
was based on the cross reference feature.

Recent research (Kammergruber, Viermetz, and Ziegler, 2009) focuses on the
problem of finding communities of users in Social Tagging Systems. The proposed
method creates a vector for each user with the tags that He / She has used as com-
ponents. Then, the Cosine Similarity Metric is used to express the similarity be-
tween the pairs of vectors. Thus the similarity of the behavior or interests of the
respective users is noted. The program then applies the algorithm DBSCAN (Es-
ter, Kriegel, Sander, and Xu, 1996) for the clustering of similar vectors which is
then applied to the corresponding users. The resulting communities consist of

* http://www.cs.cmu.edu/~enron/

Innovations and Trends in Web Data Management 11

users who share common interests and the interests of the community of users are
then represented by a group of tags. The authors propose the utilization of the
resulting communities in the development of: friendship ties between the members
of the community, the content of joint interest, relevant tags, and the development
of a social tagging system of users.

This overview concludes with the use of current trends relating to the problem of
identifying user communities in social networks. It is observed that there is a lim-
ited number of research works in this area. There are some studies about the utiliza-
tion of user relationships in social networks. They model networks using graphs
and focus on problems such as: The Analysis of the Structure and Characteristics of
Small-Sized Social Networks (e.g. Ohsawa, Soma, Matsuo, Matsumura, and Usui,
2002). The recognition of the most active users in a network through the use of
appropriate metrics (Zhang, Ackerman, and Adamic, 2007) (Shin, Xu, & Kim,
2008). The problem of user community identification considered in some research
works. These focus and experiment using specific types of networks. They include
the network that results from: (i) the modeling of all the e-mail messages ex-
changed during a time period between the members of a company (Zhou, Manavo-
glu, Li, Giles, & Zha, 2006), and (ii) a social tagging system (Kammergruber,
Viermetz, and Ziegler, 2009). It is evident that there is a need to develop a method-
ology that can globally solve, with appropriate automatic adjustment, the problem
of finding communities of users in social networks of most types.

Most research works link two users in the graph model of the given network.
When their relationships are not clearly defined (e.g. through friendship links), on
the basis of Text Analysis and Word / Expression co-occurrence, The use of
Traditional Similarity Measures, such as the cosine similarity and also used. An
important issue that is not fully addressed in the literature is the possibility of ex-
tracting an automatic semantic description for the communities and their evalua-
tion. Based on this, it is evident that there is a need to develop additional user
similarity and community evaluation measures. These will take into account fea-
tures of the behavior of the users. Examples are the content such as Text, Image,
for example. In addition the relevance and cohesion of the communities, must re-
spectively be assessed. It is important to include the simple application of tradi-
tional techniques when identifying communities in graphs. It is also important to
develop a methodology that will take into account the special characteristics con-
cerning the behavior of users in social networks. This would include the execution
time required for a given activity, the emotional state, the special roles of users,
and the degree of privacy necessary. This is to name but a few of the possible
variables.

4 Motivation for Community Identification and Indicative
Application Areas

The analysis of data concerning the users of social networks and the Web 2.0
applications can be utilized by various applications in order to provide new
opportunities for ; promotion, recommendation and projection of content. Other
factors are the improvement and the quality of the services and thereby increase

12

A. Vakali

user satisfaction. Some indicative application types follow in which social net-
work analysis methods, and more specifically methods for finding communities,
which can be integrated and used. Investigation must be made as to whether there
are any imminent relevant applications, including related examples.

Personalization: The Social Web represents a new philosophy in which
the users themselves are the main producers of the content (User Con-
tributed Content). The users create, manage and spread the content and
the information (Coppola, Lomuscio, Mizzaro, and Nazzi, 2008). This is
done by the use of Wikies, Blogs, Social Tagging and multimedia shar-
ing systems. For example YouTube, flickr, Twitter, Jaiku’, Social
Networking Applications such as Facebook are used. Semantic Web
technologies provide the opportunity of developing better personalized
applications and services. These may provide new capabilities, which al-
low users to describe aspects such as social networks, environment data
in a standardized way (Heath and Motta, 2006). Semantic tools such as
the RDF model, the SPARQL language, ontologies, the OWL language,
and the microformat approach, allow the analysis and representation of
social networks. The resulting data is presented in a structured and con-
sistent manner. Consequently, it is possible to combine data from differ-
ent sources and facilitate the utilization of “social” data (Ereteo, Buffa,
Gandon, Grohan, Leitzelman, and Sander, 2008).

Content Recommendation: There has been an explosive like growth of
information in social networking applications in the last few years. The
role of content recommendation applications has consequently become
very important (Adomavicius and Tuzhilin, 2005). Existing content rec-
ommendation programs are mainly based on the content required by us-
ers (content-based) (Pazzani & Billsus, 2007). The relationships between
the users is through their common requirements. See Collaborative Filter-
ing (Herlocker, 2004). Hybrid techniques of content recommendation
have also been developed (Burke, 2002). In the context of Web 2.0 appli-
cations to new problems related to content recommendation have ap-
peared., Examples are recommendations for tags (Sigurbjornsson and
Zwol, 2008). The detection of user communities has had a direct impact
on the recommendation techniques. The information retrieval model for a
user varies depending on the community in which they belong (Almeida
and Almeida, 2004). Despite the growing importance of content recom-
mendation engines arising from web applications (such as Amazon® and
Digg’), the existing mechanisms have not benefited from community
detection technologies.

5

http://www.jaiku.com/

® Amazon.com. Recommendations Item-to-Item Collaborative Filtering
http://www.win.tue.nl/~laroyo/2L340/resources/
Amazon-Recommendations.pdf
" Digg's new recommendation system relies on the wisdom of crowds
http://www.technologyreview.com/Infotech/21045/pagel/

Innovations and Trends in Web Data Management 13

¢ Trend Identification: An analysis of the communities can contribute to
the recognition of recent activity which uncovers emerging trends within
a social tagging system. In (Sun and others, 2008) a statistical method
used to identify interesting topics from a dataset from Delicious. In
(Hotho and others, 2006) a trend identification measure is proposed that
“catches” trends related to a subject based on a variant of the PageRank
algorithm. Finally, in (Wetzker and others, 2008) a statistical model that
identifies topics and indicates trends in a dataset of Delicious is shown
and apply a smoothing process that leads to a better calibration of the
model.

5 The Aims of This Book

This book has assembled major topics which embed new trends and practices in
terms of Web Data Management with a focus on modern technologies and Web
2.0 reality. More specifically, the book is organized into three major sections
which include 10 chapters in a step-by-step manner. It starts with structures, pro-
ceeds to technologies and searching and concludes with an emphasis on the social
media of the Web 2.0. More specifically, the major themes of this book are as
follows:

e Structures and Metrics

Massive Graph Management for the Web and Web 2.0
Web Engineering and Metrics
Modern Web Technologies

. Management of Searching and Querying

Federated Data Management and Query

Optimization for Linked Open Data

Queries over Web Services

Towards an Adaptively Approximated Search in Distributed Architectures

e Social Media and Semantics

Online Social Networks: Status and Trends

Enhancing Computer Vision using the Collective Intelligence of Social
Media

From XML to AXML

Migrating Legacy Assets through SOA to Realize Network Enabled
Capability

The editors hope that this book will be easy to follow and be of interest to engi-
neers and computer scientists who already have a basic background on topics such
as data mining, databases and Web technologies. The book will be useful to the
researchers as well as graduate students or (advanced) undergraduate students in
engineering or computer science academic programs.

14

A. Vakali

References

(1]
(2]

(3]

(4]
(3]
(6]

(7]

(8]

(9]
(10]
(11]

[12]

(13]

(14]

[15]
[16]

(17]

(18]

Adomavicius, G., Tuzhilin, A.: Towards the Next Generation of Recommender Sys-
tems: A Survey of the State of the Art and Possible Extensions (2005)

Alba, R.D.: A Graph-Theoretic Definition of a Sociometric Clique. J. Math. Soc. 3,
113-126 (1973)

Almeida, R.B., Almeida, V.A.: A community-aware search engine. In: Proceedings of
the 13th international Conference on World Wide Web, WWW 2004, May 17 - 20,
pp. 413-421. ACM, New York (2004)

Arenas, A., Diaz-Guilera, A., Peréz-Vicente, C.: Synchronization reveals topological
scales in complex networks. Physical Review Letter 96, 114102 (2006)

Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM J. Algebraic
Discrete Methods 3(4), 541-550 (1982)

Batagelj, V., ZaverSnik, M.: Generalized cores. Eprint arXiv:cs/0202039 (2002),
http://www.arxiv.org

Baumes, J., Goldberg, M.K., Magdon-Ismail, M.: Efficient Identification of Overlap-
ping Communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y.,
Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27-36. Springer, Hei-
delberg (2005)

Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting
complex network modularity by dynamical clustering. Phys. Rev. E 75(4), 45102
(2007)

Bollobds, B.: Modern Graph Theory. Springer, New York (1998)

Burke, R.: Hybrid Recommender Systems: Survey and Experiments (2002)

Capocci, A., Servedio, V., Caldarelli, G., Colaiori, F.: Detecting communities in large
networks. Physica A 352, 669-676 (2004)

Cattuto, C., Baldassarri, A., Servedio, V.D.P., Loreto, V.: Emergent Community
Structure in Social Tagging Systems. Advances in Complex Systems 11(4), 597-608
(2008)

Chan, P.K., Schlag, M.D., Zien, J.Y.: Spectral K-way ratio-cut partitioning and clus-
tering. In: Proceedings of the 30th International Conference on Design Automation,
pp. 749-754. ACM Press, Dallas (1993)

Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External Memory Graph Algorithms. In: Proceedings of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms San Francisco, California, United States, Sympo-
sium on Discrete Algorithms, January 22 - 24, pp. 139-149. Society for Industrial and
Applied Mathematics, Philadelphia (1995)

Clauset, A.: Finding local community structure in networks. Physical Review E 72
(2005)

Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Physical Review E 70, 66111 (2004)

Coppola, P., Lomuscio, R., Mizzaro, S., Nazzi, E.: m-Dvara 2.0: Mobile & Web 2.0
Services Integration for Cultural Heritage, Social Web and Knowledge Management.
In: Social Web 2008 Workshop at the 17th World Wide Web Conference
(WWW 2008), Beijing, China, April 22 (2008)

Donetti, L., Muifioz, M.A.: Detecting network communities: a new systematic and ef-
ficient algorithm. Journal of Statistical Mechanics: Theory, P10012 (2004)

Innovations and Trends in Web Data Management 15

(19]

(20]

(21]

(22]
(23]
[24]

[25]

[26]

(27]

(28]

(29]

(30]
(31]

(32]

(33]
(34]

(35]

(36]

(37]

Duch, J., Arenas, A.: Community detection in complex networks using Extremal Op-
timization. Phys. Rev. E 72(2), 27104 (2005)

Ereteo, G., Buffa, M., Gandon, F., Grohan, P., Leitzelman, M., Sander, P.: A state of
the Art on Social Network Analysis and its Applications on a Semantic Web. In: Pro-
ceedings of the ISWC 2008 Workshop on Social Data on the Web (SDoW 2008),
Karlsruhe, Germany, October 27 (2009)

Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In: Proceedings of the 2nd In-
ternational Conference on Knowledge Discovery and Data Mining (KDD 1996), pp.
226-231 (1996)

Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proceedings
of the National Academy of Sciences USA 104(1), 36-41 (2007)

Fortunato, S., Castellano, C.: Community structure in graphs. In: Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

Fortunato, S., Latora, V., Marchiori, M.: A method to find community structures
based on information centrality. Physical Review E 70, 56104 (2004)

Giannakidou, E., Kompatsiaris, I., Vakali, A.: SEMSOC: Semantics Mining on Mul-
timedia Social Data Sources. In: Proceedings of the 2nd IEEE International Confer-
ence on Semantic Computing, Santa Clara, CA, USA (2008a)

Girvan, M., Newman, M.E.: Community structure in social and biological net-
works 99, 7821-7826 (2002)

Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., Skow-
ron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91-102. Springer, Heidel-
berg (2007)

Hastings, M.B.: Community Detection as an Inference Problem. Phys. Rev. E 74(3),
35102 (2006)

Heath, T., Motta, E.: Personalizing Relevance on the Semantic Web through Trusted
Recommendations from a Social Network. In: International Workshop on Semantic
Web Personalization, Montenegro, June 12 (2006)

Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative fil-
tering recommender systems (2004)

Hofman, J., Wiggins, C.: A Bayesian approach to network modularity. Physical Re-
view Letters 100, 258701 (2008)

Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities in
Large Linked Networks. Proceedings of the National Academy of Sciences 101,
5249-5253 (2004)

Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Trend Detection in Folksonomies.
In: Proceedings of SAMT, pp. 56-70 (2006)

Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper Saddle
River, NJ (1988)

Kammergruber, W., Viermetz, M., Ziegler, C.: Discovering Communities of Interest
in a Tagged On-Line Environment. In: CASON 2009: Proceedings of the 2009 Inter-
national Conference on Computational Aspects of Social Networks, pp. 143-148.
IEEE Computer Society, Washington (2009)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning ir-
regular graphs. SIAM Journal on Scientific Computing 20(1), 359-392 (1999)
Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal 49, 291-307 (1970)

16

(38]

(39]

(40]

[41]

[42]

[43]
[44]
[45]
[40]

[47]
(48]

[49]
(50]
(51]
[52]

(53]

[54]
[55]

[56]

[57]

A. Vakali

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604-632 (1999), DOI= http://doi.acm.org/10.1145/324133.324140
Koutsonikola, V., Vakali, A., Giannakidou, E., Kompatsiaris, I.: Clustering of Social
Tagging System Users: A Topic and Time Based Approach. In: Vossen, G., Long,
D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 75-86. Springer, Heidel-
berg (2009)

Koutsonikola, V.A., Petridou, S.G., Vakali, A.L., Hacid, H., Benatallah, B.: Correlat-
ing Time-related Data Sources with Co-clustering. In: Bailey, J., Maier, D., Schewe,
K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 264-279.
Springer, Heidelberg (2008)

Li, X., Snoek, C.G.M., Worring, M.: Learning Social Tag Relevance by Neighbor
Voting. IEEE Transactions on Multimedia 11(7), 1310-1322 (2009)

MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.
281-297. University of California Press, Berkeley (1967)

Massen, C.P., Doye, J.P.: Identifying “communities” within energy landscapes. Phys.
Rev. E 71(4), 46101 (2005)

Mika, P., Flink, J.: Semantic Web technology for the extraction and analysis of social
networks. Web Semantics 3(2), 211-223 (2005)

Milo, R., Itzkovitz, S.: Network motifs: Simple building blocks of complex networks.
Science 298, 824-827 (2002)

Nepusz, T., Petréczi, A., Négyessy, L., Bazso, F.: Fuzzy communities and the concept
of bridgeness in complex networks. Phys. Rev. E 77(1), 16107 (2008)

Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 56131 (2004)
Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys.
Rev. E 69, 66133 (2004a)

Newman, M.E.J.: Finding community structure in networks using the eigenvectors of
matrices. Physical Review E 74 (2006)

Newman, M.E.J.: Modularity and community structure in networks. Proceedings of
the National Academy of Sciences of USA 103, 8577-8582 (2006a)

Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69(2), 26113 (2004)

Newman, M.E., Leicht, E.A.: Mixture models and exploratory analysis in networks.
Proc. Natl. Acad. Sci. USA 104, 9564-9569 (2007)

Ohsawa, Y., Soma, H., Matsuo, Y., Matsumura, N., Usui, M.: Featuring web commu-
nities based on word co-occurrence structure of communications: 736. In: WWW
2002: Proceedings of the 11th international conference on World Wide Web, p. 742.
ACM, New York (2002)

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford InfoLab (1998)

Palla, G., Derényi, 1., Farkas, 1., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814-818 (2005)
Panconesi, A., Rizzi, R.: Some Simple Distributed Algorithms for Sparse Networks.
Distributed Computing 14(2), 97-100 (2001),
DOI=http://dx.doi.org/10.1007/PL00008932

Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems (2007)

Innovations and Trends in Web Data Management 17

(58]

(591

[60]

[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]

[69]

[70]

(71]

(72]

(73]

[74]
[75]

[76]

Pinney, J., Westhead, D.: Betweenness-based decomposition methods for social and
biological networks. In: Barber, P.B.S., Barber, S., Baxter, P., Mardia, K., Walls, R.
(eds.) Interdisciplinary Statistics and Bioinformatics: Proceedings. Leeds University
Press, Leeds (2006)

Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random
Walks. In: Yolum, p., Glingor, T., Giirgen, F., Ozturan, C. (eds.) ISCIS 2005. LNCS,
vol. 3733, pp. 284-293. Springer, Heidelberg (2005)

Pothen, A., Simon, H., Liou, K.P.: Partitioning sparse matrices with eigenvectors of
graphs. SIAM journal of Matrix Analysis and Application 11, 430-452 (1990)

Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from
community photo collections. In: Proceedings of the 2008 international Conference on
Content-Based Image and Video Retrieval, Niagara Falls, Canada (2008)

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identify-
ing communities in networks. Proceedings of the National Academy of Science of the
United States of America 101, 2658-2663 (2004)

Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Complex
Networks with a g-state Potts Model. Phys. Rev. Lett. 93, 218701 (2004)

Reichardt, J., White, D.: Role Models for Complex Networks. European Physical
Journal B 60, 217-224 (2007)

Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of USA 105,
1118 (2008)

Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27-64 (2007)
Scott, J.: Social Network Analysis, a handboook. SAGE publications, London (2000)
Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept.
Journal of Mathematical Sociology 6, 139-154 (1978)

Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in
social tagging systems using hierarchical clustering. In: RecSys 2008: Proceedings of
the 2008 ACM conference on Recommender systems, pp. 259-266. ACM, New York
(2008)

Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8), 888-905 (2000)

Shin, H., Xu, Z., Kim, E.: Discovering and Browsing of Power Users by Social Rela-
tionship Analysis in Large-Scale Online Communities. In: WI-IAT 2008: Proceedings
of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology, pp. 105-111. IEEE Computer Society, Washington (2008)
Sigurbjornsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proceeding of the 17th international Conference on World Wide Web,
WWW 2008, Beijing, China, April 21 - 25, pp. 327-336. ACM, New York (2008)
éima, J., Schaeffer, S.E.: On the NP-Completeness of Some Graph Cluster Measures.
In: Thirty-second International Conference on Current Trends in Theory and Practice
of Computer Science (Sofsem 2006), pp. 530-537. Springer, Berlin (2006)

Son, S.-W., Jeong, H., Noh, J.-D.: Random field Ising model and community structure
in complex networks. Eur. Phys. J. B 50(431) (2006)

Tang, L., Liu, H.: Graph Mining Applications to Social Network Analysis. In: Manag-
ing and Mining Graph Data. Springer, Heidelberg (2009) (in press)

Tasgin, M., Herdagdelen, A., Bingol, H.: Community Detection in Complex Net-
works Using Genetic Algorithms (2007) (preprint)

18

(771

(78]

(791

(80]

(81]

(82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

(90]

[91]

A. Vakali

Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated dis-
covery of community structure within organizations. In: Communities and technolo-
gies, pp. 81-96. Kluwer, B.V, Deventer, The Netherlands (2003)

van Dongen, S.: Graph Clustering by Flow Simulation, Ph.D. thesis. Ph.D. thesis,
Dutch National Research Institute for Mathematics and Computer Science, University
of Utrecht, Netherlands (2000)

Vakali, A., Kompatsiaris, Y.: Detecting and Understanding Web communities. In:
Proceedings of the WebSci 2009: Society On-Line, Athens, Greece, March 18-20
(2009)

Viazquez, A., Dobrin, R., Sergi, S., Eckmann, J.-P., Oltvai, Z.N., Barabdsi, A.—L.: The
topological relationship between the large-scale attributes and local interaction pat-
terns of complex networks. Proceedings of the National Academy of Sciences of
USA 101(52), 17940-17945 (2004)

Wetzker, R., Plumbaum, T., Korth, A., Bauckhage, C., Alpcan, T., Metze, F.: Detect-
ing Trends in Social Bookmarking Systems using a Probabilistic Generative Model
and Smoothing. In: Proceedings of the International Conference on Pattern Recogni-
tion (ICPR). IEEE, Los Alamitos (2008)

Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking Sys-
tems: A del.icio.us cookbook. In: Proceedings of ECAI 2008 Workshop on Mining
Social Data (MSoDa), Patras, Greece, July 2008, p. 2630 (2008)

White, S., Smith, P.: A Spectral Clustering Approach to Finding Communities in
Graphs. In: Proceedings of the SIAM Data Mining Conference (SDM), Newport
Beach, California, pp. 7684 (2005)

Zanardi, V., Capra, L.: Social Ranking: Uncovering Relevant Content Using Tag-
based Recommender Systems. In: RecSys 2008: Proceedings of the 2008 ACM con-
ference on Recommender systems, pp. 51-58. ACM, New York (2008)

Zarei, M., Samani, K.A.: Eigenvectors of network complement reveal community
structure more accurately. Physica A: Statistical Mechanics and its Applica-
tions 388(8), 1721-1730 (2009)

Zelke, M.: Algorithms for Streaming Graphs: Approaching Graph Problems with
Limited Memory and without Random. Suedwestdeutscher Verlag fuer Hochschul-
schriften (2009)

Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: WWW 2007: Proceedings of the 16th international Con-
ference on World Wide Web, Banff, Alberta, Canada, pp. 221-230. ACM, New York
(2007)

Zhang, Y., Xu Yu, J., Hou, J.: Web Communities: Analysis and Construction.
Springer, Heidelberg (2006)

Zhou, D., Manavoglu, E., Li, J., Giles, C.L., Zha, H.: Probabilistic models for discov-
ering e-communities. In: WWW 2006: Proceedings of the 15th international confer-
ence on World Wide Web, pp. 173-182. ACM, Edinburgh (2006)

Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev.
E 67, 41908 (2003)

Ziv, E., Middendorf, M., Wiggins, C.H.: Information-theoretic approach to network
modularity. Phys. Rev. E 71(4), 46117 (2005)

Chapter 2
Massive Graph Management for the Web and Web 2.0

Maria Giatsoglou', Symeon Papadopoulos'2, and Athena Vakali'

' Aristotle University, 54124, Thessaloniki, Greece
mgiatsog@csd.auth.gr,
avakali@csd.auth.gr
2 Informatics and Telematics Institute, CERTH, 57001, Thermi, Greece
papadop@iti.gr

Abstract. The problem of efficiently managing massive datasets has gained
increasing attention due to the availability of a plethora of data from various
sources, such as the Web. Moreover, Web 2.0 applications seem to be one
of the most fruitful sources of information as they have attracted the inter-
est of a large number of users that are eager to contribute to the creation of
new data, available online. Several Web 2.0 applications incorporate Social
Tagging features, allowing users to upload and tag sets of online resources.
This activity produces massive amounts of data on a daily basis, which can be
represented by a tripartite graph structure that connects users, resources and
tags. The analysis of Social Tagging Systems (STS) emerges as a promising
research field, enabling the identification of common patterns in the behavior
of users, or the identification of communities of semantically related tags and
resources, and much more. The massive size of STS datasets dictates the ne-
cessity for a robust underlying infrastructure to be used for their storage and
access.

This chapter contains a survey of existing solutions to the problem of
storing and managing massive graph data focusing particularly on the im-
plications that the underlying technologies of such frameworks have on the
support/operation of Web 2.0 applications using them as back-end storage so-
lutions, as well as on the efficient execution of web mining tasks. Considering
the category of STS as an example of Web 2.0 applications, the requirements
that are posed for the management of STS data are thoroughly discussed.
On the basis of these requirements three frameworks have been developed,
using state-of-the-art technologies as backbones. The results of benchmarks
conducted on the developed frameworks are presented and discussed.

1 Introduction

The widespread adoption of Web 2.0 tools and technologies that took place dur-
ing the last years has fundamentally changed the way information is published on
the Web. A plethora of Web 2.0 applications, including Social Tagging Systems,
Wikis, and Blogs, have emerged, amongst which there are some that recently gained

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 19
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

20 M. Giatsoglou, S. Papadopoulos, and A. Vakali

profound success. Some of the most well-known examples of successful Web 2.0
applications are: Facebookﬂ, a social networking website counting hundreds of mil-
lions of users, Flickr@, a photo management and sharing application that allows
users to tag pictures and form communities, and deliciousﬁ, a social bookmarking
web service where users can store, share and retrieve bookmarks. What is common
between all Web 2.0 applications is that the activity of users results in data that are
interconnected through associations, thus forming a network.

The breakthrough of Web 2.0 applications was accompanied by the eagerness of
a large proportion of people to join them and to actively contribute to the generation
and publishing of Web content. This type of user activity produces massive amounts
of data on a daily basis, regarding the uploaded content itself, as well as the relations
formed between (a) users, (b) users and shared/uploaded content, and (c) content and
metadata (such as tags) associated to it by users. A rough idea of the amount of these
data can be drawn taking Facebook as an example, where each week more than 3.5
billion pieces of content (such as web links, news stories, blog posts, notes, photos)
are shared [67]]. The data magnitude, the need to model their relation structure, as
well as to efficiently store and retrieve them, have created new challenges in the field
of data management. Classic data management solutions, such as data warehouses,
seem to be inadequate to store efficiently massive sets of relational data. Moreover,
emphasis has been moved from traditional entry-based data access, e.g. customer
records, to navigational access that allows reaching e.g., the references of an article,
the friends of a user via friendship links, etc. The design and implementation of a
robust data management framework that manages to maintain a stable performance
as the size of data increases, and support navigational queries in a optimal way is
still a challenging task for web-scale retrieval systems.

The existence of such massive amounts of data containing complex and emerging
structures has also given new impetus to the field of data mining. The information
of how users or online resources relate to each other, as well as how users react
to resources has captured the interest of researchers, as it was soon realized that
it could be exploited to deduce interesting conclusions about how groups of people
characterize resources and interpret content, or even what pieces of information tend
to be more popular among them. The analysis of Web 2.0 data is further motivated
by the notion that the collaboration and contribution of many individuals results in
the “formation” of a shared or group intelligence, characterized as collective intel-
ligence. Collective intelligence is a new source of information that can be utilized
in a variety of applications, as it is produced by the contribution of multiple peo-
ple representing different views and ideas. For example, it can be exploited in order
to uncover groups of either users that share common interests, resources that seem
to belong to the same thematic region, or tags (usually referred to as communities
of users, resources, or tags, respectively). The discovery of such meaningful com-
munities can be utilized in applications such as recommender systems, in order to

! http://www. facebook.com/
2 http://www.flickr.com/
3 http://delicious.com/

Massive Graph Management for the Web and Web 2.0 21

increase their efficiency. For example, tag communities can be used in a system that
recommends tags to users that they would possibly find relevant to a given resource.

The analysis of relational data produced by Web 2.0 applications, however, re-
quires the use of special methods and poses a question on the data structure that
should be used for storing and accessing them. A natural way to model Web 2.0
data seems to be the network or graph model where nodes represent entities/objects
and edges represent the relations that exist between them. In order to enable the
progress of research on such relational datasets continuously increasing in size, a
prerequisite is the availability of a robust framework, appropriate for storing and
accessing graph-based data. Some of the most challenging issues that should be
carefully taken into consideration are: the storage of large graphs (e.g. of 10° nodes
and 10'° edges) in a form that will be as compact as possible, the support for rea-
sonably fast graph traversals and updates, and the design of a framework that will
be easy to use and adaptable to the specifications of individual applications.

This chapter provides a review of several solutions and infrastructures used for
the storage and analysis of very large graphs, and also discusses and compares their
individual characteristics and limitations. Moreover, the special case of using a So-
cial Tagging Systems (STS) as a source of data that can be modeled as a tripartite
graph is thoroughly discussed, as an interesting application area. After considering
and summarizing the requirements for the storage and analysis of data from STS,
we present the results of a set of benchmark experiments that have been designed to
compare the performance of three STS data management frameworks built upon dif-
ferent graph persistence technologies, with respect to the storage and management
of graph-based data derived from social tagging applications.

The rest of the report is structured as follows. Section 2l discusses the challenges
presented by the analysis of massive graphs and includes a categorization of the
different available solutions for the management of graph-structured data. Section
and Section [provide an overview of some of the most recent graph management
solutions that belong to the category of transaction graph databases and data mining-
oriented solutions, respectively. Section [3] presents STS as an application setting,
describing some of the state-of-the-art data mining tasks that are currently being
applied in the area, and also summarizes the requirements that these tasks impose
on the underlying framework used. Section 6] describes the architecture of three
frameworks that have been developed for the management of STS data, presents a
set of benchmarks experiments designed to test and compare their performance, and
discusses the benchmark results. Finally, Section [Z] concludes the chapter.

2 Handling Massive Graphs on the Web

The study of the Web has recently emerged as a new research field. Researchers
started to model the Web as a network consisting of nodes representing web pages
and edges representing the hyperlinks that connect them, forming the so-called Web
Graph. The edges in such a model can be: directed (e.g. a hyperlink leading from
web page x to web page y), or undirected (e.g. a hyperlink leading from web page x

22 M. Giatsoglou, S. Papadopoulos, and A. Vakali

to web page y and vice versa). One of the earliest application domains that exploited
the graph model of the Web to extract knowledge was the domain of the Web search
engines [[10.37]. However, as the Web gained more and more popularity, the num-
ber of web pages made available for analysis, acquired usually with the help of web
crawlers, was rapidly increasing. While the Web started to reach the size of billions
of web pages with ten or hundred times more edges, technological advances made it
possible to collect for analysis datasets of sizes proportional to the aforementioned
numbers. The availability of such large datasets posed new questions on what tech-
niques and algorithms should be employed to analyze the data.

The obvious problem is that as sizes are getting bigger, the main memory of an
average personal computer does not suffice anymore in order to load and manipulate
all of the data at once. This has created the need for the development and employ-
ment of alternative storage and analysis techniques (Figure [I). Some of the most
straightforward approaches are:

e to compress the data so as to reach a size small enough in order to fit in an
average computer’s RAM and then analyze them,

e to store the data in an external memory repository, and fetch them in batches
when required by the analysis algorithm, combining possibly a caching schema
to increase performance,

e to use a cluster or a grid of computer nodes in order to distribute the data so as
to fit into each node’s RAM for faster analysis, and then aggregate the result.

A prerequisite for efficient access to Web and Web 2.0 data within information re-
trieval scenarios or during the execution of demanding analysis operations is the
existence of a robust underlying graph management framework. Frameworks for
large graphs’ management are usually disk-based, enabling the persistent storage of
the large amounts of graph data. There are numerous approaches as to how to store
and provide access to such data, that make use of existing infrastructures. Figure
depicts a categorization of existing persistent graph frameworks. Existing solutions
can be distinguished in two generic categories depending on the reason why the

GRAPH MANAGEMENT

GRAPH SCALE
TECHNOLOGY
10%nodes — 10 edges

LARGE TO VERY LARGE disk-based indexing
106nodes — 108 edges (external memory)
HUGE distributed graph
10'° nodes — 10'2 edges management

Fig. 1. Techniques to store and analyze graph data depending on graph scale

Massive Graph Management for the Web and Web 2.0 23

graph persistent
stores

transactional graph
management stores

[RDBMS] [Object DB] native

data mining oriented
frameworks

custom

[streaming] [compressionfbased]

[generic] [special purpose]

Fig. 2. Categories of graph management frameworks

storage and availability of the data is required: (a) transactional graph databases,
and (b) data-mining oriented solutions.

Transactional graph databases can be used for the management of graphs where
data (modeled as graph nodes or edges) can be inserted, deleted or updated on
demand. This type of frameworks support ACID transactions to ensure reliable
processing of database operations. The underlying infrastructures are disk-based
enabling the persistent storage of large graphs. The infrastructures that can be used
in a transactional graph database can be classified as follows:

Frameworks based on Relational Database Management Systems (RDBMS),
Frameworks based on Object Databases,

Native graph stores, characterized as either: (i) generic, or (ii) special-purpose,
Custom solutions.

In addition, as mentioned above, there is a requirement for frameworks to store
and allow access to web graphs for data mining purposes. The most usual case in
graph data mining (or graph mining) is to examine static datasets, and analyze data
with algorithms that involve random navigational access to graph nodes and edges.
Graph mining operations therefore pose different requirements to the respective data
management framework, e.g. there is no need for graph updates, and also the graph
accessing mechanisms should be as fast as possible in order for the algorithms to
execute in a reasonable time. In general, data mining-oriented solutions can be dis-
tinguished in two subcategories:

e Streaming,
e Compression-based.

The categorizarion of graph frameworks depicted in Figure Rlis based on their suit-
ability for a particular application setting. However, frameworks belonging to these
categories may address the problem of scalability of the graph data in a different
way. In particular, when the size of data is very large, persistent graph frameworks
based on distributed computing infrastructures can be used in order to exploit the

24 M. Giatsoglou, S. Papadopoulos, and A. Vakali

storage capacity of multiple computer nodes. In Sections [3 and F] the categories of:
(i) transactional graph databases and (ii) data mining-oriented graph management
solutions, respectively, are thoroughly discussed. Each section presents represen-
tative examples of frameworks and methods belonging to the respective category,
including examples of the special case of distributed graph management solutions.

3 Transactional Graph Databases

Transactional graph databases are disk-based dynamic graph management solutions
that operate on the basis of fransactions. The following subsections intend to pro-
vide a thorough insight in the different types of back-end infrastructures that can be
used in a transactional graph database.

3.1 RDBMS-Based Frameworks

One early approach for storing networks has been the use of RDBMS, such as
MySQL. The obvious reason is that RDBMS have been established as the dominant
choice for storing data due to their simplicity, robustness, and flexibility as a generic
data storage and manipulation mechanism, compared to their alternatives. Moreover,
they provide native support for integrity constraint checking, removing this burden
from the application side. However, nowadays relational databases receive criticism
based on the argument that they are not efficient for managing relational data.

Critics claim that the RDBMS structure is too rigid for storing networks of data,
considering that they store both data and their relationships in the form of tables. In
particular, the use of tables makes it difficult to fit new kind of data, as their structure
should be strictly defined from the beginning and cannot be altered later. Moreover,
their most serious limitation is that relational databases are not scalable enough for
graph access operations, especially when the size of data is continuously increasing.

However, some people support the use of traditional RDBMS for storing and
analyzing graphs. For example, one recent approach [57] proposes:

o the storage of the graph nodes in an SQL table, using an integer identifier for
each node as the primary key of the respective record, and also

e the storage of the graph edges in a separate table, using the source and destina-
tion nodes for each edge as foreign keys to the nodes table.

Requirements such as the uniqueness of an edge or the prevention of self-loops are
ensured with the use of SQL CHECK constraints. The graph can then be traversed
by either SQL querying, SQL standards Common Table Expressions (CTEs) that
enable recursions though the nodes, or by using temporary tables [28]]. In addition,
the construction of the graph’s transitive closurd] with the use of CTEs is proposed.
A graph’s closure can be used to answer queries related to social networks, such as
the degree of separation or the possible paths between two nodes. Nevertheless, the

4 The transitive closure of a graph is a graph which contains an edge (1,v) whenever there is
a directed path from u to v.

Massive Graph Management for the Web and Web 2.0 25

proposed methods might be too slow depending on the size of the graph and the ap-
plication performance requirements, so there may be a need for employing caching
schemes on top of such a framework. In the following paragraphs two RDBMS are
presented, namely (i) H2 and (ii) Oracle DB, which are considered as a suitable
basis for graph management frameworks.

H2 database. Using a fast database engine can partially mitigate the performance
shortcomings of RDBMS-based graph frameworks. The H2 database engine [69] is
anative Java RDBMS that appears a promising choice. Benchmark results show that
not only the memory usage of H2 database is smaller, but also its query optimizer
results in query times shorter than the times achieved by most competing RDBMS.
Moreover, H2 is considered to be scalable as it creates both in-memory and disk-
based tables, using hash table and tree indexing or B-tree indexing, respectively.
Another important asset is that with H2 there is no limit on the size of the result set
of a query, as it buffers the results to disk after a certain size of data is exceeded.

Oracle Database. This database supports modeling networks of data as graphs and
analyzing them (since the 10g version). These functionalities are included in Ora-
cle’s Network Data Model (NDMﬁ [49]. NDM enables the storage of the network
nodes, links (directed or undirected), as well as ordered lists of links that contain
no repeating links or nodes, and are referred to as paths. Graphs are represented
in object-relational form in the database, using separate tables, whereas queries and
updates are performed via PL/SQL. NDM allows posing certain network constraints
such as minimum bounding rectangle, path cost, and path depth, and also supports
graph operations including shortest path between nodes, minimum cost spanning
tree, k-nearest neighbors, k-shortest paths, as well as node and link buffering.

NDM analyzes networks after loading them entirely in memory, thus posing
boundaries on the size of network that it can support. Its network analysis capa-
bilities were enhanced in the 11g version of Oracle, with the introduction of the
load-on demand (LOD) approach that made the analysis of larger networks possi-
ble [62]. With LOD, the network is not loaded in memory from the beginning, but
is partitioned and after that, only the partitions that are required for analysis are
loaded in memory automatically. Moreover, partition loading can be accelerated by
generating and using BLOB representations.

3.2 Object Database-Based Frameworks

Object or Object-oriented (OO) databases constitute an alternative solution to
RDBMS, combining object-oriented programming language capabilities with tra-
ditional persistent data storage and management features. Their use enables devel-
opers to model and store complex data as objects, without the need of defining and
abiding to a specific relational schema, and simplifies the modification process that
is required in case the data model changes. Another argument in favor of object
databases with respect to RDBMS is their support for an object schema for data
representation both within the application as well as for persistent storage, without

3 Part of the Oracle Spatial component.

26 M. Giatsoglou, S. Papadopoulos, and A. Vakali

the need for an Object-Relational mapping [60], which is usually a rather cum-
bersome task. However, the use of object instead of relational databases results in
bigger files for the same data, as they do not separate the structure from the data
themselves. Regarding relationships between data, relational and object databases
follow two different approaches; (i) relational relationships are usually based on set
theory idioms, while (ii) object relationships are mainly based on idioms adopted
from graph theory, such as trees, thus depending on the approach, information is ac-
cessed in different ways [74]. Moreover, object databases are in general considered
to be faster than relational databases for specific access patterns such as navigational
access, whereas this is not the case for direct queries to objects.

Object databases can be readily used for storing graph data, mapping the graph
structure on an object schema. With such a mapping, e.g. each graph node can be
represented by an object of the class node with the edges being represented as rela-
tionships between the appropriate node objects. This constitutes a simpler and more
natural way of storing graph data than using a relational database, and is expected to
be a faster solution due to the navigational nature of the graph access patterns. One
shortcoming of using object databases is the bigger size of the database files.

Although not so widely used as RDBMS, there is a variety of object databases
available. In the following paragraphs three popular open-source object databases
are presented: (i) Oracle Berkeley DB, (ii) db4o, and (iii) Neodatis ODB.

Oracle Berkeley DB or Berkeley DB is an open-source object database, that can
be embedded in applications developed in various programming languages, such
as Java, C++, Perl, and Python. The use of the Berkeley DB library allows de-
velopers to freely decide how data will be stored in a record, without enforcing
any constraints on the data. The database comes in three different editions that
are also configurable to fit any application’s special requirements, with some edi-
tions/configurations supporting traditional database features such as ACID transac-
tions, locking, concurrency management, and replication [[75].

Berkeley DB stores data as key/data pairs and supports B-tree, hash table, record
and queue access methods. It does not support SQL queries, whereas queries can
be performed with the use of indexes to each record. According to its developers,
Berkeley DB is very scalable, supporting small databases that fit entirely in memory,
as well as extremely large disk-resident databases of sizes up to 256 terabytes of
data. In order to speed up access to data that are frequently accessed, Berkeley DB
offers an in-memory cache [68]].

db4o is another open-source object database library, that can be embedded in Java
and .NET applications. Similar to Berkeley DB, db4o combines traditional database
features, such as robustness, reliability, replication, concurrency support, with sim-
plification of the data storage procedure. An interesting feature is that db4o not
only creates automatically the data model that is required to store data objects dur-
ing a transaction, but also updates the models on-demand [66]. db4o supports Native
Queries (NQ) instead of string-based APIs, such as SQL, in order to enable database
access using the programming language that has been used for the development of
the application. Moreover, it supports the Query by Example (QbE) API to enable

Massive Graph Management for the Web and Web 2.0 27

easy searching for matching objects, as well as the LINQ extensions for .NET. db4o
uses B-trees for indexing, supports caching for efficient access to objects, and also
provides an in-memory mode. As far as scalability is concerned, db4o can create
database files of up to 254 GB.

After conducting the Poleposition database benchmark[d, between db4o and other
relational databases, such as MySQL, JavaBD and SQLite, combined with object-
relational mappers (JDBC or Hibernate), db4o was found to perform better than its
competitors for read, write, query, and delete operations, when they involve access-
ing complex object structures or deep hierarchies. Moreover, its performance was
acceptable, although worse than one competitor, for simple flat objects [63].

NeoDatis ODB is also an open-source object database library, embeddable in Java
and .NET applications, that supports ACID transactions and can be used in a multi-
threaded environment. In ODB every entity (class or object) is characterized by an
Object Identifier (OID), which is associated with the respective physical position
of the entity in the database file. OIDs are used by pointers in the database for
accessing directly a specific object, or for storing relations between objects. They
are grouped in blocks that contains the OIDs of the objects that are instances of
a given class, in order to enable quick access to them. ODB has also a caching
mechanism for mappings from OIDs to objects and reversely, and supports B-tree
indexing. ODB provides the following query possibilities for data retrieval: (i) all
objects of a specific class, (ii) a subset of objects of a specific class via CriteriaQuery,
(iii) a subset of objects of a specific class via NativeQuery, (iv) direct id-based object
retrieval, or (v) specific object value retrieval [70].

Based on the results on the Poleposition benchmark, it appears that ODB per-
forms on average better than db4o on most circuits, although there are also some
results that indicate that db4o is slightly faster than ODB for some circuits [77].

3.3 Native Graph Stores

A natural way to store large graph-shaped datasets seems to be through the use of a
persistence engine that directly encodes the graph structure. This type of graph store
can be characterized as native and should in general support the representation and
storage of both nodes including node-related properties, as well as attributed links
connecting pairs of data nodes. In the following sections some examples of existing
native graph stores will be given, including stores that are generic, i.e. designed
to enable the storage of various types of graphs, or are intended for the storage of
special graph types, e.g. RDF or XML.

Generic graph stores: Graph databases have been recently presented as an efficient
way to handle networks of data. Unlike RDBMS, graph databases are designed with
inner support for entities that represent nodes and relationships (or edges), thus
making it possible to store and access data in a more efficient and simple way.
They aim to provide a complete environment that will make the storage, indexing
and quick retrieval of graph data easy, and at the same time retaining traditional

6 http://www.polepos.org/

28 M. Giatsoglou, S. Papadopoulos, and A. Vakali

database properties such as: transactions, durable persistence, concurrency control,
and transaction recovery. Graph databases have also been designed taking seriously
into consideration the matter of scalability.

One of the first and more complete efforts towards the direction of a generic
native graph store has been the development of Neo4j [[73] and its release as an
open-source graph database. Neo4j is an embedded, disk-based, transactional graph
persistence engine that stores data in the form of graphs. Apart from the capabilities
of storing nodes and edges and also properties related to them (they are collectively
referred to as primitives), Neo4j has an easy-to-use, rather straightforward API and
provides a variety of extra graph manipulation facilities, such as checks for possible
inconsistencies and support for both directed and undirected edges. Moreover, it
requires constant time for adding, removing, or accessing a property and creating,
deleting, or accessing a node or relationship, whereas it requires linear time for
accessing the relationships that involve a given node. However, although in general
Neo4j can be considered as fast when concurrent reads take place, it is slower with
concurrent updates. This requires careful consideration of the number of operations
that will be packed in a Neo4j transaction, which is also affected by the available
size of RAM. Moreover, transactions may be useful for ensuring data integrity, but
sometimes they can seriously decrease the speed of operations.

It is claimed that Neo4;j can scale up to billions of nodes, relationships and prop-
erties, but this is a maximum capability relevant only for servers with more than
16 GB of RAM. In general, the scalability of Neo4j is greatly affected by the hard-
ware specifications of the computer station hosting it. For example, it is claimed
that an average laptop with 1-2 GB RAM handles tens of millions of primitives,
whereas a standard server of 4-8 GB RAM handles hundreds of millions of primi-
tives. However, our experiments with Neo4j (see Section [6) did not give proof for
such scalability.

Although Neo4j does not provide a native indexing mechanism yet, it supports
indexing facilities by use of the Apache Lucene text indexing library. This utility
allows indexing nodes with key-value pairs, just like properties, so that they can be
queried and retrieved using a given key. The querying process can be accelerated
via a LRU cache that holds the most recently accessed results. A limitation of this
indexing scheme, however, is that it does not allows indexing relationships.

Another example of native graph store is grDB [30], In grDB graph data are
stored grouped in blocks, with the block being the smallest amount of information
inserted or extracted from the database. The information that grDB stores for a graph
is structured in the form of adjacency lists for each node using an integer identifier
per node. A grDB instance consists of the storage component, that stores the blocks
containing parts of the adjacency lists of one or more nodes, and the block cache
component, that caches some storage blocks in order to improve performance. It
also supports multiple levels of storage files.

Special-purpose graph stores: Data encoded in the XML format exhibit an in-
nate tree-like structure that could be used for modeling certain relations that exist
in web graphs. More specifically, since a tree is by definition a connected graph

Massive Graph Management for the Web and Web 2.0 29

that does not contain any cycles, XML could be possibly used for modeling data
nodes with relations that conform to these limitations, or at least can be normal-
ized in more than one trees. For the efficient storage and management of XML data,
special databases have been developed. Although the design and functionality of
these special-purpose graph stores have been optimized for the storage and retrieval
of XML data, they could provide a framework for the storage of graph data (with
the aforementioned limitations). Native XML databases, such as Apache Xindice
and Tamino XML Server [19], constitute an interesting alternative to RDBMS, as
they do not require the definition of a schema (schema-free), thus allowing storing
records (XML documents) including semi-structured data that do not necessarily
follow a strict predetermined structure. In such databases the storage and retrieval
of XML documents takes place according to a (logical) model, such as the XPath
model, whereas data retrieval is usually performed by means of the XQuery lan-
guage. On most occasions, indexing is used to accelerate the querying process [61]].
XML databases have, however, received criticism about not being very scalable,
as in general XML queries and other mechanisms result in very slow retrievals
across large document repositories [[S8I59]. It also should be mentioned that XML
databases are not required to have any particular underlying physical storage model,
as they can be built on top or other data storage infrastructures.

Apart from XML databases, structured data can also be stored in RDF{?] or OWIE
repositories. In general, RDF is a semantically richer way to represent graph-based
data, in the form of RDF statements, i.e.subject-predicate-object expressions, known
as triples, that connect with a specific relationship the subject to the object of the
statement. OWL is an extension of RDF that exhibits more expressive power than
RDF and enables efficient reasoning. RDF repositories are frameworks dedicated to
the management of RDF data in general, that could also be used for the manage-
ment of web graph data. OWL repositories could also be used for the same purpose,
however they are considered to be more specialized than RDF repositories, with
the expressive power of OWL being rather needless for the modeling of simple web
graph data. Some of the most efficient repositories that support the storage of graph-
shaped data either in RDF, OWL, or both, as well as SPARQL queries are Jena [71]],
Sesame [[78]], AllegroGraph [[64]], Virtuoso [80] and OWLIM [76].

3.4 Custom

Apart from the previous infrastructures, custom disk-based solutions that do not
belong to a specific category can be employed for the management of web graph
data. For instance, the use of a framework based on Lucene is proposed. Lucene
is text search engine library, that can be easily incorporated in any application that
requires text indexing and searching. Indexing with Lucene offers high scalability,
cross-platform support, rather small memory requirements, and also fielded search
capabilities. Apart from indexing and searching data from other sources, Lucene

"http://www.w3.org/RDF/
8 http://www.w3.0org/TR/owl-features/

30 M. Giatsoglou, S. Papadopoulos, and A. Vakali

also provides the possibility of storing the data in their original form. In general,
data are indexed in Lucene as documents that contain fields of text.

The generic nature of Lucene in combination with its scalability renders it a
promising candidate back-end infrastructure for a graph storage framework. A pos-
sible implementation would index and store nodes and edges with Lucene, creating
a separate document for each entity, and using terms to store the properties of each
entity. Depending on the application and type of data, for each document, the terms
that store the properties that are intended to be used as keywords for querying, will
be indexed. In Section [6.1] an implementation of a framework for managing STS
data based on Lucene is described in more detail.

3.5 Distributed Transactional Databases

Distributed graph management frameworks are recent solutions that try to solve the
problem of limited memory, by distributing the graph in more than one computer
nodes that form a cluster. In order to achieve this and for the resulting framework
to be efficient, distributed frameworks should employ an appropriate graph parti-
tioning policy and also a query mechanism that will seek and retrieve data from the
appropriate computer nodes, minimizing needless queries to irrelevant nodes.

An early research work in distributed transactional graph management, namely
MSSG [30] presents a middleware framework for storing, accessing and analyz-
ing massive-scale semantic graphs with update capabilities. The development of
MSSG aims to support the storage and analysis of very large graphs reaching tril-
lions of vertices and edges. In order to handle such massive datasets, MSSG has
been designed as a distributed database, that supports a large cluster architecture of
computer nodes for storing data. Moreover, the framework utilizes the grDB graph
database (described in subsection 3.3). The framework, combined with a new par-
allel external memory breadth-first search algorithm enables fast query responses
to the database. The way that MSSG functions is described in brief in the follow-
ing paragraphs, however it should be stressed that little information has been made
available as to how MSSG partitions the graph in order to enable distributed storage.

MSSG was designed using DataCutter [3], a development and deployment
framework for establishing “filter” services that operate on data “streams” between
storage systems and user applications, as a base infrastructure, with the Ingestion
Service, the Query Service, and the GraphDB Service modules having been added
as integrated components and interfaces. In brief:

o the Ingestion Service is used for entering graph data that are stored to the back-
end storage nodes after having been clustered,

o the Query Service allows the analysis of the stored graph,

e the GraphDB Service provides an interface for the available methods imple-
mented for storing and accessing graph data.

The adjacency list of a node can be stored in either a single computer of the clus-
ter, or it can be distributed in more than one computers. Experimental results indi-
cate that the MSSG framework can handle large graph datasets, managing to store

Massive Graph Management for the Web and Web 2.0 31

and query a graph of 100,000,000 nodes and 1,999,999,640 directed edges, even
though a query with length 5 between the source and destination node is answered in
about 12 minutes, which is relatively slow. Experiments also showed that grDB out-
performs BerkeleyDB and MySQL in storage and retrieval, considering the tested
graphs. Moreover, the performance of grDB on a search query is relatively close to
the performance of the implemented in-memory methods under test.

4 Data Mining-Oriented Solutions

In situations where the storage and analysis of static graphs is required, database
transactions can be omitted for the sake of performance, and alternative solutions are
usually employed. The most efficient solution seems to be to manage to fit the graph
structure in main memory by means of graph compression techniques. Another more
scalable possibility is to encode the graph’s structure in human-readable text files
stored in the computer’s filesystem and stream the data into memory for analysis.
However, this approach requires the adaptation of data mining algorithms to the
streaming or semi-streaming model.

In the following subsections both compression-based as well as streaming solu-
tions for the analysis of graph data will be discussed. Moreover, some recent dis-
tributed solutions for the management of massive graphs will be discussed.

4.1 Compression-Based Databases

When the available main memory does not suffice to load the whole graph dataset,
but fast access to data is required, an efficient graph data compression method is nec-
essary. In the following paragraphs we will present some examples of compression-
based graph databases.

WebGraph. One of the earliest and more successful efforts in the compression of
web data has been the WebGraph framework [6]], a suite of codes, algorithms and
tools for storing and manipulating large web graphs. The algorithms of WebGraph
were based on the Link Database [33]], an earlier work employing compression tech-
niques to store web graphs that can fit in main memory. Both Link and WebGraph
perform well in compressing large graphs, combining a number of techniques, such
as referentiation and intervalization. However, WebGraph outperformed its prede-
cessor achieving compression rates of e.g. 3.08 bits per link for a graph consisting
of 118 million nodes and 1 billion links.

The success of the WebGraph compression approach is justified considering that
the properties of locality, similarity and consecutivity that are typical on the Web
were seriously taken into consideration during its development. The property of
locality describes the fact that pages belonging to the same host often point to each
other via navigational links. Therefore, if we consider a lexicographical ordering
of URLs, the source and destination URLSs of a link are “close”. The property of
similarity expresses the observation that pages whose URLs are lexicographically
“close”, tend to have links to common destination pages (successors). Consecutivity

32 M. Giatsoglou, S. Papadopoulos, and A. Vakali

means that the successors of a web page also tend to be lexicographically “close”,
as they usually belong to the same level of site hierarchy. In order to exploit the
aforementioned properties of the Web, WebGraph applies the following technique.

e Given a set of URLs and the information that some of them are linked, URLs
are sorted lexicographically and assigned integer identifiers.

e The successor lists of each node are created and sorted by the node identifier.

e The successor list of a node x is expressed with respect to the successor list of
a node y with smaller identifier via a reference list comprising (a) the copy list,
i.e. a list of the two nodes’ common successors and (b) the list of extra nodes,
i.e. the set of the successors of x not present in the successor list of y.

o Applying the technique of differential compression with encoding methods such
as y coding to the copy list, WebGraph manages to code a link in less that one
bit. The list of extra nodes is also compressed using integer intervalization and
gap encoding.

After the compressed graph has been created, WebGraph provides methods for ac-
cessing the graph either randomly (selecting to access random nodes) or sequentially
(iterating over all nodes defining the sequence by increasing number identifier). The
provided access algorithms are very efficient as they employ lazy techniques to ac-
cess the compressed graph, thus delaying decompression until it is actually needed.
Moreover, WebGraph offers a number of parameterization options in order to al-
low a trade-off between the compression ratio and the time needed to compress the
graph, as well as between the decompression speed and the size of the offset array.
The compressed graph can either be loaded to RAM, or accessed offline.

The developers of WebGraph also investigated and experimented with different
codes to encode the gaps that exist between nodes belonging to an ordered successor
list [[7]], after proving empirically that they follow a power-law distribution. They in-
troduced a new set of flat codes for integers, the { codes, and proved experimentally
that on most cases they are superior to traditional coding methods such as, Elias 7,
Elias & and variable-length nibbling, when they are applied to integers that follow
a power-law distribution similar to the distribution of the successor list gaps.

Extensions of WebGraph. A recent work [§]], focuses on determining whether
WebGraph could be used for efficiently compressing graphs created by data from
sources other than web graphs, such as a Social Tagging System. Based on the no-
tion that the compression rate achieved when compressing a web graph depends
greatly on the ordering of the nodes, several ordering methods either: extrinsic (us-
ing information other than that conveyed in the graph itself), or intrinsic (using only
the information conveyed by the graph structure), have been investigated to deter-
mine their effect on the compression rate. As the efficiency of an extrinsic method,
such as URL ordering, is doubtful for the case of a network other than a web graph,
finding an intrinsic ordering that yields good compression rates is generally consid-
ered a challenging problem. In [8]], the proposed method is to:

Massive Graph Management for the Web and Web 2.0 33

order the nodes of the graph randomly,

. create the adjacency matrix considering each row as a sequence of bits, with 0
denoting the absence, and 1 the existence of a link between two nodes,

3. permute the rows and columns of the matrix so that in the resulting matrix two

rows are similar only if they appear consecutively, or almost consecutively.

N =

The two methods that were applied were to either find a permutation that sorts the
rows of the adjacency matrix based on the lexicographic ordering, or find a per-
mutation based on the Gray ordering of the row bit vectors. Moreover, two mixed
methods combining extrinsic as well as intrinsic characteristics were tested. Both
methods use the Gray ordering but limit its application based on the information
of the distribution of the nodes within hosts. Experiments with the aforementioned
methods using URL ordering showed that (a) the efficiency of each method depends
on the structure of the graph itself, (b) intrinsic methods perform very well for the in-
verse graph, and (c) mixed methods yield better performance on every tested graph.

A recent study [17]] focuses on determining whether social networks can be ef-
ficiently compressed. This work was motivated by the approach followed in Web-
Graph considering the properties of locality and similarity that exist for web graphs
in order to improve compression ratios. The question posed in this study is whether
social networks in general can be effectively compressed by a method similar to the
one followed in WebGraph. An easy observation is that the URL lexicographic or-
dering of the nodes that is a part of the WebGraph compression technique and also
a reason for its success cannot be applied to generic social networks. Thus, a new
node ordering technique is proposed that uses a simple heuristic based on shingles.
If we consider two sets A and B, and ¢ as a random permutation of the elements
in AUB, then Ms(A) = 6~ ! (minyca{c(a)}) is the smallest element in A according
to 0, and is called a shingle. The probability that the shingles of set A and set B
are identical equals to the Jaccard coefficient of the two sets, which is a measure
of their similarity. The proposed method regards the out-neighbors of each graph
node as separate sets, computes their shingles for an appropriate permutation and
then orders the graph nodes according to their corresponding shingles. As a result,
nodes with many out-neighbors in common will end up to be close to each other.
An alternative technique, double shingle ordering, has also been proposed that uses
a second shingle for breaking ties produced by the first one.

After the nodes have been ordered, their adjacency lists are compressed using a
technique similar to the one employed in WebGraph. Apart from referential and gap
encoding, the technique introduces an alternative method for encoding the links that
are reciprocal, that is the links that are undirected. In particular, this method encodes
the reciprocal links in the adjacency list of the node with the smallest integer iden-
tifier, and also adds a bit flag for each neighbor encoded in the adjacency list, that
declares whether the link is reciprocal or not. With this approach, reciprocal links
are encoded only once, thus improving the compression ratio, but this also causes
slower queries in the compressed graph.

Experimental results on various datasets indicate that the proposed compression
method yields better compression ratios than WebGraph when applied to social net-
works that are highly reciprocal in structure. Moreover, after experimenting with

34 M. Giatsoglou, S. Papadopoulos, and A. Vakali

various ordering techniques such as, Gray, natural, and random orderings, the dou-
ble shingle ordering managed to achieve the best compression performance. The
success of shingle ordering with respect to the other methods is attributed to: (a) the
reduction of the lengths of the gaps that exist between the neighbors of the adjacency
lists, and (b) the exploitation of the properties of locality and similarity. Finally, ex-
perimental results indicated that social networks appear to be less compressible than
web networks, mainly due to the presence of nodes with low degree.

Taking the above into consideration, WebGraph seems to be a very effective so-
lution as it manages to store a graph in limited disk space and also fetches the
neighbors of a node when requested in little time. However, one drawback of the
WebGraph framework is that it represents each node with a number without giving
the possibility of compressing more information related to a given node. Moreover,
it does not provide edge indexing capabilities.

Re-Pair. Several researchers, motivated by the WebGraph compression approach
and using the WebGraph framework as a basis for comparisons, tried to find meth-
ods with improved performance in terms of compression rates or graph access speed.
One such effort [18]] proposed a method based on the Re-Pair compression tech-
nique [36] in order to store a representation of a given graph. Re-Pair is a phrase-
based compressor that receives as an input a sequence of symbols, finds the most
frequent pair of symbols in it and replaces it with a new symbol, storing the corre-
sponding mapping in a dictionary. This procedure is repeated until every pair in the
sequence is unique. Although it is a rather fast (linear-time) technique, it requires
a large amount of memory, especially when the initial sequence is long. Therefore,
an approximate technique is proposed [18]] that can be applied in external mem-
ory. In any case, an in-memory hash-table is required to hold the unique pairs of
symbols occurring in the sequence (represented by their position in it) along with
their frequency. After the hash-table is filled up to a load threshold, no new pairs
are inserted, although the traversal is completed so as to calculate the frequencies of
the pairs that have already been inserted. Afterwards, the k most frequent pairs are
selected and replaced in the sequence with new symbols with a new traversal. The
process is repeated traversing the sequence from the position where the insertion of
new pairs in the hash-table had previously stopped. When the sequence of symbols
resides on secondary memory, the hash-table can store more pairs of symbols as it
can occupy all the main memory that is available and also special techniques have
been employed so as to avoid unnecessary random access to disk.

In order to apply the Re-Pair technique on a graph representation, the graph is
modeled as a sequence of integers representing the graph nodes, each one followed
by its adjacency list. However, each node maps to two different distinct integers;
one that is used when the integer is placed in the sequence before its adjacency list
and one that is used when it is included in the adjacency list of other nodes, thus
preventing the integers that mark the start of an adjacency list from being replaced.
These alternative representations are removed from the sequence after Re-Pair has
been applied, and they are stored in main memory along with pointers to the begin-
ning of their adjacency list. In general, the proposed method takes advantage of the

Massive Graph Management for the Web and Web 2.0 35

similarity of the adjacency lists. Moreover, in order to achieve better compression
rates, differential compression can also be applied to the lists.

Experiments showed that the proposed method yields compression rates compa-
rable to WebGraph providing faster graph navigation. For example, a graph with
22,744,080 nodes and 639,999,458 edges was compressed into 420 MB (a plain
representation would require around 2.4 GB of RAM), achieving two times faster
navigation to the compressed graph than when using the WebGraph compression.
When differential compression is also applied, slightly better compression rates are
achieved, but graph navigation is somewhat delayed.

Virtual Node Miner. Another approach, the Virtual Node Miner [[14], provides a
solution for web graphs that need to be updated after having been compressed,
and that also performs well without requiring URL sorting, which is a relatively
time-consuming process. The main innovation is that it employs a pattern mining
approach in order to compress a web graph, using an effective itemset mining al-
gorithm that finds directed bipartite cliques. Moreover, the fact that this method is
not based on URL encoding, indicates that it may possibly be used in application
domains other than web graphs, such as social networks. The proposed algorithm
considers the outlinks (or inlinks) of each graph node as an itemset and aims to iden-
tify frequent subsets that in fact represent common links between the graph nodes.
The algorithmic steps are described roughly below:

e The graph nodes are clustered on basis of the similarity of their adjacency lists.
This step uses k min-wise independent hash functions to sample the adjacency
lists of each node and then sort the rows of the resulting adjacency matrix lexi-
cographically, in order to bring closer similar adjacency lists and form clusters.

e For every cluster, the algorithm searches for frequent recurring patterns of
neighbors, which are actually directed bipartite cliques.

o Every pattern is replaced by a new node, called a Virtual Node, that has outlinks
to the nodes that formed each specific pattern. After that, the nodes that demon-
strated the pattern in their adjacency lists, replace all the outlinks to the nodes
that belong to the pattern with just a single outlink to the Virtual Node.

e The process is repeated allowing Virtual Nodes to be reused as actual graph
nodes.

e The remaining edges are compressed with an appropriate compression method,
such as: § or Huffman coding.

The resulting graph has a number of extra nodes, the Virtual Nodes, but significantly
less links, therefore it is considered to be compressed. Experiments indicated that the
Virtual Nodes added are about 20% of the original number of nodes, and therefore a
moderate overhead to the offset array. Moreover, when compared with WebGraph,
experiments showed that the above methods are comparable regarding the compres-
sion they achieve. The proposed method has been proven to be rather scalable, as it
manages to compress a graph with 3 billions of edges on a computer with 16 GB
of RAM in about 2.5 hours. The time required for compression also scales linearly
with the graph’s size. It is also of interest that if the available memory does not

36 M. Giatsoglou, S. Papadopoulos, and A. Vakali

suffice, Virtual Node Miner can run in batches, thus enabling incremental updating
of the compressed graph.

Research with the Virtual Node Miner continued with an effort that used this
compression technique to adjust several web graph algorithms so that they could
run directly on the compressed graphs and thus demonstrate reduced time complex-
ity [32]. The basis for these algorithms was the invention of a method operating on
the compressed graph, that speeds up the multiplication of a graph’s adjacency ma-
trix. This multiplication routine was used for computing random walk distributions,
finding top singular vectors, estimating the size of neighborhoods, and others, and
the resulting methods were used to speed up the implementation of well-known link
analysis algorithms such as PageRank [10/37], SALSA [38] and HITS [35)]. Ex-
periments showed that the performance of the proposed algorithms was better than
the traditional implementations, increasing speed almost up to a ratio close to the
respective compression ratios.

4.2 Streaming Solutions

Probably the most intuitive way to encode a graph in a human readable file is either
in the form of adjacency lists H, or in the form of an edge list (e.g. in its simpler form
an edge can be expressed as a pair of nodes that are related). The existence of disk-
resident files satisfies the persistence requirement for the storage of the graph data,
with their sizes being limited only in terms of the available size of external memory.
However in order to perform graph analysis tasks, data should be loaded in main
memory in an efficient way. In the streaming model graph data are streamed from
the disk into memory as a sequence of edges. However, the streaming model poses
some constraints on the graph mining algorithms, which should be designed so that
they can process the edges of a graph in an arbitrary order given only a limited RAM
space and desirably making only one pass over them [24]. In order to achieve this,
algorithms should be able to make space-efficient data summaries in RAM as data
are streamed. This is a considerable challenge, since in general the streaming model
poses the constraint of using O{ polylogN} space and per-item processing time for
a given graph with N nodes [41].

There have been some efforts in trying to solve simple graph problems in the
stream model, such as the problem of counting triangles in a graph [[15].The triangle
counting problem in the streaming model is defined as finding the €-approximation
of the number of triangles in a graph with probability at least 1-6, making one
pass over the data stream. The method proposed in [15] assumes that the set of
the graph’s nodes is known in advance and the graph’s edges appear as a stream. It
manages to calculate approximately the number of triangles via a technique that uses
reservoir sampling, requiring 0(512 x log (13 x (1+ ‘Tl‘l;:‘sz‘)) memory cells, where T;
stands for the number of triples of nodes in the graph which have i edges between
them. In [13]] authors try to provide lower bounds for the more complex problem of
finding pairs of vertices that share ¢ neighboring nodes. They give proof that any

9 The adjacency list of a node is a sequence of its neighboring nodes.

Massive Graph Management for the Web and Web 2.0 37

one-pass, randomized data-stream algorithm that determines if a pair of nodes in a

directed graph with N nodes shares more than ¢ neighbors requires O(+/c X n’) bits
of space. The large memory bound of the aforementioned method indicates that the
application of the streaming model for general graph problems seems to be difficult
due to the strict space constraint it imposes [23]].

A more relaxed model is the semi-streaming model that was initially suggested
in [41], as a solution for graph problems where the available main memory suffices
for the storage of the graph’s nodes, but not for the storage of the graph’s edges. This
model bounds the storage space for an algorithm that operates on a graph stream by
O(N x polylogN). In [23] the semi-streaming model was further elaborated, allow-
ing also a small number of sequential passes over the graph data. Authors in [23] dealt
with various graph problems in the semi-stream model such as the computation of the
shortest-path distances between the graph’s nodes, as well as the diameter and girth
of a graph. They showed that these problems can be approximately solved even with
one-pass over the data, via an approximation technique that uses graph spanner@ to
calculate shortest distances. In addition to the aforementioned problems, algorithms
for the problem of graph matching in the semi-streaming model were also presented
in the same research paper. Feigenbaum et al. [24] later improved their method for
constructing graph spanners decreasing the processing time per edge from O(N) to
O(polylogN). Moreover, they proved that the computation of Breadth-First-Search
(BFS) trees is not efficiently executed in the semi-streaming model.

Another recent work [2]], studies the problem of graph sparsification in the one-
pass semi-streaming model. Graph sparsification involves the construction of a com-
pact representation of a given graph through which the size of any cut can be
estimated. This problem is therefore connected to the problem of finding an ap-
proximate min-cut in a graph. The method proposed in [2]] constructs and stores
a summary of the graph in main memory, that is updated based on the newly-
arrived edges. The original algorithm for finding the sparsification of a graph in-
volves the calculation of the connectivity of every new edge which is impossible
unless all the graph’s edges are available. However, the proposed method calcu-
lates the connectivity of each new edge on the current sparsification, achieving an
1 + € approximation of the cut values of a graph with N nodes and M edges, while
requiring O(N(logN + logM) X log% x (1+€)?/€e*) edges in main memory.The
semi-streaming model has also been applied to the problem of local triangle
counting in graphs [4] (i.e. given a node u, count the number of triangles that are
incident to node u). In this research work, apart from the space constraint of the
semi-streaming model, algorithms are allowed to O(logN) passes over the data that
reside in the external memory. Two algorithms are proposed: one that requires the
storage of some intermediate counters in external memory and another that main-
tains all information in main memory. Given a newly-arrived edge (u, v), both algo-
rithms are based on the approximate calculation of the Jackard coefficient between
the two sets of nodes that are adjacent to nodes u and v, respectively.

10°A subgraph G'(V,E') is a t-spanner of graph G(V,E) if the distance between any pair of
nodes in G’ is at most ¢ times the distance in G.

38 M. Giatsoglou, S. Papadopoulos, and A. Vakali

A similar graph access approach that is mentioned here, but not presented in
detail, is the semi-external model [1]]. This model allows for enough main memory
to store the graph nodes, but not the graph’s edges as well. On the contrary, the
graph’s edges are stored in external memory, with the model allowing random access
to them. However, random access to the disk-residing edges can make the whole
process seriously slow.

4.3 Distributed Data Mining-Oriented Solutions

The requirement to perform data mining on massive graphs in a relatively short time
has also motivated research in the field of distributed data mining-oriented solutions.
Bader and Madduri have recently presented a study including combinatorial tech-
niques for the analysis of large-scale dynamic networks [39]]. Their innovation is
that they have designed and implemented efficient graph data structures and kernels
for modeling temporal graphs of massive sizes that are processed on parallel sys-
tems. Temporal information related to e.g. the update or insertion of a node or an
edge, are handled by assigning time-stamps to the respective nodes or edges. After
experimenting with a number of structures, they proposed a hybrid data structure
combining dynamic resizable adjacency arrays for low-degree vertices, with simple
self-balancing binary trees, referred to as “treaps” [46], for high-degree vertices.
This structure was found to achieve good performance for both insertions as well
as deletions, that may be batched or streaming. The data models as well as the al-
gorithms have been designed for multithreaded servers, with multiple cores and a
significant amount of both shared cache and main memory. These architectures have
been proven to perform much faster in graph analysis algorithms than optimized ex-
ternal memory based architectures [3]].

In order to solve or avoid conflicts when e.g. multiple threads try to add data to
the adjacency list of the same node, various methods are proposed, such as: follow-
ing the simple lock-based approach, or allowing each processor to have access to
the adjacency lists of only a subset of the graph nodes. In addition, several algo-
rithms have been designed and implemented to execute efficiently graph operations
such as: connectivity, path-related and centrality queries. Experiments show that
the proposed algorithms scale well on parallel architectures, with e.g. an algorithm
based on an implementation of the link-cut tree being able to process queries in time
proportional to the diameter of the network. It is also important that the proposed
implementation can answer queries related to the evolution of the graph during time.

MapReduce: MapReduce [20] is a programming model with an associated imple-
mentation for processing large data sets that may be stored in a distributed filesystem
or database. The proposed model, introduced by Google, is applicable for computa-
tional problems that can be formed as a set of key-value pairs, e.g. web page index-
ing based on keywords. The computational process is in general divided into two
steps: map and reduce. Programmers are responsible for creating an application-
specific map function that processes the input key/value pair to generate a set of
intermediate key/value pairs, and also implement a reduce function that merges
all intermediate values associated with the same intermediate key. Each operation

Massive Graph Management for the Web and Web 2.0 39

initializes with the splitting of the input files and continues with the assignment of
different map and reduce tasks to worker nodes by a special master node. The mas-
ter node is also responsible for the final aggregation of all results and the production
of the output to the original computational problem.

This model has proven to be very efficient for problems that involve accessing
large sets of data, however it is disputable whether it can be applied for graph re-
lated problems. Some graph related problems can be successfully solved by use of
MapReduce. For instance, the computation of PageRank over the Web can be im-
plemented as a chained MapReduce application. However, the main difficulty with
solving graph-related problems with MapReduce is that it is is very inefficient for
graph traversals, as map workers have access to only a part of the graph. A recent
research work [19] investigates the possibility of decomposing graph operations,
such as graph simplification, triangle and rectangle enumeration, finding trusses and
components, and performing Barycentric clustering, into a sequence of MapReduce
processes. In order to overcome the problem that exists with graph traversals, tech-
niques such as the use of multiple map and reduce iterations, or the use of custom
optimized graph representations, such as sparse adjacency matrices are proposed.

5 A Case for Web 2.0 Graph Stores: Social Tagging Systems

In this section we focus on a recently evolved research area: the analysis of Social
Tagging Systems. An introduction to Social Tagging Systems is provided, along with
a short review of the most current progress made in several related analysis tasks,
and we discuss their special characteristics. Social Tagging Systems are presented
as an application setting for massive graph data management frameworks, due to the
special requirements that their analysis imposes on the underlying infrastructure.

5.1 Introduction to Social Tagging Systems

An important functionality that has been embraced by many on-line applications is
Social Tagging. Social Tagging Systems (STS) enable their users to upload content,
and to annotate it by means of freely chosen keywords, called fags. By relating re-
sources with tags, users enrich them with a semantic meaning that can be of use to
other people that come across it. Moreover, the information from STS can be ex-
ploited by use of data mining in order to provide enhanced services to users, e.g.
recommendations, sophisticated content navigation (e.g. by means of a concept hi-
erarchy representing a resource collection). The study of STS has led to the formal-
ization of folksonomies, i.e. lightweight knowledge structures that emerge from the
use of a shared vocabulary to characterize resources (emergent semantics) [31/40].
The folksonomy model has been established as the most widely-used means to rep-
resent and analyze STS-related information, thus its definition is given below.

Definition 1. A folksonomy is defined as the tuple F = (U,T,R,Y), where U, R
and T are the disjoint sets of users, resources and tags, respectively, and ¥ C U X
R x T is a triadic relation between them, representing the annotation of a resource

40 M. Giatsoglou, S. Papadopoulos, and A. Vakali

with a tag by a user. Another way to represent the folksonomy is as an undirected
hypergraph G = {V, E} consisting of a set of nodes V = U UT UR that are connected
by hyperedges that formulate the set E = {{u,r,7}|(u,r,t) €Y}.

Rather than working on a hypergraph, on many occasions and depending on the
corresponding analysis task, a simplified bipartite graph is produced representing
the associations between either: (a) users and resources, (b) users and tags, or (c)
resources and tags.

This technique makes the graph analysis easier, as it transforms the hyperedges of
the tripartite hypergraph into simple edges. The resulting edges are usually weighted,
e.g. in the user-tag bipartite graph, an edge exists between a user and a tag if the user
has used this tag to annotate at least one resource, and is weighted by the number
of resources that have been annotated with this tag. This graph can be symbolized
as: UT ={U xT,Ey},Ey ={(u,t)|F3uc U : (u,r,t) €E},w:Ey — N,Ve: (u,t) €
Eu,w(e) = |{r: (u,r,t) € E}| [31]. Relevant expressions can be formulated for the
bipartite graph between resources and tags (RT), as well as for the graph between
users and resources (UR). A bipartite graph can be represented with a model, such
as an adjacency matrix, with each row relating to a member of the first entity type
and each column to a member of the other, whereas the value of a cell stores the
number of co-occurrences of the respective entity members.

A further simplification can take place, resulting in a graph that represents the
co-occurrences between members of the same entity type only. For example, con-
sidering the user-tag bipartite graph, two graphs can be produced; one that comprises
tags as vertices and edges that represent the annotation of some resource with two
tags by a common user, and another that comprises users as vertices and edges that
represent the annotation of some resource with a common tag by two users.

If required, a tripartite graph can be also produced, combining the three bipar-
tite graphs, where all the resource-tag, resource-user, tag-user co-occurrences are
represented with simple weighted edges. However, the use of bipartite graphs is
more often than the use of tripartite, as most algorithms focus on the correlation
between the members of two or one entities. For example, the associations between
resources and tags is of most interest for a tag recommendation system, whereas the
information about which user tagged a resource is not that interesting in this sce-
nario. However, the associations between resources and users would be useful for
an application e.g. that recommends resources that may interest users.

5.2 Social Tagging Systems: Analysis Tasks

Ontology extraction: One of the first expectations of researchers was to take ad-
vantage of the emerging folksonomies in order to construct ontologies for the Se-
mantic Web [40]. However, early works indicated that the derivation of ontologies
from folksonomies presented some serious difficulties, especially because tagging
is not necessarily hierarchical such as the ontology structure, meaning that unless
it is otherwise stated, an assignment of tags to a resource signifies that the latter is
equally characterized by all tags, but it does not imply a hierarchical relationship
between the tags. Moreover, there is the widely-discussed problem of tag ambiguity

Massive Graph Management for the Web and Web 2.0 41

and polysemy, i.e. tags that have ambiguous meaning and are used by users to an-
notate resources that are not relevant to each other. Another issue is the existence of
synonyms, that should be identified as tags with a common meaning [26].

Tag meaning disambiguation: Tag ambiguity poses serious challenges to applica-
tions that analyze the information included in the STS structure. The annotation of
two resources that belong to semantically different categories with common polesy-
mous tags creates a relation between them that is not intended. Therefore, recent
research has attempted to address the problem of ambiguous tags. An early effort
tried to discover the different dimensions of knowledge in a folksonomy, and after
calculating the conditional probabilities of tags in different conceptual dimensions,
ambiguous tags were found to have high probabilities on more than one dimen-
sions [52]]. In [53], a clustering technique based on the community identification
algorithm of Girvan and Newman [42]] was employed to find clusters of tags that
indicate the different meanings of ambiguous tags in a folksonomy. This work was
continued in [S5] where the different contexts in which a tag can be used were again
on focus, and therefore analysis was conducted for every tag on the associated subset
of the folksonomy. Several kinds of network representation were tested and experi-
mental results indicated that tag co-occurrence networks that explicitly incorporate
the user-tag associations provide better results in identifying the different contexts
a tag can appear in. The results of the proposed automatic tag clustering technique
were successfully applied to classify documents retrieved by Web searches.

Study of usage dynamics: Research was also directed towards unveiling the dy-
namics that characterize the evolution of an STS. Research on the users’ behavior in
delicious showed that users tag collections are growing and evolving over time, due
to new interests [26]]. However, it was discovered that the set of tags that were used
for annotating most of the bookmarks (the resources in delicious) tended to stabilize
after a while, exhibiting a stable pattern with fixed frequencies for each tag. This in-
dicates the existence of shared knowledge amongst users, as well as imitation. In
addition, the tags that were used to annotate a bookmark by larger numbers of users
(the most popular) and also the ones that were used earlier were found to be more
representative of the larger category the resource belongs in, therefore have great
significance for further analysis. In [29] it was proven, based again on data from de-
licious, that the distribution of tags is indeed stabilized after some time, following a
power law distribution. Moreover, it appeared that after stabilization, analysis of the
high-frequency tags of an STS can reveal the collective categorization scheme. Sim-
ilar results have also been found in [51]], where it is stated that tags used to annotate
a specific resource are relatively strongly semantically related.

Statistics analysis: It is also interesting to find out the distribution of the user partic-
ipation in an STS. Earlier research results in social networks in general indicated that
user participation follows a power law [50], however subsequent works showed that
there were more users contributing content in social networks than those expected
from a power law distribution [34]]. A recent work [27] showed that the distribution
of different users participation follows the stretched exponential distribution, which
means that top users are distributed much flatter than those in power law networks.

42 M. Giatsoglou, S. Papadopoulos, and A. Vakali

However, this distribution depends also on the type of content; for example, the dis-
tribution of user contribution on content that is more “difficult” to create is more
skewed towards a few core users. It should be noted though that the results from this
last work have not been based on results from STS.

Clustering: Another direction that has won vivid research interest is clustering,
either in users, resources or tags of an STS. The discovery of clusters within a
STS has been mainly approached as a community identification problem in a graph-
structured network. There are different approaches, however, that use either: (a) a
bipartite or tripartite graph representation [21], or (b) a simplified tag-tag, user-user,
or resource-resource co-occurrence graph. On the first case, the resulting communi-
ties are strongly-knit connected components that exist in the graph and are formed
by two (or three) kinds of entities, whereas on the second case communities com-
prise of members of just one type of entity (e.g. tags). Due to their complexity, there
have been few methods that have applied clustering for community identification to
the induced tripartite hypergraph [9U11].

Tag clustering is a research subject with numerous interesting applications. E.g.,
the tag clusters resulting from a tag-tag network can be used in a system that rec-
ommends to users tags for annotating resources, as they comprise of tags that are
semantically “close”. Similarly, resource clusters can be used to group objects be-
longing to the same category, whereas user clusters group people that have exhibited
similar behavior patterns in an STS. A tag clustering approach is based on the appli-
cation of classical community identification methods in the implied graph featuring
tag relationships, such as in [[16] where a spectral community identification method
is employed, in [48] which identifies communities based on graph modularity [42]
and in [44/45]] where a seed-based community expansion method has been applied.
Moreover, some efforts dealt with the problem of tag clustering, using vector-based
agglomerative hierarchical clustering methods rather than the structural properties
of the STS graph [[12l47]]; however they are very slow for large sets of tags. Apart
from clustering methods, tags have also been used for the classification of web re-
sources, using optimization techniques that use tag annotations as a feature space for
resources and also exploit the link relationships between resources and tags [S6].

5.3 Application Setting

All the analysis and mining tasks that are applied to STS and have been discussed in
the previous subsection, require a robust graph management infrastructure providing
a number of features, dictated by the special characteristics of these systems. The
sizes of the graphs formed in the context of STS render them an excellent application
setting and motivation for massive graph storage and access frameworks. In the
following, the most characteristic STS properties are summarized in order to derive
the requirements for a framework developed for their analysis and storage.

e STS users are increasing in numbers and also tend to contribute more in ei-
ther providing new or annotating existing content. This results in the gradual
development of massive folksonomies from STS data that can be available for

Massive Graph Management for the Web and Web 2.0 43

analysis. Folksonomy data are encoded in graph structures of hundreds of mil-
lions of nodes and ten times or even more edges. delicious, for example, was
estimated in 2008 to have 462,168,833 bookmarks and 1,632,204 monthly visi-
tors [43]]. These numbers combined with the number of tags used for annotation
in delicious is indicative of the massive size of tripartite graphs induce from
STS (where both resources, users and tags are considered as nodes).

e STS entities follow power law or skewed distributions. This means that the in-
duced graph exhibits scale free characteristics, i.e there are few nodes that have
high frequency and many nodes that are infrequent, thus the network is on its
larger proportion rather sparse.

e Information in an STS is updated on a daily basis. However, the number of tags
that have been used for annotating a resource is not constantly increasing. On
the contrary, after some time the tag distribution stabilizes and each tag used to
annotate a resource is characterized by a stable frequency [29/26]]. This implies
that users often follow common tagging patterns [26].

e STS graphs are often used as an application area for various mining tasks, such
as community identification. During graph analysis, algorithms need to access
random nodes, extract information that is related to them (e.g. the name of a
resource), and also find the edges that are attached to them along with their
destination nodes. Taking into consideration the size of the graphs and also the
frequency of node and edge accesses that are required in mining algorithms, it
is evident that these operations should happen as fast as possible.

e When the induced tripartite hypergraph is simplified in a simple e.g. tag-tag
co-occurrence network, some information is lost and cannot be recreated. This
information, however, may be useful or necessary for some applications. For
example, it is possible that community identification in a bipartite graph will
result in more semantically “correct” communities than when using its projec-
tion in a simplified entity-entity graph [44]]. There is also evidence that explicit
information about e.g. user contribution [55] helps dealing with the problem of
tag ambiguity.

e Depending on the STS analysis application, the graph representation may in-
clude directed on undirected edges. For example, maybe an edge with a resource
node as source and a tag node as destination is desirable but the reverse edge
does not need to be stored, because it is not useful for the application.

e The STS related data include a number of parameters that may differ, e.g. re-
sources in Flickr may have different attributes than resources in delicious (Flickr
resources are images that may have attributes like dimensions, file type, and file
size, apart form their URL, whereas delicious resources are bookmarks that may
have less attributes such as a title).

On the basis of the above characteristics, the requirements of the framework for the
analysis and storage of STS graphs are formulated below.

Graph access methods. The basic graph access operations should be supported,
namely node and edge lookup, insertion/update and deletion. Since the stored graphs
represent an STS, specializations of the above access operations depending on node

44 M. Giatsoglou, S. Papadopoulos, and A. Vakali

and edge types (U/R/T and UR/UT/RT respectively) should be exposed. In addition,
specializations of neighbourhood access operations should be available (i.e. get all
neighbour tags for a given user). Finally, the framework should provide graph nodes
and edges iterators (predicated with the type of node/edge). In addition, node and
edge properties (e.g. frequency values) should be possible to store and access along
with the corresponding nodes/edges.

Memory constraints. The framework should support storage and analysis of graphs
that do not fit in the main memory of a typical workstation. Partial graph load,
external node and edge indices, as well as caching schemes are desired attributes for
the foreseen framework.

Support for graph analysis. Since most graph mining techniques require fast ac-
cess to the graph’s structure, it is necessary to hold in memory the largest possible
portion of the graph’s structure in order to support fast random node and edge ac-
cess. Such information takes precedence over additional node/edge property values
which can be stored in external memory.

6 STS Data Management Framework Benchmark

In order to test the performance of different infrastructures when used as underly-
ing technologies for the management of STS data, we implemented three STS data
management frameworks. The design of the frameworks was based to some extent
on the requirements stated in the previous section. The developed frameworks, that
can be characterized as transactional graph databases, are based on H2, Lucene, and
Neo4j, representing the categories of RDBMS, custom, and native graph stores, re-
spectively. The rest of the section is structured as follows. Subsection[6.1] describes
the three implemented frameworks in details, subsection[6.2presents the benchmark
tests that have been designed in order to evaluate the frameworks’ performance, and
subsection[6.3] presents and discusses and results of the benchmarking procedure.

6.1 Participating Frameworks Description

In general, the interesting information that can be drawn from an STS can be ex-
pressed as statements, with a given statement representing the assignment of an
online resource with a tag by a given user. We made the assumption that the STS-
related information (statements) is provided to the data management frameworks
in the format of triplets consisting of labels. The first label of each triplet refers to
the username of the user that characterized a resource, the second refers to the hash
value of the URI of the resource, whereas the third refers to the tag that was assigned
by the specific user to the resource. Triplets of STS data can be provided as input to
the frameworks either separately (one at a time) or in batches.

Graph Model Description. All frameworks support the management of a graph
consisting of user (U), resource (R) and tag (T) nodes. Each node entity includes:
(i) a string value (label) denoting a username, the hash value of a URI or a key-
word if the node represents a user, a resource or a tag respectively, and also (ii) an

Massive Graph Management for the Web and Web 2.0 45

arithmetic value that denotes the node’s frequency of appearance in the STS dataset.
For example, if a certain user has made 10 tag assignments to resources then the
respective node’s frequency would be equal to 10.

The nodes of the graph are interconnected via three types of directed edges: (a)
User-to-resource edges (UR), (b) User-to-tag edges (UT), and (c) Resource-to-tag
edges (RT). Each edge entity also includes an arithmetic value denoting its fre-
quency, e.g. if an edge starting from a resource R and ending to a tag 7" has frequency
10, this means that tag T has been assigned 10 times to resource R.

Supported Functionality. The developed frameworks support node-, edge-, and
graph-based operations. The main operations are lookup, insert/update and delete.
More specifically:

e Node lookup, insertion/update and deletion. A node can be of any of the three
supported types (U/R/T). A node insertion entails a node lookup (in case of
existence, instead of node insertion, a node frequency update is performed). A
node deletion entails the deletion of the node’s inlinks and outlinks.

e Node neighborhood iteration.

e Edge lookup, insertion/update and deletion. An edge can be of any of the three
supported types (UR/UT/RT). An edge insertion entails an edge lookup (in case
of existence, instead of edge insertion, an edge frequency update is performed.

e Graph node/edge iteration.

e Graph statistics (number of nodes/edges per type of node/edge.

H2-based Framework. This RDBMS-based framework uses three SQL tables for
the storage of the graph’s nodes: the USER, RESOURCE and TAG tables. Each
table includes three fields: (a) an integer identifier, (b) a string label, and (c) an
integer frequency value. All tables storing nodes support the ON DELETE CAS-
CADE SQL feature, so that in case a node is deleted, its outlinks and/or inlinks are
also automatically deleted. Moreover, three tables are dedicated to the storage of the
graph’s edges: the USER-RESOURCE, USER-TAG and RESOURCE-TAG tables.
Each table includes three fields: (a) the integer identifier of the source node, (b) the
integer identifier of the destination node and (c) an integer frequency value.

Apart from the functionalities mentioned in the previous paragraph, the frame-
work supports also the retrieval of the integer identifier of a node for a given la-
bel. Integer identifiers are used in general in order to follow the classical relational
database model, and most of all, to reduce the required amount of space for the stor-
age of the graph data. Each communication with the database, whether it is a read,
write or delete operation is handled as a separate SQL transaction.

Lucene-based Framework. The Lucene framework uses three separate indexes for
indexing and storing the U/R/T nodes and also three indexes for indexing and storing
the three types of directed edges. Each entity (either node of edge) is represented in
Lucene as a document that contains a number of fields. In our implementation each
node document contains a key field that stores the node’s label and is indexed so that
it can be used for retrieving the document when needed. Moreover, each document
contains a frequency field to store the number of node’s occurrences.

46 M. Giatsoglou, S. Papadopoulos, and A. Vakali

The structure of an edge document includes: (i) a key field created by combining the
labels of the source and destination nodes, (ii) a field storing the label of the source
node (iii) a field storing the label of the destination node, and (iv) a field storing the
edge’s frequency. The key field is indexed to enable efficient queries for determining
whether a specific edge exists. However, the fields storing the labels of the source
and destination nodes are also indexed in order for the implementation to support
the retrieval of the outlinks and inlinks of a given node. Writes are committed to
the indexes in batch, in order to limit the time consuming disk accesses. During
subsequent commits the intermediate writes are stored in a cache memory.

Neodj-based Framework. The Neo4j-based Framework stores all the graph nodes
and edges in a common database. However, it allows the definition of a number of re-
lationships types that in our implementation allow distinguishing the category of the
graph entities. In total, six relationship types are defined for characterizing UR, UT,
and RT edges, and also defining that a node is a user, resource, or ta. Each node
includes two properties: the node’s label and frequency. Each edge is represented
with a relationship that also includes a property storing the edge’s frequency. Nodes
are indexed using the Lucene-based index implementation provided by Neo4j, so as
to allow retrieving a node with its label. Moreover, in order to increase performance
the most frequently queried nodes are cached, and also multiple database operations
(reads, writes, updates, deletes) are grouped in a database transaction.

6.2 Benchmark Tests Description

The frameworks described in the previous subsection participate in a number of
benchmark tests. These tests have been designed to provide an indication of the
frameworks’ performance with respect to various operations. In particular, the pro-
posed benchmark suite includes the following measurements:

e graph load time (from a triples file)

disk space usage

node/edge insertion time (for batches of 1,000 insertions)

node/edge deletion time (in case of nodes, their in-/out-links are also deleted)
batch random node query execution times

batch random edge query execution times (for existing and non-existing edges)
graph node/edge iteration times

neighborhood fetch and iteration for a number of randomly selected nodes.

The tests described above are conducted on graphs that contain: (i) real data from
a well known STS (Flickr), or (ii) synthetic random data generated by the Erdds-
Rényi model [22]]. For the synthetic random graph a string generator is used that
allows the generation of strings of up to 10 characters. The main difference between
the synthetic and real graph data is that the nodes of the synthetic graph are con-
nected with a fixed probability value, whereas the edges of a real STS graph follow

I User nodes are connected via the user relationship type to a special root node. Similar
connections are created for the resource and tag nodes.

Massive Graph Management for the Web and Web 2.0 47

the power law distribution. Apart from the type of data there are also some other
differences between the loading and insertion tests on real and synthetic graphs. In
particular, when the tests are executed on synthetic graphs, a given node or edge is
supplied as input only once (along with a frequency value), therefore no updates take
place during the testing procedure, and thus there is no need for checking whether
the input node or edge exists. Therefore, the nodes and edges are simply added to
the graph with the specified frequency parameter as soon as they appear as input.
The experiments described above are summarized in Table [Il which also presents
the notation that will be used for each type of experiment throughout the rest of the
chapter. For example, the notation for a node iteration experiment that runs on a
synthetic graph with 1 million edges would be IN-S-1M.

Table 1. Benchmark test notation

Symbol Position Meaning Comments

L 1 Load graph Load a graph into the graph store.

DN 1 Delete graph nodes Deletes 10,000 nodes (and their associated edges) from the
graph.

DN 1 Delete graph edges Deletes 10,000 edges from the graph.

QN 1 Query nodes Executes 10,000 random node queries on the graph.

QEx 1 Query edges 1 Executes 10,000 random edge queries for existing edges on the
graph.

QEn 1 Query edges 2 Executes 10,000 random edge queries for non-existing edges on
the graph.

DS 1 Disk space Reports the disk space usage by the graph under test.

IN 1 Node iteration Iterates over all nodes of the graph.

1IE 1 Edge iteration Iterates over all edges of the graph.

INN 1 Node neighborhood iter- Iterates over 10,000 random node neighborhoods of the graph.

ation

R 2 Real A graph created from real-world data is used.

S 2 Synthetic A graph generated based on the E-R model is used.

K 3 Thousands Quantifies the size of the graph under test.

M 3 Millions Quantifies the size of the graph under test.

6.3 Benchmark Results

In the following paragraphs the performance of the developed frameworks based on
the results of the benchmark tests will be discussed. Tables 2 Bl [and [§present
the experimental results for the disk usage, load, delete, and query experiments,
respectively, whereas Figures 3| B [5] and [6]illustrate in a a diagrammatic way the
results for the node and edge insertion experiments.

The disk usage test results (Table[2) indicate that the H2-based framework has the
lowest disk usage for all sizes of real as well as synthetic graphs. This however was
somewhat expected as an edge entity stored in the H2-based framework includes the
integer identifiers of the source and destination nodes rather than their string labels
that naturally occupy more disk space. Between the other two frameworks, the one
based on Neo4j seems to be more compact for real graph data. However, when
synthetic data are used the disk space usage remains the same for the Neo4j-based
framework, whereas it is reduced for the Lucene-based framework. One difference
between the synthetic and real graph data is that the label’s length for the synthetic

48 M. Giatsoglou, S. Papadopoulos, and A. Vakali

graph nodes is limited to 10 characters the most, whereas the labels of the real
graph nodes can contain more characters. For example, the URI hash values that are
used as labels for the R nodes have a high possibility of containing more than 10
characters. From the above, it can be concluded that the disk space required for the
storage of the documents of the Lucene-based framework has a stronger dependency
on the labels’ length in relation to the space required for the storage of the entities
of the Neo4j-based framework.

Table 2. Disk space usage results

disk space usage (in Mbytes)

Disk space test nodes H2 LUCENE NEO4J
DS-R-100K 28,388 6,9 14,5 13,2
DS-R-500K 125,942 36,3 72 61,8
DS-R-1M 235,984 72,8 143,1 119,6
DS-R-5M 1,032,947 379.3 712 559.9
DS-R-10M 1,983,803 766,7 1433,6 1126,4
DS-S-100K 28,388 5.1 8,1 12,8
DS-S-500K 125,942 28 389 60
DS-S-1M 235,984 56,2 78,4 116,1
DS-S-5M 1,032,947 283 3915 5429
DS-S-10M 1,983,803 5709 7824 1126,4

Table [3] presents the total time required to build a graph given either a set of
triples of U/R/T labels (real graph), or a set of synthetically generated U/R/T nodes
with the respective edges (synthetic graph). According to the benchmark results,
the Lucene-based framework is the fastest, whereas the Neo4j-based framework is
the slowest of the three, with the Lucene-based framework loading: (i) the largest
real graph (10 million edges) 6 times quicker than the Neo4j-based one, and (ii) the
largest synthetic graph 4.5 times quicker. In general, synthetic graphs are built in
less time than real graphs of the same size which is explained by the differences in
the experimental procedure (as it has been stated in subsection[6.2), when loading a
synthetic graph there is no need to check whether a node or edge has already been
added to the graph). Another observation is that the H2-based framework seems
to perform relatively well, with the time required to build a graph being almost
proportional to the graph size on most occasions.

Table 3. Load test results

Load test nodes H2 LUCENE NEO4J
L-R-100K 28,388 24,277sec 2,166sec 1,44min
L-R-500K 125,942 2,19min 42,326sec 9,19min
L-R-1M 235,984 5,2min 2,1min 19,13min
L-R-5M 1,032,947 28,49min 17,37min 1,55hr
L-R-10M 1,983,803 1,1hr 43,34min 4,25hr
L-S-100K 28,388 7,670sec 874,700ms 21,816sec
L-S-500K 125,942 37,869sec 9,601sec 2,27min
L-S-1M 235,984 1,15min 35,807sec 5,4min
L-S-5M 1,032,947 7,.9min 5,5min 30,6min

L-S-10M 1,983,803 15,10min 14,6min 1,5hr

Massive Graph Management for the Web and Web 2.0 49

The results of the node and edge insertion experiments for the real graph data
are presented as diagrams in Figures[3land [3 respectively, whereas the respective
results for the synthetic graph data are presented in Figures] and [Gl Each figure
includes three diagrams (one for each framework) that plot the average time for the
insertion of a new node or edge calculated for every 1,000 insertions. The diagrams
also illustrate the dispersion of the values around the average, with use of the stan-
dard deviation values that have also been calculated for every 1,000 insertions. The
results of the node insertion benchmark for both real and synthetic graph data indi-
cate that the H2-based framework is the most effective for node insertion requiring
on average less than 20msec for the insertion of a node, and managing to maintain
a rather stable performance as the size of the graph increases. The slowest solution
is the Neo4j-based framework, which also exhibits the highest values of standard
deviation. The Lucene-based framework, on the other hand, has the lowest values
of standard deviation, thus proving to be very stable. As it can be observed from the
diagrams, the average node insertion time for the Lucene-based framework seems
to be rising until a number of insertions is reached, and then rapidly fall. This rapid
fall indicates that at this point the framework cache is full so the Lucene writer com-
mits the changes that have been cached so far to the disk. Afterwards, the cache is
emptied to enable the storage of the new insertions (and possible updates), so the
performance of the framework improves. The results for the edge insertion tests
(Figures and [6) yield similar findings. Both the H2-based and Lucene-based
frameworks are much faster than the Neo4j-based framework. It is noticable that
the average times per edge insertion for the latter framework reach very large values
as the size of the graph increases. This serious delay of the Neo4j-based framework
did not allow us to complete the edge insertion experiment. Between the H2-based
and Lucene-based frameworks, although their performance is comparable, the H2-
based framework seems to maintain a more stable performance regardless of the
graph size. The Neo4j-based framework had an even worse performance for the
edge insertion test on synthetic graph data. Apart from the average times calculated
for the first 2,000 insertions of edges, the successive results for the first next thou-
sands of insertions were approximately 10 times larger than the respective results for
the H2-based and Lucene-based frameworks, however they soon began to increase
exponentially. In order to present the comparative results for the three frameworks,
Figure 6l has been included using a logarithmic scale for the time axis.

Table [presents the results for the node and edge deletion experiments. The av-
erage times for node deletion indicate that the H2-based framework performs better
than the other two frameworks, whereas the slowest framework for every test has
proved to be the one based on Lucene. The Neo4j-based framework maintained the
same performance for every graph size. In general, the deletion of a node causes
the deletion of all edges that are adjacent to it. Therefore, the time measured for a
node deletion includes an extra delay required for fetching and deleting the node’s
neighbors. The deletion of the neighbors of a node seems to be a serious overhead
for the Lucene-based framework, whereas it is automatically executed in the H2-
based framework due to the SQL ON DELETE CASCADE constraint. However, it
can be observed that the times measured for the Lucene-based framework have the

50 M. Giatsoglou, S. Papadopoulos, and A. Vakali

14

1.2

time per insertion (msec)

400 S0 60 700 800 900 1000
#housands of insertions

0 100 200 300

Fig. 3. Diagram of mean time per node insertion in a real graph (per 1,000 insertions)

time per insertion {msec)

400 600
#housands of insertions

Fig. 4. Diagram of mean time per node insertion in a synthetic graph (per 1,000 insertions)

—_—H2

N
wn

= Heodj

(&)

-

time per inserion (msec)
n

ol
w

ik aenealion oy
i o

7000 8000 5000 10000

00100020003000400050003000

#housands of insertions

Fig. 5. Diagram of mean time per edge insertion in a real graph (per 1,000 insertions)

Massive Graph Management for the Web and Web 2.0 51

H2
Lucene
 — Meod) |

logitime per insertion) (msec)

10" ik k.

1 ' L 1 1 1 L 1 A 1
0 1000 2000 3000 4000 5000 6000 7000 8OO0 S000 10000
#housands of insertions

Fig. 6. Diagram of mean time per edge insertion in a synthetic graph (per 1,000 insertions).
The time axis is plotted in a logarithmic scale as the time values for the Neo4j-based frame-
work are much higher than the corresponding times for the other two frameworks.

Table 4. Delete test results

mean time standard deviation

Delete test H2 LUCENE NEO4J H2 LUCENE NEO4J
DN-R-100K 357,947us 567,391ms 3,349ms 5,287ms Ons 30,187ms
DN-R-500K 1,427ms 1,768sec 3,574ms 13,500ms Ons 30,162ms
DN-R-IM 1,502ms 3,290sec 3,481ms 7,164ms Ons 30,171ms
DN-S-100K 182,778us 82,178ms 2,407ms 4,846ms Ons 30,277ms
DN-S-500K 717,940us 102,943ms 1,766ms 26,585ms Ons 26,614ms
DN-S-1M 1,102ms 119,799ms 2,602ms 30,351ms Ons 30,259ms
DE-R-100K 140,674us 1,778us 484,522us 959,51 1us 9,493us 8,697ms
DE-R-500K 214,985us 2,313us 405,613us 1,735ms 17,285us 8,244ms
DE-R-IM 87,791us 1,808us 348,789us 704,322us 5,711us 7,416ms
DE-S-100K 109,413us 1,624us 704,770us 989,403us 4,371us 8,969ms
DE-S-500K 165,929us 1,638us 465,800us 1,219ms 4,338us 7,418ms
DE-S-1M 62,773us 1,564us 455,313us 17,778us 4,7us 8,47ms

lowest values of standard deviation among all frameworks, something that has been
observed in the results of the previous test as well.

The results for the edge deletion experiments clearly show the superiority of the
Lucene-based framework. The results of these experiments in combination with the
results for the node deletion experiments indicate that this framework is particularly
efficient in deleting an edge (and probably a node as they are indexed in a similar
way), however it is not very efficient in retrieving the neighbors of a node. Moreover,
the average time for an edge deletion does not seem to change linearly with the graph
size, but it is affected by the randomness of the edge selection.

The results for the query experiments are presented in Table 3l The experimental
results of the tests that involve querying random nodes of real graphs show that the
Lucene-based framework has the best performance between all frameworks. Com-
paring the performance of the other two frameworks, it can be observed that the
Neo4j-based framework scales better than the one based on H2 for large graphs. In

52 M. Giatsoglou, S. Papadopoulos, and A. Vakali

addition, the results concerning the H2-based framework show a particularly high
value of standard deviation for the graph of 1 million edges. However, the same
experiments on the synthetic graph generated results that show that the H2-based
framework conducts queries faster than the other two frameworks, whereas Neo4j
has the worse performance.

Table 5. Query test results

mean time standard deviation
Query test H2 LUCENE NEO4J H2 LUCENE NEO4J
QN-R-100K 162,16us 94, 74us 271,48us 991,29us 562,32us 1,48ms
QN-R-500K 352,649us 132,264us 374,78us 1,504ms 615,906us 1,155ms
QN-R-IM 1,281ms 182,273us 476,680us 3,247ms 1,151ms 1,966ms
QN-S-100K 28,620us 63,881us 203,272us 179,664us 205,149us 691,344us
QN-S-500K 60,307us 93,835us 226,427us 599,284us 370,230us 528,356us
QN-S-1M 99,469us 115,996us 253,828us 1,103ms 642,891us 942,900us
QEx-R-100K 126,499us 170,284us 96,998us 14,933us 686,622us 70,622us
QEx-R-500K 280,310us 259,337us 211,398us 1,361ms 1,161ms 277,977us
QEx-R-1M 4,483ms 397,403us 233,614us 8,536ms 2,739ms 119,956us
QEx-S-100K 181,804us 222,825us 7,200ms 489,827us 3,99ms 5,95ms
QEXx-S-500K 302,62us 180,291us 30,204ms 1,375ms 685,576us 3,178ms
QEx-S-1M 2,329ms 288,105us 55,556ms 7,214ms 1,391ms Ons
QEn-R-100K 72,585us 4,576us 30,95us 445,929us 1,416us 56,208us
QEn-R-500K 70,521us 6,160us 21,57us 171,65us 1,677us 53,164us
QEn-R-1M 73,515us 7,225us 21,774us 149,983us 2,164us 54,961us
QEn-S-100K 61,904us 7,147us 12,530us 39,135us 6,77us 49,602us
QEn-S-500K 52,799us 6,391us 16,113us 30,711us 28,855us 167,289us
QEn-S-1M 53,358us 3,675us 21,633us 64,305us 1,721us 709,977us
IN-R-100K 44,425us 9,131us 7,348us 48,857us 147,153us 41,66us
IN-R-500K 30,842us 1,599us 4,926us Ons 29,726us 85,871us
IN-R-1M 30,85%us 1,387us 4,78%us Ons 24,403us 155,118us
IN-S-100K 5,181us 1,901us 6,668us 19,959us 74,364us 45,639us
IN-S-500K 4,408us 1,544us 5,947us 28,378us 41,969us 86,139us
IN-S-1M 3,824us 1,362us 6,53us 15,509us 34,185us 125,898us
1IE-R-100K 6,174us 2,587us 2,740us 17,906us 78,859us 5,81us
IE-R-500K 7,77us 2,466us 3,862us 13,814us 58,637us 964,668us
IE-R-IM 7,611us 2,592us 2,349us 11,598us 107,551us 13,986us
1E-S-100K 6,129us 1,390us 2,638us 16,993us 2,432us 86,702us
IE-S-500K 4,452us 1,468us 2,434us 14,588us 65,639us 128,164us
1IE-S-1M 3,110us 1,410us 3,160us 12,598us 45,841us 696,530us
INN-R-100K 124,460us 329,298us 166,693us 528.,406us 593,44us 412,642us
INN-R-500K 171,186us 445,346us 270,393us 831,722us 1,49ms 124,973us
INN-R-IM 194,627us 522,203us 281,274us 939,848us 1,884ms 241,676us
INN-S-100K 100,47 1us 280,704us 171,670us 314,960us 726,270us 351,630us
INN-S-500K 145,330us 384,964s 195,835us 823,617us 2,335ms 386,801us
INN-S-1IM 276,626us 422,135us 226,636us 1,192ms 1,649ms 1,521ms

The results of the tests involving the query of existing edges from real graphs
indicate that the Neo4j-based framework has the best performance, as it conducts
queries faster than its competitors and also has the lowest value of standard devi-
ation. The H2-based framework, on the contrary, was proven to be very slow for
larger graphs, having also a high value of standard deviation. However, the same ex-
periment on synthetic graphs generated completely different results for the Neo4;j-
based framework, as it was the slowest, with the measured average times being much
larger than the times measured for the real graph tests. The framework that had the
best performance in these experiments for the larger graphs is the Lucene-based one.

Massive Graph Management for the Web and Web 2.0 53

The Lucene-based framework was proved to be the fastest when querying non-
existing edges for both real and synthetic graphs, as well as the most stable as it
had the lowest standard deviation values. The slowest framework for both types of
tests was the one based on H2. Another observation is that the standard deviation for
the Neo4j-based framework was much larger for the synthetic graph tests, whereas
quite the opposite is true for the H2-based framework.

In all iteration tests (including both node as well as edge iteration) the Lucene-
based framework had the best performance. For the node iteration tests it is worth
noticing that this framework generated the same average times for all real and syn-
thetic graphs, on the exception of the smallest real graph for which it generated a
larger average time. Between the other two frameworks the Neo4j-based proved to
be faster for real graphs, whereas their performance was comparable for synthetic
graph tests. In general, both the Neo4j-based and H2-based frameworks were faster
when querying nodes of synthetic rather than real graphs. However, the Neo4j-based
framework was observed to have a very high value of standard deviation for the
larger graphs. The Neo4j-based framework performed relatively well in edge itera-
tion tests, with the calculated average times for the real graph tests being compara-
ble to the respective average times for the Lucene-based framework. An observation
about the edge iteration results for the Lucene-based framework is that it performed
two times faster for the synthetic graph tests in relation to real graph tests.

Finally, the tests that involved querying the neighbors of random nodes, indicate
that the H2-based framework is the most efficient for such type of queries for most
of the tests, whereas the Lucene-based framework has the worst performance. The
single test for which the H2-based framework was outperformed by the Neo4j-based
framework is the test conducted on the largest synthetic graph (1,000,000 edges). An
observation that gives proof of the poor performance of the Lucene-based frame-
work in relation to the other frameworks is that its performance, when the test was
conducted on the largest real graph, was 2.5 times worse than the best performance
for the same test, whereas it was approximately 2 times worse than than best per-
formance when the test was conducted on the largest synthetic graph. This again
indicates that the Lucene-based framework is particularly slow when retrieving the
neighbors of a node.

7 Conclusions and Outlook

The abundance of Web data has created the need for more efficient scalable graph
data management structures. With this problem in mind, we presented various solu-
tions for the management of massive web graphs. We considered the special case of
STS as an application setting and we defined the requirements that STS data impose
on the underlying management framework. Moreover, we developed three different
STS data management frameworks and presented their structure and functionality.
The developed frameworks were benchmarked in terms of the disk space required
for data storage, as well as in terms of how fast they perform data insertion, update,
and deletion operations. The experimental results showed that both frameworks have

54 M. Giatsoglou, S. Papadopoulos, and A. Vakali

their pros and cons, and that the choice of a suitable framework for the manage-
ment of STS data (or web graph data in general) depends on the type of operations
that are expected to be performed more often. In general, the custom Lucene-based
framework seems to be an efficient solution for the majority of operations, except
for those that involve accessing the neighbors of a node, where the H2-based and
Neo4j-based frameworks proved to be better solutions. Moreover, although the pro-
posed frameworks have been designed for the case of the STS, they can be easily
adjusted so that they are applicable for other types of Web and Web 2.0 graph data.
The possibility of testing the performance of frameworks that use other technolo-
gies as underlying infrastructures (such as object databases, presented in subsection
B2l or data mining-based solutions, presented in Section [is also worthwhile to
be explored as future work.

From the above, it appears that there are different requirements for the manage-
ment of Web and Web 2.0 graph data, depending on the reasons why their storage,
and management in general, is desirable. A Web graph management framework
should consequently either be centered on a specific application, or be adaptable
to suit many application requirements. An interesting vision would be to combine
the characteristics of data mining-based solutions, such as the compression-based
databases, with the update functionalities of transactional databases, in a frame-
work able to support applications both for static graph analysis and for managing
time-varying graphs. In general, graph data management frameworks should be de-
veloped to maximally exploit the available main memory. Approaches towards this
direction would be to e.g. store part of the graph structure in main memory and the
rest of the data in external memory, or use a computer cluster to increase the size
of available main memory to fit the entire graph structure. An alternative approach
would be to differentiate between the way the adjacency lists of high-degree and
low-degree nodes are stored, so that e.g. the adjacency lists of high-degree nodes
are stored in main memory to decrease the time required for their access.

The possibility of developing a framework for handling temporal graphs that
would maintain information about the graph’s state in different time steps consti-
tutes another interesting future work area. Such functionality could be included in
a graph management framework e.g. information about when a node or edge was
added to (or deleted from) the graph is stored as an extra attribute of the node or
edge. Managing temporal graph data with such a framework would enable querying
about e.g. when an edge was added to the graph, which nodes were adjacent to a
node at a given time, etc.

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.: A Functional Approach to External Graph
Algorithms. Algorithmica 32(3), 437-458 (1998)

2. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: ICALP(2),
pp. 328-338 (2009)

3. Bader, D., Madduri, K.: Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. In: Proceedings of the ICPP 2006. IEEE Computer
Society, Los Alamitos (2006)

Massive Graph Management for the Web and Web 2.0 55

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for
local triangle counting in massive graphs. In: Proceeding of the KDD 2008, pp. 16-24.
ACM Press, New York (2008)

. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A., Saltz, J.: Distributed

processing of very large datasets with DataCutter. Parallel Comput. 27(11), 1457-1478
(2001)

. Boldi, P, Vigna, S.: The WebGraph Framework I: Compression Techniques. In: Proceed-

ings of the WWW 2004, pp. 595-602. ACM, New York (2004)

. Boldi, P., Vigna, S.: The WebGraph Framework II: Codes For The World-Wide Web. In:

Proceedings of the DCC 2004, vol. 528. IEEE Computer Society, Los Alamitos (2004)

. Boldi, P, Santini, M., Vigna, S.: Permuting Web Graphs. In: Avrachenkov, K., Donato,

D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 116-126. Springer, Heidelberg
(2009)

. Bothorel, C., Bouklit, M.: An algorithm for detecting communities in folksonomy hyper-

graphs. Appeared in I2CS 2008, Schoelcher, Martinique, Sponsored by IEEE (2008)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30(1-7), 107-117 (1998)

Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hypergraphs. In:
Proceedings of CIKM 2007, Lisbon, Portugal, pp. 869-872. ACM, New York (2007)
Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging
and hierarchical clustering. In: Proceedings of the WWW 2006, pp. 625-632. ACM,
New York (2006)

Buchsbaum, A.L., Giancarlo, R., Racz, B.: New results for finding common neigh-
borhoods in massive graphs in the data stream model. Theor. Comput. Sci. 407(1-3),
302-309 (2008)

Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compres-
sion with communities. In: Proceedings of the WSDM 2008. ACM, New York (2008)
Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting
triangles in data streams. Proceedings of the PODS 2006, pp. 253-262. ACM, New York
(2006)

Cattuto, C., Baldassarri, A., Servedio, D.P.V., Loreto, V.: Emergent Community Structure
In Social Tagging Systems. Advances in Complex Systems (ACS) 11(4), 597-608 (2008)
Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.:
On compressing social networks. In: Proceedings of the KDD 2009, pp. 219-228. ACM,
New York (2009)

Claude, F., Navarro, G.: A Fast and Compact Web Graph Representation. In: Ziviani, N.,
Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 105-116. Springer, Heidelberg
(2007)

Cohen, J.: Graph Twiddling in a MapReduce World. Computing in Science & Engineer-
ing 11(4), 2941 (2009)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107-113 (2008)

Du, N., Wang, B., Wu, B., Wang, Y.: Overlapping Community Detection in Bipartite
Networks. In: Proceedings of the WI-IAT 2008, pp. 176-179. IEEE Computer Society,
Los Alamitos (2008)

Erdés, P, Rényi, A.: On Random Graphs I. Publicationes Mathematicae 6, 290-297
(1959)

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a
semi-streaming model. Theor. Comput. Sci. 348(2), 207-216 (2005)

56

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

M. Giatsoglou, S. Papadopoulos, and A. Vakali

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the
streaming model. STAM J. Comput. 38(5), 1709-1727 (2008)

Furtado, P.: Evolving Application Domains of Data Warehousing and Mining: Trends
and Solutions. IGI Publishing (2009)

Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf.
Sci. 32(2), 198-208 (2006)

Guo, L., Tan, E., Chen, S., Zhang, X., Zhao, Y.: Analyzing patterns of user content gen-
eration in online social networks. In: Proceedings of the KDD 2009, pp. 369-378. ACM,
New York (2009)

Guozhu, D., Leonid, L., Jianwen, S., Limsoon, W.: Maintaining Transitive Closure of
Graphs in SQL. Int. J. Information Technology 5 (1999)

Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In:
Proceedings of the WWW 2007. ACM, New York (2007)

Hartley, T.D.R., Catalyiirek, U.V., Ozgiiner, F., Yoo, A., Kohn, S., Henderson, K.W.:
MSSG: A Framework for Massive-Scale Semantic Graphs. In: Proceedings of the 2006
IEEE International Conference on Cluster Computing, pp. 1-10. IEEE, Los Alamitos
(2006)

Hotho, A., Robert, J., Christoph, S., Gerd, S.: Emergent Semantics in BibSonomy. GI
Jahrestagung P-94, 305-312 (2006)

Karande, C., Chellapilla, K., Andersen, R.: Speeding up algorithms on compressed web
graphs. In: Proceedings of the WSDM 2009, pp. 272-281. ACM, New York (2009)
Keith, H.R., Raymie, S., Janet, L.W., Rajiv, G.W.: The Link Database: Fast Access to
Graphs of the Web. In: Data Compression Conference, vol. 0, p. 122. IEEE Computer
Society, Los Alamitos (2002)

Kittur, A., Chi, E., Pendleton, B.A., Suh, B., Mytkowicz, T.: Power of the Few vs. Wis-
dom of the Crowd: Wikipedia and the Rise of the Bourgeoisie. World Wide Web 1, 2,19
(2007)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604-632 (1999)

Larsson, N.J., Moffat, A.: Offline Dictionary-Based Compression. In: Data Compression
Conference, vol. 0, p. 296. IEEE Computer Society, Los Alamitos (1999)

Lawrence, P., Sergey, B., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford University (1998)

Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and
the TKC effect. Comput. Netw. 33(1-6), 387—401 (2000)

Madduri, K., Bader, D.A.: Compact graph representations and parallel connectivity al-
gorithms for massive dynamic network analysis. In: Proceedings of the IPDPS 2009,
pp. 1-11. IEEE Computer Society, Los Alamitos (2009)

Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In:
International Semantic Web Conference, pp. 522-536 (2005)

Muthukrishnan, S.: Data streams: algorithms and applications. In: Proceedings of the
SODA 2003, pp. 413—413 (2003)

Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69(2), 26113+ (2004)

Papadopoulos, S., Menemenis, F., Vakali, A., Kompatsiaris, Y.: Analysis of Content
Popularity in Social Bookmarking Systems. In: Evolving Application Domains of Data
Warehousing and Mining: Trends and Solutions. IGI Publishing (2009)

Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging Collective Intelligence
through Community Detection in Tag Networks. In: Proceedings of the CKCaR 2009
(2009)

Massive Graph Management for the Web and Web 2.0 57

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.
65.

66.

Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A Graph-based Clustering Scheme for
Identifying Related Tags in Folksonomies. In: Proceedings of the DaWaK 2010 (2010)
Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16, 464-497 (1996)
Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in
social tagging systems using hierarchical clustering. In: Proceedings of the RecSys 2008,
pp. 259-266. ACM, New York (2008)

Simpson, E.: Clustering Tags in Enterprise and Web Folksonomies. Technical Report.
HP Labs (2008)

Stephens, S., Rung, J., Lopez, X.: Graph Data Representation in Oracle Database 10g:
Case Studies in Life Sciences. IEEE Data Eng. Bull. 27(4), 61-66 (2004)

Voss, J.: Measuring Wikipedia. In: The 10th International Conference of the International
Society for Scientometrics and Informetrics (2005)

Wu, C., Zhou, B.: Analysis of tag within online social networks. In: Proceedings of the
GROUP 2009, pp. 21-30. ACM, New York (2009)

Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Pro-
ceedings of the WWW 2006, pp. 417-426. ACM, New York (2006)

Yeung, C.A., Gibbins, N., Shadbolt, N.: Tag Meaning Disambiguation through Analysis
of Tripartite Structure of Folksonomies. In: Proceedings of the WI-IATW 2007, pp. 3-6.
IEEE Computer Society, Los Alamitos (2007)

Yeung, C.A., Gibbins, N., Shadbolt, N.: Collective User Behaviour and Tag Contex-
tualisation in Folksonomies. In: Proceedings of the WI-IAT 2008, pp. 659-662. IEEE
Computer Society, Los Alamitos (2008)

Yeung, C.A., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging
systems. In: Proceedings of the HT 2009, pp. 251-260. ACM, New York (2009)

Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object classifi-
cation. In: Proceedings of the KDD 2009, pp. 957-966. ACM, New York (2009)
Alberton, L.: Graphs in the database: SQL meets social networks (2009),
http://techportal.ibuildings.com/2009/09/07/
graphs-in-the-database-sgl-meets-social-networks

Bergman, M.K.: Scalability of the Semantic Web (2006),
http://www.mkbergman.com/227/scalability
-of-the-semantic-web

Bergman, M.K.: Enterprise Semantic Webs Demand New Database Paradigms (2006),
http://www.mkbergman.com/185/enterprise-semantic-webs
-esw-demand-new-database-paradigms

Obasanjo, D.: An Exploration of Object Oriented Database Management Systems
(2001),
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html
Staken, K.: Introduction to Native XML Databases (2001),
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

Wang, J.C., Huiling, G., Betsy, G.: Oracle White Paper? A Load-On-Demand Approach
to Handling Large Networks in the Oracle Spatial Network Data Model (2009),
http://www.oracle.com/technology/products/spatial/pdf/
11lgr2 collateral/ ndmlodllgr2 wp 1009 .pdf

Apache Xindice, http://xml.apache.org/xindice

AllegroGraph RDF store, http://www. franz.com/agraph/allegrograph
Benchmarks: Performance advantages to store complex object structures,
http://www.db4o.com/about/productinformation/benchmarks
dbdo, http://www.db4o.com/about/productinformation/db4o

http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://techportal.ibuildings.com/2009/09/07/graphs-in-the-database-sql-meets-social-networks/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/227/scalability-of-the-semantic-web/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.mkbergman.com/185/enterprise-semantic-webs-esw-demand-new-database-paradigms/
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://www.oracle.com/technology/products/spatial/pdf/11gr2_collateral/_ndmlod11gr2_wp_1009.pdf
http://xml.apache.org/xindice
http://www.franz.com/agraph/allegrograph
http://www.db4o.com/about/productinformation/benchmarks
http://www.db4o.com/about/productinformation/db4o

58

67.

68.

69.
70.
71.
72.
73.
74.

75.

76.
7.

78.
79.

80.

M. Giatsoglou, S. Papadopoulos, and A. Vakali

Facebook Statistics (2010),

http://www. facebook.com/press/info.php?statistics
Getting Started with Berkeley DB for Java - Release 4.8,
http://www.oracle.com/technology/documentation/berkeley-db/
db/gsg/ JAVA/BerkeleyDB-Core-JAVA-GSG.pdf

H2 database, http://www.h2database. com

How ODB Works, http://wiki.neodatis.org/how-odb-works
Jena Semantic Web Framework, http://jena.sourceforge.net

JUNG Graph Framework, http://jung.sourceforge.net

Neo4j graph database, http://neodj.org

Object-relational impedance mismatch, http://en.wikipedia.org/wiki/
Object-relational impedance mismatch

Oracle Berkeley DB,

http://www.oracle.com/technology/
products/berkeley-db/index.html

OWLIM Repository, http: //www.ontotext.com/owlim

PolePosition Benchmark NeoDatis1.9,
http://switch.dl.sourceforge.net/project/neodatis-odb/
NeoDati1s%200DB%$20Performance/NeoDatis%201.9/
PolePosition NeoDatis-1.9.pdf

Sesame Framework, http://www.openrdf.org

Tamino XML Server,
http://www.softwareag.com/corporate/products/wm/tamino
Virtuoso Server platform, http: //www.openlinksw.com/virtuoso

http://www.facebook.com/press/info.php?statistics
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/_JAVA/BerkeleyDB-Core-JAVA-GSG.pdf/
http://www.h2database.com
http://wiki.neodatis.org/how-odb-works
http://jena.sourceforge.net
http://jung.sourceforge.net
http://neo4j.org
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.oracle.com/technology/products/berkeley-db/index.html/
http://www.ontotext.com/owlim
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://switch.dl.sourceforge.net/project/neodatis-odb/\/NeoDatis%20ODB%20Performance/NeoDatis%201.9/PolePosition_NeoDatis-1.9.pdf
http://www.openrdf.org
http://www.softwareag.com/corporate/products/wm/tamino
http://www.openlinksw.com/virtuoso

Chapter 3
Web Engineering and Metrics

Emilia Mendes

The University of Auckland, Computer Science Department,
Private Bag 92019, Auckland, New Zealand
emilia@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~emilia

Abstract. The objective of this chapter is three-fold. First, it provides an in-
troduction to Web Engineering, and discusses the need for empirical inves-
tigations in this area. Second, it defines concepts such as metrics and meas-
urement, and details the types of quantitative metrics that can be gathered
when carrying out empirical investigations in Web Engineering. Third, it
presents the three main types of empirical investigations — surveys, case
studies, and formal experiments.

1 Introduction

Despite being originally conceived back in 1989 as an environment to allow for
the sharing of information amongst geographically dispersed individuals (e.g. re-
search reports, databases, user manuals), the World Wide Web (Web) has been
transformed into an environment where numerous applications of varying types
are delivered. These applications, named Web applications, range from small-
scale information-dissemination-like applications, typically developed by writers
and artists, to large-scale commercial,' enterprise-planning and scheduling, col-
laborative-work applications. The latter are developed by multidisciplinary teams
of people with diverse skills and backgrounds using cutting-edge, diverse tech-
nologies [5][7] [18]. A large number of the Web applications that are presently
developed are fully functional systems that provide business-to-customer and
business-to-business e-commerce, and numerous services to numerous users [18].
Web applications are employed by numerous industries (e.g. travel and hospi-
tality, manufacturing, banking, education, and government) to improve and
increase their operations [7]. In addition, the client-server nature of the Web facili-
tates the development of corporate intranet Web applications, for use within the

! The increase in the use of the Web to provide commercial applications has been motivated
by several factors, such as the possible increase of an organisation’s competitive position,
and the opportunity for small organisations to project their corporate presence in the same
way as that of larger organisations.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 59
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

60 E. Mendes

boundaries of a single organisation [10]. In addition, the use of Web applications
in areas such as communication and commerce makes it one of the leading and
most important branches of the information and communication technologies in-
dustry [18].

Unfortunately, the development of industrial Web applications has been to date
reported as generally ad hoc, resulting in poor-quality applications difficult to
maintain [16]. The main reasons for such problems are unawareness of suitable
design and development processes, and poor project management practices [6].
However, as the reliance on larger and more complex Web applications increases
so does the need for using methodologies/standards/best practice guidelines that
enable such applications to be delivered on time, within budget, and with quality
[13][22][23]. The goal of Web engineering is therefore to provide Web develop-
ment teams with the means to develop such applications by supplying sound
methodologies, systematic techniques, quality assurance, rigorous, disciplined and
repeatable processes, better tools, and baselines [7].

Web engineering is defined as [16]:

“the use of scientific, engineering, and management principles and sys-
tematic approaches with the aim of successfully developing, deploying and
maintaining high quality Web-based systems and applications”.

Engineering is widely taken as a disciplined application of scientific knowledge
for the solution of practical problems:

“Engineering is the application of science to the needs of humanity.
This is accomplished through knowledge, mathematics, and practical ex-
perience applied to the design of useful objects or processes.” [24]

“Engineering is the application of scientific principles to practical
ends, as the design, manufacture, and operation of structures and ma-

chines.” [10]

“The profession of applying scientific principles to the design, con-
struction, and maintenance of engines, cars, machines, etc. (mechanical
engineering), buildings, bridges, roads, etc. (civil engineering), electrical
machines and communication systems (electrical engineering), chemical
plant and machinery (chemical engineering), or aircraft (aeronautical
engineering).” [9]

In addition, Engineering purports the need for applying scientific principles,
which are the result of applying a scientific process [8]. A process in this context
means that our current understanding, i.e. our theory (hypothesis), of how best to
develop, deploy, and maintain high-quality Web applications, may be modified or
replaced as new evidence is found through the accumulation of data and knowl-
edge. This process is illustrated in Fig. 1 and described below [8][15]:

Web Engineering and Metrics 61

e Observation: To observe or read about a phenomenon or set of facts. In most
cases the motivation for such observation is to identify cause & effect relation-
ships between observed items, since these entail predictable results. For exam-
ple, we can observe that an increase in the development of new Web pages
seems to also increase the corresponding development effort.

e Hypothesis: The formulation of a hypothesis represents an attempt to explain an
Observation. It is a tentative theory or assumption that is believed to explain
the behaviour under investigation [3]. The items that participate in the Observa-
tion are represented by variables (e.g. number of new Web pages, development
effort) and the hypothesis indicates what is expected to happen to these vari-
ables (e.g. there is a linear relationship between number of Web pages and de-
velopment effort, showing that as the number of new Web pages increases so
does the effort to develop these pages). However, these variables first need to
be measured and to do so we need an underlying Measurement Theory.

e Prediction: To predict means to forecast results that are to be found if the ra-
tionale used in the hypothesis formulation is correct (e.g. Web applications with
a larger number of new Web pages will use a larger development effort).

e Validation: To validate requires experimentation to provide evidence either to
support or refute the initial hypothesis. If the evidence refutes the hypothesis then
the hypothesis should be revised or replaced. If the evidence is in support of the
hypothesis, then many more replications of the experiment need to be carried out
in order to build a better understanding of how variables relate to each other and
their cause and effect relationships. Validating a hypothesis represents the gather-
ing of data from measuring the variables abovementioned. Such data gathering
occurs by means of an empirical investigation (empirical study).

Observation

]

Hypothesis

]

Prediction

]

Validation

\ 4

Theory

Fig. 1. The Scientific Process (Mendes, 2007)

62 E. Mendes

In summary, the scientific process supports knowledge building, which in turn
involves the use of empirical studies to test hypotheses previously proposed, and
to assess if the current understanding of the discipline is correct. Therefore ex-
perimentation in Web engineering is essential [1][2].

The application by organisations of scientific principles to developing and
maintaining Web applications is likely to vary depending on their level of matur-
ity. Maturity reflects an organisation’s use of sound development processes and
practices [3], where more mature organisations generally tend to apply scientific
principles to a larger extent than less mature organisations. In addition, some or-
ganisations have clearly defined processes that remain unchanged regardless of the
people who work on their projects. For such organisations, success is dictated by
following a well-defined process, where feedback is constantly obtained using
product, process and resource measures. Other organisations have processes that
are not so clearly defined (ad hoc) and therefore the success of a project is often
determined by the expertise of the development team. In such case, product, proc-
ess, and resource measures are rarely used and each project represents a potential
risk that may lead an organisation, if it gets it wrong, to bankruptcy [21].

The variables used in the formulation of hypotheses represent the attributes of
real-world entities that we observe. An entity represents a process, product, or re-
source. A process is defined as a software-related activity, where examples in-
clude Web development, Web maintenance, Web design, Web testing, and Web
project management. A product is defined as an artefact, deliverable, or document
that results from a process activity. Examples of products are Web application, de-
sign document, testing scripts, and fault reports. Finally, a resource represents an
entity required by a process activity. Examples of resources are Web developers,
development tools, and programming languages [3].

In addition, for each attribute that is to be measured, it is also useful to identify
if it is internal or external. Internal attributes can be measured by examining the
product, process, or resource on its own, separate from its behaviour. Conversely,
external attributes can only be measured with respect to how the product, process,
or resource relates to its environment [3]. For example, usability is in general an
external attribute since its measurement often depends upon the interaction be-
tween user and application. An example classifying entities is presented in Table 1
[15].

The measurement of attributes generates quantitative descriptions of key proc-
esses, products, and resources, enabling us to understand behaviour and result.
This understanding in turn lets us select better techniques and tools to control and
improve our processes, products, and resources [19].

Web Engineering and Metrics 63

Table 1. Classification of process, product, and resources for the Tukutuku® dataset

ENTITY | ATTRIBUTE | DESCRIPTION
PROCESS ENTITIES
PROJECT

TYPEPROJ Type of project (new or enhancement).

LANGS Implementation languages used.

DOCPROC If project followed defined and documented
process.

PROIMPR If project team involved in a process improvement|
programme.

METRICS If project team part of a software metrics|
programme.

DEVTEAM Size of project’s development team.

WEB DEVELOPMENT

TOTEFF Actual total effort used to develop the Web)
application.

ESTEFF Estimated total effort necessary to develop the
Web application.

ACCURACY Procedure used to record effort data.

PRODUCT ENTITY
WEB APPLICATION

TYPEAPP Type of Web application developed.

TOTWP Total number of Web pages (new and reused).

NEWWP Total number of new Web pages.

TOTIMG Total number of images (new and reused).

NEWIMG Total number of new images your company
created.

HEFFDEV Minimum number of hours to develop a single]
function/feature by one experienced developer tha]
is considered high (above average).

HEFFADPT Minimum number of hours to adapt a single]
function/feature by one experienced developer tha]
is considered high (above average).

HFOTS Number of reused high-effort features/functions|
without adaptation.

HFOTSA Number of adapted high-effort features/functions.

HNEW Number of new high-effort features/functions.

FOTS Number of low-effort features off the shelf.

FOTSA Number of low-effort features off the shelf adapted.

NEW Number of new low-effort features/functions.

RESOURCE ENTITY
DEVELOPMENT
TEAM

TEAMEXP Average team experience with the development|

language(s) employed.

The measurement theory that has been adopted in this chapter is the Represen-
tational Theory of Measurement [3], which drives the definition of measurement
scales presented in the next Section.

% The Tukutuku project collects data on industrial Web projects, for the development of ef-
fort estimation models and to benchmark productivity across and within Web companies.
See http://www.cs.auckland.ac.nz/tukutuku.

64 E. Mendes

2 Measurement Scales

When we gather data associated with the attributes that characterise the Entities
we wish to measure, they can be collected using a different measurement scale.
The characteristics of each scale type determine the choice of methods and statis-
tics that can be used to analyse the data that was measured using that scale type,
and how to interpret their corresponding measures. In this Section we describe the
five main scale types [3] [15]:

Nominal
Ordinal
Interval
Ratio
Absolute

2.1 Nominal Scale Type

The Nominal scale type represents the most primitive form of measurement. It
identifies classes or categories where each category groups a set of Entities based
on their attribute’s value. Within this context, Entities can only be organised into
classes or categories, without any notion of ranking between classes. In addition,
classes can be represented as either symbols or numbers; however, if within this
context numbers do not have any numerical meaning.

Examples using a Nominal scale are given in Table 2.

Table 2. Examples of Nominal Scale Measures

Entity Attribute | Categories
Web application type e-Commerce, Academic, Corporate, Entertainment
Programming language| type ASP (VBScript, .Net), Coldfusion, J2EE (JSP,
Servlet, EJB), PHP
Web Project type New, Enhancement, Re-development
Web company service 1,4,5,7,9, 34,502, 8
type

2.2 Ordinal Scale Type

The Ordinal scale supplements the Nominal scale with information about the rank-
ing of classes or categories. As with the Nominal scale, it also identifies classes or
categories where each category groups a set of Entities based on their attribute’s
value. The difference between an Ordinal scale and a Nominal scale is that an Or-
dinal scale assumes that there is some sort of ranking between classes. The same
way as with the Nominal scale, classes can be represented as symbols or numbers,
however if we use numbers they do not have any numerical meaning and represent
ranking only. This means that addition, subtraction and other arithmetic operations
cannot be applied to classes.

Web Engineering and Metrics 65
Examples of attributes measured using Ordinal scales are given in Table 3.

Table 3. Examples of Ordinal Scale Measures

Entity Attribute Categories

Web application | complexity Very low, Low, Average, High, Very high
Web page design quality | Very poor, Poor, Average, Good, Very good
Web Project priority 1,2,3,4,5,6,7

2.3 Interval Scale Type

The Interval scale supplements the Ordinal scale with information about the size
of the intervals that separate the classes or categories. As with the Nominal and
Ordinal scales, it also identifies classes or categories, where each category groups
a set of Entities based on their attribute’s value. As with the Ordinal scale, there
are ranks between classes or categories. The difference between an Interval scale
and an Ordinal scale is that here there is the notion that the size of intervals be-
tween classes or categories remains constant. Although the Interval scale is a nu-
merical scale and numbers have a numerical meaning, the class zero does not
mean the complete absence of the attribute being measured. To illustrate that, let’s
look at temperatures measured using the Celsius scale. The difference between
1°C and 2°C is the same as the difference between 6°C and 7°C: exactly 1°. There
is a ranking between two classes, thus 1°C has a lower rank than 2°C, and so on.
Finally, the temperature 0°C does not represent the complete absence of tempera-
ture, where molecular motion stops. In this example, 0°C was arbitrarily chosen to
represent the freezing point of water. This means that operations such as addition
and subtraction between two categories is permitted (e.g. 50°C - 20°C = 70°C -
40°C; 5°C + 25°C = 20°C + 10°C), however calculating the ratio of two categories
(e.g. 40°C/20°C) is not meaningful (40°C is not twice as hot as 20°C) so multipli-
cation and division cannot be calculated directly from categories. If ratios are to be
calculated, they need to be based on the differences between categories (e.g. 50°C
- 20°C is twice 25°C - 10°C).
Examples using an Interval scale are given in Table 4.

Table 4. Examples of Interval Scale Measures

Entity Attribute Categories

Web project| Number of days relative to the starting point of a project| 0,1,2,3,4.5,...

Human body| Temperature (Celsius or Fahrenheit) Decimal
numbers

2.4 Ratio Scale Type

The Ratio scale supplements the Interval scale with the existence of a zero ele-
ment, representing total absence of the attribute being measured. As with the
Interval scale, it also provides information about the size of the intervals that sepa-
rate the classes or categories. As with the Interval and Ordinal scales, there are

66 E. Mendes

ranks between classes or categories. As with the Interval, Ordinal and Nominal
scales, it also identifies classes or categories, where each category groups a set of
Entities based on their attribute’s value. The difference between a Ratio scale and
an Interval scale is the existence of an absolute zero. The Ratio scale is also a nu-
merical scale and numbers have a numerical meaning. This means that any arith-
metic operations between two categories are permitted.

Examples using a Ratio scale are given in Table 5.

Table 5. Examples of Ratio Scale Measures

Entity Attribute Categories

Web project Effort Decimal numbers
Web application | Size Integer numbers
Human body Temperature in Kelvin | Decimal numbers

2.5 Absolute Scale Type

The Absolute scale supplements the Ratio scale with restricting the classes or
categories to a specific unit of measurement. As with the Ratio scale, it also has a
zero element, representing total absence of the attribute being measured. As with
the Ratio and Interval scales, it also provides information about the size of the in-
tervals that separate the classes or categories. As with the Interval and Ordinal
scales, there are ranks between classes or categories. As with the Ratio, Interval,
Ordinal and Nominal scales, it also identifies classes or categories, where each
category groups a set of Entities based on their attribute’s value.

The difference between the Absolute and the Ratio scales is the existence in the
Absolute scale of a fixed unit of measurement associated with the attribute being
measured. For example, using a Ratio scale, if we were to measure the attribute ef-
fort of a Web project we could obtain an effort value that could represent effort in
number of hours, or effort in number of days, and so on. In case we want all effort
measures to be kept using number of hours we can convert effort in number of
days to effort in number of hours, or effort in number of weeks to effort in number
of hours. Thus, an attribute measured using a given unit of measurement (e.g.
number of weeks) can have its class converted into another using a different unit
of measurement, but keeping the meaning of the obtained data unchanged. There-
fore, assuming a single developer, a Web project’s effort of 40 hours is equivalent
to a Web project effort’s of a week. Thus, the unit of measurement changes how-
ever the data that has been gathered remains unaffected. If we were to measure the
attribute effort of a Web project using an Absolute scale we would need to deter-
mine in advance the unit of measurement to be used. Therefore, once this unit of
measurement is determined, it is the one used when effort data is being gathered.
Using our example on Web project’s effort, had the unit of measurement associ-
ated with the attribute effort chosen to be number of hours then all the effort data
gathered would represent effort in number of hours only.

Finally, as with the Ratio scale, operations between two categories, such as ad-
dition, subtraction, multiplication and division, are also permitted.

Web Engineering and Metrics

Examples using an Absolute scale are given in Table 6.

Table 6. Examples of Absolute Scale Measures

67

Entity Attribute Categories
Web project Effort, in number of hours Decimal numbers
Web application Size, in number of html files Integer numbers

Web developer

Experience developing Web
applications, in number of years

Integer numbers

2.6 Summary of Scale Types

Table 7 presents one of the summaries we are providing regarding Scale types. It
has been adapted from [14]. It is also important to note that the Nominal and Or-
dinal scales do not provide classes or categories that have numerical meaning, and
for this reason their attributes are called Categorical or Qualitative. Conversely,
given that the Interval, Ratio and Absolute scales provide classes or categories that
have numerical meaning, their attributes are called Numerical or Quantitative [14].

Table 7. Summary of Scale Type Definitions

Are distances .
. . Does the class include
Is ranking meaningful? | between classes the
Scale type o an absolute zero?
same?
Nominal No No No
Ordinal Yes No No
Interval Yes Yes No
Ratio Yes Yes Yes
Absolute Yes Yes Yes

In relation to the statistics relevant to each measurement scale type, Table 8

presents a summary adapted from [3].

Table 8. Summary of Scale Type Definitions

Examples of suitable

Scale type statistics

Suitable statistical tests

Mode
Frequency

Nominal

Non-parametric

Median
Percentile

Ordinal

Non-parametric

Mean
Standard deviation

Interval

Non-parametric and parametric

Mean
Geometric mean
Standard deviation

Ratio

Non-parametric and parametric

Mean
Geometric mean
Standard deviation

Absolute

Non-parametric and parametric

68 E. Mendes

3 Overview of Empirical Investigations

Validating a hypothesis or research question encompasses experimentation, which
is carried out using an empirical investigation (empirical study). This Section de-
tails the three different types of empirical investigations that are most often carried
out, which are: survey, case study or formal experiment [3][15].

e Survey: a retrospective investigation of an activity in order to confirm rela-
tionships and outcomes [3]. It is also known as “research-in-the-large” as it often
samples over large groups of projects. A survey should always be carried out after
the activity under focus has occurred [11]. When performing a survey, a researcher
has no control over the situation at hand, i.e. the situation can be documented,
compared to other similar situations, but none of the variables being investigated
can be manipulated. Within the scope of Web engineering, surveys are often used
to validate the response of organisations and developers to a new development
method, tool, or technique, or to reveal trends or relationships between relevant
variables. For example, a survey can be used to measure the success of changing
from Sun’s J2EE to Microsoft’s ASP.NET throughout an organisation, because it
can gather data from numerous projects. The downside of surveys is time. Gather-
ing data can take many months or even years, and the outcome may only be avail-
able after several projects have been completed [11].

e Case study: an investigation that examines the trends and relationships us-
ing as its basis a typical project within an organisation. It is also known as “re-
search-in-the-typical” [11]. Although a case study can be used to investigate a
retrospective event, this is not the usual trend. This type of study is the investiga-
tion of choice when wishing to examine an event that has not yet occurred and for
which there is little or no control over the variables. For example, if an organisa-
tion wants to investigate the effect of a programming framework on the quality of
the resulting Web application however cannot develop the same project using nu-
merous frameworks simultaneously, the investigative choice is to use a case study.
If the quality of the resulting Web application is higher than the organisation’s
quality baseline, it may be due to many different reasons (e.g. chance, or perhaps
bias from enthusiastic developers). Even if the programming framework had a le-
gitimate effect on quality, no conclusions outside the boundaries of the case study
can be drawn, i.e. the results of a case study cannot be generalised to every possi-
ble situation. Had the same application been developed several times, each time
using a different programming framework® (as in a formal experiment, described
later) then it would be possible to have better understanding of the relationship be-
tween framework and quality, given that these variables were controlled. A case
study samples from the variables, rather than over them. This means that, in

3 The values for all other attributes should remain the same (e.g. developers, programming
experience, development tools, computing power, and type of application).

Web Engineering and Metrics 69

relation to the variable programming framework, a value that represents the frame-
work usually used on most projects will be the one chosen (e.g. J2EE). A case
study is easier to plan than a formal experiment, but its results are harder to ex-
plain and in addition, as previously mentioned, cannot be generalised outside the
scope of the study [11].

e Formal experiment: rigorous and controlled investigation of an event where
important variables are identified and manipulated such that their effect on the out-
come can be validated [3]. It is also known as ‘“research-in-the-small” since it is
very difficult to carry out formal experiments in Web engineering using numerous
projects and resources. A formal experiment samples over the variable that is being
manipulated, such that all possible values that variable may have are validated, i.e.
there is a single case representing each possible situation. If we apply the same ex-
ample used when explaining case studies above, this means that several projects
would be developed, each using a different object-oriented programming language.
If one aims to obtain results that are largely applicable across various types of pro-
jects and processes, the choice of investigation is a formal experiment. However,
despite the control that needs to be exerted when planning and running a formal
experiment, its results cannot be generalised outside the experimental conditions.
For example, if an experiment demonstrates that J2EE improves the quality of
e-commerce Web applications, one cannot guarantee that J2EE will also improve
the quality of educational Web applications [11]. This type of investigation is most
suited to the Web engineering research community as it enables the building of
theories to be applied when engineering Web applications.

There are other concrete issues related to using a formal experiment or a case
study that may impact the choice of study. It may be feasible to control the vari-
ables, but at the expense of a very high cost or high degree of risk. If replicating a
study is possible however at a prohibitive cost, a case study should then be the
type of study used [3]. A summary of the characteristics of each type of empirical
investigation is given in Table 9.

Table 9. Summary Characteristics of the Three Types of Empirical Investigations

Characteristic | Survey Case study Formal experiment

Scale Research-in- Research-in-the- | Research-in-the-small
the-large typical

Control No control Low level of High level of control

control

Replication No Low High

Generalisation | Results Only applicable | Can be generalised within
representative | to other projects | the experimental
of sampled of similar type conditions
population and size

70 E. Mendes

There are a set of steps broadly common to all three types of investigations,
which are described below:

Define the Goal(s) of Your Investigation and Its Context

Goals are crucial for the success of all activities part of an empirical investiga-
tion. Thus, it is important to allow enough time to fully understand and set the
goals so that each one is clear and measurable. Goals represent the research ques-
tions, which may also correspond to a number of hypotheses. By setting the re-
search questions or hypotheses it becomes easier to identify the dependent and
independent variables that are to be measured as part of the investigation [3]. A
dependent variable is a variable whose behaviour we want to predict or explain,
and an independent variable is a variable believed to have a causal relationship
with, or have influence upon, the dependent variable [25]. For example, if we wish
to estimate the effort needed to develop a Web application and we believe that
Web application’s size and the number of Web developers influence development
effort, then we have development effort as our single dependent variable, and Web
application size and number of developers as the two independent variables.

Goals also help determine what the investigation will do, and what data is to be
collected. Finally, by understanding the goals we can also confirm if the type of
investigation chosen is the most suitable type to employ [3].

Each of the hypotheses being validated by means of an empirical investigation
will later be either supported or rejected. When stating the hypothesis/es being
validated it is customary to present them in two different forms — null and alterna-
tive hypotheses [25], as below:

Hy Using J2EE produces the same quality of Web applications as using
ASP.NET.

H, Using J2EE produces a different quality of Web applications than using
ASP.NET.

H, is called the null hypothesis, and assumes the quality of Web applications
developed using J2EE is similar to that of Web applications developed using
ASP.NET. In other words, it assumes that data samples for both groups of applica-
tions come from the same population. In this instance, we have two samples, one
representing quality values for Web applications developed using J2EE, and the
other, quality values for Web applications developed using ASP.NET. Here, qual-
ity is our dependent variable, and the choice of programming framework (e.g.
J2EE or ASP.NET), the independent variable.

H, is called the alternative or research hypothesis, and represents what is be-
lieved to be true if the null hypothesis is false. The alternative hypothesis assumes
that samples do not come from the same sample population. Sometimes the direc-
tion of the relationship between dependent and independent variables is also pre-
sented as part of an alternative hypothesis. If H; also suggested a direction for the
relationship, it could be described as:

H,; Using J2EE produces a better quality of Web applications than using
ASP.NET.

Web Engineering and Metrics 71

To support H; it is first necessary to reject the null hypothesis and, second,
show that quality values for Web applications developed using J2EE are signifi-
cantly higher than quality values for Web applications developed using ASP.NET.

We have presented both null and alternative hypotheses since they are both
equally important when presenting the results of an empirical investigation, and,
as such, both should be documented.

To see if the data justify rejecting Hy we need to perform a statistical analysis.
Before carrying out a statistical analysis it is important to decide the level of con-
fidence we have that the data sample we gathered truly represents our population
of interest. If we have 95% confidence that the data sample we are using truly
represents the general population there still remains a 5% chance that Hy will be
rejected when in fact it truly represents the current situation. Rejecting Hy incor-
rectly is called the Type I error, and the probability of this occurring is called the
Significance level (o). Every statistical analysis test uses oo when testing if Hy
should be rejected or not.

4 Issues to Consider When Conducting Empirical Studies

In addition to defining the goals of an investigation, it is also important to docu-
ment the context of the investigation [12]. One suggested way to achieve this is to
provide a table, similar to Table 1, describing the entities, attributes, and measures
that are the focus of the investigation.

Prepare the Investigation

It is important to prepare an investigation carefully to obtain results from which
one can draw valid conclusions, even if these conclusions cannot be scaled up. For
case studies and formal experiments it is important to define the variables that can
influence the results, and once defined, decide how much control one can have
over them [3].

Consider the following case study which would represent a poorly prepared
investigation.

The case study aims to investigate, within a given organisation, the effect of us-
ing the programming framework J2EE on the quality of the resulting Web applica-
tion. Most Web projects in this organisation are developed using ASP.NET, and
consequently all the development team has experience with this language. The
type of application representative of the majority of applications this organisation
undertakes is in electronic commerce (e-commerce), and a typical development
team has two developers. Therefore, as part of the case study, an e-commerce ap-
plication is to be developed by two developers using J2EE. Because we have
stated this is a poorly executed case study, we will assume that no other variables
have been considered, or measured (e.g. developers’ experience, development
environment).

The e-commerce application is developed, and the results of the case study
show that the quality of the delivered application, measured as the number of
faults per Web page, is worse than that for the other similar Web applications

72 E. Mendes

developed using ASP.NET. When questioned as to why these were the results ob-
tained, the investigator seemed puzzled, and without a clear explanation.

What is missing?

The investigator should have anticipated that other variables can also have an
effect on the results of an investigation, and should therefore also be taken into ac-
count. One such variable is developers’ programming experience. Without meas-
uring experience prior to the case study, it is impossible to discern if the lower
quality is due to J2EE or to the effects of learning J2EE as the investigation pro-
ceeds. It is possible that one or both developers did not have experience with
J2EE, and lack of experience has interfered with the benefits of its use.

Variables such as developers’ experience should have been anticipated and if
possible controlled, or risk obtaining results that will be incorrect.

To control a variable is to determine a subset of values for use within the con-
text of the investigation from the complete set of possible values for that variable.
For example, using the same case study presented above, if the investigator had
measured developers’ experience with J2EE (e.g. low, medium, high), and was
able to control this variable, then (s)he could have determined that two developers
experienced with J2EE should participate in the case study. If there were no de-
velopers with experience in J2EE, two would be selected and trained.

If, when conducting a case study, it is not possible to control certain variables,
they should still be measured, and the results documented.

If, however, all variables are controllable, then the type of investigation to use
is a formal experiment.

Another important issue is to identify the population being studied and the
sampling technique used. For example, if a survey was designed to investigate the
extent to which project managers use automatic project management tools, then a
data sample of software programmers is not going to be representative of the
population that has been initially specified.

With formal experiments, it is important to describe the process by which ex-
perimental subjects and objects are selected and assigned to treatments [12], where
a treatment represents the new tool, programming language, or methodology you
want to evaluate. The experimental object, also known as experimental unit, repre-
sents the object to which the treatment is to be applied (e.g. development project,
Web application, code). The control object does not use or is not affected by the
treatment [3]. In Web engineering it is difficult to have a control in the same way
as in, say, formal medical experiments. For example, if you are investigating the
effect of a programming framework on quality, and your treatment is J2EE, you
cannot have a control that is “no programming framework” [12]. Therefore, many
formal experiments use as their control a baseline representing what is typical in
an organisation. Using the example given previously, our control would be
ASP.NET since it represents the typical programming framework used in the or-
ganisation. The experimental subject is the “who” applying the treatment [3].

As part of the preparation of an investigation we also include the preparation
and validation of data collection instruments. Examples are questionnaires, auto-
matic measurement tools, timing sheets, etc. Each has to be prepared carefully
such that it clearly and unambiguously identifies what is to be measured. For each

Web Engineering and Metrics 73

variable it is also important to identify its measurement scale and measurement
unit. So, if you are measuring effort, then you should also document its measure-
ment unit (e.g. person hours, person months) or else obtain incorrect and conflict-
ing data. It is also important to document at which stage during the investigation
the data collection takes place. If an investigation gathers data on developers’ pro-
gramming experience (before they develop a Web application), size and effort
used to design the application, and size and effort used to implement the applica-
tion, then a diagram, such as the one in Fig. 2, may be provided to all participants
to help clarify what instrument(s) to use and when to use them.

Functional

Requirements F
Data and

Navigation

Design

Implementation F

I Testing

. . A 4
1°! data collection point 2™ data collection point 3" data collection point
questionnaire 1 questionnaire 2 questionnaire 3

Fig. 2. Plan Detailing When to Apply Each Project [15]

It is usual for instruments to be validated using pilot studies. A pilot study uses
similar conditions to those planned for the real investigation, such that any possi-
ble problems can be anticipated. It is highly recommended that those conducting
any empirical investigations use pilot studies as they can provide very useful feed-
back and reduce or remove any problems not previously anticipated.

Finally, it is also important to document the methods used to reduce any bias.

Analysing the Data and Reporting the Results

The main aspect of this final step is to understand the data collected and to apply
statistical techniques that are suitable for the research questions or hypotheses of
the investigation. For example, if the data was measured using a nominal or ordi-
nal scale then statistical techniques that use the mean cannot be applied as this
would violate the principles of the representational theory of measurement. If the
data is not normally distributed then it is possible to use non-parametric or robust
techniques, or transform the data to conform to the normal distribution [3]. Further
details on data analysis are presented later in this Chapter.

When interpreting and reporting the results of an empirical study it is also im-
portant to consider and discuss the validity of the results obtained. There are three
types of threats to the validity of empirical investigations [11][20]: construct va-
lidity, internal validity and external validity. Each is described below.

74 E. Mendes

Construct validity: represents the extent to which the measures you are using in
your investigation really measure the attributes of Entities being investigated. For
example, if you are measuring the size of a Web application using IFPUG function
points, can you say that the use of IFPUG function points is really measuring the
size of a Web application? How valid will the results of your investigation be if
you use IFPUG function points to measure a Web application’s size? Another ex-
ample, if you want to measure the experience of Web developers developing Web
applications and you use as a measure the number of years they worked for their
current employer, it is unlikely that you are using an appropriate measure since
your measure does not take into account as well their previous experience devel-
oping Web applications.

Internal validity: represents the extent to which external factors not controlled
by the researcher can affect the dependent variable. Suppose that, as part of an in-
vestigation, we observe that larger Web applications are related to more produc-
tive teams, compared to smaller Web applications. We must make sure that team
productivity is not being affected by using, for example, highly experienced de-
velopers to develop larger applications and less experienced developers to develop
smaller applications. If the researcher is unaware of developers’ experience it is
impossible to discern whether the results are due to developers’ experience or due
to legitimate economies of scale. Typical factors that can affect the internal valid-
ity of investigations are variations in human performance, learning effects where
participants’ skills improve as the investigation progresses, and differences in
treatments, data collection forms used or other experimental materials.

External validity: represents the extent to which we can generalise the results
of our investigation to our population of interest. In most empirical investigations
in Web engineering the population of interest often represents industrial practice.
Suppose you carried out a formal experiment with postgraduate students to com-
pare J2EE to ASP.NET, using as experimental object a small Web application. If
this application is not representative of industrial practice you cannot generalise
the results of your investigation beyond the context in which it took place. An-
other possible problem with this investigation might be the use of students as sub-
ject population. If you have not used Web development professionals, it will also
be difficult to generalise the results to industrial practice. Within the context of
this example, even if you had used Web development professionals in your inves-
tigation, if they did not represent a random sample of your population of interest
you would also be unable to generalise the results to your entire population of
interest.

5 Detailing Formal Experiments

A formal experiment is considered the most difficult type of investigation to carry
out since it has to be planned very carefully such that all the important factors are
controlled and documented, enabling its further replication. Due to the amount of

Web Engineering and Metrics 75

control that formal experiments use they can be further replicated and, when repli-
cated under identical conditions, if results are repeatable, they provide better basis
for building theories that explain our current understanding of a phenomenon of
interest. Another important point related to formal experiments is that the effects
of uncontrolled variables upon the results must be minimised. The way to mini-
mise such effect is to use randomisation. Randomisation represents the random as-
signment of treatments and experimental objects to experimental subjects.

The following sub-Sections discuss the typical experimental designs used with
formal experiments [26][15]; for each typical design, the types of statistical analy-
sis tests that can be used to examine the data gathered from such experiments are
also introduced.

5.1 Typical Design 1

There is one independent variable (factor) with two values and one dependent
variable. Suppose you are comparing the productivity between Web applications
developed using J2EE (treatment) and Web applications developed using
ASP.NET (control). 50 subjects are participating in the experiment and the ex-
perimental object is the same for both groups. Assuming other variables are con-
stant, subjects are randomly assigned to J2EE or ASP .NET (see Fig. 3).

50 subjects

%

Fig. 3. Example of One-Factor Design

ASP.NET Group
(25)

Once productivity data is gathered for both groups the next step is to compare
the productivity data to check if productivity values for both development frame-
works come from the same population (Hy) or from different populations (H;). If
the subjects in this experiment represent a large random sample or the productivity
data for each group is normally distributed you can use the independent samples t-
test statistical technique to compare the productivity between both groups. This is
a parametric test and as such it assumed that the data is normally distributed or the
sample is large and random. Otherwise, the statistical technique to use would be
the independent samples Mann-Whitney test, a non-parametric equivalent to the t-
test. Non-parametric tests make no assumptions related to the distribution of the
data and that is why they are used if you cannot guarantee that your data is nor-
mally distributed or represent a large random sample.

76 E. Mendes

5.2 Typical Design 1: One Factor and One Confounding Factor

There is one independent variable (factor) with two values and one dependent
variable. Suppose you are comparing the productivity between Web applications
developed using J2EE (treatment) and Web applications developed using
ASP.NET (control). 50 subjects are participating in the experiment and the ex-
perimental object is the same for both groups. A second factor (confounding fac-
tor) — gender, is believed to have an effect on productivity however you are only
interested in comparing different development frameworks and their effect on
productivity, not the interaction between gender and framework type on produc-
tivity. The solution is to create two blocks (see Fig. 4), one with all the female
subjects, and another with all the male subjects, and then, within each block, ran-
domly assign a similar number subjects to J2EE or ASP .NET (balancing).

50 people

Males (30)

Females

J2EE Group '
(10)

Fig. 4. Example of Blocking and Balancing with One-Factor Design

ASP.NET
Group
(10)

ASP.NET
Group
(15)

Once productivity data is gathered for both groups the next step is to compare
the productivity data to check if productivity values for both groups come from
the same population (Hy) or come from different populations (H;). The mechanism
used to analyse the data would be the same one presented previously. Two sets of
productivity values are compared, one containing productivity values for the 10
females and the 15 males who used J2EE, and the other containing productivity
values for the 10 females and the 15 males who used ASP.NET. If the subjects in
this experiment represent a large random sample or the productivity data for each
group is normally distributed you can use the independent samples t-test statistical
technique to compare the productivity between both groups. Otherwise, the statis-
tical technique to use would be the independent samples Mann-Whitney test, a
non-parametric equivalent to the t-test.

5.3 Typical Design 2

There is one independent variable (factor) with two values and one dependent variable.
Suppose you are comparing the productivity between Web applications developed us-
ing J2EE (treatment) and Web applications developed using ASP.NET (control). 50
subjects are participating in the experiment using the experimental object. You also

Web Engineering and Metrics 77

want every subject to be assigned to both the control and the treatment. Assuming
other variables are constant, subjects are randomly assigned to the control or the treat-
ment, and then swapped around (see Fig. 5).

50 people

IS

ASP.NET
Group
(25)

ASP.NET
Group
(25)

Fig. 5. Example of Typical Design 2

Once productivity data is gathered for both groups the next step is to compare
the productivity data to check if productivity values for both groups come from
the same population (Hy) or come from different populations (H;). Two sets of
productivity values are compared: the first contains productivity values for 50 sub-
jects when using J2EE; the second contains productivity values for the same 50
subjects, when using ASP.NET. Given that each subject was exposed to both con-
trol and treatment you need to use a paired test. If the subjects in this experiment
represent a large random sample or the productivity data for each group is nor-
mally distributed you can use the paired samples t-test statistical technique to
compare the productivity between both groups. Otherwise, the statistical technique
to use would be the two related samples Wilcoxon test, a non-parametric equiva-
lent to the paired samples t-test.

5.4 Typical Design 3

There is one independent variable (factor) with more than two values and one depend-
ent variable. Suppose you are comparing the productivity amongst Web applications
designed using Methods A, B and C. 60 subjects are participating in the experiment
and the experimental object is the same for all groups. Assuming other variables are
constant, subjects are randomly assigned to one of the three groups (see Fig. 6).

60 people
Method A Method B Method C
(20) (20) (20)

Fig. 6. Example of Typical Design 3

78 E. Mendes

Once productivity data is gathered for all the three groups the next step is to
compare the productivity data to check if productivity values for all groups come
from the same population (Hy) or come from different populations (H;). Three sets
of productivity values are compared: the first contains productivity values for 20
subjects when using Method A; the second contains productivity values for an-
other 20 subjects when using Method B; the third contains productivity values for
another 20 subjects when using Method C. Given that each subject was exposed to
only a single method you need to use an independent samples test. If the subjects
in this experiment represent a large random sample or the productivity data for
each group is normally distributed you can use the One-Way ANOVA statistical
technique to compare the productivity among groups. Otherwise, the statistical
technique to use would be the Kruskal-Wallis H test, a non-parametric equivalent
to the One-Way ANOVA.

5.5 Typical Design 4

There are at least two independent variables (factors) and one dependent variable.
Suppose you are comparing the productivity between Web applications developed
using J2EE (treatment) and Web applications developed using ASP.NET (con-
trol). 60 subjects are participating in the experiment and the experimental object is
the same for both groups. A second factor — gender, is believed to have an effect
on productivity and you are interested in assessing the interaction between gender
and framework type on productivity. The solution is to create four blocks (see
Table 10) representing the total number of possible combinations. In this example
each factor has two values therefore the total number of combinations would be
given by multiplying the number of values in the first factor by the number of val-
ues in the second factor (2 multiplied by 2), which is equal to 4. Then, assuming
that all subjects have similar experience using both frameworks, within each gen-
der block, subjects are randomly assigned to J2EE or ASP .NET (balancing). In
this scenario each block will provide 15 productivity values.

Once productivity data is gathered for all the four blocks the next step is to
compare the productivity data to check if productivity values for males come from
the same population (Hy) or come from different populations (H,), and the same
has to be done for females. Here productivity values for blocks 2 and 4 are

Table 10. Example of Typical Design 4

Gender

Female

Female, J2EE (15) Male, J2EE (15)
Block 1 Block 2

J2EE

Female, ASP.NET (15) Male, ASP.NET (15)
Block 3 Block 4

ASP.NET

Framework

Web Engineering and Metrics 79

compared; and productivity values for blocks 1 and 3 are compared. If the subjects
in this experiment represent a large random sample or the productivity data for
each group is normally distributed you can use the independent samples t-test sta-
tistical technique to compare the productivity between groups. Otherwise, the sta-
tistical technique to use would be the Mann-Whitney test, a non-parametric
equivalent to the independent samples t-test.

5.6 Summary of Typical Designs

Table 11 summarises the statistical tests to be used with each of the typical de-
signs previously introduced. Each of these tests is explained in detail in statistical
books, such as [25].

Table 11. Examples of Statistical Tests for Typical Designs

Typical Design Parametric test Non-parametric test
Design 1 no explicit Independent samples t-test | Independent samples
confounding factor Mann-Whitney test
Design 1 explicit Independent samples t-test | Independent samples
confounding factor Mann-Whitney test
Design 2 paired samples t-test Two-related samples
Wilcoxon test

Design 3 One-Way ANOVA Kruskal-Wallis H test
Design 4 independent samples t-test | Mann-Whitney test

6 Detailing Case Studies

It is often the case that case studies are used in industrial settings to compare two
different technologies, tools or development methodologies. One of the technolo-
gies, tools or development methodologies represents what is currently used by the
company, and the other technology, tool or development methodology represents
what is being compared to the company’s current situation. Three mechanisms are
suggested to organise such comparisons to reduce bias and enforce internal
validity [26]:

e To compare the results of using the new technology, tool or development
methodology to a company’s baseline. A baseline generally represents an average
over a set of finished projects. For example, a company may have established a
productivity baseline against which to compare projects. This means that produc-
tivity data has been gathered from past finished projects and used to obtain an
average productivity (productivity baseline). If this is the case then the productiv-
ity related to the project that used the new technology, tool or development meth-
odology is compared against the existing productivity baseline, to assess if there
was productivity improvement or decline. In addition to productivity other base-
lines may also be used by a company, e.g. usability baseline, defect rate baseline.

80 E. Mendes

e To compare the results of using the new technology, tool or development
methodology to a company’s sister project, which is used as a baseline. This
means that two similar and comparable projects will be carried out, one using the
company’s current technology, tool or development methodology, and another us-
ing the new technology, tool or development methodology. Once both projects are
finished measures such as productivity, usability and actual effort can be used to
compare the results.

e Whenever the technology, tool or development methodology applies to in-
dividual application components, it is possible to apply at random the new technol-
ogy, tool or development methodology to some components and not to others. Later
measures such as productivity and actual effort can be used to compare the results.

7 Detailing Surveys

There are three important points to stress here. The first is that, similarly to formal
experiments and case studies, it is very important to define beforehand what is it
that we wish to investigate (hypotheses) and what is the population of interest. For
example, if you plan to conduct a survey to understand how Web applications are
currently developed the best population to use would be the one of Web project
managers as they have the complete understanding of the development process
used. Interviewing Web developers may lead to misleading results as it is often the
case that they do not see the forest for the trees.

The second point is related to piloting the survey. It is important to ask different
users, preferably representative of the population of interest, to read the instru-
ment(s) to be used for data collection to make sure questions are clear and no im-
portant questions are missing. It is also important to ask these users to actually an-
swer the questions in order to have a feel for how long it will take them to provide
the data being asked for. This should be a similar procedure if you are using
interviews.

Finally, the third point relates to the preparation of survey instruments. It is
generally the case that instruments will be either questionnaires or interviews. In
both cases instruments should be prepared with care and avoid misleading ques-
tions that can bias the results. If you use ordinary mail to post questionnaires to
users make sure you also include a pre-paid envelope addressed to yourself, to be
used to return the questionnaires. You can also alternatively have the same ques-
tionnaire available on the Web. Unfortunately the use of electronic mails as means
to broadcast a request to participate in a survey has been impaired by the advent of
spam emails. Many of us nowadays use filters to stop the receipt of unsolicited
junk emails and therefore many survey invitation requests may end up being
filtered and deleted.

8 Conclusions

This chapter discussed the need for empirical investigations in Web engineering,
and introduced the three main types of empirical investigation — surveys, case
studies, and formal experiments. Surveys are typically used when we wish to

Web Engineering and Metrics 81

gather data from events that have already occurred, and over a large sample that if
random can be used to generalise the results, to some extent, to the wider popula-
tion. This type of investigation is also known as research in the large. Case studies
represents studies conducted a typical context, and within the context of Web en-
gineering, this context would normally represent a Web company. The data gath-
ered from a case study is obtained as the case study is carried out, and the results
can only be generalised to other companies similar to the one where the case study
was carried out, or to similar projects to the one that was investigated. This type of
investigation is often referred to as research in the typical. Finally, formal experi-
ments aim to gather data that was gathered under a controlled setting, where the
variables being investigated can be manipulated. This control helps and is para-
mount to understand the phenomenon being investigated and to be used as input to
building a theory that details the phenomenon. Formal experiments are very diffi-
cult to carry out in industrial environments due to the amount of control they need,
so it is often the case that they are carried out using students as surrogates of more
junior Web developers. This type of investigation is known as research in the
small.

References

[1] Basili, V.R.: The role of experimentation in software engineering: past, current, and fu-
ture. In: Proceedings of the 18th International Conference on Software Engineering,
March 25-30, pp. 442-449 (1996)

[2] Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experi-
ments. IEEE Transactions on Software Engineering 25(4), 456473 (1999)

[3] Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach, 2nd
edn. PWS Publishing Company (1997)

[4] Gellersen, H., Wicke, R., Gaedke, M.: WebComposition: an object-oriented support
system for the Web engineering lifecycle. Journal of Computer Networks and ISDN
Systems 29(8-13), 865-1553 (1997); Proceedings of the Sixth International World
Wide Web Conference, pp. 429-1437 (1996)

[5] Gellersen, H.-W., Gaedke, M.: Object-oriented Web application development. IEEE
Internet Computing, 3(1), 60-68 (1999)

[6] Ginige, A.: Workshop on web engineering: Web engineering: managing the complex-
ity of Web systems development. In: Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering, July 2002, pp. 72-729 (2002)

[7] Ginige, A., Murugesan, S.: Web engineering: an introduction. IEEE Multimedia 8(1),
14-18 (2001)

[8] Goldstein, M., Goldstein, I.LF.: How we know: an exploration of the scientific process.
Plenum Press, New York (1978)

[9] Collins English Dictionary. Harper Collins Publishers (2000)

[10] The American Heritage Concise Dictionary, 3rd edn. Houghton Mifflin Company,
Boston (1994)

[11] Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation. IEEE Software 12(4), 52-62 (1995)

82 E. Mendes

[12] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering 28(8), 721-734 (2002)

[13] Lee, S.C., Shirani, A.L.: A component based methodology for Web application devel-
opment. J. of Systems and Software 71(1-2), 177-187 (2004)

[14] Maxwell, K.: What you need to know about statistics. In: Mendes, E., Mosley, N.
(eds.) Web Engineering, pp. 365-407. Springer, Heidelberg (2005)

[15] Mendes, E.: Cost Estimation Techniques for Web Projects, 424 pages. IGI Global Pub-
lishers (2007); ISBN: 978-1-59904-135-3

[16] Murugesan, S., Desphande, Y.: Web Engineering, Managing Diversity and Complexity
of Web Application Development LNCS, vol. 2016. Springer, Heidelberg (2001)

[17] Murugesan, S., Deshpande, Y.: Meeting the challenges of web application develop-
ment: the web engineering approach. In: Proceedings of the 24th International Confer-
ence on Software Engineering, May 2002, pp. 687-688 (2002)

[18] Offutt, J.: Quality attributes of Web software applications. IEEE Software 19(2),
25-32(2002)

[19] Pfleeger, S.L., Jeffery, R., Curtis, B., Kitchenham, B.: Status report on software meas-
urement. IEEE Software 14(2), 33-43 (1997)

[20] Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the cost-
benefits of code inspections in large scale software development. TSE 23(6), 329-346
(1997)

[21] Pressman, R.S.: Can Internet-based applications be engineered? IEEE Software 15(5),
104-110 (1998)

[22] Ricca, F., Tonella, P.: Analysis and testing of Web applications. In: Proceedings of the
23rd International Conference on Software Engineering, pp. 25-34 (2001)

[23] Taylor, M.J., McWilliam, J., Forsyth, H., Wade, S.: Methodologies and website devel-
opment: a survey of practice. Information and Software Technology 44(6), 381-391
(2002)

[24] Wikipedia, http://en.wikipedia.org/wiki/Main_Page (accessed on October 25, 2004)

[25] Wild, C., Seber, G.: Chance Encounters: a First Course in Data Analysis and Inference.
John Wiley & Sons, New York (2000)

[26] Wohlin, C., Host, M., Henningsson, K.: Empirical Research Methods in Web and Soft-
ware Engineering. In: Mendes, E., Mosley, N. (eds.) Web engineering, pp. 409-430.
Springer, Heidelberg (2005)

Chapter 4
Modern Web Technologies

Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Volos, Greece

Abstract. Nowadays, World Wide Web is one of the most signifi-
cant tools that people employ to seek information, locate new sources
of knowledge, communicate, share ideas and experiences or even pur-
chase products and make online bookings. The technologies adopted
by the modern Web applications are being discussed in this book
chapter. We summarize the most fundamental principles employed
by the Web such as the client-server model and the http protocol
and then we continue by presenting the current trends such as asyn-
chronous communications, distributed applications, cloud computing
and mobile Web applications. Finally, we conduct a short discussion
regarding the future of the Web and the technologies that are going
to play key roles in the deployment of novel applications.

1 Introduction

During the past few years we have witnessed a massive evolution in the
applications hosted on the World Wide Web. The obsolete, static Web sites
have been replaced by innumerable, novel services that changed dramatically
the manner that users navigate, purchase, communicate, think and make
decisions. New types of dynamic applications have been developed by using
the modern technologies and their participatory features have made them
extremely popular, since hundreds of millions of people use them on a daily
basis. Blogs, social networks, forums, search engines, wikis, media sharing
services and office suites are only a small subset of these applications, which
are collectively known as Web2.0.

Therefore, understanding the technologies that support the continuous ex-
pansion of the Web is of significant importance. Since the field of Web tech-
nology constantly changes and evolves, researchers and developers are facing
the challenge of being early informed in order to investigate and propose
novel solutions to newly posed problems. Note that some of the techniques
characterizing the Web since its birth still exist and development must al-
ways obey to the traditional rules set by them. One representative example
of these technologies is the HTTP protocol which, essentially, has been left
unchanged since 1995.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 831107
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

84 L. Akritidis, D. Katsaros, and P. Bozanis

However, the majority of the technologies have either been evolved, or
completely replaced by novel ones. In this chapter we present the state-of-
the-art technologies that are now vital in modern Web computing. Robust
design and efficient development of systems and applications deployed on the
Web is a topic of critical importance, since it determines the acceptance of a
system by the users and affects the commercial success of the product. Here
we discuss such topics along with some of the tools and issues involved in
this development.

At first, in Sections Bl and] we describe the basic networking models
adopted by the developers when building Web applications. The Client-Server
model is a basic computer networking architecture, which was established
before the Web explosion and it sets two types of devices; clients and servers.
On the other hand, the Peer-To-Peer model was developed later in order to
interconnect users and every device in such a network is treated equally.

Next, we present some of the basic characteristics of hypertezrt, the most
popular manner of publishing and distributing information across the entire
Internet. At first we provide some definitions and then we discuss how hy-
pertext is transferred and formatted by using HTTP (Section [H]) and HTML
(Section [A)), respectively.

The description of the basic principles of the XML language follows in Sec-
tion [XML is a tool gaining rapid acceptance by both users and developers
and it is mainly employed in order to transfer information in a fast and effec-
tive manner across different platforms. It is definitely becoming the method
of choice for the most modern Web applications such as news portals, blogs,
forums and even electronic stores publishing their product lists.

Javascript is one of the most popular scripting languages encountered on
the Web and millions of Web sites and applications use it for various pur-
poses. In Section [we present the basic characteristics of the scripting lan-
guages and especially Javascript. A family of modern technologies, AJAX, is
later described in Section [@ Nowadays, AJAX is a quickly expanding tool,
since it offers important solutions to the stateless nature of the HTTP and
the traditional Client-Server model. By submitting requests to a Web server
asynchronously, the AJAX-enabled Web pages can modify their content with-
out requiring to refresh their display. This family of technologies which is one
of the most important Web2.0 features, employs Javascript for scripting and
XML for transferring data between the client and the server. AJAX is cur-
rently being used by numerous Web services, such as email managers, global
and planetary mapping services, instant messengers, Web search engines and
others.

Finally, we discuss how Web applications are constructed and deployed.
In Section [I0] we present some of the most popular programming and storage
tools and in the sequel, we describe some characteristic applications of the
Web, such as social networks, Web communities, office suites, and mobile
software.

Modern Web Technologies 85

Since the number of people using the Web constantly increases, one of the
main trends encountered today is the utilization of large clusters of computers
in order to handle the tremendous workloads. The first category of these
applications, discussed in Section [I2] includes software which is distributed
across the computers of the users themselves and exploit their free resources
in order to solve complex scientific problems. In the second category, we
mainly encounter the popular cloud computing solutions (Section [[3]), which
employ thousands of interconnected servers usually hosted in one or more
data centers with the aim of addressing the huge traffic that millions of users
produce.

Concluding in Section [T6, we provide a brief discussion regarding the pre-
sented technologies and the future of the Web.

2 The Client-Server Model

The Client-Server model is one of the most popular architectures for computer
networking. It utilizes two types of devices to address the communication
requirements of the terminals of a network; Clients and Servers. The model
can be used on the Internet as well as local area networks. Examples of
client-server systems on the Internet include email services, Web browsers,
Web servers and FTP clients and servers. It was originally developed to allow
multiple users to share access to database applications and offers improved
scalability because connections can be made as needed, rather than being
fixed.

Request
Client CGI Modules

Database Server

PHP Parser
- Response E — SMTP Services

:éld e FTP Server
Client Server SOAP Services

Authentication—Authorization
Request
Generic Applications

Response
Client

Fig. 1. Typical Architecture of the Client-Server Model

86 L. Akritidis, D. Katsaros, and P. Bozanis

A Client is a device, typically a personal computer or a mobile device with
network software applications installed that request and receive information
over the network. On the other hand, a Server typically hosts applications
(including other servers), or stores files and databases. Server devices often
feature higher-powered equipment, greater processing performance and larger
storage capabilities than clients.

Figure[lillustrates a typical communication of several remote machines ac-
cording to the Client-Server model. Network clients submit requests to a server
machine by transmitting messages. On the other side, servers respond to their
clients by processing each request and by sending the appropriate response
messages. In a typical Client-Server environment one server is utilized to sup-
port the traffic originated by multiple clients, whereas numerous servers can
be linked together in order to handle and address increased processing load.

The Client-Server model is employed by some of the most widespread
applications on the Internet. Such applications include FTP, email and Web
services and in each of these, the clients employ software of special type (an
Internet Browser, an email management program or an FTP client), allowing
them to connect and receive data from the corresponding servers.

3 The Peer-To-Peer (P2P) Model

Peer-To-Peer networks, often abbreviated to P2P, is a network architecture
alternative to the Client-Server model. However, instead of requiring central
coordination by a machine or software such as a server, all the devices (peers)
are treated equally. In such an architecture, every peer makes a portion of
its resources directly available to other peers, hence each network participant
is both a supplier and consumer. The resources that the peers may share
include network bandwidth, processing power and disk storage.

/ﬁ, ,,\
\W/

Fig. 2. Typical Architecture of a Peer-To-Peer network

Modern Web Technologies 87

This network architecture became really popular when file sharing ser-
vices (such as Napster, kazaa eMule and others) appeared on the Internet.
Their distributed architecture and the fact that no server is required, pro-
vides improved scalability, since computers may dynamically enter or leave
the network without significant impact.

Depending on how the connections among the peers are established, Peer-
To-Peer networks are divided into two categories: The structured and the
unstructured networks. The first category includes topologies where the con-
nections are fixed, whereas in the second category we encounter architec-
tures that do not provide any algorithm for organizing or optimizing these
connections.

The most popular application employing Peer-To-Peer technologies is the
file sharing services, where millions of users join a community in order to
request or provide media files, documents and software. There are also other
important types of applications such as instant messaging, online chat and
voice over IP where this network architecture finds remarkable utilization.

4 Hypertext

Currently, the information on the Web is mainly provided through documents
of special type, which provide inter-linking capabilities. Consequently, every
Web document (also known as Web page) may contain references to other
documents and resources and the user is able to immediately access these
resources by simply following the corresponding links.

All this functionality is provided through hypertext, a term coined by Ted
Nelson around 1965. Hypertext is a specific form of text containing dynamic
references to other resources. Although it is an old invention, it still remains
the main way of information propagation within the Web. Apart from running
simple text and links, hypertext may also contain headings, lists, tables,
images and other presentational devices.

Other means of interaction could also be present, such as a form to com-
plete and submit.

5 Hypertext Transfer

The requirement for retrieving inter-linked resources containing hypertext,
led to the establishment of HTTP (HyperText Transfer Protocol). The uti-
lization of HTTP imposed a set of rules and specifications allowing hypertext
documents to be transmitted and received. It is a generic, stateless protocol
which can be applied on many tasks beyond its use for hypertext, such as
name servers and distributed object management systems.

The specifications of the protocol obey the request-response standard,
which is typical in client-server computing. The client is usually an

88 L. Akritidis, D. Katsaros, and P. Bozanis

application (i.e. the user’s browsing software) running on the machine of an
end user, whereas the server is a computer program executed by the machine
hosting the Web site or service. The communication is conducted through
HTTP requests submitted by the client and HTTP responses returned by
the server. The responses are accompanied by specific code numbers which
indicate the status of the corresponding response. In other words, response
codes reveal whether the request has been served successfully, or whether an
error has occurred (including the type of the error).

HTTP is usually implemented on top of the TCP/IP protocol which con-
trols the reliable data transfers. However, this is not a constraint, since HT'TP
can operate by using any other protocol which guarantees reliable transports.

Nowadays, there are two major versions of the protocol, HT'TP /1.0 and
HTTP/1.1. According to [13] the latter improves the former by providing a
more efficient caching mechanism, and more effective bandwidth usage (the
introduced range requests allow a client to request portions of a resource).
Furthermore, while HTTP /1.0 included some support for compression, it did
not provide adequate mechanisms for negotiating its use, an issue addressed
by the newer version.

6 Hypertext Markup

The requirement for building Web documents of unique and personalized
style, layout and formatting, led to the introduction of a special markup lan-
guage which can be used by Web developers to construct their pages accord-
ing to their personal preferences. Moreover, the requirement for publishing
information that can be globally distributed, made the need for a universally
understood language imperative.

HTML, which stands for HyperText Markup Language, is now the pre-
dominant markup language for Web pages. It provides a set of command
(HTML tags) to create structured documents by denoting structural seman-
tics for text. Such semantics include tables, paragraphs, headings, lists, links
and numerous others. The need for interaction between a Web application
and the user is mainly satisfied by the introduction and usage of forms. These
forms are now used for conducting transactions with remote services, making
reservations, ordering products, etc

Finally, HTML allows the integration of scripts which are usually executed
by a Web client (browser) and Cascading Style Sheets (CSS) which is a
standard of parallel commands for explicit presentational markup.

There are several releases of HTML, but the most popular among them is
HTML 4.01 [I] also recommended by the W3C. In addition to the text, mul-
timedia, and hyperlink features of the previous versions, this version supports
more multimedia options (i.e. embedded videos), scripting languages, style
sheets, more printing facilities, improved support for right to left and mixed
direction text, frames and enhancements to forms, offering improved accessi-
bility for people with disabilities. HTML 4.01 is also more oriented towards

Modern Web Technologies 89

the internationalization of the Web documents since they can be written in
every language and be transported easily around the world.

7 XML

As we aforementioned in Subsection [, HTML was designed to display Web
pages with focus on the manner that the data is presented to the user. The
need for a language that would focus on transportation and storage of data
led to the introduction of Extensible Markup Language or XML. Note that
XML is not a replacement for HTML, since the latter is mainly designed
for displaying information, whereas XML was created to structure, store,
and transport information. The precise design goals of the XML as set by
the World Wide Web Consortium [2] emphasize on the wide, fast and easy
usability that the standard must provide.

XML is a simple, very flexible text format derived from SGML (Stan-
dard Generalized Markup Language). It was originally designed in order to
provide convenient, uniform and platform-independent publishing of infor-
mation. Nowadays it is also playing an increasingly important role in the
exchange of a wide variety of data on the Web and elsewhere.

The documents of this type are composed of markup and content and
have both a logical and a physical structure. There are six kinds of markup
that may occur in an XML document: elements, entity references, comments,
processing instructions, marked sections, and document type declarations.
An entity may refer to other entities to cause their inclusion in the document
and furthermore, the logical and physical structures must nest properly.

To obtain the data contained in an XML document, we usually employ
especially designed applications known as XML parsers which are capable of
translating the structure of the document and generating data nodes. There
are many types of XML parsers with various capabilities. One of their most
remarkable feature is their ability to examine whether the document is well
formed. In general, XML parsers are more strict than HTML renderers and
the most sophisticated among them perform validation of the XML structure
and syntax. Hence, a document which does not conform to the XML grammar
or does not contain a proper document type declaration, is not considered
valid and cannot be parsed.

7.1 RSS Feeds

Really Simple Syndication (or RSS) is one of the most common applications of
the XML language. It is a family of feed formats mainly employed by authors
to publish frequently updated information. Such information includes news
headlines, multimedia content, blog posts, product catalogs (accompanied by
the corresponding availability data and prices), airline tickets and numerous
others. The RSS documents are built by using standard XML syntax and
their popularity increased rapidly after 2005.

90 L. Akritidis, D. Katsaros, and P. Bozanis

An RSS document (which is called a feed) includes text and meta-data such
as publishing dates, authorship and others. The generation and delivery of
information by using such feeds is beneficial for both publishers and readers.
More specifically, publishers are allowed to syndicate content automatically,
whereas readers are able to subscribe to temporal updates from preferred
sites, or to aggregate different RSS feeds originating from multiple sources.

A reader can access and extract the information stored in RSS feeds by
using specific software called an RSS reader or aggregator. Most modern Web
browsers include built-in RSS readers, whereas some new mobile devices have
their own reading software available. A standardized XML format allows the
information to be published once and viewed by many different programs.
The user subscribes to a feed by informing the corresponding reading soft-
ware about the desired feed. In turn, the reader checks the subscribed feeds
regularly for new publications and updates and informs the user accordingly.

8 Scripting

HTML is a powerful markup language offering the Web developers various
tools in order to format the Web pages that they build. However, it lacks pro-
gramming capabilities such as setting variables, computing values, handling
files etc. To cover this drawback, HTML provides the option of composing
external scripts that is, fragments of code written by programmers in order
to solve specific problems.

Scripts can be separated into two main categories: server-side and client-
side. The first category includes programs executed by the server and only the
result of the programm processing is returned to the end user. Furthermore,
this type of scripts may, or may not require compilation before they can be
executed. For example, PHP scripts do not require compilation, but there is
a dedicated parser running as a server module that handles runtime or syntax
errors. Therefore, in this case, no executable file is created, but the opposite
holds for server-side programs written in other programming languages (i.e.
ASP.NET).

In the second category we encounter scripts executed by the client (that
is, the user’s browser) and the code is integrated within the Web page itself.
All client-side scripts do not require compilation or parsing. This has the
cost of harder and slower debugging, since when an error is triggered, no
informative messages are generated and the execution is being terminated
silently. Therefore, the programmer has to examine and debug the entire
code in order to detect the specific portion causing the problem.

Nowadays, the most popular language on the Web offering client-side
scripting is Javascript. Javascript is used in millions of Web pages to add
functionality, validate form data, build visual effects, open pop-up windows
and there are many other applications. Another significant field, where it finds
application, is the development of enhanced user interfaces and dynamic Web
sites.

Modern Web Technologies 91

Furthermore, it offers event-driven programming that is, it allows the pro-
grammer to write code which is executed before or after a specific event is
triggered. Hence, a Web page may be modified without having to send any
data to the server and receive its response. For this reason, Javascript is ideal
for building robust Web applications with modern user interfaces, and it is
one of the main characteristics that the services of the next generation of
Web include.

9 Asynchronous Transfers and AJAX

The usage of the traditional request/response methods that the classic client-
server model imposed, prevented Web sites and browsers from providing a
fast and responsive user experience. For example, filling and submitting an
online form was inconvenient and time consuming, since all the requested
information had to be entered and then submitted to the machine hosting
the service (Web server). Then the server performed a validation of the form
data and if problems were detected, the user was obliged to refill and resubmit
the same form. The flow of information and the resulting experience was
inconstant and disconnected, reflecting the stateless nature of HTTP.

The introduction of Java applets offered a different route: this route in-
cluded asynchronous loading of content and allowed client-side code to load
data asynchronously from the Web server after a web page was fetched.
Moreover, the IFrame component of the HTML language and some intro-
duced ActiveX controls also enabled this to be achieved. More specifically,
these ActiveX controls included a special object, namely XMLHttpReques7
which was designed in order to submit requests to a server asynchronously.

AJAX (shorthand for Asynchronous JavaScript and XML) is a modern
Web technology introduced by the World Wide Web Consortium (W3C) in
2003 It is a group of interrelated web development techniques used on the
client-side to create interactive web applications. The applications employ-
ing AJAX technologies are capable of retrieving data from the server asyn-
chronously in the background, without having to interfere with the display
and behavior of the currently loaded page.

In Figure Bl we illustrate how the usage of AJAX technologies in modern
Web applications offers uninterrupted user experience. The left diagram of
this Figure depicts how the user and the remote server communicate accord-
ing to the traditional client-server model. Note the idle times in the side of the
client; these are the times required to transfer the desired data between the
client and the server and also concern the time the server consumes to process
this data and return a response to the end user. In the AJAX environment,
the user experiences no idle times, since the asynchronous communications
between the browser and the server offer continuous work flow.

! http://www.w3.org/TR/XMLHttpRequest/
2 http://www.w3.org/standards/webdesign /script

92 L. Akritidis, D. Katsaros, and P. Bozanis

CLIENT : User Activity
Jobin Progress ~ Idle Time Job in Progress Rl St Rt St -
T r 'AJAX input display 3
I . . I
input display !
: AJAX Processing . i Py
data transfer data transfer -] k- ______ k-~
SERVER
_MdleTime _JobinProgress | IdleTime | (gppvER
Idle Time Idle Time Idle Time
77777777777777 Server
Processing

Fig. 3. AJAX asynchronous data transfer model (right) vs traditional client server
workflow model (left)

In the sequel, let us provide some of the main benefits deriving from the
usage of AJAX techniques. At first, in many cases, some pages on a Web site
include content that is common among them. The usage of traditional meth-
ods required that this content would have to be reloaded on every request.
However, by employing AJAX an application can request only the content
that needs to be updated. Therefore, we manage to drastically reduce both
the usage of valuable bandwidth usage and load time.

In addition, the utilization of asynchronous requests allows the interface of
the client’s browser to be more interactive and to respond quickly to inputs.
Several portions of pages can be reloaded individually and the users may per-
ceive the application to be faster or more responsive, even if the application
has not changed on the server side.

Finally, with AJAX we can minimize connections to the Web server, since
external files such as scripts and style sheets only have to be requested once.
Programmatically, this means that the local variables will retain their values,
because the main container page need not be reloaded.

For all these reasons, the usage of these techniques has led to a signif-
icant increase to the applications providing interactive and dynamic user
interfaces[2][3]. Some of the most common services employing AJAX
techniques are:

— Mailbox management applications, where the entire user interface is de-
signed to allow composition, reading and deletion of messages without
refreshing the display. Moreover when a new message arrives it is added
to the in-box automatically without requiring the user to refresh the page.

Modern Web Technologies 93

— The new technology allowed the introduction of modern Web instant
messengers. These services are constructed in such a way that allow their
users to exchange their messages instantly. Their main characteristic is
that each time a message is sent or received, only its content is loaded by
the client and the entire interface remains unchanged.

— Global Maps Services employ the asynchronous features of AJAX to allow
their users navigate through the surface of the planet. They also provide
magnification potentials by directly accepting data from satellites.

— The novel translation services now operating on the Web offer their users
new functionality. They are capable of accepting words or even sentences
and paragraphs written in a specific language and, as the user types, they
translate the content into another language.

— A huge amount of other smaller services is now built by using asyn-
chronous technologies. Such services include result retrieval in the major
commercial search engines, spelling correction, auto-complete features (as
the user types his/her query, current search engines fetch similar entries
from their query logs and present them on the fly below the text box),

Nevertheless, the remarkable new features and functionality introduced by
the AJAX technologies do not come without costs. The main drawback is that
the interfaces constructed by using AJAX are substantially more difficult to
develop than static pages. Pages dynamically created using successive AJAX
requests do not automatically register themselves with the browser’s history
engine and this may raise problems regarding the user’s navigation on the
Web. For example, it is possible that when a user clicks the “Back” button
of the Web browser, he/she will not return to an earlier state of the AJAX-
enabled page, but may instead return them to the last full page visited before
it. Dynamic web page updates also make it difficult for a user to bookmark
a particular state of the application.

Web crawlers are computer programs developed by the search engines in
order to browse the Web in a methodical, automated manner. However, since
the majority of the Web crawlers do not execute Javascript code, applications
indexed by search engines should provide means for accessing the content ac-
tually retrieved with AJAX. Note that any user whose browser does not
support Javascript or XMLHttpRequest, or simply has this functionality dis-
abled, will not be able to properly display and use pages which depend on
AJAX. Similarly, devices such as mobile devices and screen readers may not
have support for the required technologies.

Finally, like other web technologies, AJAX has its own set of vulnerabilities
that developers must address. Developers familiar with other web technolo-
gies may have to learn new testing and coding methods to write secure AJAX
applications.

94 L. Akritidis, D. Katsaros, and P. Bozanis

10 Application Deployment

In this subsection we present some of the main tools and technologies em-
ployed by the modern Web applications.

10.1 Database Servers

Currently, XML is the dominant technology to publish and distribute semi-
structured information on the Web. However, there are types of applications
that require their data to be organized in a more robust and structured
manner. Such applications include electronic stores, social networks, forums,
search engines and others which usually have to deal with massive amounts
of data.

Database Management Systems (or DBMS) is a tool developed to offer
efficient organization, storage, management and retrieval of an application’s
data. These systems usually reside in dedicated machines and offer database
services to other computers and applications. Instead of having to write com-
puter programs to store and extract information, user can ask simple ques-
tions in a supported query language. Thus, many DBMS packages provide a
structured query language (SQL) and other application development features.

Within a typical DBMS, data is organized into records which is a col-
lection of data regarding a physical entity (i.e. an employee, a book, or a
product). Each record consists of numerous user-defined fields, that are able
to store information of different types (text, binary data, integers and floats,
time stamps, dates and several others which vary across different DBMSs).
Records of the same type are again grouped within tables. Databases provide
an efficient manner of separating the application logic from the data logic,
therefore, different applications can cooperate with the same database.

One of the most important characteristics offered by Database Manage-
ment Systems is the indexing feature. An index is an auxiliary data structure
usually implemented in a form of a tree such as B-Tree, to allow fast and
efficient data access and retrieval. The indexes also allow effective sorting of
the returned records and offer fast organization (i.e. grouping of records).

Other features commonly offered by database management systems
include:

— Restricted access to resources and attributes. Each user of the system is
assigned privileges which determine whether he or she has read or write
access to several resources and attributes of the database. These privileges
are assigned by individuals, or groups of individuals maintaining elevated
authority across the entire system.

— Data safety and integrity are of critical importance for every informa-
tional system, hence copies of attributes are required to made regularly
in case of equipment failure. DBMS usually provide utilities to facilitate
the process of extracting and disseminating attribute sets.

Modern Web Technologies 95

— Data retrieval by submitting queries. Instead of composing special soft-
ware to obtain and format the data stored within a database, most mod-
ern systems accept structured queries which usually follow the simple
syntax of a structured query language. By submitting queries we request
attribute information from various perspectives and combinations of fac-
tors (i.e. who are the male clients that purchased a specific product?).
Queries can also be submitted to the database in order to insert, update
or delete data, according to the privileges each user is granted.

The introduction of World Wide Web in 1995 imposed new challenges for
database systems. Researchers realized that the traditional database man-
agement techniques were becoming too complex and there was a need for
automated configuration and management. For example, online transactions
have become extremely popular with the evolution of the e-business world.
Consumers and businesses are able to purchase products and make payments
securely on corporal Web sites.

In addition, Web search engines have even been remarkably influenced by
database management. Using technologies similar to the ones employed by
current database systems, these services are able to accept user queries and
locate data across the entire the Web.

10.2 Hypertext Preprocessor - PHP

PHP is one of the most widespread scripting languages used to deploy Web
applications. The rich features it offers combined with the natural easiness
and the open source characteristics, have made it the second most popular
scripting language encountered on the Web [4]. Although there is a general
intuition that PHP is mainly preferred for constructing small or medium
sized applications, several large-scale Web sites serving hundreds of millions
of users worldwide, such as Facebook, Wikipedia and Wordpress have been
developed with it. Currently, PHP is installed on over 20 million sites and 1
million Web servers [3].

It was originally designed for the development of Web applications, in order
to produce dynamic pages. PHP scripts can be embedded into HTML and
they generally run on a Web server (server-side scripting), which needs to be
configured properly to execute PHP code. It can be deployed on most Web
servers and on almost every operating system and platform.

PHP scripts are phrased by following a C-style coding syntax and all the
allocated resources are released after the script execution by an automatic
garbage collection mechanism. Since its fifth version, it also supports the
object-oriented programming style by adopting principles such as abstract
data types and information hiding, inheritance and polymorphism. Moreover,
it includes features such as variables, arrays and associative arrays setting
and manipulation, conditional statements, loops, function setting and file
handling. Apart from these classic characteristics, PHP allows programming

96 L. Akritidis, D. Katsaros, and P. Bozanis

of the HT'TP protocol by providing access to HT'TP sessions and cookies and,
furthermore, by implementing secure file uploads.

One of the most robust features of PHP is its native support to MySQL,
SQLite and PostgresSQL database systems. Through built-in functions and
classes, PHP scripts can easily connect to database servers, submit queries
and retrieve data. The combination of PHP and MySQL is one of the most
common techniques currently employed by the developers when building Web
applications.

10.3 Active Server Pages - ASP/ASP.NET

Another popular server-side scripting technology that is competent to PHP
is Active Server Pages. It has been introduced by Microsoft and provides to
the developers robust tools in order to create dynamic and interactive Web
applications. Similarly to the PHP documents, an ASP page is a standard
HTML document which contains server-side scripts. The scripts are processed
by a properly configured Web server which sends the processing output to
the user’s browser.

In contrast to PHP, ASP is not a scripting language, but rather a technol-
ogy used to produce dynamic pages when a browser requests ASP files from a
Web server. The default scripting language employed for scripts composition
is VBScript, although alternative languages like JScript (Microsoft’s version
of Javascript) can also be used. When an ASP script is called, the server
processes the requested file from top to bottom and executes the commands
it contains. It the sequel, it generates and formats a standard Web page and
sends it to the browser.

During 2002, Microsoft released a large set of coded solutions to com-
mon programming problems. This library, known as the .NET Framework,
includes solutions regarding user interface design, data access and process-
ing, database connectivity and development of dynamic Web applications,
whereas the programmers are able combine its classes with their own work.

In addition, the library includes a virtual engine able to execute the soft-
ware written specifically for the framework. The applications developed with
the .NET Framework are deployed in a special environment which manages
their runtime requirements. This runtime environment, which is known as the
Common Language Runtime (CLR), allows the programmers to work without
considering the capabilities or the specifications of the specific machine that
will execute their program. The CLR also provides other important services
such as security, memory management, and exception handling.

Along with the release of the .NET Framework, Microsoft also introduced
ASP.NET, an enhanced version of ASP used to produce dynamic Web sites,
applications and services. The new development framework is built upon the

Modern Web Technologies 97

CLR and allows programmers to compose software by employing any of the
supported languages such as the VB.NET (Visual Basic .NET), C#, J# and
others. Moreover it offers the ability to construct applications by using an
event-driven user interface model, in contrast to the conventional scripting
environments such as ASP and PHP.

10.4 Java Server Pages - JSP

Java Server Pages or simply JSP, is another technology used to deploy dy-
namic Web applications, by allowing Java code to be embedded into the
content of a regular static page. The code is not pre-compiled, but it is ac-
tually being compiled on the server at each page request similarly to PHP.
The Web pages that are created by using JSP are loaded in the server and
handled by a special Java server packet, called the J2EE Web Application.

JSP Input
E\ T Request J5P Fle = Generate Java
:AH —>| Servlet

Response Class

Client Server
Execute Java
Program

Fig. 4. JSP page translation and processing phases

The processing of the a JSP page is performed in two phases. At first, we
employ a typical JSP compiler which converts the input file into a servlet,
that is, a particular Java class that responds to HTTP requests. In the sequel,
the servlet can be either compiled by a Java compiler and generate a standard
Java program, or be converted to a directly executable byte code. Figure [
illustrates the procedure of translating and processing JSP pages.

JSP is currently an alternative method to PHP and ASP, allowing develop-
ers to construct dynamic Web sites and services by writing their code in Java.
Although it provides rich features and offers almost equivalent possibilities,
it is not as popular as the other two aforementioned technologies.

11 SOAP

A protocol which gained attention during the past few years is the Simple
Object Access Protocol, or simply SOAP. It is a simple XML-based protocol

98 L. Akritidis, D. Katsaros, and P. Bozanis

which allows the applications to exchange structured or semi-structured in-
formation over HT'TP. Its messages follow the standard XML syntax, whereas
the trasmission/receive procedure is handled by other application protocols,
such as the HTTP. SOAP specifies exactly how to encode an HTTP header
and an XML file, so that a program in one terminal can call a program in
another terminal and transmit information to it. It also specifies how the
called software can return a response.
In details, SOAP messages consist of three parts:

— An envelope which describes the content of the message and instructions
about how this content should be processed,

— a set of rules containing the data types defined within the application
and

— a convention which represents procedure calls and responses

Some of the applications operating on the Web require the transmission and
processing of attached binary files (i.e. images or documents). But since all
the parts of a SOAP message must conform to the strict XML standards,
binary data cannot be included directly into the message (they contain char-
acters and sequences not allowed by the official XML rules). Furthermore, the
inclusion of binary data within the message itself, would render the majority
of the parsers inefficient; some of them initially read and process the entire
SOAP message before deciding what to do with the contents. This operation
requires large amounts of memory and processing power. For all these rea-
sons it was decided that SOAP requires some mechanism for carrying large
payloads and binary data as an attachment rather than inside the SOAP
message envelope.

To cover such issues, third parties released a set of specifications which
determine how binary pfiles should be attached to a SOAP message. The most
common set of specifications is the the JSR-67 (Java Specification Request)
which included the SAAJ (SOAP with Attachments API for Java) standard.

The main advantage of SOAP is the integrated simplicity and extensi-
bility. The protocol allows easier and more robust communication between
proxy servers and firewall applications along with the language and plat-
form independence. In addition, using HTTP is not obligatory, since SOAP
also supports the usage of different transfer protocols, such as SMTP. The
transmitted packets not only include the content of the message, but also
sufficient information describing how this content should be processed by the
receiver. However, the verbose XML format that SOAP employs can render
it relatively slower than other solutions.

Since one of the most common purposes of Web services is to exchange
XML data, SOAP is rapidly becoming the generally accepted protocol for
XML-based systems communication. For example, Web search engines APIs
make wide use of SOAP. In addition, numerous stock quote services, weather
services or news portals, employ it in order to transmit and receive data
formatted in the XML language.

Modern Web Technologies 99

12 Distributed Applications

Distributed computing is one of the most discussed and hot topics in com-
puter science. It refers to partitioning a large or complex problem into several
smaller parts and assigning each of these parts to a machine that belongs to a
wider cluster of processing nodes (also called workers). When each of the pro-
cessing nodes finishes its computations, the distributed solutions are merged
to form the final solution of the problem. In such a distributed environment,
a central coordinator is usually employed in order to synchronize and send
messages to the processing nodes.

Of course, distributed computing is not a pure Web technology. However,
there are some projects which utilize the machines of the Web users in order
to solve large scientific problems. These projects exploit the free (or idle) re-
sources (mainly the processing power) of thousands or even millions machines
of Web users in order to compute the solution of a small fraction of a huge
problem.

Folding@home is one of the world’s largest distributed computing projects
developed with the official goal of “understanding protein folding and related
diseases”. It does not rely on powerful supercomputers for processing the
available data; instead, the primary contributors to the project are many
hundreds of thousands of personal computer users who have installed a client
program. The client runs in the background, utilizing the unused resources,
whereas it periodically connects to a server in order to retrieve new data and
continue the calculations, or send back the produced results.

Seti@Home is a similar project which exploits the computers of Web users
with the aim of performing Search for Extraterrestrial Intelligence (SETI)
by analyzing radio signals. Similarly to the Folding@Home project, the users
download and install a client software which is capable of processing data
generated by radio telescopes. The client exploits the unused resources of
the machine it is installed on and proves the viability and practicality of the
distributed grid computing concept.

13 Cloud Computing

Cloud computing is a recent trend in Computer Science that moves comput-
ing and data away from desktop and portable PCs into large data centers. It
refers to applications delivered as services over the Internet, as well as to the
actual cloud infrastructure. Currently, the main technical characteristics of
cloud computing services include virtualization, grid computing technologies,
service-oriented software management of large facilities and power efficiency.

Within a cloud computing environment, applications and services are pro-
vided in the following three forms:

— Platform-as-a-Service (PaaS) The term PaaS denotes the allotment of a
large computing platform over the Web. The service enables the develop-
ers to create Web applications rapidly, without concerning the cost and

100 L. Akritidis, D. Katsaros, and P. Bozanis

complexity of buying and managing the underlying software and hard-
ware, since servers, databases, security software and several frameworks
are provided by the service itself. The applications developed and deliv-
ered under a PaaS environment are referred as On-Demand or as Software
as a Service (SaaS) Applications.

— Software-as-a-Service (SaaS) Saa$ is a another form of cloud computing
services and through it, companies, organizations and users can access
software and large amounts of computing power without having to pur-
chase it. Instead, SaaS adopts a business model according to which a
client of a cloud computing service pays only the processing power it
consumes. The applications are hosted by another hosting company in
a large computing cluster, hence the maintenance and setup operations
along with the security issues are of no concern for the users. GMail is
a representative example of an application designed to operate according
to the SaaS model.

— Infrastructure-as-a-Service (IaaS) This model has its origins in thin com-
puting techniques that have been evolving since the previous decade. In
general, the term refers to the principle that instead of having a network
infrastructure on its own installation, a company can rent space from a
service provider and use it across the internet. With IaaS, customers are
provided with the ability to choose the hardware and some basic software
servers for their part of the cloud and then transfer their applications and
data on these machines. Virtualisation enables TaaS providers to offer al-
most unlimited instances of servers to customers and make cost-effective

use of the hosting hardware.

Server

Notebook

PC

Rack:

Mobile
Devices

Database

Netbook

Fig.5. The Cloud

Modern Web Technologies 101

We can distinguish two different architectural models for the clouds: the first
one is designed to scale out by providing additional computing instances
on demand. Clouds can use these instances to supply services in the form
of SaaS and PaaS. The second architectural model is designed to provide
data and compute-intensive applications via scaling capacity. In most cases
clouds provide on-demand computing instances by adopting a “pay-as-you-
go” economic model.

Regarding service provisioning, the providers supply cloud services by sign-
ing service-level agreements (SLAs) with consumers and end-users. These
agreements concern the amount of the processing power and bandwidth the
user’s applications consume at any given time through a specific period (day
or month). The estimation of the resource provisioning is a task of critical im-
portance since a possible underestimation would lead to broken SLAs, service
interruption and other penalties. On the other hand, overestimating the pro-
vision of resources would lead to resource underutilization and, consequently,
a decrease in the revenue for the provider.

Deploying an autonomous system to efficiently provision services in a
cloud infrastructure is a challenging problem due to the unpredictability
of consumer demand, software and hardware failures, heterogenity services,
power mangement and conflicting signed SLAs between consumers and ser-
vice providers.

In terms of cloud economics, the provider should offer resource-economic
services. Novel, power efficient schemes for caching, query processing and
thermal management are mandatory due to the increasing amount of waste
heat that data centers dissipate for Internet-based application services. More-
over, new pricing models based on the pay-as-you-go policy are necessary to
address the highly variable demand for cloud resources.

Cloud computing is a disruptive technology with profound implications
not only for Internet services but also for the entire IT field. Its emergence
promises to streamline the on-demand provisioning of software, hardware and
data as a service, achieving economies of scale in IT solutions’ deployment
and operation.

Still, several outstanding issues exist, particularly related to service-level
agreements (SLAs), security and privacy, and power efficiency. Other open is-
sues include ownership, data transfer bottlenecks, performance unpredictabil-
ity, reliability and software licensing issues. Several companies have already
built Internet consumer services such as search, social networking, Web email,
and online commerce that use cloud computing infrastructure.

14 The Mobile Web

During the past few years, the mobile devices have played a key role in
the market of telecommunications. By offering significant features such as
small sizes, light weights, efficient power consumption, ability for direct user-
to-user communication, affordable prices and remarkable processing power,

102 L. Akritidis, D. Katsaros, and P. Bozanis

they have attracted hundreds of millions of consumers. The market of mobile
devices is expected to experience an impressive growth over the following few
years [5] and recently, numerous manufacturers have included Web browsing
capabilities to their products.

According to the inventor of the Web Tim Berners-Lee, “the Mobile Web
initiative goal is to make browsing the Web from mobile devices a real-
ity”. By employing browsers particularly designed for mobile devices (mobile
browsers), mobile Web access is becoming increasingly popular. Since a large
desktop system is not required any more to access the Web, users are provided
with the ability to work online at all times in all situations. Curren mobile
Web browsers retain the main functionality offered by the respective desktop
applications, such as basic browsing, form completion and submission and
generic transactions.

However, there are still some problems that need to be confronted and
interoperability is the most significant among them. It derives from the the
existence of many different platforms with various operating systems and
browsers. In addition, the limited size of these devices and the small display
sizes raise important usability issues.

Within the Mobile Web, the information is published and delivered via
lightweight pages written in XHTML or WML (Wireless Markup Language).
The new versions of the mobile browsers raise these limitation by supporting a
wider range of Web formats, including variants of HTML commonly found on
the desktop Web. In addition, W3C have published a set of recommendations
[6] to Web site creators and developers who desire their applications to be
fully accessible from mobile devices.

15 Web 2.0 Applications

Web 2.0 is a widespread term which reveals the evolution we have witnessed
in the World Wide Web and the applications hosted on it. The definition of
Web 2.0 [I0] does not refer to an update to the technical specifications char-
acterizing the Web, but rather to fundamental changes in the manner that
application developers and users exploit it. Therefore, the Web is currently
treated as a platform, where new applications are built upon it, similarly to
how applications are developed and deployed upon the desktop platform.
The new version of the Web is usually connected with web applications
that offer participatory and sharing features. More generally, the main char-
acteristic that a Web 2.0 application has, is its user-centered design. That
is, the information is not simply provided to the users, but the users con-
tribute to it by expressing and publishing their own knowledge, experiences
and opinion. In such an environment, the users are not limited in a traditional
passive role, but they dynamically determine the content of a Web site.
This design has led to the introduction of numerous novel services such
as Web communities, social networks, media sharing services, wikis, blogs,
forums, online auctions and numerous others. In this Section we provide brief

Modern Web Technologies 103

descriptions of the most popular Web 2.0 sites, applications and services.
Of course, we do not intend to provide a complete directory of the most
significant Web 2.0 applications, but we rather exhibit some of their major
features which made them extremely popular during the past few years.

15.1 Web Communities

One of the major benefits which derived from the introduction of Web 2.0,
was the participatory features that were integrated within the traditional
Web sites. These features lead to the deployment of novel services with in-
teractive characteristics and generated new architecture models by providing
additional possibilities to the Web users. One of these introduced models al-
lowed the users to communicate in environments that are currently known as
social networks. Social networks function like online communities, where their
members share common interests in hobbies, religion, or politics. Examples
of Web communities include social networking sites, forums and community
blogs.

Blogs are locations on the Web where individuals (the bloggers) express
opinions or experiences about a subject. Such entries are called blog posts
and may contain text, images, embedded videos or sounds and hyperlinks to
other blog posts and Web pages. On the other hand, the readers are provided
with the ability to submit their own comments in order to express their
agreement or disagreement to the ideas or opinions contained in the blog
post. The comments are usually placed below the post, displayed in reverse
chronological order. The virtual universe that contains all blogs is known as
the Blogosphere and accommodates two types of blogs: a) individual blogs,
maintained and updated by one blogger (the blog owner), and b) community
blogs, or multi-authored blogs, where several bloggers may start discussions
about a product or event.

In a physical community, people use to consult others about a variety of
issues such as which restaurant to choose, which medication to buy, which
place to visit or which movie to watch. Similarly, the Blogosphere is a virtual
world where bloggers buy, travel and make decisions after they listen to the
opinions, knowledge, suggestions and experience of other bloggers.

There is a significant reasearch towards identifying the influential members
of the major online communities such as blogs [IT/12] and Twitter [I4I15].
The problem of identifying the influentials is of remarkable importance, be-
cause such members act as direct or indirect advertisers of products, events,
companies, brands or even travel locations.

15.2 Social Networks

A social network is a group of individuals sharing common experiences, knowl-
edge and ideas. These individuals are usually grouped within social structures
such as communities or neighborhoods. The introduction of Web 2.0 along

104 L. Akritidis, D. Katsaros, and P. Bozanis

with the participatory features of the applications it established have led to
the creation of numerous social networking Web sites which function as online
communities for their members.

Many of these online community members share common interests, beliefs,
knowledge, hobbies, religion, or politics. The users who are granted access
to a social network are free to construct their profile by filling information
regarding their name, email, education and geographic location or describe
their habits and personal interests. File uploading is also one of the provided
features and these files usually include online games, documents and personal
photographes. Furthermore, the members of such a community are free to
read the profile pages of other members and contact them.

According to sources published in Wikipedia [7] there are typically sev-
eral hundreds of such social Web sites. The most popular among them is
MySpaceE and Facebool] which accommodate about 471 and 350 millions of
registered users respectively. A large fraction of these users connect to their
favorite social networking service on a daily basis.

15.3 Office Suites

The vast majority of computer users are somehow familiar to an office suite.
Almost everybody have used at least once, a word processor to create a
textual document or a spreadsheet software to create documents comprised
of enriched and dynamic data.

One vision of the 21st century computing is that a large portion of the
applications that now operate offline, will be transferred on the Internet and
their users will be able to create, store and distribute information online.
By using cloud computing techniques, the dominating Web companies are
redesigning their applications in order to provide such functionality. The most
ambitious of the existing projects, is the creation of an operating system
capable of operating entirely on the Web, within a browsing software.

Another project which has already been released, is the online office suites
offered by Web sites in the form of software-as-a-service. Such suites basically
include a word processor and a spreadsheet, whereas some of them also offer
drawing utilities, graphics editors, presentation applications and even media
players.

Nowadays, there are numerous services offering office productivity. The
most popular among them is Ajaxli*ﬂ Google Docs and Spreadsheets@,
Thinkfree Office Onlind1] and Zoho Office Suitdd. Each of them has its own
strong points but generally online office suites offer satisfying capabilities

3 http://www.myspace.com
* http://www.facebook.com
® http://us.ajax13.com/en/
5 http://docs.google.com/

" http://www.thinkfree.com
8 http://www.zoho.com

Modern Web Technologies 105

at low (or no) cost, whereas they do not require to download and install
any software. Moreover, the users can access their documents from almost
any computer with a connection to the Internet, regardless of which oper-
ating system they use. Finally, in 2009 Google introduced Google Wavdg, a
web-based communication and collaboration tool using richly formatted text,
photos, videos, maps, and the like—currently (Jan, 2010), this application is
available only after one gets invited.

Nevertheless, there are still some significant disadvantages which indicate
that such tools are only at their infant stages. For instance, there are acces-
sibility issues arising from the fact that in case the remote server or network
is unavailable, the content will also be unavailable. Moreover, such applica-
tions usually require high bandwidth Internet connections, otherwise speed
is limited dramatically. Even in that case, an online office application cannot
compete an offline opponent in terms of response speed. Finally, although
basic functionality is provided, current online office suites do not provide the
more advanced features available on their offline counterparts.

15.4 File and Media Sharing Services

The large communities that have been created on the Web have led to the
generation of specific services allowing their register users to share files of any
type. The most popular forms of file sharing include applications, electronic
forms of books, documents, audio files and videos.

YouTubd is currently one of the most popular locations on the Web
where users can publish, watch, share and comment videos. The users of
the service are divided into two categories: The unregistered users who can
just watch videos and the registered ones, who are permitted to upload an
unlimited number of files. The latter are also provided with the ability to
publish comments about the presented material and judge the quality of the
content by voting.

Although each registered user can upload an unlimited number of videos,
he/she is not free to publish those which contain defamation, pornography,
copyright violations, and material encouraging criminal conduct. These re-
strictions are all described in the terms of use of the service and videos
violating these terms are immediately erased from the database of the site.

15.5 Real-Time Web

The advent of Twitted:] in 2007, introducing the micro-blogging concept,
i.e., the posting and delivering of short messages up to 140 characters long
to author’s “followers”, emphasized the need for the real-time web. That is,
new technologies for rapid dissemination of information as soon as it gets

9 http://wave.google.com
10 http:/ /www.youtube.com
Y http://twitter.com

106 L. Akritidis, D. Katsaros, and P. Bozanis

published by its author on the web. Examples of real-time web are friend-
feed'd and notiﬁxiou7 while the Extensible Messaging and Presence Pro-
tocol (XMPP) and the Simple Update Protocol (SUP) are two protocols for
developing instant-messaging-like applications [8J9]. Many believe that this
instant-messaging perspective is the next big thing of web.

16 Discussion

In this chapter we have briefly described the core technologies employed by
the modern applications of the Web. Knowledge of the modern Web tech-
nologies is a key issue for both developers and researchers. The former need
to be informed in order to apply the most robust tools when they build their
applications, whereas the latter are expected to deeply examine the key issues
regarding these technologies in order to provide efficient solutions to newly
posed problems.

From one perspective, Web is a society which constantly evolves. At the
time these lines are written, novel services are being released and fresh soft-
ware is composed. Cloud computing services promise to solve current issues
and elevate computing. According to the most optimistic judges, the moment
at which computers will not require an operating system to work and every
transaction will be accomplished through a Web browser is very close.

References

http://www.w3.org/TR/html4/

http://www.w3.org/TR/REC-xml/

http://www.php.net/usage.php

http://www.cio.com/article/446829/

http://www.abiresearch.com/products/service/

http://www.w3.org/TR/mobile-bp/
http://en.wikipedia.org/wiki/List_of_social_networking websites
http://xmpp.org/about/
http://code.google.com/p/simpleupdateprotocol/

. O'Reilly, T.: What Is Web 2.0. O’Reilly Network (September- 30 - 2009)

(Augut- 06 -2006)

11. Agarwal, N., Liu, H.: Blogosphere: Research issues, tools and applications. ACM
SIGKDD Explorations 10(1), 18-31 (2008)

12. Akritidis, L., Katsaros, D., Bozanis, P.: Identifying Influential Bloggers: Time
Does Matter. In: Proceedings of the IEEE / WIC / ACM International Con-
ference on Web Intelligence (WI), pp. 76-83 (2009)

13. Krishnamurthy, B., Mogul, J.C., Kristol, D.M.: Key Differences between

HTTP/1.0 and HTTP/1.1. Computer Networks-the International Journal of

Computer and Telecommunications Networkin 31, 1737 (1999)

A A e

—_

12 http://friendfeed.com
'3 http:/ /notifixio.us

http://www.w3.org/TR/html4/
http://www.w3.org/TR/REC-xml/
http://www.php.net/usage.php
http://www.cio.com/article/446829/
http://www.abiresearch.com/products/service/
http://www.w3.org/TR/mobile-bp/
http://en.wikipedia.org/wiki/List_of_social_networking_websites
http://xmpp.org/about/
http://code.google.com/p/simpleupdateprotocol/

Modern Web Technologies 107

14.

15.

Weng, J., Lim, E.P.; Jiang, J., He, Q.: TwitterRank: Finding Topic-Sensitive
Influential Twitterers. In: Proceedings of the third ACM International Confer-
ence on Web Search and Data Mining, pp. 261-270 (2010)

Mathioudakis, M., Koudas, N.: Efficient Identification of Starters and followers
in Social Media. In: Proceedings of the 12th International Conference on Ex-
tending Database Technology: Advances in Database Technology, pp. 708-719
(2009)

Chapter 5
Federated Data Management and Query
Optimization for Linked Open Data

Olaf Gorlitz and Steffen Staab

Institute for Web Science and Technologies,
University of Koblenz-Landau, Germany
{goerlitz, staab}@uni-koblenz.de

Abstract. Linked Open Data provides data on the web in a machine readable
way with typed links between related entities. Means of accessing Linked
Open Data include crawling, searching, and querying. Search in Linked Open
Data allows for more than just keyword-based, document-oriented data re-
trieval. Only complex queries across different data source can leverage the
full potential of Linked Open Data. In this sense Linked Open Data is more
similar to distributed/federated databases, but with less cooperation between
the data sources, which are maintained independently and may update their
data without notice. Since Linked Open Data is based on standards like the
RDF format and the SPARQL query language, it is possible to implement a
federation infrastructure without the need for specific data wrappers. How-
ever, some design issues of the current SPARQL standard limit the efficiency
and applicability of query execution strategies. In this chapter we consider
some details and implications of these limitations and presents an improved
query optimization approach based on dynamic programming.

1 Introduction

The automatic processing of information from the World Wide Web requires that
data is available in a structured and machine readable format. The Linking Open
Data initiative] actively promotes and supports the publication and interlinking of
so called Linked Open Data from various sources and domains. Its main objective
is to open up data silos and to publish the contents in a semi-structured format with
typed links between related data entities. As a result a growing number of Linked
Open Data sources are made available which can be freely browsed and searched to
find and extract useful information.

The network of Linked Open Data (or simply Linked Data) is very similar to
the World Wide Web’s structure of web pages connected by hyperlinks. Linked
Data entities are identified by URIs. A relationship between two data entities is
commonly expressed with the Resource Description Framework (RDF) [37] as a
triple consisting of subject, predicate, and object, where the predicate denotes the
type of the relation between subject and object. Linking a data entity from one data

!http://esw.w3.org/SweolG/TaskForces/CommunityProjects/LinkingOpenData

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 109
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

110 0. Gorlitz and S. Staab

source to a data entity in a different data source is very simple. It only requires a new
RDF triple to be placed in one data source with the URI of the referenced data entity
in the triple’s object position. Additionally, the linked data principles [5] require
that the referenced URI is resolvable, i.e. a common HTTP GET request on the URI
returns useful information about the referenced data entity. A good overview about
the foundations of Linked Open Data and current research directions is given in [S8]].

A Linked Open Data infrastructure can have different characteristics, namely
central or distributed data storage, central or distributed data indexing, and inde-
pendent or cooperative data sources, which influence how query processing can be
implemented on top of it. Not all of the eight potential combinations are reasonable,
in fact, three main paradigms can be identified (c.f. Fig.).

Central Repository. RDF data can be obtained from data sources, either by crawl-
ing them or by using data dumps, and put into a single RDF store. A centralized
solution has the advantage that query evaluation can be implemented more effi-
ciently due to optimized index structures. The original data sources are not involved
in the query evaluation. Hence, it is irrelevant if they are cooperative or not. Note
also that the combination of a central data storage with a distributed index does not
make sense at all.

Federation. The integration of distributed data sources via a central mediator im-
plies a federation infrastructure. The mediator maintains a global index with sta-
tistical information which are used for mapping queries to data sources and also
for query optimization. Cooperation between data sources allows for reducing the
query processing overhead at the mediator, as certain query evaluation steps can be
moved to the data sources. Otherwise, the whole query execution, including join
computations, has to be done at the mediator.

Peer-to-peer Data Management. RDF data and index data can both be maintained
in a distributed fashion if all data sources are cooperative. The result is a peer-to-
peer network where all data sources share the responsibility for managing parts of
the RDF data and the index data. Hence, no central mediator is necessary and the data
storage and processing load can be better balanced across all involved data sources.
Without cooperation among the data sources it is not possible to realized a distributed
index. Peer-to-peer RDF Management is not further discussed in this chapter.

Central Data Storage Distributed Data Storage
Independent
Data Sources 4 Central Federati W
. t
Cooperative / Repository ederation P2P Data
Data Sources e Management
Distr. Index Central Index Distr. Index

Fig. 1. Combinations of characteristics which yield different infrastructure paradigms

Federated Data Management and Query Optimization for Linked Open Data 111

This chapter focuses on a federation infrastructure for Linked Open Data and the
optimization of federated SPARQL queries. Section [2] illustrates our running ex-
ample. Section Bl motivates why a federation infrastructure is necessary for Linked
Open Data and presents some basic requirements. The related work is presented in
Sect. M before the detailed architecture of our federation infrastructure is discussed
in Sect. |5l The elaboration of optimization strategies follows in Sect. [6l Further im-
provements for federating Linked Open Data are shortly mentioned in Sect. [Fi-
nally, Sect. [8]discusses the evaluation of federation infrastructures for Linked Open
Data and Sect. 9] concludes the chapter.

2 Example

A common albeit tedious task is to get a general overview of an arbitrary research
area exploring the most important research questions and the current state-of-the-
art. It requires (i) finding important publications and good scientific overviews of
the research area, (ii) identifying the most relevant conferences and journals, (iii)
finding influential researchers based on number of publications or activity in confer-
ence committees etc., (iv) taking social aspects into account like personal relations
and joint work on research projects, and (v) filtering and ranking all the informa-
tion based on individual criteria, like recent activities and hot topics. Especially,
students often struggle with this task due to the vast amount of information which
can be found on the World Wide Web that has to be collected and connected to
form the big picture. Ideally, an easy to use tool takes the description of a research
topic and appropriate constraints as input and automatically gathers and merges all
relevant information from the different data sources. The results are also valuable
when looking for a new job or just to rank the impact or activity of researchers from
different institutions/countries.

For the area of computer science, much of this information is already publicly
available on the web, in semi-structured and machine readable formats. General
information about research areas can be obtained from Wikipedia and, in a semi-
structured format, from DBpedia [4]. Over 1.3 million publications can be found in
the DBLP Computer Science Bibliographyﬁ, including information about authors,
conferences, and journals. Additionally, some conference web sites also provide
semi-structured data about their conference program, like accepted papers, speak-
ers, and members of the program committee. Other information like the acquisition
of projects by research institutions and the amount of funding can be retrieved from
funding agencies, e.g. from the EU and the Community Research and Development
Service (CORDIS), or national funding programs. Last but not least, individual re-
searchers offer information about their affiliation, research interests, and social re-
lations in so called friend-of-a-friend (FOAF) profiles [12]. The CS AKTive Spaceﬁ
project, for example, already integrates some of this information for the UK Com-
puter Science research domain.

2 [http://dblp.uni-trier.de/
3 |http://www.aktors.org/technologies/csaktivespace/

http://dblp.uni-trier.de/
http://www.aktors.org/technologies/csaktivespace/

112 0. Gorlitz and S. Staab

The example in Fig. Rlillustrates three Linked Open Data sources, i.e. DBLP, DB-
Pedia, and Freebase, which contain RDF data about the mathematician Paul Erdds.
The DBLP data describes a publication written by Paul Erd6s and a coauthor. DB-
pedia and Freebase contain information about his nationality. The similarity of data
entities is expressed via owl : sameAs relations.

- m = Fm == ~

 DBpedia Freebase

(”d-complete sequences of integers’D

fbase:hungary
wi:sameAs fbase:nationality
—wisapeds

’
1
1
1
1
1
1
1
1
1
dbpp:nationality :
1

~
\

1

1

1

1

1

1

1

1

1

1

1

rdf:type]
1

§ rdf:type
dc:creator, do-oreator owl:sameAs

Al
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1
| dblp:Mordechai Levin| | dblp:Paul Erdos‘: 1 | dbpedia:Paul Erdés | ! 1| tbase:guid.9202a8004... |
rdfs:labell lrdfs:label : : ldbpp:birthPIace ! : fbase:value
[" o
("Mordechai Levin”) (*Paul Erdés”) | | |dbpedia:Budapest] 1 "Erdés P4l
N 4 N ,’ N ’

Fig. 2. Example RDF data located at three different Linked Open Data sources, namely DBLP,
DBpedia, and Freebase (namespaces are omitted for readability)

3 Linked Open Data Search

Browsing is a natural way of exploring Linked Open Data. Starting with an initial
URI that identifies a data entity outgoing links can be followed in any direction, to
any data source, to discover new information and further links. However, there is
no guarantee that the desired information can be found within a certain number of
steps and that all relevant data is reached along the browsing path. Moreover, since
links are directed the usefulness of results found by browsing depends heavily on
the choice of a good starting point and the followed path.

In contrast, search based on complex queries provides a high flexibility in terms
of expressing the desired properties and relations of RDF data entities to be re-
trieved. However, query evaluation is based on finding exact matches. Hence the
user has to have good knowledge about the structure of the data sources and the
used vocabularies. Obviously, this is not feasible for a large number of diverse linked
data sets. Instead, queries can be formulated based on some standard vocabulary and
the query processor applies query relaxation, approximate search, inferencing, and
other techniques to improve the quality and quantity of search results. In the ideal
case one benefits from higher expressiveness of queries and an abstraction from the
actual data sources, i.e. a query does not need to specify which linked data sources
to ask for collecting the results.

Federated Data Management and Query Optimization for Linked Open Data 113

3.1 Requirements

A federation infrastructure for Linked Open Data needs basic components and
functionalities:

A declarative query language is required for concise formulation of complex
queries. Constraints on data entities and relations between them need to be express-
ible in a flexible way. For RDF there is SPARQL [48]], a query language similar to
SQL, based on graph pattern matching.

A data catalog is required in order to map query expressions to Linked Open Data
sources which contain data that satisfies the query. Moreover, mappings are also
needed between vocabularies in order to extend queries with similar terms.

A query optimizer is required, like in (distributed) databases, to optimize the query
execution in order to minimize processing cost and the communication cost involved
when retrieving data from the different Linked Data sources.

A data protocol is required to define how queries and results are exchanged be-
tween all involved Linked Data sources. SPARQL already defines such a protocol
[[L5] including result formats.

Result ranking should be used for Linked Open Data search but is not directly
applicable on RDF data since query evaluation is based on exact match. Additional
information has to be taken in to account to rank search results.

Provenance information should be integrated, especially for ranking results. With
a growing number of data sources it becomes more important to trace the origin of
result items and establish trust in different data sources.

3.2 Architecture Variations

The query-based search on Linked Open Data can be implemented in different ways,
all of which have certain advantages and disadvantages.

Centralized repositories are the common approach for querying RDF triples. All
available datasets are retrieved (e.g. crawled) and stored in a central repository. This
approach has the advantage that optimized index structures can be created locally
for efficient query answering. However, the local copies and the index data need to
be updated whenever something changes in the original data source. Otherwise, old
and inconsistent results may be returned.

Explorative query processing is based on the browsing principle. A query is first
evaluated on an initial data set to find matching data entities and also interesting
links pointing to other data sets which may contain more data entities satisfying the
query. In an iterative manner, the links are resolved and newly discovered data is fed
as a stream into the query evaluation chain. Results are also returned in a streamed
fashion as soon as they are available. The search terminates when there are no more
links with potential results to follow. This approach evaluates the queries directly

114 0. Gorlitz and S. Staab

on the linked data and does not require any data copies or additional index struc-
tures. However, this also implies an increased communication effort to process all
interesting links pointing to other data sources. Moreover, the choice of the starting
point can significantly influence the completeness of the result.

Data source federation combines the advantages of both approaches mentioned
above, namely the evaluation of queries directly on the original data source and us-
ing data indices and statistics for efficient query execution and returning complete
results. A federated Linked Open Data infrastructure only maintains the meta in-
formation about available data sources, delegates queries to data sources which can
answer at least parts of them, and aggregates the results. Storing the data statistics
requires less space than keeping data copies. Moreover, changes in the original data
have less influence on the metadata since the structure of the data source, i.e. the
used vocabulary and the interlinks between them, does not change much. Thus, data
changes are more likely to affect the statistics about data entities which influences
mostly the quality of the query optimization than the correctness or completeness of
the result.

Table 1. Comparison of the three architecture variations for querying Linked Open Data with
respect to the most relevant characteristics

central repository link exploration data source federation
data location local copies at data sources at data sources
meta data data statistics none data statistics
query processing local local+remote local+remote
requires updates yes (data) no yes (index)
complete results yes no yes
up-to-date results maybe yes yes

3.3 Federation Challenges

A federation infrastructure offers a great flexibility and scalability for querying
Linked Data. However, there are some major differences to federated and distributed
databases. Linked Data sources are loosely coupled and typically controlled by in-
dependent third party providers which means that data schemata usually differ and
the raw data may not be directly accessible. Hence, the base requirement for the
federation infrastructure is that all data sources offer a standard (SPARQL) query
interface to retrieve the desired data in RDF format. Additionally, we assume that
each Linked Data source also provides some data statistics, like the number of oc-
currences of a term within the dataset, which are used to (i) identify suitable data
sources for a given query and (ii) to optimize the query execution. Hence, the re-
sponsibility of the federation infrastructure is to maintain the data statistics in a
federation index and to coordinate the interaction with the Linked Data sources.

Federated Data Management and Query Optimization for Linked Open Data 115

Scalability is without doubt the most important aspect of the infrastructure due
to the large and growing number of Linked Data sources. That implies two main
challenges — an efficient statistics management and an effective query optimization
and execution.

3.3.1 Statistics Management

Data statistics are collected from all known Linked Data sources and stored in a
combined index structure.

Accuracy vs. index size. The best query optimization results can be achieved with
detailed data statistics. However, the more statistics are collected the larger the re-
quired size for storing the index structure. Hence, the challenge is to find the right
tradeoff between rich statistical data and low resource consumption.

Updating statistics. Linked Data sources will change over time. Hence, the stored
statistical information needs to be updated. However, such changes may not be de-
tected easily if not announced. Sophisticated solutions may perform updates on the
fly based on statistical data extracted from query results.

3.3.2 Query Optimization and Execution

The execution order of query operators significantly influences the overall query
evaluation cost. Besides the important query execution time there are also other
aspects in the federated scenario which are relevant for the query optimization:

Minimizing communication cost. The number of contacted data sources directly
influences the performance of the query execution due to the communication over-
head. However, reducing the number of involved data source trades off against com-
pleteness of results.

Optimizing execution localization. The standard query interfaces of linked data
sources are generally only capable of answering queries on their provided data. The
join of results obtained from different sources needs to be done at the query issuer.
If possible at all, a better strategy will move parts of the result merging operations
to the data sources, especially if they can be executed in parallel.

Streaming results. Retrieving a complete result when evaluating a query on a large
dataset may take a while even with a well optimized execution strategy. Thus one
can return results as soon as they become available, which can be optimized by
trying to return relevant results first.

4 Related Work

The federation of heterogeneous data sources has been a popular topic in database
research for a long time. A large variety of optimizations strategies has been pro-
posed for federated and distributed databases [33I55/30432]. In fact, the challenges
for federated databases are very similar to the ones in the federated Linked Data
scenario. But there are also significant differences. Distributed databases typically
use wrappers to abstract from diverse schema used in different database instances.

116 0. Gorlitz and S. Staab

Such wrappers are not required for Linked Data as Linked Data sources provide a
SPARQL endpoint which returns the results in one data format, i.e. RDF. However,
database wrappers are typically involved in the estimation of result cardinalities and
processing cost. Without them, the estimation has to be handled differently. Opti-
mization strategies used in federated and distributed databases rely on the cooper-
ation of the individual database instances, e.g. parts of the query execution can be
delegated to specific instances in order to make use of data locality or to improve
load balancing. Query evaluation in Linked Data sources can not be optimized in
the same way since the SPARQL protocol only defines how a query and the results
are exchanged with the endpoints. It does not allow for cooperation between them.

Semantic web search engines like Sindice [45], Watson [16], SWSE [26]], and
Falcons [[14] allow for document-oriented, keyword-based search. Like typical web
search engines, RDF data is crawled from the web and indexed in a central index
structure. Frequent re-crawling is necessary to keep the index up-to-date. Support
for complex queries is limited or not available at all.

Some general investigations on the complexity of SPARQL query optimization,
i.e. identifying the most complex elements and proposing specific rewriting rules,
have been done by [53/46]. A recent trend is the development of highly scalable
RDF repositories. Implementations like RDF3X [41]], Hexastore [60], and BitMa-
trix [3]] focus on optimal index structures and efficient join ordering which allows
answering queries directly from the indexed data. Other systems, e.g. YARS2 [2§]],
4Store [24], and Virtuoso [17]] use clustering techniques or federation in order to
achieve high scalability, but in an environment with full control over the data stor-
age. Federation of distributed RDF data source has been investigated in systems
like DARQ [49] and SemWIQ [35]. Details of these and likewise approaches are
presented in Sect.

5 Federation Infrastructure for Linked Open Data

The architecture of a federation infrastructure for Linked Data differs not much
from the architecture of a federation system for relational data sources, like Garlic
or Disco [23l57]]. In fact, it is simplified due to the use of SPARQL as common
query protocol. First, customized data source wrappers that provide a common data
format are not needed. Second, the increasing reuse of ontologies, such as FOAF
[[12]], SIOC [11], and SKOS [38], lessens the need for conceptual mappings (c.f.
[31]] for ways of integrating conceptual mappings ex post). Figure [l depicts the
main components of a generic federation infrastructure for Linked Open Data.

All data sources are accessible via a SPARQL endpoint, i.e. a web interface sup-
porting the SPARQL protocol. The actual data does not necessarily need to be stored
in a native RDF repository. The data source may also use a relational database with
a RDF wrapper like the D2R-Server [7].

The Resource Description Framework (RDF) is a widely accepted standard in the
Semantic Web for semi-structured data representation. RDF defines a graph struc-
ture where data entities are represented as nodes and relations between them as
edges.

Federated Data Management and Query Optimization for Linked Open Data 117

| Query Interface (SPARQL) |
\
‘ Query Parser / Data Views ‘
\ \
Query Data
Optimizer Index

\ \
‘ Query Executor ‘

I
I

\SPARQL\ \SPARQL\ \SPARQL\

S8 E

Fig. 3. Architecture of the federation infrastructure

=
[e]
=
©
o
[
el
(0]
w

Definition 1 (RDF Graplﬂ). Let U, L, B be the pairwise disjoint sets of URIs,
Literals, and Blank Nodes. Let T = U UL U B be the set of RDF terms. A triple
S=(s,p,0) €T xU x T is called a statement, where s is the subject, p is the
property, and o is the object of the statement.

The example in Fig. @l depicts a set of RDF triples describing a publication with the
title ’d-complete sequences of integers” written by Paul Erdés and Mordechai Levin
(c.f. Fig.[2l for the graph representation). The prefix definitions in line 1-4 simplify
the URI notation of the RDF triples in lines 6-13 and improve the readability.

0 Jo Uk W

9 dblp

dblp:
dblp:
dblp:
:ErdosL96 dc:creator dblp:Mordechai Levin.
10 dblp:
11 dblp:
12 dblp:
13 dblp:

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix dblp: <http://dblp.13s.de/d2r/resource/>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

ErdosL96 rdf:type foaf:Document.
ErdosL96 dc:title “d—complete sequences of integers”.
ErdosL96 dc:creator dblp:Paul Erdos.

Paul Erdos rdf:type foaf:Person.

Paul Erdos foaf:name ”Paul Erdos”.
Mordechai Levin foaf:name ”Mordechai Levin”.
Mordechai Levin rdf:type foaf:Person.

Fig. 4. Example RDF data from DBLP in Turtle notation

4 This definition slightly differs from the original W3C Recommendation [37] but is in line
with the SPARQL query protocol [48] in allowing literals in subject position.

118 0. Gorlitz and S. Staab

The SPARQL query language [48] defines graph patterns which are matched
against an RDF graph such that the variables from the graph patterns are bound
to concrete RDF terms.

Definition 2 (SPARQL Query). A query Q : {A} is a set of query expressions. Let
V be the set of query variables which is disjoint from 7 and let &2 € (TUV) x (U U
V) x (T UV) be a triple pattern. A triple pattern & is a query expression. If A and
B are query expressions, then the compositions

(i) A.B (ii) AUNIONB (iii) AOPTIONAL B (iv) A FILTER (exp)

are query expressions, too. The dot operator in (i) denotes a join in SPARQL.

A function, such as (a = b), (a < b), or (a > b), with a and b being variables
or constants, is a filter expression. If e; and e, are filter expressions, then following
expressions are filter expressions, too.

(i) e || ex (ii) e; && ey (iii) le

The SPARQL example in Fig.[3|selects German co-authors of Paul Erd6s. The graph
pattern, which needs to be matched, is defined in the WHERE clause in lines two
to twelve and also depicted as a graph on the right side. Co-authorship is defined
via the creator relation between people and articles. The German nationality is a
property of a person. Line 13 defines an order on the results and line 14 restricts
the number of results to 10. The first line specifies the final projection of variables.
Namespaces are omitted for readability.

SELECT ?name ?workplace
WHERE { [foaf:Document] ["Paul Erdos”

?author foaf:name "Paul_Erdos”.

?article dc:creator ?author.

?article dc:creator ?coauthor.

?article rdf:type foaf:Document.

?coauthor foaf:name ?name.

?coauthor dbpprop:nationality dbpedia:German.
9 OPTIONAL {

10 ?coauthor dbpprop:workplaces ?workplace.
11 } dbprop:nationality

dbpedia:German

W oy U W N

dbprop:workplaces

13 | ORDER BY ?name
14| LIMIT 10

Fig. 5. SPARQL example: Find 10 German co-authors of Paul Erd6s

Some common elements of SQL, like insert, aggregates, sub-queries, and group-
ing, are not part of the original SPARQL standard but only supported in version 1.1
[25].

Federated Data Management and Query Optimization for Linked Open Data 119

5.1 Federator

The main component of the infrastructure is the federator. It is responsible for main-
taining meta data about known data sources and for managing the whole query
evaluation process. The federator offers an interface to the user which allows for
keyword-based search and for submitting SPARQL queries. The keyword-based
search is ideal for users without a good knowledge about the federated data sets.
Although keyword-based search is usually entity centric, it can also be used to de-
rive complex SPARQL queries, as shown in Hermes [59]].

The actual query processing includes query parsing, query adaptation, query
mapping, query optimization, and query execution. Query adaptation, which will
not be further discussed here, is about modifying and extending a query, e.g. by in-
cluding similar or broader terms and relations from other vocabularies, in order to
broaden the search space and to obtain more results. The query mapping is about
selecting data sources which can return results for the expressions contained in a
query. During query optimization different join strategies for combining results are
evaluated. Finally, the query execution implements the communication with the data
sources and the processing of the optimized query execution plans.

5.1.1 Data Source Selection

Queries may describe complex data relations across different domains. Hence, it
is very likely that a single data source may only be able to return results for parts
of the query, as it is the case in the example query in Fig. [Sl The first part about
the co-authorship can be answered by DBLP, the second part about the nationality
only by DBpedia. Thus, the respective query fragments have to be send to different
data sources and the individual results have to be merged. The SemaPlorer [50], an
application for location-based search on top of Linked Open Data, employs explicit
data source mappings. This works well for the application’s specific scenario but is
not flexible enough for a general federation of Linked Open Data.

There have been discussions on how to implement federation in SPARQL, but it
has not been included (yet) in the SPARQL standard. The proposed solution [47] is
an extension of the SPARQL syntax with the SERVICE keyword, which should be
used for specifying the designated data source. But an explicit definition of query
endpoints requires that the user knows where the data is located. Hence, that so-
Iution is impractical for a flexible Linked Data infrastructure. Instead, the query
federation should remain transparent, i.e. the federator should determine which
data sources to contact based on a data source catalog. Such a catalog is an in-
dex which maps RDF terms or even sub-graph structures of a query to matching
data sources. The catalog information is tightly coupled with the maintained data
statistics (c.f. Sect. [3.3).

120 0. Gorlitz and S. Staab

1 SELECT ?name ?workplace

2 WHERE {

3 SERVICE <http://dblp.uni-trier.de> {
4 ?author foaf:name ”"Paul Erdos”.

5 ?article dc:creator ?author.

6 ?article dc:creator ?coauthor.

7 article rdf:type foaf:Document.

8 ?coauthor foaf:name ?name.

}
10 SERVICE <http://dbpedia.org> {

11 ?coauthor dbpprop: nationality dbpedia:German.
12 OPTIONAL {

13 ?coauthor dbpprop:workplaces ?workplace.
14 }

15 }

16 }

17 ORDER BY ?name

18 LIMIT 10

Fig. 6. Example SPARQL query with explicit service endpoints

5.1.2 Join Strategies

In a federated system, the main cost factor is the communication overhead for con-
tacting data sources and transferring data over the network. Not only the execution
order of join operators, as discussed is Sect. [influences the processing cost, but
also the execution strategy for transferring the query and the result data. In the fol-
lowing the different approaches an their limitations are discussed in more detail.

Remote Join. Executing joins directly at the data sources is the most efficient way
as the processing overhead for the federator is minimized and the communication
costs are reduced because of smaller intermediate result sets. However, remote joins
are only applicable if all parts of the join can be satisfied by the data source. A
problem arises when one data source can satisfy more parts of a join expression
than another data source. In that case, the data source which satisfies less join parts
may be able to generate results when joining with partial results from the first data
source. Hence, even if the first data source evaluates a join completely, it also has to
return the results for its intermediate join parts.

Mediator Join. Executing the join in the federator (or mediator) after receiving
the intermediate results from the data sources is a common approach in existing
RDF federation systems [49/5635]]. The join is typically realized as nested-loop-
join or hash join. Since the SPARQL protocol allows for streaming result sets, i.e.
by reading the HTTP response stream, it is possible to start joining a result set
just after the smaller result set has been received completely. Other join variants
like merge-join can only be used when the intermediate results are ordered, which
is usually not the case. However, the mediator join can significantly increase the
communication cost and also the processing cost at the federator if a data source
returns a large intermediate result set which is part of a highly selective join.

Semi Join. The communication cost and the processing cost of the federator can be
significantly reduced with semi-joins [|6]. First, the federator retrieves the smaller

Federated Data Management and Query Optimization for Linked Open Data 121

intermediate result set of the two joins parts. Then a projection of the join variables
is done and the extracted variable bindings are attached to the query fragment which
is sent to the second data source. The intermediate results of the second data source
are filtered with the transmitted bindings and only the reduced result set is returned
to the federator. Thus, the federator has to join smaller intermediate results and also
less data has to be transmitted over the network. Essentially, a semi-join realizes a
pipelined execution, in contrast to the centralized join where each join part can be
executed in parallel.

Unfortunately, the current SPARQL standard does not support the inclusion of
variable bindings in a query. The SPARQL federation draft [47]] proposes a solution
by extending the syntax with the BINDINGS keywords. Since this extension is not
yet accepted or supported by current SPARQL endpoints the only alternative is to
include variable bindings as filter expressions in a query. Both variants are shown in
Fig.[Zl Although the second approach can be realized with standard SPARQL it is not
optimal as the query can be blown up for a large number of bindings, thus increasing
the communication cost. DARQ [49] realizes bind joins by sending a query multiple
times with all the different bindings. However, this increases the communication
overhead as for each binding a separate query and result message has to be sent.

Finally, the proposed SERVICE keyword for referencing other datasets may be
used within a query fragment to define a bind join. When resolved by a SPARQL
endpoint the intermediate result could be directly transferred between the data source
without involving the federator. But if multiple data sources include the same sub
query it will be sent multiple times to the remote data source and the intermediate
results will also be generated more than once if no caching is applied.

1 SELECT ?article ?author ?coauthor 1 SELECT ?article ?author ?coauthor
2 WHERE { 2 WHERE {

3 ?article dc:creator ?author. 3 ?article dc:creator ?author.

4 ?article dc:creator ?coauthor. 4 ?article dc:creator ?coauthor.
5 } 5 FILTER (

6 BINDINGS ?author ?coauthor { 6 (?author = "Paul Erdos” &&

7 (”Paul Erdos” ”"Andreas Blass”) 7 ?coauthor = "Andreas Blass”) ||
8 (”Paul Erdos” ”"Walter Deuber”) 8 (?author = "Paul Erdos” &&

9 9 ?coauthor = "Walter Deuber”))
o } 10 }

Fig.7. Variable bindings in SPARQL: via BINDINGS syntax extension or as FILTER
expression

Bind Join. The bind-join [23]] is an improvement of the semi-join. It is executed as a
nested loop join that passes bindings from the intermediate results of the outer part to
the inner part, i.e. to the other data source, which uses them to filter its results. This is
comparable to a prepared query where variable bindings are provided after the query
template has already been optimized. However, SPARQL is also missing a suitable
mechanism for defining prepared queries and does not support the streaming of
bindings. A common SPARQL endpoint will only start evaluating a query after all
query data has been transmitted as the query can only be optimized when all query
information is available.

122 0. Gorlitz and S. Staab

Filter Chain. A completely different approach is implemented in [29]. The pre-
sented query engine operates in a pipelined fashion by resolving linked data ref-
erences on-the-fly. Thus, it follows the exploration scheme of linked data. Specific
optimizations for speeding up the retrieval are implemented, namely cascaded iter-
ators which operate on the data stream and return results as soon as they become
available.

5.2 Data Catalog

The data catalog stores two different kinds of data mappings. The first mapping cap-
tures relations between RDF terms, like similarity defined with the owl : sameAs
and rdfs:seeAlso predicate. Such information can be used to adapt a query to
different data schemata, or simply to broaden the search space. The second mapping
associates RDF terms or even complex graph structures with data sources. During
the data source selection phase this information is used to identify all relevant data
sources which can provide results for query fragments.

The data catalog may be combined with the data statistics described below. Addi-
tional statistical information is indeed quite useful for ranking data sources and map-
pings between RDF terms. Popular predicates, like rdf : type and rdfs: label,
occur in almost every data source. Thus, a ranking helps to avoid querying too many
less relevant data sources.

The most common constants in query patterns are predicates. The number of
different predicates in a data set is usually limited since predicates are part of the
data schema. In contrast, the number of data entities, i.e. RDF terms occurring in
a RDF triple’s subject or object position, can be quite large. However, they may
have just one occurrence. Hence, there is a trade-off between storing many item
counts for detailed mappings and minimizing the catalog size. It should also be
noted that literals are best stored in a full text index. They will usually occur only a
few times in a data set. Moreover, this also allows for searching the data based on
string matching.

5.3 Data Statistics

Statistical information is used by the query optimizer to estimate the size of inter-
mediate result sets. The cost of join operations and the amount of data which needs
to be transmitted over the network is estimated based on these statistics. Very ac-
curate and fine grained data statistics allow for better query optimization results but
also require much more space for storing them. Therefore, the main objective is to
find the optimal trade-off between accuracy of the statistics and the required space
for storing them. However, precise requirements will depend on the application
scenario.

Item counts. The finest granularity level with the most exact statistical informa-
tion is implemented by counting data items. In RDF, such counts typically com-
prise the overall number of triples as well as the number of individual instances of
subject, predicate, and object. Counts for combinations of subject, predicate, and

Federated Data Management and Query Optimization for Linked Open Data 123

object are useful statistics, too. State-of-the-art triple store implementations like
RDF3X[41/42], Hexastore[60], and BitMatrix [3] employ full triple indexing, i.e.
all triple variations (S, P, O, SP, PO, SO) are indexed, which allows for generating
query answers directly from the index.

Full text indexing. The RDF graph of a data source can also be seen as a document
which can be indexed with techniques known from information retrieval, like stop
word removal and stemming. As a result, data entities may be searched efficiently
via keyword-based search. The difference is that typically only literals, as objects
in RDF triples, are really suitable for indexing. If URIs should be indexed as well
building a prefix-tree is usually a good choice.

Schema level indexing. Instead of maintaining statistics for individual data in-
stances one may also restrict the index to the data schema, i.e. the type of instances
and relations. This can reduce the overall index size but it also has disadvantages.
Certain types and properties, like foaf :Person and rdfs:label, are widely
used in RDF data sets and can be a bad choice for discrimination. Moreover, queries
must contain the indexed types. Otherwise, all data sources have to be contacted.

Flesca et al.[18]] built equivalence classes for RDF terms using a similarity mea-
sure based on types and properties. Counts and references to data sources with
equivalent entities are attached to the equivalence classes. This approach can re-
solve identical data instances across data sources. However, there is no information
about the scalability of this approach.

Structural indexing. Join statistics contain information about the combination of
certain triple patterns. They are much better for estimation the join cardinality since
the existence of results for two individual triple pattern in a data source does not
automatically imply that there are also results for the joined pattern. However, since
there is an exponentially large number of join combinations, not all of them can be
stored in an index.

Therefore, as RDF data represents a graph and SPARQL queries describe graph
patterns, it makes sense to identify and index only the most common graph struc-
tures found in the Linked Data sets. An early proposal for federating SPARQL [56]
was based on indexing path structures extracted from data graphs. However, since
star-shaped queries are very common for SPARQL queries the path-based approach
is not optimal. Instead, generic or frequent sub graph indexing [36J58]] can be used
but requires sophisticated algorithms for efficiently identifying sub graphs patterns.

A major limitation of structural indexing is its restriction to a single data source.
Query federation would benefit significantly from the identification of graph struc-
tures across data sources, as certain combinations of data sources could be excluded
from the query execution. Moreover, structural indexing is costly and a typical of-
fline pre-processing step. Hence it is not easily applicable for life Linked Data.

5.3.1 Index Size Reduction

Ideally, all required index data should fit into main memory to avoid frequent disk
access. Hence, for a large data sets it is necessary to reduce the size of the index data.

124 0. Gorlitz and S. Staab

Histograms are commonly used for restricting index data to a fixed size while still
retaining a high accuracy. Similar data items are put into so called buckets which
count the number of items they contain. Space reduction is achieved through a fixed
number of buckets. The typically used histogram type (in the database world) is the
equi-depth histogram [40]], since it provides a good balance of items per bucket —
even for skewed data distributions. QTrees, which are a combination of histograms
and R-Trees, are used in [27] with three dimensions representing the three compo-
nents of an RDF triple. Buckets are used as leave nodes to store item counts and the
list of respective data sources which fall into the region covered by the bucket.

Alternatively, Bloom Filters [[L0] are also suitable for reducing index data to a
fixed size. Items are hashed to a bit vector which represents an item set. Membership
of items in the set can be efficiently checked with low error rate. However, Bloom
filters are not keeping track of the number of items in the represented set. If such
information is needed extensions as presented in [44]] are necessary.

If a high accuracy of statistics is necessary, large index structures and disk access
are not avoidable. An optimal index layout and common data compression tech-
niques, e.g. as applied in RDF3X [41]], can be employed to reduce the required disk
space and the frequency of disk access.

5.3.2 Obtaining and Maintaining Data Source Statistics

In order to build a federation index with detailed statistics about all involved data
sources it is necessary to first pull the statistical details from the data sources. But
not all data sources are capable or willing to disclose the desired information. Hence,
additional effort may be necessary to acquire and maintain the data source statistics.

Data Dump Analysis. Several popular Linked Open Data Sources provide RDF
dumps of their data. Analyzing the dumps is the easiest way to extract data statistics
and if a new version of the dataset becomes available the analysis on the new data
dump is simply redone. However, new data versions are not always advertised and
only a few large datasets provide dumps. In the future it will probably be more com-
mon to have many small frequently changing datasets, e.g. on product information.

Source Descriptions. A Linked Data Source may publish additionally some infor-
mation about the data it contains. For the federator it is necessary to obtain at least
some basic statistics like the overall number of triples, the used vocabulary, and in-
dividual counts for RDF properties and entities. A suitable format for publishing a
data source’s statistical information is the Vocabulary of interlinked Datasets (voiD)
[2]]. Additionally, voiD also allows to express statistics about data subsets, like the
interlinks to other datasets, which is quite useful when retrieving data from different
data source. However, complex information, like frequent graph patterns, can not be
expressed with voiD.

DARQ [49] employs so called service descriptions describing data source capa-
bilities. A service description contains information about the RDF predicates found
in the data source and it can also include additional statistical information like counts
and the average selectivity for predicates in combination with bound subjects or ob-
jects. However, the explicit definition of service description for each involved data

Federated Data Management and Query Optimization for Linked Open Data 125

source is not feasible for a large number of Linked Open Data sources. Moreover,
DARQ restricts the query expressiveness as predicates always need to be bound.

Source Inspection. If no dump nor data description is offered by a data source but
only a SPARQL endpoint it is still possible to retrieve some statistics by sending
specifically crafted queries. But this can be tedious work as initially no knowledge
about data set size and data structure is available. So the first step is to explore
the data structure (schema) by querying for data type and properties. Additionally,
SPARQL aggregates are required to retrieve counts for individual data instances,
which are not supported before SPARQL 1.1. But even with counts, crawling data
is expensive and SPARQL endpoints typically restrict the number of requests and
the size of the returned results.

Result-based Refinement. As an alternative for data inspection, it is possible to
extract data statistics from the results returned for a query. This approach has little
extra processing overhead and it is non-intrusive. However, the lack of exact statis-
tics in the beginning results in increased communication cost and longer execution
time as more or even all data sources have to be queried. But with every returned
result the statistics will be refined. Moreover, changes in the remote data sets are
adapted automatically. Ideally, this approach is combined with some initial basic
statistics setup which minimizes the number of inefficient queries in the beginning.

5.3.3 Index Localization

The index management can also be viewed from the perspective of where an index
is located, i.e. at the data source or at the federator, and which statistical information
it maintains, i.e. local data source statistics or global federation statistics.

Data Source Index. A data source usually maintains its own statistics for local
query optimization. These statistics are not accessible from the outside due to their
integration with the data source’s query engine. Publicly exposed data statistics,
e.g. as voiD descriptions, are explicitly generated and need to be updated when the
actual data changes.

Virtual Data Source Index. If a data source does not offer any data statistics pub-
licly they have to be collected by other means, as mentioned above. The result is
essentially a virtual index which is created and managed at the federator as part of
the federation index.

Federation index. The federator maintains a centralized index where the statistical
information of all known data sources is collected and updated. The stored statistical
information ranges from basic item counts to complex information like frequent
graph patterns. All statistical data is connected to the data source where the data can
be found.

Distributed Federation Index. In a cooperative environment, a federation index
may be partitioned and distributed among all data sources to improve scalability.
Like in peer-to-peer systems, a data source would additionally keep a part of the

126 0. Gorlitz and S. Staab

global index and references to data sources with similar information. In such an en-
vironment, the query execution can take advantage of the localized index informa-
tion and less central coordination is needed. The interlinks in Linked Data Sources
can already be seen as a step in that direction. To support cooperation, a new pro-
tocol would be required to exchange information among linked data sources about
mutual links and data statistics. The usage of a distributed index for data federation
is outlined in [18] but it involves a large number of update messages when data
changes. An efficient solution for updating a distributed index is presented in [20].

6 Query Optimization

The objective of the query optimization is to find a query execution plan which
minimizes the processing cost of the query and the communication cost for
transmitting query and results between mediator and Linked Data sources. In the
following, basic constraints for the federation of RDF data sources and the struc-
ture of query execution plans will be presented before optimization strategies are
discussed.

Existing federation approaches for RDF mainly use centralized joins for merging
intermediate results at the mediator. The application of semi-joins has not yet been
considered for the optimization of distributed RDF queries. We will show that op-
timization based on dynamic programming, which is presented in more detail, can
easily be applied for semi-join optimizations of federated SPARQL queries.

6.1 Data Source Mappings

The mapping of multiple data sources to different query fragments implies specific
constraints for the query optimization. Consider the SPARQL query in Fig. [§ with
two triple patterns which can be answered by three data sources, i.e. foaf : name is
matched by {http://dblp.uni-trier.de/, http://dbpedia.org/}
and the combination of dbprop:nationality and dbpedia:German by
{http://dbpedia.org/,http://rdf.freebase.com/}.

SELECT ?name
WHERE {

?coauthor foaf:name ?name.
?coauthor dbprop:nationality dbpedia:German

@ttp://dblp.uni—trier.de/)

Gttp ://dbpedia. org/)

g W N

http://rdf.freebase. com/)

Fig. 8. Query fragment with data source mappings

Federated Data Management and Query Optimization for Linked Open Data 127

Although DBpedia could answer the whole query it is not possible to just merge
the result from DBpedia with the joined results of the other two sources since a
partial result set of DBpedia, i.e. results for a single triple pattern, may also be
joined with an intermediate result from http://dblp.uni-trier.de/ or
http://rdf.freebase.com/. Hence, each triple pattern has to be evaluated
individually at the respective data sources. The results for every pattern are com-
bined via UNION and finally joined. For a SPARQL endpoint, which could resolve
remote graphs, the rewritten SPARQL query would look like in Fig.

1 SELECT ?coauthor ?name

2 WHERE {

3 {

4 SERVICE <http://dblp.uni-trier.de/> {

5 ?coauthor foaf:name ?name

6 }

7 UNION

8 SERVICE <http://dbpedia.org/> {

9 ?coauthor foaf:name ?name

10

11

12 {

13 SERVICE <http://dbpedia.org/> {

14 ?coauthor dbprop:nationality dbpedia:German
15 1

16 UNION

17 SERVICE <http://rdf.freebase.com> {

18 ?coauthor dbprop:nationality dbpedia:German
19 }

20

21 }

Fig. 9. Rewritten SPARQL query which maps triple patterns to different data graphs and
merges the results via UNION

6.2 Query Execution Plans

The output of the query parser is an abstract syntax tree containing all logical query
operators, €.g. join, union, triple pattern, that make up the query. The tree structure
defines the order in which the query operators have to be executed, i.e. child nodes
have to be evaluated first. A query execution plan is an executable query plan where
logical operators are replaced by physical operators, e.g. a join may be implemented
as nested loop join, sort-merge join, hash-join, or, as explained in Sect. as
semi-join or bind-join.

The structure of the query execution plan is also important. The two main types
are left-deep trees and bushy trees. Figure[10]depicts both variations for the running
example. Left-deep trees imply basically a pipelined execution. Starting with the
leftmost leaf node operators are evaluated one after another and results are passed
as input to the parent node until the root node is reached. In contrast, bushy trees
allow for parallel execution as sub trees can be evaluated concurrently.

128 0. Gorlitz and S. Staab

M%coauthor

/
\

Tarticle dc:creator ?coauthor?

—

Marticle ?2coauthor foaf:name ?name

/
\

2article rdf:type foaf:Document

Xarticle

/ "author \

“Zauthor foaf:name "Paul Erdos” Tarticle de:creator ?author

Marticle

/\

Xarticle

X%author / v‘\
/ \ 2article rdf:type foaf:Document Ncoauthor
?author foaf:name "Paul Erdos™ ?article dc:creator ?author \

Tarticle dc:creator ?coauthor? ?2coauthor foaf:name ?name

Fig. 10. Left deep and bushy query execution plan

The choice of physical operators also affects the execution characteristics. Al-
though the processing and communication cost can be reduced significantly with
semi-join it also implies longer query execution times as operators have to wait for
the input of preceding operators. Streaming the data between operators can speed up
the execution but with the SPARQL standard streaming is only possible for query re-
sults. Queries including variable bindings have to be propagated completely before
the query execution can start.

The leaf node operators represent access plans, i.e. they are wrappers which send
the query fragments to the data sources and retrieve and merge the results. If semi-
joins are used, the access plan will include the propagated variable bindings in the
query fragments. Additionally, a semi join operator needs to project the join vari-
ables from the results returned by the child operator, which is executed first, before
the variable bindings can be passed on.

Filters are not explicitly mentioned in the execution plans but will be considered
during the execution. Generally, filters are pushed down as far in the tree as possi-
ble, i.e. a filter will be attached to a leaf node or join node if the node satisfies all
variables in the filter and there is no other child node that does. Filters attached to
leaf nodes are included in the query fragment sent to remote data sources. In case
of a semi-join, the filter will also be propagated down to child nodes along with
the variable bindings. Otherwise, the filter will be applied by the federator on the
(joined) result set.

6.3 Optimization Fundamentals

The objective of the query optimization is to find a query execution plan with min-
imal cost in terms of processing cost and communication cost. Typically, the guery
execution time is the main cost measure. It combines both processing cost and com-
munication cost.

Federated Data Management and Query Optimization for Linked Open Data 129

The join order has a significant influence on the query execution time. Small in-
termediate result sets reduce the communication cost as well as the join processing
cost. Thus, the join order optimization is often the main focus of the query op-
timization. Join order optimization in SPARQL is mainly about optimizing basic
graph patterns, i.e. a set of conjunctively connected triple patterns. Other operators,
like OPTIONAL and UNION, usually have additional constraints which complicate
the optimization. They are not further considered here.

There are different optimization strategies which will be discussed shortly. All of
them rely on the same two basic measures for estimating the cost of a query exe-
cution plan, namely cardinality and selectivity. Cardinality is the estimated number
of elements in a result set which are returned for a query expression. Selectivity de-
fines the estimated fraction of elements which match a query expression. Selectivity
values are in the range [0..1] where a selectivity of 0 means most selective and 1
means least selective.

The cardinality and selectivity for RDF is based on triples and formally defined
as follows:

Definition 3 (RDF graph cardinality). Let |G| = |{S; € G}| be the cardinality of
a graph, i.e. the graph size in terms of the overall number of triple statements con-
tained in the graph.

Definition 4 (RDF term selectivity). Let sels () = ‘{SiaG}l be the selectivity of
term ¢ € T in graph G with r = subj(S;) V t = pred(S;) V t = 0bj(S;).

Definition 5 (Triple Pattern Selectivity). The selectivity of a triple pattern & is
the product of the selectivities of the contained RDF terms:

selg(P) = Hsel(;(ti); t; € const(P)

Consequently, the pattern cardinality | Z¢| = |G| x selg(?) is the estimated num-
ber of matching statements in graph G. This assumes that the RDF terms in triple
patterns are independent.

6.4 Optimization Strategies

There are different approaches for query optimization. Usually there is a trade-off
between finding the optimal query plan and finding a query plan quickly. Optimiza-
tion strategies can be classified by static and dynamic optimization. Static optimizers
generate one query plan and sticks to it during the whole query execution. Dynamic
optimizers may change a query plan during execution due to updated statistics.

Applying heuristics is a common approach to find a good solution fast. Popular
heuristics are pushing down filters and sorting query expression by their estimated
selectivity. The optimization approach presented in [S6] uses iterative improvement
and simulated annealing.

130 0. Gorlitz and S. Staab

Although heuristics can provide good results they will often produce sub optimal
execution plans. A guaranteed optimal solution can be found with the dynamic pro-
gramming approach, which is commonly used for query optimization in databases.
The SPARQL federation implementation in [49] also uses dynamic programming
but details are not given. Dynamic programming will be discussed in more detail in
the following section.

Query optimization is a complex topic and there are a lot more approaches, some
of which have already been applied for SPARQL. For example, there is RCQ-GA
[31]], a genetic algorithm for optimizing chain queries. An evolutionary algorithm
for approximate querying with anytime behavior is presented in [21]].

6.5 Dynamic Programming

Dynamic programming [54] is an optimization strategy in traditional relational
databases which ensures to find the optimal query execution plan for any given query.
All possible query execution plans are iterated and inferior plans are pruned based on
the calculated cost estimates. A cost function is used to estimate the execution cost
for each operator based on the cardinality and selectivity of intermediate results.

6.5.1 Query Plan Generation

In Dynamic programming query execution plans are generated in a bottom up fash-
ion. The initialization is done by creating an access plan for each query pattern.
Then in each iteration step n-ary joins are created by combining partial plans from
previous iterations. Joins which yield cross products are deferred until the end. An
optimized algorithm for the generation of bushy trees is presented in [39]]. If many
joins and different alternatives for physical operator are involved in the query plan
generation the number of plan variations can rapidly grow too large for the avail-
able memory. Iterative Dynamic Programming [34] can be used in such a situation
to iterate the plans in a divide and conquer fashion.

6.5.2 Query Plan Evaluation

The result of each iteration step is a set of execution plans which includes equivalent
plans with different operator order. The plan evaluation step computes for each plan
the execution cost, in order to prune inferior plans. The execution cost is computed
recursively based on a cost model which uses the cardinality of each query operator
to estimate the individual processing and communication cost. The cardinality of
query expressions is defined as follows.

Definition 6 (Query expression cardinality). Let A and B be query expressions
applied on graph G. Then, |Ag| is the expression cardinality and selg(A) = ‘lAg‘ lis
the selectivity of expression Ag. Under the assumption that terms in expressions are

independent, we define the cardinality of complex expressions as

Federated Data Management and Query Optimization for Linked Open Data 131

‘AGI- . B(;j‘ = ‘AGI-‘ X ‘B(;j‘ X min(sel(;i(A), sel(;/. (B))
|AG, UNION Bg,| = |Ag,|+|Bg;|
|Ag FILTER (exp)| = |Ag| x selg(exp)

Definition 7 (RDF filter selectivity). Similar to [54] the selectivity of a filter is
defined as:

selg(x)

max, — x

selg(a=x

selg(a > x if not comparable.

)
1
) max, — mina 3
selg(a || b) = selg(a)+selg(b) — selg(a) x selg(b).
selg(a &&b))
)

selg(la

= selg(a) x selg(b) assuming that a and b are independent.
= 1—selg(a).

6.5.3 Cost Model

Each query operator is evaluated based on the cost estimates for the individual op-
erations. The cost of a query execution plan ¢(£2) is the sum of the cost of all its
operators. The cost ¢, of an operator applied on a query fragment 2* and a set of
variable bindings B is defined based on a cost model. The constants cconnect» Ccompares
Chash» and Crransmir define the cost for establishing a connection to a data source and
the cost for comparing, hashing, and transmitting a binding. The cost c,,,; is the cost
for evaluating a query fragment at a data source. It depends on the actual implemen-
tation which is usually not known and may employ index lookups or full table scans.
Hence, c.,q; is based on rough estimates.

Cremote eval Q B

Csend (B

) = Ceomneat + Csend(2*,B) + Cerat (2", B) + Cyena(B')
) ‘B ‘ * Crransmit
Cfitter(B, f) = |B| - Ccompare
Cunion(B,B) = |B| + |B|
B) = |B||B|- ccompare
) in(|B|7‘é|)'ccompam"'max(‘B‘va'Chash
) = (1B| - log|B| + |B| - Log|B| + |B| + |B|) - ccompare

Cnested—loop— join (B
Chash— join (B
Csort—merge— join (B B
Parallel Execution Cost. For parallel query execution plans the overall cost is the
maximum cost of all individual plans.

/

o(2) =max(2,,...,2,)

7 Improvements for Federation

The presented federation infrastructure and query optimization covers the basic re-
quirements for the federation of Linked Open Data sources. However, there is still

132 0. Gorlitz and S. Staab

room for improvements. Not every optimization technique, which works for dis-
tributed and federated databases, may be applied to federated linked data. Some
constraints are due to limitations of the SPARQL standard, as pointed out earlier.

7.1 Streaming Results

The execution chain of operators can be a critical bottleneck if large intermediate
results are produced or if some data sources have bad response times. The standard
SPARQL protocol and its implementation in typical SPARQL endpoints requires
that a query, including all filters expressions, must be completely available before
the query optimization can be performed. That implies that each query stage in
the chain has to be completed before the next one can be executed. In order to
speed up the query execution, partial query results may be propagated as soon as
they become available. However, such data streaming is not (yet) supported by the
SPARQL standard.

7.2 Result Ranking

A SPARQL query does not define an order for a result set, unless it is explicitly
defined with the keyword ORDER BY. Hence, the result items have to be considered
unordered. Nevertheless, some result items may be more relevant than others (from
auser’s perspective) and should be returned first. However, the criteria for relevance
in a federated infrastructure may also include trust and other factors, like response
time and data quality. Existing ranking algorithms for RDF data, like RSS [43] or
TripleRank [19], are not directly applicable because they are working on the link
structure and do not take other aspects into account.

Ranking is also important for the query optimization. The dynamic programming
approach [54] considers so called interesting orders, i.e. orders which are required
for the final result and can minimize the join processing cost. Such information is
not yet considered for federated queries.

7.3 Views

Views are a common concept in the relational database world. They allow for data
abstraction and simplify the querying of complex data relations. For RDF there is
no standardized definition of views. With so called named graphs[13]] it is possible
to define a context for RDF graphs. But this is rather limited and not flexible enough
for managing a large number of RDF graphs, as all RDF triples in a graph context
have to be explicitly listed.

Networked RDF Graphs [51] extend named graphs with a SPARQL based view
mechanism. They allow users to define RDF graphs both, by extensionally listing
statements describing the graph or by using views which are defined as SPARQL
queries on other graphs. These views can be used to include parts of other graphs,
to transform data before including it and to denote rules. Networked Graphs can be
evaluated in a distributed setting using existing protocols. The benefits of networked

Federated Data Management and Query Optimization for Linked Open Data 133

graphs is the easy reuse and exchange of graphs, recursive view definitions and the
application for data integration from distributed data sources. Especially the last
point is interesting for Linked Open Data.

Views are basically an adequate way to establish an abstraction for underlying
data schemata. They also provide transparency concerning data distribution. If data
is moved or merged only the respective view definition needs to be adapted while
everything else remains unchanged.

8 Performance Evaluation

In order to compare different federation infrastructures, an evaluation scenario is
required which can measures the performance based on different criteria. Different
benchmarks like LUBM [22], the MIT Barton dataset benchmark [[1]], or the SP2
benchmark [52] have been developed in recent years, but primarily for evaluating
query processing performance of local repositories on a single large data set. Hence,
they are not applicable for a distributed infrastructure. Unfortunately, there is no
suitable benchmark for evaluating an infrastructure for (federated) Linked Open
Data sources. So the problem is to find an evaluation scenario with several linked
data sets and a number of complex queries spanning these data sets. Essentially,
there is only the option to choose between real world and artificial data sets which
both have advantages and disadvantages.

8.1 Real World Datasets

The number of available linked data sets has grown significantly in recent months
with DBPedia [9] being one of the most popular ones. Thus, there should be lots
of interesting information to be queried. However, formulating meaningful queries
involving multiple data sources requires a good understanding of the information
provided by the data sources in the first place. A good set of queries should cover
different query types and should also produce results of different sizes. Due to the
large number and diversity of linked data source, plus the constantly changing data,
it requires a lot of effort to create such a consistent set of benchmark queries. But
more importantly, the possibility to reproduce results is questionable.

8.2 Artificial Datasets

Most of the above mentioned benchmarks use artificial data sets. The design objec-
tive of such artificial datasets is to cover all typical characteristics of data relations
and queries that can be evaluated on top of them. Hence, they allow for comparable
evaluations of different systems. The only problem with existing artificial bench-
marks is that they are not directly applicable for evaluating data federation which
requires the existence of multiple data sources. The obvious solution is to split one
large data set into several smaller partitions.

134 0. Gorlitz and S. Staab

8.3 Data Partitioning

The SP2 benchmark [52]] is a good basis for creating a data set for benchmarking the
federated scenario. It covers a wide range of SPARQL query types and reproduces
the characteristics of the DBLP bibliography dataset. Its data generator can be used
to create data sets of arbitrary size.

In order to resemble the characteristics of linked data sources the partitioning
should be applied vertically and horizontally and also retain a certain overlap be-
tween the partitions. Vertical partitioning means splitting the data schema, i.e. differ-
ent partitions should only share a few common RDF types and predicates to mimic
different domains. Horizontal partitioning implies a separation at the instance level,
e.g. RDF triples with the same subject are placed in the same partition. Overlap can
be realized by placing data instances in multiple different partitions. This usually
happens automatically when data instances occurs in subject and object position of
RDF triples.

9 Summary

A federated infrastructure was presented in this chapter which allows for transpar-
ent querying of distributed Linked Open Data sources. The main components of the
architecture, namely the federator, the data catalog, and the data statistics were dis-
cusses in details. The SPARQL standard does not support all requirements for an
efficient processing of federated queries. Specifically, semi-joins, which can signif-
icantly reduce the processing an communication cost, are not well supported.

The optimization of SPARQL queries is mainly focusing on join order optimiza-
tion. A new optimization strategy using semi-joins and dynamic programming was
explained in more detail. There is still room for improving the federation of Linked
Open Data, e.g. with data streaming, ranking, and the support for data views. Espe-
cially, the efficiency of the query processing is not optimal yet.

References

1. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Using the Barton libraries dataset as
an RDF benchmark. Tech. rep., Massachusetts Institute of Technology Computer Science
and Artificial Intelligence Laboratory (2007)

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets — On
the Design and Usage of voiD, the “Vocabulary Of Interlinked Datasets”. In: Proceedings
of the Linked Data on the Web Workshop. CEUR Workshop Proceedings, Madrid, Spain
(2009); ISSN 1613-0073

3. Atre, M., Chaoji, V., Zaki, M., Hendler, J.: Matrix “Bit” loaded: A Scalable Lightweight
Join Query Processor for RDF Data. In: Proceedings of the 19th International World
Wide Web Conference, Raleigh, NC, USA, pp. 41-50 (2010)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nu-
cleus for a Web of Open Data. In: Proceedings of the 6th International Semantic Web
Conference, Busan, Korea, pp. 722-735 (2007)

Federated Data Management and Query Optimization for Linked Open Data 135

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Berners-Lee, T.: Linked Data Design Issues,
http://www.w3.org/DesignIssues/LinkedData.html

Bernstein, P., Chiu, D.: Using Semi-Joins to Solve Relational Queries. Journal of the
ACM 28(1), 25-40 (1981)

. Bizer, C., Cyganiak, R.: D2R Server — Publishing Relational Databases on the Semantic

Web, http://www4 .wiwiss. fu-berlin.de/bizer/d2r-server/

. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data — The Story So Far. International

Journal on Semantic Web and Information Systems 5(3), 1-22 (2009)

. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann,

S.: DBpedia — A Crystallization Point for the Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web 7(3), 154-165 (2009)

Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13(7), 422-426 (1970)

Breslin, J., Decker, S., Harth, A., Bojars, U.: SIOC: an approach to connect web-based
communities. International Journal of Web Based Communities 2(2), 133-142 (2006)
Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.97, Namespace Document
(January 1, 2010), http://xmlns.com/foaf/spec/

Carroll, J., Bizer, C., Hayes, P., Stickler, P.. Named graphs. Web Semantics: Science,
Services and Agents on the World Wide Web 3(4), 247-267 (2005)

Cheng, G., Qu, Y.: Searching Linked Objects with Falcons: Approach, Implementation
and Evaluation. International Journal on Semantic Web and Information Systems 5(3),
49-70 (2009)

Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF, W3C Recommen-
dation (January 15, 2008), http: //www.w3 .org/TR/rdf-spargl-protocol/
D’ Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Char-
acterizing Knowledge on the Semantic Web with Watson. In: Proceedings of the Sth
International Workshop on Evaluation of Ontologies and Ontology-based Tools (EON),
Busan, Korea, pp. 1-10 (2007)

Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Pellegrini, T., Auer,
S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media, pp.
7-24. Springer, Heidelberg (2009)

Flesca, S., Furfaro, F., Pugliese, A.: A Framework for the Partial Evaluation of SPARQL
Queries. In: Proceedings of the 2nd International Conference on Scalable Uncertainty
Management, Naples, Italy, pp. 201-214 (2008)

Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking SemanticWeb Data By
Tensor Decomposition. In: Proceedings of the 8th International Semantic Web Confer-
ence, Chantilly, VA, USA, pp. 213-228 (2009)

Gorlitz, O., Sizov, S., Staab, S.: PINTS: Peer-to-Peer Infrastructure for Tagging Systems.
In: Proceedings of the 7th International Workshop on Peer-to-Peer Systems (IPTPS),
Tampa Bay, Florida, USA (2008)

Gueret, C., Oren, E., Schlobach, S., Schut, M.: An Evolutionary Perspective on Approx-
imate RDF Query Answering. In: Proceedings of the 2nd International Conference on
Scalable Uncertainty Management, Naples, Italy, pp. 215-228 (2008)

Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158-182
(2005)

Haas, L., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries across Diverse
Data Sources. In: Proceedings of the 23rd International Conference on Very Large Data
Bases, Athens, Greece, pp. 276-285 (1997)

136 0. Gorlitz and S. Staab

24. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a Clustered
RDF Store. In: Proceedings of the 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2009), Chantilly, VA, USA, pp. 94-109 (2009)

25. Harris, S., Seaborne, A.: SPARQL Query Language 1.1, W3C Working Draft (January
26, 2010), http://www.w3.0org/TR/sparglll-query/

26. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE: Answers
Before Links! In: Proceedings of Semantic Web Challenge (2007)

27. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data Sum-
maries for On-Demand Queries over Linked Data. In: Proceedings of the 19th Interna-
tional World Wide Web Conference, Raleigh, NC, USA, pp. 411-420 (2010)

28. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for
Querying Graph Structured Data From The Web. In: Proceedings of the 6th International
Semantic Web Conference, Busan, Korea, pp. 211-224 (2007)

29. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL Queries over the Web of Linked
Data. In: Proceedings of the 8th International Semantic Web Conference, Chantilly, VA,
USA, pp. 293-309 (2009)

30. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Management.
ACM Transactions on Information Systems 3(3), 253-278 (1985)

31. Hogenboom, A., Milea, V., Frasincar, F., Kaymak, U.: RCQ-GA: RDF Chain Query Op-
timization Using Genetic Algorithms. In: Proceedings of the 10th International Confer-
ence on E-Commerce and Web Technologies, Linz, Austria, pp. 181-192 (2009)

32. Josifovski, V., Schwarz, P., Haas, L., Lin, E.: Garlic: A New Flavor of Federated Query
Processing for DB2. In: Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, Madison, Wisconsin, pp. 524-532 (2002)

33. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing
Surveys 32(4), 422-469 (2000)

34. Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query op-
timization algorithms. ACM Transactions on Database Systems (TODS) 25(1), 43-82
(2000)

35. Langegger, A., WoB, W., Blochl, M.: A Semantic Web Middleware for Virtual Data
Integration on the Web. In: Proceedings of the 5th European Semantic Web Conference,
Tenerife, Canary Islands, Spain, pp. 493-507 (2008)

36. Maduko, A., Anyanwu, K., Sheth, A., Schliekelman, P.: Graph Summaries for Subgraph
Frequency Estimation. In: Proceedings of the 5th European Semantic Web Conference,
Tenerife, Canary Islands, Spain (2008)

37. Manola, F., Miller, E.: RDF Primer, W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/rdf-primer/

38. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS Core: Simple Knowledge Or-
ganisation for the Web. In: Proceedings of the 3rd European Semantic Web Conference,
Budva, Montenegro, pp. 95-109 (2006)

39. Moerkotte, G., Neumann, T.: Analysis of Two Existing and One New Dynamic Program-
ming Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products.
In: Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, pp. 930-941 (2006)

40. Muralikrishna, M., DeWitt, D.: Equi-Depth Histograms For Estimating Selectivity Fac-
tors For Multi-Dimensional Queries. In: Proceedings of the 1988 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 28-36. ACM Press, Chicago (1988)

41. Neumann, T., Weikum, G.: RDF-3X: a RISC-style Engine for RDF. In: Proceedings of
the 34th International Conference on Very Large Data Bases, Auckland, New Zealand,
pp. 647-659 (2008)

Federated Data Management and Query Optimization for Linked Open Data 137

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Neumann, T., Weikum, G.: Scalable Join Processing on Very Large RDF Graphs. In:
Proceedings of the 35th SIGMOD International Conference on Management of Data,
Providence, RI, USA, pp. 627-640 (2009)

Ning, X., Jin, H., Wu, H.: RSS: A framework enabling ranked search on the semantic
web. Information Processing and Management 44(2), 893-909 (2007)

Ntarmos, N., Triantafillou, P., Weikum, G.: Counting at Large: Efficient Cardinality Esti-
mation in Internet-Scale Data Networks. In: Proceedings of the 22nd International Con-
ference on Data Engineering, Atlanta, Georgia, USA (2006)

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: A Document-oriented Lookup Index for Open Linked Data. International
Journal of Metadata, Semantics and Ontologies 3(1), 37-52 (2008)

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans-
actions on Database Systems 34(3), 1-45 (2009)

Prud’hommeaux, E.: SPARQL Federation Extensions 1.1, Editor’s Draft (March 25,
2010), http://www.w3 .0rg/2009/spargl/docs/fed/service
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Recom-
mendation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/

Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Pro-
ceedings of the 5th European Semantic Web Conference, Tenerife, Canary Islands, Spain,
pp. 524-538 (2008)

Schenk, S., Saathoff, C., Staab, S., Scherp, A.: SemaPlorer — Interactive Semantic Ex-
ploration of Data and Media based on a Federated Cloud Infrastructure. Journal on Web
Semantics: Science, Services and Agents on the World Wide Web 7(4), 298-304 (2009)
Schenk, S., Staab, S.: Networked Graphs: A Declarative Mechanism for SPARQL Rules,
SPARQL Views and RDF Data Integration on the Web. In: Proceeding of the 17th Inter-
national World Wide Web Conference, Beijing, China, pp. 585-594 (2008)

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance
Benchmark. In: Proceedings of the 25th International Conference on Data Engineering,
Shanghai, pp. 222-233 (2009)

Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization
(2008); Arxiv preprint arXiv:0812.3788

Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection
in a Relational Database Management System. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Boston, MA, USA, pp. 23-34 (1979)
Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. ACM Computing Surveys 22(3), 183-236 (1990)
Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J.: Index Structures and Al-
gorithms for Querying Distributed RDF Repositories. In: Proceedings of the 13th Inter-
national World Wide Web Conference, New York, NY, USA, pp. 631-639 (2004)
Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the Design
of Disco. In: Proceedings of the 16th International Conference on Distributed Computing
Systems, Hong Kong, pp. 449-457 (1996)

Tran, T., Haase, P., Studer, R.: Semantic Search — Using Graph-Structured Semantic
Models for Supporting the Search Process. In: Proceedings of the 17th International Con-
ference on Conceptual Structures, Moscow, Russia, pp. 48-65 (2009)

Tran, T., Wang, H., Haase, P.: Hermes: Data Web search on a pay-as-you-go integra-
tion infrastructure. Web Semantics: Science, Services and Agents on the World Wide
Web 7(3), 189-203 (2009)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic Web
Data Management. In: Proceedings of the 34th International Conference on Very Large
Data Bases, Auckland, New Zealand, pp. 1008-1019 (2008)

http://www.w3.org/TR/rdf-sparql-query/

Chapter 6
Queries over Web Services

Efthymia Tsamoura, Anastasios Gounaris, and Yannis Manolopoulos

Aristotle University of Thessaloniki,
Thessaloniki, Greece
{etsamour, gounaria,manolopo}@csd.auth.gr

1 Introduction

Nowadays, technologies such as grid and cloud computing infrastructures and
service-oriented architectures have become adequately mature and have been
adopted by a large number of enterprizes and organizations [2/19/36]. A Web
Service (WS) is a software system designed to support interoperable machine-to-
machine interaction over a network and is implemented using open standards and
protocols. WSs became popular data management entities; some of their benefits
are interoperability and reuseability.

Seeking to benefit from the above opportunities, the web and grid data manage-
ment infrastructures are moving towards a service oriented architecture by putting
their databases behind WSs, thereby providing a well-documented, interoperable
method of interacting with their data (e.g., [5/32]]). Furthermore, data not stored in
traditional databases can be made available via WSs. As a consequence, there is
a growing interest in systems that are capable of processing complex queries (i.e.,
tasks) spanning services deployed on remote resources. The services can perform
two operations; they either perform processing of data, or they play the role of a
wrapper that retrieves data from a resource.

Currently, two classes of infrastructures that employ WSs to process data have
been developed, namely the WS query infrastructures and the workflow manage-
ment systems (WfMSs). The former process SQL-like queries or search queries over
information sources (e.g. [5/4142]). Like traditional database management systems,
they perform the following tasks in order to answer a submitted query: query trans-
lation, service selection and query optimization. In the first two steps, the appro-
priate services that can correctly answer the submitted query are selected (either
with or without user interaction), while the final step, which is the main topic of
this chapter, aims to provide an efficient service execution plan. The other category
comprises WfMSs, where the workflow components are services (e.g., [33123]). In
WIMSs the user has to select the services to process the data of interest, the location
of the input data (which are either extracted by a service that polls a resource or they
form a data stream) and the service invocation order, which is fixed. Languages such
as BPEL4AWS have emerged for specifying WS composition in workflow-oriented
scenarios [[1]].

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 139
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

140 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

An example of a problem of optimization queries over WSs is given below. We
assume that WSs provide an interface of the form WS : X — Y, where X and Y are
sets of attributes, i.e., given values for attributes in X, WS returns values for the
attributes in Y, as shown in the following example adapted from [42]]. In the generic
case, the input tuples may have more attributes than X, while attributes in Y are
appended to the existing ones.

Example 1. Suppose that a company wants to obtain a list of email addresses of
potential customers selecting only those who have a good payment history for at
least one card and a credit rating above some threshold. The company has the right
to use the following WSs that may belong to third parties, the first of which contains
a database of person ids.

WS :0— SSN id (ssn)

WSy :SSN id (ssn,threshold) — credit rating (cr)
WS3:SSNid (ssn) — credit card numbers (ccn)
WSy : card number (ccn,good) — good history (gph)
WSs:SSN id (ssn) — email addresses (ea)

There are multiple valid orderings to perform this task, although several precedence
constraints exist: W] must always be at the beginning and WSz must precede W Sy.
The optimization process aims at deciding on the optimal (or near optimal) order-
ing under given optimization goals. When there are multiple logically equivalent
services for the same task (e.g., there are two services containing email addresses
at distinct places) or the physical placement of a service is flexible, then the problem
becomes more complex. g

In this chapter we will discuss several different flavors of queries over WSs and
the corresponding optimization algorithms. Note that some of these cases can be
reduced to problems that have been examined in the context of traditional database
queries in a straightforward manner. Traditional database solutions for such cases
can be easily transferred to our setting by replacing database operators with WSs;
for this reason, throughout the text, we will use the terms operators and services
interchangeably. For example, the problem of optimal ordering of centralized WSs
with a view to minimizing the response time may resemble the problem of order-
ing commutative filters in pipelined queries with conjunctive predicates [24122], in
the sense that the calls to WSs may be treated in the same way as expensive predi-
cates. Note that ordering some types of relational joins can be reduced to the same
problem, as well [[7].

However, reducing the problem of optimizing queries over WSs to the problem
of optimizing traditional queries is not always feasible because there are also many
substantial differences, and, as such, several optimization problems encountered in
queries over WSs have not been investigated in traditional query processing. These
differences stem from the fact that, in queries over WSs, there may exist precedence
constraints between the WSs, selectivities may be higher than 1 (e.g., WS3 in the
example can return more than one tuple) and, typically, the execution of queries
over WSs typically takes place in a both distributed and parallel manner.

Queries over Web Services 141

1.1 Optimization Problems of Queries over WSs

In this chapter, we examine several distinct query optimization problems that can
be broadly classified into four main categories, namely operator ordering, operator
scheduling, tuple routing and data transfer planning. For each problem, we present
some of the known solutions. Note that these solutions are not directly comparable
with each other since they deal with different problems.

Operator ordering where the goal is to build an operator (or WS) execution plan
that minimizes a pre-defined criterion by defining an appropriate partial or total
ordering of the operators. In other words, the optimization decisions relate to the
ordering of operators in the execution plan exclusively and issues such as allocation
of operators to resources do not apply. Note that the ordering need not be linear.
Problems that fall into this category assume that necessary metadata (e.g., operator
cost per input tuple, selectivity, etc.) are available and in addition, the operators
are pre-allocated on host machines. A well-known problem is the min-cost operator
ordering problem. Given a set of operators, the aim is to define an ordering of the
operators so that all input queries are evaluated with the minimum total execution
cost of operators. Optimization criteria will be discussed in more detail in Sec.

Tuple routing which is a generalization of operator ordering in the sense that
not only a single operator plan to be followed by all input tuples is created. The
alternative approach, advocated by tuple routing techniques, may route input tuples
through different plans, which are also termed as interleaving plans [13]. A set of
interleaving plans consists of multiple simultaneously active operator plans, each
of which processes different partitions of the original input tuple set. When a new
tuple enters the system it is routed to one of these plans, according to a probability
weight.

Operator scheduling where the goal is to decide the processor on which each
service is evaluated. Problems of this category appear when the system is also re-
sponsible for resource allocation. It is assumed that the system is capable of per-
forming dynamic service deployment before the execution of the query and there
are multiple choices regarding the host nodes for each service. Operator scheduling
can be examined either in conjunction with operator ordering or in isolation. In the
latter case, operator ordering has been fixed in a previous step.

Data transfer planning where the focus is shifted to data transmission. The
aforementioned query optimization problems are operation centric, i.e., they de-
fine the operator execution order and/or the operator location. In the data transfer
problems, the primary concern is to optimize data transmissions. As such, these
problems emphasize more on scheduling the data transmission operations, or on the
specification of the amount of data exchanged between the hosts. Obviously, op-
erator scheduling and data transfer planning problems are met only in parallel or
distributed environments, whereas operator ordering and tuple routing problems are
encountered in centralized settings, as well.

142 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

1.2 Chapter Contributions and Structure

The contribution of this chapter is twofold. First, it presents a detailed overview of
the problems encountered in the optimization of queries over WSs. The problems
do not differ only in their nature as detailed above, but also in regard to the type
of queries, type of services or operators and the exact execution environment to
which they are tailored. This discussion results in the development of a taxonomy-
like classification of the problems in WS queries that appears in Sec. [2l Second,
this chapter discusses state-of-the-art solutions to distinct flavors of the problem of
optimizing queries over WSs in Sec. Bl Especially for the problem of minimizing
the response time in decentralized pipelined queries, a novel algorithm is presented.
A comparison of the key properties of the different solutions appears in Sec.
while Sec. [concludes the chapter.

2 Different Aspects of the Problem of Optimizing WS Queries

Before probing into advanced query optimization algorithms that are relevant to
queries over WSs, we must first discuss the factors of the problem, which greatly
affect its complexity. These factors refer to the execution environment, the type of
input queries, the type of operators involved and the query optimization criteria and
are common to all kinds of problems mentioned in Sec.[Il The taxonomy presented
here aims at providing a complete view of these factors in a systematic way.

2.1 Execution Environment

We are mainly interested in queries in parallel and distributed query execution en-
vironments, like those in [[35], since these environments are more common in WS
queries. However, a great number of algorithms originally proposed for central-
ized environments are still relevant. In such single-processor systems, only a central
node evaluates input queries, although the queries may process data from multi-
ple distributed resources. A distributed environment, such as the Internet and the
grid [19], consists of multiple, possible heterogeneous, independent and potentially
autonomous sites that are loosely connected via a wide-area network. On the other
hand, a parallel environment consists of multiple, homogeneous processors and data
resources spread over a local network. As such, the communication cost may dom-
inate the query execution process in a distributed environment, which, usually, is
not the case in a parallel setting. Nevertheless, the similarities between parallel and
distributed systems are more significant compared to their differences; so, we pre-
fer to distinguish between centralized and non-centralized (i.e., either parallel or
distributed) systems, only.

A parallel or distributed environment may be either static or dynamic. In the latter
case, the environmental characteristics, such as the number of available processors,
the processor workload, the network traffic, etc., may change over time rendering

Queries over Web Services 143

the problem of query optimization more challenging. Query optimization in dy-
namic environments, also called adaptive query processing [15]], has been a topic
of investigation since late 70s [18]; however, the problem has received renewed at-
tention in the last decade. The vast majority of works on adaptive query processing,
like those mentioned above, deal with changes in the operator characteristics and the
input data rather than changes in the execution environment; only a few exceptions
to this are known (e.g., [20]). Centralized environments are considered to be static;
of course this is not always true, e.g., the amount of available memory may be sub-
ject to unpredictable changes, but the dynamicity of the environment can be safely
overlooked when the resource characteristics we are mostly interested in, such as
processing cost per tuple, usually play a minor role in optimization.

In addition, a distributed or parallel environment may utilize parallelism with
a view to speeding up and scaling up query execution [17]. Three types of paral-
lelism have been identified in parallel query processing, namely independent, parti-
tioned and pipelined parallelism. In independent parallelism, query operators none
of which use data produced by the others, may run simultaneously on distinct ma-
chines. In pipelined parallelism, data already processed by an operator may be pro-
cessed by a subsequent operator in the pipeline, at the same time as the sender
operator processes new data. Finally, partitioned parallelism refers to running sev-
eral instances of the same operator on different machines concurrently, with each
instance only processing a partition of the same original data set.

The three aforementioned forms of parallelism can co-exist within a single query
execution plan. For instance, in the introductory example, WS, and W S5 can pro-
cess in parallel output data items of WS;; this corresponds to independent paral-
lelism. Also, WS and W3 can be active simultaneously, i.e., WS3 processes out-
put tuples of WS, while the latter keeps generating new tuples; this corresponds to
pipelined parallelism. Finally, consider a scenario where W S3 is physically deployed

— Centralized

— Static
Execution | Dynamicity

environment

— Dynamic

— No parallelism

— Parallel/Distributed

— Independent / Partitioned / Pipelined

Centralized data
transfers

Data transfers

Decentralized data
— transfers

Fig. 1. Diagram of the different aspects regarding the execution environment

144 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

on two nodes, each processing half of the tuples of WSj; in that case, partitioned
parallelism is applied, as well. Obviously, parallelism can yield significant benefits
only in multi-processor, parallel or distributed environments.

Distributed environments are also differentiated regarding the type of manage-
ment of intermediate data transfers. In multi-processor systems, query operators
can be placed and evaluated anywhere across the network. Regarding the interme-
diate data transfers, in a centralized data transfer approach, the intermediate data is
transferred between resources via a central point. On the other hand, in a decentral-
ized managed data transfer approach, processors exchange data directly. Since data
is transferred from the source resource to the destination directly, the bottleneck
problem caused in centralized approaches is ameliorated and these approaches are
characterized by lower transmission times. Fig. [[l summarizes the different aspects
regarding the execution environment.

2.2 Input Queries

The optimization algorithms that apply to queries over WSs either optimize each in-
put query separately or optimize multiple queries simultaneously. In the latter case,
they try to benefit from the overlap regarding the data resources they access, or
even the constituent predicates. Multi-query optimization algorithms try to lever-
age this overlap in order to minimize the execution, communication and I/O cost.
Additionally, input queries can be classified with respect to their time duration into
continuous or non-continuous. Continuous queries are persistent queries that allow
users to receive new results when they become available [43]]. They are mainly met
in streaming environments, where new data is continuously supplied and passed
to WS sets for further processing. On the other hand, the non-continuous ad-hoc
queries are executed on finite data. Optimization techniques that treat each tuple
separately can be applied to both continuous and ad-hoc finite queries. An example
of a continuous query over WSs is the following (adapted from [12]]), where it is
assumed that separate WSs are responsible for checking the price variations of Dell,
Micron and Intel stocks:

“Notify me whenever the price of Dell or Micron stock drops by more than 5% and
the price of Intel stock remains unchanged over the next three months.”

Regarding their type, input queries can be expressed as traditional SQL-like database
queries in the form of select-project-join (SPJ) and aggregates, or as search, infor-
mation retrieval queries over information resources. Search queries are typically
unstructured and often ambiguous; users submit one or more keywords to a search
engine and the search engine returns approximate, i.e., incomplete answers with in-
formation that is related to the keywords provided in decreasing order of relevance.
Fig. 2l provides a diagram of the different query aspects.

Queries over Web Services 145

— Single query
Number of queries

—— Multiple queries

— Continuous queries
Duration

Input Queries

—— Ad-hoc

— SQL-like

Statement-style

— IR -like

Fig. 2. Diagram of the different aspects regarding input queries

2.3 Input Operators

The type of input queries is also strongly correlated to the type of operators in the
query execution plan. The operator attributes that are of interest include selectivity
and precedence constraints (see Fig. [3). Selectivity is defined as the average ratio
of output and input tuples. A WS that receives as input a country name and re-
turns a list of major cities has average selectivity above one, and another service
that, for the same input, returns just the capital has selectivity equal to one. Sim-
ilarly, a service that may receive the name of any city in the world and returns
airport codes only if the given city is nearby an airport has average selectivity be-
low one, since, worldwide, there are fewer airports than cities. The operators in a
query can be selective, i.e., their selectivity is between 0 and 1, or proliferative, i.e.,
their selectivity is greater than 1. IR-style services are typically characterized by
high average selectivity values: given a single tuple containing a keyword, multiple
data items are returned.

— Selective
Selectivity
— Proliferative
— Correlated
Correlation
Input Operators
— Independent
— Constrained
Constraints

— Unconstrained

Fig. 3. Diagram of the different aspects regarding input operators

146 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

Moreover, the operators are considered to be correlated when their selectivity
depends on the operators upstream in the query plan. If the selectivities are inde-
pendent of the ordering, then the operators are called independent. Note that the
selectivity of an independent operator may be correlated with the values of the input
attributes, which is the case in [9]. A last parameter that categorizes the operators
is the existence or not of prerequisite operators. More specifically, a constrained
operator cannot be executed before the completion of its prerequisite operators, in
contrast to an unconstrained one. The prerequisite operator O; of an operator O; is
denoted by O; < O;.

2.4 Optimization Criteria

A critical factor in the optimization process is the exact optimization goal. Multi-
ple criteria exist, such as maximizing query throughput, minimizing monetary cost,
energy consumption, etc. In this chapter, we focus on two aspects, namely the min-
imization of the total query execution cost and the minimization of the query re-
sponse time. Minimization of the total execution cost can be split in two parts. In
centralized environments, execution cost encapsulates the cost for processing the
operators and the disk I/Os. In distributed environments, the cost for transferring
data among the operators is also considered. The minimization of execution cost
aims at minimizing the sum of the processing and transmission cost for all opera-
tors in the query plan.

However, the opportunities imposed by parallelization have moved the interest to
the optimization of other criteria, such as the response time, i.e., the time needed to
produce the full result set. In a pipelined parallel environment, all operators process
data simultaneously. As such, minimizing the query response time is equivalent to
the minimization of the execution time of the longest running operator (often re-
ferred to as the bottleneck operator) instead of the sum of the execution times of all
operators. When the query is evaluated with the help of interleaving plans (see Sec.
[L1), then the minimization of response time can be expressed as the maximization
of the tuple flow [[13]]. These optimization criteria are depicted in Fig. [l

Total operator
processing cost

| Total data
transfer cost
Optimization

criteria

— Response time

—Tuple flow

Fig. 4. Optimization criteria

Queries over Web Services 147

3 Optimization Approaches

This section studies state-of-the-art algorithms for the problems presented in Sec.
[L1l The section starts by presenting some operator ordering problems in both static
and adaptive execution environments and continues with tuple routing, scheduling
and data transfer planning problems.

Independently of the execution environment, in the problems that are presented,
except the data transfer planning ones, the data to be processed is either streamed
by a single data resource or extracted from a database and then sent to subsequent
services for processing. On the other hand, in the presented data transfer planning
problems, we consider two different data resource models. In the first case, multiple
data resources transfer data to a centralized processing component, while in the
second case, data reside on traditional databases that are disparate across a network.

In order to answer a query involving calls to multiple services, the following ac-
tions must be performed by a query management component. First, the candidate
services that may take place during the query execution phase must be selected. Af-
ter that, statistics, regarding the per-tuple processing cost and the selectivity of the
services, as well as the network status, must be gathered. This data is utilized by
an optimization component that builds a feasible and efficient (in terms of a pre-
selected optimization criterion) service ordering. It is assumed that the algorithms
that deal with operator ordering and tuple routing problems exploit such query man-
agement components.

3.1 Operator Ordering Problems in a Static Environment

The operator ordering problems that are studied in the current subsection deal with
static execution environments. In Sec. 3.1.1, we study problems, where the opti-
mization objective is the query response time minimization, while in Sec. 3.1.2,
we present problems, where the objective is the minimization of the per tuple total
execution cost.

The services in Sec. 3.1 are considered to provide an interface of the form WS :
X — Y, where X and Y are sets of input and output attributes, respectively. Each WS
typically performs operations such as filtering out data items that are not relevant
to the query, transforming data items, or appending additional information to each
input tuple.

3.1.1 Minimizing the Response Time

Srivastava et al. are among the pioneers that deal with query optimization when the
data resources and the operators that process data are implemented as WSs. They
consider a parallel and static execution environment, in which data is pipelined
among services that are placed in arbitrary places. To this end, they propose a
WSMS that, given an SQL-like input query, undertakes the task to produce an appro-
priate ordering of the services, in order to minimize the query response time. Query
execution proceeds as follows. The output of one WS is returned to the WSMS

148 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

and the latter redirects the received tuples to a subsequent WS, finally producing
the query results. After giving a brief description of the execution environment, we
present a formal problem definition utilizing the term operator instead of service.

More specifically, given an ad-hoc SPJ query Q that is defined over a set of N
operators O = {01,0,,...,0n}, the goal is to identify an operator ordering P for
all input tuples that minimizes the response time of the query, in a parallel and static
execution environment in which data is pipelined among the operators. Since the
operators are executed in parallel, the maximum rate at which input tuples can be
processed through the pipelined plan P is determined by the bottleneck operator (see
Sec. 2.4)). For every input tuple to P, the average number of tuples that an operator
O; needs to process is given by

R(P)=][I o (1)

k|OyeP,(P)

where P;(P) is the set of operators that are invoked before O; in the plan P and o;
is the service selectivity. The average processing time required by operator O; per
input tuple is R;(P)c;, where c; is the per tuple processing cost of O;. Since the cost
of a plan is determined by the operator with the maximum processing time per input
tuple, the bottleneck cost of a plan P is given by

cost(P) = [max (Ri(P) - ci) 2)
Srivastava et al. have proposed a greedy algorithm for the special case where the
intermediate data transfers are centralized [42]. The operators are assumed to be
independent, whereas arbitrary selectivity values and existence of precedence con-
straints are supported. In the produced plans, the output of an operator may be fed
to multiple operators simultaneously. Starting from an empty operator plan, in every
iteration of the algorithm, the next operator O, to be appended to P is the one that
incurs the minimum processing cost per tuple. In order to find the minimum cost
of appending O, to P, the best cut in P is found, such that on placing edges from
the operators in the cut to O,, the incurred cost is minimized. As such, the problem
is reduced to a network flow problem [[11]. The worst case complexity of the algo-
rithm is O(N°) and the algorithm is provably optimal. For selective operators, the
complexity is significantly lower since the optimal plan P is a linear ordering of the
operators by increasing cost, ignoring their selectivity. For proliferative services, the
produced plans may be parallel, i.e., a partial ordering is produced.

Example 2. Let O ={0y,...,010} be aset of 10 operators with corresponding costs
and selectivities shown in Table [l and Bl respectively. Since all operators are se-
lective, the proposed algorithm orders them by increasing processing cost. Thus,
the optimal ordering that minimizes Eq.(2) according to [42] is
P={0,050,07040100309030¢}. O

A drawback of this algorithm is that it does not take the potentially heterogeneous
communication links between the operators into account. This is significant when
the execution is decentralized, given also that the communication cost may be the

Queries over Web Services 149

Table 1. Costs of operators in Example

0;12345678 910
;2712841671010 9

Table 2. Selectivities of operators in Example 2]

o1 2 3 45 6 7 8 910
0, 0.80.7090.30.50.60.40.10.60.7

dominant cost. In [42], it is assumed that the output of an operator is fed to the sub-
sequent operators indirectly, through a central management component thus annihi-
lating the need to consider the different communication costs explicitly. Tsamoura et
al. address the afore-mentioned limitation by proposing a novel efficient algorithm
for the optimal total ordering of operators, when the intermediate result transfers are
decentralized and the communication costs between the operators may differ [46]].

Let 1; ; be the time needed to transfer a tuple from operator O; to O;. Similarly
to [42], there is no limitation regarding the operator selectivities and the existence
of precedence constraints; however, the selectivities are assumed to be independent,
as well. The response time of a linear operator ordering S is given by the bottleneck
cost metric in accordance to [42] with #; ; factored in:

cost(S) = lrgias)xR,(S)(cl + Oitiit1), 3)
where ty 41 = 0. T; j = ¢; +1; j0; is the aggregate cost of O; with respect to O;. The
above formula implies that in general T; ; # T} ;, since ¢; and o; values may differ
from c; and o; values. Note that if #; ; is equal for all service pairs, the problem can
be solved in polynomial time, as shown in [42].

The proposed algorithm is based on the branch-and-bound optimization approach.
It proceeds in two phases, namely the expansion and the pruning one. During ex-
pansion, new operators are appended to a partial operator ordering C, while during
the latter phase, operators are pruned from C with a view to exploring additional
orderings. The decision whether to append new operators or prune existing ones
from a partial plan C is guided by two cost metrics, € and € respectively. The for-
mer corresponds to the bottleneck cost of C, and is given by Eq. (@), while the
latter is the maximum possible cost that may be incurred by operators not currently
included in C:

Hj\ojeccj) Ty, O1¢C, 0, ¢C
€ = max

“)
Lr H;;lo Gj) Ti,, O;: last operatorinC, O, £C
The algorithm consists of the following simple steps. Starting with an empty plan C
and an empty optimal linear plan S with infinity bottleneck cost, in every iteration
of the algorithm, the parameters € and € are computed. If the bottleneck cost € of

150 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

C is lower than &, then a new operator is appended to C; this operator is the one
having the minimum aggregate cost with respect to the last operator in C. If the
bottleneck cost € of the current plan C is higher than or equal to the bottleneck cost
p of the best plan found so far S, then the operators in C after the bottleneck service,
including the latter, are pruned. Finally, whenever the condition € < € < p is met, a
new solution is found. That condition implies that the ordering of the services that
are not yet included in C does not affect its bottleneck cost. As a consequence, all
plans with prefix the partial plan C have the same bottleneck cost. So, a candidate
optimal solution S is found that consists of the current plan C followed by the rest
of the services in any order. The bottleneck cost p of the best plan found so far S
is set to p = €. The last solution is the optimal one. The detailed description of the
algorithm, along with the proofs of correctness and optimality can be found in [46].
Furthermore, detailed real-world ([45]]) and simulation ([46]) evaluation has shown
that the proposed algorithm can yield significant performance improvements (of an
order of magnitude in many cases).

The following example demonstrates the steps of the algorithm proposed in [46]
for minimizing the response time in a distributed and static environment, which
employs pipelining during query execution.

Example 3. Let us assume that the operators in Example[2] are allowed to commu-
nicate directly with each other and the network connections are heterogeneous. The
corresponding aggregate costs of the operators are shown in Table Bl For example,
the cell 77 , of Table[3is evaluated as Tip=ci1+1201 =2+ 65%0.8, where 0.8 is
the per cost to transfer an tuple from O; directly to O,.

Fig. [5l shows the partial plans at the end of each iteration. Initially, the plans C
and § are empty and the bottleneck cost of S is set to co. The algorithm starts by
identifying the operator pair, which incurs the minimum bottleneck cost. The cor-
responding operators are O and O7. After that, C = O;05. In the second iteration,
since € =8 < € =07 X T73 =36 and € < p = oo, a new operator is appended to C,
the one having the minimum aggregate cost with respect to O7; that operator is Oy.

Table 3. Aggregate cost matrix T

i\j1 23456728910
1 - 5435421450 8 331710
52 - 183347 40 69 37 42 43
49 26 - 60 68 74 98 40 66 57
231924 - 174621 9 4227
11333519 - 104052 14 32
5244579123 - 44227246
104345243626 - 3517 19
141514112011 17 - 17 16
21 40 46 78 22 66 25 48 - 79
16 45 44 53 48 44 29 47 90 -

O 0 9N L bW

—_
o

Queries over Web Services 151

1% iteration (at the beginning e =0, =98, p =00)

2nd jteration (at the beginning e = 8, = 36,p =00)

O—O—@

3'd jteration (at the beginning e = 13.6,¢ = 25.28, p = o0)

4% jteration (at the beginning e = 13.6,¢ = 9.984, p = 00)

@

5" jteration (at the beginning e = 0,e = 78.4,p = 13.6)

6" iteration (at the beginning € = 10,e = 72, p = 13.6)

QO—W—©

7th jteration (at the beginning e = 23.2,¢ = 25.2,p = 13.6)

8th jteration (at the beginning e = 0,e = 78.4,p = 13.6)

9th jteration (at the beginning € = 14, ¢ = 41.6,p = 13.6)
cC=0

10" iteration (at the beginning ¢ = 0,¢ =98, p = 13.6)

110 jteration (at the beginning e =9,e =6,p = 13.6)
cC=10

Fig. 5. The steps in Example 3]

In the third iteration, since € =13.6 <€ =01 x 07 x Ty 190 =25.28 and € < p = o0
the operator Os is appended to C forming the partial plan C = O1070905. Now,
since € = 13.6 > € = 01 X 07 X 09 X T53 = 9.984, and € < p = o, a solution is
found. Thus, S is set to C, p = 13.6 and C is pruned. After the pruning, C = O
(the bottleneck operator is O7). The termination condition, see [46], is not triggered
given that there exists a two operator prefix that has not been investigated and its
costis less than p: Ty g = 9.

152 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

In the fifth iteration, since € =0 < € =78.4 and € =0 < p = 13.6, a new operator
is appended to C = Oq; that is O19. A new operator is also appended in the sixth
iteration forming the partial plan C = O101007. In the seventh iteration, the partial
plan is set to C = Oy, as € = 23.2 > p = 13.6 and the bottleneck operator is the
second one, i.e., Ojg. In the eight iteration, Os is appended to C = O}, while in
the ninth iteration, the partial plan is set to C =0, as € = 14 > p = 13.6 and the
bottleneck operator is the first one, i.e., O;. As a result, any other plan starting
with O; can be safely ignored. Since the plan C is empty, the algorithm searches
for the pair of operators with the minimum aggregate cost. In our example, this
pair consists of O4 and Os. In the eleventh iteration, a new solution is found, since
€=9>¢==06and € < p =13.6. Thus, S = 0403, the bottleneck operator is O4
and p is set to 9. After the pruning C = 0, and the algorithm safely ignore plans
starting with O40Og. This causes the algorithm to terminate, since the cost of the less
expensive operator pair except those beginning with O, which is Os50g, is higher
than p: T56 = 10 > p = 9. So the algorithm terminates, after having essentially
explored all the 10! orderings in just 11 iterations. g

The characteristics of these two state-of -the-art algorithms for the optimization
of queries over WSs in a pipelined parallel environment are summarized in Table 4l

Table 4. Operator ordering algorithms for minimizing the response time

Work Execution environment Input queries Input operators

[42] Parallel/distributed, static, Single, ad-hoc, SQL- Independent, both selective
centralized data transfers, like and proliferative, both con-
pipelined parallelism strained and unconstrained

[46] Distributed, static, de- Single, ad-hoc, SQL- Independent, both selective
centralized data transfers, like and proliferative, both con-
pipelined parallelism strained and unconstrained

3.1.2 Minimizing the Total Processing Time

In previous sections we saw that the query response time equals the maximum ex-
ecution cost spent by an operator in order to process an input tuple and/or to send
them to a subsequent operator. On the other hand, in a min-cost operator ordering
problem, the goal is to minimize the total operator execution cost (processing and
or transferring) that is incurred per input tuple. From now on, the term execution
cost, unless clarified otherwise, encapsulates both the processing and transferring
cost spent by an operator.

Ordering operators with a view to minimizing the per tuple total execution cost,
a problem also commonly referred to as the min-cost operator ordering problem,
is essential for achieving good system throughput. In general, solutions to the min-
cost problem initially proposed for single-node settings may be applied to parallel
settings characterized by resource homogeneity in a straightforward manner.

Queries over Web Services 153

The min-cost ordering problem comes in several flavors. One of the most in-
teresting ones refers to a parallel and static execution environment, where data is
directly exchanged between the operators through pipelining; data communication
can occur via a coordinator as well, without essentially modifying the problem, as
long as homogeneous network links are assumed. If the operators are independent,
then well-established fast solutions apply (e.g., [24122]). However, correlated oper-
ators pose a more challenging problem. More specifically, given an ad-hoc select
query Q that is defined over a set of unconstrained, correlated and selective opera-
tors O = {01,0,,...,0y} with fixed processing cost ¢; and selectivity o;, the goal
is to find an operator linear ordering S that minimizes the total execution cost of
operators per input tuple. This cost encapsulates only the processing cost of tuples
and is formally given by the following equation:

N i1
cost(S) =c1+ Y, eiDi, Di= (1 =d(jlj—1)) o)
i=2 j=1

d(i|j) is the conditional probability that the operator O; will drop a tuple that has
not been dropped by any of the operators that precede O; in S, and d(i|0) = 1 — o;
is the unconditional probability that operator O; will drop a tuple. Any drop prob-
ability is linearly related to selectivity, given that d(i|j) = 1 — o(i|j). Babu et al.
have proved that this problem is equivalent to the pipelined set cover problem [7].
The pipelined set cover problem is MAX SNP-Hard [30], which implies that any
polynomial operator ordering algorithm can at best provide a constant-factor ap-
proximation guarantee for this problem. In [30], a 4-times approximation algorithm
is introduced to solve this problem. According to that algorithm, the operators must
be ordered in a way that satisfies the following condition (termed greedy invariant):

d(ili—1) _ d(jli—1)
Ci - Cj

JA<i<j<N (6)

Example 4. We continue Example 2] aiming now at minimizing the total execution
time (only the processing time is considered). In this example, the selectivities of the
operators are independent, so the algorithm in [7] is reduced to those in [24422]] and
the operators are ordered in decreasing order of (1 — ;) /c;. As such, first Os is se-
lected, followed by O|, Og and so on. If the operators were correlated, then, after se-
lecting Os, the conditional selectivities o (i|5) of all other operators would have to be
estimated, in order to detect the second operator. (I

Next, the min-cost operator ordering problem is studied in a multi-query setting.
This problem is also known as the shared min-cost operator ordering problem. More
formally, let Q = {Q},02,...,0u} be a set of M, potentially continuous select
queries that are evaluated over a set of N selective, unconstrained and correlated
operators O. Each query is a conjunction of the operators in O. For each input tuple,
operator O; € O either returns a tuple or rejects it. The proportion of rejected tuples
is defined by the operator selectivity. The goal is, given an input tuple t, to find the
ordering that identifies the queries satisfied by t with the minimum cost. Note that an
input tuple satisfies a query if it is not rejected by none of its constituent operators.

154 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

Obviously, if a query is satisfied, then all of its constituent operators must be
evaluated. On the other hand, if an operator of a query rejects a tuple, then we do
not have to evaluate the rest operators belonging to the same query (and are not
evaluated so far). Thus, in a produced ordering, only a subset of operators O’ C O
have to be evaluated, in order to determine the queries that are satisfied, and thus,
the per tuple total processing cost is given by:

cost(S) = Z i @)
il0;€0’

Munagala et al. have proved the equivalence of this problem to the minimum set
cover problem, and proposed an approximate greedy algorithm as a solution [31]].
More formally, at any stage of the algorithm, the next operator to be evaluated is
expected to resolve the maximum number of unresolved queries per unit cost. We
say that for a given tuple 7, a query is resolved if all its constituent operators return
t or the currently evaluated operator rejects ¢. Let p; be the number of unresolved
queries the operator O; is part of and 1 — o; the probability that the operator O;
rejects an input tuple. Then, the expected number of queries resolved by O; is p;(1 —
0;). The next operator to be evaluated is the one that minimizes the ratio rank; =
¢i/pi(1 —0;). O; is then removed independently from filtering out or not an input
tuple. In addition, the queries that have been resolved due to the operator evaluation,
and any other operator, which is not part of at least one not yet resolved query, is
also removed. The algorithm terminates when all submitted queries are resolved.

Example 5. This example presents the steps of the algorithm proposed by Munagala
et al. for the shared min-cost operator ordering problem. Suppose that the following
queries are available Q] 2{01, 037 077 010}, Q2={04, 057 03}, Q3 = {02, 047 010},
04={01,07,09,010}, Os = {03,06,07,09}. Let t be an input tuple, which is not
rejected by any operator (except O1, Os and Oy). As a consequence, only the query
Qs is satisfied for 7, since none of its constituent operators rejects this tuple. Figure[6]
shows the results after every iteration of the algorithm. The algorithm starts by iden-
tifying the operator which minimizes the ratio rank; = ¢;/pi(1 — o;), which is O;

with rank; = 3.88 (see also Tables[Iland2)). Since O7 does not reject the input tuple,
no query is resolved. After that, operator O is selected with rank; = 5. Operator O

rejects ¢, thus resolving queries O and Q4. None of the not yet evaluated operators
is removed, since they are included in at least one of the not yet resolved queries, i.e.,
0>, O3 and Qs. The next two operators are O4 and Os with ranks = 5.71 and ranks =

8, respectively. Since Os rejects ¢, query Q> is also resolved. The next operator is

0O, with rank, = 23.33. After evaluating operator O, operator Oy is evaluated with
rankg = 25. Since Og rejects input tuple 7, query Qs is also resolved. Apart from that,

operators O3 and Og do not have to be evaluated, since they are not part of any un-
resolved query. Finally, the remaining operator, i.e., O is evaluated, and thus query
Qs is satisfied. (Il

Liu et al. have proposed an edge-coverage-based approximate greedy algorithm for
the same problem that achieves a better approximation ratio [28]]. In [31], the shared
min-cost operator ordering problem is viewed as the problem of covering the input

Queries over Web Services

Q1 Q> Q3 Q4 5
01,03 04,05 02,04 01,07 03,04
01,010 Os O1o 09,010 01,04

1%t iteration Oy is selected (rank; = 3.88)

Q1 Q2 Q3 Q4 Qs
01,03 04,05 03,04 O O3, 0¢
()1[) ()g ()10 09, O]O 09

274 jteration O is selected (rank; = 5)

Q2 3 Qs
04,05 03,04 03, 0¢
Os Oqp [
374 jteration Oy is selected (rank, = 5.71)
Q2 Qs 5
Os 0, 03,06
Os O1o Oy
4t jteration Oy is selected (ranks = 8)
Q3 Qs
02 03, ()6
O19 Oy

5" jteration Oy is selected (ranks = 23.33)

Q3 Qs
03,04
O10 9

6" jteration Oy is selected (rankg = 25)

3

O

7t iteration Oy is selected

Qs

155

Fig. 6. The steps in Example 3] where each box corresponds to an unresolved query contain-

ing its remaining operators

156 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

queries through a suitable choice of operators. However, in [28]], the same problem
is viewed as the problem covering the connections between queries and operators
through a suitable choice of operators, rather than covering the queries themselves.

The algorithm makes use of a bipartite graph. A bipartite graph G = (0,0, E)
consists of two partitions, the set of the not yet evaluated operators (initially O)
and the set of the not yet resolved queries (initially Q); an edge e = (0;,Q;) € E
between an operator and a query indicates the fact that the operator is present in
the corresponding query. Given an input tuple #, the next operator to be evaluated
in each step is the one that covers the maximum number of edges in the bipartite
graph with the minimum processing cost. For an operator O;, the expected number
of edges covered is the sum of the expected number of the queries that O; evaluates
to trud] plus the expected number of the operators that do not have to be evaluated if
operator O; evaluates to false (these are the not yet evaluated operators that belong to
the not yet evaluated queries, where O; is part of). More formally, the next operator
to be evaluated, given a tuple #, is the one that minimizes the ratio

¢
6i6(0;) + (1 — 67) Xvo,|(0:,00)E: 0(Ok)

where E; is the remaining set of edges in the current iteration, 6 is the degree of an
operator or a query respectively in the bipartite graph and Qy. is any query involving
O;. After each operator evaluation, the bipartite graph is updated with the performed
actions being identical to those in [31].

®)

unit — price; =

Example 6. We reconsider the problem in Example[3]employing the edge-coverage
based algorithm proposed in [28]]. Figure[Z]shows the operator-query bipartite graph
after every iteration of the algorithm. Let 7 be the current input tuple. In the first iter-
ation, operator O is selected for evaluation with unit-price =2/(0.8%240.2 % (4 +
4)) = 0.625. After that, queries Q; and Q4 are removed from the graph along with
operator Oy, since O rejects ¢. In the second iteration, the operator Oy is selected
with unit-price = 8/(0.3 %2+ 0.7 % (3+ 3)) = 1.66. In the third iteration, O7 is se-
lected, while in the fourth iteration we evaluate Os with unit-price = 4/(0.5+0.5 %
2) = 2.66. Since operator Os rejects the input tuple, query Q5 is removed from the
graph along with operator Og. The latter is removed as it is not part of any unresolved
query. In the fifth iteration, O is selected for evaluation, while in the sixth iteration,
Oy is selected with unit-price=10/(0.6 4 0.4 % 3) = 5.55. After evaluating operator
Oy, query Qs along with operators O3 and Og are removed from the graph. Finally,
operator Oy is evaluated, since it is the only remaining operator.]

A common problem with the performance of WSs is that they may be too slow or
prohibitively expensive in some cases. In that case, if there exist some additional
highly selective operators that are inexpensive and correlated to the expensive ones,
it is beneficial to incorporate them early in the plan. This is the main rationale in

I'we say that, given a tuple #, an operator O; evaluates to true a query Q; if O; € Q; and O;
returns z. Otherwise, we say that O; evaluates Q; to false.

Queries over Web Services 157

0, 0, 0; Oy Os O¢ 0; O3 Oy Oy
Q Q3 Qs 1% iteration: 0 is selected (unit-price=0.625)
0, 0; 04 05 Og 0; Og 0y Oy
Q, Qs Qs 2" jteration: 0, is selected (unit-price=1.66)
0, 03 05 Og 0; O3 Oy Oy
Q, Q3 Qs 3 jteration: 05 is selected (unit-price=2.5)
0, 03 05 Oq Og 0y Oy
Q3 Qs 4™ iteration: Oy is selected (unit-price=2.66)
0, 0; Og Oy Oy
Q3 Qs 5™ iteration: 0, is selected (unit-price=5.38)
0; O 0y Oy
Q3 6™ iteration: 0y is selected (unit-price=5.55)
Oy
Q; 7™ iteration: O, is selected

Fig. 7. The steps in Example []

158 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

[[14]. More specifically, the work in [[14] exploits the fact that some additional low-
cost operators O; ¢ O can be evaluated so as to reject tuples at lower cost avoiding
the cost of evaluating expensive operators. In this work, the proposed solution is
a conditional plan. A conditional plan is a decision tree where each interior node
corresponds to an operator that splits the plan into several conditional plans, in turn.
During evaluation, the tree is traversed. At every node, the query processor evaluates
the corresponding operator and follows one of the sub-plans depending on its output.

Lazaridis and Mehrota in [25] deal with a problem similar to [14]. Let Q be
an ad-hoc, select query evaluated over a set of N independent, unconstrained and
selective operators O. The goal is to find an operator ordering that minimizes the
total operator processing cost per tuple, in order to decide whether an input tuple is
rejected by any of the operators or not. In [25]], as in [14], this is done by inserting
additional lower cost operators that are not part of the original operators mentioned
in the query explicitly.

A motivation example is as follows. Suppose a query that uses an expensive face
identifier method, which compares input images with stored images containing faces
of criminals:

SELECT * FROM Camera, Criminals
WHERE Faceldentifier(Camera.image, Criminals.image)

Suppose also that the user has access to two additional, less expensive methods,
ObjectDetector and FaceDetector which detect foreign objects and human faces,
respectively. By using these methods we can reject some input images at lower cost:
if an image does not contain an object or a face, then there is no reason to test
whether it contains a particular face of a criminal. We infer a negative result for
Faceldentifier from a negative result by either of the two methods ObjectDetector
and FaceDetector.

Table [S] summarizes the main characteristics of the proposed solutions to dif-
ferent flavors of the min-cost operator ordering problem. As already explained, al-
though some of these solutions were originally proposed for centralized settings,

Table 5. Algorithms for flavors of the min-cost operator ordering problem

Work Execution environment Input queries Input operators
71 Parallel, decentralized data Single, continuous, Correlated, selective and
transfers, pipelined paral- SQL-like unconstrained
lelism
[131] Centralized Multiple, continuous, Correlated, selective and
SQL-like unconstrained
28] Centralized Multiple, continuous, Independent, selective and
SQL-like unconstrained
4] Centralized Single, ad-hoc, SQL- Correlated, selective and
like unconstrained
[25] Centralized Single, ad-hoc, SQL- Independent, selective and

like unconstrained

Queries over Web Services 159

their results can be easily transferred to parallel settings or distributed settings with
centralized data transmission, and, as such, they can be employed to optimize queries
over potentially remote WSs. Also, techniques proposed for continuous queries may
be applicable to ad-hoc queries on finite data, too.

3.2 Operator Ordering Problems in Dynamic Environments

Wide area settings hosting WSs are typically subject to changes, which may have
significant impact on queries. Babu et al. have extended their work in [7] to address
the more general problem where the execution environment is dynamic. This is
achieved by utilizing two components, a so-called “profiler” and a “re-optimizer”.
The profiler maintains a time-based sliding window of tuples dropped in the recent
past. A profile tuple is created for every tuple in the sliding window and shows which
operators have unconditionally rejected it. The re-optimizer can then compute any
selectivity estimates that it requires from the profile tuples. The re-optimizer’s job is
to ensure that the current operator ordering satisfies Eq. (@). Similarly, the operator
costs can be monitored, as well. The above render the algorithm proposed in [7]
robust to environmental changes.

In the context of adaptive query processing [[15], Avnur and Hellerstein have pro-
posed the eddies execution model for minimizing the response time of ad-hoc SPJ
queries at runtime [6]]. The operators can be of arbitrary type, i.e., both selective and
proliferative, both constrained and unconstrained, and both correlated and indepen-
dent. In the eddies model, every tuple may follow a different plan. The original eddy
implementation employed two main approaches to routing. The first one, called
back-pressure, causes more tuples to be routed to fast operators early in query exe-
cution. The second approach augments back-pressure with a ticket scheme, whereby
the eddy gives a ticket to an operator whenever it consumes a tuple and takes a ticket
away whenever it sends a tuple back to the eddy. In this way, higher selectivity op-
erators accumulate more tickets. When choosing an operator to which a new tuple
should be routed, the ticket-routing policy conducts a lottery between the operators,
with the chances of a particular operator winning being proportional to the num-
ber of tickets it owns. In this way, higher selectivity operators tend to receive more
tuples early in their path through the eddy. The algorithm in [7] can also be incorpo-
rated into eddies routing policies. Several extensions to eddies have been proposed,
including the works in [[9138/29/44]. The work of Tian and DeWitt [44] explicitly
considers distributed execution environments supporting decentralized data trans-
ferring. In a distributed eddy, each operator, instead of returning processed tuples
back to a central eddy, it redirects them to a subsequent operator. The operators
learn query execution statistics and exchange them with other operators periodi-
cally. Based on these statistics, each operator makes its own routing decisions with-
out consulting the central eddy or any other operator. By employing such eddies in
distributed queries over WSs, the need of an optimizer that constructs an execution
plan becomes obsolete.

160 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

3.3 Tuple Routing and Scheduling Problems

WSs can usually process many requests concurrently due to multi-threading. Each
server hosting a WS has limited capacity though, so an optimizer has to build plans
that respect the capacity constraints. Allowing multiple concurrent calls to operators
is considered in tuple routing problems. These problems deal with the selection of
one or more operator orderings, in order to maximize the number of tuples processed
per unit time, this is why they are also called flow maximization problems. Their
main rationale is to benefit from as much capacity of the processors hosting the
operators as possible.

Condon et al. have proposed a solution for the special case where the orderings
are linear, the execution environment is parallel and static, the data transfers are
decentralized and pipelined parallelism is employed [[13]]. Let Q be an ad-hoc select
query consisting of calls to N independent, unconstrained and selective operators
O. r; is the rate limit of each operator and is measured in tuples per time unit. Each
tuple can be routed individually, so that different tuples can follow distinct routes.
The problem is to find one or more operator orderings in order to maximize the
tuple flow per unit time. More formally, suppose that a set of M different linear
operator orderings are available, {7}, m,,...,)} that process different subsets of
input tuples in parallel. Let f; be the number of tuples sent through linear plan 7; per
unit time. Then, the total number of tuples processed per unit time by the different
linear orderings is given by

F=Yfi, fi>0Vm ©)

The goal is to find the set of f; and 7; values that maximize Eq. (9) without violating
the rate limits r; of the operators.

Condon et al. proposed a recursive algorithm for this problem, which is detailed
in [13]]. Operators are initially ordered (from N to 1) in a way that satisfies the
following condition:

rio; <ri Vi, <i<N-—-1, (10)

After that, the flow of tuples along each ordering is increased until either (i) an
operator is saturated, i.e., it processes the maximum possible number of input tuples
according to its rate limits, or (ii) the residual capacity of O;, 1 <i < N times its
selectivity o; becomes equal to the residual capacity of O;4 . In [13]], it is shown that
if stopping condition (i) is satisfied, the constructed flow is optimal. On the other
hand, if stopping condition (ii) is satisfied, the operator O, is immediately placed
after O; and the operators O, O; are replaced by a single operator O; ;1 with rate
limit equal to the residual capacity of O; and selectivity equal to the product 6;G; 1.
The resulting smaller problem is then solved recursively.

Example 7. Let O, = {01,0,,03,04,05} be a set of five operators with rate limit
and selectivity values {12,8,7,4,2} and {0.9,0.3,0.7,0.5,0.8}, respectively. Ini-
tially, the operators are sorted in descending rate limit order, i.e., Oz O4 O3 Os Oq;
this ordering satisfies Eq. (10). The minimum flow of tuples that triggers either of

Queries over Web Services 161

the two conditions (see [13]]) is f34251 = 4.36. If f34251 = 4.36 tuples per time
unit are sent through the ordering O3 O4 O, Os Oq, then the residual capacity of
0, times its selectivity is equal to the residual capacity of O4. After that, the or-
dering O3z O4 O, O5 O is kept and a new operator ordering is created. To this
end, operators O, and O4 are merged into a single operator with residual capacity
1.4 = 5.82 (the residual capacity of O,) and selectivity 624 = 02 X 04. The new
smaller sub-problem is solved recursively. In the second iteration, f32 451 = 5.25
is the minimum flow of tuples that triggers stoping condition (2), while none of the
operators becomes saturated with less flow. Thus, the ordering O3 O, 4 Os O is
kept and the operators O 4 and Os are merged into an operator Os 5 4 With residual
capacity equal to the residual capacity of Os and selectivity 05> 4 = 0.105, forming
a new ordering O3 Os»4 Op. The problem is again solved recursively. The algo-
rithm terminates in the fifth iteration, where a single operator O1 5,43 has been
left with residual capacity r1 5243 = 0.2316, i.e., f1 5243 = 0.2316 tuples per time
unit must be sent along this ordering, in order to saturate the single operator. To-
gether, the flows constructed in the aforesaid five stages yield the following optimal
solution to the max-throughput tuple routing problem for the given input instance:
f34251 =436, f30451=2525, f35241 =158, f35241=1.58, f31524=0.79,
f15243 =0.2316 and fr = O for all other 7 orderings. The steps of the algorithm

are shown in Figure[8] O
03 01 02 05 01
=12 = n="1 =4 n=2
o, =09 o, =03 o, =0.7 o5 =05 o, =08
O, 0,, 0, O
1 iterati fiaos1 =436
iteration 3,4.2,5,1 7 =764 Ty, =582 15 =317 r =158
0y, =09 0y, =021 ;=05 o, =038
O, 05,2,1 0
o jterati fioasl =925
2 iteration 32,451 7 =2.39 T4 =218 rn, =109
gy =09 0504 = 0.105) o, =08
O, Oi524
iteration fy5041 = 1-58 Tigsz4 = 0.94
7y = 0.81 o —
1524 =
03 =09 0.084
O5043
aviteration Sy1524 = 0-79 N5243 =
0.2316
015243 =
0.0756
01,5,2;1.3
5" jteration fi<5.2<,1_3 = 0.2316 Nf5243 = 0
015243 —
0.0756

Fig. 8. The steps in Example[7]

162 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

[L6] extends the algorithm in [13] so that precedence constraints among operators
and arbitrary selectivities are supported.

Liu et al. deal with the joint problem of flow maximization and scheduling in a
heterogeneous, multi-query, parallel-processor environment [27]. More formally, let
0={01,0,,...,0k} be aset of K ad-hoc select queries and O = {01,05,...,0n}
be a set of N, potentially correlated, unconstrained and selective operators. Each
query is a conjunction of the operators in O. For every input tuple ¢, operator O; € O
either returns a tuple or rejects it. Furthermore, let M be a set of heterogeneous pro-
cessors and y;(My) be the cost of evaluating operator O; on processor M. The goal
is to find, for each input tuple #, one or more operator orderings and an associated
allocation scheme so that the flow of tuples processed per unit time is maximized.
In the proposed algorithm, each operator O; is always evaluated on the processor My
for which the incurred load y;(Mj) is minimized (for simplicity we denote y;(M;)
by y;). For the operator ordering problem, Liu er al. leverage the fact that the flow
maximization problem in heterogeneous processing environments is equivalent to
the problem of min-cost operator ordering in centralized environments, where the
cost of each operator O; is given by y;. The problem addressed is a generalized case
of the shared min-cost operator problem introduced in [31] and [28]. Other operator
scheduling problems are studied in [47)8/4 1)3137]].

The main characteristics of the algorithms are summarized in Table

Table 6. Solutions to tuple routing problems (first row) and scheduling problems (second
row)

Work Execution environment Input queries Input operators

[13U16] Parallel, static, decen- Single, ad-hoc, SQL- Independent, both selective
tralized data transfers, like and proliferative, both con-
pipelined parallelism strained and unconstrained

271 Parallel, static, heteroge- Multiple, ad-hoc, Both independent and corre-
neous processors, pipelined SQL-like lated, both selective and un-
parallelism constrained

3.4 Data Transfer Planning Problems

Consider a dynamic environment, where multiple data sources stream data to a cen-
tral processing node through heterogeneous communication links, in order to eval-
uate aggregate queries. These queries combine data from multiple data sources and
their answers must be re-computed as data updates arrive to the sources. It is as-
sumed that each data source stores the values of a single data attribute. The goal
is to minimize the total communication cost, in order to evaluate multiple (possi-
bly overlapping) aggregate continuous queries. No parallelism is employed during
queries execution.

Queries over Web Services 163

Olston et al. have provided a solution for this problem exploiting the fact that
the precise answer of a continuous query may not always be necessary [34]. In such
cases, approximate answers of sufficient precision may be computed from a small
fraction of the input stream items. Users need to submit quantitative precision con-
straints along with continuous queries, which the processing node uses to filter stream
items at the remote data sources. Each query is associated with a pair of real values,
L and H that define an interval [L H] in which the precise answer is guaranteed to lie.
The reasoning behind the algorithm is quite simple: a data source does not need to
stream the data that does not affect the answer, according to the previously defined
precision requirements. For example, if the current exact answer is 10 and the preci-
sion interval is [7 13], then data sources holding updated data with values from 7 to
13 do not have to proceed to data transmission. The heuristic algorithm for filtering
the stream items on the remote resources, called filter tuning, consists of an iterative
two-step procedure. In the first step, each data resource shrinks the bound width peri-
odically at a predefined rate. Each time the bound width of a data source shrinks, the
so-called “leftover” width is reallocated to other data sources, ensuring all precision
constraints are still satisfied. In the second step, the data sources that increase their
bound widths are heuristically selected; the algorithm selects the ones that stream
data at high rates and are connected with expensive communication links.

Li et al. in [26] deal with another data transfer planning problem. In this work,
it is assumed that the data resources are spread across a wide-area distributed envi-
ronment, and there is a single data resource per host. The links between hosts are
heterogeneous, while the data resources can directly transfer data to other resources.
Any SQL-like query can be submitted, and there is no limitation regarding the type
of operators. For every submitted query, a query plan is provided in the form of a
rooted tree. The plan specifies the operators to be evaluated on each data resource
and the evaluation order. The aim is to schedule the data transfers across the queried
data resources, in order to minimize the total data transferring cost when evaluating
the query plans. It is proven that the problem is NP-hard for arbitrary communi-
cation networks by a reduction from the Steiner tree problem in graphs [39]. Li
et al. proposed a polynomial time algorithm for this problem, which relies on the
weighted hyper-graph minimum cut algorithm [26]. The produced data movement
plan is optimal for tree-shaped communication networks, while it is an approxima-
tion to the optimal one for more general communication networks.

3.5 Other Problems Related to Queries over WSs

Thus far we have dealt with problems in which the services provide exact answers.
Search queries belong to a different paradigm. In [10]], Braga et al. deal with the
joint problem of finding a WSs plan and an access pattern for each service for search
query optimization. The execution environment is distributed and static, while the
services can exchange data directly through pipelining. The proposed algorithm ex-
plores the space of plans using a heuristic, branch and bound strategy and it is ap-
plicable, under some modifications, for the optimization of both the total service
processing cost and the response time criteria. Another common problem with WSs

164 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

is that they are slow and the communication cost may well dominate the process-
ing cost. Block-based data transmission may alleviate this problem, as proposed in
[42121]]. Finally, [40] explore adaptive approaches to parallelizing calls to WSs.

3.6 Discussion and Open Issues

The purpose of the current section is to summarize the problems that have been
studied for query optimization over WSs and the state-of-the-art algorithms that
have been proposed.

Concerning the operator ordering problem in static execution environments, we
have presented several algorithms that aim to minimize either the response time of
the submitted query, or the per tuple total processing cost. Srivastava et al. intro-
duced a general purpose WSMS for query optimization in a parallel environment
that utilizes pipelined parallelism during query execution [42]. The major assump-
tions that are made are the following. The services do not exchange data directly, but
a central component undertakes the intermediate data transfers. Also, the selectivity
and the processing cost of the operators are constant and independent of the input
attribute values. Under these assumptions, a provably optimal algorithm has been
proposed that schedules parallel invocations of the operators, in order to minimize
the response time of the submitted queries. The work of Tsamoura et al. comprises
an extension of the work in [42]] for distributed execution environments, where the
operators exchange data directly over non-negligible and heterogeneous commu-
nication links [46]. The pipelined execution model is also applied. However, the
proposed algorithm builds only linear operator orderings. A problem of significant
importance that has not been addressed is the generalization of the latter algorithm
for building parallel operator invocations. Furthermore, it would be very interesting
to study the query response time minimization problem in a dynamic environment,
where the per tuple processing and transferring costs, change significantly over time.

After that, we have presented several flavors of the min-cost ordering problem
both in centralized [31128l/14/25] and parallel execution environments [7]]. The above
min-cost operator ordering problems deal with select queries, while the cost needed
to transfer tuples from one service to another is negligible. In [7], given an in-
put query that is evaluated through a set of correlated, unconstrained and selec-
tive operators, the goal is to build a linear operator ordering that minimizes the
total cost of processing operators per input tuple.The proposed algorithm provides
a 4-times approximation solution, while an heuristic technique has been introduced
for the generalization of the above algorithm when the wide-area settings are sub-
ject to changes. Furthermore, Munagala et al. [31] and Liu et al. [28]] deal with a
multi-query flavor of the min-cost ordering problem in a centralized execution en-
vironment. In particular, given a set of one or more queries that consist of a set of
independent, selective and unconstrained operators, the goal is to find an optimal
operator ordering, in order to answer all input queries with the minimum total pro-
cessing cost. The last two works that are studied try to minimize the per tuple total

Queries over Web Services 165

processing cost for an input query by utilizing additional, lower cost and highly se-
lective operators [14)25]. Those operators need not be part of the initial operator set.
To summarize, for operator ordering in a static execution environment, the following
problems have been addressed:

e Response time minimization of single SPJ queries employing pipelined paral-
lelism and independent operators both in a parallel and distributed execution
environment. Decentralized data transfers have been considered, as well.

e Total operator execution cost minimization. Three different problem flavors that
consider unconstrained operators are discussed; namely, (i) optimization of a
single-query that employs parallelism and assumes correlated operators in a
parallel environment, (ii) optimization of a single query with correlated opera-
tors in a centralized environment both for correlated and independent operators
and (iii) optimization of multiple queries with both independent and correlated
operators in a centralized environment.

Regarding the response time minimization, no work has been done for multi-query
optimization or correlated operators. Furthermore, other types of parallelism (such
as partitioned) have not been considered. The above works deal with SQL-like
queries. The only work that deals with IR-like queries is presented in [10]. [10]
deals with the joint problem of selecting the more appropriate services to invoke,
when multiple services have the same functionality but different binding patterns,
and of ordering the selected services in a distributed and static execution environ-
ment that employees pipelined parallelism. However, no performance guarantees
have been provided.

In the context of adaptive operator ordering for minimizing the response time
of a query, eddies [6] and distributed eddies [44] try to overcome the “hassle” of
varying processing and communication costs in a dynamic execution environment
by routing each tuple independently.

In Sec. 3.3, we have presented two throughput maximization problems [[13127].
Both of them employ inter-operator parallelism in order to maximize the tuple
throughput, i.e., the number of tuples processed by the operators per unit time. The
work in [16] deals with single query optimization, imposing only the independent
assumption on input operators. On the other hand, the work in [27]] deals with mul-
tiple select queries and unconstrained, selective operators. It also performs operator
scheduling. For both proposals, the underlying execution environment is static and
parallel. In general, adaptive query processing is in its infancy.

We have dedicated the last part of Sec. 3 to the description of two data transfer
planning problems in a static and dynamic execution environment. Both of them
deal with multiple input queries, while the communication links are heterogeneous.
The work of Olston et al. deals with a centralized execution environment, where
multiple continuous aggregate queries are evaluated in a central processing com-
ponent [34]. There the data resources are disparate in a wide-area network and

166 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

periodically stream data to the central component. Considering that the precise an-
swer is not always necessary for some or all input queries, the goal is to appropri-
ately tune the amount of data sent by each remote data resource, in order to minimize
the total communication cost for answering input queries. Li ef al. deal with another
data transfer planning problem. As in [26], the data resources are disparate in a
wide-area heterogeneous environment, while the latter can directly exchange data.
Given a plan that specifies the operations to be performed on input data the goal is to
appropriate schedule the data exchanges among the resources, in order to minimize
the total data transferring cost when evaluating the input queries. Both works do not
encapsulate the processing cost in order to answer the submitted queries. A limi-
tation of the problem considered in [34]] is that it handles only aggregate queries,
while a limitation of [26] is that it requires a plan that specifies the operator in-
vocation order. As both works deal with the min-cost metric, an interesting aspect
would be the exploration of problems having other optimization criteria, such as the
response time of the submitted queries. For example, regarding the problem in [26]],
the objective might be to minimize the maximum response time of the submitted
queries. The characteristics of the proposed algorithms are summarized in Tables 4]
and

The following remarks arise from the above discussion. The data transfer cost and
the network heterogeneity issue are largely overlooked. In the majority of the works,
the state-of-the-art operator ordering and tuple routing algorithms consider paral-
lel and/or centralized execution environments, where the processing cost dominates.
Another important issue that needs more attention is dynamicity. The presented prob-
lems mainly deal with static execution environments which is not the case in wide-
area infrastructures such as the grid. The operator independence assumption must be
reconsidered, since, in a real setting, the processing cost and the selectivity of uti-
lized operators may be tightly related with the input attributes values. Another prob-
lem that should be investigated in the future is the combination of different forms of
parallelism. Finally, the majority of presented problems deal with SQL-like queries.
Extending current approaches or investigating new ones for IR queries optimization
is crucial, since querying information sources is an important part of information
management in Web and other distributed wide-area organizations.

4 Conclusion

This chapter discussed queries over WSs focusing on their optimization. Queries
over WSs are becoming increasingly common due to the proliferation of publicly
available WSs and remote and decentralized computing infrastructures such as grid
and cloud computing. We presented a taxonomy of the problems encountered in
the optimization of such queries taking into account the type of the optimization
problems, the type of queries, the type of services or operators and the exact ex-
ecution environment to which the queries are tailored. Some of the problems can
be efficiently solved by utilizing known algorithms from the database community,

Queries over Web Services 167

whereas, for some others, novel algorithms have been proposed. This chapter dis-
cussed the state-of-the-art solutions that apply to the problem of optimizing queries
over WSs, explaining their main characteristics. Especially for the problem of min-
imizing the response time in decentralized pipelined queries, a novel algorithm was
presented.

References

10.

11.

12.

13.

14.

15.

16.

. Business process execution language for web services,

http://bpel.xml.org/tags/bpeldws

. Abadi, D.J.: Data management in the cloud: Limitations and opportunities. IEEE Data

Eng. Bull. 32(1), 3-12 (2009)

. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.: Mapping filtering streaming applica-

tions with communication costs. In: Proc. of the Twenty-First Annual Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 19-28 (2009)

. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: Grelc data gather service: a

step towards P2P production grids, pp. 561-565 (2007)

. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.-W., Watson, P., Fernandes,

A.A.A., Fitzgerald, D.J.: Ogsa-dqp: A service for distributed querying on the grid.
In: Proc. of the International Conference on Extended Database Technologies (EDBT)
(2004)

. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In: Proc. of

the International Conference on Management of Data (SIGMOD), pp. 261-272 (2000)

. Babu, S., Matwani, R., Munagala, K.: Adaptive ordering of pipelined stream filters. In:

Proc. of the International Conference on Management of Data (SIGMOD), pp. 407418
(2004)

. Benoit, A., Dufosse, F., Robert, Y.: Filter placement on a pipelined architecture. In: In-

ternational Symposium on Parallel and Distributed Processing, vol. O, pp. 1-8 (2009)

. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Content-based routing: different plans for

different data. In: Proc. of the 31st International Conference on Very Large Data Bases
(VLDB), pp. 757-768 (2005)

Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multidomain queries on
the web. In: Proc. of the VLDB Endowment, vol. 1, pp. 562-573 (2008)

Burge, J., Munagala, K., Srivastava, U.: Ordering pipelined query operators
with precedence constraints. Technical Report 2005-40, Stanford InfoLab (2005),
http://ilpubs.stanford.edu:8090/705/

Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query system
for internet databases. In: Proc. of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 379-390 (2000)

Condon, A., Despande, A., Hellerstein, L., Wu, N.: Algorithms for distributional and
adversarial pipelined filter ordering problems. ACM Transactions on Algorithms 5(2),
24-34 (2009)

Deshpande, A., Guestrin, C., Hong, W., Madden, S.: Exploiting correlated attributes in
acquisitional query processing. In: Proc. of the 21st International Conference on Data
Engineering (ICDE), pp. 143-154 (2005)

Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations and
Trends in Databases 1(1), 1-140 (2007)

Despande, A., Hellerstein, L.: Flow algorithms for parallel query optimization. In: Proc.
of the 24th International Conference on Data Engineering (ICDE), pp. 754-763 (2008)

http://bpel.xml.org/tags/bpel4ws
http://ilpubs.stanford.edu:8090/705/

168 E. Tsamoura, A. Gounaris, and Y. Manolopoulos

17. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database
systems. Communications of the ACM 35(6), 85-98 (1992)

18. Epstein, R.S., Stonebraker, M., Wong, E.: Distributed query processing in a relational
data base system. In: Lowenthal, E.I., Dale, N.B. (eds.) Proc. of the 1978 ACM SIGMOD
International Conference on Management of Data, June 2, pp. 169-180. ACM, New York
(1978)

19. Foster, 1., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, sec-
ond edn. Morgan Kaufmann Publishers, San Francisco (2003)

20. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A., Watson, P.: Adap-
tive workload allocation in query processing in autonomous heterogeneous environ-
ments. Distrib. Parallel Databases 25(3), 125-164 (2009)

21. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: Robust runtime optimiza-
tion of data transfer in queries over web services. In: Proc. of the ACM International
Conference on Data Engineering (ICDE), pp. 596-605 (2008)

22. Hellerstein, J.M., Stonebraker, M.: Predicate migration: Optimizing queries with expen-
sive predicates. In: Proc. of the ACM SIGMOD International Conference on Manage-
ment of Data SIGMOD, pp. 267-276 (1993)

23. Taylor, 1., Shields, M., Wang, I.: Resource management of triana p2p services. In: Grid
Resource Management (2003)

24. Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of nonrecursive queries. In:
Proc. of VLDB, pp. 128-137 (1986)

25. Lazaridis, 1., Mehrotra, S.: Optimization of multi-version expensive predicates. In: Proc.
of the ACM SIGMOD International Conference on Management of Data (SIGMOD),
pp- 797-808 (2007)

26. Li, J., Deshpande, A., Khuller, S.: Minimizing communication cost in distributed multi-
query processing. In: Proc. of the 21st International Conference on Data Engineering
(ICDE), pp. 772-783 (2009)

27. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Generic flow algorithm for shared
filter ordering problems. In: Proc. of the 27th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of database systems (PODS), pp. 79-88 (2008)

28. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms for shared
filter evaluation in data stream systems. In: Proc. of the ACM International Conference
on Management of Data (SIGMOD), pp. 133-146 (2008)

29. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous
queries over streams. In: Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pp. 49-60. ACM, New York (2002)

30. Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem. Tech-
nical Report 2003-65, Stanford InfoLab (2003)

31. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared
expensive filters. In: Proc. of 26th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pp. 215-224 (2007)

32. Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., O’Mullane, W.:
When database systems meet the grid. In: CIDR, pp. 154-161 (2005)

33. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and en-
actment of bioinformatics workflows. Bioinformatics 20(17), 3045-3054 (2004)

34. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed
data streams. In: Proc. of the 2003 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pp. 563-574. ACM, New York (2003)

Queries over Web Services 169

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Ozsu, M., Valduriez, P. (eds.): Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing:
State of the art and research challenges. Computer 40(11), 38—45 (2007)

Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of the 22nd
International Conference on Data Engineering (ICDE), pp. 49—-60 (2006)

Raman, V.: Interactive query processing. PhD thesis, UC Berkeley (2001)

Robins, Y., Zelikovski, A.: Improved steiner tree approximation in graphs. In: Proc. of
the 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 770779 (2000)
Sabesan, M., Risch, T.: Adaptive parallelization of queries over dependent web service
calls. In: Proc. of the International Conference on Data Engineering (ICDE), pp. 1725-
1732 (2009)

Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network stream
query processing. In: Proc. of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS) (2005)

Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web
services. In: Proc. of the 32nd Conference on Very Large Databases (VLDB), pp. 355—
366 (2006)

Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: Proc. of the 1992 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pp. 321-330. ACM, New York (1992)

Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: Proc. of the 29th
Conference on Very Large Databases (VLDB), pp. 333-344 (2003)

Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Decentralized execution of linear work-
flows over web services (submitted for publication)

Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Optimal service ordering in decentralized
queries over web services. Technical Report,
http://delab.csd.auth.gr/~tsamoura/publications.html

Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow application
on utility grids. In: Proc. of the First International Conference on e-Science and Grid
Computing (E-SCIENCE), pp. 140-147 (2005)

http://delab.csd.auth.gr/~tsamoura/publications.html

Chapter 7
Towards Adaptively Approximated Search in
Distributed Architectures

Barbara Catania and Giovanna Guerrini

Dipartimento di Informatica e Scienze dell’ Informazione
Universita degli Studi di Genova
Via Dodecaneso 35, 16146 Genova, Italy
{catania,guerrini}@disi.unige.it

Abstract. Innovative applications over distributed architectures, like the
Web, often require the analysis of strongly related, highly heterogeneous
data, stored in remote and autonomous data sources, that can be either to-
tally available at query processing time (stored data) or become available in
a continuous stream (data stream). In these contexts, search efficiency is a
key issue. However, classical processing techniques, according to which
queries are executed exactly, both for what concerns the request and for
what concerns the processing technique, which is set at the beginning of the
execution, may not ensure adequate performance and quality (in terms of
completeness and of accuracy) of the returned result. To overcome such
problem, approximate and adaptive query processing techniques have been
proposed. Adaptive techniques aim at ensuring an efficient query process-
ing whenever a priori information, needed to statically select once at the
beginning of the processing the most efficient processing technique, is not
available. Approximation, by contrast, has been proposed for ensuring a
higher result quality in presence of data heterogeneity and limited data
knowledge. In highly dynamic and heterogeneous environments, these two
approaches have usually been considered as orthogonal. However, we claim
that applications exist that could benefit from a combined approach. An ex-
ample are Web applications allowing to specify queries on heterogeneous
data (streams), retrieved through mash-up from different sites. Since data
are dynamically acquired, they cannot be statically reconciled, before proc-
essing queries. Moreover, adopting a single approximate search strategy,
fixed a priori, could penalize the system efficiency and/or the quality of re-
sult, whenever heterogeneity only characterizes subsets of input data. The
aim of this chapter is to make one step towards the integration of such ap-
proaches by introducing Approximate Search with Adaptive Processing
(ASAP for short) systems. In ASAP, decisions concerning when, how, and
how much to approximate are taken dynamically, with the goal of optimiz-
ing both the quality of result and the efficiency of processing.

A. Vakali & L.C. Jain (Eds.): New Directions in Web Data Management 1, SCI 331, pp. 171
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

172 B. Catania and G. Guerrini

1 Introduction

One of the main reasons for DBMS success is logical data independence, that is,
the neat separation between the specification of ‘what’ we are searching from
‘how’ these searches (queries) are processed. The system is responsible for trans-
forming declarative queries into execution plans, determined before the processing
starts.

This approach ensures excellent performance for query execution on data with
a completely known structure, executed in quite stable environments, with the
availability of a reasonable set of statistical information on data. In the last years,
however, there has been a rapid evolution of environments and applications that
need to query data collections, that has radically modified the processing context.
Specifically, in data integration applications, Web services, data streams, P2P
systems, and hosting, data characteristics, as well as the dynamic processing con-
ditions, are much more variable and unpredictable. The higher and higher resource
sharing and the increasing interactivity in query processing make even those data
properties that are traditionally conceived as static (such as relation cardinality and
number of distinct values for an attribute) difficult to be known a priori and to be
estimated in the above mentioned new contexts. The need thus emerged on one
side to adapt the processing to dynamic conditions, thus giving up the a priori
selection of a single execution strategy, fixed before processing starts. On the
other side, as a consequence of data heterogeneity and limited data knowledge, we
often cannot claim to get only ‘precise’ answers, that exactly satisfy the search
condition expressed by the query, because in the above mentioned new contexts
data are quite heterogeneous and exactly characterizing what we are looking for is
really difficult. As a consequence, the search conditions of traditional queries,
such as selections and joins, are relaxed or their evaluation is approximated, to
improve result quality,' in terms of completeness and relevance with respect to the
original query.

Up to now, query approximation and adaptive query processing have been
mainly investigated as independent approaches. An exception is given by rank-
aware optimization techniques (see Section 6) which deals with the detection of
efficient execution plans for top-k queries (which can be seen as a particular type
of approximate queries) rather than with the selection of approximation techniques
in the choice of the execution plan for traditional queries, like selections and joins.
There are however applications, working in highly dynamic and heterogeneous
environments, that will benefit from combining the two approaches. In the Web
context, a typical example is given by Web applications allowing the specifica-
tion of queries on heterogeneous data (streams), retrieved through mash-up from
different sites. Other examples concern interactive queries over highly heteroge-
neous XML data collections and multi-sensor applications. In all these examples,
data are heterogeneous because collected from different sources but heterogeneity

! We remark that, under limited, insufficient resources, approximation has also been pro-
posed as an approach to quickly provide an answer to a query. In this chapter, we do not
further consider this kind of approximation.

Towards Adaptively Approximated Search in Distributed Architectures 173

information is not necessarily known in advance. At the same time, user queries
can be imprecise since the user, due to such heterogeneity, may not exactly know
the characteristics of data to be queried. As a consequence, a single execution plan
of the user request may not be the more reasonable choice due to the high variabil-
ity of the environment.

Based on these considerations, the aim of this chapter is to make one step to-
wards the integration of approximate and adaptive query processing techniques by
introducing Approximate Search with Adaptive Processing (ASAP for short) sys-
tems. In ASAP, decisions concerning when, how and how much to approximate
are taken dynamically, with the goal of optimizing both the quality of result and
the efficiency of processing. Indeed, in environments like the Web, data quality
parameters are as important as classical parameters like response time. ASAP can
therefore be defined as a new type of adaptive query processing which takes into
account quality issues, in terms of completeness and accuracy of the result, be-
sides performance. To this purpose, it leads to the definition of execution plans
which interleave both precise and approximate evaluation in the most efficient
way. The choice of approximation techniques may increase result completeness,
when the original query result is stretched, or relevance, when the original query
result is shrinked. This leads to the definition of QoD (Quality of Data)-oriented
execution plans, in contrast with usual QoS (Quality of Service)-oriented execu-
tion plans, that are driven by efficiency or availability goals.

In the chapter, we first of all provide a survey of the main constituents of
ASAP, that is, query approximation and adaptive query processing techniques.
Approximation techniques will be classified with respect to their main goal and
their reference approach, taking into account the characteristics of applications in
distributed environments, with the Web as a special case. Adaptive query process-
ing will be surveyed with respect to their main application contexts: local query
processing, distributed query processing, and query processing on streaming data.
In revising existing work, we consider several data types whose management may
benefit from an ASAP approach: relational data, XML data, geo-spatial data (a
specific type of structured data, nowadays quite relevant for distributed applica-
tions), both totally available at query time or made available as a continuous
stream. Then, we present the notion of adaptively approximated search, through
the definition of a generic query processing framework that can reveal useful in
very diverse applicative scenarios, and we discuss the requirements a query proc-
essor needs to meet to support adaptively approximate processing. Different
choices in addressing these requirements, possibly motivated by different applica-
tion scenarios and execution contexts, lead to different instantiations of the
framework and to different types of query processors relying on ASAP (called
ASAP systems). Each execution plan, analyzed post-mortem and selected by an
ASAP optimizer, is called ASAP technique and corresponds to a specific approach
to adaptively approximate the processing of a traditional query (e.g., selection or
join). The presented requirements are independent of the considered data model
and summarize the several challenges that, from our point of view, should be
addressed in order to make ASAP a practical technology.

174 B. Catania and G. Guerrini

We remark that a first step towards ASAP techniques has been made in
[LMF+09] where an adaptive technique has been proposed to change an exact join
operator into an approximate one when the presence of heterogeneity on the join-
ing attribute prevents the identification of new matches, in the context of situ-
ational applications and mash-up [Jhi06]. Differently from [LMF+09], here the
attempt is to provide an overall and reference framework for adaptively applying
any kind of approximation. The ASAP approach also differs from rank-aware and
quality-based query processors since in those cases the aim is to provide efficient
processing for specific approximate techniques (top-k) or for traditional queries
taking into account QoD parameters, respectively.

The paper is organized as follows. In Section 2, various examples of applica-
tion contexts are provided which can benefit from adaptively approximated
search. Query approximation techniques are surveyed in Section 3 while adaptive
query processing is revised in Section 4. Requirements for ASAP systems are then
discussed in Section 5. Section 6 briefly surveys work related to ASAP. Section 7
concludes the paper by providing a roadmap to be followed in order to make
ASAP techniques a practical technology.

2 Examples

In this section we introduce some examples of contexts in which ASAP techniques
can be profitably exploited. These examples differ on the type of data involved
(i.e., relational, XML, spatial, spatio-temporal), on the processing context
(i.e., stored vs streaming data), on the type of approximation (i.e., stretching vs
shrinking).

Interactive queries over XML data collections. Consider the context in which
several collections of XML documents, stored at autonomous sources, are interac-
tively queried, through a Web application. Consider for instance a Web applica-
tion providing help in planning evening programs, involving for instance cinema,
theatre, or live music and dinner. According to her preferences, a user may formu-
late a query like “Determine the cinemas or theaters accessible to user with dis-
abilities where no later than 7 pm there is a movie/performance whose subject is
fantasy with a close Indonesian ethnic restaurant”. The collections, though con-
taining related documents, do not share a common schema thus exact approaches
are impractical due to the great (and unpredictable) structural and content
variations of the diverse sources. Heterogeneity may appear in the collections at
different levels:

— Different tags may be employed in different collections to label the same in-
formation (e.g., subject instead of type, hours instead of time).

— The hierarchical structure of documents in different sources may be slightly
different (e.g., accessibility information may be represented as an attribute of a
cinema element, or as a sub-element of this elements, or as a descendant of this
element, for instance as a sub-element of a features sub-element).

Towards Adaptively Approximated Search in Distributed Architectures 175

— Different strings may be employed at content level to represent the same infor-
mation (e.g., Indonesian instead of Indonesia).

Given the casual and interactive nature of queries, and since the application inter-
acts with different data sources and Web sites to dynamically crawl data, it is not
reasonable to reconcile these heterogeneities. Thus, the original user queries will
be solved in an approximate way, relaxing some equality constraints to similarity
constraints, and returning only the most similar results to avoid returning too
many results, relying on some similarity function. Once again, given the casual
and interactive nature of queries, it is not reasonable to fully analyze the docu-
ments available in the source to extract enough information on their heterogeneity
degrees to obtain the best similarity function to be used in approximating queries
over the sources [SBM+07]. The most effective approach in this context could be
to start querying the sources with some similarity function and use feedbacks on
query execution to tune the approximation and similarity functions to be used in
subsequent queries. Thus, in processing the subsequent queries on the same
source, that refine, adjust, or completely modify the previous one, the application
will rely on feedbacks from previous query executions. For instance, feedbacks
can reveal that a certain tag or a certain data content were matched exactly in the
exploited source, thus there is no need to approximate conditions involving them
when evaluated against data in that source.

Mash-up applications. Consider the following monitoring request, submitted in
the context of a Web application: "Determine the transportation lines that may be
delayed because of car accidents and display them on a map". This example in-
volves at least three types of autonomous data sources, from which data is re-
trieved through mash-up:

— those containing relational information on car accidents: address, geographical
position, and involved area (data stream);

— the one containing the road map (stored);

— those containing geo-spatial information about transportation lines (for instance
stored in two different sources, one for buses and the other one for cable cars).

Since data on car accidents vary over time and can be collected by different sub-
jects, the set of roads they refer to varies as well, and so does the associated ge-
ometry. This example exhibits various kinds of heterogeneity:

— Among strings, if the accident data source and the road map employ different
formats for the alphanumeric representation of addresses.

— Among dynamic geo-spatial data, if areas related to car accidents are repre-
sented in different ways; for example, one source may represent such area just
as a single point, another may represent the area as a polygon. We notice that
such data are dynamic since they dynamically arrive from various sources.
Therefore, information about the area representation may not be available in
advance.

176 B. Catania and G. Guerrini

— Among static geo-spatial data, if transportation lines are represented in different
ways in the data sources (e.g., as lines for buses and as regions for cable cars).
In this case we may assume that such information are static in the sense that
they are all available to the application and they do not change during
computation.

As pointed out above, the dynamicity of car accidents does not allow to know in
advance information on these data (specific representation of a data value — an
address — or the type used to represent a geo-spatial information — the accident
area —). Additionally, since data are dynamically acquired, their static reconcilia-
tion, before query processing starts, is not completely feasible (and not viable
from a performance viewpoint). Finally, to cope with heterogeneity, the adoption
of a priori fixed approximate search strategy is not a reasonable solution since it
could penalize the system efficiency and/or the quality of result, whenever hetero-
geneity only characterizes subsets of input data (these information may not be
available a priori because of the high dynamicity).

Multi-sensor applications. Consider a traffic operation center that produces and
makes available on the Web a speed map of a metropolitan area, where the differ-
ent motorway and freeway networks are broken into short segments and different
color-coded speed are displayed for each segment. The center has two different
sources of data: a stream of fixed sensors in the road network and a stream of
readings from vehicles with on board GPS systems. Fixed sensors provide traffic
speed and volume data from their location, vehicle data consists of speed and
location for each vehicle. Suppose moreover that more detailed information, with
different speed levels associated with different colors, of the five most congested
areas closest to the city center should be provided as side bars. In this context we
have to cope with different needs:

- Continuously monitor the data stream coming from the fixed sensor network,
to determine the speed levels of the various segments.

- Determine the five most congested areas closest to the city centre (approxi-
mate top-k continuous query).

- For these areas, dynamically revert to rely on the more detailed stream data
coming from vehicles to produce the more detailed maps.

In this example, the diverse representations of speed on the map cannot be stati-
cally decided since they depend on dynamic conditions, which can be checked
through the execution of approximate continuous queries. Further approximation
issues may arise due to possible different levels of details of different network
maps and to mismatches and heterogeneity in data provided by the different
sensor networks.

Towards Adaptively Approximated Search in Distributed Architectures 177

3 Query Approximation

In the following, after a brief introduction to query approximation and a classifica-
tion of the main approaches, we review existing proposals for traditional, XML,
and geo-spatial data.

3.1 An Introduction to Query Approximation

In the last years, there has been a rapid evolution of environments and applications
that has radically modified query processing over data collections. Indeed, in data
integration applications, Web services, data streams, P2P systems, and hosting,
just to cite a few, data is highly heterogeneous and their characteristics are quite
variable and unpredictable. In those contexts, query processing is therefore influ-
enced by two main factors:

— Data heterogeneity. Data referring to the same entity may be contained in dis-
tinct datasets and represented in different ways. Processing such datasets inside
the same query may therefore lead to data quality problems. In general, the de-
gree of heterogeneity depends on the considered data types. Heterogeneity in
relational/ XML data arises from different value representation formats (for re-
lational data) or structures (for XML data), which may be due to the different
provenance of data on processing. Heterogeneity in geo-spatial data is often
due to the employment of different resolution levels in representing data refer-
ring to the same geographical area.

— Limited data knowledge. The user may not always be able to specify the query
in a complete and exact way since she may not know all the characteristics of
data to be queried, even if data come from just one single source (possibly, be-
cause such characteristics may change during query execution, as in mash-up
applications [Jhi06]).

Based on the previous considerations, we often cannot claim to get only ‘precise’
answers, that exactly satisfy the search condition expressed by the query, since in
the above mentioned contexts it is quite common to find inconsistent or ambigu-
ous data and it is really difficult to exactly characterize what we are looking for.
As a consequence, the quality of the obtained result, in terms of completeness and
accuracy, may be reduced, since interesting objects may not be returned. On the
other hand, several uninteresting objects can be returned as answer, thus reducing
user satisfaction. More generally, data heterogeneity and limited data knowledge
may lead to the following two problems [ACDGO3]:

— Empty or few answers. This problem arises when the query is too selective or
data are quite heterogeneous (see [Luo06] for an approach detecting empty re-
sult queries without actual execution). In this case, it would be relevant for the
user to stretch the query in order to get a set of approximate items, as result,
ranked according to their relevance to the original query.

178 B. Catania and G. Guerrini

— Many answers. This problem arises when the query is low selective. In this
case, ranking the obtained results and returning only a subset of them, corre-
sponding to the more relevant ones (thus, shrinking the result), could be quite
useful to the user.

In order to address the problems described above, in presence of highly heteroge-
neous data under highly dynamic architectures, approximation techniques can be
used in order to stretch or shrink the result set, with the aim of providing more
interesting or less unsatisfactory answers, respectively. Two main groups of ap-
proximation techniques can be devised (see Figure 1):

— Query relaxation. The concept of query relaxation has been introduced in In-
formation Retrieval and adopted in several contexts as an approach for avoiding
empty or too many answers. Query relaxation techniques allow the retrieval of
a result also in very heterogeneous contexts or when the characteristics of data
we are looking for are not completely known and this may lead to imprecise
query specification. The main idea of query relaxation is to modify the query in
order to stretch or shrink the result set. Query relaxation approaches can be
classified depending on their scope into:

o Query rewriting approaches: the query is rewritten using less or more strict
operators, in order to get a larger or smaller answer set. Techniques of this
type can be used to address both the empty or few answers and the many an-
swers problems.

o Preference-based approaches: user or system preferences are taken into ac-
count in order to generate the result, with the aim of providing best results
first. Such techniques usually address the empty or few answers problem.
However, they can also be thought as a shrinking approach with respect to
the overall set of possible results, since they reduce the cardinality of the re-
sult dataset.

o Recommendation systems: data correlation and past user history are used in
order to suggest to the user further results besides those obtained by execut-
ing the specified query. Such techniques increase the number of results with
respect to the original query but of course they are not suitable to solve the
empty answers problem.

— Approximate query processing. It refers to all the techniques for executing a
traditional query (e.g., a join) by using ad hoc query processing algorithms
which automatically apply the minimum amount of relaxation based on the
available data, in order to return the non-empty result more similar to the user
request. This is possible for example by replacing equality checks with similar-
ity checks, using a specific similarity function, depending on the domain of the
attributes to be joined. Approximate query processing is suitable in all envi-
ronments where data can be quite heterogeneous and may contain errors. Dif-
ferently from query relaxation approaches, in this case the query is not
changed; rather, its execution is modified in order to get more and approximate
answers with respect to a traditional execution. Usually, approximate query
processing allows one to get a larger result set, thus they are stretching tech-
niques solving the empty or few answers problem.

Towards Adaptively Approximated Search in Distributed Architectures 179

Table 1 classifies the approaches described above based on: (i) the problem for
which they have been defined (data heterogeneity, limited data knowledge);
(i1) the underlying approach, stretching (+) or shrinking (-) the result; (iii) which
information should be supplied by the user or the system in order to apply the
corresponding techniques; (iv) the base operators to which they can be applied.
Details about the content of the table will be provided in the remainder of this
section.

Query approximation

/\

Query relaxation Approximate query processing
Recom- Query Preference-
mendation rewriting Based
systems M / \
Value- Structure Query- User preferences System preferences

based based based /\

Top-k Skyline

Fig. 1. Classification of query approximation techniques

Table 1. Properties of approximation techniques

Approach Reference Approach User in- Reference
problem formation queries
Query rewriting Query spec +/- Cardinality Selection,
constraints join
User prefe- Query spec. +/ - Ranking Selection
rence-based function, (join)
set of
relevant
attributes
System prefe- Query spec. + Selection,
rence-based join
Recommenda- Query spec. + Selection,
tion join
systems
Approximate Heterogeneity + Similarity Selection,
query function join

processing

180 B. Catania and G. Guerrini

In the following, we discuss and classify in more details query relaxation and
approximate query processing approaches for traditional and XML data as well as
for geo-spatial data. As pointed out in the following, query approximation consti-
tutes nowadays one of the hot topics in traditional and XML query processing.
Very recently, approximation approaches has also been proposed to deal with geo-
spatial data, which represents a further fundamental data type for innovative appli-
cations in distributed architectures.

Finally, we notice that some techniques already exist that provide approxima-
tion through a summary representation of the input dataset. Such techniques have
been mainly proposed for semi-structured data (as [PGI04]). Since we are inter-
ested in query approximation approaches which do not alter the input dataset, we
do not further consider such approaches in the following.

3.2 Query Rewriting

The aim of query rewriting is to rewrite the user query into a new one when the
results of the original query are too few or too many. This problem is in general
different from the query rewriting issue in data integration problems, since in that
case an input query, expressed over a global schema, has to be rewritten according
to a possibly different local schema, in order to be locally executed. The main
advantage of the query rewriting approach for query relaxation is that the gener-
ated queries can be executed using already existing query processing algorithms
without the need of additional infrastructure. Of course, more efficient query
processing algorithms can however be provided in order to exploit the properties
of the resulting query set.

Query rewriting approaches can be used to address both the empty or few an-
swers as well as the many answers problem. Preliminary work on query rewriting
has been proposed in [Chau90], where a formal model for query stretching (called
query generalization) has been provided. More practical approaches, instantiating
that basic idea, have later been proposed. They can be classified into value-based,
structure-based, and query-based depending on the used information for relaxing
the query. More precisely:

— Value-based techniques rely on information concerning data distribution and
query size estimation. This is the approach used in [MKO09], for range and
equality predicates on numerical and categorical attributes, and in [KWFHO04],
for range queries. In both cases, input information concerning the desired car-
dinality of the result set and information concerning data distribution are used
to relax queries. The approach proposed in [MKO9] is interactive, in the sense
that the user can specify her preferences during the relaxation process.

— Structure-based query relaxing techniques use schema or structure information
(in case of semi-structured information like XML documents) during the re-
laxation process. This is the case of the approach proposed in [ZGBNO7], for
relaxing queries over data modeled using a modeling tool, called malleable
schema, for modeling all the diverse and vague, both structured and semi-
structured, entities of the real world. Most structure-based query rewriting

Towards Adaptively Approximated Search in Distributed Architectures 181

approaches have been proposed for XML documents, where structure informa-
tion may refer to the type of relationships existing between nodes and order in-
formation [Lee02].

— Query-based approaches relax queries based on properties of the used query
conditions. An example of query-based technique, which can be either directly
applied by the system or requested by the user, is given by the geo-spatial re-
laxed topological selection operators and nearest neighbor operators proposed
in [BBC+06]. Relaxation in this case is applied by considering during the exe-
cution topological relations whose similarity with respect to that specified in
the query is higher than a given threshold, specified by the user in the query.
Nearest neighbor operators, if the query condition is undefined for the spatial
data at hand (for example, the user asks for all the rivers that cross a street,
when rivers and streets are polygons and therefore relation cross is not defined)
substitute the query relation with the most similar ones defined for the consid-
ered objects. Such operators can however return an empty answer when no ob-
ject in the dataset satisfies the set of relaxed topological relationships.

With respect to data streams, query rewriting is mainly applied for efficiency
issues, in order to limit the scope of the considered query, for example by applying
a window size reduction. Such techniques are called static in [MWA+03].

3.3 Preference-Based Methods

Preference-based methods allow the user or the system to specify preferences in
various ways and then use them in computing the result. Preferences can be speci-
fied in order to enlarge the result set in presence of the empty or few answers
problems. When considered with respect to the overall set of data, preference-
based methods can however be though as a shrinking approach, since only the
‘best’ results are returned, thus addressing the many answers problem. In the fol-
lowing, both user-based and system-based approaches will be surveyed.

User preferences. Two main operators have been proposed based on user prefer-
ences: top-k and skyline operators. The aim of the top-k operator is to restrict the
number of returned results to a fixed number (k), based on some ranking. The aim
of the skyline operator is to return only the best matches to the specified query. In
both cases, specific query processing algorithms have been provided in order to
efficiently generate the result.

While top-k operators return a small result at the price of specifying a ranking
function, which is not a simple task, skyline operators avoid this specification at
the price of a larger result set, which, even for two dimensional interest attributes,
may be quite huge. In both cases, processing over join operations is challenging
[IBMSO08].

Top-k operators. The top-k operator returns the k objects that best satisfy a given
condition. The answer to a top-k query is an ordered set of objects, where the
ordering reflects how closely each object matches the given query condition.
Specific similarity measures can be used for ordering objects [IBMS08]. The

182 B. Catania and G. Guerrini

properties of the chosen ranking function impact in the design of top-k query
processing techniques. Most of the existing top-k processing approaches rely on
monotone ranking functions, which guarantee very good performance. They are
used in several common applications, especially in the Web context [MBGO04].
However, for complex applications, the ranking function can be expressed as a
generic numeric expression to be optimized [ZHC+06].

A survey and a classification of existing top-k processing approaches for tradi-
tional and XML data has been proposed in [IBMS08]. Even if top-k operators can
be themselves considered as a query approximation approach, they can further be
executed in an approximate way, in order to improve performance. In those cases,
approximate answers are associated with a probabilistic measure pointing out how
far they are from the exact top-k answers [ARSZ03,YHCO05]. Approximate top-k
query processing has also been investigated in P2P environments [MTWO0S5].

Concerning XML documents, top-k approaches rely on scoring functions that
take into account similarity of both the content and the structure of the documents
with respect to the considered query. Some of the existing approaches just extend
techniques developed for relational data to the XML context [TBM+08]. Others
consider specific XML scoring functions [AKM+05] and keyword search
[GSBS03].

In the geo-spatial context, top-k operators return the first k objects that satisfy a
given condition, based on a preference function computed over spatial and non
spatial attributes. There exist top-k operators for various spatial operations, includ-
ing spatial join [ZPZ+05], distance-based selection [HS99, XZK+05], preference
query with respect to neighborhood objects [YDM+07]. The most extensively
studied spatial query mechanism is ranking neighboring objects by the distance to
a single query point [RKV95,BGRS99], which constitutes an instance of a top-1
problem. For multiple query points, Papadias et al. [PTMHO5] studied ranking by
the “aggregate” distance, for a class of monotone functions aggregating the dis-
tances to multiple query points.

The methods described above assume that all the relevant data are available be-
fore processing. Further, they report a single result and terminate. On the other
hand, in stream environments, data are not known in advance. In those contexts,
the aim is no more to compute a top-k query over all stream data; rather, the ob-
jective is to continuously monitor the top-k tuples over the stream and, accord-
ingly, changing the result in a continuous way. One of the preliminary approach of
this kind has been provided in [MBP06]. In [MAAOQ6], an integrated approach for
solving the problems of finding the top-k elements and finding frequent elements
in a data stream are considered.

Skyline operators. In some applications, such as data exploration and decision
making, it might be important to rank objects without using a specific ranking
function, thus returning the ‘best results’ among all the possible ones, since defin-
ing a ranking function in those contexts could be cumbersome. This problem can
be addressed in two distinct ways: (i) the system is delegated to compute the more
adequate ranking function taking into account data information; (ii) preferences

Towards Adaptively Approximated Search in Distributed Architectures 183

are still provided by the user but in terms of sets of attributes considered relevant
for the ranking. Approach (i) will be described below, when we introduce tech-
niques based on system-based preferences. The second approach relies on the
definition of a partial relation among items, which can be formally specified using
the concept of dominance and of skyline.

Given a set of points, each representing a list of values for the list of relevant
attributes, the skyline contains the points that are not dominated by any other
point. A point A dominates a point B if it is better in at least one dimension and
equal or better in all the others, by considering a specific scoring function
[BKSOI1].

Various algorithms have been proposed for skyline computation [BKSO1]. In-
dex based techniques (B-tree [BKSOI1], bitmap [TEOO1], nearest neighbor
[KRRO2]) avoid scanning the overall set of data for skyline computation, improv-
ing performance with respect to basic techniques [BKSO01]. The approaches cited
above assume the interest is specified by a set of totally ordered attributes. This
assumption does not allow the application of the existing techniques to temporal
intervals and categorical data. To solve this problem, in [CET05a,CETO05b] par-
tially ordered domains are transformed into pairs of integers, over which the sky-
line is then computed.

The main problem in dealing with skyline is due to their often huge size. In or-
der to address this problem, a common approach is to integrate both top-k and
skyline advantages in a single technique. Three main approaches can be consid-
ered to this purpose [HBO8]:

— The first approach consists in evaluating the quality of skyline objects and
returning first high quality results. An approach of this type has been proposed
in [YLL+0S5]. Starting from the observation that queries often refer to attribute
subsets, the idea is that of pre-computing all possible skylines of all subspaces
with all possible preferences (skycubes), which in general, for numeric attrib-
utes, are just two: the-more-the-better, the-less-the-better. When the user poses
a query to a subspace, pre-computed skylines can be returned as result. A rank-
ing is also provided in order to return ‘best’ skyline objects first. Other ap-
proaches for evaluating skyline relevance are proposed in: [CJT+06a], where
the concept of skyline frequency is proposed as a way to measure the impor-
tance of a point based on the number of subsets of dimensions for which it is in
the skyline; [CJIT+06b], where the concept of k-dominance, relaxing the usual
notion of dominance by considering at least k dimensions, is introduced;
[LYZZ07,TDLP09], which consider finding k skyline tuples that best represent
the contour of the entire skyline, called k representative skyline; [YMO9],
which proposes the fop-k dominating query as the query scoring each tuple with
the number of tuples it dominates; [XZT08, MCO09, LYH09], proposing vari-
ous approaches for scoring attribute importance.

— The second approach suggests to propose first to the user an overview of the
skyline, which can be later refined. This is the case of the technique presented
in [BZGO5], for computing an approximation of the skyline object set. In this
case, the result of a skyline query is just a sample of the real skyline result set.

184 B. Catania and G. Guerrini

The sample must contain only skyline objects, should be computed fast, should
be small and representative.

— The third approach consists in eliciting more user preferences. An example is
presented in [BGLO07a, BGLO7b]; the proposed approach allows users to add
preference information incrementally. Each new elicited preference reduces
skyline results. New preference information can be specified as new dominance
relations, as equivalence relations, or as more complex trade-offs.

Concerning skyline computation over geo-spatial data, the problem of finding
spatial locations that are not dominated with respect to the network distance to a
single query point has been considered in [HJO5]. In presence of multiple query
points, in [SSK09,SLAH09] various algorithms have been proposed for comput-
ing the spatial skyline, i.e., for identifying the locations such that no other location
is closer than them to all query points.

Skyline queries have also been investigated for XML and stream data. Simi-
larly to top-k queries, also for skyline it is not possible to compute the result over
all stream data, due to resource limitations. Rather, the skyline is progressively
generated, in an approximated way, based on data at hand, and then continuously
monitored and updated, based on new object arrival or expiration. We refer the
reader to [MXA04,TP06,LWLG09,CS09,ZLC09] for some recent works in those
contexts.

System preferences. Preferences are not necessarily specified by the user. Rather,
they can be implicitly applied by the system. This is the case of the relaxation
technique proposed in [KLTVO06]. Here, relaxation is applied to relational selec-
tion and join conditions over numeric attributes by redefining the semantics of
such operators based on a relaxing function, quantifying the distance of each tuple
(pair of tuples) with respect to the specified condition, using a numeric function
(usually, the difference between numeric values appearing in the condition and in
the tuple(s)). The relaxed version of the query provides a non-empty answer while
being ‘close’ to the original query formulated by the user, using a skyline-based
approach. Another approach for automatic ranking database result has been pre-
sented in [ACDGO03], where techniques for automatically deriving ranking func-
tions for both the empty or few and the many answers problems are investigated,
adapting typical Information Retrieval approaches to the database context.

An approach similar to that presented in [KLTVO06] has been provided in
[Pod10] for both topological geo-spatial selection and join operators. Queries can
be either syntactically correct or contain errors with respect to the used topological
predicate which may not be defined for the object dimensions at hand (non well-
defined conditions). Queries with non well-defined conditions are quite frequent in
environments where the user does not know, for some application reason, the
feature type dimension (e.g., in mash-up applications getting geo-spatial data from
different Web-services). Non well-defined conditions are rewritten by the system
using the most similar topological relations defined for the dimension of features
in the available data. Two different relaxation semantics are proposed. The Best

Towards Adaptively Approximated Search in Distributed Architectures 185

Fit semantics applies the minimum amount of relaxation to the query condition in
order to return a non empty answer. Thus, it models a variation of a top-1 query
dealing with spatial relations, based on system preferences. The Threshold seman-
tics relaxes the topological query up to a certain fixed limit, depending on system
parameters. For all the considered operators and semantics, query processing algo-
rithms, based on the usage of R-trees, have been provided.

3.4 Recommendation Systems

Recommendation systems aim at recommending to the users items not in the re-
sults of the posed queries but of potential interests. Recommendation methods can
be further classified, according to [SDP09], depending on data to be considered
for recommendation, into:

— current-state, if they use only the query result and the database content;

— history-based, which uses past user history;

— external sources, if they consider data contained in sources which are external
to the database.

History-based approaches can be further classified into [ATO05]:

— content-based, if they recommend items similar to those the user has preferred
in the past;

— collaborative, that recommend items that similar users have liked in the past;

— hybrid, if they combine both approaches.

Recommendation systems have been initially proposed for Web services, very
recently some approaches have also been proposed for the database context
[ATOS]. In particular, a framework for the declarative specification of the recom-
mendation process over structured data is proposed in [KBG09] while the works
reported in [SDP09] and [CEP09] present specific recommendation processes of
current-state and content-based type, respectively. As far as we know, no current-
state approaches have been still provided for geo-spatial and XML data.

3.5 Approximate Query Processing

Approximate query processing refer to all the techniques for executing a tradi-
tional query (e.g., a join) by using ad hoc query processing algorithms which
automatically apply the minimum amount of relaxation based on the available
data, in order to return a non-empty result more similar to the user request.

In the relational context, most approximation techniques concern the join op-
erator [KSOS] or face approximate match issues for strings [GIJ+01,CGKO06] or
numeric values, a quite relevant problem in case of join between tables coming
from different data sources. The presence of distinct strings representing the same
information may arise for human factors (incorrect data entry or ambiguity during
data specification), application factors (errors in database population or not en-
forced constraints), or obsolescence, since data are usually dynamic.

186 B. Catania and G. Guerrini

Formally, an approximate join of two tables Rland R2 is a subset of the Carte-
sianproduct of R1 and R2. Specified attributes of R1 and R2 are matched and
compared using a similarity function, instead of a usual equality predicate. The
used similarity functions have strong analogies with those used in the context of
data quality, for detecting that two values are distinct representations of the same
real world entity (record linkage [KSS06] or removal of duplicate records
[EIVOT7]).

Match can be performed by considering as matching field either a single attrib-
ute, a set of attributes, or an entire tuple. The general problem thus becomes that
of, given two field values, quantifying their similarity, as a number between 0 and
1. If the field is numeric, numeric methods can be used. If fields are strings, the
problem is more challenging. The existing techniques can be broadly classified
into edit-based functions, if compare strings with respect to the single characters
they contain, foken-based if compare strings with respect to the tokens their con-
tain, where a token is in general a substring satisfying specific properties [KS05].

The naive method for executing an approximate join consists in computing the
similarity score for each pair of fields and keep only those whose similarity value
is greater than a given threshold. This method is of course I/O and CPU intensive
and therefore not scalable. Several algorithms have therefore been proposed with
the aim of reducing the number of pairs over which similarity is computed, by
taking advantage of efficient relational join methods [KS05].

For XML data, the approximate query processing problem has been deeply in-
vestigated, due to the very flexible structures and to the highly heterogeneous
contexts in which XML data are used. The proposed approaches share the goal of
integrating conditions over structure with the generation of approximate results.
Queries are typically expressed through twigs (i.e., small trees) to which data have
to conform. Approaches differ on how conditions over structure are relaxed during
approximation and on how similarity is quantified. Conditions that can be relaxed
could be specified with weights assigned to nodes and edges [ACS02]. The ap-
proximation degree for the structure is higher since even the ancestor/descendant
relationship may not be preserved [SMG+08]. For what concerns similarity meas-
ures, used for quantifying proximity with respect to the twig, a survey can be
found in [GMBO06]. In [AKM+05] for example, twigs are decomposed into paths,
whose correspondence with paths in the document is evaluated separately and
single evaluations are then aggregated.

Some approaches have also been proposed for the approximate match of tree
structures, in the context of both approximate join between XML data [GJK+02,
ABD+08] and in the context of duplicate removal [WNOS5]. In this case, the need
arises of determining whether the similarity between two tree structures is higher
than a given threshold.

In querying data streams, approximation is used to deal with situations in which
limited resources do not allow to produce an exact answer in a short time
[DGRO3,LLRO7].> In particular, approximate techniques have been proposed for

> We remark that these techniques are employed to cope with QoS requirements (effi-
ciency) differently from the others we discussed in this section and from the ones that we
wish to face with ASAP techniques.

Towards Adaptively Approximated Search in Distributed Architectures 187

data reduction and synopsis construction (a survey has been presented in
[ABB+02]) including: sketches [AMS96,FM83], random sampling
[AGP00,AGP+99,CMN99], histograms [IP99,PG99], wavelets [CGR+00], and
sliding windows [BDMO02,DGI+02]. Such approximate query processing tech-
niques are called dynamic techniques in [MWA+03]. Both approximate join and
aggregate queries have been considered in this context [KS03].

Similar problems can be found in the spatio-temporal context, for example with
continuous nearest neighbour queries [HZY05]. Also in this case, approximation
is due to efficiency issues, not to data heterogeneity. Approximation issues also
arise for spatial and temporal data represented at different resolutions and
granularities [USU06,QQZ06] and in multi-way spatial join [PA02].

4 Adaptive Query Processing

In the following, after a brief introduction to adaptive query processing, we dis-
cuss the different styles of adaptation and review the main approaches that have
been proposed in the context of local, distributed, and streaming data.

4.1 An Introduction to Adaptive Query Processing

As the database field has broadened to consider more general data management,
the weaknesses of the traditional plan-first execute-next query processing model,
according to which a query is processed following an execution plan selected on
the basis of data statistics and a query optimization strategy, and then executed
according to this plan with little or no run-time decision making, have begun to
show themselves.

In emerging data management environments, such as data integration and data
streams, as well as in most new query processing contexts, ranging from XML
engines, to continuous queries engines, to Web or text engines, data statistics or
other kind of information the optimizer can rely on may not be available a priori
(before the query execution), or, if available, they may not be accurate, or even
wrong. As a consequence, using this information to take decisions about which
query plan to execute could result in a bad choice (sub-optimal plan).

Techniques addressing problems due to the lack of reliable statistics, unex-
pected correlations, unforeseen execution costs, and dynamic nature of data, using
feedbacks for calibrating query execution, with the main goals of achieving better
response time and more efficient CPU utilization, have proliferated and has re-
sulted in a set of approaches, collectively named adaptive query processing (AQP,
see [DIRO7] for a recent survey). Adaptive query processing techniques do not
rely on a priori information; rather they incrementally gather current information,
that may be less complete but is up to date, in parallel with the query execution.
Experimental evidence demonstrates the efficiency of the approach, resulting in
several cases in the choice of an optimal or near-optimal execution plan.

The driver for the development of AQP techniques can be identified with the
limits of traditional statistics-based query optimizers in coping with certain types
of queries and in working in certain querying and query processing environments,

188 B. Catania and G. Guerrini

characterized by missing or unreliable cardinality estimates. As the query is con-
cerned, AQP is motivated by characteristics, such as query parameters and corre-
lation, that statistics-based query optimizers have shown themselves unable to deal
effectively with, and complex queries involving many tables, for which traditional
optimizers rely on heuristic approaches to limit the plan search space. For what
concerns the environments, we have from one side interactive query environments
for data exploration and from the other one processing domains like data streams
and wide area data sources.

The limitations of traditional query processing are quite evident in contexts
where queries may be long running, and the data characteristics - and hence the
optimal query plans - may change during the execution of the query. An obvious
example of such data dynamicity is constituted by data stream environments,
where there is also the need for multi-query optimization, since there are several
continuous queries running on the same stream data, that may share some sub-
expressions, and the feedback from one query may be beneficial on the execution
of other queries. In traditional database systems there is (almost) no inter-query
state sharing. By contrast, data and computation sharing is crucial in processing
queries on data streams.

The spectrum of adaptive query processing techniques has thus been quite
broad:

— they may span multiple query executions or adapt within the execution of a
single query;

— they may affect the query plan being executed or the scheduling of operations
within the plan;

— they have been developed for improving the performance of local DBMS que-
ries, distributed queries, queries on streaming data.

4.2 Styles of Adaptation

In the following, we present the general reference architecture for AQP and then
the main styles of adaptations that correspond to instantiations of the architecture
with different adaptation frequencies, namely inter-query adaptation, plan-change
based adaptation, eddies.

MAPE Architecture. As introduced in [KC03] one of the methods to implement
an adaptive behavior inside a system is that of using a MAPE (Monitor, Analyze,
Plan, Execute) architecture. This type of architecture is formed by two main com-
ponents: a managed component and an autonomic manager. The managed compo-
nent is the one that carries over the real work to be done, the processing algorithm
in our case. The autonomic manager on the other hand continually uses a MAPE
approach in order to guarantee that the managed component is always giving the
best possible effort. The components of such an architecture:

— Monitor the managed component actual performance and behavior in order to
obtain valuable statistics and other type of information;

— Analyze the previously collected statistics and information to detect problems
and/or opportunities;

Towards Adaptively Approximated Search in Distributed Architectures 189

— Plan a new behavior for the managed component in order to solve current prob-
lems or exploit in the best way the new opportunities;
— Execute the new decided behavior.

In the context of AQP, the Monitor step involves monitoring data characteristics,
such as cardinality and distribution, and system characteristics, such as memory
utilization and network bandwidth. Analysis is concerned with determining how
well execution is proceeding, and is mainly guided by performance, or availabil-
ity, goals and based on plan cost models or local heuristics. The Plan step may
reconsider the query execution plan through an optimizer (in plan-change based
adaptation, discussed below) or a routing policy (in eddies [AHOO], discussed
below). The Execute step corresponds to switching from one plan to another with
careful state migration to reuse work and ensure correct answers.

The engineering effort in developing an adaptive query processor can thus be
seen in defining more in detail all the four phases of the MAPE approach in order
to build an efficient adaptive system that solves the specific processing problem to
be faced. This general architecture can be instantiated in very different ways, lead-
ing to a wide spectrum of adaptation, depending on the frequency of adaptation.

Inter-query adaptation. The lowest level of adaptation consists in incorporating
feedback from previous query executions for better selectivity/cardinality estima-
tion. The statistics collected during the execution of a query are employed to better
optimize future queries [SLM+01]. Since this approach does not reconsider nor
switch plans during query execution, it is much simpler to be realized and it is not
considered as fully adaptive in some surveys [DIRO7].

Plan-change based adaptation. The coarser level of intra-query adaptation is
plan-change based adaptation, where adaptation is inter-operator. According to
this approach, the model relying on a well defined query execution plan at any
time is retained, but the plan may be changed at well defined points during query
processing. Mid-query re-optimization stops query processing when it detects that
optimizer estimates are too different from run-time actual, and re-invokes the
optimizer to pick a new plan. Adaptation is at fairly coarse granularity, typically at
materialization points in query plan.

Adaptation can then be intra-operator: the query processor can use feedback
and dynamic estimates to modify the query plan during execution, namely by
replacing a physical operator with another that performs the same function. This
idea has proven viable for pipelined® query plans, primarily as a dynamic optimi-
zation technique to improve the performance of a complex query, in cases where
the initial query plan produced by the optimizer proves inefficient.

3 A pipelined plan executes all operators in the query plan in parallel, by sending the output
data of an operator directly to the next operator in the pipeline, as opposed to materialized
plans in which operators are applied in sequence, computing (and materializing if needed)
whole intermediate results.

190 B. Catania and G. Guerrini

[BBOS] collectively refers to those approaches as plan-based since the execu-
tion of a current plan is monitored and re-optimization triggered whenever ob-
served plan properties (e.g., intermediate result size) or system conditions (e.g.,
available memory) significantly differ from the estimates. The result is an opti-
mizer that adds additional operations to track statistics (conventional as well as
statistics on query sub-expressions collected during execution), detects and cor-
rects situations where a non efficient plan is being executed. Both pipelined and
non-pipelined plans can be executed.

Plan-based approaches instantiated the general MAPE architecture as follows:

— Monitor, through observation, statistics collected on data that passes through
selected points in a plan;

— Assess whether an observed value is significantly different from an estimate, or
outside the range of values for which the current plan is optimal; comparison
may be in terms of estimated cost to completion;

— Plan based on the current statistics including those tracked by the current plan;

— Execute plan switching, with the goal of reducing the time devoted to the
switch.

Plan switching involves many issues that need to be carefully addressed:

— Correctness: the new plan must not output results that have already been output
by previous plan, nor miss results, especially in pipelined plans.

— Reuse of work: the current plan and plans before it may have processed a sub-
stantial part of the query; we need to consider (in a cost-based manner) whether
the new plan can reuse this work instead of restart query processing from
scratch.

— Plan state: the state captured by a plan can be taken into account as well, in-
cluding: base data for the query (may be windows over stream), intermediate
materialized sub-expression, in flight data in pipelined segments, temporary
structures such as hash tables and sorted sub-lists.

In processing queries over stored data with non pipelined plans correctness may be
ensured by producing no output data till the processing is complete (by buffering)
or by keeping track of the data output so far. Work can be reused (if deemed con-
venient, on a cost basis) through materialized sub-expressions. Switch cost may be
minimized starting the new plan on new input, combining the data partition pro-
duced by different plans after all sources are exhausted. In processing queries over
streams, or with pipelined plans, there is no problem of duplicate results (each
input is seen once). The state is migrated in temporary structure (e.g., hash tables)
for reusing work in the new plan. To reduce the switch cost, one approach is to let
the new plan process new data as it arrives, and compute later results from the
‘combination’ of old and new data, in an incremental fashion during processing of
new data.

Towards Adaptively Approximated Search in Distributed Architectures 191

Though most AQP approaches cope with this correctness and reuse issues, the
validity of the runtime changes proposed is rarely addressed in a rigorous manner
and the adaptation undertaken is not formally characterized. One exception is
constituted by [EFP06] for the replacement of join operators in pipelined query
plans. Specifically, they provide a notation for describing partially evaluated op-
erators and for each operator characterize the states, referred to as quiescent states,
in which the result produced by the operator in the state can be precisely defined
in terms of the input to the operator at this point in time. An operator in a quies-
cent state can thus be replaced by any other operator able to compute the remain-
der of the result. The complete result is then the union of that produced by the
original operator with that produced by the replacement one. Note that this union
may not be carried out explicitly, since replacing operators may simply resume the
evaluation of a suspended plan. This establishes a safe foundation for a fine-grain
replacement of operator in the middle of the execution.

Eddies. The finest-grained instantiation of the MAPE architecture is per-tuple
adaptation that do not consider at all the notion of query plan, rather it views query
processing as routing of tuples through operators and realizes plan changes by
changing the order tuples are routed. The eddies technique, proposed in [AHO00], is
based on this idea. The eddy operator is a special operator that sits at the center of
a tuple dataflow, intercepting the input and the output tuples of all other operators.
It allows to control the execution plan at run-time at the level of each single tuple.
Each tuple is considered as a message that should be sent from one operator to
another. The routing scheduling can be changed when a specific asset of the query
evaluation engine is reached. The eddy operator, thus, monitors the plan execu-
tion, and takes the decision concerning how routing tuples based on the asset.
Most tuples exploit the route that is more efficient currently, while the rest
explore other routes. [BBOS5] refers to the approaches relying on this idea as rout-
ing-based AQP approaches. The result is a greedy approach to optimization via
selective tuple routing. The statistics the approach relies on are operator-level
selectivities and incremental costs during execution. Routes through operators
simulates pipelined plans.
Eddies instantiate the general MAPE architecture as follows:

— Monitor and assessment are realized through exploration and competition;

— Plan is implicit, and re-optimization happens automatically when statistics
change;

— Execute enforcing routing constraints to avoid generating duplicate results and
relying on fine-grained primitives for tuple router to migrate state, if not com-
pletely pipelined with no state.

4.3 Adaptive Approaches for Local Query Processing

The main motivation for AQP in local query processing is correcting optimizer
mistakes, mainly due to unavailability of statistics about attribute correlations and

192 B. Catania and G. Guerrini

skewed attribute distributions. Out of date statistics can be another reason for
optimizer mistakes.

The first complete AQP prototype based on possible re-optimization during
execution is Re-Opt [KDO98], that re-optimizes the remaining query if statistics of
materialized sub-plans differ significantly from optimizer estimates. A similar
approach, that avoids unnecessary re-optimization and support re-optimization
within pipelines is [MRS+04], that is prototyped in a commercial optimizer and
shows significant benefits on real workloads.

Parametric queries are another motivations for AQP in this context. Many ap-
proaches to parametric optimization have been proposed [BBdW09] for handling
parameters (mainly user inputs, but also memory size) whose values are unknown
during optimization. The resulting optimization framework generates plans opti-
mal for partitions of the parameter domains, and defers plan selection until the
actual parameter values are known at run-time.

Most adaptive techniques have been proposed in the relational contexts. In the
XML context, we mention [MAK+05], in which adaptation is used to allow that
distinct partial matches for the same query follow distinct execution plans, consid-
ering the top-k nature of the problem. It is therefore a case of adaptive processing
of an approximate query. In the spatial context, we recall the adaptive technique
proposed in [SMLO3], for the execution of distance-based spatial join, and that in
[YuO5], for range queries over multi-dimensional points.

4.4 Adaptive Approaches for Distributed Query Processing

The main motivation for AQP in distributed query processing is for coping with
unknown statistics. In data integration systems, data sources available on-line and
other data management systems that support queries over autonomous remote data
sources, there is the need to cope with executing a query involving one or more
sources for which no statistics are available. In addition to all the issues arising in
AQP on local data, here another issue to adaptively consider is how to maximize
CPU utilization, given the rate at which data are received from the distributed data
sources.

Query scrambling [UFA98] deals with startup delay and bursty data arrival
from remote data sources, with the goal of minimizing idle time during query
processing, with the overall goal of reducing query response time [UFO1]. Eddies
[AHOO0], which we have already discussed in Section 4.2, and distributed eddies
[TdWO03] have been proposed as an approach to cope with the widely fluctuating
characteristics of resources in large federated and shared-nothing databases.

In [IFF+99] query optimization for data integration systems is addressed. The
work is motivated by absence of statistics and unpredictable data arrival character-
istics, as well as overlap and redundancy among sources, that requires the proces-
sor to minimize the access to redundant sources and respond flexibly when some
sources are unavailable. Adaptation is considered both at operator and plan level:
adaptive operators such as the double pipelined hash join, also referred to as
symmetric hash join, together with a collector operator realizing an efficient union
of data from a large set of possibly overlapping or redundant sources have been

Towards Adaptively Approximated Search in Distributed Architectures 193

proposed. Adaptive behavior is coordinated by a set of event-condition-action
rules, where events may be raised by the execution of operators or at materializa-
tion points in the plan. Actions include modifying operator executor, re-ordering
of operators, or re-optimization.

[BFM+00] is also concerned with query optimization for data integration and
supports adaptation at plan and operator scheduling levels. Adaptive data parti-
tioning [IHWO04] is based on the idea of dividing source data into regions, each
executed by different, complementary plans. This approach can be applied not
only for correcting badly estimated cardinality and selectivity values, but also to
discover and exploit order in source data as well as source data that can be effec-
tively pre-aggregated.

Adaptive workload allocation in autonomous heterogeneous environments have
been investigated in [ASP+09] and in cloud computing in [PAL+09]. An adaptive
approach to query parallelization has been proposed in [PBC+09].

4.5 Adaptive Approaches for Query Processing on Streaming Data

Processing queries on streaming data requires to reconsider most of the basics of
queries on stored data: not only transient, but also persistent (continuous) queries
need to be processed; query answers are necessarily approximate due to the un-
boundedness of the stream leading to window joins to limit scope and to synopsis
structures to approximate aggregates. Query operators and plans are necessarily
adaptive: reacting to changes in input characteristics and system conditions is a
major requirement for long-running query processing over data streams. For in-
stance, stream arrival may be bursty, unpredictably alternating periods of slow
arrival and periods of very fast arrival. The system conditions as well, e.g., the
memory available to a single continuous query, may vary significantly over the
query running time. In a situation where no input statistics are known initially and
input characteristics as well as system conditions vary over time, all the relevant
statistics are estimated during execution. Pipelined plans only can be executed,
since operators in continuous query plans are non-blocking. To minimize the
overhead, sampling based techniques are used for statistics tracking, which is
combined with query execution whenever possible.

The optimization objectives are also different in a streaming context: the over-
all objective is to maximize the output rate for a query, rather than devising the
least cost plan, and optimization is also rate-based for what concerns the input: the
rates of the stream is taken into account during optimization rather than the input
cardinality. Another optimization goal is to minimize resource (memory) con-
sumption. Finally, it may be driven by QoS (e.g., availability) requirements
[CCD+03].

Both plan-based and routing approaches have been considered for continuous
queries. Plan-based approaches for continuous queries are referred to as CQ-based
approaches in [BBO0S5]. Eddies for continuous queries have been proposed in
[MSH+02] and TelegraphCQ [CCD+03]. In Niagara [NdWM+01] the focus is on
the adaptive sharing of common sub-expressions. In StreaMon [BWO1] on inte-
grated statistic collection (with sample-based tracking) and query re-optimization.

194 B. Catania and G. Guerrini

In CAPE [RDS+04] adaptation appears at many levels, ranging from operators, to
scheduling, to distributed processing. Borealis [AAB+05] stream processing en-
gine distributes query processing across multiple machines, monitoring run-time
load and dynamically moving operators across machines to improve performance,
and relies on load shedding for detecting and eliminating CPU overload from
multiple machines by selectively dropping tuples in a coordinated fashion. An
overall optimization approach for sensor networks have been proposed in
[GBJ+09].

The proliferation of XML data produced by Web services has led to the devel-
opment of specific approaches for XML data streams. Proposed approaches con-
sider different granularities ranging from sequences of primitive tokens (e.g., start
and end tag of an element) to sequences of document fragments. In the last few
years, several approaches have been proposed for processing queries on XML data
stream ([DAF03], [GS03], FluXQuery [KSS+04], BEA/XQRL [FHK+03],
[IHWO02], XSM [LMPO02], XSQ [PCO03]). A survey on XML stream query process-
ing can be found in [WLR+09].

Continuous queries on spatio-temporal data streams [MXAO04], supported for
instance in Place [MXA+04] and Sole [MAOS], are particularly meaningful in the
mobile context, where the ever increasing availability of wireless networks (i.e.,
Wi-Fi) and GPS-equipped mobile devices, makes it easier to develop location-
aware applications, such as traffic monitoring and tourist services. The specificity
of this context is mainly that mobile objects are typically numerous (e.g., the vehi-
cles in a city), volatile, and their position needs to be frequently updated (e.g.,
vehicles equipped with GPS).

5 Requirements for ASAP Systems

We define ASAP (Approximate Search with Adaptive Processing) as a new ap-
proach to QoD-oriented query processing, with the aim of guaranteeing a high
result data quality, with respect to completeness and relevance, in the most effi-
cient way. In the following, we call ASAP systems query processors relying on
ASAP and with ASAP technique each execution plan, analyzed post-mortem,
defined by the ASAP optimizer. The main characteristics of ASAP are:

— ASAP systems use an adaptive inter- or intra-query processing approach to
query execution.

— Similarly to quality-based optimizers (see Section 6), ASAP systems take into
account quality information, possibly provided in an interactive way, in the se-
lection of the best query execution plan. In ASAP, quality is defined with re-
spect to result completeness, by increasing the number of potentially interesting
results, or result significance, by reducing the number of irrelevant results.
Plans at the same quality level are then chosen with respect to efficiency
considerations.

— In the choice of the best query execution plan, ASAP takes into account both
precise and approximate query processing techniques, in order to guarantee a
high result quality in the most efficient way.

Towards Adaptively Approximated Search in Distributed Architectures 195

Since ASAP relies on both precise and approximate processing techniques, the
space of the execution plans for a given query may in general exponentially in-
crease with respect to a traditional query processor. Of course, depending on the
application context, the levels of freedom can be reduced and we believe that, in
concrete cases, ASAP will compete with respect to traditional processing in terms
of performance. Possible worst performance are traded-off with an increased qual-
ity of the result set, as explained above.

In order to develop a general framework for ASAP processing there are several
issues to be taken into account, which are listed below. Some of them (1-2) refers
to the interactions of an ASAP system with the working environments. Others (3-
7) concern the ASAP system itself and lead to a specific instantiation of the
MAPE architecture introduced in Section 4.2. Among them, requirements 6 and 7
deal with specific issues, to take into account when considering intra-query
adaptiveness.

1. Application contexts. Suitable application contexts for the usage of ASAP sys-
tems have to be identified.

2. User participation. A characterization of the type of interactions between the
user and ASAP techniques.

3. Frequency of adaptation. A choice of the most appropriate granularity of im-
plementation of the MAPE architecture for ASAP systems.

4. Properties monitored. A characterization of the properties to monitor and of the
conditions to assess, that are the basis on which a decision in terms of the proc-
essing techniques can be taken.

5. Re-optimization. A characterization of the overall goal of planning, in terms of
the quality-efficiency trade-off and of the general principles that can guide it.

6. Correctness. A characterization of the conditions that ensure that a correct
result is produced upon switch, which also entails determining processing states
in which a switch between different techniques can be made.

7. Reusability. Upon a change in the processing techniques, whether some infor-
mation on the processing/result on the already processed data can be reused, or
whether the processing restarts from scratch with no information available.

In the following, for each of the previous topics, a list of challenges will be pro-
vided and discussed in details, providing some concrete examples. We notice that,
though we discuss different challenges independently, the arising issues are not
orthogonal and may impact one another. For instance, if the adaptation is inter-
query, then plan switching is not an issue.

5.1 Application Contexts

Challenge 1: Identify the application contexts where ASAP systems can be
successfully used.

The first challenge in the design of an ASAP system concerns the identification of
the application contexts in which ASAP could be effectively used. This requires
the identification of reference architectures, data models, and queries.

196 B. Catania and G. Guerrini

Sub-challenge 1.1: Identify the reference architectures and data models suitable
Jfor ASAP.

Based on what stated in Section 1 and the examples presented in Section 3, man-
agement of stored data under distributed architectures and data streams are the
more natural contexts in which applying ASAP. Additionally, based on what
stated in Sections 4 and 5, at the state of the art, a large number of approximation
techniques have already been defined for relational, XML, geo-spatial data, either
stored or in streams. Therefore, we claim that ASAP should be considered as a
framework for all such data models.

Sub-challenge 1.2: Identify the types of queries suitable for ASAP.

ASAP increases the degree of freedom of the optimizer since it takes into account
quality issues besides performance in the selection of the query plan. As a conse-
quence, the size of the plan space increases with respect to a traditional optimizer.
In order to keep the problem tractable, we claim that the analysis of ASAP should
start from simple selection and join queries, followed by conjunctive and Select-
Project-Join queries.

5.2 User Participation

Challenge 2: Formalize the types of interactions between the user and an ASAP
system.

An important issue related to user participation concerns whether the usage of an
ASAP system is transparent to the user or not and, in case the answer is yes, in
which measure. Two main sub-challenges can therefore be considered, as pointed
out below.

Sub-challenge 2.1: Identify the level of user awareness in using an ASAP system.

ASAP query optimizers should be designed in order to apply ASAP techniques
each time a request is posed to the system in order to always guarantee a good
trade-off between response time and result quality. At each switch state (see
Section 5.6), the optimizer will choose the execution plan, taking into account
result quality and efficiency. Therefore, it seems reasonable to assume that the
user should trust the query processor in applying the approach which guarantees
the best compromise between efficiency and result quality, based on a specific
contract with it [Cha90]. Thus, we claim that she has not to be informed each time
an ASAP technique is applied. On the contrary, we point out that, when using
ASAP techniques inside a traditional optimizer, the user should be informed of
the fact that an ASAP technique is going to be used for the execution of her re-
quest, since, in this case, this is just a choice of the optimizer which may alter the
expected user result.

Towards Adaptively Approximated Search in Distributed Architectures 197

Sub-challenge 2.2: Develop a model for the specification of user preferences.

Most query approximation techniques rely on user or system information, such as
cardinality constraints (for some query rewriting approaches), ranking (for top-k
operators) or similarity (for approximate join) functions, sets of interesting attrib-
utes (for skyline operators) (see Table 1). In order for an ASAP system to consider
for optimization one approximation method, the required information for its appli-
cation has therefore to be available to the query processor. While some informa-
tion can be directly chosen by the system (e.g., similarity functions), other requires
a user specification. A model has therefore to be developed in order to specify all
user and system preferences related to a specific domain.

Sub-challenge 2.3: Identify when user preferences have to be specified to the
system.

Different approaches can be followed for user-preference specification. They
mainly depend on the user type:

— Frequent user. In this case, we can assume the user knows quite well the appli-
cation domain. Therefore, it seems reasonable to ask her to specify preferences.
This can be done a priori or at the time the user asks for the usage of an ASAP
technique (in case a traditional optimizer is used).

— Non frequent user. In this case, the user may not know the domain in depth.
Therefore, imposing the specification of preference information, that are not
necessarily used during the processing, seems a too strong requirement, espe-
cially in the context of traditional optimizers. Only system-defined preferences
should be therefore used in this case.

In both cases, preferences can be specified una-tantum or may change, through
user-interaction, during processing. This situation seems reasonable for long-
running transactions or data streams. In those cases, information upon which in-
teraction has to be based have to be carefully defined.

5.3 Frequency of Adaptation

Challenge 3: Choose the most appropriate granularity of implementation of the
MAPE architecture for ASAP systems.

ASAP systems as adaptive query processors will rely on the general architecture
discussed in Section 4.2, however appropriate frequency of adaptation needs to be
chosen. Given the more ambitious goals of the ASAP framework, that does not try
to maximize a single objective function in processing and rather tries to determine
the most advantageous trade-off between possibly conflicting goals (such as effi-
ciency of processing and data quality), and on the approximation techniques con-
sidered in the framework, coarser grained plan-change based adaptation seem
more adequate than techniques relying on eddies. Moreover, both intra-query and
inter-query adaptation can be considered.

198 B. Catania and G. Guerrini

5.4 Properties Monitored

Challenge 4: Characterization of the properties to monitor and of the conditions
to assess.

To properly instantiate the MAPE framework, the properties monitored during the
processing need to be devised, depending on the general goals of approximation,
as well as on the processing contexts. These properties may refer both to QoS
(Quality of Service) and QoD (Quality of Data) properties. An appropriate model
for the assessment based on the monitored properties needs to be developed,
which leads to the following sub-challenges.

Sub-challenge 4.1: Characterize properties for QoS monitoring.

QoS factors vary mainly depending on the application and processing contexts,
but they mainly refer to efficiency and availability. Thus, QoS-related properties
may refer to processing time, but also to CPU usage, network bandwith, and other
typical measures used in AQP approaches.

Sub-challenge 4.2: Characterize properties for QoD monitoring.

QoD factors vary mainly depending on the motivations that lead to introduce ap-
proximation in our processing. Thus, for stretching techniques QoD is character-
ized in terms of completeness, while for shrinking techniques QoD is character-
ized in terms of relevance. QoD-related properties surely include the cardinality
of result, but other relevant properties could be devised as well, such as heteroge-
neity or entropy in the result, which may be reasonable to monitor and assess for
inter-query adaptation.

Sub-challenge 4.3: Develop suitable cost and estimation models for assessment.

Depending on the properties monitored, an appropriate model for assessment
needs to be defined. The basic ideas would be to rely on the ratio between the
resources employed up at a certain point and the expected/affordable one for QoS
and on the ratio between the cardinality (which is much easier to dynamically
evaluate than completeness or significance) of the result produced up to a certain
point and the expected one.

This entails many challenging issues, both for what concerns developing realistic
estimation models, that will likely be probabilistic models, and combining differ-
ent components into a single model. Obviously, assessment relying on different
components entails all the challenges of components assessment and the further
issues related to combining models.

5.5 Re-optimization

Challenge 5: Characterize the overall goal of planning, in terms of the quality-
efficiency trade-off and of the general principles that can guide it.

Towards Adaptively Approximated Search in Distributed Architectures 199

To keep re-planning feasible, in such a multi-faceted approach such as ASAP,
some basic choices that limit the space to search for the most convenient solution
must be made. A basic choice of the approach we propose, intrinsic to the motiva-
tions that lead to its definition, is to consider QoD first. Thus, the first aspect con-
sidered during re-optimization is whether the query as it is addresses the QoD
requirements and, in case it does not, it is approximated/refined accordingly. To
this purpose, a new query may have to be generated and, for it, the most appropri-
ate processing technique needs to be selected. This entails revisiting the notion of
query execution plan in the ASAP context. We may assume that each instantia-
tion of the framework specifies a pool of techniques to be used for approximation.
The reasonable sets of approximation techniques which can be used together in
ASAP and how they can be interleaved, as well as appropriate heuristics to limit
the plan search space, need to be defined. These considerations lead to the follow-
ing sub-challenges.

Sub-challenge 5.1: Define the notion of ASAP query execution plan.

The classical notion of query plan needs to be revisited in the context of ASAP,
thus establishing the building block of QoD-driven query processing. The notion
of ASAP execution plan will provide the basis on which QoD-oriented optimiza-
tion will be developed and thus needs to be formally defined.

Sub-challenge 5.2: Identify the type of interplays between techniques used by
ASAP.

We claim that three distinct types of interplays can be applied by ASAP.

1. From exact processing to approximate processing. The aim of this interplay is
to increase result quality by choosing an approximate evaluation of the query.

2. From approximate processing to precise processing. The aim of this interplay
is to increase efficiency by choosing a precise evaluation of the query, usually
computationally less expensive than the approximate one. This kind of inter-
play can also be useful in stretching or shrinking the result, when the approxi-
mate technique is shrinking or stretching, respectively.

3. From one approximate processing to another. The aim of the interplay in this
case is either:

— To change the type of the used approximation approach when data character-
istics change. As an example, this may allow the processor to switch from a
relaxation technique to an approximate processing when data heterogeneity
increases. This fact can be detected by checking integrity constraints, e.g.,
foreign keys, which, in presence of high data heterogeneity, may not be sat-
isfied any more. In this case, result quality increases while efficiency is not
taken into account.

— To change the specific approximate technique used (but not the type of the
approximation used) for efficiency reasons. This approach seems reasonable
when the considered techniques are instances of the same leaf in the tree
presented in Figure 1 (e.g., two different top-k evaluations, two different ap-
proximate join evaluations using different similarity measures, threshold, or

200 B. Catania and G. Guerrini

algorithms). When the techniques are instances of two distinct query relaxa-
tion approaches (e.g., query rewriting and preference queries, or top-k and
skyline), the switch can be considered relevant assuming that user-
preferences may change during the computation (from a cardinality con-
straint to a ranking function to a set of important attributes) through user in-
teraction or system decision. In this last case, result quality is improved
while efficiency is not taken into account.

Sub-challenge 5.3: Identify the approximation techniques that can be used alone
or together in ASAP.

Based on the classification reported in Section 3.1, it seems reasonable to assume
that, from a theoretical point of view, all approximation techniques can be used,
alone (i.e., only involved in switches of the first two types) in ASAP. A considera-
tion is however required for all approaches based on a global execution, i.e., that
need to access all the items before output the result. We claim that, in an ASAP
context, similarly to what happens in streaming processing, such techniques
should be applied, possibly in a continuous way, locally to a window. Such win-
dow should be dynamically defined and may correspond to the number of items
analyzed before the next switch.

For the usage of a specific approximation technique, adequate preferences
should be selected based on what specified by the user and possibly refined by the
system. For example, if a skyline execution is scheduled, the set of attributes over
which performing the execution has to be chosen. In case a top-k operator is se-
lected, besides choosing the ranking function, parameter k should be selected. Its
value may depend on some statistics on the average window size.

Concerning groups of approximation techniques to be used together, inside the
same plan, we claim that they should pursue the same goal and follow the same
approach. In particular, based on Figure 1 and Table 1, the following situations
may arise:

— Heterogeneous data, stretching approach: in this context, approximate query
processing techniques should be used.

— Query specification problems, stretching approach: all stretching query relaxa-
tion approaches can be used together in this context.

— Query specification problems, shrinking approach: all shrinking query relaxa-
tion approaches can be used in this case.

We notice that, in presence of heterogeneous data, shrinking approaches do not
seem to be useful (see Table 1). This is because, as pointed out in Section 3, in
presence of heterogeneous data, the typical approach is to relax equality checks
into similarity-based checks. As a consequence, more results can be returned
(stretching approach).

We finally remark that, in case ASAP is used to solve problems coming from
both heterogeneous data and query specification, we claim that the approaches
listed above for each problem can be used together inside the same query plan.

Towards Adaptively Approximated Search in Distributed Architectures 201

Sub-challenge 5.4: Develop suitable heuristics to prune the plan search space.

Based on the techniques considered in the instantiation of the framework, it is
crucial, to limit the complexity of ASAP optimization, to rely on heuristics to limit
the size of the plan search space. Thus, well-founded heuristics to determine
which alternatives to explore and which ones to disregard, thus realizing a pruning
of the plan search space, need to be developed.

5.6 Correctness

Challenge 6: Characterize the conditions that ensure that a correct result is
produced upon switch.

In AQP, correctness upon plan switch means that the new plan must not output
results that have already been output by previous plan, nor miss results. Difficul-
ties are in ensuring this, but, since the result set is fixed, the definition is rather
obvious to state. In ASAP, by contrast, even defining correctness and characterize
it is not trivial. First of all, approximation by itself shifts the characterization of
the result from exact to similar, thus some effort is needed in this correctness
characterization. Moreover, the result set itself is different, depending on the
approximation introduced. The switch, therefore, may change the result set, both
in a larger and in a smaller set, depending on whether we switch from an approxi-
mate to an exact technique, or vice-versa. The situation is even more complex
since approximation, as discussed in Section 3, can be either stretching or shrink-
ing. Thus a switch from exact to approximate stretching, as well as a switch from
approximate shrinking to exact, causes the expected result set to enlarge, though in
different ways.

As a general consideration, we claim however that each single ASAP query plan
should