

Lecture Notes in Electrical Engineering

Volume 79

Marian Adamski, Alexander Barkalov,
and Marek Węgrzyn (Eds.)

Design of Digital Systems
and Devices

ABC

Prof. Marian Adamski
University of Zielona Góra
Institute of Computer Eng. &
Electronics
ul. Podgórna 50
65-246 Zielona Góra, Poland
E-mail: M.Adamski@iie.uz.zgora.pl

Prof. Alexander Barkalov
University of Zielona Góra
Institute of Computer Eng. &
Electronics
ul. Podgórna 50
65-246 Zielona Góra, Poland
E-mail: A.Barkalov@iie.uz.zgora.pl

Dr. Marek Węgrzyn
University of Zielona Góra
Institute of Computer Eng. &
Electronics
ul. Podgórna 50
65-246 Zielona Góra, Poland
E-mail: M.Wegrzyn@iie.uz.zgora.pl

ISBN 978-3-642-17544-2 e-ISBN 978-3-642-17545-9

DOI 10.1007/978-3-642-17545-9

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset & Coverdesign: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Contents

About the Editors ..XI

Foreword...XIII

Part I: System Design

1 Digital System Design... 3
1.1 Main processor Units and Instruction sets ... 3

 1.1.1 Main Units... 3
 1.1.2 Instruction Set and Instruction Formats .. 5
 1.1.3 Addressing Modes... 6

1.2 ASMs for Processor instructions ... 8
1.3 Data Path Design ... 15

 1.3.1 Combined Functional ASM .. 15
 1.3.2 Process Table and Connection Graph ... 19
 1.3.3 Graph of Incompatibility. Main MUXes and Direct
 Connections... 24

1.4 Control Unit Design... 28
 1.4.1 Transformation of Functional ASM into Structural ASM............. 28
 1.4.2 Synthesis the Finite State Machine (FSM) from ASM.................. 32
 1.4.3 Synthesis of Control Unit (FSM) for Processor 34
 1.4.4 Encoding of Inputs of MUXes .. 38

1.5 Conclusions ... 39
References ... 41

2 Rectangular Function Π(x) and Its Application for Description of
 Some Logical Devices Operation... 43

2.1 Introduction ... 43
2.2 Logic Operations on Rectangular Functions.. 44

A. Logic Sum.. 44
B. Logic Product... 44
C. Negation... 45

VI Contents

D. EX-OR (logic inequality) .. 45
E. Binary Counters ... 46

2.3 Utilization of the Rectangular Functions Π(x) for Analysis of Pulse or
 Frequency Multiplying .. 47
2.4 Utilizing the Function Π(x) for Harmonic Analysis of Digital Sine
 Wave Generator... 49

 2.4.1 Digital Sine Wave Generator Based on Digital Integrators 49
 2.4.2 Digital Sine Wave Generator Based on ROM.............................. 52

2.5 Conclusions ... 56
 References ... 57

3 Design and Application of the PLD-based Reconfigurable Devices 59
3.1 Introduction ... 59
3.2 Evolution of Computer Systems.. 61
3.3 Architecture and Structure of PLD-Based Computer Systems................ 63
3.4 Adaptive Logical Network (ALN)... 67
3.5 Problem-Oriented Structures of Digital Devices 70

 3.5.1 Functional Blocks with a Floating Point 70
 3.5.2 Functional Blocks for Multiplication of Matrixes........................ 75
 3.5.3 Designing and Realization of Median Filters............................... 76
 3.5.4 Hemming Adder Realization.. 84

3.6. Verification of Projects by Means of Stands .. 85
3.7 Reconfigurable Processors .. 88
3.8 Conclusions ... 89
 References ... 91

4 Application of Multilevel Design on the Base of UML for Digital
 System Developing ... 93

4.1 Introduction ... 93
4.2 Features of Digital Systems for Real-Time Image Generation................ 94

 4.2.1 Estimation of the Complexity of the Standard Rendering
 Pipeline .. 94

Scene Manager ... 94
Modeling Transformation... 95
Trivial Accept/Reject Classification... 95
Lighting .. 96
Viewing Transformation .. 96
Clipping.. 96
Division by w and Mapping to 3D Viewport ... 97
Rasterization... 97
Estimation of the Complexity of Geometry Calculations....................... 98

 4.2.2 The Architectural Decisions and Algorithm Approaches
 for the Real-Time Rendering Systems ... 98

Pipelined Object-Order Architectures .. 99

Contents VII

Image-Order Architectures ... 99
Comparing of Architectures ... 100

4.3 Designing of Specialized Processors ... 100
 4.3.1 Scene Processor.. 100
 4.3.2 Clipping Processor ... 108

4.4 Application of Runtime Reconfiguration .. 109
4.5 Application of UML for HDL-Code Creation 110

 4.5.1 Example for 2D Clipping Realization .. 112
 4.5.2 Fragment of HDL for Scene Processor Simulation.................... 114

4.6 Summary and Future Directions .. 116
 References ... 116

Part II: Digital Design with Programmable Logic

5 Logic Synthesis Method of Digital Circuits Designed for
 Implementation with Embedded Memory Blocks of FPGAs 121

5.1 Introduction ... 121
5.2 Decomposition of Boolean Functions.. 122

 5.2.1 Functional Decomposition ... 122
 5.2.2 Decomposition into EMB Blocks .. 125
 5.2.3 Parallel Decomposition .. 126
 5.2.4 Balanced Decomposition ... 128

5.3 Sequential Circuits Synthesis .. 130
 5.3.1 Basic Information... 131
 5.3.2 Implementation of Finite State Machines in FPGA’s 132
 5.3.3 States Encoding.. 133
 5.3.4 Construction of Partition PG ... 136
 5.3.5 Application of the Method ... 138

5.4 Experimental Results ... 139
5.5 Conclusions ... 142
 References ... 142

6 Efficient Technology Mapping Method for PAL-Based Devices 145
6.1 Introduction ... 145
6.2 Theoretical Backgrounds ... 147
6.3 Technology Mapping Algorithm ... 150

Example.. 152
6.4 Experimental Results ... 154
6.5 Conclusions ... 157
 References ... 157
 Appendix ... 159

VIII Contents

7 Reliable FPGA-Based Systems Out of Unreliable Automata:
 Multi-version Design Using Genetic Algorithms 165

7.1 Introduction ... 165
7.2 External and Internal Design Diversity ... 167
7.3 Partially Definite and Partially Correct Automata................................. 170
7.4 Reliability of Digital Systems Out of Unreliable Automata 173
7.5 Designing Digital Systems Out of Unreliable Automata....................... 176

 7.5.1 General GA-Based Approach .. 176
 7.5.2 Phase 1: Obtaining a System Model .. 178
 7.5.3 Phase 2: Increasing the Reliability of Digital Systems Out of
 Unreliable Automata .. 180
 7.5.4 Phase 3: Development of Switching Subsystem 182
 7.5.5 Implementation .. 183

7.6 Experimental Application.. 184
7.7 Conclusions ... 190
 References ... 191

8 Synthesis of Compositional Microprogram Control Unit with
 Dedicated Area of Inputs.. 193

8.1 Introduction ... 193
8.2 Background of CMCU .. 194
8.3 Synthesis of CMCU with Dedicated Area of Inputs.............................. 197
8.4 Optimization of Compositional Microprogram Control Unit with the
 Dedicated Input Area... 208
8.5 Conclusions ... 213
 References ... 213

9 PeNLogic – System for Concurrent Logic Controllers Design................. 215
9.1 Introduction ... 215
9.2 PeNLogic System .. 216

 9.2.1 Petri Net Modeling of Concurrent Controllers........................... 216
An Example.. 217

 9.2.2 Analysis of Petri Net .. 218
 9.2.3 HDL Modeling, Simulation and Synthesis 220

VHDL Modeling .. 220
Verilog Modeling ... 221

 9.2.4 Petri Nets Decomposition .. 221
Decomposition into SM-Components .. 223
Verilog Modeling and Synthesis .. 224

 9.2.5 Direct Mapping into Netlist ... 226
9.3 Conclusions ... 227
 References ... 227

Contents IX

Part III: Testing, Modeling and Signal Processing

10 Methods of Signals Processing in Radio Access Networks 231
 10.1 General Information ... 231
 10.2 Specific Features of Radio Access at Physical Level 233

 10.2.1 General Description of Physical Processes at Radio
 Access ... 233
 10.2.2 Space-Time Access Method.. 235
 10.2.3 Polarization in Access Tasks... 239
 10.2.4 Adaptation in the Tasks of Access .. 241
 10.2.5 Suppression (Rejection) of Interference. Adaptive Antenna
 Arrays and Adaptive Interference Cancellers........................ 241
 10.2.6 Control of Multipath Effect in Access Radio Lines 246
 10.2.7 Space-Time Coding... 250

 10.3 Recommendations on Practical Use of Signal Processing
 Algorithms ... 252

 10.3.1 Formalization of Kalman-Bucy Algorithm 252
 10.3.2 Recommendations on Planning of Estimation Algorithms ... 253
 10.3.3 Program of Estimation Calculation with the Help of FKB.... 256
 10.3.4 Recommendations for Designing Adaptive Noise
 Compensators.. 257
 10.3.5 Recommendations for Planning Adaptive Antenna Arrays... 258

 10.4 Conclusions .. 260
 References .. 261

11 Recursive Code Scales for Moving Converters.. 263
 11.1 Pseudo-Random Code Scales ... 263

 11.1.1 Pseudo-Random Code Scales for Converters of
 Angular Movings ... 263
 11.1.2 Pseudo-Random Code Scales for Converters of
 Linear Moving.. 267

 11.2 Composite Code Scales .. 269
 11.2.1 Composite Code Scales for Converters of Angular
 Moving ... 269
 11.2.2 Composite Code Scales for Converters of Linear Moving.... 272

 11.3 Placing of Reading Elements on a Recursive Code Scale 274
 11.3.1 Algorithm of Placing of Reading Elements on a Recursive
 Code Scale... 275
 11.3.2 Reading Elements Location on the Pseudo-Random Code
 Scale with a Constant Step .. 277
 11.3.3 Reading Elements Locations on the Composite Code Scale
 with a Constant Step... 280

 11.4 Correcting Possibilities of Recursive Code Scales 283
 11.5 Conclusions .. 286
 References ... 288

X Contents

12 Infrastructure Intellectual Property for SoC Simulation and
 Diagnosis Service.. 289

 12.1 Infrastructure IP.. 289
 12.2 The Theoretical Foundations of Deductive Fault Analysis 293
 12.3 Deductive Components Synthesis for Soc Functions 295
 12.4 Structure Models of Simulator Primitives .. 301
 12.5 Algebra-Logical Fault Diagnosis Method .. 307
 12.6 Simulation for Diagnosis Refinement .. 310
 12.7 Structure-Logical Fault Diagnosis Method... 313
 12.8 Vector-Logical Diagnosis Method by the Fault Detection Table 316
 12.9 Algebra-Logical Memory Repair Method .. 320
 12.10 Conclusions .. 326
 References .. 328

13 Evolutionary Test Generation Methods for Digital Devices................... 331
 13.1 Genetic Algorithms and Their Modifications 331

 13.1.1 Parents Selection ... 332
 13.1.2 Crossover Operators.. 333
 13.1.3 Mutation.. 334

 13.2 Genetic Test Generation Algorithm for Digital Circuits 335
 13.2.1 Test Generation Genetic Algorithms for
 Combinational Circuits ... 336
 13.2.2 Test Generation Genetic Algorithms for Sequential
 Circuits .. 339
 13.2.3 Problem-Oriented Fitness Functions for Test Generation..... 342
 13.2.4 GA Test Generation Implementation 345

 13.3 Distributed Test Generation Methods.. 346
 13.3.1 GA Parallelization... 346
 13.3.2 Parallel Test Generation Method Based on the “Master-Slave”
 Model .. 348
 13.3.3 Distributed Fault Simulation ... 349
 13.3.4 Distributed Test Generation Based on the
 “Model of Islands” ... 351
 13.3.5 Implementation and Experimental Investigations of
 Distributed Genetic Algorithms of Test Generation and
 Simulation ... 352

 13.6 Hierarchical GA of Test Generation for Highly Sequential
 Circuits .. 353
 13.7 Genetic Programming in Test Generation of Microprocessor
 Systems.. 357
 13.8 Conclusions ... 361
 References ... 361

Index... 363

About the Editors

Marian Andrzej Adamski received the M.Sc. degree in Electrical Engineering
(specialty of Control Engineering) from Poznan Technical University, Poland, in
1970, the Ph.D. degree in Control and Computer Engineering from Silesian Tech-
nical University, Gliwice, Poland, in 1976, and Habilitated Doctor (D.Sc.) degree
in Computer Engineering from Warsaw University of Technology, Poland, in
1991.

After M.Sc. study (1970) he joined Research Laboratory in Nuclear Electronics
Company in Poznan. In 1973 he became a Senior Lecturer at Technical University
of Zielona Gora, Poland. From 1976 until 1991 he was employed as an Assistant
Professor, and later from 1991 to 1992 as an Associate Professor. From 1993 until
1996 he was a Visiting Professor at University of Minho, in Braga and Guimaraes,
Portugal. Currently he is Full, Tenured Professor of Computer Engineering at
University of Zielona Gora, Poland. He is a Chairman (Head) of Computer Engi-
neering and Electronics Institute at University of Zielona Góra.

Prof. Adamski’s research includes mathematical logic and Petri nets in digital
systems design, formal development of Logic Controller programs, VHDL, FPLD
and FPGA in industrial applications.

Prof. M. Adamski is an author of more than 180 publications, including 6
books, and he holds 5 patents. He is a member of several international and na-
tional societies, including Committees of Polish Academy of Sciences, Polish
Computer Science Society, ACM and IEEE. He has supervised more than 100
M.Sc. theses and several Ph.D.dissertations. He has been a principal investigator
for government-sponsored research projects and a consultant to industry. He is a
member of editorial board of International Journal of Applied Mathematics and
Computer Science, and a referee of international conferences and journals. He has
been involved as a program and organizing committee member of several interna-
tional workshops and conferences. He obtained the Scientific Award from Minis-
try of Higher Education and won several times the University Distinguished
Teaching and Research Awards.

Alexander Barkalov received the M.Sc. degree in Computer Engineering from
the Donetsk Politechnical Institute (now Donetsk National Technical University),
Ukraine, in 1976, Ph.D. degree in Computer Science from the Leningrad Institute
of Fine Mechanics and Optics, Russia, in 1983. In 1995 he received Doctor of
Technical Sciences degree in Computer Science from Institute of Cybernetics
named after V.M.Glushkov (Kiev, Ukraine). He has been an Assistant Professor
(since 1976), an Associate Professor (since 1984) and a Professor (since 1996) at

XII About the Editors

the Institute of Computers, Donetsk National Technical University. From 2003 he
is a Professor of Computer Engineering at the Institute of Informatics and Elec-
tronics, University of Zielona Góra, Poland, and he still is a Professor at the Insti-
tute of Computers, Donetsk National Technical University. His current research
interests include theory of digital automata, especially the methods of synthesis
and optimization of control units implemented with field-programmable logic de-
vices. He has taken part in the realization of a number of research projects spon-
sored by different institutions of former USSR. These researches were connected
with development of computer-aided design tools for implementation of control
units.

Alexander Barkalov has published more than 400 papers in international jour-
nals and conference proceedings. He is an author two and co-author of 8 mono-
graphs and one book chapter.

Marek Węgrzyn received the M.Sc. of Electrical Engineering degree (summa
cum laude) from the Technical University of Zielona Gora, Poland, in 1991. Since
1991 he has been a lecturer of digital systems in Computer Engineering and Elec-
tronics Department, Faculty of Electrical Engineering at the University. He spent
one academic year (1992/93) at UMIST, Manchester, UK, working on VLSI de-
sign and HDLs (Verilog and VHDL). He has been a visiting Research Fellow in
the Department of Industrial Electronics of University of Minho, Braga and Gui-
maraes, Portugal (in 1996). He received his Ph.D. in Computer Engineering from
the Faculty of Electronics and Information Techniques at Warsaw University of
Technology, Poland, in 1999. Currently, Dr. Marek Węgrzyn is an Assistant Pro-
fessor, and a Head of Computer Engineering Division at University of Zielona
Gora, Poland. He is a chair of IFAC Technical Committee 3.1. Computer for Con-
trol. He is a member of IEEE, Polish Information Processing Society (PTI) and
Polish Society for Measurement, Automatic Control and Robotics (POLSPAR).

His research interests focus on Hardware Description Languages, Petri Nets,
concurrent controller designs, and information technology. Recent work includes
design of dedicated FPGA-based digital systems and tools for the automatic syn-
thesis of programmable logic. He is a referee of international conferences and
journals.

Dr. Marek Węgrzyn was the 1991 Recipient of the Best Young Electrical Engi-
neer award from District Branch of Electrical Engineering Society. As the best
student he obtained in 1989 the Golden Medal Maxima cum Laude from the Rec-
tor-Head of the Technical University of Zielona Góra, Primus Inter Pares diploma
and Nicolaus Copernicus Award from the National Student Association. He won
the National Price from Ministry of Education for the distinguished Ph.D. Disser-
tation (2000) and as book co-author (2006). He obtained several awards from the
Rector-Head of the University of Zielona Góra. He published more than 100 pa-
pers on conferences and journals. He was a co-editor several books and post-
conference proceedings.

Foreword

Logic design of digital devices is a very important part of the Computer Science.
It deals with design and testing of logic circuits for both data-path and control unit
of a digital system. Design methods depend strongly on logic elements using for
implementation of logic circuits. Different programmable logic devices such as
CPLD and FPGA are wide used for implementation of logic circuits. Nowadays,
we can see the rapid growth of new and new chips, but there is a strong lack of
new design methods. To diminish this gap, we created a group of experts in
Computer Science and Electronics, and they present here their new design and
test approaches.

This book includes a variety of design and test methods targeted on different
digital devices, as well as different logic elements. The authors of the book repre-
sent such countries as Israel, Poland, Russia, and Ukraine. The book is divided by
three main parts, including thirteen different Chapters. The following problems are
discussed in these Chapters.

The Chapter 1 is written by Professor Samary Baranov and is devoted to origi-
nal methods of digital system design. It represents some approach for design a
central processor unit of a computer. It presents an example of a simple processor
design. The proposed design procedure included such steps as combination of
separate algorithmic state machines (ASM); synthesis of data-path; control unit
design, and composition of data-path and control unit into whole processor. The
main advantage of proposed procedure is formalization of the design process,
where all steps are formalized and automated in EDA tool “Abelite” designed by
the author of this chapter.

The Chapter 2 is prepared by Professor Edward Hrynkiewicz and is devoted to
application of the rectangular function Π(x) for description of the operation for
some logical devices. This function describes the carrying out of the logic opera-
tions on pulses, as well as pulse series. Such functions as logic sum, logic product,
logic negation and Ex-OR are investigated in the Chapter. Using these functions, it
is possible to describe the frequency multiplying. Moreover, this Chapter deals
with the problem of rectangular function Π(x) utilization for description of opera-
tion of such logical devices as digital sine wave generators and for nonlinear dis-
tortions analyzing in such generators.

The Chapter 3 is written by Alexander Palagin and Vladimir Opanasenko. It
gives the theoretical base for construction and designing of the PLD–based recon-
figurable devices, including the new formalized design techniques of construction
and dynamic reconfiguration of architecture and structure of digital devices with
a high degree of reconfiguration, corresponding with properties of performing

XIV Foreword

algorithms, constructive and technological features PLD, and also tool means of
their designing, are presented. Bases of the theory of adaptive logic networks, in-
tended for the solution of a wide class of tasks by direct structural realization of
algorithms of processing and direct representation of input data to output data by
functional and structural customization for universal components of a network, are
developed by the authors. Synthesis algorithms of adaptive logic networks on the
classes of tasks set are developed by them, too.

The Chapter 4 is devoted to application of multilevel design on the base of
UML for digital system developing. It is written by Professor Raisa Malcheva. In
this chapter the features of image generation and performing systems’ design are
analyzed. Estimation of complexity of the standard rendering pipeline is done. The
architectural decisions and algorithm approaches for the real-time rendering sys-
tems’ creation are discussed. Adaptation of a multilevel designing method of the
built-in systems with realization of separate modules on reconfigurable devices,
based on application of architecture operated by models and the unified modeling
language, is offered. The end of the Chapter shows the graphical application of the
proposed by author modified method.

The Chapter 5 is written by Mariusz Rawski, Paweł Tomaszewicz, Grzegorz
Borowik, and Tadeusz Łuba. It includes the new method of logic synthesis for
digital circuits with FPGAs. The main feature of the method is a wide use of
specialized embedded memory blocks (EMBs). Existing methods do not ensure
effective utilization of the possibilities provided by such modules. The problem of
efficient mapping of combinational and sequential parts of design can be solved
using decomposition algorithms. The main issue of the Chapter is the application
of decomposition based methods for efficient utilization of modern FPGAs. It
shows that functional decomposition method allows for very flexible synthesis of
the designed system onto heterogeneous structures of modern FPGAs composed
of logic cells and EMBs. Finally there are some results of the experiments, which
evidently show, that the application of functional decomposition algorithms in the
implementation of typical signal and information processing systems greatly in-
fluences the performance of resulting digital circuits.

The Chapter 6 is prepared by Professor Dariusz Kania. It includes the original
technology mapping method for PAL-based devices based on the analysis of
graph of outputs. The method is oriented on CPLD chips having a PAL-based
logic blocks which consist of a programmable AND matrix and a fixed OR matrix.
The presented approach uses original method for illustrating a minimized form of
a multi-output Boolean function. Graph node represents groups of multiple-output
implicants with common output part. The essence of the method is the process of
searching for appropriate multi-output implicants that can be shared by several
functions. A new method for the description of cascaded feedback connections is
presented in the Chapter. The experimental results show that the proposed algo-
rithm leads to significant reduction of chip area used by resulting circuits.

The Chapter 7 is written by Nataliya Yakymets and Vyacheslav Kharchenko
and is devoted to use of genetic algorithms (GAs) for the reliable design of finite
state machines (FSMs). This chapter introduces the principles of multi-version
digital system design and describes the concept of developing a reliable and robust

Foreword XV

system out of unreliable parts. The Authors started with the state of the art in the
area of multi-version design and explore the motivations for using different ap-
proaches to development of digital projects. A few techniques to manage design
diversity for FPGA-based systems are proposed. These techniques are based on
the use of genetic algorithms, and partially correct and partially definite automata
obtained with GAs. Finally, they suggested GA-based method of multi-version
fault-tolerant systems synthesis and discuss case-study for on-board device im-
plementation.

The Chapter 8 is written by Alexander Barkalov, Larysa Titarenko, Jacek
Bieganowski, and Alexander Miroshkin, and proposed a new method for logic
synthesis of a linear control algorithm. In this case, the control unit can be repre-
sented by the model of compositional microprogram control unit (CMCU) with
dedicated area of inputs. The chapter is devoted to CMCU optimization, based on
the modification of the microinstruction format. Proposed modifications are in-
tended to eliminate code transformers from the CMCU and reduce the hardware
amount of circuits used in the FSM for the microinstruction addressing, as com-
pared with the CMCU basic structure. The reduction of the hardware amount is
achieved at the cost of increasing the number of cycles needed for the execution of
the control algorithms, and in some cases also at the cost of increasing control
memory size.

The Chapter 9 is prepared by Marek Węgrzyn, and Agnieszka Węgrzyn. They
present the CAD system dedicated for modeling, verification, and synthesis of
concurrent logic controllers. The core of the proposed PeNLogic system is Petri
net models. The Petri net can be prepared as graph or as textual form. Controllers
specified by Petri nets can be analyzed and implemented using method suitable for
such models. Results of verification are applied also for decomposition of net into
several communicating state machines (as finite state machines, FSMs). After
verification it is possible to transform Petri net model into HDLs model (VHDL
and Verilog) and alternatively into EDIF or XNF netlist format. Such prepared
models are also simulated and synthesized using other academic or commercial
CAD systems.

The Chapter 10 is written by Professor Vladimir Popovskiy and includes some
new methods of signals processing in radio access networks. The Chapter consid-
ers optimum stochastic methods of radio signal processing, including parameter
assessment tasks and management of parameters of receiving and transmitting de-
vices. Such tasks are formed by state variable methods using Kalman-Bucy opti-
mum recursive procedures. It’s recommended to solve the management problems
basing on the division theorem. The Chapter includes analysis of steadiness and
efficiency of state and management assessment procedures in steady-state and un-
steady-state conditions. It gives recommendations regarding the choice of parame-
ters and efficiency of processing devices taking into account statistics of signals
and constraints attributable to certain telecommunication technologies. It analyzes
a proposal, within which recursive procedures are used efficiently. The main tasks
are united on Multiple-input/Multiple-output (MIMO) principle and are aimed at
solving the access problems in mobile communication networks, Wi-Fi and
Wi-Max systems, etc. Such tasks include: space-time encoding, multipath effect

XVI Foreword

reduction, radio link power improvement, interference effect reduction, adaptation
to channel parameter changes and current signal interference situation, possible
repeated use of frequencies.

The Chapter 11 is prepared by Professor Alexander Ojiganov and discusses the
recursive code scales for moving converters. The original methods of construction
of recursive code scales (RCS), as well as the algorithms of placing on a scale of
reading out elements (RE) are considered in the Chapter. It includes also some re-
sults of research of correcting possibilities of such scales. The recursive code
scales for synthesis of drawing of an information path of a scale of sequence have
received the name pseudo-random (PRCS) and composite code scales (СCS). Of-
fered scales can be applied as the coded element in moving converters. Recursive
scales at the expense of use in them of only one information code path more tech-
nologically than the known traditional scales. In traditional scales, code paths (CP)
which are carried out, as a rule, in an ordinary binary code or in the Gray code.
The Chapter shows that RCS allow only at the expense of redundancy introduction
on number of reading out elements without use of additional control paths to form
the codes which are correcting and (or) finding out errors of reading.

The Chapter 12 is written by professor Vladimir Hahanov and deals with the
class of infrastructure Intellectual Property for System on Chip simulation and di-
agnosis service The models and methods for creating Infrastructure Intellectual
Property (I-IP) service for the functionalities System on Chip (SoC), which has a
minimum set of the real time Built-In Self Test (BIST) tools, are proposed in this
Chapter. The means I-IP provide an opportunity to services: fault modeling and
simulation for the functional primitives to evaluate the test quality and to build
Fault Detection Table (FDT); diagnosis of a given defects search depth in the
SoC; repairing embedded memory functionality, by using spare row and column
components. High performance deductive-parallel fault analysis method for build-
ing FDT and tests quality assessment is offered. Algebra logical methods of fault
diagnosis and embedded memory repair by synthesis Disjunctive Normal Form
(DNF) completing all decisions for diagnosis SoC functionalities in the real time
are represented in the Chapter.

The Chapter 13 is written by Yuriy A. Skobtsov and Vadim Y. Skobtsov. It dis-
cusses some new evolutionary test generation methods for digital devices. It is
shown how evolutionary methods can be used for test generation of digital cir-
cuits. In present time it is strongly investigated the new direction in theory and
practice of artificial intelligence and information systems, named as evolutionary
computations. This term is used to generic description of the search, optimizing
or learning algorithms, based on some formal principles of natural evolutional
selection, which are sufficiently applied in solving various problems of machine
learning, data mining, databases etc. Among these approaches following main
paradigms can be picked out: genetic algorithms, evolutionary strategy (ES), evo-
lutional programming (EP), and genetic programming (GP). The differences of
these approaches mainly consist in the way of target solution representation and in
different set of evolutional operators used in evolutional simulation. Classical GA
uses the binary encoding of problem solution and basic genetic operators are
crossover and mutation. In ES solution is represented by real numbers vector and

Foreword XVII

basic operator is mutation. EP uses FSM as solution representation and mutation
operator. In GP problem solution is represented by program, crossover and muta-
tion operators are applied. The Chapter includes some new test methods for digital
devices based on GA.

The editors of the book hope that it will be interesting and useful for experts in
Computer Science and Electronics, as well as for students and postgraduates, who
will be designers of future digital devices and systems.

M. Adamski
A. Barkalov
M. Węgrzyn

Part I
System Design

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 3–41.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

1 Digital System Design

Samary Baranov

Department of Computer Science, Holon Institute of Technology, 52 Golomb St.,
P.O.B. 305, Holon, 58102, Israel

Abstract. The most complicated stage of each design, namely the system design,
is discussed. An example of the design for a rather simple processor is shown. A
design procedure is proposed, which included such steps as combination of sepa-
rate algorithmic state machines (ASM); synthesis of data-path; control unit design,
and composition of data-path and control unit into whole processor. The main ad-
vantage of proposed procedure is formalization of the design process, where all
steps are formalized and automated in EDA tool “Abelite” designed by the author
of this chapter.

1.1 Main Processor Units and Instruction Sets

1.1.1 Main Units

Our processor has 16-bit word and contains main components common for such a
device – memory, arithmetic logic unit, program counter, instruction register etc.

Memory (Fig. 1.1,a) has 16-bit address bus (adr) and two 16-bit data buses –
input (din) and output (dout). Input rdwr (read-write) is the instruction input of the
memory. If rdwr = 0, instruction read is implemented: A := M[Adr]. Here A is the
word at the output bus dout and M[Adr] is the word of the memory with address
Adr. This address should be set at the address bus adr. If rdwr = 1, instruction
write is implemented: M[Adr] := B. Here B is the word at the input bus din and
M[Adr] is the word of the memory with address Adr. This address should be set at
the address bus adr. Our processor has two memories – instruction memory M0
and operand memory M1.

Arithmetic logic unit (ALU) is used for implementation of arithmetic and logic
operations (Fig. 1.1,b). Two 16-bit inputs in1 and in2 serve for operands of ALU,
5-bit input ctr serves for instruction codes of ALU operations. One bit input rg_c
will be connected with the output of carry flag cf to implement circular shifts cil
and cir (see below). The result of the operation appears at the output dout of ALU.
Three additional one-bit outputs c, z and v are connected with the inputs of three
flags cf (carry), zf (zero) and vf (overflow). Our ALU is a combinational circuit
(circuit without memory) so Processor has RALU (the register of ALU) to save the
results of arithmetic and logic operations.

4 S. Baranov

a)

c) d)

dout
adr

rdwr

16

ram64Kx16

din

16

16

in1

in2
ctr

alu

dout
16

5

c z v

rg_c

16

16

b)

16

en

din dout

pc

count

16

en

din dout
1616

reg_16bit

Fig. 1.1 Processor units

Program counter (PC) points to the next instruction which should be imple-
mented (Fig. 1.1,c). It saves the address of such instruction. Input en is used to
load 16-bit information from din to the counter when en = 1. When count = 1 the
content of the counter increases by one.

Instruction register contains the instruction which is being currently imple-
mented. As most of processor registers, it has the structure shown in Fig. 1.1,d.
Such a register has 16 clocked D flip-flops with input rst to reset it and input en
(enable signal), this signal should be equal to one to write information from input
din into the register. We skipped signals clk (clock) and rst (reset) in our pictures.

One more small memory – Block of Register (BoR) contains sixteen 16-bit reg-
isters (Fig. 1.2). For operation write, there must be some data at the bus din and an
address at the bus adrW. When enable signal en = 1, data is loaded through the in-
put din at the rising edge of the clock signal. For example, if adrW = 0011 and
en = 1, then R[3] (register number 3) will get information from input din.

Fig. 1.2 Block of registers

In operation read, two registers can be read at the same time. Their addresses
are specified with the adrR1 and adrR2 signals. To avoid unintentional storage of
information during the read operation, the signal en should be set to ‘0’.

1 Digital System Design 5

1.1.2 Instruction Set and Instruction Formats

The instruction set of Processor is presented in Table 1.1. It contains four subsets, or
subgroups of operations: aosh, load, branch and inout. Assembly names of instruc-
tions are in the column Name, their machine codes are in the column Code. Column
Description contains short description of each operation. You can use Table 1 as a ref-
erence table. We will discuss execution of some instructions in the following sections.

Table 1.1 Instruction set

Type

N
a
m
e

Description
Code

b0-b4

Format and addressing
mode

Short
b5 = 0

Long
b5 = 1

Dir

Dir
b7=0

Imm
b7=1

aosh add
and

sub
shl
shr
cil
cir

Add Op1 and Op2; store result in Op1

Bitwise logical AND between Op1 and Op2
 store result in Op1

Subtract Op2 from Op1; store result in Op1

Shift Op2 one bit to the left; store result in Op1

Shift Op2 one bit to the right; store in Op1

Rotate Op2 to the left; store result in Op1

Rotate Op2 to the right; store result in Op1

00 001
00 010

00 011
00 100
00 101
00 110
00 111

●
●

●
●
●
●
●

load lod
str
inc
dec
com

Copy Op2 into Op1

Copy Op1 into Op2

Increment Op1; store result in Op1

Decrement Op1; store result in Op1

Complement Op1; store result in Op1

10 000
10 001
10 010
10 011
10 100

●
●
●
●
●

●
●

●

branch bcz
bcf
bcc
bun

If z = 1, load new address into PC

If v = 1, load new address into PC

If c = 1, load new address into PC

Branch unconditionally to a new address

01 000
01 001
01 010
01 011

●
●
●
●

 ●
●
●
●

inout ski

sko

inp

out

ion

iof

Skip next instruction (if flag of input fgi = 1,
increment PC twice)

Skip next instruction (if flag of output fgo = 1,
increment PC twice)

Copy input register into one of the registers of
BOR and reset fgi

Copy one of the registers from BOR into out-
put
register and reset fgo

Set flag interrupt enable (ien) to 1

Set flag interrupt enable (ien) to 0

11 000

11 001

11 010

11 011

11 100

11 101

●

●

6 S. Baranov

Processor has two instruction formats (Fig. 1.3) – short (one word, 16 bits) and long
(two words, 32 bits). The first twelve bits have the same mission in both formats. Bit 5
points to the length of instructions – short (bit 5 equal to zero) or long (bit 5 equal to
one). The next two bits define the addressing mode. We will talk about it later.

Fig. 1.3 Instruction formats

The short instruction cannot use operands from operand memory M1. To access
this memory, the 16 bit address should be in the instruction. So, the short instruc-
tion uses only operands from BoR – bits 8-11 define the address of the first ope-
rand in BoR and the address of the result, whereas bits 12-15 define the address of
the second operand in BoR. In the long instruction, we will not use the field from
bit 12 to bit 15, the second operand is in the memory M1 and its 16 bit address is
in the second instruction word. Sometimes, we have operand itself in the second
word – see the immediate addressing mode below.

Our Processor uses 16-bit words, so 16-bit Instruction Register cannot save the
long instruction. Therefore, Processor has two instruction registers – IR1 and IR2,
sixteen bits each. In the program memory M0, the short instruction takes one
word, the long one – two sequential words. Processor fetches the short instruction
into IR1 and the long instruction – into IR1 and IR2. The first half of the long in-
struction, containing its code, length, addressing mode and two short addresses is
fetched into IR1, the second half – into IR2.

1.1.3 Addressing Modes

Addressing mode defines how Processor finds operands using their addresses in the
instruction. There are many different addressing modes, we will discuss most of
them but will use only some of them in our Processor. In both formats – short and
long, the address of the first operand and the address of the result are in bits 8-11 of

1 Digital System Design 7

the first instruction word. So, the different addressing modes will be essential only
for the second operand. Now we shortly discuss several addressing modes:

• Direct addressing mode is the simplest one. In this mode, addresses of
operands are written within the instruction. In the short format (Fig. 1.4,a),
addresses of the first and the second operands A1 and A2 are in bits 8-11 and
12-15, operands themselves are in BoR. In the long format (Fig. 1.4,b), ad-
dress A1 is in the bits 8-11 and the long address A3 of the second operand is
in the second word of such instruction. The second operand is in the operand
memory M1 in the cell with address A3.

Fig. 1.4 Addressing modes

• In immediate mode, not the address of the operand, but the second operand it-
self is written in the second word of the instruction (Fig. 1.4,c). Thus, the
immediate mode can be used only in the long instructions.

• In indirect mode, not the address of the operand, but the address of the ad-
dress of the operand is written in the instruction. For the short format
(Fig. 1.4,d), A2 in the field 12-15 points to the register in BoR, where the
memory address A3 of the second operand is saved. For the long format
(Fig. 1.4,e), address A3 in the second word of the instruction points to the cell
of the memory M1 which contains address A4 of the second operand. Thus, to

8 S. Baranov

 reach the second operand in the long instruction, Processor should access the
memory twice: first time – for its address, second time – for the oper and
itself.

• In the indexed addressing mode, Processor uses an index register to find the
address of the operand. As a rule, any BoR register except BoR[0], can be
used as an index register. For the long direct indexed mode the content A2 of
the second address field (bits 12-15) in the first instruction word points to the
index register in BoR. Processor should add the content of this index register
(offset) to the long address A3 (base address) from the second instruction
word to find the address of the second operand (A3 + offset). Exactly in the
similar way, we can define indirect indexed addressing mode.

We will use only two addressing modes in our Processor – direct and indirect. But
I left here two bits (6 and 7 in Fig. 1.3; 00 – direct mode, 01 – immediate mode)
because my students use various addressing modes in their projects.

1.2 ASMs for Processor Instructions

How to describe instructions by ASMs?

Before we present ASMs for processor instructions let us discuss how to describe
the instruction execution with ASM [7, 8]. As an example we will use ASM for
instruction lod in Fig. 1.5. The goal of this instruction is to send the second ope-
rand to the place of the first one. For the long instruction, the second operand is in
memory M1, for the short instruction it is in BoR with the second short address.
The first operand in both cases is in BoR with the first address.

Look at Fig. 1.5. A waiting conditional vertex with the logical condition S is
placed immediately after vertex Begin. You can look at S as a signal from a Start-
Stop button, so the instruction will be executed only when S = 1. Such conditional
vertex should be at the beginning of ASM for each instruction. The next condition
DMA (Direct Memory Access) corresponds to the special mode that doesn’t ex-
ecute an operation but connects its memory with the outside storage device to read
or write information. Ext_RdWr is the signal from outside. When Ext_RdWr = 1,
external system writes information to memory M0 (external signal M should be
equal to zero) or to memory M1 (M = 1) from its output Ext_out. When
Ext_RdWr = 0, external system reads information from memory M0 or M1 to its
input Ext_in.

Signal R in the next conditional vertex tells us about an interrupt. If R = 1, the
special mode of Processor – Interrupt takes place. When R = 0, there is no inter-
rupt and the instruction is executed in the regular mode. At the end of each
instruction Processor checks the conditions for interrupt; we will discuss it later as
well. So, now we will consider the implementation of instruction lod (long, direct)
from R = 0 (from the beginning of block Fetch1) until the first condition IEN of
block CheckInt.

The only information important prior to instruction implementation is the con-
tent of PC, which contains an address of the instruction in memory M0. Therefore,

1 Digital System Design 9

in the first step (the first operator vertex in Fetch1 in Fig. 1.5), the content of PC
should be sent to the address bus of the memory (Adr0 := PC) and the content of
the memory cell with this address will be sent to the first instruction register IR1
(IR1 := M0[Adr0]). Only when an instruction, or the first word of the long in-
struction is in IR1, Processor can analyze the instruction code (IR1(0-4)), length
(IR1(5)), addressing mode (IR1(6-7)) etc. In our notation, we use square brackets
for addresses (M0[Adr0]) and parenthesis for the fields of the register. For
example, IR1(0-4) means bits 0-4 of IR1, IR1(5) – the fifth bit of IR1 etc.

Fig. 1.5 ASM of instruction lod

In the second step (the second operator vertex in Fetch1 in Fig. 1.5), Processor
increments PC (PC := PC + 1). It is necessary to get an address of the next in-
struction in PC if the current instruction is short, or to give PC the address of the
second word of the long instruction. So, if the current instruction is short, the fetch

10 S. Baranov

is finished and the instruction is in IR1. If the instruction is long, the fetch should
continue to access memory M0 again for the second part of this instruction – see
the check of IR1(5) and the stage Fetch2 with two steps in Fig. 1.5.

After Fetch2, the long instruction is in two instruction registers IR1 and IR2. In
the case of the direct addressing mode (IR(7) = 0), the second operand is in memory
M1 and this operand should be loaded into the place of the first operand in BoR:

Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1].

If IR1(5) = 0, we have the short direct mode (see the check of the conditional
vertex containing IR1(5) immediately after Fetch1 in Fig. 1.5):

AdrR2 := IR1(12-15); AdrW := IR1(8-11); BoR[AdrW] := BoR[AdrR2].

Fig. 1.6 Generalized Operators

For the long immediate mode (see IR1(7) = 1 after Fetch2 in Fig. 1.5) we have:

AdrW := IR1(8-11); BoR[AdrW] := IR2,

because the second operand itself, not its address, is in IR2. Note, that it is suffi-
cient to check only bit 7 in IR1 for the addressing mode since we use only two
addressing modes – direct (00) and immediate (01).

Blocks Fetch1, DMACycle, IntCycle and CheckInt should be in ASMs for all
instructions Block Fetch2 will be only in ASMs for instructions with the long

1 Digital System Design 11

format. These blocks are drawn as separate ASMs in Fig. 1.6. If we replace dotted
blocks in Fig. 1.5 by generalized operators we will get ASM in Fig. 1.7, which
is simpler and clearer than ASM in Fig. 1.5.

Fig. 1.7 ASM of instruction lod with generalized operators

In the next several figures, we will present at least one ASM from each group
of instructions with generalized operators.

All instructions from group Aosh (see Table 1.1) have a short format and are
implemented in ALU. Processor must send operands and instruction code to ALU
and return the result from RALU to the place of the first operand with an address
in IR1(8-11). We can divide these instructions into two subsets

• ao, containing instructions add, and and sub. They use two operands
from BoR with addresses in IR1(8-11) and IR1(12-15) – see Fig. 1.8;

• sh, containing other instructions. They use one operand from BoR with
an address in IR1(12-15).

12 S. Baranov

Fig. 1.8 ASM ao

ASM for three conditional branch instructions are presented in Fig. 1.9. In each of
these instructions, the address of the next instruction depends on the values of
flags – zero (flag zf), carry (flag cf) and overflow (flag vf), which are results of the
previous operations in ALU. After fetch, short or long, which depends on IR1(5),
Processor checks the value of flag zf (see the shadowed conditional vertices in Fig.
1.9,a). If zf = 1, a jump to the instruction with the new address takes place. If zf = 0,
Processor executes the instruction which is immediately after bcz in memory M0. To
construct two other ASMs we should replace the shadowed vertices by a vertex with
cf for instruction bcc (Fig. 1.9,b) or by a vertex with vf for bcf (Fig. 1.9,c).

1 Digital System Design 13

Fig. 1.9 ASMs bcz, bcc, bcf

All instructions from group Inout are short and only two of them – inp and out
use an address of the operand written in IR1(8-11). Other instructions are zero-
address instructions. To explain ASMs of inp and out let us appeal to Fig. 1.10.
An input device can send new information into input register InpR at any time. At
the same time, it sets a special flag of input FGI (FlaG of Input) into 1. The goal
of instruction inp is to take the content of InpR into BoR with an address in IR1
(8-11) and to reset FGI. Thus, the implementation of this instruction is reduced to
one shadowed operator vertex in Fig. 1.11,a:

AdrW := IR1(8-11); BoR[AdrW] := InpR; FGI := 0.

To construct an ASM for instruction out we should replace the shadowed vertex in
Fig. 1.11,a by the vertex in Fig. 1.11,b. In this instruction Processor sends the
word from BoR with an address in IR1(8-11) into output register OutR and resets
FGO (FlaG of Ouput):

AdrR1 := IR1(8-11); OutR := BoR[AdrR1]; FGO := 0.

14 S. Baranov

Fig. 1.10 Interface between Input-Output system and Processor

AdrW:=IR1(8-11)
BoR[AdrW]:=InpR

FGI:=0

a) ASM inp

IEN:=0

d) ASM iof

c) ASM ion

IEN:=1

b) ASM out

AdrR1:=IR1(8-11)
OutR:=BoR[AdrR1]

FGO:=0
1 IntCycle

1 DMACycle

End

CheckInt

0

Replacement for
shadowed vertex

Fetch1

0

1

R

DMA

0S

Begin

Fig. 1.11 ASMs inp, out, ion, iof

1 Digital System Design 15

1.3 Data Path Design

1.3.1 Combined Functional ASM

After constructing functional ASMs for each instruction, our next step is to com-
bine them into one ASM [8]. The combined and minimized functional ASM for
our Processor is presented in Fig. 1.12. Combining and minimization was made by
EDA tool Abelite.

Fig. 1.12 Combined ASM with generalized operators

We use term functional ASM because this ASM represents the functional beha-
vior of Processor. In this ASM, processor units in each assignment are used as
variables. We do not have a real structure of Processor yet. For example, in
assignments

Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1],

16 S. Baranov

we know nothing about how these units are connected – whether direct
connections or buses (multiplexers) are used to provide information from the out-
put of one unit to the input of another one. But for behavior representation and for
understanding of this behavior, functional ASMs are very comprehensible and
very compact, especially with the use of generalized operators, such as Fetch1,
Fetch2, DMACycle, IntCycle and CheckInt. In Fig. 1.13 we replaced these blocks
by subgraphs from Fig.1.6 and got total combined Functional ASM GFn with
included generalized operators.

Fig. 1.13 Combined Functional ASM GFn with included replacements

To explain the difference between functional representation and structural re-
presentation (between the function and the structure in our context) let us use a
very simple structure in Fig. 1.14. In this figure, we have sources s0, … , s3 and
targets (receivers) t0, …, t4 (disregard target t5 for now, we will use it later). For
simplicity, you can think about these sources and targets as registers.

Let us suppose that we should send information from each source to each target
except t5. Of course, we can connect each source with each target directly but the
cost of such connection is very high. So, we use here a multiplexer (MUX) with

1 Digital System Design 17

four inputs. To send information from any input to the output of MUX we should
supply 2-bit vector (control signal), corresponding to the input, to the ctr_mux.
Suppose that the control signal is equal to the number of the input, so for in0, the
signal at ctr_mux is equal to 00, for in1 – 01 etc.

Fig. 1.14 Our first structure

We will discuss several examples in Fig. 1.15. In the first example, source s2
transfers information to target t3. At the functional level, the description is very
simple and clear: t3 := s2. At the structural level, to pass information from input
in2 to the output of MUX, ctr_mux should get control signal 10. To write informa-
tion from the output of MUX to the target t3 the signal enable of t3 should be
equal to 1: t3_en := ‘1’.

Functional Structure
1. t3 := s2 ctr_mux := ‘10’
 t3_en := ‘1’

2. t1 := s3 ctr_mux := ‘11’
 t2 := s3 t1_en := ‘1’
 t2_en := ‘1’

3. t5 := s0 t5_en := ‘1’

4. t5 := s0 t5_en := ‘1’
 t4 := s1 ctr_mux := ‘01’
 t4_en := ‘1’

Fig. 1.15 Descriptions at the functional and structural levels

In the second example we send the same information from one source s3 to two
targets t1 and t2. The control signal of MUX must be equal to 11 and two enable
signals, equal to 1, will write information into t1 and t2. However, if we should
like to pass information from several sources to several outputs at the same time,

18 S. Baranov

we need several MUXes because one MUX transfers only one input to its output.
To put it more precisely, we need as many MUXes as the number of sources we
wish to pass simultaneously.

One of the targets t5 in our structure is connected only with one source, i.e. it
can get information only from s0. We call such a connection a direct connection.
In example 3 in Fig. 1.15, to send information from s0 to t5 it is sufficient to
supply enable signal to this target: t5_en := ‘1’.

In the fourth example we have two simultaneous transfers – the first through
the direct connection: t5 := s0, and the second – through the indirect connection:
t4 := s1. Since only one indirect transfer takes place in this example, one MUX is
sufficient in such a case.

Let us return to our Processor. Any digital system is usually regarded as a com-
position of Control unit and Operational unit (Data Path) – see Fig. 1.16. Data
path contains such regular blocks as memory, registers, ALU, counters, coders,
encoders, multiplexers, demultiplexers etc. A control unit produces a sequence of
control signals that force implementation of microoperations in data path. Some-
times designers include cloud (non-regular) circuits in data path as well. In Fig.
1.17 we have a fragment of data path with two registers R1, R2 and a cloud circuit.

Fig. 1.16 Digital system as a composition of Control unit and Data path

Suppose that in the digital system there are transfers from R1 to R2 at different
times with different conditions. Designers often use a cloud circuit to realize some
Boolean function, and the output of this circuit is the signal for the transfer. So,
this circuit defines when and under which logic conditions the transfer information
from R1 to R2 takes place.

Fig. 1.17 Element of Data path with a cloud circuit

1 Digital System Design 19

One of the main concepts in our design methodology is the construction of
“naked data path”. Naked data path doesn’t contain any cloud circuits, only stan-
dard regular units with their inputs and outputs. Such units can be predesigned or
even taken from libraries. We leave all check-ups of conditions to control unit. We
can afford this because we know how to design very complicated FSM with hard-
ly any constraints on their size, that is, the number of inputs, outputs and states.
We will try to show that such design and its verification are very simple. Moreo-
ver, we will formalize a design of the digital system with naked data path.

1.3.2 Process Table and Connection Graph

To design the data path of our processor we will use the combined functional
ASM GFn in Fig. 1.13. When we construct the data path we will transform func-
tional ASM into structural ASM with microinstructions and microoperations cor-
responding to the data path. The last step of our design will consist in constructing
a control unit (Finite state machine) and combining FSM with the data path.

We will begin with filling the left, functional part of the Process table
(Table 1.2). To do this, we copy each microinstruction from combined ASM GFn
(Fig. 1.13) into this table. If some microinstruction appears several times in com-
bined ASM GFn we write it several times in Table 1.2. For example, microinstruc-
tion PC := PC + 1 is written in four vertices of ASM GFn, so it is written four times
in Table 1.2. The order of writing microinstructions in this table is absolutely
 unimportant.

There are two classes of microoperations in this table. The first one presents the
transfer information from the output of one unit to the input of another unit, for ex-
ample, Adr1 := IR2, M1[Adr1] := BoR[AdrW], RALU := ALU etc. These microope-
rations are marked in the last column of the left part of Table 1.2 by the number equal
to the number of bits in the source and in the target (1, 4, 5 or 16 in our example). The
microoperations from the second class, such as PC := PC + 1, R := 1,
IEN := 0, R := 0, FGI := 0 etc. are executed in one operational unit. They are
marked by 0 in the same column. For some time we will continue to work only with
microoperations from the first class marked by nonzero numbers in the process table.
The microoperations of the second class will not be “our clients” for a while.

In the connection graph (Fig. 1.18a for the sixteen bit transfers) source A, located
on the left, is connected by an arc with target B on the right, if there is microopera-
tion B := A in the set of microoperations marked by 16. In this graph, we use a dot-
ted arc if a target has only one source (similarly, target t5 has only one source s0 in
Fig. 1.14). Otherwise, we use a solid arc. Each solid arc has a weight, written over
the arc. This weight is equal to the number of appearances of the corresponding mi-
crooperation in Table 1.2. For example, the arc with source PC and target Adr0 has
the weight equal 2, because Adr0 := PC appears twice in Table 1.2.

We assume that each dotted arc has a weight equal to 0 and we do not write ze-
ro weights in our connection graph. Each source of the connection graph has a
weight written on the left of this source. This weight is equal to the sum of
weights of arcs outgoing from the source. We will use these weights later in the
optimal encoding of the MUX inputs.

20 S. Baranov

Table 1.2 Process table

Functional ASM Structural ASM

Micro-
instruction Functional microoperations Structural

microoperations
Minimized structural

microoperations
Y1 y1

y2
AdrW:=IR1(8-11)
BoR[AdrW]:=RALU

4
16

ctr_mux3 := 0
ctr_mux2 := 0110
bor_en := 1

ctr_mux2[1] := 1
ctr_mux2[2] := 1
bor_en := 1

y1
y2
y3

Y2 y3
y4
y5
y6
y7
y8
y9
y10
y11

AdrR1:=IR1(8-11)
AdrR2:=IR1(12-15)
ALU1:=BoR[AdrR1]
ALU2:=BoR[AdrR2]
ctrALU:=IR1(0-4)
RALU:=ALU
cf:=c
zf:=z
vf:=v

4
4
16
16
5
16
1
1
1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

y4
y5
y6
y7

Y3 y4
y6
y7
y8
y9
y10
y11

AdrR2:=IR1(12-15)
ALU2:=BoR[AdrR2]
ctrALU:=IR1(0-4)
RALU:=ALU
cf:=c
zf:=z
vf:=v

4
16
5
16
1
1
1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

y4
y5
y6
y7

Y4 y12
y1
y13

Adr1:=IR2
AdrW:=IR1(8-11)
BoR[AdrW]:=M1[Adr1]

16
4
16

ctr_mux1 := 001
ctr_mux3 := 0
ctr_mux2 := 0001
rdwrM1 := 0
bor_en := 1

ctr_mux1[2] := 1
ctr_mux2[3] := 1
bor_en := 1

y8
y9
y3

Y5

y1
y14

AdrW:=IR1(8-11)
BoR[AdrW]:=IR2

4
16

ctr_mux3 := 0
ctr_mux2 := 1000
bor_en := 1

ctr_mux2[0] := 1
bor_en := 1

y10
y3

Y6 y4
y1
y15

AdrR2:=IR1(12-15)
AdrW:=IR1(8-11)
BoR[AdrW]:=BoR[AdR2]

4
4
16

ctr_mux3 := 0
ctr_mux2 := 0101
bor_en := 1

ctr_mux2[1] := 1
ctr_mux2[3] := 1
bor_en := 1

y1
y9
y3

Y7 y12
y3
y16

Adr1:=IR2
AdrR1:=IR1(8-11)
M1[Adr1]:=BoR[AdrR1]

16
 4
16

ctr_mux1 := 001
ctr_mux2 := 0000
rdwrM1 := 1

ctr_mux1[2] := 1
rdwrm1 := 1

y8
y11

Y8 y3
y17
y18

AdrR1:=IR1(8-11)
AdrW:=IR1(12-15)
BoR[AdrW]:=BoR[AdrR1
]

 4
 4
16

ctr_mux3 := 1
ctr_mux2 := 0000
bor_en := 1

ctr_mux3 := 1
bor_en := 1

y12
y3

Y9

y3
y5
y7
y8
y9
y10
y11

AdrR1:=IR1(8-11)
ALU1:=BoR[AdrR1]
ctrALU:=IR1(0-4)
RALU:=ALU
cf:=c
zf:=z
vf:=v

 4
16
5
16
 1
 1
 1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

ralu_en := 1
cf_en := 1
zf_en := 1
vf_en := 1

y4
y5
y6
y7

Y10 y4
y19

AdrR2:=IR1(12-15)
PC:=BoR[AdrR2]

 4
16

ctr_mux1 := 100
pc_en := 1

ctr_mux1[0] := 1
pc_en := 1

y13
y14

Y11 y20 PC:=IR2 16 ctr_mux1 := 001
pc_en := 1

ctr_mux1[2] := 1
pc_en := 1

y8
y14

1 Digital System Design 21

Table 1.2 (continued)

Y12 y21 PC:=PC+1 0 pc_count := 1 pc_count := 1 y15
Y12 y21 PC:=PC+1 0 pc_count := 1 pc_count := 1 y15
Y12 y21 PC:=PC+1 0 pc_count := 1 pc_count := 1 y15
Y12 y21 PC:=PC+1 0 pc_count := 1 pc_count := 1 y15
Y13 y1

y22
y23

AdrW:=IR1(8-11)
BoR[AdrW]:=InpR
FGI:=0

 4
16
 0

ctr_mux3 := 0
ctr_mux2 := 0100
bor_en := 1
fgi_reset := 1

ctr_mux2[1] := 1
bor_en := 1
fgi_reset := 1

y1
y3
y16

Y14 y3
y24
y25

AdrR1:=IR1(8-11)
OutR:=BoR[AdrR1]
FGO:=0

 4
16
 0

outr_en := 1
fgo_reset := 1

outr_en := 1
fgo_reset := 1

y17
y18

Y15 y26 IEN:=1 0 ien_set := 1 ien_set := 1 y19
Y16 y27 IEN:=0 0 ien_reset := 1 ien_reset := 1 y20
Y17 y28

y27
y29

PC:=x"FFFE"
IEN:=0
R:=0

16
 0
 0

ctr_mux1 := 011
pc_en := 1
ien_reset := 1
r_reset := 1

ctr_mux1[1] := 1
ctr_mux1[2] := 1
pc_en := 1
ien_reset := 1
r_reset := 1

y21
y8
y14
y20
y22

Y18

y30
y31

Adr1:=x"FFFF"
M1[Adr1]:=PC

16
16

ctr_mux1 := 101
ctr_mux2 := 1001
rdwrM1 := 1

ctr_mux1[0] := 1
ctr_mux1[2] := 1
ctr_mux2[0] := 1
ctr_mux2[3] := 1
rdwrm1 := 1

y13
y8
y10
y9
y11

Y19 y32
y33

Adr0:=Ext_Adr
M0[Adr0]:=Ext_Out

16
16

ctr_mux1 := 000
rdwrM0 := 1

rdwrm0 := 1 y23

Y20

y34
y35

Adr1:=Ext_Adr
M1[Adr1]:=Ext_Out

16
16

ctr_mux1 := 000
ctr_mux2 := 0010
rdwrM1 := 1

ctr_mux2[2] := 1
rdwrm1 := 1

y2
y11

Y21 y34
y36

Adr1:=Ext_Adr
Ext_in:=M1[Adr1]

16
16

ctr_mux1 := 000
ctr_mux2 := 0001
rdwrM1 := 0

ctr_mux2[3] := 1 y9

Y22 y32
y37

Adr0:=Ext_Adr
Ext_in:=M0[Adr0]

16
16

ctr_mux1 := 000
ctr_mux2 := 0011
rdwrM0 := 0

ctr_mux2[2] := 1
ctr_mux2[3] := 1

y2
y9

Y23 y38 R:=1 0 r_set := 1 r_set := 1 y24
Y24 y39

y40
Adr0:=PC
IR1:=M0[Adr0]

16
16

ctr_mux1 := 010
rdwrM0 := 0
ir1_en := 1

ctr_mux1[1] := 1
ir1_en := 1

y21
y25

Y25 y39
y41

Adr0:=PC
IR2:=M0[Adr0]

16
16

ctr_mux1 := 010
rdwrM0 := 0
ir2_en := 1

ctr_mux1[1] := 1
ir2_en := 1

y21
y26

Sometimes, when a graphic representation of a connection graph is too compli-

cated, we can present it as a list (Fig. 1.18,b). In this list, weights on the left are
the weights of sources and weights on the right are the weights of arcs. Thus, the
weight on the right which is equal to zero corresponds to the direct connection.

Next important information that we use in design of data path is the list of
parallel (concurrent) microoperations (Fig. 1.19 for the sixteen-bit transfers). In this
list, we include microinstructions, containing two or more microoperations, marked
by 16 in the fourth column of Table 1.2. I remind you that if several microoperations
are in one microinstruction, they are implemented concurrently (at the same clock).

22 S. Baranov

Fig. 1.18 Connection Graph

Let us discuss construction of this list from Table 1.2 We didn’t insert microin-
struction Y1 in this list because it contains only one 16 bit microoperation. Micro-
instruction Y2 contains nine microoperations, but only three of them are marked by
16 in the forth column of Table 1.2.

We can compress the list of parallel microoperations (Fig. 1.19), if we remove
microoperations corresponding to direct connections in the connection graph
(dotted arcs in Fig. 1.18,a). We have six such microoperations; they are marked by

1 Digital System Design 23

d (direct) in Fig. 1.19 in the right column. There are 9 symbols d in this column
because some microoperations occur several times there. After such reduction,
three microinstructions – Y19, Y24 and Y25 contain only one microoperation, so we
can remove them as well (it is similar to example 4 in Fig. 1.15). The final list of
parallel microoperations is shown in Fig. 1.20.

Y2 : y5 ALU1:=BoR[AdrR1] d

 y6 ALU2:=BoR[AdrR2] d

 y8 RALU:=ALU d

Y3 : y6 ALU2:=BoR[AdrR2] d

 y8 RALU:=ALU d

Y4 : y12 Adr1:=IR2

 y13 BoR[AdrW]:=M1[Adr1]

Y7 : y12 Adr1:=IR2

 y16 M1[Adr1]:=BoR[AdrR1]

Y9 : y5 ALU1:=BoR[AdrR1] d

 y8 RALU:=ALU d

Y18 : y30 Adr1:=x"FFFF"

 y31 M1[Adr1]:=PC

Y19 : y32 Adr0:=Ext_Adr

 y33 M0[Adr0]:=Ext_Out d

Y20 : y34 Adr1:=Ext_Adr

 y35 M1[Adr1]:=Ext_Out

Y21 : y34 Adr1:=Ext_Adr

 y36 Ext_in:=M1[Adr1]

Y22 : y32 Adr0:=Ext_Adr

 y37 Ext_in:=M0[Adr0]

Y24 : y39 Adr0:=PC

 y40 IR1:=M0[Adr0] d

Y25 : y39 Adr0:=PC

 y41 IR2:=M0[Adr0] d

Fig. 1.19 Parallel microoperations before considering direct connections

24 S. Baranov

Y4 : y12 Adr1:=IR2

 y13 BoR[AdrW]:=M1[Adr1]

Y7 : y12 Adr1:=IR2

 y16 M1[Adr1]:=BoR[AdrR1]

Y18 : y30 Adr1:=x"FFFF"

 y31 M1[Adr1]:=PC

Y20 : y34 Adr1:=Ext_Adr

 y35 M1[Adr1]:=Ext_Out

Y21 : y34 Adr1:=Ext_Adr

 y36 Ext_in:=M1[Adr1]

Y22 : y32 Adr0:=Ext_Adr

 y37 Ext_in:=M0[Adr0]

Fig. 1.20 Parallel microoperations after considering direct connections

1.3.3 Graph of Incompatibility. Main MUXes and Direct
Connections

If we use MUXes for indirect connections between Processor units, we can con-
nect the output of only one MUX with the input of the target. So, if we have two
targets A and C, one MUX is sufficient to transfer information to this targets if we
do not have parallel transfers to A and C from the different sources.

Let us now suppose that we have two transfers A := B and C := D that must be
implemented concurrently. Then we must use two MUXes, the output of one of
them will be connected to the input of target A and source B should be among the
inputs of this MUX. The output of the second MUX will be connected to the input
of target C and source D should be among the inputs of this MUX.

After this, our next steps are almost evident. First, we find all targets with non-
zero weights of arcs from the connection graph in Fig. 1.18b. These weights are
written in the last column of this figure. We go along this column from the top to
the bottom and write targets without repetition. Here they are:

 BoR[AdrW], M1[Adr1], PC, Adr0, Adr1, Ext_in. (1.1)

Next, we construct the graph of incompatibility (Fig. 1.21:

1. Each vertex of this graph is a target from (1).
2. We connect two vertices (targets) by edge (line) if these two targets

are together in the same microinstruction in the set of parallel micro-
operations (as Adr1 and BoR[AdrW] in Y4, Adr1 and M1[Adr1] in
Y7, Y18 and Y20, Adr1 and Ext_in in Y21 and Adr0 and Ext_in in
Y22 in Fig 1.20).

1 Digital System Design 25

Fig. 1.21 Graph of incompatibility

From the connection graph (Fig. 1.18,b) write sources for each target (vertex).
For example, we write (bor1, bor2, ir2, inpr, m1, ralu) next to vertex (target) bor
because bor is written 6 times with the sources bor1, bor2, ir2, inpr, m1, ralu in
the connection graph in Fig. 1.18,b. Here we use the abbreviations bor1, bor2 for
BoR[AdrR1], BoR[AdrR2] and bor for BoR[AdrW].

If two vertices (targets) are connected by edge in this graph we cannot pass in-
formation to these targets through the same MUX because these targets are written
together in some set of concurrent microoperations with different sources. For ex-
ample, target adr1 cannot be acquired from the same MUX with ext_in, bor and
m1 since adr1 is connected with these vertices by arcs. However, adr0 can be ac-
quired from the same MUX with adr1, m1, pc or bor – adr0 is not connected with
them in the graph of incompatibility.

To find the minimal number of MUXes in our design we must color this graph
with a minimal number of colors in such a way that each two connected vertices are
colored by different colors. The targets (vertices) colored by the same colors will be
received from the same MUXes and the number of MUXes will be equal to the
number of colors. And we will use mux1, mux2, … as colors for such a coloring.

Table 1.3 Coloring process for our Processor

Vertices Forbidden vertices Colors

adr1 ext_in, m1, bor mux1

ext_in adr1, adr0 mux2

adr0 ext_in mux1

bor adr1 mux2

m1 adr1 mux2

pc - mux1

26 S. Baranov

The coloring process is presented in Table 1.3. It is reasonable to order vertices in
such table according to their ranks – to the decreasing number of edges connected with
each vertex (three such edges for adr1, two edges for ext_in, one edge for adr0, bor and
m1 and zero edges for pc). We place these vertices in the column Forbidden vertices.

We color the first vertex adr1 with color mux1. Since the second vertex ext_in is
connected to adr1 (ext_in has adr1 in the column Forbidden vertices), we cannot
color ext_in with the same color mux1. We color adr0 with the same color mux1 be-
cause adr0 does not contain adr1 in the second column of Table 1.3. We cannot col-
or bor, and m1 with mux1 because these vertices are connected with vertex adr1.
Continue until the end of the list with color mux1 we use this color for pc.

In the next step, taking color mux2 for ext_in, we go down the list and color bor
and m1 with mux2. Now all vertices are colored. The total number of MUXes
(colors) is equal to two.

Thus, we got the outputs of MUXes by coloring process. To get inputs to these
MUXes we should refer to the connection graph in Fig. 1.18,b. Let us discuss
MUX1 with outputs Adr1, Adr0 and PC. We go along the last but one column tar-
gets in this figure and search for target Adr1. The first time Adr1 appears as a tar-
get with source Ext_Adr and the target weight equal 2 (last column). So we in-
clude ext_adr as an input with input weight equal to 2 (Fig. 1.22,a). Then we
continue to descend and find Adr1 with source IR2, its target weight is equal to 2
as well. We put the second input to MUX1. Going down with source Adr1 we find
the third input x”ffff” (weight = 1).

Recall that the weight of microoperation Adr := Ext_Adr is equal to the number
of appearances of this microoperation in the combined functional ASM. This
means that Ext_Adr is used twice as the source for target Adr, or which is the
same, Adr is twice the target for Ext_Adr. Thus, when we talk about a pair
(source, target), their weights are equal. On the other hand, the weight in the left
column of Fig. 1.18,b is the total weight of the source for all targets. For example,
weight 4 on the left of IR2 is the sum of corresponding weights of source IR2 with
all targets written on the right side. The zero weight there means that the direct
connection is used for the corresponding transfer.

Now we should repeat the same for target Adr0. The first appearance of Adr0 in
column targets is with input Ext_Adr, target weight 2. Since we already have such
input in MUX1, we add the new weight 2 to the old weight 2 (the weight of input
Ext_Adr became equal to 4) and write Adr0 over the arrow for Ext_Adr near Adr1
to show that this source Ext_Adr sends information to Adr1 and Adr0 using
MUX1 (Fig. 1.22,b). Coming down with target Adr0, we insert one more input PC
with weight 2. Execution the same procedure for target PC gives us the final
picture of MUX1 in Fig. 1.22,c.

Continuing in the same way, we constructed MUX2 in Fig. 1.22,d. Note, that
the same input can appear in the different MUXes if such input has several targets
distributed between several MUXes. For example, ir2 sends information to Adr1
and PC through MUX1, and to BoR – through MUX2. Inputs PC and BoR2 occur
in both MUXes as well. We will talk about the input encoding later.

1 Digital System Design 27

out

in

MUX1 6x16
ext_adr in

ir2 adr1adr1
2

ctr

in
adr1

1

adr1

x"ffff"

2

out
in

in

MUX1 6x16
ext_adr in

ir2

pc

adr0 adr1
adr1

adr0

adr0

3

2

ctr

in
adr1

1

adr1

x"ffff"

4

a) b)

out
in2

in1

MUX1 6x16

in4

ext_adr in0

ir2

pc adr0 adr1

adr1

adr0

adr0

in3

bor2

pc

pc
1

3

2
pc

ctr

3

in5

x"fffe"
adr1

pc

1

1

adr1

x"ffff"

4

c)

out

in2

in1

MUX2 9x16

in4

in0

in9

in5

in6

in3

bor1

m1

inpr

ir2

ext_out

m0
ext_in

bor

bor

bor
bor ext_in

pc

ralu

bor ext_in

ctr

4

1

2

2

1

1

1

1

1

m1

m1

m1

m1

bor

bor2 bor1

in8

d)

Fig. 1.22 Constructing MUXes for our Processor

Fig 1.23 presents the connection graph for 4-bit transfers. The corresponding
graph of incompatibility contains only one vertex AdrW. The list of Parallel mi-
crooperations prior to considering direct connections is shown in Fig. 1.24.

 weight : sources targets : weight

 1 : IR1(12-15) AdrR2 : 0

 AdrW : 1

 5 : IR1(8-11) AdrR1 : 0

 AdrW : 5

Fig. 1.23 Connection graph for 4-bit transfers as a list

 Y2 : y3 AdrR1:=IR1(8-11) d

 y4 AdrR2:=IR1(12-15) d

 Y6 : y1 AdrW:=IR1(8-11)

 y4 AdrR2:=IR1(12-15) d

 Y8 : y3 AdrR1:=IR1(8-11) d

 y17 AdrW:=IR1(12-15)

Fig. 1.24 Parallel microoperations for 4-bit transfers

28 S. Baranov

After considering direct connections, we will find that there are no parallel mi-
crooperations for 4-bit transfers. Thus, we get one MUX3 presented in
Fig. 1.25.

Fig. 1.25 Main MUX for 4-bit transfers

Data Path for our example is presented in Fig. 1.26. The dotted lines corres-
pond to direct connections. To clear this picture up we removed wires for two sig-
nals – reset asynchronous (rst) and clock (clk). Thus, we finished the system de-
sign for Data Path. What have we got? We have got a “naked Data Path” – it
means that our Data Path doesn’t contain “cloud circuits”.

1.4 Control Unit Design

1.4.1 Transformation of Functional ASM into Structural ASM

Our next step is design of the Control unit for our Processor. For this, let us return to
the process table (Table 1.2) and implement each functional microoperation from the
third column by structural microoperation (or by the set of structural microopera-
tions) in the fifth column of this table. Once again, we will postpone consideration
of input encoding for MUXes and will use codes from Fig. 1.22,cd and Fig. 1.25.

Let we have a functional microoperation A := B. To implement this assignment
we must read information from B and write it to A. Now we will discuss reading
and writing information in our design.

Read1. When source B is a combinational circuit or a register, we should not
supply special signals to read information from such devices. This information is
always at its output. Examples:

RALU := ALU; zf := z; (reading from combinational circuits).
Adr1 := IR2; BoR[AdrW] := InpR; (reading from registers).

Read2. Source B is BoR (Block of Registers). BoR has two outputs BoR[AdrR1]
(bor1) and BoR[AdrR2] (bor2). To choose the register from BoR, the Control unit
should give address to AdrR1 or AdrR2 (or to both of them) and send information
from the output(s) to the target. Examples:

1 Digital System Design 29

AdrR2 := IR1(12-15); ALU2 := BoR[AdrR2];
AdrR1 := IR1(8-11); OutR := BoR[AdrR1].

out

in2

in1

MUX2 9x16

in4

in0

in9

in5

in6

in3

bor1

m1

inpr

ir2

ext_out

m0

pc

ralu

ctr

4

bor2

in8

16

adrR1

en

BoR16 din

4

bor1

adrW
4 16

bor2

adrR2

4

in1

in2
ctr

alu

dout
16

5

c z v

en
din dout

u14_cf

en
din dout

u15_zf

en
din dout

u16_vf

vf

zf

cf

cf_en

zf_en

vf_en

rg_c

dff
x8

y5

x6

y6

x7

y7

u5_alu dff

dff

en

din dout

u8_ir1

ir1(8-15)

ir1(0-4)

ir1(4)

en

din dout

u11_ralu

16

reg_16bit

ir1(3)

ir1(2)

ir1(1)

ir1(0)

ir1(7)

ir1(5)
ir1(0-5, 7)

x11

x12

x13

x14

x15

x5

x4

reg_16bit

en

din dout
16

reg_16bit
u9_ir2

en

din dout

u13_outr

16
data_out

reg_16bit

bor_eny3

ralu_eny4

dout
adr

rdwr

16

ram64Кx16

din

16

16

rdwrm1

u7_m1

ir1_eny25

ir2_eny26

dout
adr

rdwr

16

ram64Кx16

din

16

16

rdwrm0

u6_m0

outin2

in1

MUX1 6x16

in4

ext_adr
in0

ir2

pc

in3

bor2

ctr

3

in5

x"fffe"

x"ffff"

ctr_mux2

ctr_mux1

en

din dout

u12_inpr

16

inpr_en

data_in
16

reg_16bit

16

en

din dout

pc

count

pc_count

pc_en

y15

y14

u10_pc

ext_adr

outr_eny17

ext_out

out

in1

MUX3 2x4
in0ir1(8-11)

ctr
ir1(12-15)

ctr_mux3y12

r dout
s

r dout
s

r dout

u18_r

s

r
dout

s

ien_reset

ien

ien_set

fgo_reset

fgo

fgo_set

u19_fgi fgi_reset

fgi

fgi_set

r_reset

r

r_set

u17_ien
rsff

y20

x18

y19

y22

x1

y24

y16

x9

y18

x10

rsff

rsff

rsff
u20_fgo

ext_in

ir1(8-11) ir1(12-15)

y23

y11

y10 y1 y2 y9

y13 y21 y8

u1_mux1

u2_mux2

u3_mux3

u4_bor

16

16

16

Fig. 1.26 Data Path

Read3. Source B is a memory (M0 or M1). As B is a memory, Processor should
send an address to the address bus Adr0 for M0 or Adr1 for M1 and rdwr0 := 0 for
M0 or rdwr1 := 0 for M1. Then the corresponding word of the memory M0[Adr0]
or M1[Adr1] will appear at the output of M0 or M1. Examples:

Adr0:=PC; IR1:=M0[Adr0];
Adr1 := Ext_Adr; Ext_in := M1[Adr1].

30 S. Baranov

Write1. Target A is a register. To write information from the source to the register
we should supply signal reg_en := 1 for direct connection or pass this information
from the source to the input of the register through the MUX and supply the same
signal reg_en := 1. Examples:

OutR := BoR[AdrR1]; PC := IR2.

Write2. Target A is BoR. In our Processor we write source B into BoR by using
AdrW (see Fig. 1.2 (BoR)) and signal bor_en := 1. Examples:

AdrW:=IR1(8-11); BoR[AdrW]:=IR2;
AdrW:=IR1(8-11); BoR[AdrW]:=M1[Adr1].

Write3. Target A is a memory. To write information to the memory from some
source we must provide an address to the address bus Adr0 for M0 or Adr1 for M1
and rdwr0 := 1 for M0 or rdwr1 := 1 for M1. The information from the input of
the memory will be written into the memory word with a given address.
Examples:

Adr0:=Ext_Adr; M0[Adr0]:=Ext_Out;
Adr1:=x"FFFF"; M1[Adr1]:=PC.

Let us discuss several examples of transformation of functional microinstructions
into structural ones in Table 1.2.. Really, it is very similar to the
transformation in our first structure – see Fig. 1.14 and Fig. 1.15.

1. PC := IR2. Case Read1 – Write1 (row Y11, column 3).

To pass information from IR2 to the input of PC through MUX1 (see Fig. 1.22,c or
Fig. 1.26) we must send signal ctr_mux1 := 001, because input ir2 of MUX1 has code
001. The signal pc_en := 1 will write information from the output of MUX1 into PC.
Finally we use the following microoperations at the structure level:

ctr_mux1 := 001; pc_en := 1.

2. AdrW := IR1(8-11); BoR[AdrW] := InpR. Case Read1 – Write2 (row Y13).
To pass information from IR1(8-11) to the input AdrW of BoR through MUX3

we must supply signal ctr_mux3 := 0, because input IR1(8-11) of MUX3 has code
0 (Fig. 1.25 or Fig. 1.26). To pass information from InpR to the input of BoR
through MUX2 we must supply signal ctr_mux2 := 0100, because input inpr of
MUX2 has code 0100 (Fig. 1.22,d or Fig. 1.26). The signal bor_en := 1 will write
information from the output of MUX2 into the register of BoR with address AdrW.
Finally we use the following microoperations at the structure level:

ctr_mux3 := 0; ctr_mux2 := 0100; bor_en := 1.

3. Adr1 := x”FFFF”; M1[Adr1] := PC. Case Read1 – Write3 (row Y18).
The content of PC should be written to the word of memory M1 with address

x”FFFF”. To pass information from the constant x”FFFF” to the address bus
Adr1 of the M1 through MUX1 we must supply signal ctr_mux1 := 101, because
input x”ffff” of MUX1 has code 101 (Fig. 1.22,c or Fig. 1.26). To pass information
from PC to the input of memory M1 through MUX2 we must supply signal

1 Digital System Design 31

ctr_mux2 := 1001, because input pc of MUX2 has code 1001. The signal
rdwrM1 := 1 will write information from the output of PC into the cell of the M1
with address X”FFFF”. Finally we use the following microoperations at the
structure level:

ctr_mux1 := 101; ctr_mux2 := 1001; rdwrM1 := 1.

4. AdrR2 := IR1(12-15); PC:=BoR[AdrR2]. Case Read2 – Write1 (row Y10).
To pass information from BoR2 (BoR[AdrR2]) to PC through MUX1 we must

give signal ctr_mux1 := 100, because input bor2 of MUX1 has code 100. IR1(12-15)
is connected directly with AdrR2 so we do not need special signal for the first as-
signment. The signal pc_en := 1 will write information from the output of MUX1 in-
to PC. Finally we use the following microoperations at the structure level:

ctr_mux1 := 100; pc_en := 1.

5. AdrR1 := IR1(8-11); AdrW := IR1(12-15); BoR[AdrW] := BoR[AdrR1]. Case
Read2 – Write2 (row Y8).

To pass information from BoR1 (BoR[AdrR1]) to BoR through MUX2 we must
give signal ctr_mux2 := 0000. To write information to the register with the second
address (IR1(12-15)) we should send this address to the input AdrW of BoR
through MUX3 (ctr_mux3 := 1). The signal bor_en := 1 will write information
from the output of MUX2 into the register of BoR with the second address. Finally
we use the following microoperations at the structure level:

ctr_mux3 := 1; ctr_mux2 := 0000; bor_en := 1.

6. Adr0 := PC; IR2 := M0[Adr0]. Case Read3 – Write1 (row Y25).
The content of the word in the memory M0 with the address in PC should be

written into IR2. To pass information from PC to the address bus Adr0 of memory
M0 through MUX1 we must supply signal ctr_mux1 := 010, because input pc of
MUX1 has code 010. The signal rdwrM0 := 0 will read information from the cell of
M0 with address Adr0 equal to PC. Because memory M0 is connected directly with
the input of IR2 (see Fig. 1.18,b and Fig. 1.26), no MUX is used to pass information
from M0 to IR2. To write information into IR2 it is sufficient to supply signal
ir2_en := 1. Finally, we use the following microoperations at the structure level:

ctr_mux1 := 010; rdwrM0 := 0; ir2_en := 1.

7. Adr1 := IR2; AdrW := IR1(8-11); BoR[AdrW] := M1[Adr1]. Case Read3 –
Write2 (row Y4).

The content of the word in memory M1 with the address in IR2 should be writ-
ten into the register of BoR with address in IR1(8-11). For this we should send this
address to the input AdrW of BoR through MUX3 (ctr_mux3 := 0). To pass
information from IR2 to the address bus Adr1 of M1 through MUX1 we must give
signal ctr_mux1 := 001, because input ir2 of MUX1 has code 001. The signal
rdwrM1 := 0 will read information from the word of memory M1 with address
Adr1 equal to IR2. To pass information from the memory M1 to the input of BoR
through MUX2 we must supply signal ctr_mux2 := 0001, because input m1 of
MUX2 has code 0001. The signal bor_en := 1 will write information from the

32 S. Baranov

output of MUX2 into the register of the BoR with the first address. Finally we use
the following microoperations at the structure level:

ctr_mux1 := 001; ctr_mux3 := 0; ctr_mux2 := 0001; rdwrM1 := 0; bor_en := 1.

In this manner, we have filled the whole fifth column “Structural Microoperations”
of Table 1.2.

1.4.2 Synthesis the Finite State Machine (FSM) from ASM

We use Algorithmic state machines to describe the behavior of digital systems,
mainly of their control units. But if we must construct a logic circuit of the control
unit we should use a Finite state machine (FSM). We will shortly consider a me-
thod of synthesis of FSM Mealy implementing a given ASM. As an example we
will use ASM G1 in Fig. 1.27. A Mealy FSM for a given ASM may be
constructed in two stages [7]:

Stage1. Construction of a marked ASM;

Stage 2. Construction of an FSM transition table.

At the first stage, the inputs of vertices following operator vertices are marked by
symbols a1, a2, …, aM as follows:

1. Symbol a1 marks the input of the vertex following the initial vertex “Begin”
and the input of the final vertex “End”;
2. Symbols a2, …, aM mark the inputs of all vertices following operator vertices;
3. Vertex inputs are marked only once;
4. Inputs of different vertices, except the final one, are marked by different symbols.

Begin

1

x3

1

y1 y3

1

y1 y2 0

x4

x2

x1

y4
0

x5

y5 y6 y7

1

x6

x7

0

0

End

x1

1
0

y8 y91

1
y3 y4

0

x6

y6 y7

1
0

y6 y7
0

0

Yb

Y6

Y1

Y5

Y7

Y4

y3 y6 y10
1 Y8

Y3

Y2

a1

a2

a4

a5

a1

a3

a6

Ye

Y6

Fig. 1.27 ASM G1 marked for the Mealy FSM synthesis

1 Digital System Design 33

Marked ASM G1 in Fig. 1.27 is a result of the first stage. At the second stage, we
will consider the following transition paths in the marked ASM:

sgmmRmm aYxxa ~...~
1 (P1)

11
~...~ axxa mmRmm

 (P2)

Next we construct an FSM Mealy with states (marks) a1, …, aM, obtained at the
first stage. We have six such states a1, …, a6 in our example. FSM has a transition
from state am to state as with input X(am, as) and output Yg if, in ASM, there is
transition path P1

 sgmRmm aYxxa
m

~...~
1 .

Here X(am, as) is the product of logical conditions written in this path:

 X(am, as) = mmRm xx ~...~
1 .

For the second transition path P2, FSM transits from state am to the initial state a1
with input X(am, a1) and output Y0 which is the operator containing an empty set
of microoperations.

Fig. 1.28 present the transition table of FSM, constructed from ASM in
Fig. 1.27. Each row of this table corresponds to one transition path P1 or P2. We
remind you that if some microinstruction, for example, Y5 = {y1, y3} is written in
the operator vertex, it means that y1 = y3 = 1 and other microoperations are equal
to zero. Our understanding of output signals in FSM is just like this. If y1 and y3
are written in the column for output signals (see row 1, column 4 in Fig. 1.28), on-
ly these signals are equal to one at the transition from a1 to a2 with the input sig-
nal x1*x2*x3, but other output signals are equal to zero.

a1 a2 x1*x2*x3 y1y3 1
a1 a3 x1*x2*~x3 y6y7 2
a1 a2 x1*~x2 y1y2 3
a1 a4 ~x1 y4 4
a2 a2 x4*x1 y8y9 5
a2 a6 x4*~x1 y3y4 6
a2 a4 ~x4 y4 7
a3 a6 1 y3y4 8
a4 a5 x5 y5y6y7 9
a4 a2 ~x5*x1 y8y9 10
a4 a6 ~x5*~x1 y3y4 11
a5 a2 x6 y8y9 12
a5 a1 ~x6*x7 y3y6y10 13
a5 a1 ~x6*~x7 -- 14
a6 a1 x6 y6y7 15
a6 a6 ~x6 y3y4 16

Fig. 1.28 FSM constructed from ASM in Fig. 1.27

34 S. Baranov

In consideration of this, let us continue to fill in Table 1.2. In the sixth column
of this table, we write only assignments, which assign “ones” to the signals in the
fifth column of Table 1.2. Doing this we present each vector signal (control signal
of MUX) as a set of separate binary components and we write assignments only
for components equal to one. Look, for example, at microinstruction Y4 in Table
1.2. In the fifth column, the following structural microoperations are written:

ctr_mux1 := 001; ctr_mux3 := 0; ctr_mux2 := 0001; rdwrM1 := 0; bor_en := 1.

We write in the column 6:

ctr_mux1(2) := 1; ctr_mux2(3) := 1; bor_en := 1.

In this column, we do not write ctr_mux1(0) := 0, ctr_mux1(1) := 0, ctr_mux3 :
= 0, ctr_mux2(0) := 0, ctr_mux2(1) := 0, ctr_mux2(2) := 0 and rdwrM1 := 0,
because zeroes are assigned in these microoperations.

1.4.3 Synthesis of Control Unit (FSM) for Processor

The combined structural ASM is presented in Fig. 1.29.

1

0

IEN

FGO

r_set<=1

0

1

1

1

ctr_mux1[1]<=1
ir2_en<=1

pc_count<=1

ctr_mux1[1]<=1
ir1_en<=1

pc_count<=1

1

ctr_mux1[0]<=1
ctr_mux1[2]<=1
ctr_mux2[0]<=1
ctr_mux2[3]<=1

rdwrm1<=1

ctr_mux1[1]<=1
ctr_mux1[2]<=1

pc_en<=1
ien_reset<=1
r_reset<=1

1

0
Ext_RdWr

M0 1 0 1

ctr_mux2[2]<=1
ctr_mux2[3]<=1 ctr_mux2[3]<=1

1

M

ctr_mux2[2]<=1
rdwrm1<=1rdwrm0<=1

0

1

1

1

1

0 End

0

0

1

0
0

0

0

10

1
0

1
0 zfIR1(4)

vf

ctr_mux1[0]<=1
pc_en<=1

cf

IR1(4)

IR1(3)

1
0

ctr_mux1[2]<=1
rdwrm1<=1

1

0

ctr_mux1[2]<=1
ctr_mux2[3]<=1

bor_en<=1

1

ctr_mux2[0]<=1
bor_en<=1

IR1(7)

1

0

1

11

ctr_mux1[2]<=1
pc_en<=1

1

0

0

IR1(0)

0
vf

IR1(3)zf
1

cf

IR1(5)

0

IR1(3)

0

IR1(0)

IR1(4)

1

0 1

0

1

1

1

0

0

0

1

IR1(2)ien_reset<=1

ien_set<=1

1

1
IR1(0)

0 IR1(4)

IR1(3)

outr_en<=1
fgo_reset<=1

1

0

0

FGO

pc_count<=1

FGI

pc_count<=1

ctr_mux2[1]<=1
ctr_mux2[2]<=1

bor_en<=1

ctr_mux2[1]<=1
ctr_mux2[3]<=1

bor_en<=1

IR1(2)IR1(3)

ctr_mux2[1]<=1
bor_en<=1

fgi_reset<=1

IR1(4)

ctr_mux3<=1
bor_en<=1

0

1

FGI

1

1

0 IR1(0)

ralu_en<=1
cf_en<=1
zf_en<=1
vf_en<=1

IR1(1)

ralu_en<=1
cf_en<=1
zf_en<=1
vf_en<=1

ralu_en<=1
cf_en<=1
zf_en<=1
vf_en<=1

0

1

0

0

IR1(3)

IR1(5)

0

IR1(0)

IR1(2)

0

1

R

DMA

0S

Begin

Fig. 1.29 Combined structural ASM

1 Digital System Design 35

This ASM was constructed from functional ASM (Fig. 1.13) by replacing the
functional microoperations in operator vertices, written in column 3 of Table 1.2
by structural microoperations from the column last but one in this table. As
graphs, these two ASMs are absolutely identical. They have the same conditional
and operator vertices and the same arcs (connections between these vertices), only
the contents of operator vertices were changed in the structural ASM.

In the last column of Table 1.2, the microoperations from the previous column are
numbered by y1, y2, …, y26. From the structural ASM at Fig. 1.29 we constructed
ASM in Fig. 1.30. To do this, we replace each microoperation in operator vertex by its
number from the last column of Table 1.2. The list of logical condition in this ASM is
shown in Fig. 1.31. This list is the same for the functional and structural ASMs.

We use ASM in Fig. 1.30 to construct FSM Mealy in Fig. 1.32. Note, that this
FSM has only 9 states whereas ASM in Fig. 55 has vertex Begin, vertex End and
28 operator vertices.

Thus, we constructed Data path and Control unit. Our next step is to combine
two components – Control unit and Data path in one final block. The top level of
our design is presented in Fig. 1.33.

Fig. 1.30 Structural ASM marked by states

36 S. Baranov

x1 : R x10 : FGO
x2 : DMA x11 : IR1(0)
x3 : S x12 : IR1(1)
x4 : IR1(7) x13 : IR1(2)
x5 : IR1(5) x14 : IR1(3)
x6 : zf x15 : IR1(4)
x7 : vf x16 : Ext_RdWr
x8 : cf x17 : M
x9 : FGI x18 : IEN

Fig. 1.31 Logical conditions

a1 a1 x3*x2*x16*x17 y2y11 1
a1 a1 x3*x2*x16*~x17 y23 2
a1 a1 x3*x2*~x16*x17 y9 3
a1 a1 x3*x2*~x16*~x17 y2y9 4
a1 a4 x3*~x2*x1 y8y9y10y11y13 5
a1 a5 x3*~x2*~x1 y21y25 6
a1 a1 ~x3 -- 7
a2 a1 x18*x9 y24 8
a2 a1 x18*~x9*x10 y24 9
a2 a1 x18*~x9*~x10 -- 10
a2 a1 ~x18 -- 11
a3 a2 1 y1y2y3 12
a4 a1 1 y8y14y20y21y22 13
a5 a8 1 y15 14
a6 a9 1 y15 15
a7 a2 1 y15 16
a8 a2 x12*x11*x15*x13 y20 17
a8 a2 x12*x11*x15*~x13*x14 y17y18 18
a8 a7 x12*x11*x15*~x13*~x14*x10 y15 19
a8 a1 x12*x11*x15*~x13*~x14*~x10*x18*x9 y24 20
a8 a1 x12*x11*x15*~x13*~x14*~x10*x18*~x9 -- 21
a8 a1 x12*x11*x15*~x13*~x14*~x10*~x18 -- 22
a8 a2 x12*x11*~x15*x13 y19 23
a8 a2 x12*x11*~x15*~x13*x14 y1y3y16 24
a8 a7 x12*x11*~x15*~x13*~x14*x9 y15 25
a8 a1 x12*x11*~x15*~x13*~x14*~x9*x18*x10 y24 26
a8 a1 x12*x11*~x15*~x13*~x14*~x9*x18*~x10 -- 27
a8 a1 x12*x11*~x15*~x13*~x14*~x9*~x18 -- 28
a8 a6 x12*~x11*x5 y21y26 29
a8 a2 x12*~x11*~x5*x14*x15 y13y14 30
a8 a2 x12*~x11*~x5*x14*~x15*x8 y13y14 31
a8 a1 x12*~x11*~x5*x14*~x15*~x8*x18*x9 y24 32
a8 a1 x12*~x11*~x5*x14*~x15*~x8*x18*~x9*x10 y24 33
a8 a1 x12*~x11*~x5*x14*~x15*~x8*x18*~x9*~x10 -- 34
a8 a1 x12*~x11*~x5*x14*~x15*~x8*~x18 -- 35
a8 a2 x12*~x11*~x5*~x14*x15*x7 y13y14 36
a8 a1 x12*~x11*~x5*~x14*x15*~x7*x18*x9 y24 37
a8 a1 x12*~x11*~x5*~x14*x15*~x7*x18*~x9*x10 y24 38
a8 a1 x12*~x11*~x5*~x14*x15*~x7*x18*~x9*~x10 -- 39
a8 a1 x12*~x11*~x5*~x14*x15*~x7*~x18 -- 40
a8 a2 x12*~x11*~x5*~x14*~x15*x6 y13y14 41

Fig. 1.32 Control Unit as FSM

1 Digital System Design 37

a8 a1 x12*~x11*~x5*~x14*~x15*~x6*x18*x9 y24 42
a8 a1 x12*~x11*~x5*~x14*~x15*~x6*x18*~x9*x10 y24 43
a8 a1 x12*~x11*~x5*~x14*~x15*~x6*x18*~x9*~x10 -- 44
a8 a1 x12*~x11*~x5*~x14*~x15*~x6*~x18 -- 45
a8 a3 ~x12*x13*x11 y4y5y6y7 46
a8 a3 ~x12*x13*~x11 y4y5y6y7 47
a8 a3 ~x12*~x13*x11*x14 y4y5y6y7 48
a8 a6 ~x12*~x13*x11*~x14*x5 y21y26 49
a8 a2 ~x12*~x13*x11*~x14*~x5*x15 y3y12 50
a8 a2 ~x12*~x13*x11*~x14*~x5*~x15 y1y3y9 51
a8 a3 ~x12*~x13*~x11 y4y5y6y7 52
a9 a2 x15*x11 y8y11 53
a9 a2 x15*~x11*x7 y8y14 54
a9 a2 x15*~x11*~x7*x14 y8y14 55
a9 a1 x15*~x11*~x7*~x14*x18*x9 y24 56
a9 a1 x15*~x11*~x7*~x14*x18*~x9*x10 y24 57
a9 a1 x15*~x11*~x7*~x14*x18*~x9*~x10 -- 58
a9 a1 x15*~x11*~x7*~x14*~x18 -- 59
a9 a2 ~x15*x11*x4 y3y10 60
a9 a2 ~x15*x11*~x4 y3y8y9 61
a9 a2 ~x15*~x11*x14*x8 y8y14 62
a9 a1 ~x15*~x11*x14*~x8*x18*x9 y24 63
a9 a1 ~x15*~x11*x14*~x8*x18*~x9*x10 y24 64
a9 a1 ~x15*~x11*x14*~x8*x18*~x9*~x10 -- 65
a9 a1 ~x15*~x11*x14*~x8*~x18 -- 66
a9 a2 ~x15*~x11*~x14*x6 y8y14 67
a9 a1 ~x15*~x11*~x14*~x6*x18*x9 y24 68
a9 a1 ~x15*~x11*~x14*~x6*x18*~x9*x10 y24 69
a9 a1 ~x15*~x11*~x14*~x6*x18*~x9*~x10 -- 70
a9 a1 ~x15*~x11*~x14*~x6*~x18 -- 71

Fig. 1.32 (continued)

Table 1.4 The process table with poor encoding for input bor1 of MUX2

Y7 y12

y3

y16

Adr1:=IR2

AdrR1:=IR1(8-11)

M1[Adr1]:=BoR[AdrR1]

16

 4

16

ctr_mux1 := 001

ctr_mux2 := 0000

rdwrM1 := 1

ctr_mux1[2] := 1

rdwrm1:= 1

ctr_mux2[0] := 1

ctr_mux2[1] := 1

ctr_mux2[2] := 1

ctr_mux2[3] := 1

Y8 y3

y17

y18

AdrR1:=IR1(8-11)

AdrW:=IR1(12-15)

BoR[AdrW]:=BoR[AdrR1]

 4

 4

16

ctr_mux3 := 1

ctr_mux2 := 0000

bor_en := 1

ctr_mux3 := 1

bor_en := 1

ctr_mux2[0] := 1

ctr_mux2[1] := 1

ctr_mux2[2] := 1

ctr_mux2[3] := 1

38 S. Baranov

STRUCT
DP

clkclk

rstrst

ctr_mux1

ctr_mux2

bor_en
rdwrm0

ir1_en
ir2_en

outr_en

ralu_en
cf_en
zf_en
vf_en
pc_en
pc_count

fgi_reset

r_reset

r_set

ien_reset

ien_set

fgo
fgi
ien
r
cf
zf
vf
ir1(0-5, 7)

ext_adr

ext_out

ext_in

fgi_set

data_in

inpr_en

fgo_set

data_out

y 13
y 21

y 8

3ctr_mux1(0)
ctr_mux1(1)
ctr_mux1(2)

y 10
y 1

4ctr_mux2(0)
ctr_mux2(1)

y 3
y 23

y 25
y 26

y 4
y 5
y 6
y 7

y 14
y15

y 16
y 24

y 20

x 10
x 9

x 18
x 1

x 11
x 12

7ir1(0)
ir1(1)
ir1(2)
ir1(3)
ir1(4)

x5
x 4

ir1(5)
ir1(7)

clk

rst

s

ext_rdwr

dma

ext_adr 16

ext_out 16

ext_in 16

fgi_set

inpr_en

data_in16

fgo_set

data_out16

CPU

y 22

y 2 ctr_mux2(2)

y 2
y 17
y 19

x 16

x 2

x 3

x8
x6
x 7

x 13
x14
x15

u1_fsm
u2_dp

y 9 ctr_mux2(3)

y 12 ctr_mux3

rdwrm1y11

fgo_reset

mx 17

Fig. 1.33 Top level of Processor

1.4.4 Encoding of Inputs of MUXes

Our goal in this process is to minimize the number of outputs y1, …, yN in FSM
table or, which is the same, in the Control unit. To explain this, we appeal to the
rows with microinstructions Y7 and Y8 in Table 1.2. We used code 0000 for input
bor1 (BoR[AdrR1]) in MUX2 and therefore the components of vector ctr_mux2
didn’t appear in the sixth column of Table 1.2 when we turned from the structural
microinstructions (column 5) to the minimized structural microinstructions
(column 6). If, for example, we used code 1111 for the same input bor1 of MUX2,

1 Digital System Design 39

we would get ctr_mux2 := 1111 instead of ctr_mux2 := 0000 in the same rows
(see Table 1.4). This leads to appearance of the eight additional rows in the sixth
column of Table 1.4 (ctr_mux2(0) := 1, ctr_mux2(1) := 1, ctr_mux2(2) := 1,
ctr_mux2(3) := 1), twice for all of them. It entails eight additional outputs in the
transition table of the finite state machine.

To encode the inputs of MUX1 we constructed Table 1.5 where p(in) is the
weight of each input of MUX1 in Fig. 1.22,c. The algorithm for the input encoding
is absolutely the same as in the state assignment of FSM. First, we used the zero
code for input ext_adr with max p(ext_adr) = 4. Then codes with one '1' are used
for inputs ir2, pc and bor2 with the next max input weights and, finally, codes
with two 'ones' are used for the left inputs x”fffe” and x”ffff”. In the same manner,
we encoded inputs of MUX2 and MUX3 (see Fig.1.22,d and Fig. 1.25).

Table 1.5 Optimal input encoding for MUX1

input p(in) code

ext_adr 4 0 0 0

pc 2 0 1 0

ir2 3 0 0 1

bor2 1 1 0 0

x”fffe” 1 0 1 1

x”ffff” 1 1 0 1

1.5 Conclusions

This Chapter presents a new methodology for high level design of complicated
digital systems. This methodology is based on Algorithmic State Machine (ASM)
transformations (composition, minimization, extraction, etc.), special algorithms
for Data Path and Control Unit design and a very fast optimizing synthesis of
FSMs as well as combinational circuits with hardly any constraints on their size,
i.e., the number of inputs, outputs and states. Design tools supporting this metho-
dology allow us to implement, check and estimate many possible design versions
very fast, to find an optimized decision of a design problem and to simplify the
verification problem for digital systems.

Problem orientation regarding the design system is nonessential – it can be a
processor, a robot, a controller, etc. If the system is rather complicated, it is possi-
ble to pick out some subbehaviors (modes) in its behavior. For a processor it can
be an instruction or a set of instructions that can be described together; for a
mobile robot – its different modes (cruise, follow, avoid, escape etc.). We also
suppose that any digital system is usually regarded as a composition of a Control
unit and an Operational unit (Data path). In a processor, for example, a data path
contains such regular blocks as memory, registers, ALU, counters, coders, encod-
ers, multiplexers, demultiplexers, etc. A control unit produces a sequence of
control signals that force an implementation of microoperations in a data path. The
design process contains the following stages.

40 S. Baranov

Stage 1 Design ASMs G1, …,GM for each separate mode. We can present these
ASMs in VHDL or use the special tool ASM Creator from the EDA tool Abelite
supported by the described design methodology. In Abelite, it is very simple to
draw an ASM and compile it in VHDL and/or several other representations. It is
really important that an ASM may contain any number of generalized operators.
Each of such operators is an ASM itself and it will be automatically inserted in the
combined ASM at the fourth stage. Moreover, there are no restrictions on the
number of such generalized operators in an ASM and on the number of included
levels – each of such operators can contain any number of generalized operators
itself.

Stage 2 Combine separate ASMs into one combined functional ASM. After con-
structing separate ASMs we combine them into one combined functional ASM
still containing generalized operators. At this stage each microoperation is
presented at the functional level. Really, we do not have the real architecture for
our project, we only know some units of our future Data path. Thus, microopera-
tions at this level are similar to assignments of variables in some programming
language and are not connected with any specific Data path. During ASM combin-
ing we minimize the number of operator vertices in the combined ASM. If several
ASMs contain the same operator vertex, there will be only one such operator
vertex in the combined ASM.

Stage 3 Minimize the combined functional ASM. At this stage, the number of
conditional vertices in the combined ASM is minimized. Such minimization al-
lows us to reduce dramatically the number of vertices in the ASM (sometimes for
two or three times) and to reduce the complexity of logic circuits at the stage of
logic design.

Stage 4 Include generalized operators. At this stage, generalized operators con-
structed at the first stage are included into the minimized ASM constructed at the
previous stage. It is the last stage of the functional ASM design.

Stage 5 Data path synthesis. First, we construct a Connection graph from the func-
tional ASM designed on Stage 4. Such a graph contains a list of sources and
targets for each component of an operational unit and some metrics that will be
used in the optimization of the Data path. Next we construct an optimized List of
parallel microoperations to increase the speed of the design system. Then we de-
sign the Graph of incompatibility from the Connection graph and the List of paral-
lel microoperations. On the final step of Data path synthesis we construct Muxes
(by coloring the Graph of incompatibility) and the List of direct connections from
the Connection graph.

Stage 6 Control unit design. Using the functional ASM (stage 4) and the Muxes
and the List of direct connections (stage 5) we immediately construct the structural
ASM. This ASM describes the behavior of the Control unit corresponding to the
Data Path. On the last step of this stage we construct the Finite state machine and
its multilevel logic circuit.

1 Digital System Design 41

Stage 7 VHDL code design. The Data path constructed according to our design
methodology does not contain any “cloud” (irregular) circuits. It makes it possible
to simplify considerably VHDL or Verilog code for the Data path using the struc-
ture style of VHDL to combine VHDL or Verilog codes of units. VHDL code for
the Control unit can be constructed automatically. VHDL code for the top level of the
system is the result of combining VHDL codes of the Data path and the Control unit.

References

[1] Ellervee, P.: High-level synthesis of control and memory intensive applications. Royal
Institute of Technology, Stockholm (2000)

[2] Gajski, D., Dutt, N., Wu, A., Lin, S.: High-level synthesis: Introduction to chip and
system design. Kluwer Academic Publishers, Boston (1993)

[3] De Micheli, G.: Synthesis and optimization of digital circuits. McGraw-Hill, Inc., New
Jersey (1994)

[4] Eles, P., Kuchcinski, K., Peng, Z.: System synthesis with VHDL. Kluwer Academic
Publishers, Boston (1998)

[5] Lin, Y.: Recent development in high-level synthesis. ACM Transactions on Design
Automation of Electronic Systems 2(1), 2–21 (1997)

[6] Adamski, M., Barkalov, A.: Architectural and sequential synthesis of digital devices.
UZG Press, Zielona Góra (2006)

[7] Baranov, S.: Synthese des Automates Microprogrammes. MIR, Moscow (1983)
[8] Baranov, S.: Logic synthesis for control automata. Kluwer Academic Publishers, Dor-

drecht (1994)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 43–57.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

2 Rectangular Function Π(x) and Its Application for
Description of Some Logical Devices Operation

Edward Hrynkiewicz

Silesian University of Technology, Institute of Electronics,
ul. Akademicka 16, 44-100 Gliwice, Poland
e-mail: ehrynkiewicz@polsl.pl

Abstract. A carrying out of the logic operations on pulses and pulse series de-
scribed by means of rectangular function Π(x) is presented in the section. The log-
ic sum, logic product, logic negation and Ex-OR operations were investigated. The
utilizing of these operations for mathematical description of frequency multiplying
is shown as the example of application of Π(x) function. Moreover section deals
with the problem of rectangular function Π(x) utilization for description of opera-
tion of such logical devices as digital sine wave generators and for nonlinear dis-
tortions analyzing in such generators.

2.1 Introduction

For description of logic operations on pulses or pulse trains and for analysis of
same digital devices in time domain one can use several rectangular functions.
One of them is rectangular function Π(x) which is defined as [2,4,7]:

()
100

101

><=

≤≤=∏
xandxfor

xforx

 (2.1)

Rectangular pulse which duration time is equal to τ and which has unit amplitude
may be expressed as:

I(t) = ∏ ⎟
⎠
⎞

⎜
⎝
⎛
τ
t

 (2.2)

and a pulse train which period is equal to T:

F(t) = ∏∑ ⎟
⎠
⎞

⎜
⎝
⎛ −∞

= τ
mTt

m 0

 (2.3)

In some cases rectangular functions Π(x) are more convenient for description of a
system operation or for system designing then for example Haar functions or very

44 E. Hrynkiewicz

popular Walsh functions. Below there are examples of utilisation of rectangular
function Π(x) for mathematical description of several logical devices.

2.2 Logic Operations on Rectangular Functions

Let us take into account two rectangular pulses appearing in time period T (Fig.2.1):

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
Ts

Tpt
tI

1

1
1)((2.4)

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
Ts

Tpt
tI

2

2
2)((2.5)

Fig. 2.1 The rectangular pulses)(1 tI and)(2 tI

A. Logic Sum
Logic sum of such pulses may be written as:

∏∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=+
Ts

Tpt

Ts

Tpt
tItI

2

2

1

1
21)()(

 (2.6)

For p2 < p1 + s1

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−=+
TpTsp

Tpt
tItI

122

1
21)(

)()(∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−=
Tspp

Tpt

)(212

1

 (2.7)

In particular case p1 = p2 = 0

and ∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

Tss

t
tItI

),(max
)()(

21
21 (2.8)

B. Logic Product
If p2 < p1 + s1

2 Rectangular Function Π(x) and Its Application 45

∏∏

∏∏

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=⋅

Tspp

Tpt

TpTsp

Tpt

Ts

Tpt

Ts

Tpt
tItI

)()(

)()(

121

2

211

2

2

2

1

1
21

 (2.9)

if p1 = p2 = 0

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅

)Ts,(smin

t
(t)I(t)I

21
11

 (2.10)

and for p2 ≥ p1 + s1 I1(t) ⋅ I2(t) = 0

C. Negation

∏∏∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
TspT

Tspt

Tp

t

Ts

Tpt
tI

)(

)(
)(

11

11

11

1
1 (2.11)

D. EX-OR (logic inequality)
Logic inequality (Ex-OR function) may be written as:

∏∏

∏∏∏

∏∏∏

∏∏

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=⊕

TspTsp

Tspt

Tpp

Tpt

Ts

Tpt

TspT

Tspt

Tp

t

TspT

Tspt

Tp

t

Ts

Tpt

Ts

Tpt

Ts

Tpt
tItI

)()(

)(

)(

)(

)(

)(

)(

)()(

1122

11

12

1

2

2

11

11

1

22

22

21

1

2

2

1

1
21

 (2.12)

Let us assume that:
2

1
,

4

1
0, 2121 ==== sspp

than

∏∑∏∏
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ⋅−
=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=⊕
=

4

2

4

2
1

4

)()(
1

0
21 T

T
mt

T

Tt

T
t

tItI
m

 (2.13)

46 E. Hrynkiewicz

E. Binary Counters
Let us consider of counting of the pulses represented by the pulse train shown
in Fig. 2.2.

Fig. 2.2 The pulse train

Such pulse train may be expressed using function Π(x) as:

)(
0

)1(
)(∑∏

∞

=

+−+=
m

iTmt
tG

τ
τ

 (2.14)

where: τ - pulse duration; Ti - pulse train period

The state of the binary up-counter outputs may be written as:

)(
0

0

0

0
2

2
2

int2)(
∑∏
∞

=

−−
=

m i

ii

T

T
m

Tt
Q

)(
0

1

2
2

1

1
2

2
2

int2)(
∑∏
∞

=

−−
=

m i

ii

T

T
m

Tt
Q

 (2.15)

)(
0

2

3
3

2

2
2

2
2

int2)(
∑∏
∞

=

−−
=

m i

ii

T

T
m

Tt
Q

 and)(
0

1
1

2

2
2

int2)(
∑∏
∞

=

+
+−−

=
m i

k

i
k

ki
k

k
T

T
m

Tt
Q

For the same input pulse train the states of a ring counter flip-flops are
expressed by:

)(
0

k

)int(
Q ∑∏

∞

=

−−
=

m i

ii

T

nT
n

m
kTt

 (2.16)

where: n - number of counter bits

2 Rectangular Function Π(x) and Its Application 47

2.3 Utilization of the Rectangular Functions Π(x) for Analysis
of Pulse or Frequency Multiplying

Let it will be given pulse train described by the following expression:

∑∏
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ −=

0

)(
m sT

mTt
tF (2.17)

m - integer number, 0< s < 1
For sT < T/K pulse train which frequency is K times greater may be written as [3]:

∑∏
∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
=

0

)(
p

K sT
K

T
pt

tF

 (2.18)

Putting p = mK + r
where for m = 0,1,......., ∞; r = 0,1,......., K-1
one obtains the following formula:

∑∑∏
−

=

∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +−
=

1

0 0

)(
)(

K

r m
K

sT
K

T
rmKt

tF (2.19)

which represent the sum of K trains of pulses delayed each other about T/K. The
basic diagram of such frequency multiplier is shown in Fig. 2.3 and its second
version with one delay block in Fig. 2.4.

Fig. 2.3 Frequency multiplying circuit for sT < T/K (I version)

Pulse train which period is equal to T and duty cycle is equal to 1/2 may be
expressed by:

∑∏
∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−=

0
2

)(
m

T
mTt

tF (2.20)

48 E. Hrynkiewicz

Fig. 2.4 Frequency multiplying circuit for sT < T/K (II version)

A pulse train which frequency is K times greater and duty cycle equal to 1/2 may
be written in the following form:

∑∏
∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
=

0
2

)(
p

K

K

T
K

T
pt

tF (2.21)

Putting p = mK + r m = 0,1,......., ∞
 r = 0,1,......., K-1

we obtain

∑∑∏
−

=

∞

= ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +−
=

1

0 0
2

)(
)(

K

r m
K

K

T
K

T
rmKt

tF (2.22)

Taking into account (2.13) we can rewrite the above formulae in the following form:

∑ ∑∏
−

=

∞

= ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

⊕=
1

0 0
2

2
)(

K

r m
K T

K

Tr
mKt

tF (2.23)

Fig. 2.5 Frequency multiplying circuit for duty cycle of a pulse train equal to ½ [8]

2 Rectangular Function Π(x) and Its Application 49

As it was shown for a pulse train which duty cycle is equal to 1/2, frequency
multiplication by K one can obtain summing modulo K pulse trains delayed each
other about T/2K (Fig. 2.5).

2.4 Utilizing the Function Π(x) for Harmonic Analysis of
Digital Sine Wave Generator

2.4.1 Digital Sine Wave Generator Based on Digital Integrators

The generator of sinusoidal wave may be formed with digital integrators. Let us
assume the integrator consisted of binary rate multiplier and counter. The block
diagram of such a generator is shown in Fig. 2.6.

Fig. 2.6 The block diagram of sine wave generator based on digital integrators

Assuming big numbers N1 and N2, the system may be described by
approximate relationships [2,5,6] given below.

)(
1

2

)(

2
1

20
sN

s

sN
f

s

N
n

i
n

=⎟
⎠
⎞

⎜
⎝
⎛ − where: n- number of BRM stages (2.24)

(s)N
s

1
f

2

(s)N
2i

n

1 =⋅⋅ s - Laplace operator

hence

tNN ωsin01 = where: ω =
n

if

2
 (2.25)

)cos1(02 tNN ω−=

Because maximum value of number N2 is equal to 2N0 and maximum value of
number N0 must satisfy the following formula:

50 E. Hrynkiewicz

12 1
0 −≤ −nN where n - number of BRM stages.

Due to the fact that reversible counter does not operate normally when at its inputs
”up” and ”down”, pulses will appear simultaneously it is necessary to introduce anti-
coincidence circuit at the counter 1 inputs the task of which is to block the pulses
appearing simultaneously in both counting lines.

The determination of nonlinear distortion of the output wave from the generator is
not possible by means of approximate description given by the equations (2.24) and
(2.25). It may be done using rectangular function Π(x) in the way presented below.

The presence of the k+1 clock pulse at the output of a RM may be expressed
as [2]:

1)(

2,1,0])()([)1(

1

0

1

0

1

0

1(

=

=⋅=+

−

=

−

=

−

=
−−

I

U I

r

mr

n

s

s

r

mrsnmmsm

kQ

mkQNkQkW

 (2.26)

where: Wm(k+1) =1 - means that (k+1) clock pulse is present at the RM output
 Nm(n-1)..Nm0 - binary expression of a number Nm
 Qm(n-1)..Qm0 - binary expression of a counter state of the m-th RM

and a new state of a RM counter may be calculated in the following way:

1)(

1,,2,1,0)()()1(

1

0

1

0

=

−⋅⋅⋅=⊕=+

−

=

−

=

I

I

r

mr

s

r

mrmsms

kQ

nskQkQkQ

 (2.27)

The state of the reversible counter we can write as:

)1()1()()1(2011 +−++=+ kWkWkNkN (2.28)

On the base of the above formulas it is easy, using computer, to calculate the
shape of N1(t) wave. In real system the number N1 is converted to the output volt-
age using D/A converter. If the conversion factor is equal to 1V the output wave
may be shown in form presented in Fig. 2.7.

Due to resetting of the system every half period, the wave in each half period
has the same shape and opposite sign. As it was shown in Fig. 2.7 output wave can
be regarded as the sum of rectangular waves ϕk (t):

)()(
1

1 ttN k

k

k

p

ϕ∑
=

=

2 Rectangular Function Π(x) and Its Application 51

Fig. 2.7 The output wave from the generator and the component waves

Using the definition of the rectangular function Π(x) the wave ϕk (t) can be
written as follows:

∑ ∏∏
∞

∞−=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −+−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−=
m i

io

i

io
k T

kTTmt

T

kTmTt
kNt

)
2
1

(
)()(1ϕ

(2.29)

Then

∑ ∑ ∏∏
=

∞

−∞=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −+−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−=
pk

k m i

io

i

io

T

kTTmt

T

kTmTt
kNtN

1

11

)
2
1

(
)()((2.30)

Decomposing the wave ϕk(t) into Fourier series and considering the fact that the
complex amplitude of the nth harmonic of a sum of kp waves may be calculated as:

nk

k

k

n CC
p ∧

=

∧

∑=
1

52 E. Hrynkiewicz

for the wave N1(t) we obtain:

∑
=

−−∧
=

p

io

i
o

k

k

kTjn
T

jn
i

o
o

i
n ekNe

T
nc

T

T
C

1

122)()
2

(sin2 ωω
ω for - odd n (2.31)

2nC
∧

 = 0 for - even n

nn

ip
oipo

i
o

i
o

i
o

CC

Tk
TkT

T
n

T
nT

nc

22
ˆ2and

;2

2

2
sin

2
sin:where

=

==

=

πω

ω

ω
ω

hence:

∑
=

−

⋅=
p

p

k

k

k

jnk

pp
n ekN

k

n
c

k
C

1

12)(
2

sin
2

π
π

 for odd n

 (2.32)
C2n = 0 for even n

So by using the values N1(k) obtained from formulae (2.28), it is possible to
calculate real amplitudes of harmonics present in the wave N1(t) and the value of
non-linear distortion factor h (Table 2.1):

1

2
5

2
3

C

CC
h

++
=

 (2.33)

Table 2.1 Values of N1 and non-linear distortion factor h

N N0 2kp N1 h
8 126 1014 125 0.0100
9 254 3200 249 0.0051

10 510 6245 510 0.0021

2.4.2 Digital Sine Wave Generator Based on ROM

The generator of sinusoidal wave which is a part of function generator or which is
used in low and infra-low frequency range may be formed as a logical device. Let
us take into account a generator which block diagram is shown in Fig.2.8.

2 Rectangular Function Π(x) and Its Application 53

Fig. 2.8 Digital sine wave generator

The one half-period of a sine wave have been tabularised in the ROM memory
in the form of Kp digitalized samples (a value of the K-th sample is equal to the
nearest whole number to Nomax sin(Kπ/Kp)). The number of the output pulses from
the binary rate multiplier (RM) [5,6] may be calculated as:

i

r

i

ri NkK)
2

1
2int(

1

0

+=∑
−

=

− (2.34)

where: r - number of RM stages; k - number of input (clock) pulses to the RM; Ni
- i-th bit of binary representation of N number.

This number represent additionally the state of the address counter then it im-
plicates the read-out from the memory of the sample which on the output of D/A
converter may be denoted as U(K). Because K depends on k then it means that this
way one can obtain the samples of U(k). It may happens - due to the rate multi-
plier operation - that for few or many successive values of number k the number K
does not change so it means that successive U(k) does not change too.
(see Fig.2.9).

Fig. 2.9 The shape of the output wave from generator shown in Fig.2.8

Using the definition of the rectangular function Π(x) the output wave from the
generator may be written as follows (Ti = 1/fi; To = 2kpTi; kp - number of clock
pulses per one half period of output wave):

54 E. Hrynkiewicz

∑ ∑ ∏∏
=

∞

−∞=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −+−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−=
pk

k m i

io

i

io

T

kTTmt

T

kTmTt
kUtU

1

)
2
1

(
)()((2.35)

Decomposing the wave U(t) into Fourier series we obtain [2,5]:

∑
=

−

⋅=
p

p

k

k

k

jnk

pp
n ekU

k

n
c

k
C

1

)(
2

sin
2

π
π

 for odd n (2.36)

Cn = 0 for even n

p

p

p

k

n

k

n

k

n
c

2

2
sin

2
sin:where π

π
π =

So by using the values U(k) it is possible to calculate real amplitudes of harmonics
present in the wave U(t) and the value of nonlinear distortion factor.

In particular case, when the frequency does not have to be controlled digitally
the digital generator of sine wave may have the form presented in the Fig. 2.10.

Fig. 2.10 The sine wave generator with uniformly sampled output wave

Fig. 2.11 The shape of the output wave from generator shown in Fig. 2.10

2 Rectangular Function Π(x) and Its Application 55

An output wave from such generator has a form of uniformly sampled sine
wave and next reproduced in a 0-rank extrapolator (see Fig.2.11).

In this case To = 2KpTi, Kp - number of clock pulses per one half period of
output wave and U(k)=Um sin(kπ/Kp). The output wave may expressed as:

() ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −⎟
⎠
⎞

⎜
⎝
⎛ +−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−= ∏ ∏∑ ∑
−

=

∞

−∞= i

io

i

io
K

k m T

kTTmt

T

kTmTt
kUtU

p 2
1

1

0
0

 (2.37)

and spectrum may be calculated as:

noddfor
pK

k

ikTojneikTo
iT

onc
oT
iT

mUnC ∑
−

=

−⋅⋅=
1

0
sin

2
sin4 ωωω (2.38)

Cn = 0 for even n where:
ip

o TK

ππω ==
oT

2

Because
j

ee
kT

ioio kTjkTj

io 2
sin

ωω
ω

−−
=

then for odd n

() ()()∑
−

=

+−−− −⋅=
1

0

11

2
sin2

p

ioio

K

k

nkTjnkTji
o

o

i
mn ee

T
nc

T

T
UC ωωω

Taking into account that:

1

1
1

0 −
−= −

−−

=

−∑ a

aKK

k

ak

e

e
e

pp

then
()

()

()

()
1

1

1

1

2
sin2

1

1

1

1

−

−−
−
−⋅= +−

+−

−−

−−

nTj

nkTj

nTj

nTKj
i

o
o

i
mn

io

io

io

ipo

e

e

e

eT
nc

T

T
UC ω

ω

ω

ω
ω

Because ωοKpTi = π we can the above equation rewrite as:

() ()() () ()()
p

p

p

p

K

Kn
j

p

K

Kn
j

p

pp

m
n e

K

n

n
e

K

n

n

K
nc

K

U
C

11

2

11

2

1
2

sin

1
2

sin

1
2

sin

1
2

sin

2
sin

−+
−

−−
−

⋅+

+
−⋅−⋅

−
⋅=

ππ

π

π

π

π
π

Because for odd n

() () 01
2

sinoraz01
2

sin =+=− nn
ππ

 then Cn = 0.

56 E. Hrynkiewicz

But for such n for which
()

,
0

0
1

2
sin

1
2

sin
=±

±

pK

n

n

π

π

Cn may be different then zero. It means that n ± 1=2pKp and n = 2pKp ± 1.
Then

()
()

()
()

12

1
)

2
(sin]

2
)12[(sin

1
2

sin

1
2

sin
lim

2
12sin

21
12

±
⋅=±=

±

±
⋅±=

→±±

pp
m

p
pm

p

pKnp
p

p

m
pK

pKK
cU

K
pKcU

K

n

n

K
pKc

K

U
C

p
p

ππ

π

π
π

 (2.39)

This result was first publicized by Fulford [1] but the above proof is new. It is eas-
ier and shorter and it does not require proofing auxiliary theorem.

Using the result (2.39) one can calculate a distortions factor on the base well
known formula [1]:

p
m

p ppp
m

pp
m

K
U

pKK
cU

pKK
cU

h

2
sin

12
1

2
sin

12
1

2
sin

1

2

1

22

2

22

π

ππ∑ ∑
∞

=

∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

= (2.40)

Or after transformations

∑
∞

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

1

22

12

1

12

1

p pp pKpK
h (2.41)

The calculated values of factor h are presented in the Table 2.2.

Table 2.2 Values of factor h

Kp 10 20 50 100 200 500 1000

h 0.20 0.089 0.035 0.018 0.008 0.0035 0.002

number
of hamonics

100
the first

and two successive non equal to zero

2.5 Conclusions

Rectangular function Π(x) can be well used for mathematical description of
frequency multiplication process carried-out by means of logic gates. The delay

2 Rectangular Function Π(x) and Its Application 57

modules used in such circuits create a certain problem. They limits of using of
these frequency multipliers to the cases in which input frequency does not change
or the changes are small. It is easy to notice that in the same way one can describe
and analyse, for example, pulse multiplication, pulse counting and other
operations on pulses or pulse trains.

Rectangular function Π(x) can be also used for mathematical description such
devices as digital generators and digital frequency multipliers. Apart from this
function Π(x) may be used for carrying-out logic operations on pulses and pulse
trains, for counting process description and so on. This function gives the possibil-
ity to carry out this description in time domain what may be convenient, in some
practical cases.

References

[1] Fulford, J.F.: Generation of waveforms at very low frequencies using the sampling
technique. In: Proceedings of the Institution of Electrical Engineers, vol. 111(12), pp.
1993–2001 (1964), doi:10.1049/piee.1964.0325

[2] Hrynkiewicz, E.: An Application of the Binary Rate Multiplier in Sine Wave Genera-
tor. In: VI National Conference on Circuit Theory and Electronic Circuits, Kozubnik
k/Bielska-Białej, Poland (1983) (in Polish)

[3] Hrynkiewicz, E.: Multiplying of a Square Wave Frequency in Devices which Contain
a Delay Circuits. Rzeszów-Myczkowce (1989)

[4] Hrynkiewicz, E.: Digital Frequency Multipliers of Square Wave. D.Sc. Thesis, ZN Pol.
Sl., ser. Automatyka, Gliwice (1992) (in Polish)

[5] Hrynkiewicz, E.: Rectangular Function Π(X) and Its Application for Digital Circuits
Design. In: Proceedings of 4th International Scientific-Technical Conference on Actual
Problems of Electronics Instrument Engineering, APEIE 1998, Novosibirsk, Russia
(1998)

[6] Lancaster, D.J.: Matrix Representation of the Multiplying Properties of Binary Rate
Multipliers. Transactions on Industrial Electronics and Control Instrumentation IECI-
23(1), 70–75 (1976), doi:10.1109/TIECI.1976.351351

[7] Sobkowski, J.: Signal Analysis in Frequency Domain. MON, Warszawa (1975) (in
Polish)

[8] Zagajewski, T.: Logic Operations on Walsh Functions and Some of Their Applica-
tions. Bull. Acad. Pol. Sci., Ser. Sci. Techn. XXVI, 8–9 (1978)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 59–91.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

3 Design and Application of the PLD-Based
Reconfigurable Devices

Alexander V. Palagin and Vladimir M. Opanasenko

Department of Microprocessor Devices, Institute of Cybernetics,
Ukraine, Kiev
e-mail: {Palagin_a,vlopanas}@ukr.net

Abstract. Theoretical bases of construction and designing of the PLD–based re-
configurable devices, including the new formalized design techniques of construc-
tion and dynamic reconfiguration of architecture and structure of digital devices
with a high degree of reconfiguration, corresponding with properties of perform-
ing algorithms, constructive and technological features PLD, and also tool means
of their designing, are presented. Bases of the theory of adaptive logic networks,
intended for the solution of a wide class of tasks by direct structural realization of
algorithms of processing and direct representation of input data to output data by
functional and structural customization for universal components of a network, are
developed. Synthesis algorithms of adaptive logic networks on the classes of tasks
set are developed. Design techniques of the computer systems with using of the
standard CAD PLD (ISE Foundation) are developed. The structure of the reconfi-
gurable computer system with the open library of configuration files for basic pa-
rametrical blocks, including the threshold device, Hemming adder, sorting
devices, median filters, matrix multipliers etc. are designed.

3.1 Introduction

The level of development and manufacture of products of high technologies
among which one of leading places is occupied by tools of computer engineering
(CE), appreciably defines technological progress of many industries. Now scien-
tific researches and practical development in the field of CE on perspective ele-
ment base, i.e. microprocessors, microprocessor complete sets and systems on the
chip in a combination to the LSI circuit of memory and Programmable Logic De-
vices (PLD) are called to satisfy requirements of the broad audience of users are
carried out and to put in pawn bases of development of new effective means of
computer engineering.

Development of batch production VLSI demands greater expenses both for de-
velopment, and for the equipment for their manufacturing. In the schemes realized
by a method of printed circuit, change to bring difficultly enough, and in the
schemes executed in the form of the LSI and VLSI, any, in advance not stipulated

60 A.V. Palagin and V.M. Opanasenko

changes, are impossible in general. It not only limits opportunities of their
specialization for concrete applications, but also prospects of modernization, ex-
pansion with addition of new functions, modification in algorithm of functioning.
Therefore one of actual requirements to modern digital systems and devices is in-
crease of their adaptability (flexibility). The basic direction of increase of an adap-
tability of devices (systems) now is specialization of digital devices by
programming their structure.

The first theoretical researches, devoted to synthesis reconfigurable devices,
concern to the beginning of 60th years. Base work [1] on the organization reconfi-
gurable computer, presented it as two basic parts: a constant – a computer with
fixed structure, and a variable – in the form of a set of computers which can re-
construct the structure by means of the program. It promoted occurrence of a new
direction in computer facilities on designing reconfigurable devices with virtual
(programmed) architecture on the basis of PLD – Reconfigurable Computing
(RC). The term “Reconfigurable Computing” generally designates two-uniform
concept: as reconfigurable structure of a computer (hardware), and the process of
data processing which is performed by a computer. The significant contribution to
development of the given problematic was brought also with works [2–6].

Also subject domains in which reconfigurable computer systems (RCS) have
found the "lawful" niches were defined and continue to develop intensively. It is
first of all:

• The hardware systems guaranteeing safety of control by especially important
objects;

• Complex physical experiments with modeling and management in real time;
• Effective digital processing of high-frequency signals;
• Acceleration of tool means of the automated designing of objects of new

techniques and technologies;
• Emulation and designing of wireless communication systems, etc.

Importance and perspectives of the specified scopes testify to urgency of direction
Reconfigurable Computing and the problems connected with development of
technology RC.

Application of PLD gives an opportunity to realize structures of devices with
dynamic reconfiguration and by that to solve problems of effective adjustment for
the set algorithm, survivability and reliability. Reconfigurability – property of
system to redefine set of hardware and connections between them in conformity
algorithm of functioning. New physical principles and technical opportunities of
microelectronic components are, in turn, a source of new principles of
construction and new architecture of modern means CE.

Most a wide circulation has received PLD two types: CPLD – Complex
Programmable Logic Devices; FPGA – Field Programmable Gate Array [7].

CPLD consists of set of PAL–like functional blocks (36V18) which contain
macrocells and incorporate a matrix of switching to blocks of input-output. Use of
FastFLASH-technology allows realizing intrasystem programming with non-
volatile storage of configuration data. Feature CPLD is predictability of delays of
the signals.

3 Design and Application of the PLD-Based Reconfigurable Devices 61

Architecture FPGA generally represents a matrix of logic cells – configurable
logic blocks (CLB), surrounded by peripheral cells – Input/Output Blocks (IOB).
Connections between cells are carried out by means of programmed matrixes of
interconnections. Everyone CLB contains the combinational logic part, remember-
ing element and internal blocks of management and trace. A basis of combination-
al part CLB is high-speed static CMOS memory and for realization any
Boolean functions the technology of Look-Up Table (LUT) is used and the delay
of distribution of a signal through the combinational block is independent of gen-
erated function. Programmed interconnections provide all communications inside
of a crystal. IOB provide the interface between contacts of a crystal and its
internal components.

Under existing forecasts, crystals Virtex series by present time should reach
logic capacity up to 100 million logic gates (at initial 50 thousand). If first crystals
FPGA were manufactured on technology 0,34 microns, now – 65 nanometers.

FPGA series of type Spartan and Virtex [8] possess similar architecture. PLD
the considered series except for the logic sold in logic cells (LC), contain block
memory (BR) which unlike the distributed memory sold on logic cells, is built in
and does not borrow logic resources. Memory BR is organized in the form of
blocks, each of which represents the two-port synchronous device of various ca-
pacities depending on type FPGA. To modules of a general purpose, except for
BR, multiplier units, and built in receiver-transmitter blocks are entered into series
Virtex-II Pro with speed of the transfer reaching some Gbit/sec on the channel in a
duplex mode, and also RISC-processors blocks of PowerPC type.

3.2 Evolution of Computer Systems

The RC grows out evolution of computer systems (CS). One of the important
stages of evolution is creation of emulating computer systems, possessing ability
of modification and full change of internal language. The concept of flexibility of
architecture CS has been formulated.

In particular, has been developed and has received practical approbation logic–
information method (LIM) designing of the microprocessor systems, uniting in it-
self theoretical concepts of the theory of digital automatic devices and theories of
the information. Essence of LIM is illustrated by the scheme:

NR⇒ΛN⇒NA:(
i

Ω∃∀

iR⇒Λ i⇒iA

))t,Q((R extr0 Θ=Θ⇒Λ0⇒0A

M

M

.

(3.1)

62 A.V. Palagin and V.M. Opanasenko

where:),(,, 0NiRA iii =Λ – accordingly sets of algorithms, operators and their

information-code representations at i -th level of programming, Θ – a set of the
generalized characteristics (hardware resources (Q), time (t), etc.).

Modern PLD have defined the new stage of evolution connected with creation
high–efficiency CS. For the formalized representation of model reconfigurable
devices updating of method LIM which is illustrated by the following scheme is
offered:

NR⇒ΛN⇒NA:(
i

Ω∃∀

iR⇒Λ i⇒iA

))t,Q((R extr0 Θ=Θ⇒Λ0⇒0A

MM

M M

.

(3.2)

In the scheme (3.2) for classical architecture following levels of programming are
used: 0τ – physical or "zero"; 1τ – microprogrammed; 2τ – programmed; 3τ –

algorithmic. Programming at a "zero" level defines physical structure of the
device which finally realizes the set algorithm of functioning, i.e. carries out pro-
gramming structure of the device. In difference from the scheme (3.1), updating
(3.2) realizes not microprogrammed, but hardware realization of algorithms on
gate level. In it difference reconfigurable devices with programmable structure
from modern computers consists. Thus the logic structure reconfigurable devices
can dynamically vary both by preparation for the decision of a problem, and
during computing process.

The most widespread requirement shown to facility CS, high speed is. The giv-
en problem, in particular, arises at use of means CS for problems of management
and modeling. At use of computers for control of moving objects, technological
processes, fighting operations, etc., they should work with anticipation of real
processes in operated object or, and generally speaking, in real time. There is a
class of problems in which it is necessary to operate quickly the changing
processes proceeding in short time intervals, and highly dynamical, quickly func-
tioning objects. Thus simultaneously with high speed maintenance of high accura-
cy of management is required. Therefore the computer for maintenance of high
speed and accuracy of management should possess ultrahigh speed to provide si-
multaneously set accuracy and work in real time. The similar problem arises and
at use of facility CS for modeling complex dynamic objects, and also quickly pro-
ceeding processes and the phenomena.

3 Design and Application of the PLD-Based Reconfigurable Devices 63

With the advent of modern crystals FPGA began possible to use the results
received earlier for construction reconfigurable devices and systems of the raised
complexity on the basis of PLD with completely programmed architecture. One of
approaches for increase of productivity of facility CS is the combination
conveyorization and parallelism.

If frequent change of carried out functions down to new function takes place at
each new execution, the conveyor with a dynamic configuration takes place. The
given approach is realized in technology RC. As an example of such realization
hypercomputer HAL (Star Bridge System Corp.) which is constructed on crystals
FPGA can serve. During functioning crystals change the structure and functions
is continuous at the decision of numerous computing problems in a mode of
real time.

Opportunities RC are introduced in supercomputers Cray XD1 with the purpose
of increase of productivity for target appendices by use of a subsystem of accele-
ration of the appendices, based on crystals of type FPGA (Virtex–4) firm Xilinx
which can be programmed on acceleration of key algorithms, such as search, sort-
ing, digital processing of signals, etc. the Given subsystem functions as the
coprocessor in relation to base processor AMD Opteron.

In Berkeley Wireless Research Center supercomputer system High-End Recon-
figurable Computing System (HERC) on crystals FPGA [9] is developed. Basis of
HERC is system prototype BEE (Berkeley Emulation Engine) with two modules,
intended for designing, construction and programming HERC for of some applied
areas. In opinion of developers, use BEE the system based on processors DSP
with similar power consumption and cost, and more than on two orders in compar-
ison with the systems realized on the basis of standard microprocessors provides
on the order greater productivity, than. The main components of architecture –
computing blocks and the programmed communication environment. The compu-
ting block is structurally presented in the form of the printed-circuit-board, which
contains four crystals FPGA – processing modules with memory (up to 4 GB eve-
ryone) and one for management (the operating module).

3.3 Architecture and Structure of PLD-Based Computer
Systems

The typical reconfigurable computer system (CS) consists, as a rule, of 2 parts: con-
stant (or "fixed") part F – a Host-computer and a variable part V – reconfigurable
subsystem (RSS) which can be united in various configurations. The architecture of
reconfigurable systems depends on capacities of sets of algorithms: (FN), carried

out on the equipment F , and (vN), carried out on the equipment V . The parity of

these sizes defines offered classification of reconfigurable computing systems:

a) The computing systems focused on a Host-computer in which the basic compu-
ting capacities are concentrated, and reconfigurable computer provides increase
of productivity only for a narrow class of problems
(VFVF NN0NNN >>→→ ,,);

64 A.V. Palagin and V.M. Opanasenko

b) The computing systems focused on RSS in which the Host-computer is used,
basically, for performance of auxiliary functions (service, input-output), and all
algorithms are carried out mainly in RSS which can have own field of external
devices (through payments of expansion) or the general field of external
devices with a Host-computer to which RSS has direct access;

c) Reconfigurable computing systems in which a Host-computer and RSS have
approximately identical complexity, thus RSS it is focused on the decision of
labour-consuming problems, and the Host-computer provides strong support
regarding translation, input-output, service, etc.;

d) RSS is the independent device in case of NN0N VF == , , and the

Host-computer is absent.

RSS connects to a Host-computer through one of the standard trunks, the variants
of connection most widespread today are realized through trunks PCI and
PCI–Express. RSS have functional processing field (FPF) the set dimension which
is configured for performance of the set algorithm or its part, providing, thus,
optimum realization of this algorithm both under time characteristics, and on
hardware expenses.

Introduction in practice of crystals PLD and HDL–technology (Hardware
Description Language) for performance of projects in this element basis intensi-
fied development of a wide spectrum of the digital modules representing ready
technical decisions, essentially reducing time of designing and an output for the
market of new products. Such opportunities of HDL–technology as hierarchical
designing, bearableness of libraries, platform- independence, allow using available
soft cores as macrocells for development of new technical decisions. The architec-
ture of modern crystals FPGA is optimized for use both hard and soft cores, and
allows integrating them into projects easily. For example, crystals of Virtex type
have in advance built in multipliers and PowerPC processors as hard cores, and
also other functional blocks.

In RSS, or devices with programmable architecture the functional field of the
set dimension configured specially for performance of certain set algorithm or its
part is fixed, providing, thus, realization of this algorithm optimum, by the set cri-
teria, by way. Adjustment of structure for performance of demanded algorithm
and its realization in a crystal on a gated level allow increasing speed of the device
by some orders in comparison with universal decisions.

The algorithm can be broken into the fragments which are carried out consis-
tently in this connection, structures corresponding these fragments also are loaded
into a crystal consistently (by way of their performance), that leads to essential
economy of resources. Complexity of fragments of algorithm thus is defined by
only logic capacity of a crystal, i.e. dimension of a processing field.

Thus, reconfigurable data processing represents to a certain extent change of
the central paradigm of designing of modern means of computer facilities.

The model of the projected computing system is offered:

><= PBAMS ,,, ,

where: M – set of mathematical methods, characteristic for a subject domain,
reflecting functioning of system; A – set of algorithms of realization of a method;

3 Design and Application of the PLD-Based Reconfigurable Devices 65

}{ bB = – the components of alphabet from which the structure is synthesized;

P – procedure of the description of the project (the description of object). Thus,
process of designing consists in the decision of a problem of synthesis of structure
on the basis of components }{ b the alphabet B for performance of the certain al-

gorithm A realizing a method M , underlying functioning of structure, according
to requirements of specifications. Result of procedure P is the description of the
project by means language СAD.

Synthesis of structural realization of sequence of algorithms is offered, when

the method/problem (M) is represented sequence of algorithms (n1iAi ÷=∀,):

U
i

iAM = .

In RSS, the base (zero) architecture realized on chip of PLD in the form of a func-
tional processing field of fixed dimension, the controller of the trunk of a host-
computer, a field of memory, and also well structured library of configurations
files (LCF) structural realizations of the methods (algorithms) which are carrying
out display of algorithm in structural realization (ii BAF ⇒:) is initially set.

Each algorithm has display ii BAF ⇒: in structural realization (iB) which

represents a configuration file for a crystal PLD. Generally there are some variants
of realization of algorithm (for example, consecutive, series-parallel and parallel):

)(, k1zBB
z

izi ÷==U .

Each variant is characterized by parameters of speed (time of performance – izt)

and hardware expenses (izq). And we assume, that capacity of set B is sufficient

for realization of a wide set of algorithms. In the event that demanded realization
of i-th algorithm in library is absent (=iB ∅), it is necessary to create by means of

CAD PLD it and to include as a standard element in library. Thus, the problem of
optimization is reduced to the ordered purpose to each i-th top the column of sold
algorithm (izB)-th element of library with the purpose of reception of extreme

value of some criterion of quality. I.e. any operator is displayed only by one ele-
ment from library. The structure realizing set columns is as a result defined. Then
the decision of a problem can be received by methods of integer mathematical
programming and, depending on demanded criterion of quality, it is possible to
define following variants of statement of a problem of optimization.

The problem of optimization consists in definition of a minimum of criterion
function, and criteria of quality are total hardware expenses for realization of all
algorithms:

∑∑ ∑∑ ÷=∀÷=∀=β+α
i z i z

iziziziz k1zn1ixqxt),,(min,

66 A.V. Palagin and V.M. Opanasenko

under conditions of restrictions ,1x
k

1z
iz =∑

=
∑∑ ≤

i z
0iziz Qxq ∑∑ ≤

i z
0iziz Txt ,

where βα, – weight coefficients which can be certain, for example, a method of

expert estimations; izx – z-th realization of i-th algorithm iA ; 0T – admissible

time of performance of all algorithms; 0Q – admissible hardware expenses.

Methods of the decision of such problems are well enough developed and allow
receiving for admissible time the comprehensible decision.

Presented approaches are put in a basis of the generalized algorithm of design-
ing PLD-based reconfigurable devices which represents system of the intercon-
nected algorithms, the part from which is formalized and shown to statement and
the decision of a problem of synthesis and a choice of optimum structural realiza-
tions from set, the others use heurism. Each algorithm is a separate fragment of
designing to which the certain section of the dissertation where it is presented in
the form of the formalized technique of designing with a theoretical substantiation
of its basic positions and the description of methods of the decision of concrete
applied problems of the analysis, synthesis and optimization of separate structural
realizations is devoted.

The algorithm of designing of the structural realizations RSS representing a Ba-
sic board (for the coprocessors connected to the standard Bus of a Host-computer)
or Carrier board (for independent devices) with a set of expansion boards and ex-
pansion modules, or crystal PLD for realization SoC (System–on–Chip) is
developed. The algorithm represents sequence of stages (Fig. 3.1).

The analysis of problem area statement of a problem a choice of suitable algo-
rithm (in case of absence of a configuration file for realization of corresponding
algorithm its synthesis with the subsequent record in LCF) from LCF imaging at a
level of the general architecture (function chart) preparation of the formalized
technical project programming of structure on the basis of a configuration file a
programming of algorithm the decision of a problem an estimation of characteris-
tics of parameters (structure is carried out, process of the decision) check of para-
meters on conformity to the established criteria (if necessary following iteration)
commissioning. The block diagram of algorithm (Fig. 3.1) provides also correc-
tion of criteria. It is analyzed features of designing of digital devices on the basis
of PLD with use of HDL-technology and CAD PLD.

The developed technique of designing, leaning on the given system of algo-
rithms and logical-information model RSS laying in its basis, allows to decide – to
formalize the main task of designing process of search of optimum pair «algo-
rithm-structural realization». The technique intends for designing: the task-
oriented coprocessors and the independent devices working with the algorithms
set; reconfigurable processors with conveyor data processing; parametrical IP-
Core for realization of the algorithms set which are represented by elements of li-
brary of configuration files; SoC. It can be modified depending on the initial task,
a class of problems, element -technological base, etc.

3 Design and Application of the PLD-Based Reconfigurable Devices 67

Fig. 3.1 Algorithm of designing of the structural realizations RSS

3.4 Adaptive Logical Network (ALN)

The adaptive logic network is a discrete converter of codes of type of the asyn-
chronous combinational automatic device, set directed graph which tops are logic
functions, and edges – communications between them type "output–input".

From the point of view of topology of system ALN represents a matrix of uni-
versal logic elements (LE) which are grouped into functional units (FU) and
blocks (FB) which site is fixed, thus change of their functioning occurs depending
on a class of problems and from their purpose.

68 A.V. Palagin and V.M. Opanasenko

Universal LE we shall name the combinational automatic device: FnL ,= ,

where: n – quantity of binary inputs or dimension of entrance variables LE;

},{ ρ= fF][
n221÷=ρ – the totality set of Boolean functions. Universality

LE consists in an opportunity of its adjustment for realization any Boolean
functions.

Structure ALN can be described by following system:

YXDmLSFhnA ,,,,,,,,= ,

where: n – word length of input binary vectors (dimensionality of АLN on an in-

put); h – target word length (n1h ÷=), dimensionality of АLN on an output;
{ }ijFF = – set of logic functions of system; S – structure of communications be-

tween LEs; { }ijLL = – set LE (i –a serial number of element LE; j – number of

a level of processing); m – quantity of levels of processing; { }dD = – set of n-

dimensional binary vectors (training sample); X – full set of input binary vectors;
{ }ijYY = – the generalized function of system,),()(,)(, 1jw1jvijij YYfY −−= –

value of the function ijf sold by an element ijL , { }10Y ,∈ which structure is

resulted on Fig. 3.2 (v, w – value of an index i for inputs LE).

Fig. 3.2 Structure of universal logic element

Each level АLN represents a ruler of LE (ρ inputs for all), each of which can

be adjusted on performance of any of a full set (
ρ22) Boolean functions of its in-

put variables and realizes imaging of l -dimensional)(nl ≤ binary vectors into a

u -dimensional)(ul ≥ binary vector. Matrix of LEs or FU represents the combi-

national automatic device without the memory, a having l -digit input, a u -digit
output and m – quantity of lines of a matrix. Within the limits of one level the
type of function can be set for everyone LE separately (stepwise adjustment) or
for all LEs (by the level adjustment).

3 Design and Application of the PLD-Based Reconfigurable Devices 69

The functional block represents a network of consistently included automatic

devices (hierarchical assembly of l (m1l ÷=) functional units). In the further we

shall be limited to consideration of three types FB distinguished to a topological
attribute: «rectangular matrix» (RM) – (nh =); «triangular matrix» (TM) –

(1h =); «trapeziform matrix» (TrM) – ()(1n2h −÷=). Depending on structure

of communications following TM types are offered: with logarithmic structure of
communications (LSC); with cellular structure of communications (CSC); with
asymmetric structure of communications (ASC). The offered structures of com-
munication differ on capacity sold Boolean functions and to hardware resources.

Problems of the structural organization and synthesis of multilevel structure
ALN of type TM consists in definition of types of logic functions ijf for all LEs

network. For definition of set of logic functions { }ijfF = the approach based on

the description of a Boolean network by polynomials which factors are set, in
particular, by means of Adamaar matrixes is used [10].

At coding values Boolean functions and its arguments transition to coding with
use of values (1) and (–1) is carried out. Thus, the set of variables

},...,,{ n21 xxxX = for Boolean from n variables will be represented function

f by set },...,,{ n21 eeeE = , where ix
i 1e)(−= , and set of values

},...,,{
1221 nyyyY −= , where },{ 10y j ∈ ; set },...,,{

1210 nvvvV −= , where

jy
j 1v)(−= . For any Boolean functions f from n the variables accepting values

from set },{ 11 − , there is an equivalent polynomial)(nfP with factors from set of

real numbers–)()()(XPXf nf= . Factors of a polynomial for function f enter

the name by means of Adamaar matrix (,nnn
VH

2

1
A =), where

},...,,{
1210 naaaA −= – set of factors of a polynomial, nH – Adamaar matrix

dimension n2 , nV – set of values Boolean functions.

By way of illustration applications ALN of type TM a number of functional de-
vices of the average complexity focused, mainly on problems of recognition of
images is synthesized.

So, on the basis of the scheme of transformations using as base bit operations of
addition and multiplication on the module 2 (logic operations XOR and AND) the
problem of synthesis of adder Hemming of any word length is solved [11]. The of-
fered synthesis algorithm of adder Hemming of any word length carries out

imaging: Τ⇒ℑ),(: dg , where: ()∑ ∑
= λ

λ
−λ τ=⊕=∈∈

n

1l

1
ll 2dgDdGg)(,, Τ ;

λτ – a component of the vector, containing value λ –th bit of binary representa-

tion Τ of a mismatch of vectors g and d ; ())}({log 1nEnt1 2 +÷=λ ;)(12 −λ –

weight λ -th bit of binary representation of a mismatch Τ .

70 A.V. Palagin and V.M. Opanasenko

The problem of synthesis of the threshold device of the any word length
realizing threshold operation from set }{ ξψ=Ψ is solved also, where 41÷=ξ

(1ψ –operation ≤ , 2ψ – operation ≥ , 3ψ – operation>, 4ψ – operation <),

types of logic functions for each level of structure TM (type ASC) depending on
value of a threshold are as a result defined.

The synthesis algorithm of the threshold device is based on the bit-by-bit analy-
sis of value of a threshold vector Θ according to binary data presentation:

∑
λ

λ
−λ θ= 12Θ , where λλ θτ , – the components of vectors containing value λ -th

bit of binary representation Τ and Θ accordingly, and 12 −λ – weight of λ -th bit
(n1÷=λ , n – dimension (length) of a binary vector).

The synthesis algorithm of the symmetric threshold device of the any word
length realizing symmetric threshold operation with the top and bottom borders,

symmetric concerning the center of a numerical axis on a piece)]([120 n −÷ is

developed also. As the set operation concerns to symmetric functions at the first
level of structure TM logic function XOR is used, and for other levels types of

logic functions ξ
sF are defined to algorithm similarly considered above for the

threshold device.

3.5 Problem-Oriented Structures of Digital Devices

The technique is developed and process of designing the typical reconfigurable
problem-focused devices with hardware PLD-based realization in the form of base
library parametrical functional blocks by means of their VHDL language descrip-
tion and the Schematic editor is considered. Library of functional devices of the
wide application providing use by the broad audience of developers at designing
of digital devices by the task of corresponding parameters and a choice of
optimum structure (by criteria speed-complexity of realization) are developed.

The following developed functional blocks are included in structure of library
of files of configurations: Hemming adders which are carrying out calculation of
distance Hemming for 4, of 8 and 16-digit numbers; two variants of realization of
algorithm of sorting (the linear sorter and the memory-based sorter); multiplier
square matrixes of the order 10m = for the whole 16-digit numbers; the median
filters using consecutive, it is serial–parallel and parallel computing models;
arithmetic devices of multiplication with a floating point of unary accuracy (com-
patible to standard IEEE–754). The developed functional blocks are verified at
real stands and the reconfigurable device (board ADS–XLX–SP3–EVL400) that
proves their functioning.

3.5.1 Functional Blocks with a Floating Point

During designing of mathematical coprocessors, the DSP processors, the in-built
arithmetic coprocessors wide application is found with floating point functional

3 Design and Application of the PLD-Based Reconfigurable Devices 71

blocks. Many vendors (for example, Nallatech Corp.) are developed own soft cores
for realization of such arithmetic operations, has developed Core for processing
operands with a floating point (standard IEEE-754) under Virtex series.

The problem of designing of arithmetic devices and algorithms for processing
operands in a floating point format is actual and now. Standard IEEE–754 gives
most the general representation for numbers with a floating point in modern
computers, including Intel PC, Macintosh and majority Unix platforms.

Let's consider development of the devices which are carrying out the floating
point operations in conformity with standard IEEE-754. The generalized structure
of functional blocks with a floating point (Fig. 3.3) and contains of three com-
pound modules: the module input arguments checking module (IAC); the func-
tional module (FM) and the result creation module (RCM). The description of
modules is executed by means VHDL language, by development synthesizer
FPGA Compiler II from Synopsys is used, system CORE Generator System is ap-
plied to formation of IP-Core blocks. The developed modules are verified by a
modeling method with definition of time and hardware parameters. Modules
represent the finished typical technical decisions and can be used in other projects
as soft cores.

Fig. 3.3 Structure of the functional block with a floating point

IAC will transform input data, analyzes them on conformity to standard
IEEE-754 with formation of corresponding attributes. Corresponding numbers and
the information concerning classes of input data gives out as results to the
functional module with a floating point.

FM carries out the set operation from a floating point with formation of
corresponding attributes.

RCM carries out the conformance of a format result data with standard
IEEE-754 and final setting of flags.

Inputs and outputs of the floating point block are not adhered to the fixed input-
output contacts of a specific FPGA, because using of any chips therefore is sup-
posed. Assignment of inputs and outputs of the block is shown on Fig. 3.3: clk – a

72 A.V. Palagin and V.M. Opanasenko

global signal clock; rst – a global signal reset; en – Enable signal; adatai
(31:0) – the input data bus A; bdatai (31:0) – the input data bus B; datao (31:0) –
the output data bus; ofo – a flag “Overflow”; ufo – a flag “Underflow”; ifo – a flag
«Inadmissible operation».

For the agreement of the obtained result of transformation with standard IEEE–
754 it is necessary to present numbers as normalized form. Therefore it is required
to define a high-order digit «1» and to realize shift aside to the high-order digit on
demanded number of bits with simultaneous subtraction of this value from the re-
sulting exponent part. Presence of powerful logic resources in crystals Virtex se-
ries allows accelerating this procedure by fast definition of number of shifts. Then,
unlike realization of serial shift with the simultaneous analysis of the high-order
bit, is carried out parallel shift on demanded number of position for normalization
of a mantissa.

Floating point Addition a includes strictly serial five operations: comparison of
exponents, shift to the right mantissas of smaller number, summation of mantissas,
search of left unit of a mantissa of result, normalization of a resulting mantissa.

For realization of operation of search of left unit using priority coder is offered.
Let is available (24=n) meaning bits of a mantissa. It is required to define num-
ber of the high-order "nonzero" position and to carry out of normalization of a
mantissa },...,,...,,{ 0i2223 ffffF = .

Priority coder represents the combinational scheme, having n inputs and
(}{log nEnt 2) outputs which consists of two sequentially connected schemes –

the first allocates high-order unit, and the second its number (number of demanded
shifts) in an operand.

The first scheme has n inputs and n outputs, realizing following system of the
logic equations:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

+=
I

)(

)(
1n

1ii
iii ffa)(1n0i −÷=∀ (3.3)

The second scheme has n inputs and (}{log2 nEnt) outputs, realizing following

system of the logic equations:

U U
})()({)()(

)(

)()(

)(

1j 1jjj

1jj

21nEntN

1k

21k122

21k2i
ij ay

+ +

+

−=

=

×−+−+

×−+= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

,

))}{log((1nEnt0j 2 −÷=∀ /

(3.4)

Thus, mathematical expressions (3.3) and (3.4) allow to synthesize priority coder
for any word length, the representing parametrical module which can be used by
development of new projects by other users.

By development of typical modules as well as by development of usual
projects, use already well fulfilled accessible IP–Core is expedient.

Let's consider an example of designing of the 32–bit floating point block of
multiplication. The block consists of three elements, first two of which, according

3 Design and Application of the PLD-Based Reconfigurable Devices 73

to Fig. 3.3 enter into functional module FM, and the third – in functional module
MFR.

The first element forms 24-digit operands for the block of multiplication (“1” in
the high-order – 23-rd position and 23 digits of fraction of a mantissa), summarize
exponents of multiplied numbers (8 bits) and defines a sign on result.

The second element carries out operation of multiplication and is formed by
means of the Core Generator (Xilinx Corp.).

The third element carries out check of conditions and formation of result. Fol-
lowing conditions are checked: if the sum of exponents of numbers is equal or
more than 255, the signal “Overflow” is formed; if 24-th bit of product of numbers
is equal “1”, then shift of product of numbers on one position aside low-order di-
gits and increase in the exponent per unit is made; if, after increase in the exponent
per unit, value the exponent becomes equal 255, then the signal “Overflow” is
formed.

Using of an element of multiplication of combinational type the result of mul-
tiplication is formed on a step following a step of registration of operands. When it
is necessary to multiply arrays of the numbers acting synchronously with any
clock sequence CLK, using of an conveyor-based element of multiplication is pre-
ferable. In the developed module elements of multiplication, both with the multip-
lier of combinational type, and with 4–levels (LUT–based realization are used) or
the 2–level (in–built blocks of multiplication 18x18 are used) conveyor that allows
to reduce essentially due to increase in clock speed time of multiplication of arrays
of numbers. For the timing agreement four or two series registers in this case are
entered into the first element of the module for conveyor transfer on an output of
the exponent and a sign of product of numbers. The delay (Latency) between reg-
istration of the first operands and registration of the first product of the module of
multiplication is equal to 5-th or 3-th periods CLK accordingly at use a 4-level or
2-level conveyor-based element of multiplication.

In Fig. 3.4 the diagram of work of the module of control IAC, executed by
means of editor State Editor is represented. On the first step at presence of signal
EN=1 the block passes in status STATE1, on which (digits 0–31) from input ope-
rand A formed signals EXP_F (exponent – digits 23–30) and FRAC (fraction of a
mantissa – digits 0–22).

Further check of conditions is made, at performance of one of which block
passes on the second step in one of statuses (STATE2 – STATE6) with formation
of a corresponding flag:

• If value of the exponent to equally zero, and fraction of a mantissa nonzero the
input operand is nonnormalized number;

• If values of the exponent and to fraction of a mantissa are equal to zero the
input operand is zero;

• If value of the exponent is more than zero and less than 255 the input operand
is the normalized number;

• If value of the exponent equally 255 and fraction of a mantissa zero, the input
operand is infinity (±∞);

• If values of the exponent equally 255 and fraction of a mantissa nonzero the
input operand is not real number (NAN).

74 A.V. Palagin and V.M. Opanasenko

Transition of the block in an initial status is made on a signal of reset (RESET) or
setting of signal EN in a zero status.

In a chip of series Spartan–II (XC2S50–5) the block borrows 46 Slices and
operates on clock speed 103MHz.

Advantage of the offered realizations in comparison with known is reached due
to optimum distribution of descriptions of constituent modules in different modes,
and also original priority coder which allows to define number of high-order "1"
for the subsequent performance of operation of normalization of a mantissa for
one timing step.

Comparative estimations of hardware resources and are presented to productivi-
ty of the developed modules of the multiplication realized with using Core
(Xilinx Corp.), with similar modules of Digital Core Design.

Fig. 3.4 The diagram of work of module IAC

Resources are estimated by quantity Slices. Productivity is estimated by fre-
quency CLK. Hardware resources we shall estimate concerning known
realizations:

μ= QQQ 0iΔ ,

where: 0Q – hardware resources of the module of Digital Core Design; μQ

 – hardware resources of the offered module; 1Q – hardware resources of the

module without the conveyor; 2Q – hardware expenses of the conveyor-based

module.

3 Design and Application of the PLD-Based Reconfigurable Devices 75

For a FPGA of type 2S200–6: 542TTT 101 ,==Δ ; 332TTT 202 ,==Δ ;

52QQQ 101 ,==Δ ; 32QQQ 202 ,==Δ .

For a FPGA of type V300–6: 52TTT 101 ,==Δ ; 272TTT 202 ,==Δ ;

53QQQ 101 ,==Δ ; 262QQQ 202 ,==Δ .

For a FPGA of type 2V250–5: 156TTT 101 ,==Δ ; 679TTT 202 ,==Δ ;

156QQQ 101 ,==Δ ; 983QQQ 202 ,==Δ .

The variant of realization of the module on FPGA 2V250–5 with using LUT is
absent in offers of Digital Core Design, however regarding hardware resources it
we shall compare with offered realizations on FPGA V300–6, but allows to work
(approximately on third) with greater clock time.

The synthesized the functional floating point blocks (compatible to standard
IEEE–754), can be used as a library element by development of complex
computers.

3.5.2 Functional Blocks for Multiplication of Matrixes

One of the basic features of programmable logic is the opportunity of using a prin-
ciple of parallel data processing at the solving of the wide problems. The increas-
ing of resources of modern programmable logic allows to raise essentially speed
of developed devices and to realize by hardware the algorithms working in real
time. Multisequencing of calculations or logic operations it can be carried out both
at a level of digits of representation of the information, and at a level of the blocks
which are carrying out corresponding algorithms of mathematical model. An ex-
ample of such successful realization is the principle of Parallel Distributed
Arithmetic used in digital signals processing.

Let's consider realization of multiplication algorithm of a matrix ijaA = of

the size nm× on a matrix jkbB = of the size rn× . The resulting matrix

ikcC = in the size rm× is formed as follows:

ikjkij cbaBAC =×== ,

Where

∑
=

=
n

1i
jkijik bac (3.5)

Thus, according to (3.5), each j-th element of i-th line of a matrix A is consistent-
ly multiplied by corresponding j-th element of a column of a matrix B and the re-
ceived products are added.

For definition of each element of resulting matrixes are used operations of mul-
tiplication and summation of partial products. Summation can be carried out by
two ways: accumulation of partial products at their serial receipt on an input of the
accumulator from an output of the multiplier and parallel summation of partial

76 A.V. Palagin and V.M. Opanasenko

products. The first way assumes presence of the block which is carrying out
multiplication and summation (accumulation) of received partial products. The
second way uses a set of multipliers and the multiport adder for reception of an
element of resulting matrixes.

These ways are realized by several variants:

• Serial (SL), when the processing field consists of one block consistently
calculating the sum of pair products in (3.5);

• Parallel-serial (PS1), when the processing field contains set of which quantity
correspond to quantity (i) lines of a matrix A , by means of which the sums of
pair products for elements ijc are simultaneously calculated, and results in

(3.5) further are consistently formed;
• Parallel-serial (PS2), when the processing field contains such quantity of

blocks, in which quantity of multipliers correspond to quantity (i) lines of a ma-
trix A , in parallel realizing, thus, calculation of one element ijc of a matrix C ,

and further other elements ijc are consistently calculated.

Let's consider realization of the device which are carrying out multiplication of
square matrixes of the order 10m = for the whole 16-bit numbers, realized in a
crystal Virtex-E series. The quantity of using Slices includes input, output and in-
termediate registers for realization of conveyor-based calculations. Execution time
of operation of multiplication of two 16-bit numbers with accumulation of the 32-bit
sum (summation of result of multiplication with the number which is being the ac-
cumulator) for specified type of a crystal is 6,424 nanoseconds. In Table 3.1 hard-
ware and time estimations for the considered variants of realization are resulted.

Table 3.1 Results for different implementations

Variant of realization
of algorithm of

multiplication of
matrixes

Quantity of multipliers
/ adders

Speed (full time of
multiplication of

matrixes), nanosecond

Hardware expenses
(quantity Slices)

SL 1/1 6424 181

PS1 10/10 642,4 1810

PS2 10/1 890 1665

3.5.3 Designing and Realization of Median Filters

Digital methods of processing of images now play a significant role in scientific
researches, the industries, medicine, space researches and information-
telecommunication systems. One of methods of digital processing the images ap-
plied to elimination of defects of the image, caused by handicapes and noise, is the
median filtration. Median filters (МF) differed robustness and are convenient for
smoothing the information in cases when noise characteristics are unknown.
Stepped changes of a signal pass through the median filter without distortion. This

3 Design and Application of the PLD-Based Reconfigurable Devices 77

feature is used, for example, in the image filtering where data should be smoothed,
but distortion of the form of fronts of a signal is inadmissible.

Let's consider realization of the PLD-based median filter, it is using serial,
serial–parallel and parallel computing models.

Generally, the median can be defined as magnitude medx , for which at any

values z fairly expression:

∑∑
==

−≤−
n

1i
i

n

1i
imed xzxx .

Median filtration realizes a choice medx for odd n , thus is unequivocal (for even

value n there is an infinite number of possible values medx). So, for the two-

dimensional window containing 3x3 of elements of the image (pixels), the median
filter with nine vectors describing brightness for halftone image or color for the
color image, chooses a vector with average value which then is appropriated to
central pixel of windows. Median filtration can be carried out also for a window of
any other form, for example, crosswise with number of pixels, equal 5 or 9, etc. Ir-
respective of the form of a window the filter realizes the same algorithm and is
characterized by number (n) and word length (m) of processing pixels.

Thus, a median medx of discrete sequence of binary vectors)(n1ixi ÷= for

odd n is that its element for which exists 21n)(− elements, smaller or equal to it

on size, and 21n)(− elements, greater or equal to it on size. Let for Xxi ∈∀

input set of binary vectors }{ ixX =)(n1i ÷= it is necessary to define a median

medx . With the purpose of increase of speed of the scheme it is offered to use al-

gorithm of definition of the median, allowing manipulating not input data that is
inherent in some algorithms of sorting, and results of comparison of input codes
among themselves. The algorithm of definition of a median in this case represents
sorting data with the subsequent choice of the code having number 21n)(−

from sorted sequence which numbering begins with zero.
The square matrix is formed:

ijyY =),(n1ji ÷= ,

where },{ 10yij ∈ – an element of a matrix which is defined by a rule:

⎪⎩

⎪
⎨
⎧

<=

≥=

.x ,

;x ,

i

i

jij

jij

xif0y

xif1y
 (3.6)

Elements ijy of the main diagonal of a matrix)(ji = accept zero value. And if

1yji ij =∀),(, then 0y ji = and on the contrary. Therefore values of elements ijy

with the indexes ji > , laying above the main diagonal (the quantity of these

78 A.V. Palagin and V.M. Opanasenko

elements is defined by size 2nn2)(−) are defined. Values of the elements

ijy)(ji < laying below the main diagonal are defined as follows:

if 1yji ij =∀),(, then 0y ji = ;

if 0yji ij =∀),(, then 1y ji = .

For every line received matrix ijyY = the arithmetic sum of values of elements

ijy is calculated:

∑=
j

iji ys (3.7)

Depending on numerical value is which unequivocally corresponds to input vector

ix , we receive result of sorting of set of vectors X :

⎪
⎩

⎪
⎨

⎧

=−=
=−=

==

}.{x ,/)(sif

};{maxx),(sif

};{minx , sif

ii

ii

ii

Xmedthen21n

Xthen1n

Xthen0

 (3.8)

The offered algorithm is realized by various ways, depending on quantity of

simultaneously formed elements of a matrix ijyY = .

Fig. 3.5 Functional scheme of the median filter SL

3 Design and Application of the PLD-Based Reconfigurable Devices 79

At serial realization (SL) it is consecutive on each step of algorithm one
comparison is carried out only and one element of a matrix Y is formed. The
maximum quantity of steps necessary for realization of algorithm, is equal to
quantity of operators of comparison (comparators) plus one step for record of ini-

tial data. The quantity of comparators is defined by size 2nn2)(− . Thus

function scheme is presented on Fig. 3.5.
In the given realization it is carried out step-by-step formation of a matrix

ijyY = by comparison of an input vector))((1n1ixi −÷= with vectors

n2i1i xxx ,...,, ++ according to (3.7) and (3.8). The received elements

)(n1jyij ÷=∀ line-by-line are summarized in conformity with (3.9) and the re-

sult is compared to a constant equal 21n)(− . In case of equality 21nsi)(−=

the corresponding vector ix gets out as a median medx and performance of

algorithm stops.
In serial-parallel realizations (SP) for one step it is carried out in parallel from

one before)(1n − comparisons, and lines of a matrix Y are consistently formed.

The maximum quantity of steps necessary in this case for realization of algorithm,
in view of a step of record of initial data equally)(1n + . In this realization con-

secutive formation of a matrix ijyY = by parallel comparison of input vector

))((1n1ixi −÷= with vectors n2i1i xxx ,...,, ++ according to (3.7) and (3.8) is

carried out. The number of comparisons on everyone)(1i + –th step of formation

of a matrix Y in relation to i –th step decreases on unit. On penultimate)(1n − –

th step is carried out only one comparison),(n1n xx − . Elements)(n1jyij ÷=∀

line-by-line are summarized according to (3.9) and the result is compared to a
constant equal 21n)(− . In case of equality 21nsi)(−= the corresponding

vector ix gets out as a median medx .

Further we shall consider a variant of construction МF, in which the median is
defined for one step.

In parallel realization (PR) all comparisons are carried out simultaneously and
elements of a matrix Y are formed in parallel. In the given variant the square ma-

trix ijyY = is formed of set of input vectors)(n1ixi ÷=∀ in conformity with

(3.7) and (3.8). Elements ijy are simultaneously summarized line-by-line, accord-

ing to (3.9), and the received values in parallel are compared to a constant
21n)(− . Equality 21nsi)(−= unequivocally defines a choice ix as a

median.

PLD-based realization of the median filter.
Synthesis of structure MF can be executed by means of Schematic Editor and li-
braries of components Project Libraries of system of designing Foundation Series.
Except for opportunities of the description of the scheme in the specified way the

80 A.V. Palagin and V.M. Opanasenko

system of designing puts at disposal of the designer more progressive means of the
description of project HDL Editor and State Editor. First of editors serves for the
description of the equipment on one of languages (VHDL or Verilog), the second
– for the description of work of automatic devices by means of diagrams of status-
es which further are automatically translate into the HDL description.

Essential advantage of the HDL description of the project is the opportunity of
the description, both architecture of the projected device, and its behaviour. Be-
sides such description in comparison with using of the Schematic editor is easily
modified. Presence of modern the synthesis programs which is carrying out trans-
formation of construction of a HDL-code in the scheme of logic elements, allows
to carry out complex projects to similarly development of programs in language of
a high level.

Example of serial-parallel realization of algorithm of median definition.
The description of the project is spent with using of construction of VHDL-
language for the most simple in the description of variant МF for five 8–bit pixels.

Let's present МF as a "black" box on which input acts five 8–bit vectors: a
[7:0], b [7:0], c [7:0], d [7:0], e [7:0], signals init (initial installation), ld (load-
ing), clk, and from an output are removed values of a median out_m [7:0] and a
signal of interruption int. Further vectors, i.e. multidigit signals and variables will
be designated, as well as in the text of the VHDL-description after the announce-
ment of ports and signals, without the directive of quantity of digits in square
brackets.

Process of designing consists in the description of functioning of a "black" box.
We shall designate registers in which input data will enter, accordingly: xa [7:0],
xb [7:0], xc [7:0], xd [7:0], xe [7:0].

Loading of input data is made at initialization of a signal ld and can be
described by expression:

if ld = ’ 1 ’ then xa <=a; xb <=b; xс <=с; xd <=d; xe <=e;
 end if;

(If the signal ld is equal to ‘1’ then signals xa, xb, xc, xd and xe values a, b, c, d, e
are appropriated, respectively).

After record of initial data into registers it is possible to spend comparison of
each entrance signal with other signals. The maximal number of steps in this case
will be equal six: on the first step (we shall designate it as status S1) is made
record of input data, on other five steps (S2, S3, S4, S5 and S6) – comparison of
signals among themselves, summation of results of comparison, comparison of the
received sums with a constant and formation of a signal of the enable of record of
a code of a median into the output register. With the purpose of reduction of the
hardware resources demanded for connection of compared signals to comparators,
on each step parallel shift of data in registers is made, i.e. data from the register xb
correspond in the register xa, from xc in xb, from xd in xc, from xe in xd:

a <=xb; xb <=xс; xc <=xd; xd <=xe;

Shift, as well as other assignment operations, is made at switching clocked signal
clk from a status ‘ 0 ’ in a status ‘ 1 ’.

3 Design and Application of the PLD-Based Reconfigurable Devices 81

For fixing of comparison results with the purpose of their further processing we
shall enter variables of integer type Integer with area of values from 0 up to 1: ab,
ac, ad and ae which are valid in a current status, and signals ba, ca, da, ea, cb, db,
eb, dc, ec and ed the same type, valid for all time of process. Then the comparison
operations which are carried out in various statuses can be presented in the
form of:

S2 – comparison of the code containing in the register xa with codes, contain-
ing in registers xb, xc, xd and xe (comparison of a vector a with vectors b, c, d
and e):

 if xa> =xb then ab: = 1; ba <=0; else ab: = 0; ba <=1;
 end if;
 if xa> =xc then ac: = 1; ca <=0; else ac: = 0; ca <=1;
 end if;
 if xa> =xd then ad: = 1; da <=0; else ad: = 0; da <=1;
 end if;
 if xa> =xe then ae: = 1; ea <=0; else ae: = 0; ea <=1;
 end if;

(if the vector a more or is equal b, c, d, e then variables ab, ac, ad, ae value 1, and
to signals ba, ca, da, ea – 0 is appropriated, otherwise ab, ac, ad, ae is
appropriated 0, and ba, ca, da, ea – 1).

S3 – comparison of the code containing in the register xa with codes,
containing in registers xb, xd and xd (comparison of a vector b with vectors c, d
and e):

 if xa> =xb then ab: = 1; cb <=0; else ab: = 0; cb <=1;
 end if;
 if xa> =xc then ac: = 1; db <=0; else ac: = 0; db <=1;
 end if;
 if xa> =xd then ad: = 1; eb <=0; else ad: = 0; eb <=1;
 end if;

S4 – comparison of the code containing in the register xa with codes, containing in
registers xb and xc (comparison of a vector c with vectors d and e):

 if xa> =xb then ab: = 1; dc <=0; else ab: = 0; dc <=1;
 end if;
 if xa> =xc then ac: = 1; ec <=0; else ac: = 0; ec <=1;
 end if;

S5 – comparison of the code containing in the register xa with a code, containing
in the register xb (comparison of a vector d with a vector e):

 if xa> =xb then ab: = 1; ed <=0; else ab: = 0; ed <=1;
 end if;

After comparison of codes summation of results of comparison is made, thus for
record of result of summation the variable of integer type yz with area of values
from 0 up to 4 is entered:

82 A.V. Palagin and V.M. Opanasenko

S2: yz: = (ab+ac) + (ad+ae);
S3: yz: = (ab+ac) + (ad+ba);
S4: yz: = (ab+ac) + (ca+cb);
S5: yz: = (ab+da) + (db+dc);
S1: yz: = (ea+eb) + (ec+ed);

Final operation is comparison of result of summation with a constant (in this case
2), record, in case of the equality, current value of the code which is being the reg-
ister xa, into output register, transition in status S1 and formation of a signal of
interruption int:

 if yz=2 then out_m <=xa;
 else xa <=xb; xb <=xс; xc <=xd; xd <=xe;
 end if; int <= ’ 1 ’;

At an inequality of result of summation to a constant shift of data in registers is
made and transition to a following status, and a signal int is appropriated value ‘0’.
The full description of the project can be executed by means of State Editor as
flowgraph.

Example of parallel realization of algorithm.
For realization of operations of comparison and calculation of results variables of
integer type with area of values from 0 up to 4 are entered: xa, xb, xc, xd and xe.
Each of variables defines a place of input code in sorted sequence and is formed as
follows:

 if (a> =d) then xa: = xa+1; else xd: = xd+1; end if;
 if (a> =e) then xa: = xa+1; else xe: = xe+1; end if;
 if (b> =c) then xb: = xb+1; else xc: = xc+1; end if;
 if (b> =d) then xb: = xb+1; else xd: = xd+1; end if;
 if (b> =e) then xb: = xb+1; else xe: = xe+1; end if;
 if (c> =d) then xc: = xc+1; else xd: = xd+1; end if;
 if (c> =e) then xc: = xc+1; else xe: = xe+1; end if;
 if (d> =e) then xd: = xd+1; else xe: = xe+1; end if;

At presence of a signal clk and a condition of equality any from variables to a con-
stant (number 2), record in the output register of the input code corresponding the
given variable is made:

 if (clk'event and clk = ' 1 ') then
 if (xa=2) then out_m <=a;
 elsif (xb=2) then out_m <=b;
 elsif (xc=2) then out_m <=c;
 elsif (xd=2) then out_m <=d;
 elsif (xe=2) then out_m <=e;
 end if; end if;
 if (a> =b) then xa: = xa+1; else xb: = xb+1; end if;
 if (a> =c) then xa: = xa+1; else xc: = xc+1; end if;

Description МF for nine 8-digit pixels is similarly carried out.

3 Design and Application of the PLD-Based Reconfigurable Devices 83

On examples descriptions of serial-parallel and parallel realizations of
algorithms in VHDL language are presented. Results of synthesis and realization
of projects in crystal XCV50CS144–6, received with use of tool means FPGA Ex-
press and programs of placement and routing of system Xilinx Foundation Series,
are presented in Table 3.2.

In realization of variant SL the maximal time of definition of a median 1T to

equally product 1tN , where t – the minimal period clk,])([12nnN 2
1 +−= –

the number of statuses equal (for 5n =) in view of loading eleven. If a median is
the input code 1x it will be certain on the fifth step (the first step corresponds to

loading), 2x – on the eighth step, 3x – on the tenth step, 4x – on the eleventh

and 5x – on the first step of a following cycle corresponding loading of a new

portion of input data. Thus, the size 1T will be within the range of from t1n)(−

up to t12nn 2])([+− .

Table 3.2 Results of synthesis

Type of realiza-
tion of algorithm

Quantity of
8-digit pixels

Hardware resources
(quantity of Slices)

Min. period [ns] /
max. freq. [MHz]

Max time of definition
of a median [ns]

SL 5 73 12 / 87 132

SP 5 62 13 / 77 65

PR 5 87 15 / 67 15

PR 9 317 40 / 25 40

Maximal time of definition of a median 2T for realization of a variant of soft-

ware to equally product 2tN , where nN2 = – the number of statuses equal (for

5n =) in view of loading 5. Definition of a median occurs on a step which num-
ber corresponds to number of a code in entrance sequence plus 1. If a median is
the input code 1x it will be certain on the second step (the first step corresponds to

loading), 2x – on the third step, etc. Time 2T will be within the limits of from t

up to nt . At fixing the fact of definition of a median return to an initial status – S1
is carried out and the signal of interruption of process is formed.

At realization of variant PR time of definition of a median 3T is size of a

constant (t) and is equal 15ns / 40ns accordingly for five / nine pixels.
Thus, variant PR (for 5n =) uses approximately in 1,4 (in comparison from

software) and accordingly in 1,2 times (in comparison with SL) more slices in a
crystal (an estimation of hardware expenses), possessing thus approximately in 4,5
(in comparison from software) and accordingly in 9 (in comparison with SL) time
greater speed.

84 A.V. Palagin and V.M. Opanasenko

3.5.4 Hemming Adder Realization

Let's consider following variants of realization of Hemming adder:
HA1 is realization of the multilevel combinational scheme on the basis of logic

elements AND, XOR by means of Schematic editor.
HA2 realizes the adder, using a tree chart of the adder on which top level in

pairs weighed sums two components are formed, and further on the basis of stan-
dard schemes of adders - result of the weighed sum. All elements HA2 are created
by means of system Core Generator as functionally completed blocks and,
eventually by means of the schematic editor the resulting scheme is formed.

HA3 is realized by the behavioral description by VHDL language which is
resulted below.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity hamm_v is
 generic (N:Integer: = 32);
 port (
 a: in STD_LOGIC_VECTOR (N-1 downto 0);
 y: out INTEGER range 0 to N
);
end hamm_v;
architecture Behavioral of hamm_v is
begin
process (a)
variable x: integer range 0 to N;
begin
 x: = 0;
 for I in 0 to N-1 loop
 if a (I) = ' 1 ' then
 x: = x+1;
 end if;
 end loop;
 y <=x;
 end process;
end Behavioral;

Synthesis HA3 is executed by means of FPGA Express (Synopsys).
In tab. 3.3 comparative characteristics of devices (HA1, HA2, HA3), carrying

out calculation of Hemming distance for 4–, 8– and 16–bit numbers realized in a
crystal Virtex series are resulted.

The offered realizations of algorithms differ hardware resources (hardware re-
sources are understood as dimension of a processing field or the logic capacity of
a crystal defined by quantity Slices) and speed.

3 Design and Application of the PLD-Based Reconfigurable Devices 85

Table 3.3 Comparative characteristics of devices HA1, HA2, HA3

Variant of

realization

Speed

(the period [ns] / frequency [MHz])

Hardware resources

(quantity Slices)

4n = 8n = 16n = 4n = 8n = 16n =

HA1 4,4 / 227,2 8,1 / 123,4 11,9 / 84 4 10 38
HA2 7,8 / 128,2 10,2 / 98 13,4 / 74,6 4 10 22
HA3 3,6 / 277,8 5,5 / 181,8 12,7 / 78,8 2 5 22

On the basis of the received estimations it is possible to draw following conclu-
sions. Variant HA3 has the best parameters of estimations on hardware resources
for any word length (for 16n = an resources coincide with variant HA2), on
speed slightly conceding only to variant HA1 for 16n = . HA2 has no advantages
before other realizations, confirming known regulations about volume, that the
complex system from optimum components not necessarily is optimum in aggre-
gate. However the basic advantage of variant HA3 is that the presented behavioral
description, is the parametrical description of Hemming adder, i.e. universal (for
any word length). The task of parameter (N) in the description (generic) defines
word length of the synthesized adder.

3.6 Verification of Projects by Means of Stands

Let's consider the description process project on an example of the median filter
which block–diagram (Fig. 3.6), contains the block from five 8-bit registers, out-
puts of each of which are connected to inputs of other register and inputs of the
device for definition of a median.

Fig. 3.6 Block–diagram of the median filter

86 A.V. Palagin and V.M. Opanasenko

On an input of the filter (8m5n == ,) the file of 8–bit codes, for example from

output ADC consistently acts. With signal Clock codes move from 1–st register in
2–nd, from 2–nd in 3–rd, etc.

Simultaneously with everyone Clock transfer of codes from all 5 registers on
inputs of the device for a median definition is carried out. Definition of a median
is carried out on 5 pixels (codes) according to algorithm and the VHDL–
description, and modified due to inclusion in the device for median definition a of
four registers blocks for realization of a conveyor mode. The project of the median
filter contains, thus, the scheme, being top level of hierarchy of the project, and
two modules: the registers block and the device for the median definition,
executed as VHDL–descriptions.

In Fig. 3.7 the scheme of the filter synthesized by means of the schematic edi-
tor, registers block is presented in the form of the text of VHDL–description, is re-
sulted. Description of the registers block as text is much more compact and easier,
than the description of this module by means of the schematic editor.

In Fig. 3.7 this module is presented in the form of an environment of a
macrocell from the user library. VHDL description of the median filter:

library IEEE; -- library declaration
use IEEE.STD_LOGIC_1164. ALL; -- using declaration
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity reg_s is -- object declaration
 Port (din: in std_logic_vector (7 downto 0); -- port declaration
 clk: in std_logic;
 dout_a: out std_logic_vector (7 downto 0);
 dout_b: out std_logic_vector (7 downto 0);
 dout_c: out std_logic_vector (7 downto 0);
 dout_d: out std_logic_vector (7 downto 0);
 dout_e: out std_logic_vector (7 downto 0));
end reg_s;
architecture Behavioral of reg_s is – architecture declaration
signal va, vb, vc, vd, ve: std_logic_vector (7 downto 0); -- signal declaration
begin

Fig. 3.7 Functional schema of the median filter

3 Design and Application of the PLD-Based Reconfigurable Devices 87

At the description of this module by means of the Schematic editor it would be
necessary to execute the scheme containing five 8-bit registers FD8CE where reg-
ister FD8CE would be presented by the scheme of lower level of the hierarchy
consisting of eight triggers FDCE of system library.

The considered example of the median filter has been synthesized, placed and
routing in crystal XC2S150–5PQ208 (Spartan–II series).

At realization the project has borrowed 9 % of resources of a crystal, i.e. 169 of
1728 Slices, one global buffer, 16 pinouts (IOB). The maximal clock frequency is
equal 95 MHz.

Project Verification
The basic tool of verification of the project is the modeling system of Model
Technology ModelSim, Xilinx Edition (MXE II). One of laborious processes of
verification is a file processing of input influences on model-based object. For
simple projects can be used HDL Bencher – the graphic interface for creation of
input influences in the form of sequences of the impulses set by the user (Wave-
form). For projects where input influences are a product of complex logic trans-
formations or a codes file, creation of the virtual stand or stands for verification of
the project is expedient. Such stand can be executed in the form of the subproject
included in a separate branch of a tree of hierarchy of the developed project. Fur-
ther the test (HDL Test Bench) is described in the form of structure where the
stand and the project are presented in the form of the interconnected components.

Let's consider as an example development of the stand for functional check of
the median filter which description has been resulted above (see Fig. 3.6).

Let the filter makes "clearing" the signal consisting of a "useful" signal of the
sine wave form and formed "noise". Thus, the stand can consist of the shaper of a
signal of the sine wave form, the generator of random numbers and the multiplex-
er which is carrying out transfer of a code from an output of the shaper or the ge-
nerator on an input of the filter (Fig. 3.8).

Fig. 3.8 Block–diagram of the stand for functional check of the median filter

88 A.V. Palagin and V.M. Opanasenko

As the shaper of a signal of the sine wave form it is used IP–Core – Direct
Digital Synthesizer (DDS), as the generator of random numbers – the Linear
Feedback Shift Register (LFSR).

In Fig. 3.9 the timing diagram of the filtration process, received is resulted at
functional modeling of the median filter with using of the specified stand.

Fig. 3.9 The timing diagram of a filtration process:
a – signal on an output of the shaper of the sine wave form;
b – signal on an output of the generator of random numbers;
c – signal on an input of the median filter;
d – "cleared" signal on an output of the median filter.

3.7 Reconfigurable Processors

The typical structure of reconfigurable processor (RP) allows the developer (user)
to realize any algorithm, i.e. to change structure depending on a carried out prob-
lem (the set algorithm). Last can be broken into the fragments which are carried
out consistently on fixed hardware that leads to the general economy of
hardware, thus complexity of fragments of algorithm is defined only by logic ca-
pacity of a crystal FPGA. Presence of set of functional processing fields (FPF) al-
lows is hardware to realize parallel data processing, and set of configuration
files – conveyor programming of the structure realizing fragments of algorithm.

Reconfigurable processors have FPF the set dimension which is configured for
performance of the set algorithm or its part, providing, thus, optimum realization
of this algorithm, both under time characteristics, and on hardware expenses. At
the conveyor mechanism of realization of algorithm additional matrixes are en-
tered into structure RP. Structure RP is presented in Fig. 3.10 and contains s
matrixes FPF, the channel of input-output (CIO) for connection to the standard
Bus of a Host-computer, a memory of a configuration files (MCF), the data RAM,
the controller (CT), data bus (DB) and control bus (CB). The conveyor mechanism
assumes loading a configuration file in the next matrix in parallel with data
processing in a current matrix.

The format of a configuration file is standard for FPGA and contains the infor-
mation about of a configuration matrix, i.e. forms the corresponding basic electric
scheme realizing set algorithm. Matrix FPF represents a matrix of universal ele-
ments which under control of a configuration file γF direct function is appointed

3 Design and Application of the PLD-Based Reconfigurable Devices 89

and the structure of communications between them is formed. Configuration files

γF enter the name in matrix FPF from a memory of configuration files under

control of CT.

Fig. 3.10 Structure of reconfigurable processor

In matrix FPF on data bus details from the RAM or external entrance data
through CIO can act. Results of processing from matrix FPF can be transferred in
channel CIO as external target data or in the RAM as intermediate results. The set
of files of a configuration }{ γ= FF enters the name in the MCF through channel

CIO under control of CT.
Initialization of system consists of three stages: record of set of files of a confi-

guration F in the MCF; loading of files of a configuration γF in FPF from the

memory of configuration files; functioning of system – realization of algorithm.
Procedure of data processing is carried out as follows. In a command number

(α) matrixes FPF is underlined, and CT forms a signal initializing corresponding
matrix FPF. Then loading of a corresponding file of a configuration in next matrix
FPF is carried out. After end of data processing by α -th matrix results of data
processing enter the name in the RAM and serve as intermediate (initial) data for
(1+α)-th matrix. Upon termination of work of algorithm with given FPF (the
termination of the microprogramma) is formed interruption which acts on
operating input CT where its processing is carried out.

3.8 Conclusions

The received results have allowed to raise efficiency display of initial problems
and algorithms to architecture and structure of projected PLD-based devices and
systems by criteria « speed – complexity of realization » on the basis of the devel-
oped formalized techniques of construction and dynamic reorganization of their

90 A.V. Palagin and V.M. Opanasenko

architecture and structure, proceeding from properties of sold algorithms, and also
logic, constructive and technological features PLD, and tool means of their
designing.

As a result of the executed analysis of evolution, tendencies of development
and technology of realization of a new class of components computer engineering
– programmable logic devices it is certain, that PLD opportunities of construction
on their basis of devices and the systems possessing properties of the reconfigura-
bility, providing give adaptation to a wide spectrum of problems and reception of
high characteristics of projected devices and systems.

Principles of construction and functioning of a new class of computers and sys-
tems with reconfigurable the architecture are developed, differing from traditional
(von Neumann type) properties of high dynamic reorganization, multilevel and paral-
lelism of data processing that functional means of computer engineering for any algo-
rithms allow the developer (user) to create, providing thus an opportunity of structural
adaptation, including in real time, according to a solved problem (algorithm) and also
to duplicate them for a wide range of developers, reducing process of designing of
digital devices to a choice from library of optimum structure by criteria «speed –
complexity of realization» with adjustment of corresponding parameters.

The known logical-information method of designing reconfigurable devices
and systems which basic difference became orientation to functionalities PLD is
modified. In the offered kind it allows to operate with any quantity of levels of
programming, to define optimum quantity of such levels and to synthesize the op-
timum structure of the device represented by multilevel hierarchical system with
unlimited number of levels on a class of criteria « speed – complexity of
realization ».

The new class of computing structures – adaptive logic networks (ALN), prin-
ciples and techniques of their construction and functioning are offered. It is
shown, how for base set of structures ALN and training samples, the binary vec-
tors set by set, using polynomial representation, which factors are set by means of
Adamar matrix, it is possible to receive analytically set of logic functions (func-
tional adjustment) components ALN at the functional restrictions preliminary cer-
tain also analytical by that allows, passing process of direct synthesis to execute
predesign estimations of a realizability of developed devices. Process of designing
consists in correct display of entrance set of data in target set of data and is re-
duced to is formal-analytical procedure of decomposition with use of preliminary
received functional restrictions. The offered device effectively supports process of
adaptation ALN on classes of problems which are reduced to procedure of
classification, including problems of natural classification.

A number of structural realizations ALN is offered: in the form of "triangular",
"trapezoidal" and "rectangular" matrixes which covers a wide class of problems.
Process of adjustment of matrixes is reduced to definition of types of logic func-
tions elementary a component and structures of communication from the limited
set is set. The offered structures differ on capacity sold Boolean functions and to
hardware expenses, are accompanied received analytical by asymptotic by estima-
tions of complexity (depending on word length of entrance binary vectors) and
capacities of target set of binary vectors.

3 Design and Application of the PLD-Based Reconfigurable Devices 91

The open library of functional devices which structure can extend and be
oriented to problem is developed. In particular, it is devices: definitions of a me-
dian with time step by step conveyor processing of input data; memory-based sort-
ing of data; adders Hemming (for any word length); multiplication of matrixes;
multipliers with a floating point (standard IEEE-754), etc.

The base structure of reconfigurable processor with set of functional fields
which allows to focus functionally it on an any class of problems (algorithms) is
developed, supporting, in particular, parallel, conveyor and in parallel-conveyor
data processing. The developed processor is a basis for construction of a lot of
computing systems of high complexity, productivity and survivability.

References

[1] Estrin, G., Turn, R.: Parallel processing in a restructurable computer. IEEE Transac-
tion on Electronic Computers EC 12(6), 747–755 (1963)

[2] Athanas, P.M., Schewel, J., McHenry, J.T., James–Roxby, P.B.: Reconfigurable
Technology: FPGAs and Reconfigurable Processors for Computing and Communica-
tion. In: SPIE International Society for Optical Engineering, p. 174 (2001)

[3] Villasenor, J., Mangione–Smith, W.H.: Configurable Computing,
http://www.vcc.com

[4] Lord, E., Cantle, A.J., Dr Devlin, M., Shand, D.: COTS Platform for the Develop-
ment of Re-configurable Processing in Aerospace Systems. White paper,
http://www.nallatech.com

[5] Schewel, J.: Hardware / Software Co–Design System using Configurable Computing
Technology, http://www.vcc.com

[6] Palagin, A.V., Opanasenko, V.N.: Reconfigurable computing technology. Cybernet-
ics and Systems Analysis 43(5), 675–686 (2007)

[7] Palagin, A.V., Opanasenko, V.N., Sakharin, V.G.: Features of Digital Devices Design
of Modern PLD of the Xilinx Incorporation. Journal of Automation and Information
Sciences 33(3), 80–89 (2001)

[8] Cosoroaba, A., Rivoallon, F.: Achieving Higher System Performance with the Vir-
tex–5 Family of FPGAs. Xilinx Inc. White Paper WP245 (v1.1) May 17 (2006),
http://www.xilinx.com

[9] Chang, C., Wawrzynek, J., Brodersen, R.W.: BEE2: A High–End Reconfigurable
Computing System. IEEE Design and Test of Computers 22(2), 114–125 (2005)

[10] Bruck, J., Blaum, M.: Neural networks, error–correcting codes, and polynomials over
the binary n–cube. IEEE Transactions on information theory 35(5), 976–987 (1989)

[11] Palagin, A.V., Opanasenko, V.N., Chigirik, L.G.: Synthesis of a Hamming network
on a basis of programmable logic integrated circuits. Engineering Simulation 13,
651–666 (1996)

[12] Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. of the IEEE 78(4),
678–689 (1990)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 93–117.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

4 Application of Multilevel Design on the Base of
UML for Digital System Developing

Raisa Malcheva

Donetsk National Technical University, Department of Computers, Apt. 41, 204a,
Artema str., 83122 Donetsk, Ukraine
e-mail: raisa@cs.dgtu.donetsk.ua

Abstract. In this chapter the features of image generation and performing sys-
tems’ design are analyzed. Estimation of complexity of the standard rendering
pipeline is done. The architectural decisions and algorithm approaches for the
real-time rendering systems’ creation are discussed. Adaptation of a multilevel de-
signing method of the built-in systems with realization of separate modules on
reconfigurable devices, based on application of architecture operated by models
and the unified modeling language, is offered. The graphical application of the
modified method is shown.

4.1 Introduction

Until the early 1980s, computer graphics was a small, specialized field, largely
because the hardware was expensive. The typical application was the image gene-
rators for trainer development and simulators. These systems must generate high
quality images in real time. The concept of a “desktop” now became a popular
metaphor for organizing screen space. Modern small personal devices, such as
Nokia N810 Internet Tablet [1] and Nokia M810 WiMAX Edition, are in want of
real-time computer graphics which concerned with animation, video processing,
2D and 3D performing. Computer graphics systems’ developing, as well as alter-
idem, typically is performed years in advance of subsystem development and inte-
gration. In this process, models of functions and possible solutions for the physical
architecture must be defined and matched to evaluate quality and select the most
effective algorithm and the best possible hardware platform. For small personal
systems designers the primary architectural/design issue the partitioning of system
functionality across both hardware and software. Separate specifications for hard-
ware and software, often written in non-formal languages, are delivered with
functionality a priori, because changes to the partition may necessitate extensive
redesign. Because software rework is viewed as easier than hardware redesign
often drawbacks’ corrections have a heavy software decision.

94 R. Malcheva

4.2 Features of Digital Systems for Real-Time Image Generation

Real-Time Image Generator can be represented as a rendering pipeline - a logical
model for computations needed in a raster-display system. It is not necessarily a
physical mode, since the stages of the pipeline can be implemented in either soft-
ware or hardware. Fig. 4.1 shows a version of the rendering pipeline that is typical
for systems using conventional primitives (lines and polygons) and conventional
shading techniques (constant, Gouraud, or Phong).

Fig. 4.1 Standard graphics pipeline

4.2.1 Estimation of the Complexity of the Standard Rendering
Pipeline

Scene Manager

The first stage of the pipeline is traversal of the display model or scene manager.
This is necessary because the image may change by an arbitrary amount between
successive frames. All the primitives in the database must be fed into the remainder
of the display pipeline, along with context information, such as colors and current-
transformation matrices. Newman [2] described the two types of traversal: imme-
diate mode and retained mode. Both methods have advantages and disadvantages,
and the choice between them depends on the characteristics of the application and
of the particular hardware architecture used.

Immediate mode offers flexibility, since the display model does not need to
conform to any particular display-list structure and the application has the luxury
of recreating the model differently for every frame. The main CPU must perform
immediate-mode traversal, however, expending cycles it could use in other ways.
Retained mode, on the other hand, can be handled by a display processor if the
structure database is stored in its local memory. Retained-mode structure traversal
can be accelerated by optimizing the database storage and access routines or by
using a dedicated hardware traverser. Furthermore, since the main CPU only edits
the database each frame, rather than rebuilding it from scratch, a low-bandwidth

4 Application of Multilevel Design on the Base of UML 95

channel between the main CPU and the display processor is sufficient. Of course,
relatively few changes can be made to the structure database between frames, or
astern performance will suffer.

The choice between traversal modes is a controversial matter for system de-
signers. Many argue that retained mode offers efficiency and high performance.
Others believe that immediate mode supports a wider range of applications and
does not necessarily lead to reduced performance if the system has a sufficiently
powerful CPU.

Unfortunately, it is difficult to estimate the processing requirements for display
traversal, since they depend on the traversal method used and on the characteris-
tics of the Particular display model. At the very least, a read operation and a write
operation must be performed for each word of data to be displayed. The
processing requirements may be much greater if the structure hierarchy is deep or
if it contains many modeling transformations.

Modeling Transformation

In this stage of the pipeline, graphics primitives are transformed from the object-
coordinate system to the world-coordinate system. This is done by transforming
the vertices of each polygon with a single transformation matrix that is the conca-
tenation of the individual modeling transformation matrices. In addition, one or
more surface-normal vectors may need to be transformed, depending on the
shading method to be applied.

Constant shading requires world-space surface-normal vectors for each poly-
gon. We compute these by multiplying object-space surface normals by the trans-
pose of the inverse modeling transformation matrix. Gouraud and Phong shading
require world-space normals for each vertex, rather than for each polygon, so each
vertex-normal vector must be multiplied by the transpose inverse transformation
matrix.

Let us compute the number of floating-point calculations required to transform
a single vertex if Gouraud shading is to be applied. Multiplying a homogeneous
point by a 4 × 4 matrix requires 16 multiplications and 12 additions. Multiplying
each vertex normal by the inverse transformation matrix requires 9 multiplications
and 6 additions (only the upper-left 3х3 portion of the matrix is needed).

Therefore, transforming a single vertex with surface normal requires
16 + 9 = 25 multiplications and 12 + б = 18 additions.

Trivial Accept/Reject Classification

In the trivial accept/reject classification stage, primitives (now in world coordi-
nates) are tested to see whether they lie wholly inside or outside the view volume.
By identifying primitives that lie outside the view volume early in the rendering
pipeline, processing in later stages is minimized. We will clip primitives that
cannot be trivially accepted or rejected in the clipping stage.

To trivially accept or reject a primitive, we must test each transformed vertex
against the six bounding planes of the view volume. In general, the bounding
planes will not be aligned with the coordinate axes. Each test of a vertex against a

96 R. Malcheva

bounding plane requires multiplications and 3 additions (the dot product of a
homogeneous point with a 3D plane equation). A total of 6 • 4 = 24
multiplications and 6 • 3 = 18 additions are required per vertex.

Lighting

Depending on the shading algorithm to be applied (constant, Gouraud, or Phong),
illumination model must be evaluated at various locations: once per polygon for
Phong shading, once per vertex for Gouraud shading, or once per pixel for Phong
shading Ambient, diffuse, and specular illumination models are commonly used in
high-performance systems.

In constant shading, a single color is computed for an entire polygon, based on
the position of the light source and on the polygon's surface-normal vector and dif-
fuse color. The first step is to compute the dot product of the surface-normal vec-
tor and the light vector (3 multiplications and 2 additions for directional light
sources). If an attenuation factor based on the distance to the light source is used,
we must calculate it and multiply it by the dot product here. Then, for each of the
red, green, and blue color components, we multiply the dot product by the light-
source intensity and diffuse-reflection coefficient (2 multiplications), multiply the
ambient intensity by the ambient-reflection coefficient (1 multiplication), and add
the results (1 addition). If we assume a single directional light source, calculating
a single RGB triple requires 3 + 3 • (2 + 1) = 12 multiplications and 2+3-1=5 addi-
tions. Gouraud-shading a triangle requires three RGB triples—one for each vertex.

Viewing Transformation

In this stage, primitives in world coordinates are transformed to normalized pro-
jection (NPC) coordinates. This transformation can be performed by multiplying
vertices in world coordinates by a single 4х4 matrix that combines the perspective
transformation (if used) and any skewing or nonuniform scaling transformations
needed to convert world coordinates to NPC coordinates. This requires 16 multip-
lications and 12 additions per vertex. Viewing transformation matrices, however,
have certain terms that are always zero. If we I take advantage of this, we can re-
duce the number of computations for this stage by perhaps 25 percent. We will as-
sume that 12 multiplications and 9 additions per vertex are required in the viewing
transformation stage.

Note that if a simple lighting model (one that does not require calculating the
distance between the light source and primitive vertices) is used; modeling and
viewing transformation matrices can be combined into a single matrix. In this case
only one transformation stage is required in the display pipeline - a significant
savings.

Clipping

In the clipping stage, lit primitives that were not trivially accepted or rejected are
clipped to the view volume. Clipping serves two purposes: preventing activity m

4 Application of Multilevel Design on the Base of UML 97

one screen window from affecting pixels in other windows, and preventing ma-
thematical overflow and underflow from primitives passing behind the eye point
or at great distances.

Exact clipping is computationally practical only for simple primitives, such as
lines and Polygons. These primitives may be clipped using any of the 3D clipping
algorithms. Complicated primitives, such as spheres and parametrically ended
patches, are difficult to clip, since clipping can change the geometric nature of the
Primitive. Systems designed to display only triangles have a related problem,
since a clipped triangle may have more than three vertices.

An alternative to exact clipping is scissoring. Here primitives that cross a clip-
ping boundary are processed as usual until the rasterization stage, where only pix-
els inside the viewport window are written to the frame buffer. Scissoring is a
source of inefficiency, however, since effort is expended on pixels outside the
viewing window. Nevertheless, it is the only practical alternative for clipping
many types of complex primitives. In the pipeline described here, all clipping is
performed in homogeneous coordinates. This is really only necessary for z
clipping, since the w value is needed to recognize vertices that lie behind the eye.

Many systems clip to x and у boundaries after the homogeneous divide for effi-
ciency. This simplifies x and у clipping, but still allows primitives that pass behind
the eye to be recognized and clipped before w information is lost. The number of
computations required for clipping depends on how many primitives cross the
clipping boundaries, which may change from one frame to the next. A common
assumption is that only a small percentage of primitives (10 percent or fewer)
need clipping. If this assumption is violated, system performance may decrease
dramatically.

Division by w and Mapping to 3D Viewport

Homogeneous points that have had a perspective transformation applied, in gener-
al, have w values not equal to 1. To compute true x, y, and z values, we must di-
vide the x, y, and z components of each homogeneous point by w. This requires 3
divisions per vertex. In many systems, vertex x and y coordinates must be mapped
from the clipping coordinate system to the coordinate system of the actual 3D
viewport. This is a simple scaling and translation operation in x and y that requires
2 multiplications and 2 additions per vertex.

Rasterization

The rasterization stage converts transformed primitives into pixel values, and
generally stores them in a frame buffer. As discussed above, rasterization consists
of three subtasks: scan conversion, visible-surface determination, and shading.
Rasterization, in principle, requires calculating each primitive's contribution to
each pixel, an 0(n·m) operation, where n is the number of primitives and m is the
number of pixels.

In a software rendering system, rasterization can be performed in either of two
orders: primitive by primitive (object order), or pixel by pixel (image order).

98 R. Malcheva

Estimation of the Complexity of Geometry Calculations

For the next characteristics:

• 10,000 triangles (none clipped);
• Each triangle covers an average of 100 pixels, one-half being obscured by other

triangles;
• Ambient and diffuse illumination models (not Phong);
• Gouraud shading;
• 1280 by 1024 display screen, updated at 10 frames per second.

For each frame, we must process 10,000 • 3 = 30,000 vertices and vertex-normal
vectors. In the modeling transformation stage, transforming a vertex (including
transforming the normal vector) requires 25 multiplications and 18 additions. The
requirements for this stage are thus 30,000 • 25 = 750,000 multiplications and
30,000 • 18 = 540,000 additions.

Trivial accept/reject classification requires testing each vertex of each primitive
against the six bounding planes of the viewing volume, a total of 24 multiplica-
tions and 18 additions per vertex. The requirements for this stage are thus 30,000 •
24 = 720,000 multiplications and 30,000 • 18 = 540,000 additions, regardless of
how many primitives are trivially accepted or rejected.

Lighting requires 12 multiplications and 5 additions per vertex, a total of
30,000 • 12 -360,000 multiplications and 30,000 • 5 = 150,000 additions.

The viewing transformation requires 8 multiplications and 6 additions per vertex, a
total of 30,000 • 8 = 240,000 multiplications and 30,000 • 6 = 180,000 additions.

The requirements for clipping are variable; the exact number depends on the
number о primitives that cannot be trivially accepted or rejected, which in turn de-
pends on the scene and on the viewing angle. We have assumed the simplest case
for our database, that a primitives lie completely within the viewing volume. If a
large fraction of the primitive needs clipping, the computational requirements could
be substantial (perhaps even more than in the geometric transformation stage).

Division by w requires 3 divisions per vertex, a total of 30,000 • 3 = 90,000 di-
visions. Mapping to the 3D viewport requires 2 multiplications and 2 additions per
vertex, a total 60,000 multiplications and 60,000 additions.

Summing the floating-point requirements for all of the geometry stages gives a
total of 120,000 multiplications/divisions and 1,470,000 additions/subtractions per
frame. Since anew frame is calculated every 1/10-second, a total of 22.2 million
multiplications/divisions and 14.7 million additions/subtractions (36.9 million ag-
gregate floating-point operations) as required per second—a very substantial
number.

4.2.2 The Architectural Decisions and Algorithm Approaches for
the Real-Time Rendering Systems

A direct way to add concurrency to rasterization calculations is to cast the various
steps of a software algorithm into a hardware pipeline. This technique has been

4 Application of Multilevel Design on the Base of UML 99

used to build a number of inexpensive, moderately high-performance systems.
This approach can be used with either of the two main rasterization approaches:
object order and image order algorithms.

Pipelined Object-Order Architectures

Object-order rasterization methods include the z-buffer, depth-sort, and binary
space partition (BSP) - tree algorithms. The outer loop of these algorithms is an
enumeration of primitives in the database, and the inner loop is an enumeration of
pixels within each primitive. For polygon rendering, the heart of each of these
algorithms is rasterizing a single polygon.

In order to increase the productivity and to widen the functional capability the
multichannel systems is employed in object order architectures [3]. These systems
consist of common scene manager and some rendering channels. Each channel as
well as a system, in general, presents a seven-stage pipeline (Fig. 4.1). The image
is put out by means of projection video devices. The images having generated by
separate channels, are mixed to a single whole on the screen. In such multichan-
nel systems the scene manager has a particular functional aim to form a few priori-
ty lists. Our version of constructing the scene manager for a multichannel system
as a special-purpose device is presented in [3]. The following stages were joint to
build up the efficient algorithm:

• the definition of potentially visible objects;
• the depth sorting of potentially visible objects with marking the hidden objects;
• sorting out the subobjects of the hidden objects.

Image-Order Architectures

The alternative to object-order rasterization methods is image-order (or scan-line)
approach. Scan-line algorithms calculate the image pixel by pixel, rather than pri-
mitive by primitive. To avoid considering primitives that do not contribute to the
current scan line, most scan-line algorithms require primitives to be transformed
into screen space and sorted into buckets according to the first scan line in which
they each appear.

Ray tracing, also known as ray casting, determines the visibility of surfaces by
tracing imaginary rays of light from the viewer’s eye to the objects in the scene. A
center of projection (the viewer’s eye) and a window on an arbitrary view plan are
selected. The window may be thought of as being divide into a regular grid, whose
elements correspond to pixels at the desired resolution. Then, for each pixel in the
window, an eye ray is fired from the center of projection through the pixel’s center
into the scene. The pixel’s color is set to that of the object at the closest point of
intersection.

Ray tracing was first developed by Appel and by Goldstein and Nagel [2]. Ap-
pel used a sparse grid of rays used to determine shading, including whether a point
was in shadow. Goldstein and Nagel originally used their algorithm to simulate
the trajectories of ballistic projectiles and nuclear particles. The pseudocode for
this simple ray tracer is shown below.

100 R. Malcheva

Select center of projection and window on view plan;

For (each san pixel line in image){

For (each pixel in scan line) {

Determine ray from center of projection pixel;

 For (each object in scene){

 If (object is intersected and is closest considered thus far)

 Record intersection and object name;
 }

Set pixel’s color to that at closest object intersection; }
}

The best hardware decision for this algorithm is processor-per-pixel architecture.
For good screen resolution it needs above million processors or interpolation
between results of neighbor-processors [3].

Comparing of Architectures

1. Object-parallel systems typically require specialized processors. This implies
heavy reliance on custom VLSI chips, making system design difficult and
expensive.

2. Image-parallel systems, on the other hand, place more reliance on frame-buffer
memory, which can be built with commercial parts such as VRAMs.

3. The specialized nature of object processors limits the types of primitives that
can be displayed and the shading algorithms that can be used.

4. Object-parallel systems have poor overload characteristics. Generally, object-
parallel systems perform at full speed as long as there are enough object pro-
cessors. Special provisions must be made to handle large databases, and
performance generally decreases rapidly.

5. Ray-tracing algorithm of image-parallel performing cannot be applied in small
personal device.

4.3 Designing of Specialized Processors

To show non-regular structure of specialized processors for rendering this section
discusses architectures of specialized processors for some stage of standard graph-
ical pipeline.

4.3.1 Scene Processor

Fig. 4.2 shows a version of the scene processor for the systems which use conven-
tional primitives (lines and polygons) and priority algorithms with several levels
of detail. In accordance with the extended algorithm the scene manager includes:

4 Application of Multilevel Design on the Base of UML 101

• a matrix formation unit (MFU);
• a visibility detection unit (VDU);
• a detail/loader unit (DLU).

Fig. 4.2 Structure of Scene Processor

The first scene manager action begins with loading the vectors Po and Pn of the
positions and orientations of an observer and an object.

Structure of positional vector is:

{ }γθψ ,,,,, zyxP = , (4.1)

where { }zyx ,, - linear coordinate of the center of object/observer coordinate

system; { }γθψ ,, - angle coordinate.

MFU stores angles to object angle registers ROP, ROT, ROG and observer an-
gle registers RNP, RNT, RNG (Fig. 4.3). Using angels as table-pointers MFU
takes sin and cos from the ROM3 and ROM4 and stores them it registers. MUL2
and SUM2 accumulate matrix MA (4.2) and MB (4.3) coefficients.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−⋅⋅+⋅⋅⋅−

⋅−⋅

⋅+⋅⋅⋅⋅−⋅⋅

=

γψθγψγθγψθθψ

γθγθθ

γψθγψθγψγψθψ

sinsinsincoscossincoscossinsincossin

sincoscoscossin

cossinsinsincossincoscossinsincoscos

MA (4.2)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−⋅⋅−⋅+⋅⋅

⋅+⋅⋅⋅⋅⋅−⋅

⋅−⋅

=

γψθγψθγγψθγψ

γθγψθγθθγψγψ

θψθθψ

sinsinsincoscoscossincossinsinsincos

sincoscossinsincoscossincoscossinsin

cossinsincoscos

MB (4.3)

MA is used for translation from the object system to global. For translation from
the global system to observer MB-matrix is used. To get MA and MB MFU takes
{ }γθψ ,, from Po and Pn, accordingly.

102 R. Malcheva

Fig. 4.3 Block diagram of matrix formation part of MFU

To translate center-point of object from the global system to observer
expression (4.4) is used (Fig. 4.4).

The VDU sets a “visual” flag for potentially visible objects using its 3D spheri-
cal extents. The centers of the objects are transformed into the observer coordinate
system for preliminary processing and setting “visual” flags.

.

111

MB
z

y

x

z

y

x

z

y

x
PnPocon

⋅

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 (4.4)

4 Application of Multilevel Design on the Base of UML 103

Fig. 4.4 Block diagram of center translation part of MFU

To simplify the process the object’s extent is analyzed, as bounded sphere with
radius Ro. It is obvious; the object is located beyond the scope of visible region, if
it is located behind the screen or outside the bounders of the simple viewing py-
ramid (Fig. 4.5).

104 R. Malcheva

Fig. 4.5 Algorithm of visibility detection

Visibility condition:

()

),
2

(&)
2

(

&)
2

(&)
2

(&

o
w

cono
w

con

o
w

cono
w

conowcon

R
A

zR
A

z

R
B

yR
B

yRdxVisCond

−−>+<

−−>+<−>=
 (4.5)

where ww ba , - size of window; wd - distance from the observer to the window;

ww BA , - base of visible pyramid:

.;
w

conw
w

w

conw
w d

xb
B

d

xa
A

⋅
=

⋅
= (4.6)

The DLU forms the priority subobjects list for the current level of details
(Fig. 4.6).

Algorithm of priority list loading is shown in fig.4.7. Expression for block 2 is:

() () () ,......... zNzPzPyNyPyPxNxPxPS inoinoino ⋅−+⋅−+⋅−= (4.7)

where { }zyxNi ,,= - normal vector for i-node of BSP-tree.

4 Application of Multilevel Design on the Base of UML 105

Fig. 4.6 Block diagram of VDU

Block diagram of DLU is shown in Fig.4.8 - 4.9.

106 R. Malcheva

Fig. 4.7 Algorithm of priority-list loading

Fig. 4.8 Block diagram of DLU

4 Application of Multilevel Design on the Base of UML 107

Fig. 4.9 Continues Block diagram of DLU

108 R. Malcheva

4.3.2 Clipping Processor

Fig. 4.10 shows an algorithm for 2D clipping of line-segment against the right
boundary of screen.

Fig. 4.10 2D clipping algorithm

Lines intersecting a rectangle clip region (or any complex polygon) are always
clipped to a single line segment; lines lying on the clip rectangle’s border are con-
sidered inside and hence are displayed (Vis=1, blocks 1,4). If both endpoints of
line are outside the one rectangle’s border, it is not displayed (Vis=0, blocks 2,3).

4 Application of Multilevel Design on the Base of UML 109

 If one endpoint lies inside and one outside, the line intersects the clip rectangle
and it is necessary to compute the intersection point using MPSD (Middle-Point
Subdivision Algorithms, blocks 5-16).

This algorithm needs only addition and shift operations.

4.4 Application of Runtime Reconfiguration

The main problem of standard pipeline is "information" flow between processors.
For complex graphical scene time of data exchange increases proportionally to
improvement of quality of the image.

Runtime reconfiguration is a good complement to using specialized proces-
sors [5]. First of all, it solves the lack of flexibility of systems using hardware ac-
celeration. The advantage of pure software is that any new application can be
loaded at runtime, but the set of hardware-accelerated programs that can be ex-
ecuted in a given system is fixed at design time by the coprocessors included in
it. The solution to this drawback is to also modify the hardware at runtime,
something that's only possible with reconfiguration.

The best way to exploit these advantages is by using self-reconfigurable sys-
tems, where the FPGA can modify its own configuration without using addition-
al external components. This will lead to a true system-on-a-chip solution that
doesn't need a microcontroller or any other complex components to implement
the reconfiguration.

Run-Time reconfigurable (RTR) systems could by assigned to implement com-
plex algorithms with dynamic behavior using hardware. These systems allow
reconfigure whole algorithm or part of them without interrupting computation
process and also transparent for hardware environment [6]. RTR systems have
several variants of using which reviewed in. One of the variant is implementation
of complex computation algorithm using minimal hardware resources. This means
algorithm distribution to several parts – computational logical blocks (CLB), and
separate configuration/execution of each part. Computational logical blocks confi-
gures and later executes sequentially (sequentially managed execution) or using
special internal algorithm (algorithmically managed execution). Each computation
logical block concerned with other blocks by dataflow and operation unit. Compu-
tational logical block – part of algorithm which takes some data as input, process
it and put some data as output. So CLB is logical structure with one input and one
output. All CLBs could use shared operation unit, which allows reduce quantity of
reconfigurable hardware resources and reduce time of each reconfiguration, if par-
tially reconfiguration allowed. CLBs used shared external memory where they
stores results of data processing.

System contains set of blocks which ensuring algorithm configuration, execu-
tion, data exchange etc. Offered system contains following blocks (Fig. 4.11).

110 R. Malcheva

Fig. 4.11 Block diagram of RTR system

Executive subsystem – ensure configuring and reconfiguring CLBs and they
execution. Contains: operation unit – non reconfigurable subsystems which im-
plements set of low-level operations (functions) shared by most of CLBs, using of
operation unit reduces reconfiguration time by making shared operations with
more performance non reconfigurable hardware; reconfigurable kernel – hardware
reconfigurable resources which purposed for CLBs configuration and execution;
driver – control subsystem for reconfigurable kernel which ensure kernel
encapsulation by special hardware interface with hardware environment.

Control unit – ensure execution of managing algorithms (algorithm managing
and parallelism support) and interface with external memory where CLB configu-
rations stored (flash memory, for example). Provides user interface for algorithm
execution control, data processing etc.

Memory manager – ensure supply of external dynamically memory for execu-
tive subsystem and configurations memory for control unit. Implements set of
caching or/and swap algorithms etc.

4.5 Application of UML for HDL-Code Creation

Direct transforming of UML state diagram into HDL is the first step in the auto-
mated synthesis of an FPGA circuits. UML has emerged as a common foundation
for model driven architecture modeling. UML allows to build platform indepen-
dent descriptions that can be used by designers to make informed decision about
their hardware/software tradeoffs. UML is supported by a wide range of tools [7].
The exchange of models between tools is supported by the XML standard, an
XML-based description language which captures the details of UML model
diagrams in a portable, machine readable format.

HDL is one of a class of computer languages used to provide formal description
of electronic circuitry. An HDL standard text-based expression is capable of de-
scribing the temporal behavior and/or (spatial) circuit structure of an electronic

4 Application of Multilevel Design on the Base of UML 111

system. HDL is widely used in hardware design to specify details of chip design
for either specialized chips or FPGAs. For custom or standard-cell based inte-
grated circuit, such as a processor or other kind of specialized digital logic chip,
HDL specifies a model for the expected behavior of a circuit before that circuit is
designed and built. Special logic synthesis tools are then invoked that ultimately
provide the geometric information used to produce photolithographic masks
necessary for the fabrication of the device.

For programmable logic devices such as FPGAs, HDL code is first delivered to
a logic compiler (FPGA synthesis tool), and the output is uploaded into the device.
The unique property of this process and of programmable logic in general, is that
it is possible to alter the HDL code many times, compile it, and upload into the
same device for testing.

The transformation from high-level UML state diagram to HDL is based on a
multi-step process, which consists of the following steps.

Fig. 4.12 UML state diagrams for 2D clipping algorithm

Step 1. State diagrams are created using UML state diagram notation. These di-
agrams describe system behavior using states, events and actions and correspond
closely with the high-level design approach taken by circuit designers.

112 R. Malcheva

Step 2. UML diagrams are exported to XMI, a standard XML-based interme-
diate form. XMI uses predefined XML elements and attributes to specify the
states, events and actions that make up the state diagram. The initial impetus for
XMI was to enable UML diagrams to be imported and exported across different
UML tools. Our approach uses the XMI as input to the next stage of processing.

Step 3. The XML representation of state machines is parsed by a Java-based
XML parsing utility.

Step 4. Data extracted from the XMI by the Java parser is mapped to HDL
templates, resulting in HDL suitable for use in FPGA construction.

Fig. 4.13 UML state diagrams for MPSD algorithm

4.5.1 Example for 2D Clipping Realization

Fig. 4.12 shows a decomposition of intersection point’s computing (blocks 5-16 of
Fig. 4.10) and conversion to UML notation.

4 Application of Multilevel Design on the Base of UML 113

UML state diagrams for sub-machine 1 and sub-machine 2 are shown in
Fig. 4.13. Program code below contains a HDL-code for Sub-machine 2 and 1 si-
mulation in Active-HDL.

-- Architecture of middle-point-subdivision block
entity sum_div is
 port(Xn: in integer;
 Xk: in integer;
 Yn: in integer;
 Yk: in integer;
 Xm: out integer:=0;
 Ym: out integer:=0
);
end sum_div;

architecture sum_div1 of sum_div is
begin
 process (Xn,Xk,Yn,Yk)
 begin
 Xm<=(Xn+Xk)/2;
 Ym<=(Yn+Yk)/2;
 end process;

end sum_div1;

--
-- Architecture of processor for cross-point calculation
entity cpu is
 port(Xn: in integer;
 Xk: in integer;
 Yn: in integer;
 Yk: in integer;
 L: in integer;
 Xc: out integer:=0;
 Yc: out integer:=0;
 Res: out integer:=0);
end cpu;

architecture cpu1 of cpu is
component sum_div is
 port(Xn,Xk,Yn,Yk: in integer:=0;
 Xm,Ym: out integer:=0);
end component sum_div;
signal Xna,Xka,Yna,Yka,Xca,Yca: integer:=0;
begin
 U1 : sum_div port map(Xna,Xka,Yna,Yka,Xca,Yca);
process
variable Xn1,Xk1,Yn1,Yk1,Xc1,Yc1: integer;
variable Res1: integer:=0;
 begin
 Xn1:=Xn;
 Xk1:=Xk;

114 R. Malcheva

 Yn1:=Yn;
 Yk1:=Yk;

 if Xk /= L and Xn /= L then
 m1: loop
-- Xc1:=(Xn1+Xk1)/2;
-- Yc1:=(Yn1+Yk1)/2;
 Xna<=Xn1;
 Xka<=Xk1;
 Yna<=Yn1;
 Yka<=Yk1;
 Xc1:=Xca;
 Yc1:=Yca;
 if Xc1>L then
 Xk1:=Xc1;
 Yk1:=Yc1;
 else
 Xn1:=Xc1;
 Yn1:=Yc1;
 end if;
 wait for 100 ns;
 exit m1 when Xc1 = L;
 end loop m1;
 else
 wait for 10 ns;
 if Xk = L then
 Xc1:=Xk;
 Yc1:=Yk;
 else
 Xc1:=Xn;
 Yc1:=Yn;
 end if;
 end if;
 Xc<=Xc1;
 if Res1=0 then
 Yc<=Yc1;
 end if;
 Res<=1;
 Res1:=1;
 end process;
end cpu1;

4.5.2 Fragment of HDL for Scene Processor Simulation

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package work is
 type normal is array (0 to 32) of unsigned(0 to 48);
 type matr is array (0 to 8) of unsigned(0 to 48);
end work;

4 Application of Multilevel Design on the Base of UML 115

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use WORK.work.all;
entity graf is
 port(k,n : in integer; a,b2,d,Ro : in unsigned(0 to 48);
 Pnor1,P1 : in normal; B : in matr; clk : in std_logic;
 FV : out std_logic; Ra : out unsigned(31 downto 0));
end graf;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use WORK.work.all;
architecture graf_ar of graf is
 signal j : integer range 0 to 48;
 signal f : std_logic;
 signal xcon,ycon,zcon : unsigned(0 to 65);
 signal A1,B1 : unsigned (0 to 114);
 signal S : normal;
 signal temp1,d1 : unsigned (0 to 48);
 signal Pnor,P : normal;
begin
 Pnor<=Pnor1;
 P<=P1;
 d1<=d;
 --S=(Po.x-Pn.x)*Pnor.x+(Po.y-Pn.y)* Pnor.y+(Po.z-Pn.z)* Pnor.z;
 --xcon=(Po.x-Pn.x)*matr_b[0]+(Po.y-Pn.y)*matr_b[1]+
 -- (Po.z-Pn.z)*matr_b[2];
 --ycon=(Po.x-Pn.x)*matr_b[3]+(Po.y-Pn.y)*matr_b[4]+
 -- (Po.z-Pn.z)*matr_b[5];
 --zcon=(Po.x-Pn.x)*matr_b[6]+(Po.y-Pn.y)*matr_b[7]+
 -- (Po.z-Pn.z)*matr_b[8];
 --A=a*xcon/d;
 --B=b*xcon/d;
 --xcon>(d-Ro);
 --ycon<(B/2+Ro);
 --ycon>(-B/2-Ro);
 --zcon<(A/2+Ro);
 --zcon>(-A/2-Ro);
 process (clk)
 begin
 if clk='1' and clk'event then
 S(32)<=(others=>'0');
 for i in к-1 downto 0 loop
 j<=n-i;
 S(i)(0 to 33)<=((P(i)(0 to 16))-(P(j)(0 to 16)))*

(Pnor(i)(0 to 16))+((P(i)(17 to 32))-(P(j)(17 to 32)))*
(Pnor(i)(17 to 32))+((P(i)(33 to 48))-(P(j)(33 to 48)))*
(Pnor(i)(33 to 48));

 if S(i)>S(32) then Ra(i)<='0';
 else Ra(i)<='1';
 end if;

116 R. Malcheva

 end loop;
 for i in 1 to 8 loop
 j<=n-i;
 xcon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(0)+

(P(i)(17 to 32)-P(j)(17 to 32))*B(1)+
(P(i)(33 to 48)-P(j)(33 to 48))*B(2);

 ycon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(3)+
(P(i)(17 to 32)-P(j)(17 to 32))*B(4)+
(P(i)(33 to 48)-P(j)(33 to 48))*B(5);

 zcon<=(P(i)(0 to 16)-P(j)(0 to 16))*B(6)+
(P(i)(17 to 32)-P(j)(17 to 32))*B(7)+
(P(i)(33 to 48)-P(j)(33 to 48))*B(8);

 A1<=(a*xcon)/d1;
 B1<=(b2*xcon)/d1;
 f<='0';
 if (d-Ro)>xcon then f<='1'; end if;
 if (B1/2+Ro)<ycon then f<='1'; end if;
 if (((not B1)/2)-Ro)>ycon then f<='1'; end if;
 if (A1/2+Ro)<zcon then f<='1'; end if;
 if (((not A1)/2)-Ro)>zcon then f<='1'; end if;
 if f='1' then FV<='1';
 else FV<='0';
 end if;
 end loop;
 end if;
 end process;
end graf_ar;

4.6 Summary and Future Directions

The ability to move from UML diagrams to HDL hardware descriptors is the first
step in an effort to use model-based architecture to further optimize and automate
the small systems development. Having made the decision to implement an algo-
rithm using FPGAs, there are numerous decisions concerning the positioning of
components that will impact product viability.

By analyzing the whole system in terms of supporting software and hardware, it
is possible exploit new opportunities for image generation systems developing.

References

[1] Nokia Internet Tables (2008), http://europe.nokia.com/(accessed April 26)
[2] Foley, J.D., et al.: Computer graphics: principal and practice. Addison-Wesley,

Reading (1997)
[3] Bashkov, E.A., Malcheva, R.: The Performance Estimation of Scene Manager in

Real-Time Scene Generator. Sofia, 123–127 (1995)
[4] Malcheva, R.: The problems of modeling and rendering of the realistic complex

scenes. In: Proceedings of ECCPM 2002, Balkema, pp. 537–538 (2002)

4 Application of Multilevel Design on the Base of UML 117

[5] Gonzalez, I., Aguayo, E., Lopez-Buedo, S.: Self-reconfigurable embedded systems on
Low-Cost-FPGAs. Micro 27(4), 49–57 (2007)

[6] Grytsenko, A.A., Malcheva, R.V., Barkalov, A.A.: Run-time reconfigurable system for
distributed algorithm execution. In: LVIV: CSIT 2006, pp. 164–166 (2006)

[7] Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven Architec-
ture, Indianapolis. Addison-Wesley, Reading (2002)

Part II
Digital Design with Programmable

Logic

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 121–144.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

5 Logic Synthesis Method of Digital Circuits
Designed for Implementation with Embedded
Memory Blocks of FPGAs

Mariusz Rawski, Paweł Tomaszewicz, Grzegorz Borowik, and Tadeusz Łuba

Warsaw University of Technology, Institute of Telecommunications,
Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. The paper presents logic synthesis method targeted at FPGA
architectures with specialized embedded memory blocks (EMBs). Existing
methods do not ensure effective utilization of the possibilities provided by such
modules. The problem of efficient mapping of combinational and sequential parts
of design can be solved using decomposition algorithms. The main question of
this paper is the application of decomposition based methods for efficient
utilization of modern FPGAs. It will be shown that functional decomposition
method allows for very flexible synthesis of the designed system onto
heterogeneous structures of modern FPGAs composed of logic cells and EMBs.
Finally we present results of the experiments, which evidently show, that the
application of functional decomposition algorithms in the implementation of
typical signal and information processing systems greatly influences the
performance of resultant digital circuits.

5.1 Introduction

The technological advancements in Field Programmable Gate Arrays (FPGA) in
the past decade have opened new paths for digital system design engineers. An
FPGA can be described as an array of programmable logic cells interconnected by
programmable connections. Each cell can implement a simple logic function (of a
limited number of inputs) defined by a designer’s CAD tool. A typical
programmable device has a large number (64 to over 300,000) of such cells that
can be used to form complex digital circuits. The ability to manipulate the logic at
the gate level means that the designer can construct a custom processor to
implement the desired function efficiently.

Since FPGA introduction in the 1980’s, the manufacturers have been extending
their chips’ ability to implement digital systems by introducing specialized
mechanisms such as low-latency carry-chain-routing lines that speed-up the
addition and subtraction operations, dedicated multiplier function blocks or even
fully functional MAC blocks called DSP blocks.

122 M. Rawski et al.

Modern FPGA devices are also equipped with memory-based structures [9, 28].
These specialized embedded memory blocks make it possible to implement data
storage modules such as shift registers or RAM blocks. In many cases, though, the
designer does not need such elements in his/her design or does not utilize all of
such resources. During the mapping stage, these blocks may be considered as
logic units unless they are being used for data storage. The memories act as very
large logic cells, where the number of inputs is equal the number of address lines.
Unfortunately, the existing CAD tools are not well suited to utilize all possibilities
that such EMB blocks offer due to the lack of appropriate synthesis methods.
Typically, after the logic synthesis stage, technology-dependent mapping methods
are used to map design onto available resources [11]. However, such an approach
is inefficient due to the fact that the quality of post-synthesis mapping is highly
dependent on the quality of technology-independent optimization step.

Recently, efforts have been made to develop methods based on functional
decomposition that would allow for efficient utilization of these EMB blocks
[6, 24, 25, 26].

Moreover, in modern logic synthesis of PLD, FPGA modules as well as PLA
structures, the problem of finite state machine synthesis is significant due to its
widespread practical application, but in particular internal states encoding. This
encoding influences both the structure of the realization of the FSM (i.e., the
connections between the combinational block and the memory block) and the
complexity of the combinational block.

Attempts to solve the above problem resulted in many methods for the structural
synthesis of FSMs. Their diversity results from different analysis, different
assumptions and, subsequently, designing the methods for specific types of target
components. Thus, different methods of the synthesis of FSM for PLA structures
[9, 12], for ROM memories [1] and PLD modules [4, 10] exist. Unfortunately, the
current solutions which concern FPGAs with EMBs are not efficient.

In this paper, new logic synthesis methods that allow for very efficient
utilization of embedded memory blocks are presented. Proposed methods are
based on functional decomposition [8, 15, 17, 22, 23]. These methods can be used
for specific designs, i.e. to implement FIR filters using the concept of distributed
arithmetic (DA). In the end, experimental results that prove efficiency of the
proposed methods are shown.

5.2 Decomposition of Boolean Functions

In this section, only information that is necessary for an understanding of this
paper is reviewed. More detailed description of functional decomposition based on
partition calculus can be found in [8, 22].

5.2.1 Functional Decomposition

The set X of input variables of Boolean function is partitioned into two subsets:
free variables U and bound variables V, such that U ∪ V = X. Assume that the
input variables x1, ..., xn have been relabeled in such a way, that:

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 123

U = {x1, ..., xr} and

 V = {xn–s+1, ..., xn}. (5.1)

Consequently, for an n-tuple x, the first r components are denoted by xU and the
last s components are denoted by xV.

Fig. 5.1 Schematic representation of the serial decomposition

Let F be a Boolean function with n inputs and m outputs and let (U, V) be the
pair of sets defined above. Assume that F is specified by a set of the function’s
cubes. Let G be a function with s inputs and p outputs, and let H be a function
with r + p inputs and m outputs. The pair (G, H) represents a serial decomposition
of F with respect to (U, V), if for every minterm b relevant to F, G(bV) is defined,
G(bV) ∈ {0, 1}p, and F(b) = H(bU, G(bV)). G and H are called blocks of the
decomposition (Fig. 5.1).

Theorem 5.1 Let PV, PU, and PF be partitions induced on the function F input
cubes by the input sub-sets V and U, and outputs of F, respectively. If there exists
a partition PG on the set of function F input cubes such that PV ≤ PG, and
PU ⋅ PG ≤ PF, then F has a serial decomposition with respect to (U, V).

The r-admissibility test allows one to obtain the set U of free variables for which
there exists function G (generally with t outputs) such, that ⏐U⏐ + t < n, where
n = ⏐X⏐.

Let P1, ..., Pk be partitions on M which is the set of minterms of function F. The
set of partitions {P1, ..., Pk} is r-admissible in relation to partition θ if and only if
there is a set {Pk+1, ..., Pr} of two-block partitions such that the product π of
partitions P1, ..., Pk, Pk+1, ..., Pr satisfies the inequality π ≤ θ, and there does not
exist any set of r − k − 1 two-block partitions which meets this requirement.

The r-admissibility has the following interpretation. If a set of partitions
{P1, ..., Pk} is r-admissible, then there might exist a serial decomposition of F
(Fig. 5.1) in which component H has r inputs: k primary inputs corresponding to
free input variables which induce {P1, ..., Pk} and r − k inputs which are G
outputs. Thus, to find a decomposition of F in which component H has r inputs,
we must find a set of input variables which induces an r-admissible set of input
partitions. The following corollary can be applied to check whether a given set of
input partitions is r-admissible.

124 M. Rawski et al.

Corollary 5.1 For σ ≤ τ, let τ⏐σ denote the quotient partition and η(τ⏐σ) be the
number of elements in the largest block of τ⏐σ. Also, let e(τ⏐σ) denote the
smallest integer equal to or larger than log2η(τ⏐σ), i.e. ⎡ ⎤)|(log)|(2 στηστ =e .

Then, {P1, ..., Pk} is r-admissible, if

r = k + e(π⏐πF), (5.2)

where π is the product of partitions P1, ..., Pk and πF = π ⋅ PF.
Corollary 5.1 provides a means to evaluate the admissibility of a set of input

variable partitions P(xi). In searching of a maximum set of variables, which can be
connected to circuit H directly, we compute sets of t-admissible partitions P(xi)
only, where t is a given number of inputs of circuit H.

Property 5.1 If a set of partitions P = {P1, ..., Pk} is m-admissible, then each
subset of P is m′-admissible, where .mm ≤′ Thus, the necessary condition for set
P to be m-admissible is that each subset P′ of P has to have r-admissibility

.)(mPr ≤′

Example 5.1 R-admissibility evaluation.

Table 5.1 Table of example function

 x1 x2 x3 x4 x5 x6 y1 y2 y3

1 1 0 0 1 0 0 0 0 0

2 1 0 1 1 1 0 0 1 0

3 1 1 0 1 1 1 0 1 0

4 1 0 1 0 0 0 0 0 1

5 0 0 1 1 1 0 1 0 0

6 1 1 0 1 0 0 1 0 1

7 1 0 0 1 1 1 1 0 0

8 0 0 1 0 0 1 1 1 1

9 0 0 1 0 1 0 1 1 0

For the function of 6 input variables and 3 output variables described
in Table 5.1, we have the following partitions induced by input variables:

},7,6,4,3,2,1;9,8,5{
1

=xP

},6,3;9,8,7,5,4,2,1{
2

=xP

},9,8,5,4,2;7,6,3,1{
3

=xP

},7,6,5,3,2,1;9,8,4{
4

=xP

},9,7,5,3,2;8,6,4,1{
5

=xP

}8,7,3;9,6,5,4,2,1{
6

=xP

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 125

and the output partition:

}.9;8;6;7,5;3,2;4;1{
321

=⋅⋅= yyyF PPPP

The quotient partitions are as follows:

},)(6)(7)(1)(4)(2,3;(9))8)(5({|
1

=Fx PP

},(3)(6);5,7)(8)(9)(1)(2)(4)({|
2

=Fx PP

},8)(9)(2)(4)(5)(;7)(1)(3)(6)({|
3

=Fx PP

},)(5,7)(1)(2,3)(6;(4)(8)(9){|
4

=Fx PP

},(9)(2,3)(5,7);8)(1)(4)(6)({|
5

=Fx PP

}.(3)(7)(8);5)(6)(9)(1)(2)(4)({|
6

=Fx PP

Thus, the r-admissibility of partitions induced by input variables is:

 ⎡ ⎤ ⎡ ⎤ ,45log1)|(log1)|(1)(22 111
=+=+=+= FxFxx PPPPePr η

⎡ ⎤ ,46log1)|(1)(222
=+=+= Fxx PPePr

⎡ ⎤ ,45log1)|(1)(233
=+=+= Fxx PPePr

⎡ ⎤ ,34log1)|(1)(244
=+=+= Fxx PPePr

⎡ ⎤ ,34log1)|(1)(255
=+=+= Fxx PPePr

⎡ ⎤ .46log1)|(1)(266
=+=+= Fxx PPePr

5.2.2 Decomposition into EMB Blocks

Functional decomposition relies on breaking down a complex system into a
network of smaller co-operating sub-functions in such a way that the original
system behavior is preserved. A single step of the functional decomposition
replaces function F with two sub-functions (Fig. 5.1). This process is recursively
applied to both G and H blocks until a network is constructed where each block
can be directly implemented in a single logic cell of target FPGA architecture.

A logic cell can implement any function of a limited number of input variables
(typically 4 or 5). Thus, the main effort of logic synthesis methods based on
decomposition is to find such a partition of input variables into the free set and the
bound set that allows for decomposition with the block G which not exceed the
size of the logic cell. Various methods are used, including exhaustive search, since
the size of the logic cell is small. Noticeably, the main constraint is the number of
inputs to block G and not the number of outputs. This is because the block G with
more outputs than available in the logic cell can be implemented with few logic
cells operating in parallel.

Since EMB blocks can be configured to work as logic cells of many different
sizes, methods intended for logic cells are not efficient. The main reason is that the
method has to check decompositions for many different sizes of block G. The

126 M. Rawski et al.

second factor is that, in case of EMBs the efficiency of utilization of these blocks
depends on carefully selected size of block G. For example, M512 RAM block of
Stratix device can be configured among others as an 8-input and 2-output logic
cell or 7-input and 4-output logic cell. Let us assume that in the decomposition
search, the following solutions are possible: the block G with 8 inputs and 1
output or the block G with 7 inputs and 3 outputs. From EMBs utilization point of
view, the second solution is better, since it utilizes 384 bits of total 512 bits
available, while the first solution utilizes only 256 bits.

In this paper, we present a method that uses the concept of r-admissibility to
efficiently create decompositions that utilize the EMB blocks in a high degree.
The method is based on the balanced functional decompositions. Based on
redundant variable analysis of each output of a multi-output function, parallel
decomposition separates F into two or more functions, each of which has as its
inputs and outputs a subset of the original inputs and outputs. Although in this
method the crucial point of the whole mapping process is created by the serial
decomposition algorithm, the parallel decomposition based on argument reduction
process plays a very important role. Thanks to this algorithm the functional
decomposition procedure can start directly with a two-level, espresso based
specification. Thus, the method itself allows one to develop a uniform autonomous
tool for decomposition-based technology mapping for FPGAs.

R-admissibility is used to evaluate serial decomposition possibilities for
different sizes of G block, according to possible configuration of EMB blocks. For

a function with n input variables there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

n
 possible solutions of serial

decomposition with k inputs G block. Since an EMB can be configured as a block
of many different sizes, the possible solution space is large. Using Property 5.1, the
search can be drastically reduced. This will be explained in the following example.

Example 5.2 R-admissibility application to serial decomposition evaluation.

For the function from Example 5.1 we have that the r-admissibility of single input
variables x1, …, x6 is 4, 4, 4, 3, 3 and 4, respectively. This means that only for
U = {x4}, V = {x1, x2, x3, x5, x6} and U = {x5}, V = {x1, x2, x3, x4, x6} a
decomposition with 2 outputs from block G may exist.

When considering solutions with 4 inputs to block G, according to Property 5.1,
only the solution with U = {x4, x5}, V = {x1, x2, x3, x6} should be evaluated. We have:

}(2,3)(5,7);(1)(6);(9);(4)(8){|)(
54

=⋅ Fxx PPP

 ⎡ ⎤ .32log2)|(2)(25454
=+=⋅+=⋅ Fxxxx PPPePPr

This means that for such variable partitioning, a decomposition may exist with
1-output G block.

5.2.3 Parallel Decomposition

Consider a multiple-output function F. Assume that F has to be decomposed into
two components, G and H, with disjoint sets YG and YH of output variables. This

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 127

problem occurs, for example, when we want to implement a large function using
components with a limited number of outputs. Note that such a parallel
decomposition can also alleviate the problem of an excessive number of inputs of
F. This is because, for typical functions most outputs do not depend on all input
variables. Therefore, the set XG of input variables on which the outputs of YG
depend, may be smaller than X. Similarly, for the set XH of input variables on
which the outputs of YH depend may be smaller than X. As a result, components G
and H have not only fewer outputs, but also fewer inputs than F. The exact
formulation of the parallel decomposition problem depends on the constraints
imposed by the implementation style. One possibility is to find sets YG and YH,
such that, the combined cardinality of XG and XH is minimal. Partitioning the set of
outputs into only two disjoint subsets is not an important limitation of the method,
because the procedure can be applied for components G and H again.

Example 5.3 Consider the multiple-output function given in Table 5.2. The
minimal sets of input variables on which each output of F depends are:

y1: {x1, x2, x6}
 y2: {x3, x4}
 y3: {x1, x2, x4, x5, x8}, {x1, x2, x4, x6, x8}
y4: {x1, x2, x3, x4, x7}
y5: {x1, x2, x4}
y6: {x1, x2, x6, x8}.

An optimal two-block decomposition, minimizing the card XG + card XH (where
card X is the cardinality of X), is YG = {y1, y3, y6}and YH = {y2, y4, y5}, with
XG = {x1, x2, x4, x6, x8} and XH = {x1, x2, x3, x4, x7}. The truth tables for components
G and H are shown in Table 5.3a and 5.3b.

Table 5.2 Function F

 x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 y5 y6

1 0 0 0 1 1 1 0 0 0 0 0 0 – 0

2 1 0 1 0 0 0 0 0 0 0 – 1 0 1

3 1 0 1 1 1 0 0 0 0 1 1 0 1 1

4 1 1 1 1 0 1 0 0 0 1 1 1 1 0

5 1 0 1 0 1 0 0 0 0 0 0 – 0 1

6 0 0 1 1 1 0 0 0 1 1 0 1 0 0

7 1 1 1 0 0 0 0 0 1 0 – 0 1 0

8 1 0 1 1 0 1 0 0 1 1 0 0 – 1

9 1 0 1 1 0 1 1 0 – 1 0 1 – 1

10 0 0 0 1 1 1 0 1 0 0 1 0 – 1

11 0 0 0 1 1 0 0 1 – – 1 0 0 0

128 M. Rawski et al.

Table 5.3a Function G of parallel decomposition

 x1 x2 x4 x6 x8 y1 y3 y6

1 0 0 1 1 0 0 0 0

2 1 0 0 0 0 0 0 1

3 1 0 1 0 0 0 1 1

4 1 1 1 1 0 0 1 0

5 0 0 1 0 0 1 0 0

6 1 1 0 0 0 1 1 0

7 1 0 1 1 0 1 0 1

8 0 0 1 1 1 0 1 1

9 0 0 1 0 1 1 0

Table 5.3b Function H of parallel decomposition.

 x1 x2 x3 x4 x7 y2 y4 y5

1 0 0 0 1 0 0 0 0

2 1 0 1 0 0 0 1 0

3 1 0 1 1 0 1 0 1

4 1 1 1 1 0 1 1 1

5 0 0 1 1 0 1 1 0

6 1 1 1 0 0 0 0 1

7 1 0 1 1 1 1

The algorithm itself is general in the sense that function to be parallely
decomposed can be specified in compact cube notation. Calculation of the
minimal sets of input variables for each individual output can be a complex task.
Thus, in practical implementation heuristic algorithms are used which support
calculations with the help of so called indiscernible variables.

5.2.4 Balanced Decomposition

In the balanced decomposition the serial and parallel decompositions are
intertwined in a top-down synthesis process to obtain the required circuit structure.
At each step, either parallel or serial decomposition is performed, both controlled
by certain input parameters. In the case of serial decomposition the parameters Gin

and Gout denote the number of G inputs and outputs, respectively. In the case of
parallel decomposition the parameter Gout represents the number of G outputs.
Intertwining of serial and parallel decomposition opens up several interesting
possibilities in multilevel decomposition. Experimental results show that the right
balance between parallel and serial decomposition and the choice of control
parameters significantly influence the area and depth of the resultant network.

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 129

Example 5.4 The influence of the decomposition strategy on the final result of the
FPGA-based mapping process will be explained with function F representing DA
logic of a certain wavelet filter described by the following coefficients [1495,
−943, −9687, 18270, −9687, −943, 1495].

Fig. 5.2 Decomposition process for the ahp (7,16) filter – strategy 1

As F is a 7-input and 16-output function, in the first step of the decomposition,
both parallel and serial decomposition can be applied. Let us apply parallel
decomposition first (Fig. 5.2). The parallel decomposition with Gout = 1 generates
two components: the first one with 6 inputs and 1 output, and the second with 7
inputs and 15 outputs. This is illustrated by two arrows with the common starting
point going to different directions. The smaller component is the subject to two-
stage serial decomposition resulting in block G with 4 inputs and 1 output and
block H with 3 inputs and 1 output (both G and H blocks are implemented using 2
cells). Notation (4,1)(3,1) at the end of the arrow shows the number of inputs and
outputs for functions G(4,1) and H(3,1), respectively. The second component is
again decomposed in parallel yielding components (7,7) and (7,8). For the (7,8)
component serial decomposition is assumed, now resulting in block G with 4
inputs and 2 outputs (implemented with 2 logic cells). Thus, the next step deals
with a 6-input function H, which can be directly implemented in ROM. In the next
iterative step, parallel decomposition is applied to split the (7,7) component into
(7,3) and (7,4) blocks. It is reasonable to implement the (7,4) block in a ROM. The
second block is decomposed serially yielding G(4,3) and H(6,3). As G block can
be implemented with 3 logic cells, the next step deals with function H. Parallel
decomposition applied to function H generates two components. Each of them is
the subject to two-stage serial decomposition. The obtained network can be built
of 14 logic cells and 2 M512 ROMs.

If we change the size of the smaller component in the first step of the parallel
decomposition, i.e., (7,4) instead of (6,1), then the implementation requires 3

130 M. Rawski et al.

M512 ROMs and 9 logic cells. However, making decision to apply the serial
decomposition instead of the parallel decomposition to decompose (7,16), the
implementation requires only 3 ROMs. The structure is shown in Fig. 5.3.

Fig. 5.3 Decomposition process for the ahp (7,16) filter – strategy 2

Balanced decomposition was implemented as software package called
DEMAIN [19, 27]. Recently the package was improved to help designers to deal
with large truth tables. All described methods of truth tables transformations can
be performed easily, and results are shown immediately on the screen for further
processing. It is designed for performing manual operations on functions, and
therefore is meant to be highly user friendly, as well as cross-platform compatible.
After choosing the operation, a dialog pops up which can be used for inputting the
parameters of the operation. After the operation is performed, its results are
displayed in the project window.

5.3 Sequential Circuits Synthesis

Embedded memory blocks can also be used for implementation of sequential
machines in a way that requires fewer logic cells than the traditional flip-flop
based implementation. This may be used to implement ”non-vital” sequential parts
of the design, saving logic cell resources for more important sections [22]. Since
the size of embedded memory blocks is limited, such an implementation may
require more memory than is available in a device. To reduce the memory usage
in ROM-based sequential machine implementations, a structure with next state
logic partially implemented in the ROM and partially implemented in logic cells
was proposed [22].

In the considered FSM implementation the combinational logic is split into two
parts. One part is implemented in embedded memory blocks which are configured
as ROM memory, with its content determined at the time of the programming. The
second part, called the address modifier, is used to reduce the number of memory
address lines (Fig. 5.4). The address modifier is implemented in programmable
logic blocks containing LUTs. This proposal is a cross-fertilized approach
between recent progress in finite-state machine synthesis and in micro-computer
architectures. Similar ideas can be found in [4].

Presented problem is intimately related to the encoding problem of FSM which
is of fundamental importance in a sequential synthesis, especially the
state-machine synthesis.

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 131

Fig. 5.4 Implementation of an FSM using an address modifier

5.3.1 Basic Information

Let A = (S, V, δ, Y, λ) be an FSM (completely or incompletely specified), where:
S – set of internal states, V – set of input symbols, δ – state transition function,
Y – set of output symbols, λ – output function, and the values ⎡ ⎤||log2 Vm ≥ and

⎡ ⎤||log2 Sp ≥ denote the number of inputs and state variables, respectively.

Partition description and partition algebra [13] are applied to describe logic
dependencies in such an FSM.

Let T be an isomorphic function between the domain Dδ of the transition
function and the set T = 1, …, t, where t = |Dδ|. Set T represents the ROM cells
needed to store the next state pair δ(v, s) for each pair (v, s). Thus, the
characteristic partition Pc of the FSM is defined in the following way:

Each block
cPB of the characteristic partition includes these elements from the

set T which correspond to these pairs (v, s) from the domain Dδ which the
transition function δ(v, s) = s′ maps onto the same next state s′.

Example 5.5. For the FSM and function T shown in Table 5.4 the characteristic
partition is:

}.4;15,11,5,3;13,9,6;16,10,7,2;14,12,8,1{=cP

A partition P on the set T is related to a partition π on the states set S if for any
inputs va, vb the condition that si, sj belong to one block of the partition π implies
that the elements from T corresponding to pairs (va, si) and (vb, sj) belong to one
block of the partition P.

A partition P on the set T is related to a partition θ on the input symbols set V if
for any state sa, sb the condition that vi, vj belong to one block of the partition θ

132 M. Rawski et al.

implies that the elements from T corresponding to pairs (vi, sa) and (vj, sb) belong
to one block of the partition P.

Table 5.4 FSM transition table and T mapping

 00 01 11 10 (x1,x2) V

S v1 v2 v3 v4 V S v1 v2 v3 v4

s1 s1 s2 s4 – s1 1 2 3 –

s2 – – s5 s4 s2 – – 4 5

s3 s3 s2 s1 s3 s3 6 7 8 9

s4 s2 – s4 s1 s4 10 – 11 12

s5 s3 s1 s4 s2 s5 13 14 15 16

In particular, a partition P on the set T is related to the set {π, θ} if it is related
to both π and θ.

Example 5.6 For FSM from Table 5.4, the partition

}16,15,14,13,12,11,10;9,8,7,6,5,4,3,2,1{1 =P

is related to the partition },;,,{ 54321 sssss=π , while the partition

}16,15,12,11;9,8,5,4,3;14,13,10;7,6,2,1{2 =P

is related to the set {π, θ}, and },;,{ 4321 vvvv=θ .

5.3.2 Implementation of Finite State Machines in FPGA’s

Any FSM, A = (S, V, δ, Y, λ), can be implemented as in Fig. 5.4 using an address
modifier.

If Π = {π1, …, πp} is the set of two-block partitions on S and Θ = {θ1, …, θm}
is the set of two-block partitions on V, while Pk is a partition on the set T which is
related to either πi or θj, then p = {P1, …, Pm+p} is the set of all partitions related to
partitions {π1, …, πp, θ1, …, θm}. Partitions in Π correspond to the state variables
and partitions in Θ correspond to the input variables.

Fact 5.1 To achieve unambiguous encoding of address variables and, at the same
time, maintain the consistency relation T with the transition function, two-block
partitions P = {P1, …, Pw} have to be found, such that:

P1 ⋅ P2 ⋅ … ⋅ Pw ≤ Pc . (5.3)

This is a necessary and sufficient condition for {P1, …, Pw} to determine the
address variables. This is because each memory cell is associated with a single
block of Pc, i.e., with those elements from T which map the corresponding (v, s)
pairs onto the same next state.

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 133

Although some of the partitions for the P set can be selected from the p set, the
selection is made in such a way that the simplest addressing unit (address
modifier) is produced. Such a selection is possible thanks to the method [5, 6],
based on the notion of r-admissibility [8].

5.3.3 States Encoding

Assume that u partitions {π1, …, πl} and {π1, …, πu–l} were chosen. These
partitions correspond to the address lines driven by a single variable, either a state
variable q or an external variable x. The result is the state and input symbol partial
encoding; e.g.,

a1 = q1, …, al = ql, al+1 = θ1, …, au = θu−l.

The encoding of state variables is possible thanks to the method of construction
and coloring of weighted graphs [5].

Corollary 5.2. Inequality (5.3) can be written as:

,
121 ciiiii PPPPPP

wuu
≤⋅⋅⋅⋅⋅⋅

+
…… (5.4)

where
uiiiu PPPP ⋅⋅⋅= …

21
 is related to the partitions {π1, π2, …, πl, θ1, θ2, …, θu−l}.

The encoding of the part of the state variables remaining after the partial
encoding (input variables, in general) can be obtained from the following rules:

π1 ⋅ π2 ⋅ … ⋅ πl ⋅ π = π(0), (5.5)
θ1 ⋅ θ2 ⋅ … ⋅ θu–l ⋅ θ = θ(0), (5.6)

where π and θ represent partitions corresponding to these remaining state
variables. π(0) as well as θ(0) are partitions whose blocks are equal to their
elements.

Since the design process may be considered as a decomposition of the memory
block into two blocks: a combinational address modifier and a smaller memory
block, we need to find function G which will determine the second part of the
memory address bits.

Inequality (5.4) can be transformed into:

PU ⋅ PG ≤ Pc. (5.7)

Corollary 5.3 A partition PG has to be constructed, such that:

PG ≥ PV, (5.8)

where
wu iiG PPP ⋅⋅=

+
…

1
 and PV is related to the partition set {π, θ}.

Let us assume that input variables are encoded.

Theorem 5.2 Partition PV can be constructed in the following way:

,
θVSV PPP ⋅= (5.9)

134 M. Rawski et al.

where PS is the partition related to π(0) on the set of states S, and
θVP is the

partition related to θ.

Proof. Let assume that
θπ VVV PPP ⋅= (Corollary 5.3), where

πVP is related to π,

and
θVP is related to θ. Since PU and PV satisfy PU ⋅ PV ≤ Pc, we have

cVVU PPPP ≤⋅⋅
θπ

. As a result, .cVSU PPPP ≤⋅⋅
θ

Let 〈V, R, E, P〉 be a quadruple, where V is a set of elements, R is an
equivalence relation on the set V, E is a set of pairs in relation P on the set V, P is
a two-element relation. A triple M(V|R, E, P) is a multi-graph, where V|R is an
equivalence class for an equivalence relation on the set V.

Since there exists an isomorphism V|R↔V′, we can construct a natural mapping
from M(V|R, E, P) multi-graph to G(V′, E′, P) graph. Such a mapping ψ: M → G
allows for calculation of a chromatic number χ(G) = χ(M).

Let us apply these notions to the construction of the PG partition. Inequality
(5.7) allows us to construct a quotient partition PU | Pc.

Corollary 5.4 The triple 〈PV, E1, P1〉 – where PV is a partition given by equation
(5.9), P1 is a relation which represents incompatibilities in quotient partition
PU | Pc on the set T (relation of incompatibility in quotient partition PU | Pc is a
relation among all elements in each block of the partition separately) and E1 is the
set of pairs in the relation P1 – is a multi-graph M1(PV, E1, P1).

After mapping ψ1: M1 → G1 we calculate a chromatic number χ(G1) which is
equal to χ(M1).

The coloring of the G1 graph determines the PG partition.

Example 5.7 Let assume that input variables for the transition table are encoded
(Tab. 5.4). Based on Fact 5.1, we obtain set U = {q1, q2, x2}, where q1, q2 are
internal variables generating partitions, respectively:

}.,;,,{},,;,,{ 524312534211 ssssssssss == ππ

Then

})15)(14(;)16)(13(;)8)(7(;)9,6(;)4(;)5(;)11,3)(2(;)10)(12,1({| =cU PP .

As

},16,15,12,11,9,8,5,4,3;14,13,10,7,6,2,1{)(1 == xPPVθ

and

},16,15,14,13;12,11,10;9,8,7,6;5,4;3,2,1{=SP

we obtain

}.16,15;14,13;12,11;10;9,8;7,6;5,4;3;2,1{=VP

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 135

According to Corollary 5.4, the M1 multi-graph and its G1 image shown in Fig. 5.5
is constructed. χ(M1) = 3, and thus μ = 5.

Fig. 5.5 M1 multi-graph and G1 graph

The value of

⎡ ⎤))((log|| 12 MU χμ += (5.10)

determines the size of the memory required. In the case of μ > w, a new partition

VP′ has to be constructed. Then, PV has to be multiplied by appropriately chosen

two-block partitions related to those which are generated by input variables from
the U set. In that case the result is a non-disjoint decomposition.

Example 5.8 Let w = 4. Selecting additional external variable to generate partition

θVP , we obtain:

},16,12,9,5;15,11,8,4,3;14,7,2;13,10,6,1{),(21 == xxPPVθ

and then

},16;15;14;13;12;11;10;9;8;7;6;5;4;3;2;1{=VP

and consequently a new multi-graph M1. As a result χ(M1) = 2 and μ = 4.
In the next step the remaining state variables are calculated.

Corollary 5.5 The triple 〈PS, E2, P2〉 – where PS is the partition related to π(0) on
the states set S, P2 is a relation which represents incompatibilities in quotient
partition GV PP |

θ
 and E2 is the set of pairs in the relation P2 – is a multi-graph

M2(PS, E2, P2).
Similarly to the case discussed above, coloring of the G2 image graph for the

M2 multi-graph yields a new partition on the S set.
Finally, this new partition is encoded with a minimal binary code. Value

⎡ ⎤))((log 22 Mχ determines the number of bits needed to encode the remaining state

variables. Hence,

⎡ ⎤))((log|| 22 MV χν θ += (5.11)

determines the number of inputs to the address modifier.

136 M. Rawski et al.

Example 5.9 As a result of coloring the image graph G1 for the multi-graph M1
presented in Example 5.8, we obtain partition

},15,13,11,10,8,6,4,3;16,14,12,9,7,5,2,1{=GP

and then

}.)16,12,9,5(;)15,11,8,4,3(;)14,7,2(;)13,10,6)(1({| =GV PP
θ

According to Corollary 5.5, we construct a multi-graph M2 and its image G2
(Fig. 5.6).

Fig. 5.6 Multi-graph M2 and graph G2

By coloring the image graph G2, we obtain two possible partitions on the set S:

}.,,,;{},,,;,{ 54321
2

54321
1 ssssssssss == ππ

One of those is chosen and encoded with natural binary code.
For example, partition π1 can be generated by internal variable q3. We encode

partition π1, so that:

)};1(,,);0(,{ 54321
1 sssss=π

thus

}.16,15,14,13,12,11,10,9,8,7,6;5,4,3,2,1{
1

=
π

VP

Consequently

}.16,12,9;15,11,8;14,7;13,10,6;5;4,3;2;1{
1

=⋅=
πθ VVV PPP

Finally, we can construct the truth table of address modifier and the memory ROM
content.

5.3.4 Construction of Partition PG

The graph G1 can be colored in many different ways. As a consequence, many
partitions PG could be obtained. Although the number of blocks in all partitions PG
is the same, the number of address modifier inputs (Equation 5.11) could be
different. The construction of a partition on the set S is similar to that of the

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 137

quotient partition .| GV PP
θ

 It leads to a difference in the number of remaining

(after partial encoding) internal variables for different partitions PG.

Example 5.10 Let us assume that as a result of coloring the image graph G1 for
multi-graph from Example 5.8, we obtain partition,

};14,13,10,7,6,4,2;16,15,12,11,9,8,5,3,1{=GP

then

}.)16,12,9,5(;)4)(15,11,8,3(;)14,7,2(;)13,10,6)(1({| =GV PP
θ

By constructing the multi-graph M2 and coloring its image graph G2, we obtain the
partition on the set S,

}.,,;;{ 54321 sssss=π

As a result, we need two additional internal variables for encoding this partition.
Consequently, it is a worse solution than that used in Example 5.9.

A special construction of PG partition is proposed.
Noticeably, the number of partition blocks on the states set S is closely related

to the incompatibility relation in the quotient partition GV PP |
θ

. In consequence of

joining PV blocks to the PG partition blocks, it has to be done in such a way to
obtain as least incompatibilities in GV PP |

θ
 as it possibly can.

It is easily seen that VV PP ≤
θ

. Let us calculate the quotient partition VV PP |
θ

 and

remove those elements which are incompatible in the quotient partition PU | Pc.
One can show that the remaining part of

θVP could be joined to a new partition

(according to PU | Pc), that the number of blocks is less or equal χ(M1). That new
partition is so-called core of PG. One can observe that graph G1 has to be colored
in accordance with the core of PG. As a result, we obtain partition PG whose
number of blocks is equal to χ(M1).

Example 5.11 Based on Example 5.8

}.)16)(12)(9)(5(;)15)(11)(8)(4)(3(;)14)(7)(2(;)13)(10)(6)(1({| =VV PP
θ

According to

},)15)(14(;)16)(13(;)8)(7(;)9,6(;)5(;)4(;)11,3)(2(;)10)(12,1({| =cU PP

elements (1) and (10) are incompatible, and new
θVP is:

}.13,10,6;16,12,9,5;15,11,8,4,3;14,7,2{=′
θVP

Thus, we obtain two solutions:

138 M. Rawski et al.

},16,15,12,11,9,8,5,4,3;14,13,10,7,6,2{1 =GPcore

}.15,13,11,10,8,6,4,3;16,14,12,9,7,5,2{2 =GPcore

As a result

},14,13,10,7,6,2;16,15,12,11,9,8,5,4,3,1{
1

=GP

}.15,13,11,10,8,6,4,3;16,14,12,9,7,5,2,1{
2

=GP

Solution
2GP was used in Example 5.9. Noticeably,

})16,12,9,5(;)15,11,8,4,3(;)14,7,2(;)13,10,6)(1({|
1

=GV PP
θ

is a similar solution.

5.3.5 Application of the Method

The general idea of the discussed FSM realization in FPGA structures lies in the
decomposition into two modules: address modifier and memory microcode. The
address modifier can be implemented in logic cells while the memory microcode
can be implemented in EMBs configured as ROM memory.

In general, it is possible to treat the address modifier and the memory as
separate combinational blocks and implement them independently, with the
application of different strategies for decomposition of combinational circuits.
Alternating application of serial and parallel decomposition has been shown to be
extremely effective strategy to construct a structure utilizing both logic cells and
EMBs.

Example 5.12 According to the presented method, in the first stage, a
decomposition of the benchmark tbk onto two blocks has been made; the address
modifier and ROM memory of the capacity of 4096 bits. In result the address
modifier has been obtained represented with the truth table of 7-inputs and
5-outputs as well as the memory content of the word length of 8. Subsequently
each of them has been decomposed onto the network of embedded memory blocks
and logic cells. It was assumed that the EMB block had the built in register and it
can also be configured as the typical combinational structure.

Fig. 5.7a exemplifies an implementation in the programmable device that has
EMBs of capacity of 2048 bits each. Parallel decomposition onto two blocks of
2048 bits each was applied to realize the memory ROM content. These blocks are
accurate for the EMB memories of the configuration of the word length of 4,
whereas the address modifier block was implemented in EMB block of the
configuration of the word length of 8. Some inputs and outputs of this block were
not utilized.

Fig. 5.7b shows another implementation of the benchmark tbk. The
programmable device used has EMB memories of the 512 bits and 4096 bits built
in. Hence, it is possible to realize the memory ROM content in the block of the
configuration of the word length equal 8. For the address modifier block

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 139

implementation the parallel decomposition was applied which results in five one-
output functions. After serial decomposition of each onto logic cells, it results:
first function – one cell, function second – seven cells, third function – five cells,
fourth function – six cells, fifth function – five cells. Finally, linking the second,
third, fourth and fifth realizations into one function results in two blocks. The
former block was implemented in the EMB memory of the capacity of 512 bits
and the word length of 4, and the latter in one logic cell.

Fig. 5.7 tbk benchmark implementation; in programmable device a) with M2K built in
memories, b) with M512 and M4K built in memories

5.4 Experimental Results

FPLD devices have a very complex architecture. They combine PLA-like
structures with FPGA and memory-based structures. In many cases, designers
cannot utilize all the possibilities that such complex architectures provide due to
the lack of appropriate synthesis methods. Embedded memory arrays make
possible an implementation of memory-like blocks, such as large registers, FIFOs,
RAM or ROM modules.

These memory blocks account for a large part of the devices area. For example,
Altera [31] EP20K1500E devices provide 51,840 logic cells and 442 Kbit of
SRAM. Taking under consideration the conversion factors of logic elements and
memory bits to logic gates (12 gates/logic element and 4 gates/memory bit), it
turns out that embedded memory arrays account for over 70% of all logic
resources. Since not every design consists of such modules as RAM or ROM, in

140 M. Rawski et al.

many cases these resources are not utilized. Then embedded memory blocks can
be used for implementation of combinational logic in a way that requires less
resources than the traditional cell-based implementation. Such blocks may be used
to implement “non-vital” sequential parts of the design, saving logic cell resources
for more important sections. Since the size of embedded memory blocks is
limited, such an implementation may require more memory than is available in a
device. To reduce memory usage in ROM-based implementations, a structure with
combinational logic partially implemented in the ROM and partially implemented
in logic cells was proposed.

In Table 5.5, the experimental results of Daubechies’ 9/7-tap bio-orthogonal
filter banks are presented. All filters have 16-bit signed samples and have been
designed using the DA concept [18, 27]. The presented method was used to
increase efficiency of the DA tables implementations.

Table 5.5 presents the results for filter implementations using Stratix
EP1S10F484C5 device. In the implementation without decomposing the filters,
their functions were modeled in HDL and Quartus2 was used to map the model
into the target structure. In the implementation using decomposition (denoted dec),
a software tool implementing the described method was used to initially
decompose DA tables and then the Quartus2 system was applied to map the filters
into FPGA.

Table 5.5 Implementation results of 9/7 filters.

Filter LC EMB Bits

alp 236 7×M512, 1×M4K 8192

alp dec 248 1×M4K 4096

ahp 204 4×M512 2048

ahp dec 210 2×M512 1024

slp 204 4×M512 2048

slp dec 211 2×M512 1024

shp 236 7×M512, 1×M4K 8192

shp dec 246 1×M4K 4096

The implementation of filters is characterized by the number of logic cells (LC)
and the number of memory modules (EMB). Memory bits are also presented to give
the memory usage. In all cases, decomposition reduces the size of memory and the
number of memory modules. For example, an implementation of ahp filter requires
204 LCs and 4 M512 embedded memories if performed by the Quartus2 software.
The presented method allows DA logic of this filter to be implemented with 2 M512
memories and 11 LCs and the whole filter with 210 LCs and 2 M512 memories.

The next proposed method for sequential machines was applied to implement
several FSM’s from standard benchmark set [30] in Flex10K and Stratix devices
using Quartus2 (v6.0 SP1) system. In Table 5.6 and 5.7, a comparison of different
FSM implementation techniques is presented.

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 141

Table 5.6 Implementation results comparing in the Flex10K structure (EPF10K10LC84-3)

 Quartus2 AM/ROM
AM/ROM

(new method)

Benchmark
Encoding

(bits)
LUT
[LC]

[LC/bit]
[LC/EMB1)]

(Encoding bits)

Auto (16) 129
cse

Minimal (4) 92
2 / 5632

21 / 1 (8),

9 / 2 (7)

Auto (15) 38
mark1

Minimal (4) 40
2 / 5120

16 / 1 (5),

9 / 2 (6)

Auto (20) 174
s1

Minimal (5) 164
96 / 5632

107 / 1 (7),

69 / 2 (7)

Auto (13) 54
s386

Minimal (4) 55
9 / 5632 35 / 1 (8)

Auto (32) 8952)
tbk

Minimal (5) 10772)
333 / 4096

266 / 1 (5),

25 / 2 (5)
1) device has 3 EMB blocks with 2048 bits each.
2) implementation not possible – not enough CLB resources.

Table 5.7 Implementation results comparing in the Stratix structure (EP1S10F484C5)

Benchmark Quartus2 AM/ROM
AM/ROM

(new method)

Encoding

(bits)
LUT
[LC]

[LC/bit]
[LC/EMB1)]

(Encoding bits)

Auto (16) 112
cse

Minimal (4) 90
2 / 5632

77 / 1 M512s (4),
8 / 1 M4Ks (7)

Auto (15) 32
mark1

Minimal (4) 38
2 / 5120 8 / 1 M4Ks (6)

Auto (20) 168
s1

Minimal (5) 152
96 / 5632

129 / 1 M512s (5),
71 / 1 M4Ks (7)

Auto (32) 902
tbk

Minimal (5) 959
333 / 4096

261 / 1 M512s (5),
21 / 1 M4Ks (5)

1) device has 920448 bits of memory in 512 bit blocks (M512s) as well as in 4096
bit blocks (M4Ks).

The ‘LUT’ column (Tab. 5.6, 5.7) shows the number of logic cells required to
implement a given FSM in the “traditional” way using logic cells only. In this case
two different state encoding methods available in Quartus2 were applied. In
column ‘AM/ROM’, the results of implementation of a given FSM using the
concept of address modifier are presented. In this approach, the address modifier
can be implemented using logic cells, and ROM can be implemented with EMB

142 M. Rawski et al.

blocks. The number of logic cells and the number of memory bits are presented in
this column. It can be easily observed that decomposition improves the quality of
implementation in ROM resources, as well as the quality of implementation in
logic cells only. An improvement of this method by using decomposition into the
mixed structure built of LCs and EMBs with application of state encoding method
presented in this article is shown in the last column (Tab. 5.6, 5.7). The number of
state encoding bits is presented in brackets.

For some examples more than one solution is possible, e.g., benchmark cse can
be implemented in memory of size 32,768 bits (not available in small
programmable devices) or with the use of 90 logic cells (Stratix), 92 logic cells
(Flex10K). However, application of the new method allows for an implementation
with 21 logic cells and 1 EMB or with 9 logic cells and 2 EMBs when using a
Flex10K device or 77 logic cells and 1 M512 or 8 logic cells and 1 M4K when
using a Stratix device.

Noticeably, the new approach allows for much more efficient utilization of
available resources. It is also possible to trade off the number of logic cells used
with the number of embedded memory blocks.

5.5 Conclusions

The modern programmable structures deliver the possibilities to implement digital
circuits in dedicated embedded blocks. This makes designing of such circuits an
easy task. However the flexibility of programmable structures enables more
advanced implementation methods to be used. In particular, best results can be
obtained by utilizing the parallelisms in implemented algorithms and by applying
advanced synthesis based on decomposition methods. In case, the designed circuit
contains complex combinational blocks, the influence of the design methodology
and decomposition synthesis methods on the efficiency of practical digital circuit
implementation is extremely significant. This is typical for many practical designs
i.e. when implementing digital filters using the DA concept or ROM-based FSMs
with address modifier.

The most efficient approach to logic synthesis of combinational and sequential
circuits relies on the effectiveness of the functional decomposition synthesis
methods. Although these methods were already used in decomposition algorithms,
they were never applied with a technology specific mapper targeted at FPGA
structure together. This paper shows that it is possible to apply the functional
decomposition method for the synthesis of FPGA-based circuits directed towards
area and delay optimization.

References

[1] Adamski, M., Barkalov, A.: Architectural and Sequential Synthesis of Digital
Devices. University of Zielona Góra Press, Zielona Góra (2006)

[2] Ashar, P., Devadas, S., Newton, A.R.: Sequential Logic Synthesis. Kluwer Academic
Publishers, Norwell (1992)

5 Logic Synthesis Method of Digital Circuits Designed for Implementation 143

[3] Astola, J.T., Stankovi , R.S.: Fundamentals of Switching Theory and Logic Design.
Springer, Heidelberg (2006)

[4] Barkalov, A., W grzyn, M.: Design of control units with programmable logic.
University of Zielona Góra Press, Zielona Góra (2006)

[5] Borowik, G.: Finite state machines synthesis for FPGA structures with embedded
memory blocks. PhD thesis, Faculty of Electronics and Information Technology,
Warsaw University of Technology, Warsaw (2007) (in Polish)

[6] Borowik, G., Falkowski, B., Łuba, T.: Cost-efficient synthesis for sequential circuits
implemented using embedded memory blocks of FPGAs. In: Design and Diagnostics
of Electronic Circuits and Systems, pp. 99–104. IEEE, Kraków (2007)

[7] Borowik, G., Rawski, M.: Effective implementation of sequential circuits using
FPGAs with embedded memory blocks. In: Programmable Devices and Systems, pp.
175–180. IFAC, Kraków (2004)

[8] Brzozowski, J.A., Łuba, T.: Decomposition of Boolean Functions Specified by
Cubes. Journal of Multiple Valued Logic and Soft Computing 9(4), 377–418 (2003)

[9] Cong, J., Yan, K.: Synthesis for FPGAs with embedded memory blocks. In:
Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field
Programmable Gate Arrays, pp. 75–82 (2000)

[10] Czerwinski, R., Kania, D.: State assignment for PAL-based CPLDs. In: Proceedings
of the 8th Euromicro Conference on Digital System Design, pp. 127–134 (2005)

[11] De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher
Education (1994)

[12] De Micheli, G., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Optimal state
assignment for finite state machines. IEEE Trans. on CAD of Integrated Circuits and
Systems 4(3), 269–285 (1985)

[13] Hartmanis, J., Stearns, R.E.: Algebraic structure theory of sequential machines.
Prentice-Hall international series in applied mathematics. Prentice-Hall, Inc., Upper
Saddle River (1966)

[14] Krishnamoorthy, S., Tessier, R.: Technology mapping algorithms for hybrid FPGAs
containing lookup tables and PLAs. IEEE Trans. on CAD of Integrated Circuits and
Systems 22(5), 545–559 (2003)

[15] Łuba, T.: Multi-level logic synthesis based on decomposition. Microprocessors and
Microsystems 18(8), 429–437 (1994)

[16] Łuba, T., Górski, K., Wronski, L.B.: ROM-based finite state machines with PLA
address modifiers. In: EURO-DAC, pp. 272–277. IEEE Computer Society Press, Los
Alamitos (1992)

[17] Łuba, T., Selvaraj, H.: A general approach to boolean function decomposition and its
applications in FPGA-based synthesis. VLSI Design 3(3-4), 289–300 (1995)

[18] Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays.
In: Signals and Communication Technology, 2nd edn., Springer-Verlag New York,
Inc., Secaucus (2004)

[19] Nowicka, M., Łuba, T., Rawski, M.: FPGA-based decomposition of Boolean
functions. algorithms and implementation. Advanced Computer Systems, 502–509
(1999)

[20] Rawski, M., Falkowski, B.J., Łuba, T.: Digital signal processing designing for FPGA
architectures. Facta Universitas 20(3), 437–459 (2007)

144 M. Rawski et al.

[21] Rawski, M., Łuba, T., Jachna, Z., Tomaszewicz, P.: The influence of functional
decomposition on modern digital design process. In: Adamski, M.A., Karatkevich,
A., Węgrzyn, M. (eds.) Design of Embedded Control Systems, pp. 193–203.
Springer, US (2005)

[22] Rawski, M., Selvaraj, H., Łuba, T.: An application of functional decomposition in
rom-based fsm implementation in fpga devices. Journal of Systems
Architecture 51(6-7), 424–434 (2005)

[23] Rawski, M., Selvaraj, H., Łuba, T., Szotkowski, P.: Multilevel synthesis of finite state
machines based on symbolic functional decomposition. International Journal of
Computational Intelligence and Applications 6(2), 257–271 (2006)

[24] Rawski, M., Tomaszewicz, P., Selvaraj, H., Łuba, T.: Efficient implementation of
digital filters with use of advanced synthesis methods targeted FPGA architectures.
In: DSD, pp. 460–466. IEEE Computer Society, Washington (2005)

[25] Sasao, T., Iguchi, Y., Suzuki, T.: On LUT cascade realizations of FIR filters. In: DSD
2005, pp. 467–475. IEEE Computer Society, Washington (2005)

[26] Scholl, C.: Functional Decomposition with Application to FPGA Synthesis. Kluwer
Academic Publishers, Norwell (2001)

[27] Tomaszewicz, P., Nowicka, M., Falkowski, B.J., Łuba, T.: Logic synthesis
importance in FPGA-based designing of image signal processing systems. In:
MIXDES, pp. 141–146 (2007)

[28] Villa, T., Sangiovanni-Vincentelli, A.L.: NOVA: state assignment of finite state
machines for optimal two-level logic implementation. IEEE Trans. on CAD of
Integrated Circuits and Systems 9(9), 905–924 (1990)

[29] Wilton, S.J.E.: SMAP: Heterogeneous technology mapping for area reduction in
FPGAs with embedded memory arrays. In: FPGA, pp. 171–178 (1998)

[30] Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0. Tech.
rep., Microelectronics Center of North Carolina (1991)

[31] Altera Corporation (2010), http://www.altera.com

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 145–163.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

6 Efficient Technology Mapping Method for
PAL-Based Devices

Dariusz Kania

Silesian University of Technology, Institute of Electronics,
ul. Akademicka 16, 44-100 Gliwice, Poland
e-mail: dkania@polsl.pl

Abstract. The core of a contemporary CPLD device is a PAL-based logic block
which consists of a programmable AND matrix and a fixed OR matrix. A new
technology mapping method for PAL-based devices based on the analysis of
graph of outputs is described. The presented approach uses original method for il-
lustrating a minimized form of a multi-output Boolean function. Graph node
represents groups of multiple-output implicants with common output part. The es-
sence of the method is the process of searching for appropriate multi-output impli-
cants that can be shared by several functions. A new method for the description of
cascaded feedback connections is presented. The experimental results show that
the proposed algorithm leads to significant reduction of chip area used by resulting
circuits.

6.1 Introduction

The most of commercially available CPLDs (Complex Programmable Logic De-
vices) consist of PAL-based logic blocks (Fig. 6.1). This type of circuits will be
referenced as PAL-based CPLDs in contrast to less popular group of a PLA-based
CPLDs [22].

y y

PAL-based
logic block

k-terms

k k

Fig. 6.1 The structure and block diagram of PAL-based logic block with k-terms

The classical method of logic synthesis, dedicated for PAL-based CPLDs, con-
sists of two steps. First a two-level minimisation is applied separately to every

146 D. Kania

single-output function. Next implementation of the minimised functions in
PAL-based blocks containing a predefined number of product terms is performed.
The two-level minimization algorithms based on Quine-McCluskey approach, like
e.g. Espresso do not support any technology mapping features. Technology map-
ping is done afterwards independently. If the number of implicants p, representing
a function after minimisation, is greater than the number of product terms k, avail-
able in a logic block (Fig. 6.1), a greater number of logic blocks have to be used to
implement the function. The classical product term expansion method consists in
introducing cascaded feedback connections, increasing propagation delays be-
tween inputs and outputs [3]. Some other concepts of product term expansion are
also presented in literature, e. g. in [3, 14].

Some minimization, decomposition and partitioning methods dedicated for
PLDs, especially for FPGA and PLA devices, together with algorithms and results
can be found in [1, 4, 7, 9, 10, 13, 14, 20, 24, 25]. Sometimes, algorithms devel-
oped for LUT-based FPGAs are directly adapted to other PLD architectures [1, 4].
In methods based on single-level decomposition of Boolean function minimization
and partitioning problems are considered simultaneously [9, 11]. The partitioning
is based on finding the minimum number of input variables needed to produce a
group of output function. The primary objective of these methods is minimization
of PLA area. This idea is conceptually similar to that of decomposition of PLA
matrices [5, 6, 18]. In both approaches a single two-level Boolean function (PLA)
is decomposed into two stages of cascaded PLA's such that their total area is
smaller than that of the original PLA [5, 6, 7, 8, 20, 24, 25].

Sometimes, decomposition strategy leads to a multi-level implementation. De-
composition of Boolean function for different universal logic blocks based on
PLA architecture is also known [10, 12, 13]. This decomposition consists of parti-
tioning the set of outputs into two or more disjoint subsets. Such decomposition
separates a multiple output Boolean function into two or more component, so that
each component function can be implemented with separate building block. This
strategy is dedicated for PLA building blocks. All experimental results were pre-
sented for hypothetical PLA blocks that do not exist in commercially available
CPLDs.

Sometimes decomposition methods are dedicated for FSMs [6, 12, 20, 21, 26].
A characteristic feature of algorithms of this kind is a process of appropriate cod-
ing of inputs and outputs, which significantly influences minimisation of product
term numbers in blocks obtained as the result of decomposition [6, 20, 21, 26].
Problems of appropriate input and output coding are widely discussed in connec-
tion with issues concerning coding of internal states in FSMs (Finite State
Machine) [2, 19, 23]. The problems are among other things related to symbolic in-
ternal state coding, the theory of dichotomy, multi-valued function minimisation,
analysis of output dominance, etc. [2, 19].

The main limitation of PAL-based logic blocks is not the number of inputs but
the number of multi-input product terms available in one block. Mapping a large
number of Boolean functions to minimal number of technology-oriented logic
blocks is a difficult task. Various technology-mapping tools are available for look-
up-based FPGAs or PLA-based CPLDs [10]. Most of these tools allow the number

6 Efficient Technology Mapping Method for PAL-Based Devices 147

of inputs per look-up table or number of inputs, outputs and terms per PLA block
to be specified by the user, but none of them map to PAL-based logic blocks di-
rectly. They are not suitable for commercially available CPLDs, such as the for
example Altera and Cypress MAX family.

The essence of synthesis dedicated for PAL-based structures comprises two
major tasks: minimising the number of PAL-based logic blocks used and adjusting
the designed circuit to fit the structures of PAL-based blocks best. The proposed
technology mapping concerns simultaneously above issues. The objective of this
chapter is to present technology mapping method for PAL-based CPLDs. The
method consists in searching for the common multi-output implicants [19] that is
carried out after having completed the classical two-level minimization of the
multi-output function by means of the Espresso algorithm.

6.2 Theoretical Backgrounds

Let f be a multi-output logic function f:Bn→Bm, where B={0,1}. The classical im-
plementation of the function f:Bn→Bm within the PAL-based structures is related
to implementation of the minimized functions fo:B

n→B1 (o =1,2,…,m) by means
of the PAL-based logic blocks. Let the discriminant Δfo be the decimal number
equal to the number of those implicants, for which single-output function
fo:B

n→B1 constitutes true {1} values.
Let δfo denote the number of logic blocks necessary for implementation of the

oth function. In the case when Δfo > k, implementation of the fo function by
means of the PAL-based logic blocks consisting of k terms needs the realization of
cascaded feedback connections.

The number of δfo=⎡(Δfo-k)/(k-1)⎤+1 PAL-based logic blocks consisting of
k-terms will be used, where symbol ⎡x⎤ denotes the lowest integer number not less
than x. For implementation of m-functions (every function has been minimized
separately), implementation of δ1

f PAL-based logic blocks is necessary, where

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−

−Δ
=

=

m

o

of
f k

k

1

1 1
1

δ .

The minimized form of multi-output functions f:Bn→Bm can be described by a
set of multi-output implicants, including an input part consisting of components
{0,1,-} and an output part consisting of {0,1} components [19]. Let y be
an m-component output vector that is associated with the output part of the multi-
output implicant. The number of the same y vectors that constitute the subset of
multi-output implicants defining the f:Bn→Bm function will be called the discrimi-
nant Δy. Let μ(Δy) (range of Δy discriminant) be a decimal number equal to the num-

ber of {1} components included in the y vector. Let’s assume, that >< UYG , is
the primary directed graph (Fig. 6.2), where Y is the set of all the graph nodes Δy,

while U is a set of graph edges connecting such nodes of the graph Δys, Δyr that
the code distance between the ys, yr vectors is 1, and μ(Δys)+1=μ(Δyr).

148 D. Kania

f:B5 B4 (f.pla)

.i 5

.o 4

.ilb a b c d e

.ob f4 f3 f2 f1

.p 10
00-01 1111
01000 1111
01011 1111
00010 1110
-111- 1110
1100- 1010
10011 1010
-0101 1000
11-00 0100
0010- 0010
.e

(y)=4 1111=3
(y)=3 1110=2; 1101=0; 1011=0; 0111=0
(y)=2 1100=0; 1010=2; 1001=0; 0110=0; 0101=0; 0011=0
(y)=1 1000=1; 0100=1; 0010=1; 0001=0

Y={ 1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001,
0110, 0101, 0011, 1000, 0100, 0010, 0001}

U ={(1000, 1100); (1000, 1010); (1000, 1001); (0100, 1100);
 (0100, 0110); (0100, 0101); (0010, 1010); (0010, 0110);
 (0010, 0011); (0001, 1001); (0001, 0101); (0001, 0011);
 (1100, 1110); (1010, 1110); (0110, 1110); (1100, 1101);
 (0101, 1101); (1001, 1101); (1010, 1011); (1001, 1011);
 (0011, 1011); (0110, 0111); (0101, 0111); (0011, 0111);
 (1110, 1111); (1101, 1111); (1011, 1111); (0111, 1111)}

>< UYG ,

21110 =Δ

01100 =Δ 21010 =Δ 01001 =Δ

10100 =Δ 10010 =Δ 00001 =Δ

f3 f2 f1

μ=3

μ=2

μ=1

00110 =Δ 00101 =Δ 00011 =Δ

01101 =Δ 01011 =Δ 00111 =Δ

11000 =Δ

31111 =Δμ=4

f4

Fig. 6.2 Representation of the minimized function f:B5→B4 by means of the primary graph
of outputs

By means of elimination from the primary graph such nodes, where Δy =0, we
obtain the reduced graph presented in the Fig. 6.3a. For simplification, the nodes
of the graph contain decimal value of discriminants only (Fig. 6.3b). In subsequent
part of this paper such reduced graph of outputs will be called graph of outputs.

6 Efficient Technology Mapping Method for PAL-Based Devices 149

Every node of the first range that is related to the implicants of the oth output of

the m-output function can be associated with the decimal value of m
oΔ equal to

the sum of discriminants included in nodes covered by all the paths starting from
this node and ending in nodes of the upper ranges (Fig. 6.3).

Based on values of discriminants m
oΔ , the number of PAL-based logic blocks,

which are necessary for implementation of the multi-output function, can be calcu-
lated (for every function separately, after having minimized the multi-output

function). This number is equal to ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=
=

m

o

m
o

f k

k

1
1

1
δ and, for most cases,

is greater than δ1
f. For implementation of four-output function presented in Fig.6.3

the number of ∑ =+++=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ=

=

4

1

4
1214341

1o

o
f k

kδ PAL-based logic blocks with

three terms (k=3) is necessary.

f:B5→B4

.i 5
.o 4
.ilb a b c d e
.ob f4 f3 f2 f1
.p 10
00-01 1111
01000 1111
01011 1111
00010 1110
-111- 1110
1100- 1010
10011 1010
-0101 1000
11-00 0100
0010- 0010
.e

a)

21110 =Δ

64
3 =Δ 84

2 =Δ 34
1 =Δ

μ=3

μ=2

μ=1

31111 =Δμ=4

84
4 =Δ

f3 f2 f1 f4

m
oΔ

Δ1000=1 Δ0100=1 Δ0010=1

Δ1010=2

b)

64
3 =Δ 84

2 =Δ 34
1 =Δ

μ=3

μ=2

μ=1

μ=4

84
4 =Δ

f3 f2 f1 f4

m
oΔ

3

2

2

1 1 1

Fig. 6.3 The reduced graph of outputs of the minimized function f:B5→B4 with associated

values of discriminants m
oΔ

Apparently, on the basis of analysis of the graph, solutions that use fewer logic
blocks can be found. Nodes of the graph correspond to the number of multi-output
implicants associated with one of the multi-output vectors. For example, when a
node of the μth range belongs to the graph and for that node Δy = k, implementa-
tion of k implicants constituting common resources of the μ functions, is possible
within one block (Fig. 6.4b). After selection of the node transformation of the

graph is made leading to reduction of the m
oΔ coefficients (Fig. 6.4a,c).

150 D. Kania

As a result, the selection of a certain node introduces cascaded feedback con-
nection, which is shown on the reduced graph by the fourth-range nodes marked
on the graph with the dashed line (Fig.6.4c).

1111=iy

f1

PAL
k=3

f2f3

?

f4

b)

μ=3

μ=2

μ=1

μ=4

f3 f2 f1 f4

m
oΔ

8 6 8 3

a)

3

2

2

1 1 1

μ=3

μ=2

μ=1

f3 f2 f1 f4

m
oΔ 6 4 6 0

1

c)

1 1 1

2

2

Fig. 6.4 a) Example of reduced graph of outputs; b) Implementation of the implicants
defined by the fourth-range node; c) The graph after reduction

6.3 Technology Mapping Algorithm

Let iΔy be the discriminants that correspond to the node, which is chosen during

ith step of the algorithm of implementation of the multi-output function. Imple-

mentation of the group of implicants which correspond to the selected node iΔy,

during the ith step of the technology mapping algorithm, may lead to minimization

of the number of used PAL-based blocks consisting of k terms, if the requirement
iδf

 - i+1δf > ⎡(iΔ y-k)/(k-1)⎤+1 is met.

Since selection of the node iΔy affects μ(iΔy) discriminants m
o

iΔ , the condition

for minimization of the PAL-based logic blocks (after having the discriminants
re-ordered in such a way, that the selected node affects the consecutive

)(y
i

j
i Δ
Δ

μ
 discriminants), can be shown in the following form:

1
1

1
1

1
1

)(

1

)(1)(

1

)(

+
⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−

−Δ
>∑

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ
−∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ Δ

=

Δ+Δ

=

Δ

k

k

k

k

k

k y
i

j

j
i

j

j
i

y
i y

i

y
i y

i
μ μμ μ

 (6.1)

Let)(y
i

jr
Δμ be numbers calculated from the congruence:

))1((mod1
)()(

−≡−Δ
ΔΔ

kr y
i

y
i

jj
i μμ

 where j=1,2,..., μ(iΔy).

6 Efficient Technology Mapping Method for PAL-Based Devices 151

Theorem: (about selection of the node of the graph of outputs)

If there exists a node of the graph (i.e. discriminant) iΔy, for which

1. the range μ(iΔy)≥2 and iΔy≥k or
2. the range μ(iΔy)≥2 and within the set of remainders

;
)(

{ y
i

jr
Δ

=
μ

R >Δ∈<)(,1 y
ij μ } there exist at least two such remainders,

that kr y
i

a
y

i

<Δ<<
Δ)(

0
μ

 and at the same time kr y
i

b
y

i

<Δ<<
Δ)(

0
μ

 or

3. the range μ(iΔy)= 2 and iΔy=k or iΔy≥2k-1 or
4. the range μ(iΔy)= 2 and k<iΔy<2k-1 and within the set of remainders

;{
)(y

i

jr
Δ

=
μ

R >Δ∈<)(,1 y
ij μ } there exists at least one such remainders,

that)1(0
)(

−−Δ<<
Δ

kr y
i

a
y

iμ

then implementation of the implicants associated with that particular discriminant
leads to a reduced number of the PAL-based blocks consisting of k terms
necessary for implementation of given multi-output function.

Proof of above theorem is presented in appendix.

The essence of the theorem presented above consists in determination, which
are the provisions that should be imposed onto the discriminant in order to provide
that realization of the multi-output implicants associated with it, would lead to
minimization of the number of PAL-based logic block in use. The theorem serves
as a background to draw up a technology-mapping algorithm for multi-level im-
plementation of multi-output logic functions by means of PAL-based logic blocks.

As number of logic blocks ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=
=

m

o

m
o

f k

k

1
1

1
δ is generally greater than

the value of ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−

−Δ
=

=

m

o

f
f k

k
o

1

1 1
1

δ , the main concept of the algorithm pro-

posed consists in analysis of the graph nodes and searching for the nodes that are
associated with possible large groups of common implicants. Let us assume that
the graph of outputs describes multi-output implicants that are accomplished by
means of iδf PAL-based logic blocks containing k terms each. Selection, at the ith

step of iteration, the iΔ y node of the graph implies utilization of iγ = ⎡(iΔ y-k)/(k-
1)⎤+1 PAL-based logic blocks. This leads to reduction of the graph of outputs, and
the graph, after reduction, describes the implicants that are covered by i+1δf
PAL-based logic blocks. The higher is the value of the expression iδf - (

i+1δf + iγ)
the better is the selection of the node in question.

152 D. Kania

The rules for selection of the node can be deduced directly from the theorem
about selection of the node of the graph of outputs and can be listed in the
following way:

1. Firstly, at the very beginning, one has to choose the iΔ y node, for which
μ(iΔ y) = max (obviously, the node must meet provisions of the theorem).

2. From the nodes of the same range, further selection must be carried out
depending on values of discriminants:
2.a. if there exist nodes, for which iΔ y ≥ k - the node, for which the

discriminant iΔ y = max
2.b. if values of all the discriminants are lower than k - the node, for which

within the set of remainders ;{
)(y

i

jr
Δ

=
μ

R >Δ∈<)(,1 y
ij μ } there

exists the maximum number of remainders
)(y

i

xr
Δμ

 that meet the

condition kr y
i

x
y

i

<Δ<<
Δ)(

0
μ

The theorem and conclusions about choosing nodes of the graph of outputs serve
as the basis for the technology-mapping algorithm of multi-level synthesis
implemented in PALDec system.

Example
Let us consider the multi-output function f:B5→B4 which, after minimization
(Espresso) can be depicted in the file f.pla (Fig. 6.5a). The reduced graph of out-
puts, associated to it, is shown in Fig. 6.5.b. Direct realization of implicants with
PAL-based logic blocks that contain k=3 terms each (by means of the classical
method, after minimization the multi-output function) needs

1214341
1

4

1

40
0 =+++=∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=
=o

o
f k

kδ PAL-based logic blocks. During the

first step of the proposed algorithm, the implicants associated with the node
∆1111=3 are realized. This step involves only one PAL-based logic block that con-
tains 3 terms (1γ =1) and leads to significant lowering of the number of blocks that
are necessary for direct realization of implicants depicted by the reduced graph

f
o

o
f k

k δγγδ 014

1

41
11 9103231

1
≤=++++=+∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=+
=

. This graph is

obtained after removing the node ∆1111=3 and introducing an additional node,
which is connected with the node ∆1110 and represents the cascaded feedback
connection (Fig. 6.5c).

6 Efficient Technology Mapping Method for PAL-Based Devices 153

a) f.pla

.i 5
.o 4
.ilb a b c d e
.ob f4 f3 f2 f1
.p 10
00-01 1111
01000 1111
01011 1111
00010 1110
-111- 1110
1100- 1010
10011 1010
-0101 1000
11-00 0100
0010- 0010
.e

b)

μ=1

μ=2

μ=3 2

2

1 1

1

8
4
2

4
2

=

=Δ

r1

6
4
3

4
3

=

=Δ

r1

8
4
4

4
4

=

=Δ

r

440 / oo rΔ

1

μ=4 3

0

3
4

1

4
1

=

=Δ

r

f4 f3 f2 f1

Step 1

c)

μ=2

μ=3

2

1

6
4
2

4
2

=

=Δ

r1

4
4

3

4
3

=

=Δ

r1

6
4
4

4
4

=

=Δ

r

m
oo r/41Δ 04

1 =Δ

μ=1 1 1 1

2

1

Step 2

d)

μ=2

1

4
4
2

4
2

=

=Δ

r

1

2
4
3

4
3

=

=Δ

r1

4
4
4

4
4

=

=Δ

r

442 / oo rΔ 04
1 =Δ

μ=1 1 1

2

1

1

1

Step 3

e)

1

2
4
2

4
2

=

=Δ

r1

2
4
3

4
3

=

=Δ

r1

2
4
4

4
4

=

=Δ

r

443 / oo rΔ 04
1 =Δ

μ=1
1

1

1

1

1

1

Step 4

f)

f2

f3

PAL

k=3

PAL

k=3

PAL

k=3

f4

PAL

k=3

Step 2 Step 4

PAL

k=3

Step 1

edcba
edcba

edba

edcba
dcb

dcba

edcb

edba

f1

6/4
(blocks / levels)

PAL

k=3
edcba

dcba

Step 3

Fig. 6.5 Realization of function f:B5→B4 a) description of the function by the f.pla file;
b) reduced graph of outputs, c,d,e) graphs of outputs that correspond to successive steps of
technology-mapping process, f) final structure of the circuit

154 D. Kania

The implicants that correspond to the nodes ∆1110, ∆1010 (Fig.6.5c,d) are realized
during the subsequent steps of circuit synthesis. Realization of those implicants
leads to further reduction of the required PAL-based logic blocks number

f
o

m
o

f k

k δγγδ 14

1

2
2

22 6102121
1

≤=++++∑ =+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=+
=

;

f
o

m
o

f k

k δγγδ 24

1

3
3

33 4101111
1

≤=++++∑ =+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

−
−Δ

=+
=

.

The nodes that correspond to the 1st range (Fig.6.5e) are implemented at the last
stage of the synthesis process. The final circuit representation that uses

13

1

3
f

i

i
ff δγδδ <

=
+= ∑ PAL-based logic blocks is shown in Fig. 6.5f.

6.4 Experimental Results

Some experimental results that were obtained when using the software implemen-
tation of the proposed technology mapping method are presented in Table 6.1. The
columns contain numbers of PAL-based logic blocks that have k terms, which are
necessary for implementation of respective benchmarks (columns marked B) as
well as numbers of logic levels (columns marked L). The results from new method
(PALDec) are compared with classical technology mapping approach (Classical).

Within the set of 88 experiments for which results of technology mapping had
been compared for the both methods, the proposed approach (PALDec) led to 75
solutions (85%) that used less number of logic blocks than the classical technique
(Classical). Significant discrepancies can be observed if the logic blocks with low
number of terms have been exploited.

Having compared the overall number of logic blocks that are used by all the
benchmarks under experiments, one can observe that the PALDec method is more
efficient if the PAL-based logic blocks with less number of terms are used
(k = 3, 4, 5). The above observation seems to be intuitively obvious, as smaller
groups of multi–output implicants that have the same output part, more frequently
are obtained as a result of minimization. The common coverage of such implicants
brings more benefits if the structures that contain small PAL-based logic blocks
are in use.

Disadvantageously, all the circuits that were examined by means of the
classical technology mapping method proved to contain less or equal number of
logic levels as compared to the results of the PALDec method.

6 Efficient Technology Mapping Method for PAL-Based Devices 155

Table 6.1 Results of benchmark synthesis for the PAL-based logic blocks with k-terms
(see in the text)

k= 3 K= 4 k= 5 K= 6 k= 7 k= 8 k= 9 k= 10
Classical

B L B L B L B L B L B L B L B L
Alu4 315 5 211 4 159 4 128 3 107 3 91 3 82 3 72 3
Clip 73 4 49 3 38 3 30 3 26 2 22 2 21 2 20 2
Duke2 99 3 72 3 61 2 49 2 44 2 41 2 39 2 36 2
misex3 612 5 410 4 309 4 249 3 208 3 178 3 157 3 143 3
Rd73 70 4 47 3 36 3 29 3 24 3 20 2 19 2 16 2
Rd84 142 5 95 4 72 4 58 3 49 3 42 3 28 2 21 2
sao2 36 3 24 3 19 2 15 2 14 2 11 2 11 2 10 2
seq 691 5 469 4 355 3 287 3 244 3 212 3 188 3 172 3
spla 425 6 293 5 227 4 188 4 163 3 144 3 128 3 120 3
table3 264 4 181 4 135 3 110 3 94 3 80 3 71 2 65 2
table5 272 4 183 4 141 3 112 3 95 3 82 3 74 2 65 2
Σ 2999 2034 1552 1255 1068 923 818 740
Σ 48 41 35 32 30 29 26 26

k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 K= 9 k= 10 PALDec
B L B L B L B L B L B L B L B L

alu4 290 8 193 6 148 6 119 5 98 5 85 4 77 4 67 4
clip 66 5 45 4 35 4 29 4 26 3 23 2 21 2 20 2
duke2 100 4 76 4 64 3 55 3 49 2 46 2 43 2 40 2
misex3 450 8 316 7 257 7 219 6 189 6 170 6 153 4 136 4
rd73 63 6 44 5 32 4 26 4 23 3 19 3 18 3 16 3
rd84 130 8 87 6 67 5 54 4 45 4 40 4 27 3 20 3
sao2 29 5 20 4 16 4 13 4 11 3 10 3 9 3 9 3
Seq 295 8 208 7 165 7 142 6 129 5 114 6 109 6 105 6
Spla 285 6 190 4 158 4 137 4 124 4 115 4 105 4 97 3
table3 154 8 110 7 95 6 80 6 73 6 70 5 63 4 63 5
table5 143 7 104 6 87 6 73 6 69 5 64 5 61 5 56 5
Σ 2005 1393 1124 947 836 756 686 629
Σ 73 60 56 52 46 44 40 40

Classical – Classical approach, PALDec – proposed technology mapping synthesis based
on analysis of nodes of the graph of outputs

The results of experiments are presented in a synthetic way on Fig. 6.6. The
values represented on the axis of ordinates in Fig. 6.6a were calculated from the
rational formula shown on the graph. Σblocks(classical) and Σblocks(PALDec) denote the
relevant total sums of block counts obtained using the corresponding technology
mapping methods and presented in Table 6.1. The values represented on Fig. 6.6b
were calculated in a similar manner (the formula on Fig. 6.6b, where
Σlevels(classical) and Σlevels(PALDec) denote the relevant total counts of logic levels).

156 D. Kania

a)
∑
∑

)(

)(

PALDec

Classical

blocks

blocks
 b)

∑
∑

)(

)(

Classical

PALDec

levels

levels

1

1,2

1,4

1,6

3 4 5 6 7 8 9 10

k 1,3

1,5

1,7

3 4 5 6 7 8 9 10

k

Fig. 6.6 A comparison of the PALDec algorithm with the classical method with respect to
the number of logic blocks a); levels b)

Analysis of the benchmarks allows us to state, that in most cases reduction of
logic block counts by using the new algorithm is obtained at the expense of certain
expansion of logic levels. The proposed method is especially efficient, if k = 3 or
4. In this case a significant reduction of block counts, while preserving a compa-
rable expansion number of logic levels, was observed. The rate of total synthesis
time for the circuits under experiments, calculated for the proposed method and
for the classical approach is about 1.25.

In Table 6.2, some technology mapping results are presented for large bench-
marks. The results from the presented method are compared to the results from com-
mercially available software (Quartus). All experiments were executed for EPM3512
produced by Altera. EPM3512 is a classical CPLD device with macrocells, shareable
and parallel expanders, programmable interconnect array and I/O blocks. Combinato-
rial logic is implemented in the logic array, which provides 5 product terms per mac-
rocells. The product-term select matrix allocates these product terms to the OR and
XOR gates. The Quartus development system automatically optimises product terms
allocation, using XOR gates, shareable and parallel expanders.

Individual columns of Tab.6.2 contain the following elements: i - number of
inputs, o - number of outputs, p - number of products, NM - number of macro-
cells, which are necessary for implementation of the appropriate benchmark (% of
all macrocells), tpd (worst-case) - worst-case input to output delay. The columns
marked "Quartus" show results of logic synthesis implemented by the Quartus
system. For Quartus the typical options of area optimisation technique were se-
lected. All logic resources were used: shareable expanders, parallel expanders and
XOR gates. The columns marked "PALDec+Quartus" show results of two steps
logic synthesis. In the first step, system PALDec searches for groups of shared
multi-output implicants and the PAL-oriented technology mapping is executed for
PAL-based logic block with five terms. The result of technology mapping is
VHDL structural description [17]. In the second step, placement and mapping to
EPM3512 by Quartus is executed. In all the cases the PALDec+Quartus strategy
was able to find the best solution. All the results were obtained in very short time
(total time of PALDec technology mapping is shorter than 2 seconds for all cases
using a computer with Intel Celeron 1GHz).

6 Efficient Technology Mapping Method for PAL-Based Devices 157

Table 6.2 Experimental results for large benchmarks implemented in EPM3512 (see in the
text) i - number of inputs, o - number of outputs, p - number of products, NM - number of
macrocells, tpd - delay time (worst-case)

 Quartus PALDec + Quartus

EPM3512 i o p NM
tpd

worst-case
NM

tpd
worst-case

Seq 41 35 1459 257 (50%) 29,7ns 201 (39%) 28,8ns
Spla 16 46 2307 105 (21%) 20,5ns 98 (19%) 19,6ns

Table3 14 14 175 115 (22%) 22,3ns 104 (20%) 19,8ns
Table5 17 15 158 112 (22%) 26,7ns 73 (14%) 19,6ns

The obtained results also have been compared to other academic and firmware
tools [14, 15, 16, 17].

6.5 Conclusions

The presented method is an alternative to the classical approach based on two-
level minimization of individual single-output functions. The essence of the pro-
posed method is to search for implicants that can be shared by several functions.
Subsequent steps of the technology mapping process are adapted to logical resources
of PAL-based CPLDs. Adjusting elements of technology mapping to logical re-
sources characteristic for a PAL-based logic block allows for significant improve-
ment of synthesis effectiveness in relation to the classical approach. If compared
with another multi-level technology mapping methods, the proposed algorithm
seems to be especially advantageous, because it leads to minimization of the number
of logic blocks in the synthesised structures.

Simplicity of the algorithms that are based on graph analyzing methods and are
useful for technology mapping of multi-output logic functions within the PAL-
based structures results in their applicability as an alternative for the other methods.

Investigation carried out by author show that, apart from exploiting device specific
features (Expanders, XOR gates), great majority of commercial tools use the classical
algorithm as the main synthesis method. Comparison of the proposed technology
mapping approach against the classical method may thus be considered as a compari-
son against a generalised and idealised commercial tool in its most basic form.
Results of experiments prove that PALDec compares favourably with Altera tools.

References

[1] Anderson, J.H., Brown, S.D.: Technology mapping for large complex PLDs. In: Proc.
of Des. Autom. Conf., pp. 698–703 (1998)

[2] Ashar, P., Devadas, S., Newton, A.R.: Sequential logic synthesis. Kluwer Academic
Publisher, London (1992)

[3] Bolton, M.: Digital systems design with programmable logic. Addison-Wesley Pub-
lishing Company, New York (1990)

158 D. Kania

[4] Chen, S.L., Hwang, T.T., Liu, C.L.: A technology mapping algorithm for CPLD ar-
chitectures. In: IEEE Int. Conf. on Field Program Technol., Hong Kong, pp. 204–210
(2002)

[5] Ciesielski, M.J., Yang, S.: PLADE: A two-stage PLA decomposition. IEEE Trans. on
Comput. Aided Des. 11, 943–954 (1992)

[6] Devadas, S., Newton, A.R.: Exact algorithms for output encoding, state assignment,
and four-level Boolean minimization. IEEE Tran. on Comput. Aided Des. 10, 13–27
(1991)

[7] Devadas, S., Wang, A.R., Newton, A.R., et al.: Boolean decomposition in multi-level
logic optimization. In: IEEE Int. Conf. on Comput. Aided Des., pp. 290–293 (1988)

[8] Devadas, S., Wang, A.R., Newton, A.R., et al.: Boolean decomposition of Program-
mable Logic Arrays. In: IEEE Cust. Integr. Circuits Conf., pp. 2.5.1–2.5.5 (1988)

[9] Fišer, P., Kubátová, H.: Flexible two-level Boolean minimizer BOOM II and its ap-
plications. In: Proc. 9th Euromicro Conf. on Digit. System Des., pp. 369–376 (2006)

[10] Hasan, Z., Hurison, D., Ciesielski, M.: A fast partitioning method for PLA-based
FPGAs. IEEE Des. and Test of Comput., 34–39 (1992)

[11] Hlavicka, J., Fišer, P.: BOOM - a heuristic Boolean minimizer. In: Proc. Int. Conf. on
Comput. Aided Des., pp. 439–442 (2001)

[12] Józwiak, L., Volf, F.: An efficient method for decomposition of multiple-output Boo-
lean functions and assigned sequential machines. In: European Conf. on Des Autom.,
pp. 114–122 (1992)

[13] Józwiak, L., Volf, F.: Efficient decomposition of assigned sequential machines and
Boolean functions for PLD implementation. In: IEEE Int. Conf. on Electron Technol.
Dir., pp. 258–266 (1995)

[14] Kania, D.: Two-level logic synthesis on PALs. Electron Lett. 35, 879–880 (1999)
[15] Kania, D.: A technology mapping algorithm for PAL-based devices using multi-

output function graphs. In: Proc. of 26th Euromicro Conf., pp. 146–153 (2000)
[16] Kania, D.: An efficient approach to synthesis of multi-output Boolean functions on

PAL-based devices. IEE Comput. and Digit. Tech. 150, 143–149 (2003)
[17] Kania, D.: The logic synthesis for the PAL-based Complex Programmable Logic De-

vices. Silesian University of Technology, Gliwice (2004)
[18] Malik, A., Harrison, D., Brayton, R.K.: Three-level decomposition with application to

PLDs. In: Proc. IEEE Int. Conf. on Comput. Des., pp. 628–633 (1991)
[19] Micheli, G.: Synthesis and optimization of digital circuits. McGraw-Hill, New York

(1994)
[20] Sasao, T.: Application of multiple-valued logic to a serial decomposition of PLAs. In:

Proc. 19th Int. Symp. on Mult. Valued Log, pp. 264–271 (1989)
[21] Saldanha, A., Katz, R.H.: PLA optimization using output encoding. In: IEEE Int.

Conf. on Comput. Aided Des., pp. 478–481 (1988)
[22] Sharma, K.: Programmable logic handbook, PLDs, CPLDs & FPGAs. McGraw-Hill,

New York (1998)
[23] Shi, C.J., Brzozowski, J.A.: An efficient algorithm for constrained encoding and its

applications. IEEE Tran. on Comput. Aided Des. 12, 1813–1826 (1993)
[24] Wang, L., Almaini, A.E.A.: Optimisation of Reed-Muller PLA implementations cir-

cuits. In: IEE Proc. Devices and Syst., vol. 149, pp. 119–128 (2002)
[25] Yang, C., Ciesielski, M.: PLA decomposition with generalized decoders. In: IEEE

Int. Conf. on Comput. Aided Des., pp. 312–315 (1989)
[26] Yang, S., Ciesielski, M.: Optimum and suboptimum algorithms for input encoding

and its relationship to logic minimization. IEEE Trans. on Comput. Aided Des. 1,
4–12 (1991)

6 Efficient Technology Mapping Method for PAL-Based Devices 159

Appendix

THEOREM ABOUT SELECTION OF A NODE OF THE GRAPH OF OUTPUTS

If there exists a node of the graph (i.e. discriminant) iΔy, for which

1. the range μ(iΔy)≥2 and iΔy≥k
or

2. the range μ(iΔy)≥2 and within the set of remainders

;
)(

{ y
i

jr
Δ

=
μ

R >Δ∈<)(,1 y
ij μ } there exist at least two such remainders,

that kr y
i

a
y

i

<Δ<<
Δ)(

0
μ

 and at the same time kr y
i

b
y

i

<Δ<<
Δ)(

0
μ

or
3. the range μ(iΔy)= 2 and iΔy=k or iΔy≥2k-1

or
4. the range μ(iΔy)= 2 and k<iΔy<2k-1 and within the set of remainders

;{
)(y

i

jr
Δ

=
μ

R >Δ∈<)(,1 y
ij μ } there exists at least one such remainders,

that)1(0
)(

−−Δ<<
Δ

kr y
i

a
y

iμ

then implementation of the implicants associated with that particular discriminant
leads to a reduced number of the PAL-based blocks consisting of k terms neces-
sary for implementation of given multi-output function.

Proof:

The value iΔ y assigned to the selected node affects the number of μ(iΔ y) of dis-

criminants denoted as
)(y

i

j
i Δ
Δ

μ
, where >Δ∈<)(;1 y

ij μ . If the selected node
iΔ y is connected with μ(iΔ y) lower range’s nodes then the graph modification
process leads to the value increasing of not more than μ(iΔ y) discriminants. In this
case, the discriminats after graph modification can be calculated as follows:

)(1 y
ij Δ≤≤

∧
μ

1

)()(1 +Δ−Δ=Δ
ΔΔ+

y
i

jj
i y

i
y

i μμ
.

It is the worst case of PAL-based logic blocks number reduction. The condition of
minimization (1) can be expressed by the following equation

1
1

1
1

1
1

1

)(

1

)()(

1

)(

+
⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−
−Δ

>∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−+Δ−Δ
−∑

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−Δ Δ

=

ΔΔ

=

Δ

k

k

k

k

k

k y
i

j

y
i

j
i

j

j
i

y
i y

i

y
i y

i
μ μμ μ

 (a1)

160 D. Kania

1°. ky
i ≥Δ

Let >−++−∈<Δ)1)(1(,1)1(kpkpy
i , where Np ∈ . Since for every Np ∈

≥∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

+Δ−−Δ
−

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−ΔΔ

=

ΔΔ
)(

1

)()(

1

1

1

y
i y

i
y

i

j

y
i

j
i

j
i

k

k

k

kμ μμ

∑ =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

++−−−Δ
−

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ
≥

Δ

=

ΔΔ)(

1

)()(

1

1]1)1([

1

y
i y

i
y

i

j

j
i

j
i

k

kpk

k

kμ μμ

p
k

kpk

k

k
y

i

j

j
i

j
i

y
i y

i
y

i

)(
1

)1(

1

)(

1

)()(

Δ=∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−−−Δ
−

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ
=

Δ

=

ΔΔ

μ
μ μμ

and

=+⎥⎥
⎤

⎢⎢
⎡

−
−

−
+−+≤+

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−
−

−

Δ
=+

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−

−Δ
1

11

1)1)(1(
1

11
1

1 k

k

k

kp

k

k

kk

k y
i

y
i

11
1

1
1 +=+⎥⎥

⎤
⎢⎢
⎡

−
−−+= p

k

k
p

then the condition of minimization (a1) is reduced to the inequality

1)(+>Δ ppy
iμ , which is true for every value p∈N (on the assumption that

2)(>Δ y
iμ).

2°. Since ky
i <Δ<1 , the condition in minimization (a1) can be transformed into

11
1

1
1

1

)(

1

)()(

1

)(

>∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−+Δ−Δ
−∑

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−Δ Δ

=

ΔΔ

=

Δ
y

i y
i

y
i y

i

j

y
i

j
i

j

j
i

k

k

k

k μ μμ μ

and written in the form:

1
1

1

1

)(

1

)()(

>∑

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−+Δ−Δ
−

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−ΔΔ

=

ΔΔ
yo

i
o

yo
i

yo
i

j

y
i

j
i

j
i

k

k

k

kμ μμ

 (a2)

6 Efficient Technology Mapping Method for PAL-Based Devices 161

Let
)(y

i

jr
Δμ

 be numbers calculated from the congruence:

))1(mod(1
)()(

−≡−Δ
ΔΔ

kr y
i

y
i

jj
i μμ

 (a3)

where j=1,2,...,)(y
iΔμ .

Taking into account (a3)

))1(mod(
)()(

−≡−Δ
ΔΔ

krk y
i

y
i

jj
i μμ

there is such a value p∈N that

11

)()(

−
+=

−

−Δ
ΔΔ

k

r
p

k

k y
i

y
i

jj
i μμ

 , (a4)

then

1
1

)(

+=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−Δ
Δ

p
k

ky
i

j
i μ

 (a5)

Let

))1(mod(1 −≡−Δ krly
i . (a6)

When for the selected remainder
)(y

i

ar
Δμ

 the inequalities kr y
i

a
y

i

<Δ<<
Δ)(

0
μ

are true, then

)(y
i

al rr
Δ

≥
μ

 (a7)

Considering the inequalities kr y
i

a
y

i

<Δ<<
Δ)(

0
μ

 as well as (a4) and (a6),

111

1

1

)()(

−
−

−
+=

−
−Δ

−
−

−Δ
ΔΔ

k

r

k

r
p

kk

k lay
i

a
i y

i
y

i μμ
 .

From the foregoing, having substituted (a7)

p
kk

k y
i

a
i y

i

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ
Δ

1

1

1

)(μ
 (a8)

Due to (d5) and (d8) the following are obtained:

1
1

1

11

)()(

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ−
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

ΔΔ

kk

k

k

k y
i

a
i

a
i y

i
y

i μμ
 (a9)

162 D. Kania

Similarly

1
1

1

11

)()(

=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ
−

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

ΔΔ

kk

k

k

k y
i

b
i

b
i y

i
y

i μμ
 (a10)

Equations (a9), (a10) are the reason for the minimization condition (a2) to be ful-
filled because

12
1

1

1

)(

1

)()(

>≥∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−+Δ−Δ
−

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−ΔΔ

=

ΔΔ
y

i y
i

y
i

j

y
i

j
i

j
i

k

k

k

kμ μμ
.

3.°For the second-range nodes, for which ky
i =Δ , the minimization condition

(a1) is fulfilled because

1
1

1
1

12
1

)1(

1

2

1

)(
2

1

)(

+
⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−
−Δ

=+⎥⎥
⎤

⎢⎢
⎡

−
−=>=∑

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−−−Δ
−∑

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−Δ

=

Δ

=

Δ

k

k

k

kk

k

kk

k

k y
i

j

j
i

j

j
i y

i
y

i μμ

For the nodes, for which 12 −≥Δ ky
i , the minimization condition (a1) is fulfilled

also

1
1

1
1

12
24

1

)1)12(

1

2

1

)(
2

1

)(

+
⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

−
−Δ

=+⎥⎥
⎤

⎢⎢
⎡

−
−−=>=∑

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

+−−−Δ
−∑

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ

=

Δ

=

Δ

k

k

k

kk

k

kk

k

k y
i

j

j
i

j

j
i y

i
y

i μμ

4. For the second-range nodes, for which 12 −<Δ< kk y
i , the minimization condi-

tion (a1) can be transformed into:

2
1

1

1

2

1

)(
2

1

)(

>∑
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

+Δ−−Δ
−∑

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−

−Δ

=

Δ

=

Δ

j

y
i

j
i

j

j
i

k

k

k

k y
i

y
i μμ

 (a11)

Based on 2 (equations a4, a5)

11

)()(

−
+=

−

−Δ
ΔΔ

k

r
p

k

k y
i

y
i

jj
i μμ

 (a12)

6 Efficient Technology Mapping Method for PAL-Based Devices 163

and 1
1

)(

+=

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ
Δ

p
k

ky
i

j
i μ

 (a13)

Let rl be number calculated from the congruence))1(mod(1 −≡−Δ krly
i , then

))1(mod(1)1(−≡−−−Δ krk ly
i (a14)

When the inequalities kkr y
i

a
y

i

<−−Δ<<
Δ

)1(0
)(μ

 are true, then

)(y
i

al rr
Δ

≥
μ

 (a15)

Considering the inequalities kkr y
i

a
y

i

<−−Δ<<
Δ

)1(0
)(μ

 as well as (a12) and

(a14),

1
1

11

1

1

)()(

−
−−

−
+=

−
−Δ

−
−

−Δ
ΔΔ

k

r

k

r
p

kk

k lay
i

a
i y

i
y

i μμ
.

From the foregoing, having substituted (a15)

1
1

1

1

)(

−=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ
Δ

p
kk

k y
i

a
i y

iμ
 (a16)

Due to (a13) and (a16) the following is obtained:

2)1(1
1

1

11

)()(

=−−+=
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

−
−

−Δ−
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−
−Δ

ΔΔ
pp

kk

k

k

k y
i

a
i

a
i y

i
y

i μμ

(a17)

Equation (a17) and inequalities 12 −<Δ< kk y
i are the reason for the

minimization condition (a11) to be fulfilled because

212
1

1

1

2

1

)(
2

1

)(

>+≥∑

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

+Δ−−Δ
−∑

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

−

−Δ

=

Δ

=

Δ

j

y
i

j
i

j

j
i

k

k

k

k y
i

y
i μμ

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 165–192.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

7 Reliable FPGA-Based Systems Out of
Unreliable Automata: Multi-version Design
Using Genetic Algorithms

Nataliya Yakymets and Vyacheslav Kharchenko

National Aerospace University “KhAI”, Department of Computer Systems and Networks,
Centre of Dependable Systems, Services and Technologies (DESSERT-Centre)

Abstract. This chapter introduces the principles of multi-version digital system
design and describes the concept of developing a reliable and robust system out of
unreliable parts. We started with the state of the art in the area of multi-version de-
sign and explore the motivations for using different approaches to development of
digital projects. A few techniques to manage design diversity for FPGA-based sys-
tems are proposed. These techniques are based on the use of genetic algorithms
(GAs), and partially correct and partially definite automata obtained with GAs.
Finally, we suggested GA-based method of multi-version fault-tolerant systems
synthesis and discuss case-study for on-board device implementation.

7.1 Introduction

Field experience with design and exploration of digital systems shows that their
automation complexity is growing simultaneously with reducing the chip area.
Obviously, it makes the properties of fault tolerance, survivability, safety,
availability more and more critical.

During the last two decades, different aspects of dependability, principles and
techniques for dependable digital systems development were explored in detail. The
key paper is [1], where A. Avizienis and J.-C. Laprie worked out a concept of "de-
pendable computing". This work initiated development of the approaches, directed on
overcoming of dualism in the tools of evaluation and providing of the required relia-
bility on lines "hardware-software", "development processes - products", "physical
faults - design faults".

In the same year J. Dobson and B. Randell published work [2], where the con-
cept of "secure fault tolerance" and principle of its realization for different compu-
ting systems were proposed. Thus, the removal of dualism on "reliability - security"
was initiated.

After eighteen years, A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr
summarized the results of dependable computing evolution in [3]. Authors defined

166 N. Yakymets and V. Kharchenko

sufficiently complete and balanced system of concepts and taxonomies. By that time
definitions of dependability had been given in a number of standards and reports [4].

Meanwhile, the most challenging issues concerning system dependability arise
in case of so-called safety-, mission- or business-critical systems such as nuclear
power plants safety systems, airborn control systems, customer accounting system
in a bank, etc [5, 6, 7]. Failures occurring in these systems may pose lives in
danger, environment damage or high economic losses.

According to statistics the main causes of failure in such systems [8, 9]: can be
listed as follows:

• hardware quality;
• faults that occurred during the design flow;
• non-compatibility between actual operating conditions and initial technical

requirements;
• environmental influence.

Considering the factors listed above one can say that the main reliability characte-
ristics of the system under consideration are mostly innate and rooted deep into
the design process itself. Thus, system fault tolerance can be provided by choosing
the most appropriate hardware and architecture as well as by using approaches that
tend to eliminate or at least cut down the number of errors introduced as a part of
design process.

There is a definite tendency to develop digital control systems as complex Sys-
tem-on-a-Chip (SoC) designs implemented on Application Specific Integration
Circuits (ASIC), Complex Programmable Logic Devices (CPLD) or Field Pro-
grammable Gate Arrays (FPGA) [10, 11]. The concept of SoC refers to integrating
all components of a system into a single circuit. To reduce the number of faults re-
sulted from errors that occur during the SoC design process, different approaches
and techniques should be used. One of the most important approaches to creating
dependable digital systems relies upon the idea of their multi-version or diversity
implementation, where versions must be as different as possible. Application of
multi-version approach and its attributes are discussed in [1, 3, 12].

To obtain alternate versions and diversify the design, several efficient tech-
niques use essential characteristics of design flow for SoC-oriented architectures
provided by the standard Computer Aided Design (CAD) tools [13, 14]. Neverthe-
less, despite the effectiveness of these techniques most of those manage the life
cycle diversity within a single design concept, so it is not possible to make a sys-
tem robust to the design faults that are common to each version since widely used
CAD tools usually have only standard algorithms and conventional logic imple-
mented. Code inaccessibility and unavailability make it impossible to predict a
behavior of CAD tool and prevent faults.

To avoid those problems, the application of non-classical design is suggested in
order to develop non-conventional digital systems in [15, 16, 17]. It follows rather
natural ways of thinking instead of the apparatus of integral and differential calcu-
lus. Nowadays, evolvable hardware applications are maturing and seeing shift into
the real-world. In 1948 A. Turing suggested using artificial neural network based
on very simple elements [18]. Today evolutionary neural networks combine

7 Reliable FPGA-Based Systems Out of Unreliable Automata 167

evolutionary principles and those of artificial neural networks [19, 20]. Another
research direction is evolutionary algorithms which refer back to the work of
Ch. Darwin [21]. Later, the idea of Genetic Algorithms (GAs) was extensively
represented by J. Holland in [22]. A number of works discuss the utilization of
GAs in digital [17, 23] and analog [24] system design, robotics [25] and even in
the industrial design [26]. In [27], it has been pointed out that one of the most
effective ways to develop a multi-version fault tolerant system is to combine
classical design based on using CAD tools with non-classical ones in order to sig-
nificantly increase a possibility of receiving the least correlated versions. Never-
theless, the actual problem is how to elaborate the strategy which allows
obtaining the highest diversity level in a multi-version system.

A good alternative to the classical design could be GAs that are heuristic by the
nature can provide simple and non-trivial solutions as opposed to the classical de-
sign. On the other hand, complete correctness of solutions can not always be guar-
anteed for the same reasons. It is worth to mention that in case of complex systems
and critical time needed for design only a selected set of input/output data can un-
dergo testing to define the fitness of versions. This leads to partially definiteness
of the evolved versions. Therefore a particular attention must be paid to the issues
of developing reliable systems out of such unreliable (partially correct and
partially definite) parts.

The remainder of the chapter is organized as follows. Section 7.2 elaborates the
strategy to achieve the least correlation level within a multi-version system.
Section 7.3 outlines and categorizes digital automata obtained with GA. Section
7.4 assesses reliability of digital systems out of unreliable automata. Section 7.5
continues with the case study describing the development of such systems.
Finally, Section 7.6 discusses a practical application that makes use of most of the
approaches considered.

7.2 External and Internal Design Diversity

The application of multi-version approach to the system design assumes obtaining
version redundancy by varying the set of resources used in design process to re-
ceive the most alternate versions of the same project. For example, several CAD
packages or several developer groups can be involved into the design flow.

In order to get an n-version project, it is necessary to isolate n subsets of re-
sources that allow implementing the same functionality. The versions obtained
from the different subsets will be less correlated than those that are received by
varying resources within the only one subset. For example, the lesser correlation
can be achieved with several CAD tools rather than with a single CAD package.
Thus, the design diversity can be observed from the several levels of system de-
sign (Fig. 7.1). So-called internal design diversity assumes obtaining alternate
versions from only one isolated subset of resources used in design. The external
one means application of several sets of resources.

168 N. Yakymets and V. Kharchenko

Fig. 7.1 External and internal design diversity

In fact, the major challenges in multi-version system design are:

• isolation of the subsets with the maximum cardinality;
• selection of the diversity metrics, which allow comparing system versions;
• risk analysis while estimating the compatibility of versions received with the

different subsets of resources.

GA project 1 GA project k

Analyser

Chip

Fig. 7.2 Internal diversity that uses different design approaches

At this point, it seems that one of the effective ways to obtain the most diversified
project is to exploit the external design diversity based on the different
approaches to system design and use several non-classical approaches such as
GAs or neural networks along with the classical one. GA can be viewed as a good-
enough alternative to the classical system design, mainly because of the possibility
to get simple and non-conventional solutions and going towards the reliability of
digital systems developed with GA.

7 Reliable FPGA-Based Systems Out of Unreliable Automata 169

Fig. 7.3 External diversity that uses different design approaches

If standard CAD tools are used, the different versions can be obtained at the
following phases: hardware selection, project entrance, compilation, testing and
verification. In case of the GA application, the system diversity can be achieved at
the phases of GA presetting, selection, crossover, mutation and inversion of indi-
viduals. Combination of CAD-based and GA-based approaches allows consider-
ing cases where both internal and external design diversities are possible
(Fig. 7.2 – 7.3). Moreover, version implementation for a single chip or for a num-
ber of chips gives an additional opportunity to utilize spatial diversity in system
design.

Because of their simplicity, versions evolved with GA can be even used as an
additional feature to control the functionality of a multi-version system developed
with the standard tools (Fig. 7.4).

Fig. 7.4 Using versions obtained with GA as the control ones in a multi-version system

To assess a diversity of versions in such multi-version systems, each version
that is a digital system with SoC architecture can be represented as a spatial confi-
guration, which is constituted by N logic cells on a chip. A set of logic cells

corresponds to set { }N

iisS 1== , where si are the coordinates of the i-th cell. A de-

gree of distinction for logic cell topology in a chip can be used as a diversity
metrics (Fig. 7.5):

170 N. Yakymets and V. Kharchenko

2
21

21
2 SS

SS
M

+
∩

=
,

(7.1)

where |S1|, |S2|, |S1 ∩ S2| are the capacities of correspondent sets.

Fig. 7.5 Topology of logic cells in a chip

7.3 Partially Definite and Partially Correct Automata

In this section, we classify versions (automata) that can be evolved with GAs, and
investigate the ways to develop fully correct and definite system.

There are four basic types of automata that can be obtained using GA. The first
and the simplest type is a Fully Correct Automaton (FCA) that is an automaton
where each input state xi in the set of input data X corresponds to output state yi in
the set of output data Yc for an arbitrary time moment ti∈T, i.e. ∀ ti∈T, xi∈ X: xi
→ yi, yi∈ Yc, Yc = Y, where ti is an arbitrary time moment; xi is a current input
state; X is a set of input data; yi is a current output state that corresponds to xi; Yc is
a set of correct output data; Y is a complete set of output data.

Because of its heuristics, sometimes GA gives only an approximate solutions or
Partially Correct Automata (PCA) that are automata, where at least one time mo-
ment ti∈T for which there is at least one input state xi in the set of input data X that
does not correspond to correct output state yi in the set of correct output data Yc,
i.e. ∃ ti∈T, xi∈ X: xi→ yi, yi∉ Yc ⊂ Y.

Since it is known for every pair of input and output state whether an automaton
is correct or not, FCA can be composed of the several PCAs in such a way that the
complete set of correct output states of automata covers the complete set of input
data X for an arbitrary time moment ti∈T (Fig. 7.6), i.e. ∀ ti∈T, xi∈X: xi→yi,

yi∈Yc
(FCA); Yc

(FCA)=Y(FCA), U
n

i 1

)(PCA
c

(FCA)
c

iYY
=

= .

Hence, FCA can keep its correctness even though one or more of its PCAs are
not correct. A set of PCAs constitutes the complete functional basis if its elements
are able to form FCA. A set of PCAs constitutes the minimal functional basis if
the incorrectness of at least one PCA included into FCA results in the
incorrectness of this FCA.

7 Reliable FPGA-Based Systems Out of Unreliable Automata 171

Fig. 7.6 Fully correct automaton composed of several partially correct automata

If we develop a complex digital system with GA and time required to obtain
FCA is critical, only a certain number of inputs and outputs can be tested to calcu-
late the fitness of versions [28]. In this case the evolved versions will be partially
definite. Thus, Partially Definite Automata (PDA) are automata, where at least
one time moment ti∈T for which there is at least one input state xi in the set of in-
put data X that corresponds to such an output state yi where information about its
correctness (whether yi is in Yc or not) is not available, i.e. ∃ ti∈T, xi ∈ X: xi→ yi,
yi ∉ Yd, Yd ⊂ Y, where Yd is a set of definite output data.

Meanwhile, by testing all inputs and outputs to assess fitness of every version,
we obtain Fully Definite Automata (FDA) that are automata, where each input
state xi in the set of input data X corresponds to such an output state yi where in-
formation about its correctness (whether yi is in Yc or not) is available for an
arbitrary time moment ti∈T, i.e. ∀ ti∈T, xi ∈ X: xi → yi, yi ∈ Yd, Yd = Y.

As it is known which input and output states have not be tested, FDA can be
composed of several PDAs in such a way that the complete set of definite output
states of automata covers the complete set of input data X for an arbitrary time
moment ti∈T (Fig. 7.7), i.e. ∀ ti∈T, xi ∈ X: xi→yi, yi ∈Yd

(FDA); Yd
(FDA)=Y(FDA);

U
n

i 1

)(PDA
d

(FDA)
d

iYY
=

= .

FDA can keep its definiteness even though one or more of its PDAs are not de-
finite. A set of PDAs constitutes the complete functional basis if its elements are
able to form the required correct FDA. A set of PDAs constitutes the minimal
functional basis if the indefiniteness of at least one PDA included into FDA results
in the indefiniteness of this FDA.

From the definitions given above it is clear that digital automata can be fully
definite fully correct, fully definite partially correct, partially definite fully correct
or partially definite partially correct.

Fully Definite Fully Correct Automaton (FDFCA) is an automaton where each
input state xi in the set of input data X corresponds to such an output state yi, where
∀ ti∈T, xi ∈ X: xi → yi, yi ∈ Yd and yi ∈ Yc; Yd = Yc = Y for an arbitrary time
moment ti∈T.

172 N. Yakymets and V. Kharchenko

Fig. 7.7 Fully definite automaton composed of several partially definite automata

Fully Definite Partially Correct Automaton (FDPCA) is an automaton which
for at least one time moment ti∈T has at least one input state xi in the set of input
data X that corresponds to such an output state yi, where ∃ ti∈T, xi ∈ X: xi → yi,
yi ∈ Yd and yi ∉ Yс; Yd = Y, Yс ⊂ Y.

Partially Definite Fully Correct Automaton (PDFCA) is an automaton where
each input state хi in the set of input data X corresponds to such an output state yi,
where ∀ ti∈T, xi ∈ Xd: xi → yi, yi ∈ Yd and yi ∈ Yc; Yd = Yc, Yd ⊂ Y, Yc ⊂ Y; Xd ⊂
X for an arbitrary time moment ti∈T, where Xd is a set of input data where
automaton is definite.

Partially Definite Partially Correct Automaton (PDPCA) is an automaton
which for at least one time moment ti∈T has at least one input state xi in the set of
input data X corresponds to such an output state yi, where ∃ ti∈T, xi ∈ Xd: xi → yi,
yi ∈ Yd and yi ∉ Yc; Yc ⊂ Yd, Yd ⊂ Y, Xd⊂X.

Fig. 7.8 Fully definite fully correct automaton composed of several partially definite and
partially correct automata

7 Reliable FPGA-Based Systems Out of Unreliable Automata 173

In fact, the fully definite and correct system or FDFCA can be composed of
several PDPCAs (and/or FDPCAs, PDFCAs) in such a way that the complete set
of correct and definite output states of automata covers the complete set of input
data X for an arbitrary time moment ti∈T (Fig. 7.8), i.e. ∀ ti∈T, xi∈X: xi→yi,

yi∈Yd
(FDA) and yi∈Yс

(FDA); Yd
(FDA) = Yс

(FDA) =Y(FDA); U
n

i 1

)(PDA
d

(FDA)
d

iYY
=

= ;

U
n

i 1

)(PDA
c

(FDA)
c

iYY
=

= .

7.4 Reliability of Digital Systems Out of Unreliable Automata

The architecture of digital systems evolved with GA assumes possible redundancy
that occurs because of overlapping correct and definite output data if a system
consists of several PCA or/and PDA. This property allows estimation of such sys-
tems reliability using the apparatus of structural reliability theory. The analysis of
reliability includes the following steps:

• divide a set of input and output data of automata into groups as shown in
Fig. 7.9;

Fig. 7.9 Allocating the groups within the set of input and output terms if a system consists
of the several PDA and/or PCA

• estimate the influence of automata failures on the entire system;
• select a primitive object to be used in the reliability analysis: the primitive

objects can be automata, groups of definite and correct output data, automata
and groups of definite and correct output data;

• develop a reliability block diagram (RBD);
• form the equations to estimate system reliability with regard to its RBD.

If a digital system consists of one fully definite and fully correct version, its relia-
bility is the same as the reliability of a non-redundant non-recoverable system. If a

174 N. Yakymets and V. Kharchenko

digital system is composed of several PDA or/and PCA it can be considered as a
non-recoverable system with passive redundancy. To estimate the reliability of
such systems, the additional analysis of their functionality must be performed to
prove the choice of the primitive object and develop RBD more precisely.

If the primitive objects of RBD are automata, we assume that the failure of
every automaton results in a complete loss of its functionality. Such an assumption
is reasonable for a few automata as the process of RBD development is quite
complicated and non-conventional for each particular system. So, RBD is formed
according to already known information about the automata behavior. The exam-
ple in Fig. 7.10 shows that the system fails if Automaton 1 fails or Automaton 3
fails or Automaton 2 and Automaton 4 fail. The probability of no-failure for such
a system is calculated with the following formula: P(t) = p1(t)×p3(t)×(1-(1-
p4(t))×(1- p2(t)))×pK(t), where pi is a probability of no-failure for automaton i;
pК(t) is a probability of no-failure of the subsystem that implements switching
between automata.

Fig. 7.10 RBD for a system out of four automata if primitive objects are automata

If the primitive objects of RBD are groups of definite and correct output data,
the assumption is that the failure of an automaton does not result in the complete
loss of its functionality and it can produce correct output data for some input
terms. In contrast to the previous assumption, this one is reasonable in case a sig-
nificant number of automata constitute a whole system. Nevertheless, there is one
serious disadvantage: during the synthesizing with GA, a digital system is consi-
dered as a “black box” with certain inputs and outputs without any information
about its internal structure. Therefore, information about the nature and conse-
quences of the automaton’s failure is not available. The probability of no-failure
for such a system is calculated with the following formula:

() ()[] ()tptptP
n

i
К

m

j
ij∏ ∏

= =

×⎥
⎦

⎤
⎢
⎣

⎡
−−=

1 0

11 ,

(7.2)

7 Reliable FPGA-Based Systems Out of Unreliable Automata 175

where pij(t) is a probability of no-failure for automaton j within the group of cor-
rect and definite output data i; n is a number of groups of correct and definite
output data; m is a number of automata that have correct and definite output data
within the group of correct and definite output data i.

For the example in Fig. 7.11, P(t) = p11(t)×p23(t)×(1-(1- p33(t)) × (1- p34(t))) ×
(1-(1- p42(t)) × (1- p44(t))) ×pK(t).

Fig. 7.11 RBD for a system out of four automata if primitive objects are groups of output
data

By assuming the primitive objects of RBD to be automata and groups of defi-
nite and correct output data, we mean that the failure of an automaton might
result in either the overall or partial loss of its functionality with the certain proba-
bility. The probability of no-failure for such a system is calculated using the
following formula:

() () () () () ()() ()' '' '

1 0

1 1
= =

⎛ ⎞⎛ ⎞
= × × = × − − ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏ ∏
n m

K ij K
i j

P t P t P t p t P t q t p t ,

(7.3)

where P'(t) is a probability of no-failure for those parts of automata which incor-
rect functioning results in an complete functionality loss of the appropriate auto-
maton; P''(t) is a probability of no-failure for those parts of automata which incor-
rect work results in a functionality loss of the appropriate automaton in the

appropriate groups; ()ijq t is the probability of no-failure for automaton j within
group i in case of no-failure operation of its part which fault results in the
complete functionality loss of automaton j.

The example in Fig. 7.12 shows how the probability of no-failure is calculated
for such systems: P(t) = p'1(t) × p'3(t) × (1-(1-p'4(t))×(1-p'2(t))) × q11(t) × q23(t) ×
(1 - (1 - q33(t)) × (1 - q34(t))) × (1 - (1 - q42(t)) × (1 - q44(t)))×pK(t).

176 N. Yakymets and V. Kharchenko

Fig. 7.12 RBD for a system out of four automata if primitive objects are both automata and
groups of output data

7.5 Designing Digital Systems Out of Unreliable Automata

7.5.1 General GA-Based Approach

One of the most critical engineering decisions to be taken as a part of the design
process with GAs is about properly identifying the level of abstraction for design
representation. The process of applying GA at the very low level of system im-
plementation on a FPGA, practically combines two stages of the life cycle – de-
signing and direct implementation. One of the main disadvantages here is a
difficulty in reproducing evolved system with other FPGAs [17]. Therefore the
main attention was paid to the gate level (Fig. 7.13) that is the one of the low
levels of abstraction.

Fig. 7.13 GA applications at a gate level

7 Reliable FPGA-Based Systems Out of Unreliable Automata 177

At the gate level each version is represented as a graph that shows interconnec-
tions of cells in FPGA. We assume that each cell can realize one of the following
internal functions: AND, OR, XOR, and it has one output and four inputs con-
nected either to one of a primary inputs (input variables from the truth table given
for a system) or to an output of any cell. The genotype of an initial population
(Table 7.1) is formed by random numbers generator and represents a set of binary
strings coding various variants of mapping. Each string consists of several
chromosomes.

Table 7.1 Definitions Connected with Genetic Algorithms

GA term Definition in GA terms Definition in system design terms

Chromosome Vector of ones and zeros
Vector of ones and zeros coding internal
function and cell interconnections

Individual
Set of chromosomes =
possible solution

Version of digital system = graph that shows
internal functions of cells and their
interconnections

Population
Set of individuals (set of
possible solutions)

Set of versions of digital system with the same
functionality but different implementations

Fitness

function

Function that reflects a degree
of how individual corresponds
to the required solution.

Fitness is calculated according to the overall
number of input data that correspond to the
required (as in a truth table) output data

The number of chromosomes is equal to the overall number of cells in the con-
sidered PLD area. The following information is coded in a chromosome:

• the probabilities to connect each cell’s input to one of the primary inputs;
• the numbers of primary inputs, which can be potentially connected to the cell’s

inputs;
• the numbers of cells, which outputs are connected to the current cell;
• the internal function of a cell; the probability that a cell is connected to one of

the primary outputs (output variables from the truth table given for a system).

The fitness f has been calculated for each individual by comparing its output data
with the existing specifications (truth table). It equals a ratio between the number
of correct terms of the individual and the overall number of terms from the
truth table.

n
r

i

X
f

2

%100×= , (7.4)

where i is a number of individual in a population; Xr is a total number of input
terms that corresponds to the correct output data; n is a number of inputs.

Digital system design with the use of GA includes tree phases [29]. The initial
data for the first phase is a truth table of the required system as well as the type of

178 N. Yakymets and V. Kharchenko

automata. According to the initial data GA evolves a model that represents a
digital system at the gate level providing information about the interconnections
between logic cells in a chip and their internal functions (Fig. 7.14). During the
second phase (Fig. 7.15), the obtained model can be improved in order to reach a
sufficient reliability level. In the third phase, a special subsystem is developed to
implement switching between automata and achieve the correct functionality of
the whole system. The initial data for this phase is a number of automata utilized
in the model and information about their functionality. Finally, a system that in-
cludes several PCA or/and PDA and switching subsystem, is implemented on a
chip with any standard CAD tool.

Fig. 7.14 Graphical representation of individual evolved with GA

Fig. 7.15 Process of digital system design with GA

7.5.2 Phase 1: Obtaining a System Model

First of all, a level of the automata correctness and definiteness should be proved
depending on the system complexity, cost and time constraints. The compactness
is the main requirement for the simple systems. Therefore they can be designed

7 Reliable FPGA-Based Systems Out of Unreliable Automata 179

with FDFCAs due to their simplicity. In case the compactness and development
time are of primary importance, PDFCAs or FDPCAs should be used as well. Im-
plementing system with PDFCAs we reduce development time at the expense of
increasing system complexity, whereas using FDPCAs we obtain a simple system
but synthesizing becomes more time-consuming. Complex systems, where time
constraints are critical, can be developed with PDPCAs.

The process of developing a digital system with FDFCAs includes several runs
of GA until the version with 100% fitness has been found. While calculating fit-
ness of every version all input and output states should be tested.

If a digital system is implemented with FDPCAs, GA executes until it has
evolved several partially correct solutions. As information about the correct or in-
correct output state of each input term of every automaton is available, FDPCAs
are gathered in a redundant scheme in such a way that all output states of the
scheme have to be correct. System reconfiguration is implemented depending on
known information about the correct or incorrect output states of each automaton
or if one or more FDPCAs fail. It guaranties a high level of system reliability due
to flexible controlling FDPCAs.

Fig. 7.16 “Sliding Testing” technique

If a digital system is developed with PDFCAs the design flow means running
GA until the fully correct versions are obtained. To reduce time required to evolve
versions if time constraints are critical, we suggest a so-called “Sliding Testing”
technique [28]. It means testing only a part of input and output data to estimate
versions’ fitness. In other words, the “Sliding Testing” is a tradeoff between de-
velopment rigour and development time. The application of such a technique re-
quires determining a width of the untestable interval ε (Fig. 7.16). Thus, the
“Sliding Testing” technique assumes several steps:

• determine a width of the untestable interval ε;
• set a position of an untestable interval as [i×ε, (i+1)×ε], i – a number of

version in the current population;
• estimate the fitness of each version in the population. It equals a total number

of terms which correspond to the correct output data of automaton. Terms
restricted by the untestable interval should not be tested.

180 N. Yakymets and V. Kharchenko

GA works until several fully correct versions have been obtained. The versions
can be included in the redundant schemes in such a way that all output states of
the scheme have to be definite.

The optimal value of ε is calculated as ⎥
⎦

⎤
⎢
⎣

⎡
=

m

n2ε , where n is an input data

capacity; 2n is an amount of input terms; m is an amount of versions in the current
population.

If
m

n2<ε the dependability of such a PDA is growing at the expense of reduc-

ing the amount of untestable input terms (a degree of automaton’s definiteness is

increasing). If m

n2>ε a level of automaton’s dependability is becoming lower

because of reducing its definiteness.
System reconfiguration is implemented depending on information about the

width and position of the untestable intervals of PDFCAs or if one or more
PDFCAs fail.

Development of digital systems with PDPCAs involves two design techniques:
designing system with FDPCAs and designing system with PDFCAs. This tech-
nique, just as the previous one, requires the “Sliding Testing” to be used during
the design flow. The difference is that GA proceeds until several partially correct
versions, sufficient to design a fully definite and correct system, are obtained.
While forming a whole system, the output states, which correspond to the indefi-
nite terms, should be marked as the incorrect ones that are known beforehand.
System reconfiguration is implemented depending on information about the width
and position of the untestable intervals of PDFCAs and their correct output states
or if one or more PDPCAs fail.

7.5.3 Phase 2: Increasing the Reliability of Digital Systems Out of
Unreliable Automata

In order to improve fault tolerance characteristics of digital systems the classical
solution is to gather several identical or different system versions in duplex or ma-
jority architecture. Such an approach can be applied to increase the fault tolerance
of digital systems based on PDA or/and PCA. Estimating the reliability of such a
multi-version system which is the several fully correct automata consisting of sev-
eral PDA or/and PCA, the standard formulas from the reliability theory must be
used. However, several other methods can be used together with the classical one
to increase the fault tolerance of digital systems implemented with PDA or/and
PCA [30]. The application of these methods is possible because of the essential
architectural features of such systems if the groups of definite and correct output
data are considered as primitive objects.

One of the simplest methods that allows development of fault tolerant digital
systems with the certain degree of redundancy is the “Constant” method. It
consists of two steps:

7 Reliable FPGA-Based Systems Out of Unreliable Automata 181

• selection of the minimum number of primitive objects n that have to be present
in all groups of output data to provide the required level of system reliability;

• adding new automata in such a way that the number of redundant elements in
every group mi satisfies the following condition: n ≤ mi.

While estimating the reliability of such systems P(t), the equations given in
section 7.4 must be used. Despite of it simplicity, applications of the method are
limited only to specific set of case. Mainly because of the fact that a significant
number of automata might be required to satisfy the condition n ≤ mi.

For example, there is a need to develop a system that has the minimum number

of logic cells Кs but the certain level of reliability ()tPinit
s or a system with the

maximum level of reliability but the fixed number of logic cells initK then
“Optimal Reservation” method can be used. It is based on the algorithm of short-
est descent [31] which is widely applied for the system optimization according to
the criteria “reliability – cost”. The proposed method uses the functionality of au-
tomata obtained with GA (available information about the correctness and defi-
niteness of each automaton) and allows the architecture of such systems to be
optimized according to the criteria “reliability-complexity” as well.

The process of system optimization includes two phases.

Phase 1:

• the set of PDA or/and PCA that constitutes the minimum functional basis of a
system is considered as an initial architecture;

• for the initial architecture, calculate the probabilities of no-failure of automata
for each group of output data pi as well as calculate the quantity of logic cells
that are essential to the functionality of automata for group i, ki. Since GA syn-
thesis an automaton is considered as a “black box”, we assume the equal prob-
abilities pi which can be calculated using the value of P(t) obtained with the si-
mulation or statistics. The same assumption is used for ki:

hn

l

k

h

j
j

i ×
=
∑

=1 ,

(7.5)

where lj is a number of logic cells allocated for automaton j within the initial ar-
chitecture; n is a number of groups of correct and definite output data within the
initial architecture; h is an overall number of automata in the initial architecture;

• condition ()tPPni init
si ≥=∀ :,1 is guaranteed by adding new automata into the

initial system architecture (Pi is the probability of no-failure of a system within
group i that is calculated using pi values);

• if a new automaton has been added, the probabilities pi must be recalculated

and the condition ()tPPni init
si ≥=∀ :,1 must be checked again as the new au-

tomaton might have definite and correct output data within the other groups
too;

182 N. Yakymets and V. Kharchenko

• estimate the probability of no-failure of a system Ps that is calculated according
to the equations given in section 7.4;

• estimate the number of logic cells allocated for a system using the following
formula:

∑
=

=
h

i
is lK

1
,

(7.6)

Phase 2:

• at each step of phase 2, the selection of the new automaton is made in such a
way that it must have correct and definite output data within that group, for
which it results in maximum reliability increase per unit of occupied area in
accordance with index j:

, 1 ,
,

, 1

() ()

()
i i j i i j

i j
i i i j

p g p g
j

k p g
+

+

−
=

× , (7.7)

where gi, j is a current group of output data;
• the probabilities pi are recalculated for each group as well as Ps and Ks for the

whole system.

7.5.4 Phase 3: Development of Switching Subsystem

This phase includes the following steps:

• work out the ideal model of system behavior that is based on information about
the functionality of each automaton. In this model, every input signal xi corres-
ponds to the set of ideal (known beforehand) output signals of automata, Yi

ideal;
• compare the real input signals of automata with one another and form a set of

real output signals, Yi
real;

• compare the set of real output signals Yi
real with the set of ideal ones Yi

ideal and
choose such a couple (yj

real, yj
ideal) that yj

real = yj
ideal, where j is a number of au-

tomaton which is acceptable for switching.
The described above algorithm can be implemented using Table 7.2.

Table 7.2 Switching logic for two automata

 Information about current behavior of automata

K
no

w
n

in
fo

rm
at

io
n

ab
ou

t
de

fi
ni

te
ne

ss
 a

nd

co
rr

ec
tn

es
s

of
 a

ut
om

at
a A - Automaton A1 = A2 A1 ≠ A2

A1 and A2 have definite and
correct output

“OK”

Switch to A1 or A2
“Fail”

A1 has definite and correct
output

“Risk”

Switch to A1

“OK”

Switch to A1

A2 has definite and correct
output

“Risk”

Switch to A2

“OK”

Switch to A2

7 Reliable FPGA-Based Systems Out of Unreliable Automata 183

The top row includes all possible combinations formed by n automata if they
lose their correct functionality that can be revealed during the system exploration.
The left column includes all possible combinations formed by n automata accord-
ing to the information from the ideal model. The rest of cells are filled in as fol-
lows. If a current combination of the top row fits to the current combination of the
left column then the cell has value “Fail”. In other case, the cell is filled with value
“OK”.

7.5.5 Implementation

Implementation of a solution on a chip implies several alternatives. The choice
lies between ASIC, PLA, CPLD or FPGA.

The choice of an ASIC involves a lot of restrictions arising from the fact that it
is “Application Specific” and quite expensive. Then between PLA, CPLD and
FPGA it is the last one that offers the highest flexibility that is in primary
importance when we deal with GAs.

Fig. 7.17 Software and hardware architecture for system design with GA

184 N. Yakymets and V. Kharchenko

To translate the model into the acceptable format in order to exploit the
standard CAD tool, each automaton needs a description in any of Hardware De-
scription Languages (HDL) as follows. The codes of the internal functions of each
cell are to be extracted from binary string that describes the behavior of automata
as well as codes that show cell interconnections. Then the appropriate variable for
each cell is defined to implement its internal function and set the connections be-
tween these variables, inputs and outputs of automaton. As a result, a hierarchical
project is obtained by applying the same approach to every automaton of the mod-
el: on the top level there is a switching subsystem while automata are
represented as “include files” (Fig. 7.17).

7.6 Experimental Application

Digital heating controller developed by means of the standard CAD tool, and cur-
rently used in AN-70 plane was chosen to verify our approach. It was imple-
mented using C++, AHDL languages and Quartus II tool on a Pentium IV with
1500 MHz clock and 1 GB RAM.

A simple GA with a population size of 50, GA cycles of 1000, crossover prob-
ability of 0.75 and mutation probability of 0.25 was applied. Modeling area was
determined as 4×4 array of logic cells of FPGA.

Input data for the heating controller: 1-st bit determines a sign; 2-7 bits deter-
mine a value of the temperature (°C). Output data for the heating controller:
'01' – the temperature is lower than +15°C, '10' – the temperature from +15°C up
to +35°C, '11' – the temperature is higher than +35°C.

During the first phase of design flow, a model of heating controller that
involves 9 logic cells and includes two PCA evolved in 405 and 789 populations,
was obtained. Information about their functioning is represented in Fig. 7.18.

Fig. 7.18 The scheme of term overlapping in the heating controller model implemented
with partially correct automata

To assess the reliability of the developed controller, the probability of no-
failure was chosen. It was calculated for FPGA failure rate λ=10-7 1/hour, 1=Kp ,
time intervals t= {101, 102, 103, 104, 105} hours and overall number of logic cells
N=256. Time till the FPGA fault has been given by the exponential distribution.

If the primitive objects are automata, the probability of no-failure is calculated
with the following formula: P(t) = p1(t)×p2(t)×pK(t). We have assumed that

7 Reliable FPGA-Based Systems Out of Unreliable Automata 185

p1(t)=p2(t), so P(t) = p(t)2× pK(t). The probability of no-failure for a single
automaton is equal to λa= (λ×Na)/N, where Na is a number of logic cells that con-
stitute single automaton. Na=Ns/h, where Ns is a number of cells allocated for the
whole system and h is a number of automata. Therefore, the probability of

no-failure for the whole system is the following: P(t)
[]

t×××
= 256

9/210
2-

-7

e .
If the primitive objects are groups of definite and correct output data, the prob-

ability of no-failure is calculated as P(t) = p11(t)×(1-(1- p12(t) ×(1- p22(t)) × p23 (t) ×
p14(t) ×pK(t). We have assumed that all probabilities p(t) are equal, so
P(t)=p(t)3×(1-(1- p(t)2)×pK(t). The probability of no-failure for a single group of

correct and definite data of automaton equals p(t)=
tge λ−
, where λg is a failure rate

of automaton for a group g. λg is calculated as λg= (λ×Ng)/N, where Ng =Ns/(h×n)
and n is a number of groups. Therefore, the probability of no-failure for the whole

system is the following: P(t)))e1(1(e 2256
42

9
10

-
256

42

9
10

-3

-7-7

tt ×
⎥⎦
⎤

⎢⎣
⎡

×
×

×
⎥⎦
⎤

⎢⎣
⎡

×
×

×
−−×= .

To compare the developed heating controller with the prototype, we assume

prototype to be a single FDFCA. Thus, P(t)=
tpe λ−
, where λp is a failure rate of the

prototype. λp is equal λg= (λ×Ns)/N, so the probability of no-failure for the

prototype is t
256

7410
-

7

eP(t)
×−

= .
The values of P(t) for the obtained controller and its prototype are given in

Table 7.3. The gain in reducing the probability of no-failure for both versions of
controller is shown in Table 7.4.

Table 7.3 The probability of no-failure for heating controller and its prototype

-
Primitive

Object
Time, hour

- - 10 102 103 104 105

New

System

Automata 0.999999965 0.999999648 0.999996484 0.999964844 0.999648499

Groups of
output data 0.999999986816 0.999999868164 0.999998681641 0.99998681647 0.999868170829

Prototype - 0.999999710938 0.999997109379 0.999971094168 0.99971097927 0.997113548834

Table 7.4 The gain in reducing the probability of no-failure for heating controller compar-
ing to its prototype

Primitive

Object
Time, hour

- 10 102 103 104 105

Automata 8,25892738 8,21199097 8,22122646 8,22109243 8,21178650

Groups 21,9252471 21,9258838 21,9256153 21,9228633 21,8953904

186 N. Yakymets and V. Kharchenko

During the second phase we applied both the “Constant” and “Optimal
Reservation” methods to the heating controller shown in Fig. 7.18. The existing
model was updated in the process of simulation with the new automata that had
not been included into the initial model from the start.

For the “Constant” method the number of automata that had correct data within
every group was set to 3. To increase redundancy in group 1, automaton 3 and 4
were added. Automaton 3 was used in order to achieve the required level of re-
dundancy in group 2 as well (Fig. 7.19). Automaton 4 and 5 were also added for
group 3 and automaton 3 and 5 were added for group 4. Thus, in the obtained
architecture at least three automata in every group have correct output data. More-
over, in group 1 the level of redundancy is higher than required because of the es-
sential logic of such PCA. In case the primitive objects in RBD are the groups of
correct output data of automata, the probability of no-failure for the obtained
system is the following:

()() ()() ()() ()()()Kgggg pppppP ×−−×−−×−−×−−= 3334
1 4321

11111111 . (7.8)

Fig. 7.19 Model of heating controller obtained with the “Constant” method

The degree of reducing the probability of failure for the “Constant” method, if
1=Kp and 9.0

4321
==== gggg pppp , is the following:

085690.84
996904.01
72171.01

))9.01(1())9.01(1(1
9.09.0))9.01(1(9.01

1

1
334

2

1

0 =
−
−=

−−×−−−
××−−×−=

−
−=

P

P
W

, (7.9)

where P1 is a probability of no-failure for the obtained system; P0 is a probability
of no-failure for the initial system.

So, the reduction of the probability of failure for the system received by the
“Constant” method application is 84.085690 if the number of logic cells has
grown from 9 to 23.

The analysis of the system architecture represented in Fig. 7.19 shows that
there is a switching between the correct and incorrect output data in groups 2, 3
and 4 (for example, automaton 4 within group 2). Such a redundancy has not been

7 Reliable FPGA-Based Systems Out of Unreliable Automata 187

taken into consideration in (7.8). Nevertheless, this disadvantage can be avoided
by increasing the amount of groups as it is shown in Fig. 7.20. The degree of re-
ducing the probability of failure, while increasing the number of groups from 4 to
7 is the following (941571.09.07 47 4

7654321
≈======== ∗∗∗∗∗∗∗

gggggggg pppppppp):

000399.1
))941571.01(1())941571.01(1(1

))9.01(1())9.01(1(1

1

1
2354

334

2

1 =
−−×−−−
−−×−−−=

−
−=

P

P
W , (7.10)

where P2 is a probability of no-failure for the obtained system after a new splitting
into groups.

Fig. 7.20 Model of heating controller received with the “Constant” method after increasing
the number of groups of output data

Hence, the high level of system reliability can be achieved by precise splitting a
set of output data of automata into the groups to allow switching between the au-
tomata to be more flexible.

According to the “Optimal Reservation” method based on the algorithm of the
shortest descent the resulting model of the heating controller should have the
probability of no-failure () 98.0=tPinit

s
 with the minimum number of allocated

logic cells. Two PCA in Fig. 7.18 constitute the minimum functional basis of the
heating controller, therefore they can be selected as an initial architecture. 4 logic
cells have been allocated for the first automaton and 5 cells for the second one.

Phase 1:

• initial assumption for value of pi is 0.95 for group 1 and 0.9 for groups 2, 3 and
4 respectively;

• according to (7.5) 1
24

91 ≈
×

=
×

=
∑

=

hn

l

k

h

j
j

;

188 N. Yakymets and V. Kharchenko

• to meet the condition ()tPPni init
si ≥=∀ :,1 that requires additional redundancy in

groups 1, 3 and 4, automaton 3 (Fig. 7.21) was added into the initial architec-
ture. The probabilities of no-failure for each group are the follow-
ing: 2 2

1 2 3 41 (1 0.95) 0.9975 ; 1 (1 0.9) 0.99= − − = > = = = − − = >init init
s sP P P P P P ;

• as automaton 3 does not have correct and definite output data within the whole
group 4, the value of P4 is not recalculated;

• the probability of no-failure for the whole system is the following:
2 2 3(1 (1 0.95)) (1 (1 0.9)) 0.967873253= − − × − − = < init

s sP P ;

• the number of logic cells in the current model is Ks = Kautomaton 1 + Kautomaton 2 +
Kautomaton 3=4 +5 + 5 = 14.

Phase 2:

• by adding redundancy to every group (Fig. 7.21) Pi is defined as:
3 3

1 2 3 41 (1 0.95) 0.0999875; 1 (1 0.9) 0.999;= − − = = = = − − =P P P P

• the value of j (7.7) for every group is the following:

1 2 3 4

0.999875 0.9975 0.999 0.99
0.000791766, 0.003.

0.999875 1 3 0.999 1 3
j j j j

− −= = = = = =
× × × ×

Fig. 7.21. Model of the heating controller received by optimal reservation after phase 1

Fig. 7.22 Model of the heating controller received by optimal reservation after phase 2

7 Reliable FPGA-Based Systems Out of Unreliable Automata 189

As the value of j is the maximum for groups 2, 3 and 4, one more automaton
was added to the model to provide the required redundancy level in these groups
(Fig. 7.22). The probability of no-failure for each group and the whole model is
the following:

3 2
1 2

3 2
3 4

1 (1 0.95) 0.0999875; 1 (1 0.9) 0.99;

1 (1 0.9) 0.999; 0.999875 0.99 0.999 0.987897487 .init
s s

P P

P P P P

= − − = = − − =

= = − − = = × × = >

Resulting model of the heating controller consists of 4 automata and uses 19 logic
cells (Ks = 4 +5 + 5 +5 = 19). The probability of no-failure for the given model
equals to 0.987897487 if the probability of no-failure for the primitive objects in
group 1 is 0.95 and 0.90 for groups 2, 3 and 4 respectively. Thus, by applying the
proposed method, it was proved that the essential logic of PDA and PCA allows
flexible digital systems development with the certain properties such as reliability
level or system complexity.

During the third phase the model in Fig. 7.18 was implemented to FPGA
EP1K10TC144-3 (family ACEX 1K) and compared with its prototype. The sub-
system that allows switching automata was designed according to Table 7.2 and
Fig. 7.18.

Involved
Cells

Involved Cells

Faulty Cells

View in Floorpaln Editor (Quartus II) View in PLD Fault Simulator
Heating controller obtained by using GA

Heating controller obtained by using standard CAD

View in PLD Fault Simulator View in Floorpaln Editor (Quartus II)

Involved Cells

Faulty Cells

Involved
Cells

Fig. 7.23 Location of the heating controllers in the FPGA EP1K10TC144-3 and their
representation in the PLD fault simulator

190 N. Yakymets and V. Kharchenko

Both versions of controller were compared (Fig. 7.23) according to the diversi-
ty metric given in (7.1). A fault simulator [32] was used to assess the probability
of keeping system operating state for both versions that is calculated as

N

N
P 1= ,

(7.11)

where N1 is a number of trials for those the system kept its correct operating
during fault simulation; N is a total number of trials.

The experimental results given in Table 7.5 show that the system is able to keep
its operating state even though there is a significant number of faulty cells in
FPGA. The reason is the compactness of the developed controller: it uses only 27
logic cells in a FPGA, whereas in the prototype the overall number of cells in-
volved is 74.

Table 7.5 The probability of keeping system operating state with the several numbers of
faulty cells

Faulty Cells 1 Cell 2 Cells 3 Cells
5% of
Chip

10% of
Chip

25% of
Chip

50% of
Chip

75% of
Chip

GA-project 0.958 0.951 0.943 0.865 0.810 0.663 0.398 0.080

Prototype 0.870 0.797 0.745 0.480 0.343 0.050 0 0

Both prototype and evolved controller can be gathered to duplex architecture as
it is shown in Fig. 7.2 - 7.3 to constitute a multi-version FPGA-based system.
Another way is to use the obtained project as a control module for the prototype
(Fig. 7.4).

7.7 Conclusions

In this chapter we reviewed the principles of multi-version digital system design.
We also introduced the concept that helps to develop a simple and reliable system
from unreliable parts. The corner stone of multi-versions design approach is a need
to get the resulting versions as different as possible. With the method proposed
both classical and non-classical paths were taken, with the latter making use of ge-
netic algorithms. Although analysis showed a significant decrease in the FPGA uti-
lization, on the other hand, applying the method led to the problem of building a re-
liable system from unreliable parts and sticking to the initial design constraints at
the same time. That problem was tackled by introducing an innovative method that
made it possible to 1) develop a reliable system from unreliable parts; 2) manage a
level of system reliability and complexity; 3) implement efficient switching be-
tween different automata, based upon available information about their correctness
and definiteness; 4) implement the system on an FPGA chip.

A practical application section proved the feasibility of the selected approach
and used methods. A careful study has outlined not only obvious advantages, but
also possible implications and pitfalls that method users should be aware of.

7 Reliable FPGA-Based Systems Out of Unreliable Automata 191

References

[1] Avizienis, A., Lapric, J.C.: Dependable Computing: From Concepts to Design Diver-
sity. Proceedings of the IEEE 74(5), 629–638 (1986)

[2] Dobson, J., Randell, B.: Building Reliable Secure Computing Systems out of Unreli-
able Insecure Components. In: Proceeding of IEEE Symposium on Security and
Privacy, pp. 187–193 (1986)

[3] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

[4] ITU-T. Terms and Definitions Related to QoS and Network Performance Including
Dependability, Recommendations E800, Geneva (1994)

[5] Cotting, M.C., Burken, J.J.: Reconfigurable Control Design for the Full X-33 Flight
Envelope. In: Proceedings of AIAA Guidance, Navigation & Control Conference,
Montreal, Quebec, Canada, p. 16 (2001)

[6] Saint-Jean, S.B., Torres, R.: HS-Scale: a Hardware-Software Scalable MP-SOC Ar-
chitecture for embedded Systems. In: IEEE Computer Society Annual Symposium on
VLSI (ISVLSI 2007), pp. 21–28 (2007)

[7] Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-tolerant
Control, p. 672. Springer, Heidelberg (2006)

[8] Tribble, A.C., Miller, S.P., Lempia, D.L.: Software Safety Analysis of a Flight Guid-
ance System. Rockwell Collins, Inc., 400 Collins Rd, NE Cedar Rapids, IA 52402
USA,
http://shemesh.larc.nasa.gov/fm/papers/
Tribble-SW-Safety-FGS-DASC.pdf

[9] Rushby, J.: Formal Methods and the Certification of critical Systems. Computer
Science Laboratory, SRI International menlo Park CA 94025 USA,
http://techreports.larc.nasa.gov/ltrs/PDF/cr4551.pdf

[10] Ullmann, M., Huebner, M., Grimm, B., Becker, J.: An FPGA run-time system for
dynamical on-demand reconfiguration. In: Proceedings of the 18th International
Symposium on Parallel and Distributed Processing, p. 135 (2004)

[11] Benini, L., De Micheli, G.: Networks on Chips: A New SoC Paradigm. Comput-
er 35(1), 70–78 (2002)

[12] Strigini, L., Littlewood, B.: A Discussion of Practices for Enhancing Diversity in
Software Designs, Centre for Software Reliability. Technical Report LS_DI_TR_04
(2000)

[13] Townend, P., Xu, J., Munro, M.: Building Dependable Software for Critical Applica-
tions: Multi-Version Software versus One Good Version. In: Proceedings of the 6th
Int. Workshop on Object-Oriented Real-Time Dependable Systems, WORDS 2001,
p. 103 (2001)

[14] Kharchenko, V.S., Tarasenko V.V.: Multiversion Design Technologies of On-board
Fault-tolerant FPGA Devices. In: Proceedings of MAPLD Conference, Maryland,
USA (2001)

[15] Shuqing, W., Jiaping, L., Zipeng, Z., Xiaohui, Y.: Application of Neural Networks
and Genetic Algorithm in Knowledge Acquisition of Fuzzy Control System. In: Pro-
ceedings of the 6th World Congress on Intelligent Control and Automation, vol. 1,
pp. 3886–3890 (2006)

192 N. Yakymets and V. Kharchenko

[16] Dunham, B., Fridshal, D., Fridshal, R., North, J.: Design by Natural Selection. In:
Synthese, pp. 254–259. D. Reidel Publication Company, Dordrecht (1963)

[17] Thompson, A., Layzell, P., Zebulum, R.: Explorations in Design Space: Unconven-
tional Electronics Design through Artificial Evolution. IEEE Transactions on Evolu-
tionary Computation 3(3) (1999)

[18] Teuscher, C.: Turing’s Connectionism. In: An Investigation of Neural Network
Architectures. Springer, London (2001)

[19] Shuqing, W., Jiaping, L., Zipeng, Z., Xiaohui, Y.: Application of Neural Networks
and Genetic Algorithm in Knowledge Acquisition of Fuzzy Control System. In: Pro-
ceedings of the 6th World Congress on Intelligent Control and Automation, vol. 1,
pp. 3886–3890 (2006)

[20] Dias, F.M., Antunes, A., Mota, A.M.: Artificial neural networks: a review of
commercial hardware. Engineering Applications of Artificial Intelligence 17(8),
945A–952A (2004)

[21] Darwing, C.: The Origin of Species. John Murray, London (1859)
[22] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Mich-

igan Press, Ann Arbor (1975)
[23] Savage, M.J.W., Salcic, Z., Coghill, G., Covic, G.: Extended genetic algorithm for

codesign optimization of DSP systems in FPGAs. In: Proceedings of IEEE Interna-
tional Conference on Field-Programmable Technology, pp. 291–294 (2004)

[24] Koza, J., Al-Sakran, S., Jones, L.: Cross-Domain Features of Runs of Genetic
Programming Used to Evolve Designs for Analog Circuits, Optical Lens Systems,
Controllers, Antennas, Mechanical Systems and Quantum Computer Circuits. In:
NASA/DoD Conference on Evolvable Hardware, pp. 205–214. IEEE Computer So-
ciety Press, Los Alamitos (2005)

[25] Hornby, G., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.:
Evolving Robust Gaits with AIBO. In: IEEE International Conference on Robotics
and Automation, pp. 3040–3045. IEEE, Los Alamitos (2000)

[26] Hornby, G.: Functional Scalability through Generative Representations: the Evolution
of Table Designs. Environment and Planning B: Planning and Design 31(4), 569–587
(2004)

[27] Yakymets, N., Kharchenko, V.: Resource-Oriented Diversification of Fault-Tolerant
PLD-Systems. Radio-Electronic and Computer Systems, KhAI 3, 45–50 (2006)

[28] Yakymets, N., Kharchenko, V.: Design of Complex Fault-Tolerant PLD-Based Sys-
tems Using Genetic Algorithms. In: Proceedings of IEEE East-West Design and Test
Symposium, Yerevan, pp. 429–432 (2007)

[29] Yakymets, N., Kharchenko, V.: Fault-Tolerant Digital Systems Implemented with
Partially Definite and Partially Correct Automata. In: Proceedings of the Second In-
ternational Workshop on Engineering Fault Tolerant Systems (EFTS 2007), Dubrov-
nik, Croatia (2007)

[30] Kharchenko, V.S., Sklyar, V.V., Volkovoy, A.V.: Multi-version Information Tech-
nologies and Development of Dependable Systems out of Undependable Compo-
nents. In: Proceeding of DepCoS-RELCOMEX Conference, Szklarska Poreba,
Poland, pp. 43–50 (2007)

[31] Dem’yanov, V., Malozemov, V.: An introduction to Minimax. Nauka (1972)
[32] Yakymets, N., Ushakov, A.: Certificate of authorship No. 10393 for the computer

program “Adjustable generator of cluster faults of logical cells in programmable logic
devices” (2004)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 193–214.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

8 Synthesis of Compositional Microprogram
Control Unit with Dedicated Area of Inputs

Alexander Barkalov1, Larysa Titarenko1, Jacek Bieganowski1,
and Alexander Miroshkin2

1 University of Zielona Góra, Institute of Computer Engineering and Electronics
e-mail: {A.Barkalov,L.Titarenko,J.Bieganowski}@iie.uz.zgora.pl

2 Donetsk National Technical University, Department of Computers,
 Apt. 41, 204a, Artema str., 83122 Donetsk, Ukraine
 e-mail: arrack@mail.ru

Abstract. The chapter is devoted to CMCU optimization, based on the modifica-
tion of the microinstruction format. Proposed modifications are intended to elimi-
nate code transformers from the CMCU and reduce the hardware amount of
circuits used in the FSM for the microinstruction addressing, as compared with the
CMCU basic structure. The reduction of the hardware amount is achieved at the
cost of increasing the number of cycles needed for the execution of the control
algorithms, and in some cases also at the cost of increasing control memory size.

8.1 Introduction

A Control Unit (CU) is one of the most important parts of any digital system [10].
It is responsible for interplay of all blocks of a system. There are many ways for
implementation of a control unit [4]. It can be implemented using the model of a
Finite-State-Machine (FSM), and the Moore model is used very often for such a
FSM [1]. Use of FSM model permits to set the circuits with the highest possible
performance, especially when the single-level models [4] are applied. The second
way is the model of a microprogram control unit [3], when a circuit of CU can be
implemented using only multiplexors and memory blocks. In this case a control
algorithm to be implemented is represented as a microprogram which is kept in a
control memory. That model permits to obtain very chap but slow designs. If a
control algorithm to be implemented includes long sequences of unconditional
jumps, then the model of a Compositional Microprogram Control Unit (CMCU)
can be used [3]. Such devices are very useful when a part of a digital system is
implemented using Field-Programmable-Gate-Arrays (FPGA) [11]. These chips
include look-up table elements, which can be used for implementation of the block
of microinstruction addressing and the counter (together with internal flip-flops).
The blocks of embedded memory [11, 12] can be used for keeping of a
microprogram. Therefore, the CMCU model permits to use all types of blocks of

194 A. Barkalov et al.

an FPGA chip. This model gives the best results for linear control algorithms [1].
Here we propose some new methods for implementation of CMCU. Our proposed
methods are based on some modifications of microinstructions in comparison with
well-known base methods of CMCU implementation [1, 3, 4].

8.2 Background of CMCU

Let a graph-scheme of algorithm (GSA) Γ be used for representation of a control
algorithm [2]. Let B = {b0, bE}∪E1∪E2 be a set of GSA vertices and E be a set of
arks connected some of these vertices. Here b0 is an initial (start) vertex of GSA,
bE is a final vertex, E1 is a set of operator vertices, where M=|E1|, and E2 is a set of
conditional vertices. Each operator vertex bq∈E1 contains a collection of micro-
operations Y(bq) ⊆ Y, where Y = {y1,…,yN} is a set of data-path microoperations
[2]. Each conditional vertex bq∈E2 includes some logical condition xe ∈ X, where
X = {x1,…,xL} is a set of logical conditions. A GSA Γ is named linear GSA if the
number M exceeds 75% of the total number of its vertices [1].

Let us introduce some definitions used in this chapter.

Definition 1. An operational linear chain (OLC) of GSA Γ is a finite vector of
operator vertices αg = 〈bg1

, …, bgFg
〉, such that an arc 〈bgi

, bgi+1
〉 ∈ E corresponds

to each pair of adjacent vertices bgi
, bgi+1

, where i is the component number of

vector αg.
Let Dg be a set of operator vertices, which are components of OLC αg.

Definition 2. An operator vertex bq∈Dg is called an input of OLCαg, if there is an
arc 〈bt, bq

〉∈E, such that bt∉Dg.

Definition 3. An input bq∈Dg is called a main input of OLC αg, if GSA Γ does not
include an arc 〈bt, , bq

〉∈E such that bt∈B1.

Definition 4. An operator vertex bq∈Dg is called an output of OLC αg, if there is
an arc 〈bt, , bq

〉∈E, where bt∉Dg.

It follows from the basic properties of GSA [2] that each OLC αg corresponding to
definitions given above should have at least one input and exactly one output. Let
Ig

j stand for input j of OLC αg and Og for its output. Let inputs of OLC αg form a
set I(αg).

For GSA Γ we have the following sets:

1. A set of OLC C={α1, …, αG }, satisfying the following condition

{ }()
.min

;,,1, ; 0

;1
1

→

∈≠=∩

=∪∪

G

GjijijDiD

BGDD

K

K

 (8.1)

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 195

2. A set of inputs I(Γ) of the operational linear chains of GSA Γ:

() ()U
G

g
gII

1=

=Γ α . (8.2)

3. A set of outputs O(Γ) of the operational linear chains of GSA Γ:

() { }GOOO ,,1 K=Γ . (8.3)

Let the natural microinstruction addressing be executed for microinstructions
corresponding to the adjacent components of each OLC αg ∈C:

() () ()1,,1 1
1

−=+=
+ ggg FibAbA

ii
K . (8.4)

In expression (8.4) symbol A(Bgi) stands for the address of microinstruction
corresponding to component i of vector αg ∈C, where i=1, …, Fg−1.

In this case GSA Γ can be interpreted by compositional microprogram control
unit with basic structure of Fig. 8.1 [10]. Let us denote it as unit U1.

Ψ

τ

Φ

Fig. 8.1 Structural diagram of compositional microprogram control unit with basic structure

In the unit U1, combinational circuit CC and register RG form a finite state ma-
chine S1, which will be called microinstruction addressing unit or FSM S1. Coun-
ter CT, control memory CM and flip-flop TF form microprogram control unit S2
with natural microinstruction addressing. The unit U1 operates in the
following manner.

The pulse “Start” initializes following actions: the zero code of FSM S1 initial
state is loaded into register RG; start address of microprogram is loaded into coun-
ter CT; flip-flop TF is set up (Fetch=1). If Fetch=1, microinstructions can be
fetched out of the control memory. Let at time t (t=0, 1, 2, …) the code of state
αm∈A1, where A1 is a set of FSM S1 states, be loaded into register RG and address
A(Ig

j) of the input j of OLC αg∈C be loaded into the counter CT. Current microin-
struction is read out of CM and its microoperations yn∈Y initialize some actions of
the data-path. If this input is not the output of current OLC αg∈C (Ig

j≠Og), addi-
tional variable y0=1 is generated by MCU S2. If y0=1, content of register RG is
unchangeable and 1 is added to the content of counter CT. It corresponds to a tran-
sition between adjacent components of OLC αg∈C. If the output Og is reached,
then y0=0. In this case circuit CC generates Boolean functions:

196 A. Barkalov et al.

()X,τΦ=Φ , (8.5)

()X,τΨ=Ψ , (8.6)

where τ={τ1, …, τR1
} is a set of state variables encoding states αm∈A1. The

minimum number of these variables is determined as

⎡ ⎤121 log MR = , (8.7)

where M1=|A1|. If there is a transition from output Og to some input under influ-
ence of some values of logical conditions, functions (8.5) determine the address of
this input Ii

j∈I(Γ) which is to be loaded into the counter. Functions (8.7) calculate
the code of next state as∈A1 to be loaded into RG. Content of both CT and RG is
changed by the pulse “Clock”. Outputs of the CT, T={T1,…TR2

} determine next

microinstruction address. This set includes

⎡ ⎤222 log MR = (8.8)

variables, where M2=|B2|. If CT contains the address of microinstruction corres-
ponding to vertex bq∈B1 such that 〈bq,bE〉∈E, some additional variable yE=1 is
generated. If yE=1, the flip-flop TF is cleared. Thus Fetch=0 and microinstruction
fetching from the control memory is terminated.

As follows from (8.5), FSM S1 of unit U1 implements any multidirectional mi-
croprogram transition between output Og∈O(Γ) and input Ii

j∈I(Γ) in one cycle of
operation. At the same time MCU S2 implements addressing rule (8.4), used to or-
ganize transitions between microinstructions corresponding to adjacent
components of OLC αg∈C. Therefore, control memory CM should only keep mi-
crooperations yn∈Y and additional variables y0, yE. In other words, an address part
is absent in the microinstruction format in case of CMCU U1. The main disadvan-
tage of CMCU U1 is the loss of universality, because changes in the interpreted
microprogram lead to the redesign of circuit CC. Fortunately, current achieve-
ments in semiconductor technology permit to eliminate this drawback.

In this chapter we deal with some modification of CMCU U1, namely CMCU with
common memory [4] denoted here as U2. It has the following structure (Fig. 8.2)

Fig. 8.2 Structural diagram of CMCU U2

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 197

In CMCU U2, the counter CT is used as a source of the codes for S1 and
addresses for S2. The Circuit CC implements system

).,(XTΦ=Φ (8.9)

All other blocks of CMCU U2 execute the same functions as corresponding blocks
of CMCU U1.

8.3 Synthesis of CMCU with Dedicated Area of Inputs

All compositional microprogram control units known from literature have some
common feature, namely generation of input addresses by the block СС. This ap-
proach can be called hardware address generation, in which the number of outputs
in the CC block is equal to R2 (model U1 is the only exception). In order to reduce
this number, some additional block for address generation is needed (for transfor-
mation of object codes). The second approach leads to increasing of the CMCU
cycle time, in comparison with its value for CMCU U1. In case of the CMCU with
elementary OLC and code sharing [4], the number of CC outputs is smaller than
R2, but application of these methods can cause either significant increase of the
control memory size, in comparison with its minimal value Vmin, or an increase of
the CMCU cycle time. If the increase of time cycle is not desirable, the number of
CC outputs cannot be reduced, in comparison with R2. Let us consider how the
number of CC outputs can be reduced in cases when application of code sharing
leads to introduction of the address transformer, but performance of the resulting
CMCU cannot be worse, than in case of the CMCU U1. Let us discuss these me-
thods using an example of CMCU U2. Our discussion is based on results from [5-9].

In case of CMCU U2, the output addresses of OLC αg∈C possess the property
of randomness. Application of address procedure does not guarantee that, for ex-
ample, some bit is equal to zero for all input addresses. Situation of this kind
would allow to reduce the number of CC block outputs in comparison with R2. Let
the set of OLC inputs I(Γ) for GSA Γ include I0 elements, which can be encoded
by only R3 bits, where

⎡ ⎤023 log IR = . (8.10)

Obviously the following condition is satisfied for the linear graph-schemes of al-
gorithm, where the number of operator vertices exceeds significantly the number
of conditional vertices:

23 RR < . (8.11)

Let the following condition (8.3) be satisfied for GSA Γ:

()⎡ ⎤ ⎡ ⎤22202 loglog MMI =+ , (8.12)

where M2 is the number of operator vertices. Let us choose I0 cells of control
memory to keep OLC inputs and let these cells have addresses from 0 to (I0−1)2.
Let us call this set of cells a dedicated input area (DIA). This fixation of OLC

198 A. Barkalov et al.

inputs requires execution of unconditional jumps to the real input address, which
should be introduced into the special control microinstruction. It leads to some
modification of microinstruction formats in comparison with CMCU U2 [4]. The
model of CMCU U3 with dedicated input area is shown in Fig. 8.3.

Φ
0Φ

Fig. 8.3 Structural diagram of CMCU U3

Let us discuss particular qualities of CMCU U3 in comparison with U2. In case
of the CMCU U3, there are two formats of microinstructions (Fig. 8.4).

Fig. 8.4 Microinstruction formats for CMCU U3

The control microinstruction, shown in Fig. 8.4a, contains an address field FA
with address for transition from the dedicated input area into the area of micropro-
gram (AMP) containing operational microinstructions. This format includes a field
of attribute TMI, with all zeroes (TMI=00). Operational microinstruction
(Fig. 8.4b) includes the field TMI and an operational part FY. If TMI=01, this
microinstruction corresponds to an OLC output, corresponding in turn to yC=1. If
TMI=10, the microinstruction corresponds to some OLC component, which is not
an OLC output. It corresponds to y0=1. Code TMI=11 indicates that some OLC
output connected with vertex bE is reached. It corresponds to yE=1. Let us point
out that the control microinstruction corresponds to yj=1.

In case of the control microinstructions, some additional block for generation of
microoperations should be used to prevent generation of microoperations yn∈Y (if
yj=1), because in this case microinstruction would contain information about ad-
dress of transition only. Multiplexer MX should be used to load into counter CT:
either the transition address created by functions Φ0 (yC=1), or the address of some
cell of the microprogram area, which occupies the field FA of the control microin-
struction (yj=1). Block CCS is used to generate control signals y0, yj, yC, yE,
depending on the content of field TMI.

Compositional microprogram control unit U3 operates in the following manner.
First, zero code is loaded into the counter CT using pulse Start, corresponding to

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 199

the address of main OLC α1∈C input, kept in the dedicated input area. At the
same time, flip-flop TF is set up and allows microinstruction fetching from the
CM control memory (Fetch=1). Current microinstruction is read from the control
memory CM and block CCS generates some control signals y0, yj, yC, yE. If CT
contains the address of OLC output, variable yC=1 is generated together with
microoperations yn∈Y. In this case, input memory functions

()X,00 ΤΦ=Φ (8.13)

load the address taken from dedicated input area into the counter CT. The signal yj
is generated and an address from AMP is loaded into CT. If the counter CT con-
tains an address of OLC component corresponding to vertex bq, such that
〈bq, bE〉∉E and bq≠Og, both microoperations yn∈Y(bq) and variable y0=1 are gen-
erated. In consequence, the counter content is incremented and causes transition to
the following microinstruction. If the counter CT contains the address of microin-
struction corresponding to vertex bq, such that 〈bq, bE〉∈E, variable yE is generated
and fetching of microinstructions terminated.

The method of CMCU U3 synthesis includes the following steps:

1. Transformation of initial GSA.
2. Construction of the OLC set using transformed GSA Γ(U3).
3. Finding addresses for OLC inputs.
4. Microinstruction addressing.
5. Construction of the control memory content.
6. Construction of the transition table of CMCU.
7. Construction of CCS table.
8. Synthesis of CMCU logic circuit using given logical elements.

Let us discuss application of this method for synthesis of the CMCU U3(Γ1),
where the transformed GSA Γ1(U3) is shown in Fig. 8.5.

Application of addressing procedure to the transformed GSA Γ1(U3) gives the
set C={α1,…,α6}, where α1=〈b1,b2〉, I1

1=b1, O1=b2; α2=〈b3,b4,b5〉, I2
1=b3, I2

2=O2=b5;
α3=〈b6,…,b9〉, I3

1=b6, I3
2=b8, O3=b9; α4=〈b10, b11〉, I4

1=b10, O4=b11; α5=〈b12, b13〉,
I5

1=b12, O5=b13; α6=〈b14,…,b17〉, I6
1=b14, O6=b17. Thus, we get the set of inputs

I(Γ1)={b1, b3, b5, b6, b8, b10, b12, b14}, and the following values can be found:
M2=17, R2=5, I0=8, R3=3. It means that condition (8.11) holds and application of
the method proposed above makes sense. Moreover, because M2+I0=25, condition
(8.12) is satisfied and this method allows to have smaller number of CC inputs,
without increasing the length of microinstruction address, in comparison with
CMCU U2(Γ1).

Addressing of OLC inputs is executed in trivial way, but the address of input I1
1

should be equal to zero. Let IA(bq) be the address of input corresponding to vertex
bq∈B2. In case of CMCU U3(Γ1) these addresses are: IA(b1)=000, IA(b3)=001,…
IA(b14)=111.

200 A. Barkalov et al.

Fig. 8.5 Transformed GSA Γ1(U3)

Application of addressing procedure to GSA Γ1(U3) results in microinstruction
addresses shown in Fig. 8.6.

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 201

Fig. 8.6 Microinstruction addresses for CMCU U3(Γ1)

First line of the table from Fig. 8.6 corresponds to the dedicated input area and
each cell of this line contains an address IA(bq). The rest of lines corresponds to
the area of microprogram AMP and each cell for this part of lines contains an ad-
dress A(bq). For example, input I5

1=b12 and its address in DIA is determined as
IA(b12)=001100, whereas its address in AMP is A(b12)=10011.

Microinstructions to be kept in the control memory are constructed using the
following rules:

- any vertex bq∈I(Γ) from DIA corresponds to a control microinstruction of the
unconditional jump, where [FA]= A(bq);

- if vertex bq∈Dg is not an output of OLC αg∈C, the control memory cell hav-
ing address A(bq); should contain operational microinstruction, where [TMI]=y0;

- if vertex bq∈Dg is connected with final vertex bE, the control memory cell
with address A(bq) should contain operational microinstruction, where [TMI]=yE.

Let us denote the construction procedure of the control memory content by symbol
P1. Application of procedure P1 gives the control memory content shown in
Table 8.1.

Let us point out that only 16 cells of the control memory of CMCU U3(Γ1) are
shown in Table 8.1. Two bits are used to encode variables y0, yj, yC, yE, namely m1
and m2. The encoding is executed in such a manner that code 00 corresponds to yj,
code 01 to y0, code 10 to yC, and code 11 to yE. One-hot encoding approach is used
to encode microoperations, when the bit capacity RCM of the control memory cell
is given by the expression

()⎡ ⎤()202log2,2max MINRCM +++= . (8.14)

In this case RCM=7, which means that fields FA and FY are represented by bits
m3−m7.

The transition table of CMCU is constructed using the system of transition
formulae for outputs of OLC αg∈C1. In the discussed case we have C1={α1, α2,
α3, α6} and the following transition formulae:

.

;,

;

2
36

1
642

1
342

1
532

1
43232

2
3321

1
3321

2
221

1
211

IO

IxxIxxIxxIxxOO

IxxxIxxxIxxIxO

→

∨∨∨→

∨∨∨→

 (8.15)

202 A. Barkalov et al.

Table 8.1 Content of control memory for CMCU U3(Γ1)

Address
T1T2T3T4T5

TMI
m1m2

Content
m3m4m5m6m7

Reference

00000 00 01000 b1→A(b1) DIA

00001 00 01010 b3→A(b3)

00010 00 01100 b5→A(b5)

00011 00 01101 b6→A(b6)

00100 00 01111 b8→A(b8)

00101 00 10001 b10→A(b10)

00110 00 10011 b12→A(b12)

00111 00 10101 b14→A(b14)

01000 01 11000 b1→b2 AMP

01001 10 00100 b2→O1

01010 01 01010 b3→b4

01011 01 00100 b4→b5

01100 10 10001 b5→O2

01101 01 11000 b6→b7

01110 01 01001 b7→b8

01111 01 00100 b8→b9

Table 8.2 Transition table for CMCU U3(Γ1)

Og A(Og) Im
j A(Im

j) Xh Φh h

O1 01001 I2
1 00001 x1 D5

1 1

I2
2 00010 /x1x2 D4

1 2

I3
1 00011 /x1/x2x3 D4

1 D5
1 3

I3
2 00100 /x1/x2/x3 D3

1 4

O2 01100 I4
1 00101 x2x3 D3

1 D5
1 5

I5
1 00110 x2/x3 D3

1 D4
1 6

I3
1 00011 /x2x4 D4

1 D5
1 7

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8

O3 10000 I4
1 00101 x2x3 D3

1 D5
1 9

I5
1 00110 x2/x3 D3

1 D4
1 10

I3
1 00011 /x2x4 D4

1 D5
1 11

I6
1 00101 /x2/x4 D3

1 D5
1 12

O6 11000 I3
2 00100 1 D3

1 13

Transition table of the CMCU U3(Γ1) corresponds to system (8.15) and includes
H3(Γ1)=13 lines (Table 8.2). This table is used to obtain the input memory
functions for the flip-flops of counter CT (8.13), as for example:

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 203

 5321321532113121098654
1
3 ΤΤΤΤ∨∨ΤΤΤΤ=∨∨∨∨∨∨∨= KxxxFFFFFFFFD .

The superscript «1» of function D3 reflects the fact that D3 belongs to the set Φ0. If
this superscript is omitted, we obtain D3∈Φ0. It can be found from this formula
that the address bit T4=0 for all outputs of OLC, and therefore corresponding
variable is absent in system (8.13).

The table for block CCS is constructed in trivial way and in our particular case
it is replaced by the Karnaugh map (Fig. 8.7).

2m

1m

Fig. 8.7 Codes of control variables

Fig. 8.8 Logic circuit for CMCU U3(Γ1)

Obviously, variables y0, yj, yc, yE are generated by a decoder with m1 and m2 in-
puts. Logic circuit of CMCU U3(Γ1) is shown in Fig. 8.8. Here, the two-level

204 A. Barkalov et al.

block AND-OR implements multiplexer MX, outputs of which correspond to the
input memory function of counter CT. The multiplexer is described by the
following equations:

.;

;;0;0

1
575

1
464

1
3534231

cjcj

cjcjcj

yDmyDyDmyD

yDmyDymyDymyD

⋅∨⋅=⋅∨⋅=

⋅∨⋅=⋅∨⋅=⋅∨⋅=
 (8.16)

It is clear, that system (8.16) can be implemented using FPGA, but the logic cir-
cuit shown in Fig. 8.8 reflects main principles of CMCU organization only,
without its implementation using modern FPLDs.

The system of microoperations is implemented in the following way. It can be
seen from the Karnaugh map (Fig. 8.6), that the operational microinstruction is de-
termined by disjunction m1 ∨ m2. Thus, for example, microoperation y1 is
generated if m3=1 and m1 ∨ m2=1. This analysis leads to the following system:

() () ()
() () . ;

 ; ; ;

21752164

215321422131

mmmymmmy

mmmymmmymmmy

∨=∨=
∨=∨=∨=

 (8.17)

System (8.17) is implemented by the circuit of Fig. 8.6 using AND and OR gates;
but can be also implemented with FРGA.

This approach can be applied to obtain some modifications of the CMCU U3-U6
models, which are briefly discussed below.

Allocation of the dedicated input area transforms CMCU with special address-
ing into CMCU U4, structural diagram of which is the same as the structural dia-
gram of CMCU U3, but inputs of the block CC of CMCU U4 are connected with
address variables T′⊆T. The outcome of special microinstruction addressing for
CMCU U4(Γ1) is shown in Fig. 8.9.

Fig. 8.9 Microinstruction addresses for CMCU U4(Γ1)

In this particular case, output O1 is determined unambiguously by the general-
ized interval of a Boolean space 010**, output O2 by 011**, output O3 by 100**,
and output O6 by 101**. Therefore, inputs of the block CC for the CMCU U4(Γ1)
are connected with the variables from set T′={T1, T2, T3}. It means that the
number of CC inputs is smaller, than in case of CMCU U3(Γ1).

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 205

Transformation of the table of Fig. 8.9 into the table shown in Fig.8.10 results in
reduction of the number of address variables connected with CC to only two bits.

Fig. 8.10 New microinstruction addresses for CMCU U4(Γ1)

Analysis of Fig. 8.8 shows that output O1 is unambiguously determined by the
generalized Boolean interval 100**, output O2 by interval 101**, output O3 by in-
terval 110**, and output O6 by interval 111**. We have T1=1 for all outputs of
OLC αg∈C1, and therefore only variables T2,T3∈T′ should be connected with the
inputs of CC.

Allocation of the dedicated input area transforms CMCU with optimal address-
ing into CMCU U5, with the same structural diagram as in case of CMCU U3, but
the application of optimal encoding of OLC αg∈C1 components allows to reduce
the number of terms in (8.13). The outcome of optimal encoding (more correctly,
optimal microinstruction addressing) for CMCU U5(Γ1) is shown in Fig. 8.11.

Fig. 8.11 Optimal microinstruction addresses for CMCU U5(Γ1)

In the discussed case, partition ΠC={B1, B2, B3} can be formed, where B1={α1},
B2={α2,α3}, B3={α6}. Analysis of Fig. 8.9 shows that class B1 is determined by
code K(B1)=*10**, class B2 by code K(B2)=*0***, and class B3 by code
K(B3)=*11**. In this case all address assignments corresponding to the compo-
nents of OLC αg∈C1 are treated as insignificant and are used for optimization of
the codes of classes.

206 A. Barkalov et al.

Let us transform system (8.6) into the form:

.

;

;

2
33

1
642

1
342

1
532

1
4322

2
3321

1
3321

2
221

1
211

IB

IxxIxxIxxIxxB

IxxxIxxxIxxIxB

→

∨∨∨→

∨∨∨→

 (8.18)

System (8.18) corresponds to the transition table of CMCU U5(Γ1) with H5(Γ1)=9
lines (Table 8.3).

This table is used to construct system (8.13). For example, the following equation can

be derived from Table 8.3: 213213298654
1
3 T ΤΤ∨∨Τ=∨∨∨∨= KxxxFFFFFD .

Comparison of equations for the function D3
1 of CMCU H3(Γ1) and H5(Γ1) shows

that in the second case the number of terms is 1.6 times smaller and the number of
literals reduced by two elements.

Table 8.3 Transition table for CMCU U5(Γ1)

Bi K(Bi) Im
j A(Im

j) Xh Φh h

B1 *10** I2
1 00001 x1 D5

1 1

I2
2 00010 /x1x2 D4

1 2

I3
1 00011 /x1/x2x3 D4

1 D5
1 3

I3
2 00100 /x1/x2/x3 D3

1 4

B2 *1*** I4
1 00101 x2x3 D3

1 D5
1 5

I5
1 00110 x2/x3 D3

1 D4
1 6

I3
1 00011 /x2x4 D4

1 D5
1 7

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8

B3 *11** I3
2 00100 1 D3

1 9

Allocation of the dedicated input area in case of CMCU with transformation of
addresses turns it into the CMCU U6, with the structural diagram of Fig. 8.12. In
this case block CC generates functions (8.13)

Φ
0Φ

τ

Fig. 8.12 Structural diagram of CMCU U6

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 207

All other blocks of both CMCU U5 and U3 implement similar functions.
Synthesis method used for CMCU U6 can be interpreted as a modification of the
synthesis method applied for CMCU U3 and includes some additional steps such
as construction of partition ΠC of the set C1, encoding of classes Bi∈ΠC, and
construction of the table for block TC.

Let us consider an example of CMCU U6(Γ1) synthesis. The microinstruction
addresses for the CMCU are given in Fig. 8.8. As it was shown earlier, we can get
the partition ΠC={B1, B2, B3}, where B1={α1}, B2={α2, α3}, B3={α6}. It is suffi-
cient to have two variables from set τ={τ1,τ2} to encode classes Bi∈ΠC. Let us use
the codes: K(B1)=01, K(B2)=00, K(B3)=10. Transition table for CMCU U6(Γ1) is
constructed using the system of transition formulae (8.18) and includes H6(Γ1)=9
lines (Table 8.4).

This table is used to construct equations (8.13). We find, for example, the
equation:

2132213212198654
1
3 ττττττ ∨∨∨=∨∨∨∨= KxxxxxFFFFFD . (8.19)

Table 8.4 Transition table for CMCU U6(Γ1)

Bi K(Bi) Im
j A(Im

j) Xh Φh h

B1 01 I2
1 00001 x1 D5

1 1

I2
2 00010 /x1x2 D4

1 2

I3
1 00011 /x1/x2x3 D4

1 D5
1 3

I3
2 00100 /x1/x2/x3 D3

1 4

B2 00 I4
1 00101 x2x3 D3

1 D5
1 5

I5
1 00110 x2/x3 D3

1 D4
1 6

I3
1 00011 /x2x4 D4

1 D5
1 7

I6
1 00111 /x2/x4 D3

1 D4
1 D5

1 8

B3 10 I3
2 00100 1 D3

1 9

The corresponding table of code transformer TC is constructed in a traditional
way and shown in Table 8.5. This table is used to construct functions τ=τ(T), which
in our case have the form: τ1=T1T2T3, 3212 ΤΤΤ=τ . They are used to the synthesis of

CMCU U6(Γ1) logic circuit, which is executed as in case of CMCU U3(Γ1).

Table 8.5 Table of code transformer for CMCU U6(Γ1)

ag C(Og) Bi K(Bi) τg g

a1 100** B1 01 τ2 1

a2 101** B2 00 − 2

a3 110** B2 00 − 3

a6 111** B3 10 τ1 4

208 A. Barkalov et al.

Allocation of the dedicated input area turns CMCU with transformation of GSA
into CMCU U7, having the same structural diagram as CMCU U3.

The main disadvantage of this approach is the higher number of algorithm
execution cycles, due to the existence of control microinstructions. Besides, some
additional chip resources are needed to implement the system of microoperations,
even in case of hot-one microoperation encoding The following method can be
used to eliminate this disadvantage.

8.4 Optimization of Compositional Microprogram Control Unit
with the Dedicated Input Area

Let control microinstruction have the following format (Fig. 8.13).

Fig. 8.13 Format of control microinstruction

In this case, following actions can be executed during one cycle of CMCU
operation: generation of microoperations using the code from field FY and genera-
tion of transition address using the code from field FA. Both the format of opera-
tional microinstruction and principle of allocation for the first I0 cells of the
control memory for input addresses of OLC αg∈C are also used here.

Application of such control microinstructions transforms the CMCU U2 into
CMCU U8 (Fig. 8.14).

Compositional microprogram control unit U8 operates as follows. The input ad-
dress of OLC α1∈C is loaded into the counter CT using pulse Start. At the same
time the flip-flop TF is set up. Current microinstruction is fetched from the control
memory CM and its field TMI is transformed into the control signals y0, yj, yc, yE.
If signal y0=1 is generated simultaneously with microoperations yn∈Y, the content
of CT is incremented and corresponds to the transition inside current OLC. If sig-
nal yj=1 is generated, it corresponds to a transition from the dedicated input area
DIA into the area of microprogram AMP. In this case, the transition from some
input of OLC αg∈C to next component is executed. If signal yc=1, it corresponds
to the transition from the output of OLC αg∈C and the content of counter CT is
determined by functions Φ0. If signal yE=1, the algorithm execution should be fin-
ished. In this case, flip-flop TF is reset and the fetching of microinstructions from
control memory is terminated.

Microoperations yn∈Y are represented by some code in the fixed field FY and
therefore the block CMO is absent in case of the hot-one encoding of microopera-
tions (Fig. 8.14). This approach has one serious disadvantage, namely the field FA
is not used by microinstructions from the microprogram area AMP. This disadvan-
tage can be partly eliminated due to the partition of control memory CM into two
parts (Fig. 8.15). The part CM1 includes FA field only and therefore information

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 209

fetching is executed using the leftmost address bits from set Tj, where |Tj|=R3.
Both the operational part of microinstructions and the field TMI are kept in the
part CM2, which is addressed using the whole address.

Φ
0Φ

τ

Fig. 8.14 Structural diagram of CMCU U8

Fig. 8.15 Structural diagram of control memory for CMCU U8

Obviously, fetching of the transition address is executed for all microinstruc-
tions, regardless of their type. This address is used only for particular
microinstructions, when yj=1.

The synthesis method used for CMCU U8 includes the following steps:

1. Transformation of the initial GSA Γ.
2. Construction of OLC set C for the transformed GSA Γ(U8).
3. Addressing of inputs for OLC αg∈C.
4. Addressing of microinstructions.
5. Construction of the control memory content for CM1.
6. Construction of the control memory content for CM2.
7. Construction of the CMCU transition table.
8. Construction of the table for block CCS.
9. Synthesis of CMCU logic circuit for given elements.

Let us discuss the application of this method for synthesis of the CMCU U8(Γ1),
where the transformed GSA Γ1(U8) is the same as the one shown in Fig. 8.5. Out-
comes of the first three synthesis steps are the same for CMCU U3(Γ1) and U8(Γ1).
Thus, the following set of inputs can be found: I(Γ1)={b1, b3, b5, b6, b8, b10, b12,
b14}. In our case the inputs have the addresses: IA(b1)=000,…,IA(b14)=111.

210 A. Barkalov et al.

Microinstruction addressing is executed as follows. First, all main inputs are
removed from OLC αg∈C, as the first stage of addressing. Standard addressing
procedure is then applied to the transformed OLC αg∈C, as the second stage of
addressing. This is the same procedure as the one used in case of the CMCU U1.

In this example, removing the main inputs results in the OLC set C={α1,…,
α6}, where α1=〈b2〉, α2=〈b4, b5〉, α3=〈b7, b8 b9,〉, α4=〈b11〉, α5=〈b13〉, α6=〈b15, b16
b17,〉. Addressing the microprogram area АМР starts from the address, which ex-
ceeds by 1 the last address taken from the dedicated input area DIA. Resulting mi-
croinstruction addresses of the CMCU U8(Γ1) are shown in Fig. 8.16.

T4T5
b1 b8 b2

b3 b10 b4

b5 b12 b5

b6 b14 b7

b15

b16

b17

b8

b9

b11

b13

00

01

11

10

000 001 010 011
T1T2T3

100 101 110 111

**
* *

*
* *

*
* *

*
*

*

DIA AMP

Fig. 8.16 Microinstruction addresses for CMCU U8

The control memory content of DIA area can be found using the following rules:

• if vertex bq≠Og (g=1,…,G), field TMI of the memory cell with address IA(bq)
contains code of variable yj, its field FY contains microoperations yn∈Y(bq), and
its field FA contains address A(bt), where 〈bq, bE〉∈E;

• if vertex bq=Og (g=1,…,G) and 〈bq, bE〉∉E, field TMI of the memory cell with
address IA(bq) contains code of variable yj, its field FY contains
microoperations yn∈Y(bq),, and its field FA contains the transition address;

• if vertex bq is connected with the final vertex bE, field TMI of the memory cell
with address IA(bq) contains code of variable yE, its field FY contains
microoperations yn∈Y(bq), and its field FA is empty.

In our example, content of the control memory CM1 is shown in Table 8.6. In this
case Tj={T3, T4, T5}.

In this table, bits α1−α5 represent the transition address and form the field FA.
Construction of the control memory content for AMP area is executed in the

same way as in case of CMCU U3. Content of the control memory CM2 includes
both areas DIA and AMP; shown in Table 8.6.

As in the previous case, bits m1, m2 represent TMI codes, where code 00
corresponds to yj, code 01 to y0, code 10 to yc, and code 11 to yE. Bits m3−m7 con-
tain hot-one code of the collection of microoperations yn∈Y(bq), where q=1,…,M2.
Let us point out that for the vertex b5 from AMP area, the field FY=∅. It
corresponds to an idle cycle of the data-path.

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 211

Table 8.6 Content of the control memory CM1 for CMCU U8(Γ)

Address
T3T4T5

Content
a1a2a3a4a5

Comment

000 01000 b1→A(b2)

001 01001 b3→A(b4)

010 01010 b5→O2A(b5)

011 01011 b6→A(b7)

100 01101 b8→A(b9)

101 01110 b10→A(b11)

110 01111 b12→A(b13)

111 10000 b14→A(b15)

Transition table for CMCU U8 is constructed by analogy with the construction of the
corresponding table for CMCU U3. In the discussed case it is the same as in case of
CMCU U3(Γ1), represented by Table 8.2. Equations for function (8.13) for both CMCUs
are the same, but the system of formulae for multiplexer MX (8.16) is transformed due to
presence of the block CM1. In our case this system is transformed into the form:

,

0

0

1
555

;
1
444

;
1
333

;22

;11

yDayD

yDayD

yDayD

yayD

yayD

j

cj

cj

cj

cj

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

⋅∨⋅=

 (8.20)

where variables α1 -α5 represent the bits of FA field.

Table 8.7 Content of control memory CM2 for CMCU U8(Γ1)

Address
T1T2T3T4T5

TMI
m1m2

Content
m3m4m5m6m7

Comment

00000 00 11000 b1 I1
1 DIA

00001 00 01010 b3 I2
1

00010 00 10001 b5 I2
2

00011 00 11000 b6 I3
1

00100 00 00100 b8 I3
2

00101 00 10001 b10 I4
1

00110 00 01000 b12 I5
1

00111 00 00110 b14 I6
1

01000 10 00100 b1 O1 AMP

01001 01 00100 b4→ b5

01010 10 00000 b5 O2

212 A. Barkalov et al.

PLA
1

1

2

3

4

5

6

7

8

9

1

2

3

2

3

4
5

17

18

19

D3

D4

D5

PROM

CM223

1

2

3

4

5

CS

1

2

3

4

5

6

7

5

6

8
7

R T

S

Fetch13

14

22

&

1

&

20

21

11
15

21

C1

C2
15

11 y0

23

6

DC
1

2

1

2

3

4

34

10

11

yj
y0

x1 1

x2 2

x3 3

4

6

7

9

11

x4

10

y0

8

35 12yC

CTD1

D2

D3

D4

D5

R

C1

C2

1

2

3

4

5

24

25

28

T1

T2

14

27

26 T3

yj

5

9

29

30

m1

m2

7

8

5

6

9

20

22

T4

T5

13

15

Start

Clock

14

yE

12yC

"0" 16

T1

T2

T3

T4

T5

7

8

1

1

1

12yE

MX
29

0

1

2

3

4

0

1

2

3

4

1

2

1

2

3

4

5

30

31

32
33

24

25

26

27

D1

D2

D3

D4

16
28D5

16

17

18

19
10
12

PROM

CM1

1

2

3

CS

1

2

3

4

5

7

8

9

23

29

30

a1

a2

31

32

a3

a4

33a5

9

y1
y2
y3
y4
y5

Fig. 8.17 Logic circuit of CMCU U8(Γ1)

Logic circuit of CMCU U8(Γ1) is shown in Fig. 8.17. In this case OLC αg∈C1
have the following output addresses: A(O1)=01000, A(O2)=01010, A(O3)=01101,
A(O6)=10010. Because each address bit has both direct and complementary val-
ues, the inputs of block CC are connected to all R2=5 feedback variables. Multip-
lexer MX is shown here as a block replacing the set of logical elements
«AND-OR» from Fig. 8.8. The control memory of CMCU is divided into two
blocks (CM1 and CM2), contents of which are determined by corresponding tables.

Application of this approach transforms the CMCU with special addressing of
MIs into CMCU U9 (special microinstruction addressing and allocation of the
dedicated input area), CMCU with optimal addressing of MIs into CMCU U10
(optimal microinstruction addressing and allocation of dedicated input area), and
CMCU with transformation of GSA into CMCU U11 (transformation of the initial
GSA and allocation of the dedicated input area). The structural diagram s for these
CMCUs are the same as for CMCU U8, and their synthesis methods are some ex-
tensions of methods used for the basic models of CMCU, obtained by adding the
steps in which construction of tables for blocks CM1 and CM2 is performed.

Use of the control microinstructions having format from Fig. 8.13 transforms
CMCU with address transformer into CMCU U11 with the structural diagram
shown in Fig. 8.18. All blocks of CMCU U10 play the same roles as the blocks of
corresponding basic models of CMCU with code transformer and CMCU U8. This
synthesis method combines the methods used earlier for CMCU with code
transformer and U8.

8 Synthesis of Compositional Microprogram Control Unit with Dedicated Area 213

Φ
0Φ

τ

Fig. 8.18 Structural diagram of CMCU U11

Using the control microinstruction format of Fig. 8.13, instead of the format
given in Fig. 8.4, allows to reduce the number of microinstructions in the control
memory from I0 to IO0, where IO0 is the number of OLC inputs, which are also the
outputs of the same OLC. It means that condition (8.12) is transformed into the
following one:

()⎡ ⎤ ⎡ ⎤22202 loglog MMIO =+ . (8.21)

Because IO0<I0, the probability of satisfying condition (8.21) and hardware
amount of logic CMCU circuit can be reduced, due to allocation of the dedicated
input area DIA.

8.5 Conclusions

Some new models of compositional microprogram control units are proposed in
this chapter. All proposed methods are targeted on reduction of hardware amount
in the addressing circuit of CMCU. Reduction is achieved due to modification of
microinstruction formats in use.

All proposed models are based on introduction of the special area of inputs, called
as dedicated area of inputs. I permits to diminish the number of bits generated by the
block of microinstuction addressing. Such an approach can be used for optimization of
the CMCU with common memory [3, 4], where the same bits are used for addressing
o microinstruction and for this address generation. The second task can be solved due
to use of additional code transformer. The code transformer cab be eliminated due to
use of an additional address field in the microinstruction format.

Here we only show the possible models of CMCU. To prove an effectiveness of
these models we are going to create the special CAD tools and investigate the
hardware amount for well-known and proposed methods of the synthesis of CMCU.

References

[1] Adamski, M., Barkalov, A.: Architectual and Sequential Synthesis of Digital Devices.
University of Zielona Góra Press, Zielona Góra (2006)

[2] Baranov, S.I.: Logic synthesis of Control Automata. Kluwer Academic Publishers,
Dordrecht (1994)

214 A. Barkalov et al.

[3] Barkalov, A., Palagin, A.: Synthesis of Microprogram Control Units. IC NAS of
Ukraine, Kiev (1997) (in Russian)

[4] Barkalov, A., Węgrzyn, M.: Design of control units with programmable logic. Uni-
versity of Zielona Góra Press, Zielona Góra (2006)

[5] Barkalov, A., Titarenko, L., Bieganowski, J.: Synthesis of control unit with modified
operational linear chains. PAK 5, 5–17 (2007)

[6] Barkalov, A., Titarenko, L., Bieganowski, J.: Synthesis of control unit with modified
microinstructions. In: Proc. of the Inter. Conf. Mixed Design of Integrated Circuits
and Systems MIXDES 2007, pp. 157–160 (2007)

[7] Barkalov, A., Titarenko, L., Bieganowski, J.: Synthesis of control unit with modified
system of microinstructions. In: Proc. of IEEE East-West Design & Test Symposium
EWDTS 2007, pp. 545–549 (2007)

[8] Barkalov, A., Titarenko, L., Bieganowski, J.: Design of control unit with modified
operational linear chains. In: Proc. of the Inter. Conf. TCSET 2008, Lviv-Slavsko,
Ukraine, pp. 259–262 (2008)

[9] Barkalov, A., Titarentko, L., Kołopieńczyk, M.: Optimization of control memory size
of control unit with codes sharing. In: Proc. of the IX Inter. Conf. CADSM 2007,
Lviv-Polana, Ukraine (2007)

[10] Gajski, D.: Principles of Digital Design. Prentice Hall, New York (1997)
[11] Maxfield, C.: Design Warrior’s Guide to FPGAs. Academic Press Inc., Orlando

(2004)
[12] Xilinx Inc. (2010), http://www.xilinx.com

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 215–228.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

9 PeNLogic – System for Concurrent Logic
Controllers Design

Marek Węgrzyn and Agnieszka Węgrzyn

University of Zielona Góra, Institute of Computer Engineering and Electronics,
ul. Podgórna 50, 65-246 Zielona Góra, Poland

Abstract. In the paper the CAD system dedicated for modeling, verification, and
synthesis of concurrent controllers modeled by interpreted Petri net is presented.
Petri net model can be prepared as graph or as textual form. Controllers specified
by Petri nets can be analyzed and implemented using method suitable for such
model. For verification of Petri net another part of system is used. Moreover, the
results of verification are decomposition of net into several communicating state
machines (as finite state machines, FSMs). After verification it is possible to trans-
form Petri net model into HDLs model (VHDL and Verilog) and alternatively into
EDIF or XNF netlist format. Such prepared models are also simulated and synthe-
sized using other academic or commercial CAD systems. The system has been
developing at University of Zielona Góra. Development of new methods of mod-
eling, verification and synthesis has been contributed to make an attempt the new
integrated version of the system. In addition, using of Java environment gives
opportunity to work out the system that is platform independent.

9.1 Introduction

The specific application often dictates the system design requirements, such as
modularity and flexibility. In general, the design procedure involves the integra-
tion of analytical and graphical descriptions. Graphical descriptions, such as con-
trol-interpreted Petri nets [11], SFC (Sequential Function Chart) [8] and Grafcet
[7], provide established techniques for proper system designs. They have helped
industrial engineers to understand the system behavior and performance over
many years.

A behavioral representation describes the system’s functionality independently
of its implementation. It treats a system as a black box, and defines how the black
box responds to any combination of input values. The process of designing a sys-
tem proceeds from a behavioral specification (SFC diagram or Petri net) to a
programmable logic implementation (FPGA, Field Programmable Gate Array). A
design in purely behavioral form, like a Petri net, is converted into an intermediate
rule-based description, void of any technology-specific implementation details.
The final FPGA implementation is generated by automatic synthesis using CAD

216 M. Węgrzyn and A. Węgrzyn

tools, instead of manual, tedious design process. The textual format serves as a
bridge with some related university tools.

In the paper the integrated environment for design of concurrent logic
controllers, called PeNLogic, is presented.

9.2 PeNLogic System

The PeNLogic system has been developing for many years. The first version as a
set of different application was presented in [4,15]. However, development of new
methods of modeling, verification and synthesis has been contributed [2] to make
an attempt the new integrated version of the system. In addition, using of Java en-
vironment gives opportunity to work out the system that is platform independent.

The core of the PeNLogic system is Petri net models of concurrent logic con-
trollers. Petri net can be prepared as graph or as textual form. Controllers specified
by Petri nets can be analyzed and implemented using method suitable for Petri
nets [1]. For verification of Petri net another part of system is used. This part bases
on formal method of Petri net analysis, which is widely described in [13].
Moreover, the results of verification are decomposition of net into several
communicating state machines (as finite state machines, FSMs) [19,21]. After ve-
rification it is possible to transform Petri net model into HDLs model (VHDL
[12,22] and Verilog [10,18]) and alternatively into EDIF or XNF netlist format
[17]. Such prepared models are also simulated and synthesized using other
academic [3,4,20] or commercial CAD systems.

Fig. 9.1 shows a general schema of the PeNLogic system.

9.2.1 Petri Net Modeling of Concurrent Controllers

As opposed to sequential automaton, concurrent automaton can be in one or more
internal state at the same time. Maximal sets of concurrently occurring local states
are defined by global state of automaton. Any subset of concurrent local states is
called partial state. In concurrent automata local relation are considered that re-
lates internal partial states (current and next) and suitable input and output
states of automata. Interpreted Petri net is one of the forms for representing of
concurrent automaton.

On the other hand, Petri nets as a graphical tool provides a unified design me-
thodology for specifying discrete-event systems. They can be applied in various
stages of the design implementation from hierarchical system description to its
physical realization. A Petri net is used as a tool for the modeling and analysis of
digital circuits, especially concurrent controllers [1,3,5,12,13].

In PeNLogic system it is possible to specify Petri net in textual formats [16]:
PNSF2, PNSF3 and CCPNML format and as a graph (figure). For preparing of
graphical form of hierarchical, colored, interpreted Petri net, Petri net Editor was
implemented. Using this part of the system there is generated from a net graph in-
to PNSF2, PNSF3 and CCPNML formats. Moreover, a net graph and each type of
format is stored in database using relational model.

9 PeNLogic – System for Concurrent Logic Controllers Design 217

Petri net EDITOR

Visualization

Verification
of Petri net

PNSFx

CCPNML

Decomposition

System PeNLogic

Simulation

Synthesis
Academic and commercial
ECAD systems

Chips
(e.g. FPGAs) Programs

Data input

Internal
representation

HDL
Models FSMs

Fig. 9.1 Data flow in PeNLogic system

The proposed method, which is applied in PeNLogic system, will be presented
on an example [17].

An Example

In this section, the specification of drill station controller is given, to be later
related with control interpreted Petri net. In the example, several operations may
occur simultaneously. A work piece is loaded in one station, clamped and drilled
in the second one and finally at the third station is tested for depth. Some actions
can occur independently of others, while other actions can take place after all
stations have completed their individual programs.

The Petri net model which describes the behavior of the process controller is
presented in Fig. 9.2. Parallel parts (subnets) of the net between transitions t2 and
t3 represent the programs related to the concurrent actions at the particular three
stations. The production cycle can be automatically repeated depending on
signal R or finished and started again. Fig 9.3 shows PNSF2 specification of the
controller.

218 M. Węgrzyn and A. Węgrzyn

t3

p23

t23 X23

p24

t24

p25

p22

p21

t21

t22 X22

p12

t12

p13

p11

t11

p33

t33 X33

p34

t34

p35

p32

p31

t31

t32

p3

p2

p1

t1

t4 t5

t2

Y22

Y23

Y24

Y33

Y34

X24

X21

X12

X11

X34

Y32

X31

X32

RT

START

!R R

X1

Y11

Y12

Y31 Y21

Fig. 9.2 Petri-net-based model of control system

9.2.2 Analysis of Petri Net

Digital systems, especially concurrent controllers, can be analyzed by Petri nets
[11,13]. So there are many advanced methods of Petri net analysis developed. The
model is formally verified based on well-known Petri net theory. The main tasks
of Petri net analysis are checking some properties of the net, i.e. liveness, boun-
dedness, persistence etc. There exists several methods for analysis of Petri nets.
However, most of those methods check properties and answer a question, whether
the nest is or not live, bounded, etc. without presenting exactly places in defect
[11,13].

Calculation of deadlocks and traps is one of the important analysis tasks, be-
cause a good system should not contain events, which can never occur. Testing the
liveness of Petri net depend on finding deadlocks and traps and researching
dependence between theirs.

9 PeNLogic – System for Concurrent Logic Controllers Design 219

.clock CLK

.inputs START R X11 X12 X21 X22 X23 X24 X31 X32 X33 X34

.comb_outputs RT Y11 Y12 Y21 Y22 Y23 Y24 Y31 Y32 Y33 Y34

.part Controller

.places p1 p2 p3 p11 p12 p13

.places p21 p22 p23 p24 p25 p31 p32 p33 p34 p35

.transitions t1 t2 t3 t4

.transitions t11 t12 t21 t22 t23 t24 t31 t32 t33 t34

.net
 t1: p1 * START |- p2;
 t2: p2 * X1 |- p11 * p21 * p31;
 t3: p13 * p25 * p35 |- p3;
 t4: p3 * !R |- p1;
 t5: p3 * R |- p2;
 t11: p11 * X11 |- p12;
 t12: p12 * X12 |- p13;
...
.MooreOutputs
 p2 |- RT;
 p11 |- Y11;
 p12 |- Y12;
...

.marking p1

.end

Fig. 9.3 PNSF2 model (a part)

Fig. 9.4 Dialog box for verification settings

In considered approach, for checking liveness of Petri net, Thelen method is
used [9]. This method allows efficient calculation of prime implicants of a Boo-
lean function represented in such form. In presented system the Thelen method for
the mentioned logical equations is applied; it allows obtaining sets of deadlocks
and traps in form of ternary vectors. The method is based on generating and

220 M. Węgrzyn and A. Węgrzyn

searching tree for conjunction normal form (CNF). Such approach is very time
consuming, because number of deadlocks and traps in Petri nets increase exponen-
tially with the number of places and transitions [11]. For this purpose, parallel
extension of the algorithm was proposed. In addition, for time reduction, some
heuristic method was developed. In Figure 9.4 an example of PeNLogic dialog
box for verification settings is presented. There is possible to change an initial
marking of a Petri net and to change heuristic methods, which are used during
calculation.

Basing on algorithm for finding all deadlocks and traps in Petri net and check-
ing dependencies between sets of deadlocks and traps, it is possible to answer the
question if Petri net is bounded and live. The results of presented verification me-
thod are answer on question if analyzed net can be decomposed. If net can be de-
composed, then it is got vectors representing decomposed net. Such vector corres-
ponds to one automaton. Using those vectors in the next step there is generated
KISS format for FSMs [21].

9.2.3 HDL Modeling, Simulation and Synthesis

In the PeNLogic system there are two modules for transforming Petri net models
into HDLs model, i.e. into VHDL and Verilog. The goals of HDL modeling is
preparing model for simulation and alternative way of synthesis. For both, simula-
tion and synthesis well-known commercial systems are used, e.g. Aldec A-HDL
simulator or Xilinx XST synthesis tool.

VHDL Modeling

Several methods were proposed to transfer Petri nets specifications into VHDL-
based for performance and reliability analysis. VHDL syntax can support the in-
termediate level models. It makes possible to describe the highest level of the
system and its interfaces first, then refining to greater detail. In the system there
were implemented five different methods [22]. In this chapter, there are presented
only two ways. The first one is based on rule description and uses sequential
description. The second one uses structural VHDL description.

The first method consists of the one process. In this process following variables
are declared: T (which is responsible for firing transitions), P (actual marking
places) and NP (next marking of places). The process is sensitive to rising edge of
a clock signal. The process is divided on three logical blocks. A function of the
first one is firing of transitions. A transition is fired when its input places are
marked and input signals are activated. These conditions are checked by
IF-THEN-ELSE instruction. The second block carries out adding tokens to transi-
tion output places. A place has a token when its input transitions fired or the place
was marked and its output transitions did not fire. This condition is also checked
by IF-THEN-ELSE instructions. If there are not places marked then initial marking
is arbitrary set. The last statement in this block is assignment NP to P. The last
block sets outputs. If a Moore machine is designed, then outputs are assigned to
places. If a Mealy machine is designed, then outputs are assigned to transitions.

9 PeNLogic – System for Concurrent Logic Controllers Design 221

This description is natural and can be manually written by designer. Very
important feature of this model is that such a description is synthesizable
(e.g. Xilinx XST).

The second method is based on structural description. The Petri net nodes,
places and transitions are represented using two VHDL entities (two kinds of ob-
jects). Arcs of Petri net are represented by signals in VHDL code. A transition
fires when its input predicate is true. A predicate is a logical equation assigned to
the appropriate signals related to the transition. Setting outputs is done in the same
manner as in the first method. A designer creates his own library of classes of
elementary building blocks of the control system, then combines these objects
(from particular class) to build larger parts. Since there exist a documented ex-
ecutable description of the sub-system in VHDL, the upgrades or refinements re-
quires only a replacement of the modified elements.

In such model, a sequential process is separated from the combinatorial
process. In specification with two processes, the first process has in its sensitivity
list a clock signal (CLK) that synchronizes the system, and a reset signal (RESET)
to set-up automata into initial state. The set-up of current state and next state is
done in the first process. The second process has in its sensitivity list the current
state (represented the local place). The automaton outputs are set-up in the second
process. Such code is easy readable, because outputs changes are separated from
changes of the states sequence.

Verilog Modeling

In PeNLogic system there is also possible to transform model of Petri net into Ve-
rilog model [18]. The presented model (Fig.9.5) is divided on two parts. The first
one reflects some logical functions of Petri nets, e.g. conditions for transitions fir-
ing and functions for controller outputs depended on active local states. For this
purpose, statements assign are used. The second part represents the structure of the
net as a set of processes (statements always) related to separate places. Additional
signal reset is used for setting almost all places into state ‘0’, except those places
that are initially marked (initial marking of the net).

9.2.4 Petri Nets Decomposition

Concurrent Logic Controller can be presented using a concurrent view of the
modeled system behavior [1,5,20]. The logic controller model should retain the
natural partitioning of the behavior imposed by the designer. The functionality
very often is represented as a set of concurrent blocks of a manageable size that
communicate using few signals. On other hand, hierarchical Petri nets give possi-
bility for modeling of designed systems in more compact form, even for complex
systems [17].

222 M. Węgrzyn and A. Węgrzyn

 module CARTS(CLOCK, reset, M1, M2, A, B, C, D, E, L2, L1, R2, R1);
 input CLOCK, reset, M1, M2, A, B, C, D, E;
 output L2, L1, R2, R1;

 assign L1 = P5 | P6;
 assign L2 = P12 | P13;
 assign R1 = P2 | P4;
 assign R2 = P9 | P11;

 wire PRED0;
 assign PRED0 = ~D;

wire T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12;
 assign T1 = P1 & M1;
 assign T2 = P2 & D;

…
 assign T9 = P10 & P7 & PRED0;
 assign T10 = P11 & B;
 assign T11 = P12 & E;
 assign T12 = P13 & C;

reg P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13;

 always @(posedge CLOCK)
 begin
 if (reset) P1 <= 1;
 else P1 <= (P1 & ~(T1)) | (T6);
 end
 always @(posedge CLOCK)
 begin
 if (reset) P2 <= 0;
 else P2 <= (P2 & ~(T2)) | (T1);
 end
…
 always @(posedge CLOCK)
 begin
 if (reset) P7 <= 1;
 else P7 <= (P7 & ~(T3 |T9)) |(T5|T11);
 end
endmodule

Fig. 9.5 A part of an example of Verilog model

During decomposition a Petri net is divided into a set of subnets. These subnets
have to satisfy some restriction, e.g. a subnet must include only places which are se-
quential to each other, or cannot contain multi-input or multi-output transitions [5].
For explanation decomposition method of Petri net into automata subnet, basic in-
formation is presented. Two places ip and jp are concurrent, if exist such marking

of the net, in which these two places ip and jp are marked simultaneously. In

decomposed Petri nets none places can be concurrent.
Decomposition of Petri nets can be based on coloring of Petri nets. The

decomposition method described in [1] is based on coloring of Petri net. In the
method, attributes are introduced to each place of the net a minimum number of
colors in such way, that two concurrent nodes should have different colors. A Co-
lored Petri net model carries information about belonging to sequential process.
Each automaton (state machine, SM) component is represented by P-invariants.
There are several methods for determination of P-invariants in Petri net, e.g. [13].

9 PeNLogic – System for Concurrent Logic Controllers Design 223

The initial partitioning generates interacting Finite State Machines (FSM) with
separate state registers [1,17]. They form a conservative interpreted SM-colored
Petri net. A Petri net can be expressed graphically, then decomposed [21] into
Linked State Machines (LSMs), and finally translated into an equivalent set of Ve-
rilog models.

The generic architecture of interactive FSMs is a set of interconnected FSMs
which exchange data (local internal state signals or output signals) through input
and output ports. Each component is characterized by input and output ports that
connect it with other components and external controller ports. The set of commu-
nicating FSMs is called a concurrent state machine (Concurrent Controller) if two
or more FSMs are not exclusively active.

Decomposition into SM-Components

The Petri net from Fig. 9.2 have a sequential subnet (with places p1, p2 and p3),
and concurrent subnet (remaining places), where three places are marked simulta-
neously. Hence, the net can be decomposed onto three conservative nets
(Fig. 9.6) - State Machine components. In addition, to two subnets an additional
place should be added (Fig. 9.6.b and Fig. 9.6.c).

t3

p13

p11

p3

p2

p1

t1

t4 t5

t2

t12 X12

t11 X11

RT

START

!R R

X1

Y11

p12
Y12

p33

t33 X33

p34

t34

p35

p32

p31

t31

t32

Y33

Y34

X34

Y32

X31

X32

Y31

p23

t23 X23

p24

t24

p25

p22

p21

t21

t22 X22

Y22

Y23

Y24

X24

X21

Y21

t2 X1*p2 t2 X1*p2

t3 t3

P20 P30

a) b) c)

p13*p35 p13*p25

p25*p35

Fig. 9.6 The decomposed Petri net

In the first SM-component (Fig. 9.6.a), the condition for the transition t3 is a
logic AND function of signals p25 and p35 that are the outputs from the appropri-
ate places, i.e. they can be represented by the appropriate flip-flops at one-hot

224 M. Węgrzyn and A. Węgrzyn

encoding. In the second subnet (Fig. 9.6.b), the additional place is called P20. The
condition for the transition t2 is a logical AND of the input signal X1 and the
signal from the place p2, and for transition t3 is a logic AND of signals p25 and
p35. Similar situation is in case of the third subnet (Fig. 9.6.c).

Verilog Modeling and Synthesis

Several methods were proposed to transfer Petri nets specifications into VHDL for
performance and reliability analysis. But in the literature Verilog-based modeling
of Petri nets is not well-known [10,18]. Verilog syntax can support the interme-
diate level models. It makes it possible to describe the highest level of the system
and its interfaces first, then to refer to greater details.

parameter [5:0] p1 = 6'b000001,
 p2 = 6'b000010,
 p11 = 6'b000100,
 p12 = 6'b001000,
 p13 = 6'b010000,
 p3 = 6'b100000;

always @(posedge CLK, posedge RESET)
begin

if(RESET == 1)
 PLACE_A <= p1;
else
if(CLK == 1)
begin
 case (PLACE_A)
 p1: if (START==1) PLACE_A <= p2;
 p2: if (X1==1) PLACE_A <= p11;
 p11: if (X11==1) PLACE_A <= p12;
 p12: if (X12==1) PLACE_A <= p13;
 p13: if (p25==1 && p35==1)

 PLACE_A <= p3;
 p3: if (R==0) PLACE_A <= p1;

 else PLACE_A <= p2;
 default PLACE_A <= p1;
 endcase
end

end

always @(PLACE_A)
begin

 case (PLACE_A)
 p2: Y <= 3’b001;
 p11: Y <= 3’b010;
 p12: Y <= 3’b100;
 default Y <= 3’b000;
endcase

end

Fig. 9.7 Verilog model of the SM-component from Fig. 9.6.a

9 PeNLogic – System for Concurrent Logic Controllers Design 225

The Verilog language describes a digital system as a set of modules. Each of
these modules has an interface to other modules as well as a description of its con-
tents. The basic Verilog statement for describing a process is the always state-
ment. The always continuously repeats its statement, never exiting or stopping.
A behavioral model may contain one or more always statements. The initial
statement is similar to the always statement except that it is executed only once.
The initial provides a means of initiating input waveforms and other simula-
tion variables before the actual description begins its simulation. The initial
and always statements are the basic constructs for describing concurrency.

Because of the fact, that Verilog can model concurrency, for example using
structure always, Petri nets can be effectively described by Verilog language.
However, in the presented method synchronization of the concurrent processes is
realized by the additional signals as transition conditions. Implementation of de-
composed Petri nets onto set of SM-components can be carried out in different
methods [6]. In the presented paper a modeling of automata in Verilog is focused.

Fig. 9.7 shows a part of Verilog model with using of two processes (two
always statements). As an example, there is presented the SM-component from
Fig. 9.6.a, only.

For place encoding one-hot method has been applied. Such approach is recom-
mended for using FPGA devices as a final implementation technology. In the
model, the sequential process is separated from the combinatorial process. In spe-
cification with two processes, the first process has in its sensitivity list a clock sig-
nal (CLK) that synchronizes the system, and a reset signal (RESET) to set-up au-
tomata into initial state. The set-up of current state and next state is done in the
first process. The second process has in its sensitivity list the current state
(represented the local place). The automaton outputs are set-up in the second
process. Such code is easy readable, because outputs changes are separated from
changes of the states sequence. IN the example, the outputs Y12, Y11 and RT cor-
respond to related bits of a output vector Y[2:0], respectively.

The design process can be greatly simplified by means of FPGA compilers,
which are recently available, like Xilinx ISE (supporting VHDL and Verilog). The
obtained models of the subnets were simulated in Aldec A-HDL and MTI Model-
Sim. The effective simulation allows the SM-components to be rapidly modified,
tested and debugged before the device is programmed. If a design change is
needed, it is a simple matter to reedit the original specification. Since the Verilog
model of environment (testbench) is described in modular, and parameterized fa-
shion it is not necessary to construct its behavior description from extended, con-
figuration graph. Testing unit can be simply build from the previously verified li-
brary modules by merging selected sub-blocks. The final, exhaustive testing also
does not make any problem because the size of considered Petri net models is ra-
ther small. Then the models were synthesized by both Xilinx XST and Mentor
Graphics Precision. One of the most flexible and high-density devices is Xilinx
Virtex or Spartan FPGAs [23], which are used for prototyping of Reprogrammable
Logic Controllers (RLCs). The bitstreams are generated by Xilinx ISE.

226 M. Węgrzyn and A. Węgrzyn

9.2.5 Direct Mapping into Netlist

This section describes a sub-system for the synthesis of logic controllers described
Petri nets. As a final technology programmable logic is considered, e.g. Xilinx
FPGA and CPLD devices (the library of present available devices is shown in
Fig. 9.8). The interpreted Petri-net model (or equivalent SFC) is translated into a
rule-based specification that is composed of the discrete local state symbols, input
signal symbols and output signal symbols of the controller The textual format of
Petri net (for example, PNSF, PNSF2, CCPNML) used as an entry format [16].
Then, the textual Petri net description is translated directly into the netlist. Present-
ly, there are applied two formats, EDIF and XNF (Xilinx proprietary format). The
next steps of the design implementation are realized by the vendor CAD/CAE sys-
tem. For Xilinx devices it is ISE system. Functional and timing simulations are
performed also by the vendor CAD/CAE system.

The presented method of synthesis of controllers is based on creating a one-to-
one direct mapping between the Petri net and the hardware realization [17]. This
mapping of Petri net into FPGA is based on the correspondence between a transi-
tion and a simple combinational circuit and the correspondence between a place
and a clearly defined subset of the state register. Dealing with concurrency the de-
signer is confronted with some problems that will not arise in the logic synthesis
of sequential systems. One of them is the concurrent local state encoding.

Fig. 9.8 Information on examples of the library content

9 PeNLogic – System for Concurrent Logic Controllers Design 227

The logic decision rules, which exactly reflect the description in textual Petri
net specification, are transformed from the transition-oriented form (T1: P1* M1
-> P2;) into the place-oriented description (P1 <= (P1 & ~(T1)) | (T6)).
This approach is similar to the Verilog model presented in Fig. 9.7. For place en-
coding concurrent one-hot method has been applied. Such approach is recom-
mended for using FPGA devices as a final implementation technology. The
concurrent one-hot encoding of Petri net is treated as the simplest case of more
general mapping. The one-hot method produces fast designs with a simple combi-
national part, especially for implementations in FPGA [2,3,17]. It is not possible
to assume that all flip flops, except those representing active local states that are
set to 1, are set to 0 since several places can be marked simultaneously.

9.3 Conclusions

In the paper the academic CAD system dedicated for concurrent controllers was
presented. For specification of controllers Petri nets are used. The system contains
analyzes module based on checking of some Petri nets properties. In addition, the
results of verification are decomposition of net into several communicating state
machines. There are also possible to simulate the controllers using different HDL
models produced by the presented system. The hardware representations of the
controllers are obtained either as the direct mapping from the system, or by syn-
thesis results of prepared HDL models. Moreover, the PeNLogic system was
extended on module for visualization of some controlled parts [14].

The system is still under developing. Nowadays, there are considered additional
modules as simulation of Petri net and transformation of decomposed FSMs into
HDLs models. During preparation are Verilog and VHDL models of standard
functions and functional blocks (according to the standard IEC 61131-3 [8]). For
sake of simplicity there is also developing the new data-flow diagram based on
Tcl/Tk languages. Other works are directed on implementation of web-based
version of the system.

References

[1] Adamski, M.: Parallel Controller Implementation using Standard PLD Software. In:
Moore, W.R., Luk, W. (eds.) FPGAs, Abingdon EE & CS, England, pp. 296–304
(1991)

[2] Adamski, M., Węgrzyn, M.: Design of Reconfigurable Logic Controllers from Petri
Net-based specifications. In: The 4th IFAC Workshop on Discrete-Event System De-
sign, DESDes 2009, Gandia, pp. 233–238 (2009)

[3] Adamski, M., Karatkevich, A., Wegrzyn, M. (eds.): Design of Embedded Control
Systems. Springer, New York (2005)

[4] Adamski, M., Węgrzyn, M., Wolański, P.: Simulating and synthesising of reconfigur-
able logic controllers using VHDL. In: Proc. of the 42 IWK, Ilmenau, Germany,
vol. 1, pp. 522–527 (1997)

[5] Biliński, K.: Application of Petri Nets in parallel controllers design. Ph.D. Thesis,
University of Bristol, Electrical and Electronic Engineering Department (1996)

228 M. Węgrzyn and A. Węgrzyn

[6] Chmielewski, S., Węgrzyn, M.: Modelling and synthesis of automata in HDLs. In:
Romaniuk, R.S. (ed.) Proceedings of SPIE, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments, vol. 6347 (2006);
63470J1-13

[7] David, R., Alla, H.: Petri Nets and Grafcet. Prentice Hall, New York (1992)
[8] International Electrotechnical Commission, International standard IEC 61131-3, Pro-

grammable Controllers, Part 3: Programming Languages (1992)
[9] Mathony, H.J.: Universal logic design algorithm and its application the synthesis of

two-level switching circuits. IEE Proceedings, Pt.E - Computers and Digital Tech-
niques 136(3), 171–177 (1989)

[10] Minns, P., Elliott, I.: FSM based Digital Design using Verilog HDL. John Wiley &
Sons, Ltd., Chichester (2008)

[11] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

[12] Pardey, J., Bolton, M.: Logic Synthesis of Synchronous Parallel Controllers. In: Pro-
ceedings of the 1991 IEEE International Conference on Computer Design on VLSI in
Computer & Processors, pp. 454–457 (1991)

[13] Węgrzyn, A.: Symbolic Analysis of Logical Control Devices using Selected Methods
of Petri Net Analysis. Ph.D. Thesis, Warsaw University of Technology (2003) (in
Polish)

[14] Węgrzyn, A., Jóźwiak, I.: Visualization of control process by means of Petri nets and
database. In: Romaniuk, R.S. (ed.) Proceedings of SPIE, Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments,
vol. 6347 (2006); 63472Q1-8

[15] Węgrzyn, A., Węgrzyn, M.: PeNCAD System - From Modeling to Synthesis of
Concurrent Controllers. In: The 5th IEEE East-West Design & Test International
Symposium, Yerevan, pp. 384–389 (2007)

[16] Węgrzyn, A., Węgrzyn, M.: On Textual Specification of Petri Nets for Control Algo-
rithms. In: The 5th IEEE East-West Design & Test International Symposium, Yere-
van, pp. 603–607 (2007)

[17] Węgrzyn, M.: Hierarchical implementation of Logic controllers by means of Petri
nets and FPGAs. Ph.D. Thesis, Warsaw University of Technology (1998) (in Polish)

[18] Węgrzyn, M.: Implementation of Safety Critical Logic Controller by means of FPGA.
Annual Reviews in Control 27, 55–61 (2003)

[19] Węgrzyn, M.: Petri Net Decomposition Approach for Partial Reconfiguration of Log-
ic Controllers. In: Adamski, M., Gomes, L., Węgrzyn, M., Łabiak, G. (eds.) Discrete-
Event System Design 2006, A Proceedings volume from the IFAC Workshop,
DESDes 2006, pp. 323–328. University of Zielona Góra Press, Rydzyna (2006)

[20] Węgrzyn, M., Adamski, M., Monteiro, J.L.: The Application of Reconfigurable Logic
to Controller Design. Control Engineering Practice 6, 879–887 (1998)

[21] Węgrzyn, M., Węgrzyn, A.: Implementation of Concurrent Logic Controllers based
on Decomposition into State Machine Components. Radio-Electronics and Informat-
ics 3, 44–47 (2006)

[22] Wolański, P.: VHDL Register Transfer Level modeling of digital systems by means
of Petri nets. Ph.D. Thesis, Warsaw University of Technology (1998) (in Polish)

[23] Xilinx Inc. (2010), http://www.xilinx.com

Part III
Testing, Modeling and Signal

Processing

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 231–261.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

10 Methods of Signals Processing in Radio
Access Networks

Vladimir Popovskiy

Kharkov National University of Radioelectronics, 14. Lenin Ave., 61166 Kharkov, Ukraine
e-mail: tkc@kture.kharkov.ua

Abstract. This article considers optimum stochastic methods of radio signal
processing, including parameter assessment tasks and management of parameters
of receiving and transmitting devices. Such tasks are formed by state variable me-
thods using Kalman-Bucy optimum recursive procedures. It’s recommended to
solve the management problems basing on the division theorem. The article gives
analysis of steadiness and efficiency of state and management assessment proce-
dures in steady-state and unsteady-state conditions. It gives recommendations re-
garding the choice of parameters and efficiency of processing devices taking into
account statistics of signals and constraints attributable to certain telecommunica-
tion technologies. It analyzes a proposal, within which recursive procedures are
used efficiently. The main tasks are united on Multiple-input/Multiple-output
(MIMO) principle and are aimed at solving the access problems in mobile
communication networks, Wi-Fi and Wi-Max systems, etc. Such tasks include:
space-time encoding, multipath effect reduction, radio link power improvement,
interference effect reduction, adaptation to channel parameter changes and current
signal interference situation, possible repeated use of frequencies.

10.1 General Information

Important component of any information telecommunication system is the access
network. Access network can be built in any physical environment: wire, wireless
(radio), and optical. In this regard wireless environment is the most critical, where
transformations of signals and noise levels can prove considerable, and signals and
interference often have random character, especially in cellular networks, Wi-Fi
and Wi-Max [1].

At the access level users of wire and wireless local networks have possibility of
direct access to network services. There are many tasks of system-wide orientation
at this level. They are as follows: providing multiplicity of access, electromagnetic
compatibility, increasing interference resistance, transmission capacity, etc. Many
of these tasks result in the tasks of signals processing. This is particularly what
this section deals with.

232 V. Popovskiy

Processing supposes implementation of corresponding transformations of sig-
nals with the purpose of achieving particular useful properties. As applied to OSI
standard, information signals processing takes place on the first physical and par-
tially on the second channel levels of a seven - level model. At higher levels, other
types of signals are processed: signals of signaling, control, etc.

A signal in sufficiently general view can be represented through parameters
amplitudes)(tA and phases)(tϕ as follows:

)()()(tjetAtx ϕ−= , (10.1)

where vector)(tx determines direction of currents or potentials, besides in radio

it shows spatial and polarization descriptions of this signal. Unfortunately, in prac-
tice, the signal alone does not exist (10.1). As a rule, this signal is to be perceived
by means of measurements, observations or other objective realizations. There-
fore, a signal often appears jointly with existing noises, additive)(tv and

multiplicative)(tH interference:

)()()()()(tntvtxtHty ++⊗= , (10.2)

where)()(txtH ⊗ - is convolution operation; noises)(tn are the sum of real

physical noises always occurring in electric circuits and communication channels,
equivalent noises, generated by measurement errors, noises of quantum and other
different factors in total representing a sample from Gaussian white noise.

Obviously, correlation (10.2) may be represented in a frequency field:

)()()()()(ωωωωω NUXHY ++= , (10.3)

where all components are Fourier transforms of corresponding functions. Solution
of processing tasks in a frequency domain (10.3) appears easier, especially in the
conditions, where reflecting dynamics of the state different processes is not re-
quired. However, in case the task requires presentation of dynamics or nonstatio-
narity, it is necessary to solve problems in temporary domain. Methods of solution
for such tasks are often interpreted as methods of state variables [2.3]. The state of
an object)(tx (including random object) is represented by differential or

difference equation of the type:

),,(
)(ξtx

dt

tdx Φ= (10.4)

where)(tξ - is a random component, Gaussian white noise which is generating

(forming) random process)(tx . Based on obtained observations (10.2), (10.3)

signals processing is carried out, reduced as a rule, to recursive estimation of con-
dition)(ˆ tx . Estimation of)(ˆ tx in some cases may be considered as processing

terminal stage, in other cases the estimation is used for the tasks of controlling the
condition (10.4) or for observation (10.2).

This section mainly uses temporal representations of states in space [3, 4].

10 Methods of Signals Processing in Radio Access Networks 233

Another specific feature of tasks in this section is that treatment of signals in
spatial and polarization regions is investigated while comparing corresponding so-
lutions in a traditional frequency-time domain. It is obvious, that expansion of re-
gion of feasibility is instrumental in the improvement of quality of these solutions.
Therefore, in the conditions when a frequency-time processing resource becomes
scarce, efforts of developers focus more on a spatially-polarization resource that
has not been employed until recently. New types of processing appear: space-time
processing, space-frequency-time processing, space-time encoding, space-time
access, etc. [4,5,6].

To solve tasks of processing with the active use of space-polarization parame-
ters it is necessary to get realization of the electromagnetic field in two or more
points in space in the form of (10.1), (10.2) or (10.3). Thus, these expressions can
represent signals on the output of antennas orthogonal by polarization or mutually
spaced [5].

Efficiency of processing tasks using space-polarization parameters in a number
of cases exceeds efficiency of processing tasks of similar solutions in the domain
of frequency-time parameters. In addition, transition to space-polarization field al-
lows saving an expensive frequency resource. We will consider the above tasks in
more detail.

10.2 Specific Features of Radio Access at Physical Level

10.2.1 General Description of Physical Processes at Radio Access

Telecommunication systems with radio access provide an important physical sig-
nal conversion: a signal on transmitting side in the form of conduction currents is
transformed into electromagnetic field (bias current). There is a reverse transfor-
mation on a receiving side. All these transformations occur in antenna. In full-
duplex lines, transmitting antenna is often simultaneously a receiving antenna
(Fig. 10.1).

Fig. 10.1 Structure of full-duplex radio communication line

Antenna gain factor AG depends upon both signal operating frequency

λ/cf = and aperture effective area efS :

234 V. Popovskiy

2
4

λ
π ef

A

S
G = , (10.5)

where иsef KSS ⋅= , 8,0...5,0=иsK is a coefficient of antenna area utilization S .

Expression (10.5) determines the maximum level of reception (transmission) of
signal in the main lobe of directivity pattern (DP). In other directions),(ϕθG this

level is lower. Fig. 10.2. represents an example of antenna DP.

Fig. 10.2 Antenna directivity pattern

The figure shows, that it is possible to select the field of the main lobe in DP,
where its width θΔ , field of lateral and back lobes are determined. Usually access
is provided due to mutual orientation (positioning) of main lobes of transmitting
and receiving antennas one upon another. In doing so necessary energetic in radio
line, determined by equation of transmission is provided:

addfrRTTR WWGGРP ++++= . [dB] (10.6)

where RT PР , - are powers of transmitting and receiving signals accordingly;

RT GG , are gain factors of transmitting and receiving antennas accordingly;
2R)/4lg(πλ=frW is signal attenuation in free space at a distance R ; addW is addi-

tional multiplier, allowing to take into account attenuation due to actions of differ-
ent physical mechanisms in the course of distribution of radio waves, including
the effect of signals fading.

The solution of radio access by several (many) users located in different points
of space, for which directions are determined by angles iθ , i=1,2,…,N is a more

complex task. The easiest way to provide such access is to use an omnidirectional
antenna with circular DP. This is what they do in cellular communication both on
subscriber station and on base side. Simplicity of decision is achieved due to the
losses of energy in radio line, because non directional antenna has a low gain
factor AG .

10 Methods of Signals Processing in Radio Access Networks 235

However, there is another, more rational solution for multiple access. Thus, the
MIMO technology suggests using multi-beam DP of antennas of cellular commu-
nication base station, antennas of access point, antennas of communications trans-
ponder. Fig. 10.3 represents the example of such multi-beam antenna DP. Beams
in the direction of subscriber stations can be set only for the period of communica-
tion session. In this case, due to the increase of the gain factor in each of

iθ - directions energy of radio line improves. At the same time, and that is more

important, there is a possibility of simultaneous communication with i-subscribers
at the same frequency 0f . In other words, it is possible to economize the spectrum

of the used operating frequencies by i-times, or to increase base station capacity by
i-times accordingly. Such method of multiple access is called space-time access or
frequency re-use method. We will consider this method in more detail, as well as
other methods of using space-polarization physical parameters to increase
high-quality indexes of communication at the level of access.

 а)

b)

Fig. 10.3 Examples of directivity patterns of multibeam antennas for space-time access a)
on cellular communication base station (BSS) with the orientation to i -direction
communication; b) on satellite system transponder with the orientation to i -earth stations.

10.2.2 Space-Time Access Method

There exists a sufficiently simple algorithm of functioning of BSS with space-time
access. Procedure of the station resource allocation includes four basic stages:

1. Acquiring a request from subscriber. This request is received by non-
directional or near-omnidirectional antenna. At the same time direction the of
request signal arrival is determined. For greater transmission reliability, the
request signal is usually of broadband structure by frequency or by time.

2. One of narrow beams of antenna directivity pattern is set in the direction of the
calling subscriber.

3. Omnidirectional antennas of base stations within the roaming limits carry out
the search of destination user. After its response, narrow MBA beam of certain
BSS is also set in this direction.

236 V. Popovskiy

4. Communication between subscribers is provided, and, at the end of session, the
beams are removed or reoriented to other subscribers.

Fig. 10.4. represents a diagram of organization of BSS communication directions
with subscribers i and j in space-time access.

Fig. 10.4 Diagram of organization of BSS communication between subscribers i and j in
space-time access

Multibeam antenna DP can be created using different methods. It is known [5,7]
from the theory of antennas that DP ()θG in a distant area (when sizes of aperture

Rd << are distances to the view point) and distribution of electromagnetic field
by aperture ()xf are bound by Fourier transform:

() () ()∫ ⋅−=
α

θθ dxexfxgG rj, , (10.7)

where ()xg ,θ is multiplier of directivity of element dx ,

() θθ cossin ⋅+⋅= xyxr is path-length difference.

Distribution function ()xf is complex; it is realized by selecting amplitudes and

phases of currents in aperture points.
The easiest way is to implement an aperture in the form of discrete antenna

elements, each of which has its function of radiation ()uiψ , λθπ /sindu = . Such

discrete antenna is called an antenna array (AA).
Resulting DP of AA forming many beams is represented as

() ()∑
=

=
N

i
ii uuG

1

w ψ , (10.8)

where iw is complex weight coefficient.

10 Methods of Signals Processing in Radio Access Networks 237

Controlling the beams of such antenna is carried out by means of changing

parameters of weight coefficients iw , included into the circuit of each AA

element.
Analyzed mechanism of creation of required DP (10.8) is universal enough in

the sense, that all spatial–polarization tasks in AA are executed after the same
pattern: the MBA creation, spaced reception, adaptive reception, adaptive com-
pensation of interference, adaptive antenna arrays (AAA) operation, fazed AA
(FAA), multiple access, all tasks united under MIMO brand. Fig. 10.5. displays
the example of such antenna array.

)(1 tx

)(2 tx

)(txm

)(tx
r

1w&

2w&

mw&

)()()(
1

txtwty
m

i
i &&∑

=

=

Fig. 10.5 General structure of weighting adjustment of plural signals)(tSi with a

complex coefficient)(w ti

Topical variety of AA and multibeam antennas are hybrid structures: reflector
antennas with AA elements in the focus, each forming its own beam.

The task of determining subscriber signal direction of arrival can be solved
by any of the known procedures [6], ESPRIT, Mvsic, etc. Alongside with that re-
cursive procedure of spatial spectrum estimation can be more constructive. The
procedure consists of three basic recursive components:

1) dedicating spatial window by control vector:

() ()() ()()
() ()() () ()()πθπθ

πθπθθ
⋅⋅−⋅⋅−

⋅⋅=
180/sin1exp,...180/sin1exp

,...,180/sinexp,180/sin[expV

Njnj

j
, (10.9)

where n is the number of antenna element,

1,0 −= Nn ; N is quantity of
antenna elements; θ is the angle (direction of spatial window);

238 V. Popovskiy

2) suppressing signals coming from all undedicated directions. This procedure
can be realized with the use of Widrow, Applebaum [4,5], Kalman-Bucy [7]
algorithms or other known algorithms of controlling vectors of AA weight
coefficients. Thus, modification of Applebaum algorithm for suppressing
signals beyond dedicated window is given by:

() () () () () () ()[]θμ VXwX2w1w T −−=+ kkkkkk , (10.10)

where ()kμ is a step constant, ()kX is vector of signals;

3) 3) recursive definition of mark of matching the amplitude and space phase in
a dedicated window

() () () () ()() ()θθθθ wXXw,,1 TT kkkPkP ⋅+=+ . (10.11)

By the beginning of the third phase, the transitional processes of the second phase
must be completed. In so doing there is a mark of a signal getting to protective
window.

Further narrow beams of BSS antenna are set in the direction of the marked
signals. Fig. 10.6 provides block diagram of space-time access algorithm, where a
separate beam in M–devices of the WCV control is formed for each of
M–subscriber.

Fig. 10.6 Block diagram of space-time access algorithm

10 Methods of Signals Processing in Radio Access Networks 239

10.2.3 Polarization in Access Tasks

Tasks of access with the use of polarization parameters of signals and antennas
have special values. Polarization is determined by the imaginary figure, which is
drawn by the tip of electric field tension vector of the signal, radiated by the prop-
er antenna on a plane perpendicular to direction of distribution. Therefore, whip
type linear antenna radiates linear polarization (horizontal, vertical or with inclina-
tion). It is possible to create circular or elliptic polarization by more
complex antennas.

For any concrete signal polarization (linear, circular, elliptic) there is another
one which is orthogonal to it. Pairs of orthogonal polarizations are represented by
Fig. 10.7.

Antenna can be matched with a signal by polarizations and then maximal ac-
cepted signal is separated (reception of signals matched by polarization). Another
extreme case: a signal can appear orthogonal with regard to antenna polarization
(e.g. antenna is horizontally polarized, and a signal has vertical linear polarization).

In general case some angle Пγγ 2= appears between antenna polarization and

signal polarization. Thus, if in the reception point the field level, measured by
Pointing vector, makes Π, maximum power of signal received by antenna with an
effective area efS makes efR ПSР = . This power however depends upon both the

said angle Пγ , and the degree of polarization of this signal Пm :

()
2

cos15.0 2 П
RППRexR РmmPP

γ+−= . (10.12)

It follows from formula (10.12), that with non-polarized, randomly polarized sig-
nal, when 0=Пm , on the output of antenna the level of this signal RexR PP 5.0_ =

and this level does not depend upon the type of antenna polarization.

а)

b)

c)

Fig. 10.7 Various polarization bases of the orthogonal signals S1 and S2 a) linear basis;
b) circular basis; c) elliptic basis

In other words: in case of any antenna, it is possible to receive only half of non-
polarized signal level only. In another extreme case, when a signal is fully

240 V. Popovskiy

polarized, 1=Пm , it is possible to select antenna polarization so, that all possible

received signal power is allocated (with 1
2

cos2 =Пγ
, when 0=Пγ). That is with

0=Пγ we have the reception matched by polarization. A function is thus

maximized (10.12):

()∑
=

→
N

i
w

ii
i

uw
1

.
.

maxψ , 2=N . (10.13)

Apparently, there are conditions, when a function (10.13) acquires zero value:

()∑
=

→
N

i
w

ii
i

uw
1

.
.

0ψ , 2=N . (10.14)

Conditions (10.14) are characterized by the presence of «zero» polarizations or-
thogonal in relation to signals. Such orthogonalization is used for interference
suppression, for their polarization rejection. Thus, polarization processing of sig-
nals comes to estimation of polarization parameters of signals (their amplitudes
and phases or quadrature component) proper control of polarization basis of
receiving antenna, matched or orthogonal signal, depending upon the task.

Besides the tasks of polarization matching with useful signal and tasks of pola-
rization rejection of interference, polarization is used to solve other important
tasks, including [7]:

• tasks of frequency re-use, when independent information streams are transmit-
ted on two orthogonal polarizations, that allows to double productivity of
access element;

• tasks of polarization modulation and demodulation of signals, when, for exam-
ple, “1” is transmitted by vertical polarization, and “0” is transmitted by hori-
zontal one. Such decision is rather constructive, as the process of modulation is
not carried out in the transmitter radio circuit but directly in antenna;

• tasks of diversity polarization reception. Such task is especially effective in the
multibeam radio channels of cellular channels types and trunking communica-
tions. In this case the given diversity reception can be realized directly in the
subscriber station, because due to the compactness of two orthogonally pola-
rized antennas placed in one electric center it is possible to maintain existing
dimensions of the mobile station;

• tasks of adaptive reception by polarization, when polarization changes of para-
meters of signals or interference are accordingly traced by polarization of the
receiving station.

The last-mentioned tasks of adaptive reception are of special importance. We will
discuss them in more detail.

10 Methods of Signals Processing in Radio Access Networks 241

10.2.4 Adaptation in the Tasks of Access

It is possible to define adaptation as a process of optimization of the correspond-
ing algorithm to variable and random in time external effects. As applied to the
tasks of access such external effects are:

• interfering effects from other radioelectronic systems, sources of artificial or
natural origin;

• effects from environment of radio signals propagation, causing random changes
of parameters of received signals, their fading;

• random nature and instability of traffic, requiring the proper reaction from the
side of technology of control at the level of access with the purpose of provid-
ing necessary level of LMS service. Tasks of adaptive processing also come
down to the tasks of estimation of corresponding signals and interference
parameters, to control of the state or surveillance.

For detailed consideration and substantiation of adaptation methods it is necessary
to attract a rather comprehensive and serious mathematical apparatus of theory of
management, Markov processes, methods of state variables, etc. [2…7]. However,
taking into account the trend of this edition, we will concentrate only on the re-
sults and examples of application of adaptive methods. We will indicate only the
necessity of substantiation of adaptive methods by criteria of procedure stability,
provision of observability, manageability, identifiability and adaptability of
suggested algorithms.

10.2.5 Suppression (Rejection) of Interference. Adaptive Antenna
Arrays and Adaptive Interference Cancellers

Priority in development of idea of adaptive antenna arrays (AAA) belongs to
B.Widrow. Many authors worked to develop his ideas [5,6,7 etc.].

The process of interference suppression on a receiving side by AAA lies in
forming «zeros» of DP so that they meet the condition (10.14)

0)()(w
1

)(⎯→⎯∑
=

iw

N

i

v
ii tSt

&
, NN ,...,2,1= , (10.15)

where)()(tS v
i are interference signals received by N antenna elements. It is

assumed that)()(tS v is included in the accepted realization)(tx additively:

)()()()()()()(tStStStx nvi ++= . (10.16)

where indices “i”, “v” and “n” belong accordingly: to the information signal,
interference signal and noise.

Fig. 10.5 provides a general diagram, which enables solving a problem (10.15).
The solution of this task is achieved under proper choice (estimation) of weight

242 V. Popovskiy

coefficients vector)(tw , by controlling this vector. In the theory of control, such

task is interpreted as observation control task.
According to (10.15) and Diagram 10.5, first multiplication of ii xw is carried

out, and then their addition on general register. Dimension of WCV is determined
by dimension of AAA. This dimension can be from 2 and to a rather large num-
ber: tens and hundreds. In practice, the AAA dimension usually does not exceed
units, rarely tens. It is important to note that the number of antenna elements N
determines the possible number of suppressed interference. There may be no
more, than 1−N interference. Antenna elements may be spaced apart to dis-
tances 2/λ>d . If AAA is implemented with the use of two orthogonal polarized
antenna elements, they are located in one electric center and AAA is able to
suppress only one interference.

The WCV control unit, where this adaptive procedure is realized, is the opti-
mum algorithm of this WCV estimation. Historically the first and simple enough
is Widrow algorithm [4,5]:

[])()()(ŵ)(
)(ŵ

txtyttx
dt

td
э−= μ , (10.17)

where)(tyэ is a certain standard signal desirable for the reception and identical in

structure to a useful signal)()(tS i ; 1≤μ is convergence coefficient of this gra-

dient procedure,)(ŵ t is the WCV estimation, optimum by the criterion of mini-

mum of mean-square difference of received signal)()(tS v from standard)(tyэ .

Algorithm (10.17) is usually implemented in a discrete form:

[])()()(ŵ)()1()(ŵ)1(ŵ kxkykkxkkk э−++=+ μ , (10.18)

where context μ and эy is the same as in (10.18), k is the discretization interval.

Investigations show that noise suppression level may reach 20…30 dB and great-
er. This level is often quite enough for providing steady communication in a radio
line directed to the point of access, BSS or transponder.

Another adaptive algorithm for suppressing noise, also suggested by Widrow,
is the adaptive noise compensator (ANC). In order to implement it, it is necessary
to create a reference reception channel, free of useful information signal, when

0)()(→tS v :

)()()()()(tStStx nv
оп += . (10.19)

With known direction of arrival or polarization of useful signal, it is easily to ob-
tain such channel by orthogonal antenna receiving base against useful signal.
Algorithm of ANC is represented in Fig. 10.8.

Analytical representation of algorithm of WCV estimation of ANC differs
slightly from (10.17):

[])()()(ŵ)(
)(ŵ

txtxttx
dt

td
опосоп −= μ (10.20)

10 Methods of Signals Processing in Radio Access Networks 243

nvi SSSx ++= w(t)xоп

nv
оп SSx +=

vni SSSy Δ++=

Fig. 10.8 Structure of algorithm for WCV control in the adaptive noise compensator

Its functioning can be described as follows. Difference in square brackets will
be realized on the output of summing unit ∑ . This difference is multiplied
by)(txоп and being multiplied by μ it represents a derivative of WCV. The

integral of this derivative is required WCV)(ŵ t , which is used in multiplier 1m .

Another interpretation of algorithm is possible. In summing unit ∑ there is sub-
traction (compensation) of the weighed interference)()(twtxоп . Excess from this

deduction)(vSΔ is multiplied by)(txоп in 2m and the result is integrated. We

obtain as a result:

dtxSdtxSdtxSdtxy
опопопоп

hvi ∫∫∫∫ +Δ+=)()()(. (10.21)

Due to uncorrelatedness of subintegral functions, the first and third intervals in the
right part are on average equal to zero. The second integral is significant, because

)(vSΔ and
оп

x contain common correlated components. Result of the second

integral is a control signal, influencing the formation of WCV)(ŵ t . This influ-

ence will exist until it is not minimized by)(vSΔ , i.e. until interference in the main
reception channel is compensated to minimum.

It should be noted that based of Widrow algorithms more effective, fast algo-
rithms [2…7] synthesized on the basis of Markovian theory of filtration are
developed.

It can be shown that algorithms (10.17), (10.18) and (10.20) are optimal for a

situation when phase front of interfering signal)(vS is flat and not fluctuant. In ra-
dio access line, this front is distorted due to multipath propagation, spatial dis-
placement of transmitter and/or receiver antennas. It requires selecting the model
of the WCV condition in the form of

)()()(w)(/)(w ttGttFdttd ξ+= , (10.22)

244 V. Popovskiy

where)(),(tGtF are matrices of the condition and generation,)(tξ is generating

Gaussian white noise with the spectral density of power)(tNξ .

Equation of condition (10.22) allows using formalism of Kalman-Bucy filters
[2,3,7] for the estimation of WCV:

[](t))(ˆ)()()()(ˆ)(/)(ˆ 1
эv ytwtXNtXtPtwtFdttwd −+= − , (10.23)

where)(tX is the adopted realization (10.16),)(tP is a posteriori dispersion of

WCV error estimation, determined from Rikkati equation

)()()()()()()()()()(/)(1 tGNtGtPtXNtXtPtFtPtPtFdttdP T
v

T
ξ+−+= − . (10.24)

Principle difference of algorithm (10.23) from classic FCH is that not a signal but
optimum weight coefficient is subject to estimation. Thus equation (10.24) ap-
peared dependent upon the received signal)(tX . Fig.10.9 represents the AAA

algorithm functioning in accordance with (10.23).

∫

P(t)

F

∑

2∑

1∑

-1N
2m

1mX(t) y(t)

эy

3∑

Fig. 10.9 Structural diagram of adaptive antenna array functioning according FCB
algorithm

As the adaptive noise compensators operate in the same signal-noise situations,
for the WCV of ANC state equations (10.22), (10.23) and (10.24) are also true
with replacement of)(tX by)(tXоп , which is determined from (10.19). Fig. 10.11
provides ANC structural diagram. It is characteristic that algorithm ANC
represented by Fig.10.8 is extended to l -channels of basic reception (on
l -element AA).

10 Methods of Signals Processing in Radio Access Networks 245

2m

2∑

1∑

y(t)Δy(t)

1m

(t)ŵ

∫

F(t)

P(t)

-1
vN

(t)v(t)n 00 +

prA

refA

Fig. 10.10 Structural diagram of multichannel adaptive noise compensator

ANC algorithm functions as follows. Noise from reference channel after mul-
tiplier 1m , where it acquires corresponding to each i -th channel bias and scale

)(ˆ twi , is subtracted in summing unit 1∑ . The results of deduction are supplied to

the input of measuring device or receiver and concurrently, after corresponding

gain by 1−
vN , - to multiplier 2m . To another input of the multiplier the weighed

value of signal from reference channel pry is supplied. Value of feedback is de-

termined by multiplying by 1−
nN , which is set inversely proportional to watch

noises spectral density in each reception channels. Integrator, where value)(tF

determines permanent integrations, carries out operation of statistical averaging of
multiplication results. Voltage resulting from interaction of noise component from
reference channel)(tvo and that part of uncompensated excess of noise in i-th re-

ception channel, contained in)(tyΔ , which is correlated with)(tvo , appears on

the output of integrator. It is obvious, that useful signal)(tsi due to uncorrelated-

ness with)(tvo is not supplied to compensation input. The very voltage from the

integrator output, fed to one of multiplier inputs 1m , is the estimated WCV)(ŵ t .

It follows from comparison of the considered ANC structural diagram and Wi-
drow diagram (Fig. 10.8), that both diagrams are similar. At the same time, ANC
in Fig.10.10 takes into account the presence of noises in reference channel)(tNo ,

random changes of noise parameters)(tv and)(tvo , possibility of their correlation

and mutual correlation with the help of matrix)(tF elements. Function

246 V. Popovskiy

1)()(−
vo NtNtP (10.22), also stipulating stability of procedure acts as a step coeffi-

cient determining the speed of convergence. Thus, an algorithm (10.22) is a cer-
tain modernization of Widrow algorithms, since it is optimal for more general
conditions and more complicated signal-interference situation.

10.2.6 Control of Multipath Effect in Access Radio Lines

There are rapid attenuations of received signals, caused by multipath effect, re-
emission from moving objects in access radio lines of cellular, trunked, pager
communication, in Wi-Fi technologies, Wi-Max because of moving of communi-
cation objects, motion of surrounding subjects and people. In spite of actions taken
(encoding with interlace, floating reception threshold, etc) there are signal dro-
pouts, brief or long losses of communication. The periods of these disappearances
make from fractions of a second to several seconds. Experience suggests that the
statistical structure of such signals fading is different in different points of space,
and their polarization changes at random. This fact makes it possible in order to
increase reliability of communication to recommend space and/or polarization
diversity methods of reception.

(t)S1

(t)S2

21 SS(t)S +=∑

Fig. 10.11 Fragments of amplitudes of the signals received in diversity channels 1 and 2,
and total amplitude

10 Methods of Signals Processing in Radio Access Networks 247

From a communication theory [1,2,3] it has been known that, diversity
reception provides the greater effect, than independent signals in diversity
channels. Fig.10.11. represents the example of fadeout signals.

Picture shows that if there is deep fading of signal amplitude to almost a zero
level in separate channels 1 and 2, in a sum channel this fading is considerably
less noticeable. With the increase of number of diversity branches, we manage not
only to minimize the impact of fading but also to increase the level of regular
composition.

Thus, there are three tasks. Task 1 is the discovery of several (two or more) in-
dependent representations of received signal. Two signals can be used for this
purpose, received by orthogonally polarized antennas, two or more signals, re-
ceived in different points of space, spaced to a distance λ)100...10(≥d or signals

diverted by frequency to an interval 5,1...1≥Δf MHz. Signal-arrival-angle diver-

sity method is only mentioned in references, but there is no information on its im-
plementation. Time diversity is used; however, in interactive technologies it is not
effective due to excessive delays. Fig.10.12 represents different variants of spatial
diversity by transmission (а), on reception (b), on reception and transmission
simultaneously (c).

1TA

2TA

TnA

1RA

1TA

1RA

2RA

RmA

а) b)

1RA

2RA

RmA

1TA

2TA

TnA

c)

Fig. 10.12 Alternative diagrams of multiple reception of signals: a) at n - antenna on
transmission; b) at m - antenna on reception; c) at n - antenna on transmission and m -
on reception

Task 2 is addition of diversity signals. It can be solved with provision for (at
phase locked addition) or without provision for the phase carrier frequency (prede-
tector or postdetector addition). Phase locked addition is more effective. In this
rate, when adding 2 signals with voltage 1U and 2U , differing by phase to angle ϕ

we obtain total power:

ϕcos2)(21
2
2

2
1

2
21 UUUUUUP ++=+≈∑

248 V. Popovskiy

As is evident, with phase locked addition, when ϕcos =0, we

get PPPPP 4221 =++≈∑ . Not counting the phase, the third addend must be

dropped and PP 2≈∑ . In spite of power loss by 2 times postdetector addition is

used where it is necessary to maximally simplify circuit design. Phase - locked
addition requires the additional circuit design decisions on synchronization of
high-frequency signals components.

Task 3 is determining weight coefficients of the composed signals, because
their value influences the signal/noise ratio of the resulting signal. Therefore, it is

possible to sum up all signals with the same weight, for example, iw =1 for all

branches of diversity (linear addition). In this case, those branches, where a signal
is small, will contribute only to the growth of noise level. It is possible at every
moment of time to choose one branch only, where useful signal is maximum (auto
choice), but branches will be cast aside, where signals are less and they could give
positive contribution to the grand total.

It is possible to show that the best and optimal is the addition with weight iw ,

proportional to the level of useful signal in the same i -th channel (quadratic
addition). In this case (10.9) appears as

∑∑∑
===

==
N

i
i

v
i

N

i
ii

N

i
ii tStStSwtw

1

)(

11

)()()()(ψ , (10.25)

where)()(tSw v
ii = .

A number of methods of solution of the above three tasks are known. We will
mention the most popular one, where solutions of the second and the third tasks are
united into one general task. Fig.10.13 represents general diagram of this solution.

Fig. 10.13 Algorithm of quadratic coherent addition of diversity signals ()ω1S and
()ω2S without considering quadrature component

10 Methods of Signals Processing in Radio Access Networks 249

Weighing of signals)(1 tS and)(2 tS takes place in multipliers 1m and 2m , on
the second entrance of which signal)0(S converted to zero frequency is supplied
from the outputs of converters 1Пр or 2Пр . In-phase operation is achieved by
general signal)(ω∑S from the output of summing unit ∑ , which controls the
phase of converter reference signal.

Fig.10.14 shows graphs of probability of erroneous reception of single character

(BER) from signal level ratio and noise ns PPh /2 = for different reception ratio.

10
-1

10
-2

n=2
n=1

n=3

n=5

10
-3

n=10

10
-4

10
-5

1 10 100 1000

n=

BERP

ins
2 PPh /=

Fig. 10.14 Diagram of signals reception anti-jamming ability at different number of
diversity branches

It follows from the diagram that with the increase of order of diversity n the
anti-jamming ability becomes better, however transition from single ()1=n to

double ()2=n reception provides the greatest contribution, and all

subsequent additions of diversity branches provide progressively smaller positive
contribution.

Fig.10.15 shows graphs berP for the reception of signals in the two diversity

branches with different correlation coefficient r . It is clear from the diagram that
diversity reception of uncorrelated signals)0(=r provides considerable advan-

tage. Still in channels with high correlation)5.0(=r , this advantage is yet consi-

derable. It is obvious that in order to increase the efficiency of diversity reception
it is necessary to achieve reduction of statistical coupling in diversity branches.

250 V. Popovskiy

In practice, control of WCV, included into (10.25), is carried out during de-
composition of))(cos()()(1 tttAtS ϕω += into quadrature components

tStStS csi ωω cossin)(+= with subsequent estimation of these elements cs SS ˆ,ˆ ,

that results in the value 22 ˆˆ)0()(cs SSStA +== . The resultant value)0(S is fur-

ther used as a control signal in multipliers 1m and 2m (see Fig.10.13). Division

into two procedures: stochastic estimation cs SS ˆ,ˆ and deterministic control does

not preclude properties of procedure optimality, since the conditions of separation
theorem are correct here [1,2,3].

1 10 100 1000 2h
510

410

310

210

110

0r

0,5r

)1(r

BERP

Fig. 10.15 Curves BERP for the reception of signals in two diversity branches with
different correlation coefficient of r

The use of broadband signals (BBS) is a variety of diversity reception method,
among which the DSSS methods (Direct Sequence Spread Spectrum) and FHSS
signals (Frequency Hopping Spread Spectrum) are most widely used. These sig-
nals are used in Wi-Fi systems, especially they are recommended in IЕЕЕ 802.11
standards etc, where multipath effect takes place.

10.2.7 Space-Time Coding

Methods considered in (10.25) with the use of n -antennas are those, that minim-
ize the destructive impact of multipath effect. However, there are technological
solutions, which are invariant in relation to multipath effect, or even this pheno-
menon is used as positive. Such technologies, within МIМО concept, include
space-time encoding.

Core of space-time coding method consists in the fact that n -independent in-
formation signals can be transmitted simultaneously on the same operating

10 Methods of Signals Processing in Radio Access Networks 251

frequency pf by n transmitting antennas (Fig.10.16). Each of these signals)(T
iS ,

ni ,1= on the way to n -receiving to antennas is subject to corresponding

fading ijh ,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+++=

+++=

+++=

.h...hh

..............

,h...hh

,h...hh

)(
2

)(
21

)(
1

)(

2
)(

22
)(

212
)(

1
)(

2

1
)(

21
)(

211
)(

1
)(

1

nn
T

nn
T

n
TR

n

n
T

n
TTR

n
T

n
TTR

SSSS

SSSS

SSSS

 (10.26)

Fig. 10.16 Diagram of n information signals transmission via multibeam radio channel
with space-time coding

Thus (10.26) is the system of n -linear equations with n -independent un-

known)(T
iS . The system is heterogeneous, as absolute terms 0)(≠R

iS and it must

be consistent in order to have a solution and must be defined so that this solution
is unambiguous. It is obvious that all these properties of the system (10.26) de-
pend on the combination of ratios ijh , and matrix determinant of these ratios must

not be equal to zero:

0H ≠ . (10.27)

Such conditions (10.27) are met in the absence of linear dependence between equ-
ations of the systems (10.26), when none of equations is a linear combination of
the others. These conditions are met in practice due to different values ijh in each

of nn × directions of radio signals distribution. At the same time, on a receiving
side there is permanent control of the above conditions and, in case of failure to
meet them, on transmitting side, required linear independence between equations
(10.26) is achieved with the help of corresponding selection of levels of sig-

nals)(T
iS . Thus, signals)(R

iS splitting occurs with the help of unique

space-time code.

252 V. Popovskiy

In order to provide the solution of the system (10.26) and division of signals
)(T

iS , the value of coefficients ijh must be measured and estimated in each of

i , j directions. For this purpose a test signal with the known parameters is pe-

riodically transmitted in radio line, to provide capability to measure and estimate
coefficients ijh , which keep their value for a certain short time interval

nτΔ , which is an index step. As a result, a procedure of recursive evalua-

tion))1(ĥ()(ĥ −Φ= kk ijij occurs. Obtained estimations ijĥ are further used for the

resolution of the system (10.26). There are two more important conditions,
required for reliable operation of space-time encoding algorithm:

• In a radio channel between a transmitter and receiver there must be sufficiently
large allowance of high-frequency level of useful signal, that gives possibility
of reliable high-quality reception at the relatively large (-10…-30) dB signals
fading.

• Fading of multipath signals is called rapid, however it is possible to specify
short time intervals, where parameters of signals which are used in n -antenna
elements may be considered practically fixed. Intervals that are sensibly shorter
than fading correlation intervals may be considered as intervals with quasi-
permanent parameters:

cor1,0 ττ ≤Δ n (10.28)

Obviously, it is possible to carry out transmission not only using the method of

space-time encoding but also using polarization-time encoding, where)(T
iS

represents signals which have the proper polarization structure.
Space-time encoding is most effectively used in Wi-Fi office systems, however,

with proper modernizations it is possible to use it in bigger Wi-Max systems, in
cellular and other systems.

10.3 Recommendations on Practical Use of Signal Processing
Algorithms

10.3.1 Formalization of Kalman-Bucy Algorithm

The above-mentioned tasks are solved on physical level during radio access due to
estimation of corresponding parameters of signals ix̂ . The FKB formalism in a dis-

crete form results in the solution of the following equations in problem space [2,3]:

• constitutive equations:

)()()(),1()1(kkGkxkkFkx ξ++=+ , ...2,1=k ; (10.29)

• personal equation:

)()()()(knkxkHky += . (10.30)

10 Methods of Signals Processing in Radio Access Networks 253

In the equation, in the same way as in (10.30), not only white Gaussian noises
)(kn but also interferences (colored noises))(kv can be taken into account. The

removal of the latter is the AAA and ANC function:
• Filter equation:

[])1(ˆ)1,()()()()1(ˆ)1,()(ˆ −−−+−−= kxkkFkHkykKkxkkFkx , (10.31)

where)()()()(1
~ kNkHkPkK n

T
x

−= is the scaling function determining the FKB

optimum from positions of exactness of estimation and speed of its convergence to
the steady state;
• Dispersion of a posteriori error of estimation xxx ˆ~ −=

)()()(),1()(),1()/1(~~ kGkNkGkkFkPkkFkkP TT
xx ξ+++=+ ; (10.32)

• A priori dispersion x~

[])1/()()()(~~ −−= kkPkHkKIkP xx ; (10.33)

Direct use of the algorithm (10.29)…(10.33) for estimation of a particular parame-
ter often results in a failure. There are several reasons for this:

a) incorrect selection of filter parameters ξNNGF n ,,, , when parameters of the

selected model (10.29), (10.30) disagree with the real signal-to-noise envi-
ronment;

b) incorrect selection of discretization step τΔ in relation to correlation interval

corτ ;

c) disagreement of discreteness of measurements entry y(k) and discreteness of

the estimation procedure (10.31);
d) technological features of estimation procedure, etc.

10.3.2 Recommendations on Planning of Estimation Algorithms

In the tasks of designing of processing devices, it is expedient to carry out prelim-
inary mathematical computer-aided modeling. The structural diagram
represented by Fig. 10.17. will be useful for this purpose.

For conducting the experiment, it is necessary to select adequate arrays of gen-
eration noises)(kξ and observation noises)(kn . Size of the array must be large

enough, and sample characteristic of power spectral density (PSD) must be most
uniform in the frequency band (deviations exceeding)30...25(± % are not desira-

ble). Relation of)(kξ noise PSD to)(kn noise PSD can be interpreted as a rela-

tion of levels of useful signal and noise in the observation channel nNNh /2
ξ= ,

and if 1=nN here, this relation becomes numerically equal to ξN .

254 V. Popovskiy

 Estimation model Processing model

 Σ

()ky

Observation model)k(х

()kх~

()kn

+

Generator

Σ1

Shaping
filter

()kх̂ Kalman-
Busy filter

()kξ
Generator

Sample value
processing

Fig. 10.17 Structural diagram of computer-aided experiment

As a result of the experiment, different situations with convergence to the
steady state of procedure (10.31) are possible which occurs on condition that a
posteriori dispersion is constkkPx →−)1/(~ . At the most, the steady state of filter

occurs already on 4 to 10 steps of discretization. Fig. 10.18 shows dependence of
convergence time of FKB on the size of discretization step.

N
um

be
r o

f s
te

ps

1,0=
τ

τΔ

cor
01,0=

τ
τΔ

cor

001,0=
τ

τΔ

cor

Fig. 10.18 Diagram of FKB convergence depending on the selected parameter 2h at

various sizes of discretization step corττ /Δ

The diagram implies that time of convergence to the steady state increases with

the increase of the estimated signal 2h level. This time can increase to infinity,

10 Methods of Signals Processing in Radio Access Networks 255

which is the indication of procedure divergence. The mode of relatively large
steps of discretization (at 1,0/ =Δ corττ) is especially critical. Here, steady con-

vergence is observed at the ratio 2h ≤20 only.
Fig. 10.19 shows dependence of convergence time of FKB with deviation of

model parameters from real situation (at mismatching of signal strength)F(
ξN set

in a filter in relation to model)(MNξ level)

001,0=
τ

τΔ

cor

01,0=
τ

τΔ

cor

1,0=
τ

τΔ

cor

() ()FМ NN ξξ /

Fig. 10.19 Diagram of convergence time of filter depending on the relation of model PSD
)(MNξ to filter PSD)F(

ξN

As it is evident from the graphs, the sensitivity of estimation procedure to
deviation of parameters of the selected model to any side is not symmetric. More-
over, selecting understated value of signal strength does not only worsen the con-
vergence but also improves it that enables an important practical conclusion: it is
necessary to understate the signal-to-noise ratio in estimation procedure, which
will be instrumental in the improvement of convergence, and quality of estimation
in this case (a posteriori dispersion of estimation error) does not practically
change. The other method of convergence improvement is the reduction of
discretization interval, which evidently helps to make a more exact estimation.

Research of sample values of a posteriori dispersion of estimation error x~ ob-
tained by the method of ensemble averaging with 20...10≥i of independent sam-
ple arrays)(kxi can be very informative. Thus, sample estimate of dispersion

∑
=

−−=
i

i
x xi

1

212
~ ~)1(σ at 102 =h for the step of 01,0/ =Δ corττ proved to be

equal to 3608,02
~ =xσ , for 001,0/ =Δ corττ its value was 1133,02

~ =xσ . Time of

convergence to the steady state was 30…40 intervals of discretization.

256 V. Popovskiy

Time of convergence is of great practical importance, because when different
nonstationary effects occur it is the time of transient mode. More detailed effect of
nonstability can be explored by presenting the equation (10.30) in the form of:

),()sin()()()()(tnlkCkxkHky
cor

k +Δ++=
τ

τ
 (10.34)

where)(kC determines amplitude of instability components, l determines value

of change of smooth period of sinusoidal nonstability changes.
The program of model formation according to algorithm (10.29) and calcula-

tion of estimation according to algorithm (10.31) is represented below.

10.3.3 Program of Estimation Calculation with the Help of FKB

clear
 N=1000;
 t1=1:N;
 D=1;
 T=1;
 T0=10;
 w=randn(size(t1));
 v=randn(size(t1));
 x(1)=0;
 F=exp(-T/T0);
 G=sqrt(D*F*(1-F));

 H=1;
for k=1:N-1
 x(k+1)=F*x(k)+G*w(k);
end
z=H*x+v;
figure(1)
plot(t1,z);
Vw=2*ones(size(t1));
Vv=2*ones(size(t1));

Vx(1)=1;
V1x(1)=1;
x1(1)=F*0;
K(1)=1;
er3(1)=1;

for k=2:N
 K(k)=V1x(k-1)*H'*Vv(k)^(-1);
 Vx(k)=F*V1x(k-1)*F'+G*Vw(k)*G';
 V1x(k)=(1-K(k)*H)*Vx(k);
 x1(k)=F*x1(k-1)+K(k)*(z(k-1)-H*F*x1(k-1));
er3(k)=z(k-1)-H*F*x1(k-1);
end
er=(x-x1);
er1m=mean(er)
er1=mean((er-er1m).^2)

10 Methods of Signals Processing in Radio Access Networks 257

10.3.4 Recommendations for Designing Adaptive Noise
Compensators

Being more general ANC and AAA (10.23) allow taking into account more com-
plex signal to noise environment, and their quality is determined by the extent of
noise suppression)(kv and improvement of the ratio of signal SP level to the

sum of interferences and noise on the ANC or AAA output:

)/(2
nvS PPPh += . (10.35)

In the process of ANC development, it is necessary to consider the absence of use-
ful signal in the reference channel, and the level of interference 0v should exceed

the corresponding value in the primary channel. To explain this, we will show
results of the computer-aided experiment.

- 30 - 25 - 20 - 15 - 10 -5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

20
h 2,dB

01,0
cor 1,0

5,0

dBprref PP ,/

cor

cor

Fig. 10.20 Diagrams of ANC efficiency depending on the relation of noise levels in
reference and primary channels

To obtain numerical values let us set the following relations between levels of
useful signals and noise in the primary channel: dBPP ns 20/ = , dBPP nv 20/ = .

Let us change interference power ov in the reference channel in relation to inter-

ference power in the primary channel from — 30 to 15 dB. As a result of comput-

er-aided experiment, graphs of 2h depending on the relation of powers of interfe-
rence in the reference channel to power of interference in the primary channel

prvP . are obtained (Fig.10.20). It is evident from the graphs that with the increase

of interference power in the reference channel refvP . efficiency increases smooth-

ly, and at prvrefv PP .. / ≥ 6…10 dB it achieves maximum values. This fact is of

258 V. Popovskiy

practical importance: when selecting parameters of the reference channel, it is im-
portant that the level of interference refvP . in it exceeds the corresponding level

prvP . in the primary channel. From the obtained graphs, we can make a conclu-

sion that the ANC operation efficiency is substantially influenced by discretization
interval: efficiency grows with more frequent discretization.

The other important requirement to reference channel is the minimum level of
desired signal, as its presence results in losses of the ANC efficiency because use-
ful signal)(tv is also compensated together with noise. Fig. 10.21 shows dia-

grams of ANC efficiency losses depending on the level of desired signal in the
reference channel in relation to the level of signal in primary channel refsprs PP / .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20h
2

, dB

10/ prref PP

4/ prref PP

/ prref PP

pr S refS PP /

1

Fig. 10.21 Diagrams of ANC efficiency losses in the presence of useful signal in reference
channel with a relative level prsrefs PP /

It is characteristic that in case of exceeding noise level in the reference channel
as compared to the primary one (two overhead curves in Fig.10.21) losses of the
ANC efficiency are insignificant. However, if these levels are equal (third curve)
losses are considerably essential.

10.3.5 Recommendations for Planning Adaptive Antenna Arrays

By analogy with ANC, where development of a reference channel free of useful
signal is required, a similar channel on output 2Σ is created in AAA after deduc-

tion of reference signal эy (Fig. 10.9). Analysis shows that incomplete matching of

structure of reference and useful signals results in incomplete compensation of this
signal and accordingly to decline of the AAA efficiency, similar to that in ANC.

10 Methods of Signals Processing in Radio Access Networks 259

20

15

10

5

0

-5

-10

-15

-20

-25
010 110 210 310

potential

number of steps

2h
2h

Fig. 10.22 Graphs of transient mode for four-element AAA

Fig. 10.23 Graph of transient mode for eight-element AAA

Simulation modeling of AAR algorithm showed that convergence time of pro-
cedure (10.23) to the steady state is situated within the limits of 10…20 discretiza-
tion intervals. Fig.10.22 and Fig. 10.23 show diagrams of transient modes of adap-
tation algorithms, built on condition of equality of levels of useful signals and

260 V. Popovskiy

interferences vs PP = and with relation of levels vs P/P =20 dB in each receiving

channel. As it is evident from the diagrams, potential of the algorithm efficiency
increases with the increase of the number of AAA antenna elements.

Attention should be drawn to one more feature of ANC and AAA algorithms. It
is known that hysteresis phenomena are characteristic for the systems of White
type and they become apparent in AAA and ANC control algorithms. WCV con-
trol linkage backlash appears because of the post-tuning drift, retaining WCV in a
position, which conforms to current signal-interference environment. In this case,
post-tuning drift is proportional to gain factor in control circuit. Indicated drifts
are characteristic also for the systems of phase-locked loop and automatic fre-

quency control. Dependence of 2h on the size of the backlash area, delineated in
relative units is shown in the diagram (Fig. 10.24). Diagrams show that with ex-
pansion of backlash area ANC efficiency gains ambiguous nature and with the
dimensions of the area greater than wΔ04,0 the mode of bifurcation and chaotic
behavior is observed.

Fig. 10.24 Diagrams of efficiency losses of adaptive algorithm depending on WCV adjust-
ing characteristic backlash

10.4 Conclusions

In recent years more firms, dealing with manufacture of telecommunications
equipment, scientists and specialists draw attention to the necessity of the use of
space-polarization resources to provide quality solution of access tasks in different
technologies which agree upon concept of creation of the fixed-mobile systems
(FMS).

Consideration of various space-polarization methods in access tasks implies
that these methods are transformed easily enough from one into another. In other
words using 2-dimensional or n-dimensional spatial or polarization basis on

10 Methods of Signals Processing in Radio Access Networks 261

receiving side or on both sides simultaneously there is a possibility to solve such
important problems as providing access of electromagnetic compatibility, filling in
deficit of frequency resource, increase of interference immunity, authenticity and
reliability of transmission etc.

References

[1] Lyons, R.G.: Understanding Digital Signal Processing, vol. (4). Prentice hall, Engle-
wood Cliffs (2004)

[2] Van Tress, H.L.: Detection, Estimation and Modulation Theory. Pt I. John Wiley and
Sons, Inc., NY (1967)

[3] Snyder, D.: The state – variable approach to continuous estimation with applications to
analog communication theory. The MIT Press, Cambridge (1971)

[4] Widrow, B., et al.: Adaptive Antenna Systems. Proc. IEEE 55, 2143–2159 (1967)
[5] Monzingo, R.A., Miller, W.: Introduction to Adaptive Arrays. John Wiley & Sons Inc.,

NewYork (1980)
[6] Marpl-jr, S.L.: Digital spectrum analysis and its application / Transl. from English.

Mir, Moscow (1990)
[7] Popovskij, V.V., Rodimov, A.P.: Statistical theory of polarization – timing processing

of signals / M.: Radio i svjaz (1986)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 263–288.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

11 Recursive Code Scales for Moving
Converters

Alexander Ojiganov

Saint-Petersburg State University of Information Technologies, Mechanics and Optics;
Department of Computing Techniques, Russia

Abstract. The methods of construction of recursive code scales (RCS), and also
algorithms of placing on a scale of reading out elements (RE) are considered, re-
sults of research of correcting possibilities of such scales are shown. RCS for syn-
thesis of drawing of an information path of a scale of sequence have received the
name pseudo-random (PRCS) and composite code scales (CCS). Offered scales
can be applied as the coded element in moving converters. Recursive scales at the
expense of use in them of only one information code path more technologically
traditional scales, code paths (CP) which are carried out, as a rule, in an ordinary
binary code or in the Gray code. Thus, RCS allows only at the expense of redun-
dancy introduction on number of reading out elements without use of additional
control paths to form the codes which are correcting and (or) finding out errors of
reading.

11.1 Pseudo-Random Code Scales

11.1.1 Pseudo-Random Code Scales for Converters of Angular
Movings

The method of construction circular PRCS is based on use of the theory of
M-sequences [1]. Let us adhere to the standard terminology.

1. The M-sequence is a sequence of binary symbols a the lengths, 2 1nM = −
received on a certain rule which is set by a primitive polynomial h (x)
degrees n.

2. The primitive polynomial h (x) represents a polynomial which is not resulted
over field Galua GF (2), i.e.

∑
=

=
n

i

i
i xhxh

0

)(
,

(11.1)

where h0=hn=1, and hi=0,1 at 0 <i <n.

264 A. Ojiganov

3. M-sequence symbols an+j satisfy to a recursive parity

iji

n

i
jn haa +

−

=+ Ξ=
1

0 , j = 0,1...,
(11.2)

where the sign Ξ denotes summation on the module two, and indexes at
M-sequence symbols undertake on module M. Initial values of symbols
of M-sequence a0a1... an-1 can get out any way, except for a zero combi-
nation. For definiteness to these symbols we will give values
a0 =... = an-2=0, an-1=1.

4. M-sequences belong to the class of cyclic codes and can be set by means of a
generating polynomial

() (1) / ()Mg x x h x= + , (11.3)

where h (x) it is defined according to expression (11.1), M=2n-1.

For each M-sequence of length M exists exactly M various cyclic shifts which can
be executed by multiplication of a generating polynomial g(x) on xj where j=0,1...,
M-1.

It is known [2], that for any value n exists precisely (2 1) /nM nϕ = −

various polynomials h(x), being not resulted and primitive. The function named
()Mϕ function of Euler, represents the number of positive integers smaller or

equal M and mutually simple from M. The number ()Mϕ very quickly grows

with growth n, number of polynomials of degree n, generating sequences of the
maximum length, also quickly increases with growth n.

In Table 11.1 polynomials h (x) to degree 16 inclusive which have the mini-
mum number of nonzero factors hi are resulted and can be used for generation of
corresponding M-sequences of length 2 1nM = − [1].

Let's formulate a method of construction of n-digit circular PRCS [3,4].

1. Depending on demanded word length of a scale n from table 11.1 the
polynomial h (x) gets out.

2. Using a recursive parity (11.2) the sequence a is generated.
3. Elementary sites of a scale are carried out according to M-sequence symbols a

where individual symbols of sequence correspond to active, and zero symbols
to passive sites of an information path. For definiteness sequence symbols are
displayed on an information code path in a direction of movement of an clock
hand as it should be a0a1... aM-1.

4. Placing on a scale of reading out elements is carried out. As PRCS are under
construction according to M-sequence symbols, it is possible to define by cyc-
lic shifts a placing order on a scale n RE. Differently, m RE (m=1,2..., n) jm -th
cyclic shift xjmg (x) M-sequences is put in conformity. Then the polynomial
defining an order of placing on a scale n RE, looks like

∑
=

=
n

m

jmxxr
1

)(
,
 (11.4)

11 Recursive Code Scales for Moving Converters 265

where jm ∈ 0,1..., M-1. Having put j1=0, according to (11.4) we will have
the second, the third, ..., the n-th RE displaced (for definiteness in a di-
rection of movement of an hour hand) concerning the first RE on j2, j3...,
jn elementary sites of an information path of a scale accordingly.

Table 11.1 Primitive polynomials

n h (x) 2 1nM = − n h (x) 2 1nM = −

1 x+1 1 9 x9 + x4 + 1 511

2 x2 + x + 1 3 10 x10 + x3 + 1 1023

3 x3 + x + 1 7 11 x11 + x2+1 2047

4 x4 + x + 1 15 12 x12 + x7 + x4 + x3 + 1 4095

5 x5 + x2 + 1 31 13 x13 + x4 + x3 + x + 1 8191

6 x6 + x + 1 63 14 x14 + x12 + x11 + x + 1 16383

7 x7 + x + 1 127 15 x15 + x + 1 32787

8 x8 + x6 + x5 + x + 1 255 16 x16 + x5 + x3 + x2 + 1 65535

In the given subsection placing RE along path PRCS with step to one quantum
is considered. Possibility of other variants of placing will be shown in 11.3.

In the converters of moving based on a method of reading, the code scale at a
full turn should provide reception of number of the various code combinations
equal to number of quanta of moving. We will show that it is true for converters of
moving on the basis of circular PRCS. For this purpose we will prove the
following statements.

Statement 11.1 Circular PRCS allows to receive exactly M various n-digit code
combinations corresponding to sequence from M of quanta of moving.

Proof. We will consider a fragment of M-sequence from n consecutive symbols. It
corresponds to some code combination ajaj+1... aj+n-1, reproduced from information
path PRCS in the reading out knot from n elements. Reading out elements on
PRCS are located with step to one quantum, position of the coded element could
be any. After scale moving on k quanta (k <M) from an information path of a scale
in the reading out knot the n-digit code combination aj+kaj+k+1 will be reproduced...
aj+k+n-1. A condition of equality of these code combinations is the following one:

1111 −+++++−++ = nkjkjkjnjjj aaaaaa KK . (11.5)

It means, that the M-sequence period is equaled k.
It contradicts property of M-sequence, on which its period 2 1nM = − [1].

Hence, these code combinations should be various. As the number of symbols of
M-sequence is equal M to each moving PRCS on one quantum there corresponds
the n-digit code combination and it will be equal M, as was to be shown.

The statement 11.1 is defining as testifies to basic possibility of construction of
converters of moving on the basis of PRCS with one information code path.

266 A. Ojiganov

Statement 11.2. Resolution circular PRCS is defined by a parity:

0360 / Mδ = . (11.6)

The proof is obvious, as PRCS has a code path with number of quanta and
2 1nM = − allows receiving at a full turn of scale M various n-digit code

combinations.
Let us explain the method stated above, and also statements 11.1 and 11.2, on

an example of construction three-digit circular PRCS with placing RE according
to a polynomial 2() 1r x x x= + + . Such a scale is shown in Fig. 11.1.

Fig. 11.1 Three-digit PRCS

In an example for simplicity it is accepted n=3 and corresponding the primitive
not resulted polynomial is chosen from table 11.1, 3() 1h x x x= + + , where

h0=h3=1, h1=1, h2=0. Here length of M-sequence M=23-1=7, and M-sequence
a=a0a1a2a3a4a5a6=0010111. At initial values of M-sequence a0=a1=0, a2=1, se-
quence symbols a3, a4, a5 and a6 are received according to a recursive parity
(11.2) which in the given example looks like, 3 1j j ja a a+ += ⊕ , j=0,1,2,3. Placing

of three reading out elements RE1, RE2 and RE3 along a code path of a scale is set

according to (11.4) polynomial 2() 1r x x x= + + .

Table 11.2 Sequence of code combinations three-digit PRCS

Positions PRCS RE1 RE2 RE3 The decimal code

0 0 0 1 1

1 0 1 0 2

2 1 0 1 5

3 0 1 1 3

4 1 1 1 7

5 1 1 0 6

6 1 0 0 4

11 Recursive Code Scales for Moving Converters 267

Consistently fixing RE a three-digit code combination at scale moving on one
quantum against a direction of movement of an hour hand, we receive seven vari-
ous three-digit code combinations. These code combinations, corresponding to
seven various angular positions PRCS are resulted in Table 11.2.

11.1.2 Pseudo-Random Code Scales for Converters of Linear
Moving

The method used at construction of circular PRCS, can be used with some
additions by working out scales for converters of linear moving [5].

Let us state a method of construction of linear PRCS with resolution
/(2 1)nDδ = − , where D - length of coded moving, and n - word length of a scale.

For the set resolution it is necessary to provide possibility of reception with n RE
at full moving of a scale of various 2 1nM = − n-digit code combinations.

It is provided by the solution of a problem of placing on PRCS RE which is re-
duced to a finding of suitable linearly independent set from n cyclic shifts of
M-sequence.

In difference from circular, linear PRCS is opened. Therefore, for maintenance
of the set resolution of a scale /D Mδ = , it is necessary to receive corresponding
sequence of symbols l, suitable for synthesis of an information path of linear
PRCS. A problem of generation of sequence l we will solve in a general form with
use of a recursive parity (11.2) and having assumed, that placing RE on PRCS is
correct and is set by a polynomial (11.4). For definiteness initial values of symbols
of sequence l, we will choose the following l0=l1 =... = ln-2=0, ln-1=1.

The sequence l completely includes sequence a, and also some additional
symbols, which number depends on placing on PRCS RE.

Let us define a difference between numbers of cyclic shifts of the M-sequence
corresponding to placing on a scale two next RE, as di = jm-jm-1, where i = 1,2...,
 n-1, m =2,3..., n.

Then the number of applications of a recursive parity (11.2), at the set entry
conditions, necessary for sequence generation l can be received under the following
formula

∑
−

=

++−=
1

1

)1(2
n

i
i

n dnt
.

(11.7)

Taking into account that
1

1 1 2 1 1 1
1

() () ()
n

i i n m m n n n
i

d d d d j j j j j j j
−

− − −
=

= + + = − + + − + + − =∑ K K K K ,

the parity (11.7) in a final form becomes

n
n jnt ++−=)1(2 .

(11.8)

The general number of symbols of sequence l with the account n set initial values
can be found from a parity

12 −+= n
n jT .

(11.9)

268 A. Ojiganov

Let us formulate a method of construction of n-digit linear PRCS.

1. Depending on demanded word length n linear PRCS from Table 11.1, the po-
lynomial h (x) degrees n gets out.

2. Taking into account requirements to placing on a scale of reading out elements
according to (11.4), the placing polynomial r (x) is formed.

3. Using a recursive parity (11.2), taking into account (11.8) and (11.9), the
sequence l is generated.

4. Elementary sites (quanta) linear PRCS are carried out according to sequence sym-
bols l where to symbols of 1 sequence correspond active, and to symbols 0 - pas-
sive sites of an information path. For definiteness sequence symbols l are
displayed on an information path of a scale from left to right in sequence l0l1... lT-1.

Let us explain the proposed method of construction linear PRCS on an example of
a four-digit scale which is resulted on Fig. 11.2.

The information path of a scale is executed according to sequence symbols
l=l0l1... l23=000100110101111000100110 lengths for 42 1 2 9 1 24n

nT j= + − = + − =
which construction the primitive not resulted polynomial is used, 4() 1h x x x= + + ,

and symbols l4+j sequences l at initial values l0=l1=l2=l, l3=1 satisfy to a recursive
parity,

4 1j j jl l l+ += ⊕ j=0,1..., (t-1), where ()42 (1) 2 4 1 9 20n
nt n j= − + + = − + + = .

In the resulted example placing of four RE along a path linear PRCS is defined by
a polynomial 2 5 9() 1r x x x x= + + + .

Fig. 11.2 Four-digit linear PRCS

Table 11.3 Sequence of code combinations four-digit linear PRCS

Positions
PRCS

RE1 RE2 RE3 RE4
The decimal

code
Positions

PRCS
RE1 RE2 RE3 RE4

The decimal
code

0 0 0 0 1 1 8 0 0 1 0 2

1 0 1 1 0 6 9 1 1 1 1 15

2 0 0 1 1 3 10 0 1 0 0 4

3 1 0 0 1 9 11 1 1 0 0 12

4 0 1 1 1 7 12 1 1 0 1 13

5 0 1 0 1 5 13 1 0 1 1 11

6 1 0 1 0 10 14 1 0 0 0 8

7 1 1 1 0 14 - - - - - -

Fixing reading out elements RE1, RE2, RE3 and RE4, consistently code combi-
nation at moving linear PRCS on one elementary site (it is from right to left)

11 Recursive Code Scales for Moving Converters 269

received fifteen various four-digit code combinations. These code combinations,
corresponding to fifteen various positions PRCS are resulted in Table 11.3.

11.2 Composite Code Scales

11.2.1 Composite Code Scales for Converters of Angular Moving

Resolution angular and linear PRCS on the basis of M-sequences are defined by
size of period M and are accordingly equal to 0360 / Mδ = and /D Mδ = . For
synthesis CS, allowing building on the basis converters of moving with wider spec-
trum of resolution, we will enter concept of composite binary sequence of p order
(Cp-sequence) which we will use for reception of drawing of a code path of a scale.
Scales on the basis of Cp-sequences we name composite code scales (CCS) [6].

For Cp-sequence synthesis we define polynomial H (x) degrees N with factors
of field Galua GF (2), as kind expression

∏
=

=
p

k
k xhxH

1

)()(.

(11.10)

Here hk (x) are defined according to (11.1) and allow to receive M-sequences of
length, 2 1kn

kM = − and

)(,
1

ba

p

k
k nnnN ≠=∑

=

. (11.11)

Let us notice, that at p=1 the composite sequence turns to classical M-sequence.
Symbols of Cp-sequence A satisfy to a recursive parity

iji

N

i
jN HAA +

−

=+ Ξ=
1

0 , j=0,1,2...,
(11.12)

where the sign Ξ denotes summation on the module two, and indexes at
Cp-sequence symbols undertake on module R. Initial values of symbols of Cp-
sequence A0A1... AN-1 get out taking into account that GGD [tj (x), H (x)] =1,
where GGD is the greatest general divider, and

∑
−

=
+=

1

0

)(
N

i

i
jij xAxt , j=0,1..., R-1. (11.13)

For the majority of practical applications (11.12) it is enough to take tj (x) =1, i.e.
A0=A1 =... AN-2=0, AN-1=1.

Period R of Cp-sequence depends on degrees of polynomials hk (x) and from a
polynomial of initial values of symbols of Cp-sequence tj (x). If all nk is
represented by mutually simple numbers, and GGD [tj (x), H (x)] = 1,

∏
=

=
p

k
kMR

1 .
(11.14)

270 A. Ojiganov

Cp-sequences, as well as M-sequences, belong to the class of cyclic codes and can
be set by a generating polynomial of a kind

() (1) / ()RG x x H x= + , (11.15)

where H(x) and R are calculated according to expressions (11.10) and (11.14).
Therefore, for each Cp-sequence of length R exists exactly R various cyclic shifts
which can be received by multiplication of generating polynomial G (x) on xj,
where j=0,1..., R-1.

The analysis of (11.10) and (11.11) allows to draw a conclusion that the
number of polynomials of N-th degree H(x) depends both on number and degrees
of primitive not resulted polynomials h(x), participating in construction H(x).
From (11.12) and (11.14) it is visible also, that periods R of Cp-sequences
received with use various H(x) of identical degree, are various.

In Table 11.4 values nk degrees of polynomials h(x) and periods Mk constructed
on their basis of M-sequences, and also possible variants of reception of degrees N
of polynomials H(x) and values R of the periods of Cp-sequences which can be
used for construction of composite code scales to word length 16 inclusive are
resulted.

Table 11.4 Degree and the periods of Cp-sequences

nk, N Mk
1

p

k
k

N n
=

=∑

1

p

k
k

R M
=

= ∏

2 3 - -

3 7 - -

4 15 - -

5 31 (2+3) 21

6 63 - -

7 127 (2+5), (3+4) 93, 105

8 255 (3+5) 217

9 511 (2+7), (4+5) 381, 465

10 1023 (2+3+5), (3+7) 651, 889

11 2047 (2+9), (3+8), (4+7), (5+6) 1533, 1785,1905, 1953

12 4095 (2+3+7), (3+4+5), (5+7) 2667, 3255, 3937

13 8191 (2+11), (3+10), (4+9), (5+8), (6+7) 6141, 7161, 7665, 7905, 8001

14 16383 (2+5+7), (3+4+7), (3+11), (5+9) 11811, 13335, 14329, 15841

15 32767 (2+13), (3+5+7), (4+11), (5+8) 24573, 27559, 30705, 32385

16 65535
(2+3+11), (2+5+9), (5+11), (3+5+8),

(4+5+7), (7+9), (3+13)
42987, 47523, 63457, 55335,

59055, 64897, 57337

Let's formulate a method of construction N-digit circular СCS.

1. Depending on demanded word length of N and resolution R of a scale under
tables 11.1 and 11.4 according to (11.10) polynomial H (x) degrees N is
formed.

2. Using a recursive parity (11.12) sequence A is generated.

11 Recursive Code Scales for Moving Converters 271

3. Elementary sites (quanta) of a scale are made according to symbols of
Cp-sequence A where to symbols of 1 sequence correspond active, and to sym-
bols 0 – passive sites of an information code path. For definiteness Cp-
sequence symbols are displayed on information CP in a direction of movement
of an clock hand in sequence A0A1 … AR-1.

4. Placing on a scale of reading out elements is carried out. As CCS are under
construction according to Cp-sequence symbols, it is possible to set by cyclic
shifts a placing order on scale N of reading out elements. Differently, m RE
(m=1,2, …, N) jm-th cyclic shift of Cp-sequence ()mj

kx g x is put in

conformity ()mj
kx g x .

Then the polynomial defining an order of placing N of reading out elements on
CCS, looks like

∑
=

=
N

m

jmxxr
1

)(,
 (11.16)

where jm ∈0,1..., R-1. Having put j1=0, according to (2.16) we will have the
second, the third..., N-th RE displaced (for definiteness in a direction of movement
of an clock hand) concerning the first RE on j2, j3..., jN elementary sites of an
information path of a scale accordingly.

The problem of placing RE on CCS will be considered and solved in (11.3). In
a basis of its solution the finding of linearly independent set of cyclic shifts of
Cp-sequence is necessary.

Let us show, that circular CCS allow to build on the basis converters the mov-
ing using a method of parallel reading. For this purpose we will formulate the
following statements.

Statement 11.3. Composite code scales allow to receive exactly R various
N-digit code combinations corresponding to sequence from R of quanta of moving.

Statement 11.4. Resolution circular CCS is defined by a parity

0360 / Rδ = . (11.17)

Proofs of these statements are executed similarly to proofs of statements 11.1 and
11.2.

Let us show a method of construction circular CCS as an example, for simplicity
having limited to five categories of transformation. From Tables 11.1 and 11.4 it is
visible that five-digit CCS can be received only in one way with use of two poly-
nomials h (x), according to the second and third degrees used for generation of
symbols of composite sequence of the second order with period R=21.

The resulted five-digit circular CCS is shown in Fig. 11.3.
At scale moving cyclically on one elementary site, for example, against a direc-

tion of movement of an clock hand, from exits of reading out elements RE1, RE2,
RE3, RE4 and RE5 five-digit code combinations are formed. These code combina-
tions corresponding to twenty one various angular positions CCS are resulted in
Table 11.5.

272 A. Ojiganov

Fig. 11.3 Five-digit CCS

Table 11.5 Sequence of code combinations five- digit CCS

Positions
CCS

RE1 RE2 RE3 RE4 RE5
The decimal

code
Positions

CCS
RE1 RE2 RE3 RE4 RE5

The decimal
code

0 0 0 1 1 1 7 11 0 0 1 0 0 4

1 0 0 1 1 0 6 12 1 0 1 0 1 21

2 0 1 1 1 1 15 13 0 1 0 0 0 8

3 0 1 1 0 0 12 14 0 1 0 1 0 10

4 1 1 1 1 1 31 15 1 0 0 0 0 16

5 1 1 0 0 0 24 16 1 0 1 0 0 20

6 1 1 1 1 0 30 17 0 0 0 0 1 1

7 1 0 0 0 1 17 18 0 1 0 0 1 9

8 1 1 1 0 1 29 19 0 0 0 1 1 3

9 0 0 0 1 0 2 20 1 0 0 1 1 19

10 1 1 0 1 0 26 - - - - - - -

The information path of a scale is executed according to symbols К2-sequence
A=A0 A1... A20 = 000011111010100110001 lengths R=21 for which construction
the polynom is used, 2 3 5 4

1 2() () () (1)(1) 1H x h x h x x x x x x x= = + + + + = + + and

symbols A5+j K2- sequence at initial values A0=A1=A2=A3=0, A4=1 satisfy to a
recursive parity, 5 4j j jA A A+ += ⊕ (j=0,1..., 15).

In an example placing of five RE along the path, CCS is defined by a
polynomial 2 4 6 8() 1r x x x x x= + + + + .

11.2.2 Composite Code Scales for Converters of Linear Moving

Let us consider construction of N-digit linear CCS with resolution /D Rδ = ,
where D is the length of coded moving, and R is defined according to expression
(11.14). For the set resolution it is necessary to provide possibility of reception
with N RE at full linear moving of scale R of various N-digit code combinations.

11 Recursive Code Scales for Moving Converters 273

It is provided by the solution of a problem of placing on CCS RE which is
reduced to a finding of suitable linearly independent set from N cyclic shifts of
Cp-sequence.

For achievement of resolution of a scale δ, it is necessary to receive corres-
ponding sequence of symbols L, suitable for synthesis of an information path li-
near CCS. For reception of sequence L we will take advantage of a recurrent pari-
ty (11.12) and we will assume that placing RE on CCS is correct and is set by a
polynomial (11.16). For definiteness initial values of symbols of sequence L we will
choose following L0=L1 =... =Ln-2=0, Ln-1=1.

Sequence L completely includes sequence A, and also some additional
symbols, whose number depends on placing on linear CCS RE.

By analogy to a method of construction linear PRCS, considered in 11.2, we
will define a difference between numbers of cyclic shifts of the Cp-sequence cor-
responding to placing on a scale two next RE, as di = jm-jm-1, where i = 1,2..., N-1,
m = 2,3..., N.

Then the number of applications of a recursive parity (11.12), at the set of ini-
tial values of the symbols, necessary for generation of sequence L, can be received
under the following formula

∑
−

=
+−=

1

1

N

i
ik dNRt

.
(11.18)

Taking into account that

1

1 1 2 1 1 1
1

() () ()
N

i i N m m N N N
i

d d d d j j j j j j j
−

− − −
=

= + + = − + + − + + − =∑ K K K K .

The parity (11.18) in a final form becomes

Nk jNRt +−= . (11.19)

The general number of symbols of sequence L taking into account N set of
initial values can be found from a parity

NK jRT += . (11.20)

Let us formulate a method of construction of N-digit linear CCS.

1. Depending on demanded word length N and resolution R of a scale from tables
11.1 and 11.4 according to (11.10), polynomial H (x) degrees N is formed.

2. Taking into account requirements to placing on a scale of reading out elements
according to (11.16), the placing polynomial r (x) is formed.

3. Using a recursive parity (11.12), taking into account (11.19) and (11.20),
sequence L is generated.

4. Elementary sites (quanta) of a scale are executed according to symbols of
sequence L where to symbols of 1 sequence correspond active, and to symbols
0 passive sites of an information path.

274 A. Ojiganov

For definiteness symbols of sequence L are displayed on an information code path
from left to right in sequence L0 L1... Ltk-1.

Let us explain the method of construction stated above linear CCS on an
example of a five- digit scale which is resulted on Fig. 11.4.

Fig. 11.4 Five- digit linear CCS

The information path of a scale is executed according to symbols of sequence
L = L0 L1... L30 = 0000111110101001100010000111110 lengths Tk=31 for which
construction the following polynomial should be used,

2 3 5 4
1 2() () () (1)(1) 1H x h x h x x x x x x x= = + + + + = + + and symbols L5+j of se-

quence L at initial values L0=L1=L2=L3=0, L4=1 satisfy to a recursive parity,

5 4j j jL L L+ += ⊕ (j=0,1..., 25).

In an example placing of five RE along a code path is defined by a polynomial
3 6 10() 1r x x x x x= + + + + .

At scale moving cyclically on one elementary site, for example from right to
left, from exits of reading out elements RE1, RE2, RE3, RE4 and RE5 five-digit
code combinations are formed. These code combinations corresponding to twenty
one various position linear CCS are resulted in Table 11.6.

Table 11.6 Sequence of code combinations five-digit linear CCS

Positions
CCS

RE1 RE2 RE3 RE4 RE5
The decimal

code
Positions

CCS
RE1 RE2 RE3 RE4 RE5

The decimal
code

0 0 0 0 1 1 3 11 0 1 0 0 0 8

1 0 0 1 1 0 6 12 1 0 1 0 0 20

2 0 0 1 1 1 7 13 0 0 1 0 0 4

3 0 1 1 0 0 12 14 0 1 0 1 0 10

4 1 1 1 1 0 30 15 1 1 0 0 1 25

5 1 1 1 0 1 29 16 1 0 0 0 1 17

6 1 1 0 1 1 27 17 0 0 1 0 1 5

7 1 1 1 0 0 28 18 0 0 0 0 1 1

8 1 0 0 0 0 16 19 0 1 0 1 1 11

9 0 1 1 1 0 14 20 1 0 0 1 0 18

10 1 0 0 1 1 19 - - - - - - -

11.3 Placing of Reading Elements on a Recursive Code Scale

Not any variant of placing RE on RCS allows to receive at a full turn of a scale
distinguishable code combinations, i.e. the recursive sequences corresponding to

11 Recursive Code Scales for Moving Converters 275

signals, removed with RE at moving RCS, appear linearly dependent. Hence, the
solution of the problem of placing RE on RCS is reduced to a finding of linearly
independent set from cyclic shifts RS, and capacity of set is equal to number
of RE.

11.3.1 Algorithm of Placing of Reading Elements on a Recursive
Code Scale

The algorithm is based on use of property RS consisting that any cyclic shift RS is
unequivocally defined by its initial block from among the symbols, equal to word
length RCS. As M-sequences are a special case of Cp-sequences (for p = 1), we
will consider algorithm in designations accepted for composite sequences. As
pseudo-random and composite sequences are linear in relation to the operator of
summation on the module two, the algorithm of placing N RE on RCS is reduced
to finding of a suitable linearly independent set from N cyclic shifts RS and
includes following steps [7].

1. The location of reading elements on RCS pursuant to expression (11.16) is
executed.

2. Each cyclic shift RS xIfG (x), f = l, 2, …, N, initial block from N symbols
BIf = AIf A1+If … AN-1+If, where a sum of indexes for sequence symbols takes on the
modulo R.

3. The formation of the square matrix B is executed, where lines are initial blocks
BIf, i.e

1 1 1 11 1

1 1

1 1

...

... ...

... .

... ...

...

f f f f

N N N N

I I I m I

I I I m I

I I I m I

B A A A

B B A A A

B A A A

+ − +

+ − +

+ − +

= =

(11.21)

4. The determinant of the matrix (11.21) is calculated.
5. If the determinant of the matrix is not to equal zero, the variant of the RE loca-

tion accepted pursuant to (11.16) is correct. If determinant is equal to zero, it is
necessary to execute a choice of other variant.

Let us explain the algorithm stated above on an example of four-digit linear PRCS
which is resulted in Fig. 11.2.

It is necessary to place on a scale four RE so that at full moving of a scale to
receive fifteen various four-digit code combinations.

Let placing of four RE along a path of linear PRCS is set by a polynomial
2 8 12() 1r x x x x= + + + , where j1=0, j2=2, j3=8, j4=12.

To each cyclic shift 31 2 4, , ,jj j jx x x x of M-sequence we will put in conformity

the initial block from four symbols (fig. 11.2 see), i.e.

276 A. Ojiganov

1 2

1 2

3 4

8 12

0 1 2 3 2 3 4 5

8 9 10 11 12 13 14 15

l 0001, l 0100,

l 0101, l 1110.

j j
j j

j j
j j

x l l l l x l l l l

x l l l l x l l l l

⇒ = = ⇒ = =

⇒ = = ⇒ = =

From the found initial blocks
1 2 8 12

l , l , l , lj j j j we will generate a matrix

1

2

8

12

l 0001
l 0100

B
l 0101

1110l

j

j

j

j

= =
.

Analyzing the received matrix, we can see, that its third line turns out as a result of
summation on the module of the two for first and second lines. Hence, by means
of elementary operations over lines of a matrix in it two identical lines or a line
equal to zero can be received.

As the determinant of such matrix is equal to zero between its lines, there is a
linear dependence which testifies to presence of linear communication between
corresponding cyclic shifts of M-sequence. It means, that the considered placing
of four RE on PRCS with the number of quanta equal to 15, does not allow to
receive at full moving of a scale of 15 various four-digit code combinations.

In Table 11.7 the sequence of code combinations four-digit PRCS (Fig. 11.2) is
resulted at a variant of placing RE along a scale according to a polynomial

2 8 12() 1r x x x x= + + + .

Table 11.7 Sequence of code combinations four-digit linear PRCS

Positions
PRCS

RE1 RE2 RE3 RE4
The decimal

code
Positions

PRCS
RE1 RE2 RE3 RE4

The decimal
code

0 0 0 0 1 1 8 0 0 0 0 0

1 0 1 1 1 7 9 1 1 0 1 13

2 0 0 0 1 1 10 0 1 1 1 7

3 1 0 1 0 10 11 1 1 0 0 12

4 0 1 1 0 6 12 1 1 0 1 13

5 0 1 1 0 6 13 1 0 1 0 10

6 1 0 1 1 11 14 1 0 1 1 11

7 1 1 0 0 12 - - - - - -

The table analysis shows, that to some various positions of the coded element
there correspond the same code combinations, for example, zero and to the
second, to the first and the tenth, the third and the thirteenth, the fourth and the
fifth, the sixth and the fourteenth, the seventh and the eleventh, the ninth and the
twelfth.

As the problem of placing RE on PRCS has appeared not solved having ex-
cluded from consideration those variants of placing which are equivalent previous,
it is necessary to choose a new variant of placing.

11 Recursive Code Scales for Moving Converters 277

Let now placing of four RE along a path linear PRCS is set by a polynomial
2 5 9() 1r x x x x= + + + , where j1=0, j2=2, j3=5, j4=9.

To each cyclic shift 31 2 4, , ,jj j jx x x x of M-sequence we will put in conformity

the initial block from four symbols (Fig. 11.2), i.e.

1 2

1 2

3 4

5 9

0 1 2 3 2 3 4 5

5 6 7 8 9 10 11 12

l 0001, l 0100,

l 0110, l 1011.

j j
j j

j j
j j

x l l l l x l l l l

x l l l l x l l l l

⇒ = = ⇒ = =

⇒ = = ⇒ = =

From the found initial blocks
1 2 5 9

l , l , l , lj j j j
we will generate a matrix

1

2

5

9

l 0001
l 0100

B
l 0110

1011l

j

j

j

j

= =
.

Having done elementary operations over lines of matrix B, we will receive an in-
dividual matrix. As the determinant of such matrix is equal to digit between its
lines linear dependence is absent that testifies also to absence of linear communi-
cation between corresponding cyclic shifts of M-sequence. It means, that the con-
sidered placing of four RE on PRCS with the number of quanta equal 15 allows to
receive at full moving of a scale of 15 various four-digit code combinations.

In table 11.3 the sequence of four-digit code combinations for 15 various posi-
tions PRCS (fig. 11.2) is resulted, at a variant of placing RE along a scale defined
according to a polynomial 2 5 9() 1r x x x x= + + + .

The table analysis shows, that various positions of a scale correspond to various
code combinations.

11.3.2 Reading Elements Location on the Pseudo-Random Code
Scale with a Constant Step

At the solution of a problem of placing we will apply algebra of final fields GF
(2n) which are generated by means of not resulted polynomials of degree n. At use
of primitive not resulted polynomials h (x) simple field GF (2) can be expanded to
field GF (2n) at the expense of root α of a polynomial h (x).

We show that there is mutual conformity between initial blocks

1 1a (...)j j j n ja a a+ − += of M-sequence cyclic shifts and elements jα , j=0,1..., M-1 of
GF (2n) [8].

We can write symbols of an initial block aj as
1

0

1

1 1
0

.....................

n

j j i n i
i

n

n j j i i
i

a a h

a a h

−

+ −
=

−

+ − + −
=

= ⊕

= ⊕

∑

∑

. (11.22)

278 A. Ojiganov

It can be presented in the matrix form

1 2 1

2 3 2

01

...

...

................

...

a .

j n j n

j n j n
j

j n j

a a h

a a h

ha a

T h

− + − −

− + − −

− −

= × = ×

 (11.23)

All possible initial blocks of M-sequence need to be interpreted as the set of the
GF (2n) elements of, i.e.

ja { } (2) \{0}.j nGFα⇔ =
 (11.24)

Elements GF (2n) are all binary sets which can be considered as the linear space of
the dimension n over GF (2). As it is mentioned above, in order to generate (2n)
elements it is convenient to use any primitive root a giving representation of non
zero elements of GF (2n) in form of cyclic multiplicity group on degrees of the
elementα. Thus α0=00... 01, α1=00... 010...., αn-1=10... 00,

1

0

, 0,1,..., .
n

n j j i
i

i

h j M nα α
−

+ +

=

= ⊕ = −∑ (11.25)

As a root h (x) we can use a binary set α1=00... 010 as far as such an element is
always primitive.

We define linear isomorphous transformation of elements of GF (2n) by
equation

ja , 0,1,..., 1.jT j Mα= = − (11.26)

For the location of m RE on PRCS with a constant step d, it is necessary to ensure
linear independence between the same cyclic shifts of M-sequence and
elements of GF (2n).

At the location RE with a constant step the equation (11.4) will have the form

1

0

() ,
n

jd

j

r x x
−

=

=∑ (11.27)

where d = 1,2..., k; k =] L/n [.
We shall research the subset of GF (2n) elements α0, αd..., αjd..., α(n-1) d. As it is

known from the theory of algebraic fields [9], all linear dependencies in any cyclic
group with β=αd are determined according to minimal polynomial M β(x):

1
2

()
0

(),
i

l

x
i

M xβ β
−

=

= +∏ (11.28)

where l is period of a cyclic group containing element β.
From the work [9], it is followed that the RE location on PRCS is correct if,

and only if

11 Recursive Code Scales for Moving Converters 279

(x)deg M .nβ⎡ ⎤ =⎣ ⎦ (11.29)

Thus it is enough to evaluate only the degree of polynomial M β(x).
Using Ferma theorem, we can set:

(x)deg M min{ : 0, 2 ,mod (2 1)} .l nl l d d M lβ⎡ ⎤ = > = = − =⎣ ⎦
 (11.30)

It is known [9] that l = Wq (2), where Wq (2) is multiplicity order 2 to module
q = M / GCD [M, d].

For practical using (11.28 - 11.30) it is required to evaluate Wq (2). The me-
thods of the calculation of the multiplicity order are presented in [9]. Following
properties are used to simplify the calculations.

1. If q = ∏qi, where qi = pi
li are any degrees of prime numbers pi, then

(2) LCM{ (2)}iqqW W= ,

where LCM - the least common multiply of numbers Wqi (2).
2. The multiplicity orders for numbers of a form 2m-1 and 2m+1 are equal

respectively to m and 2m.
3. The multiplicity order for any prime number q such that GCD [2, q] = 1 is a

divider of number q - 1.

We show the application of an equation (11.29) to check the correctness of the
constant step d=3 location RE on four-digit PRCS.

Initial data for the account are primitive polynomial h (x) =x4+x+1, period of
the M-sequence M = 24-1 = 15 and polynomial location RE r (x) =x0+xd+x2d+x3d =

=1+x3+x6+x9.
It is necessary to evaluate the size of the multiplicity order Wq (2), where

q=M/GCD[M, d] = 15 / GCD [15,3] =15/3=5.
As number 5 has form 2m + 1 where m=2 then Wq (2) =2m=4, that corresponds

to correctness of the location on PRCS from 15 quantum of four RE with the
constant step d=3.

In Fig. 11.5 of circular PRCS is shown. Along a scale four RE are located with
constant step d=3.

The information track of the scale is executed according to symbols of M-
sequence a = a0a1... a14 = 000100110101111 of the period M=15 for construction
of which the primitive polynomial h (x) =x4+x+1 is used and the symbols a4+j of
the M-sequence at initial values a0=a1=a2=0, a3=1 satisfy to the recursive equation
a4+j=a1+j ⊕ aj, j=0,1..., 10.

Consistently fixing RE a four-digit code combination at scale moving on one
quantum against a direction of movement of an hour hand, we receive 15 various
four-digit code combinations. These code combinations corresponding to 15
various angular positions PRCS are resulted in Table 11.8.

280 A. Ojiganov

Fig. 11. 5 Circular four-digit PRCS

Table 11.8 Sequence of code combinations four-digit PRCS

Positions
PRCS

RE1 RE2 RE3 RE4
The decimal

code
Positions

PRCS
RE1 RE2 RE3 RE4

The decimal
code

0 0 1 1 1 7 8 0 1 1 0 6

1 0 0 1 0 2 9 1 1 0 1 13

2 0 0 0 1 1 10 0 1 0 0 4

3 1 1 1 1 15 11 1 1 0 0 12

4 0 1 0 1 5 12 1 0 1 1 11

5 0 0 1 1 3 13 1 0 0 1 9

6 1 1 1 0 14 14 1 0 0 0 8

7 1 0 1 0 10 - - - - - -

11.3.3 Reading Elements Locations on the Composite Code Scale
with a Constant Step

In common case set of initial blocks Aj=AjA1+j... AN-1+j j=0,1..., R-1 of all cyclic
shifts for any Cp-sequences isomorphousely to a subset of elements of an
extended field Galua GF (2N) where N is calculated from (11.11) [10].

It is possible to spread all adduced in 11.3.2 to Cp-sequences. Thus equation
(11.26) can be written in the following form

jA , 0,1,..., 1j
kT S j R= = − , (11.31)

where

Tk

j N j

j N j

j N j

A A

A A

A A

=

− + −

− + −

− −

1 2

2 3

1

...

...

................

...

 (11.32)

11 Recursive Code Scales for Moving Converters 281

and Sj = ϕ(α1..., αk..., αp) j (ϕ is the function of linear transformation) αk-primitive
roots of the polynomial hk (x) are calculated with using of the Chine’s Theorem.

Consider location of N RE on CCS with a constant step d. For it we transform
the equation (11.26) to following form

r x x jd

j

N

() ,=
=

−

∑
0

1

 (11.33)

where d = 1,2..., f, f =] R / N [. We formulate the following statement. For binary
Cp-sequences with period R (R is determined according to (11.14)) set of initial
blocks of symbols Amd sequences corresponding cyclic shifts are linearly
independent if and only if when

[]kqW (2) deg () , 1, 2,....,kh x k= = (11.34)

where Wqk (2) - multiplicity order of number 2 on module qk = Mk / GCD [Mk, d].
Now consider the set of polynomials form

() mod (), 0,1,..., 1.md
mdR x x H x m N= = − (11.35)

It is possible to show that Rmd (x) represent the polynomial record of a subset Snd
of set of elements Sj, and the conformity between Smd and Amd is defined by
equation (11.31).

For any m it is possible to record

() () (),md
mdx Q x H x R x= + (11.36)

i.e.

() () (), 0,1,..., 1.md
mdR x x Q x H x m N= + = − (11.37)

Applying to (11.27) the reduction to module polynomial hk (x) where k = 1,2..., we
receive

() () mod ()md
md k kR x x h x= (11.38)

for all m = 0,1..., N-1.
It is possible also to show, that (Rmd) k (x) are records in polynomial form of a

subset (αmd) k of set of elements αj, j=0,1..., Mk-1 and the relation between (αmd) k
and amd is defined by equation (11.26).

Thus, to check correctness of the location of N RE on CCS with a constant step
d, it is necessary to evaluate the linear independence of set of initial blocks aj for
each k of the M-sequences separately. Conclusion about the correctness of the
location (11.33) is done after a check of the condition (11.34).

Now we show application of the equation (11.34) for check correcting of
location with the constant step d=4 RE on five-digit CCS.

Initial data are period M1 = 22-1 =3, the M-sequence constructed on the basis of
the primitive polynomial h1 (x) = (x2+x+1), period M2=23-1=7 the M-sequences,

282 A. Ojiganov

constructed on the basis of primitive polynomial h2 (x) = (x3+x+1), the polynomial
of five RE location r (x) =x0+xd+x2d+x3d+x4d = 1+x4+x8+x12+x16.

It is necessary to evaluate of multiplicity orders Wq1(2) and Wq2(2), where
q1=M1/GCD[M1,d]=3/GCD[3,4]=3/1=3, q2=M2/GCD [M2,d]=7/GCD [7,4]=7/1=7.
We have Wq1 (2) =2, Wq2 (2) = 3 that testifies about the correcting of the location
on CCS from 21 elementary quantum five RE with the constant step d=4.

In Fig. 11.6 of circular CCS is shown. Along the scale five RE are located with
the constant step d=4.

Fig. 11.6 Circular five-digit CCS

Table 11.9 Sequence of code combinations five-digit CCS

Positions
CCS

RE1 RE2 RE3 RE4 RE5
The decimal

code
Positions

CCS
RE1 RE2 RE3 RE4 RE5

The decimal
code

0 0 0 1 1 1 7 11 0 0 1 0 0 4

1 0 0 1 1 0 6 12 1 0 1 0 1 21

2 0 1 1 1 1 15 13 0 1 0 0 0 8

3 0 1 1 0 0 12 14 0 1 0 1 0 10

4 1 1 1 1 1 31 15 1 0 0 0 0 16

5 1 1 0 0 0 24 16 1 0 1 0 0 20

6 1 1 1 1 0 30 17 0 0 0 0 1 1

7 1 0 0 0 1 17 18 0 1 0 0 1 9

8 1 1 1 0 1 29 19 0 0 0 1 1 3

9 0 0 0 1 0 2 20 1 0 0 1 1 19

10 1 1 0 1 0 26 - - - - - - -

The code track of the scale is formed according to symbols C2-sequences
A = A0 A1... A20 =000011111010100110001 with the period R=21 for construction
of which the polynomial H (x) =h1 (x) h2 (x) = (x2+x+1) (x3+x+1) = x5+x4+1 is used
and the symbols A5+j C2-sequences at initial significance A0=A1=A2=A3=0, A4=1 sa-
tisfy to the recursive equation A5+j=A4+j⊕Aj, j=0,1..., 15.

11 Recursive Code Scales for Moving Converters 283

Consistently fixing RE a five-digit code combination at scale moving on one
quantum against a direction of movement of an clock hand, we receive 21 various
five-digit code combinations. These code combinations corresponding to 21
various angular positions CCS are resulted in Table 11.9.

11.4 Correcting Possibilities of Recursive Code Scales

Increase of converters reliability parameters can be reach by using CS with a possi-
bility of formation of correcting codes. Known methods do not permit to solve this
task without increase of converters dimensions as the correcting digits of conven-
tional scales can be realized at the expense of additional control tracks using and the
introduction of redundancy on the number RE. Recursive CS permit to form codes
correcting and (or) discovering error of reading only at the expense of the redundan-
cy introduction on number RE without using of additional control tracks.

So, that the code had correcting possibilities, it alongside with information
tracks should contain the certain number of correcting symbols. Values of such
symbols are determined of modulo-two addition of some fixed information sym-
bols. The number of correcting symbols in a code is determined by the number of
information symbols and the given number found out and (or) corrected errors.
The methods of correcting sequences construction are known from the literature
on the coding theory.

In the basis of correcting sequences construction using in RCS property of
«shift and addition» of pseudo-random and composite sequences is put. Using this
property, we formulated the technique of the number determination and location for
additional correcting RE along an information track which consists in the following
[11].

1. Pursuant to technical requirements, the code choice is executed which should
be formed by information and correction RE. The code can execute discovering
and correction of determined number of errors.

2. The correcting sequence which represents the binary word consisting from q
symbols is constructed. The number of correcting symbols q in a correction
code is determined by the number of information symbols N and the given
number discovering and (or) correcting errors. Numbers N and q correspond to
numbers of information and correction RE.

3. Pursuant to the correcting sequence from (11.6), sums rl (x), where l=1,2, …,q, are
formed including cyclic shifts RS. Shifts appropriate these information RE which
are used for the formation of information symbols entering in l-th correcting rule.

4. Each sum rl (x) is divided on multinomial form (11.10) on the part of junior de-

grees on modulo-two up to receptions the rest in a form of the one-member lSx .
Degree Sl if it exceeds size R-1 undertakes on a module R.

5. The correction of l-th RE location along an information track RCS displaces
about first information RE on number Sl elementary sites of a scale δ.

In Fig. 11.7 the circular four-digit PRCS with four information RE and three
correction REc is shown.

284 A. Ojiganov

Fig. 11.7 Four-digit PRCS with four information RE and three correction REc

The information track of the scale is formed according to symbols of
M-sequence a = a0a1... a14 = 000100110101111 of the period M=15 for construc-
tion of which the primitive polynomial h (x) =x4+x+1 is used and the symbols a4+j
of the M-sequence at initial values a0=a1=a2=0, a3=1 satisfy to the recursive
equation a4+j=a1+j ⊕ aj (j=0,1..., 10).

The location order of four information RE along the track PRCS is determined by
multinomial 2 3() 1r x x x x= + + + , here the second, third and fourth RE are biased

concerning first RE (j1 = 0) on j2 = 1, j3 = 2 and j4 = 3 elementary sites δ=360°/15 of a
scale respectively. The correction RE number and their location along CT is deter-
mined pursuant to technique adduced above. The correcting sequence is received
with the help of Hamming equations for the code correcting the single error. First,
second and third correction RE are locate along the information track PRCS in a di-
rection of clock hand on S1=7, S2=13 and S3=11 of elementary sites.

Consistently fixing RE a seven-digit code combination at scale moving on one
quantum against a direction of movement of an clock hand, we receive 15 various
seven-digit code combinations. These code combinations corresponding to 15 var-
ious angular positions PRCS are resulted in Table 11.10.

Table 11.10 Sequence of seven-digit code combinations four-digit PRCS

Positions
PRCS

REс1 REс2 RE1 REс3 RE2 RE3 RE4
Positions

PRCS
REс1 REс2 RE1 REс3 RE2 RE3 RE4

0 1 1 0 1 0 0 1 8 0 1 0 0 1 0 1

1 0 1 0 1 0 1 0 9 0 1 1 0 0 1 1

2 1 0 0 1 1 0 0 10 0 0 0 1 1 1 1

3 0 0 1 1 0 0 1 11 1 1 1 1 1 1 1

4 1 0 0 0 0 1 1 12 0 0 1 0 1 1 0

5 1 1 0 0 1 1 0 13 0 1 1 1 1 0 0

6 1 0 1 0 1 0 1 14 1 1 1 0 0 0 0

7 1 0 1 1 0 1 0 - - - - - - - -

11 Recursive Code Scales for Moving Converters 285

Fig. 11.8 Five-digit RCS with five information RE and one control REc

There are the first, second and fourth positions of the code corresponding to cor-
recting symbols, and the third, fifth, sixth and seventh positions to information sym-
bols. The analysis of code combinations shows that between the correcting and
information positions execute Hamming equations for a code correcting single error.

Application of other correcting sequences using rule of check on parity with the
introduction of appropriate redundancy on number RE will allow forming codes
with required correction properties.

In Fig. 11.8 the circular five-digit RCS with five information RE and one
control REc is shown.

The code track of the scale is formed according to symbols C2-sequences
A = A0 A1... A20 =000011111010100110001 with the period R=21 for construction
of which the polynomial H (x) =h1 (x) h2 (x) = (x2+x+1) (x3+x+1) = x5+x4+1 is used
and the symbols A5+j C2-sequences at initial significance A0=A1=A2=A3=0, A4=1 sa-
tisfy to the recursive equation A5+j=A4+j⊕Aj, j=0,1...,15. The location order of five
information RE along the track CCS is determined by multinomial

2 4 6 8() 1r x x x x x= + + + + .

Table 11.11 Sequence of code combinations five-digit CCS with the control on parity

Positions CCS RE1 RE2 RE3 RE4 RE5 REc Positions CCS RE1 RE2 RE3 RE4 RE5 REc

0 0 0 1 1 1 1 11 0 0 1 0 0 1

1 0 0 1 1 0 0 12 1 0 1 0 1 1

2 0 1 1 1 1 0 13 0 1 0 0 0 1

3 0 1 1 0 0 0 14 0 1 0 1 0 0

4 1 1 1 1 1 1 15 1 0 0 0 0 1

5 1 1 0 0 0 0 16 1 0 1 0 0 0

6 1 1 1 1 0 0 17 0 0 0 0 1 1

7 1 0 0 0 1 0 18 0 1 0 0 1 0

8 1 1 1 0 1 0 19 0 0 0 1 1 0

9 0 0 0 1 0 1 20 1 0 0 1 1 1

10 1 1 0 1 0 1 - - - - - - -

286 A. Ojiganov

At the expense of the introduction one additional REc control of the information
on parity is executed. The control element is biased about first information RE on
16 sites of the scale δ.

At scale moving cyclically on one elementary site, for example, against a direc-
tion of movement of the clock hand, from exits of reading out elements RE1, RE2,
RE3, RE4, RE5 and REc six-digit code combinations are formed. These code com-
binations containing even number of digits and corresponding to twenty one
various angular position CCS are resulted in Table 11.11.

11.5 Conclusions

In Fig. 11.9 classification of RCS is resulted, binary sequences are put in a basis of
construction of which code paths, and symbols of sequences turn out by a rule re-
cursion. Classification concerns to RCS converters of angular and linear moving.

Fig. 11.9 Classification of recursive code scales

As the first classification sign property of linearity of recursive sequences in re-
lation to the operator of summation on the module two is used. To this sign RCS
share on two groups: CS on the basis of linear RS and CS on the basis of nonlinear
RS.

In turn, CS on the basis of linear RS are subdivided into three groups: CS on
the basis of pseudo-random sequences of the maximum length (PRSML), CS on
the basis of sequences of incomplete cycles (SIC), and CS on the basis of
composite sequences (ComS).

Principles of construction of CS on the basis of PRSML (M-sequences), are
considered in 11.1. At reception of the recursive parity used for generation of
symbols of M-sequence, primitive polynomials undertake only. Code scales on the
basis of PRSML have received name PRCS.

Principles of construction of CS on the basis of SIC in the given chapter are not
considered. Sequences of incomplete cycles are under construction on the basis of

11 Recursive Code Scales for Moving Converters 287

prime (over field GF (2)) polynomials. The polynomial of the fourth degree
h(x)=x4+x3+x2+x+1 can be an example of such prime polynomial. The recursive
parity corresponding to this polynomial, looks like z4+j=z3+j⊕z2+j⊕z1+j⊕zj, j=0,1....
At nonzero entry conditions the given recursive parity allows to generate linear re-
cursive sequence of length five (00011). If this RS is used for reception of draw-
ing CT of a scale at placing on it RE, for example with step to one quantum, it is
possible to receive five various four-digit code combinations from a scale. It is
obvious, that such CS will have considerably smaller, in comparison with PRCS,
resolution.

Code scales on the basis of composite sequences can be divided into three
groups: CS on the basis of composite sequences, where ComS turn out from vari-
ous combinations of M-sequences; CS on the basis of composite sequences, where
ComS turn out from combinations of M-sequences and SIC; CS on the basis of
composite sequences, where ComS turn out from various combinations SIC.

Principles of construction CS on the basis of ComS, where sequences turn out
from various combinations of M-sequences, are considered in subsections 11.2.
Such code scales are named CCS.

Principles of construction CS of the second and third groups on the basis of
ComS in the given chapter are not considered. It is easy to see, that the least reso-
lution possess CS on the basis of RS the third group, the greatest - CCS, and CS
the second group occupy on this parameter intermediate position. Code scales on
the basis of nonlinear RS are subdivided on two groups: CS on the basis of nonli-
near sequences (NS) and CS on the basis of nonlinear ComS (NComS).

In turn, CS on the basis of NS are also shared on two groups: CS on the basis of
NS the maximum length (NSML), and CS on the basis of NS incomplete cycles
(NSIC).

At reception of the recursive parity necessary for generation of symbols of non-
linear sequence of the maximum length, primitive polynomials with introduction
in a recursive parity composed, providing nonlinearity of synthesized
sequence undertake.

Principles of construction CS on the basis of NSIC in the given chapter are not
considered. Reception NSIC is in detail considered in work [12]. Sequences of in-
complete cycles, also as well as NSML allow their resolution obviously less, than
resolution CS on the basis of NSML will build on basis CS, however.

Code scales on the basis of NComS can be divided on two groups: CS on the
basis of NComS where NComS turn out from combinations of M-sequences both
NSML, and CS on the basis of NComS, where NComS turn out from various
combinations of linear and nonlinear sequences both maximum and incomplete
cycles.

Principles of construction CS on the basis of NComS in the given chapter are
not considered. It is easy to see, that the best resolution will possess CS on the
basis of NComS where NComS turn out from combinations of M-sequences and
NSML, and CS on the basis of NComS where NComS turn out from other combi-
nations of linear and nonlinear sequences, possess, in comparison with the first,
smaller resolution.

288 A. Ojiganov

References

[1] MacWilliams, F., Sloane, N.: Pseudo-Random Sequences and Tables. Proc.
IEEE 64(12) (1976)

[2] Mutter, V.: Principles of noise-immune telecommunications. Energoatomizdat, Le-
ningrad (1990) (in Russian)

[3] Ojiganov, A.A.: Pseudorandom encoded scales. Instrument engineering 2, 40–43
(1987) (in Russian)

[4] Azov, A.K., Ojiganov, A.A.: Principles of Construction of One-Track Code Scales on
the Basis of Recursive Sequences. In: Proc. of the 9th International Conference on
Systems for Automation of Engineering and Research (SAER 1995) and DECUS
National Users Group Seminar 1995, Sofia (1995)

[5] Ojiganov, A.A.: Pseudorandom encoded scales, Instrument engineering (11-12)
(1995) (in Russian)

[6] Ojiganov, A.A., Tarasjuk, M.V.: Compositional encoded scales. Instrument engineer-
ing 5-6, 26–29 (1994) (in Russian)

[7] Ojiganov, A.A.: Algorithm for read-out element placement on pseudorandom
encoded scales. Instrument engineering 2, 22–27 (1994) (in Russian)

[8] Ojiganov, A.A., Tarasjuk, M.V.: Distribution of read-out elements for the scale with
constant step. Instrument engineering, 11-12 (1994) (in Russian)

[9] Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill, New York (1968)
[10] Azov, A.K., Ojiganov, A.A., Tarasyik, M.V.: Reading Digit Constant Step Location

in One-Track Recursive Code Scales. In: Proc. of the 10th International Conference
on Systems for Automation of Engineering and Research (SAER 1996) and DECUS
National Users Group Seminar 1996, Sofia (1996)

[11] Ojiganov, A.A.: Correcting possibilities of pseudorandom encoded scales. Instrument
engineering 7, 26–30 (1988) (in Russian)

[12] Agulnik, A.R., Musaeljan, S.S.: Construction of nonlinear binary sequences. Radioe-
lectronics 4, 19–28 (1983) (in Russian)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 289–330.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

12 Infrastructure Intellectual Property for SoC
Simulation and Diagnosis Service

Vladimir Hahanov

Kharkov National University of Radioelectronics,
Apt. 321, Lenin Avenue, 14, Kharkov 61166, Ukraine
e-mail: hahanov@kture.kharkov.ua

Abstract. The models and methods for creating Infrastructure Intellectual Proper-
ty (I-IP) service for the functionalities System on Chip (SoC), which has a mini-
mum set of the real time Built-In Self Test (BIST) tools, are proposed in this chap-
ter. The means I-IP provide an opportunity to services: fault modeling and
simulation for the functional primitives to evaluate the test quality and to build
Fault Detection Table (FDT); diagnosis of a given defects search depth in the
SoC; repairing embedded memory functionality, by using spare row and column
components. High performance deductive-parallel fault analysis method for build-
ing FDT and tests quality assessment is offered. Algebra logical methods of fault
diagnosis and embedded memory repair by synthesis Disjunctive Normal Form
(DNF) completing all decisions for diagnosis SoC functionalities in the real time
are represented.

12.1 Infrastructure IP

Computational and hardware complexity of modern System-on-Chip is characte-
rized by millions of equivalent gates and requires the creation and implementation
of new technologies high-level design declared in Electronic Design Automation
market like Electronic System Level (ESL) Design, Transaction Level Modeling
(TLM) [6,11,12] and Infrastructure Intellectual Property (I-IP) [5,9-12,39,
49,50,53]. This means that the searching high-performance methods and testing
approaches [1,6,11,12,19,29,34,35] leads all researchers for the needs to increase
the models level abstraction for the created custom functionalities – are said to be
Functional Intellectual Property (F-IP), embedded in the silicon. EDA software
world market is already provides the convenient tools to automate processes of
SoC simulation and verification [8,13-17,20,24-26,28,30-33,36,42-44] for system-
level designs, starting with HDL Compiler languages (C++, SystemC, SystemVe-
rilog, UML, SDL) [1,6,11,34] and ending with graphical environments (Simulink,
LabView, Xilinx EDK). These tools allows to create SoC projects by using ESL
mapping with TLM interface establishing based on the existing library compo-
nents [11]. The EDA-market attractiveness of the SoC implementation in Field

290 V. Hahanov

Programmable Gate Array (FPGA) is determined: the application of relatively
low-cost chips instead of the universal processors, low power consumption, small
dimensions, high quality and reliable core functions. These properties are possible
because I-IP infrastructure embedding in SoC [49], which is very relevant in the
spread age of mobile computing devices. The leveraging I-IP represents the possi-
bility for higher yield and reliability, Time-to-Volume (TTV) Acceleration, but it
may require external support, automated tools and special equipment. Yield
optimization loops leveraged at different product realization steps during design,
fabrication, test and in-field. Collaborative environment is necessary to achieve
Yield, Quality and TTV goals.

The problem of fault simulation, diagnosis [2-4,7,22,27,40,41,47,48] of digital
system components, and memory repair [18,21,23,37,38,45,46,51,52], linked to
the trend for permanent reduction SoC silicon square pointed for the original and
standardized logic with a simultaneous increase of the embedded memory. As
shown in Fig. 12.1, an increase in the share of memory on silicon leads for its full
domination to store data and programs, which by 2014 will reach 94%
[9,10,49,50,53]. This will provide not only high performance with functionality
operation, but also the flexibility inherent in the product design error correction. A
feature of the memory element is the fact that in the process of their construction
and operation separate cells under the influence of defects can go out of normal
functionality. This fact does not necessarily lead to a matrix memory critical con-
dition, when the restoration is impossible. Therefore, such technical memory state
is considered when the total number of defective cells does not exceed the
capacity of the rows and columns spare intended for the repairs.

The purpose of the study – the technology development of built-in-service func-
tionality for digital system on chip designed for modeling, fault simulation, diagnosis
and repair of SoC components, including embedded memory matrix, in real time.

Fig. 12.1 Share memory on SoC

Objectives: 1) The state of the I-IP market technology [5,9-12,39,49,50,53]; 2)
Deductive-parallel fault simulation [14-17,20,28,30-33,36,42–44]; 3) Algebra
Logical (AL) method of the embedded service based on the matrix coverage; 4)
AL-method application for the diagnosis of SoC components; 5) Adapting
AL-method for the memory repair, 6) Practical results of the investigations.

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 291

Modern technologies for the design of digital systems on chip offer, along with
the functional blocks of F-IP, the development of service modules I-IP oriented on
the integrated solution of the problem of improving the project quality and Yield
increasing in the manufacturing process, which is defined by implementation to
silicon the following services [9-12,39,49,50,53]:

1. Monitoring the internal and output lines in the operation, verification and testing
of functional blocks on the basis of IEEE 1500 boundary scan standard [12];

2. Testing the functional modules by applying different test generators, targeting
fault detection or behavior checking;

3. Diagnosis failures and defects by analyzing the information received from test-
ing phase and by using the special embedded methods for troubleshooting
based on the IEEE 1500 standard [12];

4. Repair of functional modules and memory after fixing a negative test result and
determine the location and type of defect in the executing phase of the
diagnosis;

5. Built-in-measurement of parameters and characteristics of the SoC operation,
allowing the temporal and volt-ampere measurements;

6. The reliability and fault tolerance of SoC in the operation, which are achieved
by using diversification of functional blocks, duplication and recovery SoC
efficiency in a real time.

The truncated I-IP-structure represented on Fig. 12.2 [49-50,53] is oriented to the
execution of the following tasks: 1. Testing functionalities based on the generated
test patterns by using Automated Test Pattern Generators (ATPG), and on the
analysis of output responses. 2. Modeling and Fault Simulation [13-17] to provide
diagnosis goals and repair SoC modules on the basis of the Fault Detection Table
(FDT). 3. Diagnosis defects with a prior given fault localization depth by using
boundary scan register as the troubleshooter from standard IEEE 1500. 4. Built-in-
repair matrix memory through the use of spare components (columns and rows)
[18,21,37,38,51,52]. The first two items are considered more conceptually, and the
latter two formally constitute the essence of the proposed study.

The test synthesis module (Fig. 12.2) for check of functionality and single
faults consists of a set of input patterns generators, which provide creation of the
following tests [1,6,11,12,19,29,34,35]: 1. PRTG is pseudo-random test generator
of input stimulus with even distribution law of zero and one signals at input va-
riables; 2. SATG is a test generator of hexadecimal codes on basis of the signature
analysis; 3. SPTG is an algorithmic generator of test vectors, activating logical
single paths targeted for detection specified single fault; 4. ADTG is a test genera-
tor designed to testing Arithmetic-Logical Unit (ALU) 5. BSTG is a test generator
of the bus structures for the reception and transmission of data; 6. METG is test
generator aimed at verifying the memory matrix; 7. DFTG is test synthesizer for
automata represented in the form of design flow. 8. RCTG is ad-hoc test generator
for sequential circuits like registers, counters structures and flip-flops.

ATPG module has the features to analyze the structural-functional model of
SoC functionality to be testing, and assign a subset of these test generators, which
provide desired quality coverage (Fc) of faults and functional modes (Pc):

292 V. Hahanov

}.T,T,T,T,T,T,T,{TT

,P)T(P;F)T(F

RC
8

DF
7

ME
6

BS
5

AD
4

SP
3

SA
2

PR
1

c
min

n

1i
i

cc
min

n

1i
i

c minmin

=

≥≥
==
UU

(12.1)

F-IP:
Functional
Intellectual

Property

Fault
Simulator

SoC

Analyser
(signature)

Infrastucture IP

A
T
P
G

Diagnosis

Fault Detection
Table

IEEE 1500 Standard

Fig. 12.2 Infrastructure IP for the SoC

Generalized structure of testbench synthesis [6] presented in Fig. 12.3, also in-
cludes HDL code generator, which is designed for testing and verification SoC
functionalities at the stage of project development.

The number of test generators for SoC design phase can be significantly higher
than subset, which further implements into the silicon. Therefore, in the simulation
and verification process it is analyzed coverage properties of each test generator in
order to find their total configuration minimum that meets the expression (12.1). It
is important to note that in the next 5 years the tests synthesis ideology for digital
systems on chip will borrow the best tradition of ESL- and TLM-design [11].

HDL-code1

0

ATPG

G1

G5

G2

G6

G3

G7

G4

G8

G16

Test;
Fault table,
Response

F-IP

TestBench
Generator

Fault free simulator

Fault simulator

F-IP
circuit

FC Cmin

Fig. 12.3 Testbench synthesis process structure for the F-IP

This means: 1) Using the library tests (Testbench) from the world leading com-
panies for the testing and verification of standardized functionalities identified as
F-IP. 2) The use of standard solutions of service I-IP testing components for em-
bedded systems on chip. 3) Create your own testbench library for the newly

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 293

developed functionalities. 4) The providing new technology of a test synthesis for
digital systems based on discrete mapping [11] (Figure 12.4) for the covering de-
fects and functionalities original specifications by using the minimum Testbench
set, from the library of tests. 5) Use of built-in-testing and diagnosis means such as
IEEE 1500 SoC boundary scan standard and six components of I-IP technological
procedures to enhance the tests synthesis and diagnosis procedure quality in the
real time.

F-IP
Funcionality
(Faults of IP)

PlatformSpecification

T1

T5

T9

T2

T6

...

T3

T7

...

T4

T8

Tn

Mapping - Complete Test of F-IP

Fig. 12.4 Test synthesis mapping model for the F-IP

12.2 The Theoretical Foundations of Deductive Fault Analysis

A deductive-parallel fault simulation method [13-17,20,24-26,28,30-33,36,42-44]
focused on digital projects of the large dimension with gate, register and system
levels for the purpose of obtaining fault detection table, fault coverage for test
quality assessment of given defects class, is offered. The Unit under Test is
represented in form of structures, tables, Boolean equations, cubic coverage which
is implementing as a complex digital system in the silicon. The proposed method
combines fault simulation advantages of deductive definition of the fault list, ef-
fective from the point of mathematics view, targeting the high-speed parallel pro-
cedures digital devices of the gate, register and system levels of SoC descriptions.

The goal is to create the high performance deductive-parallel fault simulation
method targeting to assess the quality (stack-at-faults fault coverage) of synthe-
sized test of digital systems implemented in silicon containing millions of gates.

The background of deductive-parallel fault simulation are the methods of en-
hancing performance for fault analysis [28], deductive model fault propagation, a
parallel method of fault lists processing trough the functional elements back traced
algorithm of the primitives evaluation in the simulating digital devices faults [1].

Deduction is reasoning in the mathematical evidence system coming from gen-
eral to specific. In terms of application to the fault analysis such algebra-logical
means finding formal patterns, which can, once received complex models, use re-
peatedly for the fault simulation processing of digital systems. In doing so, each
defect is to be initially described by using truth tables, Boolean equations, and the
flow chart. In fact, deductive model of the functionality fault analysis allows simu-
lating arbitrary digital circuit, with one iteration (several – for sequential circuits

294 V. Hahanov

with global feedbacks), all the faults detecting by a test-vector. Mathematical
model LCT =⊕ of digital systems fault deductive analysis can be represented
matrix equation [19,23-25, 27-29]:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

knki2k1k

tnti2t1t

n1i11211

knki2k1k

tnti2t1t

n1i11211

nt21

L,...,L,...,L,L

.................................

L,...,L,...,L,L

.................................

L,...,L,...,L,L

C,...,C,...,C,C

.................................

C,...,C,...,C,C

.................................

C,...,C,...,C,C

)T,...,T,...,T,T((12.2)

Where C is fault-free behavioral cubic coverage of device model with n lines;
)T,...,T,...,T,T(T nt21= is test-vector to faults detection, distorting the functio-

nality C in operation, redefined in the fault-free simulation procedure on the set of
input, output and internal lines. Coordinates of faulty matrix is determined by the
execution of the logical XOR operation titti CTL ⊕= . Matrix tiLL = is a de-

ductive function (DF) of fault simulation at the test-vector T corresponding good
behavior element described with C-coverage, which allows calculating the input
fault list propagated to the element outputs [1].

In general, the digital device in operation presented with a truth table, and use
of deductive formula (12.2) allows generating fault detection table for a certain
test- vector T, which (FDT) can be written analytical deductive fault simulation
formula. Examples of such deductive functions obtaining presented below in the
form of (test-vector, truth table, and fault detection table):

;XXXXL

101
111
000
010

LXX

111
101
010
000

YXX

010
YXX

21211

121121

121 ∨=→=⊕

.XXXXXXL

000
110
101
111

LXX

111
001
010
000

YXX

111
YXX

2121212

221221

221 ∨∨=→=⊕

Deductive functions are written in the disjunctive normal form according to the
outputs unit values of fault detection table of the primitive element. Formula
(12.2) makes it possible to perform a fault analysis of arbitrarily complex digital
device, represented with the gate, register, and system levels of descriptions to be
presented in a truth table form as cubic coverage. If the model is represented as a
product of logical elements structures or structure of larger components, the de-
ductive analysis of each primitive of digital device is fulfilling according with the
following expression:

.T)]TX(),...,TX(),...,TX(),TX[(fFTL titnintjij2t2i1t1itiitti ii
⊕⊕⊕⊕⊕=⊕= (12.3)

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 295

The last expression is isomorphic formula (12.2). Thus, the formula (12.2) and
(12.3) cover all digital systems, which are presented as a high level description
(system, register) and the lowest (gate) level.

12.3 Deductive Components Synthesis for SoC Functions

Gate level of circuit description is characterized by logical elements, functioning
of them is specified by the truth tables, cubic coverage or logical equations. In this
case consideration of synthesis procedures on basis of analytical form using is
technological. At that two-input logical element is transformed to four-input one,
where two additional inputs (a,b) are register, and they intended for fault lists
transferring. The Boolean inputs (x,y) are control for carrying out operations at ex-
ternal fault lists. Lets there is the logical element And, its deductive function is
specified by the Karnaugh map [35]:

001010
111011
100001
010000

10110100)b,a(\)y,x(

)b,a,y,x(fL == (12.4)

Minimization of the primitive, specified by (12.4), results in two variants of the
deductive function with different complexity (quantity of variables and terms) by
Quine (19, 15 and 17):

)].ay(xb[()]bx(ya[()abyx(

)axy()bxy()bax()bay()abyx()b,a,y,x(fL)3

)];bx(ya[()bax()abyx(

)axy()bax()bay()abyx()b,a,y,x(fL)2

)];ba(xy[()bay()bax()abyx(

)axy()bxy()bax()bay()abyx()b,a,y,x(fL)1

∨∧∨∨∧∨∧=

=∧∨∧∨∧∨∧∨∧==

∨∧∨∧∨∧=

=∧∨∧∨∧∨∧==

∨∧∨∧∨∧∨∧=

=∧∨∧∨∧∨∧∨∧==

 (12.5)

Choice of the best one results in the formula (12.6). The analogous transforma-
tions applied to the elements Or, Not enable to synthesis of the Boolean equations
and circuit structures. The element Or. Synthesis of its deductive function is
specified by the following transformations:

100010

010011

001001

111000

10110100)b,a(\)y,x(

)b,a,y,x(fL ==

296 V. Hahanov

).abxy()bax()bay()ayx()b,a,y,x(fL)3

);abxy()bax()bay()]ba(yx[

)abxy()bax()bay()byx()ayx()b,a,y,x(fL)2

);abxy()bax()]bx(ay[

)abxy()bax()bay()ayx()b,a,y,x(fL)1

∧∨∧∨∧∨∧==

∧∨∧∨∧∨∨=

=∧∨∧∨∧∨∧∨∧==

∧∨∧∨∨∧=

=∧∨∧∨∧∨∧==

 (12.6)

Similarly synthesis of Xor element deductive function is carried out.
Results of hardware realization of minimal deductive functions by Quine of

three above elements are implemented to the following circuits (Fig. 12.5).

&x
y

a b

&

1

L1

&

L

1
x
y

a b

&

& 1

&

a

b
&

L1

&

Fig. 12.5 Deductive primitives of logical elements (And, Or, Xor)

Register description level of digital system component differs by the functional
complexity that influences on true table or cubic coverage dimension. Such func-
tionalities as flip-flops, latches, counters, multiplexers, registers and bus structures
are considered here. Analogous transformations, intended for deductive function
synthesis by the flip-flop true table (there are three Boolean inputs and three
register ones))1t(QDCDCQ −∨= give the following result - (12.9).

101010

101011

101001

101000

10110100)b,a(\)y,x(

)b,a,y,x(fL == (12.7)

.baba)b,a,y,x(fL ∨== (12.8)

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 297

&

&

&

&С
D
Q

с d q

&

&

&

&

&

&

&

L1

Fig. 12.6 Deductive function of fault analysis for D-flip-flop

01101100100

10011100101

01101100111

10011100110

11000110010

00110110011

11000110001

00110110000

100101111110010011001000)X(\)T(

)X,T(fL == (12.9)

298 V. Hahanov

The flip-flop hardware realization (the Quine estimation is 62) is represented in
Fig. 12.6. The flip-flop deductive function has more then 10-fold hardware redun-
dancy in comparison with fault-free functionality. Though this representation
enables to gain in the speed of deductive fault simulation in hundreds times.

).CQqdc()QCqdc()CQcdq()QCqcd(

)DCqdc()CDdqc()DCqdc()CDqdc(

)QDCc()DQC()QDCc()Q,D,C,q,d,c(fL

∧∨∧∨∧∨∧∨

∨∧∨∧∨∧∨∧∨

∨∧∨∨∧==

 (12.10)

Concerning analysis of system level components, in general case the true table
(transitions-outputs) is partially or completely defined. It means that the table
coordinate definition alphabet contains three symbols (0,1,X) at least. For this case
it is necessary modification of the deductive fault analysis procedure that is in the
ternary alphabet:

),L(\)L[(L j
)]XC(&)0CT[(j

j
)1CT(j)1CT(i

r
x
ij

x
ijj

x
ijj

z
irr ≠=⊕∀=⊕∀=⊕∀

∨∨ ⊗= (12.11)

where n is a number of rows (cubes); m is a number of input lines; k is a number
of output lines in a device (primitive); Lr is a fault list that is formed for the output
r in the form of faults, transferred through a primitive or a digital system from
external inputs.

The main operations in the ternary alphabet are:
]XXX;XX1;XX0;011;101;110;000[Xor =⊕=⊕=⊕=⊕=⊕=⊕=⊕= ;

]XXX;1X1;XX0;111;101;110;000[Or =∨=∨=∨=∨=∨=∨=∨= ;

]XXX;XX1;0X0;111;001;010;000[And =∧=∧=∧=∧=∧=∧=∧= .

Subject to the introduced definitions the deductive function synthesis for system
level functionality, specified by the flow chart in Fig. 12.7, is proposed below.

A = B + C

� ���� �

x1

x1

S0

A = + 1A B = B + C

B B= � = C

� = +A B A = +C B

� ����

� = C

x3 x3

A = + +A B C

S1

S2

S5

S4

S3

x2

0 1

0 1 0 1

0 1 0 1

Begin

End

Fig. 12.7 Functionality flow chart

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 299

The transition matrix of abstract automata, corresponding to the flow chart in
Fig. 12.7, as well as the transitions-outputs table of a structure automata with
coded states of input, internal and output variables are represented in the following
table:

CBAA:YSSX
SSX

BB:YSSX
CC:YSSX

BAC:YSSX
BCA:YSSX
BAC:YSSX

CC:YSSX
1AA:YSSX

CBB:YSSX
CBA:YSS

YSSX

C

7653

653

6541

3641

4633

5633

4622

3322

2411

1211

010

1ii

++=
−

=
=

+=
+=
+=

=
+=

+=
+=−

=

+

=

1111101010XX
XXX1101011XX
110101100XX0
001110100XX1
1001100110XX
1011100111XX
100110010X0X
011011010X1X
010100001XX0
001010001XX1
000001000XXX
YSSX 1ii +

 (12.12)

In this case the input variables are vectors, which are concatenated by the va-
riables (XSi), the output lines are (Si+1Y). To form the deductive matrix that de-
fines a simulation primitive of all faults, corresponding to the structure automata,
it is necessary to construct the true table on a set of rows or coverage cubes. This
procedure is hard to realize manually. It is not difficult in computer realization.
For one input vector the deductive fault analysis matrix that is result of Xor opera-
tion under an input pattern and all coordinates of a fault-free behavior matrix is:

1100000010XX
XXX0000011XX
111011000XX1
000000000XX0
1010001110XX
1000001111XX
101000110X0X
010101110X1X
011010101XX1
000100101XX0
001111100XXX
LLSX

1111101010XX
XXX1101011XX
110101100XX0
001110100XX1
1001100110XX
1011100111XX
100110010X0X
011011010X1X
010100001XX0
001010001XX1
000001000XXX
YSSX

)110001100100(LCT

Y1ii1ii ++

=⊕

⊕→=⊕

 (12.13)

The specified deductive model is a structure of register level that can be realized
in FPGA, where the true tables are used for function definition directly. Though
circuit realization of the deductive functions (Si+1Y), written as DNF by
constituent of unity of corresponding column, is possible.

300 V. Hahanov

.SSSXSSSXSSSL

;SSSXSSSXSSSL

;SSSXSSSXSSSL

3
i

2
i

1
i1

3
i

2
i

1
i2

3
i

2
i

1
i

3
1i

3
i

2
i

1
i1

3
i

2
i

1
i1

3
i

2
i

1
i

2
1i

3
i

2
i

1
i2

3
i

2
i

1
i1

3
i

2
i

1
i

1
1i

∨∨=

∨∨=

∨∨=

+

+

+

 (12.14)

.SSSXSSSXSSSXSSSXSSSL

;SSSXSSSXSSSXSSSXL

;SSSXSSSXSSSXSSSXSSSXL

3
i

2
i

1
i1

3
i

2
i

1
i3

3
i

2
i

1
i2

3
i

2
i

1
i1

3
i

2
i

1
i

3
Y

3
i

2
i

1
i3

3
i

2
i

1
i1

3
i

2
i

1
i2

3
i

2
i

1
i1

2
Y

3
i

2
i

1
i3

3
i

2
i

1
i1

3
i

2
i

1
i3

3
i

2
i

1
i3

3
i

2
i

1
i2

1
Y

∨∨∨∨=

∨∨∨=

∨∨∨∨=

 (12.15)

Equations (12.14) and (12.15) define the fault lists forming conditions at six out-
puts on the test pattern (100100 110001). The complex digital circuit comes out
even on a single vector (Fig. 12.8); its hardware costs by Quine are 42. The output
function that is realized by 84 inputs and 17 logical elements has more complex
result in the form of circuit.

L1
i+1

X1

X2

S1
i

S2
i

S3
i

L2
i+1

L3
i+1

Fig. 12.8 Deductive circuit of fault analysis

So, realization of the flow chart deductive function (see Fig. 12.7) on a single
input pattern has computational complexity that is equal to 84 + 42 = 126. If to

multiply such combinational circuit on 122 patterns, at worst the hardware costs
result in the structure, defined by estimation:

.09651621262QQ 12)SX(2t i =×=×= +×
 (12.16)

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 301

Naturally that half a million gates are inadmissible quantity for fault simulation,
even if the simulation speed greater in hundreds times then software analog. In
this case the problem solution is hybrid one – firmware complex of fault simula-
tion that is flexible with respect to test vectors. In this case software oriented de-
ductive analysis model is generated in real time as function of fault-free behavior
and the test patterns)C,T(fL = . In this case the automaton model of fault analy-

sis expanded in time (X,Z,Y are sets of input, internal and output variables
respectively) can be represented as follows:

⎪⎩

⎪
⎨
⎧

=

=

=

−

−

).,,(

);,,(

,,,,,,

1

1

CTTfL

CTTfL

YZXCTLM

t
z

t
x

t
y

t
z

t
x

t
z (12.17)

So the technology of hardware embedded simulation comes back to the software
oriented solutions. Actually in the near future the electronic technology market
will go to flexible reusable software solutions. This direction has the following
reasons: 1. System-on-a-chip realization becomes more software oriented, because
in a 5 years memory will occupy 94% of the chip area. 2. To control of computa-
tional processes relating to simulation it is necessary to have microprocessor on a
chip that is realized by flexible software technology and embedded into memory
or by hardware technology and realized in a chip.

12.4 Structure Models of Simulator Primitives

In general case obtainment of deductive primitives for parallel fault simulation is
related to the function synthesis on the exhaustive test. The complexity of deduc-
tive primitives depends on functionality representation level. The gate level
structures in the form of basis of logical elements And, Or, Not are the simplest.

By means of the main expression (12.3) of deductive function synthesis, which
transport faults through a logical element, construction of all basic components
(And, Or, Not) [14-17] is carried out - (12.18).

X1

x1

x2

V

DC
00

Y

X2

01

10

11

Fig. 12.9 Fault simulator

302 V. Hahanov

In the equations)4,1t(),T,T,T(T 3t2t1tt == is a test vector that has 3

coordinates, and last one defines an output state of the elements And, Or. For the

inverter the test vector has 2 coordinates:)2,1t(),T,T(T 2t1tt == , last one is out-

put state of an element. The equation for an inverter shows the immateriality of
inversion operation at an element output for fault transfer. So there is not this
function (Not) on deductive primitives’ outputs. Hardware realization of the de-
ductive functions [16-17] for two-input elements (And, Or) on the exhaustive test
is represented in Fig. 12.9 by deductive parallel fault analysis circuit.

.XxXxXxXx]0)1X[(x]1)0X[(

x]}T)TX)[(xx{(L]XF),1,0(T[L

);XX)(xx()XX)(xx(

)XX)(xx()XX)(xx()]XX(F),11,10,01,00(T[L

);XX)(xx()XX)(xx(

)XX)(xx()XX)(xx(}1)]1X()1X){[(xx(

}0)]0X()1X){[(xx(}0)]1X()0X){[(xx(

}0)]0X()0X){[(xx()]}T)TXTX[(

)xxxxxxxx{(L)]XX(F),11,10,01,00(T[L

11111111111

12t1t1111Not

21212121

2121212121Or

21212121

212121212121

21212121

21213t2t21t1

2121212121And

∨=∨=⊕⊕∨⊕⊕∧

∧=⊕⊕∨===

∧∨∧∨

∨∧∨∨=∨==

∨∨∧∨

∨∧∨∧=⊕⊕∧⊕∨

∨⊕⊕∧⊕∨⊕⊕∧⊕∨

∨⊕⊕∧⊕=⊕⊕∧⊕∧

∧∨∨∨=∧==

 (12.18)

There are the Boolean variables (x1,x2) and the register ones (X1,X2), the select
input V of fault-free function type: V=0 (And), V=1 (Or), the output register vari-
able Y. The binary input (x1,x2 and V) states form one of four deductive functions
for obtainment of the testable fault vector Y. Implementation of the deductive
model in HDL-code is represented by listing 1.

Listing 1 VHDL-model of a sequencer

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity Fub1 is

 port(i0, i1 : in STD_LOGIC;
 o00, o01, o10 , o11 : out STD_LOGIC);

end Fub1;

architecture Fub1 of Fub1 is
begin
 o00 <= not i0 and not i1;
 o01 <= not i0 and i1;
 o10 <= i0 and not i1;
 o11 <= i0 and i1;
end Fub1;
library IEEE;
use IEEE.std_logic_1164.all;
entity sequencer is

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 303

 port(V , X1_s, X2_s , x1, x2 : in STD_LOGIC;
 Y : out STD_LOGIC);
end sequencer;
architecture sequencer of sequencer is
component Fub1
 port(i0, i1 : in STD_LOGIC;
 o00, o01, o10 , o11 : out STD_LOGIC);
end component;
signal a0, a1, a2, a3, a4 : STD_LOGIC;
signal o00, o01, o10, o11 : STD_LOGIC;
signal x3, x4 : STD_LOGIC;
begin
 U1 : Fub1 port map(i0 => x3, i1 => x4, o00 => o00,
 o01 => o01, o10 => o10, o11 => o11);
 a0 <= o00 and X2_s and X1_s;
 a1 <= not(X2_s) and o01 and X1_s;
 a2 <= not(X1_s) and X2_s and o10;
 a3 <= X2_s or X1_s;
 a4 <= o11 and a3;
 Y <= a4 or a2 or a1 or a0;
 x3 <= V xor x1;
 x4 <= x2 xor V;
end sequencer;

The simulator operation is demonstrated in the table of parallel simulation of 8-
bit input fault vectors to obtain the testable fault vector for the logical elements
And, Or on the output Y:

100100011001000100110000101101110111100101110000)RG(Y
001010101011100100110100101101010111100001111000)RG(2X
101110010010101000111011101101100111000101110001)RG(1X

110010111011100000)2x,1x,V(=

Application of the simulator enables to transform the gate model F of fault-free
circuit behavior to the deductive one L that is invariant (in terms of universality)
to test patterns and does not need to use the model F at simulation. So the simula-
tor as hardware model of DF is oriented on creation of embedded deductive paral-
lel simulation facilities, which raise the analysis speed in 10 – 1000 times in
comparison with software realization. But at that the volume ratio of post-
simulation fault-free behavior model and fault analysis is 1:16. Hardware fault
analysis is directed on functionality enhancement of embedded fault-free behavior
simulation facilities (HESTM - Hardware Embedded Simulator) of Aldec company
(www.aldec.com). Computational complexity of project processing that consists of

n gates is equal to W/)n2(Q 2τ= , where τ is the execution time of a register

operation (And, Or, Not); W is the register capacity.
The hardware structure, represented in Fig. 12.10 [15], can be used for hardware

realization of deductive-parallel simulation on basis of the proposed simulator.

304 V. Hahanov

NOT(1)

x1

V

X2

X1

1

5

3

2

4

Tj

DC

00

Y
01

10

11x2

6

Memory Fault Simulation Proccesor

Fault
Detected
Matrix

Testbench
Fault free
lines states

Circuits
Description
BNF

Fig. 12.10 HFS-structure of hardware simulation

The feature of hardware realization consists in combined execution of two op-
erations: single-bit one for functional emulation of the logical elements And, Or,
and parallel one for fault detection vectors processing by means of carrying out of
conjunction, negation and addition logical operations. The main blocks (processor
and memory) functionality is: 1.]M[M ij= is a quadratic fault simulation matrix,

where i,j =1,q; q is the total quantity of lines in a processed circuit. 2. Fault-free
behavior state vectors, defined in time t-1 and t, are necessary for forming of de-
ductive primitive functions. 3. Memory module is required for storage of circuit
definition in the form of logical element structure. 4. Buffer registers of the capac-
ity q are necessary for operand storage and carrying out of parallel register opera-
tions at fault vectors, which are read-in form the matrix M. 5. Fault-free simula-
tion block is required for identification the digital state of next processing logical
element. 6. Deductive parallel simulator that processes two register variables X1,
X2 per a cycle is necessary for definition of a fault vector, which is transferred to
the logical element output Y.

The advantages of proposed fault simulation structure are:
1. Essential reduction the quantity of simulated faults, which are defined by the

quantity of reconvergent fan-outs that is up to 20 % from the quantity of total
lines. 2. Reduction of the memory volume, required for fault matrix storage. 3.
Realization simplicity of Hardware Fault Simulator (HFS) that enables to increase
the fault simulation speed by order. 4. Use HFS as first stage of the deductive to-
pological method that is based on reconvergent fan-out processing result for high-
performance analysis of tree-type structures.

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 305

Digital system on a chip simulation algorithm [16] with preliminary splitting of
the device model on two structural parts (reconvergent fan-outs and tree
subgraphs) is represented in Fig. 12.11.

Fault simulation of
tree-like structures

Create deductive
circuit model

Fault simulation
for RFOs

Next test vector
fault-free analysis

1

2

3

4

End of
 test

1

0

Fault Coverage

RFO searching

5

Fig. 12.11 Deductive-parallel simulation model

Resume of the proposed simulation technology with preliminary splitting of a
circuit on reconvergent fan-outs and tree subgraphs. Deductive parallel fault anal-
ysis on basis of the fault back tracing requires almost linear memory and time
costs, dependent on a number of circuit lines. Time performance for reconvergent
fan-out processing depend on quantity of them quadratically:

)rrn(nn)W/r(Q 0
pr

2 −−+++= . Here)W/r(2 is the fault simulation time

of r reconvergent fan-outs, their quantity is determined as nn;n2.0r r =×= is

the reconfiguration time of circuit primitives on an input pattern; nnp = is the

search time of line subgraphs corresponding to the undetectable reconvergent fan-

outs; n4.0n4.0n2.0n)rrn(0 ×=×−×−=−− is the execution time of solution super-

position on a set of circuit lines without reconvergent fan-outs and ancestors for
undetectable ones. In consideration of actual parameter values in a function of cir-
cuit line quantity the estimated speed of the deductive parallel method can be
obtained [1,28]:

).n4.2]W/)n2.0[()n4.0n2.0n(nn]W/)n2.0[(Q 22 ×+×=×−×−+++×=

So, gain in speed of proposed method the more then less the percent of
reconvergent fan-outs in a digital devise circuit [15,16,28].

For comparison a parallel algorithm has the computational complexity Cp that
is defined by the functional dependency on the quantity of nonequivalent faults
(b), the length of a computer word (W), quantity of equivalent gates (G):

306 V. Hahanov

32
p G)W/b(C ×= . The deductive algorithm has differences in the estimated

speed formula: ,GbGQbC 32
GQ

22
d =××= = where Q is an average quantity

of gates, activated by faults. The speed of deductive parallel method without cir-

cuit splitting is defined by expression: .G)W/b(GC 222
dp ×+= The first sum-

mand defines the fault-free simulation time, second one – the fault analysis time of
a digital device if their lines are not ranged. The estimated speed of combinational

ranged circuit is .G)W/b(GC 2r
dp ×+= The speed of deductive parallel method

is greater then the speed of parallel and deductive ones })C,C{C(dp
r
dp << due to

separation of fault-free and fault simulation.
Proposed technology of hardware-software deductive parallel fault simulation

is oriented on development of deductive primitive models of gate, register and
system levels to test digital systems on chips, containing millions gates. The struc-
ture model of hardware simulator and simulation device in whole are represented.
They are oriented on speedup of the simulation features of high dimensionality
digital devices by means of separation of fault-free analysis and determination of
testable fault lists on input patterns.

SIGETEST (SImulation, GEneration of TEST) system [16,17] is developed on
basis of the technology described above. It is high-speed fault simulation and test
generation system, using the models of designed digital systems of interpretative-
ly- compilation type. Some digital structure, defined by the Boolean equations,
which are implemented in CPLD, FPGA, ASIC, can be a simulation object. The
system processes complex digital projects, which consist of hundred thousand log-
ical gates on post-synthesis stage (gate level description). The system has inte-
grated environment that realizes high level graphical interface. Input of a project is
realized in the description form. There are supported operations: AND, OR, NOT,
XOR. The bus structures are supported too. A compiler transforms a circuit de-
scription to the internal easy-to-simulation data structures. The simulation kernel
includes fault-free and fault simulation algorithms: Parallel, Backtraced Quasi Ex-
act, Deductive-Parallel and Backtraced-Deductive-Parallel. A test generator in-
cludes a set of test patterns synthesis algorithms (pseudorandom, deterministic,
synthesizers). A result of software operation is test-bench in VHDL format. The
system displays information about fault-free and fault simulation, the fault cover-
age quality, simulation statistics. Simulation results are displayed in Fault
Coverage Window that is multivalued fault detection table.

There are facilities for test synthesis control and monitoring in SIGETEST. The
simulation can be limited in time; a number of simulated test patterns can be spe-
cified. The percent of fault coverage by generable patterns can be limited from be-
low. While simulation the system displays information about the simulation
progress in percentage of the total quantity of the vectors or specified time
interval. SIGETEST system is oriented on integration with modern synthesis and
simulation facilities, such as ALDEC Active-HDL, Riviera, SYNOPSYS Design
Compiler.

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 307

12.5 Algebra-Logical Fault Diagnosis Method

The main attention is paid to the boundary scan technology [12] that is able to
make easier solution of all SoC Functional Intellectual Property problems, when it
is implemented into a chip. An access controller to internal lines and ports of the
boundary scan register uses a cell or a stage of the register. To provide the moni-
toring the total quantity of such cells should be equal to a number of observed
problem lines of a project, which are necessary for exact diagnosis.

The structure of I-IP service modules for fault diagnosis in F-IP functional
blocks is represented in Fig. 12.12. Module (⊕) analyses output reactions of a
model MUS and a real device DUT on input test vectors, entering from a test ge-
nerator. Boundary Scan Register is a troubleshooter that is designed for exact di-
agnosis. Scoreboard performs the function of diagnosis result analysis for the pur-
poses of subsequent repair of SoC components. In this case a diagnosis is
determined by the output response vector and the fault detection table

(nq,1r;p,1t],M[M tr +=== of dimension np × , p is a number of test-vectors, n

is a number of stages of the boundary scan register). The result is a set of faulty
lines and elements on a current input pattern. To provide computational processes,
which result in exact diagnosis, metrics and representation method of the initial in-
formation are very important.

The interesting solution of a diagnosis problem can be obtained by application
of the Boolean algebra and the fault detection table M that is Cartesian product
of the test Т on the specified fault set F together with the output response vector
V, at that there is the most exact result of the covering problem solution in the
form of DNF and every term is considered as a possible variant of fault existence
in a device.

MUS

Scoreboard

Diagnosis

Good

DUT

ATPG

R
ep

ai
ri

ng

O
bs

er
vi

ng

Boundary Scan
Register

Fig. 12.12 Diagnosis process model for F-IP

Thus the diagnosis process model is represented by components:

308 V. Hahanov

}.1,0{}F,M,T,V{);T(R)T(RV

);V,...,V,...,V,V(V;m,1j;n,1i,MM

);F,...,F,...,F,F(F);T,...,T,...,T,T(T

,V,M,F,TA

jijiii
*

ii

ni21ij

mj21ni21

∈⊕=

====

==
>=<

 (12.19)

The coordinate value of the vector V is a result of Xor operation at a generalized
model output response and actual one.

Diagnosis problem solution comes to the fault detection table analysis that is
ensued from fault simulation by means of subsequent forming of logical product
of disjunctions (CNF), written by unit rows of the fault detection table

).F(F j
1ijM

m,1jn,1i

1iV =∀

==

=∀
∨∧= (12.20)

The conjunctive normal form, derived from the fault detection table, is trans-
formed to the disjunctive normal form (DNF) by means of equivalent transforma-
tions (conjunction, minimization and absorption) [4]. Therefore we have the
Boolean function, where terms are the logical products, which represent full solu-
tion set in the fault combination form (they give the output response vector V at
SoC outputs or its component):

}.1,0{k),Fk()F(F jjj

m

1j

m2

1iaaa
babaj

1ijM

m,1jn,1i

1iV
====

==⎥⎦
⎤

⎢⎣
⎡

=∨
=∨=∀

==

=∀
∧∨∨∧ (12.21)

Function (12.21) in general case forms a diagnosis in the form of some fault com-
bination subset, which need refinement further by means of application an addi-
tional probing of internal points by boundary scan register. A number of “1” in the
output response vector V forms quantity of CNF disjunctive terms (12.21). Every
term is line-by-line writing of faults (by logic operation OR), which influence on
functional outputs. Table representation in the analytical form (conjunctive normal
form) makes possible to reduce the volume of diagnostic information for fault lo-
cation essentially. Subsequent transformation of CNF to DNF on the basis of the
Boolean algebra identities enables to reduce the Boolean function. The algebra-
logical method is considered by example of the following fault detection table M1
and it is represented by five algorithm items.

0111T

111T

1111T

111T

111T

VFFFFFFF
T

M

5

4

3

2

1

654321
j

i

1 =

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 309

1. Detection of all FDT rows, which correspond to zero values of the output
response vector for nulling all 1-coordinates of found rows. In this case it is the
row T5.

2. Detection of all columns, which have zero values of rows coordinates with zero
state of the vector V. Nulling of unit values of found columns. In this case they
are F2, F5, F6.

3. Removal the rows and the columns, which have only zero coordinate values
(found in items 1 and 2), from the fault detection table.

111T

111T

111T

VFFFF
T

0000T

111T

1011T

100T

111T

VFFFFFFF
T

M

4

3

1

431
j

i

5

4

3

2

1

654321
j

i

1 ==

4. Making CNF by unit ORV values:

.FFFFFF
FFFFFFFFFFFFFF

FFFFFFFFF
FFFFFFFFFFFFFFF

)FF()FFFFFFFF(
)FF()FF()FF(F

434131

43431434143131

443431433

331441411431311

3144414331

314341

∨∨=
=∨∨∨∨∨=

=∨∨∨
∨∨∨∨∨=

=∨∧∨∨∨=
=∨∧∨∧∨=

5. Transformation of CNF to DNF with subsequent minimization of the function.
In this case it results in gaining sought-for result in the fault combination form:

.FFFFFFF 434131 ∨∨=

The proposed algorithm is oriented on analysis of the fault detection table to de-
crease its size and amount of subsequent computing related to DNF making those
forms all solutions of SoC functionalities diagnosis. Further refinement of a diag-
nosis is possible by application of the multiprobe on the basis of the boundary
scan register [15].

Example 12.1. Make algebra-logical analysis of the fault detection table
FTM ×= that contains 10 faults. Test of the length 11 input patterns checks all

faults. The output response vector V = (10001001001), formed in the process of
diagnosis experiment, fixes discrepancy between unit outputs and the gold
standard on four (1, 5, 8 and 11) test patterns.

310 V. Hahanov

1111T

01T

011T

11T

01T

011T

111T

01T

0111T

011T

111T

VFFFFFFFFFFF
T

FTM

11

10

9

8

7

6

5

4

3

2

1

10987654321
j

i

=×=

In compliance with quantity of units in the output response vector V, a number of
disjunctive terms CNF that is equal to 4 is formed. Every term is line-by-line writ-
ing of faults by logic operation OR which influences distortion of functional out-
put signals. Then CNF is transformed to DNF on the basis of the Boolean algebra
rules. It enables to get following result:

).FFFFFFFF(
)FFFFFFFFFFF

FFFFFF()FFFFFFFFF
FFFFFFFFF()FFF(

)FFFF()FFF)(F)(FF(
)FFF)(F)(FF)(FF(F

841054954

1084984841054

9548541084984884

10549548541098

84541098485

1098485104

∨∨=
=∨∨∨∨

∨∨=∨∨∨
∨∨∨=∨∨

∨=∨∨∨=
=∨∨∨∨=

 (12.22)

The function represented in the form

)FFFFFFFF(F 841054954 ∨∨= , (12.23)

contains the fault F4 in all terms, it means that the fault is present in SoC functio-
nality without fail. If to put forward hypothesis about existence of single fault or
minimal quantity of multiple faults, the solution determinate by third term

84FFF = is preferable (in a circuit there exist two faults, which form the output

response vector that is equal to V= (10001001001)).

12.6 Simulation for Diagnosis Refinement

Disjunctive form represented in (12.21) is the main model of fault localization. It
not always defines functional fault definitely, therefore it is necessary the diagno-
sis refinement procedures. All rows FTM ×= , which are marked by zero ORV
values, have to be joined to non-existent fault disjunction (12.21). Obtainment of
such form from given FDT enables to determine all faults, which can not exist in a
circuit:

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 311

).FFFFFFF(
)FFFFFFF(

)F()FF()F(
)FF()F()FFF()FF(F

9765321

5196372

7653

21196372

∨∨∨∨∨∨=
=∨∨∨∨∨∨=

=∨∨∨∨
∨∨∨∨∨∨∨∨=

 (12.24)

Analysis of expression (12.23) and (12.24) enables to make interesting conclu-
sions: 1. Faults, which can not exist in a circuit, are defined in DNF terms, ob-
tained by zero rows relative to the output response vector. 2. Faults, which are in
DNF (12.24), must be removed from function (12.23). 3. Removal of fault F5 re-
sults in breaking of two terms 1054954 FFFFFF ∨ , so far as every fault separately

can not form given output response vector without fault F5. 4. Thus the sole con-
clusion is made: double fault that determined by term)FF(F 84= exists in a

circuit. 5. The computational complexity of obtainment of exact and complete so-

lution set is defined by expression)1m2(2Q 1m += + , where m is a number of

faults.
Mark absence of the concrete fault as 0Fi = ; input conditions for DNF (12.23)

can be formed for purposes of subsequent simulation of a function under the fol-
lowing initial conditions:

)0000000()F,F,F,F,F,F,F(9765321 = . Then simulation result of the function

)FFFFFFFF(F 841054954 ∨∨= is equal to 848410494 FF)FFF0FF0F(F =∨∨= .

Actually, if faults)F,F,F,F,F,F,F(9765321 , which are checked on test patterns

theoretically, give negative result (all of them don’t distort output states) it means
that they don’t exist in a circuit. Justification of this fact is confirmed by the
following proving.

Lemma 12.1. Complete set of all possible fault combinations, which are checked
by the test T, is defined as DNF that obtained by transformation of conjunctive
form

),Fk()F(F jj

m

1j

m2

1i
j

1ijM

m,1jn,1i

1iV ===∀

==

=∀
∧∨∨∧ ==

every term of which is written by unit row values of FDT FTM ×= that has
ORV state 1Vi = .

Initial information, written in compliance with unit ORV values, is complete
model of faulty behavior of a real object, which forms ORV with fixed quantity of
“1” that is equal to k (FDT rows). Every row forms a fault disjunction, written by
OR functions. A number of such disjunctions are equal to k; they are logical mul-
tiplied and form complete and consistent event set (a set of faults, which are in a
circuit simultaneously). To obtain DNF that includes all possible combinations,
written as elementary conjunctions, it is necessary to multiply elementary disjunc-
tions and to simplify the expression using axioms aaa;baba =∨=∨ . Fulfilled

312 V. Hahanov

transformations are identical, so obtained function is equivalent to initial CNF log-
ically, and it is technological notation of all solutions (all fault combinations,
which are in a circuit) actually.

Lemma 12.2. In a real object there are not faults, checked in the fault detection
table FTM ×= rows and marked by zero ORV values 0Vi = .

Really the fault detection table FTM ×= has two kinds of rows: unit 1 and ze-
ro ones relative to the actual ORV value:

]0V)0101([M&]1V)0110([M qqpp =→=→ .

The row p detects two faults 32 FF ∨ in a circuit. The row q indicates of theo-

retical check the faults 42 FF ∨ , if the vector is equal to “1”: 1Vq = . But actually

the signal 0Vq = identifies the faults 42 FF ∨ inessentiality for circuit output dis-

tortion. Otherwise there are not the faults in a tested device. Substitute zero signals
0FF 42 =∨ in the function 32 FFF ∨= and obtain result:

304F2F32 FFFF =∨= == . Similarly all faults, defined in the rows, which have

zero ORV value, are absent in a circuit. If it is true, they must be removed from
DNF, written by unit ORV values. So, if there are DNF terms and a set of faults,
which can not exist in a circuit for given ORV, the substitution procedure of zero
signals in elementary conjunction variables of DNF function can be carried out.
But in consideration of the fact 0...cba0 =∧∧∧ the result of substitution and
subsequent transformations for obtainment of the minimal function will contain
the terms only, which don’t have variables (faults with zero signal values). It
means that all faults corresponding to zero FDT rows relatively ORV will be
removed from DNF.

Theorem 12.1. Minimal set of all possible fault combinations, which are defined
by the fault detection table FTM ×= , is computed by means of DNF simulation
on an initial conditions set

)0pV(&)1pqM()0qF(jj

m

1j

m2

1i
)Fk(F ==∃←=∀

==
∧∨= ,

which are determined by zero values of all checked faults, corresponding to zero
ORV signals.

In compliance with lemma 12.1 complete set of all possible fault combinations
under test is defined by DNF

)Fk(F jj

m

1j

m2

1i ==
∧∨= ,

that forms all solutions, satisfying to unit ORV values 1Vq = . It can be decreased

by removal the faults, which are detected by a test theoretically, but actually they
don’t distort output states; it means that they are absent in a real circuit. So, they

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 313

can be removed from DNF terms, which form complete set of all possible
combinations. The mechanism of such removal according to lemma 12.2 consists
of substitution of zero variable values in DNF terms and subsequent simulation of
a function. If a term has “0”-component of some variable iF according to the

Boolean algebra, the whole term is turned into “0”; it means that it is removed
from DNF. Thus after minimization subject to the conditions of lemma 12.2 the
minimal DNF contains least quantity of possible fault combinations (a single and
multiple ones) that can not be reduced without using of additional diagnostic in-
formation incoming from a troubleshooter on basis of the boundary scan register.

In practice the following statements are useful for diagnosis refinement:

Statement 1. If Fj are in all DNF terms, this fault exists in a circuit and it is not
necessary to test it. Otherwise if one supposes that check result is equal to zero, all
terms are turned into zero; and it contradicts to an existence condition of nonzero
ORV values (V).

Statement 2. There are a single fault combination in a circuit that defined by
one DNF term. If there are one confirmed solution in the form of DNF, other
terms must be removed from consideration by means of their vanishing.

So, the check point minimization problem comes to fulfillment of two alterna-
tive strategies: 1) analysis of variables in minimal length terms to confirm all
faults in a logical product by means of their probing; 2) check of variables, which
turn maximal quantity of DNF terms into zero.

Thus proposed algebra-logical diagnosis method uses the Boolean calculus as base
apparatus for solution of the covering problem by means of obtainment the dis-
junctive form that is minimized further by removal of terms, which have fault va-
riables relating to rows with zero ORV values. An advantage of algebra-logical
method is obtainment of DNF terms, which form all possible coverage’s (multiple
faults) of unit ORV coordinates. The computational complexity of the method has
exponential relation from fault quantity: n2Q = . For small quantity of faults in a
digital system the computational complexity enables to realize fault localization in
real time.

12.7 Structure-Logical Fault Diagnosis Method

The fault detection table that turned out at fulfillment the fault simulation proce-
dure doesn’t have information about external outputs, which were distorted on test
patterns. This fact can reduce the diagnosis depth essentially. On the other hand
additional use of the information above in the aggregate with FDT has positive
influence on diagnosis result and reduces the power of fault component set.

Lets there is FDT with outputs 321 Y,Y,Y , which keep information about

distortions on the test patterns 11841 T,T,T,T as in (12.25). The output response

vector V was obtained by means of fulfillment OR operation at the output results

314 V. Hahanov

of a diagnosis experiment j
n

1j
YV

=
∨= that consists in input a test and subsequent

comparison the reference response R and experimental one R* on every circuit

output jY :)T(R)T(RY i
*

ij ⊕= . The operation 321 YYYV ∨∨= was applied

to the fault detection table (12.25); as a result ORV was obtained; at that the
information content and the diagnosis depth was reduced.

1111111Y

1111111Y

111111Y

1001111T
00001T
000011T
10101T
00001T
000011T
111111T
00001T
0000111T
000011T
110011T

VYYYFFFFFFFFFFF
T

3

2

1

11
10
9
8
7
6
5
4
3
2
1

32110987654321
j

i

 (12.25)

It is necessary to have capability of diagnosis refinement by taking into account
the circuit structure and exact analysis of device output states. For that additional
information in the form of vector reachability matrix for all circuit component
outputs, such as fallible lines and elements, is formed:

m,1j;n,1i,YY j === ,

where n is a number of outputs or reachability matrix vectors; m is the dimension
of every vector that is equal to circuit fault quantity.

For given example the reachability matrix of three circuit outputs (scalars)

321 Y,Y,Y is represented by three last rows of expression (12.25) on the hand of

potentially faulty components. The outputs are considered as independent ones,
but in general case it occurs not always.

The diagnosis procedure with an allowance for circuit structure is modified on

CNF forming stage. The mask operation by the appropriate row jY of the

reachability matrix is applied to every FDT row for which)1Y(M ji = :

)]Y(MY[MM ji
1Y

j
11

j =∀
∧∨= . (12.26)

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 315

If all circuit outputs have unit values of the experiment results 1Yj =∀ , current

FDT row is masked by all reachability matrix vectors with results union by OR
function; it means that the mask procedure is not necessary.

In respect to the example above the mask procedure (12.26) is carried out at

FDT (12.25) rows 1,5,8,11 by the vectors 321 Y,Y,Y , which are written in lower
part of the fault detection table. It results in decrease a number of unit coordinate
values of FDT:

101111T
00001T
000011T
10101T
00001T
000011T
111111T
00001T
0000111T
000011T
11001T

VYYYFFFFFFFFFFF
T

11
10
9
8
7
6
5
4
3
2
1

32110987654321
j

i

Here the unit coordinates)}F,T(),F,T{(91141 were removed from FDT. It results

in more simple CNF and makes DNF obtainment procedure less laborious. Mak-
ing of fault DNF is represented below:

).FF(FFFFFFFF

FFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

)FF)(FF)(F)(F()FF)(F)(FF)(F(F

8510410841054

10841084105410854

1081048810410510485104

1088510410848510

∨=∨=

=∨∨∨=

=∨∨∨=

=∨∨=∨∨=

Compare the result with the solution above

)FFFFFFFF(F 841054954 ∨∨= ,

it is obvious that the solution 84FF is absent, because it doesn’t cover the unit

ORV coordinates (1,5,8,11). The obtained subset)FF(FFF 85104 ∨= contains two

fault combinations and indicates failure of two components 4 and 10; this subset is
added by one fault 5 or 8. To refine the diagnosis it is necessary to carry out the
probe procedure for one of lines 5 or 8; it result in obtainment the single term
solution that defines a fault subset actually existing in a circuit.

316 V. Hahanov

12.8 Vector-Logical Diagnosis Method by the Fault Detection
Table

To make diagnosis the fault detection table processing is carried out by an algo-
rithm based on use the vector operations of conjunction, disjunction and negation
over the fault detection table rows. Conjunction of the generalized vector that cor-
responds to unit coordinate values of the output response vector (ORV) and the
inverted generalized vector by zero ORV coordinates:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∧⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∧=

==
∨∨ i

0V
i

1V

01 MMMMF
ii

. (12.27)

A single fault diagnosis differs by fulfillment of the conjunction scenario (instead
of disjunction one) of all vectors, which correspond to unit ORV coordinate
values, on the first step:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∧⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∧=

==
∨∧ i

0V
i

1V

01 MMMMF
ii

. (12.28)

Example 12.2. Fulfill the multiple faults diagnosis in a circuit by the vector-
logical method; the fault detection table and the output response vector are
specified (12.29).

The fault detection table processing in compliance with formula (12.27) gives
the result that is represented in four lower rows (12.29). Last FDT row fixes the
faults presence in a circuit; faults are represented in vector or set-theory form

}F,F,F{)0001000101(F 1084== .

To transform the obtained result into DNF form the fault detection table structure
and a set of faults, fixed in the last table row, are used. Synthesis of disjunctive
form gives the following result and (12.29):

.FFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

)FF)(F)(F)(FF(F

8448101084481084

10481010484448104484

10448104

=∨∨∨=

=∨∨∨=

=∨∨=

It is interested that due to writing of faults in the form of DNF terms, covering all
unit ORV coordinate values, there is capability to remove the fault FF10 ∈ from a
fault list. The similar result has been obtained before when the algebra-logical
fault diagnosis method is considered.

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 317

11010001000F
11010001000M

01111111M

111111M

1111T
01T
011T
11T
01T
011T
111T
01T
0111T
011T
111T

VFFFFFFFFFFF
T

0

0

1
11
10
9
8
7
6
5
4
3
2
1

10987654321
j

i

 (12.29)

Advantage of the vector-logical method is the technological analysis of the fault
detection table; the analysis computational complexity–fault quantity–test power
relation is multiplicative: mnQ ×= . It is recommended to use the method when
there is the predominance of unit coordinate values in the fault detection table.
Disadvantage of the method is the impossibility of making all fault combinations,
which form the terms for covering of unit ORV coordinate values.

Example 12.3. Fulfill the vector-logical fault diagnosis of circuit lines subject to
the circuit structure; a circuit is represented in Fig. 12.13.

Р1

Р2

Р3

Р4

Р5

Р6

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 12.13 A circuit example for diagnosis

The fault detection table (first 5 rows) and the output response vector V
correspond to the circuit structure:

318 V. Hahanov

1111)Y(F

1111111111)Y(M

111111F
111111M

111111M

111111111111M

1111111Y

11111111Y

111Y

1100111111111T
00001111T
0000111111T
11011111111T
10011111111111T

VYYYFFFFFFFFFFFFF
T

1

0

0

1
12

11

10

5
4
3
2
1

121110121110987654321
j

i

(12.30)

Use the vector-logical method subject to expression (12.27) gives capability to get
a result without taking into account the circuit structure:

}F,F,F,F,F,F{)001011110100(F 865431== . Synthesis of disjunctive form by

the fault detection table, masked by the obtained faults }F,F,F,F,F,F{F 865431= ,

gives solution:

.FFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

)FFFFFFFFFFFF

FFFFFFFFFFFF)(FFFF(

)FFFF)(FFF)(FFFF(F

86858454635343815131

886865863864654643

863653633861651631

885855853854554543

853553533851551531

884854843844544443

843543433841541431

881851831841541341

831531331811511311

888583845434

8353338151316541

84318536541

∨∨∨∨∨∨∨∨∨=

=∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨∨

∨∨∨∨∨∨=

=∨∨∨∨∨∨

∨∨∨∨∨∨∨∨∨=

=∨∨∨∨∨∨∨∨=

In case of additional use the circuit structure (Fig. 12.13) in the form of the table
rows 121110 Y,Y,Y (12.30) that is applied to FDT a result can not be worst.

Determination of the vector)Y(M1 in (12.30) is realized by application of the

reachability vectors }Y,Y,Y{ 121110 masks, which correspond to faulty circuit

outputs on test patterns:

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 319

)].Y(M)Y[(

)]Y(M)Y[()]Y(MY[)Y(M

12512

1121110110
1

∧∨

∨∧∨∧=
 (12.31)

Substitution of the concrete vectors from FDT to expression (12.27) gives the
result:

}.F,F,F,F,F,F,F,F,F{

]111111001111[]010011001010[

]100110000100[]001100000001[)Y(M

12109874321

1

=

==∨

∨∨=

Subsequent computation related to the vector operations
01 M)Y(M)Y(F ∧= on

the fault detection table form the final solution:

}.F,F,F,F{)001011000100(

)001011110100()111111001111()Y(F

8431==

=∧=

Last vector (111100111111) creates a mask to form disjunctive normal form that
has the following terms:

.FFFFFFFF)FF)(FF(

)FFFF)(FF)(FF()Y(F

844381318341

84318341

∨∨∨=∨∨=

=∨∨∨∨∨=

In general case use the circuit structure in the form of the reachability matrix
enables to get more exact diagnosis due to removal the faults, which can not
influence on faulty outputs.

There are proposed diagnosis methods: 1) algebra-logical, 2) vector-logical
and 3) structure-logical ones. They give the mathematical apparatus to a specialist
in the field of SoC design and testing. It enables to diagnose of faulty components
if there is preliminary constructed fault detection table. At that set-theoretical solu-
tions, efficiently obtained by second method, can be represented by all possible
fault combinations in the form of DNF terms that is typical of the first method.
Second method is efficient if a number of “1” in FDT is greater then 10-20%.
Third method needs additional information in the form of a reachability matrix for
all external outputs that enables to reduce essentially the power of a diagnosed
fault set or quantity of terms, defined all possible fault combinations, which form
the output response vector.

It is necessary to note that all three methods can generate a result in three
forms: vector, set and combine one in the form of DNF terms. Fault simulation
stage is interested for the purposes of SoC faulty area reduction. The algebra-
logical method can be added by the fault reduction procedure by means of
subtraction all non-existent faults.

320 V. Hahanov

12.9 Algebra-Logical Memory Repair Method

The exact method of memory elements diagnosis and repair by spare rows and
columns, which enables to cover a set of faulty cells by minimal quantity of spares
is represented. The method is oriented on implementation of the Infrastructure In-
tellectual Property for SoC functionality. The structure solutions for realization of
the method of diagnosis and repair of memory matrix fault cells are proposed
[37,38,40,41,45,46,51,52].

During the SoC manufacturing and operation any kinds of memory the guaran-
tee of its technical compliance are necessary. In this regard, three procedures are
carried out as given below: 1) Memory testing that consists of test patterns input,
which oriented on identification of specific kinds of faults [23,37,38]; 2) In the
case of fault appearance, it is necessary an additional diagnosis procedure that
enables to determine location, cause and kind of fault; 3) After detection of a fault
set, which blocks carrying out of the memory function, it is necessary to activate
the repair process – replacement of faulty elements by spares, which initially are
on a chip [9-12]. Thereby, aforementioned actions are oriented on the growth of
yield without significant additional time and material costs. To repair, it is neces-
sary to apply a special mechanism for memory repair, by means of replacement of
faulty components by fault free ones from the chip reserve.

As a rule the testing procedure is realized by BIST-block (Built-In Self Test),
which is hardware high performance generator of test patterns, as well as an ana-
lyzer (signature) of memory outputs responses on test patterns. Repair analysis
consists of definition of covering possibility of faulty memory elements by availa-
ble reserve components. Memory module has two parts: 1) functional cells, which
are used for data and program storage, when a module is used in SoC; 2) reserve
or spare cells, which are designed for memory repair in case of functional cells
failure. Functional and spare cells are joined together in the form of columns and
rows. When a fault is detected, a row (a column), which includes a faulty element,
is disconnected from the functional structure of memory cells and a row
(a column) from chip spare is connected on its place. The number of reserve com-
ponents is limited, so it is necessary to apply a special mechanism of effective al-
location of repair resource, for support of faulty memory elements covering by the
minimally possible quantity of redundant rows and columns.

The search procedure of faulty cells covering by the minimal quantity of re-
serve rows and columns described above can be realized as on-chip repair module
or external one. In the second case data about errors is received from external
modules; they are processed and pass to the controller that provides memory re-
pair. It results in considerable time loss. So, the preferable solution is on-chip
module realization, when data about errors is passed from BIST directly. Such
mechanism is called as BIRA [37,38,45,46,51,52] – Built-In Repair Analysis.

Memory repair is realized by disconnection of faulty elements (rows and col-
umns of a matrix) by means of electrical fusion of metal links and connection of
spare ones. The fuse process can be electrical or laser [18]. Electrical fuse equip-
ment has smaller dimensions than laser one and it is used more frequently. Fuse is
carried out by means of an instruction set, which can be stored in permanent

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 321

memory inside chip (hard repair) or in random-access memory (soft repair)
[37-38]. Soft repair has several advantages: when a defect appears, a new cor-
rected instruction can be recorded to memory easily; there provide economic use
of chip area and sufficient reliability. Hard repair enables to use a simplified man-
ufacturing test and provides detection of errors, which can not be fixed by soft re-
pair under certain circumstances.

The structure of on-chip memory analysis and soft repair processes (BISR)
[40,45,46] is represented in Fig. 12.14. There are: 1) Chip activation, filling of the
BISR register by zero values. 2) Run the BIST controller. Memory testing and ac-
cumulation of information about faulty cells in the BIRA register. 3) Transfer of
information about faulty cells to the BISR register for subsequent fusion. 4) Scan-
ning the BIRA registers for obtainment of faults information 5) Run the fuse con-
troller in record mode and transfer the repair instructions from the BISR. 6) Chip
restart. Recording the fuse information to the BISR register, replacement of faulty
rows and columns by reserve components is fulfilled. 7) Run the BIST controller
for repeated memory testing and verification of the repair result correctness.

The idea of an algebra-logical memory repair method is in optimal replacement
of memory matrix faulty cells by means of solution of the fault covering task by
spare rows and columns. The objective function is defined as minimization of the
memory matrix spares (S), necessary for its repair in the process of SoC operation
by means of synthesis of a disjunctive normal form of faulty elements covering

and subsequent choice of the minimal conjunctive term Y)C,R(X ttt ∈ that sa-

tisfies the limitations on a number of spare rows and columns c
max

r
max S,S , which

enter into the logical product:

).X&,....,&X&,....,&X&X(X},X,....,X,...,X,X{YX

,)X(minZ

t
m

t
i

t
2

t
1

tnt21t

SS;SS;SSS
t

n,1t

t

c
max

cr
max

r
max

cr

==∈

=
≤≤≤+=

BIRA Register

BIRA

BIST Interface

BISR
Register

B
IS

T
 C

o
n
tr

o
lle

r

Repair
Instruction

Soldering
Controller

Te
s
t

A
cc

es
s

 P
o
rt

Fig. 12.14 Scheme of on-chip memory analysis and repair

322 V. Hahanov

There is every resultant conjunctive term of the function Y is formed from row

and column identifiers)C,R(X ttt = , which cover all faults in a memory matrix.

The best solution is the minimal length term by Quine that contains rows and col-
umns covering all faults. Particularly a solution can contain not a row (a column),
when available columns (rows) from memory spare are enough for matrix repair.
The model of determination process of minimal spares quantity, which covers all
detected faults in a memory matrix, consists of the following items:

1. Transformation of two-dimensional model of memory matrix faults to a fault
coverage table by spare rows and columns. To achieve the aim the topological
memory model in the form of fault identification matrix is considered:

⎩
⎨
⎧

=⊕←
=⊕←==

.0fT0
;1fT1

M,MM ijij (12.32)

Here matrix coordinate is marked by 1, if the fault-free behaviour function f of a
cell and test reaction gives one value that corresponds to a fault. After detection all

faults the fault coverage table is formed m,1j;n,1i,YY ij === , where columns

correspond to a set of detected faults m and rows are the numbers of columns and
rows of a memory matrix, where faults are occurred:

⎩
⎨
⎧

∅=∩←
∅≠∩←

==
.F)R(C0
;F)R(C1

Y,YY
jii

jii
ijij (12.33)

Instead of the two-dimensional metrics components C and R it is used one-
dimensional vector concatenated from two sequences C and R; its power is equal
to n = p + q:

).X,...,X,...,X,X,X,...,X,...,X,X(X*X

)R,...,R,...,R,R(*)C,...,C,...,C,C(R*CX

qpjp2p1ppi21
rc

qj21pi21

++++==

===
 (12.34)

At that there exists one-to-one correspondence between elements of the initial sets
(C, R) and resultant vector Х that is determined in the first column of the matrix
Y. It is necessary to say that the transformation R*CX = is carried out for ease
of consideration and subsequent forming of disjunctive normal form within the
bounds of uniformity of variables, which form the Boolean function. If the proce-
dure is not carried out the function will be defined on two kinds of variables,
which contain rows and columns of a memory matrix.

2. Forming CNF for analytical, complete and exact solution of the covering task.
After forming of a covering matrix that contain zero and unit coordinates the syn-
thesis of analytical covering form by means of CNF writing by columns is carried
out. Here a number of conjunctive terms are equal to quantity of table columns
and every disjunction is written by one values of the column:

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 323

).XX()YY(Y qjpj

m

1j
1}qjY,pjY{qjpj

m

1j
∨∧=∨∧=

=
=

=
 (12.35)

As follows from last expression every column has two coordinates only, which
take on unit value, and quantity of logical products is equal to total quantity of
faults m, detected in a memory matrix.

3. Transforming CNF to DNF enables to see all solutions of the covering task. For
that it is necessary to apply the operation of logical multiplication and the minimi-
zation (absorption) rules to a conjunctive normal form to get disjunctive normal
form:

}.1,0{k),Xk...Xk...XkXk(Y j
in

j
ni

j
i2

j
21

j
1

w

1j
=∧∧∧∧∧∨=

=
 (12.36)

The generalized notation of DNF is represented here, where a number of terms is

equal to n2w = in the limit, n is a number of rows in the set (C,R) or a number
of the variables Х in a matrix Y, on a set of which all solutions (fault coverings

by spares) are formed; if i
j
i Xatk is equal to zero the variable Хi becomes

inessential one.

4. Choice of minimal and exact solutions of the covering task. The procedure is re-
lated to the determination of minimal length conjunctive terms in obtained DNF.
Subsequent transformation of a memory matrix to rows and columns on basis of
use the correspondence defined above enables to write the minimal covering or set
of ones by two-dimensional metrics of rows and columns that satisfies the
objective function conditions (limitations) on spare quantity.

Example 12.4. Fulfill the process of a memory matrix repair in the part of deter-
mination of minimal quantity of spares, covering all faults. A memory matrix with
faults and spares [11] is represented in Fig. 12.15.

1 2 3 4 5 6 7 8 9 10

11
10
9
8
7
6
5
4
3
2
1

Fig. 12.15 Memory matrix with faults and spares

324 V. Hahanov

The matrix has limitations on diagnosis and repair possibilities for ten faulty
cells, which are defined by two rows and five columns. In compliance with item 1
of the model of determination process of minimal quantity of spares, which cover
all detected faults of a memory matrix, the coverage table of ten faults

)F,F,F,F,F,F,F,F,F,F(F 10987654321= by eleven rows is formed as in (12.37).

111XR

1XR

11XR

1XR

1XR

11XR

11XC

1XC

111XС
11XС

11XС

FFFFFFFFFFF
X

Y

1110

108

97

85

74

63

58

47

35

23

12

10987654321
j

i

→
→
→
→
→
→
→
→
→
→
→

=
 (12.37)

The rows are represented by concatenation of the columns С and rows R, which
are in the one-to-one correspondence with the variable vector Х:

).X,X,X,X,X,X,X,X,X,X,X(X
)R,R,R,R,R,R(*)C,C,C,C,C(R*C

1110987654321

108754387532
=≈

≈=
 (12.38)

In compliance with the coverage table-construction of DNF is performed, the
terms are written by unit values of columns:

).XX)(XX)(XX)(XX)(XX(&
&)XX)(XX)(XX)(XX)(XX(Y

11111311510293

9581736264
∨∨∨∨∨
∨∨∨∨∨=

 (12.39)

The following transformations related to obtainment of disjunctive normal form
are based on application of the Boolean algebra identities, which enable to carry
out: logical multiplication of all ten multiplicands and subsequent minimization of
DNF terms by means of application the operator)abaab(=∨ , absorption axiom
and removal of the same terms. Skipped intermediate calculus, the final result is
represented in the following form:

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 325

.XXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

XXXXXXXXXXX
XXXXXXXXXXXX

XXXXXXXXXXXXX
XXXXXXXXXXXX

XXXXXXXXXXXX
XXXXXXXXXXXXX

XXXXXXXXXXXY

96111083
96118729611721
961183296111031
961132111108653

1186532106531
65321111079421

1110894231187942
11794211183942

1110879696111071
1110942311139421

118543254321

∨
∨∨∨
∨∨∨
∨∨∨

∨∨∨
∨∨∨

∨∨∨
∨∨∨

∨∨∨
∨∨∨

∨∨=

 (12.40)

The choice of minimal length terms, which contain 5 variables in given case,
forms a set of minimal solutions:

.XXXXXXXXXXXXXXXY 1065316532154321 ∨∨= (12.41)

Transforming the obtained function to a coverage that contains variable designa-
tions in the form of rows and columns of a memory matrix, enables to represent
solutions in the following form:

.RRCCCRСССССССССY 838523853287532 ∨∨= (12.42)

All obtained minimal solutions satisfy the requirements (limitations) on spare
quantity that is determined by the numbers:

)2R(&)5С(rr ≤≤ .

Other solutions, determined in DNF, have no interest because they have not op-
timal covering of faulty cells that is determined by quantity of variables in the
terms of (rows + columns), greater than five. Subsequent technology of embedded
repair of faulty cells consists of electrical reprogramming of an address decoder of
a column or a row of a memory matrix. In respect to memory, represented in Fig.
9, a procedure of writing or reading of information at access to any cell of column
2 will be readdressed to reserve column 11. In compliance with the last obtained
solution (first term of DNF function Y) other faulty columns will be replaced on
fault-free ones from memory reserve: 3 – on 12; 5 – on 13; 7 – on 14, 8 – on 15.

The computational complexity of algebra-logical memory repair method in the
part of solving of the covering problem [35] is determined by the following
expression:

FF 2RC2Q ×++= , (12.43)

where F2 is costs related to DNF synthesis by logical multiplication of two-
component disjunctions (fault coordinate is defined by row and column numbers),

where their quantity is equal to the quantity of faulty cells; F2RC ×+ is upper

326 V. Hahanov

limit of computational costs, which are needed for minimization of the obtained
DNF on maximum set of variables which is equal to the total quantity of rows and
columns RC + .

In the worst case, when coordinates of all faulty cells are not correlated by rows
and columns (they are unique), for instance, diagonal faults, the computational
complexity of the matrix method is dependent only on the quantity of faulty cells
and its analytic notation is transformed to the following view:

).F21(22F222RC2Q
FFF

F2RC
FF ×+×=××+=×++= ×≤+ (12.44)

If instead of fault set power to use quantity m of them, the previous expression can
be represented more simplified form:

).1m2(2)m21(2Q mm +=×+×= (12.45)

According to the SoC Functional Intellectual Property Infrastructure, the matrix
repair method on the basis of solving covering problem is implemented into a chip
as one of I-IP components, designed for the functional support of SoC matrix
memory and SoC in whole.

12.10 Conclusions

A deductive-parallel fault simulation method [14-17] focused on large dimension
digital projects of gate and register levels to obtain descriptions of the fault detec-
tion table and assess the quality test coverage of prior given class defects. The unit
under test model is represented in the form of structures, truth tables, Boolean eq-
uations, cubic coverage describing components of complex digital system
implementing into in the SoC. The proposed method combines fault simulation
dignity of deductive fault detection lists, effective from the point of view of ma-
thematics, and the implementation of parallel procedures targeting high-speed dig-
ital devices with the gate, register and system descriptions levels.

Algebra logical method with the built-in diagnosing defects in the functional
blocks SoC and its two modifications using analysis FDT, in order to reduce the
volume and subsequent calculations related to the construction of DNF, which
creates all decisions on diagnosis SoC functionalities in the real time is offered.
The methods of approximation and exceptions include two procedures targeting
the diagnosis of single or multiple defects. The proposed algebra logical method is
a universal in terms of the defects number that is present in the scheme and allows
for a single procedure to place an accurate diagnosis, indicating a single or mul-
tiple faults, all of which are required to cover all unit value coordinates of Output
Response Vector (ORV).

A truncated infrastructure IP service for functionalities SoC is offered. It is a
different from standard by minimum set of built-in-diagnosis procedure in real
time and provides an opportunity to services: testing functions in operations on the
basis of embedded set of test pattern generators, output analysis of test reactions;

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 327

diagnosis of a prior given depth of defects localization by using a boundary scan
register of IEEE 1500 standard, fault simulation with a view to the providing the
first two procedures executing by using the fault detection table.

A mapping process model of test synthesis is offered, which use different em-
bedded test generators libraries for SoC functionalities, which allows substantially
reduce the time construction of tests intended to verify the digital system in opera-
tion and fault detection.

In terms of the memory repair there is some scientific novelty. Memory SoC in
the near future will be more than 90% of the SoC-based software. Urgently to de-
velop not only the models and methods of rapid and accurate diagnosis, but also
the creation of technologies for the repair of defective cells by using embedded
service means in real time and at all stages of the product life cycle. This would
essentially reduce the chip pins, increase yield, reduce time-to-market, and the
cost of maintenance services as well as the exclude the external tools to diagnose
and repair.

Algebra logical memory repair method based on the faulty cells coverage the
spare elements by using apparatus of Boolean algebra. The method is quadratic
computing complexity and can be implemented as software in the silicon outside,
and inside in the form of a supplementary service module correction of defects
that would automatically restore the memory elements in the operation.

The classical coverage challenge operates with two one-dimensional vectors
(X, F), where the operator P allows you to find cover with minimal subset of the X
components covering its functionality all the elements of F:

minmin XFX)F,X(PX =∩←= . The problem of one-dimensional vector F

properties coverage by two-dimensional matrix)RC(M ×= needs to bring both

components to a single metric. This coordinate system has the common denomina-
tor for the both components. Naturally, such a metric for matrix M and vector F is
a one-dimensional structure. Therefore, in this case, a priori need to complete the
conversion of two-dimensional structures (the matrix defects memory) to a one-
dimensional by the operation concatenation)R*C(X = for the purpose of subse-

quent coverage task decision by applying formal actions defined operator
)F,X(PXmin = .

A method of optimal repairing memory defects, which is different from the
analogue technology of algebra logical defects coverage by two-dimensional ma-
trix memory topology that provides the minimum and complete solutions for the
repairing in real time, based on the use of redundant components in the form of
rows and columns of memory.

The practical significance of the method lies in its implementation in the infra-
structure IP service of SoC functional blocks. This allows significantly (by 5-10%)
increase the percentage of yield to the market through electronic technology reco-
vering defective memory elements in the production and operation phase, and in-
crease the life cycle of memory through its repair in real time.

Built-in-repair focused on all components of the system is addressed: memory,
multiprocessors, matrix processors. If you want to repair the other structures, they
should be given the redesign with injection of addressable components.

328 V. Hahanov

Addressability and regularity of the components in the digital system transforms it
to a reliable, robust, maintainable and fault tolerance one.

Algebra-logical presentation of the coverage task is very attractive to the op-
timal solution to the all tasks of synthesis and analysis of complex systems, where
there is the problem of mapping (coverage): 1) specification – with a set of library
components; 2) defects – with test sequences; 3) functionalities – with test-
benches; 4) faulty elements – with the spare; 5) states of the UUT – with the line
of observation.

In order to reduce the problem’s dimension of mapping, the original model
must be structured by hierarchy creating, which is typical and is widely used in
design automation systems (ESL-, TLM-technology).

Priori looks very attractive FDT in the form of Boolean function in terms
of compactness, which is transforms into a compact DNF terms, as all possible
combinations of the faulty components to be repaired for the concrete output
response vector.

Yervant Zorian (EWDT Symposium 2007, Yerevan): "Currently, one of the
main problems for SoC design is the development of technologies and methods for
embedded repair logic, which takes no more than 10% of the silicon area."

Further investigation in terms of the proposed material focused on the devel-
opment maintainable structure of the System on a Chip and built-in hardware
module BIRA for embedded repair of any component when defects are appear in
the process of manufacturing and operating.

References

[1] Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital System Testing and Testable
Design, p. 652. Computer Science Press, Rockville (1998)

[2] Aitken, R.C.: Modeling the Unmodelable: Algorithmic Fault Diagnosis. IEEE Design
and Test of Computers, 98–103 (1997)

[3] Armstrong, D.B.: A Deductive Method for Simulating Faults in Logic Circuits. IEEE
Transactions on Computers, 464–471 (1972)

[4] Bayraktaroglu, I., Orailoglu, A.: The Construction of Optimal Deterministic Partition-
ings in Scan-Based BIST Fault Diagnosis: Mathematical Foundations and Cost-
Effective Implementations. IEEE Transactions on Computers, 61–75 (2005)

[5] Benso, A., Carlo Stefano, D., Prinetto, P., Zorian, Y.: A Hierarchical Infrastructure
for SoC Test Management. IEEE Design and Test of Computers, 32–39 (2003)

[6] Bergeron, J.: Writing testbenches: functional verification of HDL models. Springer,
Heidelberg (2003)

[7] Bernardi, P., Veiras Bolzani, L.M., Rebaudengo, M., Sonza Reorda, M., Vargas, F.L.,
Violante, M.: A New Hybrid Fault Detection Technique for Systems-on-a-Chip.
IEEE Transactions on Computers, 185–198 (2006)

[8] Cha, H., Rudnick, E.M., Patel, J.H., Iyer, R.K., Choi Gwan, S.: A Gate-Level Simula-
tion Environment for Alpha-Particle-Induced Transient Faults. IEEE Transactions on
Computers, 1248–1256 (1996)

[9] Chandramouli, R.: Infrastructure IP design for repair in nanometer technologies.
IEEE Design and Test of Computers 17 (2005)

[10] Clark, C.J., Ricchetti, M.: Infrastructure IP for Configuration and Test of Boards and
Systems. IEEE Design and Test of Computers, 78–87 (2003)

12 Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service 329

[11] Densmore, D., Passerone, R., Sangiovanni-Vincentelli, A.: A Platform-Based tax-
onomy for ESL design. Design&Test of computers, 359–373 (September-October
2006)

[12] DaSilva, F., Zorian, Y., Whetsel, L., Arabi, K., Kapur, R.: Overview of the IEEE
P1500 Standard. In: ITC International Test Conference, pp. 988–997 (2003)

[13] Ghosh, S.: Behavioral-Level Fault Simulation. IEEE Design and Test of Computers,
31–42 (1988)

[14] Hahanov, V., Kteaman, H., Ghribi, W., Fomina, E.: HEDEFS – Hardware embedded
deductive fault simulation. In: Proceedings of the 3rd IFAC Workshop, Rydzyna,
Poland, pp. 25–29 (2006)

[15] Hahanov, V., Hahanova, I., Obrizan, V.: High-performance deductive fault simula-
tion method. In: Proceedings of the 10 IEEE European test symposium, Tallinn, Es-
tonia, pp. 91–96 (2006)

[16] Hahanov, V.I., Hahanova, I.V., Khan, S.U., Obrizan, V.I.: Topological fault simula-
tion method. In: Proceedings of the 11th International Conference Mixdes Design of
Integrated Circuits and Systems, Szczecin, pp. 211–214 (2004)

[17] Hahanov, V.I., Babich, A.V., Hyduke, S.M.: Test Generation and Fault Simulation
Methods on the Basis of Cubic Algebra for Digital Devices. In: Proceedings of the
Euromicro Symposium on Digital Systems Design DSD 2001, Warsaw, Poland, pp.
228–235 (2001)

[18] Hamdioui, S., Gaydadjiev, G.N., Van de Goor, A.J.: The State-of-the-art and Future
Trends in Testing Embedded Memories. In: Records IEEE International Workshop on
Memory Technology, Design, and Testing, San Jose, CA, pp. 54–59 (August 2004)

[19] Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a case
study in reverse engineering. IEEE Design & Test of Computers 16(3), 72–80 (1999)

[20] Harris, I.G.: Fault Models and Test Generation for Hardware-Software Covalidation.
IEEE Design and Test of Computers, 40–47

[21] Huang, R.-F., Chen, C.-H., Wu, C.-W.: Economic Aspects of Memory Built-in Self-
Repair. IEEE Design and Test of Computers, 164–172 (2007)

[22] Inoue, T., Miyazaki, S., Fujiwara, H.: Universal Fault Diagnosis for Lookup Table
FPGAs. IEEE Design and Test of Computers, 39–44 (1998)

[23] Jain, S., Stroud, C.: Built-in Self Testing of Embedded Memories. IEEE Design and
Test of Computers, 27–37 (1986)

[24] Khoche, A., Sherlekar, S.D., Venkatesh, G., Venkateswaran, R.: A Behavioral Fault
Simulator for Ideal. IEEE Design and Test of Computers, 14–21 (1992)

[25] Levendel, Y.H., Menon, P.R.: Comparison of fault simulation methods – Treatment
of unknown signal values. Journal of Digital Systems 4, 443–459 (1980)

[26] Menon, P.R., Chappell, S.G.: Deductive Fault Simulation with Functional Blocks.
IEEE Transactions on Computers, 689–695 (1978)

[27] Niggemeyer, D., Rudnick, E.M.: Automatic Generation of Diagnostic Memory Tests
Based on Fault Decomposition and Output Tracing. IEEE Transactions on Comput-
ers, 1134–1146 (2004)

[28] Nishida, T., Miyamoto, S., Kozawa, T., Satoh, K.: RFSIM: Reduced fault simulator.
IEEE Transactions on Computer-Aided Design, CAD-6.3, 392–402 (1987)

[29] Novak, O., Gramatova, E., Ubar, R.: Handbook of testing electronic systems, p. 402.
Czech Technical University Publishing House (2005)

[30] Ozguner, F.: Deductive Fault Simulation of Internal Faults of Inverter-Free Circuits
and Programmable Logic Arrays. IEEE Transactions on Computers, 70–73 (1986)

[31] Pomeranz, I., Reddy, S.M.: On Fault Simulation for Synchronous Sequential Circuits.
IEEE Transactions on Computers, 335–340 (1995)

330 V. Hahanov

[32] Pomeranz, I., Reddy, S.M.: Aliasing Computation Using Fault Simulation with Fault
Dropping. IEEE Transactions on Computers, 139–144 (1995)

[33] Pomeranz, I., Reddy, S.M.: On Maximizing the Fault Coverage for a Given Test
Length Limit in a Synchronous Sequential Circuit. IEEE Transactions on Computers,
1121–1133 (2004)

[34] Rashinkar, P., Paterson, P., Singh, L.: System-on-chip Verification: Methodology and
Techniques. Kluwer Academic Publishers, Dordrecht (2002)

[35] Rossen, K.: Discrete Mathematics and its Applications, p. 824. McGraw-Hill, New
York (2003)

[36] Silberman, G.M., Spillinger, I.: Functional Fault Simulation as a Guide for Biased-
Random Test Pattern Generation. IEEE Transactions on Computers, 66–79 (1991)

[37] Shoukourian, S., Vardanian, V., Zorian, Y.: SoC Yield Optimization via an Embed-
ded-Memory Test and Repair Infrastructure. IEEE Design and Test of Computers,
200–207 (2004)

[38] Shoukourian, S., Vardanian, V., Zorian, Y.: SoC Yield Optimization via an Embed-
ded-Memory Test and Repair Infrastructure. IEEE Design and Test of Computers,
200–207 (2004)

[39] Tabatabaei, S., Ivanov, A.: Embedded Timing Analysis: A SoC Infrastructure. IEEE
Design and Test of Computers, 24–36 (2002)

[40] Treuer, R., Agarwal, V.K.: Built-In Self-Diagnosis for Repairable Embedded RAMs.
IEEE Design and Test of Computers, 24–33 (1993)

[41] Srikanth, V., Drummonds, S.B.: Poirot: Applications of a Logic Fault Diagnosis
Tool. IEEE Design and Test of Computers, 19–30 (2001)

[42] Waicukauski, J., Lindbloom, E., Rosen, B., Iyengar, V.: Transition Fault Simulation.
IEEE Design and Test of Computers, 32–38 (1987)

[43] Walczak, K.: Deductive Fault Simulation for Sequential Module Circuits. IEEE
Transactions on Computers, 237–239 (1988)

[44] Wang, X., Hill, F.G., Mi, Z.: A sequential circuit fault simulation by surrogate fault
propagation. In: Proc. 1989 IEEE International Test Conference, pp. 9–18. IEEE
Computer Society, Los Alamitos (1989)

[45] Youngs, L., Paramanandam, S.: Mapping and Repairing Embedded-Memory Defects.
IEEE Design and Test of Computers, 18–24 (1997)

[46] Youngs, L., Paramanandam, S.: Mapping and Repairing Embedded-Memory Defects.
IEEE Design and Test of Computers, 18–24 (1997)

[47] Zhao, J., Meyer, F.J., Lombardi, F.: Analyzing and Diagnosing Interconnect Faults in
Bus-Structured Systems. IEEE Design and Test of Computers, 54–64 (2002)

[48] Zhong, Y., Dropsho, S.G., Shen, X., Studer, A., Ding, C.: Miss Rate Prediction
Across Program Inputs and Cache Configurations. IEEE Transactions on Computers,
328–343 (2007)

[49] Zorian, Y.: What is Infrastructure IP?. IEEE Design & Test of Computers, 5–7 (2002)
[50] Zorian, Y., Gizopoulos, D.: Guest editors’ introduction: Design for Yield and reliabil-

ity. IEEE Design & Test of Computers, 177–182 (2004)
[51] Zorian, Y., Shoukourian, S.: Embedded-Memory Test and Repair: Infrastructure IP

for SoC Yield. IEEE Design and Test of Computers, 58–66 (2003)
[52] Zorian, Y., Shoukourian, S.: Embedded-Memory Test and Repair: Infrastructure IP

for SoC Yield. IEEE Design and Test of Computers, 58–66 (2003)
[53] Zorian, Y.: Guest Editor’s Introduction: Advances in Infrastructure IP. IEEE Design

and Test of Computers 49 (2003)

M. Adamski et al. (Eds.): Design of Digital Systems and Devices, LNEE 79, pp. 331–361.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

13 Evolutionary Test Generation Methods for
Digital Devices

Yuriy A. Skobtsov1 and Vadim Y. Skobtsov2

1 Donetsk National Technical University, Department of Automated Control Systems
2 Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Department of

Control System Theory
e-mail: ya_skobtsov@list.ru

Abstract. In this chapter, we will discuss how evolutionary methods can be used
for test generation of digital circuits. In present time it is strongly investigated the
new direction in theory and practice of artificial intelligence and information sys-
tems – evolutionary computations. This term is used to generic description of the
search, optimizing or learning algorithms, based on some formal principles of nat-
ural evolutional selection, which are sufficiently applied in solving various prob-
lems of machine learning, data mining, databases etc [1]. Among this approaches
following main paradigms can be picked out: genetic algorithms (GA), evolution-
ary strategy (ES), evolutional programming (EP), genetic programming (GP). The
differences of these approaches mainly consist in the way of target solution repre-
sentation and in different set of evolutional operators used in evolutional simula-
tion. Classical GA uses the binary encoding of problem solution and basic
genetic operators are crossover and mutation. In ES solution is represented by real
numbers vector and basic operator is mutation. EP uses FSM as solution represen-
tation and mutation operator. In GP problem solution is represented by program,
crossover and mutation operators are applied. Now this classification is enough
relative and interaction of basic evolutionary paradigms each other takes place.

13.1 Genetic Algorithms and Their Modifications

GA are random directed search algorithms, which emulate natural evolution
process, to construct (sub)optimal solution of given problem. Any solution is
represented with a chromosome or individual string of elements (genes). Classical
"simple" GA [2] uses binary strings (for example, 0011101) to represent an indi-
vidual. Therefore it looks very attractive to use GA techniques for a solution of
ATPG problems for DS at structural or functional description levels. On the solu-
tion set the fitness (goal) function is determined. Fitness function allows to evaluate
the closeness of each individual to the optimal solution – the ability of survival.
Classical “simple” GA uses three basic operators: reproduction, crossover and mu-
tation. Using these operators, the population (the set of individuals-solutions of
considered problem) evolves from one generation to another. Classical steady state
GA may be represented as the following sequence of operations shown in Fig.13.1.

332 Y.A. Skobtsov and V.Y. Skobtsov

Here parent individuals are selected with best fitness values. Then crossover is
performed with a high probability Pc. The formed offspring are mutated with a low
probability Pm and inserted in current population. To maintain the steady
individuals number, the population reducing is performed.

Initial population generation

Parents selection for recombination

Creating offspring of selected pairs
of parents – crossover operator

Mutation of created individuals –
mutation operator

Insertion of new individuals to the
current population

Reducing a number of individuals
to given number in new population

- reinsertion

Search of the best individual in
final population

Checking criterion.
Finish (Yes/No)?

Fitness function evaluation

Fig. 13.1 Classical “simple” GA flow chart

At present there were suggested numerous modifications and generalizations of
GA: 1) new variants of each GA step implementations (Fig.13.1); 2) essential
modification of algorithm structure[3]. Here we can mark up different methods of
parent selection, population reduction. Different genetic operators of crossover, of
mutation. Further we briefly consider different variants of every GA step
implementation and generalization of GA.

13.1.1 Parents Selection

At this step the individuals producing offspring are selected. The first step is a fit-
ness assignment. Each individual in the selection pool receives a reproduction
probability depending on the own objective value and the objective value of all
other individuals in the selection pool. This fitness is used for the actual selection
step afterwards.

In selection, the individuals producing offspring are chosen. As the result of se-

lection intermediate population tP
~

 from current population tP (t is the genera-

tion number) is generated: tt PP
~→ . Selection operator is based on fitness

function values. Various selection methods are used fitness value information

13 Evolutionary Test Generation Methods for Digital Devices 333

differently and it significantly influences on GA effectiveness. Each individual t
ia

in the selection pool receives a reproduction probability)(t
is aP depending on the

own fitness value and the fitness value of all other individuals in the population.

And selection of individual t
ia from current population tP to intermediate popu-

lation tP
~

 is executed basing on the probability)(t
is aP . The calculation methods

of the probability)(t
is aP determines different selection methods:

roulette wheel selection [3]

∑
=

=
N

j

t
j

t
it

is

af

af
aP

1

)(

)(
)((13.1)

where)(t
iaf - fitness function value, N – population size;

linear rank-based selection [3]

)
1

1
)((

1
)(

−
−−−=

N

i

N
aP t

is βαα , (13.2)

where 21 ≤≤ α is chosen randomly, αβ −= 2 .
On tournament selection [3], m individuals are chosen randomly, then the best

of them is selected as parents. This procedure is continued until intermediate pop-

ulation tP
~

 is not formed. Here selection parameter is Nm ≤≤2 .

13.1.2 Crossover Operators

Once the parents are selected, the crossover operator is used to generate offspring
with a high probability Pc. The basic genetic operators and their properties can
now be explained. In single-point crossover one crossover position

}1,...,2,1{ −∈ Lk , L is length of an individual, is selected uniformly at random and

the substrings exchanged between the individuals about this point, then two new
offspring are produced (Fig. 13.2).

A: 0 1 1 1 0 1 0 1 0
B: 1 0 0 1 1 0 1 0 1

A’: 0 1 1 1 0 0 1 0 1
B’: 1 0 0 1 1 1 0 1 0

Fig. 13.2 Single-point binary crossover

For multi-point crossover, m crossover positions }1,...,2,1{ −∈ Lki , mi ,1= ,

are chosen at random with no duplicates and sorted in ascending order. Then, the

334 Y.A. Skobtsov and V.Y. Skobtsov

substrings between successive crossover points are exchanged between the two
parents to produce two new offspring (Fig. 13.3).

A: 0 1 1 1 0 0 1 1 0 1 0
B: 1 0 1 0 1 1 0 0 1 0 1

A’: 0 1 1 0 1 1 1 1 0 1 1
B’: 1 0 1 1 0 0 0 0 1 0 0

Fig. 13.3 Multi-point binary crossover

The section between the first variable and the first crossover point is not
exchanged between individuals [2,3].

Uniform crossover [2,3] makes every locus a potential crossover point. A cros-
sover mask, the same length as the individual structure is created at random and
the parity of the bits in the mask indicate which parent will supply the offspring
with which bits, for example, 1 is the first parent, 0 is the second parent
(Fig. 13.4).

Binary mask 1 0 0 1 0 1 1 1 0 0

First parent 1 0 1 0 0 0 1 1 1 0

Offspring 1 1 0 0 0 0 1 1 1 1

Second parent 0 1 0 1 0 1 0 0 1 1
Fig. 13.4 Uniform crossover

13.1.3 Mutation

As new offspring are generated, each gene is mutated with low probability mP .
Usually the probability of mutating a gene is set to be inversely proportional to the
number of genes in chromosome (dimensions). The more dimensions one
individual has, the smaller is the mutation probability.

For binary individuals mutation means flipping of variable values. For every
individual the variable value to change is chosen uniform at random with low
probability]01,0;001,0[∈mP (Fig. 13.5).

0 1 1 1 0 0 1 1 0 1 0

0 1 1 0 0 0 1 1 0 1 0

Fig. 13.5 Binary mutation

In some cases inversion mutation operator is used. Two bits are chosen in
individual at random and then chosen bits are exchanged (Fig. 13.6).

13 Evolutionary Test Generation Methods for Digital Devices 335

0 1 1 1 0 0 1 1 0 1 0

0 1 1 0 1 0 0 1 0 1 0

Fig. 13.6 Inversion mutation

Note that mutation serves the crucial role for providing the gene values that
were not present in the current population. It enables new individual properties
acquisition. Thus mutation makes the entire search space reachable, despite popu-
lation finiteness. In spite of the fact that crossover has the most efficient search
mechanism, it does not guarantee the reachability for each point of search space.

So, for solving any problem with genetic algorithm we must first of all define:
individual and population, genetic operators, fitness function.

In ATPG problem solutions are represented as binary patterns or sequences of
patterns also. Therefore it looks very attractive to use GA techniques for a deci-
sion of ATPG problems for DS at structural or functional description levels [2,3].
Further we will use different variants implementation and generalization of GA
for test generation problem of digital circuits.

13.2 Genetic Test Generation Algorithm for Digital Circuits

The objective of digital circuits testing is to generate a compact sequence of
binary test vectors that has high coverage of manufacturing defects. The test se-
quence applied should be able to uncover all possible defects that could occur in
manufacturing process. That is, the output response of defective chip (or board)
should be different from the outputs of a good chip. At the same time real physical
defects are modeled with faults, such as stuck at fault, short, bridge fault, transis-
tor stuck open, transistor stuck close and so on. Mostly stuck at fault modeling is
used in digital testing. Here nodes are assumed to be stuck at constant either ‘0’ or
‘1’ for the purpose fault modeling. So each node may have two types of this fault,
namely, s-a-0 and s-a-1. The approach usually used is to try to generate a test se-
quence that detects all single stuck-at faults in circuit under test. We would like to
ensure, that generated test sequence contains a test for each single stuck-at fault in
circuit under test. After a high fault coverage for single stuck-at faults is achieved,
the additional test sequences may be generated that target other fault models, such
as transistor stuck, delay fault model so on.

Generally the test generation process consists of two phases. At the first phase
there are used the methods that do not direct to specific single fault but take the
whole class of single stuck-at faults in circuit under test. Here test sequence is
generated for faults that are checked enough easily with using not big computer
power. Before the pseudorandom methods were used at this phase but now also
genetic algorithms are exploited. Then the fault simulation determines the fault
coverage and unchecked fault list for which it is necessary to generate test
sequences.

336 Y.A. Skobtsov and V.Y. Skobtsov

So at second phase for each unchecked fault test sequence is generated using
deterministic (or genetic) algorithm. Then again the fault simulation is used for
reducing unchecked fault list. This process cycles until the high fault coverage is
reached. We will discuss the genetic algorithm using basically at the second phase
of test generation, where test sequence is generated for specific unchecked fault.

13.2.1 Test Generation Genetic Algorithms for Combinational
Circuits

At first, the genetic algorithms were used for test generation of combinational cir-
cuits where output signals depend only on input signals and do not depend on state
variables are usually represented with flip-flops. Here, as a rule, the individual
corresponds to single binary test vector X=(x1,x2,…, xn). The test generation prob-
lem may be formulated analytically for given single fault in one output combina-
tional circuit[4]. Let f(X) is a Boolean function implemented with correct

combinational circuit and φ(X) - Boolean function implemented with fault circuit.
Then Boolean expression D(X)=f(X)⊕φ(X) is called a difference function. It is ob-
vious that D(X)=f(X)⊕φ(X)=1 defines the values of test vector X. So the test gen-
eration problem is reduced to search of Boolean equation D(X) =1. In the case
multi outputs combinational circuit the difference function may be generalized in
the following way:

)).()((...))()(())()(()(2211 XXfXXfXXfXD mm ϕϕϕ ⊕∨∨⊕∨⊕=

Also it is obvious, that a solution of Boolean equation D(X) =1 gives the test
vector for given fault.

This problem may be efficiently solved with using genetic algorithm. In this
case the individual represents the binary test vector X=(x1,x2,…, xn,), where xi=0,1
and n equals circuit inputs number. So the population is composed of binary test
vectors and standard genetic operators of crossover and mutation may be used in
this case. Usually the number of individuals in population is proportional to inputs
number n (for example 3n)[5]. We will consider the genetic algorithm using for
test generation for example of circuit shown in Fig. 13.7.

x4

x5

x1

x2

x3

x6

Fig. 13.7 Combinational circuit

For the convenience, all signal values for any inputs vectors are represented in
Table13.1.

13 Evolutionary Test Generation Methods for Digital Devices 337

Table 13.1 Signal values for inputs vectors

X1 X2 X3 X4 X5 X6

0 0 0 1 1 1

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 0 0

1 0 0 1 1 1

1 0 1 1 0 0

1 1 0 0 1 0

1 1 1 0 1 0

From the beginning the initial test vectors population is generated in a random
way. For example, the initial population for the circuit in Fig. 13.7 is shown in
Table 13.2.

Here in second column the detected single stuck-at faults are shown for each
population individual (binary test vector). Obviously, that test vector detecting
more faults should have more chance to be inserted in test sequence. So, at initial
stage we take the fitness function h=Fn*r, where Fn is the number of newly de-
tected faults with corresponding individual (test vector) and r is “bonus” for each
detected fault (for our example r=10). In real program system, the number of new-
ly detected faults Fd is determined with using of fault simulation. Obviously the
best individual (binary vectors 011 and 101) with maximum fitness function value
h=Fd*r must be inserted in test. Let for example the binary vector (101) be in-
serted in test. Further, for next population generation it is necessary to apply the
genetic operators such as one(two)-point crossover and mutation. Once two
individuals are selected, the crossover operator is used to generate two offsprings.

Table 13.2 Initial population for the circuit in Fig. 13.7

Input vector
(x1, x2, x3,)

Detected faults
Fitness function value

h= Fn *r

000 x4 = 0, x5 =0, x6=0 3∗10

011 x2=0, x3=0, x5 =1, x6=1 4∗10

101 x2=1, x4=0, x5 =0, x6=0 4∗10

111 x6=1 1∗10

As new individuals are generated, each bit is mutated with given small prob-
ability Pm. In simplest case of binary-coded GA mutation may be done by flipping
a random selected bit. While in a non-binary coded, mutation involves randomly
generated a new value in a specified position. So mutation produces incremental
random changes in the offspring generated through crossover and brings new

338 Y.A. Skobtsov and V.Y. Skobtsov

properties for individuals. Each new individual (test vector) must be evaluated
with fitness function. Obviously, the fitness function must take into account newly
detected faults number for given test vector. Let after two generations current test
set consists of two test vectors (101, 011), which detect (non detect) the faults
shown in Table 13.3. The current population of vectors is presented in Table 13.4.

Table 13.3 The detected and undetected faults (based on two vectors)

Test
vectors

Detected faults
with current test sequence

Undetected faults with current test sequence

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1

011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1

Table 13.4 The detected faults and fitness function value

Input vector
(x1, x2, x3,)

Detected faults
Fitness function value

h= Fd *s+ Fn *r

000 x4≡0, x5≡0, x6≡0 0*10+3*1=3

001 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4

100 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4

110 x1≡0, x2≡0, x4≡1, x6≡1 2*10+2∗1=22

Note that here we have fitness function h= Fd*s+ Fn*r where Fn is the number
of newly detected faults and Fd is the number of earlier detected faults with corre-
sponding individual (test vector). Here r=10 is bonus of each newly detected fault
and s=1 is bonus of each early detected fault. In concordance with Table 13.4 data
the test vector (110) must be inserted in test sequence because it has maximum fit-
ness function value. In the next Table 13.5 the situation is shown for current test
that consists of three vectors and has only two undetected faults.

Table 13.5 The detected and undetected faults (based on three vectors)

Test vectors Detected faults Undetected faults with current test sequence

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1

011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1

110 X1≡0, x4≡1 x1≡1, x3≡1

Similarly may be shown that at the next step the test vector (010) must be in-
serted in test, because it detects the last faults x1≡1, x3≡1. Overall test generation
genetic algorithm on base described approach of may be represented by way of
following pseudocode:

13 Evolutionary Test Generation Methods for Digital Devices 339

Test generation(circuit)
 {
 Circuit initialization;
 Initial vectors population generation;
 While(stopping criteria met)
 {
 fault simulation;
 fitness function evaluation;
 insertion the best vector in test;
 genetic operators execution;
 reproduction;
 crossover;
 mutation;
 new population generation;
 }
 test sequence output;
 }

Here at initialization stage the fault list is generated and other auxiliary opera-
tions are executed. Usually the initial vectors population is generated in a random
way, but a priori and available information about good vectors may be used also.
Fitness function evaluation is based on fault simulation. Note that in described ap-
proach the genetic algorithm solves at each step the local problem of next test vec-
tor search (not whole test sequence) in contrast basic GA, described in section
13.1 which is used as a rule for global problem solution. In next section we shall
consider the global GA application for test generation for sequential circuits,
where the individual represent the whole test sequence but not single test vector.

13.2.2 Test Generation Genetic Algorithms for Sequential
Circuits

The test generation problem for sequential circuits is much more complex and its
target setting depends on observation time test strategy [4]. Let good sequential
circuit realizes finite state machine (FSM) A=(X,Y,Z,δ,λ), where X is the input
set, Y is the set of states, Z is the output set, δ:Y×X→Y is the next state function,
λ:Y×X→Z is the output function. Since we consider the structure model of se-
quential circuit then functions δ and λ are implemented with combinational
circuits accordingly to Hafmen model:

Y=(y1,...,yk), where yi=(0,1) for ki ,1= ; (13.3)

 X=(x1,…, xn), where xj=(0,1) for nj ,1= ; (13.4)

Z=(z1,…, zm), where zj=(0,1) for mj ,1= . (13.5)

Further we use the following notations[6]: X(1), X(2),…, X(p) denotes an input se-
quence of length p; Y(y0,0), Y(y0,1),…, Y(y0,p) denotes the state sequence defined
by initial state y0; Z(y0,1),…, Z(y0,p) denotes the output sequence defined by initial
state y0 and input sequence X(1), X(2),…, X(p); zj(y0,t) is the value at the j-th
primary output after simulation step t. Using these notations the next state is
defined by the following function:

340 Y.A. Skobtsov and V.Y. Skobtsov

⎩
⎨
⎧

≠−
=

=
0))1,(),((

0
),(

0

0
0 forttyYtX

fory
tyY

δ
. (13.6)

Similarly, the output Z(y0,t) is defined by the function λ . A fault f transforms a
state machine M into a machine Af =(Y,X,Z,δf,λf), where functions δf,λf are de-
fined analogically. Further we consider the different observation (respectively
detection) time test strategy for sequential circuits.

Definition 13.1. A single stuck-at fault is detectable by input sequence X(1),
X(2),…, X(p) with respect the single observation time test strategy (SOT) [6,7], if

)),(),((:),(,,},1,0{ btqzbtrzqrkiptb f
ii =∧=∀≤∃≤∃∈∃ , with r an initial

state of fault-free circuit and q an initial state of faulty circuit.
According to above definition, a fault is SOT-detectable if there is a unique

moment t such that independent of the initial states r and q of good and faulty ma-
chines the output values on a particular output are different. For sequential circuits
sometimes the other strategy is used that allows more precisely to define the fault
detectability.

Definition 13.2. A single stuck-at fault is detectable by input sequence X(1), X(2),…,
X(p) with respect the multiple observation time test strategy (MOT) [6,7] if:

)),(),((:}1,0{,,),(btqzbtrzbkiptqr f
ii =∧=∈∃≤∃≤∃∀ .

The fundamental difference between these two strategies is the following one. Ac-
cording to MOT, the is an individual time moment for each possible initial state
pair (r,q), such that output signals on particular output are different. Obviously,
that MOT strategy is more general then SOT. Some fault may be MOT-detectable
but not SOT-detectable. So the test generation goal for sequential circuit is to find
a input sequence X(1), X(2),…, X(p) for that it holds true Def.13.1 or Def.13.2 de-
pending on using strategy. It is natural that the second strategy requires more
computer resources. So, we use basically the SOT strategy. But the genetic based
test generation algorithms allow generalizing the obtained results to MOT strategy
in contrast to structural methods where it is problematic.

a) individuals b) populations

Fig. 13.8 Encoding of individuals and population in GA

13 Evolutionary Test Generation Methods for Digital Devices 341

Further for GA test generation of sequential circuits we will use as an individ-
ual a test sequence that is represented by binary table (Fig. 13.8a). Here the
column number is determined with circuit inputs number and the test length de-
termines the row number. In this case the population consists of the fixed number
of test sequences, possibly, different length (Fig. 13.8b).For the chosen encoding
of individuals and populations the following problem oriented genetic operators of
crossover can be used [4,6,8]:

1. The classic one point crossover. In this case the table is interpreted as a single
binary string.

2. The horizontal crossover where parents are crossed with subtables after some
time point t<p as is shown at fig.13.9a.

3. The vertical crossover where parents are crossed with random selected colomns
as is shown at fig 13.9b.

4. The free vertical crossover. It is executed in such a way, when crossover point
is selected for each row and each pair is crossed by corresponding substrings.
Note that this modification is the generalization of above vertical crossover.

5. The uniform crossover where each offspring gene is copied from one the
parents accordingly to random binary mask as it is shown in Fig.13.4.

6. Structural crossover is the generalization of vertical crossover where also the
parents are crossed by columns. Here it is used the exchange by columns
groups corresponding to one treelike subcircuit. At that approach the exchange
is directed to internal circuit check points that increases the test generation ef-
fectiveness for internal faults. Note that this crossover may be applied dynami-
cally that is the partition of circuit to treelike subcircuits is doing for specific
fault of the given circuit.

a) horizontal crossover b) vertical crossover

Fig. 13.9 Operations of the horizontal and vertical crossing GA

So, crossover is implemented with using above six independent operators that
are selected randomly with probability P1, P2,…, P6, which are derived
experimentally under condition P1+ P2+ P3+ P4+ P5+P6=1.

342 Y.A. Skobtsov and V.Y. Skobtsov

Then, as usually the generated offspring are mutated and three types of this
operator accordingly are used with probabilities

1mP ,
2mP and

3mP :

1. Delete of one input vector from the random chosen position. Application of this
operation allows to reduce the length of the generated test sequence in that
case, when a remote vector does not worsen test properties of sequence;

2. Addition of one input vector in random position, that also allows to extend the
search area of decisions;

3. Random replacement of bits in a test sequence.
Similarly, the random selection is used between these operators.

13.2.3 Problem-Oriented Fitness Functions for Test Generation

The fitness function type plays key role in the GA-based search process. There-
fore, it is important to consider different types of fitness and evaluation functions,
which are used in GA-based test generation methods.

The goal of testing process is to obtain different output values of correct and
faulty devices. Therefore, the fitness function may be defined as measure of signal
value changes in the simplest case [4]. In this case a fault free logical simulation
may be used. Another and more accurate approach is to define fitness function as
measure of detected faults. In this case more complex fault simulation is used, but
such approach allows obtaining quite good results. Obviously, that the number of
signal value changes and the number of detected faults are important parameters
having influence on the effectiveness of test generation process. There are certain
parameters, which are important to the evaluation function definition and to the ef-
fectiveness of test generation for sequential circuits in modern test generation
systems:

1. N is the number of nodes in circuit
2. Nd is the number of nodes with different values in the fault free and in faulty

circuits
3. T is the total number of flip–flops
4. Td is the number of flip–flops that changed state
5. E is the number of events in the fault free and in faulty circuits
6. L is the length of test sequence
7. F is the total fault number;
8. Fd is the number of detected faults;
9. Fdt is the number of faults propagated to flip–flops;
10. D is fault detectability;
11. W is sequence power;
12. O is flip-flop observability;
13. Ef is the number of events in the faulty circuit;
14. Ts is the number of flip–flops which are hardly to set.

In addition to mentioned above parameters, the effectiveness of test generation al-
gorithms depends on basic components of genetic algorithms such as population
size, crossover and mutation probability, generation numbers, etc.

13 Evolutionary Test Generation Methods for Digital Devices 343

In CRIS [9] the hierarchical simulation technique is used that allows to reduce
memory expenses and to deal with very large circuits. The classical GA is used, in
which population evolves from generation to generation through reproduction,
crossover and mutation. Each individual represents the test sequence. System
CRIS is based on continued mutation of test sequence and its analysis with simu-
lation procedure. Given system demonstrates good results (it is fast and produces
compact test sequences with high fault coverage for combinational and sequential
circuits) but has essential drawback, namely, the manual tuning GA parameters for
each circuit.

System GATEST [10,11] is oriented on the sequential digital circuits and based
on two–level GA. The first level GA generates single test vectors; the second level
GA generates test sequences from these obtained vectors. Accordingly in the first
level GA individuals correspond to single test vectors, while in the second level
GA they are test sequences. GA uses different crossovers:1–pointed, 2–pointed,
uniform.

The first–level GA is subdivided by three phases. Thus, GA has four phases.
The evaluation functions are different according to the algorithm phase:

• in the first phase, the algorithm goal is the flip–flop initialization and so evalu-
ation function is defined as follows

T

T
Th d+=1 , (13.7)

here evaluation process uses only the fault-free logical simulation;
• in the second phase, all flip–flops are assumed to be initialized, and the goal is

to find new test vectors able to detect additional faults; so evaluation function is
represented as:

FT

T
Fh d

d +=2 ; (13.8)

• the third phase comes if the generated vector does not detect additional faults
and uses the following evaluation function

NF

E

FT

F
Fh dt

d ++=3 ; (13.9)

If the generated vector detects additional faults, then algorithm returns back to
phase 2; otherwise if number of the unused vectors exceeds the definite limit than
algorithm comes to phase 4;
• in the fourth phase test sequences are generated from designed vectors and GA

uses the following evaluation function

TLF

F
Fh d

d +=4 . (13.10)

In phases 2–4, evaluation uses the fault simulator that slows down the test genera-
tion process. This package shows good results: high fault coverage and low

344 Y.A. Skobtsov and V.Y. Skobtsov

execution times for sequential benchmark circuits. But it also has the same
drawback as the manual tuning GA parameters (alphabet size, iterations number,
population size, mutation rate).

The interesting approach is used in package DIGATE [11,12]. It is organized in
two phases:

• the first phase selects a target fault and GA activates it to a flip–flop;
• in the second phase GA searches the sequence that makes the target fault ob-

servable at the circuit primary outputs. It uses the distinguishing sequences that
able to propagate a fault effect from flip–flop to primary outputs. The distin-
guishing sequences are pre–computed and stored for future use. The test
sequences are constructed as concatenation of activating and distinguishing se-
quences. Evidently, here each individual is a sequence. The evaluation uses the
fault simulation. Accordingly the phases 1 and 2 have the following evaluation
functions

)(1.0)(7.02.01 dsf TTEOWDh +++++= , (13.11)

)(1.0)(1.08.02 dsf TTEOWDh +++++= . (13.12)

The weighted coefficients were found heuristically for each phase, but they are
universal for any circuit. It is advantageous difference of considering method from
previous packages.

In another system GATTO the individuals are input sequences too [13]. In this
package the basic effort is directed to determination of the evaluation function as
the measure of closeness to the optimum solution. The individuals are evaluated
with fault simulation according to their activity (the more lines with different signal
values in correct and fault circuits the more value of detectability probability). So,
the evaluation function depends on three basic parameters: the weighted number of
gates with different signals in correct and faulty circuit, the weighted flip–flop
number with different signals in correct and faulty circuit, and the sequence length.
The weights are empirical measures of gate and flip–flop observability accordingly.
The last parameter is used for improvement of test sequence compactness. So,
evaluation function for a single input vector combines the above parameters

),(),(),(2211 fvfcfvfcfvh += , (13.13)

here f is the fault being considered and v is the input vector; 1c and 2c are the

normalization constants, while 1f and 2f represent the weighted sums mentioned

above.
The evaluation function H for the entire sequence s is computed according to

the best vector it contains

)),((max),(fvhLHfsH i
i

svi

∗=
∈

. (13.14)

Here constant)1;0(∈LH ; i is a position of the vector iv in the sequence s. Due

using this evaluation function, shorter sequences are preferred and the final test
length is reduced.

13 Evolutionary Test Generation Methods for Digital Devices 345

This approach does not contain the handle tuning of GA parameters for each
circuit also.

The most effective is the test generation method that combines advantages of
both structural deterministic and GA-based approaches. In this case the phase of
entering fault and primary output activation is executed with deterministic method
and multi-valued logic, and the phase of justification (the search of circuit inputs
justified requirements obtained at first phase) is carried out with GA. Also the per-
spective approach is application of parallel GA where several populations of solu-
tions are simultaneously evolved, basically independently of each other. But time to
time the exchange of the best solutions is executed between populations in different
methods. The nature of test generation problem is hierarchical, therefore it is rea-
sonably to use hierarchical GA, where at every level different GA is applied.

13.2.4 GA Test Generation Implementation

The general approach to genetic test generation lies as follows. We use the indi-
vidual encoding with binary tables as shown above at previous section in fig.13.8.
For such kind of individual encoding and population representation, the above de-
scribed special problem-oriented genetic operators are used. The test generation
process contains three phases. The first phase goal is the fault sensitization. Here
the signal difference correct and fault circuit is propagated to pseudooutputs.
Then the second phase is executed for test properties improvement for sequence
generated at first phase. This phase is algorithm kernel and use the genetic
algorithm. After that at second phase, the test sequence is generated, the fault si-
mulation is necessary to determine the undetectable faults.

The general pseudocode of test pattern generation is shown bellow.

Test_ generation(sequential circuit)
{
 fault set generation();
 while(fault coverage < given threshold)
 {
 //Phase1
 goal = fault sensitization();
 if (goal == empty set)
 exit;
 //Phase2
 sequence = GA test sequence generation(goal);
 // Phase3
 if (sequence != empty)
 fault simulation(sequence)
 else // test sequence for goal fault not found
 mark fault as untested();
 }
}

GA test sequence generation(goal=f)
{
 For (i=0 ; i<MAX_GENERATIONS; i++)

346 Y.A. Skobtsov and V.Y. Skobtsov

 {
 For (each individual s in population P)
 Fitness_evaluation(s, f);

 new P=∅;
 for (k=0 ; k< MAX_NEW_INDIVIDUALS ; k++)
 {
 selection of 2 sequences s1 and s2 in P;
 crossover(s1,s2); //генерируются две особи
 mutation(si);

 newP=newP∪s;
 }
 P=(best MAX_individuals from newP and P);
 for(each individual s in population P)
 if(s detect f)
 return s;
 }
 return(no_sequence)
}

Two fault simulation algorithms were integrated in order to accelerate test gen-
eration. The first one is a single pattern parallel fault propagation (SPPFP) method
that is used in phase 1 for checking activation of any given fault by randomly gen-
erated sequence. Here the fitness functions defined with formulas (13.13, 13.14)
are used. The evaluation function is computed with the help of the second fault
simulation algorithm that belongs to the group of parallel pattern single fault prop-
agation (PPSFP) methods. The second one was developed especially to using in
GA based test generation algorithm.

13.3 Distributed Test Generation Methods

Today numerous modifications and generalizations of GA are suggested [4]. The
parallel GA (PGA) are roughly upcoming and very promising from the theoretical
investigation and practical application points of view [14-16].

13.3.1 GA Parallelization

Inherent GA "internal" parallelism and possibility of the distributed calculations
promote to development of parallel GA. The first papers in this direction were
appeared in 60-ties of XX century, but only in 80-ties, when accessible tools of
parallel realization were developed, the PGA investigations adopted systematic
mass character and practical orientation. Numerous models and realizations were
developed in this direction, some of which are represented below.

First of all, it is necessary to note that the basis of PGA is population structur-
ing such as decomposition to few subpopulations (subsets). This decomposition
can be fulfilled with different methods, which define different types of PGA.
Further we shall consider the modern methods of the PGA realization (Fig. 13.10).

13 Evolutionary Test Generation Methods for Digital Devices 347

 a) b) c)

Fig. 13.10 Different types of parallel GA: a) global PGA, b) distributed PGA, c)
cellular PGA

Most known is global parallelism which is represented on Fig. 13.10a. This
model is based on simple (classic) GA in which the fitness function calculations
are performed in parallel. This approach is faster, than classic sequential GA, and
does not usually require balance on the load as on different processors. This model
often named "master-slave". Many researchers use the pool of processors for the
increase of speed execution of the algorithm. At the same time the independent
programs running of algorithm at different processors are executed essentially
faster than at one processor. It must be noted, that in this case there is no co-
operation between different runs of algorithm. It is extraordinarily simple method
of parallelization and it can be very useful. For example, it can be used for the so-
lution of the same task with different initial conditions. GA allow effectively use
this method by virtue of their probabilistic nature. At the same time we have min-
imum program changes, but advantages are considerable.

In distributed PGA (Fig.13.10b) a population is divided by a set of subpopula-
tions, which evolve independently (accordingly to simple GA) and can communi-
cate with neighbor subpopulations in certain manner after some “isolation time”.
This parallel paradigm is often implemented in an extraordinarily popular "model
of islands" (coarse grain), where great number of subalgorithms simultaneously
work in parallel, exchanging in the search process by some individuals. This model
assumes direct realization on the computing systems with MIMD- architecture.
Thus every “island” corresponds to its own processor.

In cellular PGA (fine grain) (Fig. 13.10c) there is a set of subpopulations con-
sisting of only one individual. Given individual-subpopulation can communicate
only with neighbor individuals-subpopulations at once. A neighbor relationship is
defined as certain regular structure named as grid (Fig.13.10c). For cellular PGA
parallelism is usually implemented on the computer systems with SIMD-
architecture, where every processor represents subpopulation-individual. Although
another works are known where authors use single possessor computers and
systems with MIMD-architecture.

13.3.2 Parallel Test Generation Method Based on the “Master-Slave”
Model

In this section for parallelization of GA we use a model «master-slave», because it
requires the small changes in the existing software implementation of test
generation GA and gives quite good results.

348 Y.A. Skobtsov and V.Y. Skobtsov

In this approach, every processor has its own copy of population. The

calculation expenses of fitness-functions values (witch use a logical simulation)
are evenly distributed to all processors. For all processors, the same list of faults is
used. Therefore, for n individuals and P processors, we take the nP / individuals
to every processor. The values of fitness-functions are calculated by the slave pro-
cessors and are sent to one selected processor-master, which collects all informa-
tion and passes it to all processors. Every processor has information about the val-
ues of fitness-function for all individuals and can create next population
generation on this basis.

So, the processor-master executes central part (kernel) of test generation algo-
rithm, while the logical simulation (fault-free and fault) of digital circuits are im-
plemented on processors-slaves. The fault simulation is most critical from point of
view of calculation expenses. Different methods of the distributed fault simulation
are known, which are mainly based on decomposition: 1) circuits on subcircuits;
2) test sequence on subsequences. We will take combined approach of these two
methods (Fig. 13.11).

Fig. 13.11 Data flow diagram for distributed test generation and fault simulation algorithms

On the first and second stages the simulated input sequences are distributed be-
tween working processors. On the first stage every working processor is loaded by
the generation (simulation) of one subsequence. For balance the list of undetected
faults is broken up on approximately identical subgroups.

At the end of each of three stages, the points of synchronization are placed.
When a processor-master arrives at these points, it goes to the wait mode, while all
working processors will not make off the tasks that guarantee global correctness of
algorithm. Thus, work is distributed between a processor-master and workers as
follows. Processor-master:

• Performs all input-output operations with an user and file system: it reads
circuit description and fault list, and writes the generated input test sequence;

• Initially runs «slave» processes on available resources;
• Distributes the copies (internal form) of circuits and fault lists to every working

processor;

13 Evolutionary Test Generation Methods for Digital Devices 349

• Organizes the process control of test generation: as soon as input sequence has
to be fault simulated, it sends the proper message for activating of working pro-
cessors; when working processors finish their work, processor- master receives
results and accordingly changes global data structures (general fault list, values
of fitness-functions for individuals etc).

A processor-slave keeps the local copy of circuit (in internal format) and fault list.
Every «slave» takes an input sequence from the «master» and determines the
faults are detected by this sequence by the logical simulation and calculates the
values of fitness-function for individuals. It sends the obtained results to the mas-
ter and wait next task. As the population size is much larger than a number of pro-
cessors, good balance in the load of processors is achieved. For every working
processor the change of local fault list with the detected and undetected faults
from other working processors requires a lot of resources and it is critical.

Final results (test input sequences and fault coverage) are near to the results
obtained on the single possessor computer system with the use of a similar algo-
rithm. Quality of decision (test fault coverage) is not here lost and is in most cases
got better, and time of test generation grows short substantially.

13.3.3 Distributed Fault Simulation

Described above distributed genetic algorithm of test generation is based mainly on
the distributed fault simulation algorithm. Now we will shortly describe also this
method.

One of the central problems of digital device diagnostic is fault simulation of
digital circuits. Persistent increasing of modern device complexity makes the task
of reducing fault simulation time still very important. One of possible ways to
speed up fault simulation procedure is adaptation of existing algorithms for multi-
processors computing systems (clusters) implementation.

Distributed fault simulation is organized in similar way and is based also on the
«master-slave» approach like distributed test generation. One processor here is se-
lected as master and remained processors – as slaves. There exist several ap-
proaches to implementation of distributed fault simulation: partitioning of circuit
and partitioning of fault list. Our algorithm is based on the fault list partitioning.

Data flow chart for this scheme of computational process is showed on fig.13.11.
Every slave processor performs fault simulation on the data received from the

master: circuit description and fault sublist. The pseudocode of this process is giv-
en below.

slave_process_fault_simulation()

{
 search_of_master_process();
 if(master_was_found)
 {
 receive_circuit_description();
 receive_fault_sublist();
 parallel_fault_simulation()
 send_list_of_undetected_faults();
 }
}

350 Y.A. Skobtsov and V.Y. Skobtsov

The kernel of this process is the procedure of «parallel_fault_simulation»,
which is a regular fault simulator that used in single processor implementation. In
our case we used home built PROOFS-based fault simulator, described in [17].
Mark the main advantages of this algorithm that makes it very successful: 1) dy-
namic fault-list processing: detected fault is eliminated from fault list in the same
time it was detected, no simulation performs for this fault further; 2) fault sorting
which allows to include in one group the faults that cause the same simulation
events; 3) the technique of functional fault injection.

Common data flow chart diagram that describes interaction among master and
slaves processes is shown on Fig. 13.11. It is necessary to notice that master proc-
ess performs two types of exchange operation. File input/output operations are
necessary to obtain both circuit description and test sequence to be simulated. In
contrast all data interchange among master and slave process is performed via
TCP/IP sockets. This fact enables to construct computing cluster on the common
used computers. Authors used 100 Mbit local intranet as such cluster.

Data flowchart diagram shows that master processor does not perform any si-
mulation but organizes the computing:

• Reads the circuit description to be simulated and input test sequence;
• Sends this description and test sequence for all client processors;
• Receives from slaves fault simulation results and makes common report.

Algorithm for master process for distributed simulation is given below.

distributed_simulation(circuit,test)
{
 number_of_slaves = search_of_slaves();
 if(number_of_slaves != 0)
 {
 input_circuit_description();
 input_test();
 make_full_fault_list();
 partiting_the_fault_list(number_of_slaves);
 for(i=0 ; i< number_of_slaves ; i++)
 {
 send_to_client_i_circuit_description ();
 send_to_client_i_part_of_fault_list();
 send_to_client_i_test_sequence();
 }
 for(i=0 ; i< number_of_slaves ; i++)
 {
 receive_list_of_undetected_faults();
 }
 make_report();
 }
}

Master process starts with a search procedure of calculation clients. Further it
divides full fault list into sublists prorate number of found clients. Then for all cli-
ents the following operation sequence is fulfilled in cycle: sends circuit descrip-
tion in internal format; sends test sequence and corresponding short fault list.

13 Evolutionary Test Generation Methods for Digital Devices 351

After that master transfers to state of waiting data from clients. At the next step,
master receives the results of fault simulation from each client and makes general
reports: fault coverage, common simulation time, time of simulation on every cli-
ents. The constructed in described way distributed fault simulation algorithm
allows a high parallelization of simulation process.

13.3.4 Distributed Test Generation Based on the “Model of
Islands”

In this section the "model of islands" is used for GA parallelization. Here separate
subpopulation, which is initialized randomly and evolved independently, is real-
ized on each processor. In given iteration, number subpopulations are exchanged
by some individuals in certain way. Each processor selects the best individuals of
own subpopulation and send them to neighbor processors subpopulations (neigh-
borhood concept is a parameter of method). These individuals are accepted in
neighbor processors subpopulations and then independent evolution on each proc-
essor-“island” is continued.

In this approach there are more chances to obtain high-quality solution, since
different areas of search space are investigated on different processors [19]. More-
over, in this case it is possible the reducing of search time due to the best
individual migration.

In contrast to previous method (“master-slave” model), where GA works only
on the central processor-master and processors-slaves are used only for fitness
function computing, in this approach full GA is implemented on every processor.
In other words, each processor executes full cycle of GA evolution operations:
fault-free and fault logical simulation, test sequences generation. Each processor
works with full circuit and fault list. At the same time there are at least two reasons
of speeding-up test generation process. Every processor operates with subpopula-
tion of less dimension, then less time is required. Due to the best test sequences
migration each processor can detect faults quicker then in case of independent op-
eration in subpopulations. One of the most important parameters of this model is
population power (individual number) of subpopulation. The influence and
selection of this parameter will be considered below.

The main factors that affect on migration in "model of islands" (hence it affects
the effectiveness) are as following:

Migration rate, that is the number of exchanged individuals;
Selection method of individuals for migration;
Isolation time which defines generation number between migration phases;
Strategy of individual replacement with migrated individuals from neighbor

subpopulations; here also different approaches exist the worst individuals are re-
placed, random individuals are replaced in subpopulation etc.;

Replication strategy of migrating individuals. Under first approach migrating in-
dividual also stays in starting subpopulation. The second approach demands re-
moval of migrating individual from starting subpopulation. The first strategy can

352 Y.A. Skobtsov and V.Y. Skobtsov

result in domination the same strong individuals in different subpopulations.
Under the second strategy, an individual can return back to start subpopulation in
some time that results in extra computing expenses;

Topology which defines neighborhood relationship between subpopulations,
here exchange is fulfilled only between neighbor subpopulations.

Several standard methods of selected individuals exchange between subpopula-
tions exist. Time expenses to individual migration between subpopulation depend
of used exchange method.

• Exchange by the ring:
In this method individuals can migrate to one neighbor subpopulation. In this

case the number of 1−= nm , where n is the number of computers;

• Two-way exchange by the ring:
Here, likewise to previous method, exchange of individuals is executed

between the closest neighbors, and neighborhood relation is defined by
two-dimensional structure.

13.3.5 Implementation and Experimental Investigations of
Distributed Genetic Algorithms of Test Generation and
Simulation

Developed algorithms were implemented with using blocking sockets technology
in C++ Builder programming environment. For computer experiments the com-
puting cluster on the base of 100 Mbit local intranet was used. The cluster nodes
have the following parameters: Intel Celeron 2 GHz processor, RAM 256 MB, OS
Windows XP.

For research of effectiveness of suggested algorithms following time parame-
ters were calculated during computer experiments: whole time of simulation proc-
ess, events number in fault-free and fault simulation, whole number of events. For
comparison the experimental results of algorithms from [2] were taken.

S
im

ul
at

io
n

sp
ee

di
ng

-u
p

 Number of processors-clients

Fig. 13.12 Speeding-up of fault simulation for
circuit 35938 according to worker number

S
pe

ed
in

g-
up

Circuits

Fig. 13.13 Speeding-up according to
circuit complexity

At first let consider experimental results obtained for distributed GA implemen-
tation based on the “worker-farmer” model. The diagram of simulation speeding
up for circuit s35938 (ISCAS89), under condition of change of processors-client
number from 1 to 8, is represented in Fig. 13.12. Given experimental results con-
firm the effectiveness of suggested parallelization method of simulation algorithm.

13 Evolutionary Test Generation Methods for Digital Devices 353

Finally, in the Fig. 13.13 the simulation results for large circuits of ISCAS
benchmark are represented. These data show the relative speeding-up with in-
crease of circuit size. It is explained by that fact that for large circuits the expenses
of parallelization are reduced compare with fault simulation expenses.

Further let consider the results of implementation of test generation distributed
GA which is based on the “islands model”. In table13.6 there are represented ex-
perimental results, which show the speeding-up and test quality for several circuits
from ISCAS89. In this case 8 processors and ring migration method were applied.

Table 13.6 The speeding-up and test quality

Circuit from ISCAS89 benchmark
Speeding-up

relatively to one processor
Fault coverage increase

S1196 1.59 +0.8%

S1238 1.8 +0/6%

S1423 1.1 +12.8%

S1488 6.1 +7.1%

S5378 5.16 +1.3%

S35932 5.35 +1.6%

Obtained results confirm the effectiveness of test generation and fault simula-
tion algorithms parallelization. The comparison of experimental results show that
“farmer-worker” model gives more speeding-up in comparison with “island mod-
el” relatively to one-processor system and essentially easier in software implemen-
tation. But “island model” raises fault coverage of generated tests especially for
large circuits. Therefore parallelization based on the “island model” has a reason
only in case when generated tests have unsatisfactory fault coverage for “farmer-
worker” model.

13.6 Hierarchical GA of Test Generation for Highly Sequential
Circuits

Usually the sequential circuits have the (re) set sequences that allow installing the
memory elements to some determined states. In this case the test generation is es-
sentially simpler. The general and hard case of testing sequential machines is test-
ing sequential machines without possibility to set it in initial state. This kind of
machines with memory is often called highly sequential machines or circuits. In
this case other approaches are applied [11,18].

Hierarchical approach can be effectively applied and implemented for sequen-
tial circuits at structural (gate) level. In this case at low level the some characteris-
tic sequences are generated and then are used under test generation at high level.

Given approach is applied to test generation in highly sequential circuits for
hard-to-test faults. Here two-phase strategy is used for test generation: 1) fault
activation; 2) fault propagation. The iterative combinational circuit is used as a

354 Y.A. Skobtsov and V.Y. Skobtsov

model of sequential circuit (Fig. 13.14). At the first phase, an attempt is made to
derive a sequence that activates the chosen fault and propagates its effect to pri-
mary outputs (POs) or flip-flops (FFs). At the second phase, the fault effect is
propagated from FFs to POs of iterative combinational circuit with assistance of
distinguishing sequences basically. So, the basic problem in fault activation is
transition of circuit under test (correct and faulty) to specified set conditioned by
obtained FFs input values (pseudo inputs).

A transition sequence is generated with assistance of genetic algorithm. In or-
der to generate such kind of sequences with assistance of the dynamic state tra-
versal algorithm, a table of visited states is mapped to the list of input vectors in
the test set [18]. However, if ending state was not visited, then transition sequence
is generated with help of GA. In this case, initial population consists of random
sequences of given length and the sequences, which solve problem partially. For
example, it can be input sequences that set only some FFs to necessary values. In
this case different input sequences can set different FFs to necessary values and,
obviously, can be useful in transition sequences generation.

… …

1

PRIMARY OUTPUTS

Time Frame j … Time Frame 0 Time Frame 1 … Time Frame k

1

0

s-a 0

PRIMARY INPUTS

FE

FE FE

FE

Fig. 13.14 Two-phase strategy test generation in iterative combinational circuit

In this case, some characteristic sequences are generated at low level that per-
mits to set the flip-flops at some deterministic values that simplify a problem test
generation for sequential circuits.

For test generation at high level there are useful the following input
characteristic sequences. First of all we define set and reset sequences as follows:

1. Si-sequences. A flip-flop set sequence is a sequence that sets the i-th flop to a
1-state;

2. Ri-sequence. Similarly a flip-flop reset sequence is a sequence that resets the
i-th flip-flop to a 0-state.

These sequences associated with flip-flops are intended to (re)set the flip-flops
starting from an unknown state. Such Si (Ri) – sequences are called type A and
generated at preprocessing step of test generation. The sequence type A length is
restricted with 4D, where D is a sequential depth of circuit. If Si (Ri) – sequences
require some flip-flops must be (re) set to specific (not arbitrary) states that these

13 Evolutionary Test Generation Methods for Digital Devices 355

sequences are called type B. These sequences are generated dynamically in case
of need during the test generation process.
3. A pseudoregister justification sequence is a sequence that is able to justify

(set or reset) the required flip-flops states for particular pseudoregister. Here the
pseudoregister is the group of flip-flops.
At second test generation phase a distinguishing sequences propagating fault

effect from FFs to Pos are required. In this case three types of the distinguishing
sequences are used [18] (Fig. 13.15).
4. The distinguishing sequence of type A for FF i is defined as a sequence that

produces two distinct output responses when applied to the fault-free DD for
two initial states, and initial states differ in the i-th position and are independent
of all other FF values.

5. The B-type distinguishing sequence for FF i is a sequence that, when applied
to the fault-free DD with i-th FF = 0 (or 1) and applied to the faulty DD with
the same FF = 1 (or 0) for two initial states, produces two distinct output
responses independent of all other FF values.

6. The C-type distinguishing sequence is similar to type B except that the subset
of FFs are assigned to specific logic values.

For every distinguishing sequence, the “distinguishing power” is assigned. It eva-
luates the possibility of given distinguishing sequence to propagate fault effect
from according FF to PO. A distinguishing sequence has major “distinguishing
power” if it is necessary to set specified values to small number of FFs. Also dis-
tinguishing sequences, which are able to propagate effects of several faults, have
greater “distinguishing power”.

Type A Type B Type C

Fault-free DD Fault-free DD Fault-free DD Faulty DD Fault-free DD Faulty DD

FFs FFs FFs FFs FFs FFs

Uuu1uuu uuu0uuu uuu1uuu uuu0uuu uuu1Suu uuu1Suu

Fig. 13.15 Types of distinguishing sequences

The described characteristic sequences are generated with using the low level
genetic algorithm. In this GA individuals are represented with binary tables and
the problem oriented genetic operators (crossover and mutation) adjust to these ta-
bles as shown in subsection 13.2.2. In this case initial population consists of ran-
dom sequences of given length and the sequences, which solve problem partially.
For example, it can be input sequences that set only some FFs to necessary values.
But different input sequences can set different FFs to necessary values and,
obviously, can be useful in transition sequences generation.

During test generation, the high level genetic algorithm uses as fabricated parts
the characteristic sequences which are generated at low level. It makes the evolu-
tionary search more directional and effective. At the high level the modified genetic
algorithm is used. In the first place the initial population includes not only random
binary tables, but also the generated characteristic sequences. In the second place
more extensive set of genetic operators is used during test generation.

356 Y.A. Skobtsov and V.Y. Skobtsov

Note that the different fitness functions are used at the various level and phases.
Since fault activation and fault propagation phases target different goals, their cor-
responding fitness functions are differed. The used parameters are as follows:

• P1 is a fault detection;
• P2 is a sum of dynamic controllabilities;
• P3 is a matches of FFs values;
• P4 is a sum of distinguishing powers;
• P5 is a induced faulty circuit activity;
• P6 is a number of new visited states.

Parameter P1 is self-explanatory, in particular during the fault propagation phase.
It is included in fault activation phase to cover faults that are propagated directly
to the POs in the time frame in which are excited. P2 indicates the quality of states
to be justified. P3 guides the GA to match the required FFs values in the state to be
justified during state justification, from the least controllable to the most control-
lable FF value. P4 measures the quality of the set of FFs reached by the fault ef-
fects. P5 evaluates the number of events generated in the faulty circuit, with events
on more observable gates weighted more heavily. P6 is used to expand the search
space. Thus, on basis of considered parameters following types of fitness
functions are used.

Fault activation phase:

• Multiple time frames

F1=0,2P1 + 0,8P4; (13.15)

• Single time frame

F2=0,1P1 + 0,5P2 +0,2(P4 + P5 +P6); (13.16)

• state justification

F3=0,1P1 + 0,2(k – P2) + 0,5P3 + 0,2(P5 + P6), (13.17)

where k is a constant;
Fault propagation phase:

F4=0,8P1 + 0,2(P4 + P5 + P6). (13.18)

Note that large value of weight coefficient of the P4 is used in fitness function at
the activation phase. If activation sequence for target fault cannot be generated di-
rectly, then this problem is solved in few stages: at first the fault activation is
fulfilled within a one iteration of combinational iterative circuits, and then the se-
quence for setting flip-flops to target state is generated. Obviously, that the main
parameter is the number of detected faults at the propagation phase. Therefore, co-
efficient of P1 has enough large value. Note that GA cannot find out undetectable
(redundant) faults. Therefore it is desirable to use a deterministic test generation
method for residuary undetectable faults.

13 Evolutionary Test Generation Methods for Digital Devices 357

13.7 Genetic Programming in Test Generation of Microprocessor
Systems

Testing of microprocessor-based systems is a very serious problem. The most
complicated task is that of generation of test sequence. Traditional structural me-
thods of test generation, which normally require the description of the logic circuit
structure on the gate level, are not applicable for such systems owing to very high
task dimension. The generation of test-programs of microprocessor systems (MS)
usually was carried out at function level practically “manually”. At that the test
represents an assembler-program unlike binary sequences for logic circuit.

One of the most perspective approaches to the MS test pattern generation is ap-
proach based on the genetic programming (GP). Checking sequence for MS is a
test program consists of assembler language operators. Classical GP uses for indi-
vidual representation tree-like structures that does not allow operate with arbitrary
programs. Therefore, in given case graph-based program representation, especially
directed acyclic graph (DAG), is applied (Fig. 13.16) [19].

A

ADD
ADDC
AJMP
ANL

CJNE
CLR
CPL
DA

DEC
DIV

DJNZ
INC
JB

JBC
JC

JMP
JNB
JNC
JNZ
JZ

LJMP
MOV

MOVC
MOVX
MUL
NOP
ORL
POP

PUCH
RL

RLC
RR

RRC
SETB
SJMP
SUBB

B

C

D

E

F

H

Epilogue

Prologue
Instruction Library

Previous
Node

Next
Node

reg=R1

PARAMETERS

ORL num,reg
ORL A,#num
ORL A,reg

ORL C,/num
ORL C,!num

ORL A,R1

Fig. 13.16 DAG and Instruction Library (on the left), a sequential instruction and its pa-
rameters (on the right)

Each node of the DAG (Fig.13.16) contains a pointer to the instruction library
and, if necessary to instruction parameters (i.e., immediate values or register spe-
cifications). The instruction library describes the assembly syntax, listing each
possible instruction with the syntactically correct operands. Although instruction

358 Y.A. Skobtsov and V.Y. Skobtsov

library may also contain macros instead of instructions, with the exception of
prologue and epilogue, all entries correspond to individual assembly instruction.

For instance, Fig. 13.16 shows a sequential node that will be translated into an
“ORL A, R1”, i.e., a bit-wise OR between accumulator and register R1. DAGs are
built with four kinds of nodes:

• Prologue and epilogue nodes represent required operations, such as initializa-
tions. They depend both on the processor and on the operating environment, and
they may be empty.

• Sequential-instruction nodes represent common operations, such as arithmetic
or logic ones (e.g., node B, F (Fig. 13.16)). Unconditional branches are consid-
ered as sequential, since execution flow does not split (e.g., node D
(Fig. 13.16)).

• Conditional-branch nodes are translated to assembly-level conditional-branch
instructions (e.g., node A (Fig. 13.16)). All common assembly languages im-
plement some jump-if-condition mechanisms. All conditional branches
implemented in the target assembly languages must be included in the library.

Test programs are induced by modifying DAG topology and by mutation parame-
ters inside DAG nodes. Following genetic operators (mutation and crossover) are
applied:

• Mutation 1 - Add node: a new node is inserted into the DAG in a random posi-
tion. The new node can be either a sequential instruction or a conditional
branch. In both cases, the instruction referred by the node is randomly chosen.
If the inserted node is a branch, ether unconditional or conditional, one of
the subsequent nodes is randomly chosen as the destination. Remarkable, when
an unconditional branch is inserted, some nodes in the DAG may become
unreachable.

• Mutation 2 - Remove node: an existing internal node (except prologue or epi-
logue) is removed from DAG. If the removed node was the target of one or
more branch, parents’ edges are updated.

• Mutation 3 - Modify node: all parameters of an existing internal node are
randomly changed.

• Crossover: two different programs are mated to generate a new one. First, par-
ents are analyzed to detect potential cutting points, i.e., vertices in the DAG that
if removed create disjoint sub-graphs. Then a standard 1-point crossover is
applied to generate the offspring.

Fitness-function of the second level is build on the basis of coverage measure of
VHDL operators. Thus fitness-function exploits the data obtained by means of
Active VHDL (code coverage).

The following fitness-function is used during construction of tests for
microprocessor system:

cacbbabboaoo NNcNNcNNcF ++= , (13.19)

where Nao is the number of linear statements VHDL have been activated by test-
program; Nab –the number if statements have been activated by test program; Naс

13 Evolutionary Test Generation Methods for Digital Devices 359

is the number of case statements have been activated by test program, No, Nb, Nc
the common number of linear, if, case statements accordingly; co, cb, cc are
normalizing constants (co + cb + cc = 1).

The program implementation (Fig.13.17) is carried out in the Active VHDL
environment in accordance with the following scheme. The present population of
test-program (in assembler) is being generated by the method based on the genetic
programming which is implemented beyond Active VHDL.

Fig. 13.17 Program implementation

The algorithm of test program generation is presented below as pseudo code:

generation of test-program initial population;
While (not attained maximum number of generation)
 // loop according to generations
Generation of various paths for each test program;
 While (not attained stop condition)
 //loop according to paths
 {
 Test-program generation according to correspondent path
 Compilation of test-program to binary code
 Entry to Active VHDL environment
 Loading of binary code to ROM of microprocessor
 system VHDL model
 Estimation of test program coverage using Active VHDL
 Exit from Active VHDL environment;
 Calculation of fitness-function according to correspondent path;
 } // end of loop according to paths

360 Y.A. Skobtsov and V.Y. Skobtsov

 Calculation of fitness function for test-program
 (graph);
 //creation of the next generation;
 Selection of parents according to fitness-function value;
 Crossover;
 Mutation;
 Reduction of population;
 } //end of loop according to generations

Generation of initial population is implemented on base of graph of test pro-
gram representation by link list of neighbor nodes. For each node of graph the cor-
respondent link list of adjacent nodes have been processed. The graph complexity
may be vary by tuning the following parameters: number of nodes in graph,
number of macros and number of successor-nodes for each node.

The approbation of the presented approach is done for microcontroller 8051,
the model of which is given on the function level in the VHDL language. The
analysis and comparison of simulation data of circuits at the function and logic
level show that generated test-programs have high fault coverage. At the same
time the generation of checking tests on function level is being done essentially
faster. In Fig .13.18 the results of genetic algorithm of test program generation's
implementation for microcontroller 8051 are shown graphically. As we can see the
fitness function has reached its maximum value equal to 97.36 %.

0

20

40

60

80

100

120

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Generation

M
ax

F
it

n
es

sF
u

n
ct

io
n

V
al

u
e

%

Fig. 13.18 Fault coverage

13.8 Conclusions

This paper presents new perspective approach to DS test generation that is based
on using evolutionary algorithms and hierarchical solution. It was shown that giv-
en approach could be effectively applied to test generation at basic DS representa-
tion levels: FSM and structural, for highly sequential circuits, 2-levels hierarchical
genetic algorithm is applicable;– GP-based approach is applied for MS level.

13 Evolutionary Test Generation Methods for Digital Devices 361

References

[1] Holland, J.P.: Adaptation in Natural and Artificial Systems. In: An Introductionary
Analysis With Application to Biology? Control and Artificial Intelligence 210 (1975)

[2] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

[3] Skobtsov, Y.A., Skobtsov, V.Y.: Modern modifications and generalizations for ge-
netic algorithms. Tavrichesky Bulletin of Information Science and Mathematics 1,
C60–C71 (2004) (in Russian)

[4] Skobtsov, Y.A., Skobtsov, V.Y.: The logical simulation and testing of digital de-
vices.-Donetsk:IAMM NASU 436 (2005) (in Russian)

[5] O’Dare, M.J., Arslan, T.: Hierarchical test pattern generation using a genetic algo-
rithm with a dynamic global reference table. In: First IEE/IEEE international Confer-
ence on – Genetic Algorithms in Engineering Systems: Innovations and Applications,
vol. 414(12-14), pp. 517–523 (1995)

[6] Becker, B., Keim, M.: Hybrid fault Simulation for Synchronous Sequential Circuits.
Journal of Electronic Testing: Theory and Applications 15, 219–238 (1999)

[7] Pomeranz, I., Reddy, S.M.: The multiple observation time strategy. IEEE Transac-
tions on Computers 41(5), 627–637 (1992)

[8] Prinetto, P., Rebaudengo, M., Sonza, R.M.: An Automatic Test Pattern Generator for
Large Sequential Circuits based on Genetic Algorithms. In: Proc. Int. Test Conf., pp.
240–249 (1994)

[9] Saab, D.G., Saab, Y.G., Abraham, J.: CRIS: A Test Cultivation Program for Sequen-
tial VLSI Circuits. In: Proc. Int. Conf. on Computer Aided Design, pp. 216–219
(1992)

[10] Rudnick, E.M., Holm, J.G., Saab, D.G., Patel, J.H.: Application of Simple Genetic
Algorithm to Sequential Circuit Test Generation. In: Proc. European Design & Test
Conf., pp. 40–45 (1994)

[11] Muzuder, P., Rudnic, E.M.: Genetic algorithms for VLSI design, layout & test auto-
mation, p. 336. Prentice Hall PTR, Englewood Cliffs (1999)

[12] Hsiao, M.S., Rudnick, E.M., Patel, J.H.: Automatic test generation using genetically-
engineered distinguishing sequences. In: Proc. IEEE Test Symp., pp. 216–223 (1996)

[13] Prinetto, P., Rebaudengo, M., Sonza, R.M.: An Automatic Test Pattern Generator for
Large Sequential Circuits based on Genetic Algorithms. In: Proc. Int. Test Conf., pp.
240–249 (1994)

[14] Mahfoud, S.W.: A comparison of parallel and sequential niching methods. In: Pro-
ceedings of VI International Conference on Genetic Algorithms, pp. 136–143 (1995)

[15] Corno, F., Prinetto, P., Rebauden, M., Sonza Reorda, M., Veiluva, E.: A PVM tool
for automatic test generation on parallel and distributed systems. In: Proc. Int. Conf.
on High-Performance Computing and Networking, pp. 39–44 (1995)

[16] Krishnaswamy, D., Hsiao, M.S., Saxena, V., Rudnik, E.M., Patel, J.H.: Parallel ge-
netic algorithms for simulation-based sequential circuit test-generation. In: IEEE
VLSI Design Conf., pp. 475–481 (1997)

[17] Abramovici, M.: Digital System Testing and Testable Design, vol. 652. Computer
Science Press, New York (1990)

[18] Hsiao, M.S., Rudnic, E.M., Patel, J.H.: Automatic test generation using genetically-
engineered distinguishing sequences. In: Proc. VLSI Test. Symp., pp. 216–223
(1996)

[19] Corno, F., Cumani, G., Sonza Reorda, M., Squillero, G.: Fully Automatic Test Pro-
gram Generation for Microprocessor Cores. In: DATE 2003: Design, Automation and
Test in Europe, Munich, Germany, pp. 1006–1011 (2003)

Index

A

Abelite, 3, 15, 40
Adaptive Logical Network (ALN), 67, 68,

69, 90
Algorithm, 67, 104, 106, 242, 248, 275

genetic, 165, 167, 168, 169, 170, 171,
173, 174, 176, 177, 178, 179,
180, 181, 184, 190

Analysis, 156, 205, 218, 258
Application Specific Integrated Circuit

(ASIC), 166, 183, 306
Architecture, 61, 63, 113
Automated Test Pattern Generator (ATPG),

291
Automaton, 170, 171, 172, 174, 182, 186

B

Block diagram, 102, 103, 105, 106, 107,
110, 238

Boolean function, 18, 61, 68, 69, 90, 122, 123,
145, 146, 195, 219, 308, 322, 328

Broadband signals (BBS), 250
Built-In Self Test (BIST), 289, 320, 321

C

CAD, 59, 65, 66, 121, 122, 166, 167, 169,
178, 184, 213, 226

CAD system, 215, 216, 227
CCPNML, 216, 226
Central Processor Unit (CPU), 94, 95
Code scales

composite, 269, 271, 272
pseudo-random, 263, 267

Complex Programmable Logic Device
(CPLD), 60, 145, 156, 166, 183,
226, 306

Computer graphics, 93
Computing

Reconfigurable (RC), 60, 61, 63
Configurable Logic Block (CLB), 61, 109,

110, 141
Configuration, 89
Control, 18, 28, 34, 35, 36, 38, 39, 40, 41,

110, 193, 246
Control unit

compositional microprogram, 198, 208
Controller, 223

Logic (LC), 221, 225
Coverage, 306
CPLD, 60, 145, 156, 166, 183, 226, 306

D

Decomposition, 122, 125, 126, 128, 129,
130, 146, 221, 222, 223

balanced, 130
DEMAIN, 130
Design, 15, 28, 39, 40, 59, 74, 75, 166, 289,

306
control unit, 40
data path
 connection graph, 27, 40

Diagram directionality (DD), 355
Direct mapping, 226

E

EDIF, 215, 216, 226
Electronic System Level (ESL), 289, 292, 328

F

Fault Detection Table (FDT), 289, 291, 294,
309, 310, 311, 312, 313, 314, 315,
316, 318, 319, 326, 328

364 Index

Feedback, 88
Field Programmable Gate Array (FPGA),

60, 61, 63, 64, 71, 75, 83, 84,
88, 109, 110, 111, 112, 121,
122, 125, 129, 138, 139, 140,
142, 146, 165, 166, 176, 177,
183, 184, 189, 190, 193, 215,
225, 226, 227, 290, 299, 306

Filter, 140, 253
Floating point, 72
FPGA Express, 83, 84
Functional Processing Field (FPF), 64, 88,

89
Functional unit (FU), 67, 68

G

Gate Array (GA), 60
Hierarchical, 353

Grafcet, 215
Graph

incompatibility, 24, 25, 40

H

Hardware, 64, 74, 76, 83, 85, 184, 302,
303, 304

Hardware Design Language (HDL), 64, 66,
80, 87, 110, 111, 112, 113, 114,
116, 140, 184, 220, 225, 227, 289,
292, 302, 306

Hemming adder, 59, 70, 84, 85

I

IEC 61131-3, 227
Input/Output Block (IOB), 61, 87
Instruction, 5, 6
IP Core, 66, 71

K

Kalman-Bucy optimum recursive
procedure, 231

KISS, 220

L

Logic element (LE), 67, 68
Logic-information method (LIM), 61, 62
Look–Up–Table (LUT), 61, 73, 75, 141,

146

M

Median filter (MF), 76, 79
Memory

Embedded, 130, 139
Microinstruction, 22, 198, 199, 201, 204,

210
operational, 198

Model, 87, 186, 187, 188
Modeling, 95, 184, 224, 291

Transaction Level (TLM), 292, 328
M-sequence, 263, 264, 265, 266, 267,

269, 270, 275, 276, 277, 278,
279, 281, 284, 286, 287

Multibeam antenna (MBA), 235, 236, 237
Multi-graph, 136

N

Normal form
conjunctive (CNF), 220, 308, 309, 310,

312, 314, 315, 322, 323
disjunctive (DNF), 289, 294, 299, 307,

308, 309, 310, 311, 312, 313,
315, 316, 319, 321, 322, 323,
324, 325, 326, 328

O

Operational Linear Chain (OLC), 194, 195,
196, 197, 198, 199, 201, 203, 205,
208, 209, 210, 212, 213

Optimization, 208

P

PALDec, 152, 154, 155, 156, 157
Partitioning, 127
PeNLogic, 216, 217, 220
Petri net, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227
colored (CPN), 223
hierarchical (HPN), 221
interpreted (IPN), 215, 216, 217

PNSF2, 216, 217, 219, 226
PNSF3, 216
Process, 19, 20, 80, 90, 178
Process table, 19
Processor, 3, 5, 6, 8, 9, 11, 12, 13, 14, 15,

18, 24, 25, 27, 28, 29, 30, 34, 38,
100, 101, 108, 114

reconfigurable, 88

Index 365

Program, 113, 256
Programmable Logic Array (PLA), 122,

139, 145, 146, 183
Programmable Logic Device (PLD), 59, 60,

61, 62, 63, 64, 65, 66, 70, 77, 79,
89, 90, 122, 146, 177, 189

Programming
Genetic, 357

Q

Quartus, 156, 157, 184

R

r-admissibility, 123, 124, 125, 126, 133
Read Only Memory (ROM), 52, 53, 122,

129, 130, 131, 136, 138, 139,
141, 142

Reading element, 277, 280

S

Sequential Function Chart (SFC), 215, 226
SIGETEST, 306
Signal, 8, 247
Simulation, 259, 291, 306, 310

Fault, 319
Software, 183
Space, 235, 250, 252
Specification and Description Language

(SDL), 289
State, 39, 73, 80, 82, 111, 193, 223
State Machine (SM), 3, 19, 32, 39, 40, 112,
 122, 130, 195, 215, 216, 222, 223,
 224, 225, 227

Algorithmic (ASM), 3, 8, 9, 11, 12, 13,
15, 16, 19, 26, 28, 32, 33, 34,
35, 39, 40

Finite (FSM), 19, 32, 33, 34, 35, 36, 38,
39, 122, 130, 131, 132, 138,
140, 141, 146, 193, 195, 196,
223

Step, 111, 112
Structure, 17, 68, 71, 88, 89, 101, 233, 243,

301, 313
Subsystem

Reconfigurable, 63, 64, 65, 66, 67
Synthesis, 32, 34, 59, 65, 79, 84, 130,

197, 199, 207, 209, 224, 295,
316, 318

System, 63, 66, 71, 109, 166, 179, 180, 185,
204, 206, 301, 328

on chip (SoC), 66, 166, 169, 289, 290,
291, 292, 293, 295, 307, 308,
309, 310, 319, 320, 321, 326,
327, 328

Reconfigurable Computer (RCS), 59, 60,
263, 275, 283, 285, 286

small personal, 93
SystemC, 289
SystemVerilog, 289

T

Task, 247, 248
Tcl/Tk, 227
Technology mapping, 146, 150
Test generation, 336, 338, 339
Transaction Level Modeling (TLM), 289,

292, 328
Transition, 74, 202, 206, 207, 211

table, 202, 206, 207, 211
Triangular matrix (TM), 70

U

Unified Modeling Language (UML), 110,
111, 112, 113, 116, 289

diagrams, 112, 116

V

Verification, 85, 87
Verilog, 41, 80, 215, 216, 220, 221, 222,

223, 224, 225, 227
VHDL, 40, 41, 70, 71, 80, 83, 84, 86, 156,

215, 216, 220, 221, 224, 225,
227, 302, 306

VLSI, 59, 100

W

Weight coefficients vector (WCV), 238,
242, 243, 244, 245, 250, 260

Wi-Max, 231, 246, 252

X

Xilinx
EDK, 289
Foundation, 83
ISE, 225
Netlist Format (XNF), 215, 216, 226

	Title
	Contents
	Part I System Design
	Digital System Design
	Main Processor Units and Instruction Sets
	Main Units
	Instruction Set and Instruction Formats
	Addressing Modes

	ASMs for Processor Instructions
	Data Path Design
	Combined Functional ASM
	Process Table and Connection Graph
	Graph of Incompatibility. Main MUXes and Direct Connections

	Control Unit Design
	Transformation of Functional ASM into Structural ASM
	Synthesis the Finite State Machine (FSM) from ASM
	Synthesis of Control Unit (FSM) for Processor
	Encoding of Inputs of MUXes

	Conclusions
	References

	Rectangular Function Π(x) and Its Application for Description of Some Logical Devices Operation
	Introduction
	Logic Operations on Rectangular Functions
	Utilization of the Rectangular Functions Π(x) for Analysis of Pulse or Frequency Multiplying
	Utilizing the Function Π(x) for Harmonic Analysis of Digital Sine Wave Generator
	Digital Sine Wave Generator Based on Digital Integrators
	Digital Sine Wave Generator Based on ROM

	Conclusions
	References

	Design and Application of the PLD-Based Reconfigurable Devices
	Introduction
	Evolution of Computer Systems
	Architecture and Structure of PLD-Based Computer Systems
	Adaptive Logical Network (ALN)
	Problem-Oriented Structures of Digital Devices
	Functional Blocks with a Floating Point
	Functional Blocks for Multiplication of Matrixes
	Designing and Realization of Median Filters
	Hemming Adder Realization

	Verification of Projects by Means of Stands
	Reconfigurable Processors
	Conclusions
	References

	Application of Multilevel Design on the Base of UML for Digital System Developing
	Introduction
	Features of Digital Systems for Real-Time Image Generation
	Estimation of the Complexity of the Standard Rendering Pipeline
	The Architectural Decisions and Algorithm Approaches for the Real-Time Rendering Systems

	Designing of Specialized Processors
	Scene Processor
	Clipping Processor

	Application of Runtime Reconfiguration
	Application of UML for HDL-Code Creation
	Example for 2D Clipping Realization
	Fragment of HDL for Scene Processor Simulation

	Summary and Future Directions
	References

	Part II Digital Design with Programmable Logic
	Logic Synthesis Method of Digital Circuits Designed for Implementation with Embedded Memory Blocks of FPGAs
	Introduction
	Decomposition of Boolean Functions
	Functional Decomposition
	Decomposition into EMB Blocks
	Parallel Decomposition
	Balanced Decomposition

	Sequential Circuits Synthesis
	Basic Information
	Implementation of Finite State Machines in FPGA’s
	States Encoding
	Construction of Partition PG
	Application of the Method

	Experimental Results
	Conclusions
	References

	Efficient Technology Mapping Method for PAL-Based Devices
	Introduction
	Theoretical Backgrounds
	Technology Mapping Algorithm
	Experimental Results
	Conclusions
	References

	Reliable FPGA-Based Systems Out of Unreliable Automata: Multi-version Design Using Genetic Algorithms
	Introduction
	External and Internal Design Diversity
	Partially Definite and Partially Correct Automata
	Reliability of Digital Systems Out of Unreliable Automata
	Designing Digital Systems Out of Unreliable Automata
	General GA-Based Approach
	Phase 1: Obtaining a System Model
	Phase 2: Increasing the Reliability of Digital Systems Out of Unreliable Automata
	Phase 3: Development of Switching Subsystem
	Implementation

	Experimental Application
	Conclusions
	References

	Synthesis of Compositional Microprogram Control Unit with Dedicated Area of Inputs
	Introduction
	Background of CMCU
	Synthesis of CMCU with Dedicated Area of Inputs
	Optimization of Compositional Microprogram Control Unit with the Dedicated Input Area
	Conclusions
	References

	PeNLogic – System for Concurrent Logic Controllers Design
	Introduction
	PeNLogic System
	Petri Net Modeling of Concurrent Controllers
	Analysis of Petri Net
	HDL Modeling, Simulation and Synthesis
	Petri Nets Decomposition
	Direct Mapping into Netlist

	Conclusions
	References

	Part III Testing, Modeling and Signal Processing
	Methods of Signals Processing in Radio Access Networks
	General Information
	Specific Features of Radio Access at Physical Level
	General Description of Physical Processes at Radio Access
	Space-Time Access Method
	Polarization in Access Tasks
	Adaptation in the Tasks of Access
	Suppression (Rejection) of Interference. Adaptive Antenna Arrays and Adaptive Interference Cancellers
	Control of Multipath Effect in Access Radio Lines
	Space-Time Coding

	Recommendations on Practical Use of Signal Processing Algorithms
	Formalization of Kalman-Bucy Algorithm
	Recommendations on Planning of Estimation Algorithms
	Program of Estimation Calculation with the Help of FKB
	Recommendations for Designing Adaptive Noise Compensators
	Recommendations for Planning Adaptive Antenna Arrays

	Conclusions
	References

	Recursive Code Scales for Moving Converters
	Pseudo-Random Code Scales
	Pseudo-Random Code Scales for Converters of Angular Movings
	Pseudo-Random Code Scales for Converters of Linear Moving

	Composite Code Scales
	Composite Code Scales for Converters of Angular Moving
	Composite Code Scales for Converters of Linear Moving

	Placing of Reading Elements on a Recursive Code Scale
	Algorithm of Placing of Reading Elements on a Recursive Code Scale
	Reading Elements Location on the Pseudo-Random Code Scale with a Constant Step
	Reading Elements Locations on the Composite Code Scale with a Constant Step

	Correcting Possibilities of Recursive Code Scales
	Conclusions
	References

	Infrastructure Intellectual Property for SoC Simulation and Diagnosis Service
	Infrastructure IP
	The Theoretical Foundations of Deductive Fault Analysis
	Deductive Components Synthesis for SoC Functions
	Structure Models of Simulator Primitives
	Algebra-Logical Fault Diagnosis Method
	Simulation for Diagnosis Refinement
	Structure-Logical Fault Diagnosis Method
	Vector-Logical Diagnosis Method by the Fault Detection Table
	Algebra-Logical Memory Repair Method
	Conclusions
	References

	Evolutionary Test Generation Methods for Digital Devices
	Genetic Algorithms and Their Modifications
	Parents Selection
	Crossover Operators
	Mutation

	Genetic Test Generation Algorithm for Digital Circuits
	Test Generation Genetic Algorithms for Combinational Circuits
	Test Generation Genetic Algorithms for Sequential Circuits
	Problem-Oriented Fitness Functions for Test Generation
	GA Test Generation Implementation

	Distributed Test Generation Methods
	GA Parallelization
	Parallel Test Generation Method Based on the “Master-Slave” Model
	Distributed Fault Simulation
	Distributed Test Generation Based on the “Model of Islands”
	Implementation and Experimental Investigations of Distributed Genetic Algorithms of Test Generation and Simulation

	Hierarchical GA of Test Generation for Highly Sequential Circuits
	Genetic Programming in Test Generation of Microprocessor Systems
	Conclusions
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

