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Foreword 

Logic design of digital devices is a very important part of the Computer Science. 
It deals with design and testing of logic circuits for both data-path and control unit 
of a digital system. Design methods depend strongly on logic elements using for 
implementation of logic circuits. Different programmable logic devices such as 
CPLD and FPGA are wide used for implementation of logic circuits. Nowadays, 
we can see the rapid growth of new and new chips, but there is a strong lack of 
new design methods. To diminish this gap, we created a group of experts in 
Computer Science and Electronics, and they present here their new design and 
test approaches. 

This book includes a variety of design and test methods targeted on different 
digital devices, as well as different logic elements. The authors of the book repre-
sent such countries as Israel, Poland, Russia, and Ukraine. The book is divided by 
three main parts, including thirteen different Chapters. The following problems are 
discussed in these Chapters. 

The Chapter 1 is written by Professor Samary Baranov and is devoted to origi-
nal methods of digital system design. It represents some approach for design a 
central processor unit of a computer. It presents an example of a simple processor 
design. The proposed design procedure included such steps as combination of 
separate algorithmic state machines (ASM); synthesis of data-path; control unit 
design, and composition of data-path and control unit into whole processor. The 
main advantage of proposed procedure is formalization of the design process, 
where all steps are formalized and automated in EDA tool “Abelite” designed by 
the author of this chapter. 

The Chapter 2 is prepared by Professor Edward Hrynkiewicz and is devoted to 
application of the rectangular function Π(x) for description of the operation for 
some logical devices. This function describes the carrying out of the logic opera-
tions on pulses, as well as pulse series. Such functions as logic sum, logic product, 
logic negation and Ex-OR are investigated in the Chapter. Using these functions, it 
is possible to describe the frequency multiplying. Moreover, this Chapter deals 
with the problem of rectangular function Π(x) utilization for description of opera-
tion of such logical devices as digital sine wave generators and for nonlinear dis-
tortions analyzing in such generators. 

The Chapter 3 is written by Alexander Palagin and Vladimir Opanasenko. It 
gives the theoretical base for construction and designing of the PLD–based recon-
figurable devices, including the new formalized design techniques of construction 
and dynamic reconfiguration of architecture and structure of digital devices with  
a high degree of reconfiguration, corresponding with properties of performing  
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algorithms, constructive and technological features PLD, and also tool means of 
their designing, are presented. Bases of the theory of adaptive logic networks, in-
tended for the solution of a wide class of tasks by direct structural realization of 
algorithms of processing and direct representation of input data to output data by 
functional and structural customization for universal components of a network, are 
developed by the authors. Synthesis algorithms of adaptive logic networks on the 
classes of tasks set are developed by them, too.  

The Chapter 4 is devoted to application of multilevel design on the base of 
UML for digital system developing. It is written by Professor Raisa Malcheva. In 
this chapter the features of image generation and performing systems’ design are 
analyzed. Estimation of complexity of the standard rendering pipeline is done. The 
architectural decisions and algorithm approaches for the real-time rendering sys-
tems’ creation are discussed. Adaptation of a multilevel designing method of the 
built-in systems with realization of separate modules on reconfigurable devices, 
based on application of architecture operated by models and the unified modeling 
language, is offered. The end of the Chapter shows the graphical application of the 
proposed by author modified method. 

The Chapter 5 is written by Mariusz Rawski, Paweł Tomaszewicz, Grzegorz 
Borowik, and Tadeusz Łuba. It includes the new method of logic synthesis for 
digital circuits with FPGAs. The main feature of the method is a wide use of  
specialized embedded memory blocks (EMBs). Existing methods do not ensure 
effective utilization of the possibilities provided by such modules. The problem of 
efficient mapping of combinational and sequential parts of design can be solved 
using decomposition algorithms. The main issue of the Chapter is the application 
of decomposition based methods for efficient utilization of modern FPGAs. It 
shows that functional decomposition method allows for very flexible synthesis of 
the designed system onto heterogeneous structures of modern FPGAs composed 
of logic cells and EMBs. Finally there are some results of the experiments, which 
evidently show, that the application of functional decomposition algorithms in the 
implementation of typical signal and information processing systems greatly in-
fluences the performance of resulting digital circuits. 

The Chapter 6 is prepared by Professor Dariusz Kania. It includes the original 
technology mapping method for PAL-based devices based on the analysis of 
graph of outputs. The method is oriented on CPLD chips having a PAL-based 
logic blocks which consist of a programmable AND matrix and a fixed OR matrix. 
The presented approach uses original method for illustrating a minimized form of 
a multi-output Boolean function. Graph node represents groups of multiple-output 
implicants with common output part. The essence of the method is the process of 
searching for appropriate multi-output implicants that can be shared by several 
functions. A new method for the description of cascaded feedback connections is 
presented in the Chapter. The experimental results show that the proposed algo-
rithm leads to significant reduction of chip area used by resulting circuits. 

The Chapter 7 is written by Nataliya Yakymets and Vyacheslav Kharchenko 
and is devoted to use of genetic algorithms (GAs) for the reliable design of finite 
state machines (FSMs). This chapter introduces the principles of multi-version 
digital system design and describes the concept of developing a reliable and robust 
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system out of unreliable parts. The Authors started with the state of the art in the 
area of multi-version design and explore the motivations for using different ap-
proaches to development of digital projects. A few techniques to manage design 
diversity for FPGA-based systems are proposed. These techniques are based on 
the use of genetic algorithms, and partially correct and partially definite automata 
obtained with GAs. Finally, they suggested GA-based method of multi-version 
fault-tolerant systems synthesis and discuss case-study for on-board device im-
plementation. 

The Chapter 8 is written by Alexander Barkalov, Larysa Titarenko, Jacek 
Bieganowski, and Alexander Miroshkin, and proposed a new method for logic 
synthesis of a linear control algorithm. In this case, the control unit can be repre-
sented by the model of compositional microprogram control unit (CMCU) with 
dedicated area of inputs.  The chapter is devoted to CMCU optimization, based on 
the modification of the microinstruction format. Proposed modifications are in-
tended to eliminate code transformers from the CMCU and reduce the hardware 
amount of circuits used in the FSM for the microinstruction addressing, as com-
pared with the CMCU basic structure. The reduction of the hardware amount is 
achieved at the cost of increasing the number of cycles needed for the execution of 
the control algorithms, and in some cases also at the cost of increasing control 
memory size. 

The Chapter 9 is prepared by Marek Węgrzyn, and Agnieszka Węgrzyn. They 
present the CAD system dedicated for modeling, verification, and synthesis of 
concurrent logic controllers. The core of the proposed PeNLogic system is Petri 
net models. The Petri net can be prepared as graph or as textual form. Controllers 
specified by Petri nets can be analyzed and implemented using method suitable for 
such models. Results of verification are applied also for decomposition of net into 
several communicating state machines (as finite state machines, FSMs). After 
verification it is possible to transform Petri net model into HDLs model (VHDL 
and Verilog) and alternatively into EDIF or XNF netlist format. Such prepared 
models are also simulated and synthesized using other academic or commercial 
CAD systems.  

The Chapter 10 is written by Professor Vladimir Popovskiy and includes some 
new methods of signals processing in radio access networks. The Chapter consid-
ers optimum stochastic methods of radio signal processing, including parameter 
assessment tasks and management of parameters of receiving and transmitting de-
vices. Such tasks are formed by state variable methods using Kalman-Bucy opti-
mum recursive procedures. It’s recommended to solve the management problems 
basing on the division theorem. The Chapter includes analysis of steadiness and 
efficiency of state and management assessment procedures in steady-state and un-
steady-state conditions. It gives recommendations regarding the choice of parame-
ters and efficiency of processing devices taking into account statistics of signals 
and constraints attributable to certain telecommunication technologies. It analyzes 
a proposal, within which recursive procedures are used efficiently. The main tasks 
are united on Multiple-input/Multiple-output (MIMO) principle and are aimed at 
solving the access problems in mobile communication networks, Wi-Fi and  
Wi-Max systems, etc. Such tasks include: space-time encoding, multipath effect  
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reduction, radio link power improvement, interference effect reduction, adaptation 
to channel parameter changes and current signal interference situation, possible 
repeated use of frequencies. 

The Chapter 11 is prepared by Professor Alexander Ojiganov and discusses the 
recursive code scales for moving converters. The original methods of construction 
of recursive code scales (RCS), as well as the algorithms of placing on a scale of 
reading out elements (RE) are considered in the Chapter. It includes also some re-
sults of research of correcting possibilities of such scales. The recursive code 
scales for synthesis of drawing of an information path of a scale of sequence have 
received the name pseudo-random (PRCS) and composite code scales (СCS). Of-
fered scales can be applied as the coded element in moving converters. Recursive 
scales at the expense of use in them of only one information code path more tech-
nologically than the known traditional scales. In traditional scales, code paths (CP) 
which are carried out, as a rule, in an ordinary binary code or in the Gray code. 
The Chapter shows that RCS allow only at the expense of redundancy introduction 
on number of reading out elements without use of additional control paths to form 
the codes which are correcting and (or) finding out errors of reading. 

The Chapter 12 is written by professor Vladimir Hahanov and deals with the 
class of infrastructure Intellectual Property for System on Chip simulation and di-
agnosis service The models and methods for creating Infrastructure Intellectual 
Property (I-IP) service for the functionalities System on Chip (SoC), which has a 
minimum set of the real time Built-In Self Test (BIST) tools, are proposed in this 
Chapter. The means I-IP provide an opportunity to services: fault modeling and 
simulation for the functional primitives to evaluate the test quality and to build 
Fault Detection Table (FDT); diagnosis of a given defects search depth in the 
SoC; repairing embedded memory functionality, by using spare row and column 
components. High performance deductive-parallel fault analysis method for build-
ing FDT and tests quality assessment is offered. Algebra logical methods of fault 
diagnosis and embedded memory repair by synthesis Disjunctive Normal Form 
(DNF) completing all decisions for diagnosis SoC functionalities in the real time 
are represented in the Chapter. 

The Chapter 13 is written by Yuriy A. Skobtsov and Vadim Y. Skobtsov. It dis-
cusses some new evolutionary test generation methods for digital devices. It is 
shown how evolutionary methods can be used for test generation of digital cir-
cuits. In present time it is strongly investigated the new direction in theory and 
practice of artificial intelligence and information systems, named as evolutionary 
computations. This term is used to generic description of the search, optimizing  
or learning algorithms, based on some formal principles of natural evolutional  
selection, which are sufficiently applied in solving various problems of machine 
learning, data mining, databases etc. Among these approaches following main 
paradigms can be picked out: genetic algorithms, evolutionary strategy (ES), evo-
lutional programming (EP), and genetic programming (GP). The differences of 
these approaches mainly consist in the way of target solution representation and in 
different set of evolutional operators used in evolutional simulation. Classical GA 
uses the binary encoding of problem solution and basic genetic operators are 
crossover and mutation. In ES solution is represented by real numbers vector and 
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basic operator is mutation. EP uses FSM as solution representation and mutation 
operator. In GP problem solution is represented by program, crossover and muta-
tion operators are applied. The Chapter includes some new test methods for digital 
devices based on GA. 

The editors of the book hope that it will be interesting and useful for experts in 
Computer Science and Electronics, as well as for students and postgraduates, who 
will be designers of future digital devices and systems.  
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1   Digital System Design 

Samary Baranov 

Department of Computer Science, Holon Institute of Technology, 52 Golomb St.,  
P.O.B. 305, Holon, 58102, Israel 

Abstract.  The most complicated stage of each design, namely the system design, 
is discussed. An example of the design for a rather simple processor is shown. A 
design procedure is proposed, which included such steps as combination of sepa-
rate algorithmic state machines (ASM); synthesis of data-path; control unit design, 
and composition of data-path and control unit into whole processor. The main ad-
vantage of proposed procedure is formalization of the design process, where all 
steps are formalized and automated in EDA tool “Abelite” designed by the author 
of this chapter. 

1.1   Main Processor Units and Instruction Sets 

1.1.1   Main Units 

Our processor has 16-bit word and contains main components common for such a 
device – memory, arithmetic logic unit, program counter, instruction register etc. 

Memory (Fig. 1.1,a) has 16-bit address bus (adr) and two 16-bit data buses – 
input (din) and output (dout). Input rdwr (read-write) is the instruction input of the 
memory. If rdwr = 0, instruction read is implemented: A := M[Adr]. Here A is the 
word at the output bus dout and M[Adr] is the word of the memory with address 
Adr. This address should be set at the address bus adr. If rdwr = 1, instruction 
write is implemented: M[Adr] := B. Here B is the word at the input bus din and 
M[Adr] is the word of the memory with address Adr. This address should be set at 
the address bus adr. Our processor has two memories – instruction memory M0 
and operand memory M1. 

Arithmetic logic unit (ALU) is used for implementation of arithmetic and logic 
operations (Fig. 1.1,b). Two 16-bit inputs in1 and in2 serve for operands of ALU, 
5-bit input ctr serves for instruction codes of ALU operations. One bit input rg_c 
will be connected with the output of carry flag cf to implement circular shifts cil 
and cir (see below). The result of the operation appears at the output dout of ALU. 
Three additional one-bit outputs c, z and v are connected with the inputs of three 
flags cf (carry), zf (zero) and vf (overflow). Our ALU is a combinational circuit 
(circuit without memory) so Processor has RALU (the register of ALU) to save the 
results of arithmetic and logic operations. 
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Fig. 1.1 Processor units 

Program counter (PC) points to the next instruction which should be imple-
mented (Fig. 1.1,c). It saves the address of such instruction. Input en is used to 
load 16-bit information from din to the counter when en = 1. When count = 1 the 
content of the counter increases by one.  

Instruction register contains the instruction which is being currently imple-
mented. As most of processor registers, it has the structure shown in Fig. 1.1,d. 
Such a register has 16 clocked D flip-flops with input rst to reset it and input en 
(enable signal), this signal should be equal to one to write information from input 
din into the register. We skipped signals clk (clock) and rst (reset) in our pictures.  

One more small memory – Block of Register (BoR) contains sixteen 16-bit reg-
isters (Fig. 1.2). For operation write, there must be some data at the bus din and an 
address at the bus adrW. When enable signal en = 1, data is loaded through the in-
put din at the rising edge of the clock signal. For example, if adrW = 0011 and  
en  = 1, then R[3] (register number 3) will get information from input din. 

 

Fig. 1.2 Block of registers 

In operation read, two registers can be read at the same time. Their addresses 
are specified with the adrR1 and adrR2 signals. To avoid unintentional storage of 
information during the read operation, the signal en should be set to ‘0’. 
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1.1.2   Instruction Set and Instruction Formats 

The instruction set of Processor is presented in Table 1.1. It contains four subsets, or 
subgroups of operations: aosh, load, branch and inout. Assembly names of instruc-
tions are in the column Name, their machine codes are in the column Code. Column 
Description contains short description of each operation. You can use Table 1 as a ref-
erence table. We will discuss execution of some instructions in the following sections. 

Table 1.1 Instruction set 

Type 

N 
a 
m 
e 

Description 
Code 

 
b0-b4 

Format and addressing 
mode 

Short 
b5 = 0

Long 
b5 = 1 

Dir 
 

Dir 
b7=0 

Imm 
b7=1 

aosh add 
and

 
sub 
shl 
shr 
cil 
cir 

Add Op1 and Op2; store result in Op1 

Bitwise logical AND between Op1 and Op2
 store result in Op1 

Subtract Op2 from Op1; store result in Op1 

Shift Op2 one bit to the left; store result in Op1

Shift Op2 one bit to the right; store in Op1 

Rotate Op2 to the left; store result in Op1 

Rotate Op2 to the right; store result in Op1 

00  001 
00  010
 
00  011 
00  100 
00  101 
00  110 
00  111 

● 
● 
 
● 
● 
● 
● 
● 

  

load lod 
str 
inc 
dec 
com 

Copy Op2 into Op1 

Copy Op1 into Op2 

Increment Op1; store result in Op1 

Decrement Op1; store result in Op1 

Complement Op1; store result in Op1 

10  000 
10  001 
10  010 
10  011 
10  100 

● 
● 
● 
● 
● 

● 
● 

● 

branch bcz 
bcf 
bcc 
bun 

If z = 1, load new address into PC 

If v = 1, load new address into PC 

If c = 1, load new address into PC 

Branch unconditionally to a new address 

01  000 
01  001 
01  010 
01  011 

● 
● 
● 
● 

 ● 
● 
● 
● 

inout ski
 

sko
 

inp
 

out
 

ion 

iof 

Skip next instruction (if flag of input fgi = 1,
increment PC  twice) 

Skip next instruction (if flag of output fgo = 1,
increment PC twice) 

Copy input register into one of the registers of 
BOR and reset fgi 

Copy one of the registers from BOR into out-
put 
register and  reset fgo 

Set flag interrupt enable (ien) to 1 

Set flag interrupt enable (ien)  to 0 

11  000
 
11  001
 
11  010
 

11  011
 
11  100 

11  101 

 

 

 

● 

 

● 
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Processor has two instruction formats (Fig. 1.3) – short (one word, 16 bits) and long 
(two words, 32 bits). The first twelve bits have the same mission in both formats. Bit 5 
points to the length of instructions – short (bit 5 equal to zero) or long (bit 5 equal to 
one). The next two bits define the addressing mode. We will talk about it later.  

 

Fig. 1.3 Instruction formats 

The short instruction cannot use operands from operand memory M1. To access 
this memory, the 16 bit address should be in the instruction. So, the short instruc-
tion uses only operands from BoR – bits 8-11 define the address of the first ope-
rand in BoR and the address of the result, whereas bits 12-15 define the address of 
the second operand in BoR. In the long instruction, we will not use the field from 
bit 12 to bit 15, the second operand is in the memory M1 and its 16 bit address is 
in the second instruction word. Sometimes, we have operand itself in the second 
word – see the immediate addressing mode below. 

Our Processor uses 16-bit words, so 16-bit Instruction Register cannot save the 
long instruction. Therefore, Processor has two instruction registers – IR1 and IR2, 
sixteen bits each. In the program memory M0, the short instruction takes one 
word, the long one – two sequential words. Processor fetches the short instruction 
into IR1 and the long instruction – into IR1 and IR2. The first half of the long in-
struction, containing its code, length, addressing mode and two short addresses is 
fetched into IR1, the second half – into IR2.  

1.1.3   Addressing Modes 

Addressing mode defines how Processor finds operands using their addresses in the 
instruction. There are many different addressing modes, we will discuss most of 
them but will use only some of them in our Processor. In both formats – short and 
long, the address of the first operand and the address of the result are in bits 8-11 of 
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the first instruction word. So, the different addressing modes will be essential only 
for the second operand. Now we shortly discuss several addressing modes:  

• Direct addressing mode is the simplest one. In this mode, addresses of  
operands are written within the instruction. In the short format (Fig. 1.4,a), 
addresses of the first and the second operands A1 and A2  are in bits 8-11 and 
12-15, operands themselves are in BoR. In the long format (Fig. 1.4,b), ad-
dress A1 is in the bits 8-11 and the long address A3 of the second operand is 
in the second word of such instruction. The second operand is in the operand 
memory M1 in the cell with address A3. 

 

Fig. 1.4 Addressing modes 

• In immediate mode, not the address of the operand, but the second operand it-
self is written in the second word of the instruction (Fig. 1.4,c). Thus, the  
immediate mode can be used only in the long instructions. 

• In indirect mode, not the address of the operand, but the address of the ad-
dress of the operand is written in the instruction. For the short format  
(Fig. 1.4,d), A2 in the field 12-15 points to the register in BoR, where the 
memory address A3 of the second operand is saved. For the long format  
(Fig. 1.4,e), address A3 in the second word of the instruction points to the cell 
of the memory M1 which contains address A4 of the second operand. Thus, to  
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 reach the second operand in the long instruction, Processor should access  the 
memory twice: first time – for its address, second time – for the oper and 
itself.  

• In the indexed addressing mode, Processor uses an index register to find the 
address of the operand. As a rule, any BoR register except BoR[0], can be 
used as an index register. For the long direct indexed mode the content A2 of 
the second address field (bits 12-15) in the first instruction word points to the 
index register in BoR. Processor should add the content of this index register 
(offset) to the long address A3 (base address) from the second instruction 
word to find the address of the second operand (A3 + offset). Exactly in the 
similar way, we can define indirect indexed addressing mode. 

We will use only two addressing modes in our Processor – direct and indirect. But 
I left here two bits (6 and 7 in Fig. 1.3; 00 – direct mode, 01 – immediate mode) 
because my students use various addressing modes in their projects.  

1.2   ASMs for Processor Instructions 

How to describe instructions by ASMs? 

Before we present ASMs for processor instructions let us discuss how to describe 
the instruction execution with ASM [7, 8]. As an example we will use ASM for 
instruction lod in Fig. 1.5. The goal of this instruction is to send the second ope-
rand to the place of the first one. For the long instruction, the second operand is in 
memory M1, for the short instruction it is in BoR with the second short address. 
The first operand in both cases is in BoR with the first address. 

Look at Fig. 1.5. A waiting conditional vertex with the logical condition S is 
placed immediately after vertex Begin. You can look at S as a signal from a Start-
Stop button, so the instruction will be executed only when S = 1. Such conditional 
vertex should be at the beginning of ASM for each instruction. The next condition 
DMA (Direct Memory Access) corresponds to the special mode that doesn’t ex-
ecute an operation but connects its memory with the outside storage device to read 
or write information. Ext_RdWr is the signal from outside. When Ext_RdWr = 1, 
external system writes information to memory M0 (external signal M should be 
equal to zero) or to memory M1 (M = 1) from its output Ext_out. When  
Ext_RdWr = 0, external system reads information from memory M0 or M1 to its 
input Ext_in. 

Signal R in the next conditional vertex tells us about an interrupt. If R = 1, the 
special mode of Processor – Interrupt takes place. When R = 0, there is no inter-
rupt and the instruction is executed in the regular mode. At the end of each  
instruction Processor checks the conditions for interrupt; we will discuss it later as 
well. So, now we will consider the implementation of instruction lod (long, direct) 
from R = 0 (from the beginning of block Fetch1) until the first condition IEN of 
block CheckInt.  

The only information important prior to instruction implementation is the con-
tent of PC, which contains an address of the instruction in memory M0. Therefore, 
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in the first step (the first operator vertex in Fetch1 in Fig. 1.5), the content of PC 
should be sent to the address bus of the memory (Adr0 := PC) and the content of 
the memory cell with this address will be sent to the first instruction register IR1 
(IR1 := M0[Adr0]). Only when an instruction, or the first word of the long in-
struction is in IR1, Processor can analyze the instruction code (IR1(0-4)), length 
(IR1(5)), addressing mode (IR1(6-7)) etc. In our notation, we use square brackets 
for addresses (M0[Adr0]) and parenthesis for the fields of the register. For  
example, IR1(0-4) means bits 0-4 of IR1, IR1(5) – the fifth bit of IR1 etc.  

 

Fig. 1.5 ASM of instruction lod 

In the second step (the second operator vertex in Fetch1 in Fig. 1.5), Processor 
increments PC (PC := PC + 1). It is necessary to get an address of the next in-
struction in PC if the current instruction is short, or to give PC the address of the 
second word of the long instruction. So, if the current instruction is short, the fetch  
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is finished and the instruction is in IR1. If the instruction is long, the fetch should 
continue to access memory M0 again for the second part of this instruction – see 
the check of IR1(5) and the stage Fetch2 with two steps in Fig. 1.5.  

After Fetch2, the long instruction is in two instruction registers IR1 and IR2. In 
the case of the direct addressing mode (IR(7) = 0), the second operand is in memory 
M1 and this operand should be loaded into the place of the first operand in BoR:  

Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1]. 

If IR1(5) = 0, we have the short direct mode (see the check of the conditional  
vertex containing IR1(5) immediately after Fetch1 in Fig. 1.5): 

AdrR2 := IR1(12-15); AdrW := IR1(8-11); BoR[AdrW] := BoR[AdrR2]. 

 

Fig. 1.6 Generalized Operators 

For the long immediate mode (see IR1(7) = 1 after Fetch2 in Fig. 1.5) we have: 

AdrW := IR1(8-11); BoR[AdrW] := IR2, 

because the second operand itself, not its address, is in IR2. Note, that it is suffi-
cient to check only bit 7 in IR1 for the addressing mode since we use only two  
addressing modes – direct (00) and immediate (01). 

Blocks Fetch1, DMACycle, IntCycle and CheckInt should be in ASMs for all 
instructions Block Fetch2 will be only in ASMs for instructions with the long  
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format. These blocks are drawn as separate ASMs in Fig. 1.6. If we replace dotted 
blocks in Fig. 1.5 by generalized operators we will get ASM in Fig. 1.7, which 
is simpler and clearer than ASM in Fig. 1.5.  

 

Fig. 1.7 ASM of instruction lod with generalized operators 

In the next several figures, we will present at least one ASM from each group 
of instructions with generalized operators. 

All instructions from group Aosh (see Table 1.1) have a short format and are 
implemented in ALU. Processor must send operands and instruction code to ALU 
and return the result from RALU to the place of the first operand with an address 
in IR1(8-11). We can divide these instructions into two subsets 

• ao, containing instructions add, and and sub. They use two operands 
from BoR with addresses in IR1(8-11) and IR1(12-15) – see Fig. 1.8; 

• sh, containing other instructions. They use one operand from BoR with 
an address in IR1(12-15). 
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Fig. 1.8 ASM ao 

ASM for three conditional branch instructions are presented in Fig. 1.9. In each of 
these instructions, the address of the next instruction depends on the values of  
flags – zero (flag zf), carry (flag cf) and overflow (flag vf), which are results of the  
previous operations in ALU. After fetch, short or long, which depends on IR1(5), 
Processor checks the value of flag zf  (see the shadowed conditional vertices in Fig. 
1.9,a). If zf = 1, a jump to the instruction with the new address takes place. If zf = 0, 
Processor executes the instruction which is immediately after bcz in memory M0. To 
construct two other ASMs we should replace the shadowed vertices by a vertex with 
cf for instruction bcc (Fig. 1.9,b) or by a vertex with vf for bcf (Fig. 1.9,c). 
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Fig. 1.9 ASMs bcz, bcc, bcf 

All instructions from group Inout are short and only two of them – inp and out 
use an address of the operand written in IR1(8-11). Other instructions are zero-
address instructions. To explain ASMs of inp and out let us appeal to Fig. 1.10. 
An input device can send new information into input register InpR at any time. At 
the same time, it sets a special flag of input FGI (FlaG of Input) into 1. The goal 
of instruction inp is to take the content of InpR into BoR with an address in IR1 
(8-11) and to reset FGI. Thus, the implementation of this instruction is reduced to 
one shadowed operator vertex in Fig. 1.11,a: 

AdrW := IR1(8-11); BoR[AdrW] := InpR; FGI := 0. 

To construct an ASM for instruction out we should replace the shadowed vertex in 
Fig. 1.11,a by the vertex in Fig. 1.11,b. In this instruction Processor sends the 
word from BoR with an address in IR1(8-11) into output register OutR and resets 
FGO (FlaG of Ouput): 

AdrR1 := IR1(8-11); OutR := BoR[AdrR1]; FGO := 0. 
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Fig. 1.10 Interface between Input-Output system and Processor 

AdrW:=IR1(8-11)
BoR[AdrW]:=InpR

FGI:=0

a) ASM inp

IEN:=0

d) ASM iof

c) ASM ion

IEN:=1

b) ASM out

AdrR1:=IR1(8-11)
OutR:=BoR[AdrR1]

FGO:=0
1 IntCycle

1 DMACycle

End

CheckInt

0

Replacement for
shadowed vertex

Fetch1

0

1

R

DMA

0S

Begin

 

Fig. 1.11 ASMs inp, out, ion, iof 
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1.3   Data Path Design 

1.3.1   Combined Functional ASM 

After constructing functional ASMs for each instruction, our next step is to com-
bine them into one ASM [8]. The combined and minimized functional ASM for 
our Processor is presented in Fig. 1.12. Combining and minimization was made by 
EDA tool Abelite.  

 

Fig. 1.12 Combined ASM with generalized operators 

We use term functional ASM because this ASM represents the functional beha-
vior of Processor. In this ASM, processor units in each assignment are used as  
variables. We do not have a real structure of Processor yet. For example, in  
assignments 

Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1], 
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we know nothing about how these units are connected – whether direct  
connections or buses (multiplexers) are used to provide information from the out-
put of one unit to the input of another one. But for behavior representation and for 
understanding of this behavior, functional ASMs are very comprehensible and 
very compact, especially with the use of generalized operators, such as Fetch1, 
Fetch2, DMACycle, IntCycle and CheckInt. In Fig. 1.13 we replaced these blocks 
by subgraphs from Fig.1.6 and got total combined Functional ASM GFn with  
included generalized operators. 

 

Fig. 1.13 Combined Functional ASM GFn with included replacements 

To explain the difference between functional representation and structural re-
presentation (between the function and the structure in our context) let us use a 
very simple structure in Fig. 1.14. In this figure, we have sources s0, … , s3 and 
targets (receivers) t0, …, t4 (disregard target t5 for now, we will use it later). For  
simplicity, you can think about these sources and targets as registers.  

Let us suppose that we should send information from each source to each target 
except t5. Of course, we can connect each source with each target directly but the 
cost of such connection is very high. So, we use here a multiplexer (MUX) with 
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four inputs. To send information from any input to the output of MUX we should 
supply 2-bit vector (control signal), corresponding to the input, to the ctr_mux. 
Suppose that the control signal is equal to the number of the input, so for in0, the 
signal at ctr_mux is equal to 00, for in1 – 01 etc. 

 

Fig. 1.14 Our first structure 

We will discuss several examples in Fig. 1.15. In the first example, source s2 
transfers information to target t3. At the functional level, the description is very 
simple and clear: t3 := s2. At the structural level, to pass information from input 
in2 to the output of MUX, ctr_mux should get control signal 10. To write informa-
tion from the output of MUX to the target t3 the signal enable of t3 should be 
equal to 1: t3_en := ‘1’.  

 
Functional Structure 
1.  t3 := s2 ctr_mux := ‘10’ 
 t3_en := ‘1’ 
  
2.  t1 := s3 ctr_mux := ‘11’ 
     t2 := s3 t1_en := ‘1’ 
 t2_en := ‘1’ 
  
3.  t5 := s0 t5_en := ‘1’ 
  
4.  t5 := s0 t5_en := ‘1’ 
     t4 := s1 ctr_mux := ‘01’ 
 t4_en := ‘1’ 

Fig. 1.15 Descriptions at the functional and structural levels 

In the second example we send the same information from one source s3 to two 
targets t1 and t2. The control signal of MUX must be equal to 11 and two enable 
signals, equal to 1, will write information into t1 and t2. However, if we should 
like to pass information from several sources to several outputs at the same time, 
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we need several MUXes because one MUX transfers only one input to its output. 
To put it more precisely, we need as many MUXes as the number of sources we 
wish to pass simultaneously. 

One of the targets t5 in our structure is connected only with one source, i.e. it 
can get information only from s0. We call such a connection a direct connection. 
In example 3 in Fig. 1.15, to send information from s0 to t5 it is sufficient to 
supply enable signal to this target: t5_en := ‘1’.  

In the fourth example we have two simultaneous transfers – the first through 
the direct connection: t5 := s0, and the second – through the indirect connection: 
t4 := s1. Since only one indirect transfer takes place in this example, one MUX is 
sufficient in such a case.  

Let us return to our Processor. Any digital system is usually regarded as a com-
position of Control unit and Operational unit (Data Path) – see Fig. 1.16. Data 
path contains such regular blocks as memory, registers, ALU, counters, coders, 
encoders, multiplexers, demultiplexers etc. A control unit produces a sequence of 
control signals that force implementation of microoperations in data path. Some-
times designers include cloud (non-regular) circuits in data path as well. In Fig. 
1.17 we have a fragment of data path with two registers R1, R2 and a cloud circuit. 

 

Fig. 1.16 Digital system as a composition of Control unit and Data path 

Suppose that in the digital system there are transfers from R1 to R2 at different 
times with different conditions. Designers often use a cloud circuit to realize some 
Boolean function, and the output of this circuit is the signal for the transfer. So, 
this circuit defines when and under which logic conditions the transfer information 
from R1 to R2 takes place.  

 

Fig. 1.17 Element of Data path with a cloud circuit 
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One of the main concepts in our design methodology is the construction of  
“naked data path”. Naked data path doesn’t contain any cloud circuits, only stan-
dard regular units with their inputs and outputs. Such units can be predesigned or 
even taken from libraries. We leave all check-ups of conditions to control unit. We 
can afford this because we know how to design very complicated FSM with hard-
ly any constraints on their size, that is, the number of inputs, outputs and states. 
We will try to show that such design and its verification are very simple. Moreo-
ver, we will formalize a design of the digital system with naked data path.  

1.3.2   Process Table and Connection Graph 

To design the data path of our processor we will use the combined functional 
ASM GFn in Fig. 1.13. When we construct the data path we will transform func-
tional ASM into structural ASM with microinstructions and microoperations cor-
responding to the data path. The last step of our design will consist in constructing 
a control unit (Finite state machine) and combining FSM with the data path. 

We will begin with filling the left, functional part of the Process table  
(Table 1.2). To do this, we copy each microinstruction from combined ASM GFn 
(Fig. 1.13) into this table. If some microinstruction appears several times in com-
bined ASM GFn we write it several times in Table 1.2. For example, microinstruc-
tion PC := PC + 1 is written in four vertices of ASM GFn, so it is written four times 
in Table 1.2. The order of writing microinstructions in this table is absolutely 
 unimportant.  

There are two classes of microoperations in this table. The first one presents the 
transfer information from the output of one unit to the input of another unit, for ex-
ample, Adr1 := IR2, M1[Adr1] := BoR[AdrW], RALU := ALU etc. These microope-
rations are marked in the last column of the left part of Table 1.2 by the number equal 
to the number of bits in the source and in the target (1, 4, 5 or 16 in our example). The 
microoperations from the second class, such as PC := PC + 1, R := 1,  
IEN := 0, R := 0, FGI := 0  etc. are executed in one operational unit. They are 
marked by 0 in the same column. For some time we will continue to work only with 
microoperations from the first class marked by nonzero numbers in the process table. 
The microoperations of the second class will not be “our clients” for a while.   

In the connection graph (Fig. 1.18a for the sixteen bit transfers) source A, located 
on the left, is connected by an arc with target B on the right, if there is microopera-
tion B := A in the set of microoperations marked by 16. In this graph, we use a dot-
ted arc if a target has only one source (similarly, target t5 has only one source s0 in 
Fig. 1.14). Otherwise, we use a solid arc. Each solid arc has a weight, written over 
the arc. This weight is equal to the number of appearances of the corresponding mi-
crooperation in Table 1.2. For example, the arc with source PC and target Adr0 has 
the weight equal 2, because Adr0 := PC appears twice in Table 1.2.  

We assume that each dotted arc has a weight equal to 0 and we do not write ze-
ro weights in our connection graph. Each source of the connection graph has a  
weight written on the left of this source. This weight is equal to the sum of 
weights of arcs outgoing from the source. We will use these weights later in the 
optimal encoding of the MUX inputs. 
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Table 1.2 Process table 

Functional ASM Structural ASM 

Micro-
instruction Functional microoperations Structural  

microoperations 
Minimized structural  

microoperations 
Y1 y1 

y2 
AdrW:=IR1(8-11) 
BoR[AdrW]:=RALU 

4 
16 

ctr_mux3 := 0 
ctr_mux2 := 0110 
bor_en := 1 

ctr_mux2[1] := 1 
ctr_mux2[2] := 1 
bor_en      := 1 

y1 
y2 
y3 

Y2 y3 
y4 
y5 
y6 
y7 
y8 
y9 
y10 
y11 

AdrR1:=IR1(8-11) 
AdrR2:=IR1(12-15) 
ALU1:=BoR[AdrR1] 
ALU2:=BoR[AdrR2] 
ctrALU:=IR1(0-4) 
RALU:=ALU 
cf:=c 
zf:=z 
vf:=v 

4 
4 
16 
16 
5 
16 
1 
1 
1 

ralu_en := 1 
cf_en := 1 
zf_en := 1 
vf_en := 1 

ralu_en     := 1 
cf_en       := 1 
zf_en       := 1 
vf_en       := 1 

y4 
y5 
y6 
y7 

Y3 y4 
y6 
y7 
y8 
y9 
y10 
y11 

AdrR2:=IR1(12-15) 
ALU2:=BoR[AdrR2] 
ctrALU:=IR1(0-4) 
RALU:=ALU 
cf:=c 
zf:=z 
vf:=v 

4 
16 
5 
16 
1 
1 
1 

ralu_en := 1 
cf_en := 1 
zf_en := 1 
vf_en := 1 

ralu_en     := 1 
cf_en       := 1 
zf_en       := 1 
vf_en       := 1 

y4 
y5 
y6 
y7 

Y4 y12 
y1 
y13 

Adr1:=IR2 
AdrW:=IR1(8-11) 
BoR[AdrW]:=M1[Adr1] 

16 
4 
16 

ctr_mux1 := 001 
ctr_mux3 := 0 
ctr_mux2 := 0001 
rdwrM1 := 0 
bor_en := 1 

ctr_mux1[2] := 1 
ctr_mux2[3] := 1 
bor_en      := 1 

y8 
y9 
y3 

Y5 
 

y1 
y14 

AdrW:=IR1(8-11) 
BoR[AdrW]:=IR2 

4 
16 

ctr_mux3 := 0 
ctr_mux2 := 1000 
bor_en := 1 

ctr_mux2[0] := 1 
bor_en      := 1 

y10 
y3 

Y6 y4 
y1 
y15 

AdrR2:=IR1(12-15) 
AdrW:=IR1(8-11) 
BoR[AdrW]:=BoR[AdR2] 

4 
4 
16 

ctr_mux3 := 0 
ctr_mux2 := 0101 
bor_en := 1 

ctr_mux2[1] := 1 
ctr_mux2[3] := 1 
bor_en      := 1 

y1 
y9 
y3 

Y7 y12 
y3 
y16 

Adr1:=IR2 
AdrR1:=IR1(8-11) 
M1[Adr1]:=BoR[AdrR1] 

16 
 4 
16 

ctr_mux1 := 001 
ctr_mux2 := 0000 
rdwrM1 := 1 

ctr_mux1[2] := 1 
rdwrm1      := 1 

y8 
y11 

Y8 y3 
y17 
y18 

AdrR1:=IR1(8-11) 
AdrW:=IR1(12-15) 
BoR[AdrW]:=BoR[AdrR1
] 

 4 
 4 
16 

ctr_mux3 := 1 
ctr_mux2 := 0000 
bor_en := 1 

ctr_mux3    := 1 
bor_en      := 1 

y12 
y3 

Y9 
 
 

y3 
y5 
y7 
y8 
y9 
y10 
y11 

AdrR1:=IR1(8-11) 
ALU1:=BoR[AdrR1] 
ctrALU:=IR1(0-4) 
RALU:=ALU 
cf:=c 
zf:=z 
vf:=v 

 4 
16 
5 
16 
 1 
 1 
 1 

ralu_en := 1 
cf_en := 1 
zf_en := 1 
vf_en := 1 

ralu_en     := 1 
cf_en       := 1 
zf_en       := 1 
vf_en       := 1 

y4 
y5 
y6 
y7 

Y10 y4 
y19 

AdrR2:=IR1(12-15) 
PC:=BoR[AdrR2] 

 4 
16 

ctr_mux1 := 100 
pc_en := 1 

ctr_mux1[0] := 1 
pc_en       := 1 

y13 
y14 

Y11 y20 PC:=IR2 16 ctr_mux1 := 001 
pc_en := 1 

ctr_mux1[2] := 1 
pc_en       := 1 

y8 
y14 
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Table 1.2 (continued)  

Y12 y21 PC:=PC+1  0 pc_count := 1 pc_count    := 1 y15 
Y12 y21 PC:=PC+1  0 pc_count := 1 pc_count    := 1 y15 
Y12 y21 PC:=PC+1  0 pc_count := 1 pc_count    := 1 y15 
Y12 y21 PC:=PC+1  0 pc_count := 1 pc_count    := 1 y15 
Y13 y1 

y22 
y23 

AdrW:=IR1(8-11) 
BoR[AdrW]:=InpR 
FGI:=0 

 4 
16 
 0 

ctr_mux3 := 0 
ctr_mux2 := 0100 
bor_en := 1 
fgi_reset := 1 

ctr_mux2[1] := 1 
bor_en      := 1 
fgi_reset   := 1 

y1 
y3 
y16 

Y14 y3 
y24 
y25 

AdrR1:=IR1(8-11) 
OutR:=BoR[AdrR1] 
FGO:=0 

 4 
16 
 0 

outr_en := 1 
fgo_reset := 1 

outr_en     := 1 
fgo_reset   := 1 

y17 
y18 

Y15 y26 IEN:=1  0 ien_set := 1 ien_set     := 1 y19 
Y16 y27 IEN:=0  0 ien_reset := 1 ien_reset   := 1 y20 
Y17 y28 

y27 
y29 

PC:=x"FFFE" 
IEN:=0 
R:=0 

16 
 0 
 0 

ctr_mux1 := 011 
pc_en := 1 
ien_reset := 1 
r_reset := 1 

ctr_mux1[1] := 1 
ctr_mux1[2] := 1 
pc_en       := 1 
ien_reset   := 1 
r_reset     := 1 

y21 
y8 
y14 
y20 
y22 

Y18 
 

y30 
y31 

Adr1:=x"FFFF" 
M1[Adr1]:=PC 

16 
16 

ctr_mux1 := 101 
ctr_mux2 := 1001 
rdwrM1 := 1 

ctr_mux1[0] := 1 
ctr_mux1[2] := 1 
ctr_mux2[0] := 1 
ctr_mux2[3] := 1 
rdwrm1      := 1 

y13 
y8 
y10 
y9 
y11 

Y19 y32 
y33 

Adr0:=Ext_Adr 
M0[Adr0]:=Ext_Out 

16 
16 

ctr_mux1 := 000 
rdwrM0 := 1 

rdwrm0      := 1 y23 

Y20 
 

y34 
y35 

Adr1:=Ext_Adr 
M1[Adr1]:=Ext_Out 

16 
16 

ctr_mux1 := 000 
ctr_mux2 := 0010 
rdwrM1 := 1 

ctr_mux2[2] := 1 
rdwrm1      := 1 

y2 
y11 

Y21 y34 
y36 

Adr1:=Ext_Adr 
Ext_in:=M1[Adr1] 

16 
16 

ctr_mux1 := 000 
ctr_mux2 := 0001 
rdwrM1 := 0 

ctr_mux2[3] := 1 y9 

Y22 y32 
y37 

Adr0:=Ext_Adr 
Ext_in:=M0[Adr0] 

16 
16 

ctr_mux1 := 000 
ctr_mux2 := 0011 
rdwrM0 := 0 

ctr_mux2[2] := 1 
ctr_mux2[3] := 1 

y2 
y9 

Y23 y38 R:=1  0 r_set := 1 r_set       := 1 y24 
Y24 y39 

y40 
Adr0:=PC 
IR1:=M0[Adr0] 

16 
16 

ctr_mux1 := 010 
rdwrM0 := 0 
ir1_en := 1 

ctr_mux1[1] := 1 
ir1_en      := 1 

y21 
y25 

Y25 y39 
y41 

Adr0:=PC 
IR2:=M0[Adr0] 

16 
16 

ctr_mux1 := 010 
rdwrM0 := 0 
ir2_en := 1 

ctr_mux1[1] := 1 
ir2_en      := 1 

y21 
y26 

 
 
Sometimes, when a graphic representation of a connection graph is too compli-

cated, we can present it as a list (Fig. 1.18,b). In this list, weights on the left are 
the weights of sources and weights on the right are the weights of arcs. Thus, the 
weight on the right which is equal to zero corresponds to the direct connection. 

Next important information that we use in design of data path is the list of  
parallel (concurrent) microoperations (Fig. 1.19 for the sixteen-bit transfers). In this 
list, we include microinstructions, containing two or more microoperations, marked 
by 16 in the fourth column of Table 1.2. I remind you that if several microoperations 
are in one microinstruction, they are implemented concurrently (at the same clock). 
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Fig. 1.18 Connection Graph 

Let us discuss construction of this list from Table 1.2 We didn’t insert microin-
struction Y1 in this list because it contains only one 16 bit microoperation. Micro-
instruction Y2 contains nine microoperations, but only three of them are marked by 
16 in the forth column of Table 1.2. 

We can compress the list of parallel microoperations (Fig. 1.19), if we remove 
microoperations corresponding to direct connections in the connection graph  
(dotted arcs in Fig. 1.18,a). We have six such microoperations; they are marked by 
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d (direct) in Fig. 1.19 in the right column. There are 9 symbols d in this column 
because some microoperations occur several times there. After such reduction, 
three microinstructions – Y19, Y24 and Y25 contain only one microoperation, so we 
can remove them as well (it is similar to example 4 in Fig. 1.15). The final list of 
parallel microoperations is shown in Fig. 1.20. 

Y2       : y5      ALU1:=BoR[AdrR1]  d 

           y6      ALU2:=BoR[AdrR2]  d 

           y8      RALU:=ALU   d 

 

Y3       : y6      ALU2:=BoR[AdrR2]  d 

           y8      RALU:=ALU   d 

 

Y4       : y12     Adr1:=IR2 

           y13     BoR[AdrW]:=M1[Adr1] 

 

Y7       : y12     Adr1:=IR2 

           y16     M1[Adr1]:=BoR[AdrR1] 

 

Y9       : y5      ALU1:=BoR[AdrR1]  d 

           y8      RALU:=ALU   d 

 

Y18      : y30     Adr1:=x"FFFF" 

           y31     M1[Adr1]:=PC 

 

Y19      : y32     Adr0:=Ext_Adr 

           y33     M0[Adr0]:=Ext_Out  d 

 

Y20      : y34     Adr1:=Ext_Adr 

           y35     M1[Adr1]:=Ext_Out 

 

Y21      : y34     Adr1:=Ext_Adr 

           y36     Ext_in:=M1[Adr1] 

 

Y22      : y32     Adr0:=Ext_Adr 

           y37     Ext_in:=M0[Adr0] 

 

Y24      : y39     Adr0:=PC 

           y40     IR1:=M0[Adr0]  d 

 

Y25      : y39     Adr0:=PC 

           y41     IR2:=M0[Adr0]  d 

Fig. 1.19 Parallel microoperations before considering direct connections 
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Y4       : y12     Adr1:=IR2 

           y13     BoR[AdrW]:=M1[Adr1] 

 

Y7       : y12     Adr1:=IR2 

           y16     M1[Adr1]:=BoR[AdrR1] 

 

Y18      : y30     Adr1:=x"FFFF" 

           y31     M1[Adr1]:=PC 

 

Y20      : y34     Adr1:=Ext_Adr 

           y35     M1[Adr1]:=Ext_Out 

 

Y21      : y34     Adr1:=Ext_Adr 

           y36     Ext_in:=M1[Adr1] 

 

Y22      : y32     Adr0:=Ext_Adr 

           y37     Ext_in:=M0[Adr0] 

Fig. 1.20 Parallel microoperations after considering direct connections 

1.3.3   Graph of Incompatibility. Main MUXes and Direct 
Connections  

If we use MUXes for indirect connections between Processor units, we can con-
nect the output of only one MUX with the input of the target. So, if we have two 
targets A and C, one MUX is sufficient to transfer information to this targets if we 
do not have parallel transfers to A and C from the different sources.  

Let us now suppose that we have two transfers A := B and C := D that must be 
implemented concurrently. Then we must use two MUXes, the output of one of 
them will be connected to the input of target A and source B should be among the 
inputs of this MUX. The output of the second MUX will be connected to the input 
of target C and source D should be among the inputs of this MUX. 

After this, our next steps are almost evident. First, we find all targets with non-
zero weights of arcs from the connection graph in Fig. 1.18b. These weights are 
written in the last column of this figure. We go along this column from the top to 
the bottom and write targets without repetition. Here they are: 

                        BoR[AdrW], M1[Adr1], PC, Adr0, Adr1, Ext_in. (1.1) 

Next, we construct the graph of incompatibility (Fig. 1.21: 

1. Each vertex of this graph is a target from (1). 
2. We connect two vertices (targets) by edge (line) if these two targets 

are together in the same microinstruction in the set of parallel micro-
operations (as Adr1 and BoR[AdrW] in Y4, Adr1 and M1[Adr1] in 
Y7, Y18 and Y20, Adr1 and Ext_in in Y21 and Adr0 and Ext_in in 
Y22 in Fig 1.20). 
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Fig. 1.21 Graph of incompatibility 

From the connection graph  (Fig. 1.18,b) write sources for each target (vertex). 
For example, we write (bor1, bor2, ir2, inpr, m1, ralu) next to vertex (target) bor 
because bor is written 6 times with the sources bor1, bor2, ir2, inpr, m1, ralu in 
the connection graph in Fig. 1.18,b. Here we use the abbreviations bor1, bor2 for 
BoR[AdrR1], BoR[AdrR2] and bor for BoR[AdrW]. 

If two vertices (targets) are connected by edge in this graph we cannot pass in-
formation to these targets through the same MUX because these targets are written 
together in some set of concurrent microoperations with different sources. For ex-
ample, target adr1 cannot be acquired from the same MUX with ext_in, bor and 
m1 since adr1 is connected with these vertices by arcs. However, adr0 can be ac-
quired from the same MUX with adr1, m1, pc or bor – adr0 is not connected with 
them in the graph of incompatibility. 

To find the minimal number of MUXes in our design we must color this graph 
with a minimal number of colors in such a way that each two connected vertices are 
colored by different colors. The targets (vertices) colored by the same colors will be 
received from the same MUXes and the number of MUXes will be equal to the 
number of colors. And we will use mux1, mux2, … as colors for such a coloring. 

Table 1.3 Coloring process for our Processor 

Vertices Forbidden vertices Colors 

adr1 ext_in, m1, bor mux1 

ext_in adr1, adr0 mux2 

adr0 ext_in mux1 

bor adr1 mux2 

m1 adr1 mux2 

pc - mux1 
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The coloring process is presented in Table 1.3. It is reasonable to order vertices in 
such table according to their ranks – to the decreasing number of edges connected with 
each vertex (three such edges for adr1, two edges for ext_in, one edge for adr0, bor and 
m1 and zero edges for pc). We place these vertices in the column Forbidden vertices. 

We color the first vertex adr1 with color mux1. Since the second vertex ext_in is 
connected to adr1 (ext_in has adr1 in the column Forbidden vertices), we cannot 
color ext_in with the same color mux1. We color adr0 with the same color mux1 be-
cause adr0 does not contain adr1 in the second column of Table 1.3. We cannot col-
or bor, and m1 with mux1 because these vertices are connected with vertex adr1. 
Continue until the end of the list with color mux1 we use this color for pc.  

In the next step, taking color mux2 for ext_in, we go down the list and color bor 
and m1 with mux2. Now all vertices are colored. The total number of MUXes 
(colors) is equal to two.  

Thus, we got the outputs of MUXes by coloring process. To get inputs to these 
MUXes we should refer to the connection graph in Fig. 1.18,b. Let us discuss 
MUX1 with outputs Adr1, Adr0 and PC. We go along the last but one column tar-
gets in this figure and search for target Adr1. The first time Adr1 appears as a tar-
get with source Ext_Adr and the target weight equal 2 (last column). So we in-
clude ext_adr as an input with input weight equal to 2 (Fig. 1.22,a). Then we 
continue to descend and find Adr1 with source IR2, its target weight is equal to 2 
as well. We put the second input to MUX1. Going down with source Adr1 we find 
the third input x”ffff” (weight = 1).   

Recall that the weight of microoperation Adr := Ext_Adr is equal to the number 
of appearances of this microoperation in the combined functional ASM. This 
means that Ext_Adr is used twice as the source for target Adr, or which is the 
same, Adr is twice the target for Ext_Adr. Thus, when we talk about a pair 
(source, target), their weights are equal. On the other hand, the weight in the left 
column of Fig. 1.18,b is the total weight of the source for all targets. For example, 
weight 4 on the left of IR2 is the sum of corresponding weights of source IR2 with 
all targets written on the right side. The zero weight there means that the direct 
connection is used for the corresponding transfer. 

Now we should repeat the same for target Adr0. The first appearance of Adr0 in 
column targets is with input Ext_Adr, target weight 2. Since we already have such 
input in MUX1, we add the new weight 2 to the old weight 2 (the weight of input 
Ext_Adr became equal to 4) and write Adr0 over the arrow for Ext_Adr near Adr1 
to show that this source Ext_Adr sends information to Adr1 and Adr0 using 
MUX1 (Fig. 1.22,b). Coming down with target Adr0, we insert one more input PC 
with weight 2. Execution the same procedure for target PC gives us the final  
picture of MUX1 in Fig. 1.22,c.  

Continuing in the same way, we constructed MUX2 in Fig. 1.22,d. Note, that 
the same input can appear in the different MUXes if such input has several targets 
distributed between several MUXes. For example, ir2 sends information to Adr1 
and PC through MUX1, and to BoR – through MUX2. Inputs PC and BoR2 occur 
in both MUXes as well. We will talk about the input encoding later. 
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Fig. 1.22 Constructing MUXes for our Processor 

Fig 1.23 presents the connection graph for 4-bit transfers. The corresponding 
graph of incompatibility contains only one vertex AdrW. The list of Parallel mi-
crooperations prior to considering direct connections is shown in Fig. 1.24.  

 

             weight : sources      targets : weight 

                  1 : IR1(12-15)     AdrR2 : 0 

                                     AdrW  : 1 

                  5 : IR1(8-11)      AdrR1 : 0 

                                     AdrW  : 5 

Fig. 1.23 Connection graph for 4-bit transfers as a list 

           Y2      : y3      AdrR1:=IR1(8-11)   d 

                     y4      AdrR2:=IR1(12-15)  d 

           Y6      : y1      AdrW:=IR1(8-11)     

                     y4      AdrR2:=IR1(12-15)  d 

           Y8      : y3      AdrR1:=IR1(8-11)   d 

                     y17     AdrW:=IR1(12-15) 

Fig. 1.24 Parallel microoperations for 4-bit transfers 
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After considering direct connections, we will find that there are no parallel mi-
crooperations for 4-bit transfers. Thus, we get one MUX3 presented in  
Fig. 1.25. 

 

Fig. 1.25 Main MUX for 4-bit transfers 

Data Path for our example is presented in Fig. 1.26. The dotted lines corres-
pond to direct connections. To clear this picture up we removed wires for two sig-
nals – reset asynchronous (rst) and clock (clk). Thus, we finished the system de-
sign for Data Path. What have we got? We have got a “naked Data Path” – it 
means that our Data Path doesn’t contain “cloud circuits”. 

1.4   Control Unit Design 

1.4.1   Transformation of Functional ASM into Structural ASM 

Our next step is design of the Control unit for our Processor. For this, let us return to 
the process table (Table 1.2) and implement each functional microoperation from the 
third column by structural microoperation (or by the set of structural microopera-
tions) in the fifth column of this table. Once again, we will postpone consideration 
of input encoding for MUXes and will use codes from Fig. 1.22,cd and Fig. 1.25. 

Let we have a functional microoperation A := B. To implement this assignment 
we must read information from B and write it to A. Now we will discuss reading 
and writing information in our design.  

Read1. When source B is a combinational circuit or a register, we should not 
supply special signals to read information from such devices. This information is  
always at its output. Examples: 

RALU := ALU; zf := z; (reading from combinational circuits). 
Adr1 := IR2; BoR[AdrW] := InpR; (reading from registers). 

Read2. Source B is BoR (Block of Registers). BoR has two outputs BoR[AdrR1] 
(bor1) and BoR[AdrR2] (bor2). To choose the register from BoR, the Control unit 
should give address to AdrR1 or AdrR2 (or to both of them) and send information 
from the output(s) to the target. Examples: 
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AdrR2 := IR1(12-15); ALU2 := BoR[AdrR2]; 
AdrR1 := IR1(8-11); OutR := BoR[AdrR1]. 

out
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Fig. 1.26 Data Path 

Read3. Source B is a memory (M0 or M1). As B is a memory, Processor should 
send an address to the address bus Adr0 for M0 or Adr1 for M1 and rdwr0 := 0 for 
M0 or rdwr1 := 0 for M1. Then the corresponding word of the memory M0[Adr0] 
or M1[Adr1] will appear at the output of M0 or M1. Examples: 

Adr0:=PC; IR1:=M0[Adr0]; 
Adr1 := Ext_Adr; Ext_in := M1[Adr1]. 
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Write1. Target A is a register. To write information from the source to the register 
we should supply signal reg_en := 1 for direct connection or pass this information 
from the source to the input of the register through the MUX and supply the same 
signal reg_en := 1. Examples: 

OutR := BoR[AdrR1]; PC := IR2. 

Write2. Target A is BoR. In our Processor we write source B into BoR by using 
AdrW (see Fig. 1.2 (BoR)) and signal bor_en := 1. Examples: 

AdrW:=IR1(8-11); BoR[AdrW]:=IR2; 
AdrW:=IR1(8-11); BoR[AdrW]:=M1[Adr1]. 

Write3. Target A is a memory. To write information to the memory from some 
source we must provide an address to the address bus Adr0 for M0 or Adr1 for M1 
and rdwr0 := 1 for M0 or rdwr1 := 1 for M1. The information from the input of 
the memory will be written into the memory word with a given address.  
Examples: 

Adr0:=Ext_Adr; M0[Adr0]:=Ext_Out; 
Adr1:=x"FFFF"; M1[Adr1]:=PC. 

Let us discuss several examples of transformation of functional microinstructions 
into structural ones in Table 1.2.. Really, it is very similar to the  
transformation in our first structure – see Fig. 1.14 and Fig. 1.15. 

 
1. PC := IR2. Case Read1 – Write1 (row Y11, column 3).  

To pass information from IR2 to the input of PC through MUX1 (see Fig. 1.22,c or 
Fig. 1.26) we must send signal ctr_mux1 := 001, because input ir2 of MUX1 has code 
001. The signal pc_en := 1 will write information from the output of MUX1 into PC. 
Finally we use the following microoperations at the structure level: 

ctr_mux1 := 001; pc_en := 1. 

2. AdrW := IR1(8-11); BoR[AdrW] := InpR. Case Read1 – Write2 (row Y13). 
To pass information from IR1(8-11) to the input AdrW of BoR through MUX3 

we must supply signal ctr_mux3 := 0, because input IR1(8-11) of MUX3 has code 
0 (Fig. 1.25 or Fig. 1.26). To pass information from InpR to the input of BoR 
through MUX2 we must supply signal ctr_mux2 := 0100, because input inpr of 
MUX2 has code 0100 (Fig. 1.22,d or Fig. 1.26). The signal bor_en := 1 will write 
information from the output of MUX2 into the register of BoR with address AdrW. 
Finally we use the following microoperations at the structure level: 

ctr_mux3 := 0; ctr_mux2 := 0100; bor_en := 1. 

3. Adr1 := x”FFFF”; M1[Adr1] := PC. Case Read1 – Write3 (row Y18). 
The content of PC should be written to the word of memory M1 with address 

x”FFFF”. To pass information from the constant x”FFFF” to the address bus 
Adr1 of the M1 through MUX1 we must supply signal ctr_mux1 := 101, because 
input x”ffff” of MUX1 has code 101 (Fig. 1.22,c or Fig. 1.26). To pass information 
from PC to the input of memory M1 through MUX2 we must supply signal 
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ctr_mux2 := 1001, because input pc of MUX2 has code 1001. The signal 
rdwrM1 := 1 will write information from the output of PC into the cell of the M1 
with address X”FFFF”. Finally we use the following microoperations at the  
structure level: 

ctr_mux1 := 101; ctr_mux2 := 1001; rdwrM1 := 1. 

4. AdrR2 := IR1(12-15); PC:=BoR[AdrR2]. Case Read2 – Write1 (row Y10). 
To pass information from BoR2 (BoR[AdrR2]) to PC through MUX1 we must 

give signal ctr_mux1 := 100, because input bor2 of MUX1 has code 100. IR1(12-15) 
is connected directly with AdrR2 so we do not need special signal for the first as-
signment. The signal pc_en := 1 will write information from the output of MUX1 in-
to PC. Finally we use the following microoperations at the structure level: 

ctr_mux1 := 100; pc_en := 1. 

5. AdrR1 := IR1(8-11); AdrW := IR1(12-15); BoR[AdrW] := BoR[AdrR1]. Case 
Read2 – Write2 (row Y8). 

To pass information from BoR1 (BoR[AdrR1]) to BoR through MUX2 we must 
give signal ctr_mux2 := 0000. To write information to the register with the second 
address (IR1(12-15)) we should send this address to the input AdrW of BoR 
through MUX3 (ctr_mux3 := 1). The signal bor_en := 1 will write information 
from the output of MUX2 into the register of BoR with the second address. Finally 
we use the following microoperations at the structure level: 

ctr_mux3 := 1; ctr_mux2 := 0000; bor_en := 1. 

6. Adr0 := PC; IR2 := M0[Adr0]. Case Read3 – Write1 (row Y25). 
The content of the word in the memory M0 with the address in PC should be 

written into IR2. To pass information from PC to the address bus Adr0 of memory 
M0 through MUX1 we must supply signal ctr_mux1 := 010, because input pc of 
MUX1 has code 010. The signal rdwrM0 := 0 will read information from the cell of 
M0 with address Adr0 equal to PC. Because memory M0 is connected directly with 
the input of IR2 (see Fig. 1.18,b and Fig. 1.26), no MUX is used to pass information 
from M0 to IR2. To write information into IR2 it is sufficient to supply signal 
ir2_en := 1. Finally, we use the following microoperations at the structure level: 

ctr_mux1 := 010; rdwrM0 := 0; ir2_en := 1. 

7. Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1]. Case Read3 – 
Write2 (row Y4). 

The content of the word in memory M1 with the address in IR2 should be writ-
ten into the register of BoR with address in IR1(8-11). For this we should send this 
address to the input AdrW of BoR through MUX3 (ctr_mux3 := 0). To pass  
information from IR2 to the address bus Adr1 of M1 through MUX1 we must give 
signal ctr_mux1 := 001, because input ir2 of MUX1 has code 001. The signal 
rdwrM1 := 0 will read information from the word of memory M1 with address 
Adr1 equal to IR2. To pass information from the memory M1 to the input of BoR 
through MUX2 we must supply signal ctr_mux2 := 0001, because input m1 of 
MUX2 has code 0001. The signal bor_en := 1 will write information from the 
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output of MUX2 into the register of the BoR with the first address. Finally we use 
the following microoperations at the structure level: 

ctr_mux1 := 001; ctr_mux3 := 0; ctr_mux2 := 0001; rdwrM1 := 0; bor_en := 1.  

In this manner, we have filled the whole fifth column “Structural Microoperations” 
of Table 1.2. 

1.4.2   Synthesis the Finite State Machine (FSM) from ASM 

We use Algorithmic state machines to describe the behavior of digital systems, 
mainly of their control units. But if we must construct a logic circuit of the control 
unit we should use a Finite state machine (FSM). We will shortly consider a me-
thod of synthesis of FSM Mealy implementing a given ASM. As an example we 
will use ASM G1 in Fig. 1.27.  A Mealy FSM for a given ASM may be  
constructed in two stages [7]:  

Stage1. Construction of a marked ASM;  

Stage 2. Construction of an FSM transition table.  

At the first stage, the inputs of vertices following operator vertices are marked by 
symbols a1, a2, …, aM as follows: 

1. Symbol a1 marks the input of the vertex following the initial vertex “Begin” 
and the input of the final vertex “End”; 
2. Symbols a2, …, aM mark the inputs of all vertices following  operator vertices; 
3. Vertex inputs are marked only once; 
4. Inputs of different vertices, except the final one, are marked by different symbols. 
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Fig. 1.27 ASM G1 marked for the Mealy FSM synthesis 
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Marked ASM G1 in Fig. 1.27 is a result of the first stage. At the second stage, we 
will consider the following transition paths in the marked ASM: 

sgmmRmm aYxxa ~...~
1                                                      (P1) 

11
~...~ axxa mmRmm                                                         

 (P2) 

Next we construct an FSM Mealy with states (marks) a1, …, aM, obtained at the 
first stage. We have six such states a1, …, a6 in our example. FSM has a transition 
from state am to state as with input X(am, as)  and output Yg if, in ASM, there is 
transition path P1  

                              sgmRmm aYxxa
m

~...~
1 .     

Here X(am, as) is the product of logical conditions written in this path:  

                              X(am, as) = mmRm xx ~...~
1 . 

For the second transition path P2, FSM transits from state am to the initial state a1 
with input X(am, a1)  and output Y0 which is the operator containing an empty set 
of microoperations.  

Fig. 1.28 present the transition table of FSM, constructed from ASM in  
Fig. 1.27. Each row of this table corresponds to one transition path P1 or P2. We 
remind you that if some microinstruction, for example, Y5 = {y1, y3} is written in 
the operator vertex, it means that y1 = y3 = 1 and other microoperations are equal 
to zero. Our understanding of output signals in FSM is just like this. If y1 and y3 
are written in the column for output signals (see row 1, column 4 in Fig. 1.28), on-
ly these signals are equal to one at the transition from a1 to a2 with the input sig-
nal x1*x2*x3, but other output signals are equal to zero.  

a1   a2   x1*x2*x3    y1y3      1 
a1   a3   x1*x2*~x3   y6y7      2 
a1   a2   x1*~x2      y1y2      3 
a1   a4   ~x1         y4        4 
a2   a2   x4*x1       y8y9      5 
a2   a6   x4*~x1      y3y4      6 
a2   a4   ~x4         y4        7 
a3   a6   1           y3y4      8 
a4   a5   x5          y5y6y7    9 
a4   a2   ~x5*x1      y8y9      10 
a4   a6   ~x5*~x1     y3y4      11 
a5   a2   x6          y8y9      12 
a5   a1   ~x6*x7      y3y6y10   13 
a5   a1   ~x6*~x7     --        14 
a6   a1   x6          y6y7      15 
a6   a6   ~x6         y3y4      16 

Fig. 1.28 FSM constructed from ASM in Fig. 1.27 
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In consideration of this, let us continue to fill in Table 1.2. In the sixth column 
of this table, we write only assignments, which assign “ones” to the signals in the 
fifth column of Table 1.2. Doing this we present each vector signal (control signal 
of MUX) as a set of separate binary components and we write assignments only 
for components equal to one. Look, for example, at microinstruction Y4 in Table 
1.2. In the fifth column, the following structural microoperations are written: 

ctr_mux1 := 001; ctr_mux3 := 0; ctr_mux2 := 0001; rdwrM1 := 0; bor_en := 1. 

We write in the column 6: 

ctr_mux1(2) := 1; ctr_mux2(3) := 1; bor_en := 1. 

In this column, we do not write ctr_mux1(0) := 0, ctr_mux1(1) := 0, ctr_mux3 : 
= 0, ctr_mux2(0) := 0, ctr_mux2(1) := 0, ctr_mux2(2) := 0 and rdwrM1 := 0,  
because zeroes are assigned in these microoperations. 

1.4.3   Synthesis of Control Unit (FSM) for Processor 

The combined structural ASM is presented in Fig. 1.29.  
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Fig. 1.29 Combined structural ASM 
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This ASM was constructed from functional ASM (Fig. 1.13) by replacing the 
functional microoperations in operator vertices, written in column 3 of Table 1.2 
by structural microoperations from the column last but one in this table. As 
graphs, these two ASMs are absolutely identical. They have the same conditional 
and operator vertices and the same arcs (connections between these vertices), only 
the contents of operator vertices were changed in the structural ASM. 

In the last column of Table 1.2, the microoperations from the previous column are 
numbered by y1, y2, …, y26. From the structural ASM at Fig. 1.29 we constructed 
ASM in Fig. 1.30. To do this, we replace each microoperation in operator vertex by its 
number from the last column of Table 1.2. The list of logical condition in this ASM is 
shown in Fig. 1.31. This list is the same for the functional and structural ASMs. 

We use ASM in Fig. 1.30 to construct FSM Mealy in Fig. 1.32. Note, that this 
FSM has only 9 states whereas ASM in Fig. 55 has vertex Begin, vertex End and 
28 operator vertices. 

Thus, we constructed Data path and Control unit. Our next step is to combine 
two components – Control unit and Data path in one final block. The top level of 
our design is presented in Fig. 1.33. 

 

Fig. 1.30 Structural ASM marked by states 
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x1 : R x10  : FGO
x2 : DMA x11  : IR1(0)
x3 : S x12  : IR1(1)
x4 : IR1(7) x13  : IR1(2)
x5 : IR1(5) x14  : IR1(3)
x6 : zf x15  : IR1(4)
x7 : vf x16  : Ext_RdWr
x8 : cf x17  : M
x9 : FGI x18  : IEN

Fig. 1.31 Logical conditions 

a1 a1   x3*x2*x16*x17                            y2y11           1 
a1 a1   x3*x2*x16*~x17                           y23             2 
a1 a1   x3*x2*~x16*x17                           y9              3 
a1 a1   x3*x2*~x16*~x17                          y2y9            4 
a1 a4   x3*~x2*x1                                y8y9y10y11y13   5 
a1 a5   x3*~x2*~x1                               y21y25          6 
a1 a1   ~x3                                      --              7 
a2 a1   x18*x9                                   y24             8 
a2 a1   x18*~x9*x10                              y24             9 
a2 a1   x18*~x9*~x10                             --              10 
a2 a1   ~x18                                     --              11 
a3 a2   1                                        y1y2y3          12 
a4 a1   1                                        y8y14y20y21y22  13 
a5 a8   1                                        y15             14 
a6 a9   1                                        y15             15 
a7 a2   1                                        y15             16 
a8 a2   x12*x11*x15*x13                          y20             17 
a8 a2   x12*x11*x15*~x13*x14                     y17y18          18 
a8 a7   x12*x11*x15*~x13*~x14*x10                y15             19 
a8 a1   x12*x11*x15*~x13*~x14*~x10*x18*x9        y24             20 
a8 a1   x12*x11*x15*~x13*~x14*~x10*x18*~x9       --              21 
a8 a1   x12*x11*x15*~x13*~x14*~x10*~x18          --              22 
a8 a2   x12*x11*~x15*x13                         y19             23 
a8 a2   x12*x11*~x15*~x13*x14                    y1y3y16         24 
a8 a7   x12*x11*~x15*~x13*~x14*x9                y15             25 
a8 a1   x12*x11*~x15*~x13*~x14*~x9*x18*x10       y24             26 
a8 a1   x12*x11*~x15*~x13*~x14*~x9*x18*~x10      --              27 
a8 a1   x12*x11*~x15*~x13*~x14*~x9*~x18          --              28 
a8 a6   x12*~x11*x5                              y21y26          29 
a8 a2   x12*~x11*~x5*x14*x15                     y13y14          30 
a8 a2   x12*~x11*~x5*x14*~x15*x8                 y13y14          31 
a8 a1   x12*~x11*~x5*x14*~x15*~x8*x18*x9         y24             32 
a8 a1   x12*~x11*~x5*x14*~x15*~x8*x18*~x9*x10    y24             33 
a8 a1   x12*~x11*~x5*x14*~x15*~x8*x18*~x9*~x10   --              34 
a8 a1   x12*~x11*~x5*x14*~x15*~x8*~x18           --              35 
a8 a2   x12*~x11*~x5*~x14*x15*x7                 y13y14          36 
a8 a1   x12*~x11*~x5*~x14*x15*~x7*x18*x9         y24             37 
a8 a1   x12*~x11*~x5*~x14*x15*~x7*x18*~x9*x10    y24             38 
a8 a1   x12*~x11*~x5*~x14*x15*~x7*x18*~x9*~x10   --              39 
a8 a1   x12*~x11*~x5*~x14*x15*~x7*~x18           --              40 
a8 a2   x12*~x11*~x5*~x14*~x15*x6                y13y14          41 

Fig. 1.32 Control Unit as FSM 
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a8 a1   x12*~x11*~x5*~x14*~x15*~x6*x18*x9        y24             42 
a8 a1   x12*~x11*~x5*~x14*~x15*~x6*x18*~x9*x10   y24             43 
a8 a1   x12*~x11*~x5*~x14*~x15*~x6*x18*~x9*~x10  --              44 
a8 a1   x12*~x11*~x5*~x14*~x15*~x6*~x18           --            45 
a8 a3   ~x12*x13*x11                              y4y5y6y7      46 
a8 a3   ~x12*x13*~x11                             y4y5y6y7      47 
a8 a3   ~x12*~x13*x11*x14                         y4y5y6y7      48 
a8 a6   ~x12*~x13*x11*~x14*x5                     y21y26        49 
a8 a2   ~x12*~x13*x11*~x14*~x5*x15                y3y12         50 
a8 a2   ~x12*~x13*x11*~x14*~x5*~x15               y1y3y9        51 
a8 a3   ~x12*~x13*~x11                            y4y5y6y7      52 
a9 a2   x15*x11                                   y8y11         53 
a9 a2   x15*~x11*x7                               y8y14         54 
a9 a2   x15*~x11*~x7*x14                          y8y14         55 
a9 a1   x15*~x11*~x7*~x14*x18*x9                  y24           56 
a9 a1   x15*~x11*~x7*~x14*x18*~x9*x10             y24           57 
a9 a1   x15*~x11*~x7*~x14*x18*~x9*~x10            --            58 
a9 a1   x15*~x11*~x7*~x14*~x18                    --            59 
a9 a2   ~x15*x11*x4                               y3y10         60 
a9 a2   ~x15*x11*~x4                              y3y8y9        61 
a9 a2   ~x15*~x11*x14*x8                          y8y14         62 
a9 a1   ~x15*~x11*x14*~x8*x18*x9                  y24           63 
a9 a1   ~x15*~x11*x14*~x8*x18*~x9*x10             y24           64 
a9 a1   ~x15*~x11*x14*~x8*x18*~x9*~x10            --            65 
a9 a1   ~x15*~x11*x14*~x8*~x18                    --            66 
a9 a2   ~x15*~x11*~x14*x6                         y8y14         67 
a9 a1   ~x15*~x11*~x14*~x6*x18*x9                 y24           68 
a9 a1   ~x15*~x11*~x14*~x6*x18*~x9*x10            y24           69 
a9 a1   ~x15*~x11*~x14*~x6*x18*~x9*~x10           --            70 
a9 a1   ~x15*~x11*~x14*~x6*~x18                   --            71 

Fig. 1.32 (continued) 

Table 1.4 The process table with poor encoding for input bor1 of MUX2 

Y7 y12 

y3 

y16 

Adr1:=IR2 

AdrR1:=IR1(8-11) 

M1[Adr1]:=BoR[AdrR1] 

16 

 4 

16 

ctr_mux1 := 001 

ctr_mux2 := 0000 

rdwrM1 := 1 

ctr_mux1[2] := 1 

rdwrm1:= 1 

ctr_mux2[0] := 1 

ctr_mux2[1] := 1 

ctr_mux2[2] := 1 

ctr_mux2[3] := 1 

Y8 y3 

y17 

y18 

AdrR1:=IR1(8-11) 

AdrW:=IR1(12-15) 

BoR[AdrW]:=BoR[AdrR1] 

 4 

 4 

16 

ctr_mux3 := 1 

ctr_mux2 := 0000 

bor_en := 1 

ctr_mux3 := 1 

bor_en := 1 

ctr_mux2[0] := 1 

ctr_mux2[1] := 1 

ctr_mux2[2] := 1 

ctr_mux2[3] := 1 
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STRUCT
DP

clkclk
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ctr_mux1
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vf_en
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pc_count

fgi_reset
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r_set

ien_reset
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fgo
fgi
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r
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zf
vf
ir1(0-5, 7)
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ext_out
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data_in

inpr_en
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data_out

y 13
y 21

y 8

3ctr_mux1(0)
ctr_mux1(1)
ctr_mux1(2)

y 10
y 1
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ctr_mux2(1)
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y 23

y 25
y 26
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y 5
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y 7
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y 16
y 24

y 20

x 10
x 9

x 18
x 1

x 11
x 12

7ir1(0)
ir1(1)
ir1(2)
ir1(3)
ir1(4)

x5
x 4

ir1(5)
ir1(7)

clk

rst

s

ext_rdwr

dma

ext_adr 16

ext_out 16

ext_in 16

fgi_set

inpr_en

data_in16

fgo_set

data_out16

CPU

y 22

y 2 ctr_mux2(2)

y 2
y 17
y 19

x 16

x 2

x 3

x8
x6
x 7

x 13
x14
x15

u1_fsm
u2_dp

y 9 ctr_mux2(3)

y 12 ctr_mux3

rdwrm1y11

fgo_reset

mx 17

 

Fig. 1.33 Top level of Processor 

1.4.4   Encoding of Inputs of MUXes 

Our goal in this process is to minimize the number of outputs y1, …, yN in FSM  
table or, which is the same, in the Control unit. To explain this, we appeal to the 
rows with microinstructions Y7 and Y8 in Table 1.2. We used code 0000 for input 
bor1 (BoR[AdrR1]) in MUX2 and therefore the components of vector ctr_mux2 
didn’t appear in the sixth column of Table 1.2 when we turned from the structural 
microinstructions (column 5) to the minimized structural microinstructions  
(column 6). If, for example, we used code 1111 for the same input bor1 of MUX2, 



1   Digital System Design 39
 

we would get ctr_mux2 := 1111 instead of ctr_mux2 := 0000 in the same rows  
(see Table 1.4). This leads to appearance of the eight additional rows in the sixth 
column of Table 1.4 (ctr_mux2(0) := 1, ctr_mux2(1) := 1, ctr_mux2(2) := 1, 
ctr_mux2(3) := 1), twice for all of them. It entails eight additional outputs in the 
transition table of the finite state machine. 

To encode the inputs of MUX1 we constructed Table 1.5 where p(in) is the 
weight of each input of MUX1 in Fig. 1.22,c. The algorithm for the input encoding 
is absolutely the same as in the state assignment of FSM. First, we used the zero 
code for input ext_adr with max p(ext_adr) = 4. Then codes with one '1' are used 
for inputs ir2, pc and bor2 with the next max input weights and, finally, codes 
with two 'ones' are used for the left inputs x”fffe” and x”ffff”. In the same manner, 
we encoded inputs of MUX2 and MUX3 (see Fig.1.22,d and Fig. 1.25). 

Table 1.5 Optimal input encoding for MUX1 

input p(in) code

ext_adr 4 0 0 0 

pc 2 0 1 0 

ir2 3 0 0 1 

bor2 1 1 0 0 

x”fffe” 1 0 1 1 

x”ffff” 1 1 0 1 

1.5   Conclusions  

This Chapter presents a new methodology for high level design of complicated 
digital systems. This methodology is based on Algorithmic State Machine (ASM) 
transformations (composition, minimization, extraction, etc.), special algorithms 
for Data Path and Control Unit design and a very fast optimizing synthesis of 
FSMs as well as combinational circuits with hardly any constraints on their size, 
i.e., the number of inputs, outputs and states. Design tools supporting this metho-
dology allow us to implement, check and estimate many possible design versions 
very fast, to find an optimized decision of a design problem and to simplify the  
verification problem for digital systems. 

Problem orientation regarding the design system is nonessential – it can be a 
processor, a robot, a controller, etc. If the system is rather complicated, it is possi-
ble to pick out some subbehaviors (modes) in its behavior. For a processor it can 
be an instruction or a set of instructions that can be described together; for a  
mobile robot – its different modes (cruise, follow, avoid, escape etc.). We also 
suppose that any digital system is usually regarded as a composition of a Control 
unit and an Operational unit (Data path). In a processor, for example, a data path 
contains such regular blocks as memory, registers, ALU, counters, coders, encod-
ers, multiplexers, demultiplexers, etc. A control unit produces a sequence of  
control signals that force an implementation of microoperations in a data path. The 
design process contains the following stages. 
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Stage 1 Design ASMs G1, …,GM for each separate mode. We can present these 
ASMs in VHDL or use the special tool ASM Creator from the EDA tool Abelite 
supported by the described design methodology. In Abelite, it is very simple to 
draw an ASM and compile it in VHDL and/or several other representations. It is 
really important that an ASM may contain any number of generalized operators. 
Each of such operators is an ASM itself and it will be automatically inserted in the 
combined ASM at the fourth stage. Moreover, there are no restrictions on the 
number of such generalized operators in an ASM and on the number of included 
levels – each of such operators can contain any number of generalized operators 
itself. 

Stage 2 Combine separate ASMs into one combined functional ASM. After con-
structing separate ASMs we combine them into one combined functional ASM 
still containing generalized operators. At this stage each microoperation is  
presented at the functional level. Really, we do not have the real architecture for 
our project, we only know some units of our future Data path. Thus, microopera-
tions at this level are similar to assignments of variables in some programming 
language and are not connected with any specific Data path. During ASM combin-
ing we minimize the number of operator vertices in the combined ASM. If several 
ASMs contain the same operator vertex, there will be only one such operator  
vertex in the combined ASM. 

Stage 3 Minimize the combined functional ASM. At this stage, the number of 
conditional vertices in the combined ASM is minimized. Such minimization al-
lows us to reduce dramatically the number of vertices in the ASM (sometimes for 
two or three times) and to reduce the complexity of logic circuits at the stage of 
logic design. 

Stage 4 Include generalized operators. At this stage, generalized operators con-
structed at the first stage are included into the minimized ASM constructed at the 
previous stage. It is the last stage of the functional ASM design. 

Stage 5 Data path synthesis. First, we construct a Connection graph from the func-
tional ASM designed on Stage 4. Such a graph contains a list of sources and  
targets for each component of an operational unit and some metrics that will be 
used in the optimization of the Data path. Next we construct an optimized List of 
parallel microoperations to increase the speed of the design system. Then we de-
sign the Graph of incompatibility from the Connection graph and the List of paral-
lel microoperations. On the final step of Data path synthesis we construct Muxes 
(by coloring the Graph of incompatibility) and the List of direct connections from 
the Connection graph. 

Stage 6 Control unit design. Using the functional ASM (stage 4) and the Muxes 
and the List of direct connections (stage 5) we immediately construct the structural 
ASM. This ASM describes the behavior of the Control unit corresponding to the 
Data Path. On the last step of this stage we construct the Finite state machine and 
its multilevel logic circuit. 
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Stage 7 VHDL code design. The Data path constructed according to our design 
methodology does not contain any “cloud” (irregular) circuits. It makes it possible 
to simplify considerably VHDL or Verilog code for the Data path using the struc-
ture style of VHDL to combine VHDL or Verilog codes of units. VHDL code for 
the Control unit can be constructed automatically. VHDL code for the top level of the 
system is the result of combining VHDL codes of the Data path and the Control unit. 
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2   Rectangular Function Π(x) and Its Application for 
Description of Some Logical Devices Operation 
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Abstract. A carrying out of the logic operations on pulses and pulse series de-
scribed by means of rectangular function Π(x) is presented in the section. The log-
ic sum, logic product, logic negation and Ex-OR operations were investigated. The 
utilizing of these operations for mathematical description of frequency multiplying 
is shown as the example of application of Π(x) function. Moreover section deals 
with the problem of rectangular function Π(x) utilization for description of opera-
tion of such logical devices as digital sine wave generators and for nonlinear dis-
tortions analyzing in such generators.  

2.1   Introduction 

For description of logic operations on pulses or pulse trains and for analysis of 
same digital devices in time domain one can use several rectangular functions. 
One of them is rectangular function Π(x) which is defined as [2,4,7]: 
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Rectangular pulse which duration time is equal to τ and which has unit amplitude 
may be expressed as: 
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and a pulse train which period is equal to T: 
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In some cases rectangular functions Π(x) are more convenient for description of a 
system operation or for system designing then for example Haar functions or very 
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popular Walsh functions. Below there are examples of utilisation of rectangular 
function Π(x) for mathematical description of several logical devices. 

2.2   Logic Operations on Rectangular Functions 

Let us take into account two rectangular pulses appearing in time period T (Fig.2.1): 
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Fig. 2.1 The rectangular pulses )(1 tI  and )(2 tI  

A.   Logic Sum  
Logic sum of such pulses may be written as: 
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For p2 < p1 + s1 
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In particular case p1 = p2 = 0  
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B.   Logic Product 
If p2 < p1 + s1 
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if p1 = p2  = 0 
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and for p2 ≥ p1 + s1  I1(t) ⋅ I2(t) = 0 

C.   Negation 
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D.   EX-OR (logic inequality) 
Logic inequality (Ex-OR function) may be written as: 
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Let us assume that:  
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E.   Binary Counters 
Let us consider of counting of the pulses represented by the pulse train shown  
in Fig. 2.2. 

 

Fig. 2.2 The pulse train 

Such pulse train may be expressed using function Π(x) as: 
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where: τ - pulse duration; Ti - pulse train period 

The state of the binary up-counter outputs may be written as: 
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For the same input pulse train the states of a ring counter flip-flops are  
expressed by: 
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where: n - number of counter bits 
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2.3   Utilization of the Rectangular Functions Π(x) for Analysis 
of Pulse or Frequency Multiplying 

Let it will be given pulse train described by the following expression: 
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m - integer number,   0< s < 1  
For sT < T/K pulse train which frequency is K times greater may be written as [3]: 
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Putting      p = mK + r  
where for  m = 0,1,......., ∞;           r  = 0,1,......., K-1 
one obtains the following formula: 
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which represent the sum of K trains of pulses delayed each other about T/K. The 
basic diagram of such frequency multiplier is shown in Fig. 2.3 and its second  
version with one delay block in Fig. 2.4. 

 

Fig. 2.3 Frequency multiplying circuit for sT < T/K (I version) 

Pulse train which period is equal to T and duty cycle is equal to 1/2 may be  
expressed by: 
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Fig. 2.4 Frequency multiplying circuit for sT < T/K (II version) 

A pulse train which frequency is K times greater and duty cycle equal to 1/2 may 
be written in the following form: 
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Putting p = mK + r   m = 0,1,......., ∞ 
      r = 0,1,......., K-1 

we obtain 

∑∑∏
−

=

∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +−
=

1

0 0
2

)(
)(

K

r m
K

K

T
K

T
rmKt

tF                                   (2.22) 

Taking into account (2.13) we can rewrite the above formulae in the following form: 
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Fig. 2.5 Frequency multiplying circuit for duty cycle of a pulse train equal to ½ [8] 
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As it was shown for a pulse train which duty cycle is equal to 1/2, frequency 
multiplication by K one can obtain summing modulo K pulse trains delayed each 
other about T/2K (Fig. 2.5). 

2.4   Utilizing the Function Π(x) for Harmonic Analysis of 
Digital Sine Wave Generator 

2.4.1   Digital Sine Wave Generator Based on Digital Integrators 

The generator of sinusoidal wave may be formed with digital integrators. Let us 
assume the integrator consisted of binary rate multiplier and counter. The block 
diagram of such a generator is shown in Fig. 2.6. 

 

Fig. 2.6 The block diagram of sine wave generator based on digital integrators 

Assuming big numbers N1 and N2, the system may be described by  
approximate relationships [2,5,6] given below.  
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Because maximum value of number N2 is equal to 2N0 and maximum value of 
number N0 must satisfy the following formula: 
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12 1
0 −≤ −nN                  where n - number of BRM stages. 

Due to the fact  that reversible counter does not operate normally when at its inputs 
”up” and ”down”, pulses will appear simultaneously it is necessary to introduce anti-
coincidence circuit at the counter 1 inputs the task of which is to block the pulses  
appearing simultaneously in both counting lines. 

The determination of nonlinear distortion of the output wave from the generator is 
not possible by means of approximate description given by the equations (2.24) and 
(2.25). It may be done using rectangular function Π(x) in the way presented below.  

The presence of the  k+1  clock pulse at the output of a RM may be expressed 
as [2]: 
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where: Wm(k+1) =1 - means that (k+1) clock pulse is present at the RM output 
 Nm(n-1)..Nm0   -   binary expression of a number Nm 
 Qm(n-1)..Qm0   -   binary expression of a counter state of the m-th RM 

and a new state of a RM counter may be calculated in the following way: 
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The state of the reversible counter we can write as: 

)1()1()()1( 2011 +−++=+ kWkWkNkN                              (2.28) 

On the base of the above formulas it is easy, using computer, to calculate the 
shape of N1(t) wave. In real system the number N1 is converted to the output volt-
age using D/A converter. If the conversion factor is equal to 1V the output wave 
may be shown in form presented in Fig. 2.7. 

Due to resetting of the system every half period, the wave in each half period 
has the same shape and opposite sign. As it was shown in Fig. 2.7 output wave can 
be regarded as the sum of rectangular waves ϕk (t):  
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Fig. 2.7 The output wave from the generator and the component waves 

Using the definition of the rectangular function Π(x) the wave ϕk (t) can be  
written as follows: 
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Decomposing the wave ϕk(t) into Fourier series and considering the fact that the 
complex amplitude of the nth harmonic of a sum of kp waves may be calculated as: 
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for the wave N1(t) we obtain: 
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C2n  =  0                  for even  n 

So by using the values N1(k) obtained from formulae (2.28),  it is possible to  
calculate real amplitudes of harmonics present in the wave N1(t) and the value of 
non-linear distortion factor h (Table 2.1): 

1

2
5

2
3 .......

C

CC
h

++
=

                                                            
 (2.33) 

Table 2.1 Values of N1 and non-linear distortion factor h 

N N0 2kp N1 h 
8 126 1014 125 0.0100 
9 254 3200 249 0.0051 

10 510 6245 510 0.0021 

2.4.2   Digital Sine Wave Generator Based on ROM 

The generator of sinusoidal wave which is a part of function generator or which is 
used in low and infra-low frequency range may be formed as a logical device. Let 
us take into account a generator which block diagram is shown in Fig.2.8. 
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Fig. 2.8 Digital sine wave generator 

The one half-period of a sine wave have been tabularised in the ROM memory 
in the form of Kp digitalized samples (a value of the K-th sample is equal to the 
nearest whole number to Nomax sin(Kπ/Kp)). The number of the output pulses from 
the binary rate multiplier (RM) [5,6] may be calculated as: 
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where: r - number of RM stages; k - number of input (clock) pulses to the RM; Ni 
- i-th bit of binary representation of  N number. 

This number represent additionally the state of the address counter then it im-
plicates the read-out from the memory of the sample which on the output of D/A 
converter may be denoted as U(K). Because K depends on k then it means that this 
way one can obtain the samples of U(k). It may happens - due to the rate multi-
plier operation - that for few or many successive values of number k the number K 
does not change so it means that successive U(k) does not change too.  
(see Fig.2.9).  

 

Fig. 2.9 The shape of the output wave from generator shown in Fig.2.8 

Using the definition of the rectangular function Π(x) the output wave from the 
generator may be written as follows (Ti = 1/fi; To = 2kpTi;  kp - number of clock 
pulses per one half period of output wave): 
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Decomposing the wave U(t) into Fourier series  we obtain [2,5]: 
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So by using the values U(k) it is possible to calculate real amplitudes of harmonics 
present in the wave U(t) and the value of nonlinear distortion factor. 

In particular case, when the frequency does not have to be controlled digitally 
the digital generator of sine wave may have the form presented in the Fig. 2.10.  

 

Fig. 2.10 The sine wave generator with uniformly sampled output wave 

 

Fig. 2.11 The shape of the output wave from generator shown in Fig. 2.10 
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An output wave from such generator has a form of uniformly sampled sine 
wave and next reproduced in a 0-rank extrapolator (see Fig.2.11). 

In this case To = 2KpTi,  Kp  - number of clock pulses per one half period of  
output wave and U(k)=Um sin(kπ/Kp). The output wave may expressed as: 
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and spectrum may be calculated as: 
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Because  ωοKpTi = π  we can the above equation rewrite as: 
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But for such n for which           
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This result was first publicized by Fulford [1] but the above proof is new. It is eas-
ier and shorter and it does not require proofing auxiliary theorem.  

Using the result (2.39) one can calculate a distortions factor on the base well 
known formula [1]: 
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Or after transformations 
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The calculated values of factor h are presented in the Table 2.2. 

Table 2.2 Values of factor h 

Kp 10 20 50 100 200 500 1000 

h 0.20 0.089 0.035 0.018 0.008 0.0035 0.002 

number 
of hamonics 

100 
the first 

and two successive non equal to zero 

2.5   Conclusions 

Rectangular function Π(x) can be well used for mathematical description of  
frequency multiplication process carried-out by means of logic gates. The delay 
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modules used in such circuits create a certain problem. They limits of using of 
these frequency multipliers to the cases in which input frequency does not change 
or the changes are small. It is easy to notice that in the same way one can describe 
and analyse, for example, pulse multiplication, pulse counting and other  
operations on pulses or pulse trains. 

Rectangular function Π(x) can be also used for mathematical description such 
devices as digital generators and digital frequency multipliers. Apart from this 
function Π(x) may be used for carrying-out logic operations on pulses and pulse 
trains, for counting process description and so on. This function gives the possibil-
ity to carry out this description in time domain what may be convenient, in some 
practical cases.  
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Abstract. Theoretical bases of construction and designing of the PLD–based re-
configurable devices, including the new formalized design techniques of construc-
tion and dynamic reconfiguration of architecture and structure of digital devices 
with a high degree of reconfiguration, corresponding with properties of perform-
ing algorithms, constructive and technological features PLD, and also tool means 
of their designing, are presented. Bases of the theory of adaptive logic networks, 
intended for the solution of a wide class of tasks by direct structural realization of 
algorithms of processing and direct representation of input data to output data by 
functional and structural customization for universal components of a network, are 
developed. Synthesis algorithms of adaptive logic networks on the classes of tasks 
set are developed. Design techniques of the computer systems with using of the 
standard CAD PLD (ISE Foundation) are developed. The structure of the reconfi-
gurable computer system  with the open library of configuration files for basic pa-
rametrical blocks, including the threshold device, Hemming adder, sorting  
devices, median filters, matrix multipliers etc. are designed. 

3.1   Introduction 

The level of development and manufacture of products of high technologies 
among which one of leading places is occupied by tools of computer engineering 
(CE), appreciably defines technological progress of many industries. Now scien-
tific researches and practical development in the field of CE on perspective ele-
ment base, i.e. microprocessors, microprocessor complete sets and systems on the 
chip in a combination to the LSI circuit of memory and Programmable Logic De-
vices (PLD) are called to satisfy requirements of the broad audience of users are 
carried out and to put in pawn bases of development of new effective means of 
computer engineering. 

Development of batch production VLSI demands greater expenses both for de-
velopment, and for the equipment for their manufacturing. In the schemes realized 
by a method of printed circuit, change to bring difficultly enough, and in the 
schemes executed in the form of the LSI and VLSI, any, in advance not stipulated 
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changes, are impossible in general. It not only limits opportunities of their  
specialization for concrete applications, but also prospects of modernization, ex-
pansion with addition of new functions, modification in algorithm of functioning. 
Therefore one of actual requirements to modern digital systems and devices is in-
crease of their adaptability (flexibility). The basic direction of increase of an adap-
tability of devices (systems) now is specialization of digital devices by  
programming their structure. 

The first theoretical researches, devoted to synthesis reconfigurable devices, 
concern to the beginning of 60th years. Base work [1] on the organization reconfi-
gurable computer, presented it as two basic parts: a constant – a computer with 
fixed structure, and a variable – in the form of a set of computers which can re-
construct the structure by means of the program. It promoted occurrence of a new 
direction in computer facilities on designing reconfigurable devices with virtual 
(programmed) architecture on the basis of PLD – Reconfigurable Computing 
(RC). The term “Reconfigurable Computing” generally designates two-uniform 
concept: as reconfigurable structure of a computer (hardware), and the process of 
data processing which is performed by a computer. The significant contribution to 
development of the given problematic was brought also with works [2–6]. 

Also subject domains in which reconfigurable computer systems (RCS) have 
found the "lawful" niches were defined and continue to develop intensively. It is 
first of all: 

• The hardware systems guaranteeing safety of control by especially important 
objects; 

• Complex physical experiments with modeling and management in real time; 
• Effective digital processing of high-frequency signals; 
• Acceleration of tool means of the automated designing of objects of new  

techniques and technologies; 
• Emulation and designing of wireless communication systems, etc. 

Importance and perspectives of the specified scopes testify to urgency of direction 
Reconfigurable Computing and the problems connected with development of 
technology RC. 

Application of PLD gives an opportunity to realize structures of devices with 
dynamic reconfiguration and by that to solve problems of effective adjustment for 
the set algorithm, survivability and reliability. Reconfigurability – property of  
system to redefine set of hardware and connections between them in conformity 
algorithm of functioning. New physical principles and technical opportunities of 
microelectronic components are, in turn, a source of new principles of  
construction and new architecture of modern means CE. 

Most a wide circulation has received PLD two types: CPLD – Complex  
Programmable Logic Devices; FPGA – Field Programmable Gate Array [7]. 

CPLD consists of set of PAL–like functional blocks (36V18) which contain 
macrocells and incorporate a matrix of switching to blocks of input-output. Use of 
FastFLASH-technology allows realizing intrasystem programming with non-
volatile storage of configuration data. Feature CPLD is predictability of delays of 
the signals. 
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Architecture FPGA generally represents a matrix of logic cells – configurable 
logic blocks (CLB), surrounded by peripheral cells – Input/Output Blocks (IOB). 
Connections between cells are carried out by means of programmed matrixes of 
interconnections. Everyone CLB contains the combinational logic part, remember-
ing element and internal blocks of management and trace. A basis of combination-
al part CLB is high-speed static CMOS memory and for realization any  
Boolean functions the technology of Look-Up Table (LUT) is used and the delay 
of distribution of a signal through the combinational block is independent of gen-
erated function. Programmed interconnections provide all communications inside 
of a crystal. IOB provide the interface between contacts of a crystal and its  
internal components. 

Under existing forecasts, crystals Virtex series by present time should reach 
logic capacity up to 100 million logic gates (at initial 50 thousand). If first crystals 
FPGA were manufactured on technology 0,34 microns, now – 65 nanometers. 

FPGA series of type Spartan and Virtex [8] possess similar architecture. PLD 
the considered series except for the logic sold in logic cells (LC), contain block 
memory (BR) which unlike the distributed memory sold on logic cells, is built in 
and does not borrow logic resources. Memory BR is organized in the form of 
blocks, each of which represents the two-port synchronous device of various ca-
pacities depending on type FPGA. To modules of a general purpose, except for 
BR, multiplier units, and built in receiver-transmitter blocks are entered into series 
Virtex-II Pro with speed of the transfer reaching some Gbit/sec on the channel in a 
duplex mode, and also RISC-processors blocks of PowerPC type. 

3.2   Evolution of Computer Systems 

The RC grows out evolution of computer systems (CS). One of the important 
stages of evolution is creation of emulating computer systems, possessing ability 
of modification and full change of internal language. The concept of flexibility of 
architecture CS has been formulated. 

In particular, has been developed and has received practical approbation logic–
information method (LIM) designing of the microprocessor systems, uniting in it-
self theoretical concepts of the theory of digital automatic devices and theories of 
the information. Essence of LIM is illustrated by the scheme: 
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where: ),(,, 0NiRA iii =Λ  – accordingly sets of algorithms, operators and their 

information-code representations at i -th level of programming, Θ  – a set of the 
generalized characteristics (hardware resources (Q), time (t), etc.). 

Modern PLD have defined the new stage of evolution connected with creation 
high–efficiency CS. For the formalized representation of model reconfigurable 
devices updating of method LIM which is illustrated by the following scheme is 
offered: 
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(3.2)

In the scheme (3.2) for classical architecture following levels of programming are 
used: 0τ  – physical or "zero"; 1τ  – microprogrammed; 2τ  – programmed; 3τ  – 

algorithmic. Programming at a "zero" level defines physical structure of the  
device which finally realizes the set algorithm of functioning, i.e. carries out pro-
gramming structure of the device. In difference from the scheme (3.1), updating 
(3.2) realizes not microprogrammed, but hardware realization of algorithms on 
gate level. In it difference reconfigurable devices with programmable structure 
from modern computers consists. Thus the logic structure reconfigurable devices 
can dynamically vary both by preparation for the decision of a problem, and  
during computing process. 

The most widespread requirement shown to facility CS, high speed is. The giv-
en problem, in particular, arises at use of means CS for problems of management 
and modeling. At use of computers for control of moving objects, technological 
processes, fighting operations, etc., they should work with anticipation of real 
processes in operated object or, and generally speaking, in real time. There is a 
class of problems in which it is necessary to operate quickly the changing 
processes proceeding in short time intervals, and highly dynamical, quickly func-
tioning objects. Thus simultaneously with high speed maintenance of high accura-
cy of management is required. Therefore the computer for maintenance of high 
speed and accuracy of management should possess ultrahigh speed to provide si-
multaneously set accuracy and work in real time. The similar problem arises and 
at use of facility CS for modeling complex dynamic objects, and also quickly pro-
ceeding processes and the phenomena. 
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With the advent of modern crystals FPGA began possible to use the results  
received earlier for construction reconfigurable devices and systems of the raised 
complexity on the basis of PLD with completely programmed architecture. One of 
approaches for increase of productivity of facility CS is the combination  
conveyorization and parallelism.  

If frequent change of carried out functions down to new function takes place at 
each new execution, the conveyor with a dynamic configuration takes place. The 
given approach is realized in technology RC. As an example of such realization 
hypercomputer HAL (Star Bridge System Corp.) which is constructed on crystals 
FPGA can serve. During functioning crystals change the structure and functions  
is continuous at the decision of numerous computing problems in a mode of  
real time. 

Opportunities RC are introduced in supercomputers Cray XD1 with the purpose 
of increase of productivity for target appendices by use of a subsystem of accele-
ration of the appendices, based on crystals of type FPGA (Virtex–4) firm Xilinx 
which can be programmed on acceleration of key algorithms, such as search, sort-
ing, digital processing of signals, etc. the Given subsystem functions as the  
coprocessor in relation to base processor AMD Opteron. 

In Berkeley Wireless Research Center supercomputer system High-End Recon-
figurable Computing System (HERC) on crystals FPGA [9] is developed. Basis of 
HERC is system prototype BEE (Berkeley Emulation Engine) with two modules, 
intended for designing, construction and programming HERC for of some applied 
areas. In opinion of developers, use BEE the system based on processors DSP 
with similar power consumption and cost, and more than on two orders in compar-
ison with the systems realized on the basis of standard microprocessors provides 
on the order greater productivity, than. The main components of architecture – 
computing blocks and the programmed communication environment. The compu-
ting block is structurally presented in the form of the printed-circuit-board, which 
contains four crystals FPGA – processing modules with memory (up to 4 GB eve-
ryone) and one for management (the operating module). 

3.3   Architecture and Structure of PLD-Based Computer 
Systems 

The typical reconfigurable computer system (CS) consists, as a rule, of 2 parts: con-
stant (or "fixed") part F  – a Host-computer and a variable part V  – reconfigurable 
subsystem (RSS) which can be united in various configurations. The architecture of 
reconfigurable systems depends on capacities of sets of algorithms: ( FN ), carried 

out on the equipment F , and ( vN ), carried out on the equipment V . The parity of 

these sizes defines offered classification of reconfigurable computing systems: 

a) The computing systems focused on a Host-computer in which the basic compu-
ting capacities are concentrated, and reconfigurable computer provides increase 
of productivity only for a narrow class of problems 
( VFVF NN0NNN >>→→ ,, ); 
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b) The computing systems focused on RSS in which the Host-computer is used, 
basically, for performance of auxiliary functions (service, input-output), and all 
algorithms are carried out mainly in RSS which can have own field of external 
devices (through payments of expansion) or the general field of external  
devices with a Host-computer to which RSS has direct access; 

c) Reconfigurable computing systems in which a Host-computer and RSS have 
approximately identical complexity, thus RSS it is focused on the decision of 
labour-consuming problems, and the Host-computer provides strong support 
regarding translation, input-output, service, etc.; 

d) RSS is the independent device in case of NN0N VF == , , and the  

Host-computer is absent. 

RSS connects to a Host-computer through one of the standard trunks, the variants 
of connection most widespread today are realized through trunks PCI and  
PCI–Express. RSS have functional processing field (FPF) the set dimension which 
is configured for performance of the set algorithm or its part, providing, thus,  
optimum realization of this algorithm both under time characteristics, and on  
hardware expenses. 

Introduction in practice of crystals PLD and HDL–technology (Hardware  
Description Language) for performance of projects in this element basis intensi-
fied development of a wide spectrum of the digital modules representing ready 
technical decisions, essentially reducing time of designing and an output for the 
market of new products. Such opportunities of HDL–technology as hierarchical 
designing, bearableness of libraries, platform- independence, allow using available 
soft cores as macrocells for development of new technical decisions. The architec-
ture of modern crystals FPGA is optimized for use both hard and soft cores, and 
allows integrating them into projects easily. For example, crystals of Virtex type 
have in advance built in multipliers and PowerPC processors as hard cores, and  
also other functional blocks. 

In RSS, or devices with programmable architecture the functional field of the 
set dimension configured specially for performance of certain set algorithm or its 
part is fixed, providing, thus, realization of this algorithm optimum, by the set cri-
teria, by way. Adjustment of structure for performance of demanded algorithm 
and its realization in a crystal on a gated level allow increasing speed of the device 
by some orders in comparison with universal decisions. 

The algorithm can be broken into the fragments which are carried out consis-
tently in this connection, structures corresponding these fragments also are loaded 
into a crystal consistently (by way of their performance), that leads to essential 
economy of resources. Complexity of fragments of algorithm thus is defined by 
only logic capacity of a crystal, i.e. dimension of a processing field. 

Thus, reconfigurable data processing represents to a certain extent change of 
the central paradigm of designing of modern means of computer facilities. 

The model of the projected computing system is offered: 

><= PBAMS ,,, , 

where: M  – set of mathematical methods, characteristic for a subject domain,  
reflecting functioning of system; A  – set of algorithms of realization of a method; 
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}{ bB =  – the components of alphabet from which the structure is synthesized; 

P  – procedure of the description of the project (the description of object). Thus, 
process of designing consists in the decision of a problem of synthesis of structure 
on the basis of components }{ b  the alphabet B  for performance of the certain al-

gorithm A realizing a method M , underlying functioning of structure, according 
to requirements of specifications. Result of procedure P  is the description of the 
project by means language СAD. 

Synthesis of structural realization of sequence of algorithms is offered, when 

the method/problem ( M ) is represented sequence of algorithms ( n1iAi ÷=∀, ): 

U
i

iAM = . 

In RSS, the base (zero) architecture realized on chip of PLD in the form of a func-
tional processing field of fixed dimension, the controller of the trunk of a host-
computer, a field of memory, and also well structured library of configurations 
files (LCF) structural realizations of the methods (algorithms) which are carrying 
out display of algorithm in structural realization ( ii BAF ⇒: ) is initially set. 

Each algorithm has display ii BAF ⇒:  in structural realization ( iB ) which 

represents a configuration file for a crystal PLD. Generally there are some variants 
of realization of algorithm (for example, consecutive, series-parallel and parallel): 

)(, k1zBB
z

izi ÷==U . 

Each variant is characterized by parameters of speed (time of performance – izt ) 

and hardware expenses ( izq ). And we assume, that capacity of set B  is sufficient 

for realization of a wide set of algorithms. In the event that demanded realization 
of i-th algorithm in library is absent ( =iB ∅), it is necessary to create by means of 

CAD PLD it and to include as a standard element in library. Thus, the problem of 
optimization is reduced to the ordered purpose to each i-th top the column of sold 
algorithm ( izB )-th element of library with the purpose of reception of extreme 

value of some criterion of quality. I.e. any operator is displayed only by one ele-
ment from library. The structure realizing set columns is as a result defined. Then 
the decision of a problem can be received by methods of integer mathematical 
programming and, depending on demanded criterion of quality, it is possible to 
define following variants of statement of a problem of optimization. 

The problem of optimization consists in definition of a minimum of criterion 
function, and criteria of quality are total hardware expenses for realization of all 
algorithms: 

∑∑ ∑∑ ÷=∀÷=∀=β+α
i z i z

iziziziz k1zn1ixqxt ),,(min,
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under conditions of restrictions ,1x
k

1z
iz =∑

=
∑∑ ≤

i z
0iziz Qxq ∑∑ ≤

i z
0iziz Txt , 

where βα,  – weight coefficients which can be certain, for example, a method of 

expert estimations; izx  – z-th realization of i-th algorithm iA ; 0T – admissible 

time of performance of all algorithms; 0Q  – admissible hardware expenses. 

Methods of the decision of such problems are well enough developed and allow 
receiving for admissible time the comprehensible decision. 

Presented approaches are put in a basis of the generalized algorithm of design-
ing PLD-based reconfigurable devices which represents system of the intercon-
nected algorithms, the part from which is formalized and shown to statement and 
the decision of a problem of synthesis and a choice of optimum structural realiza-
tions from set, the others use heurism. Each algorithm is a separate fragment of 
designing to which the certain section of the dissertation where it is presented in 
the form of the formalized technique of designing with a theoretical substantiation 
of its basic positions and the description of methods of the decision of concrete 
applied problems of the analysis, synthesis and optimization of separate structural 
realizations is devoted. 

The algorithm of designing of the structural realizations RSS representing a Ba-
sic board (for the coprocessors connected to the standard Bus of a Host-computer) 
or Carrier board (for independent devices) with a set of expansion boards and ex-
pansion modules, or crystal PLD for realization SoC (System–on–Chip) is  
developed. The algorithm represents sequence of stages (Fig. 3.1). 

The analysis of problem area statement of a problem a choice of suitable algo-
rithm (in case of absence of a configuration file for realization of corresponding 
algorithm its synthesis with the subsequent record in LCF) from LCF imaging at a 
level of the general architecture (function chart) preparation of the formalized 
technical project programming of structure on the basis of a configuration file a 
programming of algorithm the decision of a problem an estimation of characteris-
tics of parameters (structure is carried out, process of the decision) check of para-
meters on conformity to the established criteria (if necessary following iteration) 
commissioning. The block diagram of algorithm (Fig. 3.1) provides also correc-
tion of criteria. It is analyzed features of designing of digital devices on the basis 
of PLD with use of HDL-technology and CAD PLD. 

The developed technique of designing, leaning on the given system of algo-
rithms and logical-information model RSS laying in its basis, allows to decide – to 
formalize the main task of designing process of search of optimum pair «algo-
rithm-structural realization». The technique intends for designing: the task-
oriented coprocessors and the independent devices working with the algorithms 
set; reconfigurable processors with conveyor data processing; parametrical IP-
Core for realization of the algorithms set which are represented by elements of li-
brary of configuration files; SoC. It can be modified depending on the initial task, 
a class of problems, element -technological base, etc. 
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Fig. 3.1 Algorithm of designing of the structural realizations RSS 

3.4   Adaptive Logical Network (ALN) 

The adaptive logic network is a discrete converter of codes of type of the asyn-
chronous combinational automatic device, set directed graph which tops are logic 
functions, and edges – communications between them type "output–input". 

From the point of view of topology of system ALN represents a matrix of uni-
versal logic elements (LE) which are grouped into functional units (FU) and 
blocks (FB) which site is fixed, thus change of their functioning occurs depending 
on a class of problems and from their purpose. 
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Universal LE we shall name the combinational automatic device: FnL ,= , 

where: n  – quantity of binary inputs or dimension of entrance variables LE; 

},{ ρ= fF ][
n221÷=ρ  – the totality set of Boolean functions. Universality 

LE consists in an opportunity of its adjustment for realization any Boolean  
functions. 

Structure ALN can be described by following system: 

YXDmLSFhnA ,,,,,,,,= , 

where: n – word length of input binary vectors (dimensionality of АLN on an in-

put); h – target word length ( n1h ÷= ), dimensionality of АLN on an output; 
{ }ijFF =  – set of logic functions of system; S  – structure of communications be-

tween LEs; { }ijLL =  – set LE ( i  –a serial number of element LE; j  – number of 

a level of processing); m  – quantity of levels of processing; { }dD =  – set of n-

dimensional binary vectors (training sample); X – full set of input binary vectors; 
{ }ijYY =  – the generalized function of system, ),( )(,)(, 1jw1jvijij YYfY −−=  – 

value of the function ijf sold by an element ijL , { }10Y ,∈  which structure is  

resulted on Fig. 3.2 (v, w – value of an index i for inputs LE). 

 

Fig. 3.2 Structure of universal logic element 

Each level АLN represents a ruler of LE ( ρ  inputs for all), each of which can 

be adjusted on performance of any of a full set (
ρ22 ) Boolean functions of its in-

put variables and realizes imaging of l -dimensional )( nl ≤  binary vectors into a 

u -dimensional )( ul ≥  binary vector. Matrix of LEs or FU represents the combi-

national automatic device without the memory, a having l -digit input, a u -digit 
output and m  – quantity of lines of a matrix. Within the limits of one level the 
type of function can be set for everyone LE separately (stepwise adjustment) or 
for all LEs (by the level adjustment). 
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The functional block represents a network of consistently included automatic 

devices (hierarchical assembly of l  ( m1l ÷= ) functional units). In the further we 

shall be limited to consideration of three types FB distinguished to a topological 
attribute: «rectangular matrix» (RM) – ( nh = ); «triangular matrix» (TM) – 

( 1h = ); «trapeziform matrix» (TrM) – ( )( 1n2h −÷= ). Depending on structure 

of communications following TM types are offered: with logarithmic structure of 
communications (LSC); with cellular structure of communications (CSC); with 
asymmetric structure of communications (ASC). The offered structures of com-
munication differ on capacity sold Boolean functions and to hardware resources. 

Problems of the structural organization and synthesis of multilevel structure 
ALN of type TM consists in definition of types of logic functions ijf  for all LEs 

network. For definition of set of logic functions { }ijfF =  the approach based on 

the description of a Boolean network by polynomials which factors are set, in  
particular, by means of Adamaar matrixes is used [10]. 

At coding values Boolean functions and its arguments transition to coding with 
use of values (1) and (–1) is carried out. Thus, the set of variables 

},...,,{ n21 xxxX =  for Boolean from n  variables will be represented function 

f by set },...,,{ n21 eeeE = , where ix
i 1e )( −= , and set of values 

},...,,{
1221 nyyyY −= , where },{ 10y j ∈ ; set },...,,{

1210 nvvvV −= , where 

jy
j 1v )( −= . For any Boolean functions f from n  the variables accepting values 

from set },{ 11 − , there is an equivalent polynomial )( nfP  with factors from set of 

real numbers– )()( )( XPXf nf= . Factors of a polynomial for function f  enter 

the name by means of Adamaar matrix ( ,nnn
VH

2

1
A = ), where 

},...,,{
1210 naaaA −=  – set of factors of a polynomial, nH  – Adamaar matrix 

dimension n2 , nV  – set of values Boolean functions. 

By way of illustration applications ALN of type TM a number of functional de-
vices of the average complexity focused, mainly on problems of recognition of 
images is synthesized. 

So, on the basis of the scheme of transformations using as base bit operations of 
addition and multiplication on the module 2 (logic operations XOR and AND) the 
problem of synthesis of adder Hemming of any word length is solved [11]. The of-
fered synthesis algorithm of adder Hemming of any word length carries out  

imaging: Τ⇒ℑ ),(: dg , where: ( )∑ ∑
= λ

λ
−λ τ=⊕=∈∈

n

1l

1
ll 2dgDdGg )(,, Τ ; 

λτ  – a component of the vector, containing value λ –th bit of binary representa-

tion Τ  of a mismatch of vectors g  and d ; ( ))}({log 1nEnt1 2 +÷=λ ; )( 12 −λ  – 

weight λ -th bit of binary representation of a mismatch Τ . 
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The problem of synthesis of the threshold device of the any word length  
realizing threshold operation from set }{ ξψ=Ψ is solved also, where 41÷=ξ  

( 1ψ  –operation ≤ , 2ψ  – operation ≥ , 3ψ  – operation>, 4ψ  – operation <), 

types of logic functions for each level of structure TM (type ASC) depending on 
value of a threshold are as a result defined. 

The synthesis algorithm of the threshold device is based on the bit-by-bit analy-
sis of value of a threshold vector Θ  according to binary data presentation: 

∑
λ

λ
−λ θ= 12Θ , where λλ θτ ,  – the components of vectors containing value λ -th 

bit of binary representation Τ  and Θ  accordingly, and 12 −λ  – weight of λ -th bit 
( n1÷=λ , n  – dimension (length) of a binary vector). 

The synthesis algorithm of the symmetric threshold device of the any word 
length realizing symmetric threshold operation with the top and bottom borders, 

symmetric concerning the center of a numerical axis on a piece )]([ 120 n −÷ is 

developed also. As the set operation concerns to symmetric functions at the first 
level of structure TM logic function XOR is used, and for other levels types of 

logic functions ξ
sF  are defined to algorithm similarly considered above for the 

threshold device. 

3.5   Problem-Oriented Structures of Digital Devices  

The technique is developed and process of designing the typical reconfigurable 
problem-focused devices with hardware PLD-based realization in the form of base 
library parametrical functional blocks by means of their VHDL language descrip-
tion and the Schematic editor is considered. Library of functional devices of the 
wide application providing use by the broad audience of developers at designing 
of digital devices by the task of corresponding parameters and a choice of  
optimum structure (by criteria speed-complexity of realization) are developed. 

The following developed functional blocks are included in structure of library 
of files of configurations: Hemming adders which are carrying out calculation of 
distance Hemming for 4, of 8 and 16-digit numbers; two variants of realization of 
algorithm of sorting (the linear sorter and the memory-based sorter); multiplier 
square matrixes of the order 10m =  for the whole 16-digit numbers; the median 
filters using consecutive, it is serial–parallel and parallel computing models; 
arithmetic devices of multiplication with a floating point of unary accuracy (com-
patible to standard IEEE–754). The developed functional blocks are verified at 
real stands and the reconfigurable device (board ADS–XLX–SP3–EVL400) that 
proves their functioning. 

3.5.1   Functional Blocks with a Floating Point  

During designing of mathematical coprocessors, the DSP processors, the in-built 
arithmetic coprocessors wide application is found with floating point functional 
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blocks. Many vendors (for example, Nallatech Corp.) are developed own soft cores 
for realization of such arithmetic operations, has developed Core for processing 
operands with a floating point (standard IEEE-754) under Virtex series. 

The problem of designing of arithmetic devices and algorithms for processing 
operands in a floating point format is actual and now. Standard IEEE–754 gives 
most the general representation for numbers with a floating point in modern  
computers, including Intel PC, Macintosh and majority Unix platforms. 

Let's consider development of the devices which are carrying out the floating 
point operations in conformity with standard IEEE-754. The generalized structure 
of functional blocks with a floating point (Fig. 3.3) and contains of three com-
pound modules: the module input arguments checking module (IAC); the func-
tional module (FM) and the result creation module (RCM). The description of 
modules is executed by means VHDL language, by development synthesizer 
FPGA Compiler II from Synopsys is used, system CORE Generator System is ap-
plied to formation of IP-Core blocks. The developed modules are verified by a 
modeling method with definition of time and hardware parameters. Modules 
represent the finished typical technical decisions and can be used in other projects 
as soft cores. 

 

Fig. 3.3 Structure of the functional block with a floating point 

IAC will transform input data, analyzes them on conformity to standard 
IEEE-754 with formation of corresponding attributes. Corresponding numbers and 
the information concerning classes of input data gives out as results to the  
functional module with a floating point. 

FM carries out the set operation from a floating point with formation of  
corresponding attributes. 

RCM carries out the conformance of a format result data with standard 
IEEE-754 and final setting of flags. 

Inputs and outputs of the floating point block are not adhered to the fixed input-
output contacts of a specific FPGA, because using of any chips therefore is sup-
posed. Assignment of inputs and outputs of the block is shown on Fig. 3.3: clk – a 
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global signal clock; rst – a global signal reset; en – Enable signal; adatai  
(31:0) – the input data bus A; bdatai (31:0) – the input data bus B; datao (31:0) – 
the output data bus; ofo – a flag “Overflow”; ufo – a flag “Underflow”; ifo – a flag 
«Inadmissible operation».  

For the agreement of the obtained result of transformation with standard IEEE–
754 it is necessary to present numbers as normalized form. Therefore it is required 
to define a high-order digit «1» and to realize shift aside to the high-order digit on 
demanded number of bits with simultaneous subtraction of this value from the re-
sulting exponent part. Presence of powerful logic resources in crystals Virtex se-
ries allows accelerating this procedure by fast definition of number of shifts. Then, 
unlike realization of serial shift with the simultaneous analysis of the high-order 
bit, is carried out parallel shift on demanded number of position for normalization 
of a mantissa. 

Floating point Addition a includes strictly serial five operations: comparison of 
exponents, shift to the right mantissas of smaller number, summation of mantissas, 
search of left unit of a mantissa of result, normalization of a resulting mantissa. 

For realization of operation of search of left unit using priority coder is offered. 
Let is available ( 24=n ) meaning bits of a mantissa. It is required to define num-
ber of the high-order "nonzero" position and to carry out of normalization of a 
mantissa },...,,...,,{ 0i2223 ffffF = . 

Priority coder represents the combinational scheme, having n  inputs and 
( }{log nEnt 2 ) outputs which consists of two sequentially connected schemes – 

the first allocates high-order unit, and the second its number (number of demanded 
shifts) in an operand. 

The first scheme has n  inputs and n  outputs, realizing following system of the 
logic equations: 
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The second scheme has n  inputs and ( }{log2 nEnt ) outputs, realizing following 

system of the logic equations: 
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(3.4)

Thus, mathematical expressions (3.3) and (3.4) allow to synthesize priority coder 
for any word length, the representing parametrical module which can be used by 
development of new projects by other users. 

By development of typical modules as well as by development of usual  
projects, use already well fulfilled accessible IP–Core is expedient. 

Let's consider an example of designing of the 32–bit floating point block of 
multiplication. The block consists of three elements, first two of which, according 
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to Fig. 3.3 enter into functional module FM, and the third – in functional module 
MFR. 

The first element forms 24-digit operands for the block of multiplication (“1” in 
the high-order – 23-rd position and 23 digits of fraction of a mantissa), summarize 
exponents of multiplied numbers (8 bits) and defines a sign on result. 

The second element carries out operation of multiplication and is formed by 
means of the Core Generator (Xilinx Corp.). 

The third element carries out check of conditions and formation of result. Fol-
lowing conditions are checked: if the sum of exponents of numbers is equal or 
more than 255, the signal “Overflow” is formed; if 24-th bit of product of numbers 
is equal “1”, then shift of product of numbers on one position aside low-order di-
gits and increase in the exponent per unit is made; if, after increase in the exponent 
per unit, value the exponent becomes equal 255, then the signal “Overflow” is 
formed. 

Using of an element of multiplication of combinational type the result of mul-
tiplication is formed on a step following a step of registration of operands. When it 
is necessary to multiply arrays of the numbers acting synchronously with any 
clock sequence CLK, using of an conveyor-based element of multiplication is pre-
ferable. In the developed module elements of multiplication, both with the multip-
lier of combinational type, and with 4–levels (LUT–based realization are used) or 
the 2–level (in–built blocks of multiplication 18x18 are used) conveyor that allows 
to reduce essentially due to increase in clock speed time of multiplication of arrays 
of numbers. For the timing agreement four or two series registers in this case are 
entered into the first element of the module for conveyor transfer on an output of 
the exponent and a sign of product of numbers. The delay (Latency) between reg-
istration of the first operands and registration of the first product of the module of 
multiplication is equal to 5-th or 3-th periods CLK accordingly at use a 4-level or 
2-level conveyor-based element of multiplication. 

In Fig. 3.4 the diagram of work of the module of control IAC, executed by 
means of editor State Editor is represented. On the first step at presence of signal 
EN=1 the block passes in status STATE1, on which (digits 0–31) from input ope-
rand A formed signals EXP_F (exponent – digits 23–30) and FRAC (fraction of a 
mantissa – digits 0–22). 

Further check of conditions is made, at performance of one of which block 
passes on the second step in one of statuses (STATE2 – STATE6) with formation 
of a corresponding flag: 

• If value of the exponent to equally zero, and fraction of a mantissa nonzero the 
input operand is nonnormalized number; 

• If values of the exponent and to fraction of a mantissa are equal to zero the  
input operand is zero; 

• If value of the exponent is more than zero and less than 255 the input operand 
is the normalized number; 

• If value of the exponent equally 255 and fraction of a mantissa zero, the input 
operand is infinity ( ±∞ ); 

• If values of the exponent equally 255 and fraction of a mantissa nonzero the  
input operand is not real number (NAN). 
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Transition of the block in an initial status is made on a signal of reset (RESET) or 
setting of signal EN in a zero status. 

In a chip of series Spartan–II (XC2S50–5) the block borrows 46 Slices and  
operates on clock speed 103MHz. 

Advantage of the offered realizations in comparison with known is reached due 
to optimum distribution of descriptions of constituent modules in different modes, 
and also original priority coder which allows to define number of high-order "1" 
for the subsequent performance of operation of normalization of a mantissa for 
one timing step. 

Comparative estimations of hardware resources and are presented to productivi-
ty of the developed modules of the multiplication realized with using Core  
(Xilinx Corp.), with similar modules of Digital Core Design. 

 

Fig. 3.4 The diagram of work of module IAC 

Resources are estimated by quantity Slices. Productivity is estimated by fre-
quency CLK. Hardware resources we shall estimate concerning known  
realizations: 

μ= QQQ 0iΔ , 

where: 0Q  – hardware resources of the module of Digital Core Design; μQ  

 – hardware resources of the offered module; 1Q  – hardware resources of the 

module without the conveyor; 2Q  – hardware expenses of the conveyor-based 

module. 
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For a FPGA of type 2S200–6: 542TTT 101 ,==Δ ; 332TTT 202 ,==Δ ; 

52QQQ 101 ,==Δ ; 32QQQ 202 ,==Δ . 

For a FPGA of type V300–6: 52TTT 101 ,==Δ ; 272TTT 202 ,==Δ ; 

53QQQ 101 ,==Δ ; 262QQQ 202 ,==Δ . 

For a FPGA of type 2V250–5: 156TTT 101 ,==Δ ; 679TTT 202 ,==Δ ; 

156QQQ 101 ,==Δ ; 983QQQ 202 ,==Δ . 

The variant of realization of the module on FPGA 2V250–5 with using LUT is 
absent in offers of Digital Core Design, however regarding hardware resources it 
we shall compare with offered realizations on FPGA V300–6, but allows to work 
(approximately on third) with greater clock time. 

The synthesized the functional floating point blocks (compatible to standard 
IEEE–754), can be used as a library element by development of complex  
computers. 

3.5.2   Functional Blocks for Multiplication of Matrixes  

One of the basic features of programmable logic is the opportunity of using a prin-
ciple of parallel data processing at the solving of the wide problems. The increas-
ing of resources of modern programmable logic allows to raise essentially speed 
of developed devices and to realize by hardware the algorithms working in real 
time. Multisequencing of calculations or logic operations it can be carried out both 
at a level of digits of representation of the information, and at a level of the blocks 
which are carrying out corresponding algorithms of mathematical model. An ex-
ample of such successful realization is the principle of Parallel Distributed  
Arithmetic used in digital signals processing. 

Let's consider realization of multiplication algorithm of a matrix ijaA =  of 

the size nm×  on a matrix jkbB =  of the size rn× . The resulting matrix 

ikcC =  in the size rm×  is formed as follows: 

ikjkij cbaBAC =×== , 

Where 

∑
=

=
n

1i
jkijik bac                                                         (3.5) 

Thus, according to (3.5), each j-th element of i-th line of a matrix A  is consistent-
ly multiplied by corresponding j-th element of a column of a matrix B  and the re-
ceived products are added. 

For definition of each element of resulting matrixes are used operations of mul-
tiplication and summation of partial products. Summation can be carried out by 
two ways: accumulation of partial products at their serial receipt on an input of the 
accumulator from an output of the multiplier and parallel summation of partial 
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products. The first way assumes presence of the block which is carrying out  
multiplication and summation (accumulation) of received partial products. The 
second way uses a set of multipliers and the multiport adder for reception of an 
element of resulting matrixes. 

These ways are realized by several variants: 

• Serial (SL), when the processing field consists of one block consistently  
calculating the sum of pair products in (3.5); 

• Parallel-serial (PS1), when the processing field contains set of which quantity 
correspond to quantity (i) lines of a matrix A , by means of which the sums of 
pair products for elements ijc  are simultaneously calculated, and results in 

(3.5) further are consistently formed; 
• Parallel-serial (PS2), when the processing field contains such quantity of 

blocks, in which quantity of multipliers correspond to quantity (i) lines of a ma-
trix A , in parallel realizing, thus, calculation of one element ijc  of a matrix C , 

and further other elements ijc are consistently calculated. 

Let's consider realization of the device which are carrying out multiplication of 
square matrixes of the order 10m =  for the whole 16-bit numbers, realized in a 
crystal Virtex-E series. The quantity of using Slices includes input, output and in-
termediate registers for realization of conveyor-based calculations. Execution time 
of operation of multiplication of two 16-bit numbers with accumulation of the 32-bit 
sum (summation of result of multiplication with the number which is being the ac-
cumulator) for specified type of a crystal is 6,424 nanoseconds. In Table 3.1 hard-
ware and time estimations for the considered variants of realization are resulted. 

Table 3.1 Results for different implementations 

Variant of realization 
of algorithm of 

multiplication of 
matrixes 

Quantity of multipliers 
/ adders 

Speed (full time of 
multiplication of 

matrixes), nanosecond 

Hardware expenses 
(quantity Slices) 

SL 1/1 6424 181 

PS1 10/10 642,4 1810 

PS2 10/1 890 1665 

3.5.3   Designing and Realization of Median Filters  

Digital methods of processing of images now play a significant role in scientific 
researches, the industries, medicine, space researches and information-
telecommunication systems. One of methods of digital processing the images ap-
plied to elimination of defects of the image, caused by handicapes and noise, is the 
median filtration. Median filters (МF) differed robustness and are convenient for 
smoothing the information in cases when noise characteristics are unknown. 
Stepped changes of a signal pass through the median filter without distortion. This 
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feature is used, for example, in the image filtering where data should be smoothed, 
but distortion of the form of fronts of a signal is inadmissible. 

Let's consider realization of the PLD-based median filter, it is using serial,  
serial–parallel and parallel computing models. 

Generally, the median can be defined as magnitude medx , for which at any  

values z  fairly expression: 

∑∑
==

−≤−
n

1i
i

n

1i
imed xzxx . 

Median filtration realizes a choice medx  for odd n , thus is unequivocal (for even 

value n there is an infinite number of possible values medx ). So, for the two-

dimensional window containing 3x3 of elements of the image (pixels), the median 
filter with nine vectors describing brightness for halftone image or color for the 
color image, chooses a vector with average value which then is appropriated to 
central pixel of windows. Median filtration can be carried out also for a window of 
any other form, for example, crosswise with number of pixels, equal 5 or 9, etc. Ir-
respective of the form of a window the filter realizes the same algorithm and is 
characterized by number (n) and word length (m) of processing pixels. 

Thus, a median medx  of discrete sequence of binary vectors )( n1ixi ÷=  for 

odd n is that its element for which exists 21n )( −  elements, smaller or equal to it 

on size, and 21n )( −  elements, greater or equal to it on size. Let for Xxi ∈∀  

input set of binary vectors }{ ixX = )( n1i ÷=  it is necessary to define a median 

medx . With the purpose of increase of speed of the scheme it is offered to use al-

gorithm of definition of the median, allowing manipulating not input data that is 
inherent in some algorithms of sorting, and results of comparison of input codes 
among themselves. The algorithm of definition of a median in this case represents 
sorting data with the subsequent choice of the code having number 21n )( −  

from sorted sequence which numbering begins with zero. 
The square matrix is formed: 

ijyY = ),( n1ji ÷= , 

where },{ 10yij ∈  – an element of a matrix which is defined by a rule: 

⎪⎩

⎪
⎨
⎧

<=

≥=

.x ,

;x ,

i

i

jij

jij

xif0y

xif1y
                                                   (3.6) 

Elements ijy  of the main diagonal of a matrix )( ji =  accept zero value. And if 

1yji ij =∀ ),( , then 0y ji =  and on the contrary. Therefore values of elements ijy  

with the indexes ji > , laying above the main diagonal (the quantity of these  
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elements is defined by size 2nn2 )( − ) are defined. Values of the elements 

ijy )( ji <  laying below the main diagonal are defined as follows: 

if 1yji ij =∀ ),( , then 0y ji = ; 

if 0yji ij =∀ ),( , then 1y ji = . 

For every line received matrix ijyY =  the arithmetic sum of values of elements 

ijy  is calculated: 

∑=
j

iji ys                                                      (3.7) 

Depending on numerical value is which unequivocally corresponds to input vector 

ix , we receive result of sorting of set of vectors X : 

⎪
⎩

⎪
⎨

⎧

=−=
=−=

==

}.{x  ,/)( sif

};{maxx  ),( sif

};{minx  , sif

ii

ii

ii

Xmedthen21n

Xthen1n

Xthen0

                           (3.8) 

The offered algorithm is realized by various ways, depending on quantity of  

simultaneously formed elements of a matrix ijyY = . 

 

Fig. 3.5 Functional scheme of the median filter SL 
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At serial realization (SL) it is consecutive on each step of algorithm one  
comparison is carried out only and one element of a matrix Y  is formed. The 
maximum quantity of steps necessary for realization of algorithm, is equal to 
quantity of operators of comparison (comparators) plus one step for record of ini-

tial data. The quantity of comparators is defined by size 2nn2 )( − . Thus  

function scheme is presented on Fig. 3.5. 
In the given realization it is carried out step-by-step formation of a matrix 

ijyY =  by comparison of an input vector ))(( 1n1ixi −÷=  with vectors 

n2i1i xxx ,...,, ++  according to (3.7) and (3.8). The received elements 

)( n1jyij ÷=∀  line-by-line are summarized in conformity with (3.9) and the re-

sult is compared to a constant equal 21n )( − . In case of equality 21nsi )( −=  

the corresponding vector ix  gets out as a median medx  and performance of  

algorithm stops. 
In serial-parallel realizations (SP) for one step it is carried out in parallel from 

one before )( 1n −  comparisons, and lines of a matrix Y are consistently formed. 

The maximum quantity of steps necessary in this case for realization of algorithm, 
in view of a step of record of initial data equally )( 1n + . In this realization con-

secutive formation of a matrix ijyY =  by parallel comparison of input vector 

))(( 1n1ixi −÷=  with vectors n2i1i xxx ,...,, ++  according to (3.7) and (3.8) is 

carried out. The number of comparisons on everyone )( 1i + –th step of formation 

of a matrix Y  in relation to i –th step decreases on unit. On penultimate )( 1n − –

th step is carried out only one comparison ),( n1n xx − . Elements )( n1jyij ÷=∀  

line-by-line are summarized according to (3.9) and the result is compared to a 
constant equal 21n )( − . In case of equality 21nsi )( −=  the corresponding 

vector ix  gets out as a median medx . 

Further we shall consider a variant of construction МF, in which the median is 
defined for one step. 

In parallel realization (PR) all comparisons are carried out simultaneously and 
elements of a matrix Y  are formed in parallel. In the given variant the square ma-

trix ijyY =  is formed of set of input vectors )( n1ixi ÷=∀  in conformity with 

(3.7) and (3.8). Elements ijy  are simultaneously summarized line-by-line, accord-

ing to (3.9), and the received values in parallel are compared to a constant 
21n )( − . Equality 21nsi )( −=  unequivocally defines a choice ix  as a  

median. 

PLD-based realization of the median filter.  
Synthesis of structure MF can be executed by means of Schematic Editor and li-
braries of components Project Libraries of system of designing Foundation Series. 
Except for opportunities of the description of the scheme in the specified way the 
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system of designing puts at disposal of the designer more progressive means of the 
description of project HDL Editor and State Editor. First of editors serves for the 
description of the equipment on one of languages (VHDL or Verilog), the second 
– for the description of work of automatic devices by means of diagrams of status-
es which further are automatically translate into the HDL description. 

Essential advantage of the HDL description of the project is the opportunity of 
the description, both architecture of the projected device, and its behaviour. Be-
sides such description in comparison with using of the Schematic editor is easily 
modified. Presence of modern the synthesis programs which is carrying out trans-
formation of construction of a HDL-code in the scheme of logic elements, allows 
to carry out complex projects to similarly development of programs in language of 
a high level. 

Example of serial-parallel realization of algorithm of median definition.  
The description of the project is spent with using of construction of VHDL-
language for the most simple in the description of variant МF for five 8–bit pixels. 

Let's present МF as a "black" box on which input acts five 8–bit vectors: a 
[7:0], b [7:0], c [7:0], d [7:0], e [7:0], signals init (initial installation), ld (load-
ing), clk, and from an output are removed values of a median out_m [7:0] and a 
signal of interruption int. Further vectors, i.e. multidigit signals and variables will 
be designated, as well as in the text of the VHDL-description after the announce-
ment of ports and signals, without the directive of quantity of digits in square 
brackets. 

Process of designing consists in the description of functioning of a "black" box. 
We shall designate registers in which input data will enter, accordingly: xa [7:0], 
xb [7:0], xc [7:0], xd [7:0], xe [7:0]. 

Loading of input data is made at initialization of a signal ld and can be  
described by expression: 

if ld = ’ 1 ’ then xa <=a; xb <=b; xс <=с; xd <=d; xe <=e; 
              end if; 

(If the signal ld is equal to ‘1’ then signals xa, xb, xc, xd and xe values a, b, c, d, e 
are appropriated, respectively).  

After record of initial data into registers it is possible to spend comparison of 
each entrance signal with other signals. The maximal number of steps in this case 
will be equal six: on the first step (we shall designate it as status S1) is made 
record of input data, on other five steps (S2, S3, S4, S5 and S6) – comparison of 
signals among themselves, summation of results of comparison, comparison of the 
received sums with a constant and formation of a signal of the enable of record of 
a code of a median into the output register. With the purpose of reduction of the 
hardware resources demanded for connection of compared signals to comparators, 
on each step parallel shift of data in registers is made, i.e. data from the register xb 
correspond in the register xa, from xc in xb, from xd in xc, from xe in xd: 

a <=xb; xb <=xс; xc <=xd; xd <=xe; 

Shift, as well as other assignment operations, is made at switching clocked signal 
clk from a status ‘ 0 ’ in a status ‘ 1 ’. 
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For fixing of comparison results with the purpose of their further processing we 
shall enter variables of integer type Integer with area of values from 0 up to 1: ab, 
ac, ad and ae which are valid in a current status, and signals ba, ca, da, ea, cb, db, 
eb, dc, ec and ed the same type, valid for all time of process. Then the comparison 
operations which are carried out in various statuses can be presented in the  
form of: 

S2 – comparison of the code containing in the register xa with codes, contain-
ing in registers xb, xc, xd and xe (comparison of a vector a with vectors b, c, d  
and e): 

       if xa> =xb then ab: = 1; ba <=0; else ab: = 0; ba <=1; 
       end if; 
       if xa> =xc then ac: = 1; ca <=0; else ac: = 0; ca <=1; 
      end if; 
       if xa> =xd then ad: = 1; da <=0; else ad: = 0; da <=1; 
       end if; 
        if xa> =xe then ae: = 1; ea <=0; else ae: = 0; ea <=1; 
        end if; 

(if the vector a more or is equal b, c, d, e then variables ab, ac, ad, ae value 1, and 
to signals ba, ca, da, ea – 0 is appropriated, otherwise ab, ac, ad, ae is  
appropriated 0, and ba, ca, da, ea – 1). 

S3 – comparison of the code containing in the register xa with codes,  
containing in registers xb, xd and xd (comparison of a vector b with vectors c, d 
and e): 

        if xa> =xb then ab: = 1; cb <=0; else ab: = 0; cb <=1; 
        end if; 
        if xa> =xc then ac: = 1; db <=0; else ac: = 0; db <=1;  
        end if; 
        if xa> =xd then ad: = 1; eb <=0; else ad: = 0; eb <=1; 
        end if; 

S4 – comparison of the code containing in the register xa with codes, containing in 
registers xb and xc (comparison of a vector c with vectors d and e): 

         if xa> =xb then ab: = 1; dc <=0; else ab: = 0; dc <=1; 
        end if; 
        if xa> =xc then ac: = 1; ec <=0; else ac: = 0; ec <=1; 
       end if; 

S5 – comparison of the code containing in the register xa with a code, containing 
in the register xb (comparison of a vector d with a vector e): 

          if xa> =xb then ab: = 1; ed <=0; else ab: = 0; ed <=1; 
         end if; 

After comparison of codes summation of results of comparison is made, thus for 
record of result of summation the variable of integer type yz with area of values 
from 0 up to 4 is entered: 
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S2: yz: = (ab+ac) + (ad+ae); 
S3: yz: = (ab+ac) + (ad+ba); 
S4: yz: = (ab+ac) + (ca+cb); 
S5: yz: = (ab+da) + (db+dc); 
S1: yz: = (ea+eb) + (ec+ed); 

Final operation is comparison of result of summation with a constant (in this case 
2), record, in case of the equality, current value of the code which is being the reg-
ister xa, into output register, transition in status S1 and formation of a signal of  
interruption int: 

        if yz=2 then out_m <=xa; 
       else xa <=xb; xb <=xс; xc <=xd; xd <=xe; 
       end if; int <= ’ 1 ’; 

At an inequality of result of summation to a constant shift of data in registers is 
made and transition to a following status, and a signal int is appropriated value ‘0’. 
The full description of the project can be executed by means of State Editor as 
flowgraph. 

Example of parallel realization of algorithm.  
For realization of operations of comparison and calculation of results variables of 
integer type with area of values from 0 up to 4 are entered: xa, xb, xc, xd and xe. 
Each of variables defines a place of input code in sorted sequence and is formed as 
follows: 

            if (a> =d) then xa: = xa+1; else xd: = xd+1; end if; 
            if (a> =e) then xa: = xa+1; else xe: = xe+1; end if; 
            if (b> =c) then xb: = xb+1; else xc: = xc+1; end if; 
             if (b> =d) then xb: = xb+1; else xd: = xd+1; end if; 
             if (b> =e) then xb: = xb+1; else xe: = xe+1; end if; 
             if (c> =d) then xc: = xc+1; else xd: = xd+1; end if; 
             if (c> =e) then xc: = xc+1; else xe: = xe+1; end if; 
             if (d> =e) then xd: = xd+1; else xe: = xe+1; end if; 
 

At presence of a signal clk and a condition of equality any from variables to a con-
stant (number 2), record in the output register of the input code corresponding the 
given variable is made: 

                if (clk'event and clk = ' 1 ') then 
                if (xa=2) then out_m <=a; 
                elsif (xb=2) then out_m <=b; 
                elsif (xc=2) then out_m <=c; 
                elsif (xd=2) then out_m <=d; 
                elsif (xe=2) then out_m <=e; 
                end if; end if; 
             if (a> =b) then xa: = xa+1; else xb: = xb+1; end if; 
            if (a> =c) then xa: = xa+1; else xc: = xc+1; end if; 

Description МF for nine 8-digit pixels is similarly carried out. 
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On examples descriptions of serial-parallel and parallel realizations of  
algorithms in VHDL language are presented. Results of synthesis and realization 
of projects in crystal XCV50CS144–6, received with use of tool means FPGA Ex-
press and programs of placement and routing of system Xilinx Foundation Series, 
are presented in Table 3.2. 

In realization of variant SL the maximal time of definition of a median 1T  to 

equally product 1tN , where t  – the minimal period clk, ])([ 12nnN 2
1 +−=  – 

the number of statuses equal (for 5n = ) in view of loading eleven. If a median is 
the input code 1x  it will be certain on the fifth step (the first step corresponds to 

loading), 2x  – on the eighth step, 3x  – on the tenth step, 4x  – on the eleventh 

and 5x  – on the first step of a following cycle corresponding loading of a new 

portion of input data. Thus, the size 1T  will be within the range of from t1n )( −  

up to t12nn 2 ])([ +− . 

Table 3.2 Results of synthesis 

Type of realiza-
tion of algorithm

Quantity of  
8-digit pixels 

Hardware resources 
(quantity of Slices)

Min. period [ns] / 
max. freq. [MHz]

Max time of definition 
of a median [ns] 

SL 5 73 12 / 87 132 

SP 5 62 13 / 77 65 

PR 5 87 15 / 67 15 

PR 9 317 40 / 25 40 

Maximal time of definition of a median 2T  for realization of a variant of soft-

ware to equally product 2tN , where nN2 =  – the number of statuses equal (for 

5n = ) in view of loading 5. Definition of a median occurs on a step which num-
ber corresponds to number of a code in entrance sequence plus 1. If a median is 
the input code 1x  it will be certain on the second step (the first step corresponds to 

loading), 2x  – on the third step, etc. Time 2T  will be within the limits of from t  

up to nt . At fixing the fact of definition of a median return to an initial status – S1 
is carried out and the signal of interruption of process is formed. 

At realization of variant PR time of definition of a median 3T  is size of a  

constant ( t ) and is equal 15ns / 40ns accordingly for five / nine pixels. 
Thus, variant PR (for 5n = ) uses approximately in 1,4 (in comparison from 

software) and accordingly in 1,2 times (in comparison with SL) more slices in a 
crystal (an estimation of hardware expenses), possessing thus approximately in 4,5 
(in comparison from software) and accordingly in 9 (in comparison with SL) time 
greater speed.  
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3.5.4   Hemming Adder Realization  

Let's consider following variants of realization of Hemming adder: 
HA1 is realization of the multilevel combinational scheme on the basis of logic 

elements AND, XOR by means of Schematic editor. 
HA2 realizes the adder, using a tree chart of the adder on which top level in 

pairs weighed sums two components are formed, and further on the basis of stan-
dard schemes of adders - result of the weighed sum. All elements HA2 are created 
by means of system Core Generator as functionally completed blocks and,  
eventually by means of the schematic editor the resulting scheme is formed. 

HA3 is realized by the behavioral description by VHDL language which is  
resulted below. 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
entity hamm_v is 
                generic (N:Integer: = 32); 
   port ( 
   a: in STD_LOGIC_VECTOR (N-1 downto 0); 
   y: out INTEGER range 0 to N 
  ); 
end hamm_v; 
architecture Behavioral of hamm_v is 
begin 
process (a) 
variable x: integer range 0 to N; 
begin            
    x: = 0; 
    for I in 0 to N-1 loop 
    if a (I) = ' 1 ' then 
  x: = x+1; 
    end if; 
    end loop; 
    y <=x; 
  end process; 
end Behavioral; 

Synthesis HA3 is executed by means of FPGA Express (Synopsys). 
In tab. 3.3 comparative characteristics of devices (HA1, HA2, HA3), carrying 

out calculation of Hemming distance for 4–, 8– and 16–bit numbers realized in a 
crystal Virtex series are resulted. 

The offered realizations of algorithms differ hardware resources (hardware re-
sources are understood as dimension of a processing field or the logic capacity of 
a crystal defined by quantity Slices) and speed. 
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Table 3.3 Comparative characteristics of devices HA1, HA2, HA3 

Variant of 

realization 

Speed 

(the period [ns] / frequency [MHz]) 

Hardware resources 

(quantity Slices) 

4n =  8n =  16n =  4n =  8n =  16n =  

HA1 4,4 / 227,2 8,1 / 123,4 11,9 / 84 4 10 38 
HA2 7,8 / 128,2 10,2 / 98 13,4 / 74,6 4 10 22 
HA3 3,6 / 277,8 5,5 / 181,8 12,7 / 78,8 2 5 22 

On the basis of the received estimations it is possible to draw following conclu-
sions. Variant HA3 has the best parameters of estimations on hardware resources 
for any word length (for 16n =  an resources coincide with variant HA2), on 
speed slightly conceding only to variant HA1 for 16n = . HA2 has no advantages 
before other realizations, confirming known regulations about volume, that the 
complex system from optimum components not necessarily is optimum in aggre-
gate. However the basic advantage of variant HA3 is that the presented behavioral 
description, is the parametrical description of Hemming adder, i.e. universal (for 
any word length). The task of parameter (N) in the description (generic) defines 
word length of the synthesized adder. 

3.6   Verification of Projects by Means of Stands  

Let's consider the description process project on an example of the median filter 
which block–diagram (Fig. 3.6), contains the block from five 8-bit registers, out-
puts of each of which are connected to inputs of other register and inputs of the 
device for definition of a median. 

 

Fig. 3.6 Block–diagram of the median filter 
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On an input of the filter ( 8m5n == , ) the file of 8–bit codes, for example from 

output ADC consistently acts. With signal Clock codes move from 1–st register in 
2–nd, from 2–nd in 3–rd, etc. 

Simultaneously with everyone Clock transfer of codes from all 5 registers on 
inputs of the device for a median definition is carried out. Definition of a median 
is carried out on 5 pixels (codes) according to algorithm and the VHDL–
description, and modified due to inclusion in the device for median definition a of 
four registers blocks for realization of a conveyor mode. The project of the median 
filter contains, thus, the scheme, being top level of hierarchy of the project, and 
two modules: the registers block and the device for the median definition,  
executed as VHDL–descriptions. 

In Fig. 3.7 the scheme of the filter synthesized by means of the schematic edi-
tor, registers block is presented in the form of the text of VHDL–description, is re-
sulted. Description of the registers block as text is much more compact and easier, 
than the description of this module by means of the schematic editor. 

In Fig. 3.7 this module is presented in the form of an environment of a  
macrocell from the user library. VHDL description of the median filter: 

library IEEE; -- library declaration 
use IEEE.STD_LOGIC_1164. ALL; -- using declaration 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity reg_s is -- object declaration 
    Port (din: in std_logic_vector (7 downto 0); -- port declaration 
           clk: in std_logic; 
           dout_a: out std_logic_vector (7 downto 0); 
           dout_b: out std_logic_vector (7 downto 0); 
           dout_c: out std_logic_vector (7 downto 0); 
           dout_d: out std_logic_vector (7 downto 0); 
           dout_e: out std_logic_vector (7 downto 0)); 
end reg_s; 
architecture Behavioral of reg_s is – architecture declaration 
signal va, vb, vc, vd, ve: std_logic_vector (7 downto 0); -- signal declaration 
begin 

 

Fig. 3.7 Functional schema of the median filter 
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At the description of this module by means of the Schematic editor it would be 
necessary to execute the scheme containing five 8-bit registers FD8CE where reg-
ister FD8CE would be presented by the scheme of lower level of the hierarchy 
consisting of eight triggers FDCE of system library. 

The considered example of the median filter has been synthesized, placed and 
routing in crystal XC2S150–5PQ208 (Spartan–II series). 

At realization the project has borrowed 9 % of resources of a crystal, i.e. 169 of 
1728 Slices, one global buffer, 16 pinouts (IOB). The maximal clock frequency is 
equal 95 MHz. 

Project Verification 
The basic tool of verification of the project is the modeling system of Model 
Technology ModelSim, Xilinx Edition (MXE II). One of laborious processes of 
verification is a file processing of input influences on model-based object. For 
simple projects can be used HDL Bencher – the graphic interface for creation of 
input influences in the form of sequences of the impulses set by the user (Wave-
form). For projects where input influences are a product of complex logic trans-
formations or a codes file, creation of the virtual stand or stands for verification of 
the project is expedient. Such stand can be executed in the form of the subproject 
included in a separate branch of a tree of hierarchy of the developed project. Fur-
ther the test (HDL Test Bench) is described in the form of structure where the 
stand and the project are presented in the form of the interconnected components. 

Let's consider as an example development of the stand for functional check of 
the median filter which description has been resulted above (see Fig. 3.6). 

Let the filter makes "clearing" the signal consisting of a "useful" signal of the 
sine wave form and formed "noise". Thus, the stand can consist of the shaper of a 
signal of the sine wave form, the generator of random numbers and the multiplex-
er which is carrying out transfer of a code from an output of the shaper or the ge-
nerator on an input of the filter (Fig. 3.8). 

 

Fig. 3.8 Block–diagram of the stand for functional check of the median filter 
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As the shaper of a signal of the sine wave form it is used IP–Core – Direct 
Digital Synthesizer (DDS), as the generator of random numbers – the Linear 
Feedback Shift Register (LFSR). 

In Fig. 3.9 the timing diagram of the filtration process, received is resulted at 
functional modeling of the median filter with using of the specified stand. 

 

Fig. 3.9 The timing diagram of a filtration process: 
a – signal on an output of the shaper of the sine wave form; 
b – signal on an output of the generator of random numbers; 
c – signal on an input of the median filter; 
d – "cleared" signal on an output of the median filter. 

3.7   Reconfigurable Processors  

The typical structure of reconfigurable processor (RP) allows the developer (user) 
to realize any algorithm, i.e. to change structure depending on a carried out prob-
lem (the set algorithm). Last can be broken into the fragments which are carried 
out consistently on fixed hardware that leads to the general economy of  
hardware, thus complexity of fragments of algorithm is defined only by logic ca-
pacity of a crystal FPGA. Presence of set of functional processing fields (FPF) al-
lows is hardware to realize parallel data processing, and set of configuration  
files – conveyor programming of the structure realizing fragments of algorithm. 

Reconfigurable processors have FPF the set dimension which is configured for 
performance of the set algorithm or its part, providing, thus, optimum realization 
of this algorithm, both under time characteristics, and on hardware expenses. At 
the conveyor mechanism of realization of algorithm additional matrixes are en-
tered into structure RP. Structure RP is presented in Fig. 3.10 and contains s   
matrixes FPF, the channel of input-output (CIO) for connection to the standard 
Bus of a Host-computer, a memory of a configuration files (MCF), the data RAM, 
the controller (CT), data bus (DB) and control bus (CB). The conveyor mechanism 
assumes loading a configuration file in the next matrix in parallel with data  
processing in a current matrix. 

The format of a configuration file is standard for FPGA and contains the infor-
mation about of a configuration matrix, i.e. forms the corresponding basic electric 
scheme realizing set algorithm. Matrix FPF represents a matrix of universal ele-
ments which under control of a configuration file γF  direct function is appointed 
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and the structure of communications between them is formed. Configuration files 

γF  enter the name in matrix FPF from a memory of configuration files under  

control of CT. 

 

Fig. 3.10 Structure of reconfigurable processor  

In matrix FPF on data bus details from the RAM or external entrance data 
through CIO can act. Results of processing from matrix FPF can be transferred in 
channel CIO as external target data or in the RAM as intermediate results. The set 
of files of a configuration }{ γ= FF  enters the name in the MCF through channel 

CIO under control of CT. 
Initialization of system consists of three stages: record of set of files of a confi-

guration F  in the MCF; loading of files of a configuration γF  in FPF from the 

memory of configuration files; functioning of system – realization of algorithm. 
Procedure of data processing is carried out as follows. In a command number 

( α ) matrixes FPF is underlined, and CT forms a signal initializing corresponding 
matrix FPF. Then loading of a corresponding file of a configuration in next matrix 
FPF is carried out. After end of data processing by α -th matrix results of data 
processing enter the name in the RAM and serve as intermediate (initial) data for 
( 1+α )-th matrix. Upon termination of work of algorithm with given FPF (the 
termination of the microprogramma) is formed interruption which acts on  
operating input CT where its processing is carried out. 

3.8   Conclusions  

The received results have allowed to raise efficiency display of initial problems 
and algorithms to architecture and structure of projected PLD-based devices and 
systems by criteria « speed – complexity of realization » on the basis of the devel-
oped formalized techniques of construction and dynamic reorganization of their 
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architecture and structure, proceeding from properties of sold algorithms, and also 
logic, constructive and technological features PLD, and tool means of their  
designing. 

As a result of the executed analysis of evolution, tendencies of development 
and technology of realization of a new class of components computer engineering 
– programmable logic devices it is certain, that PLD opportunities of construction 
on their basis of devices and the systems possessing properties of the reconfigura-
bility, providing give adaptation to a wide spectrum of problems and reception of 
high characteristics of projected devices and systems. 

Principles of construction and functioning of a new class of computers and sys-
tems with reconfigurable the architecture are developed, differing from traditional 
(von Neumann type) properties of high dynamic reorganization, multilevel and paral-
lelism of data processing that functional means of computer engineering for any algo-
rithms allow the developer (user) to create, providing thus an opportunity of structural 
adaptation, including in real time, according to a solved problem (algorithm) and also 
to duplicate them for a wide range of developers, reducing process of designing of 
digital devices to a choice from library of optimum structure by criteria «speed – 
complexity of realization» with adjustment of corresponding parameters. 

The known logical-information method of designing reconfigurable devices 
and systems which basic difference became orientation to functionalities PLD is 
modified. In the offered kind it allows to operate with any quantity of levels of 
programming, to define optimum quantity of such levels and to synthesize the op-
timum structure of the device represented by multilevel hierarchical system with 
unlimited number of levels on a class of criteria « speed – complexity of  
realization ». 

The new class of computing structures – adaptive logic networks (ALN), prin-
ciples and techniques of their construction and functioning are offered. It is 
shown, how for base set of structures ALN and training samples, the binary vec-
tors set by set, using polynomial representation, which factors are set by means of 
Adamar matrix, it is possible to receive analytically set of logic functions (func-
tional adjustment) components ALN at the functional restrictions preliminary cer-
tain also analytical by that allows, passing process of direct synthesis to execute 
predesign estimations of a realizability of developed devices. Process of designing 
consists in correct display of entrance set of data in target set of data and is re-
duced to is formal-analytical procedure of decomposition with use of preliminary 
received functional restrictions. The offered device effectively supports process of 
adaptation ALN on classes of problems which are reduced to procedure of  
classification, including problems of natural classification. 

A number of structural realizations ALN is offered: in the form of "triangular", 
"trapezoidal" and "rectangular" matrixes which covers a wide class of problems. 
Process of adjustment of matrixes is reduced to definition of types of logic func-
tions elementary a component and structures of communication from the limited 
set is set. The offered structures differ on capacity sold Boolean functions and to 
hardware expenses, are accompanied received analytical by asymptotic by estima-
tions of complexity (depending on word length of entrance binary vectors) and  
capacities of target set of binary vectors. 
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The open library of functional devices which structure can extend and be  
oriented to problem is developed. In particular, it is devices: definitions of a me-
dian with time step by step conveyor processing of input data; memory-based sort-
ing of data; adders Hemming (for any word length); multiplication of matrixes; 
multipliers with a floating point (standard IEEE-754), etc. 

The base structure of reconfigurable processor with set of functional fields 
which allows to focus functionally it on an any class of problems (algorithms) is 
developed, supporting, in particular, parallel, conveyor and in parallel-conveyor 
data processing. The developed processor is a basis for construction of a lot of 
computing systems of high complexity, productivity and survivability. 
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Abstract. In this chapter the features of image generation and performing sys-
tems’ design are analyzed. Estimation of complexity of the standard rendering 
pipeline is done. The architectural decisions and algorithm approaches for the  
real-time rendering systems’ creation are discussed. Adaptation of a multilevel de-
signing method of the built-in systems with realization of separate modules on  
reconfigurable devices, based on application of architecture operated by models 
and the unified modeling language, is offered. The graphical application of the 
modified method is shown. 

4.1   Introduction 

Until the early 1980s, computer graphics was a small, specialized field, largely 
because the hardware was expensive. The typical application was the image gene-
rators for trainer development and simulators.  These systems must generate high 
quality images in real time. The concept of a “desktop” now became a popular 
metaphor for organizing screen space. Modern small personal devices, such as 
Nokia N810 Internet Tablet [1] and Nokia M810 WiMAX Edition, are in want of 
real-time computer graphics which concerned with animation, video processing, 
2D and 3D performing. Computer graphics systems’ developing, as well as alter-
idem, typically is performed years in advance of subsystem development and inte-
gration. In this process, models of functions and possible solutions for the physical 
architecture must be defined and matched to evaluate quality and select the most 
effective algorithm and the best possible hardware platform. For small personal 
systems designers the primary architectural/design issue the partitioning of system 
functionality across both hardware and software. Separate specifications for hard-
ware and software, often written in non-formal languages, are delivered with  
functionality a priori, because changes to the partition may necessitate extensive 
redesign. Because software rework is viewed as easier than hardware redesign  
often drawbacks’ corrections have a heavy software decision. 
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4.2   Features of Digital Systems for Real-Time Image Generation 

Real-Time Image Generator can be represented as a rendering pipeline - a logical 
model for computations needed in a raster-display system. It is not necessarily a 
physical mode, since the stages of the pipeline can be implemented in either soft-
ware or hardware. Fig. 4.1 shows a version of the rendering pipeline that is typical 
for systems using conventional primitives (lines and polygons) and conventional 
shading techniques (constant, Gouraud, or Phong). 

 

Fig. 4.1 Standard graphics pipeline  

4.2.1   Estimation of the Complexity of the Standard Rendering 
Pipeline 

Scene Manager 

The first stage of the pipeline is traversal of the display model or scene manager. 
This is necessary because the image may change by an arbitrary amount between 
successive frames. All the primitives in the database must be fed into the remainder 
of the display pipeline, along with context information, such as colors and current-
transformation matrices. Newman [2] described the two types of traversal: imme-
diate mode and retained mode. Both methods have advantages and disadvantages, 
and the choice between them depends on the characteristics of the application and 
of the particular hardware architecture used. 

Immediate mode offers flexibility, since the display model does not need to 
conform to any particular display-list structure and the application has the luxury 
of recreating the model differently for every frame. The main CPU must perform 
immediate-mode traversal, however, expending cycles it could use in other ways. 
Retained mode, on the other hand, can be handled by a display processor if the 
structure database is stored in its local memory. Retained-mode structure traversal 
can be accelerated by optimizing the database storage and access routines or by 
using a dedicated hardware traverser. Furthermore, since the main CPU only edits 
the database each frame, rather than rebuilding it from scratch, a low-bandwidth  
 



4   Application of Multilevel Design on the Base of UML  95
 

channel between the main CPU and the display processor is sufficient. Of course, 
relatively few changes can be made to the structure database between frames, or 
astern performance will suffer. 

The choice between traversal modes is a controversial matter for system de-
signers. Many argue that retained mode offers efficiency and high performance. 
Others believe that immediate mode supports a wider range of applications and 
does not necessarily lead to reduced performance if the system has a sufficiently 
powerful CPU. 

Unfortunately, it is difficult to estimate the processing requirements for display 
traversal, since they depend on the traversal method used and on the characteris-
tics of the Particular display model. At the very least, a read operation and a write 
operation must be performed for each word of data to be displayed. The 
processing requirements may be much greater if the structure hierarchy is deep or 
if it contains many modeling transformations.  

Modeling Transformation 

In this stage of the pipeline, graphics primitives are transformed from the object-
coordinate system to the world-coordinate system. This is done by transforming 
the vertices of each polygon with a single transformation matrix that is the conca-
tenation of the individual modeling transformation matrices. In addition, one or 
more surface-normal vectors may need to be transformed, depending on the  
shading method to be applied. 

Constant shading requires world-space surface-normal vectors for each poly-
gon. We compute these by multiplying object-space surface normals by the trans-
pose of the inverse modeling transformation matrix. Gouraud and Phong shading 
require world-space normals for each vertex, rather than for each polygon, so each 
vertex-normal vector must be multiplied by the transpose inverse transformation 
matrix. 

Let us compute the number of floating-point calculations required to transform 
a single vertex if Gouraud shading is to be applied. Multiplying a homogeneous 
point by a 4 × 4 matrix requires 16 multiplications and 12 additions. Multiplying 
each vertex normal by the inverse transformation matrix requires 9 multiplications 
and 6 additions (only the upper-left 3х3 portion of the matrix is needed).  

Therefore, transforming a single vertex with surface normal requires  
16 + 9 = 25 multiplications and 12 + б = 18 additions. 

Trivial Accept/Reject Classification 

In the trivial accept/reject classification stage, primitives (now in world coordi-
nates) are tested to see whether they lie wholly inside or outside the view volume. 
By identifying primitives that lie outside the view volume early in the rendering 
pipeline, processing in later stages is minimized. We will clip primitives that  
cannot be trivially accepted or rejected in the clipping stage. 

To trivially accept or reject a primitive, we must test each transformed vertex 
against the six bounding planes of the view volume. In general, the bounding 
planes will not be aligned with the coordinate axes. Each test of a vertex against a 
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bounding plane requires multiplications and 3 additions (the dot product of a  
homogeneous point with a 3D plane equation). A total of 6 • 4 = 24  
multiplications and 6 • 3 = 18 additions are required per vertex. 

Lighting 

Depending on the shading algorithm to be applied (constant, Gouraud, or Phong), 
illumination model must be evaluated at various locations: once per polygon for 
Phong shading, once per vertex for Gouraud shading, or once per pixel for Phong 
shading Ambient, diffuse, and specular illumination models are commonly used in 
high-performance systems. 

In constant shading, a single color is computed for an entire polygon, based on 
the position of the light source and on the polygon's surface-normal vector and dif-
fuse color. The first step is to compute the dot product of the surface-normal vec-
tor and the light vector (3 multiplications and 2 additions for directional light 
sources). If an attenuation factor based on the distance to the light source is used, 
we must calculate it and multiply it by the dot product here. Then, for each of the 
red, green, and blue color components, we multiply the dot product by the light-
source intensity and diffuse-reflection coefficient (2 multiplications), multiply the 
ambient intensity by the ambient-reflection coefficient (1 multiplication), and add 
the results (1 addition). If we assume a single directional light source, calculating 
a single RGB triple requires 3 + 3 • (2 + 1) = 12 multiplications and 2+3-1=5 addi-
tions. Gouraud-shading a triangle requires three RGB triples—one for each vertex. 

Viewing Transformation 

In this stage, primitives in world coordinates are transformed to normalized pro-
jection (NPC) coordinates. This transformation can be performed by multiplying 
vertices in world coordinates by a single 4х4 matrix that combines the perspective 
transformation (if used) and any skewing or nonuniform scaling transformations 
needed to convert world coordinates to NPC coordinates. This requires 16 multip-
lications and 12 additions per vertex. Viewing transformation matrices, however, 
have certain terms that are always zero. If we I take advantage of this, we can re-
duce the number of computations for this stage by perhaps 25 percent. We will as-
sume that 12 multiplications and 9 additions per vertex are required in the viewing 
transformation stage. 

Note that if a simple lighting model (one that does not require calculating the 
distance between the light source and primitive vertices) is used; modeling and 
viewing transformation matrices can be combined into a single matrix. In this case 
only one transformation stage is required in the display pipeline - a significant 
savings. 

Clipping 

In the clipping stage, lit primitives that were not trivially accepted or rejected are 
clipped to the view volume. Clipping serves two purposes: preventing activity m  
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one screen window from affecting pixels in other windows, and preventing ma-
thematical overflow and underflow from primitives passing behind the eye point 
or at great distances. 

Exact clipping is computationally practical only for simple primitives, such as 
lines and Polygons. These primitives may be clipped using any of the 3D clipping 
algorithms. Complicated primitives, such as spheres and parametrically ended 
patches, are difficult to clip, since clipping can change the geometric nature of the 
Primitive. Systems designed to display only triangles have a related problem, 
since a clipped triangle may have more than three vertices.  

An alternative to exact clipping is scissoring. Here primitives that cross a clip-
ping boundary are processed as usual until the rasterization stage, where only pix-
els inside the viewport window are written to the frame buffer. Scissoring is a 
source of inefficiency, however, since effort is expended on pixels outside the 
viewing window. Nevertheless, it is the only practical alternative for clipping 
many types of complex primitives. In the pipeline described here, all clipping is 
performed in homogeneous coordinates. This is really only necessary for z  
clipping, since the w value is needed to recognize vertices that lie behind the eye.  

Many systems clip to x and у boundaries after the homogeneous divide for effi-
ciency. This simplifies x and у clipping, but still allows primitives that pass behind 
the eye to be recognized and clipped before w information is lost. The number of 
computations required for clipping depends on how many primitives cross the 
clipping boundaries, which may change from one frame to the next. A common 
assumption is that only a small percentage of primitives (10 percent or fewer) 
need clipping. If this assumption is violated, system performance may decrease 
dramatically. 

Division by w and Mapping to 3D Viewport 

Homogeneous points that have had a perspective transformation applied, in gener-
al, have w values not equal to 1. To compute true x, y, and z values, we must di-
vide the x, y, and z components of each homogeneous point by w. This requires 3 
divisions per vertex. In many systems, vertex x and y coordinates must be mapped 
from the clipping coordinate system to the coordinate system of the actual 3D 
viewport. This is a simple scaling and translation operation in x and y that requires 
2 multiplications and 2 additions per vertex.  

Rasterization 

The rasterization stage converts transformed primitives into pixel values, and  
generally stores them in a frame buffer. As discussed above, rasterization consists 
of three subtasks: scan conversion, visible-surface determination, and shading. 
Rasterization, in principle, requires calculating each primitive's contribution to 
each pixel, an 0(n·m) operation, where n is the number of primitives and m is the 
number of pixels. 

In a software rendering system, rasterization can be performed in either of two 
orders: primitive by primitive (object order), or pixel by pixel (image order).  
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Estimation of the Complexity of Geometry Calculations  

For the next characteristics: 

• 10,000 triangles (none clipped);  
• Each triangle covers an average of 100 pixels, one-half being obscured by other 

triangles;  
• Ambient and diffuse illumination models (not Phong);  
• Gouraud shading;  
• 1280 by 1024 display screen, updated at 10 frames per second.  

For each frame, we must process 10,000 • 3 = 30,000 vertices and vertex-normal 
vectors. In the modeling transformation stage, transforming a vertex (including 
transforming the normal vector) requires 25 multiplications and 18 additions. The 
requirements for this stage are thus 30,000 • 25 = 750,000 multiplications and 
30,000 • 18 = 540,000 additions. 

Trivial accept/reject classification requires testing each vertex of each primitive 
against the six bounding planes of the viewing volume, a total of 24 multiplica-
tions and 18 additions per vertex. The requirements for this stage are thus 30,000 • 
24 = 720,000 multiplications and 30,000 • 18 = 540,000 additions, regardless of 
how many primitives are trivially accepted or rejected. 

Lighting requires 12 multiplications and 5 additions per vertex, a total of 
30,000 • 12 -360,000 multiplications and 30,000 • 5 = 150,000 additions. 

The viewing transformation requires 8 multiplications and 6 additions per vertex, a 
total of 30,000 • 8 = 240,000 multiplications and 30,000 • 6 = 180,000 additions. 

The requirements for clipping are variable; the exact number depends on the 
number о primitives that cannot be trivially accepted or rejected, which in turn de-
pends on the scene and on the viewing angle. We have assumed the simplest case 
for our database, that a primitives lie completely within the viewing volume. If a 
large fraction of the primitive needs clipping, the computational requirements could 
be substantial (perhaps even more than in the geometric transformation stage). 

Division by w requires 3 divisions per vertex, a total of 30,000 • 3 = 90,000 di-
visions. Mapping to the 3D viewport requires 2 multiplications and 2 additions per 
vertex, a total 60,000 multiplications and 60,000 additions. 

Summing the floating-point requirements for all of the geometry stages gives a 
total of 120,000 multiplications/divisions and 1,470,000 additions/subtractions per 
frame. Since anew frame is calculated every 1/10-second, a total of 22.2 million 
multiplications/divisions and 14.7 million additions/subtractions (36.9 million ag-
gregate floating-point operations) as required per second—a very substantial 
number.  

4.2.2   The Architectural Decisions and Algorithm Approaches for 
the Real-Time Rendering Systems 

A direct way to add concurrency to rasterization calculations is to cast the various 
steps of a software algorithm into a hardware pipeline. This technique has been 
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used to build a number of inexpensive, moderately high-performance systems. 
This approach can be used with either of the two main rasterization approaches: 
object order and image order algorithms.  

Pipelined Object-Order Architectures 

Object-order rasterization methods include the z-buffer, depth-sort, and binary 
space partition (BSP) - tree algorithms. The outer loop of these algorithms is an 
enumeration of primitives in the database, and the inner loop is an enumeration of 
pixels within each primitive. For polygon rendering, the heart of each of these  
algorithms is rasterizing a single polygon. 

In order to increase the productivity and to widen the functional capability the 
multichannel systems is employed in object order architectures [3]. These systems 
consist of common scene manager and some rendering channels. Each channel as 
well as a system, in general, presents a seven-stage pipeline (Fig. 4.1). The image 
is put out by means of projection video devices. The images having generated by 
separate channels, are mixed to a single whole on the screen.  In such multichan-
nel systems the scene manager has a particular functional aim to form a few priori-
ty lists.  Our version of constructing the scene manager for a multichannel system 
as a special-purpose device is presented in [3]. The following stages were joint to 
build up the efficient algorithm: 

• the definition of potentially visible objects; 
• the depth sorting of potentially visible objects with marking the hidden objects; 
• sorting out the subobjects of the hidden objects.  

Image-Order Architectures  

The alternative to object-order rasterization methods is image-order (or scan-line) 
approach. Scan-line algorithms calculate the image pixel by pixel, rather than pri-
mitive by primitive. To avoid considering primitives that do not contribute to the 
current scan line, most scan-line algorithms require primitives to be transformed 
into screen space and sorted into buckets according to the first scan line in which 
they each appear.  

Ray tracing, also known as ray casting, determines the visibility of surfaces by 
tracing imaginary rays of light from the viewer’s eye to the objects in the scene. A 
center of projection (the viewer’s eye) and a window on an arbitrary view plan are 
selected. The window may be thought of as being divide into a regular grid, whose 
elements correspond to pixels at the desired resolution. Then, for each pixel in the 
window, an eye ray is fired from the center of projection through the pixel’s center 
into the scene. The pixel’s color is set to that of the object at the closest point of 
intersection.   

Ray tracing was first developed by Appel and by Goldstein and Nagel [2]. Ap-
pel used a sparse grid of rays used to determine shading, including whether a point 
was in shadow. Goldstein and Nagel originally used their algorithm to simulate 
the trajectories of ballistic projectiles and nuclear particles. The pseudocode for 
this simple ray tracer is shown below. 
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Select center of projection and window on view plan; 

For (each san pixel line in image){   

For (each pixel in scan line) { 

Determine ray from center of projection pixel;  

    For (each object in scene){ 

  If (object is intersected and is closest considered thus far)    

      Record intersection and object name;  
                } 

Set pixel’s color to that at closest object intersection; } 
} 

The best hardware decision for this algorithm is processor-per-pixel architecture. 
For good screen resolution it needs above million processors or interpolation  
between results of neighbor-processors [3].  

Comparing of Architectures 

1. Object-parallel systems typically require specialized processors. This implies 
heavy reliance on custom VLSI chips, making system design difficult and  
expensive.  

2. Image-parallel systems, on the other hand, place more reliance on frame-buffer 
memory, which can be built with commercial parts such as VRAMs. 

3. The specialized nature of object processors limits the types of primitives that 
can be displayed and the shading algorithms that can be used. 

4. Object-parallel systems have poor overload characteristics. Generally, object-
parallel systems perform at full speed as long as there are enough object pro-
cessors. Special provisions must be made to handle large databases, and  
performance generally decreases rapidly. 

5. Ray-tracing algorithm of image-parallel performing cannot be applied in small 
personal device.  

4.3   Designing of Specialized Processors  

To show non-regular structure of specialized processors for rendering this section 
discusses architectures of specialized processors for some stage of standard graph-
ical pipeline.  

4.3.1   Scene Processor 

Fig. 4.2 shows a version of the scene processor for the systems which use conven-
tional primitives (lines and polygons) and priority algorithms with several levels 
of detail. In accordance with the extended algorithm the scene manager includes:  
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• a matrix formation unit (MFU); 
• a visibility detection unit (VDU);  
• a detail/loader unit (DLU).  

 

Fig. 4.2 Structure of Scene Processor  

The first scene manager action begins with loading the vectors Po and Pn of the 
positions and orientations of an observer and an object.  

Structure of positional vector is:  

{ }γθψ ,,,,, zyxP = ,                                               (4.1) 

where { }zyx ,,  - linear coordinate of the center of object/observer coordinate  

system;  { }γθψ ,,  - angle coordinate. 

MFU stores angles to object angle registers ROP, ROT, ROG and observer an-
gle registers RNP, RNT, RNG (Fig. 4.3). Using angels as table-pointers MFU 
takes sin and cos from the ROM3 and ROM4 and stores them it registers. MUL2 
and SUM2 accumulate matrix MA (4.2) and MB (4.3) coefficients. 
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MA is used for translation from the object system to global. For translation from 
the global system to observer MB-matrix is used. To get MA and MB MFU takes 
{ }γθψ ,,  from Po and Pn, accordingly.  
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Fig. 4.3 Block diagram of matrix formation part of MFU  

To translate center-point of object from the global system to observer  
expression (4.4) is used (Fig. 4.4).  

The VDU sets a “visual” flag for potentially visible objects using its 3D spheri-
cal extents. The centers of the objects are transformed into the observer coordinate 
system for preliminary processing and setting “visual” flags.  
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Fig. 4.4 Block diagram of center translation part of MFU  

To simplify the process the object’s extent is analyzed, as bounded sphere with 
radius Ro. It is obvious; the object is located beyond the scope of visible region, if 
it is located behind the screen or outside the bounders of the simple viewing py-
ramid (Fig. 4.5).  
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Fig. 4.5 Algorithm of visibility detection  
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where  ww ba ,  - size of window; wd  - distance from the observer to the window; 

ww BA ,  - base of visible pyramid:  

.;
w

conw
w

w

conw
w d

xb
B

d

xa
A

⋅
=

⋅
=                                           (4.6) 

 
The DLU forms the priority subobjects list for the current level of details 
(Fig. 4.6).  

Algorithm of priority list loading is shown in fig.4.7. Expression for block 2 is:  

( ) ( ) ( ) ,......... zNzPzPyNyPyPxNxPxPS inoinoino ⋅−+⋅−+⋅−=         (4.7) 

where { }zyxNi ,,=  - normal vector for i-node of BSP-tree. 
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Fig. 4.6 Block diagram of VDU  

Block diagram of DLU is shown in Fig.4.8 - 4.9.  
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Fig. 4.7 Algorithm of priority-list loading  

 

Fig. 4.8 Block diagram of DLU  
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Fig. 4.9 Continues Block diagram of DLU  
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4.3.2   Clipping Processor 

Fig. 4.10 shows an algorithm for 2D clipping of line-segment against the right 
boundary of screen.  

 

Fig. 4.10 2D clipping algorithm  

Lines intersecting a rectangle clip region (or any complex polygon) are always 
clipped to a single line segment; lines lying on the clip rectangle’s border are con-
sidered inside and hence are displayed (Vis=1, blocks 1,4).  If both endpoints of 
line are outside the one rectangle’s border, it is not displayed (Vis=0, blocks 2,3). 
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 If one endpoint lies inside and one outside, the line intersects the clip rectangle 
and it is necessary to compute the intersection point using MPSD (Middle-Point 
Subdivision Algorithms, blocks 5-16).    

This algorithm needs only addition and shift operations.  

4.4   Application of Runtime Reconfiguration  

The main problem of standard pipeline is "information" flow between processors. 
For complex graphical scene time of data exchange increases proportionally to 
improvement of quality of the image. 

Runtime reconfiguration is a good complement to using specialized proces-
sors [5]. First of all, it solves the lack of flexibility of systems using hardware ac-
celeration. The advantage of pure software is that any new application can be 
loaded at runtime, but the set of hardware-accelerated programs that can be ex-
ecuted in a given system is fixed at design time by the coprocessors included in 
it. The solution to this drawback is to also modify the hardware at runtime,  
something that's only possible with reconfiguration. 

The best way to exploit these advantages is by using self-reconfigurable sys-
tems, where the FPGA can modify its own configuration without using addition-
al external components. This will lead to a true system-on-a-chip solution that 
doesn't need a microcontroller or any other complex components to implement 
the reconfiguration. 

Run-Time reconfigurable (RTR) systems could by assigned to implement com-
plex algorithms with dynamic behavior using hardware. These systems allow  
reconfigure whole algorithm or part of them without interrupting computation 
process and also transparent for hardware environment [6]. RTR systems have 
several variants of using which reviewed in. One of the variant is implementation 
of complex computation algorithm using minimal hardware resources. This means  
algorithm distribution to several parts – computational logical blocks (CLB), and 
separate configuration/execution of each part. Computational logical blocks confi-
gures and later executes sequentially (sequentially managed execution) or using 
special internal algorithm (algorithmically managed execution). Each computation 
logical block concerned with other blocks by dataflow and operation unit. Compu-
tational logical block – part of algorithm which takes some data as input, process 
it and put some data as output. So CLB is logical structure with one input and one 
output. All CLBs could use shared operation unit, which allows reduce quantity of 
reconfigurable hardware resources and reduce time of each reconfiguration, if par-
tially reconfiguration allowed. CLBs used shared external memory where they 
stores results of data processing. 

System contains set of blocks which ensuring algorithm configuration, execu-
tion, data exchange etc. Offered system contains following blocks (Fig. 4.11).  
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Fig. 4.11 Block diagram of RTR system  

Executive subsystem – ensure configuring and reconfiguring CLBs and they 
execution. Contains: operation unit – non reconfigurable subsystems which im-
plements set of low-level operations (functions) shared by most of CLBs, using of 
operation unit reduces reconfiguration time by making shared operations with 
more performance non reconfigurable hardware; reconfigurable kernel – hardware 
reconfigurable resources which purposed for CLBs configuration and execution; 
driver – control subsystem for reconfigurable kernel which ensure kernel  
encapsulation by special hardware interface with hardware environment. 

Control unit – ensure execution of managing algorithms (algorithm managing 
and parallelism support) and interface with external memory where CLB configu-
rations stored (flash memory, for example). Provides user interface for algorithm 
execution control, data processing etc. 

Memory manager – ensure supply of external dynamically memory for execu-
tive subsystem and configurations memory for control unit. Implements set of 
caching or/and swap algorithms etc. 

4.5   Application of UML for HDL-Code Creation  

Direct transforming of UML state diagram into HDL is the first step in the auto-
mated synthesis of an FPGA circuits. UML has emerged as a common foundation 
for model driven architecture modeling. UML allows to build platform indepen-
dent descriptions that can be used by designers to make informed decision about 
their hardware/software tradeoffs. UML is supported by a wide range of tools [7]. 
The exchange of models between tools is supported by the XML standard, an 
XML-based description language which captures the details of UML model  
diagrams in a portable, machine readable format.  

HDL is one of a class of computer languages used to provide formal description 
of electronic circuitry. An HDL standard text-based expression is capable of de-
scribing the temporal behavior and/or (spatial) circuit structure of an electronic 
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system. HDL is widely used in hardware design to specify details of chip design 
for either specialized chips or FPGAs. For custom or standard-cell based inte-
grated circuit, such as a processor or other kind of specialized digital logic chip, 
HDL specifies a model for the expected behavior of a circuit before that circuit is 
designed and built. Special logic synthesis tools are then invoked that ultimately 
provide the geometric information used to produce photolithographic masks  
necessary for the fabrication of the device.  

For programmable logic devices such as FPGAs, HDL code is first delivered to 
a logic compiler (FPGA synthesis tool), and the output is uploaded into the device. 
The unique property of this process and of programmable logic in general, is that 
it is possible to alter the HDL code many times, compile it, and upload into the 
same device for testing.  

The transformation from high-level UML state diagram to HDL is based on a 
multi-step process, which consists of the following steps.  

 

Fig. 4.12 UML state diagrams for 2D clipping algorithm  

Step 1. State diagrams are created using UML state diagram notation. These di-
agrams describe system behavior using states, events and actions and correspond 
closely with the high-level design approach taken by circuit designers.  
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Step 2. UML diagrams are exported to XMI, a standard XML-based interme-
diate form. XMI uses predefined XML elements and attributes to specify the 
states, events and actions that make up the state diagram. The initial impetus for 
XMI was to enable UML diagrams to be imported and exported across different 
UML tools. Our approach uses the XMI as input to the next stage of processing.  

Step 3. The XML representation of state machines is parsed by a Java-based 
XML parsing utility.  

Step 4. Data extracted from the XMI by the Java parser is mapped to HDL  
templates, resulting in HDL suitable for use in FPGA construction.  

 

Fig. 4.13 UML state diagrams for MPSD algorithm  

4.5.1   Example for 2D Clipping Realization  

Fig. 4.12 shows a decomposition of intersection point’s computing (blocks 5-16 of 
Fig. 4.10) and conversion to UML notation.  
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UML state diagrams for sub-machine 1 and sub-machine 2 are shown in 
Fig. 4.13. Program code below contains a HDL-code for Sub-machine 2 and 1 si-
mulation in Active-HDL.  

-- Architecture of middle-point-subdivision block 
entity sum_div is  
 port( Xn: in integer; 
  Xk: in integer; 
          Yn: in integer; 
  Yk: in integer;       
      Xm: out integer:=0; 
       Ym: out integer:=0 
   ); 
end sum_div; 
------------------------------------------------------- 
architecture sum_div1 of sum_div is 
begin 
 process (Xn,Xk,Yn,Yk) 
 begin 
  Xm<=(Xn+Xk)/2; 
  Ym<=(Yn+Yk)/2;   
 end process;  

end sum_div1; 

-------------------------------------------------------------------------------------------------- 
-- Architecture of processor for cross-point calculation 
entity cpu is  
 port( Xn: in integer; 
       Xk: in integer; 
       Yn: in integer; 
       Yk: in integer; 
       L:  in integer; 
       Xc: out integer:=0; 
       Yc: out integer:=0; 
       Res: out integer:=0 ); 
end cpu; 
 
architecture cpu1 of cpu is 
component sum_div is 
 port(Xn,Xk,Yn,Yk: in integer:=0;  
        Xm,Ym: out integer:=0);  
end component sum_div;  
signal Xna,Xka,Yna,Yka,Xca,Yca: integer:=0; 
begin    
   U1 : sum_div port map(Xna,Xka,Yna,Yka,Xca,Yca);  
process  
variable Xn1,Xk1,Yn1,Yk1,Xc1,Yc1: integer; 
variable Res1: integer:=0; 
 begin 
 Xn1:=Xn; 
 Xk1:=Xk; 
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 Yn1:=Yn; 
 Yk1:=Yk; 
  
 if Xk /= L and Xn /= L then 
 m1: loop 
--   Xc1:=(Xn1+Xk1)/2; 
--   Yc1:=(Yn1+Yk1)/2; 
   Xna<=Xn1; 
   Xka<=Xk1; 
   Yna<=Yn1; 
   Yka<=Yk1; 
   Xc1:=Xca;  
   Yc1:=Yca; 
   if Xc1>L then 
      Xk1:=Xc1; 
      Yk1:=Yc1; 
   else 
      Xn1:=Xc1; 
      Yn1:=Yc1; 
   end if;     
  wait for 100 ns;  
  exit m1 when Xc1 = L;  
  end loop m1; 
 else  
  wait for 10 ns;     
  if Xk = L then  
     Xc1:=Xk; 
     Yc1:=Yk; 
  else   
  Xc1:=Xn;  
  Yc1:=Yn;  
  end if;   
 end if;   
 Xc<=Xc1; 
 if Res1=0 then 
 Yc<=Yc1; 
 end if; 
 Res<=1; 
 Res1:=1; 
 end process; 
end cpu1;  

4.5.2   Fragment of HDL for Scene Processor Simulation  

library ieee; 
use ieee.std_logic_1164.all;  
use ieee.numeric_std.all; 
package work is 
 type normal is array (0 to 32) of unsigned(0 to 48);  
 type matr is array (0 to 8) of unsigned(0 to 48); 
end work;  
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library ieee; 
use ieee.std_logic_1164.all;  
use ieee.numeric_std.all; 
use WORK.work.all; 
entity graf is  
 port(k,n : in integer; a,b2,d,Ro : in unsigned(0 to 48);  
  Pnor1,P1 : in normal; B : in matr; clk : in std_logic; 
  FV : out std_logic; Ra : out unsigned(31 downto 0));    
end graf; 
library ieee; 
use ieee.std_logic_1164.all;     
use ieee.numeric_std.all; 
use WORK.work.all; 
architecture graf_ar of graf is 
 signal j : integer range 0 to 48; 
 signal f : std_logic; 
 signal xcon,ycon,zcon : unsigned(0 to 65);  
 signal A1,B1 : unsigned (0 to 114); 
 signal S : normal; 
 signal temp1,d1 : unsigned (0 to 48); 
 signal Pnor,P : normal; 
begin    
 Pnor<=Pnor1; 
 P<=P1; 
 d1<=d; 
 --S=(Po.x-Pn.x)*Pnor.x+(Po.y-Pn.y)* Pnor.y+(Po.z-Pn.z)* Pnor.z; 
 --xcon=(Po.x-Pn.x)*matr_b[0]+(Po.y-Pn.y)*matr_b[1]+ 
 --     (Po.z-Pn.z)*matr_b[2]; 
 --ycon=(Po.x-Pn.x)*matr_b[3]+(Po.y-Pn.y)*matr_b[4]+ 
 --     (Po.z-Pn.z)*matr_b[5]; 
 --zcon=(Po.x-Pn.x)*matr_b[6]+(Po.y-Pn.y)*matr_b[7]+ 
 --     (Po.z-Pn.z)*matr_b[8]; 
 --A=a*xcon/d; 
 --B=b*xcon/d;   
 --xcon>(d-Ro); 
 --ycon<(B/2+Ro); 
 --ycon>(-B/2-Ro); 
 --zcon<(A/2+Ro); 
 --zcon>(-A/2-Ro);          
 process (clk) 
 begin        
  if clk='1' and clk'event then 
   S(32)<=(others=>'0');  
   for i in к-1 downto 0 loop   
   j<=n-i; 
   S(i)(0 to 33)<=((P(i)(0 to 16))-(P(j)(0 to 16)))* 

(Pnor(i)(0 to 16))+((P(i)(17 to 32))-(P(j)(17 to 32)))* 
(Pnor(i)(17 to 32))+((P(i)(33 to 48))-(P(j)(33 to 48)))* 
(Pnor(i)(33 to 48)); 

    if S(i)>S(32) then Ra(i)<='0'; 
    else Ra(i)<='1'; 
    end if; 
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   end loop; 
   for i in 1 to 8 loop  
    j<=n-i; 
    xcon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(0)+ 

(P(i)(17 to 32)-P(j)(17 to 32))*B(1)+ 
(P(i)(33 to 48)-P(j)(33 to 48))*B(2); 

    ycon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(3)+ 
(P(i)(17 to 32)-P(j)(17 to 32))*B(4)+ 
(P(i)(33 to 48)-P(j)(33 to 48))*B(5); 

    zcon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(6)+ 
(P(i)(17 to 32)-P(j)(17 to 32))*B(7)+ 
(P(i)(33 to 48)-P(j)(33 to 48))*B(8);     

    A1<=(a*xcon)/d1; 
    B1<=(b2*xcon)/d1; 
    f<='0'; 
    if (d-Ro)>xcon then f<='1'; end if; 
    if (B1/2+Ro)<ycon then f<='1';  end if; 
    if (((not B1)/2)-Ro)>ycon then f<='1';  end if; 
    if (A1/2+Ro)<zcon then f<='1';  end if; 
    if (((not A1)/2)-Ro)>zcon then f<='1';  end if; 
    if f='1' then   FV<='1'; 
    else FV<='0'; 
    end if;  
   end loop;    
  end if; 
 end process; 
end graf_ar; 

4.6   Summary and Future Directions 

The ability to move from UML diagrams to HDL hardware descriptors is the first 
step in an effort to use model-based architecture to further optimize and automate 
the small systems development. Having made the decision to implement an algo-
rithm using FPGAs, there are numerous decisions concerning the positioning of 
components that will impact product viability. 

By analyzing the whole system in terms of supporting software and hardware, it 
is possible exploit new opportunities for image generation systems developing. 
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Abstract. The paper presents logic synthesis method targeted at FPGA 
architectures with specialized embedded memory blocks (EMBs). Existing 
methods do not ensure effective utilization of the possibilities provided by such 
modules. The problem of efficient mapping of combinational and sequential parts 
of design can be solved using decomposition algorithms. The main question of 
this paper is the application of decomposition based methods for efficient 
utilization of modern FPGAs. It will be shown that functional decomposition 
method allows for very flexible synthesis of the designed system onto 
heterogeneous structures of modern FPGAs composed of logic cells and EMBs. 
Finally we present results of the experiments, which evidently show, that the 
application of functional decomposition algorithms in the implementation of 
typical signal and information processing systems greatly influences the 
performance of resultant digital circuits. 

5.1   Introduction 

The technological advancements in Field Programmable Gate Arrays (FPGA) in 
the past decade have opened new paths for digital system design engineers. An 
FPGA can be described as an array of programmable logic cells interconnected by 
programmable connections. Each cell can implement a simple logic function (of a 
limited number of inputs) defined by a designer’s CAD tool. A typical 
programmable device has a large number (64 to over 300,000) of such cells that 
can be used to form complex digital circuits. The ability to manipulate the logic at 
the gate level means that the designer can construct a custom processor to 
implement the desired function efficiently. 

Since FPGA introduction in the 1980’s, the manufacturers have been extending 
their chips’ ability to implement digital systems by introducing specialized 
mechanisms such as low-latency carry-chain-routing lines that speed-up the 
addition and subtraction operations, dedicated multiplier function blocks or even 
fully functional MAC blocks called DSP blocks. 
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Modern FPGA devices are also equipped with memory-based structures [9, 28]. 
These specialized embedded memory blocks make it possible to implement data 
storage modules such as shift registers or RAM blocks. In many cases, though, the 
designer does not need such elements in his/her design or does not utilize all of 
such resources. During the mapping stage, these blocks may be considered as 
logic units unless they are being used for data storage. The memories act as very 
large logic cells, where the number of inputs is equal the number of address lines. 
Unfortunately, the existing CAD tools are not well suited to utilize all possibilities 
that such EMB blocks offer due to the lack of appropriate synthesis methods. 
Typically, after the logic synthesis stage, technology-dependent mapping methods 
are used to map design onto available resources [11]. However, such an approach 
is inefficient due to the fact that the quality of post-synthesis mapping is highly 
dependent on the quality of technology-independent optimization step. 

Recently, efforts have been made to develop methods based on functional 
decomposition that would allow for efficient utilization of these EMB blocks  
[6, 24, 25, 26]. 

Moreover, in modern logic synthesis of PLD, FPGA modules as well as PLA 
structures, the problem of finite state machine synthesis is significant due to its 
widespread practical application, but in particular internal states encoding. This 
encoding influences both the structure of the realization of the FSM (i.e., the 
connections between the combinational block and the memory block) and the 
complexity of the combinational block. 

Attempts to solve the above problem resulted in many methods for the structural 
synthesis of FSMs. Their diversity results from different analysis, different 
assumptions and, subsequently, designing the methods for specific types of target 
components. Thus, different methods of the synthesis of FSM for PLA structures 
[9, 12], for ROM memories [1] and PLD modules [4, 10] exist. Unfortunately, the 
current solutions which concern FPGAs with EMBs are not efficient. 

In this paper, new logic synthesis methods that allow for very efficient 
utilization of embedded memory blocks are presented. Proposed methods are 
based on functional decomposition [8, 15, 17, 22, 23]. These methods can be used 
for specific designs, i.e. to implement FIR filters using the concept of distributed 
arithmetic (DA). In the end, experimental results that prove efficiency of the 
proposed methods are shown. 

5.2   Decomposition of Boolean Functions 

In this section, only information that is necessary for an understanding of this 
paper is reviewed. More detailed description of functional decomposition based on 
partition calculus can be found in [8, 22]. 

5.2.1   Functional Decomposition 

The set X of input variables of Boolean function is partitioned into two subsets: 
free variables U and bound variables V, such that U ∪ V = X. Assume that the 
input variables x1, ..., xn have been relabeled in such a way, that: 
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U = {x1, ..., xr} and   
 

                         V = {xn–s+1, ..., xn}.                                            (5.1) 

Consequently, for an n-tuple x, the first r components are denoted by xU and the 
last s components are denoted by xV. 

 

Fig. 5.1 Schematic representation of the serial decomposition 

Let F be a Boolean function with n inputs and m outputs and let (U, V) be the 
pair of sets defined above. Assume that F is specified by a set of the function’s 
cubes. Let G be a function with s inputs and p outputs, and let H be a function 
with r + p inputs and m outputs. The pair (G, H) represents a serial decomposition 
of F with respect to (U, V), if for every minterm b relevant to F, G(bV) is defined, 
G(bV) ∈ {0, 1}p, and F(b) = H(bU, G(bV)). G and H are called blocks of the 
decomposition (Fig. 5.1). 

Theorem 5.1 Let PV, PU, and PF be partitions induced on the function F input 
cubes by the input sub-sets V and U, and outputs of F, respectively. If there exists 
a partition PG on the set of function F input cubes such that PV ≤ PG, and 
PU ⋅ PG ≤ PF, then F has a serial decomposition with respect to (U, V).  

The r-admissibility test allows one to obtain the set U of free variables for which 
there exists function G (generally with t outputs) such, that ⏐U⏐ + t < n, where 
n = ⏐X⏐. 

Let P1, ..., Pk be partitions on M which is the set of minterms of function F. The 
set of partitions {P1, ..., Pk} is r-admissible in relation to partition θ if and only if 
there is a set {Pk+1, ..., Pr} of two-block partitions such that the product π of 
partitions P1, ..., Pk, Pk+1, ..., Pr satisfies the inequality π ≤ θ, and there does not 
exist any set of r − k − 1 two-block partitions which meets this requirement. 

The r-admissibility has the following interpretation. If a set of partitions 
{P1, ..., Pk} is r-admissible, then there might exist a serial decomposition of F 
(Fig. 5.1) in which component H has r inputs: k primary inputs corresponding to 
free input variables which induce {P1, ..., Pk} and r − k inputs which are G 
outputs. Thus, to find a decomposition of F in which component H has r inputs, 
we must find a set of input variables which induces an r-admissible set of input 
partitions. The following corollary can be applied to check whether a given set of 
input partitions is r-admissible. 
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Corollary 5.1 For σ ≤ τ, let τ⏐σ denote the quotient partition and η(τ⏐σ) be the 
number of elements in the largest block of τ⏐σ. Also, let e(τ⏐σ) denote the 
smallest integer equal to or larger than log2η(τ⏐σ), i.e. ⎡ ⎤)|(log)|( 2 στηστ =e . 

Then, {P1, ..., Pk} is r-admissible, if 

r = k + e(π⏐πF),                                                  (5.2) 

where π is the product of partitions P1, ..., Pk and πF = π ⋅ PF. 
Corollary 5.1 provides a means to evaluate the admissibility of a set of input 

variable partitions P(xi). In searching of a maximum set of variables, which can be 
connected to circuit H directly, we compute sets of t-admissible partitions P(xi) 
only, where t is a given number of inputs of circuit H. 

Property 5.1 If a set of partitions P = {P1, ..., Pk} is m-admissible, then each 
subset of P is m′-admissible, where .mm ≤′  Thus, the necessary condition for set 
P to be m-admissible is that each subset P′  of P has to have r-admissibility 

.)( mPr ≤′  

Example 5.1 R-admissibility evaluation. 

Table 5.1 Table of example function 

 x1 x2 x3 x4 x5 x6 y1 y2 y3 

1 1 0 0 1 0 0 0 0 0 

2 1 0 1 1 1 0 0 1 0 

3 1 1 0 1 1 1 0 1 0 

4 1 0 1 0 0 0 0 0 1 

5 0 0 1 1 1 0 1 0 0 

6 1 1 0 1 0 0 1 0 1 

7 1 0 0 1 1 1 1 0 0 

8 0 0 1 0 0 1 1 1 1 

9 0 0 1 0 1 0 1 1 0 

For the function of 6 input variables and 3 output variables described 
in Table 5.1, we have the following partitions induced by input variables: 

},7,6,4,3,2,1;9,8,5{
1

=xP   

},6,3;9,8,7,5,4,2,1{
2

=xP   

},9,8,5,4,2;7,6,3,1{
3

=xP   

},7,6,5,3,2,1;9,8,4{
4

=xP   

},9,7,5,3,2;8,6,4,1{
5

=xP   

}8,7,3;9,6,5,4,2,1{
6

=xP
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and the output partition: 

}.9;8;6;7,5;3,2;4;1{
321

=⋅⋅= yyyF PPPP  

The quotient partitions are as follows: 

},)(6)(7)(1)(4)(2,3;(9))8)(5({|
1

=Fx PP   

},(3)(6);5,7)(8)(9)(1)(2)(4)({|
2

=Fx PP   

},8)(9)(2)(4)(5)(;7)(1)(3)(6)({|
3

=Fx PP   

},)(5,7)(1)(2,3)(6;(4)(8)(9){|
4

=Fx PP   

},(9)(2,3)(5,7);8)(1)(4)(6)({|
5

=Fx PP   

}.(3)(7)(8);5)(6)(9)(1)(2)(4)({|
6

=Fx PP  

Thus, the r-admissibility of partitions induced by input variables is: 

                                   ⎡ ⎤ ⎡ ⎤ ,45log1)|(log1)|(1)( 22 111
=+=+=+= FxFxx PPPPePr η   

⎡ ⎤ ,46log1)|(1)( 222
=+=+= Fxx PPePr  

⎡ ⎤ ,45log1)|(1)( 233
=+=+= Fxx PPePr  

⎡ ⎤ ,34log1)|(1)( 244
=+=+= Fxx PPePr  

⎡ ⎤ ,34log1)|(1)( 255
=+=+= Fxx PPePr   

⎡ ⎤ .46log1)|(1)( 266
=+=+= Fxx PPePr  

5.2.2   Decomposition into EMB Blocks 

Functional decomposition relies on breaking down a complex system into a 
network of smaller co-operating sub-functions in such a way that the original 
system behavior is preserved. A single step of the functional decomposition 
replaces function F with two sub-functions (Fig. 5.1). This process is recursively 
applied to both G and H blocks until a network is constructed where each block 
can be directly implemented in a single logic cell of target FPGA architecture. 

A logic cell can implement any function of a limited number of input variables 
(typically 4 or 5). Thus, the main effort of logic synthesis methods based on 
decomposition is to find such a partition of input variables into the free set and the 
bound set that allows for decomposition with the block G which not exceed the 
size of the logic cell. Various methods are used, including exhaustive search, since 
the size of the logic cell is small. Noticeably, the main constraint is the number of 
inputs to block G and not the number of outputs. This is because the block G with 
more outputs than available in the logic cell can be implemented with few logic 
cells operating in parallel. 

Since EMB blocks can be configured to work as logic cells of many different 
sizes, methods intended for logic cells are not efficient. The main reason is that the 
method has to check decompositions for many different sizes of block G. The 
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second factor is that, in case of EMBs the efficiency of utilization of these blocks 
depends on carefully selected size of block G. For example, M512 RAM block of 
Stratix device can be configured among others as an 8-input and 2-output logic 
cell or 7-input and 4-output logic cell. Let us assume that in the decomposition 
search, the following solutions are possible: the block G with 8 inputs and 1 
output or the block G with 7 inputs and 3 outputs. From EMBs utilization point of 
view, the second solution is better, since it utilizes 384 bits of total 512 bits 
available, while the first solution utilizes only 256 bits. 

In this paper, we present a method that uses the concept of r-admissibility to 
efficiently create decompositions that utilize the EMB blocks in a high degree. 
The method is based on the balanced functional decompositions. Based on 
redundant variable analysis of each output of a multi-output function, parallel 
decomposition separates F into two or more functions, each of which has as its 
inputs and outputs a subset of the original inputs and outputs. Although in this 
method the crucial point of the whole mapping process is created by the serial 
decomposition algorithm, the parallel decomposition based on argument reduction 
process plays a very important role. Thanks to this algorithm the functional 
decomposition procedure can start directly with a two-level, espresso based 
specification. Thus, the method itself allows one to develop a uniform autonomous 
tool for decomposition-based technology mapping for FPGAs. 

R-admissibility is used to evaluate serial decomposition possibilities for 
different sizes of G block, according to possible configuration of EMB blocks. For 

a function with n input variables there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

n
 possible solutions of serial 

decomposition with k inputs G block. Since an EMB can be configured as a block 
of many different sizes, the possible solution space is large. Using Property 5.1, the 
search can be drastically reduced. This will be explained in the following example. 

Example 5.2 R-admissibility application to serial decomposition evaluation. 

For the function from Example 5.1 we have that the r-admissibility of single input 
variables x1, …, x6 is 4, 4, 4, 3, 3 and 4, respectively. This means that only for 
U = {x4}, V = {x1, x2, x3, x5, x6} and U = {x5}, V = {x1, x2, x3, x4, x6} a 
decomposition with 2 outputs from block G may exist. 

When considering solutions with 4 inputs to block G, according to Property 5.1, 
only the solution with U = {x4, x5}, V = {x1, x2, x3, x6} should be evaluated. We have: 

}(2,3)(5,7);(1)(6);(9);(4)(8){|)(
54

=⋅ Fxx PPP  

       ⎡ ⎤ .32log2)|(2)( 25454
=+=⋅+=⋅ Fxxxx PPPePPr  

This means that for such variable partitioning, a decomposition may exist with  
1-output G block. 

5.2.3   Parallel Decomposition 

Consider a multiple-output function F. Assume that F has to be decomposed into 
two components, G and H, with disjoint sets YG and YH of output variables. This 
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problem occurs, for example, when we want to implement a large function using 
components with a limited number of outputs. Note that such a parallel 
decomposition can also alleviate the problem of an excessive number of inputs of 
F. This is because, for typical functions most outputs do not depend on all input 
variables. Therefore, the set XG of input variables on which the outputs of YG 
depend, may be smaller than X. Similarly, for the set XH of input variables on 
which the outputs of YH depend may be smaller than X. As a result, components G 
and H have not only fewer outputs, but also fewer inputs than F. The exact 
formulation of the parallel decomposition problem depends on the constraints 
imposed by the implementation style. One possibility is to find sets YG and YH, 
such that, the combined cardinality of XG and XH is minimal. Partitioning the set of 
outputs into only two disjoint subsets is not an important limitation of the method, 
because the procedure can be applied for components G and H again.  

Example 5.3 Consider the multiple-output function given in Table 5.2. The 
minimal sets of input variables on which each output of F depends are: 

y1: {x1, x2, x6} 
 y2: {x3, x4} 
 y3: {x1, x2, x4, x5, x8}, {x1, x2, x4, x6, x8} 
y4: {x1, x2, x3, x4, x7} 
y5: {x1, x2, x4} 
y6: {x1, x2, x6, x8}. 

An optimal two-block decomposition, minimizing the card XG + card XH (where 
card X is the cardinality of X), is YG = {y1, y3, y6}and YH = {y2, y4, y5}, with 
XG = {x1, x2, x4, x6, x8} and XH = {x1, x2, x3, x4, x7}. The truth tables for components 
G and H are shown in Table 5.3a and 5.3b. 

Table 5.2 Function F 

 x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 y5 y6 

1 0 0 0 1 1 1 0 0 0 0 0 0 – 0 

2 1 0 1 0 0 0 0 0 0 0 – 1 0 1 

3 1 0 1 1 1 0 0 0 0 1 1 0 1 1 

4 1 1 1 1 0 1 0 0 0 1 1 1 1 0 

5 1 0 1 0 1 0 0 0 0 0 0 – 0 1 

6 0 0 1 1 1 0 0 0 1 1 0 1 0 0 

7 1 1 1 0 0 0 0 0 1 0 – 0 1 0 

8 1 0 1 1 0 1 0 0 1 1 0 0 – 1 

9 1 0 1 1 0 1 1 0 – 1 0 1 – 1 

10 0 0 0 1 1 1 0 1 0 0 1 0 – 1 

11 0 0 0 1 1 0 0 1 – – 1 0 0 0 
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Table 5.3a Function G of parallel decomposition 

 x1 x2 x4 x6 x8 y1 y3 y6 

1 0 0 1 1 0 0 0 0 

2 1 0 0 0 0 0 0 1 

3 1 0 1 0 0 0 1 1 

4 1 1 1 1 0 0 1 0 

5 0 0 1 0 0 1 0 0 

6 1 1 0 0 0 1 1 0 

7 1 0 1 1 0 1 0 1 

8 0 0 1 1 1 0 1 1 

9 0 0 1 0 1  1 0 

Table 5.3b Function H of parallel decomposition. 

 x1 x2 x3 x4 x7 y2 y4 y5 

1 0 0 0 1 0 0 0 0 

2 1 0 1 0 0 0 1 0 

3 1 0 1 1 0 1 0 1 

4 1 1 1 1 0 1 1 1 

5 0 0 1 1 0 1 1 0 

6 1 1 1 0 0 0 0 1 

7 1 0 1 1 1  1  

The algorithm itself is general in the sense that function to be parallely 
decomposed can be specified in compact cube notation. Calculation of the 
minimal sets of input variables for each individual output can be a complex task. 
Thus, in practical implementation heuristic algorithms are used which support 
calculations with the help of so called indiscernible variables. 

5.2.4   Balanced Decomposition 

In the balanced decomposition the serial and parallel decompositions are 
intertwined in a top-down synthesis process to obtain the required circuit structure. 
At each step, either parallel or serial decomposition is performed, both controlled 
by certain input parameters. In the case of serial decomposition the parameters Gin 

and Gout denote the number of G inputs and outputs, respectively. In the case of 
parallel decomposition the parameter Gout represents the number of G outputs. 
Intertwining of serial and parallel decomposition opens up several interesting 
possibilities in multilevel decomposition. Experimental results show that the right 
balance between parallel and serial decomposition and the choice of control 
parameters significantly influence the area and depth of the resultant network. 



5   Logic Synthesis Method of Digital Circuits Designed for Implementation  129
 

Example 5.4 The influence of the decomposition strategy on the final result of the 
FPGA-based mapping process will be explained with function F representing DA 
logic of a certain wavelet filter described by the following coefficients [1495, 
−943, −9687, 18270, −9687, −943, 1495]. 

 

Fig. 5.2 Decomposition process for the ahp (7,16) filter – strategy 1  

As F is a 7-input and 16-output function, in the first step of the decomposition, 
both parallel and serial decomposition can be applied. Let us apply parallel 
decomposition first (Fig. 5.2). The parallel decomposition with Gout = 1 generates 
two components: the first one with 6 inputs and 1 output, and the second with 7 
inputs and 15 outputs. This is illustrated by two arrows with the common starting 
point going to different directions. The smaller component is the subject to two-
stage serial decomposition resulting in block G with 4 inputs and 1 output and 
block H with 3 inputs and 1 output (both G and H blocks are implemented using 2 
cells). Notation (4,1)(3,1) at the end of the arrow shows the number of inputs and 
outputs for functions G(4,1) and H(3,1), respectively. The second component is 
again decomposed in parallel yielding components (7,7) and (7,8). For the (7,8) 
component serial decomposition is assumed, now resulting in block G with 4 
inputs and 2 outputs (implemented with 2 logic cells). Thus, the next step deals 
with a 6-input function H, which can be directly implemented in ROM. In the next 
iterative step, parallel decomposition is applied to split the (7,7) component into 
(7,3) and (7,4) blocks. It is reasonable to implement the (7,4) block in a ROM. The 
second block is decomposed serially yielding G(4,3) and H(6,3). As G block can 
be implemented with 3 logic cells, the next step deals with function H. Parallel 
decomposition applied to function H generates two components. Each of them is 
the subject to two-stage serial decomposition. The obtained network can be built 
of 14 logic cells and 2 M512 ROMs. 

If we change the size of the smaller component in the first step of the parallel 
decomposition, i.e., (7,4) instead of (6,1), then the implementation requires 3 
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M512 ROMs and 9 logic cells. However, making decision to apply the serial 
decomposition instead of the parallel decomposition to decompose (7,16), the 
implementation requires only 3 ROMs. The structure is shown in Fig. 5.3. 

 

Fig. 5.3 Decomposition process for the ahp (7,16) filter – strategy 2 

Balanced decomposition was implemented as software package called 
DEMAIN [19, 27]. Recently the package was improved to help designers to deal 
with large truth tables. All described methods of truth tables transformations can 
be performed easily, and results are shown immediately on the screen for further 
processing. It is designed for performing manual operations on functions, and 
therefore is meant to be highly user friendly, as well as cross-platform compatible. 
After choosing the operation, a dialog pops up which can be used for inputting the 
parameters of the operation. After the operation is performed, its results are 
displayed in the project window. 

5.3   Sequential Circuits Synthesis 

Embedded memory blocks can also be used for implementation of sequential 
machines in a way that requires fewer logic cells than the traditional flip-flop 
based implementation. This may be used to implement ”non-vital” sequential parts 
of the design, saving logic cell resources for more important sections [22]. Since 
the size of embedded memory blocks is limited, such an implementation may 
require more memory than is available in a device. To reduce the memory usage 
in ROM-based sequential machine implementations, a structure with next state 
logic partially implemented in the ROM and partially implemented in logic cells 
was proposed [22]. 

In the considered FSM implementation the combinational logic is split into two 
parts. One part is implemented in embedded memory blocks which are configured 
as ROM memory, with its content determined at the time of the programming. The 
second part, called the address modifier, is used to reduce the number of memory 
address lines (Fig. 5.4). The address modifier is implemented in programmable 
logic blocks containing LUTs. This proposal is a cross-fertilized approach 
between recent progress in finite-state machine synthesis and in micro-computer 
architectures. Similar ideas can be found in [4]. 

Presented problem is intimately related to the encoding problem of FSM which 
is of fundamental importance in a sequential synthesis, especially the  
state-machine synthesis. 
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Fig. 5.4 Implementation of an FSM using an address modifier  

5.3.1   Basic Information 

Let A = (S, V, δ, Y, λ) be an FSM (completely or incompletely specified), where: 
S – set of internal states, V – set of input symbols, δ – state transition function,  
Y – set of output symbols, λ – output function, and the values ⎡ ⎤||log2 Vm ≥  and 

⎡ ⎤||log2 Sp ≥  denote the number of inputs and state variables, respectively. 

Partition description and partition algebra [13] are applied to describe logic 
dependencies in such an FSM. 

Let T be an isomorphic function between the domain Dδ of the transition 
function and the set T = 1, …, t, where t = |Dδ|. Set T represents the ROM cells 
needed to store the next state pair δ(v, s) for each pair (v, s). Thus, the 
characteristic partition Pc of the FSM is defined in the following way: 

Each block 
cPB  of the characteristic partition includes these elements from the 

set T which correspond to these pairs (v, s) from the domain Dδ which the 
transition function δ(v, s) = s′ maps onto the same next state s′. 

Example 5.5. For the FSM and function T shown in Table 5.4 the characteristic 
partition is: 

}.4;15,11,5,3;13,9,6;16,10,7,2;14,12,8,1{=cP  

A partition P on the set T is related to a partition π on the states set S if for any 
inputs va, vb the condition that si, sj belong to one block of the partition π implies 
that the elements from T corresponding to pairs (va, si) and (vb, sj) belong to one 
block of the partition P. 

A partition P on the set T is related to a partition θ on the input symbols set V if 
for any state sa, sb the condition that vi, vj belong to one block of the partition θ 
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implies that the elements from T corresponding to pairs (vi, sa) and (vj, sb) belong 
to one block of the partition P. 

Table 5.4 FSM transition table and T mapping 

 00 01 11 10 (x1,x2)   V    

S v1 v2 v3 v4 V  S v1 v2 v3 v4 

s1 s1 s2 s4 –   s1 1 2 3 – 

s2 – – s5 s4   s2 – – 4 5 

s3 s3 s2 s1 s3   s3 6 7 8 9 

s4 s2 – s4 s1   s4 10 – 11 12 

s5 s3 s1 s4 s2   s5 13 14 15 16 

In particular, a partition P on the set T is related to the set {π, θ} if it is related 
to both π and θ. 

Example 5.6 For FSM from Table 5.4, the partition 

}16,15,14,13,12,11,10;9,8,7,6,5,4,3,2,1{1 =P  

is related to the partition },;,,{ 54321 sssss=π , while the partition 

}16,15,12,11;9,8,5,4,3;14,13,10;7,6,2,1{2 =P  

is related to the set {π, θ}, and },;,{ 4321 vvvv=θ . 

5.3.2   Implementation of Finite State Machines in FPGA’s 

Any FSM, A = (S, V, δ, Y, λ), can be implemented as in Fig. 5.4 using an address 
modifier. 

If Π = {π1, …, πp} is the set of two-block partitions on S and Θ = {θ1, …, θm} 
is the set of two-block partitions on V, while Pk is a partition on the set T which is 
related to either πi or θj, then p = {P1, …, Pm+p} is the set of all partitions related to 
partitions {π1, …, πp, θ1, …, θm}. Partitions in Π correspond to the state variables 
and partitions in Θ correspond to the input variables. 

Fact 5.1 To achieve unambiguous encoding of address variables and, at the same 
time, maintain the consistency relation T with the transition function, two-block 
partitions P = {P1, …, Pw} have to be found, such that: 

P1 ⋅ P2 ⋅ … ⋅ Pw ≤ Pc .                                                           (5.3) 

This is a necessary and sufficient condition for {P1, …, Pw} to determine the 
address variables. This is because each memory cell is associated with a single 
block of Pc, i.e., with those elements from T which map the corresponding (v, s) 
pairs onto the same next state. 
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Although some of the partitions for the P set can be selected from the p set, the 
selection is made in such a way that the simplest addressing unit (address 
modifier) is produced. Such a selection is possible thanks to the method [5, 6], 
based on the notion of r-admissibility [8]. 

5.3.3   States Encoding 

Assume that u partitions {π1, …, πl} and {π1, …, πu–l} were chosen. These 
partitions correspond to the address lines driven by a single variable, either a state 
variable q or an external variable x. The result is the state and input symbol partial 
encoding; e.g., 

a1 = q1, …, al = ql, al+1 = θ1, …, au = θu−l.  

The encoding of state variables is possible thanks to the method of construction 
and coloring of weighted graphs [5]. 

Corollary 5.2. Inequality (5.3) can be written as: 

,
121 ciiiii PPPPPP

wuu
≤⋅⋅⋅⋅⋅⋅

+
……                                            (5.4)  

where 
uiiiu PPPP ⋅⋅⋅= …

21
 is related to the partitions {π1, π2, …, πl, θ1, θ2, …, θu−l}. 

The encoding of the part of the state variables remaining after the partial 
encoding (input variables, in general) can be obtained from the following rules: 

π1 ⋅ π2 ⋅ … ⋅ πl ⋅ π = π(0),                                                (5.5) 
θ1 ⋅ θ2 ⋅ … ⋅ θu–l ⋅ θ = θ(0),                                               (5.6) 

where π and θ represent partitions corresponding to these remaining state 
variables. π(0) as well as θ(0) are partitions whose blocks are equal to their 
elements. 

Since the design process may be considered as a decomposition of the memory 
block into two blocks: a combinational address modifier and a smaller memory 
block, we need to find function G which will determine the second part of the 
memory address bits. 

Inequality (5.4) can be transformed into: 

PU ⋅ PG ≤ Pc.                                                               (5.7) 

Corollary 5.3 A partition PG has to be constructed, such that: 

PG ≥ PV,                                                                     (5.8) 

where 
wu iiG PPP ⋅⋅=

+
…

1
 and PV is related to the partition set {π, θ}. 

Let us assume that input variables are encoded. 

Theorem 5.2 Partition PV can be constructed in the following way: 

,
θVSV PPP ⋅=                                                              (5.9) 
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where PS is the partition related to π(0) on the set of states S, and 
θVP  is the 

partition related to θ. 

Proof. Let assume that 
θπ VVV PPP ⋅=  (Corollary 5.3), where 

πVP  is related to π, 

and 
θVP  is related to θ. Since PU and PV satisfy PU ⋅ PV ≤ Pc, we have 

cVVU PPPP ≤⋅⋅
θπ

. As a result, .cVSU PPPP ≤⋅⋅
θ

 

Let 〈V, R, E, P〉 be a quadruple, where V is a set of elements, R is an 
equivalence relation on the set V, E is a set of pairs in relation P on the set V, P is 
a two-element relation. A triple M(V|R, E, P) is a multi-graph, where V|R is an 
equivalence class for an equivalence relation on the set V. 

Since there exists an isomorphism V|R↔V′, we can construct a natural mapping 
from M(V|R, E, P) multi-graph to G(V′, E′, P) graph. Such a mapping ψ: M → G 
allows for calculation of a chromatic number χ(G) = χ(M). 

Let us apply these notions to the construction of the PG partition. Inequality 
(5.7) allows us to construct a quotient partition PU | Pc. 

Corollary 5.4 The triple 〈PV, E1, P1〉 – where PV is a partition given by equation 
(5.9), P1 is a relation which represents incompatibilities in quotient partition 
PU | Pc on the set T (relation of incompatibility in quotient partition PU | Pc is a 
relation among all elements in each block of the partition separately) and E1 is the 
set of pairs in the relation P1 – is a multi-graph M1(PV, E1, P1). 

After mapping ψ1: M1 → G1 we calculate a chromatic number χ(G1) which is 
equal to χ(M1). 

The coloring of the G1 graph determines the PG partition. 

Example 5.7 Let assume that input variables for the transition table are encoded 
(Tab. 5.4). Based on Fact 5.1, we obtain set U = {q1, q2, x2}, where q1, q2 are 
internal variables generating partitions, respectively: 

}.,;,,{},,;,,{ 524312534211 ssssssssss == ππ  

Then 

})15)(14(;)16)(13(;)8)(7(;)9,6(;)4(;)5(;)11,3)(2(;)10)(12,1({| =cU PP .  

As 

},16,15,12,11,9,8,5,4,3;14,13,10,7,6,2,1{)( 1 == xPPVθ
 

and 

},16,15,14,13;12,11,10;9,8,7,6;5,4;3,2,1{=SP  

we obtain 

}.16,15;14,13;12,11;10;9,8;7,6;5,4;3;2,1{=VP  
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According to Corollary 5.4, the M1 multi-graph and its G1 image shown in Fig. 5.5 
is constructed. χ(M1) = 3, and thus μ = 5. 

 

Fig. 5.5 M1 multi-graph and G1 graph 

The value of 

⎡ ⎤))((log|| 12 MU χμ +=                                                    (5.10) 

determines the size of the memory required. In the case of μ > w, a new partition 

VP′  has to be constructed. Then, PV has to be multiplied by appropriately chosen 

two-block partitions related to those which are generated by input variables from 
the U set. In that case the result is a non-disjoint decomposition. 

Example 5.8 Let w = 4. Selecting additional external variable to generate partition 

θVP , we obtain: 

},16,12,9,5;15,11,8,4,3;14,7,2;13,10,6,1{),( 21 == xxPPVθ
 

and then 

},16;15;14;13;12;11;10;9;8;7;6;5;4;3;2;1{=VP  

and consequently a new multi-graph M1. As a result χ(M1) = 2 and μ = 4. 
In the next step the remaining state variables are calculated. 

Corollary 5.5 The triple 〈PS, E2, P2〉 – where PS is the partition related to π(0) on 
the states set S, P2 is a relation which represents incompatibilities in quotient 
partition GV PP |

θ
 and E2 is the set of pairs in the relation P2 – is a multi-graph 

M2(PS, E2, P2). 
Similarly to the case discussed above, coloring of the G2 image graph for the 

M2 multi-graph yields a new partition on the S set. 
Finally, this new partition is encoded with a minimal binary code. Value 

⎡ ⎤))((log 22 Mχ  determines the number of bits needed to encode the remaining state 

variables. Hence, 

⎡ ⎤))((log|| 22 MV χν θ +=                                               (5.11) 

determines the number of inputs to the address modifier. 
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Example 5.9 As a result of coloring the image graph G1 for the multi-graph M1 
presented in Example 5.8, we obtain partition 

},15,13,11,10,8,6,4,3;16,14,12,9,7,5,2,1{=GP  

and then 

}.)16,12,9,5(;)15,11,8,4,3(;)14,7,2(;)13,10,6)(1({| =GV PP
θ

 

According to Corollary 5.5, we construct a multi-graph M2 and its image G2 
(Fig. 5.6). 

 

Fig. 5.6 Multi-graph M2 and graph G2  

By coloring the image graph G2, we obtain two possible partitions on the set S: 

}.,,,;{},,,;,{ 54321
2

54321
1 ssssssssss == ππ  

One of those is chosen and encoded with natural binary code. 
For example, partition π1 can be generated by internal variable q3. We encode 

partition π1, so that: 

)};1(,,);0(,{ 54321
1 sssss=π  

thus 

}.16,15,14,13,12,11,10,9,8,7,6;5,4,3,2,1{
1

=
π

VP  

Consequently 

}.16,12,9;15,11,8;14,7;13,10,6;5;4,3;2;1{
1

=⋅=
πθ VVV PPP  

Finally, we can construct the truth table of address modifier and the memory ROM 
content. 

5.3.4   Construction of Partition PG 

The graph G1 can be colored in many different ways. As a consequence, many 
partitions PG could be obtained. Although the number of blocks in all partitions PG 
is the same, the number of address modifier inputs (Equation 5.11) could be 
different. The construction of a partition on the set S is similar to that of the 
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quotient partition .| GV PP
θ

 It leads to a difference in the number of remaining 

(after partial encoding) internal variables for different partitions PG. 

Example 5.10 Let us assume that as a result of coloring the image graph G1 for 
multi-graph from Example 5.8, we obtain partition, 

};14,13,10,7,6,4,2;16,15,12,11,9,8,5,3,1{=GP  

then 

}.)16,12,9,5(;)4)(15,11,8,3(;)14,7,2(;)13,10,6)(1({| =GV PP
θ

 

By constructing the multi-graph M2 and coloring its image graph G2, we obtain the 
partition on the set S, 

}.,,;;{ 54321 sssss=π  

As a result, we need two additional internal variables for encoding this partition. 
Consequently, it is a worse solution than that used in Example 5.9. 

A special construction of PG partition is proposed. 
Noticeably, the number of partition blocks on the states set S is closely related 

to the incompatibility relation in the quotient partition GV PP |
θ

. In consequence of 

joining PV blocks to the PG partition blocks, it has to be done in such a way to 
obtain as least incompatibilities in GV PP |

θ
 as it possibly can. 

It is easily seen that VV PP ≤
θ

. Let us calculate the quotient partition VV PP |
θ

 and 

remove those elements which are incompatible in the quotient partition PU | Pc. 
One can show that the remaining part of 

θVP  could be joined to a new partition 

(according to PU | Pc), that the number of blocks is less or equal χ(M1). That new 
partition is so-called core of PG. One can observe that graph G1 has to be colored 
in accordance with the core of PG. As a result, we obtain partition PG whose 
number of blocks is equal to χ(M1). 

Example 5.11 Based on Example 5.8 

}.)16)(12)(9)(5(;)15)(11)(8)(4)(3(;)14)(7)(2(;)13)(10)(6)(1({| =VV PP
θ

 

According to 

},)15)(14(;)16)(13(;)8)(7(;)9,6(;)5(;)4(;)11,3)(2(;)10)(12,1({| =cU PP  

elements (1) and (10) are incompatible, and new 
θVP  is: 

}.13,10,6;16,12,9,5;15,11,8,4,3;14,7,2{=′
θVP  

Thus, we obtain two solutions: 
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},16,15,12,11,9,8,5,4,3;14,13,10,7,6,2{1 =GPcore  

}.15,13,11,10,8,6,4,3;16,14,12,9,7,5,2{2 =GPcore  

As a result 

},14,13,10,7,6,2;16,15,12,11,9,8,5,4,3,1{
1

=GP  

}.15,13,11,10,8,6,4,3;16,14,12,9,7,5,2,1{
2

=GP  

Solution 
2GP  was used in Example 5.9. Noticeably, 

})16,12,9,5(;)15,11,8,4,3(;)14,7,2(;)13,10,6)(1({|
1

=GV PP
θ

 

is a similar solution. 

5.3.5   Application of the Method 

The general idea of the discussed FSM realization in FPGA structures lies in the 
decomposition into two modules: address modifier and memory microcode. The 
address modifier can be implemented in logic cells while the memory microcode 
can be implemented in EMBs configured as ROM memory. 

In general, it is possible to treat the address modifier and the memory as 
separate combinational blocks and implement them independently, with the 
application of different strategies for decomposition of combinational circuits. 
Alternating application of serial and parallel decomposition has been shown to be 
extremely effective strategy to construct a structure utilizing both logic cells and 
EMBs. 

Example 5.12 According to the presented method, in the first stage, a 
decomposition of the benchmark tbk onto two blocks has been made; the address 
modifier and ROM memory of the capacity of 4096 bits. In result the address 
modifier has been obtained represented with the truth table of 7-inputs and  
5-outputs as well as the memory content of the word length of 8. Subsequently 
each of them has been decomposed onto the network of embedded memory blocks 
and logic cells. It was assumed that the EMB block had the built in register and it 
can also be configured as the typical combinational structure. 

Fig. 5.7a exemplifies an implementation in the programmable device that has 
EMBs of capacity of 2048 bits each. Parallel decomposition onto two blocks of 
2048 bits each was applied to realize the memory ROM content. These blocks are 
accurate for the EMB memories of the configuration of the word length of 4, 
whereas the address modifier block was implemented in EMB block of the 
configuration of the word length of 8. Some inputs and outputs of this block were 
not utilized. 

Fig. 5.7b shows another implementation of the benchmark tbk. The 
programmable device used has EMB memories of the 512 bits and 4096 bits built 
in. Hence, it is possible to realize the memory ROM content in the block of the 
configuration of the word length equal 8. For the address modifier block 
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implementation the parallel decomposition was applied which results in five one-
output functions. After serial decomposition of each onto logic cells, it results: 
first function – one cell, function second – seven cells, third function – five cells, 
fourth function – six cells, fifth function – five cells. Finally, linking the second, 
third, fourth and fifth realizations into one function results in two blocks. The 
former block was implemented in the EMB memory of the capacity of 512 bits 
and the word length of 4, and the latter in one logic cell. 

 

Fig. 5.7 tbk benchmark implementation; in programmable device a) with M2K built in 
memories, b) with M512 and M4K built in memories 

5.4   Experimental Results 

FPLD devices have a very complex architecture. They combine PLA-like 
structures with FPGA and memory-based structures. In many cases, designers 
cannot utilize all the possibilities that such complex architectures provide due to 
the lack of appropriate synthesis methods. Embedded memory arrays make 
possible an implementation of memory-like blocks, such as large registers, FIFOs, 
RAM or ROM modules. 

These memory blocks account for a large part of the devices area. For example, 
Altera [31] EP20K1500E devices provide 51,840 logic cells and 442 Kbit of 
SRAM. Taking under consideration the conversion factors of logic elements and 
memory bits to logic gates (12 gates/logic element and 4 gates/memory bit), it 
turns out that embedded memory arrays account for over 70% of all logic 
resources. Since not every design consists of such modules as RAM or ROM, in 
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many cases these resources are not utilized. Then embedded memory blocks can 
be used for implementation of combinational logic in a way that requires less 
resources than the traditional cell-based implementation. Such blocks may be used 
to implement “non-vital” sequential parts of the design, saving logic cell resources 
for more important sections. Since the size of embedded memory blocks is 
limited, such an implementation may require more memory than is available in a 
device. To reduce memory usage in ROM-based implementations, a structure with 
combinational logic partially implemented in the ROM and partially implemented 
in logic cells was proposed. 

In Table 5.5, the experimental results of Daubechies’ 9/7-tap bio-orthogonal 
filter banks are presented. All filters have 16-bit signed samples and have been 
designed using the DA concept [18, 27]. The presented method was used to 
increase efficiency of the DA tables implementations. 

Table 5.5 presents the results for filter implementations using Stratix 
EP1S10F484C5 device. In the implementation without decomposing the filters, 
their functions were modeled in HDL and Quartus2 was used to map the model 
into the target structure. In the implementation using decomposition (denoted dec), 
a software tool implementing the described method was used to initially 
decompose DA tables and then the Quartus2 system was applied to map the filters 
into FPGA. 

Table 5.5 Implementation results of 9/7 filters. 

Filter LC EMB Bits 

alp 236 7×M512, 1×M4K 8192

alp dec 248 1×M4K 4096

ahp 204 4×M512 2048

ahp dec 210 2×M512 1024

slp 204 4×M512 2048

slp dec 211 2×M512 1024

shp 236 7×M512, 1×M4K 8192

shp dec 246 1×M4K 4096

The implementation of filters is characterized by the number of logic cells (LC) 
and the number of memory modules (EMB). Memory bits are also presented to give 
the memory usage. In all cases, decomposition reduces the size of memory and the 
number of memory modules. For example, an implementation of ahp filter requires 
204 LCs and 4 M512 embedded memories if performed by the Quartus2 software. 
The presented method allows DA logic of this filter to be implemented with 2 M512 
memories and 11 LCs and the whole filter with 210 LCs and 2 M512 memories. 

The next proposed method for sequential machines was applied to implement 
several FSM’s from standard benchmark set [30] in Flex10K and Stratix devices 
using Quartus2 (v6.0 SP1) system. In Table 5.6 and 5.7, a comparison of different 
FSM implementation techniques is presented. 
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Table 5.6 Implementation results comparing in the Flex10K structure (EPF10K10LC84-3) 

 Quartus2  AM/ROM 
AM/ROM 

(new method) 

Benchmark 
Encoding 

(bits) 
LUT 
[LC] 

[LC/bit] 
[LC/EMB1)] 

(Encoding bits) 

Auto (16) 129 
cse 

Minimal (4) 92 
2 / 5632 

21 / 1 (8), 

9 / 2 (7) 

Auto (15) 38 
mark1 

Minimal (4) 40 
2 / 5120 

16 / 1 (5), 

9 / 2 (6) 

Auto (20) 174 
s1 

Minimal (5) 164 
96 / 5632 

107 / 1 (7), 

69 / 2 (7) 

Auto (13) 54 
s386 

Minimal (4) 55 
9 / 5632 35 / 1 (8) 

Auto (32) 8952) 
tbk 

Minimal (5) 10772) 
333 / 4096 

266 / 1 (5), 

25 / 2 (5) 
1) device has 3 EMB blocks with 2048 bits each. 
2) implementation not possible – not enough CLB resources. 

Table 5.7 Implementation results comparing in the Stratix structure (EP1S10F484C5) 

Benchmark Quartus2  AM/ROM 
AM/ROM 

(new method) 

 
Encoding 

(bits) 
LUT 
[LC] 

[LC/bit] 
[LC/EMB1)] 

(Encoding bits) 

Auto (16) 112 
cse 

Minimal (4) 90 
2 / 5632 

77 / 1 M512s (4), 
8 / 1 M4Ks (7) 

Auto (15) 32 
mark1 

Minimal (4) 38 
2 / 5120 8 / 1 M4Ks (6) 

Auto (20) 168 
s1 

Minimal (5) 152 
96 / 5632 

129 / 1 M512s (5), 
71 / 1 M4Ks (7) 

Auto (32) 902 
tbk 

Minimal (5) 959 
333 / 4096 

261 / 1 M512s (5), 
21 / 1 M4Ks (5) 

1)  device has 920448 bits of memory in 512 bit blocks (M512s) as well as in 4096 
bit blocks  (M4Ks). 

The ‘LUT’ column (Tab. 5.6, 5.7) shows the number of logic cells required to 
implement a given FSM in the “traditional” way using logic cells only. In this case 
two different state encoding methods available in Quartus2 were applied. In 
column ‘AM/ROM’, the results of implementation of a given FSM using the 
concept of address modifier are presented. In this approach, the address modifier 
can be implemented using logic cells, and ROM can be implemented with EMB 
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blocks. The number of logic cells and the number of memory bits are presented in 
this column. It can be easily observed that decomposition improves the quality of 
implementation in ROM resources, as well as the quality of implementation in 
logic cells only. An improvement of this method by using decomposition into the 
mixed structure built of LCs and EMBs with application of state encoding method 
presented in this article is shown in the last column (Tab. 5.6, 5.7). The number of 
state encoding bits is presented in brackets. 

For some examples more than one solution is possible, e.g., benchmark cse can 
be implemented in memory of size 32,768 bits (not available in small 
programmable devices) or with the use of 90 logic cells (Stratix), 92 logic cells 
(Flex10K). However, application of the new method allows for an implementation 
with 21 logic cells and 1 EMB or with 9 logic cells and 2 EMBs when using a 
Flex10K device or 77 logic cells and 1 M512 or 8 logic cells and 1 M4K when 
using a Stratix device. 

Noticeably, the new approach allows for much more efficient utilization of 
available resources. It is also possible to trade off the number of logic cells used 
with the number of embedded memory blocks. 

5.5   Conclusions 

The modern programmable structures deliver the possibilities to implement digital 
circuits in dedicated embedded blocks. This makes designing of such circuits an 
easy task. However the flexibility of programmable structures enables more 
advanced implementation methods to be used. In particular, best results can be 
obtained by utilizing the parallelisms in implemented algorithms and by applying 
advanced synthesis based on decomposition methods. In case, the designed circuit 
contains complex combinational blocks, the influence of the design methodology 
and decomposition synthesis methods on the efficiency of practical digital circuit 
implementation is extremely significant. This is typical for many practical designs 
i.e. when implementing digital filters using the DA concept or ROM-based FSMs 
with address modifier.  

The most efficient approach to logic synthesis of combinational and sequential 
circuits relies on the effectiveness of the functional decomposition synthesis 
methods. Although these methods were already used in decomposition algorithms, 
they were never applied with a technology specific mapper targeted at FPGA 
structure together. This paper shows that it is possible to apply the functional 
decomposition method for the synthesis of FPGA-based circuits directed towards 
area and delay optimization. 
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Abstract. The core of a contemporary CPLD device is a PAL-based logic block 
which consists of a programmable AND matrix and a fixed OR matrix. A new 
technology mapping method for PAL-based devices based on the analysis of 
graph of outputs is described. The presented approach uses original method for il-
lustrating a minimized form of a multi-output Boolean function. Graph node 
represents groups of multiple-output implicants with common output part. The es-
sence of the method is the process of searching for appropriate multi-output impli-
cants that can be shared by several functions. A new method for the description of 
cascaded feedback connections is presented. The experimental results show that 
the proposed algorithm leads to significant reduction of chip area used by resulting 
circuits. 

6.1   Introduction 

The most of commercially available CPLDs (Complex Programmable Logic De-
vices) consist of PAL-based logic blocks (Fig. 6.1). This type of circuits will be 
referenced as PAL-based CPLDs in contrast to less popular group of a PLA-based 
CPLDs [22]. 

 

y y

PAL-based 
logic block 

 
 

k-terms 

k k

 

Fig. 6.1 The structure and block diagram of PAL-based logic block with k-terms 

The classical method of logic synthesis, dedicated for PAL-based CPLDs, con-
sists of two steps. First a two-level minimisation is applied separately to every 
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single-output function. Next implementation of the minimised functions in  
PAL-based blocks containing a predefined number of product terms is performed. 
The two-level minimization algorithms based on Quine-McCluskey approach, like 
e.g. Espresso do not support any technology mapping features. Technology map-
ping is done afterwards independently. If the number of implicants p, representing 
a function after minimisation, is greater than the number of product terms k, avail-
able in a logic block (Fig. 6.1), a greater number of logic blocks have to be used to 
implement the function. The classical product term expansion method consists in 
introducing cascaded feedback connections, increasing propagation delays be-
tween inputs and outputs [3]. Some other concepts of product term expansion are 
also presented in literature, e. g. in [3, 14]. 

Some minimization, decomposition and partitioning methods dedicated for 
PLDs, especially for FPGA and PLA devices, together with algorithms and results 
can be found in [1, 4, 7, 9, 10, 13, 14, 20, 24, 25]. Sometimes, algorithms devel-
oped for LUT-based FPGAs are directly adapted to other PLD architectures [1, 4]. 
In methods based on single-level decomposition of Boolean function minimization 
and partitioning problems are considered simultaneously [9, 11]. The partitioning 
is based on finding the minimum number of input variables needed to produce a 
group of output function. The primary objective of these methods is minimization 
of PLA area. This idea is conceptually similar to that of decomposition of PLA 
matrices [5, 6, 18]. In both approaches a single two-level Boolean function (PLA) 
is decomposed into two stages of cascaded PLA's such that their total area is 
smaller than that of the original PLA [5, 6, 7, 8, 20, 24, 25]. 

Sometimes, decomposition strategy leads to a multi-level implementation. De-
composition of Boolean function for different universal logic blocks based on 
PLA architecture is also known [10, 12, 13]. This decomposition consists of parti-
tioning the set of outputs into two or more disjoint subsets. Such decomposition 
separates a multiple output Boolean function into two or more component, so that 
each component function can be implemented with separate building block. This 
strategy is dedicated for PLA building blocks. All experimental results were pre-
sented for hypothetical PLA blocks that do not exist in commercially available 
CPLDs. 

Sometimes decomposition methods are dedicated for FSMs [6, 12, 20, 21, 26]. 
A characteristic feature of algorithms of this kind is a process of appropriate cod-
ing of inputs and outputs, which significantly influences minimisation of product 
term numbers in blocks obtained as the result of decomposition [6, 20, 21, 26]. 
Problems of appropriate input and output coding are widely discussed in connec-
tion with issues concerning coding of internal states in FSMs (Finite State  
Machine) [2, 19, 23]. The problems are among other things related to symbolic in-
ternal state coding, the theory of dichotomy, multi-valued function minimisation, 
analysis of output dominance, etc. [2, 19]. 

The main limitation of PAL-based logic blocks is not the number of inputs but 
the number of multi-input product terms available in one block. Mapping a large 
number of Boolean functions to minimal number of technology-oriented logic 
blocks is a difficult task. Various technology-mapping tools are available for look-
up-based FPGAs or PLA-based CPLDs [10]. Most of these tools allow the number 
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of inputs per look-up table or number of inputs, outputs and terms per PLA block 
to be specified by the user, but none of them map to PAL-based logic blocks di-
rectly. They are not suitable for commercially available CPLDs, such as the for 
example Altera and Cypress MAX family. 

The essence of synthesis dedicated for PAL-based structures comprises two 
major tasks: minimising the number of PAL-based logic blocks used and adjusting 
the designed circuit to fit the structures of PAL-based blocks best. The proposed 
technology mapping concerns simultaneously above issues. The objective of this 
chapter is to present technology mapping method for PAL-based CPLDs. The 
method consists in searching for the common multi-output implicants [19] that is 
carried out after having completed the classical two-level minimization of the 
multi-output function by means of the Espresso algorithm. 

6.2   Theoretical Backgrounds 

Let f be a multi-output logic function f:Bn→Bm, where B={0,1}. The classical im-
plementation of the function f:Bn→Bm within the PAL-based structures is related 
to implementation of the minimized functions fo:B

n→B1 (o =1,2,…,m) by means 
of the PAL-based logic blocks. Let the discriminant Δfo be the decimal number 
equal to the number of those implicants, for which single-output function 
fo:B

n→B1 constitutes true {1} values. 
Let δfo denote the number of logic blocks necessary for implementation of the 

oth function. In the case when Δfo > k, implementation of the fo function by 
means of the PAL-based logic blocks consisting of k terms needs the realization of 
cascaded feedback connections. 

The number of δfo=⎡(Δfo-k)/(k-1)⎤+1 PAL-based logic blocks consisting of 
k-terms will be used, where symbol ⎡x⎤ denotes the lowest integer number not less 
than x. For implementation of m-functions (every function has been minimized 
separately), implementation of δ1

f  PAL-based logic blocks is necessary, where 
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The minimized form of multi-output functions f:Bn→Bm can be described by a 
set of multi-output implicants, including an input part consisting of components 
{0,1,-} and an output part consisting of {0,1} components [19]. Let y be 
an m-component output vector that is associated with the output part of the multi-
output implicant. The number of the same y vectors that constitute the subset of 
multi-output implicants defining the f:Bn→Bm function will be called the discrimi-
nant Δy. Let μ(Δy) (range of Δy discriminant) be a decimal number equal to the num-

ber of {1} components included in the y vector. Let’s assume, that >< UYG ,  is 
the primary directed graph (Fig. 6.2), where Y is the set of all the graph nodes Δy, 

while U  is a set of graph edges connecting such nodes of the graph Δys, Δyr  that 
the code distance between the ys, yr vectors is 1, and μ(Δys)+1=μ(Δyr).  
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f:B5 B4 (f.pla) 

.i 5 

.o 4 

.ilb a b c d e 

.ob f4 f3 f2 f1

.p 10 
00-01 1111 
01000 1111 
01011 1111 
00010 1110 
-111- 1110 
1100- 1010 
10011 1010 
-0101 1000 
11-00 0100 
0010- 0010 
.e

( y)=4 1111=3
( y)=3 1110=2; 1101=0; 1011=0; 0111=0
( y)=2 1100=0; 1010=2; 1001=0; 0110=0; 0101=0; 0011=0
( y)=1 1000=1; 0100=1; 0010=1; 0001=0

Y={ 1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001,
0110, 0101, 0011, 1000, 0100, 0010, 0001}

U ={( 1000, 1100); ( 1000, 1010); ( 1000, 1001); ( 0100, 1100);  
 ( 0100, 0110); ( 0100, 0101); ( 0010, 1010); ( 0010, 0110);  
 ( 0010, 0011); ( 0001, 1001); ( 0001, 0101); ( 0001, 0011);  
 ( 1100, 1110); ( 1010, 1110); ( 0110, 1110); ( 1100, 1101);  
 ( 0101, 1101); ( 1001, 1101); ( 1010, 1011); ( 1001, 1011); 
 ( 0011, 1011); ( 0110, 0111); ( 0101, 0111); ( 0011, 0111);  
 ( 1110, 1111); ( 1101, 1111); ( 1011, 1111); ( 0111, 1111)}

>< UYG ,  

21110 =Δ

01100 =Δ 21010 =Δ 01001 =Δ

10100 =Δ 10010 =Δ 00001 =Δ

f3 f2 f1

μ=3 

μ=2 

μ=1 

00110 =Δ 00101 =Δ 00011 =Δ

01101 =Δ 01011 =Δ 00111 =Δ

11000 =Δ

31111 =Δμ=4 

f4  

Fig. 6.2 Representation of the minimized function f:B5→B4 by means of the primary graph 
of outputs 

By means of elimination from the primary graph such nodes, where Δy =0, we 
obtain the reduced graph presented in the Fig. 6.3a. For simplification, the nodes 
of the graph contain decimal value of discriminants only (Fig. 6.3b). In subsequent 
part of this paper such reduced graph of outputs will be called graph of outputs.  
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Every node of the first range that is related to the implicants of the oth output of 

the m-output function can be associated with the decimal value of m
oΔ  equal to 

the sum of discriminants included in nodes covered by all the paths starting from 
this node and ending in nodes of the upper ranges (Fig. 6.3). 

Based on values of discriminants m
oΔ , the number of PAL-based logic blocks, 

which are necessary for implementation of the multi-output function, can be calcu-
lated (for every function separately, after having minimized the multi-output  

function). This number is equal to ∑ ⎟
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is greater than δ1
f. For implementation of four-output function presented in Fig.6.3 
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three terms (k=3) is necessary. 

f:B5→B4 
 
.i 5 
.o 4 
.ilb a b c d e 
.ob f4 f3 f2 f1 
.p 10 
00-01 1111 
01000 1111 
01011 1111 
00010 1110 
-111- 1110 
1100- 1010 
10011 1010 
-0101 1000 
11-00 0100 
0010- 0010 
.e  

a) 
 

21110 =Δ

64
3 =Δ 84

2 =Δ 34
1 =Δ

μ=3 

μ=2 

μ=1 

31111 =Δμ=4 

84
4 =Δ

f3 f2 f1 f4 

m
oΔ

Δ1000=1 Δ0100=1 Δ0010=1 

Δ1010=2 

 

b) 
 

64
3 =Δ  84

2 =Δ 34
1 =Δ

μ=3 

μ=2 

μ=1 

μ=4 

84
4 =Δ

f3 f2 f1 f4 

m
oΔ

3 

2 

2 

1 1 1 

 

Fig. 6.3 The reduced graph of outputs of the minimized function f:B5→B4 with associated 

values of discriminants m
oΔ  

Apparently, on the basis of analysis of the graph, solutions that use fewer logic 
blocks can be found. Nodes of the graph correspond to the number of multi-output 
implicants associated with one of the multi-output vectors. For example, when a 
node of the μth range belongs to the graph and for that node Δy = k, implementa-
tion of k implicants constituting common resources of the μ functions, is possible  
within one block (Fig. 6.4b). After selection of the node transformation of the 

graph is made leading to reduction of the m
oΔ  coefficients (Fig. 6.4a,c).  
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As a result, the selection of a certain node introduces cascaded feedback con-
nection, which is shown on the reduced graph by the fourth-range nodes marked 
on the graph with the dashed line (Fig.6.4c). 

 

1111=iy

f1

PAL 
k=3 

f2f3

?

f4

b)

μ=3 

μ=2 

μ=1 

μ=4 

f3 f2 f1 f4 

m
oΔ  

8 6 8 3 

a) 

3 

2

2 

1 1 1 

μ=3

μ=2

μ=1

f3 f2 f1 f4 

m
oΔ 6 4 6 0 

1

c) 

1 1 1 

2

2 

 

Fig. 6.4 a) Example of reduced graph of outputs; b) Implementation of the implicants  
defined by the fourth-range node; c) The graph after reduction 

6.3   Technology Mapping Algorithm  

Let  iΔy be the discriminants that correspond to the node, which is chosen during 

ith step of the algorithm of implementation of the multi-output function. Imple-

mentation of the group of implicants which correspond to the selected node  iΔy, 

during the ith step of the technology mapping algorithm, may lead to minimization 

of the number of used PAL-based blocks consisting of k terms, if the requirement  
iδf

  - i+1δf > ⎡(iΔ y-k)/(k-1)⎤+1  is met.  

Since selection of the node iΔy affects μ(iΔy) discriminants m
o

iΔ , the condition 

for minimization of the PAL-based logic blocks (after having the discriminants  
re-ordered in such a way, that the selected node affects the consecutive 
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Let )( y
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Δμ  be numbers calculated from the congruence: 
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  where j=1,2,..., μ(iΔy). 
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Theorem: (about selection of the node of the graph of outputs) 

If there exists a node of the graph (i.e. discriminant) iΔy, for which 

1.  the range μ(iΔy)≥2 and iΔy≥k      or 
2.  the range μ(iΔy)≥2 and within the set of remainders 

;
)(
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     or 

3.  the range μ(iΔy)= 2  and iΔy=k or iΔy≥2k-1     or 
4.  the range μ(iΔy)= 2 and  k<iΔy<2k-1 and within the set of remainders 

;{
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then implementation of the implicants associated with that particular discriminant 
leads to a reduced number of the PAL-based blocks consisting of k terms  
necessary for implementation of given multi-output function.  

Proof of above theorem is presented in appendix.  

The essence of the theorem presented above consists in determination, which 
are the provisions that should be imposed onto the discriminant in order to provide 
that realization of the multi-output implicants associated with it, would lead to 
minimization of the number of PAL-based logic block in use. The theorem serves 
as a background to draw up a technology-mapping algorithm for multi-level im-
plementation of multi-output logic functions by means of PAL-based logic blocks.  

As number of logic blocks ∑ ⎟
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δ , the main concept of the algorithm pro-

posed consists in analysis of the graph nodes and searching for the nodes that are 
associated with possible large groups of common implicants. Let us assume that 
the graph of outputs describes multi-output implicants that are accomplished by 
means of  iδf  PAL-based logic blocks containing k terms each. Selection, at the ith

 

step of iteration, the iΔ y  node of the graph implies utilization of  iγ = ⎡(iΔ y-k)/(k-
1)⎤+1 PAL-based logic blocks. This leads to reduction of the graph of outputs, and  
the graph, after reduction, describes the implicants that are covered by  i+1δf   
PAL-based logic blocks. The higher is the value of the expression  iδf - (

i+1δf + iγ ) 
the better is the selection of the node in question.  
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The rules for selection of the node can be deduced directly from the theorem 
about selection of the node of the graph of outputs and can be listed in the  
following way: 

1. Firstly, at the very beginning, one has to choose the  iΔ y  node, for which 
μ(iΔ y) = max (obviously, the node must meet provisions of the theorem). 

2. From the nodes of the same range, further selection must be carried out  
depending on values of discriminants: 
2.a. if there exist nodes, for which  iΔ y ≥ k - the node, for which the  

discriminant  iΔ y = max 
2.b. if values of all the discriminants are lower than k - the node, for which 
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The theorem and conclusions about choosing nodes of the graph of outputs serve 
as the basis for the technology-mapping algorithm of multi-level synthesis  
implemented in PALDec system.  

Example 
Let us consider the multi-output function f:B5→B4 which, after minimization  
(Espresso) can be depicted in the file f.pla (Fig. 6.5a). The reduced graph of out-
puts, associated to it, is shown in Fig. 6.5.b. Direct realization of implicants with 
PAL-based logic blocks that contain k=3 terms each (by means of the classical 
method, after minimization the multi-output function) needs 

1214341
1

4

1

40
0 =+++=∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=
=o

o
f k

kδ  PAL-based logic blocks. During the 

first step of the proposed algorithm, the implicants associated with the node 
∆1111=3 are realized. This step involves only one PAL-based logic block that con-
tains 3 terms (1γ =1) and leads to significant lowering of the number of blocks that 
are necessary for direct realization of implicants depicted by the reduced graph 
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. This graph is  

obtained after removing the node ∆1111=3 and introducing an additional node, 
which is connected with the node ∆1110 and represents the cascaded feedback  
connection (Fig. 6.5c).  
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a)  f.pla 
 
.i 5 
.o 4 
.ilb a b c d e 
.ob f4 f3 f2 f1 
.p 10 
00-01 1111 
01000 1111 
01011 1111 
00010 1110 
-111- 1110 
1100- 1010 
10011 1010 
-0101 1000 
11-00 0100 
0010- 0010 
.e 
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Fig. 6.5 Realization of function f:B5→B4  a) description of the function by the f.pla file; 
b) reduced graph of outputs, c,d,e) graphs of outputs that correspond to successive steps of 
technology-mapping process, f) final structure of the circuit 
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The implicants that correspond to the nodes ∆1110, ∆1010 (Fig.6.5c,d) are realized 
during the subsequent steps of circuit synthesis. Realization of those implicants 
leads to further reduction of the required PAL-based logic blocks number  
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The nodes that correspond to the 1st range (Fig.6.5e) are implemented at the last 
stage of the synthesis process. The final circuit representation that uses 

13

1

3
f

i

i
ff δγδδ <

=
+= ∑  PAL-based logic blocks is shown in Fig. 6.5f.  

6.4   Experimental Results 

Some experimental results that were obtained when using the software implemen-
tation of the proposed technology mapping method are presented in Table 6.1. The 
columns contain numbers of PAL-based logic blocks that have k terms, which are 
necessary for implementation of respective benchmarks (columns marked B) as 
well as numbers of logic levels (columns marked L). The results from new method 
(PALDec) are compared with classical technology mapping approach (Classical). 

Within the set of 88 experiments for which results of technology mapping had 
been compared for the both methods, the proposed approach (PALDec) led to 75 
solutions (85%) that used less number of logic blocks than the classical technique 
(Classical). Significant discrepancies can be observed if the logic blocks with low 
number of terms have been exploited.  

Having compared the overall number of logic blocks that are used by all the 
benchmarks under experiments, one can observe that the PALDec method is more 
efficient if the PAL-based logic blocks with less number of terms are used  
(k = 3, 4, 5). The above observation seems to be intuitively obvious, as smaller 
groups of multi–output implicants that have the same output part, more frequently 
are obtained as a result of minimization. The common coverage of such implicants 
brings more benefits if the structures that contain small PAL-based logic blocks 
are in use.  

Disadvantageously, all the circuits that were examined by means of the  
classical technology mapping method proved to contain less or equal number of 
logic levels as compared to the results of the PALDec method.  
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Table 6.1 Results of benchmark synthesis for the PAL-based logic blocks with k-terms  
(see in the text) 

k= 3 K= 4 k= 5 K= 6 k= 7 k= 8 k= 9 k= 10 
Classical 

B L B L B L B L B L B L B L B L 
Alu4 315 5 211 4 159 4 128 3 107 3 91 3 82 3 72 3 
Clip 73 4 49 3 38 3 30 3 26 2 22 2 21 2 20 2 
Duke2 99 3 72 3 61 2 49 2 44 2 41 2 39 2 36 2 
misex3 612 5 410 4 309 4 249 3 208 3 178 3 157 3 143 3 
Rd73  70 4 47 3 36 3 29 3 24 3 20 2 19 2 16 2 
Rd84   142 5 95 4 72 4 58 3 49 3 42 3 28 2 21 2 
sao2   36 3 24 3 19 2 15 2 14 2 11 2 11 2 10 2 
seq 691 5 469 4 355 3 287 3 244 3 212 3 188 3 172 3 
spla 425 6 293 5 227 4 188 4 163 3 144 3 128 3 120 3 
table3 264 4 181 4 135 3 110 3 94 3 80 3 71 2 65 2 
table5 272 4 183 4 141 3 112 3 95 3 82 3 74 2 65 2 
Σ 2999  2034  1552  1255  1068  923  818  740  
Σ  48  41  35  32  30  29  26  26 

                 

k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 K= 9 k= 10 PALDec 
B L B L B L B L B L B L B L B L 

alu4 290 8 193 6 148 6 119 5 98 5 85 4 77 4 67 4 
clip 66 5 45 4 35 4 29 4 26 3 23 2 21 2 20 2 
duke2 100 4 76 4 64 3 55 3 49 2 46 2 43 2 40 2 
misex3 450 8 316 7 257 7 219 6 189 6 170 6 153 4 136 4 
rd73  63 6 44 5 32 4 26 4 23 3 19 3 18 3 16 3 
rd84   130 8 87 6 67 5 54 4 45 4 40 4 27 3 20 3 
sao2   29 5 20 4 16 4 13 4 11 3 10 3 9 3 9 3 
Seq 295 8 208 7 165 7 142 6 129 5 114 6 109 6 105 6 
Spla 285 6 190 4 158 4 137 4 124 4 115 4 105 4 97 3 
table3 154 8 110 7 95 6 80 6 73 6 70 5 63 4 63 5 
table5 143 7 104 6 87 6 73 6 69 5 64 5 61 5 56 5 
Σ 2005  1393  1124  947  836  756  686  629  
Σ  73  60  56  52  46  44  40  40 

 
Classical – Classical approach, PALDec – proposed technology mapping synthesis based 
on analysis of nodes of the graph of outputs 

The results of experiments are presented in a synthetic way on Fig. 6.6. The 
values represented on the axis of ordinates in Fig. 6.6a were calculated from the 
rational formula shown on the graph. Σblocks(classical) and Σblocks(PALDec) denote the 
relevant total sums of block counts obtained using the corresponding technology 
mapping methods and presented in Table 6.1. The values represented on Fig. 6.6b 
were calculated in a similar manner (the formula on Fig. 6.6b, where  
Σlevels(classical) and Σlevels(PALDec) denote the relevant total counts of logic levels).  
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Fig. 6.6 A comparison of the PALDec algorithm with the classical method with respect to 
the number of logic blocks a); levels b) 

Analysis of the benchmarks allows us to state, that in most cases reduction of 
logic block counts by using the new algorithm is obtained at the expense of certain 
expansion of logic levels. The proposed method is especially efficient, if k = 3 or 
4. In this case a significant reduction of block counts, while preserving a compa-
rable expansion number of logic levels, was observed. The rate of total synthesis 
time for the circuits under experiments, calculated for the proposed method and 
for the classical approach is about 1.25. 

In Table 6.2, some technology mapping results are presented for large bench-
marks. The results from the presented method are compared to the results from com-
mercially available software (Quartus). All experiments were executed for EPM3512 
produced by Altera. EPM3512 is a classical CPLD device with macrocells, shareable 
and parallel expanders, programmable interconnect array and I/O blocks. Combinato-
rial logic is implemented in the logic array, which provides 5 product terms per mac-
rocells. The product-term select matrix allocates these product terms to the OR and 
XOR gates. The Quartus development system automatically optimises product terms 
allocation, using XOR gates, shareable and parallel expanders.  

Individual columns of Tab.6.2 contain the following elements: i - number of 
inputs, o - number of outputs, p - number of products, NM - number of macro-
cells, which are necessary for implementation of the appropriate benchmark (% of 
all macrocells), tpd (worst-case) - worst-case input to output delay. The columns 
marked "Quartus" show results of logic synthesis implemented by the Quartus 
system. For Quartus the typical options of area optimisation technique were se-
lected. All logic resources were used: shareable expanders, parallel expanders and 
XOR gates. The columns marked "PALDec+Quartus" show results of two steps 
logic synthesis. In the first step, system PALDec searches for groups of shared 
multi-output implicants and the PAL-oriented technology mapping is executed for 
PAL-based logic block with five terms. The result of technology mapping is 
VHDL structural description [17]. In the second step, placement and mapping to 
EPM3512 by Quartus is executed. In all the cases the PALDec+Quartus strategy  
was able to find the best solution. All the results were obtained in very short time 
(total time of PALDec technology mapping is shorter than 2 seconds for all cases 
using a computer with Intel Celeron 1GHz).  
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Table 6.2 Experimental results for large benchmarks implemented in EPM3512 (see in the 
text) i - number of inputs, o - number of outputs, p - number of products, NM - number of 
macrocells, tpd - delay time (worst-case) 

    Quartus PALDec + Quartus 

EPM3512 i o p NM 
tpd 

worst-case 
NM 

tpd 
worst-case 

Seq 41 35 1459 257 (50%) 29,7ns 201 (39%) 28,8ns 
Spla 16 46 2307 105 (21%) 20,5ns 98 (19%) 19,6ns 

Table3 14 14 175 115 (22%) 22,3ns 104 (20%) 19,8ns 
Table5 17 15 158 112 (22%) 26,7ns 73 (14%) 19,6ns 

The obtained results also have been compared to other academic and firmware 
tools [14, 15, 16, 17]. 

6.5   Conclusions  

The presented method is an alternative to the classical approach based on two-
level minimization of individual single-output functions. The essence of the pro-
posed method is to search for implicants that can be shared by several functions. 
Subsequent steps of the technology mapping process are adapted to logical resources 
of PAL-based CPLDs. Adjusting elements of technology mapping to logical re-
sources characteristic for a PAL-based logic block allows for significant improve-
ment of synthesis effectiveness in relation to the classical approach. If compared 
with another multi-level technology mapping methods, the proposed algorithm 
seems to be especially advantageous, because it leads to minimization of the number 
of logic blocks in the synthesised structures. 

Simplicity of the algorithms that are based on graph analyzing methods and are 
useful for technology mapping of multi-output logic functions within the PAL-
based structures results in their applicability as an alternative for the other methods. 

Investigation carried out by author show that, apart from exploiting device specific 
features (Expanders, XOR gates), great majority of commercial tools use the classical 
algorithm as the main synthesis method. Comparison of the proposed technology 
mapping approach against the classical method may thus be considered as a compari-
son against a generalised and idealised commercial tool in its most basic form.  
Results of experiments prove that PALDec compares favourably with Altera tools. 
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Appendix 

THEOREM ABOUT SELECTION OF A NODE OF THE GRAPH OF OUTPUTS 
 
If there exists a node of the graph (i.e. discriminant) iΔy, for which 

1. the range μ(iΔy)≥2 and iΔy≥k       
or 
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then implementation of the implicants associated with that particular discriminant 
leads to a reduced  number of the PAL-based blocks consisting of k terms neces-
sary for implementation of given multi-output function.  

 
Proof: 

The value iΔ y assigned to the selected node affects the number of μ(iΔ y) of dis-
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iΔ y  is connected with μ(iΔ y) lower range’s nodes then the graph modification 
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case, the discriminats after graph modification can be calculated as follows:  
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It is the worst case of PAL-based logic blocks number reduction. The condition of 
minimization (1) can be expressed by the following equation 
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From the foregoing, having substituted (a7) 

p
kk

k y
i

a
i y

i

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ
Δ

1

1

1

)(μ
                                                   (a8) 

Due to (d5) and (d8) the following are obtained: 
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Similarly 
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Equations (a9), (a10) are the reason for the minimization condition (a2) to be ful-
filled because 
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3.°For the second-range nodes, for which ky
i =Δ , the minimization condition 

(a1) is fulfilled because 
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For the nodes, for which 12 −≥Δ ky
i , the minimization condition (a1) is fulfilled 

also 
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4. For the second-range nodes, for which 12 −<Δ< kk y
i , the minimization condi-

tion (a1) can be transformed into: 
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Based on 2 (equations a4, a5) 
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From the foregoing, having substituted (a15) 
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Due to (a13) and (a16) the following is obtained: 
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Equation (a17) and inequalities 12 −<Δ< kk y
i  are the reason for the  

minimization condition (a11) to be fulfilled because 
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Abstract. This chapter introduces the principles of multi-version digital system 
design and describes the concept of developing a reliable and robust system out of 
unreliable parts. We started with the state of the art in the area of multi-version de-
sign and explore the motivations for using different approaches to development of 
digital projects. A few techniques to manage design diversity for FPGA-based sys-
tems are proposed. These techniques are based on the use of genetic algorithms 
(GAs), and partially correct and partially definite automata obtained with GAs. 
Finally, we suggested GA-based method of multi-version fault-tolerant systems 
synthesis and discuss case-study for on-board device implementation. 

7.1   Introduction  

Field experience with design and exploration of digital systems shows that their 
automation complexity is growing simultaneously with reducing the chip area. 
Obviously, it makes the properties of fault tolerance, survivability, safety,  
availability more and more critical.  

During the last two decades, different aspects of dependability, principles and 
techniques for dependable digital systems development were explored in detail. The 
key paper is [1], where A. Avizienis and J.-C. Laprie worked out a concept of "de-
pendable computing". This work initiated development of the approaches, directed on 
overcoming of dualism in the tools of evaluation and providing of the required relia-
bility on lines "hardware-software", "development processes - products", "physical 
faults - design faults".  

In the same year J. Dobson and B. Randell published work [2], where the con-
cept of "secure fault tolerance" and principle of its realization for different compu-
ting systems were proposed. Thus, the removal of dualism on "reliability - security" 
was initiated. 

After eighteen years, A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr 
summarized the results of dependable computing evolution in [3]. Authors defined 
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sufficiently complete and balanced system of concepts and taxonomies. By that time 
definitions of dependability had been given in a number of standards and reports [4]. 

Meanwhile, the most challenging issues concerning system dependability arise 
in case of so-called safety-, mission- or business-critical systems such as nuclear 
power plants safety systems, airborn control systems, customer accounting system 
in a bank, etc [5, 6, 7]. Failures occurring in these systems may pose lives in  
danger, environment damage or high economic losses.  

According to statistics the main causes of failure in such systems [8, 9]: can be 
listed as follows: 

• hardware quality; 
• faults that occurred during the design flow; 
• non-compatibility between actual operating conditions and initial technical  

requirements; 
• environmental influence. 

Considering the factors listed above one can say that the main reliability characte-
ristics of the system under consideration are mostly innate and rooted deep into 
the design process itself. Thus, system fault tolerance can be provided by choosing 
the most appropriate hardware and architecture as well as by using approaches that 
tend to eliminate or at least cut down the number of errors introduced as a part of 
design process. 

There is a definite tendency to develop digital control systems as complex Sys-
tem-on-a-Chip (SoC) designs implemented on Application Specific Integration 
Circuits (ASIC), Complex Programmable Logic Devices (CPLD) or Field Pro-
grammable Gate Arrays (FPGA) [10, 11]. The concept of SoC refers to integrating 
all components of a system into a single circuit. To reduce the number of faults re-
sulted from errors that occur during the SoC design process, different approaches 
and techniques should be used. One of the most important approaches to creating 
dependable digital systems relies upon the idea of their multi-version or diversity 
implementation, where versions must be as different as possible. Application of 
multi-version approach and its attributes are discussed in [1, 3, 12]. 

To obtain alternate versions and diversify the design, several efficient tech-
niques use essential characteristics of design flow for SoC-oriented architectures 
provided by the standard Computer Aided Design (CAD) tools [13, 14]. Neverthe-
less, despite the effectiveness of these techniques most of those manage the life 
cycle diversity within a single design concept, so it is not possible to make a sys-
tem robust to the design faults that are common to each version since widely used 
CAD tools usually have only standard algorithms and conventional logic imple-
mented. Code inaccessibility and unavailability make it impossible to predict a 
behavior of CAD tool and prevent faults.  

To avoid those problems, the application of non-classical design is suggested in 
order to develop non-conventional digital systems in [15, 16, 17]. It follows rather 
natural ways of thinking instead of the apparatus of integral and differential calcu-
lus. Nowadays, evolvable hardware applications are maturing and seeing shift into 
the real-world. In 1948 A. Turing suggested using artificial neural network based 
on very simple elements [18]. Today evolutionary neural networks combine  
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evolutionary principles and those of artificial neural networks [19, 20]. Another  
research direction is evolutionary algorithms which refer back to the work of  
Ch. Darwin [21]. Later, the idea of Genetic Algorithms (GAs) was extensively  
represented by J. Holland in [22]. A number of works discuss the utilization of 
GAs in digital [17, 23] and analog [24] system design, robotics [25] and even in 
the industrial design [26]. In [27], it has been pointed out that one of the most  
effective ways to develop a multi-version fault tolerant system is to combine  
classical design based on using CAD tools with non-classical ones in order to sig-
nificantly increase a possibility of receiving the least correlated versions. Never-
theless, the actual problem is how to elaborate the strategy which allows  
obtaining the highest diversity level in a multi-version system.  

A good alternative to the classical design could be GAs that are heuristic by the 
nature can provide simple and non-trivial solutions as opposed to the classical de-
sign. On the other hand, complete correctness of solutions can not always be guar-
anteed for the same reasons. It is worth to mention that in case of complex systems 
and critical time needed for design only a selected set of input/output data can un-
dergo testing to define the fitness of versions. This leads to partially definiteness 
of the evolved versions. Therefore a particular attention must be paid to the issues 
of developing reliable systems out of such unreliable (partially correct and  
partially definite) parts. 

The remainder of the chapter is organized as follows. Section 7.2 elaborates the 
strategy to achieve the least correlation level within a multi-version system.  
Section 7.3 outlines and categorizes digital automata obtained with GA. Section 
7.4 assesses reliability of digital systems out of unreliable automata. Section 7.5 
continues with the case study describing the development of such systems.  
Finally, Section 7.6 discusses a practical application that makes use of most of the 
approaches considered.  

7.2   External and Internal Design Diversity  

The application of multi-version approach to the system design assumes obtaining 
version redundancy by varying the set of resources used in design process to re-
ceive the most alternate versions of the same project. For example, several CAD 
packages or several developer groups can be involved into the design flow. 

In order to get an n-version project, it is necessary to isolate n subsets of re-
sources that allow implementing the same functionality. The versions obtained 
from the different subsets will be less correlated than those that are received by 
varying resources within the only one subset. For example, the lesser correlation 
can be achieved with several CAD tools rather than with a single CAD package. 
Thus, the design diversity can be observed from the several levels of system de-
sign (Fig. 7.1). So-called internal design diversity assumes obtaining alternate 
versions from only one isolated subset of resources used in design. The external 
one means application of several sets of resources.  
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Fig. 7.1 External and internal design diversity 

In fact, the major challenges in multi-version system design are: 

• isolation of the subsets with the maximum cardinality; 
• selection of the diversity metrics, which allow comparing system versions; 
• risk analysis while estimating the compatibility of versions received with the 

different subsets of resources.  

             

GA project 1 GA project k

Analyser

Chip

             

Fig. 7.2 Internal diversity that uses different design approaches 

At this point, it seems that one of the effective ways to obtain the most diversified 
project is to exploit the external design diversity based on the different  
approaches to system design and use several non-classical approaches such as 
GAs or neural networks along with the classical one. GA can be viewed as a good-
enough alternative to the classical system design, mainly because of the possibility 
to get simple and non-conventional solutions and going towards the reliability of 
digital systems developed with GA. 
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Fig. 7.3 External diversity that uses different design approaches 

If standard CAD tools are used, the different versions can be obtained at the 
following phases: hardware selection, project entrance, compilation, testing and 
verification. In case of the GA application, the system diversity can be achieved at 
the phases of GA presetting, selection, crossover, mutation and inversion of indi-
viduals. Combination of CAD-based and GA-based approaches allows consider-
ing cases where both internal and external design diversities are possible  
(Fig. 7.2 – 7.3). Moreover, version implementation for a single chip or for a num-
ber of chips gives an additional opportunity to utilize spatial diversity in system 
design. 

Because of their simplicity, versions evolved with GA can be even used as an 
additional feature to control the functionality of a multi-version system developed 
with the standard tools (Fig. 7.4). 

 

Fig. 7.4 Using versions obtained with GA as the control ones in a multi-version system 

To assess a diversity of versions in such multi-version systems, each version 
that is a digital system with SoC architecture can be represented as a spatial confi-
guration, which is constituted by N logic cells on a chip. A set of logic cells  

corresponds to set { }N

iisS 1== , where si are the coordinates of the i-th cell. A de-

gree of distinction for logic cell topology in a chip can be used as a diversity  
metrics (Fig. 7.5): 
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where |S1|, |S2|, |S1 ∩ S2| are the capacities of correspondent sets. 

 

Fig. 7.5 Topology of logic cells in a chip 

7.3   Partially Definite and Partially Correct Automata  

In this section, we classify versions (automata) that can be evolved with GAs, and 
investigate the ways to develop fully correct and definite system.  

There are four basic types of automata that can be obtained using GA. The first 
and the simplest type is a Fully Correct Automaton (FCA) that is an automaton 
where each input state xi in the set of input data X corresponds to output state yi in 
the set of output data Yc for an arbitrary time moment ti∈T, i.e. ∀  ti∈T, xi∈ X: xi 
→ yi,  yi∈ Yc, Yc = Y, where ti is an arbitrary time moment; xi is a current input 
state; X is a set of input data; yi is a current output state that corresponds to xi; Yc is 
a set of correct output data; Y is a complete set of output data. 

Because of its heuristics, sometimes GA gives only an approximate solutions or 
Partially Correct Automata (PCA) that are automata, where at least one time mo-
ment ti∈T for which there is at least one input state xi in the set of input data X that 
does not correspond to correct output state yi in the set of correct output data Yc, 
i.e. ∃  ti∈T, xi∈ X: xi→ yi, yi∉ Yc ⊂ Y.  

Since it is known for every pair of input and output state whether an automaton 
is correct or not, FCA can be composed of the several PCAs in such a way that the 
complete set of correct output states of automata covers the complete set of input 
data X for an arbitrary time moment ti∈T (Fig. 7.6), i.e. ∀  ti∈T, xi∈X: xi→yi, 

yi∈Yc
(FCA); Yc

(FCA)=Y(FCA), U
n

i 1

)(PCA
c

(FCA)
c

iYY
=

= . 

Hence, FCA can keep its correctness even though one or more of its PCAs are 
not correct. A set of PCAs constitutes the complete functional basis if its elements 
are able to form FCA. A set of PCAs constitutes the minimal functional basis if 
the incorrectness of at least one PCA included into FCA results in the  
incorrectness of this FCA. 
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Fig. 7.6 Fully correct automaton composed of several partially correct automata 

If we develop a complex digital system with GA and time required to obtain 
FCA is critical, only a certain number of inputs and outputs can be tested to calcu-
late the fitness of versions [28]. In this case the evolved versions will be partially 
definite. Thus, Partially Definite Automata (PDA) are automata, where at least 
one time moment ti∈T for which there is at least one input state xi in the set of in-
put data X that corresponds to such an output state yi where information about its 
correctness (whether yi is in Yc or not) is not available, i.e. ∃  ti∈T, xi ∈ X: xi→ yi, 
yi ∉  Yd, Yd ⊂ Y, where Yd is a set of definite output data. 

Meanwhile, by testing all inputs and outputs to assess fitness of every version, 
we obtain Fully Definite Automata (FDA) that are automata, where each input 
state xi in the set of input data X corresponds to such an output state yi where in-
formation about its correctness (whether yi is in Yc or not) is available for an  
arbitrary time moment ti∈T, i.e. ∀  ti∈T, xi ∈ X: xi → yi,  yi ∈ Yd, Yd = Y. 

As it is known which input and output states have not be tested, FDA can be 
composed of several PDAs in such a way that the complete set of definite output 
states of automata covers the complete set of input data X for an arbitrary time 
moment ti∈T (Fig. 7.7), i.e. ∀  ti∈T, xi ∈ X: xi→yi, yi ∈Yd

(FDA); Yd
(FDA)=Y(FDA); 
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FDA can keep its definiteness even though one or more of its PDAs are not de-
finite. A set of PDAs constitutes the complete functional basis if its elements are 
able to form the required correct FDA. A set of PDAs constitutes the minimal 
functional basis if the indefiniteness of at least one PDA included into FDA results 
in the indefiniteness of this FDA. 

From the definitions given above it is clear that digital automata can be fully 
definite fully correct, fully definite partially correct, partially definite fully correct 
or partially definite partially correct. 

Fully Definite Fully Correct Automaton (FDFCA) is an automaton where each 
input state xi in the set of input data X corresponds to such an output state yi, where 
∀  ti∈T, xi ∈ X: xi → yi,  yi ∈ Yd and yi ∈ Yc; Yd = Yc = Y for an arbitrary time 
moment ti∈T.  
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Fig. 7.7 Fully definite automaton composed of several partially definite automata 

Fully Definite Partially Correct Automaton (FDPCA) is an automaton which 
for at least one time moment ti∈T has at least one input state xi in the set of input 
data X that corresponds to such an output state yi, where ∃  ti∈T, xi ∈ X: xi → yi,  
yi ∈ Yd and yi ∉ Yс; Yd = Y, Yс ⊂ Y. 

Partially Definite Fully Correct Automaton (PDFCA) is an automaton where 
each input state хi in the set of input data X corresponds to such an output state yi, 
where ∀  ti∈T, xi ∈ Xd: xi → yi,  yi ∈ Yd and yi ∈ Yc; Yd = Yc, Yd ⊂ Y, Yc ⊂ Y; Xd ⊂ 
X for an arbitrary time moment ti∈T, where Xd is a set of input data where  
automaton is definite. 

Partially Definite Partially Correct Automaton (PDPCA) is an automaton 
which for at least one time moment ti∈T has at least one input state xi in the set of 
input data X corresponds to such an output state yi, where ∃  ti∈T, xi ∈ Xd: xi → yi,  
yi ∈ Yd and yi ∉ Yc; Yc ⊂ Yd, Yd ⊂ Y, Xd⊂X. 

 

Fig. 7.8 Fully definite fully correct automaton composed of several partially definite and 
partially correct automata 
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In fact, the fully definite and correct system or FDFCA can be composed of 
several PDPCAs (and/or FDPCAs, PDFCAs) in such a way that the complete set 
of correct and definite output states of automata covers the complete set of input 
data X for an arbitrary time moment ti∈T (Fig. 7.8), i.e. ∀  ti∈T, xi∈X: xi→yi, 

yi∈Yd
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7.4   Reliability of Digital Systems Out of Unreliable Automata  

The architecture of digital systems evolved with GA assumes possible redundancy 
that occurs because of overlapping correct and definite output data if a system 
consists of several PCA or/and PDA. This property allows estimation of such sys-
tems reliability using the apparatus of structural reliability theory. The analysis of 
reliability includes the following steps: 

• divide a set of input and output data of automata into groups as shown in  
Fig. 7.9; 

 

Fig. 7.9 Allocating the groups within the set of input and output terms if a system consists 
of the several PDA and/or PCA 

• estimate the influence of automata failures on the entire system; 
• select a primitive object to be used in the reliability analysis: the primitive  

objects can be automata, groups of definite and correct output data, automata 
and groups of definite and correct output data; 

• develop a reliability block diagram (RBD); 
• form the equations to estimate system reliability with regard to its RBD. 

If a digital system consists of one fully definite and fully correct version, its relia-
bility is the same as the reliability of a non-redundant non-recoverable system. If a 
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digital system is composed of several PDA or/and PCA it can be considered as a 
non-recoverable system with passive redundancy. To estimate the reliability of 
such systems, the additional analysis of their functionality must be performed to 
prove the choice of the primitive object and develop RBD more precisely. 

If the primitive objects of RBD are automata, we assume that the failure of 
every automaton results in a complete loss of its functionality. Such an assumption 
is reasonable for a few automata as the process of RBD development is quite 
complicated and non-conventional for each particular system. So, RBD is formed 
according to already known information about the automata behavior. The exam-
ple in Fig. 7.10 shows that the system fails if Automaton 1 fails or Automaton 3 
fails or Automaton 2 and Automaton 4 fail. The probability of no-failure for such 
a system is calculated with the following formula: P(t) = p1(t)×p3(t)×(1-(1- 
p4(t))×(1- p2(t)))×pK(t), where pi is a probability of no-failure for automaton i; 
pК(t) is a probability of no-failure of the subsystem that implements switching  
between automata. 

 

Fig. 7.10 RBD for a system out of four automata if primitive objects are automata 

If the primitive objects of RBD are groups of definite and correct output data, 
the assumption is that the failure of an automaton does not result in the complete 
loss of its functionality and it can produce correct output data for some input 
terms. In contrast to the previous assumption, this one is reasonable in case a sig-
nificant number of automata constitute a whole system. Nevertheless, there is one 
serious disadvantage: during the synthesizing with GA, a digital system is consi-
dered as a “black box” with certain inputs and outputs without any information 
about its internal structure. Therefore, information about the nature and conse-
quences of the automaton’s failure is not available. The probability of no-failure 
for such a system is calculated with the following formula: 
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where pij(t) is a probability of no-failure for automaton j within the group of cor-
rect and definite output data i; n is a number of groups of correct and definite  
output data; m is a number of automata that have correct and definite output data 
within the group of correct and definite output data i. 

For the example in Fig. 7.11, P(t) = p11(t)×p23(t)×(1-(1- p33(t)) × (1- p34(t))) × 
(1-(1- p42(t)) × (1- p44(t))) ×pK(t). 

 

Fig. 7.11 RBD for a system out of four automata if primitive objects are groups of output 
data 

By assuming the primitive objects of RBD to be automata and groups of defi-
nite and correct output data, we mean that the failure of an automaton might  
result in either the overall or partial loss of its functionality with the certain proba-
bility. The probability of no-failure for such a system is calculated using the  
following formula: 
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where P'(t) is a probability of no-failure for those parts of automata which incor-
rect functioning results in an complete functionality loss of the appropriate auto-
maton; P''(t) is a probability of no-failure for those parts of automata which incor-
rect work results in a functionality loss of the appropriate automaton in the 

appropriate groups; ( )ijq t  is the probability of no-failure for automaton  j within 
group i in case of no-failure operation of its part which fault results in the  
complete functionality loss of automaton  j. 

The example in Fig. 7.12 shows how the probability of no-failure is calculated 
for such systems: P(t) = p'1(t) × p'3(t) × (1-(1-p'4(t))×(1-p'2(t))) × q11(t) × q23(t) ×  
(1 - (1 - q33(t)) × (1 - q34(t))) × (1 - (1 - q42(t)) × (1 - q44(t)))×pK(t). 
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Fig. 7.12 RBD for a system out of four automata if primitive objects are both automata and 
groups of output data 

7.5   Designing Digital Systems Out of Unreliable Automata  

7.5.1   General GA-Based Approach 

One of the most critical engineering decisions to be taken as a part of the design 
process with GAs is about properly identifying the level of abstraction for design 
representation. The process of applying GA at the very low level of system im-
plementation on a FPGA, practically combines two stages of the life cycle – de-
signing and direct implementation. One of the main disadvantages here is a  
difficulty in reproducing evolved system with other FPGAs [17]. Therefore the 
main attention was paid to the gate level (Fig. 7.13) that is the one of the low  
levels of abstraction. 

 

Fig. 7.13 GA applications at a gate level 
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At the gate level each version is represented as a graph that shows interconnec-
tions of cells in FPGA. We assume that each cell can realize one of the following 
internal functions: AND, OR, XOR, and it has one output and four inputs con-
nected either to one of a primary inputs (input variables from the truth table given 
for a system) or to an output of any cell. The genotype of an initial population 
(Table 7.1) is formed by random numbers generator and represents a set of binary 
strings coding various variants of mapping. Each string consists of several  
chromosomes. 

Table 7.1 Definitions Connected with Genetic Algorithms 

GA term Definition in GA terms Definition in system design terms 

Chromosome Vector of ones and zeros 
Vector of ones and zeros coding internal 
function and cell interconnections  

Individual 
Set of chromosomes = 
possible solution 

Version of digital system = graph that shows 
internal functions of cells and their 
interconnections 

Population 
Set of individuals (set of 
possible solutions)  

Set of versions of digital system with the same 
functionality but different implementations 

Fitness  

function 

Function that reflects a degree 
of how individual corresponds 
to the required solution. 

Fitness is calculated according to the overall 
number of input data that correspond to the 
required (as in a truth table) output data  

The number of chromosomes is equal to the overall number of cells in the con-
sidered PLD area. The following information is coded in a chromosome:  

• the probabilities to connect each cell’s input to one of the primary inputs; 
• the numbers of primary inputs, which can be potentially connected to the cell’s 

inputs; 
• the numbers of cells, which outputs are connected to the current cell; 
• the internal function of a cell; the probability that a cell is connected to one of 

the primary outputs (output variables from the truth table given for a system). 

The fitness f has been calculated for each individual by comparing its output data 
with the existing specifications (truth table). It equals a ratio between the number 
of correct terms of the individual and the overall number of terms from the  
truth table. 

n
r

i

X
f

2

%100×= ,                                                      (7.4) 

where i is a number of individual in a population; Xr is a total number of input 
terms that corresponds to the correct output data; n is a number of inputs.  

Digital system design with the use of GA includes tree phases [29]. The initial 
data for the first phase is a truth table of the required system as well as the type of 
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automata. According to the initial data GA evolves a model that represents a  
digital system at the gate level providing information about the interconnections 
between logic cells in a chip and their internal functions (Fig. 7.14). During the 
second phase (Fig. 7.15), the obtained model can be improved in order to reach a 
sufficient reliability level. In the third phase, a special subsystem is developed to 
implement switching between automata and achieve the correct functionality of 
the whole system. The initial data for this phase is a number of automata utilized 
in the model and information about their functionality. Finally, a system that in-
cludes several PCA or/and PDA and switching subsystem, is implemented on a 
chip with any standard CAD tool. 

 

Fig. 7.14 Graphical representation of individual evolved with GA 

 

Fig. 7.15 Process of digital system design with GA 

7.5.2   Phase 1: Obtaining a System Model  

First of all, a level of the automata correctness and definiteness should be proved 
depending on the system complexity, cost and time constraints. The compactness 
is the main requirement for the simple systems. Therefore they can be designed 
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with FDFCAs due to their simplicity. In case the compactness and development 
time are of primary importance, PDFCAs or FDPCAs should be used as well. Im-
plementing system with PDFCAs we reduce development time at the expense of 
increasing system complexity, whereas using FDPCAs we obtain a simple system 
but synthesizing becomes more time-consuming. Complex systems, where time 
constraints are critical, can be developed with PDPCAs. 

The process of developing a digital system with FDFCAs includes several runs 
of GA until the version with 100% fitness has been found. While calculating fit-
ness of every version all input and output states should be tested. 

If a digital system is implemented with FDPCAs, GA executes until it has 
evolved several partially correct solutions. As information about the correct or in-
correct output state of each input term of every automaton is available, FDPCAs 
are gathered in a redundant scheme in such a way that all output states of the 
scheme have to be correct. System reconfiguration is implemented depending on 
known information about the correct or incorrect output states of each automaton 
or if one or more FDPCAs fail. It guaranties a high level of system reliability due 
to flexible controlling FDPCAs. 

 

Fig. 7.16 “Sliding Testing” technique 

If a digital system is developed with PDFCAs the design flow means running 
GA until the fully correct versions are obtained. To reduce time required to evolve 
versions if time constraints are critical, we suggest a so-called “Sliding Testing” 
technique [28]. It means testing only a part of input and output data to estimate 
versions’ fitness. In other words, the “Sliding Testing” is a tradeoff between de-
velopment rigour and development time. The application of such a technique re-
quires determining a width of the untestable interval ε (Fig. 7.16). Thus, the  
“Sliding Testing” technique assumes several steps: 

• determine a width of the untestable interval ε; 
• set a position of an untestable interval as [i×ε, (i+1)×ε], i – a number of  

version in the current population; 
• estimate the fitness of each version in the population. It equals a total number 

of terms which correspond to the correct output data of automaton. Terms  
restricted by the untestable interval should not be tested. 
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GA works until several fully correct versions have been obtained. The versions 
can be included in the redundant schemes in such a way that all output states of 
the scheme have to be definite.  

The optimal value of ε is calculated as ⎥
⎦

⎤
⎢
⎣

⎡
=

m

n2ε , where n is an input data  

capacity; 2n is an amount of input terms; m is an amount of versions in the current 
population. 

If  
m

n2<ε   the dependability of such a PDA is growing at the expense of reduc-

ing the amount of untestable input terms (a degree of automaton’s definiteness is 

increasing). If m

n2>ε  a level of automaton’s dependability is becoming lower  

because of reducing its definiteness.  
System reconfiguration is implemented depending on information about the 

width and position of the untestable intervals of PDFCAs or if one or more 
PDFCAs fail.  

Development of digital systems with PDPCAs involves two design techniques: 
designing system with FDPCAs and designing system with PDFCAs. This tech-
nique, just as the previous one, requires the “Sliding Testing” to be used during 
the design flow. The difference is that GA proceeds until several partially correct 
versions, sufficient to design a fully definite and correct system, are obtained. 
While forming a whole system, the output states, which correspond to the indefi-
nite terms, should be marked as the incorrect ones that are known beforehand. 
System reconfiguration is implemented depending on information about the width 
and position of the untestable intervals of PDFCAs and their correct output states 
or if one or more PDPCAs fail.  

7.5.3   Phase 2: Increasing the Reliability of Digital Systems Out of 
Unreliable Automata  

In order to improve fault tolerance characteristics of digital systems the classical 
solution is to gather several identical or different system versions in duplex or ma-
jority architecture. Such an approach can be applied to increase the fault tolerance 
of digital systems based on PDA or/and PCA. Estimating the reliability of such a 
multi-version system which is the several fully correct automata consisting of sev-
eral PDA or/and PCA, the standard formulas from the reliability theory must be 
used. However, several other methods can be used together with the classical one 
to increase the fault tolerance of digital systems implemented with PDA or/and 
PCA [30]. The application of these methods is possible because of the essential 
architectural features of such systems if the groups of definite and correct output 
data are considered as primitive objects. 

One of the simplest methods that allows development of fault tolerant digital 
systems with the certain degree of redundancy is the “Constant” method.  It  
consists of two steps:  
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• selection of the minimum number of primitive objects n that have to be present 
in all groups of output data to provide the required level of system reliability; 

• adding new automata in such a way that the number of redundant elements in 
every group mi satisfies the following condition: n ≤ mi. 

While estimating the reliability of such systems P(t), the equations given in  
section 7.4 must be used. Despite of it simplicity, applications of the method are 
limited only to specific set of case. Mainly because of  the fact that a significant 
number of automata might be required to satisfy the condition n ≤ mi. 

For example, there is a need to develop a system that has the minimum number 

of logic cells Кs but the certain level of reliability ( )tPinit
s  or a system with the 

maximum level of reliability but the fixed number of logic cells initK  then  
“Optimal Reservation” method can be used. It is based on the algorithm of short-
est descent [31] which is widely applied for the system optimization according to 
the criteria “reliability – cost”. The proposed method uses the functionality of au-
tomata obtained with GA (available information about the correctness and defi-
niteness of each automaton) and allows the architecture of such systems to be  
optimized according to the criteria “reliability-complexity” as well.  

The process of system optimization includes two phases. 

Phase 1: 

• the set of PDA or/and PCA that constitutes the minimum functional basis of a 
system is considered as an initial architecture; 

• for the initial architecture, calculate the probabilities of no-failure of automata 
for each group of output data pi as well as calculate the quantity of logic cells 
that are essential to the functionality of automata for group i, ki. Since GA syn-
thesis an automaton is considered as a “black box”, we assume the equal prob-
abilities pi which can be calculated using the value of P(t) obtained with the si-
mulation or statistics. The same assumption is used for ki: 

hn

l

k

h

j
j

i ×
=
∑

=1 , 
                                                           

(7.5) 

where lj is a number of logic cells allocated for automaton j within the initial ar-
chitecture; n is a number of groups of correct and definite output data within the 
initial architecture; h is an overall number of automata in the initial architecture; 

• condition ( )tPPni init
si ≥=∀ :,1  is guaranteed by adding new automata into the 

initial system architecture (Pi is the probability of no-failure of a system within 
group i that is calculated using pi values); 

• if a new automaton has been added, the probabilities pi must be recalculated 

and the condition ( )tPPni init
si ≥=∀ :,1  must be checked again as the new au-

tomaton might have definite and correct output data within the other groups 
too;  
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• estimate the probability of no-failure of a system Ps that is calculated according 
to the equations given in section 7.4; 

• estimate the number of logic cells allocated for a system using the following 
formula:  

∑
=

=
h

i
is lK

1
,
                                                            

(7.6)
 

Phase 2:  

• at each step of phase 2, the selection of the new automaton is made in such a 
way that it must have correct and definite output data within that group, for 
which it results in maximum reliability increase per unit of occupied area in  
accordance with index j:  

, 1 ,
,

, 1

( ) ( )

( )
i i j i i j

i j
i i i j

p g p g
j

k p g
+

+

−
=

× ,                                           (7.7) 

where gi, j is a current group of output data; 
• the probabilities pi are recalculated for each group as well as Ps and Ks for the 

whole system.  

7.5.4   Phase 3: Development of Switching Subsystem 

This phase includes the following steps: 

• work out the ideal model of system behavior that is based on information about 
the functionality of each automaton. In this model, every input signal xi  corres-
ponds to the set of ideal (known beforehand) output signals of automata, Yi

ideal;  
• compare the real input signals of automata with one another and form a set of 

real output signals, Yi
real;  

• compare the set of real output signals Yi
real with the set of ideal ones Yi

ideal and 
choose such a couple (yj

real, yj
ideal) that yj

real = yj
ideal, where j is a number of au-

tomaton which is acceptable for switching. 
The described above algorithm can be implemented using Table 7.2.  

Table 7.2 Switching logic for two automata 

 Information about current behavior of automata 
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a A - Automaton A1 = A2 A1 ≠ A2 

A1 and A2 have definite and 
correct output 

“OK” 

Switch to A1 or A2 
“Fail” 

A1 has definite and correct 
output 

“Risk” 

Switch to A1 

“OK” 

Switch to A1 

A2 has definite and correct 
output 

“Risk” 

Switch to A2 

“OK” 

Switch to A2 
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The top row includes all possible combinations formed by n automata if they 
lose their correct functionality that can be revealed during the system exploration. 
The left column includes all possible combinations formed by n automata accord-
ing to the information from the ideal model. The rest of cells are filled in as fol-
lows. If a current combination of the top row fits to the current combination of the 
left column then the cell has value “Fail”. In other case, the cell is filled with value 
“OK”.  

7.5.5   Implementation 

Implementation of a solution on a chip implies several alternatives. The choice 
lies between ASIC, PLA, CPLD or FPGA.  

The choice of an ASIC involves a lot of restrictions arising from the fact that it 
is “Application Specific” and quite expensive. Then between PLA, CPLD and 
FPGA it is the last one that offers the highest flexibility that is in primary  
importance when we deal with GAs.  

 

Fig. 7.17 Software and hardware architecture for system design with GA 
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To translate the model into the acceptable format in order to exploit the  
standard CAD tool, each automaton needs a description in any of Hardware De-
scription Languages (HDL) as follows. The codes of the internal functions of each 
cell are to be extracted from binary string that describes the behavior of automata 
as well as codes that show cell interconnections. Then the appropriate variable for 
each cell is defined to implement its internal function and set the connections be-
tween these variables, inputs and outputs of automaton. As a result, a hierarchical 
project is obtained by applying the same approach to every automaton of the mod-
el: on the top level there is a switching subsystem while automata are  
represented as “include files” (Fig. 7.17). 

7.6   Experimental Application  

Digital heating controller developed by means of the standard CAD tool, and cur-
rently used in AN-70 plane was chosen to verify our approach. It was imple-
mented using C++, AHDL languages and Quartus II tool on a Pentium IV with 
1500 MHz clock and 1 GB RAM. 

A simple GA with a population size of 50, GA cycles of 1000, crossover prob-
ability of 0.75 and mutation probability of 0.25 was applied. Modeling area was 
determined as 4×4 array of logic cells of FPGA.  

Input data for the heating controller: 1-st bit determines a sign; 2-7 bits deter-
mine a value of the temperature (°C). Output data for the heating controller:  
'01' – the temperature is lower than +15°C, '10' – the temperature from +15°C up 
to +35°C, '11' – the temperature is higher than +35°C. 

During the first phase of design flow, a model of heating controller that  
involves 9 logic cells and includes two PCA evolved in 405 and 789 populations, 
was obtained. Information about their functioning is represented in Fig. 7.18.  

 

Fig. 7.18 The scheme of term overlapping in the heating controller model implemented 
with partially correct automata 

To assess the reliability of the developed controller, the probability of no-
failure was chosen. It was calculated for FPGA failure rate λ=10-7 1/hour, 1=Kp , 
time intervals t= {101, 102, 103, 104, 105} hours and overall number of logic cells 
N=256. Time till the FPGA fault has been given by the exponential distribution. 

If the primitive objects are automata, the probability of no-failure is calculated 
with the following formula: P(t) = p1(t)×p2(t)×pK(t). We have assumed that 
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p1(t)=p2(t), so P(t) = p(t)2× pK(t). The probability of no-failure for a single  
automaton is equal to λa= (λ×Na)/N, where Na is a number of logic cells that con-
stitute single automaton. Na=Ns/h, where Ns is a number of cells allocated for the 
whole system and h is a number of automata. Therefore, the probability of  

no-failure for the whole system is the following: P(t) 
[ ]

t×××
= 256

9/210
2-

-7

e . 
If the primitive objects are groups of definite and correct output data, the prob-

ability of no-failure is calculated as P(t) = p11(t)×(1-(1- p12(t) ×(1- p22(t)) × p23 (t) × 
p14(t) ×pK(t). We have assumed that all probabilities p(t) are equal, so 
P(t)=p(t)3×(1-(1- p(t)2)×pK(t). The probability of no-failure for a single group of 

correct and definite data of automaton equals  p(t)=
tge λ−
, where λg is a failure rate 

of automaton for a group g. λg is calculated as λg= (λ×Ng)/N, where Ng =Ns/(h×n) 
and n is a number of groups. Therefore, the probability of no-failure for the whole 
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To compare the developed heating controller with the prototype, we assume 

prototype to be a single FDFCA. Thus, P(t)=
tpe λ−
, where λp is a failure rate of the 

prototype. λp is equal λg= (λ×Ns)/N, so the probability of no-failure for the  

prototype is t
256

7410
-

7

eP(t)
×−

= . 
The values of P(t) for the obtained controller and its prototype are given in  

Table 7.3. The gain in reducing the probability of no-failure for both versions of 
controller is shown in Table 7.4. 

Table 7.3 The probability of no-failure for heating controller and its prototype 

- 
Primitive 

Object 
Time, hour 

- - 10 102 103 104 105 

New  

System 

Automata 0.999999965 0.999999648 0.999996484 0.999964844 0.999648499 

Groups of 
output data 0.999999986816 0.999999868164 0.999998681641 0.99998681647 0.999868170829 

Prototype - 0.999999710938 0.999997109379 0.999971094168 0.99971097927 0.997113548834 

Table 7.4 The gain in reducing the probability of no-failure for heating controller compar-
ing to its prototype 

Primitive  

Object 
Time, hour 

- 10 102 103 104 105 

Automata 8,25892738 8,21199097 8,22122646 8,22109243 8,21178650 

Groups 21,9252471 21,9258838 21,9256153 21,9228633 21,8953904 
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During the second phase we applied both the “Constant” and “Optimal  
Reservation” methods to the heating controller shown in Fig. 7.18. The existing 
model was updated in the process of simulation with the new automata that had 
not been included into the initial model from the start.  

For the “Constant” method the number of automata that had correct data within 
every group was set to 3. To increase redundancy in group 1, automaton 3 and 4 
were added. Automaton 3 was used in order to achieve the required level of re-
dundancy in group 2 as well (Fig. 7.19). Automaton 4 and 5 were also added for 
group 3 and automaton 3 and 5 were added for group 4. Thus, in the obtained  
architecture at least three automata in every group have correct output data. More-
over, in group 1 the level of redundancy is higher than required because of the es-
sential logic of such PCA. In case the primitive objects in RBD are the groups of 
correct output data of automata, the probability of no-failure for the obtained  
system is the following:  

( )( ) ( )( ) ( )( ) ( )( )( )Kgggg pppppP ×−−×−−×−−×−−= 3334
1 4321

11111111 . (7.8) 

 

Fig. 7.19 Model of heating controller obtained with the “Constant” method 

The degree of reducing the probability of failure for the “Constant” method, if 
1=Kp  and 9.0

4321
==== gggg pppp , is the following: 

085690.84
996904.01
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where P1 is a probability of no-failure for the obtained system; P0 is a probability 
of no-failure for the initial system. 

So, the reduction of the probability of failure for the system received by the 
“Constant” method application is 84.085690 if the number of logic cells has 
grown from 9 to 23.  

The analysis of the system architecture represented in Fig. 7.19 shows that 
there is a switching between the correct and incorrect output data in groups 2, 3 
and 4 (for example, automaton 4 within group 2). Such a redundancy has not been  
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taken into consideration in (7.8). Nevertheless, this disadvantage can be avoided 
by increasing the amount of groups as it is shown in Fig. 7.20. The degree of re-
ducing the probability of failure, while increasing the number of groups from 4 to 
7 is the following ( 941571.09.07 47 4

7654321
≈======== ∗∗∗∗∗∗∗

gggggggg pppppppp ): 

000399.1
))941571.01(1())941571.01(1(1

))9.01(1())9.01(1(1

1

1
2354

334

2

1 =
−−×−−−
−−×−−−=

−
−=

P

P
W , (7.10) 

where P2 is a probability of no-failure for the obtained system after a new splitting 
into groups.  

 

Fig. 7.20 Model of heating controller received with the “Constant” method after increasing 
the number of groups of output data 

Hence, the high level of system reliability can be achieved by precise splitting a 
set of output data of automata into the groups to allow switching between the au-
tomata to be more flexible. 

According to the “Optimal Reservation” method based on the algorithm of the 
shortest descent the resulting model of the heating controller should have the 
probability of no-failure ( ) 98.0=tPinit

s
 with the minimum number of allocated 

logic cells. Two PCA in Fig. 7.18 constitute the minimum functional basis of the 
heating controller, therefore they can be selected as an initial architecture. 4 logic 
cells have been allocated for the first automaton and 5 cells for the second one. 

Phase 1: 

• initial assumption for value of pi is 0.95 for group 1 and 0.9 for groups 2, 3 and 
4 respectively;  

• according to (7.5) 1
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• to meet the condition  ( )tPPni init
si ≥=∀ :,1  that requires additional redundancy in 

groups 1, 3 and 4, automaton 3 (Fig. 7.21) was added into the initial architec-
ture. The probabilities of no-failure for each group are the follow-
ing: 2 2

1 2 3 41 (1 0.95) 0.9975 ; 1 (1 0.9) 0.99= − − = > = = = − − = >init init
s sP P P P P P ;  

• as automaton 3 does not have correct and definite output data within the whole 
group 4, the value of P4  is not recalculated; 

• the probability of no-failure for the whole system is the following: 
2 2 3(1 (1 0.95) ) (1 (1 0.9) ) 0.967873253= − − × − − = < init

s sP P ;  

• the number of logic cells in the current model is Ks = Kautomaton 1 + Kautomaton 2 + 
Kautomaton 3=4 +5 + 5 = 14. 

Phase 2:  

• by adding redundancy to every group (Fig. 7.21) Pi is defined as: 
3 3

1 2 3 41 (1 0.95) 0.0999875; 1 (1 0.9) 0.999;= − − = = = = − − =P P P P  

• the value of j (7.7) for every group is the following: 

1 2 3 4

0.999875 0.9975 0.999 0.99
0.000791766, 0.003.

0.999875 1 3 0.999 1 3
j j j j

− −= = = = = =
× × × ×  

 

Fig. 7.21. Model of the heating controller received by optimal reservation after phase 1 

 

Fig. 7.22 Model of the heating controller received by optimal reservation after phase 2 
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As the value of j is the maximum for groups 2, 3 and 4, one more automaton 
was added to the model to provide the required redundancy level in these groups 
(Fig. 7.22). The probability of no-failure for each group and the whole model is 
the following:  

3 2
1 2

3 2
3 4

1 (1 0.95) 0.0999875; 1 (1 0.9) 0.99;

1 (1 0.9) 0.999; 0.999875 0.99 0.999 0.987897487 .init
s s

P P

P P P P

= − − = = − − =

= = − − = = × × = >
 

Resulting model of the heating controller consists of 4 automata and uses 19 logic 
cells (Ks = 4 +5 + 5 +5 = 19). The probability of no-failure for the given model 
equals to 0.987897487 if the probability of no-failure for the primitive objects in 
group 1 is 0.95 and 0.90 for groups 2, 3 and 4 respectively. Thus, by applying the 
proposed method, it was proved that the essential logic of PDA and PCA allows 
flexible digital systems development with the certain properties such as reliability 
level or system complexity. 

During the third phase the model in Fig. 7.18 was implemented to FPGA 
EP1K10TC144-3 (family ACEX 1K) and compared with its prototype. The sub-
system that allows switching automata was designed according to Table 7.2 and 
Fig. 7.18. 

Involved 
Cells

Involved Cells

Faulty Cells

View in Floorpaln Editor (Quartus II) View in PLD Fault Simulator
Heating controller obtained by using GA

Heating controller obtained by using standard CAD

View in PLD Fault Simulator View in Floorpaln Editor (Quartus II)

Involved Cells

Faulty Cells

Involved 
Cells

 

Fig. 7.23 Location of the heating controllers in the FPGA EP1K10TC144-3 and their  
representation in the PLD fault simulator 
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Both versions of controller were compared (Fig. 7.23) according to the diversi-
ty metric given in (7.1). A fault simulator [32] was used to assess the probability 
of keeping system operating state for both versions that is calculated as  

N

N
P 1= ,

                                                        
(7.11)

 

where N1 is a number of trials for those the system kept its correct operating  
during fault simulation; N is a total number of trials.  

The experimental results given in Table 7.5 show that the system is able to keep 
its operating state even though there is a significant number of faulty cells in 
FPGA. The reason is the compactness of the developed controller: it uses only 27 
logic cells in a FPGA, whereas in the prototype the overall number of cells in-
volved is 74. 

Table 7.5 The probability of keeping system operating state with the several numbers of 
faulty cells 

Faulty Cells 1 Cell  2 Cells 3 Cells 
5% of 
Chip  

10% of 
Chip 

25% of 
Chip 

50% of 
Chip 

75% of 
Chip 

GA-project 0.958 0.951 0.943 0.865 0.810 0.663 0.398 0.080 

Prototype 0.870 0.797 0.745 0.480 0.343 0.050 0 0 

Both prototype and evolved controller can be gathered to duplex architecture as 
it is shown in Fig. 7.2 - 7.3 to constitute a multi-version FPGA-based system. 
Another way is to use the obtained project as a control module for the prototype  
(Fig. 7.4). 

7.7   Conclusions  

In this chapter we reviewed the principles of multi-version digital system design. 
We also introduced the concept that helps to develop a simple and reliable system 
from unreliable parts. The corner stone of multi-versions design approach is a need 
to get the resulting versions as different as possible. With the method proposed 
both classical and non-classical paths were taken, with the latter making use of ge-
netic algorithms. Although analysis showed a significant decrease in the FPGA uti-
lization, on the other hand, applying the method led to the problem of building a re-
liable system from unreliable parts and sticking to the initial design constraints at 
the same time. That problem was tackled by introducing an innovative method that 
made it possible to 1) develop a reliable system from unreliable parts; 2) manage a 
level of system reliability and complexity;  3) implement efficient switching be-
tween different automata, based upon available information about their correctness 
and definiteness;  4) implement the system on an FPGA chip. 

A practical application section proved the feasibility of the selected approach 
and used methods. A careful study has outlined not only obvious advantages, but 
also possible implications and pitfalls that method users should be aware of. 
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Abstract. The chapter is devoted to CMCU optimization, based on the modifica-
tion of the microinstruction format. Proposed modifications are intended to elimi-
nate code transformers from the CMCU and reduce the hardware amount of  
circuits used in the FSM for the microinstruction addressing, as compared with the 
CMCU basic structure. The reduction of the hardware amount is achieved at the 
cost of increasing the number of cycles needed for the execution of the control  
algorithms, and in some cases also at the cost of increasing control memory size. 

8.1   Introduction 

A Control Unit (CU) is one of the most important parts of any digital system [10]. 
It is responsible for interplay of all blocks of a system. There are many ways for 
implementation of a control unit [4]. It can be implemented using the model of a 
Finite-State-Machine (FSM), and the Moore model is used very often for such a 
FSM [1]. Use of FSM model permits to set the circuits with the highest possible 
performance, especially when the single-level models [4] are applied. The second 
way is the model of a microprogram control unit [3], when a circuit of CU can be 
implemented using only multiplexors and memory blocks. In this case a control 
algorithm to be implemented is represented as a microprogram which is kept in a 
control memory. That model permits to obtain very chap but slow designs. If a 
control algorithm to be implemented includes long sequences of unconditional 
jumps, then the model of a Compositional Microprogram Control Unit (CMCU) 
can be used [3]. Such devices are very useful when a part of a digital system is 
implemented using Field-Programmable-Gate-Arrays (FPGA) [11]. These chips 
include look-up table elements, which can be used for implementation of the block 
of microinstruction addressing and the counter (together with internal flip-flops). 
The blocks of embedded memory [11, 12] can be used for keeping of a  
microprogram. Therefore, the CMCU model permits to use all types of blocks of 
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an FPGA chip. This model gives the best results for linear control algorithms [1]. 
Here we propose some new methods for implementation of CMCU. Our proposed 
methods are based on some modifications of microinstructions in comparison with 
well-known base methods of CMCU implementation [1, 3, 4]. 

8.2   Background of CMCU 

Let a graph-scheme of algorithm (GSA) Γ be used for representation of a control 
algorithm [2]. Let B = {b0, bE}∪E1∪E2 be a set of GSA vertices and E be a set of 
arks connected some of these vertices. Here b0 is an initial (start) vertex of GSA, 
bE is a final vertex, E1 is a set of operator vertices, where M=|E1|, and E2 is a set of 
conditional vertices. Each operator vertex bq∈E1 contains a collection of micro-
operations Y(bq) ⊆ Y, where Y = {y1,…,yN} is a set of data-path microoperations 
[2]. Each conditional vertex bq∈E2 includes some logical condition xe ∈ X, where 
X = {x1,…,xL} is a set of logical conditions. A GSA Γ is named linear GSA if the  
number M exceeds 75% of the total number of its vertices [1]. 

Let us introduce some definitions used in this chapter. 

Definition 1. An operational linear chain (OLC) of GSA Γ is a finite vector of  
operator vertices αg = 〈bg1

, …, bgFg 
〉, such that an arc 〈bgi

, bgi+1 
〉 ∈ E corresponds 

to each pair of adjacent vertices bgi
, bgi+1

, where i is the component number of  

vector αg.  
Let Dg be a set of operator vertices, which are components of OLC αg.  

Definition 2. An operator vertex bq∈Dg is called an input of OLCαg, if there is an 
arc 〈bt, bq 

〉∈E, such that bt∉Dg. 

Definition 3. An input bq∈Dg is called a main input of OLC αg, if GSA Γ does not 
include an arc 〈bt, , bq 

〉∈E such that bt∈B1. 

Definition 4. An operator vertex bq∈Dg is called an output of OLC αg, if there is 
an arc 〈bt, , bq 

〉∈E, where bt∉Dg. 

It follows from the basic properties of GSA [2] that each OLC αg corresponding to 
definitions given above should have at least one input and exactly one output. Let 
Ig

j stand for input j of OLC αg and Og for its output. Let inputs of OLC αg form a 
set I(αg). 

For GSA Γ we have the following sets: 

1. A set of OLC C={α1, …, αG }, satisfying the following condition 

{ }( )
.min

;,,1, ; 0

;1
1

→

∈≠=∩

=∪∪

G

GjijijDiD

BGDD

K

K

                          (8.1) 
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2. A set of inputs I(Γ) of the operational linear chains of GSA Γ: 

( ) ( )U
G

g
gII

1=

=Γ α .                                                          (8.2) 

3. A set of outputs O(Γ) of the operational linear chains of GSA Γ: 

( ) { }GOOO ,,1 K=Γ .                                               (8.3)  

Let the natural microinstruction addressing be executed for microinstructions  
corresponding to the adjacent components of each OLC αg ∈C: 

( ) ( ) ( )1,,1  1
1

−=+=
+ ggg FibAbA

ii
K .                          (8.4) 

In expression (8.4) symbol A(Bgi) stands for the address of microinstruction  
corresponding to component i of vector αg ∈C, where i=1, …, Fg−1. 

In this case GSA Γ can be interpreted by compositional microprogram control 
unit with basic structure of Fig. 8.1 [10]. Let us denote it as unit U1. 

Ψ

τ

Φ

 

Fig. 8.1 Structural diagram of compositional microprogram control unit with basic structure 

In the unit U1, combinational circuit CC and register RG form a finite state ma-
chine S1, which will be called microinstruction addressing unit or FSM S1. Coun-
ter CT, control memory CM and flip-flop TF form microprogram control unit S2 
with natural microinstruction addressing. The unit U1 operates in the  
following manner. 

The pulse “Start” initializes following actions: the zero code of FSM S1 initial 
state is loaded into register RG; start address of microprogram is loaded into coun-
ter CT; flip-flop TF is set up (Fetch=1). If Fetch=1, microinstructions can be 
fetched out of the control memory. Let at time t (t=0, 1, 2, …) the code of state 
αm∈A1, where A1 is a set of FSM S1 states, be loaded into register RG and address 
A(Ig

j) of the input j of OLC αg∈C be loaded into the counter CT. Current microin-
struction is read out of CM and its microoperations yn∈Y initialize some actions of 
the data-path. If this input is not the output of current OLC αg∈C (Ig

j≠Og), addi-
tional variable y0=1 is generated by MCU S2. If y0=1, content of register RG is  
unchangeable and 1 is added to the content of counter CT. It corresponds to a tran-
sition between adjacent components of OLC αg∈C. If the output Og is reached, 
then  y0=0. In this case circuit CC generates Boolean functions: 
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( )X,τΦ=Φ ,                                                       (8.5) 

( )X,τΨ=Ψ ,                                                       (8.6) 

where τ={τ1, …, τR1
} is a set of state variables encoding states αm∈A1. The  

minimum number of these variables is determined as 

⎡ ⎤121 log MR = ,                                                      (8.7) 

where M1=|A1|. If there is a transition from output Og to some input under influ-
ence of some values of logical conditions, functions (8.5) determine the address of 
this input Ii

j∈I(Γ) which is to be loaded into the counter. Functions (8.7) calculate 
the code of next state as∈A1 to be loaded into RG. Content of both CT and RG is 
changed by the pulse “Clock”. Outputs of the CT, T={T1,…TR2

} determine next 

microinstruction address. This set includes  

⎡ ⎤222 log MR =                                                        (8.8) 

variables, where M2=|B2|. If CT contains the address of microinstruction corres-
ponding to vertex bq∈B1 such that 〈bq,bE〉∈E, some additional variable yE=1 is 
generated. If yE=1, the flip-flop TF is cleared. Thus Fetch=0 and microinstruction 
fetching from the control memory is terminated. 

As follows from (8.5), FSM S1 of unit U1 implements any multidirectional mi-
croprogram transition between output Og∈O(Γ) and input Ii

j∈I(Γ) in one cycle of 
operation. At the same time MCU S2 implements addressing rule (8.4), used to or-
ganize transitions between microinstructions corresponding to adjacent  
components of OLC αg∈C. Therefore, control memory CM should only keep mi-
crooperations yn∈Y and additional variables y0, yE. In other words, an address part 
is absent in the microinstruction format in case of CMCU U1. The main disadvan-
tage of CMCU U1 is the loss of universality, because changes in the interpreted 
microprogram lead to the redesign of circuit CC. Fortunately, current achieve-
ments in semiconductor technology permit to eliminate this drawback.  

In this chapter we deal with some modification of CMCU U1, namely CMCU with 
common memory [4] denoted here as U2. It has the following structure (Fig. 8.2) 

 

Fig. 8.2 Structural diagram of CMCU U2 
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In CMCU U2, the counter CT is used as a source of the codes for S1 and  
addresses for S2. The Circuit CC implements system 

).,( XTΦ=Φ                                                           (8.9) 

All other blocks of CMCU U2 execute the same functions as corresponding blocks 
of CMCU U1. 

8.3   Synthesis of CMCU with Dedicated Area of Inputs  

All compositional microprogram control units known from literature have some 
common feature, namely generation of input addresses by the block СС. This ap-
proach can be called hardware address generation, in which the number of outputs 
in the CC block is equal to R2 (model U1 is the only exception). In order to reduce 
this number, some additional block for address generation is needed (for transfor-
mation of object codes). The second approach leads to increasing of the CMCU 
cycle time, in comparison with its value for CMCU U1. In case of the CMCU with 
elementary OLC and code sharing [4], the number of CC outputs is smaller than 
R2, but application of these methods can cause either significant increase of the 
control memory size, in comparison with its minimal value Vmin, or an increase of 
the CMCU cycle time. If the increase of time cycle is not desirable, the number of 
CC outputs cannot be reduced, in comparison with R2. Let us consider how the 
number of CC outputs can be reduced in cases when application of code sharing 
leads to introduction of the address transformer, but performance of the resulting 
CMCU cannot be worse, than in case of the CMCU U1. Let us discuss these me-
thods using an example of CMCU U2. Our discussion is based on results from [5-9].  

In case of CMCU U2, the output addresses of OLC αg∈C possess the property 
of randomness. Application of address procedure does not guarantee that, for ex-
ample, some bit is equal to zero for all input addresses. Situation of this kind 
would allow to reduce the number of CC block outputs in comparison with R2. Let 
the set of OLC inputs I(Γ) for GSA Γ include I0 elements, which can be encoded 
by only R3 bits, where  

⎡ ⎤023 log IR = .                                                         (8.10) 

Obviously the following condition is satisfied for the linear graph-schemes of al-
gorithm, where the number of operator vertices exceeds significantly the number 
of conditional vertices:  

23 RR < .                                                              (8.11) 

Let the following condition (8.3) be satisfied for GSA Γ: 

( )⎡ ⎤ ⎡ ⎤22202 loglog MMI =+ ,                                       (8.12) 

where M2 is the number of operator vertices. Let us choose I0 cells of control 
memory to keep OLC inputs and let these cells have addresses from 0 to (I0−1)2. 
Let us call this set of cells a dedicated input area (DIA). This fixation of OLC  
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inputs requires execution of unconditional jumps to the real input address, which 
should be introduced into the special control microinstruction. It leads to some 
modification of microinstruction formats in comparison with CMCU U2 [4]. The 
model of CMCU U3 with dedicated input area is shown in Fig. 8.3. 

Φ
0Φ

 

Fig. 8.3 Structural diagram of CMCU U3 

Let us discuss particular qualities of CMCU U3 in comparison with U2. In case 
of the CMCU U3, there are two formats of microinstructions (Fig. 8.4). 

 

Fig. 8.4 Microinstruction formats for CMCU U3 

The control microinstruction, shown in Fig. 8.4a, contains an address field FA 
with address for transition from the dedicated input area into the area of micropro-
gram (AMP) containing operational microinstructions. This format includes a field 
of attribute TMI, with all zeroes (TMI=00). Operational microinstruction  
(Fig. 8.4b) includes the field TMI and an operational part FY. If TMI=01, this 
microinstruction corresponds to an OLC output, corresponding in turn to yC=1. If 
TMI=10, the microinstruction corresponds to some OLC component, which is not 
an OLC output. It corresponds to y0=1. Code TMI=11 indicates that some OLC 
output connected with vertex bE is reached. It corresponds to yE=1. Let us point 
out that the control microinstruction corresponds to yj=1. 

In case of the control microinstructions, some additional block for generation of 
microoperations should be used to prevent generation of microoperations yn∈Y (if 
yj=1), because in this case microinstruction would contain information about ad-
dress of transition only. Multiplexer MX should be used to load into counter CT: 
either the transition address created by functions Φ0 (yC=1), or the address of some 
cell of the microprogram area, which occupies the field FA of the control microin-
struction (yj=1). Block CCS is used to generate control signals y0, yj, yC, yE,  
depending on the content of field TMI. 

Compositional microprogram control unit U3 operates in the following manner. 
First, zero code is loaded into the counter CT using pulse Start, corresponding to 



8   Synthesis of Compositional Microprogram Control Unit with Dedicated Area  199
 

the address of main OLC α1∈C input, kept in the dedicated input area. At the 
same time, flip-flop TF is set up and allows microinstruction fetching from the 
CM control memory (Fetch=1). Current microinstruction is read from the control 
memory CM and block CCS generates some control signals y0, yj, yC, yE. If CT 
contains the address of OLC output, variable yC=1 is generated together with 
microoperations yn∈Y. In this case, input memory functions  

( )X,00 ΤΦ=Φ                                                       (8.13) 

load the address taken from dedicated input area into the counter CT. The signal yj 
is generated and an address from AMP is loaded into CT. If the counter CT con-
tains an address of OLC component corresponding to vertex bq, such that 
〈bq, bE〉∉E and bq≠Og, both microoperations yn∈Y(bq) and variable y0=1 are gen-
erated. In consequence, the counter content is incremented and causes transition to 
the following microinstruction. If the counter CT contains the address of microin-
struction corresponding to vertex bq, such that 〈bq, bE〉∈E, variable yE is generated 
and fetching of microinstructions terminated. 

The method of CMCU U3 synthesis includes the following steps: 

1. Transformation of initial GSA. 
2. Construction of the OLC set using transformed GSA Γ(U3). 
3. Finding addresses for OLC inputs. 
4. Microinstruction addressing. 
5. Construction of the control memory content. 
6. Construction of the transition table of CMCU. 
7. Construction of CCS table. 
8. Synthesis of CMCU logic circuit using given logical elements. 

Let us discuss application of this method for synthesis of the CMCU U3(Γ1), 
where the transformed GSA Γ1(U3) is shown in Fig. 8.5. 

Application of addressing procedure to the transformed GSA Γ1(U3) gives the 
set C={α1,…,α6}, where α1=〈b1,b2〉, I1

1=b1, O1=b2; α2=〈b3,b4,b5〉, I2
1=b3, I2

2=O2=b5; 
α3=〈b6,…,b9〉, I3

1=b6, I3
2=b8, O3=b9; α4=〈b10, b11〉, I4

1=b10, O4=b11; α5=〈b12, b13〉, 
I5

1=b12, O5=b13; α6=〈b14,…,b17〉, I6
1=b14, O6=b17. Thus, we get the set of inputs 

I(Γ1)={b1, b3, b5, b6, b8, b10, b12, b14}, and the following values can be found: 
M2=17, R2=5, I0=8, R3=3. It means that condition (8.11) holds and application of 
the method proposed above makes sense. Moreover, because M2+I0=25, condition 
(8.12) is satisfied and this method allows to have smaller number of CC inputs, 
without increasing the length of microinstruction address, in comparison with 
CMCU U2(Γ1). 

Addressing of OLC inputs is executed in trivial way, but the address of input I1
1 

should be equal to zero. Let IA(bq) be the address of input corresponding to vertex 
bq∈B2. In case of CMCU U3(Γ1) these addresses are: IA(b1)=000, IA(b3)=001,… 
IA(b14)=111. 
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Fig. 8.5 Transformed GSA Γ1(U3) 

Application of addressing procedure to GSA Γ1(U3) results in microinstruction 
addresses shown in Fig. 8.6. 
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Fig. 8.6 Microinstruction addresses for CMCU U3(Γ1) 

First line of the table from Fig. 8.6 corresponds to the dedicated input area and 
each cell of this line contains an address IA(bq). The rest of lines corresponds to 
the area of microprogram AMP and each cell for this part of lines contains an ad-
dress A(bq). For example, input I5

1=b12 and its address in DIA is determined as 
IA(b12)=001100, whereas its address in AMP is A(b12)=10011. 

Microinstructions to be kept in the control memory are constructed using the 
following rules: 

- any vertex bq∈I(Γ) from DIA corresponds to a control microinstruction of the 
unconditional jump, where [FA]= A(bq); 

- if vertex bq∈Dg is not an output of OLC αg∈C, the control memory cell hav-
ing address A(bq); should contain operational microinstruction, where [TMI]=y0; 

- if vertex bq∈Dg is connected with final vertex bE, the control memory cell 
with address A(bq) should contain operational microinstruction, where [TMI]=yE. 

Let us denote the construction procedure of the control memory content by symbol 
P1. Application of procedure P1 gives the control memory content shown in  
Table 8.1. 

Let us point out that only 16 cells of the control memory of CMCU U3(Γ1) are 
shown in Table 8.1. Two bits are used to encode variables y0, yj, yC, yE, namely m1 
and m2. The encoding is executed in such a manner that code 00 corresponds to yj, 
code 01 to y0, code 10 to yC, and code 11 to yE. One-hot encoding approach is used 
to encode microoperations, when the bit capacity RCM of the control memory cell 
is given by the expression 

( )⎡ ⎤( )202log2,2max MINRCM +++= .                       (8.14) 

In this case RCM=7, which means that fields FA and FY are represented by bits 
m3−m7. 

The transition table of CMCU is constructed using the system of transition 
formulae for outputs of OLC αg∈C1. In the discussed case we have C1={α1, α2, 
α3, α6} and the following transition formulae: 

.
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Table 8.1 Content of control memory for CMCU U3(Γ1) 

Address 
T1T2T3T4T5 

TMI
m1m2

Content 
m3m4m5m6m7

Reference 

00000 00 01000 b1→A(b1) DIA 

00001 00 01010 b3→A(b3) 

00010 00 01100 b5→A(b5) 

00011 00 01101 b6→A(b6) 

00100 00 01111 b8→A(b8) 

00101 00 10001 b10→A(b10) 

00110 00 10011 b12→A(b12) 

00111 00 10101 b14→A(b14) 

01000 01 11000 b1→b2 AMP 

01001 10 00100 b2→O1 

01010 01 01010 b3→b4 

01011 01 00100 b4→b5 

01100 10 10001 b5→O2 

01101 01 11000 b6→b7 

01110 01 01001 b7→b8 

01111 01 00100 b8→b9 

Table 8.2 Transition table for CMCU U3(Γ1) 

Og A(Og) Im
j A(Im

j) Xh Φh h 

O1 01001 I2
1 00001 x1 D5

1 1 

I2
2 00010 /x1x2 D4

1 2 

I3
1 00011 /x1/x2x3 D4

1 D5
1 3 

I3
2 00100 /x1/x2/x3 D3

1 4 

O2 01100 I4
1 00101 x2x3 D3

1 D5
1 5 

I5
1 00110 x2/x3 D3

1 D4
1 6 

I3
1 00011 /x2x4 D4

1 D5
1 7 

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8 

O3 10000 I4
1 00101 x2x3 D3

1 D5
1 9 

I5
1 00110 x2/x3 D3

1 D4
1 10 

I3
1 00011 /x2x4 D4

1 D5
1 11 

I6
1 00101 /x2/x4 D3

1 D5
1 12 

O6 11000 I3
2 00100 1 D3

1 13 

Transition table of the CMCU U3(Γ1) corresponds to system (8.15) and includes 
H3(Γ1)=13 lines (Table 8.2). This table is used to obtain the input memory  
functions for the flip-flops of counter CT (8.13), as for example: 
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  5321321532113121098654
1
3 ΤΤΤΤ∨∨ΤΤΤΤ=∨∨∨∨∨∨∨= KxxxFFFFFFFFD . 

The superscript «1» of function D3 reflects the fact that D3 belongs to the set Φ0. If 
this superscript is omitted, we obtain D3∈Φ0. It can be found from this formula 
that the address bit T4=0 for all outputs of OLC, and therefore corresponding  
variable is absent in system (8.13). 

The table for block CCS is constructed in trivial way and in our particular case 
it is replaced by the Karnaugh map (Fig. 8.7). 

2m

1m

 

Fig. 8.7 Codes of control variables 

 

Fig. 8.8 Logic circuit for CMCU U3(Γ1) 

Obviously, variables y0, yj, yc, yE are generated by a decoder with m1 and m2 in-
puts. Logic circuit of CMCU U3(Γ1) is shown in Fig. 8.8. Here, the two-level  
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block AND-OR implements multiplexer MX, outputs of which correspond to the 
input memory function of counter CT. The multiplexer is described by the  
following equations: 

.;

;;0;0

1
575

1
464

1
3534231

cjcj

cjcjcj

yDmyDyDmyD

yDmyDymyDymyD

⋅∨⋅=⋅∨⋅=

⋅∨⋅=⋅∨⋅=⋅∨⋅=
   (8.16) 

 

It is clear, that system (8.16) can be implemented using FPGA, but the logic cir-
cuit shown in Fig. 8.8 reflects main principles of CMCU organization only,  
without its implementation using modern FPLDs. 

The system of microoperations is implemented in the following way. It can be 
seen from the Karnaugh map (Fig. 8.6), that the operational microinstruction is de-
termined by disjunction m1 ∨ m2. Thus, for example, microoperation y1 is  
generated if m3=1 and m1 ∨ m2=1. This analysis leads to the following system: 

( ) ( ) ( )
( ) ( ) . ;

 ; ; ;

21752164

215321422131

mmmymmmy

mmmymmmymmmy

∨=∨=
∨=∨=∨=

          (8.17) 

System (8.17) is implemented by the circuit of Fig. 8.6 using AND and OR gates; 
but can be also implemented with FРGA. 

This approach can be applied to obtain some modifications of the CMCU U3-U6 
models, which are briefly discussed below. 

Allocation of the dedicated input area transforms CMCU with special address-
ing into CMCU U4, structural diagram  of which is the same as the structural dia-
gram of CMCU U3, but inputs of the block CC of CMCU U4 are connected with 
address variables T′⊆T. The outcome of special microinstruction addressing for 
CMCU U4(Γ1) is shown in Fig. 8.9. 

 

Fig. 8.9 Microinstruction addresses for CMCU U4(Γ1) 

In this particular case, output O1 is determined unambiguously by the general-
ized interval of a Boolean space 010**, output O2 by 011**, output O3 by 100**, 
and output O6 by 101**. Therefore, inputs of the block CC for the CMCU U4(Γ1) 
are connected with the variables from set T′={T1, T2, T3}. It means that the  
number of CC inputs is smaller, than in case of CMCU U3(Γ1). 
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Transformation of the table of Fig. 8.9 into the table shown in Fig.8.10 results in 
reduction of the number of address variables connected with CC to only two bits.  

 

Fig. 8.10 New microinstruction addresses for CMCU U4(Γ1) 

Analysis of Fig. 8.8 shows that output O1 is unambiguously determined by the 
generalized Boolean interval 100**, output O2 by interval 101**, output O3 by in-
terval 110**, and output O6 by interval 111**. We have T1=1 for all outputs of 
OLC αg∈C1, and therefore only variables T2,T3∈T′ should be connected with the 
inputs of CC. 

Allocation of the dedicated input area transforms CMCU with optimal address-
ing into CMCU U5, with the same structural diagram  as in case of CMCU U3, but 
the application of optimal encoding of OLC αg∈C1 components allows to reduce 
the number of terms in (8.13). The outcome of optimal encoding (more correctly, 
optimal microinstruction addressing) for CMCU U5(Γ1) is shown in Fig. 8.11. 

 

Fig. 8.11 Optimal microinstruction addresses for CMCU U5(Γ1) 

In the discussed case, partition ΠC={B1, B2, B3} can be formed, where B1={α1}, 
B2={α2,α3}, B3={α6}. Analysis of Fig. 8.9 shows that class B1 is determined by 
code K(B1)=*10**, class B2 by code K(B2)=*0***, and class B3 by code 
K(B3)=*11**. In this case all address assignments corresponding to the compo-
nents of OLC αg∈C1 are treated as insignificant and are used for optimization of 
the codes of classes. 
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Let us transform system (8.6) into the form: 

.

;

;

2
33

1
642

1
342

1
532

1
4322

2
3321

1
3321

2
221

1
211

IB

IxxIxxIxxIxxB

IxxxIxxxIxxIxB

→

∨∨∨→

∨∨∨→

                         (8.18) 

System (8.18) corresponds to the transition table of CMCU U5(Γ1) with H5(Γ1)=9 
lines (Table 8.3). 

This table is used to construct system (8.13). For example, the following equation can 

be derived from Table 8.3: 213213298654
1
3 T ΤΤ∨∨Τ=∨∨∨∨= KxxxFFFFFD . 

Comparison of equations for the function D3
1 of CMCU H3(Γ1) and H5(Γ1) shows 

that in the second case the number of terms is 1.6 times smaller and the number of 
literals reduced by two elements.  

Table 8.3 Transition table for CMCU U5(Γ1) 

Bi K(Bi) Im
j A(Im

j ) Xh Φh h 

B1 *10** I2
1 00001 x1 D5

1 1 

I2
2 00010 /x1x2 D4

1 2 

I3
1 00011 /x1/x2x3 D4

1 D5
1 3 

I3
2 00100 /x1/x2/x3 D3

1 4 

B2 *1*** I4
1 00101 x2x3 D3

1 D5
1 5 

I5
1 00110 x2/x3 D3

1 D4
1 6 

I3
1 00011 /x2x4 D4

1 D5
1 7 

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8 

B3 *11** I3
2 00100 1 D3

1 9 

Allocation of the dedicated input area in case of CMCU with transformation of 
addresses turns it into the CMCU U6, with the structural diagram of Fig. 8.12. In 
this case block CC generates functions (8.13) 

Φ
0Φ

τ

 

Fig. 8.12 Structural diagram of CMCU U6 
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All other blocks of both CMCU U5 and U3 implement similar functions.  
Synthesis method used for CMCU U6 can be interpreted as a modification of the 
synthesis method applied for CMCU U3 and includes some additional steps such 
as construction of partition ΠC of the set C1, encoding of classes Bi∈ΠC, and  
construction of the table for block TC. 

Let us consider an example of CMCU U6(Γ1) synthesis. The microinstruction 
addresses for the CMCU are given in Fig. 8.8. As it was shown earlier, we can get 
the partition ΠC={B1, B2, B3}, where B1={α1}, B2={α2, α3}, B3={α6}. It is suffi-
cient to have two variables from set τ={τ1,τ2} to encode classes Bi∈ΠC. Let us use 
the codes: K(B1)=01, K(B2)=00, K(B3)=10. Transition table for CMCU U6(Γ1) is 
constructed using the system of transition formulae (8.18) and includes H6(Γ1)=9 
lines (Table 8.4). 

This table is used to construct equations (8.13). We find, for example, the  
equation:  

2132213212198654
1
3 ττττττ ∨∨∨=∨∨∨∨= KxxxxxFFFFFD .    (8.19) 

Table 8.4 Transition table for CMCU U6(Γ1) 

Bi K(Bi) Im
j A(Im

j) Xh Φh h 

B1 01 I2
1 00001 x1 D5

1 1 

I2
2 00010 /x1x2 D4

1 2 

I3
1 00011 /x1/x2x3 D4

1 D5
1 3 

I3
2 00100 /x1/x2/x3 D3

1 4 

B2 00 I4
1 00101 x2x3 D3

1 D5
1 5 

I5
1 00110 x2/x3 D3

1 D4
1 6 

I3
1 00011 /x2x4 D4

1 D5
1 7 

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8 

B3 10 I3
2 00100 1 D3

1 9 

The corresponding table of code transformer TC is constructed in a traditional 
way and shown in Table 8.5. This table is used to construct functions τ=τ(T), which 
in our case have the form: τ1=T1T2T3, 3212 ΤΤΤ=τ . They are used to the synthesis of 

CMCU U6(Γ1) logic circuit, which is executed as in case of CMCU U3(Γ1). 

Table 8.5 Table of code transformer for CMCU U6(Γ1) 

ag C(Og) Bi K(Bi) τg g 

a1 100** B1 01 τ2 1 

a2 101** B2 00 − 2 

a3 110** B2 00 − 3 

a6 111** B3 10 τ1 4 
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Allocation of the dedicated input area turns CMCU with transformation of GSA 
into CMCU U7, having the same structural diagram as CMCU U3. 

The main disadvantage of this approach is the higher number of algorithm  
execution cycles, due to the existence of control microinstructions. Besides, some 
additional chip resources are needed to implement the system of microoperations, 
even in case of hot-one microoperation encoding The following method can be 
used to eliminate this disadvantage. 

8.4   Optimization of Compositional Microprogram Control Unit 
with the Dedicated Input Area  

Let control microinstruction have the following format (Fig. 8.13). 

 

Fig. 8.13 Format of control microinstruction 

In this case, following actions can be executed during one cycle of CMCU  
operation: generation of microoperations using the code from field FY and genera-
tion of transition address using the code from field FA. Both the format of opera-
tional microinstruction and principle of allocation for the first I0 cells of the  
control memory for input addresses of OLC αg∈C are also used here. 

Application of such control microinstructions transforms the CMCU U2 into 
CMCU U8 (Fig. 8.14). 

Compositional microprogram control unit U8 operates as follows. The input ad-
dress of OLC α1∈C is loaded into the counter CT using pulse Start. At the same 
time the flip-flop TF is set up. Current microinstruction is fetched from the control 
memory CM and its field TMI is transformed into the control signals y0, yj, yc, yE. 
If signal y0=1 is generated simultaneously with microoperations yn∈Y, the content 
of CT is incremented and corresponds to the transition inside current OLC. If sig-
nal yj=1 is generated, it corresponds to a transition from the dedicated input area 
DIA into the area of microprogram AMP. In this case, the transition from some 
input of OLC αg∈C to next component is executed. If signal yc=1, it corresponds 
to the transition from the output of OLC αg∈C and the content of counter CT is 
determined by functions Φ0. If signal yE=1, the algorithm execution should be fin-
ished. In this case, flip-flop TF is reset and the fetching of microinstructions from 
control memory is terminated.  

Microoperations yn∈Y are represented by some code in the fixed field FY and 
therefore the block CMO is absent in case of the hot-one encoding of microopera-
tions (Fig. 8.14). This approach has one serious disadvantage, namely the field FA 
is not used by microinstructions from the microprogram area AMP. This disadvan-
tage can be partly eliminated due to the partition of control memory CM into two 
parts (Fig. 8.15). The part CM1 includes FA field only and therefore information  
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fetching is executed using the leftmost address bits from set Tj, where |Tj|=R3. 
Both the operational part of microinstructions and the field TMI are kept in the 
part CM2, which is addressed using the whole address. 

Φ
0Φ

τ

 

Fig. 8.14 Structural diagram of CMCU U8 

 

Fig. 8.15 Structural diagram of control memory for CMCU U8 

Obviously, fetching of the transition address is executed for all microinstruc-
tions, regardless of their type. This address is used only for particular  
microinstructions, when yj=1. 

The synthesis method used for CMCU U8 includes the following steps: 

1. Transformation of the initial GSA Γ. 
2. Construction of OLC set C  for the transformed GSA Γ(U8). 
3. Addressing of inputs for OLC αg∈C. 
4. Addressing of microinstructions. 
5. Construction of the control memory content for CM1. 
6. Construction of the control memory content for CM2. 
7. Construction of the CMCU transition table. 
8. Construction of the table for block CCS. 
9. Synthesis of CMCU logic circuit for given elements. 

Let us discuss the application of this method for synthesis of the CMCU U8(Γ1), 
where the transformed GSA Γ1(U8) is the same as the one shown in Fig. 8.5. Out-
comes of the first three synthesis steps are the same for CMCU U3(Γ1) and U8(Γ1). 
Thus, the following set of inputs can be found: I(Γ1)={b1, b3, b5, b6, b8, b10, b12, 
b14}. In our case the inputs have the addresses: IA(b1)=000,…,IA(b14)=111. 
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Microinstruction addressing is executed as follows. First, all main inputs are 
removed from OLC αg∈C, as the first stage of addressing. Standard addressing 
procedure is then applied to the transformed OLC αg∈C, as the second stage of 
addressing. This is the same procedure as the one used in case of the CMCU U1. 

In this example, removing the main inputs results in the OLC set C={α1,…, 
α6}, where α1=〈b2〉, α2=〈b4, b5〉, α3=〈b7, b8 b9,〉, α4=〈b11〉, α5=〈b13〉, α6=〈b15, b16 
b17,〉. Addressing the microprogram area АМР starts from the address, which ex-
ceeds by 1 the last address taken from the dedicated input area DIA. Resulting mi-
croinstruction addresses of the CMCU U8(Γ1) are shown in Fig. 8.16. 

T4T5
b1 b8 b2

b3 b10 b4

b5 b12 b5

b6 b14 b7

b15

b16

b17

b8

b9

b11

b13

00

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

**
* *

*
* *

*
* *

*
*

*

DIA AMP  

Fig. 8.16 Microinstruction addresses for CMCU U8 

The control memory content of DIA area can be found using the following rules: 

• if vertex bq≠Og (g=1,…,G), field TMI of the memory cell with address IA(bq) 
contains code of variable yj, its field FY contains microoperations yn∈Y(bq), and 
its field FA contains address A(bt), where 〈bq, bE〉∈E; 

• if vertex bq=Og (g=1,…,G) and 〈bq, bE〉∉E, field TMI of the memory cell with 
address IA(bq) contains code of variable yj, its field FY contains  
microoperations yn∈Y(bq),, and its field FA contains the transition address; 

• if vertex bq is connected with the final vertex bE, field TMI of the memory cell 
with address IA(bq) contains code of variable yE, its field FY contains  
microoperations yn∈Y(bq), and its field FA is empty. 

In our example, content of the control memory CM1 is shown in Table 8.6. In this 
case Tj={T3, T4, T5}. 

In this table, bits α1−α5 represent the transition address and form the field FA. 
Construction of the control memory content for AMP area is executed in the 

same way as in case of CMCU U3. Content of the control memory CM2 includes 
both areas DIA and AMP; shown in Table 8.6. 

As in the previous case, bits m1, m2 represent TMI codes, where code 00  
corresponds to yj, code 01 to y0, code 10 to yc, and code 11 to yE. Bits m3−m7 con-
tain hot-one code of the collection of microoperations yn∈Y(bq), where q=1,…,M2. 
Let us point out that for the vertex b5 from AMP area, the field FY=∅. It  
corresponds to an idle cycle of the data-path. 
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Table 8.6 Content of the control memory CM1 for CMCU U8(Γ) 

Address
T3T4T5 

Content 
a1a2a3a4a5 

Comment 

000 01000 b1→A(b2) 

001 01001 b3→A(b4) 

010 01010 b5→O2A(b5)

011 01011 b6→A(b7) 

100 01101 b8→A(b9) 

101 01110 b10→A(b11) 

110 01111 b12→A(b13) 

111 10000 b14→A(b15) 

Transition table for CMCU U8 is constructed by analogy with the construction of the 
corresponding table for CMCU U3. In the discussed case it is the same as in case of 
CMCU U3(Γ1), represented by Table 8.2. Equations for function (8.13) for both CMCUs 
are the same, but the system of formulae for multiplexer MX (8.16) is transformed due to 
presence of the block CM1. In our case this system is transformed into the form: 

,

0

0

1
555

;
1
444

;
1
333

;22

;11

yDayD

yDayD

yDayD

yayD

yayD

j

cj

cj

cj

cj

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

                                          (8.20) 

where variables α1 -α5 represent the bits of FA field. 

Table 8.7 Content of control memory CM2 for CMCU U8(Γ1) 

Address 
T1T2T3T4T5 

TMI
m1m2

Content 
m3m4m5m6m7

Comment 

00000 00 11000 b1 I1
1 DIA 

00001 00 01010 b3 I2
1 

00010 00 10001 b5 I2
2 

00011 00 11000 b6 I3
1 

00100 00 00100 b8 I3
2 

00101 00 10001 b10 I4
1 

00110 00 01000 b12 I5
1 

00111 00 00110 b14 I6
1 

01000 10 00100 b1 O1 AMP

01001 01 00100 b4→ b5 

01010 10 00000 b5 O2 
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Fig. 8.17 Logic circuit of CMCU U8(Γ1) 

Logic circuit of CMCU U8(Γ1) is shown in Fig. 8.17. In this case OLC αg∈C1 
have the following output addresses: A(O1)=01000, A(O2)=01010, A(O3)=01101, 
A(O6)=10010. Because each address bit has both direct and complementary val-
ues, the inputs of block CC are connected to all R2=5 feedback variables. Multip-
lexer MX is shown here as a block replacing the set of logical elements  
«AND-OR» from Fig. 8.8. The control memory of CMCU is divided into two 
blocks (CM1 and CM2), contents of which are determined by corresponding tables. 

Application of this approach transforms the CMCU with special addressing of 
MIs into CMCU U9 (special microinstruction addressing and allocation of the 
dedicated input area), CMCU with optimal addressing of MIs into CMCU U10 
(optimal microinstruction addressing and allocation of dedicated input area), and 
CMCU with transformation of GSA into CMCU U11 (transformation of the initial 
GSA and allocation of the dedicated input area). The structural diagram s for these 
CMCUs are the same as for CMCU U8, and their synthesis methods are some ex-
tensions of methods used for the basic models of CMCU, obtained by adding the 
steps in which construction of tables for blocks CM1 and CM2 is performed. 

Use of the control microinstructions having format from Fig. 8.13 transforms 
CMCU with address transformer into CMCU U11 with the structural diagram  
shown in Fig. 8.18. All blocks of CMCU U10 play the same roles as the blocks of 
corresponding basic models of CMCU with code transformer and CMCU U8. This 
synthesis method combines the methods used earlier for CMCU with code  
transformer and U8. 
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Φ
0Φ

τ

 

Fig. 8.18 Structural diagram of CMCU U11 

Using the control microinstruction format of Fig. 8.13, instead of the format 
given in Fig. 8.4, allows to reduce the number of microinstructions in the control 
memory from I0 to IO0, where IO0 is the number of OLC inputs, which are also the 
outputs of the same OLC. It means that condition (8.12) is transformed into the 
following one: 

( )⎡ ⎤ ⎡ ⎤22202 loglog MMIO =+ .                                    (8.21) 

Because IO0<I0, the probability of satisfying condition (8.21) and hardware 
amount of logic CMCU circuit can be reduced, due to allocation of the dedicated 
input area DIA. 

8.5   Conclusions  

Some new models of compositional microprogram control units are proposed in 
this chapter. All proposed methods are targeted on reduction of hardware amount 
in the addressing circuit of CMCU. Reduction is achieved due to modification of 
microinstruction formats in use. 

All proposed models are based on introduction of the special area of inputs, called 
as dedicated area of inputs. I permits to diminish the number of bits generated by the 
block of microinstuction addressing. Such an approach can be used for optimization of 
the CMCU with common memory [3, 4], where the same bits are used for addressing 
o microinstruction and for this address generation. The second task can be solved due 
to use of additional code transformer. The code transformer cab be eliminated due to 
use of an additional address field in the microinstruction format.  

Here we only show the possible models of CMCU. To prove an effectiveness of 
these models we are going to create the special CAD tools and investigate the  
hardware amount for well-known and proposed methods of the synthesis of CMCU. 
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Abstract. In the paper the CAD system dedicated for modeling, verification, and 
synthesis of concurrent controllers modeled by interpreted Petri net is presented. 
Petri net model can be prepared as graph or as textual form. Controllers specified 
by Petri nets can be analyzed and implemented using method suitable for such 
model. For verification of Petri net another part of system is used. Moreover, the 
results of verification are decomposition of net into several communicating state 
machines (as finite state machines, FSMs). After verification it is possible to trans-
form Petri net model into HDLs model (VHDL and Verilog) and alternatively into 
EDIF or XNF netlist format. Such prepared models are also simulated and synthe-
sized using other academic or commercial CAD systems. The system has been  
developing at University of Zielona Góra. Development of new methods of mod-
eling, verification and synthesis has been contributed to make an attempt the new 
integrated version of the system. In addition, using of Java environment gives  
opportunity to work out the system that is platform independent. 

9.1   Introduction 

The specific application often dictates the system design requirements, such as 
modularity and flexibility. In general, the design procedure involves the integra-
tion of analytical and graphical descriptions. Graphical descriptions, such as con-
trol-interpreted Petri nets [11], SFC (Sequential Function Chart) [8] and Grafcet 
[7], provide established techniques for proper system designs. They have helped 
industrial engineers to understand the system behavior and performance over 
many years. 

A behavioral representation describes the system’s functionality independently 
of its implementation. It treats a system as a black box, and defines how the black 
box responds to any combination of input values. The process of designing a sys-
tem proceeds from a behavioral specification (SFC diagram or Petri net) to a  
programmable logic implementation (FPGA, Field Programmable Gate Array). A 
design in purely behavioral form, like a Petri net, is converted into an intermediate 
rule-based description, void of any technology-specific implementation details. 
The final FPGA implementation is generated by automatic synthesis using CAD 
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tools, instead of manual, tedious design process. The textual format serves as a 
bridge with some related university tools. 

In the paper the integrated environment for design of concurrent logic  
controllers, called PeNLogic, is presented. 

9.2   PeNLogic System 

The PeNLogic system has been developing for many years. The first version as a 
set of different application was presented in [4,15]. However, development of new 
methods of modeling, verification and synthesis has been contributed [2] to make 
an attempt the new integrated version of the system. In addition, using of Java en-
vironment gives opportunity to work out the system that is platform independent. 

The core of the PeNLogic system is Petri net models of concurrent logic con-
trollers. Petri net can be prepared as graph or as textual form. Controllers specified 
by Petri nets can be analyzed and implemented using method suitable for Petri 
nets [1]. For verification of Petri net another part of system is used. This part bases 
on formal method of Petri net analysis, which is widely described in [13].  
Moreover, the results of verification are decomposition of net into several  
communicating state machines (as finite state machines, FSMs) [19,21]. After ve-
rification it is possible to transform Petri net model into HDLs model (VHDL 
[12,22] and Verilog [10,18]) and alternatively into EDIF or XNF netlist format 
[17]. Such prepared models are also simulated and synthesized using other  
academic [3,4,20] or commercial CAD systems.  

Fig. 9.1 shows a general schema of the PeNLogic system. 

9.2.1   Petri Net Modeling of Concurrent Controllers 

As opposed to sequential automaton, concurrent automaton can be in one or more 
internal state at the same time. Maximal sets of concurrently occurring local states 
are defined by global state of automaton. Any subset of concurrent local states is 
called partial state. In concurrent automata local relation are considered that re-
lates internal partial states (current and next) and suitable input and output  
states of automata. Interpreted Petri net is one of the forms for representing of 
concurrent automaton. 

On the other hand, Petri nets as a graphical tool provides a unified design me-
thodology for specifying discrete-event systems. They can be applied in various 
stages of the design implementation from hierarchical system description to its 
physical realization. A Petri net is used as a tool for the modeling and analysis of 
digital circuits, especially concurrent controllers [1,3,5,12,13]. 

In PeNLogic system it is possible to specify Petri net in textual formats [16]: 
PNSF2, PNSF3 and CCPNML format and as a graph (figure). For preparing of 
graphical form of hierarchical, colored, interpreted Petri net, Petri net Editor was 
implemented. Using this part of the system there is generated from a net graph in-
to PNSF2, PNSF3 and CCPNML formats. Moreover, a net graph and each type of 
format is stored in database using relational model.  
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Fig. 9.1 Data flow in PeNLogic system 

The proposed method, which is applied in PeNLogic system, will be presented 
on an example [17]. 

An Example 

In this section, the specification of drill station controller is given, to be later  
related with control interpreted Petri net. In the example, several operations may 
occur simultaneously. A work piece is loaded in one station, clamped and drilled 
in the second one and finally at the third station is tested for depth. Some actions 
can occur independently of others, while other actions can take place after all  
stations have completed their individual programs.  

The Petri net model which describes the behavior of the process controller is 
presented in Fig. 9.2. Parallel parts (subnets) of the net between transitions t2 and  
t3  represent the programs related to the concurrent actions at the particular three 
stations. The production cycle can be automatically repeated depending on  
signal  R  or finished and started again. Fig 9.3 shows PNSF2 specification of the 
controller. 
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Fig. 9.2 Petri-net-based model of control system 

9.2.2   Analysis of Petri Net 

Digital systems, especially concurrent controllers, can be analyzed by Petri nets 
[11,13]. So there are many advanced methods of Petri net analysis developed. The 
model is formally verified based on well-known Petri net theory. The main tasks 
of Petri net analysis are checking some properties of the net, i.e. liveness, boun-
dedness, persistence etc. There exists several methods for analysis of Petri nets. 
However, most of those methods check properties and answer a question, whether 
the nest is or not live, bounded, etc. without presenting exactly places in defect 
[11,13]. 

Calculation of deadlocks and traps is one of the important analysis tasks, be-
cause a good system should not contain events, which can never occur. Testing the 
liveness of Petri net depend on finding deadlocks and traps and researching  
dependence between theirs.  
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.clock CLK 
 

.inputs START R X11 X12 X21 X22 X23 X24 X31 X32 X33 X34 

.comb_outputs RT Y11 Y12 Y21 Y22 Y23 Y24 Y31 Y32 Y33 Y34 
 

.part Controller 

.places p1 p2 p3 p11 p12 p13  

.places p21 p22 p23 p24 p25 p31 p32 p33 p34 p35 

.transitions t1 t2 t3 t4  

.transitions t11 t12  t21 t22 t23 t24 t31 t32 t33 t34 

.net 
 t1: p1 * START |- p2; 
 t2: p2 * X1 |- p11 * p21 * p31; 
 t3: p13 * p25 * p35 |- p3; 
 t4: p3 * !R |- p1; 
 t5: p3 *  R |- p2; 
 t11: p11 * X11 |- p12; 
 t12: p12 * X12 |- p13; 
... 
.MooreOutputs 
 p2 |- RT; 
 p11 |- Y11; 
 p12 |- Y12; 
... 
 

.marking p1  

.end  

Fig. 9.3 PNSF2 model (a part) 

 

Fig. 9.4 Dialog box for verification settings 

In considered approach, for checking liveness of Petri net, Thelen method is 
used [9]. This method allows efficient calculation of prime implicants of a Boo-
lean function represented in such form. In presented system the Thelen method for 
the mentioned logical equations is applied; it allows obtaining sets of deadlocks 
and traps in form of ternary vectors. The method is based on generating and 
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searching tree for conjunction normal form (CNF). Such approach is very time 
consuming, because number of deadlocks and traps in Petri nets increase exponen-
tially with the number of places and transitions [11]. For this purpose, parallel  
extension of the algorithm was proposed. In addition, for time reduction, some 
heuristic method was developed. In Figure 9.4 an example of PeNLogic dialog 
box for verification settings is presented. There is possible to change an initial 
marking of a Petri net and to change heuristic methods, which are used during  
calculation. 

Basing on algorithm for finding all deadlocks and traps in Petri net and check-
ing dependencies between sets of deadlocks and traps, it is possible to answer the 
question if Petri net is bounded and live. The results of presented verification me-
thod are answer on question if analyzed net can be decomposed. If net can be de-
composed, then it is got vectors representing decomposed net. Such vector corres-
ponds to one automaton. Using those vectors in the next step there is generated 
KISS format for FSMs [21].  

9.2.3   HDL Modeling, Simulation and Synthesis 

In the PeNLogic system there are two modules for transforming Petri net models 
into HDLs model, i.e. into VHDL and Verilog. The goals of HDL modeling is 
preparing model for simulation and alternative way of synthesis. For both, simula-
tion and synthesis well-known commercial systems are used, e.g. Aldec A-HDL 
simulator or Xilinx XST synthesis tool.  

VHDL Modeling 

Several methods were proposed to transfer Petri nets specifications into VHDL-
based for performance and reliability analysis. VHDL syntax can support the in-
termediate level models. It makes possible to describe the highest level of the  
system and its interfaces first, then refining to greater detail. In the system there 
were implemented five different methods [22]. In this chapter, there are presented 
only two ways. The first one is based on rule description and uses sequential  
description. The second one uses structural VHDL description. 

The first method consists of the one process. In this process following variables 
are declared: T (which is responsible for firing transitions), P (actual marking 
places) and NP (next marking of places). The process is sensitive to rising edge of 
a clock signal. The process is divided on three logical blocks. A function of the 
first one is firing of transitions. A transition is fired when its input places are 
marked and input signals are activated. These conditions are checked by  
IF-THEN-ELSE instruction. The second block carries out adding tokens to transi-
tion output places. A place has a token when its input transitions fired or the place 
was marked and its output transitions did not fire. This condition is also checked 
by IF-THEN-ELSE instructions. If there are not places marked then initial marking 
is arbitrary set. The last statement in this block is assignment NP to P. The last 
block sets outputs. If a Moore machine is designed, then outputs are assigned to 
places. If a Mealy machine is designed, then outputs are assigned to transitions.  
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This description is natural and can be manually written by designer. Very  
important feature of this model is that such a description is synthesizable  
(e.g. Xilinx XST). 

The second method is based on structural description. The Petri net nodes, 
places and transitions are represented using two VHDL entities (two kinds of ob-
jects). Arcs of Petri net are represented by signals in VHDL code. A transition 
fires when its input predicate is true. A predicate is a logical equation assigned to 
the appropriate signals related to the transition. Setting outputs is done in the same 
manner as in the first method. A designer creates his own library of classes of 
elementary building blocks of the control system, then combines these objects 
(from particular class) to build larger parts. Since there exist a documented ex-
ecutable description of the sub-system in VHDL, the upgrades or refinements re-
quires only a replacement of the modified elements.  

In such model, a sequential process is separated from the combinatorial 
process. In specification with two processes, the first process has in its sensitivity 
list a clock signal (CLK) that synchronizes the system, and a reset signal (RESET) 
to set-up automata into initial state. The set-up of current state and next state is 
done in the first process. The second process has in its sensitivity list the current 
state (represented the local place). The automaton outputs are set-up in the second 
process. Such code is easy readable, because outputs changes are separated from 
changes of the states sequence.  

Verilog Modeling 

In PeNLogic system there is also possible to transform model of Petri net into Ve-
rilog model [18]. The presented model (Fig.9.5) is divided on two parts. The first 
one reflects some logical functions of Petri nets, e.g. conditions for transitions fir-
ing and functions for controller outputs depended on active local states. For this 
purpose, statements assign are used. The second part represents the structure of the 
net as a set of processes (statements always) related to separate places. Additional 
signal reset is used for setting almost all places into state ‘0’, except those places 
that are initially marked (initial marking of the net).  

9.2.4   Petri Nets Decomposition 

Concurrent Logic Controller can be presented using a concurrent view of the 
modeled system behavior [1,5,20]. The logic controller model should retain the 
natural partitioning of the behavior imposed by the designer. The functionality 
very often is represented as a set of concurrent blocks of a manageable size that 
communicate using few signals. On other hand, hierarchical Petri nets give possi-
bility for modeling of designed systems in more compact form, even for complex 
systems [17]. 
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 module CARTS( CLOCK, reset, M1, M2, A, B, C, D, E, L2, L1, R2, R1 ); 
 input CLOCK, reset, M1, M2, A, B, C, D, E; 
 output L2, L1, R2, R1; 
 
 assign L1 = P5 | P6; 
 assign L2 = P12 | P13; 
 assign R1 = P2 | P4; 
 assign R2 = P9 | P11; 
 
 wire PRED0; 
 assign PRED0 = ~D; 
 

wire  T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12; 
 assign T1 = P1 & M1; 
 assign T2 = P2 & D; 

… 
 assign T9 = P10 & P7 & PRED0; 
 assign T10 = P11 & B; 
 assign T11 = P12 & E; 
 assign T12 = P13 & C; 
 

reg  P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13; 
 

 always @(posedge CLOCK) 
 begin 
  if (reset) P1 <= 1; 
  else P1 <= ( P1 & ~( T1 )) | ( T6 ); 
 end 
 always @(posedge CLOCK) 
 begin 
  if (reset) P2 <= 0; 
  else P2 <= ( P2 & ~( T2 )) | ( T1 ); 
 end 
… 
 always @(posedge CLOCK) 
 begin 
  if (reset) P7 <= 1; 
  else P7 <= (P7 & ~(T3 |T9)) |(T5|T11); 
 end 
endmodule 

 

Fig. 9.5 A part of an example of Verilog model 

During decomposition a Petri net is divided into a set of subnets. These subnets 
have to satisfy some restriction, e.g. a subnet must include only places which are se-
quential to each other, or cannot contain multi-input or multi-output transitions [5]. 
For explanation decomposition method of Petri net into automata subnet, basic in-
formation is presented. Two places ip  and jp  are concurrent, if exist such marking 

of the net, in which these two places ip  and jp  are marked simultaneously. In  

decomposed Petri nets none places can be concurrent.  
Decomposition of Petri nets can be based on coloring of Petri nets. The  

decomposition method described in [1] is based on coloring of Petri net. In the 
method, attributes are introduced to each place of the net a minimum number of 
colors in such way, that two concurrent nodes should have different colors. A Co-
lored Petri net model carries information about belonging to sequential process. 
Each automaton (state machine, SM) component is represented by P-invariants. 
There are several methods for determination of P-invariants in Petri net, e.g. [13].  
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The initial partitioning generates interacting Finite State Machines (FSM) with 
separate state registers [1,17]. They form a conservative interpreted SM-colored 
Petri net. A Petri net can be expressed graphically, then decomposed [21] into 
Linked State Machines (LSMs), and finally translated into an equivalent set of Ve-
rilog models. 

The generic architecture of interactive FSMs is a set of interconnected FSMs 
which exchange data (local internal state signals or output signals) through input 
and output ports. Each component is characterized by input and output ports that 
connect it with other components and external controller ports. The set of commu-
nicating FSMs is called a concurrent state machine (Concurrent Controller) if two 
or more FSMs are not exclusively active. 

Decomposition into SM-Components 

The Petri net from Fig. 9.2 have a sequential subnet (with places p1, p2 and p3), 
and concurrent subnet (remaining places), where three places are marked simulta-
neously. Hence, the net can be decomposed onto three conservative nets  
(Fig. 9.6) - State Machine components. In addition, to two subnets an additional 
place should be added (Fig. 9.6.b and Fig. 9.6.c).  
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Fig. 9.6 The decomposed Petri net 

In the first SM-component (Fig. 9.6.a), the condition for the transition t3 is a 
logic AND function of signals p25 and p35 that are the outputs from the appropri-
ate places, i.e. they can be represented by the appropriate flip-flops at one-hot  
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encoding. In the second subnet (Fig. 9.6.b), the additional place is called P20. The 
condition for the transition t2 is a logical AND of the input signal X1 and the  
signal from the place p2, and for transition t3 is a logic AND of signals p25 and 
p35. Similar situation is in case of the third subnet (Fig. 9.6.c). 

Verilog Modeling and Synthesis 

Several methods were proposed to transfer Petri nets specifications into VHDL for 
performance and reliability analysis. But in the literature Verilog-based modeling 
of Petri nets is not well-known [10,18]. Verilog syntax can support the interme-
diate level models. It makes it possible to describe the highest level of the system 
and its interfaces first, then to refer to greater details.  

parameter [5:0] p1  =  6'b000001,  
               p2  =  6'b000010,  
               p11 =  6'b000100,  
               p12 =  6'b001000,  
               p13 =  6'b010000,  
               p3  =  6'b100000;  

always @(posedge CLK, posedge RESET) 
begin 

if(RESET == 1)  
 PLACE_A <= p1; 
else 
if(CLK == 1) 
begin 
 case (PLACE_A) 
  p1:  if (START==1) PLACE_A <= p2;
  p2:  if (X1==1) PLACE_A <= p11; 
  p11: if (X11==1) PLACE_A <= p12; 
  p12: if (X12==1) PLACE_A <= p13; 
  p13: if (p25==1 && p35==1)  

                          PLACE_A <= p3; 
  p3:  if (R==0) PLACE_A <= p1; 

              else PLACE_A <= p2; 
  default PLACE_A <= p1; 
 endcase 
end 

end  

always @(PLACE_A) 
begin 

 case (PLACE_A) 
  p2:     Y <= 3’b001; 
  p11:    Y <= 3’b010; 
  p12:    Y <= 3’b100; 
  default Y <= 3’b000; 
endcase 

end 
 

Fig. 9.7 Verilog model of the SM-component from Fig. 9.6.a 
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The Verilog language describes a digital system as a set of modules. Each of 
these modules has an interface to other modules as well as a description of its con-
tents. The basic Verilog statement for describing a process is the always state-
ment. The always continuously repeats its statement, never exiting or stopping. 
A behavioral model may contain one or more always statements. The initial 
statement is similar to the always statement except that it is executed only once. 
The initial provides a means of initiating input waveforms and other simula-
tion variables before the actual description begins its simulation. The initial 
and always statements are the basic constructs for describing concurrency. 

Because of the fact, that Verilog can model concurrency, for example using 
structure always, Petri nets can be effectively described by Verilog language. 
However, in the presented method synchronization of the concurrent processes is 
realized by the additional signals as transition conditions. Implementation of de-
composed Petri nets onto set of SM-components can be carried out in different 
methods [6]. In the presented paper a modeling of automata in Verilog is focused.  

Fig. 9.7 shows a part of Verilog model with using of two processes (two  
always statements). As an example, there is presented the SM-component from 
Fig. 9.6.a, only.  

For place encoding one-hot method has been applied. Such approach is recom-
mended for using FPGA devices as a final implementation technology. In the 
model, the sequential process is separated from the combinatorial process. In spe-
cification with two processes, the first process has in its sensitivity list a clock sig-
nal (CLK) that synchronizes the system, and a reset signal (RESET) to set-up au-
tomata into initial state. The set-up of current state and next state is done in the 
first process. The second process has in its sensitivity list the current state 
(represented the local place). The automaton outputs are set-up in the second 
process. Such code is easy readable, because outputs changes are separated from 
changes of the states sequence. IN the example, the outputs Y12, Y11 and RT cor-
respond to related bits of a output vector Y[2:0], respectively.  

The design process can be greatly simplified by means of FPGA compilers, 
which are recently available, like Xilinx ISE (supporting VHDL and Verilog). The 
obtained models of the subnets were simulated in Aldec A-HDL and MTI Model-
Sim. The effective simulation allows the SM-components to be rapidly modified, 
tested and debugged before the device is programmed. If a design change is 
needed, it is a simple matter to reedit the original specification. Since the Verilog 
model of environment (testbench) is described in modular, and parameterized fa-
shion it is not necessary to construct its behavior description from extended, con-
figuration graph. Testing unit can be simply build from the previously verified li-
brary modules by merging selected sub-blocks. The final, exhaustive testing also 
does not make any problem because the size of considered Petri net models is ra-
ther small. Then the models were synthesized by both Xilinx XST and Mentor 
Graphics Precision. One of the most flexible and high-density devices is Xilinx 
Virtex or Spartan FPGAs [23], which are used for prototyping of Reprogrammable 
Logic Controllers (RLCs). The bitstreams are generated by Xilinx ISE. 
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9.2.5   Direct Mapping into Netlist 

This section describes a sub-system for the synthesis of logic controllers described 
Petri nets. As a final technology programmable logic is considered, e.g. Xilinx 
FPGA and CPLD devices (the library of present available devices is shown in  
Fig. 9.8). The interpreted Petri-net model (or equivalent SFC) is translated into a 
rule-based specification that is composed of the discrete local state symbols, input 
signal symbols and output signal symbols of the controller The textual format of 
Petri net (for example, PNSF, PNSF2, CCPNML) used as an entry format [16]. 
Then, the textual Petri net description is translated directly into the netlist. Present-
ly, there are applied two formats, EDIF and XNF (Xilinx proprietary format). The 
next steps of the design implementation are realized by the vendor CAD/CAE sys-
tem. For Xilinx devices it is ISE system. Functional and timing simulations are 
performed also by the vendor CAD/CAE system.  

The presented method of synthesis of controllers is based on creating a one-to-
one direct mapping between the Petri net and the hardware realization [17]. This 
mapping of Petri net into FPGA is based on the correspondence between a transi-
tion and a simple combinational circuit and the correspondence between a place 
and a clearly defined subset of the state register. Dealing with concurrency the de-
signer is confronted with some problems that will not arise in the logic synthesis 
of sequential systems. One of them is the concurrent local state encoding. 

 

Fig. 9.8 Information on examples of the library content 
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The logic decision rules, which exactly reflect the description in textual Petri 
net specification, are transformed from the transition-oriented form (T1: P1* M1 
-> P2;) into the place-oriented description (P1 <= (P1 & ~(T1)) | (T6)). 
This approach is similar to the Verilog model presented in Fig. 9.7. For place en-
coding concurrent one-hot method has been applied. Such approach is recom-
mended for using FPGA devices as a final implementation technology. The  
concurrent one-hot encoding of Petri net is treated as the simplest case of more 
general mapping. The one-hot method produces fast designs with a simple combi-
national part, especially for implementations in FPGA [2,3,17]. It is not possible 
to assume that all flip flops, except those representing active local states that are 
set to 1, are set to 0 since several places can be marked simultaneously. 

9.3   Conclusions 

In the paper the academic CAD system dedicated for concurrent controllers was 
presented. For specification of controllers Petri nets are used. The system contains 
analyzes module based on checking of some Petri nets properties. In addition, the 
results of verification are decomposition of net into several communicating state 
machines. There are also possible to simulate the controllers using different HDL 
models produced by the presented system. The hardware representations of the 
controllers are obtained either as the direct mapping from the system, or by syn-
thesis results of prepared HDL models. Moreover, the PeNLogic system was  
extended on module for visualization of some controlled parts [14]. 

The system is still under developing. Nowadays, there are considered additional 
modules as simulation of Petri net and transformation of decomposed FSMs into 
HDLs models. During preparation are Verilog and VHDL models of standard 
functions and functional blocks (according to the standard IEC 61131-3 [8]). For 
sake of simplicity there is also developing the new data-flow diagram based on 
Tcl/Tk languages. Other works are directed on implementation of web-based  
version of the system.  
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Abstract. This article considers optimum stochastic methods of radio signal 
processing, including parameter assessment tasks and management of parameters 
of receiving and transmitting devices. Such tasks are formed by state variable me-
thods using Kalman-Bucy optimum recursive procedures. It’s recommended to 
solve the management problems basing on the division theorem. The article gives 
analysis of steadiness and efficiency of state and management assessment proce-
dures in steady-state and unsteady-state conditions. It gives recommendations re-
garding the choice of parameters and efficiency of processing devices taking into 
account statistics of signals and constraints attributable to certain telecommunica-
tion technologies. It analyzes a proposal, within which recursive procedures are 
used efficiently. The main tasks are united on Multiple-input/Multiple-output 
(MIMO) principle and are aimed at solving the access problems in mobile  
communication networks, Wi-Fi and Wi-Max systems, etc. Such tasks include: 
space-time encoding, multipath effect reduction, radio link power improvement, 
interference effect reduction, adaptation to channel parameter changes and current 
signal interference situation, possible repeated use of frequencies. 

10.1   General Information 

Important component of any information telecommunication system is the access 
network. Access network can be built in any physical environment: wire, wireless 
(radio), and optical. In this regard wireless environment is the most critical, where 
transformations of signals and noise levels can prove considerable, and signals and 
interference often have random character, especially in cellular networks, Wi-Fi 
and Wi-Max [1]. 

At the access level users of wire and wireless local networks have possibility of 
direct access to network services. There are many tasks of system-wide orientation 
at this level. They are as follows: providing multiplicity of access, electromagnetic 
compatibility, increasing interference resistance, transmission capacity, etc. Many 
of these tasks result in the tasks of signals processing. This is particularly what 
this section deals with. 
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Processing supposes implementation of corresponding transformations of sig-
nals with the purpose of achieving particular useful properties. As applied to OSI 
standard, information signals processing takes place on the first physical and par-
tially on the second channel levels of a seven - level model. At higher levels, other 
types of signals are processed: signals of signaling, control, etc.  

A signal in sufficiently general view can be represented through parameters  
amplitudes )(tA  and phases )(tϕ  as follows: 

)()()( tjetAtx ϕ−= ,                                              (10.1) 

where vector )(tx  determines direction of currents or potentials, besides in radio 

it shows spatial and polarization descriptions of this signal. Unfortunately, in prac-
tice, the signal alone does not exist (10.1). As a rule, this signal is to be perceived 
by means of measurements, observations or other objective realizations. There-
fore, a signal often appears jointly with existing noises, additive )(tv  and  

multiplicative )(tH interference: 

)()()()()( tntvtxtHty ++⊗= ,                                (10.2) 

where )()( txtH ⊗  - is convolution operation; noises )(tn  are the sum of real 

physical noises always occurring in electric circuits and communication channels, 
equivalent noises, generated by measurement errors, noises of quantum and other 
different factors  in total representing a sample from Gaussian white noise. 

Obviously, correlation (10.2) may be represented in a frequency field: 

)()()()()( ωωωωω NUXHY ++= ,                            (10.3) 

where all components are Fourier transforms of corresponding functions. Solution 
of processing tasks in a frequency domain (10.3) appears easier, especially in the 
conditions, where reflecting dynamics of the state different processes is not re-
quired. However, in case the task requires presentation of dynamics or nonstatio-
narity, it is necessary to solve problems in temporary domain. Methods of solution 
for such tasks are often interpreted as methods of state variables [2.3]. The state of 
an object )(tx (including random object) is represented by differential or  

difference equation of the type: 

),,(
)( ξtx

dt

tdx Φ=                                            (10.4) 

where )(tξ  - is a random component, Gaussian white noise which is generating 

(forming) random process )(tx . Based on obtained observations (10.2), (10.3) 

signals processing is carried out, reduced as a rule, to recursive estimation of con-
dition )(ˆ tx . Estimation of )(ˆ tx  in some cases may be considered as processing 

terminal stage, in other cases the estimation is used for the tasks of controlling the 
condition (10.4) or for observation (10.2). 

This section mainly uses temporal representations of states in space [3, 4].  
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Another specific feature of tasks in this section is that treatment of signals in 
spatial and polarization regions is investigated while comparing corresponding so-
lutions in a traditional frequency-time domain. It is obvious, that expansion of re-
gion of feasibility is instrumental in the improvement of quality of these solutions. 
Therefore, in the conditions when a frequency-time processing resource becomes 
scarce, efforts of developers focus more on a spatially-polarization resource that 
has not been employed until recently. New types of processing appear: space-time 
processing, space-frequency-time processing, space-time encoding, space-time  
access, etc. [4,5,6]. 

To solve tasks of processing with the active use of space-polarization parame-
ters it is necessary to get realization of the electromagnetic field in two or more 
points in space in the form of (10.1), (10.2) or (10.3). Thus, these expressions can 
represent signals on the output of antennas orthogonal by polarization or mutually 
spaced [5]. 

Efficiency of processing tasks using space-polarization parameters in a number 
of cases exceeds efficiency of processing tasks of similar solutions in the domain 
of frequency-time parameters. In addition, transition to space-polarization field al-
lows saving an expensive frequency resource. We will consider the above tasks in 
more detail. 

10.2   Specific Features of Radio Access at Physical Level 

10.2.1   General Description of Physical Processes at Radio Access 

Telecommunication systems with radio access provide an important physical sig-
nal conversion: a signal on transmitting side in the form of conduction currents is 
transformed into electromagnetic field (bias current). There is a reverse transfor-
mation on a receiving side. All these transformations occur in antenna. In full-
duplex lines, transmitting antenna is often simultaneously a receiving antenna 
(Fig. 10.1). 

 

Fig. 10.1 Structure of full-duplex radio communication line 

Antenna gain factor AG  depends upon both signal operating frequency 

λ/cf =  and aperture effective area efS : 
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4

λ
π ef

A

S
G = ,                                                  (10.5) 

where иsef KSS ⋅= ,  8,0...5,0=иsK  is a coefficient of antenna area utilization S . 

Expression (10.5) determines the maximum level of reception (transmission) of 
signal in the main lobe of directivity pattern (DP). In other directions ),( ϕθG  this 

level is lower. Fig. 10.2. represents an example of antenna DP. 

 

Fig. 10.2 Antenna directivity pattern 

The figure shows, that it is possible to select the field of the main lobe in DP, 
where its width θΔ , field of lateral and back lobes are determined. Usually access 
is provided due to mutual orientation (positioning) of main lobes of transmitting 
and receiving antennas one upon another. In doing so necessary energetic in radio 
line, determined by equation of transmission is provided: 

addfrRTTR WWGGРP ++++= .  [dB]                              (10.6) 

where RT PР ,  - are powers of transmitting and receiving signals accordingly; 

RT GG ,  are gain factors of transmitting and receiving antennas accordingly; 
2R)/4lg( πλ=frW  is signal attenuation in free space at a distance R ; addW  is addi-

tional multiplier, allowing to take into account attenuation due to actions of differ-
ent physical mechanisms in the course of distribution of radio waves, including 
the effect of signals fading. 

The solution of radio access by several (many) users located in different points 
of space, for which directions are determined by angles iθ , i=1,2,…,N is a more 

complex task. The easiest way to provide such access is to use an omnidirectional 
antenna with circular DP. This is what they do in cellular communication both on 
subscriber station and on base side. Simplicity of decision is achieved due to the 
losses of energy in radio line, because non directional antenna has a low gain  
factor AG . 
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However, there is another, more rational solution for multiple access. Thus, the 
MIMO technology suggests using multi-beam DP of antennas of cellular commu-
nication base station, antennas of access point, antennas of communications trans-
ponder. Fig. 10.3 represents the example of such multi-beam antenna DP. Beams 
in the direction of subscriber stations can be set only for the period of communica-
tion session. In this case, due to the increase of the gain factor in each of  

iθ  - directions energy of radio line improves. At the same time, and that is more 

important, there is a possibility of simultaneous communication with i-subscribers 
at the same frequency 0f . In other words, it is possible to economize the spectrum 

of the used operating frequencies by i-times, or to increase base station capacity by 
i-times accordingly. Such method of multiple access is called space-time access or 
frequency re-use method. We will consider this method in more detail, as well as 
other methods of using space-polarization physical parameters to increase  
high-quality indexes of communication at the level of access. 
 

 

            а) 

 

b) 

Fig. 10.3 Examples of directivity patterns of multibeam antennas for space-time access a) 
on cellular communication base station (BSS) with the orientation to i -direction  
communication; b) on satellite system transponder with the orientation to i -earth stations. 

10.2.2   Space-Time Access Method 

There exists a sufficiently simple algorithm of functioning of BSS with space-time 
access. Procedure of the station resource allocation includes four basic stages: 

1. Acquiring a request from subscriber. This request is received by non-
directional or near-omnidirectional antenna. At the same time direction the of 
request signal arrival is determined. For greater transmission reliability, the  
request signal is usually of broadband structure by frequency or by time. 

2. One of narrow beams of antenna directivity pattern is set in the direction of the 
calling subscriber.  

3. Omnidirectional antennas of base stations within the roaming limits carry out 
the search of destination user. After its response, narrow MBA beam of certain 
BSS is also set in this direction. 
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4. Communication between subscribers is provided, and, at the end of session, the 
beams are removed or reoriented to other subscribers. 

Fig. 10.4. represents a diagram of organization of BSS communication directions 
with subscribers  i and  j in space-time access. 

 

Fig. 10.4 Diagram of organization of BSS communication between subscribers  i and  j in 
space-time access 

Multibeam antenna DP can be created using different methods. It is known [5,7] 
from the theory of antennas that DP ( )θG  in a distant area (when sizes of aperture 

Rd <<   are distances to the view point) and distribution of electromagnetic field 
by aperture ( )xf  are bound by Fourier transform: 

( ) ( ) ( )∫ ⋅−=
α

θθ dxexfxgG rj, ,                                     (10.7) 

where ( )xg ,θ  is multiplier of directivity of element dx , 

( ) θθ cossin ⋅+⋅= xyxr  is path-length difference. 

Distribution function ( )xf  is complex; it is realized by selecting amplitudes and 

phases of currents in aperture points. 
The easiest way is to implement an aperture in the form of discrete antenna 

elements, each of which has its function of radiation ( )uiψ , λθπ /sindu = . Such 

discrete antenna is called an antenna array (AA). 
Resulting DP of AA forming many beams is represented as 

( ) ( )∑
=

=
N

i
ii uuG

1

w ψ ,                                                    (10.8) 

where iw is complex weight coefficient. 
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Controlling the beams of such antenna is carried out by means of changing  

parameters of weight coefficients iw , included into the circuit of each AA  

element. 
Analyzed mechanism of creation of required DP (10.8) is universal enough in 

the sense, that all spatial–polarization tasks in AA are executed after the same  
pattern: the MBA creation, spaced reception, adaptive reception, adaptive com-
pensation of interference, adaptive antenna arrays (AAA) operation, fazed AA 
(FAA), multiple access, all tasks united under MIMO brand. Fig. 10.5.  displays 
the example of such antenna array. 
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Fig. 10.5 General structure of weighting adjustment of plural signals )(tSi  with a  

complex coefficient )(w ti  

Topical variety of AA and multibeam antennas are hybrid structures: reflector 
antennas with AA elements in the focus, each forming its own beam.  

The task of determining subscriber signal direction of arrival can be solved  
by any of the known procedures [6], ESPRIT, Mvsic, etc. Alongside with that re-
cursive procedure of spatial spectrum estimation can be more constructive. The 
procedure consists of three basic recursive components: 

1) dedicating spatial window by control vector: 

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )πθπθ

πθπθθ
⋅⋅−⋅⋅−

⋅⋅=
180/sin1exp,...180/sin1exp

,...,180/sinexp,180/sin[expV

Njnj

j
,        (10.9) 

where n  is the number of antenna element, 
_________

1,0 −= Nn ; N  is quantity of 
antenna elements; θ  is the angle (direction of spatial window); 
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2) suppressing signals coming from all undedicated directions. This procedure 
can be realized with the use of Widrow, Applebaum [4,5], Kalman-Bucy [7] 
algorithms or other known algorithms of controlling vectors of AA weight 
coefficients. Thus, modification of Applebaum algorithm for suppressing  
signals beyond dedicated window is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]θμ VXwX2w1w T −−=+ kkkkkk ,              (10.10) 

where ( )kμ  is a step constant, ( )kX  is vector of signals; 

3) 3) recursive definition of mark of matching the amplitude and space phase in 
a dedicated window 

( ) ( ) ( ) ( ) ( )( ) ( )θθθθ wXXw,,1 TT kkkPkP ⋅+=+ .                (10.11) 

By the beginning of the third phase, the transitional processes of the second phase 
must be completed. In so doing there is a mark of a signal getting to protective 
window. 

Further narrow beams of BSS antenna are set in the direction of the marked 
signals. Fig. 10.6 provides block diagram of space-time access algorithm, where a 
separate beam in M–devices of the WCV control is formed for each of  
M–subscriber. 

 

Fig. 10.6 Block diagram of space-time access algorithm 
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10.2.3   Polarization in Access Tasks 

Tasks of access with the use of polarization parameters of signals and antennas 
have special values. Polarization is determined by the imaginary figure, which is 
drawn by the tip of electric field tension vector of the signal, radiated by the prop-
er antenna on a plane perpendicular to direction of distribution. Therefore, whip 
type linear antenna radiates linear polarization (horizontal, vertical or with inclina-
tion). It is possible to create circular or elliptic polarization by more  
complex antennas. 

For any concrete signal polarization (linear, circular, elliptic) there is another 
one which is orthogonal to it. Pairs of orthogonal polarizations are represented by 
Fig. 10.7.  

Antenna can be matched with a signal by polarizations and then maximal ac-
cepted signal is separated (reception of signals matched by polarization). Another 
extreme case: a signal can appear orthogonal with regard to antenna polarization 
(e.g. antenna is horizontally polarized, and a signal has vertical linear polarization).  

In general case some angle Пγγ 2=  appears between antenna polarization and 

signal polarization. Thus, if in the reception point the field level, measured by 
Pointing vector, makes Π, maximum power of signal received by antenna with an 
effective area efS  makes efR ПSР = . This power however depends upon both the 

said angle Пγ , and the degree of polarization of this signal Пm : 

( )
2

cos15.0 2 П
RППRexR РmmPP

γ+−= .                          (10.12) 

It follows from formula (10.12), that with non-polarized, randomly polarized sig-
nal, when 0=Пm , on the output of antenna the level of this signal RexR PP 5.0_ =  

and this level does not depend upon the type of antenna polarization.  

 
а) 

 
 
b) 

 
c) 

Fig. 10.7 Various polarization bases of the orthogonal signals S1 and S2 a) linear basis; 
b) circular basis; c) elliptic basis 

In other words: in case of any antenna, it is possible to receive only half of non-
polarized signal level only. In another extreme case, when a signal is fully  
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polarized, 1=Пm , it is possible to select antenna polarization so, that all possible 

received signal power is allocated (with 1
2

cos2 =Пγ
, when 0=Пγ ). That is with 

0=Пγ  we have the reception matched by polarization. A function is thus  

maximized (10.12): 

( )∑
=

→
N

i
w

ii
i

uw
1

.
.

maxψ ,  2=N .                                 (10.13) 

Apparently, there are conditions, when a function (10.13) acquires zero value: 

( )∑
=

→
N

i
w

ii
i

uw
1

.
.

0ψ ,  2=N .                                      (10.14) 

Conditions (10.14) are characterized by the presence of «zero» polarizations or-
thogonal in relation to signals. Such orthogonalization is used for interference 
suppression, for their polarization rejection. Thus, polarization processing of sig-
nals comes to estimation of polarization parameters of signals (their amplitudes 
and phases or quadrature component) proper control of polarization basis of  
receiving antenna, matched or orthogonal signal, depending upon the task. 

Besides the tasks of polarization matching with useful signal and tasks of pola-
rization rejection of interference, polarization is used to solve other important 
tasks, including [7]:  

• tasks of frequency re-use, when independent information streams are transmit-
ted on two orthogonal polarizations, that allows to double productivity of  
access element; 

• tasks of polarization modulation and demodulation of signals, when, for exam-
ple, “1” is transmitted by vertical polarization, and “0” is transmitted by hori-
zontal one. Such decision is rather constructive, as the process of modulation is 
not carried out in the transmitter radio circuit but directly in antenna; 

• tasks of diversity polarization reception. Such task is especially effective in the 
multibeam radio channels of cellular channels types and trunking communica-
tions. In this case the given diversity reception can be realized directly in the 
subscriber station, because due to the compactness of two orthogonally pola-
rized antennas placed in one electric center it is possible to maintain existing 
dimensions of the mobile station; 

• tasks of adaptive reception by polarization, when polarization changes of para-
meters of signals or interference are accordingly traced by polarization of the 
receiving station. 

The last-mentioned tasks of adaptive reception are of special importance. We will 
discuss them in more detail. 
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10.2.4   Adaptation in the Tasks of Access 

It is possible to define adaptation as a process of optimization of the correspond-
ing algorithm to variable and random in time external effects. As applied to the 
tasks of access such external effects are: 

• interfering effects from other radioelectronic systems, sources of artificial or 
natural origin; 

• effects from environment of radio signals propagation, causing random changes 
of parameters of received signals, their fading; 

• random nature and instability of traffic, requiring the proper reaction from the 
side of technology of control at the level of access with the purpose  of provid-
ing necessary level of LMS service. Tasks of adaptive processing also come 
down to the tasks of estimation of corresponding signals and interference  
parameters, to control of the state or surveillance. 

For detailed consideration and substantiation of adaptation methods it is necessary 
to attract a rather comprehensive and serious mathematical apparatus of theory of 
management, Markov processes, methods of state variables, etc. [2…7]. However, 
taking into account the trend of this edition, we will concentrate only on the re-
sults and examples of application of adaptive methods. We will indicate only the 
necessity of substantiation of adaptive methods by criteria of procedure stability, 
provision of observability, manageability, identifiability and adaptability of  
suggested  algorithms. 

10.2.5   Suppression (Rejection) of Interference. Adaptive Antenna 
Arrays and Adaptive Interference Cancellers 

Priority in development of idea of adaptive antenna arrays (AAA) belongs to 
B.Widrow. Many authors worked to develop his ideas [5,6,7 etc.]. 

The process of interference suppression on a receiving side by AAA lies in 
forming «zeros» of DP so that they meet the condition (10.14) 

0)()(w
1

)( ⎯→⎯∑
=

iw

N

i

v
ii tSt

&
,  NN ,...,2,1= ,                   (10.15) 

where )()( tS v
i  are interference signals received by N  antenna elements. It is  

assumed that )()( tS v  is included in the accepted realization  )(tx  additively: 

)()()()( )()()( tStStStx nvi ++= .                                 (10.16) 

where indices “i”, “v” and “n” belong accordingly: to the information signal,  
interference signal and noise. 

Fig. 10.5 provides a general diagram, which enables solving a problem (10.15). 
The solution of this task is achieved under proper choice (estimation) of weight 
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coefficients vector )(tw , by controlling this vector. In the theory of control, such 

task is interpreted as observation control task. 
According to (10.15) and Diagram 10.5, first multiplication of ii xw is carried 

out, and then their addition on general register. Dimension of WCV is determined 
by dimension of AAA. This dimension can be from 2 and to a rather large num-
ber: tens and hundreds. In practice, the AAA dimension usually does not exceed 
units, rarely tens. It is important to note that the number of antenna elements N  
determines the possible number of suppressed interference. There may be no 
more, than  1−N  interference. Antenna elements may be spaced apart to dis-
tances 2/λ>d . If AAA is implemented with the use of two orthogonal polarized 
antenna elements, they are located in one electric center and AAA is able to  
suppress only one interference. 

The WCV control unit, where this adaptive procedure is realized, is the opti-
mum algorithm of this WCV estimation. Historically the first and simple enough 
is Widrow algorithm [4,5]: 

[ ] )()()(ŵ)(
)(ŵ

txtyttx
dt

td
э−= μ ,                            (10.17) 

where )(tyэ  is a certain standard signal desirable for the reception and identical in 

structure to a useful signal  )()( tS i ;  1≤μ  is convergence  coefficient of this gra-

dient procedure, )(ŵ t  is the WCV estimation, optimum by the criterion of mini-

mum of mean-square difference of received signal )()( tS v  from standard )(tyэ . 

Algorithm (10.17) is usually implemented in a discrete form: 

[ ] )()()(ŵ)()1()(ŵ)1(ŵ kxkykkxkkk э−++=+ μ ,           (10.18) 

where context μ  and эy  is the same as in (10.18), k  is the discretization interval. 

Investigations show that noise suppression level may reach 20…30 dB and great-
er. This level is often quite enough for providing steady communication in a radio 
line directed to the point of access, BSS or transponder. 

Another adaptive algorithm for suppressing noise, also suggested by Widrow, 
is the adaptive noise compensator (ANC). In order to implement it, it is necessary 
to create a reference reception channel, free of useful information signal, when 

0)()( →tS v : 

)()()( )()( tStStx nv
оп += .                                         (10.19) 

With known direction of arrival or polarization of useful signal, it is easily to ob-
tain such channel by orthogonal antenna receiving base against useful signal.  
Algorithm of ANC is represented in Fig. 10.8. 

Analytical representation of algorithm of WCV estimation of ANC differs 
slightly from (10.17): 

[ ] )()()(ŵ)(
)(ŵ

txtxttx
dt

td
опосоп −= μ                          (10.20) 
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nvi SSSx ++= w(t)xоп

nv
оп SSx +=

vni SSSy Δ++=

 

Fig. 10.8 Structure of algorithm for WCV control in the adaptive noise compensator 

Its functioning can be described as follows. Difference in square brackets will 
be realized on the output of summing unit ∑ . This difference is multiplied 
by )(txоп  and being multiplied by μ  it represents a derivative of WCV. The 

integral of this derivative is required WCV )(ŵ t , which is used in multiplier 1m .  

Another interpretation of algorithm is possible. In summing unit ∑  there is sub-
traction (compensation) of the weighed interference )()( twtxоп . Excess from this 

deduction )(vSΔ  is multiplied by )(txоп  in 2m and the result is integrated. We  

obtain as a result: 

dtxSdtxSdtxSdtxy
опопопоп

hvi ∫∫∫∫ +Δ+= )()()( .                (10.21) 

Due to uncorrelatedness of subintegral functions, the first and third intervals in the 
right part are on average equal to zero. The second integral is significant, because  

)(vSΔ  and  
оп

x  contain common correlated components. Result of the second 

integral is a control signal, influencing the formation of WCV )(ŵ t . This influ-

ence will exist until it is not minimized by )(vSΔ , i.e. until interference in the main 
reception channel is compensated to minimum. 

It should be noted that based of Widrow algorithms more effective, fast algo-
rithms [2…7] synthesized on the basis of Markovian theory of filtration are  
developed. 

It can be shown that algorithms (10.17), (10.18) and (10.20) are optimal for a 

situation when phase front of interfering signal )(vS is flat and not fluctuant. In ra-
dio access line, this front is distorted due to multipath propagation, spatial dis-
placement of transmitter and/or receiver antennas. It requires selecting the model 
of the WCV condition in the form of 

)()()(w)(/)(w ttGttFdttd ξ+= ,                                   (10.22) 
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where )(),( tGtF  are matrices of the condition and generation, )(tξ  is generating 

Gaussian white noise with the spectral density of power  )(tNξ . 

Equation of condition (10.22) allows using formalism of Kalman-Bucy filters 
[2,3,7] for the estimation of WCV: 

[ ](t))(ˆ)()()()(ˆ)(/)(ˆ 1
эv ytwtXNtXtPtwtFdttwd −+= − ,              (10.23) 

where )(tX  is the adopted realization (10.16), )(tP  is a posteriori dispersion of 

WCV error estimation, determined from Rikkati equation 

)()()()()()()()()()(/)( 1 tGNtGtPtXNtXtPtFtPtPtFdttdP T
v

T
ξ+−+= − . (10.24) 

Principle difference of algorithm (10.23) from classic FCH is that not a signal but 
optimum weight coefficient is subject to estimation. Thus equation (10.24) ap-
peared dependent upon the received signal )(tX . Fig.10.9 represents the AAA  

algorithm functioning in accordance with (10.23). 

∫
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Fig. 10.9 Structural diagram of adaptive antenna array functioning according FCB  
algorithm  

As the adaptive noise compensators operate in the same signal-noise situations, 
for the WCV of ANC state equations (10.22), (10.23) and (10.24) are also true 
with replacement of )(tX  by )(tXоп , which is determined from (10.19). Fig. 10.11 
provides ANC structural diagram. It is characteristic that algorithm ANC 
represented by Fig.10.8 is extended to l -channels of basic reception (on  
l -element AA). 
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Fig. 10.10 Structural diagram of multichannel adaptive noise compensator 

ANC algorithm functions as follows. Noise from reference channel after mul-
tiplier 1m , where it acquires corresponding to each i -th channel bias and scale 

)(ˆ twi , is subtracted in summing unit 1∑ . The results of deduction are supplied to 

the input of measuring device or receiver and concurrently, after corresponding 

gain by 1−
vN , - to multiplier 2m . To another input of the multiplier the weighed 

value of signal from reference channel pry  is supplied. Value of feedback is de-

termined by multiplying by 1−
nN , which is set inversely proportional to watch 

noises spectral density in each reception channels. Integrator, where value )(tF  

determines permanent integrations, carries out operation of statistical averaging of 
multiplication results. Voltage resulting from interaction of noise component from 
reference channel )(tvo  and that part of uncompensated excess of noise in i-th re-

ception channel, contained in )(tyΔ , which is correlated with )(tvo , appears on 

the output of integrator. It is obvious, that useful signal )(tsi  due to uncorrelated-

ness with )(tvo  is not supplied to compensation input. The very voltage from the 

integrator output, fed to one of multiplier inputs 1m , is the estimated WCV )(ŵ t . 

It follows from comparison of the considered ANC structural diagram and Wi-
drow diagram (Fig. 10.8), that both diagrams are similar. At the same time, ANC 
in Fig.10.10 takes into account the presence of noises in reference channel )(tNo , 

random changes of noise parameters )(tv  and )(tvo , possibility of their correlation 

and mutual correlation with the help of matrix )(tF elements. Function 
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1)()( −
vo NtNtP  (10.22), also stipulating stability of procedure acts as a step coeffi-

cient determining the speed of convergence. Thus, an algorithm (10.22) is a cer-
tain modernization of Widrow algorithms, since it is optimal for more general 
conditions and more complicated signal-interference situation. 

10.2.6   Control of Multipath Effect in Access Radio Lines  

There are rapid attenuations of received signals, caused by multipath effect, re-
emission from moving objects in access radio lines of cellular, trunked, pager 
communication, in Wi-Fi technologies, Wi-Max because of moving of communi-
cation objects, motion of surrounding subjects and people. In spite of actions taken 
(encoding with interlace, floating reception threshold, etc) there are signal dro-
pouts, brief or long losses of communication. The periods of these disappearances 
make from fractions of a second to several seconds. Experience suggests that the 
statistical structure of such signals fading is different in different points of space, 
and their polarization changes at random. This fact makes it possible in order to 
increase reliability of communication to recommend space and/or polarization  
diversity methods of reception. 

(t)S1

(t)S2

21 SS(t)S +=∑

 

Fig. 10.11 Fragments of amplitudes of the signals received in diversity channels 1 and 2, 
and total amplitude 
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From a communication theory [1,2,3] it has been known that, diversity  
reception provides the greater effect, than independent  signals in diversity  
channels. Fig.10.11. represents the example of fadeout signals. 

Picture shows that if there is deep fading of signal amplitude to almost a zero 
level in separate channels 1 and 2, in a sum channel this fading is considerably 
less noticeable. With the increase of number of diversity branches, we manage not 
only to minimize the impact of fading but also to increase the level of regular 
composition.  

Thus, there are three tasks. Task 1 is the discovery of several (two or more) in-
dependent representations of received signal. Two signals can be used for this 
purpose, received by orthogonally polarized antennas, two or more signals, re-
ceived in different points of space, spaced to a distance  λ)100...10(≥d  or signals 

diverted by frequency to an interval 5,1...1≥Δf  MHz. Signal-arrival-angle diver-

sity method is only mentioned in references, but there is no information on its im-
plementation. Time diversity is used; however, in interactive technologies it is not 
effective due to excessive delays. Fig.10.12 represents different variants of spatial 
diversity by transmission (а), on reception (b), on reception and transmission  
simultaneously (c). 

1TA
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TnA

1RA

        

1TA

1RA

2RA

RmA

 
а) b) 

1RA

2RA

RmA

1TA

2TA

TnA

 
c) 

Fig. 10.12 Alternative diagrams of multiple reception of signals: a) at n  - antenna on 
transmission; b) at m  - antenna on reception; c) at  n  - antenna on transmission and  m  - 
on reception 

Task 2 is addition of diversity signals. It can be solved with provision for (at 
phase locked addition) or without provision for the phase carrier frequency (prede-
tector or postdetector addition). Phase locked addition is more effective. In this 
rate, when adding 2 signals with voltage 1U  and 2U , differing by phase to angle ϕ  

we obtain total power: 

ϕcos2)( 21
2
2

2
1

2
21 UUUUUUP ++=+≈∑  
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As is evident, with phase locked addition, when ϕcos =0, we 

get PPPPP 4221 =++≈∑ . Not counting the phase, the third addend must be 

dropped and PP 2≈∑ . In spite of power loss by 2 times postdetector addition is 

used where it is necessary to maximally simplify circuit design. Phase - locked 
addition requires the additional circuit design decisions on synchronization of 
high-frequency signals components. 

Task 3 is determining weight coefficients of the composed signals, because 
their value influences the signal/noise ratio of the resulting signal. Therefore, it is 

possible to sum up all signals with the same weight, for example, iw =1 for all 

branches of diversity (linear addition). In this case, those branches, where a signal 
is small, will contribute only to the growth of noise level. It is possible at every 
moment of time to choose one branch only, where useful signal is maximum (auto 
choice), but branches will be cast aside, where signals are less and they could give 
positive contribution to the grand total. 

It is possible to show that the best and optimal is the addition with weight iw , 

proportional to the level of useful signal in the same i -th channel (quadratic  
addition). In this case (10.9) appears as 

∑∑∑
===

==
N

i
i

v
i

N

i
ii

N

i
ii tStStSwtw

1

)(

11

)()()()(ψ ,                      (10.25) 

where )()( tSw v
ii = . 

A number of methods of solution of the above three tasks are known. We will 
mention the most popular one, where solutions of the second and the third tasks are 
united into one general task. Fig.10.13 represents general diagram of this solution. 

 

Fig. 10.13 Algorithm of quadratic coherent addition of diversity signals  ( )ω1S  and  
( )ω2S  without considering quadrature component  
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Weighing of signals )(1 tS  and )(2 tS  takes place in multipliers 1m  and 2m , on 
the second entrance of which signal )0(S converted to zero frequency is supplied 
from the outputs of converters 1Пр  or  2Пр . In-phase operation is achieved by 
general signal )(ω∑S  from the output of summing unit ∑ , which controls the 
phase of converter reference signal.  

Fig.10.14 shows graphs of probability of erroneous reception of single character 

(BER) from signal level ratio and noise ns PPh /2 =  for different reception ratio. 
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Fig. 10.14 Diagram of signals reception anti-jamming ability at different number of  
diversity branches  

It follows from the diagram that with the increase of order of diversity n  the 
anti-jamming ability becomes better, however transition from single ( )1=n  to 

double ( )2=n  reception provides the greatest contribution, and all  

subsequent additions of diversity branches provide progressively smaller positive 
contribution. 

Fig.10.15 shows graphs berP  for the reception of signals in the two diversity 

branches with different correlation coefficient r . It is clear from the diagram that 
diversity reception of uncorrelated signals )0( =r  provides considerable advan-

tage. Still in channels with high correlation )5.0( =r , this advantage is yet consi-

derable. It is obvious that in order to increase the efficiency of diversity reception 
it is necessary to achieve reduction of statistical coupling in diversity branches. 



250 V. Popovskiy
 

In practice, control of WCV, included into (10.25), is carried out during de-
composition of ))(cos()()(1 tttAtS ϕω +=  into quadrature components 

tStStS csi ωω cossin)( +=  with subsequent estimation of these elements cs SS ˆ,ˆ , 

that results in the value 22 ˆˆ)0()( cs SSStA +== . The resultant value )0(S  is fur-

ther used as a control signal in multipliers 1m  and 2m  (see Fig.10.13). Division 

into two procedures: stochastic estimation cs SS ˆ,ˆ  and deterministic control does 

not preclude properties of procedure optimality, since the conditions of separation 
theorem are correct here [1,2,3]. 

1 10 100 1000 2h
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310
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Fig. 10.15 Curves BERP  for the reception of signals in two diversity branches with  
different correlation coefficient of r  

The use of broadband signals (BBS) is a variety of diversity reception method, 
among which the DSSS methods (Direct Sequence Spread Spectrum) and FHSS 
signals (Frequency Hopping Spread Spectrum) are most widely used. These sig-
nals are used in Wi-Fi systems, especially they are recommended in IЕЕЕ 802.11 
standards etc, where multipath effect takes place. 

10.2.7   Space-Time Coding  

Methods considered in (10.25) with the use of n -antennas are those, that minim-
ize the destructive impact of multipath effect. However, there are technological 
solutions, which are invariant in relation to multipath effect, or even this pheno-
menon is used as positive. Such technologies, within МIМО concept, include 
space-time encoding. 

Core of space-time coding method consists in the fact that n -independent in-
formation signals can be transmitted simultaneously on the same operating  
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frequency pf  by n transmitting antennas (Fig.10.16). Each of these signals )(T
iS ,  

ni ,1=  on the way to n -receiving to antennas is subject to corresponding  

fading ijh ,  
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Fig. 10.16 Diagram of n  information signals transmission via multibeam radio channel 
with space-time coding 

Thus (10.26) is the system of n -linear equations with n -independent un-

known )(T
iS . The system is heterogeneous, as absolute terms 0)( ≠R

iS  and it must 

be consistent in order to have a solution and must be defined so that this solution 
is unambiguous. It is obvious that all these properties of the system (10.26) de-
pend on the combination of ratios ijh , and matrix determinant of these ratios must 

not be equal to zero: 

0H ≠ .                                                (10.27) 

Such conditions (10.27) are met in the absence of linear dependence between equ-
ations of the systems (10.26), when none of equations is a linear combination of 
the others. These conditions are met in practice due to different values ijh  in each 

of nn ×  directions of radio signals distribution. At the same time, on a receiving 
side there is permanent control of the above conditions and, in case of failure to 
meet them, on transmitting side, required linear independence between equations 
(10.26) is achieved with the help of corresponding selection of levels of sig-

nals )(T
iS . Thus, signals )(R

iS  splitting occurs with the help of unique  

space-time code. 
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In order to provide the solution of the system (10.26) and division of signals  
)(T

iS , the value of coefficients ijh  must be measured and estimated in each of  

i , j  directions. For this purpose a test signal with the known parameters is pe-

riodically transmitted in radio line, to provide capability to measure and estimate  
coefficients  ijh , which keep their value for a certain short time interval  

nτΔ , which is an index step. As a result, a procedure of recursive evalua-

tion ))1(ĥ()(ĥ −Φ= kk ijij occurs. Obtained estimations ijĥ  are further used for the 

resolution of the system (10.26). There are two more important conditions,  
required for reliable operation of space-time encoding algorithm: 

• In a radio channel between a transmitter and receiver there must be sufficiently 
large allowance of high-frequency level of useful signal, that gives possibility 
of reliable high-quality reception at the relatively large (-10…-30) dB signals 
fading. 

• Fading of multipath signals is called rapid, however it is possible to specify 
short time intervals, where parameters of signals which are used in n -antenna 
elements may be considered practically fixed. Intervals that are sensibly shorter 
than fading correlation intervals may be considered as intervals with quasi-
permanent parameters: 

cor1,0 ττ ≤Δ n                                                (10.28) 

Obviously, it is possible to carry out transmission not only using the method of 

space-time encoding but also using polarization-time encoding, where )(T
iS   

represents signals which have the proper polarization structure. 
Space-time encoding is most effectively used in Wi-Fi office systems, however, 

with proper modernizations it is possible to use it in bigger Wi-Max systems, in 
cellular and other systems. 

10.3   Recommendations on Practical Use of Signal Processing 
Algorithms 

10.3.1   Formalization of Kalman-Bucy Algorithm 

The above-mentioned tasks are solved on physical level during radio access due to 
estimation of corresponding parameters of signals ix̂ . The FKB formalism in a dis-

crete form results in the solution of the following equations in problem space [2,3]: 

• constitutive equations: 

)()()(),1()1( kkGkxkkFkx ξ++=+ , ...2,1=k ;                (10.29) 

• personal equation: 

)()()()( knkxkHky += .                                                 (10.30) 
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In the equation, in the same way as in (10.30), not only white Gaussian noises 
)(kn  but also interferences (colored noises) )(kv  can be taken into account. The 

removal of the latter is the AAA and ANC function: 
• Filter equation: 

[ ])1(ˆ)1,()()()()1(ˆ)1,()(ˆ −−−+−−= kxkkFkHkykKkxkkFkx ,     (10.31) 

where )()()()( 1
~ kNkHkPkK n

T
x

−=  is the scaling function determining the FKB 

optimum from positions of exactness of estimation and speed of its convergence to 
the steady state; 
• Dispersion of a posteriori error of estimation xxx ˆ~ −=  

)()()(),1()(),1()/1( ~~ kGkNkGkkFkPkkFkkP TT
xx ξ+++=+ ;     (10.32) 

• A priori dispersion x~   

[ ] )1/()()()( ~~ −−= kkPkHkKIkP xx ;                              (10.33) 

Direct use of the algorithm (10.29)…(10.33) for estimation of a particular parame-
ter often results in a failure. There are several reasons for this: 

a) incorrect selection of filter parameters ξNNGF n ,,, , when parameters of the 

selected model (10.29), (10.30) disagree with the real signal-to-noise envi-
ronment; 

b) incorrect selection of discretization step τΔ  in relation to correlation interval 

corτ ; 

c) disagreement of discreteness of measurements entry y(k)  and discreteness of 

the estimation procedure (10.31); 
d) technological features of estimation procedure, etc. 

10.3.2   Recommendations on Planning of Estimation Algorithms  

In the tasks of designing of processing devices, it is expedient to carry out prelim-
inary mathematical computer-aided modeling. The structural diagram  
represented by Fig. 10.17. will be useful for this purpose. 

For conducting the experiment, it is necessary to select adequate arrays of gen-
eration noises )(kξ  and observation noises )(kn . Size of the array must be large 

enough, and sample characteristic of power spectral density (PSD) must be most 
uniform in the frequency band (deviations exceeding )30...25(±  % are not desira-

ble). Relation of )(kξ  noise PSD to )(kn  noise PSD can be interpreted as a rela-

tion of levels of useful signal and noise in the observation channel nNNh /2
ξ= , 

and if 1=nN  here, this relation becomes numerically equal to ξN . 
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Fig. 10.17 Structural diagram of computer-aided experiment 

As a result of the experiment, different situations with convergence to the 
steady state of procedure (10.31) are possible which occurs on condition that a 
posteriori dispersion is constkkPx →− )1/(~ . At the most, the steady state of filter 

occurs already on 4 to 10 steps of discretization. Fig. 10.18 shows dependence of 
convergence time of FKB on the size of discretization step. 
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Fig. 10.18 Diagram of FKB convergence depending on the selected parameter 2h  at  

various sizes of discretization step corττ /Δ  

The diagram implies that time of convergence to the steady state increases with 

the increase of the estimated signal 2h level. This time can increase to infinity, 
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which is the indication of procedure divergence. The mode of relatively large 
steps of discretization (at 1,0/ =Δ corττ ) is especially critical. Here, steady con-

vergence is observed at the ratio 2h ≤20 only. 
Fig. 10.19 shows dependence of convergence time of FKB with deviation of 

model parameters from real situation (at mismatching of signal strength  )F(
ξN  set 

in a filter in relation to model )(MNξ level) 
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Fig. 10.19 Diagram of convergence time of filter depending on the relation of model PSD 
)(MNξ  to filter PSD )F(

ξN   

As it is evident from the graphs, the sensitivity of estimation procedure to  
deviation of parameters of the selected model to any side is not symmetric. More-
over, selecting understated value of signal strength does not only worsen the con-
vergence but also improves it that enables an important practical conclusion: it is 
necessary to understate the signal-to-noise ratio in estimation procedure, which 
will be instrumental in the improvement of convergence, and quality of estimation 
in this case (a posteriori dispersion of estimation error) does not practically 
change. The other method of convergence improvement is the reduction of  
discretization interval, which evidently helps to make a more exact estimation. 

Research of sample values of a posteriori dispersion of estimation error x~  ob-
tained by the method of ensemble averaging with 20...10≥i  of independent sam-
ple arrays )(kxi  can be very informative. Thus, sample estimate of dispersion 

∑
=

−−=
i

i
x xi

1

212
~ ~)1(σ  at 102 =h  for the step of 01,0/ =Δ corττ  proved to be 

equal to 3608,02
~ =xσ  , for 001,0/ =Δ corττ  its value was 1133,02

~ =xσ . Time of 

convergence to the steady state was 30…40 intervals of discretization. 



256 V. Popovskiy
 

Time of convergence is of great practical importance, because when different 
nonstationary effects occur it is the time of transient mode. More detailed effect of 
nonstability can be explored by presenting the equation (10.30) in the form of: 

),()sin()()()()( tnlkCkxkHky
cor

k +Δ++=
τ

τ
                      (10.34) 

where )(kC  determines amplitude of instability components, l  determines value 

of change of smooth period of sinusoidal nonstability changes. 
The program of model formation according to algorithm (10.29) and calcula-

tion of estimation according to algorithm (10.31) is represented below. 

10.3.3   Program of Estimation Calculation with the Help of FKB 

clear  
   N=1000; 
   t1=1:N; 
   D=1; 
   T=1; 
   T0=10; 
   w=randn(size(t1)); 
   v=randn(size(t1)); 
   x(1)=0; 
   F=exp(-T/T0); 
   G=sqrt(D*F*(1-F)); 
 
   H=1; 
for k=1:N-1 
   x(k+1)=F*x(k)+G*w(k); 
end 
z=H*x+v; 
figure(1) 
plot(t1,z);  
Vw=2*ones(size(t1));  
Vv=2*ones(size(t1)); 
 
Vx(1)=1; 
V1x(1)=1;  
x1(1)=F*0; 
K(1)=1; 
er3(1)=1; 
 
for k=2:N 
   K(k)=V1x(k-1)*H'*Vv(k)^(-1); 
   Vx(k)=F*V1x(k-1)*F'+G*Vw(k)*G'; 
   V1x(k)=(1-K(k)*H)*Vx(k); 
   x1(k)=F*x1(k-1)+K(k)*(z(k-1)-H*F*x1(k-1)); 
er3(k)=z(k-1)-H*F*x1(k-1); 
end 
er=(x-x1); 
er1m=mean(er) 
er1=mean((er-er1m).^2) 
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10.3.4   Recommendations for Designing Adaptive Noise 
Compensators 

Being more general ANC and AAA (10.23) allow taking into account more com-
plex signal to noise environment, and their quality is determined by the extent of 
noise suppression )(kv  and improvement of the ratio of signal SP  level  to the 

sum of interferences and noise on the ANC or AAA output: 

)/(2
nvS PPPh += .                                               (10.35) 

In the process of ANC development, it is necessary to consider the absence of use-
ful signal in the reference channel, and the level of interference 0v  should exceed 

the corresponding value in the primary channel. To explain this, we will show  
results of the computer-aided experiment. 
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Fig. 10.20 Diagrams of ANC efficiency depending on the relation of noise levels in  
reference and primary channels 

To obtain numerical values let us set the following relations between levels of 
useful signals and noise in the primary channel: dBPP ns 20/ = , dBPP nv 20/ = . 

Let us change interference power ov  in the reference channel in relation to inter-

ference power in the primary channel from — 30 to 15 dB. As a result of comput-

er-aided experiment, graphs of 2h  depending on the relation of powers of interfe-
rence in the reference channel to power of interference in the primary channel 

prvP .  are obtained (Fig.10.20). It is evident from the graphs that with the increase 

of interference power in the reference channel refvP .  efficiency increases smooth-

ly, and at prvrefv PP .. / ≥ 6…10 dB it achieves maximum values. This fact is of 
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practical importance: when selecting parameters of the reference channel, it is im-
portant that the level of interference refvP .  in it exceeds the corresponding level 

prvP .  in the primary channel. From the obtained graphs, we can make a conclu-

sion that the ANC operation efficiency is substantially influenced by discretization 
interval: efficiency grows with more frequent discretization. 

The other important requirement to reference channel is the minimum level of 
desired signal, as its presence results in losses of the ANC efficiency because use-
ful signal )(tv  is also compensated together with noise. Fig. 10.21 shows dia-

grams of ANC efficiency losses depending on the level of desired signal in the 
reference channel in relation to the level of signal in primary channel refsprs PP / . 
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Fig. 10.21 Diagrams of ANC efficiency losses in the presence of useful signal in reference 
channel with a relative level prsrefs PP /  

It is characteristic that in case of exceeding noise level in the reference channel 
as compared to the primary one (two overhead curves in Fig.10.21) losses of the 
ANC efficiency are insignificant. However, if these levels are equal (third curve) 
losses are considerably essential. 

10.3.5   Recommendations for Planning Adaptive Antenna Arrays 

By analogy with ANC, where development of a reference channel free of useful 
signal is required, a similar channel on output 2Σ  is created in AAA after deduc-

tion of reference signal эy  (Fig. 10.9). Analysis shows that incomplete matching of 

structure of reference and useful signals results in incomplete compensation of this 
signal and accordingly to decline of the AAA efficiency, similar to that in ANC. 
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Fig. 10.22 Graphs of transient mode for four-element AAA 

 

Fig. 10.23 Graph of transient mode for eight-element AAA 

Simulation modeling of AAR algorithm showed that convergence time of pro-
cedure (10.23) to the steady state is situated within the limits of 10…20 discretiza-
tion intervals. Fig.10.22 and Fig. 10.23 show diagrams of transient modes of adap-
tation algorithms, built on condition of equality of levels of useful signals and 
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interferences vs PP =  and with relation of levels vs P/P =20 dB in each receiving 

channel. As it is evident from the diagrams, potential of the algorithm efficiency 
increases with the increase of the number of AAA antenna elements. 

Attention should be drawn to one more feature of ANC and AAA algorithms. It 
is known that hysteresis phenomena are characteristic for the systems of White 
type and they become apparent in AAA and ANC control algorithms. WCV con-
trol linkage backlash appears because of the post-tuning drift, retaining WCV in a 
position, which conforms to current signal-interference environment. In this case, 
post-tuning drift is proportional to gain factor in control circuit. Indicated drifts 
are characteristic also for the systems of phase-locked loop and automatic fre-

quency control. Dependence of 2h  on the size of the backlash area, delineated in 
relative units is shown in the diagram (Fig. 10.24). Diagrams show that with ex-
pansion of backlash area ANC efficiency gains ambiguous nature and with the 
dimensions of the area greater than wΔ04,0  the mode of bifurcation and chaotic 
behavior is observed. 

 

Fig. 10.24 Diagrams of efficiency losses of adaptive algorithm depending on WCV adjust-
ing characteristic backlash 

10.4   Conclusions 

In recent years more firms, dealing with manufacture of telecommunications 
equipment, scientists and specialists draw attention to the necessity of the use of 
space-polarization resources to provide quality solution of access tasks in different 
technologies which agree upon concept of creation of the fixed-mobile systems 
(FMS). 

Consideration of various space-polarization methods in access tasks implies 
that these methods are transformed easily enough from one into another. In other 
words using 2-dimensional or n-dimensional spatial or polarization basis on  
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receiving side or on both sides simultaneously there is a possibility to solve such 
important problems as providing access of electromagnetic compatibility, filling in 
deficit of frequency resource, increase of interference immunity, authenticity and 
reliability of transmission etc.  
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11   Recursive Code Scales for Moving 
Converters  

Alexander Ojiganov 

Saint-Petersburg State University of Information Technologies, Mechanics and Optics;  
Department of Computing Techniques, Russia 

Abstract. The methods of construction of recursive code scales (RCS), and also 
algorithms of placing on a scale of reading out elements (RE) are considered, re-
sults of research of correcting possibilities of such scales are shown. RCS for syn-
thesis of drawing of an information path of a scale of sequence have received the 
name pseudo-random (PRCS) and composite code scales (CCS). Offered scales 
can be applied as the coded element in moving converters. Recursive scales at the 
expense of use in them of only one information code path more technologically 
traditional scales, code paths (CP) which are carried out, as a rule, in an ordinary 
binary code or in the Gray code. Thus, RCS allows only at the expense of redun-
dancy introduction on number of reading out elements without use of additional 
control paths to form the codes which are correcting and (or) finding out errors of 
reading. 

11.1   Pseudo-Random Code Scales 

11.1.1   Pseudo-Random Code Scales for Converters of Angular 
Movings 

The method of construction circular PRCS is based on use of the theory of  
M-sequences [1]. Let us adhere to the standard terminology. 

1. The M-sequence is a sequence of binary symbols a the lengths, 2 1nM = −   
received on a certain rule which is set by a primitive polynomial h (x)  
degrees n. 

2. The primitive polynomial h (x) represents a polynomial which is not resulted 
over field Galua GF (2), i.e. 

∑
=

=
n

i

i
i xhxh

0

)(
,                                                

(11.1)
  

where h0=hn=1, and hi=0,1 at 0 <i <n. 
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3. M-sequence symbols an+j satisfy to a recursive parity 

iji

n

i
jn haa +

−

=+ Ξ=
1

0 , j = 0,1...,                                      
(11.2)

 

where the sign Ξ denotes summation on the module two, and indexes at 
M-sequence symbols undertake on module M. Initial values of symbols 
of M-sequence a0a1... an-1 can get out any way, except for a zero combi-
nation. For definiteness to these symbols we will give values  
a0 =... = an-2=0, an-1=1. 

4. M-sequences belong to the class of cyclic codes and can be set by means of a 
generating polynomial 

( ) ( 1) / ( )Mg x x h x= + ,                                          (11.3) 

where h (x) it is defined according to expression (11.1), M=2n-1. 

For each M-sequence of length M exists exactly M various cyclic shifts which can 
be executed by multiplication of a generating polynomial g(x) on xj where j=0,1..., 
M-1. 

It is known [2], that for any value n exists precisely ( 2 1) /nM nϕ = −   

various polynomials h(x), being not resulted and primitive. The function named 
( )Mϕ function of Euler, represents the number of positive integers smaller or 

equal M and mutually simple from M. The number ( )Mϕ  very quickly grows 

with growth n, number of polynomials of degree n, generating sequences of the 
maximum length, also quickly increases with growth n. 

In Table 11.1 polynomials h (x) to degree 16 inclusive which have the mini-
mum number of nonzero factors hi are resulted and can be used for generation of 
corresponding M-sequences of length 2 1nM = − [1]. 

Let's formulate a method of construction of n-digit circular PRCS [3,4]. 

1. Depending on demanded word length of a scale n from table 11.1 the  
polynomial h (x) gets out. 

2. Using a recursive parity (11.2) the sequence a is generated. 
3. Elementary sites of a scale are carried out according to M-sequence symbols a 

where individual symbols of sequence correspond to active, and zero symbols 
to passive sites of an information path. For definiteness sequence symbols are 
displayed on an information code path in a direction of movement of an clock 
hand as it should be a0a1... aM-1. 

4. Placing on a scale of reading out elements is carried out. As PRCS are under 
construction according to M-sequence symbols, it is possible to define by cyc-
lic shifts a placing order on a scale n RE. Differently, m RE (m=1,2..., n) jm -th 
cyclic shift xjmg (x) M-sequences is put in conformity. Then the polynomial  
defining an order of placing on a scale n RE, looks like 

∑
=

=
n

m

jmxxr
1

)(
,
                                                    (11.4) 
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where jm ∈ 0,1..., M-1. Having put j1=0, according to (11.4) we will have 
the second, the third, ..., the n-th RE displaced (for definiteness in a di-
rection of movement of an hour hand) concerning the first RE on j2, j3..., 
jn elementary sites of an information path of a scale accordingly. 

Table 11.1 Primitive polynomials 

n h (x) 2 1nM = −  n h (x) 2 1nM = −  

1 x+1 1 9 x9 + x4 + 1 511 

2 x2 + x + 1 3 10 x10 + x3 + 1 1023 

3 x3 + x + 1 7 11 x11 + x2+1 2047 

4 x4 + x + 1 15 12 x12 + x7 + x4 + x3 + 1 4095 

5 x5 + x2 + 1 31 13 x13 + x4 + x3 + x + 1 8191 

6 x6 + x + 1 63 14 x14 + x12 + x11 + x + 1 16383 

7 x7 + x + 1 127 15 x15 + x + 1 32787 

8 x8 + x6 + x5 + x + 1 255 16 x16 + x5 + x3 + x2 + 1 65535 

In the given subsection placing RE along path PRCS with step to one quantum 
is considered. Possibility of other variants of placing will be shown in 11.3. 

In the converters of moving based on a method of reading, the code scale at a 
full turn should provide reception of number of the various code combinations 
equal to number of quanta of moving. We will show that it is true for converters of 
moving on the basis of circular PRCS. For this purpose we will prove the  
following statements. 

Statement 11.1 Circular PRCS allows to receive exactly M various n-digit code 
combinations corresponding to sequence from M of quanta of moving. 

Proof. We will consider a fragment of M-sequence from n consecutive symbols. It 
corresponds to some code combination ajaj+1... aj+n-1, reproduced from information 
path PRCS in the reading out knot from n elements. Reading out elements on 
PRCS are located with step to one quantum, position of the coded element could 
be any. After scale moving on k quanta (k <M) from an information path of a scale 
in the reading out knot the n-digit code combination aj+kaj+k+1 will be reproduced... 
aj+k+n-1. A condition of equality of these code combinations is the following one: 

1111 −+++++−++ = nkjkjkjnjjj aaaaaa KK .                                 (11.5) 

It means, that the M-sequence period is equaled k. 
It contradicts property of M-sequence, on which its period 2 1nM = −  [1]. 

Hence, these code combinations should be various. As the number of symbols of 
M-sequence is equal M to each moving PRCS on one quantum there corresponds 
the n-digit code combination and it will be equal M, as was to be shown. 

The statement 11.1 is defining as testifies to basic possibility of construction of 
converters of moving on the basis of PRCS with one information code path. 
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Statement 11.2. Resolution circular PRCS is defined by a parity: 

0360 / Mδ = .                                                      (11.6) 

The proof is obvious, as PRCS has a code path with number of quanta and 
2 1nM = −  allows receiving at a full turn of scale M various n-digit code  

combinations. 
Let us explain the method stated above, and also statements 11.1 and 11.2, on 

an example of construction three-digit circular PRCS with placing RE according 
to a polynomial 2( ) 1r x x x= + + . Such a scale is shown in Fig. 11.1. 

 

Fig. 11.1 Three-digit PRCS 

In an example for simplicity it is accepted n=3 and corresponding the primitive 
not resulted polynomial is chosen from table 11.1, 3( ) 1h x x x= + + , where 

h0=h3=1, h1=1, h2=0. Here length of M-sequence M=23-1=7, and M-sequence 
a=a0a1a2a3a4a5a6=0010111. At initial values of M-sequence a0=a1=0, a2=1, se-
quence symbols a3, a4, a5 and a6 are received according to a recursive  parity 
(11.2) which in the given example looks like, 3 1j j ja a a+ += ⊕ , j=0,1,2,3. Placing 

of three reading out elements RE1, RE2 and RE3 along a code path of a scale is set 

according to (11.4) polynomial 2( ) 1r x x x= + + . 

Table 11.2 Sequence of code combinations three-digit PRCS  

Positions PRCS RE1 RE2 RE3 The decimal code

0 0 0 1 1 

1 0 1 0 2 

2 1 0 1 5 

3 0 1 1 3 

4 1 1 1 7 

5 1 1 0 6 

6 1 0 0 4 
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Consistently fixing RE a three-digit code combination at scale moving on one 
quantum against a direction of movement of an hour hand, we receive seven vari-
ous three-digit code combinations. These code combinations, corresponding to 
seven various angular positions PRCS are resulted in Table 11.2. 

11.1.2   Pseudo-Random Code Scales for Converters of Linear 
Moving 

The method used at construction of circular PRCS, can be used with some  
additions by working out scales for converters of linear moving [5]. 

Let us state a method of construction of linear PRCS with resolution 
/(2 1)nDδ = − , where D - length of coded moving, and n - word length of a scale. 

For the set resolution it is necessary to provide possibility of reception with n RE 
at full moving of a scale of various 2 1nM = −  n-digit code combinations. 

It is provided by the solution of a problem of placing on PRCS RE which is re-
duced to a finding of suitable linearly independent set from n cyclic shifts of  
M-sequence. 

In difference from circular, linear PRCS is opened. Therefore, for maintenance 
of the set resolution of a scale /D Mδ = , it is necessary to receive corresponding 
sequence of symbols l, suitable for synthesis of an information path of linear 
PRCS. A problem of generation of sequence l we will solve in a general form with 
use of a recursive parity (11.2) and having assumed, that placing RE on PRCS is 
correct and is set by a polynomial (11.4). For definiteness initial values of symbols 
of sequence l, we will choose the following l0=l1 =... = ln-2=0, ln-1=1.  

The sequence l completely includes sequence a, and also some additional  
symbols, which number depends on placing on PRCS RE. 

Let us define a difference between numbers of cyclic shifts of the M-sequence 
corresponding to placing on a scale two next RE, as di = jm-jm-1, where i = 1,2..., 
 n-1, m =2,3..., n. 

Then the number of applications of a recursive parity (11.2), at the set entry 
conditions, necessary for sequence generation l can be received under the following 
formula 

∑
−

=

++−=
1

1

)1(2
n

i
i

n dnt
.                                             

(11.7)
 

Taking into account that  
1

1 1 2 1 1 1
1

( ) ( ) ( )
n

i i n m m n n n
i

d d d d j j j j j j j
−

− − −
=

= + + = − + + − + + − =∑ K K K K , 

the parity (11.7) in a final form becomes 

n
n jnt ++−= )1(2 .                                             

(11.8) 

The general number of symbols of sequence l with the account n set initial values 
can be found from a parity 

12 −+= n
n jT .                                                  

(11.9) 
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Let us formulate a method of construction of n-digit linear PRCS. 

1. Depending on demanded word length n linear PRCS from Table 11.1, the po-
lynomial h (x) degrees n gets out. 

2. Taking into account requirements to placing on a scale of reading out elements 
according to (11.4), the placing polynomial r (x) is formed. 

3. Using a recursive parity (11.2), taking into account (11.8) and (11.9), the  
sequence l is generated. 

4. Elementary sites (quanta) linear PRCS are carried out according to sequence sym-
bols l where to symbols of 1 sequence correspond active, and to symbols 0 - pas-
sive sites of an information path. For definiteness sequence symbols l are  
displayed on an information path of a scale from left to right in sequence l0l1... lT-1. 

Let us explain the proposed method of construction linear PRCS on an example of 
a four-digit scale which is resulted on Fig. 11.2. 

The information path of a scale is executed according to sequence symbols 
l=l0l1... l23=000100110101111000100110 lengths for 42 1 2 9 1 24n

nT j= + − = + − =  
which construction the primitive not resulted polynomial is used, 4( ) 1h x x x= + + , 

and symbols l4+j sequences l at initial values l0=l1=l2=l, l3=1 satisfy to a recursive 
parity, 

4 1j j jl l l+ += ⊕  j=0,1..., (t-1), where ( )42 ( 1) 2 4 1 9 20n
nt n j= − + + = − + + = . 

In the resulted example placing of four RE along a path linear PRCS is defined by 
a polynomial 2 5 9( ) 1r x x x x= + + + . 

 

Fig. 11.2 Four-digit linear PRCS 

Table 11.3 Sequence of code combinations four-digit linear PRCS 

Positions 
PRCS 

RE1 RE2 RE3 RE4 
The decimal

code 
Positions

PRCS 
RE1 RE2 RE3 RE4

The decimal 
code 

0 0 0 0 1 1 8 0 0 1 0 2 

1 0 1 1 0 6 9 1 1 1 1 15 

2 0 0 1 1 3 10 0 1 0 0 4 

3 1 0 0 1 9 11 1 1 0 0 12 

4 0 1 1 1 7 12 1 1 0 1 13 

5 0 1 0 1 5 13 1 0 1 1 11 

6 1 0 1 0 10 14 1 0 0 0 8 

7 1 1 1 0 14 - - - - - - 

Fixing reading out elements RE1, RE2, RE3 and RE4, consistently code combi-
nation at moving linear PRCS on one elementary site (it is from right to left)  
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received fifteen various four-digit code combinations. These code combinations, 
corresponding to fifteen various positions PRCS are resulted in Table 11.3. 

11.2   Composite Code Scales 

11.2.1   Composite Code Scales for Converters of Angular Moving 

Resolution angular and linear PRCS on the basis of M-sequences are defined by 
size of period M and are accordingly equal to 0360 / Mδ = and /D Mδ = . For 
synthesis CS, allowing building on the basis converters of moving with wider spec-
trum of resolution, we will enter concept of composite binary sequence of p order 
(Cp-sequence) which we will use for reception of drawing of a code path of a scale. 
Scales on the basis of Cp-sequences we name composite code scales (CCS) [6]. 

For Cp-sequence synthesis we define polynomial H (x) degrees N with factors 
of field Galua GF (2), as kind expression 

∏
=

=
p

k
k xhxH

1

)()( .
                                              

(11.10) 

Here hk (x) are defined according to (11.1) and allow to receive M-sequences of 
length, 2 1kn

kM = −  and 
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=

.                                         (11.11) 

Let us notice, that at p=1 the composite sequence turns to classical M-sequence. 
Symbols of Cp-sequence A satisfy to a recursive parity 
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where the sign Ξ denotes summation on the module two, and indexes at  
Cp-sequence symbols undertake on module R. Initial values of symbols of Cp-
sequence A0A1... AN-1 get out taking into account that GGD [tj (x), H (x)] =1, 
where GGD is the greatest general divider, and 
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+=

1

0
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N

i

i
jij xAxt , j=0,1..., R-1.                                   (11.13) 

For the majority of practical applications (11.12) it is enough to take tj (x) =1, i.e. 
A0=A1 =... AN-2=0, AN-1=1. 

Period R of Cp-sequence depends on degrees of polynomials hk (x) and from a 
polynomial of initial values of symbols of Cp-sequence tj (x). If all nk is  
represented by mutually simple numbers, and GGD [tj (x), H (x)] = 1, 

∏
=

=
p

k
kMR

1 .                                                    
(11.14) 
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Cp-sequences, as well as M-sequences, belong to the class of cyclic codes and can 
be set by a generating polynomial of a kind 

( ) ( 1) / ( )RG x x H x= + ,                                        (11.15) 

where H(x) and R are calculated according to expressions (11.10) and (11.14). 
Therefore, for each Cp-sequence of length R exists exactly R various cyclic shifts 
which can be received by multiplication of generating polynomial G (x) on xj, 
where j=0,1..., R-1. 

The analysis of (11.10) and (11.11) allows to draw a conclusion that the  
number of polynomials of N-th degree H(x) depends both on number and degrees 
of primitive not resulted polynomials h(x), participating in construction H(x). 
From (11.12) and (11.14) it is visible also, that periods R of Cp-sequences  
received with use various H(x) of identical degree, are various. 

In Table 11.4 values nk degrees of polynomials h(x) and periods Mk constructed 
on their basis of M-sequences, and also possible variants of reception of degrees N 
of polynomials H(x) and values R of the periods of Cp-sequences which can be 
used for construction of composite code scales to word length 16 inclusive are  
resulted. 

Table 11.4 Degree and the periods of Cp-sequences 

nk, N Mk 
1

p

k
k

N n
=

=∑  

1

p

k
k

R M
=

= ∏  

2 3 - - 

3 7 - - 

4 15 - - 

5 31 (2+3) 21 

6 63 - - 

7 127 (2+5), (3+4) 93, 105 

8 255 (3+5) 217 

9 511 (2+7), (4+5) 381, 465 

10 1023 (2+3+5), (3+7) 651, 889 

11 2047 (2+9), (3+8), (4+7), (5+6) 1533, 1785,1905, 1953 

12 4095 (2+3+7), (3+4+5), (5+7) 2667, 3255, 3937 

13 8191 (2+11), (3+10), (4+9), (5+8), (6+7) 6141, 7161, 7665, 7905, 8001 

14 16383 (2+5+7), (3+4+7), (3+11), (5+9) 11811, 13335, 14329, 15841 

15 32767 (2+13), (3+5+7), (4+11), (5+8) 24573, 27559, 30705, 32385 

16 65535 
(2+3+11), (2+5+9), (5+11), (3+5+8), 

(4+5+7), (7+9), (3+13)  
42987, 47523, 63457, 55335, 

59055, 64897, 57337 

Let's formulate a method of construction N-digit circular СCS. 

1. Depending on demanded word length of N and resolution R of a scale under  
tables 11.1 and 11.4 according to (11.10) polynomial H (x) degrees N is 
formed. 

2. Using a recursive parity (11.12) sequence A is generated. 
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3. Elementary sites (quanta) of a scale are made according to symbols of  
Cp-sequence A where to symbols of 1 sequence correspond active, and to sym-
bols 0 – passive sites of an information code path. For definiteness Cp-
sequence symbols are displayed on information CP in a direction of movement 
of an clock hand in sequence A0A1 … AR-1. 

4. Placing on a scale of reading out elements is carried out. As CCS are under 
construction according to Cp-sequence symbols, it is possible to set by cyclic 
shifts a placing order on scale N of reading out elements. Differently, m RE 
(m=1,2, …, N) jm-th cyclic shift of Cp-sequence ( )mj

kx g x is put in  

conformity ( )mj
kx g x . 

Then the polynomial defining an order of placing N of reading out elements on 
CCS, looks like 

∑
=

=
N

m

jmxxr
1

)( ,
                                                   (11.16) 

where jm ∈0,1..., R-1. Having put j1=0, according to (2.16) we will have the 
second, the third..., N-th RE displaced (for definiteness in a direction of movement 
of an clock hand) concerning the first RE on j2, j3..., jN  elementary sites of an  
information path of a scale accordingly. 

The problem of placing RE on CCS will be considered and solved in (11.3). In 
a basis of its solution the finding of linearly independent set of cyclic shifts of  
Cp-sequence is necessary. 

Let us show, that circular CCS allow to build on the basis converters the mov-
ing using a method of parallel reading. For this purpose we will formulate the  
following statements. 

Statement 11.3. Composite code scales allow to receive exactly R various  
N-digit code combinations corresponding to sequence from R of quanta of moving. 

Statement 11.4. Resolution circular CCS is defined by a parity  

0360 / Rδ = .                                                 (11.17) 

Proofs of these statements are executed similarly to proofs of statements 11.1 and 
11.2. 

Let us show a method of construction circular CCS as an example, for simplicity 
having limited to five categories of transformation. From Tables 11.1 and 11.4 it is 
visible that five-digit CCS can be received only in one way with use of two poly-
nomials h (x), according to the second and third degrees used for generation of 
symbols of composite sequence of the second order with period R=21. 

The resulted five-digit circular CCS is shown in Fig. 11.3.  
At scale moving cyclically on one elementary site, for example, against a direc-

tion of movement of an clock hand, from exits of reading out elements RE1, RE2, 
RE3, RE4 and RE5 five-digit code combinations are formed. These code combina-
tions corresponding to twenty one various angular positions CCS are resulted in 
Table 11.5. 
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Fig. 11.3 Five-digit CCS 

Table 11.5 Sequence of code combinations five- digit CCS 

Positions 
CCS 

RE1 RE2 RE3 RE4 RE5 
The decimal

code 
Positions

CCS 
RE1 RE2 RE3 RE4 RE5

The decimal 
code 

0 0 0 1 1 1 7 11 0 0 1 0 0 4 

1 0 0 1 1 0 6 12 1 0 1 0 1 21 

2 0 1 1 1 1 15 13 0 1 0 0 0 8 

3 0 1 1 0 0 12 14 0 1 0 1 0 10 

4 1 1 1 1 1 31 15 1 0 0 0 0 16 

5 1 1 0 0 0 24 16 1 0 1 0 0 20 

6 1 1 1 1 0 30 17 0 0 0 0 1 1 

7 1 0 0 0 1 17 18 0 1 0 0 1 9 

8 1 1 1 0 1 29 19 0 0 0 1 1 3 

9 0 0 0 1 0 2 20 1 0 0 1 1 19 

10 1 1 0 1 0 26 - - - - - - - 

The information path of a scale is executed according to symbols К2-sequence 
A=A0 A1... A20 = 000011111010100110001 lengths R=21 for which construction 
the polynom is used, 2 3 5 4

1 2( ) ( ) ( ) ( 1)( 1) 1H x h x h x x x x x x x= = + + + + = + +  and 

symbols A5+j K2- sequence at initial values A0=A1=A2=A3=0, A4=1 satisfy to a  
recursive parity, 5 4j j jA A A+ += ⊕  (j=0,1..., 15). 

In an example placing of five RE along the path, CCS is defined by a  
polynomial 2 4 6 8( ) 1r x x x x x= + + + + . 

11.2.2   Composite Code Scales for Converters of Linear Moving 

Let us consider construction of N-digit linear CCS with resolution /D Rδ = , 
where D is the length of coded moving, and R is defined according to expression 
(11.14). For the set resolution it is necessary to provide possibility of reception 
with N RE at full linear moving of scale R of various N-digit code combinations. 
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It is provided by the solution of a problem of placing on CCS RE which is  
reduced to a finding of suitable linearly independent set from N cyclic shifts of  
Cp-sequence. 

For achievement of resolution of a scale δ, it is necessary to receive corres-
ponding sequence of symbols L, suitable for synthesis of an information path li-
near CCS. For reception of sequence L we will take advantage of a recurrent pari-
ty (11.12) and we will assume that placing RE on CCS is correct and is set by a 
polynomial (11.16). For definiteness initial values of symbols of sequence L we will 
choose following L0=L1 =... =Ln-2=0, Ln-1=1. 

Sequence L completely includes sequence A, and also some additional  
symbols, whose number depends on placing on linear CCS RE. 

By analogy to a method of construction linear PRCS, considered in 11.2, we 
will define a difference between numbers of cyclic shifts of the Cp-sequence cor-
responding to placing on a scale two next RE, as di = jm-jm-1, where i = 1,2..., N-1, 
m = 2,3..., N. 

Then the number of applications of a recursive parity (11.12), at the set of ini-
tial values of the symbols, necessary for generation of sequence L, can be received 
under the following formula 

∑
−

=
+−=

1

1

N

i
ik dNRt

.                                          
(11.18)

 

Taking into account that 

1

1 1 2 1 1 1
1

( ) ( ) ( )
N

i i N m m N N N
i

d d d d j j j j j j j
−

− − −
=

= + + = − + + − + + − =∑ K K K K . 

The parity (11.18) in a final form becomes 

Nk jNRt +−= .                                            (11.19) 

The general number of symbols of sequence L taking into account N set of  
initial values can be found from a parity 

NK jRT += .                                                    (11.20) 

Let us formulate a method of construction of N-digit linear CCS. 

1. Depending on demanded word length N and resolution R of a scale from tables 
11.1 and 11.4 according to (11.10), polynomial H (x) degrees N is formed. 

2. Taking into account requirements to placing on a scale of reading out elements 
according to (11.16), the placing polynomial r (x) is formed. 

3. Using a recursive parity (11.12), taking into account (11.19) and (11.20),  
sequence L is generated. 

4. Elementary sites (quanta) of a scale are executed according to symbols of  
sequence L where to symbols of 1 sequence correspond active, and to symbols 
0 passive sites of an information path. 
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For definiteness symbols of sequence L are displayed on an information code path 
from left to right in sequence L0 L1... Ltk-1. 

Let us explain the method of construction stated above linear CCS on an  
example of a five- digit scale which is resulted on Fig. 11.4. 

 

Fig. 11.4 Five- digit linear CCS 

The information path of a scale is executed according to symbols  of sequence 
L = L0 L1... L30 = 0000111110101001100010000111110 lengths Tk=31 for which 
construction the following polynomial should be used, 

2 3 5 4
1 2( ) ( ) ( ) ( 1)( 1) 1H x h x h x x x x x x x= = + + + + = + +  and symbols L5+j of se-

quence L at initial values L0=L1=L2=L3=0, L4=1 satisfy to a recursive parity, 

5 4j j jL L L+ += ⊕  (j=0,1..., 25). 

In an example placing of five RE along a code path is defined by a polynomial 
3 6 10( ) 1r x x x x x= + + + + . 

At scale moving cyclically on one elementary site, for example from right to 
left, from exits of reading out elements RE1, RE2, RE3, RE4 and RE5 five-digit 
code combinations are formed. These code combinations corresponding to twenty 
one various position linear CCS are resulted in Table 11.6. 

Table 11.6 Sequence of code combinations five-digit linear CCS 

Positions 
CCS 

RE1 RE2 RE3 RE4 RE5 
The decimal

code 
Positions

CCS 
RE1 RE2 RE3 RE4 RE5

The decimal 
code 

0 0 0 0 1 1 3 11 0 1 0 0 0 8 

1 0 0 1 1 0 6 12 1 0 1 0 0 20 

2 0 0 1 1 1 7 13 0 0 1 0 0 4 

3 0 1 1 0 0 12 14 0 1 0 1 0 10 

4 1 1 1 1 0 30 15 1 1 0 0 1 25 

5 1 1 1 0 1 29 16 1 0 0 0 1 17 

6 1 1 0 1 1 27 17 0 0 1 0 1 5 

7 1 1 1 0 0 28 18 0 0 0 0 1 1 

8 1 0 0 0 0 16 19 0 1 0 1 1 11 

9 0 1 1 1 0 14 20 1 0 0 1 0 18 

10 1 0 0 1 1 19 - - - - - - - 

11.3   Placing of Reading Elements on a Recursive Code Scale 

Not any variant of placing RE on RCS allows to receive at a full turn of a scale 
distinguishable code combinations, i.e. the recursive sequences corresponding to 
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signals, removed with RE at moving RCS, appear linearly dependent. Hence, the 
solution of the problem of placing RE on RCS is reduced to a finding of linearly 
independent set from cyclic shifts RS, and capacity of set is equal to number  
of RE.  

11.3.1   Algorithm of Placing of Reading Elements on a Recursive 
Code Scale 

The algorithm is based on use of property RS consisting that any cyclic shift RS is 
unequivocally defined by its initial block from among the symbols, equal to word 
length RCS. As M-sequences are a special case of Cp-sequences (for p = 1), we 
will consider algorithm in designations accepted for composite sequences. As 
pseudo-random and composite sequences are linear in relation to the operator of 
summation on the module two, the algorithm of placing N RE on RCS is reduced 
to finding of a suitable linearly independent set from N cyclic shifts RS and  
includes following steps [7]. 

1. The location of reading elements on RCS pursuant to expression (11.16) is  
executed. 

2. Each cyclic shift RS xIfG (x), f = l, 2, …, N, initial block from N symbols  
BIf = AIf A1+If … AN-1+If, where a sum of indexes for sequence symbols takes on the 
modulo R. 

3. The formation of the square matrix B is executed, where lines are initial blocks 
BIf, i.e 

1 1 1 11 1

1 1

1 1

...

... ...

... .

... ...

...

f f f f

N N N N

I I I m I

I I I m I

I I I m I

B A A A

B B A A A

B A A A

+ − +

+ − +

+ − +

= =

                                           

(11.21)

 

4. The determinant of the matrix (11.21) is calculated. 
5. If the determinant of the matrix is not to equal zero, the variant of the RE loca-

tion accepted pursuant to (11.16) is correct. If determinant is equal to zero, it is 
necessary to execute a choice of other variant. 

Let us explain the algorithm stated above on an example of four-digit linear PRCS 
which is resulted in Fig. 11.2. 

It is necessary to place on a scale four RE so that at full moving of a scale to  
receive fifteen various four-digit code combinations. 

Let placing of four RE along a path of linear PRCS is set by a polynomial 
2 8 12( ) 1r x x x x= + + + , where j1=0, j2=2, j3=8, j4=12.  

To each cyclic shift 31 2 4, , ,jj j jx x x x of M-sequence we will put in conformity 

the initial block from four symbols (fig. 11.2 see), i.e. 



276 A. Ojiganov
 

1 2

1 2

3 4

8 12

0 1 2 3 2 3 4 5

8 9 10 11 12 13 14 15

l 0001, l 0100,

l 0101, l 1110.

j j
j j

j j
j j

x l l l l x l l l l

x l l l l x l l l l

⇒ = = ⇒ = =

⇒ = = ⇒ = =
 

From the found initial blocks 
1 2 8 12

l , l , l , lj j j j we will generate a matrix 

1

2

8

12

l 0001
l 0100

B
l 0101

1110l

j

j

j

j

= =
. 

Analyzing the received matrix, we can see, that its third line turns out as a result of 
summation on the module of the two for first and second lines. Hence, by means 
of elementary operations over lines of a matrix in it two identical lines or a line 
equal to zero can be received. 

As the determinant of such matrix is equal to zero between its lines, there is a 
linear dependence which testifies to presence of linear communication between 
corresponding cyclic shifts of M-sequence. It means, that the considered placing 
of four RE on PRCS with the number of quanta equal to 15, does not allow to  
receive at full moving of a scale of 15 various four-digit code combinations. 

In Table 11.7 the sequence of code combinations four-digit PRCS (Fig. 11.2) is 
resulted at a variant of placing RE along a scale according to a polynomial 

2 8 12( ) 1r x x x x= + + + . 

Table 11.7 Sequence of code combinations four-digit linear PRCS 

Positions 
PRCS 

RE1 RE2 RE3 RE4 
The decimal

code 
Positions

PRCS 
RE1 RE2 RE3 RE4

The decimal 
code 

0 0 0 0 1 1 8 0 0 0 0 0 

1 0 1 1 1 7 9 1 1 0 1 13 

2 0 0 0 1 1 10 0 1 1 1 7 

3 1 0 1 0 10 11 1 1 0 0 12 

4 0 1 1 0 6 12 1 1 0 1 13 

5 0 1 1 0 6 13 1 0 1 0 10 

6 1 0 1 1 11 14 1 0 1 1 11 

7 1 1 0 0 12 - - - - - - 

The table analysis shows, that to some various positions of the coded element 
there correspond the same code combinations, for example, zero and to the 
second, to the first and the tenth, the third and the thirteenth, the fourth and the 
fifth, the sixth and the fourteenth, the seventh and the eleventh, the ninth and the 
twelfth. 

As the problem of placing RE on PRCS has appeared not solved having ex-
cluded from consideration those variants of placing which are equivalent previous, 
it is necessary to choose a new variant of placing. 
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Let now placing of four RE along a path linear PRCS is set by a polynomial 
2 5 9( ) 1r x x x x= + + + , where j1=0, j2=2, j3=5, j4=9.  

To each cyclic shift 31 2 4, , ,jj j jx x x x of M-sequence we will put in conformity 

the initial block from four symbols (Fig. 11.2), i.e. 

1 2

1 2

3 4

5 9

0 1 2 3 2 3 4 5

5 6 7 8 9 10 11 12

l 0001, l 0100,

l 0110, l 1011.

j j
j j

j j
j j

x l l l l x l l l l

x l l l l x l l l l

⇒ = = ⇒ = =

⇒ = = ⇒ = =
 

From the found initial blocks 
1 2 5 9

l , l , l , lj j j j
we will generate a matrix 

1

2

5

9

l 0001
l 0100

B
l 0110

1011l

j

j

j

j

= =
. 

Having done elementary operations over lines of matrix B, we will receive an in-
dividual matrix. As the determinant of such matrix is equal to digit between its 
lines linear dependence is absent that testifies also to absence of linear communi-
cation between corresponding cyclic shifts of M-sequence. It means, that the con-
sidered placing of four RE on PRCS with the number of quanta equal 15 allows to 
receive at full moving of a scale of 15 various four-digit code combinations. 

In table 11.3 the sequence of four-digit code combinations for 15 various posi-
tions PRCS (fig. 11.2) is resulted, at a variant of placing RE along a scale defined 
according to a polynomial 2 5 9( ) 1r x x x x= + + + . 

The table analysis shows, that various positions of a scale correspond to various 
code combinations. 

11.3.2   Reading Elements Location on the Pseudo-Random Code 
Scale with a Constant Step 

At the solution of a problem of placing we will apply algebra of final fields GF 
(2n) which are generated by means of not resulted polynomials of degree n. At use 
of primitive not resulted polynomials h (x) simple field GF (2) can be expanded to 
field GF (2n) at the expense of root α of a polynomial h (x). 

We show that there is mutual conformity between initial blocks 

1 1a ( ... )j j j n ja a a+ − += of M-sequence cyclic shifts and elements jα , j=0,1..., M-1 of 
GF (2n) [8].  

We can write symbols of an initial block aj as 
1

0

1

1 1
0

.....................

n

j j i n i
i

n

n j j i i
i

a a h

a a h

−

+ −
=

−

+ − + −
=

= ⊕

= ⊕

∑

∑

.                                           (11.22) 



278 A. Ojiganov
 

It can be presented in the matrix form  

1 2 1

2 3 2

01

...

...

................

...

a .

j n j n

j n j n
j

j n j

a a h

a a h

ha a

T h

− + − −

− + − −

− −

= × = ×

                              

 (11.23) 

All possible initial blocks of M-sequence need to be interpreted as the set of the 
GF (2n) elements of, i.e.  

ja { } (2 ) \{0}.j nGFα⇔ =
                                    (11.24) 

Elements GF (2n) are all binary sets which can be considered as the linear space of 
the dimension n over GF (2). As it is mentioned above, in order to generate (2n) 
elements it is convenient to use any primitive root a giving representation of non 
zero elements of GF (2n) in form of cyclic multiplicity group on degrees of the 
elementα. Thus α0=00... 01, α1=00... 010...., αn-1=10... 00, 

1

0

, 0,1,..., .
n

n j j i
i

i

h j M nα α
−

+ +

=

= ⊕ = −∑                       (11.25) 

As a root h (x) we can use a binary set α1=00... 010 as far as such an element is 
always primitive.  

We define linear isomorphous transformation of elements of GF (2n) by  
equation  

ja , 0,1,..., 1.jT j Mα= = −                                   (11.26) 

For the location of m RE on PRCS with a constant step d, it is necessary to ensure 
linear independence between the same cyclic shifts of M-sequence and  
elements of GF (2n).  

At the location RE with a constant step the equation (11.4) will have the form 

1

0

( ) ,
n

jd

j

r x x
−

=

=∑                                                     (11.27) 

where d = 1,2..., k; k =] L/n [. 
We shall research the subset of GF (2n) elements α0, αd..., αjd..., α(n-1) d. As it is 

known from the theory of algebraic fields [9], all linear dependencies in any cyclic 
group with β=αd are determined according to minimal polynomial M β(x): 

1
2

( )
0

( ),
i

l

x
i

M xβ β
−

=

= +∏                                         (11.28) 

where l is period of a cyclic group containing element β. 
From the work [9], it is followed that the RE location on PRCS is correct if, 

and only if 
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(x)deg M .nβ⎡ ⎤ =⎣ ⎦                                            (11.29) 

Thus it is enough to evaluate only the degree of polynomial M β(x). 
Using Ferma theorem, we can set: 

(x)deg M min{ : 0, 2 ,mod ( 2 1)} .l nl l d d M lβ⎡ ⎤ = > = = − =⎣ ⎦       
 (11.30) 

It is known [9] that l = Wq (2), where Wq (2) is multiplicity order 2 to module 
q = M / GCD [M, d].  

For practical using (11.28 - 11.30) it is required to evaluate Wq (2). The me-
thods of the calculation of the multiplicity order are presented in [9]. Following 
properties are used to simplify the calculations.  

1. If q = ∏qi, where qi = pi
li are any degrees of prime numbers pi, then 

(2) LCM{ (2)}iqqW W= , 

where LCM - the least common multiply of numbers Wqi (2). 
2. The multiplicity orders for numbers of a form 2m-1 and 2m+1 are equal  

respectively to m and 2m.  
3. The multiplicity order for any prime number q such that GCD [2, q] = 1 is a  

divider of number q - 1. 

We show the application of an equation (11.29) to check the correctness of the 
constant step d=3 location RE on four-digit PRCS.  

Initial data for the account are primitive polynomial h (x) =x4+x+1, period of 
the M-sequence M = 24-1 = 15 and polynomial location RE r (x) =x0+xd+x2d+x3d = 

=1+x3+x6+x9.  
It is necessary to evaluate the size of the multiplicity order Wq (2), where 

q=M/GCD[M, d] = 15 / GCD [15,3] =15/3=5.  
As number 5 has form 2m + 1 where m=2 then Wq (2) =2m=4, that corresponds 

to correctness of the location on PRCS from 15 quantum of four RE with the  
constant step d=3.  

In Fig. 11.5 of circular PRCS is shown. Along a scale four RE are located with 
constant step d=3. 

The information track of the scale is executed according to symbols of M-
sequence a = a0a1... a14 = 000100110101111 of the period M=15 for construction 
of which the primitive polynomial h (x) =x4+x+1 is used and the symbols a4+j of 
the M-sequence at initial values a0=a1=a2=0, a3=1 satisfy to the recursive equation 
a4+j=a1+j ⊕ aj, j=0,1..., 10.  

Consistently fixing RE a four-digit code combination at scale moving on one 
quantum against a direction of movement of an hour hand, we receive 15 various 
four-digit code combinations. These code combinations corresponding to 15  
various angular positions PRCS are resulted in Table 11.8. 
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Fig. 11. 5 Circular four-digit PRCS 

Table 11.8 Sequence of code combinations four-digit PRCS 

Positions 
PRCS 

RE1 RE2 RE3 RE4 
The decimal

code 
Positions

PRCS 
RE1 RE2 RE3 RE4

The decimal 
code 

0 0 1 1 1 7 8 0 1 1 0 6 

1 0 0 1 0 2 9 1 1 0 1 13 

2 0 0 0 1 1 10 0 1 0 0 4 

3 1 1 1 1 15 11 1 1 0 0 12 

4 0 1 0 1 5 12 1 0 1 1 11 

5 0 0 1 1 3 13 1 0 0 1 9 

6 1 1 1 0 14 14 1 0 0 0 8 

7 1 0 1 0 10 - - - - - - 

11.3.3   Reading Elements Locations on the Composite Code Scale 
with a Constant Step 

In common case set of initial blocks Aj=AjA1+j... AN-1+j j=0,1..., R-1 of all cyclic 
shifts for any Cp-sequences isomorphousely to a subset of elements of an  
extended field Galua GF (2N) where N is calculated from (11.11) [10].  

It is possible to spread all adduced in 11.3.2 to Cp-sequences. Thus equation 
(11.26) can be written in the following form 

jA , 0,1,..., 1j
kT S j R= = − ,                                       (11.31) 

where  

Tk

j N j

j N j

j N j

A A

A A

A A

=

− + −

− + −

− −

1 2

2 3

1

...

...

................

...

                                              (11.32) 
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and Sj = ϕ(α1..., αk..., αp) j (ϕ is the function of linear transformation) αk-primitive 
roots of the polynomial hk (x) are calculated with using of the Chine’s Theorem.  

Consider location of N RE on CCS with a constant step d. For it we transform 
the equation (11.26) to following form  

r x x jd

j

N

( ) ,=
=

−

∑
0

1

                                                  (11.33)  

where d = 1,2..., f, f =] R / N [. We formulate the following statement. For binary 
Cp-sequences with period R (R is determined according to (11.14)) set of initial 
blocks of symbols Amd sequences corresponding cyclic shifts are linearly  
independent if and only if when 

[ ]kqW (2) deg ( ) , 1, 2,....,kh x k= =                                (11.34) 

where Wqk (2) - multiplicity order of number 2 on module qk = Mk / GCD [Mk, d].  
Now consider the set of polynomials form 

( ) mod ( ), 0,1,..., 1.md
mdR x x H x m N= = −                      (11.35) 

It is possible to show that Rmd (x) represent the polynomial record of a subset Snd 
of set of elements Sj, and the conformity between Smd and Amd is defined by  
equation (11.31).  

For any m it is possible to record 

( ) ( ) ( ),md
mdx Q x H x R x= +                                (11.36) 

i.e. 

( ) ( ) ( ), 0,1,..., 1.md
mdR x x Q x H x m N= + = −                     (11.37) 

Applying to (11.27) the reduction to module polynomial hk (x) where k = 1,2..., we 
receive 

( ) ( ) mod ( )md
md k kR x x h x=                                 (11.38) 

for all m = 0,1..., N-1. 
It is possible also to show, that (Rmd) k (x) are records in polynomial form of a 

subset (αmd) k of set of elements αj, j=0,1..., Mk-1 and the relation between (αmd) k 
and amd is defined by equation (11.26).  

Thus, to check correctness of the location of N RE on CCS with a constant step 
d, it is necessary to evaluate the linear independence of set of initial blocks aj for 
each k of the M-sequences separately. Conclusion about the correctness of the  
location (11.33) is done after a check of the condition (11.34).  

Now we show application of the equation (11.34) for check correcting of  
location with the constant step d=4 RE on five-digit CCS.  

Initial data are period M1 = 22-1 =3, the M-sequence constructed on the basis of 
the primitive polynomial h1 (x) = (x2+x+1), period M2=23-1=7 the M-sequences, 
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constructed on the basis of primitive polynomial h2 (x) = (x3+x+1), the polynomial 
of five RE location r (x) =x0+xd+x2d+x3d+x4d = 1+x4+x8+x12+x16.  

It is necessary to evaluate of multiplicity orders Wq1(2) and Wq2(2), where 
q1=M1/GCD[M1,d]=3/GCD[3,4]=3/1=3, q2=M2/GCD [M2,d]=7/GCD [7,4]=7/1=7. 
We have Wq1 (2) =2, Wq2 (2) = 3 that testifies about the correcting of the location 
on CCS from 21 elementary quantum five RE with the constant step d=4. 

In Fig. 11.6 of circular CCS is shown. Along the scale five RE are located with 
the constant step d=4. 

 

Fig. 11.6 Circular five-digit CCS 

Table 11.9 Sequence of code combinations five-digit CCS 

Positions 
CCS 

RE1 RE2 RE3 RE4 RE5 
The decimal

code 
Positions

CCS 
RE1 RE2 RE3 RE4 RE5

The decimal 
code 

0 0 0 1 1 1 7 11 0 0 1 0 0 4 

1 0 0 1 1 0 6 12 1 0 1 0 1 21 

2 0 1 1 1 1 15 13 0 1 0 0 0 8 

3 0 1 1 0 0 12 14 0 1 0 1 0 10 

4 1 1 1 1 1 31 15 1 0 0 0 0 16 

5 1 1 0 0 0 24 16 1 0 1 0 0 20 

6 1 1 1 1 0 30 17 0 0 0 0 1 1 

7 1 0 0 0 1 17 18 0 1 0 0 1 9 

8 1 1 1 0 1 29 19 0 0 0 1 1 3 

9 0 0 0 1 0 2 20 1 0 0 1 1 19 

10 1 1 0 1 0 26 - - - - - - - 

The code track of the scale is formed according to symbols C2-sequences 
A = A0 A1... A20 =000011111010100110001 with the period R=21 for construction 
of which the polynomial H (x) =h1 (x) h2 (x) = (x2+x+1) (x3+x+1) = x5+x4+1 is used 
and the symbols A5+j C2-sequences at initial significance A0=A1=A2=A3=0, A4=1 sa-
tisfy to the recursive equation A5+j=A4+j⊕Aj, j=0,1..., 15. 
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Consistently fixing RE a five-digit code combination at scale moving on one 
quantum against a direction of movement of an clock hand, we receive 21 various 
five-digit code combinations. These code combinations corresponding to 21  
various angular positions CCS are resulted in Table 11.9. 

11.4   Correcting Possibilities of Recursive Code Scales 

Increase of converters reliability parameters can be reach by using CS with a possi-
bility of formation of correcting codes. Known methods do not permit to solve this 
task without increase of converters dimensions as the correcting digits of conven-
tional scales can be realized at the expense of additional control tracks using and the 
introduction of redundancy on the number RE. Recursive CS permit to form codes 
correcting and (or) discovering error of reading only at the expense of the redundan-
cy introduction on number RE without using of additional control tracks. 

So, that the code had correcting possibilities, it alongside with information 
tracks should contain the certain number of correcting symbols. Values of such 
symbols are determined of modulo-two addition of some fixed information sym-
bols. The number of correcting symbols in a code is determined by the number of 
information symbols and the given number found out and (or) corrected errors. 
The methods of correcting sequences construction are known from the literature 
on the coding theory. 

In the basis of correcting sequences construction using in RCS property of  
«shift and addition» of pseudo-random and composite sequences is put. Using this 
property, we formulated the technique of the number determination and location for 
additional correcting RE along an information track which consists in the following 
[11]. 

1. Pursuant to technical requirements, the code choice is executed which should 
be formed by information and correction RE. The code can execute discovering 
and correction of determined number of errors. 

2. The correcting sequence which represents the binary word consisting from q 
symbols is constructed. The number of correcting symbols q in a correction 
code is determined by the number of information symbols N and the given 
number discovering and (or) correcting errors. Numbers N and q correspond to 
numbers of information and correction RE.  

3. Pursuant to the correcting sequence from (11.6), sums rl (x), where l=1,2, …,q, are 
formed including cyclic shifts RS. Shifts appropriate these information RE which 
are used for the formation of information symbols entering in l-th correcting rule. 

4. Each sum rl (x) is divided on multinomial form (11.10) on the part of junior de-

grees on modulo-two up to receptions the rest in a form of the one-member lSx . 
Degree Sl if it exceeds size R-1 undertakes on a module R. 

5. The correction of l-th RE location along an information track RCS displaces 
about first information RE on number Sl elementary sites of a scale δ. 

In Fig. 11.7 the circular four-digit PRCS with four information RE and three  
correction REc is shown. 
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Fig. 11.7 Four-digit PRCS with four information RE and three correction REc 

The information track of the scale is formed according to symbols of  
M-sequence a = a0a1... a14 = 000100110101111 of the period M=15 for construc-
tion of which the primitive polynomial h (x) =x4+x+1 is used and the symbols a4+j 
of the M-sequence at initial values a0=a1=a2=0, a3=1 satisfy to the recursive  
equation a4+j=a1+j ⊕ aj (j=0,1..., 10). 

The location order of four information RE along the track PRCS is determined by 
multinomial 2 3( ) 1r x x x x= + + + , here the second, third and fourth RE are biased 

concerning first RE (j1 = 0) on j2 = 1, j3 = 2 and j4 = 3 elementary sites δ=360°/15 of a 
scale respectively. The correction RE number and their location along CT is deter-
mined pursuant to technique adduced above. The correcting sequence is received 
with the help of Hamming equations for the code correcting the single error. First, 
second and third correction RE are locate along the information track PRCS in a di-
rection of clock hand on S1=7, S2=13 and S3=11 of elementary sites. 

Consistently fixing RE a seven-digit code combination at scale moving on one 
quantum against a direction of movement of an clock hand, we receive 15 various 
seven-digit code combinations. These code combinations corresponding to 15 var-
ious angular positions PRCS are resulted in Table 11.10. 

Table 11.10 Sequence of seven-digit code combinations four-digit PRCS 

Positions 
PRCS 

REс1 REс2 RE1 REс3 RE2 RE3 RE4
Positions

PRCS 
REс1 REс2 RE1 REс3 RE2 RE3 RE4 

0 1 1 0 1 0 0 1 8 0 1 0 0 1 0 1 

1 0 1 0 1 0 1 0 9 0 1 1 0 0 1 1 

2 1 0 0 1 1 0 0 10 0 0 0 1 1 1 1 

3 0 0 1 1 0 0 1 11 1 1 1 1 1 1 1 

4 1 0 0 0 0 1 1 12 0 0 1 0 1 1 0 

5 1 1 0 0 1 1 0 13 0 1 1 1 1 0 0 

6 1 0 1 0 1 0 1 14 1 1 1 0 0 0 0 

7 1 0 1 1 0 1 0 - - - - - - - - 
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Fig. 11.8 Five-digit RCS with five information RE and one control REc 

There are the first, second and fourth positions of the code corresponding to cor-
recting symbols, and the third, fifth, sixth and seventh positions to information sym-
bols. The analysis of code combinations shows that between the correcting and  
information positions execute Hamming equations for a code correcting single error. 

Application of other correcting sequences using rule of check on parity with the 
introduction of appropriate redundancy on number RE will allow forming codes 
with required correction properties.  

In Fig. 11.8 the circular five-digit RCS with five information RE and one  
control REc is shown. 

The code track of the scale is formed according to symbols C2-sequences 
A = A0 A1... A20 =000011111010100110001 with the period R=21 for construction 
of which the polynomial H (x) =h1 (x) h2 (x) = (x2+x+1) (x3+x+1) = x5+x4+1 is used 
and the symbols A5+j C2-sequences at initial significance A0=A1=A2=A3=0, A4=1 sa-
tisfy to the recursive equation A5+j=A4+j⊕Aj, j=0,1...,15. The location order of five 
information RE along the track CCS is determined by multinomial 

2 4 6 8( ) 1r x x x x x= + + + + . 

Table 11.11 Sequence of code combinations five-digit CCS with the control on parity 

Positions CCS RE1 RE2 RE3 RE4 RE5 REc Positions CCS RE1 RE2 RE3 RE4 RE5 REc 

0 0 0 1 1 1 1 11 0 0 1 0 0 1 

1 0 0 1 1 0 0 12 1 0 1 0 1 1 

2 0 1 1 1 1 0 13 0 1 0 0 0 1 

3 0 1 1 0 0 0 14 0 1 0 1 0 0 

4 1 1 1 1 1 1 15 1 0 0 0 0 1 

5 1 1 0 0 0 0 16 1 0 1 0 0 0 

6 1 1 1 1 0 0 17 0 0 0 0 1 1 

7 1 0 0 0 1 0 18 0 1 0 0 1 0 

8 1 1 1 0 1 0 19 0 0 0 1 1 0 

9 0 0 0 1 0 1 20 1 0 0 1 1 1 

10 1 1 0 1 0 1 - - - - - - - 
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At the expense of the introduction one additional REc control of the information 
on parity is executed. The control element is biased about first information RE on 
16 sites of the scale δ. 

At scale moving cyclically on one elementary site, for example, against a direc-
tion of movement of the clock hand, from exits of reading out elements RE1, RE2, 
RE3, RE4, RE5 and REc six-digit code combinations are formed. These code com-
binations containing even number of digits and corresponding to twenty one  
various angular position CCS are resulted in Table 11.11. 

11.5   Conclusions  

In Fig. 11.9 classification of RCS is resulted, binary sequences are put in a basis of 
construction of which code paths, and symbols of sequences turn out by a rule re-
cursion. Classification concerns to RCS converters of angular and linear moving. 

 

Fig. 11.9 Classification of recursive code scales 

As the first classification sign property of linearity of recursive sequences in re-
lation to the operator of summation on the module two is used. To this sign RCS 
share on two groups: CS on the basis of linear RS and CS on the basis of nonlinear 
RS. 

In turn, CS on the basis of linear RS are subdivided into three groups: CS on 
the basis of pseudo-random sequences of the maximum length (PRSML), CS on 
the basis of sequences of incomplete cycles (SIC), and CS on the basis of  
composite sequences (ComS). 

Principles of construction of CS on the basis of PRSML (M-sequences), are 
considered in 11.1. At reception of the recursive parity used for generation of 
symbols of M-sequence, primitive polynomials undertake only. Code scales on the 
basis of PRSML have received name PRCS. 

Principles of construction of CS on the basis of SIC in the given chapter are not 
considered. Sequences of incomplete cycles are under construction on the basis of 



11   Recursive Code Scales for Moving Converters 287
 

prime (over field GF (2)) polynomials. The polynomial of the fourth degree 
h(x)=x4+x3+x2+x+1 can be an example of such prime polynomial. The recursive 
parity corresponding to this polynomial, looks like z4+j=z3+j⊕z2+j⊕z1+j⊕zj, j=0,1.... 
At nonzero entry conditions the given recursive parity allows to generate linear re-
cursive sequence of length five (00011). If this RS is used for reception of draw-
ing CT of a scale at placing on it RE, for example with step to one quantum, it is 
possible to receive five various four-digit code combinations from a scale. It is 
obvious, that such CS will have considerably smaller, in comparison with PRCS, 
resolution. 

Code scales on the basis of composite sequences can be divided into three 
groups: CS on the basis of composite sequences, where ComS turn out from vari-
ous combinations of M-sequences; CS on the basis of composite sequences, where 
ComS turn out from combinations of M-sequences and SIC; CS on the basis of 
composite sequences, where ComS turn out from various combinations SIC. 

Principles of construction CS on the basis of ComS, where sequences turn out 
from various combinations of M-sequences, are considered in subsections 11.2. 
Such code scales are named CCS. 

Principles of construction CS of the second and third groups on the basis of 
ComS in the given chapter are not considered. It is easy to see, that the least reso-
lution possess CS on the basis of RS the third group, the greatest - CCS, and CS 
the second group occupy on this parameter intermediate position. Code scales on 
the basis of nonlinear RS are subdivided on two groups: CS on the basis of nonli-
near sequences (NS) and CS on the basis of nonlinear ComS (NComS). 

In turn, CS on the basis of NS are also shared on two groups: CS on the basis of 
NS the maximum length (NSML), and CS on the basis of NS incomplete cycles 
(NSIC). 

At reception of the recursive parity necessary for generation of symbols of non-
linear sequence of the maximum length, primitive polynomials with introduction 
in a recursive parity composed, providing nonlinearity of synthesized  
sequence undertake. 

Principles of construction CS on the basis of NSIC in the given chapter are not 
considered. Reception NSIC is in detail considered in work [12]. Sequences of in-
complete cycles, also as well as NSML allow their resolution obviously less, than 
resolution CS on the basis of NSML will build on basis CS, however. 

Code scales on the basis of NComS can be divided on two groups: CS on the 
basis of NComS where NComS turn out from combinations of M-sequences both 
NSML, and CS on the basis of NComS, where NComS turn out from various 
combinations of linear and nonlinear sequences both maximum and incomplete 
cycles. 

Principles of construction CS on the basis of NComS in the given chapter are 
not considered. It is easy to see, that the best resolution will possess CS on the  
basis of NComS where NComS turn out from combinations of M-sequences and 
NSML, and CS on the basis of NComS where NComS turn out from other combi-
nations of linear and nonlinear sequences, possess, in comparison with the first, 
smaller resolution. 
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Abstract. The models and methods for creating Infrastructure Intellectual Proper-
ty (I-IP) service for the functionalities System on Chip (SoC), which has a mini-
mum set of the real time Built-In Self Test (BIST) tools, are proposed in this chap-
ter. The means I-IP provide an opportunity to services: fault modeling and 
simulation for the functional primitives to evaluate the test quality and to build 
Fault Detection Table (FDT); diagnosis of a given defects search depth in the 
SoC; repairing embedded memory functionality, by using spare row and column 
components. High performance deductive-parallel fault analysis method for build-
ing FDT and tests quality assessment is offered. Algebra logical methods of fault 
diagnosis and embedded memory repair by synthesis Disjunctive Normal Form 
(DNF) completing all decisions for diagnosis SoC functionalities in the real time 
are represented. 

12.1   Infrastructure IP 

Computational and hardware complexity of modern System-on-Chip is characte-
rized by millions of equivalent gates and requires the creation and implementation 
of new technologies high-level design declared in Electronic Design Automation 
market like Electronic System Level (ESL) Design, Transaction Level Modeling 
(TLM) [6,11,12] and Infrastructure Intellectual Property (I-IP) [5,9-12,39, 
49,50,53]. This means that the searching high-performance methods and testing 
approaches [1,6,11,12,19,29,34,35] leads all researchers for the needs to increase 
the models level abstraction for the created custom functionalities – are said to be 
Functional Intellectual Property (F-IP), embedded in the silicon. EDA software 
world market is already provides the convenient tools to automate processes of 
SoC simulation and verification [8,13-17,20,24-26,28,30-33,36,42-44] for system-
level designs, starting with HDL Compiler languages (C++, SystemC, SystemVe-
rilog, UML, SDL) [1,6,11,34] and ending with graphical environments (Simulink, 
LabView, Xilinx EDK). These tools allows to create SoC projects by using ESL 
mapping with TLM interface establishing based on the existing library compo-
nents [11]. The EDA-market attractiveness of the SoC implementation in Field 
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Programmable Gate Array (FPGA) is determined: the application of relatively 
low-cost chips instead of the universal processors, low power consumption, small 
dimensions, high quality and reliable core functions. These properties are possible 
because I-IP infrastructure embedding in SoC [49], which is very relevant in the 
spread age of mobile computing devices. The leveraging I-IP represents the possi-
bility for higher yield and reliability, Time-to-Volume (TTV) Acceleration, but it 
may require external support, automated tools and special equipment. Yield  
optimization loops leveraged at different product realization steps during design, 
fabrication, test and in-field. Collaborative environment is necessary to achieve 
Yield, Quality and TTV goals. 

The problem of fault simulation, diagnosis [2-4,7,22,27,40,41,47,48] of digital 
system components, and memory repair [18,21,23,37,38,45,46,51,52], linked to 
the trend for permanent reduction SoC silicon square pointed for the original and 
standardized logic with a simultaneous increase of the embedded memory. As 
shown in Fig. 12.1, an increase in the share of memory on silicon leads for its full 
domination to store data and programs, which by 2014 will reach 94% 
[9,10,49,50,53]. This will provide not only high performance with functionality 
operation, but also the flexibility inherent in the product design error correction. A 
feature of the memory element is the fact that in the process of their construction 
and operation separate cells under the influence of defects can go out of normal 
functionality. This fact does not necessarily lead to a matrix memory critical con-
dition, when the restoration is impossible. Therefore, such technical memory state 
is considered when the total number of defective cells does not exceed the  
capacity of the rows and columns spare intended for the repairs. 

The purpose of the study – the technology development of built-in-service func-
tionality for digital system on chip designed for modeling, fault simulation, diagnosis 
and repair of SoC components, including embedded memory matrix, in real time. 

 

Fig. 12.1 Share memory on SoC 

Objectives: 1) The state of the I-IP market technology [5,9-12,39,49,50,53]; 2) 
Deductive-parallel fault simulation [14-17,20,28,30-33,36,42–44]; 3) Algebra 
Logical (AL) method of the embedded service based on the matrix coverage; 4) 
AL-method application for the diagnosis of SoC components; 5) Adapting  
AL-method for the memory repair, 6) Practical results of the investigations. 
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Modern technologies for the design of digital systems on chip offer, along with 
the functional blocks of F-IP, the development of service modules I-IP oriented on 
the integrated solution of the problem of improving the project quality and Yield 
increasing in the manufacturing process, which is defined by implementation to 
silicon the following services [9-12,39,49,50,53]: 

1. Monitoring the internal and output lines in the operation, verification and testing 
of functional blocks on the basis of IEEE 1500 boundary scan standard [12];  

2. Testing the functional modules by applying different test generators, targeting 
fault detection or behavior checking;  

3. Diagnosis failures and defects by analyzing the information received from test-
ing phase and by using the special embedded methods for troubleshooting 
based on the IEEE 1500 standard [12];  

4. Repair of functional modules and memory after fixing a negative test result and 
determine the location and type of defect in the executing phase of the  
diagnosis;  

5. Built-in-measurement of parameters and characteristics of the SoC operation, 
allowing the temporal and volt-ampere measurements;  

6. The reliability and fault tolerance of SoC in the operation, which are achieved 
by using diversification of functional blocks, duplication and recovery SoC  
efficiency in a real time. 

The truncated I-IP-structure represented on Fig. 12.2 [49-50,53] is oriented to the 
execution of the following tasks: 1. Testing functionalities based on the generated 
test patterns by using Automated Test Pattern Generators (ATPG), and on the 
analysis of output responses. 2. Modeling and Fault Simulation [13-17] to provide 
diagnosis goals and repair SoC modules on the basis of the Fault Detection Table 
(FDT). 3. Diagnosis defects with a prior given fault localization depth by using 
boundary scan register as the troubleshooter from standard IEEE 1500. 4. Built-in-
repair matrix memory through the use of spare components (columns and rows) 
[18,21,37,38,51,52]. The first two items are considered more conceptually, and the 
latter two formally constitute the essence of the proposed study. 

The test synthesis module (Fig. 12.2) for check of functionality and single 
faults consists of a set of input patterns generators, which  provide creation of the 
following tests [1,6,11,12,19,29,34,35]: 1. PRTG is pseudo-random test generator 
of input stimulus with even distribution law of zero and one signals at input va-
riables; 2. SATG is a test generator of hexadecimal codes on basis of the signature 
analysis; 3. SPTG is an algorithmic generator of test vectors, activating logical 
single paths targeted for detection specified single fault; 4. ADTG is a test genera-
tor designed to testing Arithmetic-Logical Unit (ALU) 5. BSTG is a test generator 
of the bus structures for the reception and transmission of data; 6. METG is test 
generator aimed at verifying the memory matrix; 7. DFTG is test synthesizer for 
automata represented in the form of design flow. 8. RCTG is ad-hoc test generator 
for sequential circuits like registers, counters structures and flip-flops. 

ATPG module has the features to analyze the structural-functional model of 
SoC functionality to be testing, and assign a subset of these test generators, which 
provide desired quality coverage (Fc) of faults and functional modes (Pc): 
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Fig. 12.2 Infrastructure IP for the SoC 

Generalized structure of testbench synthesis [6] presented in Fig. 12.3, also in-
cludes HDL code generator, which is designed for testing and verification SoC 
functionalities at the stage of project development. 

The number of test generators for SoC design phase can be significantly higher 
than subset, which further implements into the silicon. Therefore, in the simulation 
and verification process it is analyzed coverage properties of each test generator in 
order to find their total configuration minimum that meets the expression (12.1). It 
is important to note that in the next 5 years the tests synthesis ideology for digital 
systems on chip will borrow the best tradition of ESL- and TLM-design [11]. 
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Fig. 12.3 Testbench synthesis process structure for the F-IP 

This means: 1) Using the library tests (Testbench) from the world leading com-
panies for the testing and verification of standardized functionalities identified as 
F-IP. 2) The use of standard solutions of service I-IP testing components for em-
bedded systems on chip. 3) Create your own testbench library for the newly  
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developed functionalities. 4) The providing new technology of a test synthesis for 
digital systems based on discrete mapping [11] (Figure 12.4) for the covering de-
fects and functionalities original specifications by using the minimum Testbench 
set, from the library of tests. 5) Use of built-in-testing and diagnosis means such as 
IEEE 1500 SoC boundary scan standard and six components of I-IP technological 
procedures to enhance the tests synthesis and diagnosis procedure quality in the 
real time. 
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Fig. 12.4 Test synthesis mapping model for the F-IP 

12.2   The Theoretical Foundations of Deductive Fault Analysis  

A deductive-parallel fault simulation method [13-17,20,24-26,28,30-33,36,42-44] 
focused on digital projects of the large dimension with gate, register and system 
levels for the purpose of obtaining fault detection table, fault coverage for test 
quality assessment of given defects class, is offered. The Unit under Test is 
represented in form of structures, tables, Boolean equations, cubic coverage which 
is implementing as a complex digital system in the silicon. The proposed method 
combines fault simulation advantages of deductive definition of the fault list, ef-
fective from the point of mathematics view, targeting the high-speed parallel pro-
cedures digital devices of the gate, register and system levels of SoC descriptions. 

The goal is to create the high performance deductive-parallel fault simulation 
method targeting to assess the quality (stack-at-faults fault coverage) of synthe-
sized test of digital systems implemented in silicon containing millions of gates. 

The background of deductive-parallel fault simulation are the methods of en-
hancing performance for fault analysis [28], deductive model fault propagation, a 
parallel method of fault lists processing trough the functional elements back traced 
algorithm of the primitives evaluation in the simulating digital devices faults [1]. 

Deduction is reasoning in the mathematical evidence system coming from gen-
eral to specific. In terms of application to the fault analysis such algebra-logical 
means finding formal patterns, which can, once received complex models, use re-
peatedly for the fault simulation processing of digital systems. In doing so, each 
defect is to be initially described by using truth tables, Boolean equations, and the 
flow chart. In fact, deductive model of the functionality fault analysis allows simu-
lating arbitrary digital circuit, with one iteration (several – for sequential circuits  
 



294 V. Hahanov
 

with global feedbacks), all the faults detecting by a test-vector. Mathematical 
model LCT =⊕  of digital systems fault deductive analysis can be represented 
matrix equation [19,23-25, 27-29]: 
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Where C is fault-free behavioral cubic coverage of device model with n lines; 
)T,...,T,...,T,T(T nt21=  is test-vector to faults detection, distorting the functio-

nality C in operation, redefined in the fault-free simulation procedure on the set of 
input, output and internal lines. Coordinates of faulty matrix is determined by the 
execution of the logical XOR operation titti CTL ⊕= . Matrix tiLL =  is a de-

ductive function (DF) of fault simulation at the test-vector T corresponding good 
behavior element described with C-coverage, which allows calculating the input 
fault list propagated to the element outputs [1]. 

In general, the digital device in operation presented with a truth table, and use 
of deductive formula (12.2) allows generating fault detection table for a certain 
test- vector T, which (FDT) can be written analytical deductive fault simulation 
formula. Examples of such deductive functions obtaining presented below in the 
form of (test-vector, truth table, and fault detection table): 
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Deductive functions are written in the disjunctive normal form according to the 
outputs unit values of fault detection table of the primitive element. Formula 
(12.2) makes it possible to perform a fault analysis of arbitrarily complex digital 
device, represented with the gate, register, and system levels of descriptions to be 
presented in a truth table form as cubic coverage. If the model is represented as a 
product of logical elements structures or structure of larger components, the de-
ductive analysis of each primitive of digital device is fulfilling according with the 
following expression: 

.T)]TX(),...,TX(),...,TX(),TX[(fFTL titnintjij2t2i1t1itiitti ii
⊕⊕⊕⊕⊕=⊕=  (12.3) 
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The last expression is isomorphic formula (12.2). Thus, the formula (12.2) and 
(12.3) cover all digital systems, which are presented as a high level description 
(system, register) and the lowest (gate) level. 

12.3   Deductive Components Synthesis for SoC Functions  

Gate level of circuit description is characterized by logical elements, functioning 
of them is specified by the truth tables, cubic coverage or logical equations. In this 
case consideration of synthesis procedures on basis of analytical form using is 
technological. At that two-input logical element is transformed to four-input one, 
where two additional inputs (a,b) are register, and they intended for fault lists 
transferring. The Boolean inputs (x,y) are control for carrying out operations at ex-
ternal fault lists. Lets there is the logical element And, its deductive function is 
specified by the Karnaugh map [35]: 

001010
111011
100001
010000

10110100)b,a(\)y,x(

)b,a,y,x(fL ==                         (12.4) 

Minimization of the primitive, specified by (12.4), results in two variants of the 
deductive function with different complexity (quantity of variables and terms) by 
Quine (19, 15 and 17): 
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 (12.5) 

Choice of the best one results in the formula (12.6). The analogous transforma-
tions applied to the elements Or, Not enable to synthesis of the Boolean equations 
and circuit structures. The element Or. Synthesis of its deductive function is  
specified by the following transformations: 
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 (12.6) 

Similarly synthesis of Xor element deductive function is carried out. 
Results of hardware realization of minimal deductive functions by Quine of 

three above elements are implemented to the following circuits (Fig. 12.5). 
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Fig. 12.5 Deductive primitives of logical elements (And, Or, Xor)  

Register description level of digital system component differs by the functional 
complexity that influences on true table or cubic coverage dimension. Such func-
tionalities as flip-flops, latches, counters, multiplexers, registers and bus structures 
are considered here. Analogous transformations, intended for deductive function 
synthesis by the flip-flop true table (there are three Boolean inputs and three  
register ones) )1t(QDCDCQ −∨=  give the following result - (12.9).  
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Fig. 12.6 Deductive function of fault analysis for D-flip-flop 
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The flip-flop hardware realization (the Quine estimation is 62) is represented in 
Fig. 12.6. The flip-flop deductive function has more then 10-fold hardware redun-
dancy in comparison with fault-free functionality. Though this representation  
enables to gain in the speed of deductive fault simulation in hundreds times. 

).CQqdc()QCqdc()CQcdq()QCqcd(

)DCqdc()CDdqc()DCqdc()CDqdc(

)QDCc()DQC()QDCc()Q,D,C,q,d,c(fL
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∨∧∨∧∨∧∨∧∨

∨∧∨∨∧==

       (12.10) 

Concerning analysis of system level components, in general case the true table 
(transitions-outputs) is partially or completely defined. It means that the table 
coordinate definition alphabet contains three symbols (0,1,X) at least. For this case 
it is necessary modification of the deductive fault analysis procedure that is in the 
ternary alphabet: 

),L(\)L[(L j
)]XC(&)0CT[(j

j
)1CT(j)1CT(i

r
x
ij

x
ijj

x
ijj

z
irr ≠=⊕∀=⊕∀=⊕∀

∨∨ ⊗=  (12.11) 

where n is a number of rows (cubes); m is a number of input lines; k is a number 
of output lines in a device (primitive); Lr is a fault list that is formed for the output 
r in the form of faults, transferred through a primitive or a digital system from  
external inputs. 

The main operations in the ternary alphabet are: 
]XXX;XX1;XX0;011;101;110;000[Xor =⊕=⊕=⊕=⊕=⊕=⊕=⊕= ; 

    ]XXX;1X1;XX0;111;101;110;000[Or =∨=∨=∨=∨=∨=∨=∨= ; 

    ]XXX;XX1;0X0;111;001;010;000[And =∧=∧=∧=∧=∧=∧=∧= . 

Subject to the introduced definitions the deductive function synthesis for system 
level functionality, specified by the flow chart in Fig. 12.7, is proposed below. 

A = B + C

� ���� �

x1

x1

S0

A = + 1A B = B + C

B B= � = C

� = +A B A = +C B

� ����

� = C

x3 x3

A = + +A B C

S1

S2

S5

S4

S3

x2

0 1

0 1 0 1

0 1 0 1

Begin

End  

Fig. 12.7 Functionality flow chart 



12   Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 299
 

The transition matrix of abstract automata, corresponding to the flow chart in 
Fig. 12.7, as well as the transitions-outputs table of a structure automata with 
coded states of input, internal and output variables are represented in the following 
table: 

CBAA:YSSX
SSX

BB:YSSX
CC:YSSX

BAC:YSSX
BCA:YSSX
BAC:YSSX

CC:YSSX
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1111101010XX
XXX1101011XX
110101100XX0
001110100XX1
1001100110XX
1011100111XX
100110010X0X
011011010X1X
010100001XX0
001010001XX1
000001000XXX
YSSX 1ii +

  (12.12) 

In this case the input variables are vectors, which are concatenated by the va-
riables (XSi), the output lines are (Si+1Y). To form the deductive matrix that de-
fines a simulation primitive of all faults, corresponding to the structure automata, 
it is necessary to construct the true table on a set of rows or coverage cubes. This 
procedure is hard to realize manually. It is not difficult in computer realization. 
For one input vector the deductive fault analysis matrix that is result of Xor opera-
tion under an input pattern and all coordinates of a fault-free behavior matrix is: 

1100000010XX
XXX0000011XX
111011000XX1
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1000001111XX
101000110X0X
010101110X1X
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000100101XX0
001111100XXX
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XXX1101011XX
110101100XX0
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1001100110XX
1011100111XX
100110010X0X
011011010X1X
010100001XX0
001010001XX1
000001000XXX
YSSX

)110001100100(LCT

Y1ii1ii ++

=⊕

⊕→=⊕

       (12.13) 

The specified deductive model is a structure of register level that can be realized 
in FPGA, where the true tables are used for function definition directly. Though 
circuit realization of the deductive functions (Si+1Y), written as DNF by  
constituent of unity of corresponding column, is possible. 
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Equations (12.14) and (12.15) define the fault lists forming conditions at six out-
puts on the test pattern (100100 110001). The complex digital circuit comes out 
even on a single vector (Fig. 12.8); its hardware costs by Quine are 42. The output 
function that is realized by 84 inputs and 17 logical elements has more complex 
result in the form of circuit. 
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Fig. 12.8 Deductive circuit of fault analysis  

So, realization of the flow chart deductive function (see Fig. 12.7) on a single 
input pattern has computational complexity that is equal to 84 + 42 = 126. If to 

multiply such combinational circuit on 122  patterns, at worst the hardware costs 
result in the structure, defined by estimation: 

.09651621262QQ 12)SX(2t i =×=×= +×
                 (12.16) 
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Naturally that half a million gates are inadmissible quantity for fault simulation, 
even if the simulation speed greater in hundreds times then software analog. In 
this case the problem solution is hybrid one – firmware complex of fault simula-
tion that is flexible with respect to test vectors. In this case software oriented de-
ductive analysis model is generated in real time as function of fault-free behavior 
and the test patterns )C,T(fL = . In this case the automaton model of fault analy-

sis expanded in time (X,Z,Y are sets of input, internal and output variables  
respectively) can be represented as follows:  
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So the technology of hardware embedded simulation comes back to the software 
oriented solutions. Actually in the near future the electronic technology market 
will go to flexible reusable software solutions. This direction has the following 
reasons: 1. System-on-a-chip realization becomes more software oriented, because 
in a 5 years memory will occupy 94% of the chip area. 2. To control of computa-
tional processes relating to simulation it is necessary to have microprocessor on a 
chip that is realized by flexible software technology and embedded into memory 
or by hardware technology and realized in a chip.  

12.4   Structure Models of Simulator Primitives  

In general case obtainment of deductive primitives for parallel fault simulation is 
related to the function synthesis on the exhaustive test. The complexity of deduc-
tive primitives depends on functionality representation level. The gate level  
structures in the form of basis of logical elements And, Or, Not are the simplest. 

By means of the main expression (12.3) of deductive function synthesis, which 
transport faults through a logical element, construction of all basic components 
(And, Or, Not) [14-17] is carried out - (12.18).  
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Fig. 12.9 Fault simulator  
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In the equations )4,1t(),T,T,T(T 3t2t1tt ==  is a test vector that has 3  

coordinates, and last one defines an output state of the elements And, Or. For the 

inverter the test vector has 2 coordinates: )2,1t(),T,T(T 2t1tt == , last one is out-

put state of an element. The equation for an inverter shows the immateriality of 
inversion operation at an element output for fault transfer. So there is not this 
function (Not) on deductive primitives’ outputs. Hardware realization of the de-
ductive functions [16-17] for two-input elements (And, Or) on the exhaustive test 
is represented in Fig. 12.9 by deductive parallel fault analysis circuit. 

.XxXxXxXx]0)1X[(x]1)0X[(

x]}T)TX)[(xx{(L]XF),1,0(T[L

);XX)(xx()XX)(xx(

)XX)(xx()XX)(xx()]XX(F),11,10,01,00(T[L

);XX)(xx()XX)(xx(

)XX)(xx()XX)(xx(}1)]1X()1X){[(xx(

}0)]0X()1X){[(xx(}0)]1X()0X){[(xx(

}0)]0X()0X){[(xx()]}T)TXTX[(

)xxxxxxxx{(L)]XX(F),11,10,01,00(T[L

11111111111

12t1t1111Not

21212121

2121212121Or

21212121

212121212121

21212121

21213t2t21t1

2121212121And

∨=∨=⊕⊕∨⊕⊕∧

∧=⊕⊕∨===

∧∨∧∨

∨∧∨∨=∨==

∨∨∧∨

∨∧∨∧=⊕⊕∧⊕∨

∨⊕⊕∧⊕∨⊕⊕∧⊕∨

∨⊕⊕∧⊕=⊕⊕∧⊕∧

∧∨∨∨=∧==

 (12.18) 

There are the Boolean variables (x1,x2) and the register ones (X1,X2), the select 
input V of fault-free function type: V=0 (And), V=1 (Or), the output register vari-
able Y. The binary input (x1,x2 and V) states form one of four deductive functions 
for obtainment of the testable fault vector Y. Implementation of the deductive 
model in HDL-code is represented by listing 1. 

Listing 1 VHDL-model of a sequencer 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
entity Fub1 is 

  port( i0, i1 : in STD_LOGIC; 
     o00, o01, o10 , o11 : out STD_LOGIC); 

end Fub1; 
 
architecture Fub1 of Fub1 is  
begin 
  o00 <= not i0 and not i1; 
  o01 <= not i0 and i1; 
  o10 <= i0 and not i1; 
  o11 <= i0 and i1; 
end Fub1; 
library IEEE; 
use IEEE.std_logic_1164.all; 
entity sequencer is 
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  port( V ,  X1_s, X2_s , x1, x2 : in STD_LOGIC; 
          Y : out STD_LOGIC); 
end sequencer; 
architecture sequencer of sequencer is 
component Fub1 
   port( i0, i1 : in STD_LOGIC; 
     o00, o01, o10 , o11 : out STD_LOGIC); 
end component; 
signal a0, a1, a2, a3, a4 : STD_LOGIC; 
signal o00, o01, o10, o11 : STD_LOGIC; 
signal x3, x4 : STD_LOGIC; 
begin 
 U1 : Fub1 port map(i0 => x3, i1 => x4, o00 => o00,  
   o01 => o01, o10 => o10, o11 => o11 ); 
 a0 <= o00 and X2_s and X1_s; 
 a1 <= not(X2_s) and o01 and X1_s; 
 a2 <= not(X1_s) and X2_s and o10; 
 a3 <= X2_s or X1_s; 
 a4 <= o11 and a3; 
 Y <= a4 or a2 or a1 or a0; 
 x3 <= V xor x1; 
 x4 <= x2 xor V; 
end sequencer; 

The simulator operation is demonstrated in the table of parallel simulation of 8-
bit input fault vectors to obtain the testable fault vector for the logical elements 
And, Or on the output Y: 

100100011001000100110000101101110111100101110000)RG(Y
001010101011100100110100101101010111100001111000)RG(2X
101110010010101000111011101101100111000101110001)RG(1X

110010111011100000)2x,1x,V( =
 

Application of the simulator enables to transform the gate model F of fault-free 
circuit behavior to the deductive one L that is invariant (in terms of universality) 
to test patterns and does not need to use the model F at simulation. So the simula-
tor as hardware model of DF is oriented on creation of embedded deductive paral-
lel simulation facilities, which raise the analysis speed in 10 – 1000 times in  
comparison with software realization. But at that the volume ratio of post-
simulation fault-free behavior model and fault analysis is 1:16. Hardware fault 
analysis is directed on functionality enhancement of embedded fault-free behavior 
simulation facilities (HESTM - Hardware Embedded Simulator) of Aldec company 
(www.aldec.com). Computational complexity of project processing that consists of 

n gates is equal to W/)n2(Q 2τ= , where τ  is the execution time of a register 

operation (And, Or, Not); W is the register capacity. 
The hardware structure, represented in Fig. 12.10 [15], can be used for hardware 

realization of deductive-parallel simulation on basis of the proposed simulator. 
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Fig. 12.10 HFS-structure of hardware simulation  

The feature of hardware realization consists in combined execution of two op-
erations: single-bit one for functional emulation of the logical elements And, Or, 
and parallel one for fault detection vectors processing by means of carrying out of 
conjunction, negation and addition logical operations. The main blocks (processor 
and memory) functionality is: 1. ]M[M ij=  is a quadratic fault simulation matrix, 

where i,j =1,q; q is the total quantity of lines in a processed circuit. 2. Fault-free 
behavior state vectors, defined in time t-1 and t, are necessary for forming of de-
ductive primitive functions. 3. Memory module is required for storage of circuit 
definition in the form of logical element structure. 4. Buffer registers of the capac-
ity q are necessary for operand storage and carrying out of parallel register opera-
tions at fault vectors, which are read-in form the matrix M. 5. Fault-free simula-
tion block is required for identification the digital state of next processing logical 
element. 6. Deductive parallel simulator that processes two register variables X1, 
X2 per a cycle is necessary for definition of a fault vector, which is transferred to 
the logical element output Y. 

The advantages of proposed fault simulation structure are:  
1. Essential reduction the quantity of simulated faults, which are defined by the 

quantity of reconvergent fan-outs that is up to 20 % from the quantity of total 
lines. 2. Reduction of the memory volume, required for fault matrix storage. 3. 
Realization simplicity of Hardware Fault Simulator (HFS) that enables to increase 
the fault simulation speed by order. 4. Use HFS as first stage of the deductive to-
pological method that is based on reconvergent fan-out processing result for high-
performance analysis of tree-type structures. 
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Digital system on a chip simulation algorithm [16] with preliminary splitting of 
the device model on two structural parts (reconvergent fan-outs and tree  
subgraphs) is represented in Fig. 12.11. 
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Fig. 12.11 Deductive-parallel simulation model  

Resume of the proposed simulation technology with preliminary splitting of a 
circuit on reconvergent fan-outs and tree subgraphs. Deductive parallel fault anal-
ysis on basis of the fault back tracing requires almost linear memory and time 
costs, dependent on a number of circuit lines. Time performance for reconvergent 
fan-out processing depend on quantity of them quadratically: 

)rrn(nn)W/r(Q 0
pr

2 −−+++= . Here )W/r( 2  is the fault simulation time 

of r reconvergent fan-outs, their quantity is determined as nn;n2.0r r =×=  is 

the reconfiguration time of circuit primitives on an input pattern; nnp =  is the 

search time of line subgraphs corresponding to the undetectable reconvergent fan-

outs; n4.0n4.0n2.0n)rrn( 0 ×=×−×−=−−  is the execution time of solution super-

position on a set of circuit lines without reconvergent fan-outs and ancestors for 
undetectable ones. In consideration of actual parameter values in a function of cir-
cuit line quantity the estimated speed of the deductive parallel method can be  
obtained [1,28]: 

).n4.2]W/)n2.0[()n4.0n2.0n(nn]W/)n2.0[(Q 22 ×+×=×−×−+++×=  

So, gain in speed of proposed method the more then less the percent of  
reconvergent fan-outs in a digital devise circuit [15,16,28]. 

For comparison a parallel algorithm has the computational complexity Cp that 
is defined by the functional dependency on the quantity of nonequivalent faults 
(b), the length of a computer word (W), quantity of equivalent gates (G): 
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32
p G)W/b(C ×= . The deductive algorithm has differences in the estimated 

speed formula: ,GbGQbC 32
GQ

22
d =××= =  where Q is an average quantity 

of gates, activated by faults. The speed of deductive parallel method without cir-

cuit splitting is defined by expression: .G)W/b(GC 222
dp ×+=  The first sum-

mand defines the fault-free simulation time, second one – the fault analysis time of 
a digital device if their lines are not ranged. The estimated speed of combinational 

ranged circuit is .G)W/b(GC 2r
dp ×+=  The speed of deductive parallel method 

is greater then the speed of parallel and deductive ones })C,C{C( dp
r
dp <<  due to 

separation of fault-free and fault simulation. 
Proposed technology of hardware-software deductive parallel fault simulation 

is oriented on development of deductive primitive models of gate, register and 
system levels to test digital systems on chips, containing millions gates. The struc-
ture model of hardware simulator and simulation device in whole are represented. 
They are oriented on speedup of the simulation features of high dimensionality 
digital devices by means of separation of fault-free analysis and determination of 
testable fault lists on input patterns. 

SIGETEST (SImulation, GEneration of TEST) system [16,17] is developed on 
basis of the technology described above. It is high-speed fault simulation and test 
generation system, using the models of designed digital systems of interpretative-
ly- compilation type. Some digital structure, defined by the Boolean equations, 
which are implemented in CPLD, FPGA, ASIC, can be a simulation object. The 
system processes complex digital projects, which consist of hundred thousand log-
ical gates on post-synthesis stage (gate level description). The system has inte-
grated environment that realizes high level graphical interface. Input of a project is 
realized in the description form. There are supported operations: AND, OR, NOT, 
XOR. The bus structures are supported too. A compiler transforms a circuit de-
scription to the internal easy-to-simulation data structures. The simulation kernel 
includes fault-free and fault simulation algorithms: Parallel, Backtraced Quasi Ex-
act, Deductive-Parallel and Backtraced-Deductive-Parallel. A test generator in-
cludes a set of test patterns synthesis algorithms (pseudorandom, deterministic, 
synthesizers). A result of software operation is test-bench in VHDL format. The 
system displays information about fault-free and fault simulation, the fault cover-
age quality, simulation statistics. Simulation results are displayed in Fault  
Coverage Window that is multivalued fault detection table. 

There are facilities for test synthesis control and monitoring in SIGETEST. The 
simulation can be limited in time; a number of simulated test patterns can be spe-
cified. The percent of fault coverage by generable patterns can be limited from be-
low. While simulation the system displays information about the simulation 
progress in percentage of the total quantity of the vectors or specified time  
interval. SIGETEST system is oriented on integration with modern synthesis and 
simulation facilities, such as ALDEC Active-HDL, Riviera, SYNOPSYS Design  
Compiler. 
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12.5   Algebra-Logical Fault Diagnosis Method  

The main attention is paid to the boundary scan technology [12] that is able to 
make easier solution of all SoC Functional Intellectual Property problems, when it 
is implemented into a chip. An access controller to internal lines and ports of the 
boundary scan register uses a cell or a stage of the register. To provide the moni-
toring the total quantity of such cells should be equal to a number of observed 
problem lines of a project, which are necessary for exact diagnosis.  

The structure of I-IP service modules for fault diagnosis in F-IP functional 
blocks is represented in Fig. 12.12. Module ( ⊕ ) analyses output reactions of a 
model MUS and a real device DUT on input test vectors, entering from a test ge-
nerator. Boundary Scan Register is a troubleshooter that is designed for exact di-
agnosis. Scoreboard performs the function of diagnosis result analysis for the pur-
poses of subsequent repair of SoC components. In this case a diagnosis is 
determined by the output response vector and the fault detection table 

( nq,1r;p,1t],M[M tr +===  of dimension np × , p is a number of test-vectors, n 

is a number of stages of the boundary scan register). The result is a set of faulty 
lines and elements on a current input pattern. To provide computational processes, 
which result in exact diagnosis, metrics and representation method of the initial in-
formation are very important. 

The interesting solution of a diagnosis problem can be obtained by application 
of the Boolean algebra and the fault detection table M that is Cartesian product  
of the test Т on the specified fault set F together with the output response vector 
V, at that there is the most exact result of the covering problem solution in the 
form of DNF and every term is considered as a possible variant of fault existence 
in a device.  
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Fig. 12.12 Diagnosis process model for F-IP 

Thus the diagnosis process model is represented by components:  
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            (12.19) 

The coordinate value of the vector V is a result of Xor operation at a generalized 
model output response and actual one. 

Diagnosis problem solution comes to the fault detection table analysis that is 
ensued from fault simulation by means of subsequent forming of logical product 
of disjunctions (CNF), written by unit rows of the fault detection table 

).F(F j
1ijM

m,1jn,1i

1iV =∀

==

=∀
∨∧=                                              (12.20) 

The conjunctive normal form, derived from the fault detection table, is trans-
formed to the disjunctive normal form (DNF) by means of equivalent transforma-
tions (conjunction, minimization and absorption) [4]. Therefore we have the  
Boolean function, where terms are the logical products, which represent full solu-
tion set in the fault combination form (they give the output response vector V at 
SoC outputs or its component): 

}.1,0{k),Fk()F(F jjj

m

1j

m2

1iaaa
babaj

1ijM

m,1jn,1i

1iV
====

==⎥⎦
⎤

⎢⎣
⎡

=∨
=∨=∀

==

=∀
∧∨∨∧           (12.21) 

Function (12.21) in general case forms a diagnosis in the form of some fault com-
bination subset, which need refinement further by means of application an addi-
tional probing of internal points by boundary scan register. A number of “1” in the 
output response vector V forms quantity of CNF disjunctive terms (12.21). Every 
term is line-by-line writing of faults (by logic operation OR), which influence on 
functional outputs. Table representation in the analytical form (conjunctive normal 
form) makes possible to reduce the volume of diagnostic information for fault lo-
cation essentially. Subsequent transformation of CNF to DNF on the basis of the 
Boolean algebra identities enables to reduce the Boolean function. The algebra-
logical method is considered by example of the following fault detection table M1 
and it is represented by five algorithm items. 
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111T

VFFFFFFF
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1. Detection of all FDT rows, which correspond to zero values of the output  
response vector for nulling all 1-coordinates of found rows. In this case it is the 
row T5.  

2. Detection of all columns, which have zero values of rows coordinates with zero 
state of the vector V. Nulling of unit values of found columns. In this case they 
are F2, F5, F6. 

3. Removal the rows and the columns, which have only zero coordinate values 
(found in items 1 and 2), from the fault detection table. 

111T

111T

111T

VFFFF
T

0000T

111T

1011T

100T

111T

VFFFFFFF
T

M

4

3

1

431
j

i
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2

1

654321
j

i

1 ==

 

4. Making CNF by unit ORV values: 

.FFFFFF
FFFFFFFFFFFFFF

FFFFFFFFF
FFFFFFFFFFFFFFF

)FF()FFFFFFFF(
)FF()FF()FF(F

434131

43431434143131

443431433

331441411431311

3144414331

314341

∨∨=
=∨∨∨∨∨=

=∨∨∨
∨∨∨∨∨=

=∨∧∨∨∨=
=∨∧∨∧∨=

 

5. Transformation of CNF to DNF with subsequent minimization of the function. 
In this case it results in gaining sought-for result in the fault combination form: 

.FFFFFFF 434131 ∨∨=  

The proposed algorithm is oriented on analysis of the fault detection table to de-
crease its size and amount of subsequent computing related to DNF making those 
forms all solutions of SoC functionalities diagnosis. Further refinement of a diag-
nosis is possible by application of the multiprobe on the basis of the boundary 
scan register [15]. 

Example 12.1. Make algebra-logical analysis of the fault detection table 
FTM ×=  that contains 10 faults. Test of the length 11 input patterns checks all 

faults. The output response vector V = (10001001001), formed in the process of 
diagnosis experiment, fixes discrepancy between unit outputs and the gold  
standard on four (1, 5, 8 and 11) test patterns. 
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In compliance with quantity of units in the output response vector V, a number of 
disjunctive terms CNF that is equal to 4 is formed. Every term is line-by-line writ-
ing of faults by logic operation OR which influences distortion of functional out-
put signals. Then CNF is transformed to DNF on the basis of the Boolean algebra 
rules. It enables to get following result: 

).FFFFFFFF(
)FFFFFFFFFFF

FFFFFF()FFFFFFFFF
FFFFFFFFF()FFF(

)FFFF()FFF)(F)(FF(
)FFF)(F)(FF)(FF(F

841054954

1084984841054

9548541084984884

10549548541098

84541098485

1098485104

∨∨=
=∨∨∨∨

∨∨=∨∨∨
∨∨∨=∨∨

∨=∨∨∨=
=∨∨∨∨=

            (12.22) 

The function represented in the form 

)FFFFFFFF(F 841054954 ∨∨= ,                                     (12.23) 

contains the fault F4 in all terms, it means that the fault is present in SoC functio-
nality without fail. If to put forward hypothesis about existence of single fault or 
minimal quantity of multiple faults, the solution determinate by third term 

84FFF =  is preferable (in a circuit there exist two faults, which form the output 

response vector that is equal to V= (10001001001)). 

12.6   Simulation for Diagnosis Refinement  

Disjunctive form represented in (12.21) is the main model of fault localization. It 
not always defines functional fault definitely, therefore it is necessary the diagno-
sis refinement procedures. All rows FTM ×= , which are marked by zero ORV 
values, have to be joined to non-existent fault disjunction (12.21). Obtainment of 
such form from given FDT enables to determine all faults, which can not exist in a 
circuit: 
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).FFFFFFF(
)FFFFFFF(

)F()FF()F(
)FF()F()FFF()FF(F

9765321

5196372

7653

21196372

∨∨∨∨∨∨=
=∨∨∨∨∨∨=

=∨∨∨∨
∨∨∨∨∨∨∨∨=

           (12.24) 

Analysis of expression (12.23) and (12.24) enables to make interesting conclu-
sions: 1. Faults, which can not exist in a circuit, are defined in DNF terms, ob-
tained by zero rows relative to the output response vector. 2. Faults, which are in 
DNF (12.24), must be removed from function (12.23). 3. Removal of fault F5 re-
sults in breaking of two terms 1054954 FFFFFF ∨ , so far as every fault separately 

can not form given output response vector without fault F5. 4. Thus the sole con-
clusion is made: double fault that determined by term )FF(F 84=  exists in a  

circuit. 5. The computational complexity of obtainment of exact and complete so-

lution set is defined by expression )1m2(2Q 1m += + , where m is a number of 

faults. 
Mark absence of the concrete fault as 0Fi = ; input conditions for DNF (12.23) 

can be formed for purposes of subsequent simulation of a function under the fol-
lowing initial conditions: 

)0000000()F,F,F,F,F,F,F( 9765321 = . Then simulation result of the function 

)FFFFFFFF(F 841054954 ∨∨=  is equal to 848410494 FF)FFF0FF0F(F =∨∨= . 

Actually, if faults )F,F,F,F,F,F,F( 9765321 , which are checked on test patterns 

theoretically, give negative result (all of them don’t distort output states) it means 
that they don’t exist in a circuit. Justification of this fact is confirmed by the  
following proving. 

Lemma 12.1. Complete set of all possible fault combinations, which are checked 
by the test T, is defined as DNF that obtained by transformation of conjunctive 
form 

),Fk()F(F jj

m

1j

m2

1i
j

1ijM

m,1jn,1i

1iV ===∀

==

=∀
∧∨∨∧ ==  

every term of which is written by unit row values of FDT FTM ×=  that has 
ORV state 1Vi = . 

Initial information, written in compliance with unit ORV values, is complete 
model of faulty behavior of a real object, which forms ORV with fixed quantity of 
“1” that is equal to k (FDT rows). Every row forms a fault disjunction, written by 
OR functions. A number of such disjunctions are equal to k; they are logical mul-
tiplied and form complete and consistent event set (a set of faults, which are in a 
circuit simultaneously). To obtain DNF that includes all possible combinations, 
written as elementary conjunctions, it is necessary to multiply elementary disjunc-
tions and to simplify the expression using axioms aaa;baba =∨=∨ . Fulfilled  
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transformations are identical, so obtained function is equivalent to initial CNF log-
ically, and it is technological notation of all solutions (all fault combinations, 
which are in a circuit) actually. 

Lemma 12.2. In a real object there are not faults, checked in the fault detection 
table FTM ×=  rows and marked by zero ORV values 0Vi = . 

Really the fault detection table FTM ×=  has two kinds of rows: unit 1 and ze-
ro ones relative to the actual ORV value: 

]0V)0101([M&]1V)0110([M qqpp =→=→ . 

The row p detects two faults 32 FF ∨  in a circuit. The row q indicates of theo-

retical check the faults 42 FF ∨ , if the vector is equal to “1”: 1Vq = . But actually 

the signal 0Vq =  identifies the faults 42 FF ∨  inessentiality for circuit output dis-

tortion. Otherwise there are not the faults in a tested device. Substitute zero signals 
0FF 42 =∨  in the function 32 FFF ∨=  and obtain result: 

304F2F32 FFFF =∨= == . Similarly all faults, defined in the rows, which have 

zero ORV value, are absent in a circuit. If it is true, they must be removed from 
DNF, written by unit ORV values. So, if there are DNF terms and a set of faults, 
which can not exist in a circuit for given ORV, the substitution procedure of zero 
signals in elementary conjunction variables of DNF function can be carried out. 
But in consideration of the fact 0...cba0 =∧∧∧  the result of substitution and 
subsequent transformations for obtainment of the minimal function will contain 
the terms only, which don’t have variables (faults with zero signal values). It 
means that all faults corresponding to zero FDT rows relatively ORV will be  
removed from DNF. 

Theorem 12.1. Minimal set of all possible fault combinations, which are defined 
by the fault detection table FTM ×= , is computed by means of DNF simulation 
on an initial conditions set 

)0pV(&)1pqM()0qF(jj

m

1j

m2

1i
)Fk(F ==∃←=∀

==
∧∨= , 

which are determined by zero values of all checked faults, corresponding to zero 
ORV signals.   

In compliance with lemma 12.1 complete set of all possible fault combinations 
under test is defined by DNF 

)Fk(F jj

m

1j

m2

1i ==
∧∨= , 

that forms all solutions, satisfying to unit ORV values 1Vq = . It can be decreased 

by removal the faults, which are detected by a test theoretically, but actually they 
don’t distort output states; it means that they are absent in a real circuit. So, they 
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can be removed from DNF terms, which form complete set of all possible  
combinations. The mechanism of such removal according to lemma 12.2 consists 
of substitution of zero variable values in DNF terms and subsequent simulation of 
a function. If a term has “0”-component of some variable iF  according to the 

Boolean algebra, the whole term is turned into “0”; it means that it is removed 
from DNF. Thus after minimization subject to the conditions of lemma 12.2 the 
minimal DNF contains least quantity of possible fault combinations (a single and 
multiple ones) that can not be reduced without using of additional diagnostic in-
formation incoming from a troubleshooter on basis of the boundary scan register.  

In practice the following statements are useful for diagnosis refinement: 

Statement 1. If Fj are in all DNF terms, this fault exists in a circuit and it is not 
necessary to test it. Otherwise if one supposes that check result is equal to zero, all 
terms are turned into zero; and it contradicts to an existence condition of nonzero 
ORV values (V). 

Statement 2. There are a single fault combination in a circuit that defined by 
one DNF term. If there are one confirmed solution in the form of DNF, other 
terms must be removed from consideration by means of their vanishing. 

So, the check point minimization problem comes to fulfillment of two alterna-
tive strategies: 1) analysis of variables in minimal length terms to confirm all 
faults in a logical product by means of their probing; 2) check of variables, which 
turn maximal quantity of DNF terms into zero. 

Thus proposed algebra-logical diagnosis method uses the Boolean calculus as base 
apparatus for solution of the covering problem by means of obtainment the dis-
junctive form that is minimized further by removal of terms, which have fault va-
riables relating to rows with zero ORV values. An advantage of algebra-logical 
method is obtainment of DNF terms, which form all possible coverage’s (multiple 
faults) of unit ORV coordinates. The computational complexity of the method has 
exponential relation from fault quantity: n2Q = . For small quantity of faults in a 
digital system the computational complexity enables to realize fault localization in 
real time. 

12.7   Structure-Logical Fault Diagnosis Method  

The fault detection table that turned out at fulfillment the fault simulation proce-
dure doesn’t have information about external outputs, which were distorted on test 
patterns. This fact can reduce the diagnosis depth essentially. On the other hand 
additional use of the information above in the aggregate with FDT has positive  
influence on diagnosis result and reduces the power of fault component set. 

Lets there is FDT with outputs 321 Y,Y,Y , which keep information about  

distortions on the test patterns 11841 T,T,T,T  as in (12.25). The output response 

vector V was obtained by means of fulfillment OR operation at the output results 



314 V. Hahanov
 

of a diagnosis experiment j
n

1j
YV

=
∨=  that consists in input a test and subsequent 

comparison the reference response R and experimental one R* on every circuit 

output jY : )T(R)T(RY i
*

ij ⊕= . The operation 321 YYYV ∨∨=  was applied 

to the fault detection table (12.25); as a result ORV was obtained; at that the  
information content and the diagnosis depth was reduced.  
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       (12.25) 

It is necessary to have capability of diagnosis refinement by taking into account 
the circuit structure and exact analysis of device output states. For that additional 
information in the form of vector reachability matrix for all circuit component 
outputs, such as fallible lines and elements, is formed:  

m,1j;n,1i,YY j === ,  

where n is a number of outputs or reachability matrix vectors; m is the dimension 
of every vector that is equal to circuit fault quantity. 

For given example the reachability matrix of three circuit outputs (scalars) 

321 Y,Y,Y  is represented by three last rows of expression (12.25) on the hand of 

potentially faulty components. The outputs are considered as independent ones, 
but in general case it occurs not always. 

The diagnosis procedure with an allowance for circuit structure is modified on 

CNF forming stage. The mask operation by the appropriate row jY  of the  

reachability matrix is applied to every FDT row for which )1Y(M ji = : 

)]Y(MY[MM ji
1Y

j
11

j =∀
∧∨= .                              (12.26) 



12   Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 315
 

If all circuit outputs have unit values of the experiment results 1Yj =∀ , current 

FDT row is masked by all reachability matrix vectors with results union by OR 
function; it means that the mask procedure is not necessary. 

In respect to the example above the mask procedure (12.26) is carried out at 

FDT (12.25) rows 1,5,8,11 by the vectors 321 Y,Y,Y , which are written in lower 
part of the fault detection table. It results in decrease a number of unit coordinate 
values of FDT: 
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VYYYFFFFFFFFFFF
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Here the unit coordinates )}F,T(),F,T{( 91141  were removed from FDT. It results 

in more simple CNF and makes DNF obtainment procedure less laborious. Mak-
ing of fault DNF is represented below:  

).FF(FFFFFFFF

FFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

)FF)(FF)(F)(F()FF)(F)(FF)(F(F

8510410841054

10841084105410854

1081048810410510485104

1088510410848510

∨=∨=

=∨∨∨=

=∨∨∨=

=∨∨=∨∨=

 

Compare the result with the solution above 

)FFFFFFFF(F 841054954 ∨∨= , 

it is obvious that the solution 84FF  is absent, because it doesn’t cover the unit 

ORV coordinates (1,5,8,11). The obtained subset )FF(FFF 85104 ∨=  contains two 

fault combinations and indicates failure of two components 4 and 10; this subset is 
added by one fault 5 or 8. To refine the diagnosis it is necessary to carry out the 
probe procedure for one of lines 5 or 8; it result in obtainment the single term  
solution that defines a fault subset actually existing in a circuit. 
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12.8   Vector-Logical Diagnosis Method by the Fault Detection 
Table 

To make diagnosis the fault detection table processing is carried out by an algo-
rithm based on use the vector operations of conjunction, disjunction and negation 
over the fault detection table rows. Conjunction of the generalized vector that cor-
responds to unit coordinate values of the output response vector (ORV) and the 
inverted generalized vector by zero ORV coordinates: 

⎟
⎟
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⎝
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⎜
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⎛
=∧=

==
∨∨ i

0V
i
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01 MMMMF
ii

.                     (12.27) 

A single fault diagnosis differs by fulfillment of the conjunction scenario (instead 
of disjunction one) of all vectors, which correspond to unit ORV coordinate  
values, on the first step: 
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.                    (12.28) 

Example 12.2. Fulfill the multiple faults diagnosis in a circuit by the vector-
logical method; the fault detection table and the output response vector are  
specified (12.29).  

The fault detection table processing in compliance with formula (12.27) gives 
the result that is represented in four lower rows (12.29). Last FDT row fixes the 
faults presence in a circuit; faults are represented in vector or set-theory form 

}F,F,F{)0001000101(F 1084== .  

To transform the obtained result into DNF form the fault detection table structure 
and a set of faults, fixed in the last table row, are used. Synthesis of disjunctive 
form gives the following result and (12.29): 

.FFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

)FF)(F)(F)(FF(F

8448101084481084

10481010484448104484

10448104

=∨∨∨=

=∨∨∨=

=∨∨=

 

It is interested that due to writing of faults in the form of DNF terms, covering all 
unit ORV coordinate values, there is capability to remove the fault FF10 ∈  from a 
fault list. The similar result has been obtained before when the algebra-logical 
fault diagnosis method is considered.  
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       (12.29) 

Advantage of the vector-logical method is the technological analysis of the fault 
detection table; the analysis computational complexity–fault quantity–test power 
relation is multiplicative: mnQ ×= . It is recommended to use the method when 
there is the predominance of unit coordinate values in the fault detection table. 
Disadvantage of the method is the impossibility of making all fault combinations, 
which form the terms for covering of unit ORV coordinate values. 

Example 12.3. Fulfill the vector-logical fault diagnosis of circuit lines subject to 
the circuit structure; a circuit is represented in Fig. 12.13.  
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Fig. 12.13 A circuit example for diagnosis  

The fault detection table (first 5 rows) and the output response vector V  
correspond to the circuit structure: 
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(12.30)

 

Use the vector-logical method subject to expression (12.27) gives capability to get 
a result without taking into account the circuit structure: 

}F,F,F,F,F,F{)001011110100(F 865431== . Synthesis of disjunctive form by 

the fault detection table, masked by the obtained faults }F,F,F,F,F,F{F 865431= , 

gives solution: 
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∨∨∨∨∨∨=
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In case of additional use the circuit structure (Fig. 12.13) in the form of the table 
rows 121110 Y,Y,Y  (12.30) that is applied to FDT a result can not be worst.  

Determination of the vector )Y(M1  in (12.30) is realized by application of the 

reachability vectors }Y,Y,Y{ 121110  masks, which correspond to faulty circuit 

outputs on test patterns: 



12   Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 319
 

)].Y(M)Y[(

)]Y(M)Y[()]Y(MY[)Y(M
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∨∧∨∧=
           (12.31) 

Substitution of the concrete vectors from FDT to expression (12.27) gives the  
result: 

}.F,F,F,F,F,F,F,F,F{

]111111001111[]010011001010[
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Subsequent computation related to the vector operations 
01 M)Y(M)Y(F ∧=  on 

the fault detection table form the final solution: 

}.F,F,F,F{)001011000100(

)001011110100()111111001111()Y(F

8431==

=∧=
 

Last vector (111100111111) creates a mask to form disjunctive normal form that 
has the following terms: 

.FFFFFFFF)FF)(FF(

)FFFF)(FF)(FF()Y(F

844381318341

84318341

∨∨∨=∨∨=

=∨∨∨∨∨=
 

In general case use the circuit structure in the form of the reachability matrix 
enables to get more exact diagnosis due to removal the faults, which can not  
influence on faulty outputs. 

There are proposed diagnosis methods: 1) algebra-logical, 2) vector-logical  
and 3) structure-logical ones. They give the mathematical apparatus to a specialist 
in the field of SoC design and testing. It enables to diagnose of faulty components 
if there is preliminary constructed fault detection table. At that set-theoretical solu-
tions, efficiently obtained by second method, can be represented by all possible 
fault combinations in the form of DNF terms that is typical of the first method. 
Second method is efficient if a number of “1” in FDT is greater then 10-20%. 
Third method needs additional information in the form of a reachability matrix for 
all external outputs that enables to reduce essentially the power of a diagnosed 
fault set or quantity of terms, defined all possible fault combinations, which form 
the output response vector.  

It is necessary to note that all three methods can generate a result in three 
forms: vector, set and combine one in the form of DNF terms. Fault simulation 
stage is interested for the purposes of SoC faulty area reduction. The algebra-
logical method can be added by the fault reduction procedure by means of  
subtraction all non-existent faults. 
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12.9   Algebra-Logical Memory Repair Method 

The exact method of memory elements diagnosis and repair by spare rows and 
columns, which enables to cover a set of faulty cells by minimal quantity of spares 
is represented. The method is oriented on implementation of the Infrastructure In-
tellectual Property for SoC functionality. The structure solutions for realization of 
the method of diagnosis and repair of memory matrix fault cells are proposed 
[37,38,40,41,45,46,51,52]. 

During the SoC manufacturing and operation any kinds of memory the guaran-
tee of its technical compliance are necessary. In this regard, three procedures are 
carried out as given below: 1) Memory testing that consists of test patterns input, 
which oriented on identification of specific kinds of faults [23,37,38]; 2) In the 
case of fault appearance, it is necessary an additional diagnosis procedure that 
enables to determine location, cause and kind of fault; 3) After detection of a fault 
set, which blocks carrying out of the memory function, it is necessary to activate 
the repair process – replacement of faulty elements by spares, which initially are 
on a chip [9-12]. Thereby, aforementioned actions are oriented on the growth of 
yield without significant additional time and material costs. To repair, it is neces-
sary to apply a special mechanism for memory repair, by means of replacement of 
faulty components by fault free ones from the chip reserve. 

As a rule the testing procedure is realized by BIST-block (Built-In Self Test), 
which is hardware high performance generator of test patterns, as well as an ana-
lyzer (signature) of memory outputs responses on test patterns. Repair analysis 
consists of definition of covering possibility of faulty memory elements by availa-
ble reserve components. Memory module has two parts: 1) functional cells, which 
are used for data and program storage, when a module is used in SoC; 2) reserve 
or spare cells, which are designed for memory repair in case of functional cells 
failure. Functional and spare cells are joined together in the form of columns and 
rows. When a fault is detected, a row (a column), which includes a faulty element, 
is disconnected from the functional structure of memory cells and a row  
(a column) from chip spare is connected on its place. The number of reserve com-
ponents is limited, so it is necessary to apply a special mechanism of effective al-
location of repair resource, for support of faulty memory elements covering by the 
minimally possible quantity of redundant rows and columns. 

The search procedure of faulty cells covering by the minimal quantity of re-
serve rows and columns described above can be realized as on-chip repair module 
or external one. In the second case data about errors is received from external 
modules; they are processed and pass to the controller that provides memory re-
pair. It results in considerable time loss. So, the preferable solution is on-chip 
module realization, when data about errors is passed from BIST directly. Such 
mechanism is called as BIRA [37,38,45,46,51,52] – Built-In Repair Analysis. 

Memory repair is realized by disconnection of faulty elements (rows and col-
umns of a matrix) by means of electrical fusion of metal links and connection of 
spare ones. The fuse process can be electrical or laser [18]. Electrical fuse equip-
ment has smaller dimensions than laser one and it is used more frequently. Fuse is 
carried out by means of an instruction set, which can be stored in permanent 
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memory inside chip (hard repair) or in random-access memory (soft repair)  
[37-38]. Soft repair has several advantages: when a defect appears, a new cor-
rected instruction can be recorded to memory easily; there provide economic use 
of chip area and sufficient reliability. Hard repair enables to use a simplified man-
ufacturing test and provides detection of errors, which can not be fixed by soft re-
pair under certain circumstances. 

The structure of on-chip memory analysis and soft repair processes (BISR) 
[40,45,46] is represented in Fig. 12.14. There are: 1) Chip activation, filling of the 
BISR register by zero values. 2) Run the BIST controller. Memory testing and ac-
cumulation of information about faulty cells in the BIRA register. 3) Transfer of 
information about faulty cells to the BISR register for subsequent fusion. 4) Scan-
ning the BIRA registers for obtainment of faults information 5) Run the fuse con-
troller in record mode and transfer the repair instructions from the BISR. 6) Chip 
restart. Recording the fuse information to the BISR register, replacement of faulty 
rows and columns by reserve components is fulfilled. 7) Run the BIST controller 
for repeated memory testing and verification of the repair result correctness. 

The idea of an algebra-logical memory repair method is in optimal replacement 
of memory matrix faulty cells by means of solution of the fault covering task by 
spare rows and columns. The objective function is defined as minimization of the 
memory matrix spares (S), necessary for its repair in the process of SoC operation 
by means of synthesis of a disjunctive normal form of faulty elements covering 
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Fig. 12.14 Scheme of on-chip memory analysis and repair 
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There is every resultant conjunctive term of the function Y is formed from row 

and column identifiers )C,R(X ttt = , which cover all faults in a memory matrix. 

The best solution is the minimal length term by Quine that contains rows and col-
umns covering all faults. Particularly a solution can contain not a row (a column), 
when available columns (rows) from memory spare are enough for matrix repair. 
The model of determination process of minimal spares quantity, which covers all 
detected faults in a memory matrix, consists of the following items: 

1. Transformation of two-dimensional model of memory matrix faults to a fault 
coverage table by spare rows and columns. To achieve the aim the topological 
memory model in the form of fault identification matrix is considered: 

⎩
⎨
⎧

=⊕←
=⊕←==

.0fT0
;1fT1

M,MM ijij                                (12.32) 

Here matrix coordinate is marked by 1, if the fault-free behaviour function f of a 
cell and test reaction gives one value that corresponds to a fault. After detection all 

faults the fault coverage table is formed m,1j;n,1i,YY ij === , where columns 

correspond to a set of detected faults m and rows are the numbers of columns and 
rows of a memory matrix, where faults are occurred: 

⎩
⎨
⎧

∅=∩←
∅≠∩←

==
.F)R(C0
;F)R(C1

Y,YY
jii

jii
ijij                      (12.33) 

Instead of the two-dimensional metrics components C and R it is used one-
dimensional vector concatenated from two sequences C and R; its power is equal 
to n = p + q: 

).X,...,X,...,X,X,X,...,X,...,X,X(X*X

)R,...,R,...,R,R(*)C,...,C,...,C,C(R*CX

qpjp2p1ppi21
rc

qj21pi21

++++==

===
    (12.34) 

At that there exists one-to-one correspondence between elements of the initial sets 
(C, R) and resultant vector Х that is determined in the first column of the matrix 
Y. It is necessary to say that the transformation R*CX =  is carried out for ease 
of consideration and subsequent forming of disjunctive normal form within the 
bounds of uniformity of variables, which form the Boolean function. If the proce-
dure is not carried out the function will be defined on two kinds of variables, 
which contain rows and columns of a memory matrix.  

2. Forming CNF for analytical, complete and exact solution of the covering task. 
After forming of a covering matrix that contain zero and unit coordinates the syn-
thesis of analytical covering form by means of CNF writing by columns is carried 
out. Here a number of conjunctive terms are equal to quantity of table columns 
and every disjunction is written by one values of the column: 
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=
                (12.35) 

As follows from last expression every column has two coordinates only, which 
take on unit value, and quantity of logical products is equal to total quantity of 
faults m, detected in a memory matrix. 

3. Transforming CNF to DNF enables to see all solutions of the covering task. For 
that it is necessary to apply the operation of logical multiplication and the minimi-
zation (absorption) rules to a conjunctive normal form to get disjunctive normal 
form: 

}.1,0{k),Xk...Xk...XkXk(Y j
in

j
ni

j
i2

j
21

j
1

w

1j
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The generalized notation of DNF is represented here, where a number of terms is 

equal to n2w =  in the limit, n is a number of rows in the set (C,R) or a number  
of the variables Х in a matrix Y, on a set of which all solutions (fault coverings  

by spares) are formed; if i
j
i Xatk is equal to zero the variable Хi becomes  

inessential one. 

4. Choice of minimal and exact solutions of the covering task. The procedure is re-
lated to the determination of minimal length conjunctive terms in obtained DNF. 
Subsequent transformation of a memory matrix to rows and columns on basis of 
use the correspondence defined above enables to write the minimal covering or set 
of ones by two-dimensional metrics of rows and columns that satisfies the  
objective function conditions (limitations) on spare quantity. 

Example 12.4. Fulfill the process of a memory matrix repair in the part of deter-
mination of minimal quantity of spares, covering all faults. A memory matrix with 
faults and spares [11] is represented in Fig. 12.15. 

1  2   3   4  5   6   7   8  9 10 

11 
10 
9 
8 
7 
6 
5 
4 
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2 
1 

 

Fig. 12.15 Memory matrix with faults and spares  



324 V. Hahanov
 

The matrix has limitations on diagnosis and repair possibilities for ten faulty 
cells, which are defined by two rows and five columns. In compliance with item 1 
of the model of determination process of minimal quantity of spares, which cover 
all detected faults of a memory matrix, the coverage table of ten faults 

)F,F,F,F,F,F,F,F,F,F(F 10987654321=  by eleven rows is formed as in (12.37).  
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The rows are represented by concatenation of the columns С and rows R, which 
are in the one-to-one correspondence with the variable vector Х: 

).X,X,X,X,X,X,X,X,X,X,X(X
)R,R,R,R,R,R(*)C,C,C,C,C(R*C

1110987654321

108754387532
=≈

≈=
       (12.38) 

In compliance with the coverage table-construction of DNF is performed, the 
terms are written by unit values of columns: 

).XX)(XX)(XX)(XX)(XX(&
&)XX)(XX)(XX)(XX)(XX(Y

11111311510293

9581736264
∨∨∨∨∨
∨∨∨∨∨=

         (12.39) 

The following transformations related to obtainment of disjunctive normal form 
are based on application of the Boolean algebra identities, which enable to carry 
out: logical multiplication of all ten multiplicands and subsequent minimization of 
DNF terms by means of application the operator )abaab( =∨ , absorption axiom 
and removal of the same terms. Skipped intermediate calculus, the final result is 
represented in the following form: 
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         (12.40) 

The choice of minimal length terms, which contain 5 variables in given case, 
forms a set of minimal solutions:  

.XXXXXXXXXXXXXXXY 1065316532154321 ∨∨=       (12.41) 

Transforming the obtained function to a coverage that contains variable designa-
tions in the form of rows and columns of a memory matrix, enables to represent 
solutions in the following form: 

.RRCCCRСССССССССY 838523853287532 ∨∨=      (12.42) 

All obtained minimal solutions satisfy the requirements (limitations) on spare 
quantity that is determined by the numbers: 

)2R(&)5С( rr ≤≤ . 

Other solutions, determined in DNF, have no interest because they have not op-
timal covering of faulty cells that is determined by quantity of variables in the 
terms of (rows + columns), greater than five. Subsequent technology of embedded 
repair of faulty cells consists of electrical reprogramming of an address decoder of 
a column or a row of a memory matrix. In respect to memory, represented in Fig. 
9, a procedure of writing or reading of information at access to any cell of column 
2 will be readdressed to reserve column 11. In compliance with the last obtained 
solution (first term of DNF function Y) other faulty columns will be replaced on 
fault-free ones from memory reserve: 3 – on 12; 5 – on 13; 7 – on 14, 8 – on 15. 

The computational complexity of algebra-logical memory repair method in the 
part of solving of the covering problem [35] is determined by the following  
expression: 

FF 2RC2Q ×++= ,                                    (12.43) 

where F2  is costs related to DNF synthesis by logical multiplication of two-
component disjunctions (fault coordinate is defined by row and column numbers), 

where their quantity is equal to the quantity of faulty cells; F2RC ×+  is upper 
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limit of computational costs, which are needed for minimization of the obtained 
DNF on maximum set of variables which is equal to the total quantity of rows and 
columns RC + . 

In the worst case, when coordinates of all faulty cells are not correlated by rows 
and columns (they are unique), for instance, diagonal faults, the computational 
complexity of the matrix method is dependent only on the quantity of faulty cells 
and its analytic notation is transformed to the following view: 

).F21(22F222RC2Q
FFF

F2RC
FF ×+×=××+=×++= ×≤+  (12.44) 

If instead of fault set power to use quantity m of them, the previous expression can 
be represented more simplified form: 

).1m2(2)m21(2Q mm +=×+×=                             (12.45) 

According to the SoC Functional Intellectual Property Infrastructure, the matrix 
repair method on the basis of solving covering problem is implemented into a chip 
as one of I-IP components, designed for the functional support of SoC matrix 
memory and SoC in whole. 

12.10   Conclusions  

A deductive-parallel fault simulation method [14-17] focused on large dimension 
digital projects of gate and register levels to obtain descriptions of the fault detec-
tion table and assess the quality test coverage of prior given class defects. The unit 
under test model is represented in the form of structures, truth tables, Boolean eq-
uations, cubic coverage describing components of complex digital system  
implementing into in the SoC. The proposed method combines fault simulation 
dignity of deductive fault detection lists, effective from the point of view of ma-
thematics, and the implementation of parallel procedures targeting high-speed dig-
ital devices with the gate, register and system descriptions levels. 

Algebra logical method with the built-in diagnosing defects in the functional 
blocks SoC and its two modifications using analysis FDT, in order to reduce the 
volume and subsequent calculations related to the construction of DNF, which 
creates all decisions on diagnosis SoC functionalities in the real time is offered. 
The methods of approximation and exceptions include two procedures targeting 
the diagnosis of single or multiple defects. The proposed algebra logical method is 
a universal in terms of the defects number that is present in the scheme and allows 
for a single procedure to place an accurate diagnosis, indicating a single or mul-
tiple faults, all of which are required to cover all unit value coordinates of Output 
Response Vector (ORV). 

A truncated infrastructure IP service for functionalities SoC is offered. It is a 
different from standard by minimum set of built-in-diagnosis procedure in real 
time and provides an opportunity to services: testing functions in operations on the 
basis of embedded set of test pattern generators, output analysis of test reactions; 
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diagnosis of a prior given depth of defects localization by using a boundary scan 
register of IEEE 1500 standard, fault simulation with a view to the providing the 
first two procedures executing by using the fault detection table. 

A mapping process model of test synthesis is offered, which use different em-
bedded test generators libraries for SoC functionalities, which allows substantially 
reduce the time construction of tests intended to verify the digital system in opera-
tion and fault detection. 

In terms of the memory repair there is some scientific novelty. Memory SoC in 
the near future will be more than 90% of the SoC-based software. Urgently to de-
velop not only the models and methods of rapid and accurate diagnosis, but also 
the creation of technologies for the repair of defective cells by using embedded 
service means in real time and at all stages of the product life cycle. This would 
essentially reduce the chip pins, increase yield, reduce time-to-market, and the 
cost of maintenance services as well as the exclude the external tools to diagnose 
and repair. 

Algebra logical memory repair method based on the faulty cells coverage the 
spare elements by using apparatus of Boolean algebra. The method is quadratic 
computing complexity and can be implemented as software in the silicon outside, 
and inside in the form of a supplementary service module correction of defects 
that would automatically restore the memory elements in the operation. 

The classical coverage challenge operates with two one-dimensional vectors 
(X, F), where the operator P allows you to find cover with minimal subset of the X 
components covering its functionality all the elements of F: 

minmin XFX)F,X(PX =∩←= . The problem of one-dimensional vector F 

properties coverage by two-dimensional matrix )RC(M ×= needs to bring both 

components to a single metric. This coordinate system has the common denomina-
tor for the both components. Naturally, such a metric for matrix M and vector F is 
a one-dimensional structure. Therefore, in this case, a priori need to complete the 
conversion of two-dimensional structures (the matrix defects memory) to a one-
dimensional by the operation concatenation )R*C(X = for the purpose of subse-

quent coverage task decision by applying formal actions defined operator 
)F,X(PXmin = . 

A method of optimal repairing memory defects, which is different from the 
analogue technology of algebra logical defects coverage by two-dimensional ma-
trix memory topology that provides the minimum and complete solutions for the 
repairing in real time, based on the use of redundant components in the form of 
rows and columns of memory. 

The practical significance of the method lies in its implementation in the infra-
structure IP service of SoC functional blocks. This allows significantly (by 5-10%) 
increase the percentage of yield to the market through electronic technology reco-
vering defective memory elements in the production and operation phase, and in-
crease the life cycle of memory through its repair in real time. 

Built-in-repair focused on all components of the system is addressed: memory, 
multiprocessors, matrix processors. If you want to repair the other structures, they  
should be given the redesign with injection of addressable components.  



328 V. Hahanov
 

Addressability and regularity of the components in the digital system transforms it 
to a reliable, robust, maintainable and fault tolerance one. 

Algebra-logical presentation of the coverage task is very attractive to the op-
timal solution to the all tasks of synthesis and analysis of complex systems, where 
there is the problem of mapping (coverage): 1) specification – with a set of library 
components; 2) defects – with test sequences; 3) functionalities – with test-
benches; 4) faulty elements – with the spare; 5) states of the UUT – with the line 
of observation. 

In order to reduce the problem’s dimension of mapping, the original model 
must be structured by hierarchy creating, which is typical and is widely used in 
design automation systems (ESL-, TLM-technology). 

Priori looks very attractive FDT in the form of Boolean function in terms  
of compactness, which is transforms into a compact DNF terms, as all possible 
combinations of the faulty components to be repaired for the concrete output  
response vector. 

Yervant Zorian (EWDT Symposium 2007, Yerevan): "Currently, one of the 
main problems for SoC design is the development of technologies and methods for 
embedded repair logic, which takes no more than 10% of the silicon area."  

Further investigation in terms of the proposed material focused on the devel-
opment maintainable structure of the System on a Chip and built-in hardware 
module BIRA for embedded repair of any component when defects are appear in 
the process of manufacturing and operating. 
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Abstract. In this chapter, we will discuss how evolutionary methods can be used 
for test generation of digital circuits. In present time it is strongly investigated the 
new direction in theory and practice of artificial intelligence and information sys-
tems – evolutionary computations. This term is used to generic description of the 
search, optimizing or learning algorithms, based on some formal principles of nat-
ural evolutional selection, which are sufficiently applied in solving various prob-
lems of machine learning, data mining, databases etc [1]. Among this approaches 
following main paradigms can be picked out: genetic algorithms (GA), evolution-
ary strategy (ES), evolutional programming (EP), genetic programming (GP). The 
differences of these approaches mainly consist in the way of target solution repre-
sentation and in different set of evolutional operators used in evolutional simula-
tion. Classical GA uses the binary encoding of problem solution and basic  
genetic operators are crossover and mutation. In ES solution is represented by real 
numbers vector and basic operator is mutation. EP uses FSM as solution represen-
tation and mutation operator. In GP problem solution is represented by program, 
crossover and mutation operators are applied. Now this classification is enough 
relative and interaction of basic evolutionary paradigms each other takes place.  

13.1   Genetic Algorithms and Their Modifications 

GA are random directed search algorithms, which emulate natural evolution  
process, to construct (sub)optimal solution of given problem. Any solution is  
represented with a chromosome or individual string of elements (genes). Classical 
"simple" GA [2] uses binary strings (for example, 0011101) to represent an indi-
vidual. Therefore it looks very attractive to use GA techniques for a solution of 
ATPG problems for DS at structural or functional description levels. On the solu-
tion set the fitness (goal) function is determined. Fitness function allows to evaluate 
the closeness of each individual to the optimal solution – the ability of survival. 
Classical “simple” GA uses three basic operators: reproduction, crossover and mu-
tation. Using these operators, the population (the set of individuals-solutions of 
considered problem) evolves from one generation to another. Classical steady state 
GA may be represented as the following sequence of operations shown in Fig.13.1. 
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Here parent individuals are selected with best fitness values. Then crossover is  
performed with a high probability Pc. The formed offspring are mutated with a low 
probability Pm and inserted in current population. To maintain the steady  
individuals number, the population reducing is performed. 

 

Initial population generation 

Parents selection for recombination

Creating offspring of selected pairs 
of parents – crossover operator 

Mutation of created individuals – 
mutation operator 

Insertion of new individuals to the 
current population  

Reducing a number of individuals 
to given number in new population 

- reinsertion 

Search of the best individual in 
final population 

Checking criterion. 
Finish (Yes/No)?

Fitness function evaluation 

 

Fig. 13.1 Classical “simple” GA flow chart 

At present there were suggested numerous modifications and generalizations of 
GA: 1) new variants of each GA step implementations (Fig.13.1); 2) essential 
modification of algorithm structure[3]. Here we can mark up different methods of 
parent selection, population reduction. Different genetic operators of crossover, of 
mutation. Further we briefly consider different variants of every GA step  
implementation and generalization of GA.  

13.1.1   Parents Selection 

At this step the individuals producing offspring are selected. The first step is a fit-
ness assignment. Each individual in the selection pool receives a reproduction 
probability depending on the own objective value and the objective value of all 
other individuals in the selection pool. This fitness is used for the actual selection 
step afterwards. 

In selection, the individuals producing offspring are chosen. As the result of se-

lection intermediate population tP
~

 from current population tP  (t is the genera-

tion number) is generated: tt PP
~→ . Selection operator is based on fitness  

function values. Various selection methods are used fitness value information  
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differently and it significantly influences on GA effectiveness. Each individual t
ia  

in the selection pool receives a reproduction probability )( t
is aP  depending on the 

own fitness value and the fitness value of all other individuals in the population. 

And selection of individual t
ia  from current population tP  to intermediate popu-

lation tP
~

 is executed basing on the probability )( t
is aP . The calculation methods 

of the probability )( t
is aP  determines different selection methods: 

roulette wheel selection [3] 
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where )( t
iaf  - fitness function value, N – population size; 

linear rank-based selection [3] 
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where 21 ≤≤ α  is chosen randomly, αβ −= 2 . 
On tournament selection [3], m individuals are chosen randomly, then the best 

of them is selected as parents. This procedure is continued until intermediate pop-

ulation tP
~

 is not formed. Here selection parameter is Nm ≤≤2 . 

13.1.2   Crossover Operators 

Once the parents are selected, the crossover operator is used to generate offspring 
with a high probability Pc. The basic genetic operators and their properties can 
now be explained. In single-point crossover one crossover position 

}1,...,2,1{ −∈ Lk , L is length of an individual, is selected uniformly at random and 

the substrings exchanged between the individuals about this point, then two new 
offspring are produced (Fig. 13.2). 

A: 0 1 1 1 0 1 0 1 0 
B: 1 0 0 1 1 0 1 0 1 
  

A’: 0 1 1 1 0 0 1 0 1 
B’: 1 0 0 1 1 1 0 1 0 

Fig. 13.2 Single-point binary crossover 

For multi-point crossover, m crossover positions }1,...,2,1{ −∈ Lki , mi ,1= , 

are chosen at random with no duplicates and sorted in ascending order. Then, the 
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substrings between successive crossover points are exchanged between the two 
parents to produce two new offspring (Fig. 13.3).  

A: 0 1 1 1 0 0 1 1 0 1 0 
B: 1 0 1 0 1 1 0 0 1 0 1 
            
A’: 0 1 1 0 1 1 1 1 0 1 1 
B’: 1 0 1 1 0 0 0 0 1 0 0  

Fig. 13.3 Multi-point binary crossover 

The section between the first variable and the first crossover point is not  
exchanged between individuals [2,3].  

Uniform crossover [2,3] makes every locus a potential crossover point. A cros-
sover mask, the same length as the individual structure is created at random and 
the parity of the bits in the mask indicate which parent will supply the offspring 
with which bits, for example, 1 is the first parent, 0 is the second parent 
(Fig. 13.4).  

Binary mask 1 0 0 1 0 1 1 1 0 0 

First parent 1 0 1 0 0 0 1 1 1 0 

           

Offspring 1 1 0 0 0 0 1 1 1 1 

           

Second parent 0 1 0 1 0 1 0 0 1 1  
Fig. 13.4 Uniform crossover 

13.1.3   Mutation 

As new offspring are generated, each gene is mutated with low probability mP .  
Usually the probability of mutating a gene is set to be inversely proportional to the 
number of genes in chromosome (dimensions). The more dimensions one  
individual has, the smaller is the mutation probability.  

For binary individuals mutation means flipping of variable values. For every 
individual the variable value to change is chosen uniform at random with low 
probability ]01,0;001,0[∈mP  (Fig. 13.5).  

0 1 1 1 0 0 1 1 0 1 0 
           

0 1 1 0 0 0 1 1 0 1 0 

Fig. 13.5 Binary mutation 

In some cases inversion mutation operator is used. Two bits are chosen in  
individual at random and then chosen bits are exchanged (Fig. 13.6).  
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0 1 1 1 0 0 1 1 0 1 0 
         

0 1 1 0 1 0 0 1 0 1 0 

Fig. 13.6 Inversion mutation 

Note that mutation serves the crucial role for providing the gene values that 
were not present in the current population. It enables new individual properties 
acquisition. Thus mutation makes the entire search space reachable, despite popu-
lation finiteness. In spite of the fact that crossover has the most efficient search 
mechanism, it does not guarantee the reachability for each point of search space.  

So, for solving any problem with genetic algorithm we must first of all define: 
individual and population, genetic operators, fitness function. 

In ATPG problem solutions are represented as binary patterns or sequences of 
patterns also. Therefore it looks very attractive to use GA techniques for a deci-
sion of ATPG problems for DS at structural or functional description levels [2,3]. 
Further we will use different variants implementation and generalization of GA 
for test generation problem of digital circuits.  

13.2   Genetic Test Generation Algorithm for Digital Circuits 

The objective of digital circuits testing is to generate a compact sequence of  
binary test vectors that has high coverage of manufacturing defects. The test se-
quence applied should be able to uncover all possible defects that could occur in 
manufacturing process. That is, the output response of defective chip (or board) 
should be different from the outputs of a good chip. At the same time real physical 
defects are modeled with faults, such as stuck at fault, short, bridge fault, transis-
tor stuck open, transistor stuck close and so on. Mostly stuck at fault modeling is 
used in digital testing. Here nodes are assumed to be stuck at constant either ‘0’ or 
‘1’ for the purpose fault modeling. So each node may have two types of this fault, 
namely, s-a-0 and s-a-1. The approach usually used is to try to generate a test se-
quence that detects all single stuck-at faults in circuit under test. We would like to 
ensure, that generated test sequence contains a test for each single stuck-at fault in 
circuit under test. After a high fault coverage for single stuck-at faults is achieved, 
the additional test sequences may be generated that target other fault models, such 
as transistor stuck, delay fault model so on. 

Generally the test generation process consists of two phases. At the first phase 
there are used the methods that do not direct to specific single fault but take the 
whole class of single stuck-at faults in circuit under test. Here test sequence is 
generated for faults that are checked enough easily with using not big computer 
power. Before the pseudorandom methods were used at this phase but now also 
genetic algorithms are exploited. Then the fault simulation determines the fault 
coverage and unchecked fault list for which it is necessary to generate test  
sequences. 
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So at second phase for each unchecked fault test sequence is generated using 
deterministic (or genetic) algorithm. Then again the fault simulation is used for 
reducing unchecked fault list. This process cycles until the high fault coverage is 
reached. We will discuss the genetic algorithm using basically at the second phase 
of test generation, where test sequence is generated for specific unchecked fault. 

13.2.1   Test Generation Genetic Algorithms for Combinational 
Circuits 

At first, the genetic algorithms were used for test generation of combinational cir-
cuits where output signals depend only on input signals and do not depend on state 
variables are usually represented with flip-flops. Here, as a rule, the individual 
corresponds to single binary test vector X=(x1,x2,…, xn). The test generation prob-
lem may be formulated analytically for given single fault in one output combina-
tional circuit[4]. Let f(X) is a Boolean function implemented with correct  

combinational circuit and φ(X) - Boolean function implemented with fault circuit. 
Then Boolean expression D(X)=f(X)⊕φ(X) is called a difference function. It is ob-
vious that D(X)=f(X)⊕φ(X)=1 defines the values of test vector X. So the test gen-
eration problem is reduced to search of Boolean equation D(X) =1. In the case 
multi outputs combinational circuit the difference function may be generalized in 
the following way: 

)).()((...))()(())()(()( 2211 XXfXXfXXfXD mm ϕϕϕ ⊕∨∨⊕∨⊕=   

Also it is obvious, that a solution of Boolean equation D(X) =1 gives the test  
vector for given fault.  

This problem may be efficiently solved with using genetic algorithm. In this 
case the individual represents the binary test vector X=(x1,x2,…, xn,), where xi=0,1 
and n equals circuit inputs number. So the population is composed of binary test 
vectors and standard genetic operators of crossover and mutation may be used in 
this case. Usually the number of individuals in population is proportional to inputs 
number n (for example 3n)[5]. We will consider the genetic algorithm using for 
test generation for example of circuit shown in Fig. 13.7. 

                                                         
                                  

                                                                           
 

                                                    

x4

x5

x1   

x2 

x3 

x6 

 
Fig. 13.7 Combinational circuit  

For the convenience, all signal values for any inputs vectors are represented in 
Table13.1. 
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Table 13.1 Signal values for inputs vectors 

X1 X2 X3 X4 X5 X6 

0 0 0 1 1 1 

0 0 1 1 1 1 

0 1 0 1 1 1 

0 1 1 1 0 0 

1 0 0 1 1 1 

1 0 1 1 0 0 

1 1 0 0 1 0 

1 1 1 0 1 0 

From the beginning the initial test vectors population is generated in a random 
way. For example, the initial population for the circuit in Fig. 13.7 is shown in 
Table 13.2. 

Here in second column the detected single stuck-at faults are shown for each 
population individual (binary test vector). Obviously, that test vector detecting 
more faults should have more chance to be inserted in test sequence. So, at initial 
stage we take the fitness function h=Fn*r, where Fn is the number of newly de-
tected faults with corresponding individual (test vector) and r is “bonus” for each 
detected fault (for our example r=10). In real program system, the number of new-
ly detected faults Fd is determined with using of fault simulation. Obviously the 
best individual (binary vectors 011 and 101) with maximum fitness function value 
h=Fd*r must be inserted in test. Let for example the binary vector (101) be in-
serted in test. Further, for next population generation it is necessary to apply the 
genetic operators such as one(two)-point crossover and mutation. Once two  
individuals are selected, the crossover operator is used to generate two offsprings.  

Table 13.2 Initial population for the circuit in Fig. 13.7 

Input vector 
(x1, x2, x3,) 

Detected faults 
Fitness function value

h= Fn *r 

000 x4 = 0, x5 =0, x6=0 3∗10 

011 x2=0, x3=0,  x5 =1, x6=1 4∗10 

101 x2=1, x4=0,  x5 =0, x6=0 4∗10 

111 x6=1 1∗10 

As new individuals are generated, each bit is mutated with given small prob-
ability Pm. In simplest case of binary-coded GA mutation may be done by flipping 
a random selected bit. While in a non-binary coded, mutation involves randomly 
generated a new value in a specified position. So mutation produces incremental 
random changes in the offspring generated through crossover and brings new  
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properties for individuals. Each new individual (test vector) must be evaluated 
with fitness function. Obviously, the fitness function must take into account newly 
detected faults number for given test vector. Let after two generations current test 
set consists of two test vectors (101, 011), which detect (non detect) the faults 
shown in Table 13.3. The current population of vectors is presented in Table 13.4. 

Table 13.3 The detected and undetected faults (based on two vectors) 

Test  
vectors 

Detected faults  
with current test sequence 

Undetected faults with current test sequence 

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1 

011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1 

Table 13.4 The detected faults and fitness function value 

Input vector 
(x1, x2, x3,) 

Detected faults 
Fitness function value

h= Fd *s+ Fn *r 

000 x4≡0, x5≡0, x6≡0 0*10+3*1=3 

001 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4 

100 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4 

110 x1≡0, x2≡0, x4≡1, x6≡1 2*10+2∗1=22 

Note that here we have fitness function h= Fd*s+ Fn*r where Fn is the number 
of newly detected faults and Fd is the number of earlier detected faults with corre-
sponding individual (test vector). Here r=10 is bonus of each newly detected fault 
and s=1 is bonus of each early detected fault. In concordance with Table 13.4 data 
the test vector (110) must be inserted in test sequence because it has maximum fit-
ness function value. In the next Table 13.5 the situation is shown for current test 
that consists of three vectors and has only two undetected faults. 

Table 13.5 The detected and undetected faults (based on three vectors) 

Test vectors Detected faults Undetected faults with current test sequence 

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1 

011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1 

110 X1≡0, x4≡1 x1≡1, x3≡1 

Similarly may be shown that at the next step the test vector (010) must be in-
serted in test, because it detects the last faults x1≡1, x3≡1. Overall test generation 
genetic algorithm on base described approach of may be represented by way of 
following pseudocode: 
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Test generation(circuit) 
 { 
 Circuit initialization; 
         Initial vectors population generation; 
         While(stopping criteria met) 
      { 
                fault simulation; 
                fitness function evaluation; 
                insertion the best vector  in test; 
               genetic operators execution; 
               reproduction; 
               crossover; 
               mutation; 
              new population generation; 
              }         
           test sequence output;  
          } 

Here at initialization stage the fault list is generated and other auxiliary opera-
tions are executed. Usually the initial vectors population is generated in a random 
way, but a priori and available information about good vectors may be used also. 
Fitness function evaluation is based on fault simulation. Note that in described ap-
proach the genetic algorithm solves at each step the local problem of next test vec-
tor search (not whole test sequence) in contrast basic GA, described in section 
13.1 which is used as a rule for global problem solution. In next section we shall 
consider the global GA application for test generation for sequential circuits, 
where the individual represent the whole test sequence but not single test vector.  

13.2.2   Test Generation Genetic Algorithms for Sequential 
Circuits 

The test generation problem for sequential circuits is much more complex and its 
target setting depends on observation time test strategy [4]. Let good sequential 
circuit realizes finite state machine (FSM) A=(X,Y,Z,δ,λ), where X is the input 
set, Y is the set of states, Z is the output set, δ:Y×X→Y is the next state function, 
λ:Y×X→Z is the output function. Since we consider the structure model of se-
quential circuit then functions δ and λ are implemented with combinational  
circuits accordingly to Hafmen model: 

Y=(y1,...,yk),  where  yi=(0,1) for ki ,1= ;                         (13.3) 

 X=(x1,…, xn),  where xj=(0,1) for nj ,1= ;                       (13.4) 

Z=(z1,…, zm),  where  zj=(0,1)  for mj ,1= .                    (13.5) 

Further we use the following notations[6]: X(1), X(2),…, X(p) denotes an input se-
quence of length p; Y(y0,0), Y(y0,1),…, Y(y0,p)  denotes the state sequence defined 
by initial state y0; Z(y0,1),…, Z(y0,p) denotes the output sequence defined by initial 
state y0 and input sequence X(1), X(2),…, X(p); zj(y0,t) is the value at the j-th  
primary output  after simulation step t. Using these notations the next state is  
defined by the following function: 
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Similarly, the output Z(y0,t) is defined by the function λ . A fault f  transforms a 
state machine M into a machine Af =(Y,X,Z,δf,λf), where functions δf,λf are de-
fined analogically. Further we consider the different observation (respectively  
detection) time test strategy for sequential circuits. 

Definition 13.1. A single stuck-at fault is detectable by  input sequence X(1), 
X(2),…, X(p) with respect the single observation time test strategy (SOT) [6,7], if 

)),(),((:),(,,},1,0{ btqzbtrzqrkiptb f
ii =∧=∀≤∃≤∃∈∃ , with r an initial 

state of fault-free circuit and q an initial state of faulty circuit. 
According to above definition, a fault is SOT-detectable if there is a unique 

moment t such that independent of the initial states r and q of good and faulty ma-
chines the output values on a particular output are different. For sequential circuits 
sometimes the other strategy is used that allows more precisely to define the fault 
detectability. 

Definition 13.2. A single stuck-at fault is detectable by input sequence X(1), X(2),…, 
X(p) with respect the multiple observation time test strategy (MOT) [6,7] if: 

)),(),((:}1,0{,,),( btqzbtrzbkiptqr f
ii =∧=∈∃≤∃≤∃∀ . 

The fundamental difference between these two strategies is the following one. Ac-
cording to MOT, the is an individual time moment for each possible initial state 
pair (r,q), such that output signals on particular output are different. Obviously, 
that MOT strategy is more general then SOT. Some fault may be MOT-detectable 
but not SOT-detectable. So the test generation goal for sequential circuit is to find 
a input sequence X(1), X(2),…, X(p) for that it holds true Def.13.1 or Def.13.2 de-
pending on using strategy. It is natural that the second strategy requires more 
computer resources. So, we use basically the SOT strategy. But the genetic based 
test generation algorithms allow generalizing the obtained results to MOT strategy 
in contrast to structural methods where it is problematic. 

 
a) individuals  b) populations 

Fig. 13.8 Encoding of individuals and population in GA 
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Further for GA test generation of sequential circuits we will use as an individ-
ual a test sequence that is represented by binary table (Fig. 13.8a). Here the  
column number is determined with circuit inputs number and the test length de-
termines the row number. In this case the population consists of the fixed number 
of test sequences, possibly, different length (Fig. 13.8b).For the chosen encoding 
of individuals and populations the following problem oriented genetic operators of 
crossover can be used [4,6,8]: 

1. The classic one point crossover. In this case the table is interpreted as a single 
binary string. 

2. The horizontal crossover where parents are crossed with subtables after some 
time point t<p as is shown at fig.13.9a.  

3. The vertical crossover where parents are crossed with random selected colomns 
as is shown at fig 13.9b. 

4. The free vertical crossover. It is executed in such a way, when crossover point 
is selected for each row and each pair is crossed by corresponding substrings. 
Note that this modification is the generalization of above vertical crossover.  

5. The uniform crossover where each offspring gene is copied from one the  
parents accordingly to random binary mask as it is shown in Fig.13.4.  

6. Structural crossover is the generalization of vertical crossover where also the 
parents are crossed by columns. Here it is used the exchange by columns 
groups corresponding to one treelike subcircuit. At that approach the exchange 
is directed to internal circuit check points that increases the test generation ef-
fectiveness for internal faults. Note that this crossover may be applied dynami-
cally that is the partition of circuit to treelike subcircuits is doing for specific 
fault of the given circuit. 

 
a) horizontal crossover                         b) vertical crossover 

Fig. 13.9 Operations of the horizontal and vertical crossing GA 

So, crossover is implemented with using above six independent operators that 
are selected randomly with probability P1, P2,…, P6, which are derived  
experimentally under condition P1+ P2+ P3+ P4+ P5+P6=1. 
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Then, as usually the generated offspring are mutated and three types of this  
operator accordingly are used with probabilities 

1mP , 
2mP  and 

3mP : 

1. Delete of one input vector from the random chosen position. Application of this 
operation allows to reduce the length of the generated test sequence in that 
case, when a remote vector does not worsen test properties of sequence; 

2. Addition of one input vector in random position, that also allows to extend the 
search area of decisions; 

3. Random replacement of bits in a test sequence. 
Similarly, the random selection is used between these operators. 

13.2.3   Problem-Oriented Fitness Functions for Test Generation  

The fitness function type plays key role in the GA-based search process. There-
fore, it is important to consider different types of fitness and evaluation functions, 
which are used in GA-based test generation methods. 

The goal of testing process is to obtain different output values of correct and 
faulty devices. Therefore, the fitness function may be defined as measure of signal 
value changes in the simplest case [4]. In this case a fault free logical simulation 
may be used. Another and more accurate approach is to define fitness function as 
measure of detected faults. In this case more complex fault simulation is used, but 
such approach allows obtaining quite good results. Obviously, that the number of 
signal value changes and the number of detected faults are important parameters 
having influence on the effectiveness of test generation process. There are certain 
parameters, which are important to the evaluation function definition and to the ef-
fectiveness of test generation for sequential circuits in modern test generation  
systems:  

1. N is the number of nodes in circuit 
2. Nd is the number of nodes with different values in the fault free and in faulty 

circuits 
3. T is the total number of flip–flops 
4. Td is the number of flip–flops that changed state 
5. E is the number of events in the fault free and in faulty circuits 
6. L is the length of test sequence 
7. F is the total fault number; 
8. Fd is the number of detected faults; 
9. Fdt is the number of faults propagated to flip–flops; 
10. D is fault detectability; 
11. W is sequence power; 
12. O is flip-flop observability; 
13. Ef  is the number of events in the faulty circuit; 
14. Ts is the number of flip–flops which are hardly to set.  

In addition to mentioned above parameters, the effectiveness of test generation al-
gorithms depends on basic components of genetic algorithms such as population 
size, crossover and mutation probability, generation numbers, etc. 
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In CRIS [9] the hierarchical simulation technique is used that allows to reduce 
memory expenses and to deal with very large circuits. The classical GA is used, in 
which population evolves from generation to generation through reproduction, 
crossover and mutation. Each individual represents the test sequence. System 
CRIS is based on continued mutation of test sequence and its analysis with simu-
lation procedure. Given system demonstrates good results (it is fast and produces 
compact test sequences with high fault coverage for combinational and sequential 
circuits) but has essential drawback, namely, the manual tuning GA parameters for 
each circuit. 

System GATEST [10,11] is oriented on the sequential digital circuits and based 
on two–level GA. The first level GA generates single test vectors; the second level 
GA generates test sequences from these obtained vectors. Accordingly in the first 
level GA individuals correspond to single test vectors, while in the second level 
GA they are test sequences. GA uses different crossovers:1–pointed, 2–pointed,  
uniform.  

The first–level GA is subdivided by three phases. Thus, GA has four phases. 
The evaluation functions are different according to the algorithm phase: 

•  in the first phase, the algorithm goal is the flip–flop initialization and so evalu-
ation function is defined as follows  

T

T
Th d+=1 ,                                                         (13.7) 

here evaluation process uses only the fault-free logical simulation; 
• in the second phase, all flip–flops are assumed to be initialized, and the goal is 

to find new test vectors able to detect additional faults; so evaluation function is 
represented as: 

FT

T
Fh d

d +=2 ;                                                  (13.8) 

• the third  phase comes if the generated vector does not detect additional faults 
and uses the following evaluation function 

NF

E

FT

F
Fh dt

d ++=3 ;                                         (13.9) 

If the generated vector detects additional faults, then algorithm returns back to 
phase 2; otherwise if number of the unused vectors exceeds the definite limit than 
algorithm comes to phase 4; 
•  in the fourth phase test sequences are generated from designed vectors and GA 

uses the following evaluation function  

TLF

F
Fh d

d +=4 .                                              (13.10) 

In phases 2–4, evaluation uses the fault simulator that slows down the test genera-
tion process. This package shows good results: high fault coverage and low  
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execution times for sequential benchmark circuits. But it also has the same  
drawback as the manual tuning GA parameters (alphabet size, iterations number,  
population size, mutation rate). 

The interesting approach is used in package DIGATE [11,12]. It is organized in 
two phases: 

• the first phase selects a target fault and GA activates it to a flip–flop; 
• in the second phase GA searches the sequence that makes the target fault ob-

servable at the circuit primary outputs. It uses the distinguishing sequences that 
able to propagate a fault effect from flip–flop to primary outputs. The distin-
guishing sequences are pre–computed and stored for future use. The test  
sequences are constructed as concatenation of activating and distinguishing se-
quences. Evidently, here each individual is a sequence. The evaluation uses the 
fault simulation. Accordingly the phases 1 and 2 have the following evaluation 
functions 

)(1.0)(7.02.01 dsf TTEOWDh +++++= ,               (13.11) 

)(1.0)(1.08.02 dsf TTEOWDh +++++= .               (13.12) 

The weighted coefficients were found heuristically for each phase, but they are 
universal for any circuit. It is advantageous difference of considering method from 
previous packages. 

In another system GATTO the individuals are input sequences too [13]. In this 
package the basic effort is directed to determination of the evaluation function as 
the measure of closeness to the optimum solution. The individuals are evaluated 
with fault simulation according to their activity (the more lines with different signal 
values in correct and fault circuits the more value of detectability probability). So, 
the evaluation function depends on three basic parameters: the weighted number of 
gates with different signals in correct and faulty circuit, the weighted flip–flop 
number with different signals in correct and faulty circuit, and the sequence length. 
The weights are empirical measures of gate and flip–flop observability accordingly. 
The last parameter is used for improvement of test sequence compactness. So, 
evaluation function for a single input vector combines the above parameters 

),(),(),( 2211 fvfcfvfcfvh += ,                                     (13.13) 

here f  is the fault being considered and v  is the input vector; 1c  and 2c  are the 

normalization constants, while 1f  and 2f  represent the weighted sums mentioned 

above. 
The evaluation function H  for the entire sequence s  is computed according to 

the best vector it contains 

)),((max),( fvhLHfsH i
i

svi

∗=
∈

.                                         (13.14) 

Here constant )1;0(∈LH ; i is a position of the vector iv  in the sequence s. Due 

using this evaluation function, shorter sequences are preferred and the final test 
length is reduced. 
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This approach does not contain the handle tuning of GA parameters for each 
circuit also. 

The most effective is the test generation method that combines advantages of 
both structural deterministic and GA-based approaches. In this case the phase of 
entering fault and primary output activation is executed with deterministic method 
and multi-valued logic, and the phase of justification (the search of circuit inputs 
justified requirements obtained at first phase) is carried out with GA. Also the per-
spective approach is application of parallel GA where several populations of solu-
tions are simultaneously evolved, basically independently of each other. But time to 
time the exchange of the best solutions is executed between populations in different 
methods. The nature of test generation problem is hierarchical, therefore it is rea-
sonably to use hierarchical GA, where at every level different GA is applied. 

13.2.4   GA Test Generation Implementation 

The general approach to genetic test generation lies as follows. We use the indi-
vidual encoding with binary tables as shown above at previous section in fig.13.8. 
For such kind of individual encoding and population representation, the above de-
scribed special problem-oriented genetic operators are used. The test generation 
process contains three phases. The first phase goal is the fault sensitization. Here 
the signal difference correct and fault circuit is propagated to pseudooutputs.  
Then the second phase is executed for test properties improvement for sequence 
generated at first phase. This phase is algorithm kernel and use the genetic  
algorithm. After that at second phase, the test sequence is generated, the fault si-
mulation is necessary to determine the undetectable faults.   

The general pseudocode of test pattern generation is shown bellow.  

Test_ generation(sequential circuit) 
{ 
  fault set generation(); 
 while(fault coverage < given threshold) 
 { 
   //Phase1 
   goal = fault sensitization();  
   if  (goal == empty set) 
        exit; 
   //Phase2 
   sequence = GA test sequence generation(goal); 
   // Phase3 
   if (sequence != empty) 
       fault simulation(sequence)  
   else             // test sequence for goal fault not found 
           mark fault as untested(); 
  }                                   
} 

GA test sequence generation(goal=f) 
{ 
  For ( i=0 ; i<MAX_GENERATIONS; i++) 
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  { 
    For ( each individual s in population P ) 
      Fitness_evaluation(s, f ); 

    new  P=∅; 
    for  (k=0 ; k< MAX_NEW_INDIVIDUALS  ; k++ ) 
    { 
      selection of 2 sequences s1 and s2 in P; 
      crossover(s1,s2); //генерируются две особи  
      mutation(si); 

      newP=newP∪s; 
    } 
    P=(best MAX_individuals from newP and P ); 
    for( each individual s in population P) 
      if( s detect f ) 
        return s; 
  } 
  return( no_sequence ) 
} 

Two fault simulation algorithms were integrated in order to accelerate test gen-
eration. The first one is a single pattern parallel fault propagation (SPPFP) method 
that is used in phase 1 for checking activation of any given fault by randomly gen-
erated sequence. Here the fitness functions defined with formulas (13.13, 13.14) 
are used. The evaluation function is computed with the help of the second fault 
simulation algorithm that belongs to the group of parallel pattern single fault prop-
agation (PPSFP) methods. The second one was developed especially to using in 
GA based test generation algorithm. 

13.3   Distributed Test Generation Methods 

Today numerous modifications and generalizations of GA are suggested [4]. The 
parallel GA (PGA) are roughly upcoming and very promising from the theoretical 
investigation and practical application points of view [14-16]. 

13.3.1   GA Parallelization  

Inherent GA "internal" parallelism and possibility of the distributed calculations 
promote to development of parallel GA. The first papers in this direction were  
appeared in 60-ties of XX century, but only in 80-ties, when accessible tools of 
parallel realization were developed, the PGA investigations adopted systematic 
mass character and practical orientation. Numerous models and realizations were  
developed in this direction, some of which are represented below. 

First of all, it is necessary to note that the basis of PGA is population structur-
ing such as decomposition to few subpopulations (subsets). This decomposition 
can be fulfilled with different methods, which define different types of PGA.  
Further we shall consider the modern methods of the PGA realization (Fig. 13.10).  
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Fig. 13.10 Different types of parallel GA: a) global PGA, b) distributed PGA, c) 
cellular PGA 

Most known is global parallelism which is represented on Fig. 13.10a. This 
model is based on simple (classic) GA in which the fitness function calculations 
are performed in parallel. This approach is faster, than classic sequential GA, and 
does not usually require balance on the load as on different processors. This model 
often named "master-slave". Many researchers use the pool of processors for the 
increase of speed execution of the algorithm. At the same time the independent 
programs running of algorithm at different processors are executed essentially 
faster than at one processor. It must be noted, that in this case there is no co-
operation between different runs of algorithm. It is extraordinarily simple method 
of parallelization and it can be very useful. For example, it can be used for the so-
lution of the same task with different initial conditions. GA allow effectively use 
this method by virtue of their probabilistic nature. At the same time we have min-
imum program changes, but advantages are considerable. 

In distributed PGA (Fig.13.10b) a population is divided by a set of subpopula-
tions, which evolve independently (accordingly to simple GA) and can communi-
cate with neighbor subpopulations in certain manner after some “isolation time”. 
This parallel paradigm is often implemented in an extraordinarily popular "model 
of islands" (coarse grain), where great number of subalgorithms simultaneously 
work in parallel, exchanging in the search process by some individuals. This model 
assumes direct realization on the computing systems with MIMD- architecture. 
Thus every “island” corresponds to its own processor. 

In cellular PGA (fine grain) (Fig. 13.10c) there is a set of subpopulations con-
sisting of only one individual. Given individual-subpopulation can communicate 
only with neighbor individuals-subpopulations at once. A neighbor relationship is 
defined as certain regular structure named as grid (Fig.13.10c). For cellular PGA 
parallelism is usually implemented on the computer systems with SIMD-
architecture, where every processor represents subpopulation-individual. Although 
another works are known where authors use single possessor computers and  
systems with MIMD-architecture. 

13.3.2   Parallel Test Generation Method Based on the “Master-Slave” 
Model 

In this section for parallelization of GA we use a model «master-slave», because it 
requires the small changes in the existing software implementation of test  
generation GA and gives quite good results. 
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In this approach, every processor has its own copy of population. The  

calculation expenses of fitness-functions values (witch use a logical simulation) 
are evenly distributed to all processors. For all processors, the same list of faults is 
used. Therefore, for n individuals and P processors, we take the nP /  individuals 
to every processor. The values of fitness-functions are calculated by the slave pro-
cessors and are sent to one selected processor-master, which collects all informa-
tion and passes it to all processors. Every processor has information about the val-
ues of fitness-function for all individuals and can create next population  
generation on this basis.  

So, the processor-master executes central part (kernel) of test generation algo-
rithm, while the logical simulation (fault-free and fault) of digital circuits are im-
plemented on processors-slaves. The fault simulation is most critical from point of 
view of calculation expenses. Different methods of the distributed fault simulation 
are known, which are mainly based on decomposition: 1) circuits on subcircuits; 
2) test sequence on subsequences. We will take combined approach of these two 
methods (Fig. 13.11). 

 

Fig. 13.11 Data flow diagram for distributed test generation and fault simulation algorithms  

On the first and second stages the simulated input sequences are distributed be-
tween working processors. On the first stage every working processor is loaded by 
the generation (simulation) of one subsequence. For balance the list of undetected 
faults is broken up on approximately identical subgroups. 

At the end of each of three stages, the points of synchronization are placed. 
When a processor-master arrives at these points, it goes to the wait mode, while all 
working processors will not make off the tasks that guarantee global correctness of 
algorithm. Thus, work is distributed between a processor-master and workers as 
follows. Processor-master: 

• Performs all input-output operations with an user and file system: it reads  
circuit description and  fault list, and writes the generated input test sequence; 

• Initially runs «slave» processes on available resources; 
• Distributes the copies (internal form) of circuits and fault lists to every working 

processor; 



13   Evolutionary Test Generation Methods for Digital Devices 349
 

• Organizes the process control of test generation: as soon as input sequence has 
to be fault simulated, it sends the proper message for activating of working pro-
cessors; when working processors finish their work, processor- master receives 
results and accordingly changes global data structures (general fault list, values 
of fitness-functions for individuals etc). 

A processor-slave keeps the local copy of circuit (in internal format) and fault list. 
Every «slave» takes an input sequence from the «master» and determines the 
faults are detected by this sequence by the logical simulation and calculates the 
values of fitness-function for individuals. It sends the obtained results to the mas-
ter and wait next task. As the population size is much larger than a number of pro-
cessors, good balance in the load of processors is achieved. For every working 
processor the change of local fault list with the detected and undetected faults 
from other working processors requires a lot of resources and it is critical.  

Final results (test input sequences and fault coverage) are near to the results  
obtained on the single possessor computer system with the use of a similar algo-
rithm. Quality of decision (test fault coverage) is not here lost and is in most cases 
got better, and time of test generation grows short substantially.  

13.3.3   Distributed Fault Simulation 

Described above distributed genetic algorithm of test generation is based mainly on 
the distributed fault simulation algorithm. Now we will shortly describe also this 
method. 

One of the central problems of digital device diagnostic is fault simulation of 
digital circuits. Persistent increasing of modern device complexity makes the task 
of reducing fault simulation time still very important. One of possible ways to 
speed up fault simulation procedure is adaptation of existing algorithms for multi-
processors computing systems (clusters) implementation. 

Distributed fault simulation is organized in similar way and is based also on the 
«master-slave» approach like distributed test generation. One processor here is se-
lected as master and remained processors – as slaves. There exist several ap-
proaches to implementation of distributed fault simulation: partitioning of circuit 
and partitioning of fault list. Our algorithm is based on the fault list partitioning. 

Data flow chart for this scheme of computational process is showed on fig.13.11.  
Every slave processor performs fault simulation on the data received from the 

master: circuit description and fault sublist. The pseudocode of this process is giv-
en below. 

slave_process_fault_simulation() 

{ 
  search_of_master_process(); 
  if( master_was_found ) 
  { 
    receive_circuit_description(); 
    receive_fault_sublist(); 
    parallel_fault_simulation() 
    send_list_of_undetected_faults(); 
  } 
} 
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The kernel of this process is the procedure of «parallel_fault_simulation», 
which is a regular fault simulator that used in single processor implementation. In 
our case we used home built PROOFS-based fault simulator, described in [17]. 
Mark the main advantages of this algorithm that makes it very successful: 1) dy-
namic fault-list processing: detected fault is eliminated from fault list in the same 
time it was detected, no simulation performs for this fault further; 2) fault sorting 
which allows to include in one group the faults that cause the same simulation 
events; 3) the technique of functional fault injection.  

Common data flow chart diagram that describes interaction among master and 
slaves processes is shown on Fig. 13.11. It is necessary to notice that master proc-
ess performs two types of exchange operation. File input/output operations are 
necessary to obtain both circuit description and test sequence to be simulated. In 
contrast all data interchange among master and slave process is performed via 
TCP/IP sockets. This fact enables to construct computing cluster on the common 
used computers. Authors used 100 Mbit local intranet as such cluster. 

Data flowchart diagram shows that master processor does not perform any si-
mulation but organizes the computing: 

• Reads the circuit description to be simulated and input test sequence; 
• Sends this description and test sequence for all client processors; 
• Receives from slaves fault simulation results and makes common report. 

Algorithm for master process for distributed simulation is given below. 

distributed_simulation(circuit,test) 
{ 
  number_of_slaves = search_of_slaves(); 
  if( number_of_slaves != 0 ) 
  { 
    input_circuit_description(); 
    input_test(); 
    make_full_fault_list(); 
    partiting_the_fault_list(number_of_slaves); 
    for( i=0 ; i< number_of_slaves ; i++ ) 
    { 
      send_to_client_i_circuit_description (); 
      send_to_client_i_part_of_fault_list(); 
      send_to_client_i_test_sequence(); 
    } 
    for( i=0 ; i< number_of_slaves ; i++ ) 
    { 
      receive_list_of_undetected_faults(); 
    } 
    make_report(); 
  } 
} 

Master process starts with a search procedure of calculation clients. Further it 
divides full fault list into sublists prorate number of found clients. Then for all cli-
ents the following operation sequence is fulfilled in cycle: sends circuit descrip-
tion in internal format; sends test sequence and corresponding short fault list.  
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After that master transfers to state of waiting data from clients. At the next step, 
master receives the results of fault simulation from each client and makes general 
reports: fault coverage, common simulation time, time of simulation on every cli-
ents. The constructed in described way distributed fault simulation algorithm  
allows a high parallelization of simulation process. 

13.3.4   Distributed Test Generation Based on the “Model of 
Islands”  

In this section the "model of islands" is used for GA parallelization. Here separate 
subpopulation, which is initialized randomly and evolved independently, is real-
ized on each processor. In given iteration, number subpopulations are exchanged 
by some individuals in certain way. Each processor selects the best individuals of 
own subpopulation and send them to neighbor processors subpopulations (neigh-
borhood concept is a parameter of method). These individuals are accepted in 
neighbor processors subpopulations and then independent evolution on each proc-
essor-“island” is continued.  

In this approach there are more chances to obtain high-quality solution, since 
different areas of search space are investigated on different processors [19]. More-
over, in this case it is possible the reducing of search time due to the best  
individual migration. 

In contrast to previous method (“master-slave” model), where GA works only 
on the central processor-master and processors-slaves are used only for fitness 
function computing, in this approach full GA is implemented on every processor. 
In other words, each processor executes full cycle of GA evolution operations: 
fault-free and fault logical simulation, test sequences generation. Each processor 
works with full circuit and fault list. At the same time there are at least two reasons 
of speeding-up test generation process. Every processor operates with subpopula-
tion of less dimension, then less time is required. Due to the best test sequences  
migration each processor can detect faults quicker then in case of independent op-
eration in subpopulations. One of the most important parameters of this model is 
population power (individual number) of subpopulation. The influence and  
selection of this parameter will be considered below. 

The main factors that affect on migration in "model of islands" (hence it affects 
the effectiveness) are as following: 

Migration rate, that is the number of exchanged individuals; 
Selection method of individuals for migration; 
Isolation time which defines generation number between migration phases; 
Strategy of individual replacement with migrated individuals from neighbor 

subpopulations; here also different approaches exist the worst individuals are re-
placed, random individuals are replaced in subpopulation etc.;  

Replication strategy of migrating individuals. Under first approach migrating in-
dividual also stays in starting subpopulation. The second approach demands re-
moval of migrating individual from starting subpopulation. The first strategy can  
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result in domination the same strong individuals in different subpopulations.  
Under the second strategy, an individual can return back to start subpopulation in 
some time that results in extra computing expenses;  

Topology which defines neighborhood relationship between subpopulations, 
here exchange is fulfilled only between neighbor subpopulations.  

Several standard methods of selected individuals exchange between subpopula-
tions exist. Time expenses to individual migration between subpopulation depend 
of used exchange method.  

• Exchange by the ring: 
In this method individuals can migrate to one neighbor subpopulation. In this 

case the number of  1−= nm  , where n is the number of computers; 

• Two-way exchange by the ring: 
Here, likewise to previous method, exchange of individuals is executed  

between the closest neighbors, and neighborhood relation is defined by  
two-dimensional structure.  

13.3.5   Implementation and Experimental Investigations of 
Distributed Genetic Algorithms of Test Generation and 
Simulation 

Developed algorithms were implemented with using blocking sockets technology 
in C++ Builder programming environment. For computer experiments the com-
puting cluster on the base of 100 Mbit local intranet was used. The cluster nodes 
have the following parameters: Intel Celeron 2 GHz processor, RAM 256 MB, OS 
Windows XP. 

For research of effectiveness of suggested algorithms following time parame-
ters were calculated during computer experiments: whole time of simulation proc-
ess, events number in fault-free and fault simulation, whole number of events. For 
comparison the experimental results of algorithms from [2] were taken.  
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Fig. 13.12 Speeding-up of fault simulation for 
circuit 35938 according to worker number 
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Fig. 13.13 Speeding-up according to  
circuit complexity 

At first let consider experimental results obtained for distributed GA implemen-
tation based on the “worker-farmer” model. The diagram of simulation speeding 
up for circuit s35938 (ISCAS89), under condition of change of processors-client 
number from 1 to 8, is represented in Fig. 13.12. Given experimental results con-
firm the effectiveness of suggested parallelization method of simulation algorithm. 
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Finally, in the Fig. 13.13 the simulation results for large circuits of ISCAS  
benchmark are represented. These data show the relative speeding-up with in-
crease of circuit size. It is explained by that fact that for large circuits the expenses 
of parallelization are reduced compare with fault simulation expenses.  

Further let consider the results of implementation of test generation distributed 
GA which is based on the “islands model”. In table13.6 there are represented ex-
perimental results, which show the speeding-up and test quality for several circuits 
from ISCAS89. In this case 8 processors and ring migration method were applied.  

Table 13.6 The speeding-up and test quality 

Circuit from ISCAS89 benchmark 
Speeding-up  

relatively to one processor 
Fault coverage increase 

S1196 1.59 +0.8% 

S1238 1.8 +0/6% 

S1423 1.1 +12.8% 

S1488 6.1 +7.1% 

S5378 5.16 +1.3% 

S35932 5.35 +1.6% 

Obtained results confirm the effectiveness of test generation and fault simula-
tion algorithms parallelization. The comparison of experimental results show that 
“farmer-worker” model gives more speeding-up in comparison with “island mod-
el” relatively to one-processor system and essentially easier in software implemen-
tation. But “island model” raises fault coverage of generated tests especially for 
large circuits. Therefore parallelization based on the “island model” has a reason 
only in case when generated tests have unsatisfactory fault coverage for “farmer-
worker” model. 

13.6   Hierarchical GA of Test Generation for Highly Sequential 
Circuits  

Usually the sequential circuits have the (re) set sequences that allow installing the 
memory elements to some determined states. In this case the test generation is es-
sentially simpler.  The general and hard case of testing sequential machines is test-
ing sequential machines without possibility to set it in initial state. This kind of 
machines with memory is often called highly sequential machines or circuits. In 
this case other approaches are applied [11,18]. 

Hierarchical approach can be effectively applied and implemented for sequen-
tial circuits at structural (gate) level. In this case at low level the some characteris-
tic sequences are generated and then are used under test generation at high level. 

Given approach is applied to test generation in highly sequential circuits for 
hard-to-test faults. Here two-phase strategy is used for test generation: 1) fault  
activation; 2) fault propagation. The iterative combinational circuit is used as a  
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model of sequential circuit (Fig. 13.14). At the first phase, an attempt is made to 
derive a sequence that activates the chosen fault and propagates its effect to pri-
mary outputs (POs) or flip-flops (FFs). At the second phase, the fault effect is 
propagated from FFs to POs of iterative combinational circuit with assistance of 
distinguishing sequences basically. So, the basic problem in fault activation is 
transition of circuit under test (correct and faulty) to specified set conditioned by 
obtained FFs input values (pseudo inputs). 

A transition sequence is generated with assistance of genetic algorithm. In or-
der to generate such kind of sequences with assistance of the dynamic state tra-
versal algorithm, a table of visited states is mapped to the list of input vectors in 
the test set [18]. However, if ending state was not visited, then transition sequence 
is generated with help of GA. In this case, initial population consists of random 
sequences of given length and the sequences, which solve problem partially. For 
example, it can be input sequences that set only some FFs to necessary values. In 
this case different input sequences can set different FFs to necessary values and, 
obviously, can be useful in transition sequences generation. 
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Fig. 13.14 Two-phase strategy test generation in iterative combinational circuit 

In this case, some characteristic sequences are generated at low level that per-
mits to set the flip-flops at some deterministic values that simplify a problem test 
generation for sequential circuits. 

For test generation at high level there are useful the following input  
characteristic sequences. First of all we define set and reset sequences as follows: 

1. Si-sequences. A flip-flop set sequence is a sequence that sets the i-th flop to a 
1-state; 

2. Ri-sequence. Similarly a flip-flop reset sequence is a sequence that resets the 
i-th flip-flop to a 0-state.  

These sequences associated with flip-flops are intended to (re)set the flip-flops 
starting from an unknown state. Such Si (Ri) – sequences are called type A and 
generated at preprocessing step of test generation.  The sequence type A length is 
restricted with 4D, where D is a sequential depth of circuit. If Si (Ri) – sequences 
require some flip-flops must be (re) set to specific (not arbitrary) states that these 
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sequences are called type B. These sequences are generated dynamically in case 
of need during the test generation process.  
3. A pseudoregister justification sequence is a sequence that is able to justify 

(set or reset) the required flip-flops states for particular pseudoregister. Here the 
pseudoregister is the group of flip-flops. 
At second test generation phase a distinguishing sequences propagating fault 

effect from FFs to Pos are required. In this case three types of the distinguishing 
sequences are used [18] (Fig. 13.15).  
4. The distinguishing sequence of type A for FF i is defined as a sequence that 

produces two distinct output responses when applied to the fault-free DD for 
two initial states, and initial states differ in the i-th position and are independent 
of all other FF values. 

5. The B-type distinguishing sequence for FF i is a sequence that, when applied 
to the fault-free DD with i-th FF = 0 (or 1) and applied to the faulty DD with 
the same FF = 1 (or 0) for two initial states, produces two distinct output  
responses independent of all other FF values.  

6. The C-type distinguishing sequence is similar to type B except that the subset 
of FFs are assigned to specific logic values. 

For every distinguishing sequence, the “distinguishing power” is assigned. It eva-
luates the possibility of given distinguishing sequence to propagate fault effect 
from according FF to PO. A distinguishing sequence has major “distinguishing 
power” if it is necessary to set specified values to small number of FFs. Also dis-
tinguishing sequences, which are able to propagate effects of several faults, have 
greater “distinguishing power”. 

Type A Type B Type C 

Fault-free DD Fault-free DD Fault-free DD Faulty DD Fault-free DD Faulty DD 

FFs FFs FFs FFs FFs FFs 

Uuu1uuu uuu0uuu uuu1uuu uuu0uuu uuu1Suu uuu1Suu 

Fig. 13.15 Types of distinguishing sequences 

The described characteristic sequences are generated with using the low level 
genetic algorithm. In this GA individuals are represented with binary tables and 
the problem oriented genetic operators (crossover and mutation) adjust to these ta-
bles as shown in subsection 13.2.2. In this case initial population consists of ran-
dom sequences of given length and the sequences, which solve problem partially. 
For example, it can be input sequences that set only some FFs to necessary values. 
But different input sequences can set different FFs to necessary values and,  
obviously, can be useful in transition sequences generation.  

During test generation, the high level genetic algorithm uses as fabricated parts 
the characteristic sequences which are generated at low level. It makes the evolu-
tionary search more directional and effective. At the high level the modified genetic 
algorithm is used. In the first place the initial population includes not only random 
binary tables, but also the generated characteristic sequences. In the second place 
more extensive set of genetic operators is used during test generation. 
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Note that the different fitness functions are used at the various level and phases. 
Since fault activation and fault propagation phases target different goals, their cor-
responding fitness functions are differed. The used parameters are as follows: 

• P1 is a fault detection; 
• P2 is a sum of dynamic controllabilities;  
• P3 is a matches of FFs values; 
• P4 is a sum of distinguishing powers; 
• P5 is a induced faulty circuit activity; 
• P6 is a number of new visited states. 

Parameter P1 is self-explanatory, in particular during the fault propagation phase. 
It is included in fault activation phase to cover faults that are propagated directly 
to the POs in the time frame in which are excited. P2 indicates the quality of states 
to be justified. P3 guides the GA to match the required FFs values in the state to be 
justified during state justification, from the least controllable to the most control-
lable FF value. P4 measures the quality of the set of FFs reached by the fault ef-
fects. P5 evaluates the number of events generated in the faulty circuit, with events 
on more observable gates weighted more heavily. P6 is used to expand the search 
space. Thus, on basis of considered parameters following types of fitness  
functions are used. 

Fault activation phase: 

• Multiple time frames 

F1=0,2P1 + 0,8P4;                                                    (13.15) 

• Single time frame 

F2=0,1P1 + 0,5P2 +0,2(P4 + P5  +P6);                      (13.16) 

• state justification 

F3=0,1P1 + 0,2(k – P2) + 0,5P3 + 0,2(P5 + P6),        (13.17) 

where k is a constant; 
Fault propagation phase: 

F4=0,8P1 + 0,2(P4 + P5  + P6).                                   (13.18) 

Note that large value of weight coefficient of the P4 is used in fitness function at 
the activation phase. If activation sequence for target fault cannot be generated di-
rectly, then this problem is solved in few stages: at first the fault activation is  
fulfilled within a one iteration of combinational iterative circuits, and then the se-
quence for setting flip-flops to target state is generated. Obviously, that the main 
parameter is the number of detected faults at the propagation phase. Therefore, co-
efficient of P1 has enough large value. Note that GA cannot find out undetectable 
(redundant) faults. Therefore it is desirable to use a deterministic test generation 
method for residuary undetectable faults. 
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13.7   Genetic Programming in Test Generation of Microprocessor 
Systems 

Testing of microprocessor-based systems is a very serious problem. The most 
complicated task is that of generation of test sequence. Traditional structural me-
thods of test generation, which normally require the description of the logic circuit 
structure on the gate level, are not applicable for such systems owing to very high 
task dimension. The generation of test-programs of microprocessor systems (MS) 
usually was carried out at function level practically “manually”. At that the test 
represents an assembler-program unlike binary sequences for logic circuit.  

One of the most perspective approaches to the MS test pattern generation is ap-
proach based on the genetic programming (GP). Checking sequence for MS is a 
test program consists of assembler language operators. Classical GP uses for indi-
vidual representation tree-like structures that does not allow operate with arbitrary 
programs. Therefore, in given case graph-based program representation, especially 
directed acyclic graph (DAG), is applied (Fig. 13.16) [19]. 
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Fig. 13.16 DAG and Instruction Library (on the left), a sequential instruction and its pa-
rameters (on the right) 

Each node of the DAG (Fig.13.16) contains a pointer to the instruction library 
and, if necessary to instruction parameters (i.e., immediate values or register spe-
cifications). The instruction library describes the assembly syntax, listing each 
possible instruction with the syntactically correct operands. Although instruction 
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library may also contain macros instead of instructions, with the exception of  
prologue and epilogue, all entries correspond to individual assembly instruction.  

For instance, Fig. 13.16 shows a sequential node that will be translated into an 
“ORL A, R1”, i.e., a bit-wise OR between accumulator and register R1. DAGs are 
built with four kinds of nodes: 

• Prologue and epilogue nodes represent required operations, such as initializa-
tions. They depend both on the processor and on the operating environment, and 
they may be empty. 

• Sequential-instruction nodes represent common operations, such as arithmetic 
or logic ones (e.g., node B, F (Fig. 13.16)). Unconditional branches are consid-
ered as sequential, since execution flow does not split (e.g., node D  
(Fig. 13.16)). 

• Conditional-branch nodes are translated to assembly-level conditional-branch 
instructions (e.g., node A (Fig. 13.16)). All common assembly languages im-
plement some jump-if-condition mechanisms. All conditional branches  
implemented in the target assembly languages must be included in the library. 

Test programs are induced by modifying DAG topology and by mutation parame-
ters inside DAG nodes. Following genetic operators (mutation and crossover) are 
applied: 

• Mutation 1 - Add node: a new node is inserted into the DAG in a random posi-
tion. The new node can be either a sequential instruction or a conditional 
branch. In both cases, the instruction referred by the node is randomly chosen. 
If the inserted node is a branch, ether unconditional or conditional, one of  
the subsequent nodes is randomly chosen as the destination. Remarkable, when 
an unconditional branch is inserted, some nodes in the DAG may become  
unreachable. 

• Mutation 2 - Remove node: an existing internal node (except prologue or epi-
logue) is removed from DAG. If the removed node was the target of one or 
more branch, parents’ edges are updated.  

• Mutation 3 - Modify node: all parameters of an existing internal node are  
randomly changed. 

• Crossover: two different programs are mated to generate a new one. First, par-
ents are analyzed to detect potential cutting points, i.e., vertices in the DAG that 
if removed create disjoint sub-graphs. Then a standard 1-point crossover is  
applied to generate the offspring. 

Fitness-function of the second level is build on the basis of coverage measure of 
VHDL operators. Thus fitness-function exploits the data obtained by means of  
Active VHDL (code coverage). 

The following fitness-function is used during construction of tests for  
microprocessor system: 

cacbbabboaoo NNcNNcNNcF ++= ,                        (13.19) 

where Nao is the number of linear statements VHDL have been activated by test-
program; Nab –the number if statements have been activated by test program; Naс 
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is the number of case statements have been activated by test program, No, Nb, Nc 
the common number of linear, if, case statements accordingly; co, cb, cc are  
normalizing constants (co + cb + cc = 1). 

The program implementation (Fig.13.17) is carried out in the Active VHDL 
environment in accordance with the following scheme. The present population of 
test-program (in assembler) is being generated by the method based on the genetic 
programming which is implemented beyond Active VHDL.  

 

Fig. 13.17 Program implementation 

The algorithm of test program generation is presented below as pseudo code: 

generation of test-program initial population; 
While (not attained maximum number of generation) 
 // loop  according to generations 
Generation of  various paths for each test program; 
    While (not attained stop condition )   
     //loop according to paths 
 { 
    Test-program generation according to correspondent path 
     Compilation of test-program to binary code 
     Entry to Active VHDL environment  
    Loading of binary code to ROM of microprocessor  
    system VHDL  model  
  Estimation of test program coverage using Active VHDL 
   Exit from Active VHDL environment;  
   Calculation of fitness-function according to correspondent   path;   
  } // end of loop according to paths 
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  Calculation of fitness function for test-program 
  (graph); 
   //creation of the next  generation; 
         Selection of parents according to fitness-function value; 
     Crossover; 
     Mutation; 
               Reduction of population;          
  } //end of loop according to generations 

Generation of initial population is implemented on base of graph of test pro-
gram representation by link list of neighbor nodes. For each node of graph the cor-
respondent link list of adjacent nodes have been processed. The graph complexity 
may be vary by tuning the following parameters: number of nodes in graph,  
number of macros and number of successor-nodes for each node.  

The approbation of the presented approach is done for microcontroller 8051, 
the model of which is given on the function level in the VHDL language. The 
analysis and comparison of simulation data of circuits at the function and logic 
level show that generated test-programs have high fault coverage. At the same 
time the generation of checking tests on function level is being done essentially 
faster. In Fig .13.18 the results of genetic algorithm of test program generation's 
implementation for microcontroller 8051 are shown graphically. As we can see the 
fitness function has reached its maximum value equal to 97.36 %.  
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Fig. 13.18 Fault coverage 

13.8   Conclusions  

This paper presents new perspective approach to DS test generation that is based 
on using evolutionary algorithms and hierarchical solution. It was shown that giv-
en approach could be effectively applied to test generation at basic DS representa-
tion levels: FSM and structural, for highly sequential circuits, 2-levels hierarchical 
genetic algorithm is applicable;– GP-based approach is applied for MS level. 
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